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Preface

The present book includes extended and revised versions of papers selected from the
second CAAI International Conference on Artificial Intelligence (CICAI 2023), held in
Fuzhou, China, during July 22–23, 2023.

CICAI is a summit forum in the field of artificial intelligence and the 2023 forumwas
hosted by Chinese Association for Artificial Intelligence (CAAI). CICAI aims to estab-
lish a global platform for international academic exchange, promote advanced research
in AI and its affiliated disciplines, and promote scientific exchanges among researchers,
practitioners, scientists, students, and engineers in AI and its affiliated disciplines in
order to provide interdisciplinary and regional opportunities for researchers around the
world, enhance the depth and breadth of academic and industrial exchanges, inspire new
ideas, cultivate new forces, implement new ideas, integrate into the new landscape, and
join the new era. The conference program included invited talks delivered by four dis-
tinguished speakers, Chenghu Zhou, Zhihua Zhou, MariosM. Polycarpou, and Xuesong
Liu, as well as 17 tutorials on 8 themes, followed by an oral session of 13 papers, a poster
session of 72 papers, and a demo exhibition of 16 papers. Those papers were selected
from 376 submissions using a double-blind review process, and on average each submis-
sion received 2.9 reviews. The topics covered by these selected high-quality papers span
the fields of AI-generated content, computer vision, machine learning, nature language
processing, application of AI, and data mining, amongst others.

These two volumes contain 100 papers selected and revised from the proceedings of
CICAI 2023. We would like to thank the authors for contributing their novel ideas and
visions that are recorded in this book.

The proceedings editors also wish to thank all reviewers for their contributions and
Springer for their trust and for publishing the proceedings of CICAI 2023.

October 2023 Lu Fang
Jian Pei

Guangtao Zhai
Ruiping Wang
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Abstract. Fairness has emerged as a crucial topic in data mining and
machine learning applications, driven by ethical and legal considerations.
It is important to recognize that not all samples are treated unfairly,
resulting in data heterogeneity in fair machine learning. Existing fair mod-
els primarily focus on achieving fairness across all heterogeneous data,
yet they often fall short in ensuring fairness within specific subgroups,
such as fairly treated and unfairly treated data. This paper presents a
novel problem of training a fair model on heterogeneous data, aiming to
achieve fairness for both types of data, with a particular emphasis on the
unfairly treated subset. To address this challenge, an effective approach
is to recover the distribution of both fairly and unfairly treated data. In
this study, we adopt the Structural Causal Model (SCM) to model the
heterogeneous data as a mixture of causal structures. Leveraging the per-
spective of SCM, we propose a framework called FairDR, which utilizes
the Hirschfeld-Gebelein-Rényi (HGR) correlation to accurately recover
the distribution of both fairly and unfairly treated data. FairDR can serve
as a pre-processing method for other fair machine learning models, pro-
viding protection for the unfairly treated members. Through empirical
evaluation on synthetic and real-world datasets, we demonstrate that the
presence of heterogeneous data can introduce unfairness in previous algo-
rithms. However, FairDR successfully recovers the distribution of fairly
and unfairly treated data, thus improving the fairness of downstream algo-
rithms when dealing with heterogeneous data.

Keywords: Fairness · Causality · Heterogeneity

1 Introduction

Fairness has become an important topic in data mining and machine learning
applications. Lack of fairness considerations, machine learning algorithms may
cause discriminatory behaviors against certain groups (e.g., race, gender, etc.) in
applications such as law, medicine, sociology, and policy science [6–8,22,23]. In
practice, the unfair results would violate the interests of specific groups, which
is unethical and illegal. Therefore, more and more researchers and organizations
[10] have started to focus on fairness in machine learning algorithms in recent
years. To design a fairness algorithm, there are three main lines of adjustment
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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methods, including pre-processing methods [14,30], in-processing methods [4,29]
and post-processing methods [16,18]. These methods achieve fairness via either
generating fair data [30], disentangling sensitive attributes [12], adding regular
terms [3,15], causal intervention [9,19,24] and etc.

Despite the efforts on training a fair model on an overall data set, a critical
issue of fair machine learning is whether the potentially unfairly treated members
could get a more fair result. Here, we argue that the data we obtain in prac-
tice is always heterogeneous that consists of fairly treated samples and unfairly
treated samples. For example, female interviewers may consider more of gender
fairness, even though gender discrimination is common in job-hunting scenarios.
Fair machine learning algorithms themselves also produce fairly treated data
that will be mixed with existing unfairly treated data. Unfortunately, as in our
studies, most of the previous fair models trained on heterogeneous data may not
perform that well on a mixture of fairly and unfairly treated data. In Fig. 1, we
demonstrate the results of three kinds of methods (i.e., FFVAE [12], Cfair [32],
Rényi [3]) on two heterogeneous datasets (i.e., Adult1 [2] and COMPAS2 [1]) and
their corresponding fairly and unfairly treated samples. The results demonstrate
that even when these models could perform significantly fairly on heterogeneous
data, they could still be discriminatory on both subpopulations. In some cases,
the unfairly treated members get a more discriminatory result, and the fairly
treated ones also suffer from the risk of algorithmic discrimination. More details
will be provided in Sect. 4. Therefore, training a fair model on an overall het-
erogeneous dataset cannot guarantee its performance on the fairly and unfairly
treated samples separately. How to achieve fairness in heterogeneous data, espe-
cially for those unfairly treated samples, is still an open problem.

(a) COMPAS DP (b) COMPAS EO (c) Adult DP (d) Adult EO

Fig. 1. Results of existing fair models on the heterogeneous data and its corresponding
fairly and unfairly treated samples. Fairness on overall heterogeneous data cannot
guarantee fairness on either subgroup of the data.

One possible way to address the data heterogeneity in fair machine learning
is obtaining the fairly treated subgroup through sample selecting [26,27]. But
fairly treated samples are not always the majority of heterogeneous data. There
are also researchers [5] trying to identify whether a sample is unfairly treated

1 https://archive.ics.uci.edu/ml/datasets/Adult.
2 https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-

and-analysis.

https://archive.ics.uci.edu/ml/datasets/Adult
https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
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and bridge the gap between two subpopulations in linear cases. How to solve
the problem of data heterogeneity in fair machine learning more generally is
still an open and challenging problem. At the same time, more attention has to
be paid to protect the unfairly treated samples. As detecting whether a sample
is unfairly treated is difficult, a more sufficient way is to recover the distribu-
tion of fairly and unfairly treated data in heterogeneous data. In this paper, we
focus on heterogeneous data consisting of fairly treated samples and unfairly
treated samples. We model the data heterogeneity in fair machine learning via
Structural Causal Model (SCM) framework with theoretical analysis of why
models trained on heterogeneous data do not guarantee fairness performance on
fairly and unfairly treated data. Moreover, we propose a distribution recovery
framework, named FairDR, to recover the data distribution for both fairly and
unfairly treated data in heterogeneous data in continuous cases based on the
HGR coefficient and SCM framework. Our approach first searches the adjacent
nodes of sensitive attributes by independence test. In addition, we train two
neural networks to fit the two nonlinear transformations in HGR correlation.
At last, we recover the distribution of fairly and unfairly treated data with the
individual HGR value. Theoretically, our framework can recover the two distri-
butions well in different cases. Empirical evaluation on both synthetic data and
real-world data is provided to prove: (1) data heterogeneity does have impacts
on fair machine learning; (2) our framework can help downstream methods to
get better results on both fairly and unfairly treated data. At the end of this
paper, we discuss the open questions about data heterogeneity in fair machine
learning.

Broadly, we categorize our contributions in the following points:

– We conceptualize the problem of data heterogeneity in fair machine learning
via causal graphs, and analyze the possible impacts of data heterogeneity
with theory and experiments.

– We propose a distribution recovery framework FairDR for continuous cases
based on the Structural Causal Model framework and HGR correlation, which
does not require prior knowledge of the causal graph.

– Extensive experiments demonstrate our method can recover the distribution
of fairly and unfairly treated data. Also, our method can be used as a data
pre-processing framework for other downstream fairness methods.

Fig. 2. Illustration of fair and unfair structure with SCM view. (a) Unfair structure
based on selection bias (Collider). (b) Unfair structure based on confounders (Folk).
(c) Unfair structure based on the cause (Chain). (d) Fair structure.
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2 Analyses, Notations, and Problems

2.1 Heterogeneous Data on SCM Perspective

From the perspective of SCM, heterogeneity in the data means that data are
generated from different causal structures. So we can use causal graphs to repre-
sent heterogeneity in data. According to [21], discrimination can be summarised
as systemic discrimination and statistical discrimination . As shown in
Fig. 2(b) and Fig. 2(c), systemic discrimination can be modeled as a folk struc-
ture and chain structure. Similarly, statistical discrimination can be formed as
selection bias in Fig. 2(a). To our observation, the mechanism of selection bias
is usually complex social factors and not involved in the data (e.g., the selection
bias between race and education level). In existing research on fairness, it is
commonly assumed that the data only consists of biased samples. However, in
real-world scenarios, not all samples are subjected to discrimination for various
reasons. This heterogeneity of discrimination can manifest as variations in the
causal structures within the data.

2.2 Notations and Problems

In heterogeneous data Dh, there are N fairly treated samples and M unfairly
treated samples. For the fairly treated data, we have Df = {(xf

i , yf
i , af

i )}N
i=1,

each sample i ∈ {1, 2, . . . , N} consists of feature vectors xf
i , sensitive variable

af
i and label yf

i . Similarly, the unfairly treated data can be represented as Df =
{(xu

j , yu
j , au

j )}M
j=1. The heterogeneous data Dh = Df ∪Du where Df ,Du,Dh are

over X × Y × A. We use θh ,θf ,θu to denote parameters of a model trained on
heterogeneous data, fairly treated data and unfairly treated data, respectively.
So, as an example, Ŷ f

θh
means prediction on fairly treated data with parameters

trained on heterogeneous data. Let θf and θg be the parameters of function f
and g in HGR correlation. ρR denotes the HGR correlation coefficient and ρR

denotes the individual HGR correlation value.
As we described, fair models trained on heterogeneous data may not be guar-

anteed to be fair on both fairly and unfairly treated data. In this case, the
unfairly treated members may not be protected from discrimination. Worse yet,
those fairly treated ones may also suffer from algorithmic discrimination. There-
fore, in this paper, we focus on the problem of fairness in heterogeneous data,
which is defined as:

Problem 1. Fairness in Heterogeneous Data. Given the heterogeneous data
Dh = Df ∪ Du without prior knowledge on which sample is fairly treated (i.e.,
Df ) and which is unfairly treated (i.e., Du), the task is to learn a model which
is fair on both fairly and unfairly treated data.

3 Fair Distribution Recovery from Heterogeneous Data

As we described in previous sections, we can recover the distribution of fairly and
unfairly treated samples from heterogeneous data with the correlation between
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sensitive variable A and its adjacent nodes. In this section, we propose a fair
distribution recovery (FairDR) framework based on a structural causal model
perspective. To find the adjacent node of A, we choose independent test ways
which are similar to [28]. We choose HGR correlation as an independence metric
and use its individual value to recover the distribution. With our approach, we
can reduce the negative effects of data heterogeneity in a number of fairness
problems. A discussion of the difficulties of identifying data heterogeneity in fair
machine learning will also be included in this section. Our distribution recovery
framework FairDR consists of two parts:

1. Filtering neighboring nodes by independence test and conditional indepen-
dence test.

2. Fitting the individual HGR value between each variable in adjacent nodes
and the sensitive attribute A to recover the distribution.

3. Recovering the fair and unfair distributions

3.1 Conditional Independence Test for Distribution Recovery

The reason we filter the set of variables used for distribution recovery by indepen-
dence tests is that we are concerned with the heterogeneous structure associated
with sensitive attributes in fair machine learning. And due to the Markov prop-
erty in the causal graph, a sensitive attribute is independent of all remaining
variables given all its neighbors (in our setting, selection bias is some sampling
mechanism instead of a variable). Therefore, the heterogeneous structure we
need to identify exists only between sensitive attributes and their neighboring
nodes in the causal graph. Consider the situation that a heterogeneous structure
existing between A and Y and the unfairly treated data A is the cause of Y . In
the fairly treated data, A and Y are independent, while in the unfairly treated
data, A and Y are correlated. In the mixed data, the larger the proportion of the
unfairly treated data, the stronger the correlation between A and Y. This means
that when the correlation coefficient between A and Y is less than a threshold,
there is no heterogeneous structure between A and Y (only A and Y independent
data exist). For all variables associated with sensitive attributes, we can filter
out all nodes that are not directly adjacent to A by the conditional independence
test when the assumption of faithfulness and the Markov assumption is satisfied.
With the independence test, we can exclude heterogeneous structures in the data
that are not related to sensitive attributes. At the same time, the conditional
independence test avoids the degradation of distribution recovery performance
brought by a large number of invalid features when the number of features is
large. We chose Kernel-based conditional independence (KCI) [31] as the inde-
pendence test in our experiments, but other independence test methods (e.g.,
HSIC, mutual information, distance covariance) are also feasible. Algorithm 1 in
Appendix summarizes our steps to filter the features.
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3.2 Individual HGR Value Estimation

Fig. 3. Ideal distributions for fairly and unfairly
treated data in the linear case.

As in this paper we consider
a heterogeneous structure con-
taining only fairly and unfairly
treated samples, we choose the
distribution recovery method
based on HGR correlation. The
first reason we chose HGR is
that it is a widely used and
proven independence metric in
fair machine learning. Another reason is that HGR correlation makes it easy to
obtain individual values for each sample.

Definition 1. HGR Correlation.

ρR(A,B) = sup
f,g

E[f(A)g(B)]

s.t. E[f(A)] = E[g(B)] = 0, E
[
f2(A)

]
= E

[
g2(B)

]
= 1

(1)

With Definition 1, we can see that HGR correlation is actually calculating
the Pearson correlation coefficient between f(x) and g(y). Here f and g are
some kind of nonlinear transformations that make ρR take the maximum value.
For the Pearson correlation coefficient, the individual values of two uncorrelated
standard Gaussian variables will be the difference of two independent χ2

1 distri-
butions (As shown in 1). So it forms a K-form Bessel distribution with μ = 0
and σ2 = 1 [17]. When the n of chi-square distribution χ2

n is large, it converges
to a Gaussian distribution [11]. So we approximate it as a Gaussian distribu-
tion in our method. In contrast, the Pearson individual values of two linearly
correlated Gaussian variables form a χ2

1 distribution with n = 1. Subject to
E[A] = E[B] = 0, E

[
A2

]
= E

[
B2

]
= 1, Pearson correlation can be repre-

sented as Cov(A,B). So in fairly treated data, Pearson individual values follow
the Gaussian distribution. And in unfairly treated data, Pearson individual val-
ues follow a χ2

1 distribution. As shown in Fig. 3, no matter how the ratio of two
parts changes, we can get pure fair data Df when the number is less than 0 in
the perfect case (linear correlation without noise). Since 0 is both the mean and
median of the standard normal distribution, we can get the sample size of the
fair part of the data. According to the sample size of the fair part and the unfair
part, we can reduce the distribution of each part.

Lemma 1. Given 2 independent standard Gaussian variables A and B, AB ∼
1
2Q − 1

2R where Q,R ∼ χ2
1:

Proof. See Appendix.

Since HGR correlation can be seen as a nonlinear generalization of Pearson’s
correlation coefficient, it is also feasible under nonlinear conditions when we fit
f and g relatively well. Same as [15] we use neural networks to fit the functions
f and g. The step of training f and g is described in Appendix A.
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Lemma 2. Given 2 variables Ah = Af ∪ Au and Bh = Bf ∪ Bu where
Af ⊥ Bf and Bu �⊥ Bu. f(Ah), f(Au), f(Af ), g(Bh), g(Bu), g(Bf ) form stan-
dard Gaussian distribution. Jh(θf , θg) = E[f(Ah) · g(Bh)] and Ju(θf , θg) =
E[f(Au) · g(Bu)] will converge to same θf and θg.

Proof. See Appendix.

3.3 Fair and Unfair Distribution Recovery with HGR

In practice, because there is noise in the data, the χ2 distribution we get is
sometimes a little shifted. For this problem, we set the hyperparameter γ. We
assume that fair for all samples with ρR < γ. As we know that the distribution
of ρr for fairly treated data is a K-form Bessel distribution with μ = 0 and
σ2 = 1, we can estimate the sample size of the fair part. So that we can know
the proportion of the fair part and the unfair part in mixed data. For example,
when γ = −

√
2
2 , the fairly treated data will have about 16 percent of the data

less than γ because −γ is the standard deviation of the Gaussian distribution.
With the proportion, we recover a Bessel function distribution and a shifted χ2

distribution in the data. In this paper, we tried three different ways to recover
the distribution:

– Discretization: We split the observed samples into 100 discrete bins, calculate
the probabilities for samples from either distribution to fall in each bin, and
samples in each bin according to the ratio of two probabilities to form our
distribution.

– Gaussian KDE: We use a Gaussian kernel to estimate the probability density
function of the mixed distribution, and assign each sample to the Gaussian
part according to the ratio of p.d.f. value of a standard Gaussian to our KDE
estimation at this certain sample point.

– χ2 approximation: Alternative to kernel density estimation, we combine a
χ2
1 distribution with negative shift and a standard Gaussian distribution to

approximate the distribution of ρR values from the unfairly treated data.

When we need to use sensitive attribute A to do distribution recovery with
multiple variables {c1, . . . , cl}, we repeat our algorithm to each pair of variables
{(A, c1), . . . , (A, cl)} and we choose the pair of variables which is closest to the
ideal Gaussian and χ2

1 distribution. More discussion about FairDR will be dis-
cussed in Appendix.

4 Experiments

4.1 Experimental Setup

For each dataset, we first empirically reveal the limitations of the previous
approaches, which only aim to train a model achieving fairness towards het-
erogeneous data. Then we use the proposed FairDR to recover the fair data
distribution and unfair data distribution from the heterogeneous data. At last,



10 Y. Liu et al.

Table 1. Experiments results on synthetic data in terms of fairness on fairly treated
samples and unfairly treated samples.

Method Metric Setting 1 Setting 2 Setting 3 Setting 4 Setting 5 Setting 6 Setting 7 Setting 8

Training ΔDP : F 0.048± 0.007 0.010± 0.010 0.108± 0.071 0.015± 0.010 0.016± 0.014 0.066± 0.010 0.005± 0.001 0.027± 0.000

w/o FairDR ΔDP : U 0.110± 0.007 0.023± 0.009 0.080± 0.040 0.024± 0.014 0.067± 0.010 0.099± 0.008 0.115± 0.008 0.033± 0.000

Training w/ ΔDP : F 0.021± 0.007 0.005± 0.003 0.048± 0.042 0.032± 0.001 0.052± 0.015 0.079± 0.008 0.007± 0.002 0.012± 0.003

FairDR (Ours) ΔDP : U 0.018± 0.001 0.007± 0.002 0.035± 0.027 0.003± 0.001 0.046± 0.023 0.084± 0.010 0.097± 0.005 0.023± 0.002

Training ΔEO: F 0.051± 0.004 0.035± 0.004 0.032± 0.008 0.061± 0.029 0.022± 0.013 0.073± 0.015 0.008± 0.005 0.064± 0.005

w/o FairDR ΔEO: U 0.021± 0.008 0.169± 0.004 0.045± 0.016 0.120± 0.026 0.011± 0.009 0.017± 0.015 0.029± 0.003 0.026± 0.002

Training w/ ΔEO: F 0.033± 0.019 0.071± 0.008 0.019± 0.010 0.059± 0.039 0.008± 0.005 0.086± 0.007 0.006± 0.000 0.004± 0.003

FairDR (Ours) ΔEO: U 0.030± 0.019 0.140± 0.005 0.024± 0.014 0.092± 0.005 0.019± 0.011 0.010± 0.006 0.017± 0.005 0.006± 0.004

we compare the performance of the algorithms with and without FairDR in
terms of fairness on fairly treated samples and unfairly treated samples. In this
paper, we adopt HGR regularization method [20] as the backbone algorithm,
but we would like to emphasize that our proposed method can be adapted to
any fairness algorithm.

Fairness Metrics. We restrict attention to statistical fairness, which asks for
equality of some statistics evaluated over protected groups. We mainly consider
the notions of demographic parity (DP) [13] and equalized opportunity
(EO) [16] in this paper, but our method can be adapted to any type of statistical
fairness. We use ΔDP and ΔEO to measure the degree of unfairness between
the two groups. The greater the values of ΔDP and ΔEO, the more unfair the
model is. For the case where both sensitive attributes and labels are continuous
variables, we binarize them so that we can split the dataset into two groups and
calculate the ΔDP and ΔEO.

4.2 Experiments on Synthetic Data

Fig. 4. ΔDP using different hyperparameters in
Setting 7 and Setting 8.

Dataset. We first use synthetic
data to evaluate the fairness
of models trained on hetero-
geneous data across subgroups.
Specifically, we generate 6 dif-
ferent datasets based on causal
structures in Fig. 2. Then fol-
lowed the structure of the causal
graph in the Appendix to cre-
ate a data set with 8 variables.
Details of how the synthetic data sets are generated will be described in
Appendix B.

Impact of Data Heterogeneity. In this experiment, we first generate 6 differ-
ent types of data heterogeneity with the causal structure shown in Fig. 1. Then
we generate 2 causal graphs with 8 variables. We choose HGR regular term as
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our downstream algorithm. As shown in Fig. 4, fair models trained on heteroge-
neous data perform not that well on both fair and unfair parts. In some cases,
the model performs lower on both fair and unfair components than on heteroge-
neous data. This proves the existence of possible reverse discrimination on fairly
treated samples as we proposed. In Table 1, Setting 1 to Setting 6 correspond
to six heterogeneous structures. Setting 7 and Setting 8 correspond to the two
complex causal graphs. In all eight settings, we can observe that models trained
on heterogeneous data fail to perform consistently on the fair and unfair parts.
We found this situation to be particularly noticeable in the presence of variables
in X between sensitive attributes A and label Y .

Fig. 5. Distribution HGR individual value on
unfair and unfair subgroups.

Distribution Recovery. In
this experiment, we evaluate the
accuracy of the HGR-based dis-
tribution recovery when unfair
data based on different cor-
relations are mixed with fair
data. The proportion of fair and
unfair data is 1 : 1. Here we
choose four different types of
correlations and add noise. We
test three different ways to fit
the distribution of the fair sub-
group and unfair subgroup. In
Fig. 5, we can find that when the relationship between variables is nonlinear, the
distribution of the fair part tends to be more Gaussian. The visualization of this
experiment is attached in Appendix.

Fairness Results. In Table 1, when we choose DP as the fairness metric, models
trained on our reduced distribution perform more consistently on both the fair
and unfair components than those trained directly on heterogeneous data. In the
first six settings, both models perform well when sensitive attribute A is adjacent
to the label Y . In other cases our recovered distributions solve the problem posed
by data heterogeneity well.

4.3 Experiments on Real-World Data

Dataset. We also verify the effectiveness of our method on the following real-
world datasets: Census3 and Crime4 [25]. More details about these two datasets
are described in Appendix.

Remark 1. Because we do not know whether the real-world data is heterogeneous
or not, and the ground truth of the ratio of the two parts of the data, we try to
3 https://www.kaggle.com/muonneutrino/us-census-demographic-data.
4 https://archive.ics.uci.edu/ml/datasets/communities+and+crime.

https://www.kaggle.com/muonneutrino/us-census-demographic-data
https://archive.ics.uci.edu/ml/datasets/communities+and+crime
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deal with the data with a long-term fair machine learning process. Specifically,
we first divide the dataset into three random equal parts. We train a fair machine
learning model with the first part of the data and predict fair labels in the second
part of the data. Finally, we mix the second and third parts of the data to form
heterogeneous data. We expect to simulate data heterogeneity caused by fairness
adjustment through the above process.

Impact of Data Heterogeneity. We first test the optimal fairness perfor-
mance of the backbone algorithm trained based on mixed data on the mixed
test set. We chose Census and Crime as the test dataset. Both methods can
work well on mixed test sets. When we look at the performance of the fair and
unfair parts of the mixed test set, the performance of the model becomes poor
and unstable. In some cases such as ΔEO on the Crime dataset, the convergence
of ΔDP and ΔEO on mixed data seems to be simply due to its good performance
on one of subgroups. In other cases, the models are all less fair on subgroups than
on heterogeneous data. This may be due to the presence of reverse discrimination
in two subgroups.

Table 2. ΔDP on real-world data.

census crime

Unfair (w/o FairDR) 0.149(0.001) 0.141(0.037)

Fair (w/o FairDR) 0.070(0.002) 0.078(0.073)

Unfair (w/ FairDR) 0.040(0.002) 0.040(0.028)

Fair (w/ FairDR) 0.078(0.012) 0.076(0.048)

Table 3. ΔEO on real-world data.

census crime

Unfair (w/o FairDR) 0.140(0.002) 0.141(0.029)

Fair (w/o FairDR) 0.028(0.006) 0.196(0.153)

Unfair (w/ FairDR) 0.096(0.002) 0.065(0.038)

Fair (w/ FairDR) 0.040(0.019) 0.185(0.167)

Fairness Results. In Table 2 and Table 3, models trained on the recovered dis-
tributions perform better than those trained on heterogeneous data. The models
trained on our recovered distributions perform better on fair and unfair sub-
groups and have better overall fairness. As our fair data is generated with a fair
algorithm, we have to point out that a real-world heterogeneous dataset with
ground truth discrimination labels is needed for further study.

5 Conclusion and Future Work

In this work, we present the problem of data heterogeneity in fair machine learn-
ing. We find that not only accuracy but also fairness metrics can be affected by
data heterogeneity. The fair model trained on heterogeneous data may still per-
form poorly on fair and unfairly treated data. To solve this problem, we propose
FairDR, an SCM-based distribution recovery framework. With our framework,
we can recover the distributions of the fair subgroup and the unfair subgroup
well in many cases and improve the performance of downstream methods. As
described in the paper, data heterogeneity is an essential and challenging problem
for fair machine learning. Although our method performs well under continuous
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conditions, it remains a challenge to reduce the distribution in discrete or even
binary cases. Also, data heterogeneity in fair machine learning is not just a mix-
ture of fairly and unfairly treated data. There may also be different levels of
discrimination that cannot be solved by our approach. We will put those issues
in our future work.
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Abstract. Adversarial training (AT) aims to improve models’ robust-
ness against adversarial attacks by mixing clean data and adversar-
ial examples (AEs) into training. Most existing AT approaches can
be grouped into restricted and unrestricted approaches. Restricted AT
requires a prescribed uniform budget for AEs during training, with
the obtained results showing high sensitivity to the budget. In con-
trast, unrestricted AT uses unconstrained AEs, and these overestimated
AEs significantly lower the clean accuracy and robustness against small
budget attacks. Thus, the existing AT approaches find it difficult to
obtain a comprehensively robust model when confronting attacks with
an unknown budget, which we name blind adversarial attacks. Consid-
ering this problem, this paper proposes a novel AT approach named
blind adversarial training (BAT). The main idea is to use a cutoff-scale
strategy to adaptively estimate a nonuniform budget to modify the AEs
used in training, ensuring that the strengths of the AEs are dynamically
located in a reasonable range and ultimately improving the comprehen-
sive robustness of the AT model. We include a theoretical investigation
on a toy classification problem to guarantee the improvement of BAT.
The experimental results also demonstrate that BAT can achieve better
comprehensive robustness than AT with several AEs.

Keywords: Adversarial Training · Comprehensive Robustness · Blind
Adversarial Attacks

1 Introduction

Deep learning [9,15] has made great breakthroughs in many fields, such as
computer vision [13], speech recognition [11,17], and natural language process-
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ing [25]. Its weakness has attracted increasing attention, especially after adver-
sarial examples (AEs) were introduced [10,26,29]. Many effective AE generation
methods and defensive strategies have been proposed; see the review papers and
references therein for details [1,28].

Adversarial training (AT) is a process of training a neural network on a mix-
ture of clean data and AEs, in order to improve the robustness of the network
against adversarial attacks; see [2,10,16,26] for white-box attacks and [14,23,27]
for black-box attacks. These approaches focus on improving the generalization
ability of AT by modifying the AE generation method or training loss. Further-
more, the limitation of incurring a minimal impact on clean accuracy requires
the architecture of the network to be sufficiently expressive [1,28], as guaranteed
by the universal approximation theorem [10,12] and regularization [22]; even so,
it is still difficult to achieve improved robustness [10,19,27]. Thus, how to obtain
a more robust model is still a hotspot issue to be studied. This paper discusses
this issue from the point of view of the magnitude of the AE perturbation (bud-
get) during training. Thus, most existing AT approaches can be divided into two
categories: restricted and unrestricted AT. Next, we analyze the characteristics
of these existing AT approaches.

Restricted AT approaches: that use norm-constrained AEs, such as FGSM-
AT [10] and PGD-AT [16] with using FGSM and PGD AEs respectively, require
a prescribed uniform training budget to constrain the magnitude of the AE per-
turbation during training and then evaluate the result on the AEs with the same
budget attacks. The model obtained with the prescribed budget is only robust
when confronting the attack with the same strength, while it is clearly weak
for an attack stronger than the prescribed budget, and is overly defensive when
confronting a small attack or encountering clean data. Madry et al. [16] found
that a large budget is necessary to improve the AT effectiveness, but possibly
lowering the accuracy on clean data. This result was also verified numerically by
Song et al. [23]. It can be intuitively displayed through the experiment in Fig. 1
that the robustness of restricted AT is sensitive to the budget.

In contrast, the unrestricted AT approaches: are not affected by the pre-
scribed budget and use unconstrained AEs [4] during training. The main goal of
these AE approaches is to attack the models without constraints on AEs, such
that the desired AEs should go beyond the decision boundary. To date, many
types of unconstrained AEs have been examined; for example, DeepFool [18]
attempts to obtain the smallest AEs aiming for the decision boundary, CW [5]
can obtain AEs that balance the perturbation and confidence, and other inno-
vative methods without a prescribed budget [3,24]. While we can directly apply
these AEs to AT, the basic motivation of unconstrained AEs is to attack while
aiming to fool the model by using the AEs beyond the decision boundary. As an
improvement, DDN-AT [21] decouples the direction and norm of gradient-based
attacks while inheriting the advantages of high computational efficiency. MMA
training [7], focuses on maximizing the margins, which is an alternative app-
roach for selecting the budget for each point individually. Other similar methods
have the same characteristics [6,8,30]. It is clear that the introduction of the
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Easily A�acked Easily A�acked

(a) Normal Training (b) Adversarial Training

Robustness

(c) Blind Adversarial Training

Fig. 1. Comparison of different training approaches on a two circles classification prob-
lem with the 1-hidden-layer 6-dim perceptron. The solid blue/red lines correspond to
the datasets of two labels, the solid polygon lines represent the decision boundary of
the classifiers, and the blue/red shadow zones in (b,c) show the manifold of AEs. (Color
figure online)

unconstrained AEs into training actually changes the concerned original data
manifold. Based on the obtained numerical experience, the loss function gradi-
ents are unstable in this case, leading to dramatic decision boundary fluctuations
and giving rise to a very large number of AEs with too large a strength; this leads
to the training process being unstable and severely decreases the robustness and
lowers the accuracy on clean data.

From the above discussions on both restricted and unrestricted AT, the fol-
lowing may be summarized: if the attack budget is known exactly, we can defi-
nitely increase the model’s robustness by using a restricted AT; moreover, if it
is assumed that the attack budget is large, then the model’s robustness can be
increased by using an unrestricted AT. However, a more interesting situation
is that of practical application, one cannot expect to know the attack
budget in advance. This means that it is necessary to develop an AT app-
roach when confronting attacks with an unknown budget, which we name blind
adversarial attacks.

To address this problem, we propose a novel AT approach named blind
adversarial training (BAT), which uses a cutoff-scale (CoS) strategy to ame-
liorate the generation of AEs during training. See Algorithm 1 and Sect. 2.3 for
details. Both strategies adaptively estimate a nonuniform budget and ensure
that the AEs are located in a reasonable range in the blind case, such that the
trained model will achieve a better comprehensive robustness. In the future, the
CoS strategy can be combined with other methods as a plug-in to achieve better
results. Moreover, considering that the existing robustness evaluation criterion
cannot reflect the models’ comprehensive robustness, we propose comprehensive
robustness (CR). CR can be considered the integration of a model’s accuracies
under the attack with varying budgets and clean data. See Sect. 2.4 for details.
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As shown in Fig. 1 (c), BAT can generate a model with an exactly regular
octagon decision boundary, i.e., the model with the best robustness within the
given network architecture without the prescribed budget. We also theoretically
analyze the improvement of BAT on a toy model and provide Propositions 1–3.
Furthermore, compared with the FGSM-, PGD- and DeepFool-based ATs, using
BAT to train LeNet-5 on Mnist, Fashion-Mnist and SVHN and to train FitNet-
4 on Cifar10 and Cifar100, we can obtain models with better comprehensive
robustness. In addition, on Mnist, we empirically find that both the cutoff and
scale strategies make significant individual contributions.

2 Theory and Methodology

We consider a standard classification task with dataset {x,y} and minimization
objective minθ E(x,y)[L(θ,x,y)], where L is the loss function with weights θ.
Adversarial training (AT) is also called brute-force AT and was first proposed
by Szegedy et al. [26] and further developed by Goodfellow et al. [10]. The core
idea of AT is to enhance the robustness by adding AEs to the training data; here,
the total loss function can be written in a general form minθ E(x,y)[L(θ,x,y) +
L(θ,x+δ(x),y)], where x+δ(x) represents the AEs of data x. AT will alternately
generate AEs and optimize the network parameters until the levels of accuracy
on clean data and AEs converge.

To theoretically compare the behavior of the ATs, we consider a toy clas-
sification problem (TCP), i.e., using a simplified 1-layer perceptron y =
Sigmoid(Wx + b) to classify two points x1,x2. It can be easily verified that
the decision boundary of the model with the best robustness falls on the per-
pendicular bisector of the two points. All the proofs of the following propositions
are provided in the appendix.

2.1 Restricted Adversarial Training

To generate AEs, Madry et al. [16] introduced a set of allowed perturbations S
that formalize the manipulative power of the adversary, usually using the �∞-ball
around x with the budget ε as S [10], so that the AT process can be reformulated
as

min
θ

E(x,y) max
δ(x)∈S

L(θ,x + δ(x),y) (1)

This saddle point optimization problem specifies a clear goal of a robust classifier.
The inner “max” (adversarial loss) aims to find an AE of the given data x, while
the outer “min” finds a model that minimizes the “adversarial loss”. These AEs
can be easily simplified to the widely accepted and used FGSM or PGD [16] AEs.
We name this kind of AT restricted AT. Proposition 1 shows the improvement
of restricted AT on NT.

Proposition 1. For the TCP problem, both restricted AT and NT can obtain
the model with the best robustness, and there exists a prescribed budget such that
the restricted AT with this budget can accelerate the training process of NT.
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Proposition 1 demonstrates that the budget used in restricted AT can accelerate
the training process. However, the optimal budget with maximum acceleration
cannot be predicted, and the optimal choices vary between different datasets.
This means that even for such a toy problem, one cannot expect to always obtain
a better model given a prescribed budget.

2.2 Unrestricted Adversarial Training

To release the requirement of a prescribed budget in restricted AT, an intuitive
approach is to use the unconstrained AEs during AT, i.e., unrestricted AT,
formally

min
θ

E(x,y) max
δ(x)

{L(θ,x + δ(x),y) − ||δ(x)||}, (2)

where the L(θ,x+ δ(x),y) term corresponds to guaranteeing the attacking abil-
ity, and the ||δ(x)|| term constrains the norm to be small. An example of an
alternative approach to generate AEs is DeepFool [18], which minimizes the �2
norm of AEs slightly beyond the decision boundary of the current model. The
AT with unconstrained AEs may obtain a more robust model than NT, but it
cannot ensure better performance than restricted AT and will incur a heavy cost
in terms of accuracy loss. Similarly, we state the following proposition.

Proposition 2. For the TCP problem, unrestricted AT cannot be used to obtain
the model with the best robustness.

While simply using unconstrained AEs in unrestricted AT can avoid the short-
coming of choosing a prescribed budget, the AEs located on the decision bound-
ary prevent the model from obtaining the best robustness. Thus, unlike restricted
AT, for such a toy classification problem, unrestricted AT may output a bad
model.

2.3 Blind Adversarial Training

As we claimed in Sect. 1, one cannot expect to know the attack budget in prac-
tice. Therefore, to alleviate the drawbacks of the restricted and unrestricted AT
against blind adversarial attacks, we propose a cutoff-scale (CoS) strategy based
on DeepFool-AT (DF-AT) in (2), and we name our approach blind adversarial
training (BAT). To clarify the discussion, here, we only consider using the Deep-
Fool AEs. We can similarly combine the CoS strategy with other approaches of
generating unconstrained AEs, such as CW [5] or DDN [21], which will be the
future plan. BAT can be formulated as

min
θ

E(x,y)max
δ(x)

{L(θ,x+ρδ(x)
︸ ︷︷ ︸

Scale

,y)−||δ(x)||−(||δ(x)||−ε)+
︸ ︷︷ ︸

Cutoff

}, (3)

where we introduce two parameters ε and ρ to monitor the cutoff and the scale
process, respectively. L(θ,x + δ(x),y) and ||δ(x)|| terms act in the same manner
as unrestricted AT.
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Algorithm 1. Blind Adversarial Training (BAT)
Input: Dataset {x,y}, scale factor ρ, learning rate α.
Output: Model θ.

Initialize model θ.
repeat

LC = L(θ,x,y), � Loss on clean data
δ(x) = xadv − x, � xadv: DeepFool AEs
ε = Ex ||δ(x)||2, � Adaptive Cutoff budget
δCo(x) = cut{δ(x), ε}, � Cutoff AEs
δCoS(x) = ρδCo(x), � Scale AEs
xCoS = x + δCoS(x), � Get CoS AEs
LAE = L(θ,xCoS,y), � Loss on CoS AEs
θ = θ − α(∇θLC + ∇θLAE), � Update with total loss

until CR(0.5) converge. � Reach comprehensive robustness

The motivation of the cutoff and scale is to ensure that the AEs are dynam-
ically located in a reasonable range such that the AT model can be robust when
encountering an attack with varying strength. We use the cutoff to further penal-
ize the AEs with a norm larger than the budget ε. Similar to the inner problem in
(2), we can alternatively solve the inner problem in (3), followed by the DeepFool
AEs. Due to the dramatic fluctuations in the decision boundary during training,
the cutoff can avoid AEs with a large or even unreasonable strength, e.g., some
failure or overestimation AEs of DeepFool, limiting the AEs to lie within the
perfect decision boundary. We use the scale to prevent the AEs from going over
the decision boundary, i.e., preventing the AEs of different labels from touching
each other.

The procedure of BAT is given in Algorithm 1. Starting with the AEs gener-
ated by DeepFool, which corresponds to only maximizing the first two terms in
the objective of (3) (with ρ = 1), we simply calculate the third term (equivalent
to minimizing (||δ(x)|| − ε)+) by cutting off the perturbations of AEs with a
norm larger than ε, defined by cut{δ(x), ε}: if ||δ(x)|| > ε, δ(x) ← δ(x)/||δ(x)|| ·ε;
otherwise,there is no change in δ(x). Then, we scale the new perturbations with
weight ρ and add these CoS AEs into the training process, i.e., {x + ρδ(x)}.
We set ε = E||δ(x)|| and ρ < 1 (a predefined parameter), corresponding to
adaptively estimating a nonuniform budget. Cut{δ(x),E||δ(x)||} implies that the
budget ε ← E||δ(x)|| is computed prior to cutting off the perturbations δ(x).

Similar to the restricted and unrestricted AT, the following can be proven
theoretically for BAT:

Proposition 3. For the TCP problem, BAT can also obtain the model with the
best robustness and has the same convergence property as the restricted AT with
the best budget.

Although these propositions are based on the toy model, the conclusion is also of
guiding significance for common neural networks. Comparison with Propositions
1-2 shows that BAT not only avoids the difficulty of making the best choice
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for the budget but also provides an AT approach that dynamically adjusts a
nonuniform budget, seeks to provide a path to potentially guess the perfect
decision boundary, and finally reaches the model with the best robustness.

2.4 Comprehensive Robustness

The traditional evaluation criterion of a model’s robustness is its accuracy under
adversarial attack with a given budget [10,16]. This means that in fact, it con-
siders the behavior of a model against adversarial attacks with a known attack
budget. Since we instead consider the performance of an AT approach against
blind adversarial attacks, the traditional evaluation criterion is unreasonable at
this time. To address this problem, we propose a new evaluation criterion, named
comprehensive robustness (CR). First, we define the adversarial accuracy under
a given budget ε as AA(ε) = A(x + cut{δ(x), ε}), where A(·) is the accuracy of
the given data and ε is a threshold used to cut the AEs. Then, we use the average
adversarial accuracy to show the comprehensive robustness in the interval [0, Θ],

CR(Θ) =
1
Θ

∫ Θ

0

AA(ε)dε. (4)

It is clear that a larger CR(Θ) indicates that the model has a better compre-
hensive robustness against adversarial attacks with varying attack budgets less
than Θ. Clearly, clean data accuracy is a special case of adversarial accuracy, i.e.,
AA(0). It appears that one can instead use constrained AEs, such as FGSM [10]
or PGD [16], to define the adversarial accuracy. However, we note that these
AEs are only effective under a small budget. Moreover, the proposed adversarial
accuracy is consistent with our cutoff strategy in optimizing the objective (3)
such that the evaluation criterion in Algorithm 1 is efficient during our training
process.

Since we numerically scale the input data to [0, 1] in the experiments, we
simply set Θ = 0.5 in Algorithm 1. We suggest that the parameter Θ should be
selected at the point that AA(Θ) falls to 0. At this time, the absolute value of
CR is large as a whole and has strong discrimination. If Θ is further reduced, the
robustness information near Θ will be lost. In contrary, if Θ is further increased,
the robustness information will not increase, but the overall value of CR will
decrease in an equal proportion, only causing the value to appear smaller.

3 Experiments for Benchmark Datasets

This section will experimentally evaluate the performance of BAT on various
benchmark classification problems. We will compare BAT with normal train-
ing (NT), two restricted ATs (FGSM-AT/PGD-AT), and one unrestricted AT
(DeepFool-AT). Here, we choose the most widely used prescribed budgets for
FGSM-AT/PGD-AT in the literature [10,16,23]. The budgets for FGSM-AT
and PGD-AT are 0.3 (Mnist), 0.1 (Fashion) and 6/255 (SVHN, Cifar10 and
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Table 1. Comparison of the comprehensive robustness (CR(Θ) in (4)) of normal train-
ing (NT), two restricted ATs (FGSM-AT/PGD-AT), unrestricted AT (DeepFool-AT),
and our BAT (DeepFool AEs). We mark the highest and second-highest results in bold
and underlined, respectively.

Dataset Mnist Fashion SVHN Cifar10 Cifar100

Θ 0.13 0.07 0.08 0.04 0.004 0.002 0.03 0.02 0.007 0.003

NT 28.7 49.8 22.4 35.6 44.6 65.4 58.9 67.5 34.6 49.6

FGSM-AT 26.0 45.0 17.2 26.5 43.0 63.5 54.3 63.2 51.2 55.9

PGD-AT 92.2 96.3 69.3 79.6 75.8 79.8 57.3 65.2 51.4 55.6

DeepFool-AT 84.8 94.2 69.4 77.8 77.7 82.5 62.9 68.3 52.2 57.0

BAT (Ours) 84.8 94.8 73.9 83.2 76.2 83.8 62.3 68.8 52.8 59.7

Cifar100). We only consider the BAT based on DeepFool AEs, and we will
implement the BAT with CW/DDN AEs in future work. The code for these
experiments is based on the open source library Cleverhans [20].

3.1 Overall Results

Comprehensive Robustness. Comprehensive Robustness results of BAT
compared with other ATs are shown in Table 1 firstly. BAT approach achieve
good comprehensive robustness. For each classification problem, we consider the
comprehensive robustness against blind adversarial attacks with two different
budget ranges, i.e., different Θ. Since E||δ(x)|| can represent the average dis-
tance between the data manifold and the model’s decision boundary, we set
Θ = E||δ(x)|| and take one-half of it, because in applications, the focus is more
on the robustness facing the AEs that do not exceed decision boundaries. Thus,
we simply choose Θ = 0.5 in Algorithm 1 because it is hard to estimate a suitable
Θ in advance. These results in Table 1 clearly show that the proposed BAT is in
the top two of all datasets and ranks first in most cases, showing that
our method can balance the clean accuracy and the comprehensive robustness of
the model. Since DeepFool-AT is effective for defending against large attacks, its
accuracies under large Θ values are slightly higher than those of BAT in some
cases, e.g., SVHN and Cifar10. For Mnist, PGD-AT works much better than
FGSM-AT and outperforms DeepFool-AT and BAT, especially under larger Θ.
The reason may be that for the simplest dataset with high accuracy, such as
Mnist, the introduction of randomness in PGD may help to obtain the optimal
AEs, such that the corresponding AT has a better comprehensive robustness. In
contrast, for complex datasets, this behavior cannot be expected.

Due to space limitations, we will include a more detailed comparison about
comprehensive robustness, the results of different methods facing different adver-
sarial attacks, and the results of black-box attacks in the appendix.
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Fig. 2. An ablation study on cutoff and scale on Mnist. The results of AT models by
Algorithm 1 with varying cutoff parameter ε and fixed ρ = 1 are shown in (a): the
accuracies on DeepFool AEs with varying budgets and (b): the accuracy on clean data
and comprehensive robustness CR(0.3). The corresponding results with varying scale
parameter ρ and fixed ε = 1 are shown in (c) and (d). We plot the clean accuracy and
comprehensive robustness CR(0.3) of BAT in (b) and (d). (Color figure online)

3.2 Ablation Study on Cutoff and Scale

We take Mnist as an example to perform an ablation study on cutoff and scale.
For cutoff, we set the scale parameter ρ = 1 and strictly let the cutoff parameter
ε be a predefined value rather than the adaptive value used in Algorithm 1. By
setting ε = 0, 0.05, 0.1, 1, we obtain several ATs by Algorithm 1. Then, we test
the performance of these AT models against the DeepFool attack with different
budgets; the results are shown in Fig. 2(a). Figure 2(b) left (blue line) also shows
the clean accuracy of these AT models. From these results, we find that the AT
with larger ε has better performance against the attack with a larger budget, but
with less clean accuracy. Figure 2(b) right (red line) also shows the comprehensive
robustness CR(0.3) of the AT models with varying ε values. An examination of
the results presented in Fig. 2(b) clearly indicates that there exists a trade-off
between clean accuracy and comprehensive robustness. In practice, it is time-
consuming to plot Fig. 2(b) for a given dataset, especially for large models. Thus,
we are encouraged to adaptively choose a suitable ε. We plot the clean accuracy
and comprehensive robustness of BAT, i.e., the AT with adaptive ε, in Fig. 2(b)
with the blue and red points, respectively. Surprisingly, the results show that
our BAT approach can adaptively estimate a good budget and obtain the model
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with a relatively high comprehensive robustness. We also set ε = 1 and vary
ρ to test the influence of the scale. The corresponding results are presented in
Figs. 2(c)–(d) and are similar to the results obtained for the cutoff. However,
more surprisingly, combined with an adaptive ε, the BAT with ρ = 0.9 works
much better on clean data accuracy.

In fact, from another point of view, we may also consider BAT in (3) to be a
comprehensive approach of NT (the training without using AEs) and DeepFool-
AT in (2). We find that the BAT with cutoff ε = 1 and scale ρ = 1 reduces to
the DeepFool-AT. Moreover, the BAT with ε = 0 or ρ = 0 is identical to the NT,
where the zero parameter of the cutoff or scale compresses the AEs back to the
clean data. Therefore, the cutoff and scale strategy can connect and carry out
the transition from DeepFool-AT to NT by adjusting parameters ε and ρ. The
numerical results presented in Fig. 2 show that DeepFool-AT can obtain a model
with high robustness when encountering large attacks, while the NT approach
can clearly produce a model with high clean data accuracy. The proposed cut-
off and scale strategy in BAT attempts to provide an approach combining the
advantages of both DF-AT and NT by dynamically adjusting the nonuniform
budget against blind adversarial attacks, and the obtained results demonstrate
that the output model has better comprehensive robustness. We note that for
an adversarial attack with a known attack budget, the above observations also
encourage us to use the BAT with a prescribed cutoff and scale parameters for
defense. This is an interesting future direction.

4 Conclusion

Both restricted and unrestricted AT approaches cannot obtain comprehensively
robust models against blind adversarial attacks, i.e., attacks with an unknown
budget. To address this problem, this paper proposed a blind adversarial train-
ing (BAT) approach by using the cutoff-scale strategy to adaptively estimate
a nonuniform budget in the generation of each AE during adversarial training.
The improvement of BAT was theoretically verified on a toy classification prob-
lem (TCP) and a two circles classification (TCC) problem. By using BAT to
train the classification models on several benchmarks, we obtained models with
better comprehensive robustness. The individual contributions of the cutoff and
scale were also investigated in detail.
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Abstract. Recently, Image-based Virtual Try-on has garnered increasing atten-
tion within the realm of online apparel e-commerce, which aims to virtually
superimpose garments onto images of portraits. Image-based virtual try-on gen-
erally consists of two steps: Image-based Virtual Try-on Alignment and Image-
based Virtual Try-on Generation. In this paper, we focus on Image-based Vir-
tual Try-on Alignment (IVTA), which plays a pivotal role in virtual try-on and
aligns the target garment with the portrait. Current approaches for IVTA mostly
adopt Convolutional Neural Networks (CNN) to extract local detailed features
of both garments and portraits, ignoring the significance of global extensive fea-
tures. To address this problem, we propose a novel model named Try-On Align-
ing Conformer (TOAC) to effectively aligns the target garment with the portrait
and improve virtual try-on. Firstly, we integrate both Swin Transformer and CNN
to comprehensively extract both global patterns and local details. Secondly, we
propose a robust learned perceptual loss between generative reconstructed gar-
ment images and the ground truth to alleviate the overlap problem. Extensive
experiments demonstrate the superiority of our proposed model compared to the
state-of-the-art methods for virtual try-on alignment.

Keywords: Virtual Try-on Alignment · Image Synthesis · Transformer

1 Introduction

Recently, Image-based Virtual Try-on [4,7,11,15] has garnered significant attention
within the realm of online apparel e-commerce. This emerging technology seeks to
virtually superimpose garments onto images of portraits, allowing users to visualize
how a particular garment would appear on them without physically trying it on. The
application of Image-based Virtual Try-on has the potential to revolutionize the online
shopping experience by providing customers with a more realistic and interactive way
to explore and evaluate garment items. Generally, image-based virtual try-on comprises
two stages [16]: image-based virtual try-on alignment and image-based virtual try-on
generation. As shown in Fig. 1, the virtual try-on alignment stage focuses on deforming
the target garment to fit the portrait by inputting the features of the garment and the
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Fig. 1. The workflow of Image-based Virtual Try-on: Stage 1 focuses on deforming the target
garment to fit the specific portrait, and Stage 2 synthesizes an image of the specific person wearing
the target garment.

portrait. Afterward, the virtual try-on generation stage synthesizes an image of the spe-
cific person wearing the properly fitted garment by inputting the aligned garment and
the portrait. In this paper, we focus on Image-based Virtual Try-on Alignment (IVTA),
which can be the most crucial stage of image-based virtual try-on.

Though some existing image-based virtual try-on methods [2,12,29] have achieved
compelling performance in warping garments, there are still notable deficiencies that
hinder their practical application in real-world scenarios. Previous work [12] exploits
Thin Plate Splines (TPS) transformation to deform the target garments. HR-VION [2]
models the geometric changes of garments by building on two feature pyramid net-
works with Convolutional Neural Networks (CNN) [19,25,31]. However, the above
work only adopts CNN to extract detailed features of garments and body information,
which ignores global information in the virtual try-on alignment stage. As shown in
Fig. 2(a), we utilize Grad-CAM [28] to demonstrate heat maps of regions focused by the
state-of-the-art method HR-VITON [2], where hotter color means HR-VITON putting
more attention on the corresponding regions. In the virtual try-on alignment stage, HR-
VITON fails to capture the essential global interaction information which is necessary
for accurately warping target garments to fit portraits. Instead, HR-VITON primarily
focuses on specific garment details, such as sleeves and necklines. Therefore, we have
to address Challenge 1: How to design an effective feature extraction model for IVTA
that can integrate global interactions and local details?

Furthermore, VITON-HD [2] recognizes the significance of the portrait segmen-
tation map in providing the model with essential knowledge about the body layout.
This information aids in effectively separating the generated and preserved regions,
thereby addressing the problem of body occlusion. However, despite this improvement,
misalignment issues with the segmentation map still persisted, indicating the need for
further enhancements in the alignment process. As we demonstrate an example shown
in Fig. 2(b), HR-VITON generates adhesive artifacts and misaligns regions between
the warped garment and the corresponding segmentation map. Therefore, we have
to address Challenge 2: How to effectively alleviate the misalignment regions while
deforming the target garment for better virtual try-on alignment?
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Fig. 2. (a) shows the heat maps of HR-VITON, (b) shows the generated results by HR-VITON.

Motivated by the above observations, we propose a novel Try-On Aligning Con-
former (TOAC) for virtual try-on alignment to integrate both global interactions and
local details and achieve a more robust garment deformation. For Challenge 1, we
combine CNN and Swin Transformer [20] to effectively capture both global informa-
tion and local representations. Specifically, we exploit CNN and Swin Transformer to
represent both portraits and garments, which can alleviate the noise in feature extrac-
tion. ForChallenge 2, we develop aMasked Autoencoders-based (MAE-based) learned
perceptual loss to learn garment warp effectively. Inspired by the effectiveness of MAE
[13] in image reconstruction, we develop Learned Perceptual Image Patch Similarity
(LPIPS) [32] by comparing extracted MAE features of the synthesized image with
the ground truth. Comprehensive experiments demonstrate that our proposed method
achieves superior performance compared with the state-of-the-art methods for virtual
try-on alignment.

In brief, the contributions of this paper are summarized as follows:

– We propose a novel Try-On Aligning Conformer (TOAC) for virtual try-on align-
ment, which can effectively learn features for portraits and garments and deform
target garments while alleviating the misalignment regions.

– We adopt a hybrid architecture to leverage the strengths of CNN and Transformer
to effectively capture both global information and local representations. Our hybrid
network can extract comprehensive features to improve virtual try-on alignment.

– We develop an MAE-based learned perceptual loss for the conditional generation
network, which improves the warping module and reduces misalignment regions.

– Extensive experiments demonstrate the superiority of our proposed model compared
with the state-of-the-art methods for virtual try-on alignment.

2 Related Work

2.1 Image-Based Virtual Try-On Alignment

Image-based virtual try-on [2,3,11,12,29] aims to superimpose garments onto images
of portraits, allowing users to visualize how a particular garment would appear on them
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without physically trying it on. This technology is generally composed of two stages,
i.e., image-based virtual try-on alignment (IVTA) and image-based virtual try-on gener-
ation. IVTA aims to generate a deformed garment image that fits a given portrait image.
Previous approaches [2,2,3,11,12,29] mainly explicit warping module to fuse the input
garment image with a given portrait. VITON [12] and CP-VTON [29] adopt a Thin Plate
Splines (TPS) transformation to warp the garment deformation. Recently, VITON-HD
[2] proposes a normalization method to alleviate the misaligned issue caused by com-
plex deformation. HR-VITON [2] performs the warping module with a feature fusion
block to deal with the misalignment-free problem. Differently, our method aggregates
both diverse detailed deformation fields and comprehensive global features, leveraging
the power of a hybrid CNN-Transformer conditional generator.

2.2 Image Synthesis

Generative adversarial networks (GANs) [9,26,27], especially the StyleGAN-based
models [17,18] have recently achieved significant improvement in realistic image syn-
thesis. Aiming to model the real image distribution by forcing the generated samples to
be indistinguishable from the real images, in the field of human synthesis, most of the
existing methods [5,6] utilize StyleGAN-based architecture to get high performance.
StyleGAN-Human [6] depends on three momentous factors to find the key to improv-
ing high-quality human synthesis. InsetGAN [5] exploits various pretrained GANs to
generate various parts of the human body (such as the face, hands, etc.). LaDI-VTON
[22] utilizes a latent diffusion model and introduces an innovative autoencoder module
that incorporates learnable skip connections. In this paper, our work focus on image-
based alignment, which conducts aligned and discriminative generator to produce a
realistic portrait image with a target garment.

3 Notation and Problem Definition

Given a guideline image of a portrait P ∈ R
3×H×W and an image of a target garment

G ∈ R
3×H×W as inputs, where H,W denote the height and width of the given images.

The target of virtual try-on alignment is to synthesize an image P̄g ∈ R
3×H×W of an

aligned garment that fits the portrait. We train the model to reconstruct P by inputting
garment-agnostic portrait image Pa and the garment G that the persons are wearing.
The garment-agnostic portrait image eliminates the garment region in P , and allows
the model to generalize during the test when an arbitrary garment image is given.

4 Method

The overall architecture of our method is shown in Fig. 3.

4.1 Data Pre-processing

In the data pre-processing, we obtain a segmentation feature map S ∈ L
H×W of a

portrait, a garment mask gm, and a densepose map D ∈ R
3×H×W which remove the
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Fig. 3.Architecture of our Try-On Aligning Conformer (TOAC).: (1) The inputs of TOAC consist
of a segmentation feature map S ∈ L

H×W of a specific person, a garment mask gm, a garment
image G, and a densepose map D ∈ R

3×H×W . (2) TOAC deforms a target garment G to obtain
an aligned garment P̄g that fits a specific person.

garment, where L denotes a set of integers indicating the semantic labels. The Pixel-
level Generation Network (PGN) [8] is employed for semantic segmentation, including
edge detection and instance parsing. By processing the input image P , we obtain the
segmented image S. Densepose [10] specializes in analyzing segmentation maps of por-
trait, enabling us to obtain the densepose D. Then, we utilize an open-source network
named CarveKit [2] to extract the mask of the garment in the image. By inputting the
garment image G into CarveKit, we obtain the corresponding mask gm, which repre-
sents the garment region.

4.2 Conditional Generative Network

The conditional generative network aims to generate an image of an aligned garment
P̄g which is deformed to fit the body of a specific person.

Feature Extract Encoder. In contrast to existing methods [2,2,3,12,29] that mostly
rely on CNN blocks and only focus on local information, our feature extraction method
takes into account both local and global information, allowing for a more comprehen-
sive representation of the garments. Our conditional generation network consists of four
feature extraction encoders, i .e. a portrait ResNet [14,24] encoder ERp = {ERpk

}4k=0

which focuses on local portrait information, a portrait Swin Transformer encoder
ETp = {ETpk

}4k=0 which focuses on global portrait information, a garment ResNet
encoder ERg = {ERgk}4k=0 which focuses on local garment information, and a gar-
ment Swin-transformer encoder ETg = {ETgk}4k=0 which focuses on global garment
information, where E·,·k , k ∈ [0, 4] denotes k-th layer of four encoders, respectively.
Given a target garment image G, a parallel garment mask gm, a segmentation feature
map S of a specific portrait and a corresponding densepose pose map D, we first intro-
duce local portrait feature pyramid {FRpk

}4k=0 by the portrait ResNet encoder ERp,
global portrait feature pyramid {FTpk

}4k=0 by the portrait Swin Transformer encoder
ETp. Considering the robustness, we concatenate {FRpk

}4k=0 and {FTpk
}4k=0 then get
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{FPk
}4k=0. We extract the garment feature pyramid {FGk

}4k=0 in the same way as the
above operations. The encoding process can be formulated as follows:

FP0 = concat(ERp0(D,S), ETp0(D,S)),
FG0 = concat(ERc0(G, gm), ETc0(G, gm)),
FPk

= concat(ERpk
(FPk−1), ETpk

(FPk−1)), k ∈ [1, 4],
FGk

= concat(ERck(FGk−1), ETck(FGk−1)), k ∈ [1, 4],

(1)

where concat denotes the concatenating operation.

Feature Fusion Decoder. The extracted features are fed into the CNN-based feature
fusion decoder D = {dk}3k=0, where the feature maps obtained from the two different
feature pyramids are fused to predict the segmentation map and the appearance aligned
vectors for warping the garment image. The fusion decoder layer dk generates Vk and
ŝk by splicing the results of the previous fusion decoder layer Vk−1 and ŝk−1 with
the features of the corresponding feature pyramid FC3−k

and FP3−k
, and then uses the

convolution layer to mix the features. Finally, the aligned vector Valigned = V3 and the
segmentation map Ŝ = ŝ3 for the final fusion decoder are given, where Valigned denotes
the Aligned vector and Ŝ denotes the segmentation map. The warp module is to sample
the original garment image G based on the aligned vector {v3} to obtain the distorted
garment P̂g . The occlusion module is based on the segmentation map Ŝ, removing the
part of the distorted garment P̂g that will obscure the limbs and get the final image of
the garment P̄g . The decoding process can be formulated as follows:

V0, Ŝ0 = d0(concat(FG4 , FG3), concat(FP4 , FP3)),

Vk, Ŝk = dk(concat(Vk−1, FG3−k
), concat(Ŝk−1, FP3−k

)), k ∈ [1, 3],

P̂g = warp(Valigned, G), k ∈ [1, 3],

P̄g = occlusion(Ŝ, P̂g),

(2)

where concat denotes the concatenating operation, Valigned = V3, Ŝ = ŝ3, warp
denotes the warp module, and occlusion denotes the occlusion module. These two
streams exchange information with each other, enabling the joint estimation of the
aligned vectors and segmentation map and enhancing the effectiveness of alignment.

4.3 Loss Functions

We employ the pixel-wise cross-entropy loss, denoted as LCE , and the L-1 loss LL1 to
incentivize the network to appropriately deform the garment in order to align with the
portrait. Specifically, LCE and LL1 can be formulated as follows:

LCE = − 1
N

N∑

i=1

M∑

j=1

Sij log(Ŝij) + (1 − Sij) log(1 − Ŝij),

LL1 =
3∑

i=0

ωi · ‖W (gm, vi) − Sg‖1 +
∥∥∥Ŝg − Sg

∥∥∥
1
,

(3)
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whereN denotes the number of pixels in an image,M denotes the number of categories,
Ŝ denotes the predicted segmentation map, and S denotes the ground truth segmentation
map. In LL1, ωi is a trade-off factor, vi denotes the aligned vectors, W (gm, vi) denotes
a distortion with (gm, vi), Ŝg and Sg denote the predicted segmentation map and the
ground truth segmentation map corresponding to the garment mask gm, respectively.

MAE [13] developed a simple but strong architecture to represent highly redundant
information by exploiting masks. Inspired by Learned Perceptual Image Patch Similar-
ity (LPIPS) [32] and the effectiveness of MAE, we exploit MAE-based learned percep-
tual loss to adjust the gap between the generated garment image after alignment vector
warping and the image of the garment on the human body. The MAE-based learned
perceptual loss can be formulated as follows:

ϕ(Ipred, Ilabel) = ‖MAE(Ipred) − MAE(Ilabel)‖1 ,

LMAE =
3∑

i=0

ρi · ϕ (W (G, vi) , Pg) + ϕ
(
P̄g, Pg

)
,

(4)

where ρi is a trade-off factor, W (·, ·) denotes the distortion of the garment map based
on the alignment vector, ϕ denotes the gap of extracted image features using the pre-
trained MAE, Pg and P̄g denote the garment on the portrait and a final aligned garment.

Ltv is a total-variation loss that enhances the smoothness of the alignment vector
[2]. Recall Valigned has a length of H pixels and a width of W pixels. We use �
to calculate the distance of the vector Vup from vertical 0 to H − 1 pixels and the
vector Vdown from vertical 1 to H pixels to obtain the vertical loss σ(Vup, Vdown). A
similar method is used to obtain the lateral loss σ(Vleft, Vright). The longitudinal and
transverse losses are then summed to obtain Ltv as follows:

σ(va, vb) = |Va − Vb| · e−150|Va−Vb|,
�(Valigned) = σ(Vup, Vdown) + σ(Vleft, Vright),

Ltv =
3∑

i=0

�(Valign,i).

(5)

The overall objective of optimization is expressed as follows:

LTOCG = LCE + λGANLGAN + λL1LL1 + λMAELMAE + λtvLtv, (6)

where λGAN , λL1, λMAE , and λtv are hyperparameters to balance loss terms. LGAN

[21] loss uses a discriminant network to calculate the loss of the predicted segmentation.

5 Experiments

5.1 Training

In experiments, we use the high-resolution virtual try-on dataset introduced by VITON-
HD [2], which contains 13,679 pairs of the model wearing garments image and the
garment image. Specifically, the dataset is divided into a training set and a test set of
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Fig. 4. The qualitative comparison among TOAC and baselines on VITON-HD dataset.

11,647 and 2,032 pairs, respectively. The original resolution of the images is 1024×768,
and the images are bicubically downsampled to the desired resolution when needed.

We employ three widely used metrics (i .e., Structural SIMilarity index (SSIM) [30],
Perceptual distance (LPIPS) [32], and Fréchet Inception Distance (FID) [23]) to evalu-
ate the similarity between synthesized and real images, in which SSIM and LPIPS are
used for paired setting and FID are used for unpaired setting.

5.2 Qualitative Results

We compare our method with several state-of-the-art baselines, including CP-VTON
[12], VITON-HD [2], and HR-VITON [2]. Figure 4 shows that our conditional gener-
ation network can generate alignment vectors that fit the portrait better than previous
methods, resulting in a more sensory-aligned image of the garments: (1) In the first
example, for the collar of the garment, the result of our network is much closer to the
real treatment compared to HR-VITON. (2) In the second example, HR-VITON has an
unconventional bulge at the edge of the garment, which does not exist in our method.
(3) As can be seen in the third example, the segmentation result of our network is more
correct when generating the segmentation map, which leads to more correct final pro-
cessing of the occlusion than HR-VITON. Because our work mixes global and local
information, the alignment process allows the network to understand the relationship
of the garment as a whole. Moreover, we introduce a novel MAE-based loss function
LMAE that effectively addresses the issue of misaligned regions.

5.3 Quantitative Results

As reported in Table 1, we show the quantitative results within the default and no-
occlusion settings by comparing the quality of the generated garments with and with-
out occlusion, respectively. Based on the results, we have the following observations:
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Table 1. The quantitative results of our TOAC and compared baselines on VITON-HD dataset.
Bold denotes the best results.

Method CP-VITON VITON-HD HR-VITON TOAC (ours)

Setting default default no-occlusion default no-occlusion default

SSIM ↑ 0.7590 0.8875 0.8770 0.8823 0.8882 0.8947

FID ↓ 42.1431 34.6652 29.3391 32.8603 38.4994 30.6294

LPIPS ↓ 0.3745 0.1924 0.1950 0.1998 0.1864 0.1515

(1) Our proposed TOAC outperforms all baselines on both the default setting and the
no-occlusion setting on VITON-HD dataset. Compared with the state-of-the-art HR-
VITON, our TOAC achieves SSIM improvements of 0.0151 on the default setting and
0.0112 on the no-occlusion setting, respectively. This indicates that our method can
diminish discrimination between garments and portraits, and effectively extract fea-
tures. (2) Our method TOAC obtains a comparable low FID score with HR-VITON on
the no-occlusion setting and the default setting. This is mainly because our TOAC con-
tributes more to generative occluded segmentation to deform garments. (3) Our TOAC
significantly surpasses the baselines in terms of LPIPS. Compared with the state-of-
the-art HR-VITON, our method achieves LPIPS improvement of 0.0483 on the no-
occlusion setting. This shows TOAC can improve the warping and reduce misalignment
regions.

5.4 Ablation Study

In order to further investigate the impact of each loss component, we conduct the abla-
tion experiments with different losses removed from the complete loss function as
shown in Table 2. We add two additional metrics for comparing the generated images:
Mean Square Error (MSE) and Inception Score (IS) [1]. It can be found that the
impact of LL1 on the results is huge. Losing the loss component between the compari-
son masks, all five evaluation metrics drop rapidly, and ISmean even all tend to infinity.
From another perspective, the current dominant evaluation metrics have a relatively
high weight on whether the shape of the image matches the ground truth. In addition,
Ltv has little effect on other metrics, but has a greater effect on the FID. It is seen that a
stable change in the alignment vector is more favorable to predict the statistical distri-
bution of the image close to the actual distribution, thus reducing FID. Finally, LMAE

has little effect on several other metrics, but a large boost for LPIPS, which also reflects
the data level that LMAE effectively mitigates the problem of misaligned areas.

5.5 Attention Comparison

We conduct an attention analysis between our approach and HR-VITON [2] at the atten-
tion level. We leverage the final activation layer outputs of the encoder in HR-VITON
to identify the active regions. In contrast, our approach incorporates attention layers
withinETp andETc, enabling direct visualization of the network’s active regions. From
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Table 2. Ablation study on loss components of our proposed TOAC. w/o means without.

Method Variant SSIM↑ FID↓ LPIPS↓ MSE↓ ISmean ↓
TOAC (ours) w/o LCE 0.8989 35.0501 0.1401 0.0153 4.9142

w/o LGAN 0.8975 34.2817 0.1499 0.0149 4.2532

w/o LL1 0.5932 66.4024 0.3205 0.0790 Nan

w/o Ltv 0.8916 83.4413 0.1569 0.0156 4.9376

w/o LMAE 0.8923 39.2897 0.1756 0.0177 4.2254

All losses 0.8947 30.6295 0.1513 0.0161 4.1645

Fig. 5. The visualization of feature attention maps of the input garments and portraits learned by
our TOAC and HR-VITON on VITON-HD dataset.

Fig. 5, we have the following observations: (1) HR-VITON exhibits a relatively small
and concentrated active area. Conversely, our method can focus on the overall context
while still attending to the garment and human body regions with clarity. (2) Regarding
the human poses, HR-VITON focuses on the surrounding information of the human
body (see the third example). Conversely, our TOAC prioritizes the human body, along
with the overall pose. By visualizing the attention maps, it becomes apparent that our
TOAC captures a more comprehensive range of information.

6 Conclusion

In this work, we propose a novel Try-On Aligning Conformer (TOAC) model for image-
based virtual try-on alignment, which is capable of generating semantic-correct and
photo-realistic warped garments. Specifically, to make garment warping robust to intri-
cate inputs, TOAC adopts a hybrid feature network to integrate both Swin Transformer
and CNN to effectively extract global information and grasp local representation respec-
tively. Besides, to alleviate the overlap problem in existing methods, we propose an
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MAE-based learned perceptual loss to capture reconstruction information. Extensive
experiments illustrate the superiority of our proposed TOAC over existing methods.
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Abstract. This paper introduces GIST (Generative Information Synthesis Task-
force), a novel personal knowledge management system that utilizes large-scale
online language models to analyze and organize the information, generating struc-
tured results, including summaries, key points, and questions and answers. The
system also utilizes a multimodal information processing approach to enhance
comprehension of the content.As the user’s knowledge base grows,GISTbecomes
a personal knowledge database and provides the necessary information at the right
moment. GIST can be accessed on any device, serving as the brain and soul of
the user’s devices, and empowering them to effectively manage their personal
knowledge. Our demo video is at https://youtu.be/ImtduHMQKFQ.

Keywords: Personal Knowledge Database ·Multimodal Information Processing
with LLM · Structured Knowledge

1 Introduction

The evolution of societal requirements and interactions has undergone significant
changes in different eras. The era of computation saw the widespread availability of
computational resources, making general computing a commodity that was affordable
and accessible to more people. This led to the emergence of task processing for informa-
tion digitization, which was pioneered by Microsoft. The primary interaction methods
during this era were command sets and WIMP (Windows, Icons, Menus, Pointer) [1].
In the internet era, the ubiquitous accessibility of information resources made gen-
eral information a commodity, leading to services for information acquisition, sharing,
and consumption that constitute the entire internet ecosystem. The interaction methods
mainly revolved around WIMP, touch, and recommendations, delivering information-
related services anytime and anywhere. The interaction principle here ismobile, intuitive,
invisible [2]. In the era of large-scale language models (LLM), the universalization of
knowledge resources prompted the demand and business model for refined, customized
knowledge management. Interaction emphasis was placed on spontaneous interaction
and implicit interaction.

As we transition from the internet era to the age of large models, we process a wealth
of information daily, ranging from work reports, meetings, books, videos, to our own
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thoughts and ideas. However, this information is scattered across various devices and
apps, making it difficult to find when we need it. For instance, we might bookmark
webpages on our computers, like videos on TikTok on our mobile phones, or take notes
during an open course on our tablets. Gist utilizes a multimodal information processing
method with LLM to consolidate these fragmented pieces of information into structured
knowledge. This system can analyze and generate structured results from audio, video, or
text data, regardless of the mode of interaction. As the system accumulates knowledge
and becomes familiar with the user’s cognitive habits, it can provide the necessary
knowledge at the right time, even becoming the user’s digital alter ego. This assistant
can reside in any device the user uses, operating both online and offline, thus creating a
private, personalized knowledge base.

2 System Architecture

The system comprises several modules, including a vector database, an Automatic
Speech Recognition (ASR) model, a large-scale language model, a module for process-
ing multimodal information, a module for prompt engineering, a module for question-
answering flow, and a user interface. The system workflow is presented as follows
(Fig. 1).

Fig. 1. The workflow of the system is illustrated by the solid line, depicting the automatic gen-
eration of summaries and themes by the system. The dotted line represents the flow of user and
system interactions in the free chat feature.

A vector database is a specialized database that stores data in the form of vectors,
which are mathematical objects possessing both magnitude and direction [3]. In a vector
database, each data item is represented as a vector, enabling the storage of information
such as position, velocity, or orientation. By encoding personal information as vectors,
with the magnitude of each vector conveying the data and the direction providing addi-
tional context, the vector database can quickly and easily retrieve information, such as
title or author, without requiring searches through traditional databases or spreadsheets.
Furthermore, new information can be readily incorporated into the database by simply
adding new vectors, making it a suitable method for managing personal collections of
movies and books [4].

An ASR model is a type of machine learning model that is used to recognize spoken
language in a variety of applications, such as voice assistants, dictation software, and
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call centers. The model takes as input an audio recording of speech, and outputs a tran-
scription of the speech in written form. Besides, distinguish between different speakers
[5].

A large-scale language model is a type of machine learning model that is used
to generate text. LLMs are particularly useful for understanding the meaning of text
because they are trained on large amounts of data and can learn to recognize patterns
and relationships within language. This allows them tomake connections betweenwords
and phrases, and to identify the underlying structure and organization of a document,
even if it is complex and contains multiple ideas and themes [6]. LLMs provide the
summary, theme, key point, Q&A, ToDo list according to the prompt.

Multimodal information processing refers to the ability of a system to process and
analyze information that is presented in multiple forms, or modalities. This can include
text, images, audio, video, and other types of data. The goal of multimodal information
processing is to combine and integrate information from different modalities to gain a
more complete and accurate understanding of a given situation or task [7]. For example,
a system that uses multimodal information processing might be able to recognize and
transcribe spoken words, while also analyzing the facial expressions and body language
of the speaker to gain additional insights into their meaning and intent [8].

Prompt engineering is the process of designing and crafting input prompts for
machine learning models, with the goal of obtaining the desired output or behavior
from the model. A prompt can take many forms, including a natural language utterance,
a visual or auditory cue, or a specific set of inputs or parameters. Prompt engineering is
an important aspect of our system, as the quality and effectiveness of the prompt can have
a significant impact on the accuracy and efficiency of the model’s output. To guarantee
the quality of the output, the system’s prompts must encompass language limits, task
requirements, further specific requirements, and the output format and presentation [9].

Question-answering flow refers to the process of determining whether a given ques-
tion can be answered by a large pre-trained language model or whether additional infor-
mation needs to be obtained from external sources, such as the internet. The basic idea
behind question-answering flow is to use the LLM to determine whether the question
can be answered based on the information contained within the original text, or whether
additional information needs to be obtained from external sources. The goal of question-
answering flow is to provide a seamless and efficient way to obtain answers to questions,
whether they can be answered by the model or not. This can help to improve the user
experience and enhance the overall effectiveness of the system.

The user interface of the system is designed to preserve the original content of the text
and to highlight and structure the knowledge present in the text. To this end, the interface
displays the original text or transcript of the conversation, along with a mind map that
indexes themain ideas and topics discussed.Users can also access an editable summaryof
the entire conversation, which allows them to review and modify the machine-generated
summary to ensure its accuracy. Additionally, the user interface provides a free dialog
box where users can type in their own questions or concerns, which the system will then
attempt to address using the structured knowledge it has learned from the conversation.
This user-friendly interface allows users to easily navigate and interact with the system,
making it a valuable tool for conducting natural language conversations.
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3 Demo Procedure and Key Features

In the current stage, we have completed the first step of extracting structured knowledge
from information. We have built a demo using online LLMs and ASR models. Users
can upload audio or video files, and the system will automatically generate transcripts,
perform content analysis, and output summaries, themes, key points, Q&A, and ToDo
lists. If the generated content is not satisfactory, users can modify the content by adding
or deleting parts and then regenerate it. They can also modify the generated content or
trace it back to the original text (Fig. 2).

Fig. 2. Analysis user interface include summaries, themes, key points, Q&A, ToDo lists, etc.

To sum up, the key features of GIST are as followed:

1. Efficiently extract structured knowledge from scattered information.
2. Be compatible with multiple devices including PCs, smartphones, tablets, and

wearable devices.
3. Support multiple modalities such as text, images, audio, and video.
4. Support multiple scenarios and provide a visualized and interactive experience.

4 Conclusion

The Gist framework successfully organizes fragmented information into structured
knowledge, enabling users to browse, understand, and memorize the information while
also facilitating direct use of structured knowledge with traceback from knowledge to
information. Building upon the successful demonstration of extracting structured knowl-
edge from multimodal/multiple-source fragmented information, we aim to systemati-
cally integrate personal and general knowledge, and continue to improve task perception
and inference in implicit interaction scenarios based on multimodal information input.
Our ultimate goal is to establish a personalized knowledge platform ecosystem that
leverages the capabilities of Gist to provide users with a seamless and efficient way to
access and use structured knowledge.
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Abstract. Recent years have witnessed a rapid growth of Artificial
Intelligence Generated Content (AIGC), among which with the develop-
ment of text-to-image techniques, AI-based image generation has been
applied to various fields. However, AI Generated Images (AIGIs) may
have some unique distortions compared to natural images, thus many
generated images are not qualified for real-world applications. Conse-
quently, it is important and significant to study subjective and objec-
tive Image Quality Assessment (IQA) methodologies for AIGIs. In this
paper, in order to get a better understanding of the human visual pref-
erences for AIGIs, a large-scale IQA database for AIGC is established,
which is named as AIGCIQA2023. We first generate over 2000 images
based on 6 state-of-the-art text-to-image generation models using 100
prompts. Based on these images, a well-organized subjective experi-
ment is conducted to assess the human visual preferences for each image
from three perspectives including quality , authenticity and correspon-
dence. Finally, based on this large-scale database, we conduct a bench-
mark experiment to evaluate the performance of several state-of-the-art
IQA metrics on our constructed database. The AIGCIQA2023 database
and benchmark will be released to facilitate future research on https://
github.com/wangjiarui153/AIGCIQA2023

Keywords: AI generated content (AIGC) · text-to-image generation ·
image quality assessment · human visual preference

1 Introduction

Artificial Intelligence Generated Content (AIGC) refers to the content, includ-
ing texts, images, audios, or videos, etc., that is created or generated with the
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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assistance of AI technology. Many impressive AIGC models have been developed
in recent years, such as ChatGPT and DALLE [26], which have been utilized
in various application scenarios. As an important part of AIGC, AI Generated
Images (AIGIs) have also gained significant attention in recent years due to
advancement in generative models including Generative Adversarial Network
(GAN) [9], Variational Autoencoder (VAE) [14], diffusion models [27], etc., and
language-image pre-training techniques including CLIP [25], BLIP [18], etc.

However, the development of AIGI models also raises new problems and
challenges. One significant challenge is that not all generated images are qualified
for real-world applications, which often require to be processed, adjusted, refined
or filtered out before being applied to practical scenes. However, unlike common
image content, such as Natural Scene Images (NSIs) [7,8], screen content images
[3,20], graphic images [5,20], etc., which generally encounters some common
distortions including noise, blur, compression, etc. [4,6], AIGIs may suffer from
some unique degradations such as unreal structures, unreasonable combinations,
etc. Moreover, the generated images may not correspond to the semantics of
the text prompts [15,17,29]. Therefore, it is important to study the human
visual preferences for AIGIs and design corresponding objective Image Quality
Assessment (IQA) metrics for these images.

Many subjective IQA studies have been conducted for human captured or cre-
ated images, and many objective IQA models have also been developed. However,
these models are designed for assessing low-level distortions, while AIGIs gener-
ally contain both low-level artifacts and high-level semantic degradations. Some
quantitative evaluation metrics such as Inception Score (IS) [10] and Fréchet
Inception Distance (FID) [12] have been proposed to assess the performance of
generative models and have been widely used to evaluate the authenticity of
the generated images. However, these methods cannot evaluate the authenticity
of a single generated image, and cannot measure the correspondence between
the generated images and the text-prompts. As a new type of image content,
previous IQA methods may fail to assess the image quality of AIGIs and cannot
align well with human preferences due to the irregular distortions.

To gain a better understanding of human visual preferences for AIGIs and
guide the design process of corresponding objective IQA models, in this paper,
we conduct a comprehensive subjective and objective IQA study for AIGIs. We
first establish a large-scale IQA database for AIGIs termed AIGCIQA2023, which
contains 2,400 diverse images generated by 6 state-of-the-art AIGI models based
on 100 various text prompts. Based on these images, a well-organized subjective
experiment is conducted to assess the human visual preferences for each individ-
ual generated image from three perspectives including quality , authenticity ,
and correspondence . Based on the constructed AIGCIQA2023 database, we
evaluate the performance of several state-of-the-art IQA models and establish a
new benchmark. Experimental results demonstrate that current IQA methods
cannot well align with human visual preferences for AIGIs, and more efforts
should be made in this research field in the future. The main contributions of
this paper are summarized as follows:



48 J. Wang et al.

– We propose to disentangle the human visual experience for AIGIs into three
perspectives including quality , authenticity , and correspondence .

– Based on the above theory, we establish a novel large-scale database, i.e.,
AIGCIQA2023, to better understand the human visual preferences for AIGIs
and guide the design of objective IQA models.

– We conduct a benchmark experiment to evaluate the performance of several
current state-of-the-art IQA algorithms in measuring the quality, authenticity,
and text-image correspondence of AIGIs.

The rest of the paper is organized as follows. In Sect. 2 we introduce the
details of our constructed AIGCIQA2023 database, including the generation of
AIGIs and the subjective quality assessment methodology and procedures. In
Sect. 3 we present the benchmark experiment for current state-of-the-art IQA
algorithms based on the established database. Section 4 concludes the whole
paper and we discuss possible future research that can be conducted with the
database.

2 Database Construction and Analysis

In order to get a better understanding of human visual preferences for AI-
generated images based on text prompts, we construct a novel IQA database for
AIGIs, termed AIGCIQA2023, which is a collection of generated images derived
from six state-of-the-art deep generative models based on 100 text prompts,
and corresponding subjective quality ratings from three different perspectives.
Then we further analyze the human visual preferences for AIGIs based on the
constructed database.

2.1 AIGI Collection

We adopt six latest text-to-image generative models, including Glide [24], Lafite
[34], DALLE [26], Stable-diffusion [27], Unidiffuser [1], Controlnet [33], to pro-
duce AIGIs by using open source code and default weights. To ensure content
diversity and catch up with the practical application requirements, we collect
diverse texts from the PartiPrompts website [32] as the prompts for AIGI gen-
eration. The text prompts can be simple, allowing generative models to produce
imaginative results. They can also be complex, which raises the challenge for
generative models. We select 10 scene categories from the prompt set, and each
scene contains 10 challenge categories. Overall, we collect 100 text prompts (10
scene categories × 10 challenge categories) from PartiPrompts [32]. The distri-
bution of the selected scene and challenge categories is displayed in pie chart of
Fig. 1. It can be observed that the dataset exhibits a high level of scene diversity,
with images generated covering a broad range of challenges. Then we perform the
text-to-image generation based on these models and prompts. Specifically, for
each prompt, we generate 4 various images randomly for each generative model.
Therefore, the constructed AIGCIQA2023 database totally contains 2400 AIGIs
(4 images × 6 models × 100 prompts) corresponding to 100 prompts (Fig. 2).
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Fig. 1. Pie Chart of the ten challenge categories and ten scene categories selected from
PartiPrompts [32].

2.2 Subjective Experiment Setup

Subjective IQA is the most reliable way to evaluate the visual quality of digital
images perceived by the users. It is generally used to construct image quality
datasets and served as the ground truth to optimize or evaluate the performance
of objective quality assessment metrics. Due to the unnatural property of AIGIs
and different text prompts having different target image spaces, it is unreason-
able to just use one score, i.e., “quality” to represent human visual preferences.
In this paper, we propose to measure the human visual preferences of AIGIs from
three perspectives including quality , authenticity , and text-image correspon-
dence . For an image, these three visual perception perspectives are related but
different.

The first dimension of AIGI evaluation is “quality” evaluation, i.e., evaluat-
ing an AIGI from its clarity, color, lightness, contrast, etc., which is similar to the
assessment of NSIs. During the experiment procedure, subjects are instructed to
evaluate whether the image outline is clear, whether the content can be distin-
guished, and the richness of details, etc. Fig. 3(a) shows 10 high quality examples
and 10 low quality examples of the images generated by the prompt of “a corgi”.

Considering the generation nature of AIGIs, an important problem of these
images is that they may not look real compared to NSIs. Therefore, we intro-
duce a second dimension of evaluation metrics for the generated images, i.e.,
“authenticity” evaluation. For this dimension, subjects are instructed to assess
the image from the authenticity aspect, i.e., whether it looks real or whether
they can distinguish that the image is AI-generated or not. Figure 3(b) shows 10
high authenticity and 10 low authenticity examples of images generated by the
prompt of “a girl”.
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Fig. 2. Sample images from the AIGCIQA2023 database generated by six different
generative models (Glide [24], Lafite [34], DALLE [26], Stable-diffusion [27], Unidiffuser
[1], Controlnet [33].)

Since an AIGI is generated from a text, it is also important to evaluate its
correspondence with the original prompt, i.e., the third dimension, text-image
“correspondence”. For this purpose, subjects are instructed to consider textual
information provided with the image and then give the correspondence score
from 0 to 5 to assess the relevance between the generated image and its prompt.
Figure 3(c) shows 10 high text-image correspondence and 10 low correspondence
examples of images generated by the prompt of “a grandmother reading a book
to her grandson and granddaughter”.

2.3 Subjective Experiment Procedure

To evaluate the quality of the images in the AIGCIQA2023 and obtain Mean
Opinion Scores (MOSs), a subjective experiment is conducted following the
guidelines of ITU-R BT.500-14 [3]. The subjects are asked to rate their visual
preference degree of exhibited AIGIs from the quality, authenticity and text-
image correspondence. The AIGIs are presented in a random order on an iMac
monitor with a resolution of up to 4096 × 2304, using an interface designed with
Python Tkinter, as shown in Fig. 4. The interface allows viewers to browse the
previous and next AIGIs and rate them using a quality scale that ranges from 0
to 5, with a minimum interval of 0.01. A total of 28 graduate students (14 males
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Fig. 3. Illustration of the images from the perspectives of quality, authenticity, and
text-image correspondence. (a) 10 high quality examples and 10 low quality examples
of the images generated by the prompt of “a corgi”. (b) 10 high authenticity and 10
low authenticity examples of images generated by the prompt of “a girl”. (c) 10 high
text-image correspondence and 10 low correspondence examples of images generated
by the prompt of “a grandmother reading a book to her grandson and granddaughter”.

and 14 females) participate in the experiment, and they are seated at a distance
of around 60 cm in a laboratory environment with normal indoor lighting.

2.4 Subjective Data Processing

We follow the suggestions recommended by ITU to conduct the outlier detection
and subject rejection. The score rejection rate is 2%. In order to obtain the MOS
for an AIGI, we first convert the raw ratings into Z-scores, then linearly scale
them to the range [0, 100] as follows:

zij =
rij − μij

σi
, z′

ij =
100(zij + 3)

6
,

μi =
1
Ni

Ni∑

j=1

rij , σi =

√√√√ 1
Ni − 1

Ni∑

j=1

(rij − μij)2

where rij is the raw ratings given by the i-th subject to the j-th image. Ni is
the number of images judged by subject i.
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Fig. 4. An example of the subjective assessment interface. The subject can evaluate
the quality of AIGIs and record the quality, authenticity, correspondence scores with
the scroll bar on the right.

Next, the mean opinion score (MOS) of the image j is computed by averaging
the rescaled z-scores as follows:

MOSj =
1
M

M∑

i=1

z′
ij

where MOSj indicates the MOS for the j-th AIGI, M is the number of valid
subjects, and z′

ij are the rescaled z-scores.

2.5 AIGI Analysis from Three Perspectives

To further illustrate the differences of the three perspectives, we demonstrate
several example images and their corresponding subjective ratings from three
aspects in Fig. 5. For each subfigure, it can be noticed that the right AIGI out-
performs the left AIGI on two evaluation dimensions but is much worse than the
left AIGI on another dimension, which demonstrates that each evaluation per-
spective (quality, authenticity, or text-image correspondence) has its own unique
perspective and value.

Figure 6 demonstrates the MOS and score distribution for quality evaluation,
authenticity evaluation, and text-image correspondence evaluation, respectively,
which demonstrate the images in AIGCIQA 2023 cover a wide range of percep-
tual quality.

3 Experiment

3.1 Benchmark Models

Since the AIGIs in the proposed AIGCIQA2023 database are generated based on
text prompts and have no pristine reference images, they can only be evaluated
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Fig. 5. Comparison of the differences between three evaluation perspectives. (a) Left
image has better quality, but worse authenticity and correspondence. (b) Left image
has better authenticity, but worse quality and correspondence. (c) Left image has better
correspondence, but worse quality and authenticity.

by no-reference (NR) IQA metrics. In this paper, we select fifteen state-of-the-
art IQA models for comparison. The selected models can be classified into two
groups:

– Handcrafted-based models, including: NIQE [23], BMPRI [21], BPRI [19],
BRISQUE [22], HOSA [30], BPRI-LSSn [19], BPRI-LSSs [19], BPRI-PSS [19],
QAC [31], HIGRADE-1 and HIGRADE-2 [16].

These models extract handcrafted features based on prior knowledge about
image quality.

– Deep learning-based models, including: CNNIQA [13], WaDIQaM-NR [2],
VGG (VGG-16 and VGG-19) [28] and ResNet (ResNet-18 and ResNet-34)
[11].

These models characterize quality-aware information by training deep neural
networks from labeled data.

3.2 Evaluation Criteria

In this study, we utilize the following four performance evaluation criteria to eval-
uate the consistency between the predicted scores and the corresponding ground-
truth MOSs, including Spearman Rank Correlation Coefficient (SRCC), Pearson
Linear Correlation Coefficient (PLCC), Kendall’s Rank Correlation Coefficient
(KRCC), and Root Mean Squared Error (RMSE).
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Fig. 6. (a) MOSs distribution of quality score. (b) MOSs distribution of authenticity
score. (c) MOSs distribution of correspondence score. (d) Distribution of the quality
score. (e) Distribution of the authenticity score. (f) Distribution of the correspondence
score.

3.3 Experimental Setup

All the benchmark models are validated on the proposed AIGCIQA2023
database. For traditional handcrafted-based models, they are directly evaluated
based on the database. For deep trainable models, we first randomly split the
database into an 4:1 ratio for training/testing while ensuring the image with the
same prompt label falls into the same set. The partitioning and evaluation pro-
cess is repeated several times for a fair comparison while considering the compu-
tational complexity, and the average result is reported as the final performance.
For deep learning-based models, we applied CNNIQA [13], WaDIQaM-NR [2],
VGG (VGG-16 and VGG-19) [28] and ResNet (ResNet-18 and ResNet-34) [11]
to predict the MOS of image quality. The repeating time is 10, the training
epochs are 50 with an initial learning rate of 0.0001 and batch size of 4.

3.4 Performance Discussion

The performance results of the state-of-the-art IQA models mentioned above on
the proposed AIGCIQA2023 database are exhibited in Table 1, from which we
can make several conclusions:

– The handcrafted-based methods achieve poor performance on the whole
database, which indicates the extracted handcrafted features are not effec-
tive for modeling the quality representation of AIGIs. This is because most
employed handcrafted features of these methods are based on the prior knowl-
edge learned from NSIs, which are not effective for evaluating AIGIs.
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Table 1. Performance comparisons of the state-of-the-art IQA methods on the AIG-
CIQA2023 database. The best performance results are marked in RED and the second-
best performance results are marked in BLUE.

Quality Authenticity Correspondence

Method SRCC KRCC PLCC RMSE SRCC KRCC PLCC RMSE SRCC KRCC PLCC RMSE

NIQE [23] 0.5060 0.3420 0.5218 7.9461 0.3715 0.2453 0.3954 7.3999 0.3659 0.2460 0.3485 7.7721

QAC [31] 0.5328 0.3644 0.5991 6.3062 0.4009 0.2673 0.4428 7.2236 0.3526 0.2414 0.4062 7.5768

BRISQUE [22] 0.6239 0.4291 0.6389 7.1655 0.4705 0.3142 0.4796 7.0695 0.4219 0.2865 0.4280 7.4941

PRI-PSS [19] 0.3556 0.2373 0.4183 8.4605 0.2409 0.1583 0.2625 7.7739 0.2670 0.1794 0.2960 7.9203

PRI-LSSs [19] 0.5141 0.3512 0.5618 7.7054 0.3721 0.2460 0.3998 7.3845 0.3230 0.2160 0.3473 7.7756

PRI-LSSn [19] 0.5245 0.3523 0.5935 7.4964 0.3838 0.2528 0.5465 6.7467 0.3655 0.2474 0.4594 7.3653

BPRI [19] 0.6301 0.4307 0.6889 6.7517 0.4740 0.3144 0.5207 6.8783 0.3946 0.2657 0.4346 7.4680

HOSA [30] 0.6317 0.4311 0.6561 7.0297 0.4716 0.3101 0.4985 6.9841 0.4101 0.2765 0.4252 7.5051

BMPRI [21] 0.6732 0.4661 0.7492 6.1693 0.5273 0.3554 0.5756 6.5878 0.4419 0.3014 0.4827 7.2619

Higrade-1 [16] 0.4849 0.3220 0.4966 8.0847 0.4175 0.2791 0.4181 7.3183 0.3319 0.2207 0.3379 7.8041

Higrade-2 [16] 0.2344 0.1568 0.3189 8.8282 0.2654 0.1742 0.3106 7.6579 0.1756 0.1170 0.2144 8.0990

WaDIQaM-NR [2] 0.4447 0.3036 0.4996 8.7400 0.3936 0.2715 0.3906 7.4627 0.3027 0.2057 0.2810 6.0477

CNNIQA [13] 0.7160 0.4955 0.7937 5.8816 0.5958 0.4085 0.5734 6.7231 0.4758 0.3313 0.4937 7.3839

VGG16 [28] 0.7961 0.5843 0.7973 6.2143 0.6660 0.4813 0.6807 6.0273 0.6580 0.4548 0.6417 6.9292

VGG19 [28] 0.7733 0.5376 0.8402 5.0860 0.6674 0.4843 0.6565 6.1705 0.5799 0.4090 0.5670 6.9851

Resnet18 [11] 0.7583 0.5360 0.7763 6.9897 0.6701 0.4740 0.6528 6.4597 0.5979 0.4165 0.5564 7.0957

Resnet34 [11] 0.7229 0.4835 0.7578 6.4806 0.5998 0.4325 0.6285 6.5344 0.7058 0.5111 0.7153 6.7605

– The deep learning-based methods achieve relatively more competitive per-
formance results on three evaluation perspectives. However, they are still far
away from satisfactory.

– Most of the IQA models achieve better performance on quality evaluation and
worse on text-image correspondence score assessment. The reason is that the
text prompts for image generation are not utilized for the IQA model training.
This makes it more challenging for the IQA models to extract relation features
from AIGIs, which inevitably leads to performance drops.

4 Conclusion and Future Work

In this paper, we study the human visual preference problem for AIGIs. We first
construct a new IQA database for AIGIs, termed AIGCIQA2023, which includes
2400 AIGIs generated based on 100 various text-prompts, and corresponding
subjective MOSs evaluated from three perspectives (i.e., quality, authenticity,
and text-image correspondence). Experimental analysis demonstrates that these
three dimensions can reflect different aspects of human visual preferences on
AIGIs, which further manifests that the evaluation of Quality of Experience
(QoE) for AIGIs should be considered from multiple dimensions. Based on the
constructed database, we evaluate the performance of several state-of-the-art
IQA models and establish a new benchmark to facilitate future research.

In future work, we will further explore the human visual perception for AIGIs
and develop corresponding objective evaluation models for better assessing the
quality of AIGIs from the three perspectives proposed in this paper.
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Abstract. Ubiquitous computing has proposed the idea of seamless
integration of computing devices into smart spaces earlier. The prolif-
eration of Internet of Things (IoT) technologies offers users an expand-
ing array of device control options, including voice activation and home
automation. However, these technologies necessitate user intervention for
adjusting device state, relying on information derived from the environ-
ment and events within the smart space. This article introduces an AI
autonomous decision system designed to address the reliance on user
intervention in adjusting device states within IoT-enabled smart space.
The proposed system consists of a sensing layer, transmission layer, deci-
sion layer, and execution layer, responsible for information sensing, trans-
mission, decision generation, and device control, respectively. The deci-
sion layer incorporates a large language model (LLM) and accompanying
modules to facilitate real-time decision making. This study validates the
core functionalities of the system within an unmanned smart home and
examines the advantages, disadvantages, potential security risks, and
future development directions of the AI autonomous decision.

Keywords: Smart Space · Large Language Model · Autonomous
Systems

1 Introduction

The control methods in smart spaces, such as smart homes, have evolved from
manual physical switch control to encompass diverse modes including voice con-
trol and remote control [12]. Technology advancements have facilitated users
to implement trigger-action programming (TAP) configuration [10] according
to their living habits, enabling devices within a space to automatically change
their functional states in response to different trigger conditions. The evolution
of these control methods gradually relieves the complex action behavior of user-
controlled devices. Among the three processes of sensing, thinking and executing
level in smart space [13], existing smart systems are dedicated to helping users
to complete the sensing and executing part. For example, human body sensors
and light sensors help the whole system to perceive the environmental state and
event in smart space. While smart lights and other smart appliances can help
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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users to perform certain switching actions automatically. However, less research
has focused on the thinking level of smart space, and the control strategy of core
devices still relies mainly on the user’s judgment now [7].

The purpose of this study is to develop an AI autonomous decision system
for Internet of Things (IoT) devices in smart space at the thinking level, so that
each device can react to the action according to the real-time decision of AI and
free the users from the tedious work of condition judgment, switching action and
home automation configuration.

In this study, large language model (LLM) is chosen as the basis of the
underlying smart space decision brain. LLM processed the capability of logical
reasoning and context awareness that can produce corresponding action instruc-
tions based on spatial information and judge the necessity of following actions
in conjunction with the previous states of devices, then help users to intervene
in the process of devices execution.

The contributions of this study are 1) Propose and validate a autonomous
spatial decision system based on LLM; 2) Identify the advantages, disadvan-
tages and security risks of spatial autonomous decision system; 3) Provide refer-
ence suggestions for future research and technology development related to LLM
based smart space design.

2 Related Work

Mark Weiser [11] proposed the idea of seamless integration of computers into
the world, that is, to minimize the presence of computers as input and output
devices, so that users can use computing devices without thinking, and psy-
chologically focus on new goals beyond the devices, which developing into the
concept of ubiquitous computing. With the development of technology, ideas
such as wireless communication and miniaturization of computing devices have
been realized, but the ideal of seamless computer access in IoT and smart space
is still far away.

Smart spaces originated and evolved in the home environment, and as tech-
nology advanced, these automation technologies were used in more scenarios,
such as public office spaces, warehouse spaces, production spaces, and mobile
spaces [5]. In this process, smart spaces and space automation arise. The first
domotic technology [9] was developed in 1975 and the concept of home automa-
tion emerged as a communication protocol and module. Then, as a stepping stone
to the emergence of smart home, home automation was gradually developed and
promoted. However, this technology had not been widely used by users for a
long time [2]. In early 2000, R.J.C. Nunes et al. proposed the use of easy pro-
gramming user interfaces for home automation configuration in IoT systems [8].
Home automation was given a new concept, i.e., a user-programmed interactive
system for device connection and trigger-action programming. Home automation
survived as an important function and interaction method for smart home.

Some of the current studies had applied LLM to the smart home system
to assist users in device control and automation configuration using fuzzy com-
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mands [4]. To some extent, it simplified the operational process of home automa-
tion [1], but did not diminish the strong input-output computer primitive feature
of smart home. In the existing system framework, users need to view, predict
and understand spatial information in real time or ahead of time, and then give
commands to change the functional state of devices [3]. In this process, thinking
function of smart space is always done by the users.

3 System Architecture

(See Fig. 1)

Fig. 1. Architecture diagram of the spatial autonomous system. 1) Sensing network can
sense environment and event information in the space, the transmission layer captures
this information and passes it to the decision layer. 2) The In-Context Prompting
module outputs task prompts to the LLM based on changes in sensing information. 3)
Information such as function, status and device number from the device information
base is input to the LLM. 4) After generating decision instructions, the decision layer
inputs the instructions into the IOT control platform to create a dynamically adjusted
and more appropriate space for the user or other entities. 5) While generating the
instructions, the decision layer sends a notification to the user describing the expected
effect of the decision instructions after they are issued.

3.1 Overview

The whole system framework is divided into sensing layer, transmission layer,
decision layer and execution layer. The sensing network in smart space consist of
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the sensing layer. The transmission layer is responsible for transmitting sensor
data and other environmental information in space to the decision layer, as
well as informing users of the control commands issued by the decision layer.
The core part of the whole system is LLM based decision layer. In order to
make LLM capable of logical reasoning and instruction generation for specific
IoT devices every time the spatial conditions change, we design the automatic
prompt language module and the device function library module to ensure the
integrity and continuity of the system functions. The automation commands
then will be passed to the execution layer to control the smart appliances using
IoT control platform in smart space.

3.2 Sensing Layer

The sensing layer consists of the sensing network which is capable of detecting
environmental and event information in space in real time. When the spatial
information changes, the sensing network can detect and record the type and
value of the changes. For example, changes in temperature, humidity, sunlight
intensity, wind speed, etc. in the space recorded by the sensing network can
reflect the environmental conditions in the space, and changes in the state of
human passing by, door and window switches or other equipment switches can
also reflect the event information in the space. All these information are recorded
and then captured by the transmission layer as the base information for decision
generation at the decision layer.

3.3 Transmission Layer

The transmission layer is responsible for the information transfer between the
decision layer and the sensing layer. Each change of spatial information and
environmental information of the spatial location in the sensing-execution layer
is captured by the sensing information transmission module and transmitted to
the decision layer as the basis for the decision of the decision layer to adjust
the equipment status. Each time the decision layer issues a control command to
adjust the state of the equipment, the result of the execution of the command is
also sent back to the user.

3.4 Decision Layer

The decision layer is the core part of the whole system and is the key to the
system’s ability to adjust the device state without the user’s manual judgment.
We adopt LLM technology with the capability of logical reasoning and context
awareness. These capabilities can help the decision layer to generate decisions
and output commands based on the spatial change information delivered by
the above-mentioned modules. In this process, the LLM is fully autonomous in
judging the environmental information, event information and other perceptual
information in space according to its relatively reasoning process. By combining
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all kinds of information, the LLM autonomously decides whether it needs to
execute actions, which devices to issue control commands to, and describes the
overall execution results and the spatial changes brought by the devices after the
control commands are issued in natural language. Due to the passive nature of
the LLM, if cannot autonomously carry out the task of spatial decision making,
and the ideal smart space should monitor the environmental changes in real time
for dynamic adjustment. We design the prompt engineering execution module,
which dispatches tasks for spatial decision making to the LLM at a specific
time, and when the sensing layer reports changes in spatial information, the
decision tasks will be input to the LLM along with the state sensing information,
giving the LLM the ability to make real-time decisions about the smart space.
The device list and functional state information required by the LLM in this
process are provided by the device function library, and this module avoids
device forgetting by the LLM, which is a drawback caused by the forgetting
feature of the LLM. With the cooperation of the LLM and other modules in
the decision layer, the system has the ability to make spatial decisions without
human intervention.

3.5 Execution Layer

The execution layer consists of IoT control platform and IoT devices. Under
the unified control of the IoT control platform, IoT devices can create a more
suitable spatial environment for the entities served by the space through switch
combinations and functional changes. For example, living environment, office
environment, storage environment, production environment, etc. The decision
layer is able to issue real-time or delayed control commands as needed, and the
execution layer receives the commands to control the devices according to the
corresponding control strategy. The environment in which the system is designed
and experimented is a real unmanned space, and the system can complete a series
of smart appliances control in the space.

4 Conclusion

This study identified the problem of user decision dependence in the exist-
ing framework of smart space and IoT control systems, and proposed a spa-
tial autonomous decision system to help users in spatial information judgment
and decision command generation, so that the devices in space can operate
autonomously without user intervention. In terms of system design, we divided
the whole system into sensing layer, transmission layer, decision layer and exe-
cution layer. We fully considered the features and defects of LLM, and encap-
sulated them in the decision system with the modular combination method, so
that LLM can generated device control commands in real time according to cer-
tain strategies. In order to introduce the autonomous decision-making capability
into the smart space and meet the realistic needs of the users and service objects
in the smart space, we introduced other modules such as transmission module
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into the system, so that the decision system can accomplish spatial autonomy
in the smart space in a suitable way. Our system activated the capability of
autonomous decision making of smart space, alleviated the users’ cost of using
IoT devices, and relieved various problems in the process of home automation
configuration.

At the same time, spatially autonomous systems may also have problems [6]
such as failure to meet users’ individual needs, possible implementation devia-
tions and environmental control risks. The future developing directions of spa-
tially autonomous systems may concern more user intervention, personalized
service needs, security, and scenario applications, so that smart space can better
meet users’ needs. Related work in this area may bring new research directions
for smart home and introduce new development paths for IoT control technolo-
gies.

Demo video: https://ispacedemo.github.io/CICAIdemo/
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Abstract. End-to-end model, especially Recurrent Neural Network
Transducer (RNN-T), has achieved great success in speech recognition.
However, transducer requires a great memory footprint and computing
time when processing a long decoding sequence. To solve this problem,
we propose a model named time-sparse transducer, which introduces a
time-sparse mechanism into transducer. In this mechanism, we obtain
the intermediate representations by reducing the time resolution of the
hidden states. Then the weighted average algorithm is used to combine
these representations into sparse hidden states followed by the decoder.
All the experiments are conducted on a Mandarin dataset AISHELL-
1. Compared with RNN-T, the character error rate of the time-sparse
transducer is close to RNN-T and the real-time factor is 50.00% of the
original. By adjusting the time resolution, the time-sparse transducer can
also reduce the real-time factor to 16.54% of the original at the expense
of a 4.94% loss of precision.

Keywords: speech recognition · human-computer interaction ·
computational paralinguistics

1 Introduction

In recent years, significant advancements have been made in end-to-end speech
recognition models, including the connectionist temporal classification (CTC)
[1–3], attention-based sequence-to-sequence models (AED) [4–7], and recurrent
neural network transducer (RNN-T) [8–13]. The CTC algorithm, employed by
many models, performs frame-level decoding by converting speech sequences to
corresponding label sequences. However, this method relies on the assumption
of conditional independence among speech frames, making it unable to effec-
tively model the dependencies between outputs. On the other hand, the RNN-
T leverages its recurrent structure to overcome the conditional independence
assumption and optimizes acoustic and language components jointly through
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
L. Fang et al. (Eds.): CICAI 2023, LNAI 14474, pp. 68–80, 2024.
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the introduction of language and joint networks. Consequently, the RNN-T has
found success in online automatic speech recognition (ASR) systems [14,15].

Despite its advantages, the RNN-T imposes a higher memory demand com-
pared to AED and CTC methods [10,16]. During the forward-backward pass of
the RNN-T, posteriors are calculated at each point within the grid composed
of the encoder and prediction network. Computing a long decoding sequence in
this grid consumes more memory and time than the aforementioned methods,
making the vocabulary less dependent on training/inference speech and more
reliant on sequence length [17–19]. Therefore, reducing memory consumption
and improving computing speed are crucial for deploying RNN-T models on
low-resource devices [16,20,21].

This paper proposes a model, named the time-sparse transducer (TST),
designed to address the memory cost and computing time consumption of the
RNN-T. Our approach consists of a convolutional front end, an acoustic encoder,
a time-sparse mechanism, and a decoder. The encoder maps input acoustic
frames into high-level representations, while the decoder, analogous to a conven-
tional language model, combines these representations to produce a distribution
over the output target through a softmax layer. The prediction network and joint
network collectively form the decoder. The time-sparse mechanism reduces the
time resolution by decomposing the encoder’s hidden states into intermediate
encoded representations using a sliding pooling window. These representations
are then combined into sparse hidden states using a weighted average algorithm,
and subsequently fed to the joint network. As a result, the sequence length of
the sparse hidden states outputted by the time-sparse mechanism is significantly
smaller than that of the encoder. This compression in the length of hidden states
effectively reduces the GPU memory footprint and computing time. Additionally,
introducing an attention mechanism [5] during the combination of intermediate
encoded representations enhances the coefficients of representations with valu-
able information and suppresses noisy representations. Furthermore, the atten-
tion coefficients contribute to a lower character error rate (CER) for our model
compared to the RNN-T baseline, as demonstrated through experiments con-
ducted on the AISHELL-1 dataset.

The remaining sections of this paper are organized as follows: Sect. 2 provides
an overview of the RNN-T method, while Sect. 3 describes the structure of the
time-sparse mechanism and highlights key considerations during the generation
of sparse representations. This section also presents the strategies for generating
the weighted average coefficients. In Sect. 4, we detail the experiments conducted
and their respective results. Finally, in Sect. 5, we present our conclusions, sum-
marizing the key aspects and effects of the TST model.

2 Background

Our proposed approach is based on the Recurrent Neural Network Transducer
(RNN-T) model. In this section, we provide an overview of the RNN-T structure,
training strategy, and decoding process [22].
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The RNN-T consists of two distinct networks: the acoustic encoder and the
prediction network, which are connected through the joint network. The acoustic
encoder maps an input frame xt to a hidden state vector ht. The linguistic state
vector gu is generated by appending the prediction “non-blank” symbol from the
previous time step to the prediction network. The joint network is a feed-forward
network that combines the hidden state vector ht and the linguistic state vector
gu as follows:

zt,u = fActivate(Wht + V gu + b) (1)

Here, W and V are weight matrices, b is a bias vector, and fActivate represents
an activation function such as Tanh or ReLU. The output zt,u is then linearly
transformed:

mt,u = Linear(zt,u) (2)

To obtain the posterior probability distribution p(k|t, u) over the next output
symbol, a softmax function is applied to mt,u:

p(k|t, u) = Softmax(mt,u) (3)

The probability distribution is computed at each point in the grid formed by
the prediction network and the acoustic encoder. The RNN-T model employs
the forward-backward algorithm to sum the probabilities of all possible paths.
However, this processing approach results in significant memory requirements
[10]. The loss function for RNN-T is defined as the negative log-likelihood of the
target sequence y∗:

LRNN−T = −ln(P (y ∗ |x)) (4)

In terms of inference, the RNN-T performs frame-by-frame computation, which
can be slow when processing long sequences. The decoder employs beam search
and greedy search methods to identify the most likely sequence as the output of
the network [8].

Overall, the RNN-T model exhibits a distinctive architecture, comprising an
acoustic encoder, prediction network, and joint network. The forward-backward
algorithm is employed to compute probabilities, while the negative log-likelihood
serves as the loss function. The inference process can be time-consuming for
long sequences, and decoding methods like beam search and greedy search are
employed to obtain the output sequence (Fig. 1).

3 Methodology

Our proposed method, Time-Sparse Transformer (TST), is based on the decom-
position of encoded hidden states using a time-sparse mechanism. The time-
sparse mechanism consists of two components: a decomposition of hidden states
based on a sliding pooling window and a combination process of sparse hid-
den states based on the weighted average algorithm. In this section, we provide
detailed explanations of each component.
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Fig. 1. Illustration of the structure of our proposed model time-sparse transducer.
Compared with the RNN-T, a sparse block in time is introduced between the encoder
and the joint network as shown in the figure. All intermediate representations are gen-
erated by sliding a window, which is shown in the Time-Sparse Block of this figure,
on hidden states with two hyperparameters: window length and stride. Both of them
can be set before the training process and would make observed disparity on the rea-
soning output. After that, the time-sparse block combines the encoded representations
through the weighted average algorithm and feeds them into the joint network. The
sequence length of the sparse hidden state is reduced after this process.

3.1 The Decomposition Based on Sliding Pooling Window

We first reduce the time resolution by decomposing the encoded hidden states
into intermediate encoded representations by the TST algorithm. In the time-
sparse mechanism, the intermediate representations are generated by sliding a
window on hidden states with fixed window length and stride. Through this
process, the information carried by the output of the encoder can be spread over
various encoded representations rk with smaller time resolution than hidden
states as Eq. 5:

[r1, r2, r3, ...rk, ...rn] = fwin(x, input, length, stride) (5)

where the x and rk are the input and intermediate encoded representation output
by decomposition respectively and n is the number of intermediate representa-
tions. The window can overlap partly during sliding to ensure continuous infor-
mation between each representation. The pooling process is primarily affected
by two factors, namely, the window length affecting the size of the sliding win-
dow, and the window stride affecting the size of the overlap between windows.
The time resolution of the intermediate encoded representation decreases as the
window length and stride size increase. So a large window length and stride size
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will cause the loss of detailed information but retain more global information
when the encoder output is decomposed. After the decomposition, the interme-
diate encoded representations can be calculated with less computational effort
in a shorter time due to the smaller sequence length than encoded hidden states.
Conversely, setting a smaller window length and stride size can retain more
detailed information, but also generate representations with greater sequence
length than setting smaller sequence length and size, thus increasing the pro-
cessing time and memory requirements of the time-sparse mechanism.

3.2 The Combination Based on Weighted Average Algorithm

After decomposing the encoded hidden states by sliding window, we combine the
encoded representations through the weighted average algorithm and feed them
into the joint network. In this process, the weighted average algorithm does not
need to change the sequence length of the input and output, so that the time
resolution of the sparse hidden state fed into the joint network by TST is much
smaller than that of the hidden state fed into the joint network by RNN-T.

Combine with Absolute Average. In weighted average combination, an
intuitive way is that all weight coefficients are initialized to be identical, as
shown in Eq. 6.

h
′
t =

n∑

k=1

1
n

· rk (6)

This method reduces the time it consumes to calculate the coefficient but ignores
the difference in the information carried by intermediate encoded representa-
tions.

Combine with Learnable Coefficients. In addition to the absolute average,
the weight coefficient can also be initialized with a set of random coefficients
and jointly optimized with other parameters through the RNN-T loss function
during model training [23]. This process is illuminated as

h
′
t =

n∑

k=1

wk · rk (7)

where wk is the learnable coefficient. The precision of the TST can be improved
by increasing the coefficient of the intermediate encoded representation with the
information that has a positive impact on the prediction and suppressing the
coefficient of the representation that carries noise information.

Combine with Attention Mechanism. Inspired by the self-attention mecha-
nism [5], we introduce the attention mechanism to calculate the weighted average
coefficients. The attention weights αk are computed as follows:

ek = Linear(r) (8)
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αk = Softmax(ek) (9)

h
′
t =

n∑

k=1

αk · rk (10)

In this case, the attention mechanism allows the model to focus more on positive
information. By calculating the attention weights, TST ensures that the inter-
mediate encoded representations with significant contributions are given higher
coefficients in the combination process.

In conclusion, the decomposition of the encoded hidden states and the combi-
nation of intermediate encoded representations occur only between the encoder
and the joint network. From the decoder’s perspective, the features inputted to
the decoder in TST are indistinguishable from those in RNN-T. Therefore, any
decoder used for RNN-T can be employed for TST.

4 Experiments and Results

4.1 Experimental Setup

All of our experiments are conducted on a public Mandarin speech corpus
AISHELL-1 [24]. We use 80-dimension Mel-filter Bank coefficients (FBank) fea-
tures with 3-dim pitch features computed on 25 ms window with 10 ms shift,
which is known to be effective in Mandarin speech recognition. The 4234 char-
acters (including a padding symbol <PAD>, an unknown token <UNK>, a begin-
of-sequence token <BOS> and an end-of-sequence token <EOS>) are chosen as
modeling units.

For the baseline RNN-T model, the front-end convolutional block followed
by the encoder consists of two 2D-Convolution layers with a ReLU activation,
stride size 2, channels 384, kernel size 3, and output size 384. The acoustic
encoder consists of 12 transformer blocks with 4 heads in multi-head attention.
The feed-forward size of the encoder is 384 and the hidden size is 768. We utilize
three types of decoders. The first is a transformer decoder with 6 blocks and 4
heads in multi-head attention [6,25,26]; The second is a state-less decoder [27],
and the third is an RNN decoder with 2-layer Long Short-Term Memory (LSTM)
model. The configuration of TST is the same as RNN-T, except for introducing a
time-sparse mechanism between the RNN-T encoder and joint network. Exper-
iments are conducted on the sliding pooling window length from 1 to 10 with
fixed window stride 1 and stride from 1 to 10 with window length 10. The gener-
ation strategies of intermediate encoded representation coefficients are absolute
equality (AE), optimization of the random initialization coefficients through the
RNN-T loss function (LC), and calculation through the self-attention mecha-
nism (SA). We utilize the CER to evaluate the accuracy of different models and
the real-time factor (RTF) to evaluate the inference speed.
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Fig. 2. Illumination of the GPU memory utilization and time consumption of RNN-T
and TST on batch data. Both experiments are conducted on a Tesla K80 GPU.

Table 1. Comparison of our TST with the RNN-T after the downsampling process
along time. To illustrate the disparity between before and after time sparing, we also
show the performance of the commonly used RNN-T as the baseline. The time resolu-
tions of both TST and downsampling RNN-T are reduced to 1/10 that of the RNN-T.

Model RNN-T Downsampling TST

AE LC SA

CER (%) 7.824 43.926 15.784 13.411 12.760

RTF 0.122 0.019 0.021 0.021 0.021

4.2 Results

The Comparison of GPU Consumption Between RNN-T and TST.
We conducted a comparative analysis of GPU memory utilization and time con-
sumption between RNN-T and TST, as depicted in Fig. 2. The primary objective
was to evaluate the impact of the time-sparse mechanism on these performance
metrics. Our results revealed that the utilization of GPU memory decreased
from 9% to 7.1% when utilizing TST instead of RNN-T. Additionally, the time
consumption exhibited a noticeable improvement, reducing from 299.856 ms to
213.387 ms when processing batch data. These findings clearly demonstrate that
TST achieves lower GPU occupancy and faster computation speed compared to
RNN-T. By incorporating the time-sparse mechanism into RNN-T, we effec-
tively reduce the sequence length of the hidden states received by the predic-
tion network. Consequently, this reduction in sequence length leads to decreased
GPU occupancy and significantly reduces the time required for subsequent
computations.

The Influence of Downsampling in the Encoded Hidden State of TST
and RNN-T. In this section, we evaluate the performance of TST and RNN-
T when the time resolution is reduced. Table 1 presents the results, highlight-
ing that there is no significant difference in terms of Real-Time Factor (RTF)
between TST and RNN-T. Both models achieve a similar RTF reduction, approx-
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Table 2. Comparison of TST with different sliding pooling window lengths. The win-
dow stride of all experiments is 1.

Window Length AE LC SA

CER (%) RTF CER (%) RTF CER (%) RTF

10 9.454 0.160 9.213 0.161 8.714 0.158

8 9.225 0.162 8.521 0.163 8.231 0.159

6 9.013 0.160 8.244 0.163 7.942 0.160

4 8.562 0.161 7.685 0.162 7.418 0.161

2 8.259 0.162 7.812 0.164 7.533 0.159

1 8.205 0.162 8.139 0.163 7.824 0.159

Table 3. Comparison of TST with different sliding pooling window strides. The window
length of all experiments is 10.

Window Stride AE LC SA

CER (%) RTF CER (%) RTF CER (%) RTF

10 15.784 0.021 13.411 0.022 12.760 0.021

8 13.598 0.039 11.531 0.039 11.320 0.039

6 11.347 0.050 10.338 0.050 9.672 0.049

4 10.442 0.061 9.866 0.061 8.831 0.060

2 10.215 0.093 9.734 0.093 8.799 0.093

1 9.454 0.160 9.213 0.161 8.714 0.158

imately to 1/6 of the original value, when the time resolution is decreased to 1/10.
However, it is important to note that downsampling the data along the time axis
leads to a substantial loss in accuracy, amounting to 36.102%.

Regarding our TST, it incorporates a time-sparse mechanism, enhanced by
a self-attention block, which effectively mitigates the accuracy loss. Specifically,
TST achieves a remarkable reduction in accuracy loss to 4.936%. The introduc-
tion of the time-sparse mechanism, with its self-attention component, enables
TST to better preserve the relevant information in the sparse representations,
thus significantly minimizing the adverse effects of downsampling on accuracy.

The Influence of the Sliding Pooling Window Length and Stride on
the Model Performance. This section presents a comparative analysis of
models employing different sliding pooling window lengths and stride sizes. The
experimental results, as depicted in Tables 2 and 3, clearly demonstrate that
reducing the window length and stride size improves the accuracy of the models.
When a large window with a large step size slides over the encoded hidden state,
it leads to the loss of more detailed information. Conversely, a small window with
a small step size preserves more information but results in a longer sequence
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Table 4. The Result of RNN-T and TST with different decoders. Both window length
and window stride are 4. The window type is SA.

Model CER (%) RTF

RNNT-T 7.979 0.508

TST-T (Ours) 7.744 0.285

RNNT-S 7.824 0.122

TST-S (Ours) 7.528 0.061

RNNT-R 11.454 0.397

TST-R (Ours) 10.193 0.222

length. The outcomes reveal that, for TST, the weighted average combination
approach effectively reduces the CER when the window length is less than 4,
accomplishing this by increasing the weight assigned to positive information
while suppressing the weight assigned to noise. Moreover, employing the SA
yields the lowest CER among the tested approaches. However, it should be noted
that an increase in window length diminishes the information content, thereby
decreasing the accuracy of TST. Notably, the tables demonstrate that the RTF
remains largely unaffected by changes in window length but decreases as the
stride size increases. This observation highlights that the inference speed of TST
primarily depends on the decoding sequence length rather than the scale of
intermediate encoded representation.

The Experimental Results of Different Window Types. This section
primarily investigates the impact of different strategies employed for generating
weighted average coefficients within the Time-Sparse Transformer (TST) frame-
work. Notably, these strategies have no bearing on the decoding sequence length,
thereby ensuring consistent computational speed for TST. The experimental
findings presented in Tables 1, 2, and 3 provide compelling evidence regarding
the efficacy of the SA strategy, which yields the lowest CER on the AISHELL-1
dataset. Comparing the LC approach with the SA strategy, it becomes evident
that the inclusion of the attention mechanism significantly aids the model in
learning the weighted average coefficients. Specifically, the self-attention mecha-
nism strengthens the coefficient associated with intermediate encoded represen-
tations that convey pertinent information while simultaneously diminishing the
coefficient assigned to representations containing noise. Consequently, the result-
ing sparse hidden state exhibits enhanced recognition capabilities pertinent to
the target task. These results shed light on the discriminative power and adapt-
ability provided by the self-attention mechanism within the TST framework,
reinforcing its effectiveness for optimizing speech recognition performance.
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Table 5. The results of RNN-T and TST with different decoders. Both window length
and window stride are 10. The window type is SA.

Model CER (%) RTF

RNNT-T 7.979 0.508

TST-T (Ours) 12.934 0.084

RNNT-S 7.824 0.122

TST-S (Ours) 12.760 0.021

RNNT-R 11.454 0.397

TST-R (Ours) 15.968 0.089

The Experimental Results of Sliding Pooling Window with Differ-
ent Decoders. This section focuses on comparing the performance of TST
and RNN-T with different decoders, namely RNN-T with Transformer decoder
(RNNT-T), RNN-T with State-Less decoder (RNNT-S), RNN-T with RNN
decoder (RNNT-R), TST with Transformer decoder (TST-T), TST with State-
Less decoder (TST-S), and TST with RNN decoder (TST-R). Experiments were
conducted to evaluate their performance in terms of CER and recognition speed.

Table 4 presents the results, indicating that TST consistently achieves a lower
CER and higher recognition speed compared to RNN-T in all three types of
decoder. Specifically, when comparing TST-S with RNNT-S, it was found that
the CER of TST-S is very close to that of RNN-T, while the RTF is reduced
to 50% of RNNT-S. These findings highlight that TST-S achieves comparable
accuracy to RNN-T while significantly improving computational efficiency.

Furthermore, Table 5 provides insights when the time resolution is reduced
to 1/10. The CERs of models with different decoders are observed to increase,
but the RTFs are reduced to 16.535% to 22.418% of the original values. Notably,
among all the experiments, TST-S achieves the highest accuracy and its RTF
is reduced to 17.213% of that of RNNT-S. These results demonstrate that TST
offers the potential to improve both recognition accuracy and computational
efficiency across various decoder types. Moreover, when the time resolution is
decreased (see Table 4), TST maintains superior performance in terms of accu-
racy and computational efficiency compared to RNN-T.

5 Conclusion

In this study, we have introduced a novel model called the time-sparse trans-
ducer, which incorporates a time-sparse mechanism between the recurrent neural
network (RNN) transducer encoder and the prediction network. Our proposed
model offers several advantages compared to conventional transducers, including
reduced memory consumption and accelerated computation through the reduc-
tion of time resolution in the encoded hidden state. Through our experimenta-
tion on the AISHELL-1 dataset, we have observed that the incorporation of the
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time-sparse mechanism in the prediction phase leads to a notable decrease in
the character error rate. This finding underscores the efficacy of the time-sparse
transducer in enhancing recognition accuracy and reducing inference time con-
sumption when employed in conjunction with various decoders. While this study
primarily focused on the development and evaluation of the time-sparse trans-
ducer, there are avenues for future research that warrant exploration. Specifically,
we intend to investigate optimizing strategies for weighted average coefficients
on diverse speech corpora. Such exploration will enable us to better understand
the implications and generalized ability of our proposed model across different
linguistic contexts.

References

1. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks.
In: Proceedings of the 23rd International Conference on Machine Learning, pp.
369–376 (2006)

2. Graves, A., Jaitly, N.: Towards end-to-end speech recognition with recurrent neu-
ral networks. In: International Conference on Machine Learning, pp. 1764–1772.
PMLR (2014)

3. Amodei, D., et al.: Deep speech 2: end-to-end speech recognition in English and
mandarin. In: International Conference on Machine Learning, pp. 173–182. PMLR
(2016)

4. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

5. Vaswani, A., et al.: Attention is all you need. Advances in neural information
processing systems 30 (2017)

6. Dong, L., Xu, S., Xu, B.: Speech-transformer: a no-recurrence sequence-to-sequence
model for speech recognition. In: 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 5884–5888. IEEE (2018)

7. Kim, S., Hori, T., Watanabe, S.: Joint ctc-attention based end-to-end speech recog-
nition using multi-task learning. In: 2017 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 4835–4839. IEEE (2017)

8. Graves, A.: Sequence transduction with recurrent neural networks. arXiv preprint
arXiv:1211.3711 (2012)

9. Graves, A., Mohamed, A.r., Hinton, G.: Speech recognition with deep recurrent
neural networks. In: 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, pp. 6645–6649. IEEE (2013)

10. Rao, K., Sak, H., Prabhavalkar, R.: Exploring architectures, data and units for
streaming end-to-end speech recognition with rnn-transducer. In: 2017 IEEE Auto-
matic Speech Recognition and Understanding Workshop (ASRU), pp. 193–199.
IEEE (2017)

11. He, Y., et al.: Streaming end-to-end speech recognition for mobile devices. In:
ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 6381–6385. IEEE (2019)

12. Han, W., et al.: Contextnet: improving convolutional neural networks for automatic
speech recognition with global context. ArXiv abs/2005.03191 (2020)

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1211.3711


TST: Time-Sparse Transducer for Automatic Speech Recognition 79

13. Zhang, Q., et al.: Transformer transducer: A streamable speech recognition model
with transformer encoders and rnn-t loss. In: ICASSP 2020–2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7829–
7833 (2020). https://doi.org/10.1109/ICASSP40776.2020.9053896

14. Kannan, A., et al.: Large-scale multilingual speech recognition with a streaming
end-to-end model. arXiv preprint arXiv:1909.05330 (2019)

15. Variani, E., Rybach, D., Allauzen, C., Riley, M.: Hybrid autoregressive transducer
(hat). In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 6139–6143 (2020). https://doi.org/10.1109/
ICASSP40776.2020.9053600

16. Li, J., Zhao, R., Hu, H., Gong, Y.: Improving RNN transducer modeling for end-to-
end speech recognition. In: 2019 IEEE Automatic Speech Recognition and Under-
standing Workshop (ASRU), pp. 114–121. IEEE (2019)

17. Venkatesh, G., et al.: Memory-efficient speech recognition on smart devices.
In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 8368–8372 (2021). https://doi.org/10.1109/
ICASSP39728.2021.9414502

18. Han, Y., Zhang, C., Li, X., Liu, Y., Wu, X.: Query-based composition for large-
scale language model in lvcsr. In: 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 4898–4902 (2014). https://doi.org/
10.1109/ICASSP.2014.6854533

19. Zhang, Y., Sun, S., Ma, L.: Tiny transducer: a highly-efficient speech recognition
model on edge devices. In: ICASSP 2021–2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 6024–6028 (2021). https://
doi.org/10.1109/ICASSP39728.2021.9413854

20. Chen, X., Wu, Y., Wang, Z., Liu, S., Li, J.: Developing real-time streaming trans-
former transducer for speech recognition on large-scale dataset. In: ICASSP 2021–
2021 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP). pp. 5904–5908 (2021). https://doi.org/10.1109/ICASSP39728.2021.
9413535

21. Kim, C., et al.: A review of on-device fully neural end-to-end automatic speech
recognition algorithms. In: 2020 54th Asilomar Conference on Signals, Systems,
and Computers, pp. 277–283 (2020). https://doi.org/10.1109/IEEECONF51394.
2020.9443456

22. Tian, Z., Yi, J., Tao, J., Zhang, S., Wen, Z.: Hybrid autoregressive and non-
autoregressive transformer models for speech recognition. IEEE Signal Process.
Lett. 29, 762–766 (2022)

23. Ostmeyer, J., Cowell, L.: Machine learning on sequential data using a recurrent
weighted average. Neurocomputing 331, 281–288 (2019)

24. Bu, H., Du, J., Na, X., Wu, B., Zheng, H.: Aishell-1: an open-source mandarin
speech corpus and a speech recognition baseline. In: 2017 20th Conference of
the Oriental Chapter of the International Coordinating Committee on Speech
Databases and Speech I/O Systems and Assessment (O-COCOSDA), pp. 1–5.
IEEE (2017)

25. Moritz, N., Hori, T., Le, J.: Streaming automatic speech recognition with the trans-
former model. In: ICASSP 2020–2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 6074–6078. IEEE (2020)

https://doi.org/10.1109/ICASSP40776.2020.9053896
http://arxiv.org/abs/1909.05330
https://doi.org/10.1109/ICASSP40776.2020.9053600
https://doi.org/10.1109/ICASSP40776.2020.9053600
https://doi.org/10.1109/ICASSP39728.2021.9414502
https://doi.org/10.1109/ICASSP39728.2021.9414502
https://doi.org/10.1109/ICASSP.2014.6854533
https://doi.org/10.1109/ICASSP.2014.6854533
https://doi.org/10.1109/ICASSP39728.2021.9413854
https://doi.org/10.1109/ICASSP39728.2021.9413854
https://doi.org/10.1109/ICASSP39728.2021.9413535
https://doi.org/10.1109/ICASSP39728.2021.9413535
https://doi.org/10.1109/IEEECONF51394.2020.9443456
https://doi.org/10.1109/IEEECONF51394.2020.9443456


80 X. Zhang et al.

26. Tian, Z., Yi, J., Tao, J., Bai, Y., Zhang, S., Wen, Z.: Spike-triggered non-
autoregressive transformer for end-to-end speech recognition. arXiv preprint
arXiv:2005.07903 (2020)

27. Ghodsi, M., Liu, X., Apfel, J., Cabrera, R., Weinstein, E.: Rnn-transducer with
stateless prediction network. In: ICASSP 2020–2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pp. 7049–7053. IEEE
(2020)

http://arxiv.org/abs/2005.07903


Enhancing Daily Life Through
an Interactive Desktop Robotics System

Yuhang Zheng1, Qiyao Wang2, Chengliang Zhong2,3(B), He Liang2,
Zhengxiao Han4, and Yupeng Zheng5

1 Beihang University, Beijing, China
2 Tsinghua University, Beijing, China
zhongcl19@mails.tsinghua.edu.cn

3 Xi’an High-Tech Research Institution, Xi’an, China
4 Beijing University of Chemical Technology, Beijing, China

5 Institute of Automation, Chinese Academy of Sciences, Beijing, China

Abstract. In this demo, we develop an intelligent desktop operating
robot designed to assist humans in their daily lives by comprehending
natural language with large language models and performing a vari-
ety of desktop-related tasks. The robot’s capabilities include organiz-
ing cluttered objects on tables, such as dining tables or office desks,
placing them into storage cabinets, as well as retrieving specific items
from drawers upon request. This paper provides the design, develop-
ment, and functionality of our robotics system, highlighting its advanced
language understanding capabilities, perception algorithms, and manipu-
lation techniques. Through real-world experiments and user evaluations,
we demonstrate the effectiveness and practicality of our robotic compan-
ion in assisting individuals with everyday desktop tasks.

Keywords: Table organization · Natural language processing ·
Robotic perception and manipulation

1 Introduction

In recent years, there has been an increasing interest in the development of
robotic systems aimed at providing assistance to humans in their daily lives,
thereby enhancing convenience, productivity, and overall well-being [1–4]. In
this demonstration, our focus lies on the task of table rearrangement: an intel-
ligent robot designed to assist individuals in moving every object on the table
to its specific location. This concise paper offers a comprehensive overview of
the design, development, and functionality of our robotic companion, aiming to
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Fig. 1. The architecture of our robotics system. Our speech recognition module ana-
lyzes input speech to identify the objects to be manipulated and their target places.
Using this information, our robot arm executes a sequence of actions to complete
the organization task. The most challenging aspect lies in predicting the trajectory of
opening the cabinet door, for which we introduce a 3D Implicit Transporter network
to effectively manipulate the articulated object, as depicted in the right panel.

revolutionize how we interact with our immediate workspace and elevate the
quality of our lives.

One of the key considerations in designing this robotic system is ensuring its
user-friendliness. Humans can effortlessly communicate with the robot, issuing
commands and requesting specific actions to be performed. Additionally, the
inherent clutter often encountered on desks, be it in home or office settings,
presents considerable challenges in terms of automated organization and task
management [5]. Furthermore, the system is required to rapidly adapt to novel
scenarios, such as encountering new tables and unfamiliar objects.

Our robot has been meticulously engineered to tackle these challenges, offer-
ing a reliable and intuitive solution to handle a wide range of desktop-related
tasks. Through harnessing advancements in natural language processing, com-
puter vision, and robotic manipulation, this innovative robot is capable of seam-
lessly understanding user commands, accurately identifying and categorizing
objects, and proficiently executing specified actions to enhance desktop orga-
nization. We evaluate our system quantitatively on a real-world task and find
that our robot achieves a success rate of 87.3% on grasp and correctly places
90.0% of objects.
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2 System Architecture

As shown in Fig. 1, the robot system consists of two parts: (1) speech recognition
and (2) perception and manipulation. Detailed information on each component
is described below.

2.1 Speech Recognition

Taking human speech as input, the speech recognition module first converts
voice to text and then outputs the names of organized objects and the parts or
locations of the cabinets. In the speech recognition module, we choose Microsoft
Azure’s speech recognition and speech synthesis cloud services and select Chat-
GPT [6] as the dialogue interaction robot to achieve the integration of the intelli-
gent interaction system. To enable the robot to flexibly answer various questions
related to organizing objects on the desktop, it is necessary to send a human-
written prompt to ChatGPT for online training after initializing the interaction
system, and then start the dialogue and Q&A. The content of the prompt mainly
includes 1) the robot’s responsibilities and main tasks to be completed; 2) names
of objects and the parts or locations of the cabinets; 3) several example scenarios
that illustrate how the robot answers human questions.

2.2 Perception and Manipulation

Affordance Prediction. Affordance refers to the potential uses or actions that
a particular object or feature in the environment can offer, such as a door handle
affording the action of grasping. The concept of affordance provides valuable
semantic information for robot agents, as it enables them to understand how
they can interact with their surroundings to perform various tasks. In particular,
we leverage the notion of affordance to guide our robot arm’s grasping actions.
To achieve this, we employ AffCorrs, a one-shot transfer method [7], to generate
a grasping affordance map based on a source image containing labeled regions
for grasping and an image sequence to be labeled. AffCorrs outputs the grasping
region for each frame, which we then use in conjunction with aligned depth maps
and camera intrinsic parameters to reconstruct a point cloud representing the
location of the grasped object. This approach enables our robot arm to accurately
locate and grasp objects in its environment.

Grasp Pose Planning. This function determines the best way for the gripper
to hold and lift an object. To grasp the object, we need to obtain its position
and estimate the grasping pose of the gripper. Here, we adopt the method of
object detection. The system takes RGBD images captured by Realsense D455
as input and a YOLO-v7 network [8], trained with self-collected data, is utilized
for detection. For grasping, we combined the detection results with the depth
frames got previously to obtain the grasping pose.



84 Y. Zheng et al.

Articulated Object Manipulation. Articulated objects play a ubiquitous
role in our everyday lives, serving as storage units for various items [9]. Manip-
ulating such objects presents a significant challenge due to the inherent shape
variations and dynamic changes in their topology over time. In order to tackle
this challenge, we have developed a novel network that leverages temporally
consistent keypoints to infer the kinematic structure and movement of differ-
ent parts. This network builds upon our previous work, denoted as 3D Implicit
Transporter.

Our network operates on two input point clouds that capture the dynamic
movement of object parts. The primary objective of our method is to reconstruct
the shape of the target state by transporting explicit feature grids from the source
state based on the predicted 3D keypoints. This process is carried out in a self-
supervised manner. By leveraging temporally aligned keypoints, we are able
to predict the direction of movement for the articulated object. In contrast to
employing a single-step action to reach the desired target, our approach generates
a series of sequential actions over an extended timeframe, gradually transforming
the articulation state. The effectiveness of these long-horizon sequential actions
is demonstrated in our accompanying demo.

In our system, we utilize MoveIt [10], the most popular motion planning
framework, to control the movement of the robotic arm. To minimize any poten-
tial planning failures, we ensure that the robotic arm returns to its preset home
position before every manipulation.

3 Results

We demonstrate the effectiveness of our system in both perception and manip-
ulation tasks. For the object detection module, we achieve 98.2% map@50% on
the collected dataset. Additionally, the average relative repeatability of the key-
point prediction is 83.1%. The robot can compute the moving direction with the
temporally aligned keypoints, which enables it to perform the correct action to
manipulate articulated objects and achieve a success rate of 87% in the Pybullet
emulator.

The qualitative results are shown in Fig. 2. We show the key action of our
robot arm after parsing the input speech. In addition, (a) and (b) shows the
process of our robotic system searching for the target object and the grasping
position respectively.
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Fig. 2. The results of our robotics system. (a) and (b) visualize the process of our
robotic system searching for the target object and the grasping position respectively.
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Abstract. As one of the most essential perception modules in the
autonomous driving system, the lane detection module must accurately
and efficiently detect each traffic lane’s location, color and type to secure
the vehicle’s safety. State-of-the-art lane detection models have already
shown great performance using deep and complex architecture. However,
since the embedded system of car-level chips such as TDA4 supports
limited computing resources and operators, these models could not be
deployed directly. Besides, simply compressing models using a smaller
backbone usually yields unsatisfied performance. In this work, to tackle
these problems, we propose a lightweight and practical lane detection
model based on model distillation. Specifically, our model learns the
knowledge of a pre-trained teacher model using spatial softmax. We also
re-train our model using the method of quantization aware training to
further compress the size of model. Compared with the original PINet [1]
model, experimental results on TDA4 demonstrate that our proposed
method merely consumes a quarter of the parameters while enjoying a
close detection precision of 0.7524 and an IoU score of 0.7621.

Keywords: Model distillation · Lane detection · Car-level Chips

1 Introduction

Lane detection is a challenging task in the autonomous driving system. It has
broad application values in the real world including route planning, cruise con-
trol, lane-keeping, auto emergency, etc. To cope with various circumstances,
such as different lanes, environments, cracks on the roads and lights, a robust
and real-time lane detection method is intensively needed for safe driving.

Traditional lane detection methods extract features such as color, edges and
shapes by using hand-crafted operators [2–4], and then apply statistics methods
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such as Hough Transformation [5], Random Sampling Consensus [6] and Kalman
filter [7] to fit the lane. Although these methods are simple and fast, they fail to
maintain robustness in various traffic scenarios with different lighting and obsta-
cles. Deep-learning-based lane detection methods have made great progress in
both accuracy and effectiveness because of their powerful capacity to capture
both the high-level and low-level features of lanes from the image [8,9]. For
example, anchor-based [10,11] and parameter-based methods [12] have obtained
outstanding detection accuracy with a fast inference speed. Recently, with the
help of pixel-wise labeled images, segmentation-based methods [13,14] further
enhance the detection performance by making compromises on efficiency. How-
ever, there still exist many challenges for detecting lanes accurately as well as
deploying a deep model on car-level chips.

Since traffic lanes usually share similar features such as color and shape, it
is not easy to distinguish them into different instances. A common solution is to
find the key points of each lanes [13–16] and then apply some post-processing
techniques [4,13] to cluster these points into different lane instances. However,
these methods demand the number of lanes to be pre-defined and struggle in
occasions when multiple lanes mix with each other. Another problem is that
some complex and fancy methods [11,12] require too many parameters to be
deployed on car-level chips such as TDA4 [19]. Even when some large models can
be compressed into feasible sizes, they cannot be deployed due to unsupported
operators and kernels.

In this work, we propose a lightweight lane detection model, dubbed Mixed
Distilled Point Instance Network (MD-PINet), aiming to derive a lightweight
model via knowledge transferred from an effective but heavy teacher model, i.e.
PINet [1]. Specifically, we have a teacher network PINet with four hourglass
modules as the backbone to fully utilize low-level, mid-level and high-level fea-
tures. We choose PINet as our teacher network because most car-level chips
support its simple operators and its stacked hourglass architecture allows self
distillation. Unlike the common PINet, our MD-PINet is designed with only one
hourglass module as its backbone, which is merely one-forth of the parameters
of the larger teacher network. Once the teacher network is trained, both the
four distillation (attention) layers of the four hourglass modules and the out-
puts of the last hourglass modules can be used as knowledge to supervise the
training of MD-PINet. Therefore, we introduce a mixture of feature distillation
and confidence distillation to enhance the performance of the student network
with knowledge transferred from the teacher network. Moreover, to deploy our
MD-PINet on the car-level chip, we further apply a quantization aware method
to compress parameters from 32-bits to 8-bits. We show that our MD-PINet
can be successfully deployed on TDA4 chip with little drop in performance after
quantization.

The contributions of this study are summarized as follows:

– We propose a novel Mixed Distilled Point Instance Network dubbed MD-
PINet in which a mixture of feature distillation and confidence distillation
are introduced to transfer the knowledge from a teacher network to a student
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one. Thanks to the mixed distillation, we can obtain a lightweight but strong
lane detection model for the autonomous driving system.

– To meet the requirement of model inference efficiency on the car-level chip,
i.e., TDA4, we further accelerate the inference speed of MD-PINet by the
quantization-aware training method.

– We systematically verify the effectiveness of MD-PINet and its quantized
version on a real-world traffic lane dataset. We show that our MD-PINet
can obtain comparable performance as the teacher network while enjoying
much low inference speed, which forcefully demonstrates its effectiveness and
superiority.

2 Related Work

2.1 Lane Detection

Existing traffic lane detection methods can be categorized into three different
types of approaches: segmentation-based methods, parameter-based methods
and anchor-based methods.

Segmentation-based lane detection methods [9,13–16] are most common
and perform well. One typical model is Spatial Convolution Neural Network
(SCNN) [9], in which each pixel manages to receive messages from every other
pixel. This characteristic enables SCNN to build a spatial relationships between
different lanes and hence solve the problem of the no-visual-evidence prob-
lem [17]. Another typical model, CurveLaneNAS [16], applies a neural network
search method as a way to find the optimal network to detect different features.
However, both models are impractical because they are cumbersome and too
slow to meet the real-time inference requirement on car-level chips.

Unlike segmentation methods, parameter-based methods regress the lane
curve equation directly without predicting key points of the lane. For exam-
ple, LSTR model [12] applies transformer [18] to extract the high-level features
and regress the equation of each lane. Even though the inference speed is fast,
their performance is worse than segmentation-based approaches.

Anchor-based methods [10,11] apply anchor boxes to resolve no visual evi-
dence problem. CondLaneNet [11] introduces the conditional convolution to pre-
dict the starting points of each lane. It then performs a row-wise anchor-based
detection method to retrieve the whole lane from the starting point. One prob-
lem with the anchor-based method is that the use of anchors limits the shape of
the lane, which might cause inaccuracy in special cases.

2.2 Knowledge Distillation

Knowledge distillation is a method to transfer knowledge from complex and
powerful models to a small and weak model. Since the knowledge types play a
crucial role in student learning, we discuss three types of knowledge: response-
based knowledge, feature-based knowledge and relation-based knowledge.
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Response-based distillation methods involve the response of the output layer
of the teacher network. In this way, the student network can directly mimic
the result [22] of the teacher network. A temperature method [22] is further
adapted to enable the student network to learn the soft target with lower risks
of over-fitting. Another category, feature-based distillation methods learn the
intermediate feature map [23,24] as well as the response of the output layer of
the teacher network. By learning hints from the feature maps, student network
no longer merely mimics the result. The last category, relation-based distillation
methods do not learn the outputs from any layer of teacher models. They learn
the relationship between different feature maps using the flow of solution process
(FSP) [25], which calculates the inner products between feature maps of different
layers.

Fig. 1. Framework of the PINet. The input image is resized and fed into a backbone
with four hourglass. Each hourglass module outputs a confidence map, an offset map
and an instance map. The confidence map of previous hourglass module acts as the
input of the next hourglass.

3 Method

Both our teacher and student networks are modified from PINet [1] which can be
roughly demonstrated by Fig. 1. Section 3.1 describes the architecture of PINet
in details. Section 3.2 proposes a mixed-distilled PINet (MD-PINet). Section 3.3
states the overall supervisions for MD-PINet. Section 3.4 demonstrates the model
verification on car-level chips.

3.1 PINet

As shown in Fig. 1, PINet consists of three components, including a resizing net-
work, a predicting network and an output branch. Any input image is fed into
the resizing network and compressed to a size of 64× 32 using three consecutive
convolution layers. Each layer has a filter size of 3× 3 and stride 2. Each convo-
lution is equipped with a non-linear activation function, i.e. PReLU, and Batch
Normalization. This procedure greatly saves memory and reduce the training
time [1].

The predicting network contains four stacked hourglass modules. An hour-
glass module includes three parts, i.e., four down layers as the encoder, four
up layers as the decoder and four distillation layers as the skip-connection.
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Thanks to its encoder-decoder architecture, the hourglass module can effectively
extracting both high-level and low-level features while comprehensively captur-
ing the latent correspondence between them [20].

The output branch generates three 64× 32 maps: a confidence map, an offset
map and an instance map. Each cell of the maps represents a specific region
of the original images. The confidence map predicts the probability that a key
lane point exists in a cell. The offset map indicates exact locations of key points
of traffic lanes. Finally, the instance map stores the embedding features of each
lane instance.

3.2 Mixed Distilled PINet

Fig. 2. Framework of MD-PINet. The green lines indicate the feature distillation while
the blue line represents the confidence distillation (Color figure online)

The incentive of MD-PINet arises from the nature of the stacked hourglass
modules of PINet. Since deep hourglass modules usually have more capacity to
capture more informative features, they can enable self-distillation by transfer-
ring knowledge to those shallow hourglass ones. In other words, the performance
of a lightweight one-hourglass student network can be improved by knowledge
transferred from a deeper teacher network. Specifically, the four distillation lay-
ers in the deeper hourglass modules can be used as hints to supervise the feature
activation of the shallow hourglass modules. However, since the teacher network
learns more high-level features while the student network learns more low-level
features, enforcing the student network to directly mimic the feature map of the
teacher network can result in under-fitting. Besides, if directly regularizing the
confidence map of the student network with the confidence map of the teacher
network, it might cause over-fitting due to the failure of capturing intermediate-
level supervision in the student network. Consequently, we propose to a mixed
distillation strategy based on both the feature maps and the confidence map. We
show that a mix of feature distillation and confidence distillation can be applied
together to yield better detection.

As shown in Fig. 2, in the proposed MD-PINet, we stack four hourglass mod-
ules in the teacher network to effectively capture different levels of features. For
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the student network, we employ only one hourglass module to obtain a sim-
ple and lightweight model. The proposed feature distillation and the confidence
distillation are performed between different hourglass modules accordingly.

The feature distillation provides instructive hints from the distillation layers
of the teacher network for the student network. Since enforcing the student net-
work to imitate the intermediate feature maps of the teacher network might lead
to severe under-fitting, we need to use a loss function which provides hints rather
than the feature map itself. Sufficient experiments have validated that spatial
softmax [28] is an effective method to distill features between different layers of
a hourglass modules [27]. For each channel of the feature map in the distilled
layer, spatial softmax calculates the softmax over the spatial scope and then
calculates the exact two-dimensional location of points, yielding the maximal
activation for each channel. The formulation of spatial softmax in one hourglass
module is shown below:

F (Am) = S(
N∑

i=1

|Ami|2) (1)

where Ami represents the ith distillation layer of the mth hourglass and N is the
number of distillation layers. S represents a single spatial softmax operation.

Since the purposes of feature distillation vary between teacher and student
networks, their feature distillation losses are slightly different. In the teacher
network, the purpose of self-distilled is to make the network deeper and hence
improve the performance of the fourth hourglass [29]. In the student network,
it only learns the last hourglass of the teacher network to yield better accuracy.
Then, the feature distillation losses are calculated using the following equations:

Ldist teacher =
4∑

m

D(F (B4) − F (Bm)) (2)

Ldist student = D(F (B4) − F (C1)) (3)

where Bm represents the mth hourglass of the teacher network and C1 represents
the only hourglass of the student network. D is the sum of square.

The confidence distillation requires the student network to mimic the confi-
dence map of the teacher network. Since the value of confidence map indicates
the probability that a key point of lane exists in the cell, we can treat it as a
response-based distillation hints. The confidence distillation loss is calculated as
follows:

Lconf dist student =
64∑

i=1

32∑

j=1

|Aij − Bij |2 (4)

where Aij represents the cell at column i and row j of the confidence map of the
fourth hourglass of the teacher network. Bij represents the cell at column i and
row j of the confidence map of the student network.
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3.3 Overall Supervisions for MD-PINet

The overall loss function contains four main opponents for teacher network and
five main opponents for student networks. The loss function is inspired from
YOLO [26] and modified from PINet [1]. The loss function of the teacher network
is the same as PINet, while the loss function of the student network contains
confidence loss, instance loss, offset loss, feature distillation loss and output
distillation loss.

The confidence loss aims to penalizes the prediction error for cells with and
without a lane key point simultaneously. The confidence loss is defined as follows:

Lconfidence =
1
Ne

∑

Cc∈Ge

(C∗
c − Cc)2 +

1
Nn

∑

Cc∈Gn,Cc>0.01

(C∗
c − Cc)2 (5)

where Ne indicates the number of cell that contains a traffic lane key point. Nn

indicates the number of cell without a traffic lane key point. Ge represents cells
that contain a traffic lane key point and Gn represents cells without a traffic
lane key point. Cc denotes to the predicted confidence value of each cell and
C∗ denotes the ground truth values which is 1 for key point cells and 0 for
background cells.

The instance loss is essential to cluster key points into distinct lane instances.
It is trained to make cells of the same instance have close embedding features.
The instance loss is shown below:

Linstance =
1
N2

e

Ne∑

i

Ne∑

j

l(i, j) (6)

l(i, j) =
{ |Fi − Fj |2, if Iij = 1
max(0, 1 − |Fi − Fj |2) if Iij = 0 (7)

where Fi represents the predicted feature of a cell that contains a lane key point
and Fj represents the predicted feature of cell that does not contain a lane key
point. Iij indicates whether cell i and cell j belongs to the same lane instances.
When two cells belong to the same instance, the instance loss function calculates
the difference of their features, otherwise this loss function increases their feature
difference.

The offset loss helps find the exact location of key points in the cell. The
offset losses on both the x-axis and the y-axis are calculated.

Loffset =
1
Ne

∑

Cx∈Ge

(C∗
x − Cx)2 +

1
Ne

∑

Cy∈Ge

(C∗
y − Cy)2 (8)

Since our MD-PINet is also designed to detect attributes such as color and
types, cross entropy losses for color and type are added accordingly.

The final loss function for the teacher network is:

Lteacher = 1.0 ∗ Lconfidence + 0.5 ∗ Loffset + 0.5 ∗ Linstance

+0.1 ∗ Ldist teacher + 0.5 ∗ Lcolor + 0.5 ∗ Ltype.
(9)
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The final loss function for the student network is:

Lstudent = 1.0 ∗ Lconfidence + 0.5 ∗ Loffset + 0.5 ∗ Linstance+
0.2 ∗ Ldist student + 0.05 ∗ Lconf dist student + 0.5 ∗ Lcolor + 0.5 ∗ Ltype.

(10)

We choose a larger weight for the confidence loss and smaller weights for the
distillation losses to avoid the over-fitting.

3.4 Model Verification on Car-Level Chips

Since the primary goal of our model is to perform effectively and accurately on
car-level chips, we build a lane detection verification system on TDA4. Once our
MD-PINet has finished training on GPU, it first undergoes quantization aware
training to compress model size. Then its operators and architecture are checked
for its adaptability on TDA4. Finally it would be deployed and tested on TDA4.

4 Experiments

4.1 Dataset

The dataset is recorded and labelled by our team. The structure and labels of
data are similar to CULane [9] and TuSimple [33]. Even though these public
datasets have plenty of data, attributes such as color and lane type are not
labelled. In order to fully utilize the detection capacity of our model, we collect
and label our private dataset. The total number of data is 91820 with scenarios
such as rainy, night, crowds, no lanes and cracked roads. An input image has a
resolution of 1920× 1080× 3 with key points and each pixel labelled. The type
and color of each lane are also specified.

4.2 Evaluation Metrics

A positive lane detection label is judged by its IoU with the ground true lane.
It needs a confidence score greater than 0.95 and a length longer than 5 pixels.
Once a lane is predicted, we treat it as a 25-pixel wide polygon and set it as
a positive detection if its IoU with ground truth is higher than 0.5. Then com-
mon lane detection evaluations such as precision, recall and IoU are calculated.
We also calculate the pixel error using the following equation to examine the
practicability of models:

distance error =
∑n

i=1

√
(Aix − Bix)2 + (Aiy − Biy)2

n
(11)

where Aix indicates the x value of prediction i and Biy indicates the y value of
ground truth point that is closest to Ai.
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4.3 Implementation Details

All input images are resized to 512× 256, and RGB values are normalized
between 0 and 1 before images are fed into the network. Then images are aug-
mented using flipping, shadowing and Gaussian-noise as previous works [10,11].
We use one Tesla V100 (32G) GPU to train our model. During training, each
batch contains 24 images. The learning rate is initialized as 1e-3 and updated
by the Adam optimizer. Step learning rate decay [30] and early stop are applied
to accelerate the training process. We also compress the proposed MD-PINet
by the quantization aware method. The built-in function torch.quantization [31]
can be applied to compress each parameter from 32-bit to 8-bit.

Table 1. Lane detection performance.

Method Recall Precision IoU Distance Error (pixel) Parameter (M)

PINet (4H) 0.6711 0.7592 0.7821 15.23 5.31

PINet (1H) 0.6611 0.7440 0.7259 16.28 1.42

PINet (1H no distill) 0.6421 0.7303 0.7404 18.01 1.08

MD-PINet 0.6694 0.7524 0.7621 15.52 1.42

5 Results

Three Baselines to Compare. The first baseline, PINet(4H), is the original
PINet with four hourglass modules. Then, we clip the first hourglass of the fully
trained PINet(4H) to obtain the second baseline PINet(1H). Finally, we train
a PINet with only one hourglass module without self-distillation as our last
baseline PINet(1H no distill).

Quantitative Results. Quantitative results are shown in Table 1. Compared
with the PINet(1H no distill), our MD-PINet greatly improves recall by 2.73%,
precision by 2.21%, IoU by 2.17% and drops pixel error by 2.49 with merely
0.34M more parameters. Compared with the PINet(4H), our network compresses
three quarters of parameters in compensation for barely a 0.17% drop in recall,
a 0.68% drop in precision, a 2.0% drop in IoU and a 0.29 increase in pixel error.
These results well manifest the effectiveness of our method.

Table 2. Lane attribute performance.

Method Type Color

PINet (1H with self-distillation) 0.8403 0.8441

MD-PINet (1H) 0.8494 0.8767

As information about the type an color of lanes is also vital in the autonomous
driving system, it is notable that PINet can be easily trained to detect attributes
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of the lane using the same hourglass backbone by adding new heads. The exper-
iment results in Table 2 indicates that MD-PINet can also achieve an obvious
improvement in attributes as it does in lane detection. Our MD-PINet network
remarkably improves the accuracy of lane color by 3.26% and lane type by 0.91%
(Table 3).

Table 3. Impact of quantization on MD-PINet.

Method Recall Precision IoU Distance error (pixel)

MD-PINet 0.6694 0.7524 0.7621 15.52

MD-PINet(quantized) 0.6643 0.7271 0.6772 16.51

Changes −0.0051 −0.0253 −0.0849 +0.99

Effects of Quantization. In order to be deployed on car-level chips, MD-PINet
requires quantization to compress its model size. The results in Table refquant
indicate that the effects of quantization on recall, precision and distance error
are limited. Even though the IoU score decreases by 0.0849, its influence on the
overall detection performance is negligible. Besides, we investigate the efficiency
of the MD-PINet before and after quantization. As shown in Table 4, remarkably,
quantization speeds up the post-processing time by 1.38, the inference time by
1.85 and the total time by 1.51. These results forcefully demonstrate that quanti-
zation greatly accelerates the operation speed of our network while maintaining
a satisfactory performance.

Table 4. Inference time and post-processing time.

Procedure Inference Post-processing Total

Before Quant (ms) 13.5 28.5 42.0

After Quant (ms) 7.3 20.6 27.9

Time save (ms) 6.2 7.9 14.1

Speedup 1.85 1.38 1.51

Visualization Analysis. The visualization results of MD-PINet and the origi-
nal PINet in Fig. 3 show that our model manages to detect different line instances
accurately. Both MD-PINet and PINet are able to detect lanes that are partially
covered by obstacles. In a situation when most of a lane is covered (the third
column), MD-PINet also performs extremely close to PINet(4H).
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Fig. 3. Visualize results of the ground truth (first row), the MD-PINet (second row),
and the original PINet (last row).

6 Conclusion

In this work, we propose MD-PINet, an efficient and effective lane detection
method that is able to be deployed on car-level chips. We successfully trans-
fer knowledge from a large and powerful teacher network to a small and weak
student network by combining hint feature distillation and confidence map dis-
tillation. With the help of quantization aware training, we manage to deploy
our model on TDA4 under strict memory and operator restrictions, achieving
a sufficient detection speed. Experiment results show that our MD-PINet can
consistently surpass the baseline model in terms of both the detection result and
the inference speed, well demonstrating its effectiveness and possibility of being
broadly deployed on large-scale business autonomous vehicles.
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Abstract. So far, the number of individuals with Tic disorder worldwide has
reached 59 million, and the prevalence of the disorder is rapidly increasing glob-
ally. In thiswork,we focus onweakly supervised learningmethods for recognizing
childhood tic disorders. In situations with limited data availability, we design a rel-
ative probability metric based on the characteristics of the data and a multi-phase
learning algorithm is proposed based on relative probability in order to efficiently
utilize coarse-labeled data in a “from easy to difficult” manner. Furthermore, the
effectiveness of our method is validated through ablation experiments. Through
extensive experiments on the test dataset, we demonstrate that our method behaves
extraordinarily compared to baseline approaches, improving AUC by 3.0%, and
facilitating expedited diagnostic assessment for medical practitioners.

Keywords: tic disorders · facial data processing · weakly supervised learning

1 Introduction

Tic disorder [1, 2] is a motor or vocal muscle spasm characterized by symptoms such
as frequent eye blinking, head jerking, facial distortions, repetitive coughing, and throat
clearing. Diagnosing Tic disorder in clinical settings is typically a complex process,
further complicated by the fact that the majority of affected individuals are children,
who often have low cooperation, leading to diagnostic challenges. Research [10, 11]
has primarily focused on pathology and clinical aspects over the past few decades, with
limited studies on the identification and detection of tic disorder symptoms in patients.

In recent years, machine learning has been widely applied to medical problems, par-
ticularly in the areas of disease diagnosis and classification. Some studies have employed
video-based action recognition to diagnose diseases. Themainstream approach for video
action recognition is based on Convolutional Neural Networks (CNNs) [3, 5]. One pop-
ular approach is the two-stream architecture [16–18]. Another approach is the use of
3D CNNs [19–24] that can directly capture spatiotemporal information from video
sequences. Furthermore, attention mechanisms [4] allow the model to allocate more
attention to relevant parts of the video, improving both accuracy and efficiency. These
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networks above need fully-supervised data but for the problem of recognizing tic dis-
order, data annotation requires professional doctors, which incurs high manpower costs
and poses challenges in annotation. Moreover, our available labeled data is limited.
Therefore, the fully supervised methods are not suitable for our research problem.

(a)

(b)

Fig. 1. Frameworks of one-phase training (a) and our multi-phase training method (b).

Weakly supervised learning [25–36] (WSL) is the method to solve this issue, which
aims at improving the performance ofmodels by exploitingmany unlabeled data. Among
various techniques in weakly supervised learning, pseudo-labeling methods have gained
significant attention due to their effectiveness in leveraging unlabeled data. Pseudo-
labeling is a technique that assigns labels to unlabeled data based on the predictions of a
trained model. These assigned labels are considered “pseudo-labels” and are then used
to augment the training set for further model refinement. Typically, a one-phase learning
scheme in Fig. 1(a) is adopted.

However, it is insufficient for knowledge excavation to exploit the unlabeled data only
once, so multi-phase learning comes out further enhances the performance of weakly
supervised learningmethods.Multi-phase learning, divides the weakly supervised learn-
ing process into multiple stages, each with a specific objective or set of labeled and unla-
beled data. In each phase, the model is trained and pseudo-labels are generated based
on the current phase’s predictions. These pseudo-labels are then used as training data
for the next stage, enabling the model to learn progressively and capture more complex
patterns over successive stages.
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But issues arise as a result of these methods. Firstly, As the model is trained with
these pseudo-labels, it becomes biased towards making predictions that align with the
labels generated in the previous phase, in which way, increasing the number of phases
becomes meaningless for model performance improvement. Moreover, if the pseudo-
labels are noisy or incorrect, the model’s predictions may be influenced by these errors
and hinder further learning progress, leading to degraded performance. Secondly, the
method to generate pseudo-labels plays a crucial role. Common methods for generating
pseudo-labels include thresholding and Top-K selection. However, challenges remain in
selecting appropriate thresholds or K values and handling noisy or uncertain samples.

To address these problems, we design a metric called “relative probability” (RPr)
based on the characteristics of the annotations.We not only use this metric for generating
pseudo-labels but also involve it inmulti-phase training tomeasure the learning difficulty
of positive samples. An RPr-guided method is proposed, and during the multi-phase
learning process, the RPr threshold decreases by phase so that easy samples can be
selected in early phases. This multi-phase learning with thresholds decrease strategy
(MPLTD) allows the model to initially learn from easy or simple data to enhance its
performance, and subsequently, in later phases, tackle more challenging or difficult data
(see Fig. 1(b)). The main contributions of this paper can be summarized as follows:

• We propose a facial data processing and dimensionality reduction method. In the case
of limited data, this dimensionality reduction method reduces the training time and
training difficulty of the model while achieving better accuracy.

• We design a relative probability metric that balances the accuracy of pseudo-label
generation and the number of positive samples obtained. It effectively improves the
learning performance of the model on coarsely labeled data.

• We propose a multi-phase learning process that implements a “from easy to hard”
weakly supervised learning approach. This method is relatively universal and
applicable.

2 Related Work

Tic disorder diagnosis has no great progress made in this area until the 2010s. In 2010,
Bernabei et al. [10] conducted a study using wearable devices with accelerometers to
detect twitching movements in the limbs and trunks of Tourette syndrome patients,
achieving an accuracy of 80.5%. In 2016, Shute et al. [11] conducted research based
on brain electrical stimulation and observed low-frequency central medial-prefrontal
(CM-PF) activity to detect tic symptoms in patients.

Facial landmark detection is the process of automatically locating and identifying key
points or landmarks on a human face. Cootes et al. [12] proposed the Active Appearance
Models (AAM) which model the shape and texture of the face as random variables and
estimate them through optimization methods, thus achieving facial landmark detection.
Kazemi et al. [13] introduced a fast and accurate method for facial landmark detection
based on ensemble models of regression trees, enabling rapid detection of facial land-
marks. In 2015, Yang et al. [14] proposed a cascaded regression approach for robust
facial landmark tracking. This method progressively improves the localization accuracy
of facial landmarks by training a series of regressors in a cascade. Bulat et al. [15]
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provided a review of 2D and 3D facial landmark detection problems and presented a
large-scale 3D facial landmark dataset.

Weakly supervised learning focuses on developing algorithms and techniques to
address the challenges of training machine learning models with limited or noisy super-
vision. The most important line of research in WSL explores methods for generat-
ing pseudo-labels [31, 33], which are inferred labels assigned to unlabeled data based
on some heuristics or assumptions. These pseudo-labels are used to train the model
in a semi-supervised [32–36] or self-supervised manner. Many works are devoted to
semi-supervised these years, such as self-training, label propagation [29], and so on.

3 Method

In this section, we first define the problem of tic disorder recognition and classification.
To address privacy concerns, we employ dimensionality reduction techniques to convert
facial images into facial landmark points, thus preserving the privacy of the patients.
Firstly, we train an initial model with fully labeled data. Then we use this model to
generate pseudo-labels for the coarse labeled data, selecting reliable positive samples to
be added to the training set. We retrain the model and repeat this process iteratively. In
the pseudo-label generation step, we introduce the concept of relative probability, which
ensures that the selected positive samples exhibit similar features to the most prominent
movements in the long segments. For the iterative part, we propose amethod to gradually
decrease the threshold value so that the model initially learns from simple samples to
improve accuracy and then focuses on difficult samples to enhance generalization.

3.1 Data Description

We collected a total of 129 videos from children with tic disorders. Based on the level
of annotation detail, we divided all the videos into two categories: fully labeled videos
(42 videos) and coarsely labeled videos (87 videos). The fully labeled videos consist of
short segments, where each annotated segment has a length of 2 s. On the other hand,
the coarsely labeled videos consist of long segments, where each segment has a length
ranging from 3 to 10 s.

3.2 Tic Disorder Recognition Problem Definition

Let ℵ be the set of all videos, where each video X ∈ ℵ consists of several short seg-
ments x1, x2, x3, ..., xN ∈ X . Each short segment xi is composed of several frames
a1, a2, a3, ..., aN ∈ xi (usually 48 frames). Each frame ai is the basic unit of our data
processing, but not the basic unit for model prediction and tic recognition. The smallest
unit of tics is the short segment xi. In a video, each short segment can be one of the
following: eye tic, mouth tic, nose tic, or normal. Among them, the first three can occur
simultaneously, while the normal class can only occur alone.
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We define the tic recognition task to determine whether a short segment x is a
tic segment. In this task, we combine the tics in the eye, mouth, and nose regions as
the positive class for binary classification, while the normal segments are the negative
class. For convenience, we refer to it as “face binary classification” in the subsequent
tables. Additionally, we define three tic disorder classification tasks to differentiate the
tic regions. In each task, the tic region of interest is considered the positive class, while
normal segments are the negative class. For example, in the eye tic disorder classification
task, the positive class is eye tics, and the negative class is normal actions.

In summary, we define four binary classification tasks, where the positive and nega-
tive class samples are composed of multiple short segments. The labels for these samples
are yi ∈ {0, 1}, where 0 represents the negative class and 1 represents the positive class.
Our goal is to achieve high classification accuracy (ACC) and area under the ROC curve
(AUC) for these tasks.

3.3 Feature Extraction in Facial Data

In the context of limited data, to enhance the generalization of the algorithm, we perform
feature point extraction, facial segmentation, and face alignment on each frame of the
video segments. The overall process is inAlgorithm1 and visualized results are presented
in Fig. 2.

Specifically, in step 3 of the algorithm, the method for calculating the rotation
matrix is as follows: first, calculate the center coordinates of the left and right eyes
(centerX , centerY ). Then calculate the angle between the line connecting the left and
right eyes and the horizontal line. This angle represents the rotation angle θ . Finally, we
can calculate the rotation matrixM as follows:

M =
⎡
⎣
cos θ − sin θ (1 − cos θ) × centerX + sin θ × centerY
sin θ cos θ (1 − cos θ) × centerY − sin θ × centerX
0 0 1

⎤
⎦ (1)

By utilizing the rotation matrix M , we can transform the coordinates of any point
(x, y) in the original image into the coordinates (x′, y′) of the corresponding point in the
new image. The transformation relationship between them is given by:

⎡
⎣
x′
y′
1

⎤
⎦ = M ·

⎡
⎣
x
y
1

⎤
⎦ (2)
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Algorithm 1 Facial Landmark Alignment

Input: 
Single frame

Output: 
Aligned single frame with facial landmark coordinates

1. Apply a face detector to detect facial landmark.

in the video.

3. Calculate the rotation matrix based on the coordinates of the left and right eyes.

4. Perform an affine transformation on the image to obtain the rotation-aligned image 

and its corresponding landmark.

Fig. 2. Face alignment algorithmflow.Ourmethod ultimately compresses the (1080, 1920) image
into a facial landmark sequence of size (68, 2).

3.4 Relative Probability Guided Multi-phase Learning

Relative Probability (RPr). To proceed with our method, we propose the concept of
Relative Probability. For each long segment, where PRcut is our defined relative proba-
bility indicator, it represents the model’s confidence in predicting the current segment.
PRmax is the maximum value of confidence scores among all short segments cut in the
long segment, andPRmin is theminimum.The calculation formula for relative probability
is as follows:

PRrelative = PRcut − PRmin

PRmax − PRmin
(3)

Two thresholds thsd1 and thsd2 are set in advance and a short segment is marked as
a positive sample in the following condition:

PRrelative > thsd1&&PRcut > thsd2 (4)

Through this approach, we effectively exploit the prior information inherent in the
coarse annotations, assuming that the short segment with the highest confidence score
corresponds to the most salient movement within the given long segment. Considering
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the inherent similarity of movement patterns within each long segment, our objective is
to select positive samples that not only surpass the confidence threshold but also exhibit
a high degree of resemblance to the most prominent movement feature present in the
segment. This strategic selection process aims to mitigate the risk of false positives,
thereby enhancing the reliability and precision of our approach.

Fig. 3. Relative Probability guided multi-phase learning flowchart

Multi-phase Learning with Thresholds Decrease. Although we have introduced
the concept of relative probability to improve the accuracy of generating pseudo-labels, it
is inevitable that erroneous pseudo-label noisemay still occur, potentiallymisleading the
model during training.Additionally, the integration of rough labeled data into the training
set requires careful consideration of techniques and strategies. If we simply incorporate
all positively labeled samples into the training set, in the subsequent iterations, themodel
may tend to assign high confidence scores to these selected positive samples, resulting in
pseudo-labels that are nearly identical to those of the previous round. Consequently, this
iterative process can become stagnant, hindering any improvement in model accuracy.

Considering these problems, we propose a multi-phase learning algorithm with a
threshold decrease. The overall process is shown in Algorithm 2.

We have designed multiple expressions to update the threshold with respect to the
number of phases and we discover that the easiest and most effective method is a linear
decay strategy (see Eq. (5)). And after sufficient experiments, we find that when step1 =
step2 = 0.05 and thresholds stop decreasing in 4th phase, the proposed method get the
best result.

thsdi = thsdi − stepi i = 1, 2 (5)
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Algorithm 2 Multi-phase learning with threshold decrease

Input: 
Video data (including coarse and fine annotations), the number of training phases N

Output: 
Trained model

Training:
For j=0; j<=N; j++ do
1. Train the model on the training set (initially fully labeled) until convergence, and 

record the model's accuracy.

2. Perform inference on all coarse annotated data using the model.

3. Apply equation (4) to generate pseudo-labels based on the current thresholds.

4. Incorporate all selected positive samples that are not already in the training set.

5. Decrease the thresholds by equation (5).

End for
Testing:

Feed the test dataset into the trained model to obtain test results.

Fig. 4. The architecture of our classification network

As for the classification network in Fig. 1 and Fig. 3, we find that Long Short-Term
Memory (LSTM) networks can capture the temporalmotion features of facial landmarks,
leading to superior classification performance.

4 Experiments

In this section, we train our models on our train dataset (which contains 2436 short
segments) and coarse labeled data (87 videos). We evaluate the proposed method on
our independent test dataset (which contains 833 short segments). For the methods
that use the sequence of facial landmark points as input, we calculate the displacement
between consecutive frames, resulting in a sequenceof displacement vectors representing
the motion of facial landmarks. For the methods that use original images as input, we
perform facial segmentation to isolate the face region and apply grayscale normalization
to enhance the consistency of the input data. All models are trained in RTX 3090.
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4.1 Comparisons to Existing Methods

To the best of our knowledge, the field of tic disorder recognition lacks publicly available
datasets, and there is a scarcity of relevant research with no established state-of-the-art
(SOTA) method. Considering this, we conduct experiments using ResNet-3D and I3D,
which are widely adopted methods in the domain of action recognition. We employ
these models to tackle the task of movement disorder recognition, aiming to assess
their performance and suitability. Considering the limited amount of data, we encounter
challenges in evaluating transformer-based methods. For our facial feature extraction
and privacy preservation method, which generates facial landmark points as input, we
explore the performance of traditional machine learning methods.

As shown in Table 1, after face alignment, our method achieves an average AUC
of 95.1%, 1.9% higher than ResNet-3D. The methods that use original images as input
behavepoorly even though theyhavemuchmoreparameters. I believe that the insufficient
trainingdata is oneof the reasons.Additionally, simpleLSTMorMLPmodels are already
sufficient to capture the features of tic behaviors and our facial feature extraction method
not only preserves privacy but also leads to better classification results.

Table 1. Our facial feature extraction and multi-phase learning based LSTM method vs. current
method for video action detection. The numbers in the table represent AUC (%).

method face eye mouth nose avg

ResNet-3D 94.7 92.9 93.1 92.0 93.2

I3D 92.6 88.5 87.9 88.6 89.4

MLP 95.0 93.4 93.2 90.9 93.1

MLP w/o alignment 93.3 92.0 92.5 90.1 92.0

RF [7, 8] 89.1 88.3 86.6 86.9 87.7

RF w/o alignment 88.0 88.1 85.6 86.7 87.1

LSTM (ours) 97.0 96.2 93.5 93.8 95.1

LSTM w/o alignment 95.7 94.9 92.9 92.8 94.1

For our best method LSTM in Table 1, we conduct complete experiment and find
that while other methods may have higher AUC in the first phase, our method gradually
surpasses them in subsequent stages and converges around four phases, demonstrating
clear advantages compared to one-phase methods (Fig. 5).
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Fig. 5. AUC’s change curve with phase on four binary classification tasks. From left to right,
they are: face, eyes, mouth, nose. Baseline refers to the one-phase method with Top2 selection.
One-phase changes Top2 selection into RPr selection.

4.2 Ablation Study

In this subsection, we evaluate the effect of proposed RPr selection and MPLTD
algorithm. We conduct our experiment on ResNet-3D and LSTM. The results are in
Table 2.

For LSTM, our RPr and MPLTD methods achieve the average AUC of 95.1%, out-
performing baseline by 3%. For ResNet-3D, our method achieves the average AUC of
93.2%, 4.2%higher than baseline.Moreover,we discover that bothRPr andMLTDmeth-
ods lead to a significant increase in AUC. Through these proposed methods, we leverage
both coarse-labeled and fine-labeled data in a comprehensivemanner and achieve amore
robust and effective training process for our model.

Table 2. Quantitive evaluation of our proposed method RPr and MLTD. The effectiveness is
tested both in LSTM and ResNet-3D.

model RPr MPLTD avg. AUC (%)

LSTM 92.1√
94.3√
93.9

√ √
95.1

ResNet-3D 89.0√
90.5√
92.1

√ √
93.2
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5 Conclusion

In this work, we proposed a framework for facial feature extraction, suitable for weakly
supervised learningwith a limited amount of data and privacy preservation. Furthermore,
based on the characteristics of our data, we introduced the concept of relative probability
(RPr) and developed amulti-phase learningwith threshold decrease (MPLTD) algorithm,
achieving higher AUC than baseline. At last, we conducted ablation experiments to
validate the effectiveness of each algorithm and achieved an ideal result. Our high-
accuracy model not only assists doctors in diagnosis but also has the potential to be
applied throughout the entire treatment process. It can be used to monitor and analyze
the recovery and treatment progress of patients, providing guidance on medication and
treatment approaches. In the future, we will continue to explore the tic disorder in limbs
and address the multi-modal problem incorporating speech input.
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Abstract. Detecting software vulnerabilities is a crucial part of software
security. At present, the most commonly used methods are to train super-
vised classification or regression models from the source code to detect
vulnerabilities, which require lots of high-quality labeled vulnerabilities.
However, high-quality labeled vulnerabilities are not easy to be obtained
in practical applications. To alleviate this problem, we present an effec-
tive and unsupervised method to detect software vulnerabilities. We first
propose a new source code representation that maintains both the source
code’s natural language information and high-level programming logic
information, and then we effectively embed the software function into a
compact and low-dimensional representation based on hierarchical graph
attention network. Finally, we obtain vulnerabilities by applying an out-
lier detection algorithm on the low-dimensional representation. We carry
out extensive experiments on six datasets and the effectiveness of our
proposed method is demonstrated by the experimental results.

Keywords: Vulnerability detection · Source code representation ·
Hierarchical graph attention network · Outlier detection

1 Introduction

The software vulnerabilities, which might be exploited by attackers and bring
about significant financial and social damage, are crucial for software security.
Since quantity of software vulnerabilities is rising quickly, detecting software vul-
nerabilities has been studied by many researchers [1]. One of the successful vul-
nerability detection methods is to design features manually and apply machine
learning techniques to detect vulnerabilities [2–4]. However, this method requires
domain specialists and is often laborious.

Since deep learning achieves outstanding performances at dealing with big
data and can automatically learn features from raw data, vulnerability detection
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methods based on deep learning have attracted much attention lately [5]. Among
these works, most are treat source code as natural languages [6–8]. Compared
to natural languages, source code is actually more logical and structured. When
source code is treated as natural languages, it is quite difficult to learn entire
program structural information, which effects the effectiveness of vulnerability
detection results [9]. Thus, some researchers treat source code as graphs and
use Graph Neural Network to detect vulnerabilities [10–12]. Typically, to deter-
mine whether there are any vulnerabilities in the testing software functions, the
process involves creating graphs from the source code and training classifiers.
Although these methods can effectively detect vulnerable software functions,
there are three problems need to be concerned: (1) in practical applications, the
functions’vulnerable labels are not easily obtained, (2) how to create a represen-
tation of source code that maintains its structural and semantical information,
and (3) how to train a graph neural network to learn effective features from the
representation of the source code.

To address these concerns, in this study, we present a novel approach for
detecting software vulnerabilities. For the first problem, we detect vulnerable
functions in an unsupervised way which increases the practical use of the method
by eliminating the need for users to provide the labeled vulnerable functions for
model training. For the second problem, we propose an effective source code rep-
resentation method to turn the source code into a token graph, where the tokens’
vectors are generated by a pretraining language model BERT that preserves the
natural language information of the code [13] and edges are constructed by con-
catenating the Program Dependence Graph (PDG), the Control Flow Graph
(CFG) and the Abstract Syntax Tree (AST) to preserve the structural informa-
tion of the code. For the last issue, we design a Hierarchical Graph Attention
Network (HGAT) consisting of a token-level and a function-level GAT to extract
software function features from the heterogeneous graph, which could be effec-
tively trained with deep autoencoder [14].

We test the proposed approach on six real-world datasets by comparing it
with three vulnerability detectors FlawFinder, Rats and Joern. As a result, our
proposed method performs better than other approaches across all datasets,
and our method’s average improvements on F1 score are 11%, 75% and 80%,
respectively. The following is a summary of our primary contributions:

– We propose a new and effective source code representation method to trans-
form the source code into a token graph, which could maintain the source
code’s natural language and structural information.

– We design a hierarchical graph attention network to learn the useful software
function features from the heterogeneous graph. Besides, by considering the
dependency relations among functions and the use of vulnerable related APIs,
we further improve the effectiveness of our detection results.

– We implement the proposed method and assess its effectiveness using datasets
from C/C++ program. The outcomes demonstrate that our method outper-
forms other comparison vulnerability detectors.
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The remainder parts are organized as follows: We present relevant work in Sect. 2.
The mechanism of our proposed method is discussed in Sect. 3. Section 4 displays
the specific experimental configurations and outcomes. After that, Sect. 5 dis-
cusses the conclusions and the future work.

2 Related Work

The effectiveness of deep learning has motivated academics to use it in more
automated ways to detect vulnerabilities in source code [6–8]. The research that
investigates the potential of natural language processing approaches in vulnera-
bility detection, typically takes source code as flat sequences of natural language.
For example, [6] presents a detection approach utilizing text mining and a deep
neural network with self-attention, and [15] builts BLSTM model for vulner-
ability detection. In order to overcome the constraints of the aforementioned
models on expressing the source code’s structure and semantic information, sev-
eral studies have tried to investigate more structural neural networks to detect
software vulnerability [9–12]. [9] constructed a composite code graph based on
ASTs and used the Conv module in gated graph neural network model to detect
vulnerable functions. [10] defined a new code representation called Slice Property
Graph (SPG) and offered a model called VulSPG to find potential vulnerability
in SPG.

Different from these works, we detect software vulnerability in an unsuper-
vised way. We construct a novel comprehensive source code representation by
employing pretraining language model BERT and integrating the AST, CFG
and PDG, then we build a hierarchical graph attention network to learn features
of software functions from the source code representation. Besides, considering
that a function is more likely to be vulnerable when calling another vulnerable
function or vulnerable related APIs [16], our work extracts the call relations as
dependency relations among functions when constructing the function graph,
and assigns the weight of the tokens in vulnerable related APIs when training
the hierarchical graph attention network, which further improve the effectiveness
of our detection results.

3 Methodology

In this paper, we aim to detect function level vulnerabilities in source code.
Given a function set F = {f1, ..., fm} (m is the number of functions), our task
is to determine whether a given function fi ∈ F is vulnerable or not. Figure 1
demonstrates our method’s framework. There are three phases in it: (1) source
code representation to transform source code into a token graph, (2) hierarchical
graph attention network consisting of a token-level GAT and a function-level
GAT to extract function features, and (3) outlier detection module to obtain
vulnerable functions in an unsupervised way. We next describe our method in
details.
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Fig. 1. Framework of our software vulnerability detection method

3.1 Source Code Representation

This subsection introduces how to transform source code into a token graph by
code token embedding and code token relation extracting.

We employ a powerful pretraining language BERT to obtain the code token
embedding T v since BERT can acquire appropriate initialization for downstream
tasks and has demonstrated impressive performance in numerous NLP tasks [17].
We construct the token graph by concatenating the AST, CFG and PDG of the
source code, where the CFG explicitly describes the sequence of code statements
and the requisite conditions for the execution of a particular path, the PDG
explicitly represents dependencies among statements and predicates, and the
AST faithfully expresses the organization of the statements and expressions [18].
By concatenating the AST, CFG and PDG, We maintain the code’s structural
information. Figure 2 demonstrates how the token graph is built.

Fig. 2. The construction of the token graph

3.2 Hierarchical Graph Attention Network (HGAT)

Graph attention network is a network architecture that can aggregate the rep-
resentations of the nearby nodes and operates on graph-structured data [19]. To
detect the vulnerable software functions, we have to obtain the features of soft-
ware functions. Thus, in this subsection, we design a hierarchical graph attention
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network to extract software function features from the heterogeneous graph. The
HGAT includes a token-level GAT and a function-level GAT, where the token-
level GAT is to obtain token features by aggregating the representations of the
neighborhood tokens and the function-level GAT is to obtain the function fea-
tures. The architecture of HGAT is shown in Fig. 3.

Fig. 3. The architecture of hierarchical graph attention network

Token-Level Graph Attention Network. Token features can be learned
with Token-level graph attention network. The input is a set of token edges T e

and a set of token embedding T v = {t1, ..., tn}, where n refers to the quantity
of tokens, t i ∈ Rd refers to the embedding of ith token. The output is T ′

v =
{t ′

1, ..., t
′
n}, t ′

i ∈ Rd′
, where d′ refers to the new feature length of tokens. The

attention weight aij is calculated as Eq. (1),

αij =
exp(LeakyReLU(aT [W × t i||W × tj ]))∑

r∈Ni

exp(LeakyReLU(aT [W × t i||W × tr]))
(1)

where W refers to the weight matrix, a refers to the weight vector, and
LeakyReLU is used as the activation function inspired by [19]. The ith token
feature t ′

i is calculated by Eq. (2),

t ′
i = σ(

∑

j∈Ni

αijW × tj) (2)

where σ refers to the activation function.

Function-Level Graph Attention Network. Function-level graph attention
network is used to learn function features. The input is a set of edges of functions
F e and a set of function embedding F v = {f 1, ..., f m}, f i ∈ Rd′

, where m refers
to the functions’number and d′ refers to the functions’feature length. The output
is F ′

v = {f ′
1, ..., f

′
m}, f ′

i ∈ Rd′′
, where d′′ refers to the new feature length of

functions.



118 W. Xu et al.

We adopt the algorithm from [20] to build a directed function dependency
graph as the relations among functions. We use G = (F,E) describes the directed
function dependency graph, where F refers to the function set and E refers to the
edge set [20]. We employ mean pooling to obtain function embedding from the
token features. Considering that the functions are more likely to be vulnerable
when calling the related vulnerable APIs, we add the weight of the token which
belongs to the vulnerable related APIs. The formula is as follows,

f i =
1

|fi|
∑

tj∈fi

t ′
j · wj (3)

where t ′
j is the jth token feature, and wj is the vulnerable related API weight

for the jth token.
Similar to the token-level GAT, the attention weight α′

ij in the function-level
GAT is calculated as Eq. (4),

α′
ij =

exp(LeakyReLU(aT
1 [W1 × f i||W1 × f j ]))∑

r∈Ni

exp(LeakyReLU(aT
1 [W1 × f i||W1 × f r]))

(4)

where W1 refers to the weight matrix and a1 refers to the weight vector. The
output of the ith function feature f ′

i is calculated by Eq. (5),

f ′
i = σ(

∑

j∈Ni

α′
ijW1 × f j) (5)

where σ refers to the activation function.

Training the Hierarchical Graph Attention Network. A deep autoen-
coder is a dimensionality reduction neural network that minimizes reconstruc-
tion error to learn an efficient and compact representation for given input [21].
We adopt autoencoder to train the hierarchical graph attention network in an
unsupervised way. An encoder function h = encoder(F ′

v) and a decoder function
F ′′

v = decoder(h) are fundamental components of deep autoencoder. The train-
ing process is to minimize a Mean Square Error (MSE) loss function L(F ′

v,F
′′
v),

which can be defined as Eq. 6,

L(F ′
v,F

′′
v) =

m∑

i=1

||f ′
i − f ′′

i ||2 (6)

where f ′
i ∈ F ′

v and f ′′
i ∈ F ′′

v .

3.3 Vulnerability Detection

Local Outlier Factor (LOF) are used as the outlier detection method to predict
vulnerable functions. For an object x, the LOF score indicates how far x is from
the surrounding neighborhood, expressed by Eq. 7 [22]:
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LOFk(x) =
1

| Lk(x) |
∑

y∈Lk(x)

Ak(x)
Ak(y)

(7)

where k refers to the quantity of closest neighbors, Lk(x) refers to the points of
x’s k-nearest neighbors and Ak(x) refers to the average reachability distances
of x and Lk(x). In this paper, each function’s LOF score is calculated, and the
functions with the greatest LOF scores are selected as vulnerable.

The proposed method’s specific steps are displayed in Algorithm 1. Since the
time complexity of HGAT and autoencoder is not affected by the amount of
the input data, and the time complexity of constructing FDDG and LOF are
O(m2l) and O(m2), respectively. Accordingly, our method’s time complexity is
O(m2l), where m refers to the quantity of functions and l refers to the quantity
of dependency functions in each function.

Algorithm 1. USVD
Input: the set of function files F , the k closest neighbors in LOF .
Output: the set of detected vulnerable functions O

1: Tv ← generating token embedding by BERT
2: Te ← generating token dependency graph based on AST, CFG and PDG
3: training token-level GAT(Tv, Te) with MSE loss
4: T ′

v ← extracting token features from GAT(Tv,Te) by equation 1 and 2
5: Fv ← generating function embedding by pooling token features T ′

v

6: Fe ← generating function dependency graph by FDDG
7: training function-level GAT(Fv,Fe) with MSE loss
8: F ′

v ← extracting function features from GAT(Fv,Fe) by equation 4 and 5
9: O ← detecting vulnerable functions by LOFk on F ′

v

10: return O

4 Experimental Study

This part is dedicated to evaluating the performance of the proposed approach
in detecting software functions that are vulnerable. We carry out three series
of tests to evaluate: (1) the effectiveness of the method proposed in our study,
(2) the impacts of the source code representations for the detection results, and
(3) the impacts of the dependency features and vulnerable related APIs for the
detection results.

4.1 Experimental Settings

Datasets. We test our method with datasets from (1) Software Assurance Ref-
erence Dataset (SARD) [23], which has numerous production, synthesis, and
scholarly functions that are known to be vulnerable, (2) three real-world open-
source projects including Chrome [24], FFMPeg [9] and Qemu [9], and (3) the
U.S. government’s repository for data on vulnerability management based on
standards NVD [25]. Table 1 provides an overview of the datasets’ statistics.
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Table 1. The statistics for the dataset

Datasets Functions Vul Functions Non-Vul Functions Vul rate

SARDC 9,052 2,578 6,474 28%
SARDC++ 8,745 2,812 5,933 32%
Chrome 3,579 294 3,285 8%
FFMPeg 5,632 969 4,663 17%
Qemu 10,653 1,933 8,720 18%
NVD 1,146 206 940 18%

Comparison Methods. Three relevant methods are compared to our method:
(1) FF (FlawFinder), a simple yet efficient and rapid source code scanning tool
for C/C++ program, which flags calls relevant to typical vulnerable library
functions [26], (2) Rats, a tool that scans source code in C, C++, Perl, PHP,
and Python to identify common security-related programming mistakes [27],
and (3) Joern, a helpful tool for discovering vulnerabilities through statically
analysis [28].

Metrics for Evaluation. We assess the effectiveness of our approach using
three commonly used measures: (1) Precision, the ratio of functions that are
properly identified as vulnerable to those flagged as vulnerable, (2) Recall, the
percentage of vulnerable functions that were appropriately identified relative to
all vulnerable functions, and (3) F1, the precision and recall harmonic mean,
which evaluates the entire impact by taking both into account.

Implementation. We used a hierarchical graph attention network to imple-
ment our approach to detect vulnerable functions. All trials were carried out
on computers running 64-bit Windows 11 professional system, equipped with
an AMD R9 16-Core 3.40GHz CPU, an Nvidia RTX4090 GPU, and 128GB of
RAM.

4.2 Experimental Results

(I) Effectiveness of Our Method. We compared our suggested method’s
effectiveness with FF, Rats, and Joern in the first round of testing. The outcomes
are displayed in Table 2. According to the results, our method performs better
than other methods on all datasets. Across all datasets, our approach yields the
highest F1 and raises F1 by (2%, 4%, 5%, 38%, 10%, 5%), (29%, 48%, 40%, 202%,
72%, 59%) and (129%, 245%, 5%, 1%, 26%, 72%) over FF, Rats and Joern on
(SARDC, SARDC++,Chrome, FFMPeg, Qemu, NVD), respectively. Moreover, our method
also has the highest precision and recall compared with other methods on almost
all datasets. It needs to mention that users do not need to provide the labeled
vulnerabilities for training in our method. This demonstrates the effectiveness
of our proposed approach.
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Table 2. The performance of different unsupervised approaches

Method SARDC SARDC++ Chrome
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

FF 36.58 56.87 44.52 44.90 49.00 46.86 13.26 12.59 12.91
Rats 33.86 36.81 35.27 37.68 29.41 33.03 15.11 07.14 09.70
Joern 41.57 13.11 19.94 35.17 08.85 14.15 11.99 13.95 12.89
Our 37.57 58.03 45.61 46.80 50.92 48.77 12.92 14.29 13.57

Method FFMPeg Qemu NVD
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

FF 17.37 18.37 17.85 20.36 11.17 14.43 20.30 26.70 23.06
Rats 14.71 05.68 08.19 17.88 06.21 09.22 20.33 12.14 15.20
Joern 19.55 32.30 24.36 17.91 09.67 12.56 18.85 11.17 14.02
Our 19.90 32.61 24.72 22.25 12.29 15.84 21.09 28.16 24.12

(II) Impacts of Source Code Representations. In the following set of
experiments, we assessed the effects of different kinds of source code representa-
tions. We compare our source code representation with the AST, CFG and PDG.
The outcomes are displayed in Table 3. According to the results, our source code
representation provides better precision, recall and F1 score compared to the
AST, CFG and PDG. Additionally, our method improves F1 score by (16%,
12%, 44%, 7%, 5%, 7%), (9%, 22%, 61%, 10%, 8%, 9%) and (9%, 6%, 67%, 5%,
1%, 18%) over AST, CFG and PDG on (SARDC, SARDC++,Chrome, FFMPeg, Qemu,
NVD), respectively.

Table 3. Comparison with other source code representations

Method SARDC SARDC++ Chrome
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

AST 32.32 49.92 39.24 41.67 45.34 43.43 09.01 09.86 09.42
CFG 34.48 53.26 41.86 38.40 41.67 39.97 08.07 08.84 08.44
PDG 34.58 53.41 41.98 44.02 47.90 45.88 07.76 08.50 08.12
Our 37.57 58.03 45.61 46.80 50.92 48.77 12.92 14.29 13.57

Method FFMPeg Qemu NVD
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

AST 18.51 30.34 23.00 21.22 11.72 15.10 19.64 26.21 22.45
CFG 18.14 29.72 22.53 20.56 11.36 14.63 19.27 25.73 22.04
PDG 18.89 30.96 23.46 21.97 12.14 15.64 17.82 23.79 20.37
Our 19.90 32.61 24.72 22.25 12.29 15.84 21.09 28.16 24.12
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(III) Impacts of the Function Dependency Features and the Vulnera-
ble Related APIs. In the third round of experiments, we assessed the impact
of the function dependency features and vulnerable related APIs. In order to
have a more comprehensive understanding of incorporating with the function
dependency features and the vulnerable related APIs, we compare our method
with the method without the function dependency features (denoted as NDF)
and without vulnerable related APIs (denoted as NAPIs). The outcomes are
displayed in Table 4. According to the results, our method improves precision,
recall and F1 score when incorporating the function dependency features and the
vulnerable related APIs. Additionally, our method improves F1 score by (15%,
20%, 62%, 10%, 7%, 26%) and (28%, 38%, 14%, 2%, 18%, 12%) over NDF and
NAPIs on (SARDC, SARDC++, FFMPeg, Qemu, NVD) respectively.

Table 4. Comparison with NDF and NAPIs

Method SARDC SARDC++ Chrome
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

NDF 32.80 50.66 39.82 38.92 42.35 40.57 08.00 08.84 08.40
NAPIs 29.36 45.35 35.64 34.02 37.02 35.46 11.38 12.52 11.95
Our 37.57 58.03 45.61 46.80 50.92 48.77 12.92 14.29 13.57

Method FFMPeg Qemu NVD
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

NDF 18.07 29.62 22.45 20.75 11.46 14.77 16.73 22.33 19.13
NAPIs 19.58 32.09 24.33 18.87 10.43 13.34 18.91 25.24 21.62
Our 19.90 32.61 24.72 22.25 12.29 15.84 21.09 28.16 24.12

Summary. Based on the results of experimentation, the following is discovered:
(1) The method we proposed outperforms the existing unsupervised vulnerability
detection methods across all datasets. Actually, the average improvements of our
method in terms of F1 are 11%, 75% and 80% compared with FF, Rats and Joern,
and (2) using combination of AST, CFG and PDG as source code representation
enhances the effectiveness of our proposed method. Moreover, incorporating the
function dependency features and the vulnerable related APIs also enhances the
effectiveness of our proposed method.

5 Conclusion and Future Work

This research provides a novel unsupervised software vulnerability detection
method using hierarchical graph attention network. We present a new source
code representation and design a HGAT to extract function features from the
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source code representation. Moreover, we incorporate with the function depen-
dency features and the vulnerable related APIs, which help to generate more
powerful and vulnerable related features for vulnerability detection. We eval-
uate the proposed method and the results indicate that our proposed method
significantly outperforms other comparison methods across evaluation metrics.

We are to modify the graph attention networks to further promote the effec-
tiveness of detection result and to apply our method to detect vulnerable software
functions written by other programming languages.
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Abstract. Traditional Chinese Medicine (TCM) is an important con-
stituent of medical treatment. During the development history of TCM,
there have been a large number of medical records accumulated, which
embody the experiential judgement of the TCM practitioners. There are
usually the symptoms observed by the practitioner and the according
treatment methods within the records. In the treatment procedure, TCM
practitioners often refer to the classical records and the prescriptions
within them, which makes recommending prescriptions from the records
based on the observation of the symptoms valuable in practice. Based
on these observations, we propose to model this problem as a matching
based recommendation task. To precisely model the relation between
symptoms and prescriptions, inspired by the success of pre-trained lan-
guage models, we propose a TCM domain specific hybrid input construc-
tion method and multi-grained negative sampling methods and training
objectives. To verify the effectiveness of the proposed method, we con-
duct extensive experiments on the symptom-prescription dataset. The
experiment results show that our proposed method can accurately rec-
ommend suitable prescriptions with more abundant candidates for the
reference of TCM practitioners, making it more valuable in practice.

Keywords: Prescription Recommendation · Traditional Chinese
Medicine · Pre-trained Language Model

1 Introduction

In recent years, with the development of deep learning and natural language
processing, artificial intelligence (AI) has been applied in numerous domains.
Among them, the integration of AI and healthcare is considered one of the most
promising directions. Current research on AI and healthcare primarily focuses on
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modern medical fields, while lacking attention to traditional Chinese medicine
(TCM). Leveraging deep learning and natural language processing techniques to
explore and utilize the rich knowledge inherited from the historical practices of
TCM has significant theoretical and practical implications. Particularly, recom-
mending suitable herbal formulas based on the diagnosis and symptom descrip-
tions provided by TCM practitioners is an important application scenario with
practical and theoretical significance.

Previous studies have explored the use of machine learning and deep learning
methods for recommending herbal prescriptions based on diagnostic information.
[4] initially proposed the use of a sequence-to-sequence model with an improved
objective function to generate the herbal components of prescriptions based on
textual symptom descriptions. [6,7], and [3] respectively suggested leveraging
expert knowledge, attention models to learn the associations between symptoms
and herbs, as well as associations between different herbs, and incorporating
external herbal knowledge to assist in prescription generation. [8] applied trans-
fer learning using a pre-trained bidirectional encoder, known as BERT (Bidirec-
tional Encoder Representations from Transformers), to the task of generating
traditional Chinese medicine prescriptions. These works primarily focus on rec-
ommendation through a generative approach. However, generative methods pos-
sess certain inherent limitations that are challenging to overcome, such as limited
interpretability, difficulty in providing recommendation justifications, and rela-
tively fixed patterns. In actual clinical practice, high reliability is crucial, and
these limitations restrict the practical utility of generative methods in assisting
traditional Chinese medicine practitioners during the diagnosis and treatment
process.

Inspired by the application of next sentence prediction in prompt tuning
[2,5] based on pre-trained language models [9], we propose using the next sen-
tence classification objective to match diagnostic texts with herbal prescrip-
tion components. To effectively leverage the information in herb names, we sug-
gest incorporating both the textual representation and the ID identifier of the
herbs as inputs to the model. This approach not only allows the model to cap-
ture the intrinsic characteristics of the herbs but also facilitates modeling of
herbs that are difficult to automatically identify by considering their textual
descriptions. Furthermore, for the constructed diagnostic-prescription inputs, we
propose adapting the model through masked language modeling, enabling the
establishment of associations at a finer-grained level, including the relationships
between diagnosis-herb, herb-herb, and herb name-herb.

Considering the characteristics of traditional Chinese medicine record stud-
ies, in order to better train the matching between symptom descriptions and
prescription compositions, we introduce two granularity levels of negative sam-
ple construction. This involves randomly replacing the original prescription at
the prescription level and herb level, respectively, and requires the model to
detect the substitutions at different granularity levels, enabling it to differenti-
ate between differences in granularity among prescriptions.
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We conducted extensive experiments on a dataset specifically transformed for
recommendation scenarios. The results demonstrate that our proposed method
achieves more accurate herbal prescription recommendations compared to gen-
erative methods. Additionally, the recommended prescriptions exhibit better
diversity, thereby providing better assistance to traditional Chinese medicine
practitioners in practical diagnosis and treatment processes. Furthermore, the
experimental results indicate that directly utilizing the next sentence prediction
objective from pre-trained language models for training and prediction does
not yield satisfactory matching performance. However, by incorporating model
designs that consider the characteristics of traditional Chinese medicine record
studies, we achieve significant improvements in matching effectiveness.

The main contributions of this paper can be summarized as follows:

– We propose modeling the objective of recommending herbal prescriptions
based on diagnosis as a retrieval-based recommendation task. We introduce
the utilization of the next sentence prediction method, based on pre-trained
language models, to match symptom descriptions with herbal prescriptions.

– Addressing the characteristics of traditional Chinese medicine prescription
recommendation, we propose a hybrid model input construction pattern and
a multi-granularity negative sampling method, as well as matching training
objectives that align with tasks in the field of traditional Chinese medicine.

– We conducted extensive experiments and analysis on a diagnostic-prescription
dataset to validate the effectiveness of the proposed approach.

2 Approach

In this section, we describe how we construct the inputs for the model based
on the symptom-formula pairs, as well as how we create training examples and
training objectives for matching training.

2.1 Input Construction for Pre-trained Language Model

Based on observations on the characteristics of traditional Chinese medicine
(TCM) record data, we propose modeling the correspondence between symptom
descriptions and herbal formulations as a next sentence prediction relationship.
In other words, if there is a correspondence between the symptom description
and the herbal formulation, they form a sentence pair relationship; otherwise,
they do not form a sentence pair relationship.

Since the composition of a prescription consists of herbal medicine, we ini-
tially consider using the entire herb entity as the input unit. However, due to the
nature of Chinese herbal medicine, which is derived from various natural sources,
and taking into account the presence of non-standardized herb descriptions in
ancient medical texts, directly using the entire herb entity as input would ren-
der these herbs out of vocabulary (OOV), thereby reducing the availability of
effective context. Additionally, many herb names exhibit certain similarities with
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their corresponding standardized herb names, with the only difference being the
use of different names or the inclusion of preparation methods, places of origin,
and other information. For example, “生地” actually refers to the same medicinal
substance as “生地黄”. In such cases, the textual descriptions of herbs them-
selves provide valuable information. Based on these observations, we propose
combining the entire herb entity with the textual herb name as the input for the
composition of a prescription.

Taking into account the considerations mentioned above and drawing inspi-
ration from the input format of the next sentence prediction task in pre-trained
language models, we propose constructing the symptom description-prescription
pairs that require judgment in the following form:

[CLS]X[SEP ]YsYm[SEP ]

Here, Ys and Ym respectively refer to the textual representation of the herb
name and the ID identifier of the herb as a whole. The special symbol [CLS]
is used to learn the representation at the sample level for the pair, while [SEP]
is used to separate the symptom description and the prescription composition
and marks the end of the input. Additionally, to differentiate the roles of the
symptom description and the prescription, we follow the approach of BERT and
incorporate token types in the model input. The symptom description is marked
with 0, while the herb portion of the prescription is marked with 1.

2.2 Training Data Sampling

Fig. 1. Example of negative sample construction strategies.

The symptom-prescription pairs in the data naturally form positive exam-
ples for training the matching relationship. To train the model’s ability to judge
whether there is a match, we also need to construct negative examples. Drawing
inspiration from the method of constructing negative examples for next sen-
tence prediction and considering the characteristics of TCM medical records, we
propose two granularities of random replacement schemes (as shown in Fig. 1).
The first scheme is to randomly replace the entire prescription with another pre-
scription from the training set, which is a prescription-level random replacement.
The second scheme is to randomly replace certain herbs in the corresponding
prescription with another herb, which is a herb-level random replacement.
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The first scheme replaces the prescription with a valid prescription, but it
may differ significantly from the original paired prescription, resulting in insuffi-
cient discriminative ability learned by the model, especially at a finer granularity
level such as the herb level. The second scheme constructs prescriptions that are
closer to the original paired prescription, allowing the model to learn the distinc-
tion and grasp the local herb information within the prescription. However, the
constructed prescriptions may not be feasible in practice, meaning that the com-
patibility of the herbs in the prescription may be compromised. In the actual
construction of negative examples, we choose to replace less than half of the
herbs in the prescription to maintain the original framework of the prescription
as much as possible, and the number of replacements itself is determined by
random sampling.

For prescriptions with a small number of herbs (less than 3 ingredients), we
adopt the first scheme of replacing the entire prescription because replacing indi-
vidual herbs in this case wouldn’t have much significance. For other prescriptions,
we randomly choose one of the two schemes with an equal probability, meaning
there’s a 50% chance of using the first scheme (replacing the entire prescription)
and a 50% chance of using the second scheme (replacing individual herbs).

2.3 Training Objective

To enable the model to learn both coarse-grained and fine-grained alignment
information, we propose training the model using Masked Language Modeling
(MLM) objective, the Symptom-Prescription Matching (SPM) objective, and the
Herb Replacement Detection (HRD) objective to train the model from different
perspectives.

Masked Language Modeling Objective. Due to the lack of ID represen-
tations for the complete herb names in the pre-trained word vector parameters
of the pre-trained models, and considering that the training corpus of the pre-
trained language models consists of general domain data, it is necessary to adapt
the training set data using the input construction method described in Sect. 2.1.
This adaptation involves employing a masked language model to learn herb
word vector representations and the associations between herb textual descrip-
tions and herb whole IDs proposed in this paper. When randomly replacing input
tokens, we drew inspiration from BERT’s approach, but with a modification. We
only replace non-special characters with the “[MASK]” token with a probability
of 15%, allowing the model to learn associations between the masked words or
herbs and their contexts. To better capture the associations between symptoms
and herbs, we slightly deviate from the original BERT model’s masking strategy.
Specifically, in some instances, we mask only the symptoms or the formulations
separately, while in other instances, we perform completely random masking.

Symptom-Prescription Matching Objective. To directly model the overall
matching relationship between symptoms and the composition of the formula, we
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employ a training objective similar to that of the next sentence prediction task.
We utilize the hidden vector representation of the special token [CLS], which is
encoded by the BERT encoder, to predict whether the input pair is a match.
If there is a match, a label of 1 is assigned; otherwise, a label of 0 is assigned.
The loss function for the matching relationship is the cross-entropy between the
predicted match and the ground truth label.

Lmatch = −
1∑

i=0

yilogpi (1)

where p represents the predicted probability for the overall matching, y denotes
the actual label indicating whether there is a match or not, and i takes the value
of 0 or 1, indicating the match or non-match scenario, respectively.

Herb Replacement Detection Objective. In order to enable the model
to differentiate more fine-grained matching information between the symptoms
and individual herbs in the prescriptions (i.e., which parts of the herbs match
the symptoms and which parts do not), we draw inspiration from the work
of [1] and propose a method to train the model to detect specific mismatched
herb information in non-matching prescriptions while simultaneously learning
the overall matching relationship between symptoms and prescriptions. Specif-
ically, for the negative examples constructed through the method of replacing
local herbs mentioned in Sect. 2.2, we train the model to predict which herbs
in the prescriptions are original (matching the symptoms) and which herbs are
replaced (not matching the symptoms). We assign a label of 1 to the originally
correctly matched herbs and a label of 0 to the replaced herbs. The logic behind
label assignment is consistent with the coarse-grained labels, aiming to help the
model learn the finer-grained reasons for mismatches. For the negative examples
constructed through the method of randomly replacing prescriptions at the pre-
scription level, we do not train the model to detect whether herbs are replaced,
as the majority of herbs are replaced in this case. The loss function used in this
context is similar to the cross-entropy used for coarse-grained labels but applied
to each herb in the negative examples (for the method of replacing herbs):

Ltoken = − 1
L

∑

j

1∑

i=0

yji logp
j
i (2)

The overall training loss is the sum of three components: the loss of the
fine-grained masked language model, the loss of the coarse-grained symptom-
prescription matching, and the loss of the replaced herb detection. For the fine-
grained masked language model, the loss is calculated based on the predicted
probability p of whether a herb is replaced, the actual label y indicating whether
it is a replaced herb, the matching label i (0 or 1) indicating whether the symp-
tom and prescription match, the position j in the sample, and the input sequence
length L. The final training loss can be expressed as follows:

Loss = Lmlm + Lmatch + Ltoken (3)
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During the inference testing phase, we directly use the probability pi of the
coarse-grained matching judgment from Eq. 1 as the prediction probability. We
then sort the probabilities in descending order and obtain the actual order of
recommended prescriptions.

3 Experiment

In this chapter, we introduce the experimental setup, the data used in the exper-
iments, the evaluation metrics employed, as well as the experimental results and
analysis.

3.1 Setting

The BERT model used in this study is Guwen-bert (base)1, which is pretrained
on classical Chinese language corpus. The hidden layer size of the model is 768,
with 12 layers and 12 heads in the multi-head attention mechanism. The masked
language model was trained for 10 epochs on the symptom-prescription pairs
data. The symptom-prescription matching objective was trained for 5 epochs.
The model with the highest Macro-F1 score on the development set during train-
ing was selected as the test model. Regarding the size of the herb vocabulary,
we selected the top 3000 herbs with the highest frequency of occurrence as the
vocabulary for whole herbs when represented as characters. The remaining herbs
(including noise that has not been cleaned) were represented in textual form. For
each positive sample in the matching training, two negative samples were sam-
pled. The batch size during training was set to 24 (limited by GPU memory).
For the symptom description, the first 150 characters were extracted, and for the
prescription, the first 50 herbs were extracted. The selection of hyper-parameters
was based on the highest Macro F1 score obtained on the development set.

3.2 Data

Based on the Chinese medical record data used by [4], we transformed the data
into a format suitable for the recommendation task. Using the Jaccard matching
method, we first found the top 20 symptom-prescription pairs in the prescription
database that were closest to the target symptom description (excluding the
symptom-prescription pairs in the test set). These 20 identified prescriptions
were mixed with the target prescription as negative examples, and the model
was required to find the most suitable prescription for the target symptom from
these 21 prescriptions. For the sake of comparison, we used the same test set as
[4]. The test set was divided into two parts.

1 GuwenBERT https://github.com/ethan-yt/guwenbert.

https://github.com/ethan-yt/guwenbert
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Table 1. Overall results on TextBook and Crawl test set. Precision@5, Recall@5 and
F1@5 are provided after “/” for our proposed method. seq2seq and multi-label are the
baselines applied in [4].

TextBook MRR MAP MacroPrecision MacroRecall MacroF1

proposal 28.68 28.68 40.42/79.52 47.38/84.64 42.07/80.44

seq2seq - - 30.97/- 23.70/- 26.85/-

multi-label - - 13.51/- 40.49/- 20.26/-

Li and Yang [4] - - 38.22/- 30.18/- 33.73/-

Crawl

proposal 21.17 21.17 24.07/54.53 24.73/55.60 23.21/52.97

seq2seq - - 26.03/- 13.52/- 17.80/-

multi-label - - 10.83/- 29.72/- 15.87/-

Li and Yang [4] - - 29.57/- 17.30/- 21.83/-

3.3 Evaluation Metrics

In this section, we introduce the evaluation metrics used in our experiments. To
assess the performance of the model from different perspectives, we employ two
types of evaluation metrics. The first type is commonly used in recommender
systems, namely MRR (Mean Reciprocal Rank) and MAP (Mean Average Pre-
cision). These metrics focus on the relative ranking of the model’s results, where
higher scores are assigned when the correct answer is ranked higher by the model.
Another type focuses on the degree of overlap between the herb composition of
recommended prescriptions and the herb composition of standard answers, aim-
ing for finer granularity. The higher the degree of overlap, the closer the recom-
mended prescriptions are to the answers. This type of method includes Macro
Precision, Macro Recall, and Macro F1.

3.4 Results

In Table 1, we present the experimental results of our approach in comparison
to the results reported in previous work [4], which used the same dataset as ours.
It can be observed that our proposed method achieved significant improvements
in Macro F1 values compared to the results obtained by the previous generative
models, particularly on the more accurate TextBook test set. The Macro F1@1
reached 42.07, a substantial improvement over the 33.73 achieved by Li and
Yang’s method [4].

Furthermore, our method achieved a Macro F1@5 of 80.44 on the TextBook
test set and 52.97 on the Crawl dataset. A higher Macro F1@5 indicates that, in
the context of prescription recommendation, providing the top 5 prescriptions
that the model considers optimal as candidate recommendations can yield correct
recommendations with a high probability, making our approach more practical
compared to generative methods.
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Fig. 2. Macro-F1 for
different input construc-
tion methods. “Med”
indicates only ID of
herbs are used, “Text”
indicates only textual
names are used.

Fig. 3. Macro-F1 for
different negative sam-
pling methods. “Pre-
scription” indicates pre-
scription level negative
sample, “Med” indicates
herb level negative sam-
pling.

Fig. 4. Macro-F1 for
whether herb replace-
ment detection objec-
tive is applied.

Although our method did not achieve high scores for retrieval-related evalu-
ation metrics such as MRR and MAP, this is due to the characteristic of Tra-
ditional Chinese Medicine records, where similar medical conditions may have
different treatment approaches and, therefore, different prescription solutions.
Additionally, in the context of prescription recommendation, the absence of an
exact match with the prescriptions in textbooks or medical records does not
necessarily mean the answer is incorrect. Some discrepancies may arise from
non-standardized herb terminologies, while others may result from variations
in diagnostic details while still providing prescriptions that are similar to the
answers but with some additions or omissions of herbs. These aspects can be
reflected in the Macro F1 value. We also provide specific examples in Appendix
to further illustrate this.

3.5 Analysis

In this section, we will analyze the effectiveness of our proposed method from
several different aspects.

Input Construction Effect. In Fig. 2, we present the results of Macro F1@1
obtained from different input construction methods mentioned in Sect. 2.1 on two
test sets (other metrics show a similar trend to Macro F1@1). From the results,
we can observe that the performance is weakest when solely using herb text as
input (labeled as “Text” in Fig. 2). We believe this is because the herb-related
text encountered by the pre-trained language model in the pre-training corpus
is sparse, which makes it difficult for the model to accurately differentiate and
recognize different herbs based solely on their textual representations. Although
the training of the masked language model in our proposed method involves
herb-symptom pairs, where herbs are more densely present, the overall quantity
is still insufficient to support the model in learning precise herb recognition and
differentiation abilities. On the other hand, using herb identifiers (IDs) as input
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(labeled as “ID” in Fig. 2) yields better results compared to solely using herb
text. We attribute this improvement to the fact that the model can more easily
learn the associations between herb IDs and the symptom descriptions. IDs have
a smaller semantic space compared to text, making it easier for the model to learn
more accurate representations, especially for frequently used herbs. Compared to
the two aforementioned individual herb input construction methods, the hybrid
input construction method that combines herb text and herb IDs (labeled as
“Both” in Fig. 2) provides richer information. It can capture the information of
herb IDs for common herbs and the information of herb text representations for
less common herbs. Additionally, it allows the model to learn the associations
between herb text and herb IDs, leading to the best performance.

Negative Sampling Effect. In Fig. 3, we present the results of different nega-
tive sampling methods mentioned in Sect. 2.2 on Macro F1 (@1). It is important
to note that the only difference here lies in the sampling methods, while the
number or proportion of negative samples remains the same. From the graph,
we can observe that both combined negative sampling methods proposed in this
paper achieve the best performance on both test sets. On the TextBook test set,
the effect of randomly replacing herbs at a finer-grained herb level is significantly
better than randomly replacing herbs at a coarser-grained prescription level. On
the Crawl test set, the two methods show similar performance. We believe this
is because the TextBook test set has higher data quality, making it more sen-
sitive to differences in the model’s understanding of herb details. By combining
negative samples at two different granularities, the model can better learn how
to match symptom descriptions and prescriptions at different levels, resulting in
the best matching performance.

Herb Replacement Detection Effect. In Fig. 4, we present the results of
whether to use the replacement herb detection objective mentioned in Sect. 2.3
during training. From the results, we can observe that using this training objec-
tive brings some improvement on the TextBook test set, but the difference is
not significant on the Crawl test set. We believe this phenomenon is due to the
higher data quality of the TextBook test set, which better reflects the model’s
ability to grasp herb details. In fact, for the macro F1@5 metric (not shown in
the graph), after adding the replacement herb detection objective, the macro
F1@5 of TextBook improved from 76.89 to 80.44, and the macro F1@5 of Crawl
improved from 52.18 to 52.97. This further confirms the effectiveness of this
training objective from another perspective.

4 Conclusion

This article proposes a symptom-prescription matching method based on pre-
trained language models for the task of recommending prescriptions based on
symptom descriptions. In this method, we model the symptom-prescription
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matching as the next sentence prediction task in pre-trained language models.
Considering the characteristics of TCM medical records, we propose a hybrid
medication input construction method, a multi-granularity negative sampling
method, and training objectives that are adapted to the task, allowing the
model to learn the associations and matching relationships at different levels
between symptom descriptions, prescriptions, and herbs. Extensive experiments
and analysis demonstrate that our proposed method can provide more accurate
prescription recommendations compared to generative methods and offer more
diverse candidate answers, thereby enhancing the practical diagnostic process
for TCM practitioners.
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Abstract. Alzheimer’s disease (AD) is a neurodegenerative disorder.
Early diagnosis of AD is critical for disease management and treatment
options to slow progression. The existing early diagnosis algorithms for
AD ignore the distinct time accumulative effect seen in chronic diseases
and do not address the problem of adaptation of multi-source heteroge-
neous data to a single learner. We use the idea of ensemble learning to
train multi-source heterogeneous data using different learners to solve the
problem. The time accumulative operator is fusing while being trained.
The outcomes of many learners are then combined using the decision
fusion approach. Experimental results demonstrate that our algorithmic
framework attains an average accuracy of 75.75% and the time accumu-
lative effect also benefits our model.

Keywords: Alzheimer’s disease · Ensemble learning · Machine
learning · Time accumulative effect

1 Introduction

Alzheimer’s disease (AD), a prevalent form of dementia, is a progressive and irre-
versible neurodegenerative condition. According to the Alzheimer’s Association,
the current global estimate for the prevalence of dementia exceeds 55 million indi-
viduals [7,11,13]. Despite advancements in clinical practices [8,16], the accurate
diagnosis of AD pathology and disease progression remains below 50% [1] in prac-
tical medical scenarios. The first symptoms of AD are usually memory loss and
disorganized speech. These symptoms come on suddenly for the patient, but the
brain lesions that cause them may have started 20 years or more before the symp-
toms appear [14]. Therefore, the urgent requirement for accurate diagnosis and
efficacious intervention has become a meaningful research [12].

Current research in the field of AD prediction algorithms primarily concen-
trates on identifying the cognitive impairment individuals who do not meet the
clinical diagnostic criteria for AD. According to the Diagnostic and Statistical
Manual of Mental Disorders (DSM-5), these individuals are considered to be in
the mild cognitive impairment (MCI) stage. MCI serves as a crucial transitional

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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stage for interventions aimed at preventing AD. Making interventions targeting
the MCI phase potentially is the most efficacious strategy for delaying the onset
of AD.

The time accumulative effect plays a crucial role in the medical field, par-
ticularly in the context of chronic diseases like AD. This phenomenon refers to
the cumulative impact of repeated transient changes acting on the same receptor
over time. Early diagnosis aims to leverage the precursor symptoms exhibited by
individuals who have not yet developed the disease, and these symptoms accu-
mulate gradually over time. Consequently, in real-world scenarios, physicians
must conduct continuous long-term testing and refer to previous data to make
accurate diagnoses.

Although some progress has been made in the studies, several challenges per-
sist in applying AI algorithms to real-world medical scenarios. When dealing with
multi-source heterogeneous data, training a single learner on the combined data
may overlook important details. Furthermore, AI algorithms require the incor-
poration of medical knowledge to enhance correctness and interpretability. Yet
combining medical knowledge with algorithmic models still presents difficulties.

The current stage of AD early diagnosis algorithm research ignores the prob-
lem of adaptability of different data to a single learner and the time accumulative
effect. To address these issues, this paper proposes an algorithmic framework for
early diagnosis of AD with the following contributions:

1. A time accumulative operator, which can integrate medical knowledge into
mathematical model calculations, was designed by analyzing the conceptual
features of the time accumulative effect.

2. An AD early diagnosis prediction algorithm M3TA is proposed, which can
take into account multi-source heterogeneous data in real-world scenarios to
provide decision support for clinicians.

2 Related Work

Most researchers today translate the early diagnosis of AD into a three-stage
“CN-MCI-AD” multiclassification problem. Current algorithmic research in this
domain can be broadly categorized into three main approaches: deep learning,
traditional machine learning, and multi-task learning.

Deep learning has demonstrated immense potential for clinical decision sup-
port in AD [10,17]. One key advantage of DL lies in its capability to directly
learn highly predictive features. However, it has been shown that depth models
influence the results by combining weights at multiple layers [4], leading to their
clinically meaningful non-interpretability.

Research on cross-sectional analysis of AD using traditional machine learning
algorithms tends to be systematic and mature. Shen et al. [15] use support vector
machines(SVM) to classify MCI patients on both auxiliary and predictive data.
Wang et al. [20] regard structural connectomics as complementary information
and use logistic regression to predict AD patients, verifying that structural con-
nectomics has a contribution to AD prediction. Dimitriadis et al. [5] select mul-
tiple features from a subset of the entire dataset by random forest(RF) and use
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fusion methods for classification and obtain the integrated classification results
by majority voting. Farouk et al. [6] extract texture features from the gray level
co-occurrence matrix and voxel-based morphometric neuroimaging analysis for
supervised machine learning classification of AD.

Multi-task Learning (MTL) is a machine learning framework that learns mul-
tiple interrelated tasks together to mine the valuable information present in them
to improve the generalization performance of all tasks. Liu et al. [9] propose a
multi-task learning method, combined with hyper-graphs to extract higher-order
relationships between samples. Michele et al. [2] propose the SS-MTL method
using a time window to capture the temporal correlation of the electronic health
record data on for kidney disease prediction. Wang et al. [19] use different regu-
larizations to capture the intrinsic associations of tasks across time and to select
the most discriminative features for AD early diagnostic prediction. Brand et al.
[3] improve on this basis for group-guided sparse group lasso regularization, per-
forming both regression and classification tasks. Tang et al. [18] propose a novel
feature-aware sparse-induced regularization that exploits correlations between
brain regions to predict cognitive scores and identify stable biomarkers.

3 Materials and Methods

The purpose of this study is to develop an algorithmic framework for the early
diagnosis of AD that can be employed in real-world medical scenarios. The struc-
ture of the proposed framework is illustrated in Fig. 1. In the first step, the multi-
source heterogeneous data are separately utilized to train distinct learners. Next,
the outputs of the different learners are combined using the time accumulative
operator. Finally, a multi-source data weight assignor is trained to perform deci-
sion fusion on the multiple prediction results, leading to generate the output
of the complete early diagnosis algorithm framework. The main mathematical
notations are summarized in Table 1.

Table 1. Notations

Symbol Description

n # of sample

m # of feature

t # of follow-up visit

c # of categories

ω Between time periods influence the weighting

X , xi The matrix of input X ∈ R
n×t×m and input sample xi ∈ R

t×m

W ,wj The matrix of param W ∈ R
c×m×t and each category wj ∈ R

m×t

Y , yi The matrix of labels Y ∈ R
n×t×c and the ith label yi ∈ R

t×c

T The time accumulative operator T ∈ R
t×t
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Fig. 1. Model architecture diagram.

3.1 Dataset

The data used in this study are obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (ADNI.loni.ucla.edu). We categorize the
data according to the source and form of collection into MRI image data, scale
examination data, plasma measurement data, physical examination data, vital
sign data, and symptom data. MRI image data, scale examination data, and
plasma measurement data are follow-up data, which are sampled every six
months, with three samples per patient. Physical examination data, vital sign
data, and symptom data are baseline data. A total of 114 patients are selected,
with a total of 342 follow-up data.

3.2 Pre-processing

MRI image data are image preprocessed in FreeSurFer (http://surfer.nmr.mgh.
harvard.edu), and the remaining data has three types of missing data, missing
samples in the follow-up data, missing continuous-value features of samples in
the baseline data, and missing discrete-value features. Out of 114 patients, 57
samples are missing. For the missing samples, we fill them with the mean of
the grouping. For the continuous missing values, the same mean of the same
standard data is used to fill in. For the discrete missing values, the same labeled
multi-valued data are used to fill in the missing values. All continuous values
normalize with the mean-standard deviation method.

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu
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3.3 M3TA Implementation Details

Design of Time Accumulative Operators. Starting from the concept of
time accumulative effect, this paper designs a time accumulative operator incor-
porated into the existing algorithm and its mathematical representation is as
follows:

Yt = ω0Y
′
t + ω1Y

′
t −1 + ω2Y

′
t −2 + · · · + ωt−1Y

′
1

s.t.

t−1∑

i=0

ωi = 1, ω0 > ω1 > ω2 > · · · > ωt−1 (1)

where Yt denotes the final result at the moment t, Y ′
t denotes the result of the

model without considering the time accumulative effect at moment t, and ωt

denotes the weight of the moments t. The weights are assigned according to the
following rules: (1) the sum of the weights is 1; (2) the weights are decreasing in
order of the time distance from the moment t ; (3) the moments after t have no
effect on moment t. Based on the above representation, the time accumulative
operator is designed to factorize as follows:

T =

⎛

⎜⎜⎜⎝

ω1,1

ω2,1 ω2,2

...
...

. . .
ωt,1 ωt,2 · · · ωt,t

⎞

⎟⎟⎟⎠

s.t . ωi,. = 1, ωij ∈ [0, 1] , ωi,1 < ωi,2 < · · · < ωi,i (2)

where ωi,j denotes the influence weight of period i on period j .

Follow-Up Data Learner Design. In this paper, we use a longitudinal multi-
task learning model on the follow-up data. At the same time, we integrate the
time accumulative operator into the longitudinal multi-task learning model. The
output function of the integrated time accumulative operator is:

Y = M3TA F (X ,W ,T ) (3)

where X = {x1, x2, · · · , xn} ∈ R
n×t×m , xi =

{
x 1
i , x 2

i , · · · , x t
i

} ∈ R
t×m denotes

the model input, W = {w1,w2, · · · ,wc} ∈ R
c×m×t ,wj =

{
w1
j ,w2

j , · · · ,wm
j

} ∈
R

m×t denotes the model parameters and Y = {y1, y2, · · · , yn} ∈ R
n×t×c , yi ={

y1
i , y2

i , · · · , y t
i

} ∈ R
t×c denotes the model output.

The loss function of the longitudinal multi-task learning model is obtained
as:

L(W ) = ‖M3TA F (X ,W ,T ) − Y ‖2F (4)
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Based on existing longitudinal multi-task algorithms [2], the objective func-
tion M3TA that takes into account the time accumulative effect can be expressed
as follows:

min
W

J (W ) = L (W ) + λ1 ‖W ‖1
+ λ2

∥∥RW T
∥∥
1

+ λ3 ‖W ‖2,1
(5)

where λ1, λ2 and λ3 are the regularization parameters. ‖W ‖1 is the Lasso coeffi-

cient regularization term, ‖W ‖2,1 =
∑c

k=0

∑m
i=0

√∑t
j=0 ω2

kij is the group sparse
regularization term, they allow for joint feature selection and task-specific fea-
ture selection for multiple tasks during model optimization.

∥∥RW T
∥∥
1

is the
temporal smoothing regularization term, which takes into account the tempo-
ral correlation between tasks, R is the temporal smoothing matrix, which takes
values as:

Ri,j =

{
1, i = j
−1, i = j − 1

,R ∈ R
t−1×t (6)

Fusion of Multi-source Heterogeneous Prediction Results with Time
Accumulative Operator. Unlike follow-up data, the baseline data trainer
need to combine the prediction results with the time accumulative operator in
the stage of fusion of the prediction results, and the combination steps are shown
in Fig. 2:

Fig. 2. Steps for combining multi-source heterogeneous prediction results with the time
accumulative operator.

We replicate the baseline data predictions t times and then multiply them
with the time accumulative operator to obtain the combined baseline data pre-
dictions.

Y ′ = YT (7)
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After obtaining all the multi-source heterogeneous prediction results consid-
ering the time accumulative effect, the weight assignor needs to be trained to
weight and sum the multi-source heterogeneous prediction results to obtain the
final prediction results.

Y = β1Y ′
1 + β2Y ′

2 + · · · + βsY ′
s (8)

4 Results

4.1 Evaluation Metrics

We use 10-fold cross-validation (10-fold CV) to evaluate the predictive perfor-
mance of this algorithmic framework. We encode the labels “CN”, “MCI” and
“AD” as one-hot coding for learning. We use accuracy (acc), precision (pre),
specificity (spe), sensitivity (sen) and f1-score (f1) to evaluate the performance
of the algorithmic framework.

4.2 Comparison of Different Combinations of Learners

We use longitudinal multi-task learning models to train the follow-up data. For
the baseline data, we explore the best model combination by using LR, SVM,
RF and decision tree(DT) algorithms in combination with longitudinal multi-
task learning, respectively. The results are shown in Table 2 and Table 3, where
Time1, Time2 and Time3 represent the current time, the next 6 months and the
next year’s prediction, respectively.

Table 2. Comparison of different combinations of learners on acc

Time1 Time2 Time3 Average

MTL+LR 71.11% 75.34% 77.35% 74.60%

MTL+SVM 69.42% 74.51% 78.18% 74.04%

MTL+RF 70.38% 75.60% 74.62% 73.53%

MTL+DT 70.58% 75.00% 81.67% 75.75%

Based on the analysis of the experimental results, it shows that the model
combination of MTL+DT performed the best on each time group with average
precision, average specificity, average sensitivity, average f1-score and average
accuracy of 76.83%, 88.39%, 79.53%, 36.75%, and 75.75%, respectively. For sub-
sequent experimental setups, the MTL+DT model combination will be utilized
as the M3TA algorithm framework.

4.3 Comparison with Single Learner

We compare the M3TA framework with a single learner. We input the first sam-
pled data from the follow-up data as the baseline data and input the replication
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Table 3. Comparison of different combinations of learners on precision, specificity,
sensitivity and f1-score

CN-Time1 pre spe sen f1

MTL+LR 68.01% 78.88% 98.25% 38.53%

MTL+SVM 66.04% 76.38% 98.00% 37.76%

MTL+RF 65.53% 77.62% 95.50% 37.54%

MTL+DT 65.22% 75.41% 98.00% 37.37%

CN-Time2 pre spe sen f1

MTL+LR 76.33% 87.45% 98.00% 41.83%

MTL+SVM 74.05% 86.95% 93.00% 40.40%

MTL+RF 80.67% 89.56% 95.50% 42.54%

MTL+DT 76.33% 87.45% 98.00% 41.83%

CN-Time3 pre spe sen f1

MTL+LR 76.33% 87.45% 98.00% 41.83%

MTL+SVM 78.00% 89.36% 94.67% 41.44%

MTL+RF 84.33% 92.73% 98.00% 44.52%

MTL+DT 75.81% 86.57% 100.00% 42.17%

MCI-Time1 pre spe sen f1

MTL+LR 83.25% 90.62% 53.85% 32.07%

MTL+SVM 84.98% 91.57% 50.25% 30.88%

MTL+RF 82.27% 89.11% 53.57% 31.66%

MTL+DT 83.45% 90.70% 54.09% 32.01%

MCI-Time2 pre spe sen f1

MTL+LR 83.32% 88.86% 62.58% 35.22%

MTL+SVM 87.44% 92.40% 56.03% 33.66%

MTL+RF 87.15% 90.02% 58.83% 34.54%

MTL+DT 86.44% 90.86% 57.40% 33.65%

MCI-Time3 pre spe sen f1

MTL+LR 97.50% 98.00% 57.17% 34.69%

MTL+SVM 94.17% 96.00% 60.40% 36.05%

MTL+RF 91.66% 96.57% 50.98% 31.77%

MTL+DT 98.00% 98.00% 64.43% 38.13%

AD-Time1 pre spe sen f1

MTL+LR 64.30% 88.68% 74.72% 33.05%

MTL+SVM 64.33% 87.36% 76.67% 33.07%

MTL+RF 67.33% 89.44% 75.00% 34.02%

MTL+DT 74.44% 91.24% 73.89% 34.57%

AD-Time2 pre spe sen f1

MTL+LR 63.03% 86.75% 73.75% 32.86%

MTL+SVM 59.48% 84.18% 82.92% 32.95%

MTL+RF 58.81% 84.83% 82.50% 33.11%

MTL+DT 60.45% 85.22% 80.83% 32.89%

AD-Time3 pre spe sen f1

MTL+LR 65.05% 84.13% 89.17% 36.09%

MTL+SVM 66.33% 84.13% 94.17% 37.22%

MTL+RF 54.88% 76.29% 92.50% 33.16%

MTL+DT 71.33% 90.10% 89.17% 38.15%
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of the baseline data as the follow-up data. We compare single models on accuracy
and the results are shown in Table 4.

Table 4. Comparison of single learners on acc

Time1 Time2 Time3 Average

MTL 59.70% 66.70% 76.29% 67.56%

LR 61.72% 64.85% 72.73% 66.73%

SVM 33.33% 32.35% 20.91% 28.86%

RF 43.01% 46.86% 47.27% 45.71%

DT 36.36% 36.89% 30.00% 34.41%

OURS 70.58% 75.00% 81.67% 75.75%

Based on the analysis of the experimental results, our algorithmic framework
surpasses all single learner models in terms of average accuracy for all time
groups. Among the single learner models, the longitudinal multi-task learning
model exhibits the highest performance. This outcome can be attributed to the
substantial presence of follow-up data, which accounts for approximately 89% of
the dataset used in the experiment.

4.4 Validity of the Time Accumulative Operator

To verify the validity of time accumulative operator, we conduct ablation exper-
iments for all models as well as M3TA. The experimental results are shown in
Table 5.

Table 5. Comparison of time accumulative operator on various models

Time1 Time2 Time3 Average

MTL (noTA) 55.90% 62.31% 74.55% 64.25%

MTL 59.70% 66.70% 76.29% 67.56%

LR (noTA) 50.30% 47.73% 39.39% 45.81%

LR 61.72% 64.85% 72.73% 66.43%

SVM (noTA) 33.33% 32.35% 20.91% 28.86%

SVM 33.33% 32.35% 20.91% 28.86%

RF (noTA) 33.64% 32.80% 21.82% 29.42%

RF 43.01% 46.86% 47.27% 45.71%

DT (noTA) 33.33% 32.35% 20.91% 28.86%

DT 36.36% 36.89% 30.00% 34.42%

OURS (noTA) 70.28% 74.38% 80.76% 75.14%

OURS 70.58% 75.00% 81.67% 75.75%
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Based on the experimental results, the use of time accumulative operator
leads to improvements in average accuracy across each time groups. Notably,
SVM is insensitive to time accumulative operator. Furthermore, our algorithmic
framework is improved, confirming the effectiveness of the time accumulative
operator in enhancing the predictive performance.

5 Conclusion

We propose an algorithmic framework for early diagnosis of AD based on ensem-
ble learning and time accumulative effects. The framework is designed to address
the challenges posed by different data in real-world scenarios and fulfill the
requirements of predicting disease progression and integrating medical knowl-
edge. This approach contributes to the mathematicalization of medical knowl-
edge and promotes interdisciplinary research in medicine and computer science.
Our algorithm framework has some practical applications for various real-world
scenarios and helps doctors and patients to take preventive measures in advance.

Although our algorithmic framework has a good performance in the predic-
tion of disease evolution trends, there is still much room for improvement. In
the subsequent research, the time accumulative operator can be learned dynam-
ically during the training of the model. Our algorithm is only validated on the
ADNI dataset, and subsequent studies will be conducted on larger samples, more
complex dataset, and even real dataset.
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Abstract. Medical image segmentation separates target structures or
tissues within medical images to promote precise diagnoses. Automated
image segmentation algorithms can help dermatologists to diagnose skin
cancer by identifying skin lesions. Many popular image segmentation
algorithms combine UNet and Transformer, but cannot fully utilize
the global information between different scales and also have a huge
number of parameters. To this end, this paper proposes a lightweight
Transformer-based UNet (LTUNet) method for medical image segmen-
tation, which designs an effective approach to extract and fully use
multi-scale features. Firstly, the multi-scale feature maps of images are
extracted by the inverted residual blocks of lightweight UNet encoder.
Then, the feature maps are concatenated as the input of the Trans-
former’s encoder blocks to compute intra- and inter-scale attention
scores, and the scores are used to enhance the feature map of each scale.
Finally, we fuse the upsampled results of all scales on UNet to improve
the performance of segmentation. Our method achieves 0.9432, 0.8948,
0.9348 for mDice, mIoU and mACC on the ISIC2016 dataset, and 0.9058,
0.8138, 0.8968 on the ISIC2018 dataset respectively, which outperforms
state-of-the-art methods. Besides, our network has a smaller number of
parameters and converges faster.

Keywords: Medical image segmentation · UNet · Transformer ·
Multi-scale · Skin lesion

1 Introduction

Medical image segmentation is the process to identify and separate target struc-
tures or tissues within medical images, which enables physicians to make precise
diagnoses and formulate effective treatment plans [28]. As an important appli-
cation field, skin cancer has grown to be a serious disease that has an impact on
people’s health as a result of incorrect ultraviolet radiation, persistent stimula-
tion, and other causes [17]. The dermatologist diagnoses skin cancer by observing
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skin lesions on dermoscopic images. Automated image segmentation algorithms
can identify and quantify the size, shape, and color of skin lesions with high pre-
cision and accuracy so as to improve the efficiency of diagnosis and treatment.
Thus, it is crucial to develop automated image segmentation algorithms for skin
lesion early diagnosis.

Current deep learning models often mine the data pattern from huge scale
datasets e.g. ImageNet [6]. Due to the expensive labeling cost and privacy pro-
tection, medical images are available in limited quantities. Moreover, sophisti-
cated models may overfit on relatively small datasets, whereas lightweight models
sometimes fit well. In addition, multi-scale techniques can enhance the accuracy
and robustness of medical image segmentation by addressing these issues, such
as scale variation, noise perturbation, and variation in object size [16]. Com-
bined with the attention mechanism, the multi-scale network can obtain intra-
and inter-scale scores by converting similarity to weight.

Based on above discuss, in this paper, we propose LTUNet by combining
Transformer [27] and UNet [21] for medical image segmentation, which designs
a novel mechanism based on a combined framework to extract multi-scale fea-
tures and achieves a lightweight network. Firstly, the multi-scale feature maps of
images are extracted by the inverted residual blocks of LTUNet’s encoder. Then,
the feature maps are concatenated as the input of the Transformer’s encoder
blocks to compute intra- and inter-scale attention scores, which are used to
enhance the feature map of each scale. Finally, we fuse the upsampled results of
all scales to improve the performance of segmentation. Our contributions can be
summarized in the following three parts:

– We propose a lightweight network to segment skin lesion images, which com-
bine the UNet structure with Transformer to fuse local features and global
features effectively.

– We use inverted residual blocks to extract features of different scales and
reconstruct the features after attention and feature fusion respectively, where
the features of each scale with global spatial attention are fused for more
effective segmentation.

– LTUNet achieves competitive mDice, mIoU, mACC on ISIC2016 as well as
ISIC2018 datasets and fast convergence by fewer parameters compared with
other methods.

2 Related Works

2.1 Medical Image Segmentation Networks

Due to a variety of medical equipment and medical image modalities, the task of
medical image segmentation is of great significance for assisting doctors in diag-
nosis [23]. UNet uses a U-shaped structure, which combines shallow features with
deep features. The operation of downsampling and upsampling can compress and
reconstruct the image, and the segmented image with the same size as the origi-
nal image can be obtained. It is very effective for biomedical image segmentation.



LTUNet for Skin Lesion Segmentation 149

In recent research, many variant UNets have been proposed. Attention UNet [19]
adds the Attention Gate to control the feature input of the encoder part and
then reconstructs the image through the decoder. Inception U-Net [20] draws
on the idea of Inception [25], introduces multiple different convolution kernels,
and finally connects the outputs of different branches in the channel dimension,
which can make full use of large convolution kernels and small convolution ker-
nels. Considering that the accuracy will become worse as the network deepens,
ResUNet [7] applies the skip connection structure of ResNet [12]. Each module
in the encoder and decoder contains multiple residual connections, which can
effectively alleviate the vanishing gradient problem of deep networks. UNet++
[31] is a neural network architecture that enhances the original UNet structure
by combining its 1–4 layers together, forming both long and short connections
between them. Additionally, UNet++ incorporates deep supervision to further
improve its effectiveness. However, CNN limits the receptive field to the convo-
lution kernel and lacks the ability to model the image globally.

2.2 Model Lightweight

Due to the limitation of storage space and computing resources, the storage
and computation of neural network models on mobile devices and embedded
devices is still a huge challenge. Many techniques are used to simplify the model
and reduce the number of model parameters. SqueezeNet [15] stacks the fire
module with the squeeze and expand parts, drastically reducing the parameters.
With depth-wise separable convolution, including depth-wise and point-wise,
MobileNet [14] replaces conventional convolution. It can typically be acceler-
ated by 8–9 times assuming a 3× 3 convolution kernel. In order to produce
more feature maps, GhostNet [10] replaces partial convolution calculations with
a sequence of efficient linear operations. The number of model parameters is
significantly reduced by such methods. In addition to network structure design,
Hinton et al. [13] propose to use knowledge distillation to compress the model,
and a complex teacher network can be used to guide a lightweight student net-
work. Additionally, several weight-sharing methods [11,26] are applied to lighten
models.

2.3 Transformer on Image Segmentation

Transformer is not limited by convolutional kernels and has multi-head atten-
tion to enhance globality. It has been widely used in image analysis recently.
Based on Vision Transformer (ViT) [8], many methods have been proposed to
achieve image segmentation. Segmenter [24] proposed a semantic segmentation
model using only Transformer, and all performances exceed the most advanced
convolution method on the ADE20K dataset. TransUNet [2] uses a CNN-based
encoder to extract features from the input image, which are then fed into a
Transformer-based decoder to generate the final segmentation map. SwinUNet
[1] replaces the convolutional blocks in TransUNet with Transformer blocks,
making global semantic feature learning more advantageous. In fact, although
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CNN lacks globality, this structure can bring inductive bias (i.e. a part of prior
knowledge), such as translation invariance and local relationship information.
However, Transformer requires a large amount of data for training to learn this
prior knowledge. Based on this observation, we combine the advantage of CNN
and Transformer for medical image segmentation.

3 Method

Our LTUNet structure is shown in Fig. 1. To be specific, the inverted residual
blocks of the various layers in the UNet encoders extract the multi-scale feature
maps of the images. Then, the feature maps are concatenated along the channel
dimension as the input of the Transformer’s encoder blocks to compute intra-
and inter-scale attention scores, which are used to enhance the feature map of
each scale. Finally, we reconstruct the features to the original size and fuse the
upsampled results of all scales to improve the performance of segmentation. After
upsampling and reconstruction to the original image size, the segmentation result
is obtained by the segmentation head. The details are described in the following
subsections.

Fig. 1. The Structure of LTUNet, which consists of feature extraction and downsam-
pling, Transformer encoder blocks, multi-scale fusion and segmentation three parts.

3.1 Feature Extraction and Downsample

To obtain multi-scale features as the input of the vision Transformer, we use
CNN to extract different scale features of medical images. Considering that, the
dimension of the feature map is lower, the complexity of the convolution and the
parameter amount of the entire network is smaller. But low-dimensional features
contain less information and may drop the accuracy of the model. Inspired by
MobileNetv2 [22] we first use a 1 × 1 convolution kernel to expand the dimension,
and then use a 3× 3 depth separable convolution kernel to extract features.
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Afterward, another 1× 1 convolution kernel is used to match the initial number
of channels. The output is then added to the input features to realize the residual
connection. This type of inverted residual block can keep output low-dimensional
characteristics and reduce complexity when extracting information from higher-
dimensional features. When the stride is 1, the block is shown in Eq. (1), and
when the stride is 2, the block is shown in Eq. (2).

out1 = x + conv1(σ(dconv3(σ(conv1(x))))) (1)
out2 = conv1(σ(dconv3(σ(conv1(x))) (2)

where x is the input tensor, conv1 represents the normal 1 × 1 convolution oper-
ation, dconv3 represents the 3 × 3 depth-wise convolution operation, and σ rep-
resents the ReLU6 activation function. Compared with the UNet encoder, our
network has fewer channels to reduce parameters. The extracted feature maps
have different scales and numbers of channels. In order to fuse the features of
different scales later, we downsample the features of different scales to the same
size and then concatenate them along channel dimension.

3.2 Transformer Blocks Extract Multi-scale Semantic Information

Traditionally, ViT divides the input image into several patches, and each patch
obtains a vector representation through a linear transformation. These vector
representations are then fed into the Transformer encoder to learn a global fea-
ture representation. In our network, the features become very small after sev-
eral downsample operations. We take the scaled features as input so the model
parameters are few. We concatenate the features of different scales and feed
them into the Transformer encoder blocks. Transformer’s attention mechanism
can measure the feature importance of different scales to obtain global informa-
tion. The input X ∈ R[b,n,dx] is firstly mapped to three quantities Q ∈ R[b,n,dq],
K ∈ R[b,n,dk], V ∈ R[b,n,dv], where b represents the batch size and n represents
the number of patches. dq, dk and dv represent the number of channels of Q, K
and V matrices respectively. Q and the transpose of K is multiplied and divided
by the square root of the scaling factor dk, and multiplied by V after the softmax
function to obtain attention. As shown in Eq. (3) and Eq. (4).

headi = Attention = softmax(
QiK

T
i√

dk
)Vi (3)

multihead = concat(headi) (4)

where i ∈ {1, 2, ..., N}, N is the number of heads. The concatenated multi-head
attention features are added to the original input features. This residual connec-
tion can effectively prevent model degradation and enhance the representation
ability of the model. In particular, in order to reduce model parameters, we
replace the linear layer in the feed-forward neural network FFN with a 1× 1
convolution operation. Following the method of CeiT [29], we add a depth-wise
convolution layer which can make the model use more redundant information and
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improve its representation ability without introducing extra parameters. Finally,
a residual connection and normalization are applied to the feature maps.

Generally, the multi-head attention mechanism computes intra- and inter-
scale attention scores and uses them to enhance the feature map of each scale.
Deeper features contain richer semantic information, more channels, and a larger
weight in attention.

3.3 Multi-scale Fusion and Segmentation

UNet uses concatenation for upsampling feature fusion. However, it expands the
number of feature channels and makes convolution operations more complicated.
Therefore, we use the summation strategy for feature fusion. After the Trans-
former encoders, feature maps of different scales contain more global semantic
information from different scales. We separate them along the channel dimen-
sion and upsample them by bilinear interpolation. The feature maps of different
scales are reconstructed to the original feature size and added to the original
features, to realize the fusion of shallow features and deep features. Then, the
features of different scales are upsampled again through bilinear interpolation
and reconstructed to the size of the original image. Finally, the reconstructed
features of all scales are added together as input of the segmentation head to
obtain the final segmentation result.

For the segmentation task, we use the cross-entropy loss function to get the
final loss, as is shown in Eq. (5):

L = −
M∑

c=1

yclog(pc) (5)

where M represents the number of class, yc represents the label mask, and pc
represents the probability that the predicted sample belongs to class c.

4 Experiments

4.1 Datasets and Experimental Set up

The ISIC2016 [9] and ISIC2018 [4] datasets, released by the International Skin
Imaging Collaboration (ISIC), are large-scale datasets of dermoscopic images.
The ground truth data of the mask image is generated by several techniques
and has been reviewed and curated by professional dermatologists. The datasets
can be used in the research of automatic detection of skin diseases from med-
ical images. We conduct experiments on ISIC2016, and ISIC2018 respectively
(ISIC2019 and ISIC2020 are not available because they are currently in a Live
Challenge), ISIC2016 includes 900 training images and 379 test images, and
ISIC2018 includes 2594 training images, 100 validation images, and 1000 test
images respectively.



LTUNet for Skin Lesion Segmentation 153

Fig. 2. The metrics trend of the 8 methods during training on ISIC2018.

We scale the images to a uniform size of 1024 * 1024 and feed them to the
network, and then perform random cropping, random flipping, and optical dis-
tortion (PhotoMetricDistortion) for data augmentation. Our initial learning rate
is 0.03, the Poly strategy is used for decay, and the Warm up [12] method is used
to alleviate the early overfitting of the model to the mini-batch. Using the SGD
optimizer, the momentum is set to 0.9. Batch Size is set to 8. The transformer
encoders are set to 8 heads. The hardware platform is four Tesla P100 graphics
cards with 16G memory. The experiment is based on the Pytorch framework
and mmseg [5].

Fig. 3. Visualization of segmentation results of 8 networks on ISIC2016 and ISIC2018.



154 H. Guo et al.

4.2 Evaluate Metrics

We use mDice, mIoU, and mACC as the evaluation indicators of segmentation
accuracy, and count the Flops and Params of the network to evaluate the model
complexity.

Dice =
2|X ∩ Y |
|X| + |Y | (6)

IoU =
|X ∩ Y |
|X ∪ Y | (7)

ACC =
TP + TN

TP + TN + FP + FN
(8)

where X and Y represent the model prediction results and the real label results
respectively. TP represents the true positive class, FN represents the false neg-
ative class, FP represents the false positive class, and TN represents the true
negative class. mDice, mIoU and mACC represent the averages of foreground
and background Dice, IoU and ACC respectively.

Table 1. Quantitative comparison of 8 methods on ISIC2016 and ISIC2018 datasets

ISIC2016 ISIC2018

Method mDice mIoU mACC mDice mIoU mACC Flops Params

Unet 0.8766 0.7849 0.8680 0.8041 0.6820 0.7971 193.29G 28.99 M

RAUNet 0.081 0.6859 0.8113 0.7823 0.6411 0.7886 30.17G 21.89M

UNet++ 0.8821 0.7634 0.8757 0.7837 0.6532 0.7926 139.63G 9.16M

PSPNet 0.8405 0.7299 0.8585 0.6837 0.5253 0.7333 101.46G 23.53M

DeepLabv3+ 0.8335 0.7191 0.8618 0.8343 0.7216 0.8447 179.47G 42.52M

TransUNet 0.8968 0.8024 0.8889 0.8126 0.7002 0.8024 26.42G 19.03M

SwinUNet 0.9057 0.8300 0.9148 0.8237 0.7084 0.8158 10.28G 10.22M

LTUNet 0.9432 0.8948 0.9348 0.9058 0.8138 0.8968 1.41G 4.96M

4.3 Comparative Experiment

We compare LTUNet with some better-performing segmentation networks,
including UNet, RAUNet [18], UNet++, PSPNet [30], DeepLabv3+ [3], Tran-
sUNet, SwinUnet, and LTUNet. Figure 2 shows the changes of three metrics and
aACC during training on the ISIC2018 dataset. Compared with the baseline
networks, our method converges faster and can also greatly improve accuracy.
Compared with Transformer’s methods, LTUNet can also effectively improve
accuracy.

After the models converge, we visualize the results of the 8 segmentation
networks, as shown in Fig. 3, the first three lines are images from ISIC2016, and
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the last two lines are images from ISIC2018. It can be seen that the outlines of
the lesion areas in the images of row 1, row 4, and row 5 are relatively clear, and
the segmentation results are not much different. Since there are some interference
areas in the image of row 2, some methods will be affected by the interference
areas, and the segmentation result is not ideal. However, our LTUNet can better
segment the lesion area. The edge of the lesion area in the image of row 3 is
blurred, and many methods cannot segment the contour, but LTUNet can still
perform well.

(a) The mDice of different methods on
ISIC2016.

(b) The mDice of different methods on
ISIC2018.

Fig. 4. Comparison of mDice with the baseline methods and the SOTA methods on
ISIC2016 dataset (a) and ISIC2018 dataset (b).

The quantitative results on the ISIC2016 and ISIC2018 datasets are shown
in Table 1. It can be seen that on the ISIC2016 dataset, the mDice, mIoU and
mACC of our LTUNet are 0.9432, 0.8948 and 0.9438 respectively, which are the
highest. On the ISIC2018 dataset, the mDice, mIoU, and mACC of our LTUNet
are 0.9058, 0.8138, and 0.8968, respectively, all reaching the highest. What is
more worth mentioning is that our LTUNet has fewer parameters and Flops. In
addition, for a clearer comparison, we also quantitatively compare mDice with
some SOTA methods on the ISIC2016 and ISIC2018 datasets in the past three
years, as shown in Fig. 4(a) and Fig. 4(b). It can be clearly seen that LTUNet
performs best.

4.4 Ablation Study

Our baseline model is a lightweight UNet (contains the inverted residual blocks)
that uses a concatenate fusion strategy and Dice loss function. To verify the
effectiveness of different parts, we add modules one by one to the baseline model.
Firstly, we add Transformer encoder blocks in the middle of the network, with the
input of the Transformer containing only the smallest scale features. Secondly,
we introduce a multi-scale method and used features from four scales for fusion.
Thirdly, we change the fusion strategy from concatenate to summation. Finally,
we replace the Dice loss function with the CE loss function. The results on
ISIC2016 are shown in Table 2.
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After adding Transformer blocks to the Baseline model, mDice increases by
3.18%. It can be seen that the intra and inter-scale scores provided by the atten-
tion mechanism are effective. When we only use the smallest scale as the input of
the Transformer, some objects with smaller shapes become smaller after down-
sampling, resulting in poor segmentation results. However, using the multi-scale
fusion method effectively alleviates this problem, improving mDice by 3.7%.
After changing the fusion method from concatenate to summation, the segmen-
tation mDice does not change significantly, but the number of parameters are
reduced, making the summation method more preferable. Lastly, we compare two
loss functions. The Dice loss function is designed to deal with strongly unbal-
anced foreground and background samples in semantic segmentation. However,
for our datasets, the proportion of foreground and background is almost the
same, making Dice loss unsuitable. In contrast, the CE loss function regards
each pixel as an independent sample and is more advantageous for our datasets.
After changing the Dice loss to CE loss, the mDice increases by 1.06%. Ablation
experiments demonstrate that each module of our method is effective.

Table 2. Ablation study on ISIC2016. The segmentation performance is measured by
mDice.

Transformer Multi-scale Sum fusion CE loss mDice

0.8634

� 0.8952

� � 0.9322

� � � 0.9326

� � � � 0.9432

5 Conclusion

Our proposed LTUNet is a lightweight model for skin lesion segmentation, which
combines UNet and Transformer to develop an efficient multi-scale method. The
multi-scale feature maps of images are extracted by the inverted residual blocks
of UNet encoder. By concatenating the multi-scale features, we obtain intra-
and inter-scale attention scores through Transformer blocks, which enhances the
globality of the model. Deeper features have more semantic information and a
higher number of channels, which makes them more important after attention.
In addition, the downsampled multi-scale features are used as the input of ViT,
which greatly reduces the number of parameters of the network.

Overall, LTUNet achieves excellent performance while significantly reducing
the number of parameters, making it a promising model for skin lesion segmen-
tation. Compared with 7 baseline methods and 5 state-of-the-art methods, our
method achieves the best performance on both ISIC2016 and ISIC2018 datasets.
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Abstract. Online feature selection for streaming data has attracted
much attention in the field of multi-label learning. Most of the existing
online approaches can efficiently deal with the single-dimensional vari-
ation of a multi-label information system. However, multi-dimensional
variations often occur in real-time streaming applications. Based on the
improved Fisher score model for multi-label learning and feature redun-
dancy analysis using symmetric uncertainty, we propose a novel online
multi-label feature selection framework for both streaming feature and
label spaces. For the situation of streaming features, the proposed frame-
work calculates the Fisher score to obtain the importance of the feature,
determines the redundancy of the newly arrived feature based on the
symmetry uncertainty, and then obtains the position of the feature in
the final feature rank list. For the newly arrived labels, we recalculates
the weights of all current labels and updates the total Fisher score to
update the current feature rank list. In the experiments, we compare
the performance of our approach with four representative online feature
selection algorithms for streaming features and labels, respectively. The
extensive experimental results on nine multi-label benchmark datasets by
using two evaluation metrics commonly used in multi-label classification
demonstrate the effectiveness of the proposed framework.

Keywords: multi-label feature selection · streaming features ·
streaming labels · Fisher score · symmetrical uncertainty

1 Introduction

Nowadays, multi-label learning receives more and more attention, and make a
big splash in various read-world applications (e.g., bioinformatics, text catego-
rization, and music emotion recognition). High-dimensional features, often with
thousands or even tens of thousands of features, have always been a curse for
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multi-label learning [1,2]. Many excellent multi-label feature selection algorithms
that can deal with high-dimensional feature problems have been proposed [3,4].
But in the past decade, with the explosive growth of data and time-sensitive
processing, multi-label learning often requires feature selection can be adapted
in the streaming feature scenario. The streaming features problem refers to the
continuous growth of feature dimensions, features arrive one by one over time
and need to be processed upon arrival. Several approaches to multi-label feature
selection for streaming features have been proposed in the literature. Lin et al.
introduced fuzzy mutual information for multi-label feature selection, and pro-
posed the online feature selection algorithm consists of online relevance analysis
and online redundancy analysis to effectively select the feature subset under the
streaming feature problem [5]. Liu et al. proposed an online multi-label group
feature selection algorithm, which considers the intrinsic relationship between
feature groups in order to construct an online selecting criterion for feature
groups, and then selects the best subset of features based on the interaction
and redundancy of features [6]. Liu et al. proposed an online multi-label stream-
ing feature selection framework based on multi-label neighborhood rough sets,
which includes two components: online importance selection and online redun-
dancy update [7]. Compared with the situation of streaming features, streaming
labels are a relatively novel challenge for multi-label learning. Streaming labels
problem refers to the whole label space is unknown, the label space increases
over time, and the number of labels is variable, or even infinite. In the litera-
ture, a few of multi-label feature selection methods for streaming labels have
been developed. Lin et al. [8] proposed an novel algorithm for multi-label fea-
ture selection in a dynamic label stream, which uses the mRMR strategy to
generate a feature rank list for each arriving label, minimize the overall weight
deviation between the lists and the final list, and finally output the optimized
final feature list. Liu et al. [9] proposed a effective multi-label feature selection
algorithm to create label-specific features based on between-class discrimination
and within-class neighbor identification.

In this paper, based on the improved Fisher score for multi-label learning
and feature redundancy processing using symmetric uncertainty, we propose
a novel framework for multi-label feature selection based on the Fisher score
model, which can perform feature selection effectively under the problem that
both features and labels stream in dynamically. For the newly arrived features,
the framework first calculates the total Fisher score between the feature and the
current label space, and then calculates the symmetric uncertainty between the
feature and the previously arrived feature set, so as to determine the importance
of the feature. For the newly arrived label, the framework calculates the Fisher
score between the current feature set and the newly arrived label to update the
total Fisher score, and performs a new round of feature redundancy processing
to obtain the current feature rank list. The experiments carried out on nine
real-world datasets using two evaluation metrics for multi-label classification
demonstrate the advantages of the proposed approach compared with existing
widely used online multi-label feature selection algorithms.
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2 Proposed Method

2.1 Label-Weight Based Fisher Score

Fisher score is supervised by class labels, which score features in the original
feature space so as to find features with the greatest amount of discriminative
strength [11–13]. The main idea is to identify the strong features with the dis-
tance within the class as small as possible and the distance between classes as
large as possible. The Fisher score of the kth feature on the dataset can be
defined as follows:

FS(k) =
Sk
outer

Sk
inner

, (1)

where Sk
outer =

∑C
i=1

|Ei|
n (μk

i − μk)2 is the sum of the between-class distances of
the kth feature, Sk

inner = 1
n

∑C
i=1

∑
x∈Ei

(xk −μk
i )

2 is the sum of the within-class
distances of the kth feature, Ei is a set of samples of class i on the dataset, μk

i

represents the mean of samples of class i on the kth feature, and μk represents
the mean of samples of all classes on the kth feature, xk represents the value of
instance x on the kth feature.

In the following, we propose an enhanced Fisher score model based on label
weights to fit well with the multi-label learning, which is a natural extension from
single-label learning to multi-label learning. Suppose MDS = <U,F ∪ L> is a
multi-label decision system, in which U = {x1, x2, · · · , xn} are n instances, F =
{f1, f2, · · · , fm} are m features, and L = {l1, l2, · · · , lk} are k labels, respectively.
And labels associations usually are represented as a q-dimensional binary vector
y = (y1, y2, · · · , yk) = {0, 1}k.
Definition 1. Given MDS = <U,F ∪ L> with fk ∈ F and for any li ∈ L, the
sum of the inter-label distances of the feature fk with respect to the label li is
defined as follows:

Sfk,li
outer =

|Eli+|
n

(μfk
li+

− μfk)2 +
|Eli−|

n
(μfk

li− − μfk)2, (2)

where Eli+, Eli− denote the set of samples with and without li, μfk
li+

, μfk
li− denote

the mean of Eli+, Eli− on the feature fk, respectively. And μfk denotes the mean
of the feature fk on the dataset.

Definition 2. Given MDS = <U,F ∪ L> with fk ∈ F and for any li ∈ L, the
sum of the intra-label distances of the feature fk with respect to the label li is
defined as follows:

Sfk,li
inner =

1
n

(
∑

x∈Eli+

(xfk − μfk
li+

)2 +
∑

x∈Eli−

(xfk − μfk
li−)2), (3)

where xfk denotes the value of the sample x on the feature fk.
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Definition 3. Given MDS = <U,F ∪ L> with fk ∈ F and for any li ∈ L, the
Fisher score of the feature fk with respect to the label li is defined as follows:

FS(fk, li) =
Sfk,li
outer

Sfk,li
inner

. (4)

Definition 4. Given MDS = <U,F ∪L>. For ∀li, lj ∈ L, the sum of the inter-
label distances of the label li with respect to the label lj is defined as follows:

S
li,lj
outer =

1
n

(
(nli+

lj+
)2

nlj+
− (nli+)2

n
+

(nli+
lj−)2

nlj−
), (5)

where nlj+, nlj− denote the size of dataset with and without label lj , nli+

denotes the size of dataset with label li, nli+
lj+

denote the size of dataset with

label li and lj , and nli+
lj− denotes the size of dataset with label li and without

label lj .

Definition 5. Given MDS = <U,F ∪L>. For ∀li, lj ∈ L, the sum of the intra-
label distances of the label li with respect to the label lj is defined as follows:

S
li,lj
inner =

1
n

(nli+ −
(nli+

lj+
)2

nlj+
−

(nli+
lj−)2

nlj−
). (6)

Definition 6. Given MDS = <U,F ∪ L>. For ∀li, lj ∈ L, the Fisher score of
li for lj is defined as follows:

FS(li, lj) =
S
li,lj
outer

S
li,lj
inner

. (7)

Definition 7. Given MDS = <U,F ∪ L>. For ∀li ∈ L, the label importance
weight of li is defined as follows:

W (li) =

∑k
j=1 FS(li, lj)

∑k
i=1

∑k
j=1 FS(li, lj)

, (8)

where
∑k

i=1 W (li) = 1.

Definition 8. Given MDS = <U,F ∪ L> with fk ∈ F , the total Fisher score
of the feature fk is defined as follows:

FS(fk) =
|L|∑

i=1

W (li) ∗ FS(fk, li). (9)

The importance weight of a label can reflect the significance of the label and
its association with other labels. The higher the weight of the label, the more
significant the label is in the label space, and the lower the weight of the label,
the less significant the label is in the label space.
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2.2 Symmetrical Uncertainty Based Redundancy Analysis

Fisher score model generates the score for each feature individually, the correla-
tion between features is not considered. If the correlation between two features
is strong, it means that they are redundant with each other, and if their Fisher
scores are both large, it will affect the feature selection result and the classifica-
tion performance. Therefore, we need to consider the mutual redundancy.

The uncertainty of a random variable X = {x1, x2, · · · , xn} is measured by
entropy, defined as follows:

H(X) = −
n∑

i=1

p(xi) log p(xi), (10)

where p(xi) is the probability of xi.
The mutual dependency between random variables can be measured by

mutual information. Given two variables X = {x1, x2, · · · , xn} and Y =
{y1, y2, · · · , ym}, the mutual information between X and Y can be defined as:

MI(X,Y ) = −
n∑

i=1

m∑

j=1

p(xi, yj) log
p(xi|yj)
p(xj)

, (11)

where p(xi, yj) is the joint probability of X and Y , p(xi|yj) is the conditional
probability.

Since mutual information tends to have features with more values, symmetri-
cal uncertainty [14] was proposed to compensate this bias of mutual information,
which is defined as:

SU(X,Y ) =
2MI(X,Y )

H(X) + H(Y )
. (12)

Consider treating features as variables, if the symmetrical uncertainty
SU(fi, fj) between any two random features is large, the two features are con-
sidered redundant, and if the symmetrical uncertainty between any two random
features is small, the two features are considered independent.

Definition 9. The threshold for determining whether features are redundant
with each other is calculated as follows:

θ =
1

|F | · |F |
|F |∑

i=1

|F |∑

j=1

SU(fi, fj), (13)

where the threshold θ is continuously recalculated as the feature space increases.

Definition 10. Given MDS =< U,F ∪ L > and the currently newly arrived
feature fk, fk is redundant if ∃fi ∈ F satisfies the following two conditions:

SU(fk, fi) ≥ θ and FS(fk) < FS(fi). (14)

For the newly arrived feature fk, determine whether there is redundancy with
all previous features in turn until there is another feature fi such that SU(fk, fi)
is greater than the threshold θ. If FS(fk) < FS(fi), then fk is considered to be
a redundant feature, otherwise fi is considered redundant.
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2.3 Algorithmic Framework

In order to solve the feature selection problem in both the streaming labels
and the streaming labels scenario, the proposed algorithm framework, i.e., Algo-
rithm 1, contains two components: online selection for streaming features as
shown in Algorithm 2 and online selection for streaming features as shown in
Algorithm 3. When a new feature arrives, the Fisher score obtained by the previ-
ously features in the current label space remains unchanged, and the previously
obtained feature sort results can still be partially useful. We only need to calcu-
late the Fisher score of the newly arrived feature for the current label space, and
find the position of the newly arrived feature in the previously obtained feature
sort list. The specific details are described on Algorithm 3. Steps 1–3 calculate
the SU of the new feature fk with the feature existed in the previously set, and
steps 4–9 calculate the Fisher score of the arrival feature fk with the current
label space in the FSM , and adds the total Fisher score of the arrived feature
to the SL. Step 10 finds the position in the feature rank R of the arrived feature
fk based on the total Fisher score. In steps 11–16, if the features fj in 1 to i − 1
are determined to be redundant with the arrived feature fk, the arrived feature
fk will be directly inserted into the candidate feature list R

′
according to the

total Fisher score. If the arrived feature fk is not redundant with the features
from 1 to i−1, the arrived feature fk is inserted into the position i of R, but it is
still necessary to determine whether the subsequent features of R are redundant
with the arrived feature fk. Steps 18–25 further determine whether the feature
fj after i is redundant with the arrived feature fk, and if redundant, removes
fj from R and inserts it into the list of feature rank R

′
according to the total

Fisher score.

Algorithm 1. Online multi-label feature selection for both streaming features
and streaming labels (SFSL)
Require: fi: Feature arrives at time ti; li: Label arrives at time ti;
Ensure: R: Features rank list.
1: if fi arrives at time ti then
2: Update R by using OSSF(li);
3: else if li arrives at time ti then
4: Update R by using OSSL(fi);
5: end if
6: return R.

If the new label arrives, the feature ranking result under the new label space
may be inconsistent with the previous feature sorting result under the label
space. We obtain a list of features sorted from the algorithm, which calculates
the Fisher score separately based on all the labels in the current label space,
and then combines the weights of all labels to obtain the total Fisher score, and
finally sorts the features. Therefore, we choose to save the Fisher score of features
for the previous label space, just calculate the Fisher score of features for the
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Algorithm 2. Online selection for streaming features (OSSF)
Require: fk: Feature arrives at time tk;
Ensure: R: Features rank list.
1: for i = 1 → |F | do
2: SUM [fk][fi] ←Calculate the SU between fk and fi according to Eq. (12);
3: end for
4: SLfk ← 0
5: for i = 1 → |L| do
6: FSM [fk][li] ← Calculate the Fisher score between fk and li according to Eq.

(4);
7: SLfk ← SLfk + Wli ∗ FSM [fk][li];
8: end for
9: SL ← SL + SLfk ;

10: i ← Find the position of fk in R according to SL;
11: for j = 1 → i − 1 do
12: if SUM [i][j] > θ then

13: Remove fk from R and insert into R
′

accord to SL;
14: Go to step 27;
15: end if
16: end for
17: insert fi into R;
18: j = i + 1
19: while R[j] is not the last feature of the R do
20: if SUM [i][j] > θ then

21: Remove fj from R and insert into R
′

accord to SL;
22: else
23: j ← j + 1;
24: end if
25: end while
26: return R + R

′
.

newly arrived label, and then update the total Fisher score. The specific details
are described on Algorithm 2. Steps 1–4 update the weights of all labels. Steps
5–7 calculate all Fisher score of features for newly arrived label li, and steps
8–12 update the rank list SL for all features. Steps 13–25 check the redundancy
of features. According to SL, the feature list R is ranked, and R

′
is used as

the candidate feature list to save the features that are judged to be redundant.
Traversing each feature fi of R, if fj satisfies SUM [i][j] > θ in 1 through i − 1,
it means that fi is redundant, and we remove the feature fi from R and add it
to R

′
.

3 Experiments

In order to fully demonstrate the performance of SFSL, we designed experiments
in the scenarios of streaming features, streaming labels, simultaneous streaming
features and labels. For the streaming features, we chose the MSFS [5], OM-
NRS [7] as the compared algorithms, and for the streaming labels, we chose the
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Algorithm 3. Online selection for streaming labels (OSSL)
Require: li: Label arrives at time ti;
Ensure: R: Features rank list.
1: Calculate the entropy of li;
2: for i = 1 → |L| do
3: Wli ← Update the weight of li according to Eq. (8);
4: end for
5: for k = 1 → |F | do
6: FSM [fk][li] ← Calculate the Fisher score between fk and li according to Eq.

(4);
7: end for
8: for k = 1 → |F | do
9: for i = 1 → |L| do

10: SL[fk] ← SL[fk] + Wli ∗ FSM [fk][li];
11: end for
12: end for
13: R ← Sort SL and get the feature rank list from SL;
14: i = 2, R

′
= ∅;

15: while R[i] is not the last feature of the R do
16: for j = 1 → i − 1 do
17: if SUM [i][j] > θ then

18: Remove fi from R and add to R
′
;

19: i ← i − 1;
20: break;
21: end if
22: end for
23: i ← i + 1;
24: end while
25: return R + R

′
.

MLFSL [8] and FSSL [9] as the compared algorithms. Nine datasets from the
Mulan Library were used to demonstrate the performance of algorithms. The
specific description of these data sets is fully displayed in the Table 1. Prepro-
cess the dataset by removing the rows containing the missing values before the
experiment. The proposed algorithm, SFSL, selects 30% of the features sorted
by the features obtained after each running. For MSFS, the parameter δ was
set to be 0.08 and the significance levels δ in OM-NRS was set to be 0.1. For
MLFSL, we set the labels arrived one by one. For FSSL, features with continuous
value were discretized into 2 folds by using a monowidth strategy. In addition,
ML-kNN was selected as the evaluation classifier, and the number of nearest
neighbors was set to 10.

The average precision (AP) and hamming loss (HL) proposed in [10]
were used to evaluate the performance of multi-label classification. Let T =
{(xi, Yi)|1 ≤ i ≤ N} be the test set where Yi ∈ L is the label subset. AP
evaluates the average fraction of labels ranked above a particular label y ∈ Yi,

which is defined as AP = 1
N

∑N
i=1

1
|Yi|

∑
y∈Yi

|{y′ |ranki(y
′
)≤ranki(y),y

′∈Yi}|
ranki(y)

, where
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Table 1. Characteristics of the experimental datasets.

Datasets Characters

Instances Nominal Numeric Labels Cardinality

Birds 645 2 258 19 1.014

Cal500 502 0 68 174 26.044

Emotions 593 0 72 6 1.869

Enron 1702 1001 0 53 3.378

Flags 194 9 10 7 3.392

Genbase 662 1186 0 27 1.252

Medical 978 1449 0 45 1.245

Scene 2407 0 294 6 1.074

Yeast 2417 0 103 14 4.237

ranki(y) is the rank of label y ∈ L predicted by the learner for xi. HL evaluates
the average time of misclassification in each instance-label pair. Which is defined
as HL = 1

N

∑N
i=1

|Yi⊕h(xi)|
q , where operator ⊕ is XOR, and h(xi) denotes the

predicted label set for instance xi.
Firstly, we compared the proposed SFSL algorithm with the existing online

multi-label feature selection algorithms for streaming features, i.e., MSFS and
OM-NRS. The classification results of AP and HL by using ML-kNN on 9
datasets with the dynamic variation of features are shown in Table 2. From the
experimental results, it can be find that the proposed algorithm achieved good
classification results on 9 multi-label datasets. For indicators AP, SFSL achieved
optimal performance on 5 datasets and suboptimal performance on 3 remaining
datasets in the remaining datasets. For indicators HL, SFSL achieved optimal
performance on 5 datasets.

Table 2. Comparison among online feature selection methods with streaming features.

Datasets AP(↑) HL(↓)

MSFS OM-NRS SFSL MSFS OM-NRS SFSL

Birds 0.2484(3) 0.2935(1) 0.2486(2) 0.0539(3) 0.0513(1) 0.0535(2)

Cal500 0.3235(2) 0.3184(3) 0.3265(1) 0.1466(2) 0.1477(3) 0.1463(1)

Emotions 0.6653(2) 0.6698(1) 0.6498(3) 0.2633(2) 0.2592(1) 0.2761(3)

Enron 0.3880(1) 0.3016(3) 0.3774(2) 0.0545(2) 0.0522(1) 0.0565(3)

Flags 0.7671(2) 0.6916(3) 0.7688(1) 0.2950(3) 0.2868(2) 0.2865(1)

Genbase 0.4822(3) 0.7285(1) 0.6972(2) 0.0309(3) 0.0163(1) 0.0181(2)

Medical 0.3723(3) 0.4754(2) 0.4825(1) 0.0223(3) 0.0206(2) 0.0202(1)

Scene 0.7139(3) 0.7278(2) 0.7485(1) 0.1221(3) 0.1144(2) 0.1096(1)

Yeast 0.6622(3) 0.6628(2) 0.6694(1) 0.2236(3) 0.2234(2) 0.2188(1)

Mean Ranks 0.4820(2.5) 0.5253(1.9) 0.5250(1.6) 0.1147(2.5) 0.1113(1.9) 0.1124(1.6)
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Secondly, we compare the SFSL with algorithms of MLFSL and FSSL in
the scenario of streaming labels. The classification results of AP and HL are
presented in Table 3. From the experimental results, it can be seen that our
algorithm has achieved good classification results on 9 multi-label datasets. And,
SFSL obtained the best performance on 6 datasets in terms of both AP and HL.
Hence, we can conclude that SFSL is clearly superior to the existing online
algorithms FSSL and MLFSL with streaming labels.

Table 3. Comparison among online feature selection methods with streaming labels.

Datasets AP(↑) HL(↓)

FSSL MLFSL SFSL FSSL MLFSL SFSL

Birds 0.2522(2) 0.2428(3) 0.2714(1) 0.0538(2) 0.0543(3) 0.0536(1)

Cal500 0.3211(3) 0.3257(2) 0.3320(1) 0.1464(3) 0.1461(2) 0.1453(1)

Emotions 0.6701(2) 0.6707(1) 0.6497(3) 0.2579(1) 0.2640(2) 0.2786(3)

Enron 0.4503(1) 0.4257(2) 0.3661(3) 0.0522(1) 0.0538(2) 0.0575(3)

Flags 0.7587(3) 0.7629(2) 0.7733(1) 0.2978(3) 0.2897(2) 0.2690(1)

Genbase 0.7082(3) 0.8081(2) 0.8508(1) 0.0186(3) 0.0139(2) 0.0096(1)

Medical 0.4804(2) 0.4502(3) 0.6323(1) 0.0209(2) 0.0209(2) 0.0156(1)

Scene 0.7640(2) 0.7666(1) 0.7446(3) 0.1040(2) 0.1028(1) 0.1114(3)

Yeast 0.6698(2) 0.6696(3) 0.6737(1) 0.2188(3) 0.2169(2) 0.2161(1)

Mean Ranks 0.5395(2.1) 0.5449(2.1) 0.5651(1.8) 0.1091(2.1) 0.1091(2.0) 0.1110(1.8)

Considering the existing online algorithms are not suitable for dealing with
the problem of streaming features and streaming labels at the same time, we
re-run these algorithms at each time when a new feature or label is arrived for
comparison. The classification results of SFSL and the comparison algorithms are
shown in Figs. 1 and 2. From the results, it can be seen that the proposed SFSL
has achieved good classification results. For example, on the dataset bird, SFSL
always remain optimal on indicators AP and HL. On the datasets emotions,
scene, and yeast, SFSL is the fastest one to reach the best level in terms of
the indicators AP and HL. The performance of SFSL is on average level on
the datasets cal500 and flag, but is the fastest algorithm for selecting excellent
features on the dataset cal500 in terms of HL.
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(a) Birds (b) Cal500

(c) Emotions (d) Flags

(e) Scene (f) Yeast

Fig. 1. Comparative results of indicator AP among five algorithms with streaming
features and labels.

(a) Birds (b) Cal500

(c) Emotions (d) Flags

(e) Scene (f) Yeast

Fig. 2. Comparative results of indicator HL among five algorithms with streaming
features and labels.
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4 Conclusions

The conventional multi-label selection algorithm is not applicable to the chal-
lenge of streaming features and streaming labels concurrently. In view of this
problem, based on the improved Fisher score model and symmetric uncertainty,
this paper proposed a multi-label feature selection algorithm framework suit-
able for unknown feature space and label space, which consists of two parts:
online streaming feature selection and streaming label feature selection. For
newly arrived features, the online streaming feature selection part obtains the
importance of the feature by calculating the Fisher score of the feature and the
current label space, and calculates the symmetric uncertainty between the fea-
ture and all the features in the previous feature space to determine whether the
feature is redundant, and finally obtains the position of the feature in the final
feature rank list. For newly arrived label, the streaming labels feature selection
part recalculates the weights of all current labels, calculates the Fisher scores of
all current features and the label, and updates them to the total Fisher score,
and re-obtains the current feature rank list after sorting and feature redundancy
processing. Extensive experiments in comparison with existing online multi-label
feature selection methods validated the performance of the proposed method.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China (Nos. 62076171, 62376230), and the Natural Science Foundation of
Sichuan Province (2022NSFSC0898).
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Abstract. Simulation now plays an important role in the development
of autonomous driving algorithms as it can significantly reduce the eco-
nomical cost and ethical risk of real-world testing. However, building
a high-quality driving simulator is not trivial as it calls for realistic
interactive behaviors of road agents. Recently, several simulators employ
interactive trajectory prediction models learnt in a data-driven manner.
While they are successful in generating short-term interactive scenarios,
the simulator quickly breaks down when the time horizon gets longer.
We identify the reason behind: existing interactive trajectory predictors
suffer from the out-of-domain (OOD) problem when recursively feeding
predictions as the input back to the model. To this end, we propose to
introduce a tailored model predictive control (MPC) module as a res-
cue into the state-of-the art interactive trajectory prediction model M2I,
forming a new simulator named M2Sim. Notably, M2Sim can effectively
address the OOD problem of long-term simulation by enforcing a flexi-
ble regularization that admits the replayed data, while still enjoying the
diversity of data-driven predictions. We demonstrate the superiority of
M2Sim using both quantitative results and visualizations and release our
data, code and models: https://github.com/0nhc/m2sim.

Keywords: Autonomous Driving · Interactive Simulator · MPC

1 Introduction

Collecting data for dangerous driving scenarios is challenging, making simulation
the preferred choice for algorithm development. Thus, building a high-quality
driving simulator with realistic interactive behaviors is crucial.

Figure 1-a shows a replayed data clip at an intersection, where the red line
represents the future trajectory of a chosen ego car. Figure 1-b demonstrates the
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drawback of a non-interactive simulator. The ego car, controlled by a to-be-tested
algorithm, collides with other cars following the replayed data.

To address this issue, recent works integrate interactive trajectory predictors
[1–4], using neural networks to capture the diverse distribution of real-world
interactive trajectories. However, they encounter the out-of-distribution (OOD)
[5] problem in long-term simulation due to their recursive nature [6]. As shown
in Fig. 1-c, this leads to the unrealistic long-term simulation.

To alleviate the OOD issue, we propose using model predictive control (MPC)
[7–12] as a rescue mechanism (Fig. 1-d). MPC introduces the replayed trajectory
as a flexible regularization term, and strictly following the replayed data. This
would reduce the simulator to a non-interactive one (Fig. 1-b). Thus, the outputs
of the interactive trajectory predictor serve as another fundamental regulariza-
tion term, offering diversity to the system.

(a) Data Replay (b) Collision in Non-interactive Simulation

(c) Unrealistic Long-term Interactive Simulation (d) MPC to the Rescue

Fig. 1. (a) Data replay. (b) Collisions happen in a non-interactive simulator. (c) Other
cars react according to a learned model. In the long term, their trajectories become
unrealistic. (d) We leverage MPC to address the OOD issue in (c).

2 Method

As shown in Fig. 2-a, our simulator M2Sim addresses the OOD problem by
integrating an MPC module with a data-driven interactive trajectory predic-
tor. Here, we choose the state-of-the-art predictor M2I [2] originally trained on
Waymo Open Motion Dataset (WOMD) [13]. In the MPC formulation, we add
both M2I’s output trajectories and ground truth trajectories (scenarios with
collisions happen) to the optimization problem as constraints, which enforces a
flexible regularization that admits the replayed ground truth while still enjoying
the diversity of data-driven predictions.
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As shown in Fig. 2-b, we design an MPC controller considering both M2I’s
output trajectories and ground truth trajectories as constraints for the opti-
mization problem. In addition, MPC comes with a kinematic model, which also
ensures the physical plausibility of its output trajectories.

We denote an autonomous vehicle(AV)’s state of [coordinate x, coordinate y,
heading angle, speed] by z(τ) = [x(τ), y(τ), yaw(τ), v(τ)], and its control input of
[acceleration, steering angle] by u(τ) = [a(τ), δ(τ)]. Then we denote the predic-
tion horizon by Tp ∈ N. Thus, the problem can be defined as solving the optimal
control input u(τ) = [a(τ), δ(τ)] at specific time τ . Our MPC formulations are
as follows:

Optimization Problem Setup. At time τ , we denote control inputs of U(τ) ∈
Ub ⊂ R

2TP and corresponding states of Z(τ) ∈ Zb ⊂ R
4Tp :

U(τ) = [u(τ), ..., u(τ + Tp − 1)]T , Ub = [umin, umax]

Z(τ) = [z(τ + 1), ..., z(τ + Tp)]T , Zb = [zmin, zmax]

Our MPC module considers both M2I’s output trajectories and ground
truth trajectories as inputs, while taking smoothness and control efforts into
account. Let ‖ · ‖denotes Euclidean Norm, we design the following cost function
J(Z(τ), U(τ)):

J =
Tp∑

τ=1

λz1‖z(τ) − zref1(τ)‖2 +
Tp∑

τ=1

λz2‖z(τ) − zref2(τ)‖2 (State Error)

+
Tp−1∑

τ=0

λu‖u(τ)‖2 (Control Effort)

+
Tp−1∑

τ=0

λΔu‖u(τ) − u(τ − 1)‖2, (Smoothness)

where zref1 and zref2 denotes trajectories provided by M2I and ground truth
respectively, and all λ denotes constant values corresponding to their weights in
the cost function.

Thus, the optimization problem can be defined as solving:

U∗ � arg min
U

J(Z(τ), U(τ))

System Modeling. Motivated by [14], the car can be defined as a bicycle model
with state z(τ) and control input u(τ) at specific time τ . Based on the bicycle
model’s kinematics, we can get the differential equation of z and u:

ż =

⎡

⎢⎢⎣

ẋ
ẏ
˙yaw
v̇

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

v × cos(yaw)
v × sin(yaw)

v×tan(δ)
l
a

⎤

⎥⎥⎦ ,
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Short-term (6s) Mid-term (12s) Long-term (18s)

ITP

MPC module MPC module MPC module

ITP

ITP : Interactive Trajectory Predictor (recursively)

(a)

: Original Trajectory
: M2I Trajectory
: MPC Trajectory

: MPC Constraints
: MPC Constraints
Possible Collision

(b)

Fig. 2. (a) The structure of M2Sim. M1Sim (M2I without the MPC module), denoted
by the flow of pink arrows, can produce reasonable results in the short term, but its
behaviors become unrealistic in the long term due to recursively feeding predictions
into the model. However M2Sim (M2I with the MPC module), denoted by the flow of
blue arrows, addresses the OOD problem by integrating the MPC module. Note that we
conceptually use the same image to present recursively predicted results in red boxes,
which are actually different for M1Sim and M2Sim. (b) The MPC module considers
two trajectories as constraints to the optimization problem. (Color figure online)

where l is the distance between the front and rear wheels of the vehicle. Then
we linearize and discretize the kinematic model to obtain the equality constraint
for the optimization problem. Suppose at time τ , we observed states ẑ(τ) and
control inputs û(τ) of the ego vehicle, then we can infer its future state:

ẑ(τ + 1) = A × ẑ(τ) + B × û(τ) + C,

where A, B and C are:

A =

⎡

⎢⎢⎣

1 0 −v × sin(yaw) × dt cos(yaw) × dt
0 1 v × cos(yaw) × dt sin(yaw) × dt

0 0 1 tan(δ)×dt
l

0 0 0 1

⎤

⎥⎥⎦ ,
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B =

⎡

⎢⎢⎣

0 0
0 0
0 v

l×cos2(δ)

1 0

⎤

⎥⎥⎦ , C =

⎡

⎢⎢⎣

v × sin(yaw) × yaw × dt
−v × cos(yaw) × yaw × dt

− v×δ
l×cos2(δ) × dt

0

⎤

⎥⎥⎦

At last the optimization problem can be solved with all these constraints.
We use cvxpy to get optimal control inputs.
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Abstract. Simulation now plays an important role in the development
of autonomous driving algorithms as it can significantly reduce the eco-
nomical cost and ethical risk of real-world testing. However, building
a high-quality driving simulator is not trivial as it calls for realistic
interactive behaviors of road agents. Recently, several simulators employ
interactive trajectory prediction models learnt in a data-driven manner.
While they are successful in generating short-term interactive scenarios,
the simulator quickly breaks down when the time horizon gets longer.
We identify the reason behind: existing interactive trajectory predictors
suffer from the out-of-domain (OOD) problem when recursively feeding
predictions as the input back to the model. To this end, we propose to
introduce a tailored model predictive control (MPC) module as a res-
cue into the state-of-the art interactive trajectory prediction model M2I,
forming a new simulator named M2Sim. Notably, M2Sim can effectively
address the OOD problem of long-term simulation by enforcing a flexi-
ble regularization that admits the replayed data, while still enjoying the
diversity of data-driven predictions. We demonstrate the superiority of
M2Sim using both quantitative results and visualizations and release our
data, code and models: https://github.com/0nhc/m2sim.

Keywords: Autonomous Driving · Interactive Simulator · MPC

1 Introduction

Autonomous driving [1–5] is one of the most important AI applications nowa-
days. Collecting data for dangerous driving scenarios is challenging, making sim-
ulation the preferred choice for algorithm development. Thus, building a high-
quality driving simulator with realistic interactive behaviors is crucial.

Figure 1-a shows a replayed data clip at an intersection, where the red line
represents the future trajectory of a chosen ego car. Figure 1-b demonstrates the
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drawback of a non-interactive simulator. The ego car, controlled by a to-be-tested
algorithm, collides with other cars following the replayed data.

To address this issue, recent works integrate interactive trajectory predictors
[6–9], using neural networks to capture the diverse distribution of real-world
interactive trajectories. However, they encounter the out-of-distribution (OOD)
[10] problem in long-term simulation due to their recursive nature [11]. As shown
in Fig. 1-c, this leads to the unrealistic long-term simulation.

To alleviate the OOD issue, we propose using model predictive control (MPC)
[12–17] as a rescue mechanism (Fig. 1-d). This module introduces the replayed
trajectory as a flexible regularization term. And the interactive trajectory pre-
dictor outputs serve as another fundamental regularization term, which offers
diversity to the system. Other tailored add-ons like control effort and smooth-
ness terms make the behavior of our agents more realistic.

In one word, the contribution of this study is a simulation system combin-
ing the advantages of data-driven interactive trajectory predictors and a tailored
model predictive controller. To the best of our knowledge, M2Sim is the first sys-
tem that demonstrates realistic long-term interactive driving simulation results
in the literature.

(a) Data Replay (b) Collision in Non-interactive Simulation

(c) Unrealistic Long-term Interactive Simulation (d) MPC to the Rescue

Fig. 1. (a) Data replay. (b) Collisions happen in a non-interactive simulator. (c) Other
cars react according to a learned model. In the long term, their trajectories become
unrealistic. (d) We leverage MPC to address the OOD issue in (c).

2 Related Work

2.1 Interactive Trajectory Prediction

For interactive trajectory prediction, some works utilize graph neural networks
to learn the interaction relationship between different vehicles [18,19], and other
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works use the attention in transformer to model the interaction relationship
between vehicles [20,21]. M2I [7], which is the engine of choice in our simula-
tor for its state-of-the-art performance, uses both rasterized map representation
and polyline representation, and integrates graph neural network and attention
mechanism for interactive prediction. Since it utilizes future trajectories of the
ego vehicle, it has good prediction accuracy and high computational efficiency.
However learning-based approaches lack interpretability and may break specific
physical constraints. What’s worse, their behaviors become unpredictable and
unreliable when the time horizon gets long.

2.2 Traffic Simulation

As for simulating interactive behaviors, autonomous driving simulators such as
SUMO [22], CityFlow [23], CommonRoad [24] focus on multi-agent traffic flow
simulation, but due to the lack of realistic traffic data, they cannot simulate traf-
fic flow with interactive behaviors. Recently some works such as TrafficSim [25],
SimNet [26], etc. learn from data collected in real world to model interactive multi-
agent behaviors. These approaches only learn from all the agents’ past behaviors
at once, without considering their future interactions. InterSim [27] simplifies the
prediction of future interactions into a binary classification problem, which has
better interpretability on relationship prediction and higher computational effi-
ciency than counterparts using latent-variable [25] or cost functions [28] for to
model future collisions. However when we test these learning-based approaches,
we found them quickly breaking down when the time horizon of traffic scenarios
gets longer, which is caused by the out-of-domain(OOD) problem [10].

3 Method

3.1 Overview

As shown in Fig. 2, our simulator M2Sim addresses the OOD problem by inte-
grating an MPC module with a data-driven interactive trajectory predictor.
Here, we choose the state-of-the-art predictor M2I [7]. In the MPC formulation,
we add both M2I’s output trajectories and ground truth trajectories (explained
later) to the optimization problem as constraints, which enforces a flexible regu-
larization that admits the replayed ground truth while still enjoying the diversity
of data-driven predictions.

3.2 M2I

As shown in Fig. 3, the trajectory predictor has three modules: relation predictor,
marginal trajectory predictor, and conditional trajectory predictor. The relation
predictor predicts whether each road agent will be an influencer (and yield), a
reactor (and be yielded), or neither. Then the marginal trajectory predictor of it
predicts the future 8 s of trajectories of all road agents without considering their
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Short-term (6s) Mid-term (12s) Long-term (18s)

ITP

MPC module MPC module MPC module

ITP

ITP : Interactive Trajectory Predictor (recursively)

Fig. 2. The structure of M2Sim. M1Sim (M2I without the MPC module), denoted
by the flow of pink arrows, can produce reasonable results in the short term, but its
behaviors become unrealistic in the long term due to recursively feeding predictions
into the model. As shown in the enlarged pink box, agents form a cluster in the long
term. However M2Sim (M2I with the MPC module), denoted by the flow of blue arrows,
addresses the OOD problem by integrating the MPC module. Note that we conceptually
use the same image to present recursively predicted results in red boxes, which are
actually different for M1Sim and M2Sim. (Color figure online)

Conditional 
Predictor

Marginal 
Predictor

Relation
Predictor

Influencer

Reactor

Sample
Selector

Joint Samples

Influencer Traj
Reactor Traj

Fig. 3. A brief recap of the structure of M2I, which is our data-driven interactive
trajectory prediction engine. It outputs several trajectories with confidence values, so
that we can randomly sample from them to generate diverse trajectories.

potential interactions. Finally, with the predicted relations and marginal trajec-
tories, its conditional trajectory predictor modifies the trajectories of reactors
to account for their interactions with influencers.

In addition to the three modules for predicting relations and trajectories,
it also has a module for selecting trajectories. Specifically, for N single vehicle
trajectories, we have N2 pairs of interactions. The sample selector outputs the
top K out of the N2 pairs based on the ranking of confidence scores. We can
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generate diverse trajectories with interactive trajectory predictor by selecting
trajectories randomly according to the confidence values.

The interactive trajectory predictor takes 1.1 s of past trajectories and pre-
dicts 8 s of future trajectories (represented as a set of coordinates x, y). By dif-
ferential operation, we can get yaw and v from discrete coordinates x, y of future
trajectories. The final output trajectory can be described as zref = [x, y, yaw, v]
denoting [coordinate x, coordinate y, heading angle, speed].

3.3 MPC

As shown in Fig. 4, we design an MPC controller considering both M2I’s output
trajectories and ground truth trajectories as constraints for the optimization
problem. In addition, MPC comes with a kinematic model, which also functions
as a constraint and ensures the physical plausibility of its output trajectories.

We denote an autonomous vehicle (AV)’s state of [coordinate x, coordinate y,
heading angle, speed] by z(τ) = [x(τ), y(τ), yaw(τ), v(τ)], and its control input of
[acceleration, steering angle] by u(τ) = [a(τ), δ(τ)]. Then we denote the predic-
tion horizon by Tp ∈ N. Thus, the problem can be defined as solving the optimal
control input u(τ) = [a(τ), δ(τ)] at specific time τ . Our MPC formulations are
as follows:

: Original Trajectory
: M2I Trajectory
: MPC Trajectory

: MPC Constraints
: MPC Constraints
Possible Collision

Fig. 4. The MPC module considers both the original replay trajectory and the pre-
dicted interactive trajectory as constraints to the optimization problem.

Optimization Problem Setup. At time τ , we denote control inputs of U(τ) ∈
Ub ⊂ R

2TP and corresponding states of Z(τ) ∈ Zb ⊂ R
4Tp :

U(τ) = [u(τ), ..., u(τ + Tp − 1)]T , Ub = [umin, umax]

Z(τ) = [z(τ + 1), ..., z(τ + Tp)]T , Zb = [zmin, zmax]

Our MPC module considers both M2I’s output trajectories and ground
truth trajectories as inputs, while taking smoothness and control efforts into
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account. Let ‖ · ‖ denotes Euclidean Norm, we design the following cost function
J(Z(τ), U(τ)):

J =
τ+Tp∑

t=τ+1

λz1‖z(t) − zref1(t)‖2 +
τ+Tp∑

t=τ+1

λz2‖z(t) − zref2(t)‖2 (State Error)

+
τ+Tp−1∑

t=τ

λu‖u(t)‖2 (Control Effort)

+
τ+Tp−1∑

t=τ

λΔu‖u(t) − u(t − 1)‖2, (Smoothness)

where zref1 and zref2 denotes trajectories provided by M2I and ground truth
trajectories respectively, and all λ denotes constant values corresponding to their
weights in the cost function.

Thus, the optimization problem can be defined as solving:

U∗ � arg min
U

J(Z(τ), U(τ))

System Modeling. Motivated by [29], the car can be defined as a bicycle model
with state z(τ) and control input u(τ) at specific time τ . Based on the bicycle
model’s kinematics, we can get the differential equation of z and u:

ż =

⎡

⎢⎢⎣

ẋ
ẏ
˙yaw
v̇

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

v × cos(yaw)
v × sin(yaw)

v×tan(δ)
l
a

⎤

⎥⎥⎦ ,

where l is the distance between the front and rear wheels of the vehicle. Then
we linearize and discretize the kinematic model to obtain the equality constraint
for the optimization problem. Suppose at time τ , we observed states ẑ(τ) and
control inputs û(τ) of the ego vehicle, then we can infer its future state:

ẑ(τ + 1) = A × ẑ(τ) + B × û(τ) + C,

where A, B and C are:

A =

⎡

⎢⎢⎣

1 0 −v × sin(yaw) × dt cos(yaw) × dt
0 1 v × cos(yaw) × dt sin(yaw) × dt

0 0 1 tan(δ)×dt
l

0 0 0 1

⎤

⎥⎥⎦ ,

B =

⎡

⎢⎢⎣

0 0
0 0
0 v

l×cos2(δ)

1 0

⎤

⎥⎥⎦ , C =

⎡

⎢⎢⎣

v × sin(yaw) × yaw × dt
−v × cos(yaw) × yaw × dt

− v×δ
l×cos2(δ) × dt

0

⎤

⎥⎥⎦
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At last the optimization problem can be solved with all these constraints.
We use a off-the-shelf toolbox cvxpy to get optimal control inputs.

3.4 Collision Avoidance

To reduce collisions, integrating inequality constraints into the optimization
problem is a natural choice. Inequality constraints such as the Euclidean dis-
tance between the ego vehicle and its surrounding vehicles may be useful for
collision avoidance [30]. However, too many inequality constraints can cause
high computational cost in optimization.

Thus, we designed a collision avoidance mechanism outside the optimization
process by only changing the acceleration of control inputs. Suppose we have the
ego vehicle of state z(τ) = [x(τ), y(τ), yaw(τ), v(τ)] and surrounding vehicles of
states zi(τ) = [xi(τ), yi(τ), yawi(τ), vi(τ)], i ∈ N , corresponding to [coordinate
xy, heading angle, speed] at time τ , then we can get the final control inputs
u(τ) = [a(τ), δ(τ)] corresponding to [acceleration, steering angle] through
Algorithm 1.

Algorithm 1: Framework of Collision Avoidance.
Input: Ego Vehicle of State: z(τ); Number of Surrounding Vehicles N;

Surrounding Vehicles of States: zi(τ) where i ∈ N ; Safety Distance D;
Coordinate Vector �s; Constant Value λf

Output: Control Inputs u(τ) of the Ego Vehicle

Get z(τ), zi(τ), i ∈ N at time τ ; i = 0; �s = [0, 0]; foreach i in N do
Calculate the Euclidean distance di between the
ego vehicle and the surrounding vehicle:
di =

√
[x(τ) − xi(τ)]2 + [y(τ) − yi(τ)]2

if di <D then
Sum up force vector �s.

�si = �[xi(τ), yi(τ)] − �[x(τ), y(τ)]
�s = �s + �si

The unit vector �e of the ego vehicle:
�e = v(τ) · [cos(yaw(τ)), sin(yaw(τ))]

The projection p of �s in the direction of �e: p =
λf

�s·�e
if p <0 then

Only consider the case of deceleration.
a(τ) = a(τ) + p
Limit a(τ) within its boundary.
a(τ) = max(a(τ), amin)

Return u(τ) = [a(τ), δ(τ)]
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4 Experiment

In this section, we introduce model details, and provide quantitative results and
qualitative examples of different simulators to demonstrate the performance of
M2Sim.

4.1 Model Details

We used the original M2I model trained on Waymo Open Motion Dataset
(WOMD) from our baseline InterSim for evaluation.

As for the MPC and collision avoidance module, we initialize default constant
values of the optimization problem U∗ � arg minU J(Z(τ), U(τ)) where λz1 =
λz2 = 0.5, λu = λΔu = 1.0. And in the collision avoidance algorithm, we initialize
safety distance with D = 8 and λf = 1.0. We tuned these hyperparameters on a
small validation set.

4.2 Simulation Task

The simulation task is to test the performance of agents in M2Sim and our base-
line InterSim [27] on driving scenarios generated by editing the data replay clips
to make collisions happen (as ground truth trajectories). The editing process
involves selecting a random car as the ego vehicle, generate a random trajectory
for it using the marginal predictor in Fig. 3.

The reason why we choose InterSim is, InterSim uses the state-of-the-art
interactive prediction model M2I, and the difference between InterSim and
M2Sim is, M2Sim has an MPC and collision avoidance module in addition to
the M2I model. Because InterSim only uses an M2I model for predicting trajec-
tories, while M2Sim leverages both an M2I model and an MPC module, we call
our re-implemented InterSim as M1Sim.

4.3 Quantitative Results

Table 1. Performance of interactive prediction.

Method minADE ↓ minFDE ↓ missRate ↓ mAP ↑
M1Sim (re-implemented InterSim) 9.349 25.917 0.906 0.004

M2Sim 1.089 2.161 0.154 0.175

Motivated by [7,31], we use these metrics to evaluate the performance of
simulators, including:
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– minADE (Minimum Average Displacement Error). The minADE metric
computes the mean of the L2 norm between the ground truth future tra-
jectory and the closest predicted output trajectory from M2I out of K = 6
(number of M2I’s outputs) samples.

– minFDE (Minimum Final Displacement Error). The minFDE is the same as
minADE to compute the displacement error, but the minFDE only computes
the displacement of the final positions of ground truth trajectory and M2I’s
predicted trajectory.

– missRate (Miss Rate). A miss is defined as the state when none of the indi-
vidual K predictions for an object are within a given lateral and longitudinal
threshold of the ground truth trajectory. The missRate is calculated as the
total number of misses divided by K = 6 (number of M2I’s outputs) for M2I.

– mAP (Mean Average Precision). The mAP computes the area under the
precision-recall curve of the prediction samples by applying confidence score
thresholds.

Table 2. Different types of collision rate for M1Sim and M2Sim.

Method Agent-agent ↓ Agent-environment ↓
M1Sim (re-implemented InterSim) 0.343 0.447

M2Sim 0.075 0.326

The results are summarized in Table 1 representing how the simulators’
behaviors adhere to the ground truth data replay. We observed that M2Sim
achieves the lowest errors, the lowest miss rate and the highest precision in
predicting trajectories. InterSim, also utilizing an M2I model, suffers from the
out-of-domain (OOD) problem in our long-term experiments. As the simulation
time gets longer, environmental vehicles in InterSim will begin to deviate from
ground truth trajectories, collide with each other, and even drive out of the lane.
But we add an MPC controller along with a collision avoidance module to pro-
cess M2I’s output trajectories, so that vehicles’ trajectories are constrained to
be as close as possible to ground truth trajectories.

4.4 Qualitative Examples

In Fig. 5, we present two representative scenarios to show our method’s per-
formance of long-term simulation. We present M2Sim without MPC module as
M1Sim. In both scenarios, M1Sim suffers from the out-of-domain (OOD) problem
when recursively feeding predictions as the input back to the model, failing to
keep environmental vehicles from tracking ground truth trajectories and avoiding
collisions over time. But M2Sim achieves to keep track of environmental vehi-
cles’ original trajectories and avoid collisions by adding an MPC and collision
avoidance module with original trajectories as optimization constraints.
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Fig. 5. Examples of M2Sim successfully keeping environmental vehicles from tracking
their original trajectories and avoiding collisions. Failures of keeping original trajec-
tories with weird heading angles (the OOD problem) are highlighted in yellow boxes.
Collisions are highlighted in red boxes. (Color figure online)

4.5 Ablation Study

We present ablation study on the MPC controller along with the collision avoid-
ance module by comparing the collision rate of M2Sim and M1Sim for the same
simulation task. The results are summarized in Table 2. The agent-agent colli-
sion rate computes the number of colliding agent pairs divided by the number
of simulated agents. Similarly, the agent-environment collision rate computes
the number of agents colliding with lanes or pedestrians divided by the number
of simulated agents. It is not surprising to see M2Sim achieves better perfor-
mance due to the constraints of following ground truth trajectories and collision
avoidance mechanism.

5 Conclusion

In conclusion, we present an interactive traffic simulator with an advanced inter-
active trajectory predictor (M2I) and address the OOD problem in long-term
simulation. M2Sim improved its performance by adding an MPC controller along
with a collision avoidance module. In the experiments, we test M2Sim and Inter-
Sim on the same simulation task to demonstrate the superiority of our M2Sim.
In the ablation study, we show the effectiveness of our proposed MPC module.
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Limitations. However, to avoid too much computational consumption, our pro-
posed MPC module does not consider obstacle avoidance in the cost function.
Further research could go deeper in optimization.
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Abstract. Multimodal Sentiment Analysis (MSA) aims to mine senti-
ment information from text, visual, and acoustic modalities. Previous
works have focused on representation learning and feature fusion strate-
gies. However, most of these efforts ignored the disparity in the semantic
richness of different modalities and treated each modality in the same
manner. That may lead to strong modalities being neglected and weak
modalities being overvalued. Motivated by these observations, we pro-
pose a Text-oriented Modality Reinforcement Network (TMRN), which
focuses on the dominance of the text modality in MSA. More specifically,
we design a Text-Centered Cross-modal Attention (TCCA) module to
make full interaction for text/acoustic and text/visual pairs, and a Text-
Gated Self-Attention (TGSA) module to guide the self-reinforcement of
the other two modalities. Furthermore, we present an adaptive fusion
mechanism to decide the proportion of different modalities involved in
the fusion process. Finally, we combine the feature matrices into vectors
to get the final representation for the downstream tasks. Experimental
results show that our TMRN outperforms the state-of-the-art methods
on two MSA benchmarks.

Keywords: Multimodal sentiment analysis · Attention mechanism ·
Representation learning · Multimodal fusion · Modality reinforcement

1 Introduction

Recognizing the research value of sentiments, numerous studies [3,20,22,23,25]
in recent years have focused on identifying and analyzing human sentiments.
Compared with traditional unimodal sentiment analysis, Multimodal Sentiment
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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Analysis (MSA) attempts to mine sentiment information from multiple data
sources to more comprehensively and accurately understand and predict a wide
range of complex human emotions.

While data from multiple modalities can be complementary, the asynchrony
between different modality sequences caused the distress of fusion. To address
this problem, most prior works have manually aligned visual and acoustic
sequences at the resolution of text words [16,18], but this has also resulted in
high labor costs and ignored long-term dependencies between different modal ele-
ments. Recent efforts like [9,15] have tended to deal with unaligned multimodal
sequences by cross-modal attention. They often digest inter-modality correla-
tions through sufficient interactions between each pair of modalities. However,
this results in a surge in the number of parameters and redundant information
in the modalities. They treat all modalities with the same weight without regard
to the fact that the semantic richness of distinct modalities is different, which
may lead to strong modalities being neglected and weak modalities being over-
valued. Observing previous works [1,19], we found that text modality dominates
the MSA task. On the one hand, the text modality is naturally highly struc-
tured and semantically condensed; on the other hand, due to the maturity of
natural language processing techniques, modeling techniques for text data are
relatively mature. In this situation, it is crucial to balance the contributions of
different modalities. Moreover, the vanilla Transformer [17] also has some draw-
backs. The self-attention mechanism incorporates redundancy and noise while
focusing on the information within the modality, especially for the visual and
acoustic modalities. Unlike spoken words that can be encoded directly, acoustic
and visual modalities are pre-processed before being fed into the network, and
noise is inevitably introduced during the pre-processing process [1]. Secondly, the
redundancy in time series between visual and acoustic sequences is very high.

Inspired by the above observations, we propose a Text-oriented Modality
Reinforcement Network (TMRN) to refine multimodal representations effec-
tively. The core strategy of the TMRN is to interact between modalities with
the text modality at the center and to guide the reinforcement process of the
other two modalities by text modality. For the inter-modal intersection, we pro-
pose a text-centered cross-modal attention module to make full interaction for
text/acoustic and text/visual pairs. We also present an adaptive fusion mecha-
nism to measure the weights of the different modalities during fusion. For the
intra-modal reinforcement, we design a text-gated self-attention module to intro-
duce prior knowledge of textual semantics in the process of feature reinforcement
of visual/acoustic modalities. This aims to mine the semantic information on
time series better and to ignore the noise of visual/acoustic modalities. Overall,
we make the following three contributions:

– We propose TMRN, a method that focuses on the dominance of the text
modality in MSA task. The TMRN interacts and reinforces the other two
modalities with the text modality as the main thread to obtain a low redun-
dancy and denoised feature representation.
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– We present a Text-Centred Cross-modal Attention (TCCA) module and a
Text-Gated Self-Attention (TGSA) module to mine inter-modal and intra-
modal contextual relationships.

– We perform a comprehensive set of experiments on two human multimodal
language benchmarks MOSI [29] and MOSEI [30]. Our experiments show that
our method achieves state-of-the-art methods on these two datasets.

2 Related Work

Human multimodal sentiment analysis is to infer human emotional attitudes
from the various modality information in video clips. Compared to multimodal
fusion from static modalities like images [10], the key technique for this task
is how to fuse time-series sequences from different modalities such as natural
language, video frames, and acoustic signals [16], especially when these sequences
are temporally unaligned. Some recent works [16,18] have focused on manually
aligning the visual and acoustic sequences in the resolution of textual words
before training. However, manual word alignment is costly, and there is inevitably
some loss of information in the multimodal fusion after alignment.

Furthermore, some researchers have worked on unaligned multimodal data.
These works can be classified into two categories: discarding the time series
dimension and retaining the time series dimension in the subsequent modal inter-
actions. For the former, they usually take one row of the two-dimensional features
as a feature vector for subsequent interaction and fusion [4,24,27]. [4,24] learned
modality-invariant and modality-specific representations to give a comprehensive
and disentangled view of the multimodal data. [27] jointed training the multi-
modal and unimodal tasks to learn the consistency and difference, respectively.
For the latter, they tend to use the attention mechanism to implement interac-
tions between non-aligned sequences [9,15].

A great deal of attention to attention mechanism has been triggered by the
Transformer [17]. Transformer networks have been successfully applied to many
tasks like semantic role labeling [13] and word sense disambiguation [14]. And
now, Transformer is also widely used in the multimodal field. [15] presented
Multimodal Transformer (MulT), which uses cross-modal attention to capture
the bimodal interactions without manually aligning the three modalities. [9]
proposed PMR, which is a further improvement of the interaction between the
three modalities based on MulT. Following the latter approaches, our work is
also based on the attention mechanism.

3 Problem Statement and Model Structure

3.1 Problem Statement

In this work, the multimodal sentiment analysis task focuses on using the
same video clip from the text (t), visual (v), and acoustic (a) modalities as
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Fig. 1. The overall architecture of the proposed model TMRN.

inputs to the model, which is represented as Xm ∈ RTm×dm for each modal-
ity m ∈ {t, v, a}. For the rest of the paper, Tm and dm are used to represent
sequence length and feature dimension of modality m, respectively. The goal
of our model is to fully explore and fuse sentiment-related information from
these input unaligned multimodal sequences to obtain a text-driven multimodal
representation and thus predict the final sentiment analysis results.

3.2 Overall Architecture

The overall architecture of our TMRN is shown in Fig. 1, which consists of three
main components: 1) Unimodal feature extraction module: we utilize pre-trained
BERT [2] to generate the extravagant representation of input words and process
visual and acoustic features with Bi-LSTM [5]; 2) Modality reinforcement : this
part is composed of cross-stacking TCCA and TGSA modules to interact and
reinforce the features. We divide the features into visual-text and acoustic-text
pairs for cross-attention with the text modality as the query, while self-attention
is performed on the text modality. Then, we fuse the pairs with an adaptive
fusion mechanism. After that, we use the text modality as a gate to adding prior
knowledge to the process of self-reinforcement of visual/acoustic modalities; 3)
Fusion and output module: we aggregate the final two-dimension features into
one-dimension vectors and concatenate them for the downstream tasks. Our aim
is to further guide and interact with acoustic and visual modalities through the
text modality to obtain a text-dominated implicitly aligned fusion feature.

Unimodal Feature Extraction. To obtain a stronger feature representation
of the text, we use a pre-trained BERT [2] model to extract the feature of the
sentences:

Ft = BERT
(
Xt; θBERT

t

) ∈ RTt×dt . (1)

In acoustic and visual modalities, following [26,28], we use pre-trained ToolKits
to extract the initial features Xm from raw data. Then, we use Bi-directional
Long Short-Term Memory (BiLSTM) [5] to capture the timing characteristics:

Fa = BiLSTM
(
Xa; θLSTM

a

) ∈ RTa×da , (2)
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Fig. 2. The architecture of the Text-Centred Cross-modal Attention (TCCA) module.

Fv = BiLSTM
(
Xv; θLSTM

v

) ∈ RTv×dv . (3)

For subsequent calculations, we use one fully connected layer to project the
features into a fixed dimension as Fm ∈ RTm×d, where m ∈ {t, a, v}.

Modality Reinforcement. This part includes two key modules: a Text-
Centred Cross-modal Attention (TCCA) module and a Text-Gated Self-
Attention (TGSA) module. The architecture of TCCA is shown in Fig. 2. Unlike
[9], the visual and acoustic modalities share the same text self-attention block to
reduce the amount of computation in our TCCA module. This unit is composed
of two cross-attention blocks and one self-attention block. The cross-attention
block takes F

[i]
t and F

[i]
m→t as its inputs, where m ∈ {a, v}, and the superscript [i]

indicates the i-th modality reinforcement processes. First, we perform a layer nor-
malization (LN) on the features like F

[i]
m→t = LN

(
F

[i]
m→t

)
and F

[i]
t = LN

(
F

[i]
t

)
,

and then we put them into a Cross-Attention (CA) block:

F
[i]
m→t = CA

[i]
m→t

(
F

[i]
m→t, F

[i]
t

)
,

= softmax

⎛

⎝F
[i]
t WQt

WT
Km

F
[i]
m→t

T

√
d

⎞

⎠ F
[i]
m→tWVm

,
(4)

where F
[0]
m→t = Fm ∈ RTm×d and F

[0]
t = Ft ∈ RTt×d. Note that the sequence

length of F
[i]
m→t is updated to Tt after the first CA block. And the Self-Attention

(SA) block takes F
[i]
t as input to obtain F

[i+1]
t ∈ RTt×d:
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Fig. 3. The architecture of the Text-Gated Self-Attention (TGSA) module.
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(5)

Then the reinforced features F
[i+1]
t and F

[i]
m→t are processed via the following

adaptive fusion mechanism:

G[i] = σ
(
F

[i+1]
t ∗ W

[i]
t + F

[i]
m→t ∗ W

[i]
m→t + b[i]

)
, (6)

F
[i]
m→t = G[i] � F

[i+1]
t +

(
1 − G[i]

)
� F

[i]
m→t, (7)

where σ denotes the sigmoid non-linearity function, � denotes element-wise mul-
tiplication. We can determine the passed proportions of F

[i+1]
t and F

[i]
m→t via the

learnable parameters W
[i]
t , W

[i]
m→t, and b[i]. This operation can filter the incorrect

information produced by the cross-modal interactions, and measure the fusion
ratio of two modalities. After that, we process F

[i+1]
t and F

[i]
m→t by a Position-

wise Feed-Forward layer (PFF ) with skip connection, as in the Transformer
[17]:

F
[i]
m→t = PFF

(
LN

(
F

[i]
m→t

))
+ F

[i]
m→t, (8)

F
[i+1]
t = PFF

(
LN

(
F

[i+1]
t

))
+ F

[i+1]
t . (9)

After the TCCA module, we obtain unified dimensional features of three
modalities. We think that the relationships within each modality are comple-
mentary to the cross-modal relations, so we do self-attention for F

[i]
v→t and F

[i]
a→t,

while using the F
[i+1]
t as a gate to activate or deactivate the corresponding key

and value channels:
g[i] = σ

(
Linear

(
F

[i+1]
t ; θg

))
, (10)

gF
[i]
m→t =

(
1 + g[i]

)
�F

[i]
m→t. (11)
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The query and key from visual/acoustic modalities are then modulated by the
gate from the text modality:

F
[i+1]
m→t = TGSA[i]

m

(
F

[i]
m→t, gF

[i]
m→t

)
,

= softmax
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⎝gF
[i]
m→tWQm→t
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Km→t

gF
[i]
m→t

T

√
d

⎞

⎠ F
[i]
m→tWVm→t

+ F
[i]
m→t.

(12)
The architecture of the TGSA is shown in Fig. 3.

Fusion and Output Module. Here, we utilize a simple attention approach to
aggregate the reinforced features of the three modalities. Specifically, given the
feature F

[n]
m ∈ RTm×d for modality m output by the last TGSA module, we get

the attention weight matrix:

am = softmax

(
F

[n]
m Wm√

d

)T

∈ R1×Tm , (13)

where Wm ∈ Rd denotes the linear projection parameter, and am denotes the
attention weight matrix for the feature F

[n]
m . Then we aggregate the features

with the attention weights:

fm = amF [n]
m ∈ R1×d. (14)

Eventually, we concatenate all of the three modalities’ features as f =
[ft; fa; fv] ∈ R1×3d as the fused feature passing through a Multi-Layer Per-
ceptron (MLP ) to make the final prediction ypred:

ypred = Φ (f ; θΦ) , (15)

where the Φ(·) is a MLP parameterized by θΦ.

4 Experiments

In this section, we empirically evaluate our model on two datasets that are
frequently used to benchmark the MSA task in prior works, and we introduce
the datasets, implementation details, and the results of our experiments.

4.1 Datasets and Evaluation Metrics

MOSI [29] dataset is a widely used benchmark dataset for the MSA task. It com-
prises 2,199 short monologue video clips taken from 93 Youtube movie review
videos. Its predetermined data partition has 1,284 samples in the training set,
229 in the validation set, and 686 in the testing set. MOSEI [30] dataset is an
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Table 1. Comparison results on the MOSI. For Acc2 and F1, we have two sets of
non-negative/negative (left) and positive/negative (right) evaluation results.

Method MAE ↓ Corr ↑ Acc7 ↑ Acc2 ↑ F1 ↑
TFN 0.901 0.698 34.9 -/80.8 -/80.7
LMF 0.917 0.695 33.2 -/82.5 -/82.4
MulT 0.861 0.711 - 81.5/84.1 80.6/83.9
MISA 0.783 0.761 42.3 81.8/83.4 81.7/83.6
MAG-BERT 0.731 0.789 - 82.5/84.3 82.6/84.3
Self-MM 0.718 0.796 46.04 82.62/84.45 82.55/84.44
TMRN(ours) 0.704 0.784 48.68 83.67/85.67 83.45/85.52

Table 2. Comparison results on the MOSEI.

Method MAE ↓ Corr ↑ Acc7 ↑ Acc2 ↑ F1 ↑
TFN 0.593 0.700 50.2 -/82.5 -/82.1
LMF 0.623 0.677 48.0 -/82.0 -/82.1
MulT 0.580 0.703 - 82.5 -/82.9
MISA 0.568 0.724 - 82.59/84.23 82.67/83.97
MAG-BERT 0.539 0.753 - 83.8/85.2 83.7/85.1
Self-MM 0.536 0.763 54.5 82.59/84.95 82.9/84.85
TMRN(ours) 0.535 0.762 53.65 83.39/86.19 83.67/86.08

improvement over MOSI. It contains 22,856 annotated video segments (utter-
ances) from 5,000 videos, 1,000 distinct speakers, and 250 different topics. Its
predetermined data partition has 16,326 samples in the training set, 1,871 in
the validation set, and 4,659 in the testing set. Each sample in both MOSI and
MOSEI is manually annotated with a sentiment score between [−3, 3], which
indicates the polarity and relative strength of expressed sentiment. The polarity
is indicated by positive/negative, and strength is indicated by absolute value. As
in the previous works [7,9], we evaluate the model performances by the 7-class
accuracy (Acc7), the binary accuracy (Acc2), mean absolute error (MAE), the
correlation of the model’s prediction with human (Corr), and the F1 score.

4.2 Implementation Details

All models are built on the Pytorch toolbox [11] with two Quadro RTX 8000
GPUs. The Adam optimizer [6] is adopted for network optimization. For the
MOSI and MOSEI datasets, the training setting follows: the batch sizes are
{128, 64}, the epochs are {100, 40}, the learning rates are {1e−3, 2e−3}, and the
hidden dimension d is 128. The number of TCCA and TGSA is N = 3.
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Table 3. Ablation results of our TMRN on the MOSI.

Model MAE ↓ Corr ↑ Acc7 ↑ Acc2 ↑ F1 ↑
Full method 0.7041 0.7844 48.68 83.67/85.67 83.45/85.52
w/o A 0.8114 0.7426 45.48 81.05/81.86 81.09/81.96
w/o V 0.8452 0.7382 41.69 80.61/81.71 80.67/81.82
Acoustic-oriented 0.7508 0.7658 43.00 81.92/83.38 81.85/83.36
Visual-oriented 0.7956 0.7309 41.69 82.07/83.23 82.06/83.27
w/o TCCA 0.7498 0.7817 44.75 83.09/84.76 83.03/84.75
w/o TGSA 0.7467 0.7824 45.33 80.45/81.71 80.50/81.79

4.3 Comparison with State-of-the-Art Methods

The proposed approach is compared to the existing state-of-the-art (SOTA)
baselines, including TFN [28], LMF [8], Mult [15], MISA [4], MAG-BERT [12],
and Self-MM [27]. Table 1 and 2 show the comparison results on the MOSI and
MOSEI, respectively. The result of Self-MM [27] is reproduced from open-source
code with hyper-parameters provided in the original paper.

The proposed TMRN significantly outperforms most previous methods [4,8,
12,15,28] by considerable margins on all metrics in both datasets, demonstrating
the superiority of our method. In addition, our model is superior to the current
SOTA Self-MM [27] in most metrics (i.e., MAE,Acc7, Acc2, F1 scores on the
MOSI, and MAE,Acc2, F1 scores on the MOSEI.) with better or competitive
performance, suggesting the effectiveness of our text-oriented design philosophy.

4.4 Ablation Study

The overall performance has proven the superiority of TMRN. To understand the
necessity of the different components and the dominance of the text modality,
we conduct systematic ablation experiments on the MOSI, as shown in Table 3.

Importance of Modality. We remove a modality separately to explore the per-
formance of our model. Both declining results indicate the importance of visual
and acoustic modalities when removing the visual or acoustic sequences. Fur-
thermore, the performance degradation is more severe when the visual modality
is removed. This is in line with the previous work [21]. This result suggests that
the information in nonverbal modalities complements the text modality.

Importance of Center Modality. To demonstrate the dominance of the text
modality, we replace the other two modalities as the dominant modality for the
experiments. The acoustic- and visual-oriented models invariably suffer from
significant performance degradation. These observations demonstrate that the
text modality is richer in semantics and less noisy, which leads to better feature
reinforcement of the other two modalities.
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Fig. 4. Performance of TMRN with different parameter N on MOSI and MOSEI.

Importance of Module. Finally, we explore the importance of the proposed
components by removing the TCCA and TGSA modules separately. For the
TCCA module, we remove the cross-attention block and only do self-attention
for text modality. We can see that the gain degrades when removing one of the
modules. These observations suggest that adequate guidance of the text modality
is necessary and indispensable.

4.5 Sensitivity of Parameter

In order to explore the effect of parameter N on the model performance, we
conducted experiments on MOSI and MOSEI datasets with different parameters
N . The results are summarized in Fig. 4. With the increase of N , we find that
the F1 scores show a trend of increasing and then decreasing, and the network
performs best when N = 3. In our conjecture, the larger N can result in better
modality reinforcement. However, experiments show us that too many layers may
bottleneck the ability of the text modality to guide the other two modalities. We
should choose the appropriate network for different datasets, which is exactly
what our proposed TMRN can flexibly do. If migrating our model to a more
complex dataset, we can properly increase the number of TCCA and TGSA
modules to achieve the best performance.

5 Conclusion

This paper presents a text-oriented multimodal sequence reinforcement network
to achieve interaction and fusion over unaligned sequences of three modalities
in the context of multimodal human sentiment analysis. The work is based on
inter- and intra-modal attention mechanisms, and the attention of the other two
modalities is guided throughout by sequences from the text modality, enabling
the alternate transfer of information within and across modalities. We exper-
imentally observe that our approach can achieve better performance than the
baselines in MSA benchmarks.
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Abstract. Pancreatic ductal adenocarcinoma (PDAC) is one of the
deadliest cancers in the word. However, the diverse microenvironment,
unclear boundaries, integrity destruction inter the slices, and enormous
individual differences of tumors pose tremendous challenges to the seg-
mentation process. To address these challenges, we proposed a physical-
spiral dual-domain network (PSDD-Net) that combines the advantages
of the spiral domain and the physical domain. First of all, the phys-
ical domain promotes integral representations of the tumor features,
and the spiral domain protrudes the tumor region under CT multi-
directions. As a result, the dual-domain framework makes the dual-
domain feature simultaneously sent to the network to promote greater
attention to the pancreatic region and reduce the interference of redun-
dant background information. Secondly, we also present a multi-scale
local-dense net (MSLD-Net) in the physical domain which contains local-
channel dense block (LCDB) and multi-scale semantic feature extraction
(MSSFE) module. The MSLD-Net grasps more multi-scale geometric
information of the tumors and facilitates feature map fusion. Thirdly, a
cross-domain aggregation (CDA) module is designed to interact bridg-
ing the two domains to interleave and integrate dual-domain comple-
mentary visual information. The extensive experiments on the clinical
dataset show that our method obtained the DSC of 76.00% in abdom-
inal CT, which outperformed the other state-of-the-art on pancreatic
cancer segmentation results and demonstrated strong potential for clin-
ical applications.
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1 Introduction

Accurate segmentation of pancreatic lesions in computed tomography (CT) is
a crucial and challenging task in the identification and treatment of pancreatic
ductal adenocarcinoma. According to the World Cancer Report [1], pancreatic
ductal cancer, once detected, deteriorates rapidly and is recognized as one of the
cancers with a high mortality rate. In addition, PDAC can also easily cause infil-
trate with other organs and tissues of the abdomen leading to lesions, resulting
in poor prognosis (the 5-year survival rate is lower than 8%). CT scanning is
one of the commonly used diagnostic methods for PDAC. Therefore, accurate
tumor segmentation on CT is crucial to monitor abnormal volume changes and
growth of tumors, and plays an important role in diagnosis, prognosis, and intra-
operative guidance. However, the inherent characteristics of pancreatic tumors
and the variability of their surrounding environment pose significant challenges
for accurate segmentation, the challenges are listed as follows:

Challenge 1: As shown in Fig. 1(a), as the tumor rapidly deteriorates and
its volume continues to increase, it is prone to infiltration with peripheral blood
vessels and duodenum. Such diversity of the tumor microenvironment encounters
difficulties in the accurate separation of the tumor from the surrounding tissues.

Challenge 2: As shown in Fig. 1(b), the fibrillar connective tissues and
organs surrounding with tumors share similar intensity and texture distribu-
tion. That because they have similar imaging characteristics in CT. Thus, it
leads to very low contrast or even no visible boundary.

Challenge 3: As shown in Fig. 1(c), the shape of tumors has specificity.
The integrity of tumor anatomical structure is easily disrupted inter the slices.
The topology errors of tumor can lead to some clinical issues being overlooked,
making subsequent diagnosis difficult.

Challenge 4: As shown in Fig. 1(d), different from abdominal organs, the
tumors possess the appearance properties of diverse shapes, various orientations,
and different aspect ratios. Therefore, it is difficult to accurately describe and
segment tumors.

As far as we know, with the rapid development of automated segmenta-
tion algorithms, the existing segmentation methods of pancreatic cancer can be
divided into three categories, based on the single-slices process, physical-volume
process, and spatial-transformation process, respectively. 1) Single-slice process
segment tumor from each slice to obtain the segmentation results of the physical
entity of the tumor [2,3]. V-mesh FCN [4] though a graph-based visual saliency
(GBVS) algorithm to enhance contrast between tumors and surrounding tissues
in slices which alleviate the problem of unclear tumor boundaries in a large
extent. UDA framework [5] used GCN and meta-learning strategy to pay more
attention to tumor context information to alleviate a series of problems caused by
individual differences in tumors. 2) Physical-volume process can obtain volumet-
ric information between slices, which includes complete size, shape, and texture
information of the tumors [6,7]. M3Net [8] utilizes CT images of different phases
to obtain more comprehensive tumor characteristics from various perspectives.A
transformer guided progressive fusion network (TGPFN) [9] utilizes transformer
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Fig. 1. The challenges of pancreatic cancer segmentation(Green is the tumor, red is the
pancreas). (a) The tumors embed into surrounding tissues, blood vessels, and duode-
num; (b) Low contrast between tumors and its neighboring structures; (c) The integrity
of tumor anatomical structure is easily disrupted inter the slices; (d) Large individual
differences in tumors. (Color figure online)

to capture global attention and improve long-range dependencies under different
receptive fields. 3) Spatial-transformation process converts the physical-volume
process into a transformation spatial process. In [10], spiral transformation uses
a spherical coordinate system to alleviate a series of problems caused by small
sample sizes in medical datasets.

However, currently available methods for segmentation tumors may have cer-
tain limited representation capabilities due to the inherent characteristics of the
tumor. As a result, we proposed a physical-spiral dual-domain network (PSDD-
Net) that combines the advantages of the spiral domain and the physical domain
to overcome the aforementioned challenges. First of all, we design a dual-domain
framework in order to alleviate the above challenges. The spiral domain give promi-
nence to the tumor region under multi-directions (axial, sagittal, and coronal)
information in CT scans. The physical domain preserve the integrity representa-
tions of the tumor. Secondly, a multi-scale local-dense net (MSLD-Net) is designed
in the physical domain which contains local-channel dense block (LCDB) and
multi-scale semantic feature extraction (MSSFE) module. The overall schemes
in MSLD-Net obtain tumor information under different receptive fields and pre-
serving the detailed features of the tumor to better ensure the accuracy of tumor
boundary segmentation. Thirdly, in order to achieve information fusion between
the twodomains andbetter leverage their characteristics, we design a cross-domain
aggregation (CDA) module to ensure feature consistency.



204 D. Yang et al.

Our main contributions are highlighted as follows:

• We design a dual-domain framework called PSDD-Net which combines the
advantages of the spiral domain and the physical domain to overcome the chal-
lenges caused by the inherent characteristics of tumors and promote greater
attention to the pancreatic region.

• We conduct a MSLD-Net in the physical domain which contains LCDB
and MSSFE module to capture the multi-scale geometric information of the
tumors and facilitate feature fusion.

• We present a CDA module to interact bridging the two domains to interleave
and integrate dual-domain complementary visual information.

2 Methods

To accurately segment pancreatic cancer, we propose a dual-domain framework
called PSDD-Net. The whole pipeline is illustrated in Fig. 2. Specifically, it is
implemented with three special designs: 1) We design a dual-domain framework
(detailed in Sect. 2.1), which combines the advantages of the spiral domain and
the physical domain to obtain comprehensive tumor features. 2) We conduct a
MSLD-Net (detailed in Sect. 2.2) in the physical domain, which consists of LCDB
and MSSFE module to grasp multi-scale context information. 3) We present a
CDA module (detailed in Sect. 2.3), which mix cross-feature to maximize the
characteristics of the spiral domain and physical domain.

Fig. 2. The pipeline of the physical-spiral dual-domain net (PSDD-Net). 1) A dual-
domain framework is applied on the spiral domain and physical domain. 2) A multi-
scale local-dense Net (MSLD-Net) which includes local-channel dense block (LDCB)
and multi-scale semantic feature extraction (MSSFE) module in the physical domain.
3) A cross-domain aggregation (CDA) module is designed to mix cross-feature of the
dual-domain.
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2.1 Physical-Spiral Domain Framework

Physical-spiral domain framework give prominence to the greater attention of
the pancreatic tumor region and reducing the invading of redundant surrounding
features of the tumor to enhance segmentation accuracy. The physical domain
contains the 3D CT region of the tumor, which includes tumors, surrounding tis-
sues, organs, and microenvironment of tumors. The physical domain preserve the
integrity of the tumor. Simultaneously, the spiral domain protrudes the tumor
region under multi-directions (axial, sagittal, and coronal) in CT scans. The spi-
ral domain preserve the specificity of tumors. Compared to the single-slice pro-
cess and physical-volume process methods, the dual-domain method can combine
the advantages of physical-spiral domain features to pay more attention to the
tumor region.

Since the pancreatic tumor region is less than 5% of the abdominal CT
area [11], many methods may encounter issues such as imbalanced categories
in segmentation. However, we use the coarse-fine stage is used to achieve rough
localization and polishes segmentation. What is more, after the coarse stage, we
can get the center of the tumor to crop the pancreatic tumor in the raw CT
images and put it and the spiral-expend image as dual input in the network.

Fig. 3. Through spiral transformation, the tumor area (surrounded by the red line)
is stretched into a strip, and the tumor area is protruded. Compared to slices, spiral
transformation can preserve the specificity of tumors. (Color figure online)

The spiral transformation creatively converts the tumor and adjacent struc-
tural information into a spiral domain. Through these, the tissue around the
tumor is mapped into different radii. Thus, spiral transformation can protrude
tumor regions under multi-directions (axial, sagittal, and coronal) information
in CT scans. Specifically, the special-designed spatial spherical coordinate sys-
tem is embedded in the CT image. Then the tumor and adjacent tissue around
are mapped into the rectangular coordinate system. The detailed procedure of
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spiral transformation can be seen in Fig. 3. Firstly, select any point inside the
tumor which depend on the coarse stage. The point is setting as the origin of
the spherical coordinate system. The direction of the x, y, and z, as well as the
initial values of azimuth angle and polar angle would be select to initialization.
Therefore, based on the conversion between the systems, the coordinates of any
point in the CT image can be expressed as:

⎧
⎨

⎩

x = rsinαcosβ
y = rsinαsinβ
z = rcosα

where

⎧
⎨

⎩

0 ≤ α ≤ π
0 ≤ β ≤ 2π
−R ≤ r ≤ R

(1)

x, y, and z represent the coordinate in the CT image, r represents the radius,
R is the selectable radius range, α is the polar angle, and β is the azimuth
angle. After that, we can simultaneously increase the polar and azimuth angles
in the spherical coordinate to spiral sample the tumor region. Then, the sampled
spiral lines map into a rectangular coordinate system sequentially to obtain the
spiral-expand image.

The physical domain crop tumor region is based on the coarse stage in the raw
CT images and put into the physical domain net. The dual-domain models play
their respective roles. The physical domain helps to solve a series of problems
caused by irregular tumor shapes, while the spiral domain helps to solve a series
of problems caused by the complex microenvironment and unclear boundaries
of tumors.

2.2 Multi-scale Local-Dense Net

U-Net [2] and its various variants [12–15] is widely used in medical image segmen-
tation. Therefore, we adopt U-Net in the spiral transformation net. It can extract
contextual information and alleviate the shortage of GPU resources caused by
3D large images. Moreover, inspired by the densely connected convolutional net-
work, we designed a MSLD-Net in the physical domain. It mainly combines
LCDB and MSSFE module to grasp more multi-scale geometric information.

Local-Channel Dense Block. Dense connections transmit all feature maps in
each layer to every forward layer to preserve more feature information from the
original image. However, due to the repeated links cause excessive GPU resource
usage and interference with the model due to redundant information, we propose
a LCDB. The detailed structure configuration of the LCDB module is shown in
Fig. 2. It not only simplifying the network and saving memory, but also keep
the advantages of dense connection. The LCDB adopts dense offset connections
as skip connections, and local channel feature maps are transmitted from each
layer to each forward layer. It can be expressed as follows:

Fi = N(C(Fi−1, Fi−2 [0 : ki−2] , · · · , F0 [0 : k0])) (2)

where N denotes a composite function of operations. We can use group nor-
malization (GN), rectified linear units (ReLU), or convolution (Conv) to replace



PSDD-Net for Pancreatic Cancer Image Segmentation 207

it. C denotes the concatenation operation. Thus, the different resolutions and
different receptive fields map are fused through LCDB. The features of different
semantic levels expression of the model has been improved. By utilizing these,
the details of tumor features are also well preserved, which helps with subsequent
clinical treatment and diagnosis.

Multi-scale Semantic Feature Extraction. Tumors are different from
abdominal organs, the diverse distribution of tumors in CT images make enhanc-
ing the feature representation capability is crucial. Hence, we propose a MSSFE
module embedded at the bottom of MSLD-Net, which can efficiently integrate
multi-scale features. The detailed structure configuration of the MSSFE module
is shown in Fig. 2. We set up four different dilation rates in the dilated convo-
lutions and the different dilated convolutions get a more abundant feature map
with various receptive fields. The MSSFE module can be expressed as follows:

f ′
i = S(DilConv(fi))

⊗
DilConv(fi) (3)

F = C(f ′
1, f

′
2, f

′
3, f

′
5) (4)

where i (i = 1, 2, 3, 5) is dilated rate of MSSFE module, fi represent input
feature under dilated rate i, DliConv express Dilated Convolution, S denotes
sigmoid function, C denotes the concatenation operation, F is final output in
the MSSFE module.

2.3 Cross-Domain Aggregation Module

Cross-domain aggregation (CDA) module is proposed to capture the dependen-
cies between dual-domain features. Two domain preserving the characteristics
of tumors in different senses. Therefore, the fusion of information between the
two domains is crucial. The detailed structure configuration of the CDA module
is shown in Fig. 2.

According to the principle of spiral transformation, we utilize anti-spiral-
transformation to project the rectangular coordinate system into the spherical
coordinate system. It can be indicated by the formula as follows:

{
xspiral = r + R
yspiral = (β(α) − β0(α0)) × 180 ÷ π

(5)

where xspiral, yspiral denote the coordinate in spiral-expand image, β, β0 can be
substituted for α, α0, β, β0, α, α0, r, R represent the polar angle, initialization
value of polar angle, azimuth angle, initialization value of azimuth angle, radius,
selectable radius range individually. After anti-spiral-transformation, we coupled
two domain outputs to capture Integrity and specificity of tumors which can
obtain the final result.



208 D. Yang et al.

2.4 Multi-domain Mixed Loss

The overall cost function of PSDD-Net can be expressed as:

Loss = Lspiral + λLphysical (6)

where λ are balance factors in the model. The cost function of the Lspiral in
spiral domain and the Lphysical in physical domain consists of two parts:

Lspiral = LCE−spiral + λ1LDSC−spiral (7)

Lphysical = LCE−physical + λ2LDSC−physical (8)

where λ1 and λ2 are hyper-parameters for balancing the two parts in the domain.
The LCE−physical and LCE−spiral mean the cost function of cross entropy (CE)
in the physical domain and spiral domain. The LDSC−physical and LDSC−spiral

mean the cost function of dice similarity coefficient (DSC) in the physical domain
and spiral domain.

Cross entropy (CE) is used to minimize the differential between the predicted
segmentation P i and the ground truth Gi, which is defined as follows:

CE(P i, Gi) = − 1
N

∑n
i=1 −[gi · log(pi) + (1 − gi) · log(1 − pi)] (9)

where pi, gi ∈ 0, 1 indicates whether pixel belongs to the P i and Gi region
respectively. The dice coefficient is a similarity measurement function. Its value is
between 0 and 1. 1 represents a coincidence of up to 100% between the predicted
results and the ground truth, while 0 represents the opposite. According to it,
the dice similarity coefficient (DSC) can be used to alleviate sample imbalance
caused by tumors. All of these are defined as follows:

DSC = 1 − 2|P i∩Gi|
|P i|+|Gi| (10)

3 Experiments

3.1 Experimental Settings

Datasets and Evaluation Metrics. We conducted experiments on clinical
private dataset. The private abdominal dataset contains 401 cases of pancre-
atic ductal cancer. We randomly divide the dataset into training set, valida-
tion set, and testing set. The training set contains 240 patients CT, valida-
tion set contains 82 patients CT, testing set contains 79 patients CT. The
private abdominal dataset are composed of (34–1073) slices of (512 × 512)
images. Each CT have voxel spatial resolution of ([0.501–0.976] × [0.501–0.976]
× [0.300–5.000]) mm3. All CT scans are contrast-enhanced images obtained.
Three representative evaluation indicators are used to evaluate the effectiveness
of our method. Firstly, Dice (Dice = 2|P∩G|

|P |+|G| ) illustrates the degree of over-
lap between the prediction and the ground truth. Secondly, hausdorff distance
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(HD = max
{
maxp∈Sp

ming∈Sg
‖p − g‖,maxg∈Sg

minp∈Sp
‖g − p‖}

) is used to
evaluate the boundary similarity between two images, where ‖ · ‖ denotes the
Euclidean distance, Sp and Sg denote the voxel sets within the predicted seg-
mentation and ground truth boundary, respectively. Thirdly, ASD (ASD =
1

|Sg|
∑

g∈Sg
minp∈Sp

‖g − p‖) is the most representative and valuable metric for
evaluating the segmentation’s performance. The |·| denotes the cardinality.

Implementation Details. Due to the fact that tumor region only account for
a small portion of abdominal CT, it is very easy to encounter imbalanced sample
categories during the segmentation process. Thus, we adopt prior knowledge to
crop images on the CT slices and use U-Net to achieve coarse segmentation.
During the spiral transformation, we set the center point of the tumor which
depends on the coarse segmentation output as the origin of the spherical coor-
dinate system. We also set the center point of the tumor as the center of the
clipping region in the physical domain for dual-domain feature fusion. Moreover,
the PSDD-Net training with SGD optimizer and setting the batch size was 1, the
initial learning rate is set as 0.001 and use reduceLronplateau strategy to change
the learning rate timely. The network code is written based on the Pytorch.

3.2 Results and Analysis

Table 1. The quantitative analysis of the ablation experiment of the PSDD-Net demon-
strates the effectiveness of each component.

Method Dice(%) HD(mm) ASD(mm)

Physical domain(U-Net) 58.57± 30.12 7.57± 7.68 3.10± 7.80

Spiral domain(U-Net) 60.92± 22.08 25.17± 16.47 3.10± 12.77

Physical domain(U-Net+LCDB) 69.25± 21.85 6.22± 6.02 1.96± 5.92

Physical domain(MSLD-Net) 71.01± 18.85 6.62± 10.40 2.04± 8.56

Physical-Spiral domain(U-Net, U-Net) 66.39± 22.37 6.04± 7.23 2.16± 3.16

Our Method 76.00± 16.78 5.120± 5.23 1.62± 3.51

Ablation Study. As shown in Table 1, we conduct ablation experiments on our
method to analyze the effectiveness of each component in the PSDD-Net. We
also demonstrated the effectiveness of each component in the network through
six visualized cases in Fig. 4. According to the first, second, fifth, and last rows
of Table 1, a dual-domain framework achieves complementary features in the
physical domain and spiral domain, which has better performance than a single
domain. According to the second, third, and fourth rows of Table 1, we can
find that the LCDB and MSSFE modules in the MSLD-Net play an important
role in the multi-scale feature extraction of tumors, which makes MSLD-Net
outperform the U-Net. Thus, through these architectures, we will better address
the challenges brought by the characteristics of tumors.
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Fig. 4. The final visual segmentation result of our method. The ground truth is the
yellow areas, the PSDD-Net indicates the green area, the MSLD-Net indicates the blue
area (only in the physical domain), and the U-Net indicates the red area (only in the
physical domain). The numerical value represents the dice of the corresponding case
under our method. (Color figure online)

Comparison with Existing Methods. We selected five networks with high
robustness and good performance to compare with our method. The five state-of-
the-art segmentation models including the dual-domain model (M3Net), multi-
scale model (such as CAN, CAS-Net, VGGU-Net), and classic abdominal organ
segmentation method (nnUNet). Note that for a fair comparison, all segmenta-
tion models introduced a rough stage that provides extra tumor location infor-
mation, and inputs of models were cropped to a size of 96× 96 × 64 respectively
with the tumor as the center. Table 2 shows that PSDD-Net achieves the highest
DSC, and the lowest HD and ASD, compared with the other five models, illus-
trating the exceptional and stable segmentation performance of the proposed
PSDD-Net.

Table 2. The quantitative analysis of representative experimental methods compared
with our proposed method.

Method Dice(%) HD(mm) ASD(mm)

M3Net 62.57± 27.68 8.41± 9.81 4.06± 6.34

VGGU-Net 67.28± 34.71 11.12± 14.17 4.61± 4.10

CAS-Net 64.68± 31.69 13.21± 9.50 5.70± 4.25

CAN 57.53± 34.60 18.35± 14.75 6.89± 4.67

nnUNet 71.44± 20.04 10.715± 14.21 6.25± 6.63

Our Method 76.00± 16.78 5.120± 5.23 1.62± 3.51
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4 Conclusion

The segmentation of pancreatic cancer plays an important role in determining
the treatment plan for PDAC in clinical diagnosis, we propose a physical-spiral
dual-domain net (PSDD-Net) to address the challenge brought by the character-
istics of pancreatic tumors in CT images. First of all, a dual-domain architecture
is presented based on the physical domain and spiral domain to highlight the
tumor area and preserve its structural integrity. Thus achieving efficient applica-
tion of tumor features. Besides, a novel multi-scale local-dense net (MSLD-Net)
is proposed in the physical domain to effectively utilize multi-scale features of the
PSDD-Net. In the end, a cross-domain aggregation (CDA) module is designed
to mix cross domain feature fusion. Extensive ablation experiments and compar-
ative experiments on the private dataset, and compare corresponding indicators
and visualization results. All of these both reveal our method has great clinical
potential in PDAC segmentation.
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Abstract. Pedestrian detection serves as the cornerstone of pedestrian
tracking and re-identification, playing a pivotal role in the realm of
intelligent transportation. Accurate identification of pedestrians with
diverse identities, such as passengers, crew members, and cleaning staff,
is of utmost importance in high-security-demand scenarios like airport
boarding bridges. The varied poses of pedestrians, occlusions, and small
appearance differences pose significant challenges for accurately detect-
ing individuals with different identities in boarding bridge scenarios.
Existing object detectors exhibit limited prowess in extracting discrimi-
native features tailored specifically for pedestrians, hampering their abil-
ity to fulfill the requirements of precise localization and classification. In
this paper, we propose a method based on spatial attention and joint
crowd density estimation. By incorporating spatial attention, our net-
work selectively focuses on salient regions corresponding to different
pedestrian categories, thereby enhancing classification accuracy. More-
over, through introducing an auxiliary task of crowd density estima-
tion, the supervision of pedestrian head position information is added
to the network. This significantly alleviates the missed detection prob-
lems caused by perspective distortion and occlusion, leading to significant
improvements in detection accuracy. In our study, we use YOLO as the
baseline model. The improved model shows a 5.81% increase in mAP
and significantly outperforms several common object detectors.

Keywords: Pedestrian Detection · Attention Mechanism · Crowd
Density Estimation

1 Introduction

Pedestrian detection is an important branch in the field of object detection. In
many situations, it is not only necessary to accurately locate pedestrians but also
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to precisely classify their identities. At the airport boarding bridge, it is essential
to accurately detect pedestrians with different identities, such as passengers,
crew members and cleaning staff. It is the basis for many downstream tasks,
such as passenger trajectory analysis and anomaly recognition. The appearance
of different pedestrians have small distinctions, making it difficult for detectors
to accurately classify them. Meanwhile, due to the varied poses of pedestrians
and the occlusion between pedestrians, localization is also challenging.

Existing pedestrian detection methods [5,6] mainly focus on the occlusion
and shape changes of pedestrians. However, these methods treat pedestrians as
a single category, and the pedestrian detection task is degraded into a single-
category object detection task. For multi-category pedestrian detection tasks, in
addition to accurately locating pedestrians, it’s also necessary to correctly distin-
guish pedestrian categories. Therefore, the enhancement of pedestrian position
information and appearance information are equally important.

Common object detection frameworks typically utilize a backbone network to
extract features for a detection head, which then predicts the location and cate-
gory of the objects. For multi-category pedestrian detection tasks, there are small
appearance differences between different categories. Common backbone networks
(such as ResNet [7]) struggle to extract discriminative features, and detection
heads find it challenging to accurately detect pedestrians with varying shapes.
Therefore, we propose a multi-category pedestrian detection algorithm based on
spatial attention mechanism and joint crowd density estimation. Crowd density
estimation methods based on heatmaps [37] use pedestrian head positions as
supervisory signals and output position estimates for pedestrians’ heads. Pedes-
trian head areas are generally not affected by varying perspectives and pedestrian
postures, making them a robust supervisory signal for pedestrian locations [31].
This paper employs a multi-task learning approach, adding an extra branch to
the detection model to perform crowd density estimation tasks, providing addi-
tional information on pedestrian locations and enhancing localization accuracy.
Meanwhile, to address the small appearance differences between different cate-
gories of pedestrians, we utilizes a attention module to make the network focus
on key areas of different category pedestrians, thus increasing inter-category dif-
ferences. The improved model proposed in this paper achieves excellent results
in multi-category pedestrian detection tasks under airport boarding bridge sce-
narios. Compared to the baseline model, the mAP is improved by 5.81%, and it
significantly outperforms common object detectors.

2 Related Work

2.1 Object Detection

Object detection based on deep learning [2,17,19,23,25,32,39] have achieved
great success in recent years, resulting in various applications in fields such as
smart security [10], remote sensing [36], and autonomous driving [12]. CNN-
based object detection algorithms can be mainly divided into one-stage object
detection algorithms [17,19,23,32,39] and two-stage object detection algorithms
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[16,25]. Faster RCNN [25] represents the two-stage object detection algorithm,
which first generates proposals through the Region Proposal Network (RPN)
and then sends the proposals to the detection head for classification and local-
ization to obtain the final detection boxes. Compared to two-stage methods, one-
stage detectors, exemplified by the YOLO series [1,23,24], eliminate the RPN
by using the redundant prediction approach and generate final prediction boxes
by setting Anchors. Due to the simplicity of the one-stage networks, they often
resulting in faster speeds than two-stage detection networks. Simultaneously,
with targeted network structure design and optimization strategies [17,29,30],
one-stage networks have achieved performance nearly comparable to two-stage
networks. Although Transformer-based object detection methods [2,20,40] have
been emerging in recent years, their deployment complexity is higher than that of
CNN-based architectures due to the Transformer’s structure, and their practical
applications are not yet widespread.

Since its release in 2014, the YOLO series of object detection networks has
gone through many iterations, and the paradigm has expanded to areas such as
3D object detection [27] and human pose estimation [21]. It has also been used
as a basis for improvement in some specific detection tasks [18,26]. YOLO uses
deep convolutional networks for feature extraction, adopts FPN networks [16]
for feature fusion, and generates detection boxes based on Anchors on multi-
layer feature maps. The sophisticated and robust network structure is the key
to YOLO’s success in various tasks.

2.2 Attention Mechanism in Convolutional Neural Networks

According to the feature map processing strategy of the attention module, the
attention mechanisms in convolutional neural networks can be divided into chan-
nel attention [9,13], spatial attention [33], temporal attention [14], and hybrid
attention [22,34]. SENet [9], as an early attention method, used the Squeeze-
and-Excitation structure to extract weight parameters for each channel of the
feature map, thereby obtaining a channel-enhanced feature map. Hu et al. [8],
inspired by SENet, performed aggregation and activation operations in space
to generate spatial feature maps. Considering the similarities between channel
attention and spatial attention, Park et al. [22] proposed a BAM model that
simultaneously calculates channel and spatial attention using dilated convolu-
tion to expand the receptive field of the spatial attention module, eventually
obtaining the final channel-spatial attention. Woo et al. [34] proposed a CBAM
module that sequentially calculates channel and spatial attention in series and
combines average pooling and max pooling information. Attention modules can
significantly enhance a model’s feature extraction capability in classification,
detection, and segmentation tasks, with a small computational overhead.

2.3 Crowd Density Estimation

Early crowd density estimation methods [35] generally built upon detection,
counting the number of detection boxes as the number of pedestrians. However,
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this approach struggles to handle densely populated scenes and often has limita-
tions on detection count. Chan et al. [3] proposed a regression-based method that
abandons the detection paradigm and directly regresses the number of people in
the image. However, the learned features of the network are not strongly corre-
lated with pedestrians, resulting in poor robustness and a lack of interpretability.
Current mainstream crowd density estimation methods are generally based on
heatmap [15,28,38], which estimate the positions of pedestrians’ heads in images
through heatmap and obtain the number of people in the crowd by summing
the heatmap values.

3 Method

To address the challenges of varying shapes and small appearance differences
among pedestrians in boarding bridge scenes, we enhances the backbone net-
work’s feature extraction and representation capabilities by incorporating atten-
tion mechanisms on YOLOv5 [11]. Additionally, crowd density is introduced
as auxiliary supervision, using pedestrian head information to improve the net-
work’s ability to extract pedestrian location information and thus enhance the
localization accuracy of detection. We call the improved model density-yolo, and
its overall structure is shown in Fig. 1.

Fig. 1. Illustration of the density-yolo model.

3.1 Attention Module

The attention mechanism has been proven to help models focus on important
information and improve their representation capabilities [34]. Spatial attention
mechanisms enable networks to focus on key regions of objects in the spatial
dimension, which are generally the most distinctive areas of the object. This is
crucial for achieving accurate classification. The data distribution between dif-
ferent categories of pedestrians in boarding bridge scenes is relatively similar,
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and the discriminative regions for specific categories are rather small. Conven-
tional backbone networks lack the ability to extract robust features; therefore,
this paper uses CBAM (Convolutional Block Attention Module) to enhance the
backbone network’s feature extraction and representation capabilities.

Fig. 2. CBAM architecture.

CBAM is a lightweight attention module, consisting of channel attention and
spatial attention components (show in Fig. 2). Both channel and spatial dimen-
sions use max pooling and average pooling for dimension reduction, followed
by feature extraction and fusion. The excitation at the corresponding positions
is obtained through a Sigmoid function. The feature map first passes through
the channel attention to obtain a channel-enhanced feature map and then goes
through the spatial attention to obtain a spatially-enhanced feature map. The
calculation of attention can be expressed as:

Xatt = (X � fchannel(X)) � fspatial(X � fchannel(X)) (1)

In this equation, X represents the original feature map, fchannel and fspatial

denote the channel attention module and the spatial attention module, respec-
tively, and � indicates the element-wise multiplication operation. For channel
attention, the feature extraction and fusion operations are implemented using
fully connected layers. For spatial attention, the feature extraction and fusion
operations are implemented using channel concatenation and 1× 1 convolution.

As a plug-and-play attention module, CBAM can be inserted at any position
in the network; however, the impact on performance varies depending on the
insertion location. For the feature fusion and detection head parts of the network,
the feature maps have been fused with multi-scale information. It is difficult for
spatial attention to enhance key information and fade redundant information
at this stage, which may even lead to a decline in accuracy. For the feature
extraction backbone network of the detection model, the shallow layers mainly
extract information such as color, texture, and edges, while the deeper layers
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primarily extract more abstract semantic information. Therefore, enhancing the
expression of semantic information is more helpful for improving classification
accuracy. This paper chooses to place the CBAM module in the deeper position
of the backbone network. The experimental results show that inserting CBAM
into the deep location of the backbone network significantly outperforms the
shallow location.

3.2 Crowd Density Estimate Branch

Multi-branch structure can effectively provide additional supervision to models,
thereby improving multiple tasks. We add a crowd density estimation branch
followed backbone, predicting pedestrian head positions. The structure is shown
in Fig. 3. Under different perspectives and viewpoints, pedestrian shapes can
vary significantly, but their heads usually appear clearly in the field of view.
Therefore, it can serve as an effective auxiliary way to localization. By inter-
acting between the detection task and the crowd density estimation task, the
network can simultaneously consider features for both detection and density
estimation, effectively enhancing the network’s feature extraction ability and
improving localization accuracy.

Fig. 3. Crowd density estimation branch and detection branch in density-yolo.

The density estimation branch shares a similar structure with the detection
branch, with both sharing the same backbone network. To fuse pedestrian fea-
tures at different scales, the density estimation branch uses an FPN structure
for multi-scale feature fusion. To ensure sufficient resolution, the density estima-
tion branch task head does not use a multi-scale structure but predicts using
the highest resolution layer in the FPN. The crowd density estimation task head
adopts a fully convolutional structure, using 1× 1 convolutions to reduce the
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dimensionality of the input feature map, generating a density estimation map
with one channel.

During the network training process, the density estimation branch is used
as auxiliary supervision and is trained together with the detection branch. In
the inference stage, the density estimation branch can be detached, and only
the detection branch is used for inference, which does not affect the network’s
inference speed.

3.3 Loss Function

The loss function of the network consists of two parts: detection task loss and
density estimation task loss. The detection task loss follows YOLO’s settings,
which consist of localization loss, classification loss, and confidence loss. The
crowd density estimation loss uses the mean squared error loss (MSE) between
the density estimation map and the Ground Truth.

L = Ldet + αLdensity (2)

Ldensity =
w∑

i=0

h∑

j=0

(fi,j − GTi,j)2 (3)

In this equation, w and h represent the width and height of the output density
estimation map, fi,j denotes the density estimation value at position (i, j) on
the output density map, and GTi,j represents the true density value at position
(i, j) on the actual label map.

Following the crowd density estimation method [37], to construct GT, we
smooth each annotation point using Gaussian functions, modeling each anno-
tation point as a Gaussian distribution, allowing the network to learn density
information more easily. GT construction is as follows:

GT (x) = H(x) � Gσ(x) (4)

where:

H(x) =
n∑

i=1

δ(x − xi) (5)

Gσ(x) = e− (x−xi)
2

2σ2 (6)

In this equation, δ represents the Dirac delta function, xi refers to the anno-
tation points of pedestrian head positions, and σ is the Gaussian kernel. For low
crowd density scenarios in boarding bridges, we fix σ at 0.5.
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4 Experiments

4.1 Dataset

We have constructed a pedestrian dataset from real boarding bridge scenes,
which includes pedestrians with a variety of perspectives and different postures.
The dataset contains 35,361 images collected from 17 real scenarios, with a total
of 102,370 pedestrian instances, divided into three categories: crew members,
cleaning staff, and other pedestrians. The number ratio of three types of pedes-
trians is about 2:1:2. During the training process, we use data from 13 scenarios
in the dataset, which accounts for about 80% of the images as the training set,
and the remaining 4 scenarios with about 20% of the images serve as the test
set. All the following experiments are completed on this dataset.

4.2 Implementation Details

We use YOLOv5-s v6.2 [11] as our baseline model, the structure of the crowd
density estimation branch adopts the original FPN structure combined with the
fully convolutional density estimation head. To facilitate network training, the
FPN in the density estimation branch uses the same convolution parameters
as the detection branch, and the density estimation head structure uses a 1× 1
convolution to obtain a single-channel density estimation map. The density esti-
mation branch performs three upsampling operations, eventually obtaining a
density estimation map with 1/8 of the original scale.

In terms of training strategy, we use stochastic gradient descent (SGD) with
momentum to optimize the model, setting the learning rate to 0.01 and the
momentum parameter to 0.937. The training strategy employs Warmup, with
a warmup epoch of 5. The batch size is set to 32 and input image size is set
to 640× 640. Random HSV jitter, random flipping, and mosaic augmentation
strategies are enabled. The balance parameter α in the loss function is set to
0.1. All experiments are performed using an Nvidia Tesla T4 device.

Pedestrian detection datasets often lack additional annotations for pedestrian
head positions, and adding head position annotations to datasets is costly and
difficult to extend conveniently to different scenarios. Compared to pedestrian
head annotations, using the midpoint of the upper boundary of the annotation
box as an alternative supervisory signal achieves similar performance [31]. There-
fore, we use the midpoint of the upper boundary of the annotation box as the
supervisory signal for crowd density estimation.

As the purpose of enabling the crowd density estimation branch is to improve
detection performance, we focus on the enhancement of detection performance
and use mean Average Precision (mAP) for model evaluation.

4.3 Results

Compare with Common Object Detectors. To demonstrate the effective-
ness of our proposed method, we compared the performance of our density-yolo
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with common object detectors on the airport boarding bridge pedestrian dataset.
We compared several common object detectors of different paradigms, including
two-stage Faster RCNN [25], one-stage SSD [19], anchor-free FCOS [32] and Cen-
terNet [39], and Transformer-based DETR [40]. To ensure a fair comparison, we
used the same input size and data augmentation strategies, and the implemen-
tation of the compared models was based on the MMDetection [4] framework.

Table 1 shows that the performance of common object detection frameworks
with different paradigms is broadly consistent. Our density-yolo significantly
outperforms other models and achieves better results with fewer parameters
than other models.

Table 1. Comparisons of our method with other common object detectors. All models
use the same data preprocessing and augmentation techniques.

Model mAP@0.5/% mAP/% Paras(M)

Faster RCNN [25] 79.86 42.47 15.45

SSD [19] 60.02 35.34 24.01

FCOS [32] 88.80 61.93 31.84

CenterNet [39] 74.07 47.83 14.21

RetinaNet [17] 89.35 57.27 36.86

Deformable-DETR [40] 86.61 61.67 39.82

yolo [11](baseline) 85.34 68.06 7.2

density-yolo 91.15 70.79 7.2(+0.4)

To validate the effectiveness of our method and eliminate the impact of dif-
ferent model structure designs on the results, we added attention mechanisms
and the crowd density estimation branch to the models mentioned above for
comparison. Table 2 shows that after adding attention and density estimation
branches, the performance of different detection models on the airport boarding
bridge multi-category pedestrian detection dataset also significantly improves.
Based on these results, we can conclude that our method is significantly effec-
tive in multi-category pedestrian detection tasks and is not influenced by model
structure, detection paradigm, or model size.

Ablation Study. To further analyze the roles of different parts of the model,
we performed a ablation study to separately validate the effects of the atten-
tion mechanism and the crowd density estimation branch (show in Table 3). To
demonstrate the effect of the attention mechanism, we visualize the feature maps
(Fig. 4). After adding the attention module, the activation value distribution of
the feature maps is more concentrated, effectively focusing on key positions for
distinguishing pedestrian categories, thereby enhancing the model’s classifica-
tion capability. For the density estimation branch, adding it separately results
in a more significant improvement in the mAP metric compared to adding the
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Table 2. The effectiveness of our proposed method on other models. (* indicates
improved model using our method)

Model mAP@0.5/% mAP/%

FasterRCNN [25] 79.86 42.47

FasterRCNN∗ 85.36 53.90

FCOS [32] 88.80 61.93

FCOS∗ 89.09 63.80

attention module alone, proving that the density estimation branch can signifi-
cantly enhance the network’s acquisition of pedestrian location information and
improve localization accuracy.

Table 3. Ablation study on the effects of different components.

Model mAP@0.5/% mAP/%

yolo 85.34 68.06

yolo+CBAM 90.36 68.26

yolo+density branch 88.82 69.47

yolo+CBAM+density branch 91.15 70.79

(a) Original feature map (b) Feature map with attention module

Fig. 4. Visualization of the attention module
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Crowd Density Estimation. In addition to improving the performance of
the detection task, we also tested the effectiveness of the model’s crowd density
estimation branch and visualized the output of the network density map as shown
in Fig. 5. Our model achieve MSE = 0.554 and MAE = 0.576 in crowd density
estimation task. And according to the density map, the network can accurately
estimate the pedestrian head positions, thereby assisting in the enhancement
of detection task performance. As for the density estimation task itself, it can
achieve relatively accurate estimation in boarding bridge scenarios as well.

Fig. 5. Visualization of crowd density estimation

Hyperparameters. As described in Sect. 4.1, the attention module has differ-
ent effects on network performance at different positions. We tried inserting the
CBAM module at multiple locations and compared its impact on network per-
formance. As shown in Table 4, placing the attention module in a deeper position
within the network can better enhance the model’s accuracy. In terms of net-
work structure design, we compared the results of density estimation branches
with different downsampling factors. Higher-resolution density estimation maps
can bring more significant improvements in detection task accuracy (show in
Table 5), with only slight increases in model training duration. For the Gaussian
kernel parameter, different values have little impact on network performance
(show in Table 6), and the network’s robustness is not greatly affected by hyper-
parameters.
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Table 4. Effect of different insertion positions of attention modules on model perfor-
mance. P2, P3, P4, P5 are the different depths of yolo’s backbone.

CBAM insertion position mAP@0.5/% mAP/%

P2 P3 P4 P5

� 88.47 68.90

� 88.15 69.87

� 88.75 69.72

� 89.45 70.16

� � 89.60 70.05

� � 91.15 70.79

� � � � 88.29 69.04

Table 5. Effect of density map resolution on model performance. (Where 1/8 represents
that the resolution of the density map is 1/8 of the resolution of the input image.)

Resolution mAP@0.5/% mAP/%

Big(1/8) 91.15 70.79

Middle(1/16) 90.38 71.04

Small(1/32) 88.23 68.65

Table 6. Effect of Gaussian kernel parameters on model performance.

σ mAP@0.5/% mAP/%

0.4 90.92 71.82

0.5 91.15 70.79

0.6 91.59 71.12

Visualization. From the visualization results (Fig. 6), the improved model can
not only distinguish different pedestrian categories more accurately, but also
has a significant improvement in positioning accuracy. In scenarios with large
changes in pedestrian posture and the presence of occlusions, the model can
significantly reduce the occurrence of missed detections.
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Fig. 6. Comparison of the baseline (yolo [11]) and our improved model (density-yolo),
where the left image is the baseline model and the right one is our improved model.
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5 Conclusions

In order to accurately detect pedestrians with different categories in airport
boarding bridge scenarios, we proposes a multi-category pedestrian detection
method. By adding spatial attention and joint crowd density estimation, the
detector’s ability to acquire appearance and location information is enhanced,
thus achieving accurate pedestrian positioning and classification. Compared to
the baseline, our method has achieved 5.81% improvement on mAP, and it also
brings considerable gains to other models, with almost no additional performance
overhead. Our method is not only applicable to airport boarding bridge scenarios,
but also can be easily extended to other scenarios that require multi-category
pedestrian detection.
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Abstract. In recent years, sequential recommender systems have been
widely applied for alleviating information overload. Some solutions
employ graph attention networks (GAT) to aggregate rich neighborhood
information for the representation learning of items. However, how to
sufficiently exploit graph structure deserves careful examination due to
two challenges. Firstly, highly related items may not appear in the same
interaction sequence due to the data sparsity issue. Secondly, the connec-
tion weights among items are randomly initialized, which brings signifi-
cant uncertainty for information propagation. To tackle these challenges,
we propose a novel Neighborhood-Augmented Graph ATtention network
(NA-GAT). For the former challenge, we globally screen a fixed number
of potential neighbors for each item node based on the attention mech-
anism. For the latter challenge, we devise a two-stage learning strategy
to make full use of the transition frequency and the attention score, to
achieve sufficient utilization of graph structure. Extensive experimental
results have demonstrated the necessity of neighborhood augmentation
and the effectiveness of the proposed NA-GAT framework.

Keywords: Sequential Recommendation · Graph Neural Network ·
Graph Augmentation · Attention Mechanism

1 Introduction

As a bridge connecting content creators and users on Internet platforms, sequen-
tial recommender systems (SRSs) have been widely applied to alleviating infor-
mation overload, which can capture users’ preferences from their sequential
behaviors and then predict their next interactions [11]. To leverage complex
intrinsic associations that exist among items, some studies adopt graph neu-
ral networks (GNN) to perform information propagation and aggregation for
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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representation learning of user and item nodes [22,25,26]. The graph attention
network (GAT) [21] has been widely used because of its good generalization abil-
ity and flexibility [1,2,9], which leverages the attention mechanism to distinguish
the contributions of neighbors.

Despite the progress of these solutions, how to sufficiently exploit the graph
structure to aggregate neighborhood information based on GAT has not been
fully studied. Two major challenges exist. The first challenge is the data spar-
sity issue. Highly related items may not always appear in the same interaction
sequence, so it is hard to fully utilize the social information among items based on
the original graph. In other words, the original graph structure shall be enriched.
We refer to the original neighbors of a node as structural neighbors and the
mined potential neighbors as augmented neighbors. Most studies treat them
equally, while structural neighbors tend to contain more realistic and reliable
information than augmented neighbors, so it is necessary to distinguish their
importance. The second challenge is how to calculate the connection weights
between nodes. Knyazev et al. [7] find that for GAT-based models, the effect of
attention on performance may be negative under typical conditions. Most current
approaches to graph construction neglect to initialize connection weights. As a
result, at the start of the training process, GAT-based models with randomly ini-
tialized parameters assign almost random attention scores as connection weights,
which brings a large uncertainty for information propagation and aggregation
and thus makes the training process unstable.

To tackle the aforementioned two challenges, in this paper, we propose a
novel Neighborhood-Augmented Graph ATtention network (NA-GAT).

For the first challenge, except for structural neighbors, we screen a fixed num-
ber of potential neighbors among all items for each item node. Specifically, based
on GAT, we obtain highly correlated potential neighbors by ranking attention
scores. With this method, we can perform global-wise graph structure augmen-
tation and discover new augmented neighbors at each training epoch. For the
second challenge, we propose a two-stage learning strategy to stabilize the learn-
ing process. In the first stage, we combine the transition frequency and attention
score as the final connection weight to provide a warm start for graph learning.
In the second stage, we only utilize the attention scores to aggregate informa-
tion from structural neighbors and augmented neighbors, which can take full
advantage of the attention mechanism and make the information propagation
and aggregation process more precise.

Our contributions are summarized as follows:

– We augment the original item graph by discovering potential neighbors with
high attention scores for each item node.

– We devise a two-stage learning strategy to stabilize the training process.
– Experimental results on two publicly available datasets demonstrate the supe-

riority of our model and the effectiveness of the components.
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2 Related Work

2.1 Sequential Recommendation

Existing solutions for sequential recommendation can be divided into three cat-
egories: conventional models, RNN-based models, and attention-based models.

With an assumption that the next behavior depends only on the most recent
interaction, Markov Chain (MC) is a typical conventional approach to predict
the next item of interest to a user [17]. Recently, RNN-based models [5,8] have
attracted a wide range of attention in sequential recommendation due to their
superiority in modeling temporal patterns. To identify the importance of his-
torical interactions, attention-based models employ the attention mechanism to
assign weights to different interactions and then generate collective preferences
[3,6].

2.2 Graph Neural Networks

In sequential recommendation, users’ interaction data have sequential nature and
the user/item graph can be constructed by connecting adjacent items. Therefore,
many solutions have applied graph neural networks (GNN) to obtain high-order
features of users and items [18,20,27]. The main purpose of GNN-based models
is to update node representations with neighborhood information [10,21].

Due to the incapacity of GNN to effectively capture long-term dependen-
cies, some GNN-based models also adopt attention mechanisms to integrate all
the item representations in the sequence. SRGNN [23] introduces a gated GNN
layer to obtain node representations and generates the session embedding via the
attention mechanism. GC-SAN [24] utilizes a graph neural network to extract
local dependencies and the self-attention mechanism to obtain global dependen-
cies.

To enrich neighborhood information, some solutions treat more than one
adjacent item as neighbors [14] or aggregate information from cross-hop neigh-
bors [13]. However, these local augmentation operations struggle to integrate
global-wise information. Therefore, we utilize the attention mechanism to glob-
ally screen highly correlated potential neighbors for each node, which can enrich
the social relationships between items and alleviate the data sparsity issue.

3 Methodology

3.1 Problem Statement

Let U = {u1, u2, . . . , u|U|} and I = {i1, i2, . . . , i|I|} denote the set of users and
the set of items, where |U| and |I| are the number of users and items, respectively.
Each user u has sequential interactions Qu = {iu1 , . . . , iut , . . . , iu|Qu|}, where iut ∈ I
denotes the item interacted by user u at time step t. Given the interaction
sequence Qu, the sequential recommendation aims to predict an item from I
with which user u may interact at the next time step, i.e., Su

|Qu|+1.
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3.2 Framework Overview

Fig. 1 illustrates the overview of our proposed method. Based on all the item
sequences, we first construct a directed item graph, taking the transition fre-
quency matrix between items as the adjacency matrix. During the training pro-
cess, for a particular item shown on the lower half, we obtain its structural
neighbors based on the transition matrix and screen highly correlated items via
the attention mechanism as its augmented neighbors, and then we integrate the
information from both types of neighbors into the neighborhood vector. Next, as
shown on the upper half, we utilize the gating mechanism to aggregate the neigh-
borhood information and finally employ a position-aware attention mechanism
to generate the user’s interest preferences to score the candidate items.

Fig. 1. The structure of the proposed NA-GAT. For a particular item, we first get its
structural neighbors based on the transition matrix and adopt the attention mechanism
to globally screen highly related items as its augmented neighbors. Next, we utilize the
gating mechanism to aggregate neighborhood information to obtain the updated item
representation. Finally, we employ a position-aware attention mechanism to capture
the sequential features and generate the user’s preferences to predict the next item.

3.3 Graph Construction and Augmentation

Graph Construction. A common approach to graph construction is to connect
two adjacent items in user-item interactions. Given an interaction sequence Qu =
{iu1 , iu2 , . . . , iu|Qu|}, we denote 〈iuk , iuk+1〉 as an edge from item iuk to item iuk+1.
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For a pair of nodes i, j ∈ I, we traverse all the interaction sequences to
count the occurrence times of item i and the consecutive co-occurrence times of
item i and j, and then we can obtain the transition frequency from i to j:

f(i, j) =
∑

u∈U
∑|Qu|−1

k=1 [[iuk = i, iuk+1 = j]]
∑

u∈U
∑|Qu|−1

k=1 [[iuk = i]]
, (1)

where [[·]] is the indicator function. The transition frequency can be used to
approximate the transition probability which determines the process of informa-
tion propagation, so we apply the transition frequency to form the adjacency
matrix of the item graph: F ∈ R

|I|×|I|, where Fi,j = f (i, j). For a particular
item i ∈ I, its structural neighbors can be formulated as N s

i = {j ∈ I|Fj,i >
0, j �= i}.

Graph Augmentation. Considering that highly related items may not appear
in the same interaction sequence, we utilize the attention mechanism to obtain
the similarity between nodes and augment the original item graph.

For a particular item node i ∈ I, we denote its embedding as ei ∈ R
d, where

d is the hidden size. Following [21], we adopt a feedforward layer to obtain the
attention score between node i and j:

αi
j = LeakyReLU(qT [Wei||Wej ]), (2)

where LeakyReLU(·) is the activation function, || indicates the concatenation
operation, and W ∈ R

d×d, q ∈ R
2d are learnable parameters. Next, we rank αi

∗
to filter potential neighbors:

N a
i = argtopk

(
αi
j

∣
∣ j ∈ I\N s

i

)
, (3)

where N a
i denotes the augmented neighbors of node i, and k is the number of

augmented neighbors. By this method, we can discover nodes that are highly
related to node i from a global scope.

3.4 Information Propagation and Aggregation

The key to information propagation is to assign different weights to neighbors
so as to control the influence of neighbors. To this end, we propose a two-stage
learning strategy to utilize the information from both types of neighbors.

Specifically, we first normalize the attention scores of structural/augmented
neighbor j:

αi
j =

exp(αi
j)∑

k∈N s
i ∪Na

i
exp(αi

k)
. (4)

At the initial stage of the training process, the transition frequency can model
the influence of neighbors more accurately than the random attention score cal-
culated by the randomly initialized parameters. However, using only the fixed
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transition frequency lacks flexibility, while the attention score can accurately rep-
resent the influence after sufficient training. Therefore, we weight the transition
frequency and the attention score to obtain the final connection strength:

wi
j = λ ∗ αi

j + (1 − λ) ∗ Fj,i, (5)

where λ ∈ [0, 1] is the importance coefficient of attention scores and j ∈ N s
i ∪N a

i

is a neighbor of node i. In addition, to take full advantage of the attention
mechanism, we gradually increase λ during the training process. Specifically, we
set the epoch threshold as L and make λ increase linearly until the second stage:

λ = min(epoch/L, 1). (6)

In this way, the attention mechanism gradually plays a dominant role in modeling
the connection strength. In addition, for augmented neighbors, the transition
frequency is 0 and thus they just propagate a small amount of information in the
initial training process, which ensures that the model can adequately learn the
original graph structure in the first stage. Compared with augmented neighbors,
structural neighbors have real connections with the central node and thus contain
more reliable information. Therefore, by setting up the first training stage, not
only can the transition frequency be utilized to guide the graph learning process,
but also the influence of structural neighbors can be emphasized to prevent the
original graph structure from being damaged by augmented neighbors.

In the second stage, that is, after L epochs of training, we only take attention
scores calculated by sufficiently trained parameters as connection weights due
to their flexibility to control the influence of neighbors. At this stage, structural
neighbors and augmented neighbors have the same status, which allows each
node to obtain rich global social information.

For item i, the final representation of neighborhood information can be for-
mulated as:

eN
i =

∑

j∈N s
i ∪Na

i

wi
jej . (7)

Inspired by the gate unit in GRU [5], we adopt a gating mechanism to aggre-
gate neighborhood information to obtain the final representation of node i:

gi = σ(W1ei + W2eN
i ), (8)

ẽi = gi � ei + (1 − gi) � eN
i , (9)

where σ(·) denotes the sigmoid function, � denotes the element-wise product,
and W1, W2 ∈ R

d×d are trainable parameters.

3.5 Preference Extraction

Let m denote the maximum sequence length that the model can handle, and
we truncate (or pad) the user-item interactions into {iu1 , iu2 , . . . , ium}. After the
embedding layer and the graph learning layer, we can obtain the item sequence
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representations Ẽu := {ẽu1 , ẽu2 , . . . , ẽum} ∈ R
m×d. Next, we utilize the attention

mechanism to obtain the collective preferences of a user:

zu =
m∑

k=1

βkẽuk , (10)

where βk indicates the importance of item iuk . Considering that recent interac-
tions tend to influence user behaviors more than earlier interactions, we intro-
duce the learnable position embeddings P := {p1, p2, . . . , pm} ∈ R

m×d to the
item representations:

Hu = Ẽu + P, (11)

where Hu = {hu
1 ,hu

2 , . . . ,hu
m} ∈ R

m×d. The last item representation contains
the information of previous items through the graph learning process, so we
calculate the attention score between each item and the last interaction:

βk = vTσ(W3hu
k + W4hu

m]), (12)

where σ(·) denotes the sigmoid function and v ∈ R
d, W3, W4 ∈ R

d×d are
trainable parameters.

To enhance the learning ability of our model, we use a two-layer fully-
connected network with residual connections to obtain the final user preferences:

ou = zu + W6ReLU (W5zu + b1) + b2, (13)

where W5, W6 ∈ R
d×d, b1, b2 ∈ R

d are learnable parameters of the model.

3.6 Prediction and Optimization

In the phase of prediction, we utilize the user’s interest preferences ou and to
score candidate item c:

yu
c = oueTc . (14)

We apply the Binary Cross-Entropy loss function to train our model:

L = −
∑

u∈U
[log(σ(yu

iu)) +
∑

j /∈Qu

log(1 − σ(yu
j ))], (15)

where σ (·) denotes the sigmoid function, iu is the ground truth item, and j
represents the negative sampling items.
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4 Experiments

4.1 Experimental Setup

Table 1. Statistics of the datasets

Statistics Yelp Amazon

#user 2,233 2,070

#item 2,428 2,698

#interaction 94,730 47,850

avg.length 42.42 23.12

To evaluate the performance of models,
we selected two real-world datasets, Yelp1

and Amazon2. The detailed descriptions of
both datasets after preprocessing are shown
in Table 1. We set the maximum sequence
length that the model can handle as 50. For
each sequence, we used the last item for test-
ing, the penultimate item for validation, and
the rest items for training.

We compared our proposed NA-GAT with the following 10 baseline models
to evaluate performance: BPR-MF [16], GRU4Rec [5], NARM [8], Caser [19],
STAMP [12], NISER [4], SR-GNN [23], GC-SAN [24], LESSR [2], SGNN-HN [15].
To evaluate our proposed NA-GAT and baseline models, we randomly sampled
100 negative items for each positive item. For the evaluation, we adopted two
types of metrics: HR@K and NDCG@K.

For a fair comparison, we implemented all the models by PyTorch and set
the hidden size as 128 and the learning rate as 0.001 over both datasets. We set
the number of augmented neighbors k as 30 for Yelp and 40 for Amazon, and
set the epoch threshold L as 40 and 60 for Yelp and Amazon, respectively.

4.2 Overall Performance

The experimental results of all models on both datasets are shown in Table 2,
where the models above the dashed line only adopt classical methods such as
RNNs and attention mechanisms to extract user preferences, and the models
below employ GNN to enrich a node’s representation. From the results, we have
the following observations:

1. Models utilizing GNN tend to perform better than models that capture
sequential features directly. The GNN-based models can capture the tran-
sition pattern among items and thus precisely extract users’ interest prefer-
ences.

2. On both datasets, our proposed NA-GAT outperforms the baseline models
in terms of all metrics. Specifically, compared with the best baseline, NA-
GAT has a significant improvement of 5.12%-9.84% and 7.44%-8.59% on
Yelp and Amazon, respectively. The reasons may be three-fold for the perfor-
mance improvement. Firstly, we globally mine highly correlated neighbors of
each node, which effectively alleviates the data sparsity issue and makes the
information flow process more efficient. Secondly, we initialize the connection
weight with the transition frequency, which provides a warm start for model

1 https://www.kaggle.com/datasets/z5025122/yelp-csv.
2 https://cseweb.ucsd.edu/∼jmcauley/datasets/amazon v2/.

https://www.kaggle.com/datasets/z5025122/yelp-csv
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/
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Table 2. Performance comparison between different models. The best performance of
all models is boldfaced and the best performance of baselines is underlined.

Model Yelp Amazon

HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

BPR-MF 0.3457 0.2345 0.5186 0.2902 0.2671 0.1860 0.3696 0.2191

GRU4Rec 0.3945 0.2674 0.5580 0.3202 0.3198 0.2411 0.4275 0.2755

NARM 0.3972 0.2697 0.5647 0.3237 0.3248 0.2442 0.4301 0.2782

Caser 0.3565 0.2467 0.5179 0.2989 0.3029 0.2226 0.4111 0.2573

STAMP 0.3865 0.2423 0.5419 0.2920 0.2860 0.2004 0.3638 0.2256

NISER 0.3996 0.2739 0.5613 0.3259 0.3087 0.2274 0.4126 0.2609

SR-GNN 0.4138 0.2751 0.5759 0.3269 0.3242 0.2427 0.4271 0.2757

GC-SAN 0.4324 0.2947 0.5815 0.3428 0.3377 0.2506 0.4363 0.2834

LESSR 0.4090 0.2792 0.5720 0.3320 0.3261 0.2348 0.4208 0.2648

SGNN-HN 0.4118 0.2846 0.5739 0.3369 0.3305 0.2435 0.4406 0.2792

Ours 0.4595 0.3237 0.6113 0.3728 0.3667 0.2720 0.4734 0.3066

Improv. 6.27% 9.84% 5.12% 8.75% 8.59% 8.54% 7.44% 8.19%

training, and the introduction of transition frequency also emphasizes the
importance of structural neighbors, allowing the model to adequately learn
the original graph structure. Thirdly, after training smoothly, we utilize only
the attention mechanism to calculate the connection weights, fully exploiting
the role of augmented neighbors and aggregating rich global information.

4.3 The Effect of Neighborhood Augmentation

Recall that we utilized the attention mechanism to mine k potential neighbors
for each node. To explore the role of neighborhood augmentation, we tested the
effect of different k values on the model performance.

From the results shown in Fig. 2, if k = 0, which means that we aggregate
neighborhood information only through structural neighbors, the performance
is much worse than with augmented neighbors, which indicates that appropri-
ately extending the neighborhood has a positive effect on node representation
learning. As k increases, the metrics first rise and then fall, which indicates that
the significant augmentation tends to cover nodes with low relevance and bring
redundant information, resulting in inaccurate neighborhood information.

Fig. 2. Performance with different numbers of augmented neighbors (k) on two datasets
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4.4 The Effect of the Two-Stage Learning Strategy

Recall that we devised a two-stage learning strategy to stabilize the training
process. To verify the effectiveness of this strategy, we designed several variants:

– TF employs only structural neighbors and takes the Transition Frequency as
the fixed connection weight.

– AS employs only structural neighbors and takes Attention Scores as connec-
tion weights.

– AS-NA performs Neighborhood Augmentation and takes only attention
scores as connection weights.

– TF-AS-NA employs both types of neighbors and consistently averages the
transition frequencies and attention scores to obtain the connection weights.

Table 3. Performance with different learning strategies

Model Yelp Amazon

HR@10 NDCG@10 HR@10 NDCG@10

TF 0.5553 0.3235 0.4340 0.2737

AS 0.5796 0.3440 0.4501 0.2796

AS-NA 0.5981 0.3622 0.4594 0.2894

TF-AS-NA 0.6002 0.3637 0.4491 0.2828

NA-GAT 0.6113 0.3728 0.4734 0.3066

From the results shown in Table 3, we can draw the following conclusions:

1. TF achieves the worst performance, indicating that fixed connection weights
cannot precisely model the relationship between items.

2. Extending neighbors can achieve better performance than using only struc-
tural neighbors, e.g., AS-NA outperforms AS.

3. TF-AS-NA introduces the transition frequency, yet the results on Amazon
are worse than AS-NA, which suggests that consistently taking the transition
frequency as part of connection weights cannot fully exploit the role of the
attention mechanism in dynamically modeling connection weights and thus
may be harmful for information propagation.

Overall, the transition frequency plays an important role in the first stage
by providing a warm start for model training. In the second stage, we utilize
only attention scores as connection weights, which can fully exploit the role of
augmented neighbors and make the model easier to achieve good local optimum.

4.5 The Effect of the Components

To explore the importance of different components of our proposed NA-GAT,
we conducted ablation experiments by designing the following variants:
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– w/o GNN only employs the position-aware attention mechanism to obtain
the final representation.

– w/o Position utilizes GNN to aggregate information and adopts the atten-
tion mechanism to obtain user preferences without position embeddings.

– w/o Attn aggregates neighborhood information via GNN and only uses the
representation of the last item to score the candidate items.

Table 4. Performance of different variants

Model Yelp Amazon

HR@10 NDCG@10 HR@10 NDCG@10

w/o GNN 0.5746 0.3305 0.4466 0.2728

w/o Position 0.5864 0.3461 0.4467 0.2872

w/o Attn 0.4384 0.2433 0.3382 0.2224

NA-GAT 0.6113 0.3728 0.4734 0.3066

From the experimental results shown in Table 4, w/o Attn achieves the worst
performance, which indicates that the attention mechanism is useful for captur-
ing long-term dependencies. In addition, both GNN which aggregates neighbor-
hood information, and position embeddings which differentiate the impact of
sequential positions can effectively improve the model performance.

5 Conclusions

To further enhance the neighborhood information of item nodes, in this work,
we propose a novel Neighborhood-Augmented Graph ATtention network (NA-
GAT). Specifically, we introduce the transition frequency to initialize the connec-
tion weight among items, providing a warm start for model training. Meanwhile,
we adopt the attention mechanism to globally identify highly correlated nodes as
augmented neighbors for each item node. To achieve full utilization of structural
neighbors and augmented neighbors, we devise a two-stage learning strategy,
that is, we first emphasize the importance of structural neighbors to sufficiently
learn the original structure and then only take attention scores as connection
weights to effectively aggregate global-wise information. Experimental results
validate the effectiveness of the proposed model.

Acknowledgements. This research has been partially supported by the National
Natural Science Foundation of China (No. 62173199).
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Abstract. Recently, automated parking has gained attention for its
ability to enhance parking accuracy and provide a comfortable expe-
rience for car owners. However, with the increasing number of vehicles in
the parking lot, the traditional automatic parking algorithm face the dual
challenges brought by narrow parking spaces and random vehicle obsta-
cles. To address these issues, this paper proposes Curriculum Learning
RL for automatic parking decision making in unregulated parking lots.
Our approach involves SAC, a reinforcement learning (RL) algorithm, for
curriculum learning, where the vehicle learns to park and avoid the obsta-
cles separately through two courses. We incorporate a reward function
that considers both location and safety, facilitating continuous learning
of optimal actions. In addition, we develop a simulation platform for
unregulated parking lots, and we train the algorithm on this platform.
Comparing our algorithm with one that learns both actions simulta-
neously, we observe superior results in shorter timesteps. Furthermore,
experiments conducted under various parking conditions demonstrate
the algorithm’s strong generalization capabilities.

Keywords: Reinforcement Learning (RL) · Automatic Parking
Decision Making · SAC · Curriculum Learning

1 Introduction

In recent years, the rise in car ownership has resulted in issues like traffic con-
gestion and road safety [1]. The emergence of autonomous driving technology
holds increasing importance as it enhances traffic efficiency and reduces acci-
dents [2]. One significant application of this technology is automatic parking,
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
L. Fang et al. (Eds.): CICAI 2023, LNAI 14474, pp. 242–252, 2024.
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which greatly improves the accuracy and safety without manual operation by
the driver. However, current autonomous parking technology lack adaptability
due to their reliance on pre-written programs, which may lead to crashes in new
scenarios [9]. Moreover, the growing number of cars in cities has caused a short-
age of parking spaces and increased randomness in parking, making control more
challenging. Therefore, this paper focuses on planning of parking movement in
parking lots with narrow parking spaces and random parking (called unregu-
lated parking lot), which is crucial for the development of urban transporta-
tion.

Generally, an automated parking system contains the following key technolo-
gies: environment sensing, automatic decision making, control execu-
tion and monitoring. Automatic decision making plays a vital role, utilizing
environment models and driving knowledge to generate simulated paths for park-
ing through real-time path planning and obstacle avoidance algorithms [2].

1.1 Related Works

Current research approaches for automatic decision making involve curve fitting-
based, control theory-based, and RL-based methods.

Curve fitting-based method uses sensor data to perform spline curve fitting
for parking operations. For instance, Macek et al. [7] employs RRT and B splines
to generate collision-free trajectories for parking between moving obstacles. How-
ever, this method requires pre-planning and extensive calculations, limiting its
applicability to simple parking scenarios.

Control theory-based method achieves automatic parking by designing con-
trollers and utilizing feedback control based on control theory principles like
PID. For instance, Ballina et al. [3] develops an algorithm for parking with spa-
tial constraints, employing a fuzzy PD+I controller to drive the error between
the current position and the desired target position towards zero. However, this
approach needs precise theoretical derivation and parameter design, and is less
suitable for parking scenarios that are sensitive to environmental changes.

RL-based method utilize intelligent interaction with the environment to learn
optimal parking strategies. Li et al. [5] employed a kinematic model, using vehicle
position, velocity, and facing angle as observations, and using the vehicle accel-
eration and the front wheel steering angle as actions, achieving vertical parking
with the DDPG algorithm. Some improvements have also been proposed, like
enhancing robustness by employing a DQN-based curriculum learning approach
[15], using MCTS for data generation, evaluation, and network training [13], and
designing more appropriate reward functions [11].

RL-based method autonomously learns and optimizes the parking strategy,
offering higher robustness and reliability. It applies to complex and diverse park-
ing scenarios, adapting to unforeseen situations not encountered during training.
This paper adopts RL method as the algorithm to address the automatic park-
ing decision problem, reflecting its significance in advancing future automatic
parking technology.
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1.2 Objectives and Contributions

Current research on RL-based method primarily focuses on parking lot envi-
ronments with easy traffic access, spacious parking spaces, and few obstacles.
However, in unregulated parking lots, the effectiveness of automatic parking
decisions diminishes.

This paper aims to address this issue by developing a decision algorithm
based on deep reinforcement learning. Using an environment sensing system and
LIDAR distributed around the vehicle, partial information about the surround-
ing environment in an unregulated parking lot is obtained. The algorithm plans
real-time vehicle movements to avoid randomly generated obstacles until the
vehicle is safely parked in the target space. The main contributions are summa-
rized as follows:

(1) We propose a novel RL method combining curriculum learning with SAC.
By setting two training courses, our method trains the vehicle separately
for parking and obstacle avoidance actions, which generates better parking
actions in shorter training timesteps.

(2) We build a simulation platform for automatic decision making, which sat-
isfies the setting of unregulated parking lots, and we train and test the
algorithm on this platformfacilitating simulation experiments and meeting
environmental requirements.

2 Establish Parking Kinematics Model and Environment

The parking kinematic model captures vital vehicle information like position,
speed, acceleration, and steering angle [12]. With an accurate model, the park-
ing trajectory can be predicted precisely. The parking environment directly influ-
ences the planning complexity. This paper utilizes the Gym-based Highway-env
environment [6] as a simulation platform, suitably modified to align with unreg-
ulated parking lots.

2.1 Parking Kinematics Model

Table 1. Simplified vehicle parameters.

Physical Quantity Symbol Parameter Value Unit

Width W 2 m

Wheelbase L 3 m

Front Overhang Lf 1 m

Rear Overhang Lr 1 m

Body Steering Angle φ [−30, 30] deg

Front Wheel Steering Angle δ [−45, 45] deg
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The vehicle is a complex system, so both the parking environment and the
vehicle’s internal transmission influence motion planning outcomes in the com-
plex vehicle system. To address this, the vehicle’s external profile is simplified as
a rectangular rigid body. This preserves the vehicle’s kinematic characteristics
while preventing collisions with obstacles. Table 1 presents the simplified vehicle
parameters, and Fig. 1(a) illustrates the simplified vehicle model.

Ackermann Steering Theory [14] is extensively employed in the design and
manufacturing of modern automobiles. Due to the small disparity in turning
angles between the inner and outer wheels on the front side of the car, the four-
wheel car model can be simplified to a two-wheel model for analyzing parking
kinematics, which is called Single-Vehicle Model [10]. This kinematics is depicted
in Fig. 1(b).

Fig. 1. (a)Simplified vehicle model. A, B, C, D represent the car body vertices. The
projections of the wheel centers on the ground are denoted as FL, FR, RL, RR, and
the ground projections of the two axes are represented by F and R. (b)Kinematic
diagram of Single-Vehicle Model. A and B represent the front and rear points of the
single vehicle model, C represents the vehicle’s center of mass, and O represents the
instantaneous center of rotation.

As the vehicle is typically propelled by the rear wheels and steered by the
front wheels, we denote the steering angle of the rear wheels δf = 0 and that
of the front wheels δr = δ. R represents the instantaneous radius of rotation
and β denotes lateral sway angle. x and y represent the two components of
vehicle displacement in the ground coordinate system, while v and a denote
the vehicle’s velocity and acceleration respectively. With this, the kinematic
equations of Single-Vehicle Model can be derived as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx
dt = v cos(β + φ)
dy
dt = v sin(β + φ)
dv
dt = a
dφ
dt = 2v sinβ

L
β = arctan

(
1
2δ

)

. (1)
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Single-Vehicle Model completes the control of the vehicle by the vehicle accel-
eration a and the front wheel steering angle δ. Therefore, accurately controlling
these two parameters can effectively represent the vehicle’s kinematics.

2.2 Setting of Unregulated Parking Lot

Fig. 2. Simulation environment of unregulated parking lot.

Figure 2 illustrates the simulation environment for an unregulated parking
lot, consisting of green vehicle, yellow vehicles and squares, white lines, and blue
dots. The green vehicle represents the controlled vehicle, aiming to park in
target space. The yellow vehicle and square represent potential obstacles in
the parking lot. The white lines indicate the boundary of the parking space,
while the blue dot signifies an empty parking space, which serves as the target
position for the green vehicle.

In this simulation environment, the 8m-long and 4m-wide parallel and verti-
cal parking spaces are designed. The parking distance (d = 20 m) is calculated
based on the minimum parking radius. Additionally, three types of parking lot
obstacles are designed: A represents the parking lot boundary, B represents
obstacles in parking spaces, and C represents obstacles in parking lot.

3 Algorithm Framework

To handle the continuous action space in parking motion, this paper adopts
the Soft Actor Critic algorithm (SAC) [4] as the basic algorithm, known for
its stability in training. The framework of SAC comprises 5 neural networks: 1
Actor network and 4 Critic networks. In addition, we use a curriculum learning
approach to speed up and better the training process. Figure 3 illustrates our
approach.

3.1 Curriculum Learning

Curriculum learning is an effective approach for humans to progress from simple
to complex problem-solving. By systematically organizing lessons of increasing
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difficulty, complex knowledge can be effectively acquired. Jeffery Elman proposes
using curriculum learning to train neural networks, which enhances model con-
vergence and performance [8]. Thus, designing a set of incrementally challenging
and easily learnable courses becomes crucial.

Fig. 3. Algorithm framework of our approach.

Therefore, we adopt a curriculum learning approach to accelerate and better
the training process. The training process includes two courses. The objective of
Course 1 is to make the vehicle learn to park in a parking lot without obstacles.
Using the training results of Course 1 as the pretrained model, the objective of
Course 2 is to make the vehicle learn to avoid obstacles by adding them to the
parking lot. Each course is trained using the SAC algorithm. Further details on
course settings are provided in Table 2.

3.2 State and Action Spaces

According to Eq.(1), the vehicle’s control can be achieved by manipulating the
vehicle acceleration a and the front wheel steering angle δ, resulting in an action
space A represented as

A = {a, δ}. (2)

The state space S encompasses the vehicle’s own information S1 and the
information regarding obstacles in its vicinity S2. For the vehicle’s information
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S1, we consider the position x, y, speed vx, vy, and heading angle φ as three sets
of relevant data, forming the state space

S1 = {x, y, vx, vy, cos φ, sin φ}. (3)

Table 2. Course settings.

Course Initial Pose Obstruct Vehicles Number of Parking Spaces Obstacles in Parking Spaces Obstacles in Parking Lot

Vertical Horizontal Vertical Horizontal Vertical Horizontal

1 Fixed position Arbitrary posture No 10 6 0 0 0 0

2 Fixed position Arbitrary posture Yes 10 6 6 4 3 2

Regarding the obstacles S2, a LIDAR system mounted on the vehicle moni-
tors the surroundings. With the vehicle’s center of mass as the origin, the LIDAR
emits 16 laser beams uniformly within a 20-meter range. The corresponding state
space for this component is a 16× 2 matrix. The first column represents the dis-
tance of a nearest obstacle from the vehicle, as detected by a specific beam, and
the second column indicates whether the obstacle is detected by that beam, with
0 indicating detection and 1 indicating no detection.

Full state space of the vehicle S = S1 ∪ S2. After obtaining the observations,
they need to pass through the features extractor, as shown in Fig. 3. The features
extractor flattens extractsfeature vectors from high-dimensional observations to
one 50-dimensional vector to facilitate learning through SAC network.

3.3 Reward Function

When formulating the reward function for the automatic parking planning task,
we consider both location, which ensures the controlled vehicle consistently
enters the parking space with the correct orientation, and safety, which prevents
collisions with obstacles. The reward function is represented as

r = rlocation + rsafety. (4)

Location. Location rlocation is crucial that enables the controlled vehicle to
progressively approach the target parking space through training. rlocation is a
numerical value equal to or less than 0. When rlocation = 0, it indicates that the
vehicle has successfully parked in the predefined position.

rlocation = − ‖S1 − Sg‖p
W,p . (5)

where S1 is the vehicle’s own information, Sg is the goal’s information, Sg =
{xg, yg, 0, 0, cos φg, sin φg}. Define the operator

‖x‖W,p =

(
k∑

i=1

|Wixi|p
) 1

p

, (6)

where W = [1, 1, 0, 0, 0.02, 0.02].
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Safety. During automatic parking, the vehicle detects obstacles based on S2. In
the event of a collision, a significantly low reward value is assigned, prompting
the controlled vehicle to learn collision avoidance behavior.

rsafety = rsafe =
{

0,no collision
−5, if collision (7)

The corresponding training procedure is shown in Algorithm 1.

Algorithm 1. SAC with Curriculum Learning
1: INPUT: initial policy parameters θ for each course, Q-function parameters φ1, φ2

for each course, empty replay buffer D, total number of course n.
2: for n = 1, 2, ... do
3: Load the model trained in the previous course, and skip if n = 1.
4: Use the SAC algorithm to update θ and φ1, φ2 in this course.
5: end for
6: OUTPUT: θ and φ1, φ2 from the last course.

4 Experiments

We perform experiments by using our method (called Curriculum Learning
RL) in the unregulated parking lot depicted in Fig. 2 using a PC equipped with a
3080 graphics card. We utilize the parameters from Table 3 for the algorithm. To
assess our approach’s performance, we compare it with a Baseline Algorithm,
which directly learns parking and obstacle avoidance actions in the unregulated
parking lot using the SAC algorithm. Furthermore, after completing training,
we design parking experiments under various parking conditions to verify the
algorithm’s generalization.

Table 3. Algorithm parameters.

Parameters Values Parameters Values

policy MultiInputPolicy learning rate 3 × 10−4

buffer size 106 batch size 256

gamma 0.99 tau 0.005

network structure of SAC 2 layers, with 256 neurons each activation function of network ReLU

We conduct separate training for vertical and horizontal parking spaces using
Curriculum Learning RL. The total duration of this algorithm is 3,150,000
timesteps, with Course 1 lasting 1,900,000 timesteps and Course 2 lasting
1,250,000 timesteps. As a contrast, Baseline Algorithm has a total duration of
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5,000,000 timesteps. The evaluation metrics for training are average reward
and success rate. Figure 4 shows the training progress for both algorithms.

Using Curriculum Learning RL, as depicted in Fig. 4, the vehicle learns park-
ing action in Course 1 and obstacle avoidance action in Course 2 for both ver-
tical and horizontal parking. In 3,150,000 timesteps, Curriculum Learning RL
achieves higher average reward and success rate for parking actions compared
to the Baseline Algorithm, demonstrating its effectiveness.

Fig. 4. Comparison between Curriculum Learning RL and Baseline Algorithm.

To validate the effectiveness of our Curriculum Learning RL algorithm, we
test 1000 diverse parking scenarios for vertical parking on this platform. Each
scenario features unique initial angle, target parking space, and obstacles. Com-
parisons are made against the Baseline Algorithm and Curve Interpolation.
In Curve Interpolation, paths are fitted using fifth-degree polynomials. Eval-
uation metrics includes success rate, collision rate, and parking time. Table 4
demonstrates that Curriculum Learning RL algorithm achieves higher success
rate, lower collision rate, and shorter parking time, affirming its effectiveness.

In addition, to assess the model’s generalization, we conduct experiments in
various parking conditions. Using Table 2 as reference, we modify the parking
starting point to a random coordinate (x-axis: [−6, 6] m, y-axis: [−6, 6] m) in the
parking coordinate system, with an arbitrary pose. Additionally, we introduce 4
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Table 4. Evaluation metrics on different algorithms.

Curriculum Learning RL Baseline Algorithm Curve Interpolation

success rate 79.8% 46.9% 39.1%

collision rate 20.2% 49.9% 50.2%

parking time 13.28 s 23.91 s 31.32 s

cars in the parking space and 6 cars in the parking lot, placed at random posi-
tions and poses. Figure 5 presents some test results, demonstrating the successful
application of Curriculum Learning RL in diverse parking conditions with strong
generalization.

Fig. 5. Results of the generalizability experiments.

5 Conclusion

In this paper, we propose a RL algorithm based on curriculum learning for auto-
matic parking in unregulated parking lots. By decomposing the complex problem
into multi-stage tasks with shorter-term rewards, and utilizing two courses for
parking and obstacle avoidance, our method outperforms the Baseline Algo-
rithm, which directly learns under the unregulated parking lots, in terms of
higher reward functions and success rates within a shorter time. The experi-
ments conducted under different parking conditions demonstrate the algorithm’s
generalization. Future work involves extensive simulations of vehicle kinematics
and dynamics using a larger engine, as well as validation in real-world scenarios.
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Abstract. Fraudulent account detection is essential for businesses and
online Internet enterprises, which can help to avoid financial loss and
improve user experience. However, conventional solutions suffer from
two main challenges which remain unresolved; first, it’s hard to mon-
itor and detect fraud behaviors in real-time, and second, the features of
the cheaters keep changing dynamically, which makes it hard to capture
the most relevant features for the detection models. In this demonstra-
tion, we present a fraudulent account identification system called FAI,
which can help to address the above challenges by exploring a multi-
granularity sliding window strategy to construct the dynamic features,
and both dynamic and static features are embedded together as the input
of pre-training models. FAI also provides an interface that allows users to
select sets of features in the spatio-temporal dimension flexibly, visualize
the feature aggregation results, and assess the quality of fraud detection
results. Demo video click here.

Keywords: Fraud detection · Dynamic feature extraction ·
Anomalous data flow monitoring · Spark SQL

1 Introduction

Online Internet enterprises are now confronted with potential multi-party orga-
nized attacks, such as massive tests, fake registrations, and invitations. Fraud
behaviors demonstrate characteristics such as large-scale, spatial, and temporal
aggregation, which have seriously affected the security of enterprises’ property
and the experience of normal users [1,12]. Thus, detecting latent fraudsters has
become a vital security task [2].

The rule-based decision-making approach and machine-learning inference
approach are two mainstream fraudulent account detection methods. However,
they both rely on domain knowledge and delicate feature engineering. More-
over, the rule-based decision-making approach must update promptly to adapt
to the dynamically changing activities of fraudsters, and rules are easy to be
found and avoid by massive tests. On the other hand, the changeable fraudulent
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Fig. 1. FAI Architecture

activities could also cause degradation of machine-learning models [3,4]. There-
fore, we design a Fraudulent Account Identifying (FAI) system to address the
aforementioned challenges.

Users of FAI and conference audiences, both there could interact with the
system in real-time to query and visualize various data analyses on fraudulent
accounts, including the distribution of fraudulent accounts countrywide, a real-
time view of the number of fraudulent and normal accounts, and the user can
view the results of the classification of the given data through the model predic-
tion interface. They can observe the aggregation of fraudulent accounts through
a visual display. The key contributions in this paper are listed as follows:

– FAI encapsulates multiple types of feature construction methods, including
dynamic feature and static feature construction strategies, which help prac-
titioners discover complex anomalous aggregation patterns more quickly and
comprehensively.

– FAI explores a multi-granularity sliding window strategy to construct the
dynamic features in a variety of granularities (ranging from a second to a
week) which can better adapt to both online fraud monitoring and offline
prediction model training.

– FAI explores self-adaption strategies, such as incremental online learning Ran-
dom Forest to deal with the degradation of models.

– FAI allows practitioners to casually combine multiple suspicious data fields
to analyze the weird correlation of account information at the spatial and
temporal levels.

2 Fai Architecture

Figure 1 depicts the architecture of FAI. It is composed of the following four
main modules:
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Data Aggregation. This module is responsible for aggregating the streaming
data from the server, and a multi-granularity sliding window strategy is used
to aggregate data in different periods for dynamic feature construction. Various
pre-processing tasks are performed on the data, including filtering irrelevant
data, filling in missing values, etc. [5,10].

Data Warehouse. This module partitions large amounts of historical data
(derived from a large granularity sliding window) into smaller data cubes which
can be processed efficiently in Spark RDDs in memory. We perform a partitioning
operation that reorders the dates in the data and restores them in a partition,
where each day corresponds to one partition [7]. The partitioned data will reduce
the storage and indexing response time, allowing users to interact live with FAI
more efficiently.

Feature Engineering. This module is designed to process the real-time stream-
ing data derived from user customization or a sliding window in default granu-
larity. See Sect. 3 for more details [9].

Query Panels. This module is user-oriented and supplies users with the choice
of the functions to be performed.

Fig. 2. Generation Features

3 Feature Engineering

Once receiving a command from the user, the module first reads the required
data from memory, then aggregates the feature information selected by the user
and constructs the relevant dynamic features. And then, these dynamic features
will be transformed into Spark RDDs and processed by subsequent prediction
models under a parallel computing framework. The module consists of two parts:

Generating Features. This module is designed to generate the corresponding
dynamic features according to different granularity and also provides an interface
for users to customize the window size. For example, suppose the user observes
a more pronounced aggregation of fraudulent accounts in the uid and phone fea-
tures in the ip address over an hour. In that case, the user can combine the two
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features and count the times the same field appears over the hour. The combined
dynamic features are then stored in memory and used for later prediction mod-
els [11]. All feature analysis methods, including those integrated with temporal
level (e.g., request time combined with user id), spatial level (e.g., ip province
combined with user id), spatial-temporal level(e.g., request time combined with
ip province) and other aggregations with casually multiple suspicious features,
can better facilitate the observation of fraudulent account characteristics and
dedicate the construction of useful features (Fig. 2).

Data Filtering. The main task of this part is to filter the static features and
display them according to the user’s selection. The static features allow the user
to understand better a range of behavioral information about the fraudulent
accounts, such as the fact that fraudulent accounts prefer to log in at night.

4 Prediction Models

FAI explored the following forecasting models, FAI integrates pre-trained models
with online incremental learning models.

Pre-trained Models. We choose the decision tree-based models LightGBM
and Random Forest, which work better when dealing with our data as decision
trees can learn non-linear relationships and are easy to deploy on Spark. These
models are trained offline based on large-scale historical data sets.

Incremental Learning Models. We use incremental learning methods where
both static and dynamic feature splices are fed into the pre-trained model. Each
leaf node in the tree model maintains a list of samples to store the samples
categorized to that leaf node. When the Gini coefficient on a leaf node exceeds
a set threshold, the current leaf node needs to be split and the stored samples
are used to construct a new sub-incremental tree, thus extending the whole
incremental tree with new features that work well for classification [6,8].

5 Demo Scenes

As shown in Fig. 3, the scenario of the system is divided into several parts,
such as data visualization, feature generation, and real-time fraud monitor-
ing and prediction. A detailed demonstration can be viewed in the video.
Click here to watch.

https://www.bilibili.com/video/BV1uV411g7z8/?share_source=copy_web&vd_source=ec83cc0db29acdc1191c9f9abcdb6dcc
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Fig. 3. User Interface of FAI
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2. Baesens, B., Höppner, S., Verdonck, T.: Data engineering for fraud detection. Decis.
Support Syst. 150, 113492 (2021)

3. Bera, D., Ogbanufe, O., Kim, D.J.: Towards a thematic dimensional framework
of online fraud: an exploration of fraudulent email attack tactics and intentions.
Decis. Support Syst. 113977 (2023)

4. Bierstaker, J.L., Brody, R.G., Pacini, C.: Accountants’ perceptions regarding fraud
detection and prevention methods. Manag. Audit. J. (2006)

5. Chang, V., Di Stefano, A., Sun, Z., Fortino, G., et al.: Digital payment fraud
detection methods in digital ages and industry 4.0. Comput. Electr. Eng. 100,
107734 (2022)

6. Gepperth, A., Hammer, B.: Incremental learning algorithms and applications. In:
European Symposium on Artificial Neural Networks (ESANN) (2016)

7. Laender, A.H., Ribeiro-Neto, B.A., Da Silva, A.S., Teixeira, J.S.: A brief survey of
web data extraction tools. ACM SIGMOD Rec. 31(2), 84–93 (2002)

8. Luo, Y., Yin, L., Bai, W., Mao, K.: An appraisal of incremental learning methods.
Entropy 22(11), 1190 (2020)

9. Naeem, M., et al.: Trends and future perspective challenges in big data. In: Pan,
J.S., Balas, V.E., Chen, C.M. (eds.) Advances in Intelligent Data Analysis and
Applications. Smart Innovation, Systems and Technologies, vol. 253, pp. 309–325.
Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-5036-9 30

10. Salekshahrezaee, Z., Leevy, J.L., Khoshgoftaar, T.M.: The effect of feature extrac-
tion and data sampling on credit card fraud detection. J. Big Data 10(1), 1–17
(2023)

11. Salloum, S., Dautov, R., Chen, X., Peng, P.X., Huang, J.Z.: Big data analytics on
apache spark. Int. J. Data Sci. Anal. 1, 145–164 (2016)

12. Zhang, Z., et al.: Temporal burstiness and collaborative camouflage aware fraud
detection. Inf. Process. Manag. 60(2), 103170 (2023)

https://doi.org/10.1007/978-981-16-5036-9_30


An Autonomous Recovery Guidance
System for USV Based on Optimized

Genetic Algorithm

Lulu Zhou, Xiaoming Ye(B), Pengzhan Xie, and Xiang Liu

School of Energy and Power Engineering,
Huazhong University of Science and Technology, Wuhan, China

xmye@hust.edu.cn

Abstract. As a kind of flexible and efficient device that can auto-
nomously complete tasks without human intervention, Unmanned Sur-
face Vehicle (USV) has gained increasing attention in the research field
recently. Path planning is an essential hotspot in the study of the USV.
Unlike traditional robotic path planning, the path planning of the USV
needs to consider the dynamic impact of the water environment as well
as the constraints of its own vessel’s kinematics. For the sake of enhanc-
ing the practical operability of the navigation, an optimized Genetic
Algorithm (GA) based on three-dimensional environment modeling is
proposed. By simplifying the 3D coordinate, the algorithm can effi-
ciently deal with the avoidance of dynamic and static obstacles. Pop-
ulation initialization is improved to reduce the calculating load, and
the Elitism Strategy is combined to ensure convergence. An innovative
Sacrifice Strategy and intraspecific hybrid methods are proposed to fur-
ther increase the genetic diversity and convergence rate. We also propose
a new penalty fitness function. Through simulation results and experi-
ments in a water surface environment, the effectiveness and rationality of
this method were verified, providing new ideas for path planning research
of the USV.

Keywords: Unmanned surface vehicle · Genetic algorithm · Path
planning · Evolution strategy

1 Introduction

Since the launch of the first lunar probe in 1959, an increasing number of intelli-
gent astronomical devices have been on a mission to explore the vast and magnif-
icent universe, while the journey of human beings continues to advance toward
the deep and boundless oceans. With the upgrading and iteration of artificial
intelligence, research in various fields such as meteorology and oceanography is
gradually expanding in breadth as well as depth [6]. But the demand for envi-
ronmental monitoring and its safety precautions is also increasing at the same
time. As a new type of surface vessel, the unmanned surface vehicle (USV)
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which offers the benefits of higher efficiency and lower casualty risk has raised
worldwide interest [15].

However, the performance of the USV largely depends on its core systems,
which are the navigation system, the control system, and the guidance system.
Making use of the navigation system and the control system, real-time naviga-
tional data can be obtained and accurate motion control can be achieved [8].
Nonetheless, most of USVs are semi-automatic so they can be flexibly relied
upon various types of missions. By adjusting the heading and speed, the guid-
ance system assists in mission planning and execution for the USV and guides
the USV to navigate along waypoints accurately. Based on the tasks’ require-
ments, it provides effective and available path planning, allowing the USV to
take proactive measures to prevent collisions. It should be noted that the path
planning algorithm is the fundamental part of the guidance system, which was
consisted of global path planning and local path planning [11].

Unlike maritime navigation, the guidance of the USV during the recovery
situation doesn’t consider the International Regulations for Preventing Collisions
at Sea (COLREGS) for its immediate environment where close to the stern
ramp of its large target ship without the interference of other vessels. In spite of
this, how to operate collision avoidance remains a challenge for path planning
because of the reefs and floats. After a comprehensive investigation of various
algorithms, we choose the genetic algorithm (GA) as the global path planning
and improvements are going to be made to ensure real-time collision avoidance
and operation effectiveness. Inspired by the previous works [16,18], we propose
a recovery guidance system based on optimized genetic algorithm, an upper
computer software is created as well as the correspondence tracking program.

Our main contributions are summarized as followed:

(1) We propose the movement rules for the USV based on 3-D map information in
order to optimize the dynamic collision avoidance and relief the computational
load.

(2) We optimize the initialization process of the genetic algorithm and propose a
new type of crypto theory that enhances the algorithm’s iteration efficiency
resulting in high-quality outcomes.

(3) We propose a novel genetic algorithm execution process and experiments of
simulation and water surface to demonstrate the effectiveness of our method
based on the smoothing and time costs aspects.

2 Related Work

In this section, we will discuss some other algorithms which have been applied in
the guidance system of the USV and introduce the different methods to optimize
the traditional genetic algorithm proposed by other researchers.
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2.1 Path Planning Algorithms

The quality, efficiency, and convergence of path planning algorithms are cru-
cial. Choosing suitable algorithms for different scenarios and leveraging their
advantages is a major concern of researchers.

Dijkstra is a classical graph algorithm which is popular for its good robustness
and easy implementation. But it has high spatio-temporal complexity and low
efficiency. As another classical graph algorithm, A* algorithm has also become
popular in recent years due to its excellent scalability [14,15].

Virtual Force Field (VFF) is a time-efficient approach suitable for dynamic
collision avoidance, particularly in local path planning. But it often yields local
optimal solutions. By modifying the physical model or combining it with other
algorithms, VFF can overcome this limitation [13,17].

Random sampling methods have different performances in terms of conver-
gence rate, making them widely used in Multi-Agent Path Finding (MAPF) due
to their purposefulness. To enhance dynamic collision avoidance, Ouyang et al.
[12] optimize the RRT algorithm, while Hou et al. [4] propose a penalty-based
method considering multiple constraints and average sailing time.

For comparison with the genetic algorithm more intuitively, the presentative
intelligence algorithm will be introduced in the next part.

2.2 Optimization Methods of Traditional Genetic Algorithm

Represented by Ant Colony Optimization (ACO), some intelligent algorithms
tend to get trapped in local optimal solutions. Path planning has always been
a multi-objective problem, not merely linear [5,7]. In complex conditions, the
genetic algorithm outperforms others due to its unique selection mechanism,
which enables it to quickly search for multiple target results.

Despite this, the traditional genetic algorithm still has a low convergence
rate for path planning of USVs. Wang et al. [16] combine the genetic algorithm
with fuzzy APF to develop a hierarchical path planning method that generates
optimally sparse waypoints and smooth paths for unpredictable environments.
However, it remains challenging when dealing with time-varying dynamic obsta-
cles and unforeseen marine scenarios. To overcome inherent shortcomings like
premature population and slow convergence, Xin et al. [18] propose a strategy
to increase the number of advantageous offspring using multi-domain inversion
and conducting a second fitness evaluation. However, this method adds complex-
ity to the algorithm and its encoding process.

Based on a reference from task relation networks [20,21], we propose a novel
3D modified genetic algorithm giving a new encoding strategy and upgraded
genetic manipulations to improve the convergence rate and quality of planning.

3 Method

3.1 Overview

The guidance system we propose is able to find an optimal unobstructed path
based on the start and end points entered by the upper computer, in combination
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with GPS and other navigation devices. As shown in Fig. 1, with the support
of the data transceiver, effective communication can be established between the
navigation system and the guidance system for smooth route planning and exe-
cution of the USV.

Fig. 1. Communication architecture of the main control system of our USV.

The optimized genetic algorithm, which incorporates the time dimension into
geographic coordinates, enhances real-time communication and promotes the
feedback mechanism between systems. Computation time is reduced by optimiz-
ing coding mechanisms and improving genetic manipulations. The multidimen-
sional evaluation of the fitness function provides high-quality path results and
reduces the tracking burden on the control system.

3.2 Map and Avoidance

In genetic algorithms, the distribution of waypoint locations is random and it
takes time to iterate. On the other hand, modeling with the ordinal grid method
requires a large amount of memory and has to consider irregular edges of the
experimental environment during sequencing [1]. To overcome these issues, we
propose using a three-dimensional Cartesian Coordinate System to generate way-
points, which reduces the code size by more than half and increases the conver-
gence rate.

We represent all obstacles as circular bounding boxes. Taking into account
the irregularity of the obstacles and the fact that the USV itself has a volume,
which was considered as a prime point during planning, we compensate the
radius of the boxes as shown in Fig. 2(a). The radius compensation could be
calculated by:

Rl = Robs + DUSV + Rc (1)

where Rl denotes the minimum radius of collision avoidance distance from the
USV to the center of the circular bounding box, Robs represents the initial radius
of the box, and the whole compensation radius is the length of the hull DUSV

plus the possible displacement Rc caused by environmental interference which
is usually taken as 1 m.
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Introducing the time dimension to environmental modeling, we implement
collision avoidance strategies for both static and dynamic obstacles [19]. The
expression of the obstacles can be given by:

(X − Xobs + Vxt)2 + (Y − Yobs + Vyt)2 = R2
obs (2)

where Xobs and Yobs denote the abscissa and ordinate of the center of the circular
bounding boxes, Robs represents its radius, Vx and Vy denote the velocity in x-
direction and velocity in y-direction. When it comes to the static obstacles,
Vx = 0 m/s, Vy = 0 m/s.

For static obstacles, the distance is calculated from the center of the circular
bounding box to the segment of the navigation line formed by the current and the
previous waypoint. This computed distance is then compared with the minimum
collision radius. If the distance is greater than the minimum collision radius,
then the collision will be avoided. This procedure is illustrated in Fig. 2(b).
For dynamic obstacles, the planned recovery path is considered as a uniform
acceleration process, and the group of equations is solved to determine whether
there are positive real solutions with respect to T to tell if a collision will occur.
The equation group is expressed as follows:

⎧
⎪⎪⎨

⎪⎪⎩

X = XUSV + V · cos θ · T
Y = YUSV + V · cos θ · T

V = Vi+Vi+1
2

(X − Xobs + Vobs,x · T )2 + (Y − Yobs + Vobs,y · T )2 = R2
obs

(3)

where θ denotes the heading of the USV, and V presents the average velocity of
the current segment, of which the index is i.

During the experiments, we preset four static obstacles and four dynamic
obstacles, and how they are represented in the three-dimensional Cartesian coor-
dinate system are shown in Fig. 2(c).

3.3 Encoding and Population Initialization

We define the recovery environment as a three-dimensional map with a unit
distance of 1m. During design, individuals’ gene loci are designated as Point
class, which stores the three-dimensional waypoint coordinates (X,Y, T ) at real-
time speed. We formulate the X-axis direction as the direction of the step and
determine the range of intervals generated for each waypoint by the length of
step size DSL, which is different according to various scenarios and the accuracy
requirements. The number of gene loci of each individual N can be calculated
by:

N =
XPS − XPE

DSL
+ 1 (4)

where XPS and XPE denote the abscissa of the start point and the end point in
USV’s mission. Then we take the reminder of the horizontal distance between
start and end points, which is the compensation interval DC , as shown in Eq. 5:

DC = (XPE − XPS) \DSL (5)
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and based on the performance of USV during the experiments, we determine
DSL to be 10 m.

Fig. 2. Detail parts of the map modeling. (a) Example of the circular bounding box
for obstacle; (b) Avoidance strategy for static obstacles; (c) The default obstacles for
our simulation and field trial in three-dimensional Cartesian coordinate system.

To reduce inconsistencies in navigation such as ‘unnecessary’ jags and large
span, we omit the start and end points of each interval when generating way-
points. To address real number overflow resulting from genetic mutations during
binary code decompilation, we design a function that maps the horizontal coor-
dinates of the waypoints to a range between 0 and 7. The ordinate and velocity
are also processed in a similar manner. The specific mapping process is shown
in Eq. 6: ⎧

⎨

⎩

Xtr = Xi − DSL · (i − 1) − 1
Ytr = Yi + 64
Vtr = Vi · 5

(6)

where Xtr and Xi denote the abscissa of binary system and decimal system.
Ordinate and velocity are presented in a similar way.

After each round of variation, the corresponding time for the related way-
points is updated. Each navigation segment is considered as a uniformly accel-
erated process, and Ti can be calculated is by:

Ti =
i−1∑

n=1

√

(Xn+1 − Xn)2 + (Yn+1 − Yn)2 · 2

Vn + Vn+1
(7)

where i is the index of currently updated waypoint.
During population initialization, the generation of waypoints is not performed

randomly. Instead, an obstacle collision avoidance check is executed within the
loop for preparing individuals, to ensure that the initial paths exhibit desirable
quality. It is worth noting that, due to the potential for unsolvable calculations,
the threshold for a single individual loop is set alternately. And the coordinates
are randomly assigned if the loop exceeds 1000 times in case of a program crash.
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3.4 Improved Genetic Manipulation

The traditional genetic algorithm is not completely globally convergent. During
genetic variation, individuals will undergo crossover and mutation, resulting in
gene sequence changes and modification of their phenotypes. However, under
such a mechanism, genetic individuals with exceptional phenotypes may lose
their superior genes, leading to a reduction in search speed [9]. Several studies
have demonstrated the global convergence of genetic algorithms that incorporate
Elitism Strategy. This approach involves copying individuals from the elite group
to next generation with a probability of 1 during every genetic manipulation,
thereby continuously updating the elite group [2]. Generally, around 10% of elite
sequences are retained.

In order to ensure optimal performance of the USV, it is important to consider
various factors such as heading angle, rotational speed, and water environment
conditions. To address these concerns, we propose a multi-penalty mechanism
that takes into account factors such as time, distance, and orientation [10]. Fur-
thermore, we suggest implementing a hard kinetic evaluation index to determine
whether a particular gene should be eliminated [3]. Quantitative indicators and
fitness can be calculated by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fitness (x) = GaccGvelGcol
A

a·Fitd+b·FitT +c·Fita+d·Fitm

Fitd =
∑

Dsegment,i√
(xend−xstart)

2+(yend−ystart)
2

FitT =
∑

ΔTsegment,i

N−1

Fitm =

N∑

i=1
|yi|

N

Fita =

N∑

i=1
(π−θ)

π

(8)

where Fitd, FitT , Fitm, and Fita denote the evaluation functions for distance,
time cost, malposition, and turning angle, respectively. And Gacc, Gvel, and Gcol

present the hard kinetic evaluation index of acceleration, velocity, and collision
avoidance. a,b,c,d are parameters set by researcher.

In the process of evolution, unqualified individuals can take up computational
memory, resulting in longer execution times and reduced benefits for real-time
planning. To solve this issue, we suggest a new approach called the sacrifice
strategy. This method imitates natural processes such as birth, aging, illness,
and death of individuals to enhance the algorithm’s convergence. After that,
the memory of the eliminated individuals is released for the generation of new
individuals. The new population will undergo intraspecific hybridization in the
next generation. Moreover, this strategy ensures that the generated recovery
planning paths are practical and functional. By improving convergence speed
while maintaining practicality, our proposed strategy offers an efficient solution
to this problem.
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4 Experiments

In this section, we will introduce the simulation and field experiments using our
method. We will first introduce the settings and implement details. Then the
comparison with the traditional genetic algorithm will be presented. At the last,
the result of ablation study will be shown to compare the contribution of various
components of our algorithm.

4.1 Settings and Implement Details

The experimental simulation is conducted in a Windows 10 Professional 64-bit
operating system using MATLAB R2018a software and Visual Studio 2022 C++
programming language. The virtual environment for the USV’s operation is rep-
resented by a 100× 128 raster map, which is symmetrical to the stern ramp.
However, a final generated path map of 100× 100 is sufficient. The genetic algo-
rithm is implemented with the following operating constants: a population size
of 100, a maximum number of iterations of 300, a tournament competition group
of 2 genes, a crossover probability of 0.6, and a single point mutation probability
of 0.01. The fitness function parameters are set as follows: A = 150, a = 1.75,
b = 0.05, c = 4.50, d = 1.50.

The details of circular bounding boxes are as shown in Table 1.

Table 1. Details of the dynamic and static obstacles.

Type of Obstacles X(m) Y(m) Radius(m) V X(m/s) V Y (m/s)

Dynamic 12 25 7 −0.2 0.5

55 25 10 −0.2 0.5

85 35 6 −1.0 −0.2

10 −36 10 0.5 0.5

Static 25 10 6 0 0

40 −18 8 0 0

70 −30 10 0 0

90 −15 8 0 0

The end point of the axis of the stern ramp, which we have identified as the
coordinate origin, serves as the endpoint for our planning. The starting point can
be entered directly into our self-designed software through the upper computer.
We have designed four cases with different characteristics to analyze the impact
of the optimized genetic algorithm on the length of the journey and the difference
in longitudinal distance between the starting point and the end point. The four
coordinates are as follows: (85, 10), (55, −15), (43, 6), and (92, 20).
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After generating the paths, for testing the integrity and consistency of the
paths, the compiled code is then transferred to the T30 upper computer. The
performance of the field experiment is shown in Fig. 3(a) and components of the
hardware are illustrated in Fig. 3(b).

Fig. 3. (a) USV during the field test on the lake; (b) Hardware components of our
USV.

4.2 Comparisons

To control the variables, we implemented the Simple Genetic Algorithm (SGA)
code on a 3D map model and conducted a comparative analysis using proposed
quantitative metrics. The resulting path diagram is displayed in Fig. 4.

Fig. 4. The comparative results of path planning using SGA and OGA and the planning
path in 3D coordinate using OGA where t indicates time remaining.

The longitudinal distribution of waypoints in SGA appears to be more scat-
tered as a result of the higher randomness present in the initialization process.
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Specifically, when aligning with the stern ramp, the path generated by SGA
exhibits a lack of gradual approach towards the central axis of the stern ramp.
This characteristic hinders the execution of recovery maneuvers. The compar-
ative results of the quantitative indicators are presented in the Table 2 where
the red values indicate worse results and the comparison results of time cost are
shown in Table 3.

Table 2. Comparative results of quantitative indicators (O-OGA, S-SGA).

Case FitaO FitaS FitmO FitmS FitdO FitdS FitTO FitTS

1 0.48 2.63 1.30 4.10 1.05 1.32 5.18 5.75

2 0.42 1.26 2.57 3.71 1.08 1.15 5.75 5.71

3 0.37 1.22 2.17 3.00 1.03 1.23 4.96 5.08

4 1.44 1.55 4.55 4.82 1.19 1.25 5.09 4.92

Table 3. Comparison of the time consumption for iterations between OGA and SGA.

Case TSGA(s) TOGA(s) Improvement (%)

1 2.067 10.846 80.9423

2 2.683 8.561 68.6602

3 1.556 7.218 78.4428

4 3.792 13.074 70.9959

In terms of malposition, OGA performs better in cases 1 and 4 due to the
complex planning in length and vertical difference. Although the indicators of
time show OGA does better, they do not differ much in overall performance.
And in each case, the convergence time of SGA is significantly longer than that
of OGA, and this time difference between the two algorithms increases as the
planning distance and the vertical difference between the start and end points
increase.

After the field test, the actual path is further fitted with the β-sample curve.
A comparison between the actual path and the planning results is made to eval-
uate the smoothness and consistency of the planning process under the influence
of the water environment and the constraints imposed by the dynamic conditions
of the USV. The specific experimental results are shown in Fig. 5.

It can be seen that the diversion disadvantage of the actual path is magni-
fied. And it also takes some time to return to the original planned route after
the track on one side of the corner which is shifted, so there is a greater diver-
sion disadvantage compared to the planned path. Additionally, the planned path



268 L. Zhou et al.

Fig. 5. The comparative results of simulation and field tests.

shows a significant increase in length due to unexpected corners, failing to con-
verge within the desired range as intended. That is because the water surface has
interference and the USV’s automatic dynamic tuning needs the contribution of
time and distance. Generally, OGA demonstrates commendable performance in
terms of the smoothness and consistency of the actual path.

4.3 Ablation Study

Since population initialization and fitness evaluation systems impact the algo-
rithm framework, for the ablation study, we exclude elitism and sacrifice strate-
gies in genetic manipulation to evaluate their impact on algorithm performance.
Based on the results in Table 4, the complete algorithm structure demonstrates
advantages in time consumption, distance, malposition, and path smoothing for
path planning. Particularly, path length and smoothness are significantly opti-
mized. This is due to the improvement in genetic manipulation which facilitates a
better distribution of waypoints, thereby impacting path length and smoothness
to a greater extent.

Table 4. Comparative results of the average values of quantitative indicators.

Models Baseline Without SS Without ES Ours

Fita 2.42 0.90 1.36 0.68

Fitm 3.91 2.97 2.69 2.65

Fitd 1.24 1.12 1.12 0.68

FitT 5.37 5.42 5.36 5.25

5 Conclusion

In this paper, we propose an optimized genetic algorithm based on 3D environ-
ment and build a navigation system for the USV. To address the problems of
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traditional genetic algorithms with high memory consumption and slow conver-
gence, we determine a new coding mechanism, introduce an Elitism Strategy,
and propose a sacrifice strategy to improve the genetic operation. In setting
the fitness function, a multidimensional evaluation index is used to more closely
match the recovery environment for the stern ramp. After simulation and field
tests, the effectiveness of the method is demonstrated. It has the reference value
under the influence of a realistic water surface environment.
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Abstract. Path planning for unmanned aerial vehicles (UAV) is a key
technology for UAV intelligent system in the aspect of model construc-
tion. In order to improve the rapidity and optimality of UAV path
planning, we propose a hybrid approach for UAV path planning in 2D
environment. First, an enhanced particle swarm optimization algorithm
(EPSO) combine with genetic algorithm (GA) which named as EPSO-
GA is utilized to obtain the initial paths of UAV. In EPSO-GA, a hybrid
initialization of Q-learning and random initial solutions is adopted to
find the better initial paths for the UAV, which improves the quality
of initial paths and accelerates the convergence of the EPSO-GA. The
acceleration coefficients of EPSO-GA are designed as adaptive ones by
the fitness value to make full use of all particles and strengthen the global
search ability of the algorithm. Finally, the effectiveness of the proposed
algorithm is proved by the experiments of UAV path planning.

Keywords: UAV path planning · PSO-GA · Hybrid initialization ·
Q-learning

1 Introduction

Unmanned aerial vehicle (UAV) path planning refers to find a path between
the starting position and the destination under the conditions of terrain, radar,
and other factors [1]. In last decades, many methods have been proposed to
solve the issue of UAV path planning in 2D environment, which includes Graph-
based algorithm [2,3], Rapidly-exploring Random Trees algorithm (RRT) [4],
artificial potential field algorithm (APF) [5,6], and reinforcement learning [7].
Population-based algorithms are the most commonly methods used to plan path
for the UAV, such as genetic algorithm (GA) [8,9], particle swarm optimization
(PSO) [10], and ant colony algorithm (ACO) [11,12]. This kind of algorithms
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has the advantages of fast convergence speed, good parallelism and facilitate
collaboration among multiple populations.

Compared to other algorithms, PSO is often utilized in the path planning of
UAV. However, conventional PSO is confronted with several challenges. Firstly,
the initialization process of the particles is complex, leading to suboptimal initial
paths. Secondly, these algorithms exhibit slow convergence rates and are prone
to getting trapped in local optima. In order to solve the above problems, we
propose an EPSO-GA, and furthermore adopted it on the UAV path planning.
The main contribution of this paper can be summarized as follows.

(1) A hybrid approach of Q-learning and random initial solutions is applied
to find the initial paths for the UAV, which improves the quality of initial paths
and accelerates the convergence of the EPSO-GA.

(2) The acceleration coefficients of EPSO-GA are designed as adaptive ones
by the fitness value to make full use of all particles and strengthen the global
search ability of the algorithm. In addition, a heuristics factor is recommended
into mutation to speed up the convergence of the algorithm.

2 The Proposed Method

In this section, we construct the objective function for UAV path planning. To
enhance the quality of the initial population in the particle swarm algorithm,
we introduce Q-learning for hybrid initialization. Furthermore, we accelerate the
convergence speed and improve the global search capability of the algorithm by
incorporating mutation and crossover mechanisms.

2.1 Objective Function Construction

In this article, path length is defined as follows:

fL =
n∑

i=1

√
(xi+1 − xi)

2 + (yi+1 − yi)
2 (1)

where xi and yi are the coordinates of path point i, and n is the total number
of path points.

To simplify the calculation, the path from the starting point to the destina-
tion is divided into three segments. For each segment, the 1/4, 2/4 and 3/4 points
of the outbound leg are used as reference points. The formula for calculating the
threat intensity of the jth radar against the drone is as follows:

Tj =
3∑

m=1

K

(
1

d41/4,m,j

+
1

d42/4,m,j

+
1

d43/4,m,j

)
(2)

where m represents the path segment, K is the threat intensity coefficient,
1

d1/4,m,j
represents the distance between the jth radar and a quarter of the m
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path segment, and Tj represents the threat intensity of the jth radar against the
drone. Therefore, the threat intensity of a single drone is described as follows:

fT =
N∑

j=1

Tj (3)

where N is the number of radars.
In order to reduce computational complexity, the path planning problem for

UAV is transformed into a constrained multi-objective function. By assigning
weights to each objective, transforming the multi-objective problem into a single-
objective problem. The objective function can be represented as follows:

fobj = w1 ∗ fL + w2 ∗ fT (4)

where w1 and w2 are the weights for path length and threat intensity respectively.

2.2 Initialization Method of PSO Particle Swarm Based
on Q-Learning

The hybrid initialization method of Q-learning and random initial population is
used in this paper to obtain the initial swarm of particles. In order to ensure that
the paths generated by Q-learning have lower threat intensity and shorter path
length compared to those generated randomly, the reward function of Q-learning
is shown in Table 1.

Table 1. Design of reward function.

State of UAV Reward

Starting point 0

End position 20

Obstacles and radar −1

Feasible point r

In Q-learning, all feasible points, obstacles and radars are distinguished in
the form of positive and negative values. Each cell represents a different value,
where 0 represents the starting point, r represents free space, −1 represents an
obstacle or radar occupied cell, and 20 represents the destination. The reward
values of all feasible points are adaptively adjusted based on their positions,
where r¿0. The reward value of feasible points increases as they approach the
destination and decreases as they approach a threat. The reward values of all
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feasible points are shown below:

r = r0 + rmax ∗ exp

⎡

⎣
−

√
(xu − xg)

2 + (yu − yg)
2

kg

⎤

⎦

−rt ∗ exp

⎡

⎣−∑m
i=1

√
(xu − xit)

2 + (yu − yit)
2

kt

⎤

⎦

(5)

where r0 represents the basic reward value, rmax represents the maximum reward
value without considering threats, rt is the threat coefficient, (xu, yu) and (xg, yg)
are the coordinates of the UAV and the target point respectively, (xit, yit) is the
coordinates of the ith radar, kg and kt are the control coefficients of the reward
function and m is the number of threats.

The balance between exploration and exploitation is another key part in Q-
learning. This paper adopts Boltzmann distribution [13], and its expression is as
follows:

p(a | s) =
eQ(s,a)/T

∑
ai∈A eQ(s,ai)/T

(6)

T = λkT0 (7)

where p(a | s) represents the probability that action a is selected in state s. λ
is a constant satisfying 0 < λ < 1, k is the current iteration number and T
is a control parameter. At the beginning of the training process, T has a large
value to ensure strong exploration capability, which decreases as the number of
iterations increases to ensure that the algorithm focuses on exploitation. The
update formula for Q values is as follows:

Q(s, a) ← Q(s, a) + α [r + γ max Q (s′, a′) − Q(s, a)] (8)

where α is the learning rate, γ is the discount factor, r is the immediate reward
value of the current action and Q (s, a) is the estimated value of taking the
current action.

Using the Q-learning method based on the fitness values of all solutions, m
paths are generated, and n paths are obtained by random initialization. The
initial population size S = m + n.

2.3 PSO Mutation Crossover Strategy

Inspired by the way of multiple UAV task assignment in [14], the updating
strategy of EPSO-GA can be defined as follows:

xi,j(t + 1) = c2 • f3 (c1 • f2 (w • f1 (xi,j(t), pi,j, best (t)) , gi,j, best (t))) (9)

where xi,j(t), pi,j,best(t) represent the position and personal optimal value of
particle in t iterations respectively, while gi,j, best (t) represents the global best
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value of the particle in the t-th generation. w is the learning factor of the particle
with respect to itself, c1 and c2 are the learning factors of the current particle
with respect to its individual best value and global best particle, respectively.
f1 is the operation of the particle with respect to itself, while f2 and f3 are
the operations of the particle based on its individual best value and global best
value, respectively.

f1 is defined as a mutation where the mutation probability of the particle i
is w, f1 is formulated as follows:

f1 = w • f1 (xi,j(t)) (10)

where w is the inertia weight which has a great influence on performance of the
algorithm. In order to accelerate the convergence of the algorithm, we adopt the
linear time-varying inertia weight updating strategy in [15], which is expressed
in the following formula:

w(t) =
T − t

T
(wmax − wmin) + wmin (11)

where the value of w is linearly decreased from wmax to the final value wmin. t is
the current iteration of the algorithm and maxiter is the maximum iterations of
the algorithm. At the beginning of the iteration, the particle exhibits a strong
global search ability, while towards the end of the iteration, it acquires a local
search capability.

As shown in the Fig. 1(a), the mutation operation begins by randomly select-
ing a point in the path (excluding the start and end points). Assuming the pre-
vious coordinate is N, there are 8 possible choices for the mutated coordinate.
To improve the efficiency of search, the distance Di between each candidate i
and the destination is calculated, and the probability Pi of the i being selected
is calculated as follows:

Pi = ki ∗ 1/Di∑8
i=1 1/Di

(12)

where ki is the adjusted adaptively according to the angle between coordinate
i and the destination. In particular, the probability is 0 when i represents an
obstacle.

To address the coordinate transformation issue, this paper introduces the
crossover mechanism from genetic algorithms while retaining the individual and
global learning strategies of the particle swarm.

f2 is defined as the intersection between particle xi,j and the individual best
particle with a probability of c1. The formula for f2 is as follows:

f2 = c1 • f2 (f1, pi,j, best (t)) (13)

f3 is defined as the intersection between particle xi,j and the global best
particle with a probability of c2. The formula for f3 is as follows:

f3 = c2 • f3 (f2, gi,j,best(t)) (14)
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Fig. 1. Crossover and mutation mechanisms.

If there is an overlap between the path points of the current particle and
either the individual best particle or the global best particle (excluding the
start and end points), a crossover operation is performed. In Fig. 1(b), particle
x shares two crossover points (63, 92) with the individual best particle. This
operation involves swapping the path point 71 between the two crossover points
and swapping the subsequent crossover point with the path points (112, 131)
between the individual best particle and particle x’s target point. In Fig. 1(d),
particle x shares more than two crossover points (63, 92, 131) with the individual
best particle. In this case, only the path points 71 and 112 between the single
best particle and particle x’s crossover point are swapped.

In EPSO-GA, the values of c1 and c2 are updated based on their fitness values
to fully utilize all particles and enhance the algorithm’s ability to escape local
optima. In each iteration, all particles are sorted based on their fitness values,
with the top half being stored in set A and the bottom half in set B. In the next
iteration, particles in set A have a higher probability of crossover. The formulas
for updating the learning factors c1 and c2 are as follows:

η =
min−fitness
max−fitness

− min−fitness
fitness (xij)

(15)

c1 = a + (1 − a)eη (16)

c2 = b + (1 − b)eη (17)
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In the formulas above, max−fitness and min−fitness represent the maxi-
mum and minimum fitness values of all particles in the population, respectively.
fitness (xij) represents the fitness value of particle j after i iterations, and the

values of a and b are experimentally determined constants. For particles in set
A, higher fitness values result in higher crossover probabilities. The particle with
the highest fitness value will always undergo crossover, while the probabilities
of the other particles decrease exponentially with their fitness values, but still
satisfy c1 > a, c2 > b. Through these operations, the top half of the particles
with higher fitness values are given an increased probability of crossover, allow-
ing them to focus more on searching, improving the algorithm’s global search
capability, and helping to escape local optima.

For the bottom half of the particles with lower fitness values, the values of
c1 and c2 are designed as follows:

c1 = cmax − cmax − cmin

max−iter
∗ t (18)

c2 = cmin +
cmax − cmin

max−iter
∗ t (19)

Here, both cmax and cmin are set to (cmax + cmin) /2 = cc
1 = cc

2, where c is a
constant satisfying 1 > cmax > cmin. max−iter represents the maximum number
of iterations, and t represents the current iteration number. As the number of
iterations increases, the value of c1 gradually increases while the value of c2
gradually decreases, causing the algorithm to shift from global search to local
search.

Additionally, this article simplifies the paths by performing simplification
operations when there are no obstacles or threat points blocking a straight line
between two non-contiguous positions. As shown in Fig. 1(c), if the UAV can fly
directly from the current point to another waypoint in a straight line, the path
A-C-B will be replaced by the simpler path of A-B.

3 Simulation

To demonstrate the performance of proposed method, simulations and compar-
isons are carried out in 2D static environment. They are implemented in the
MATLAB environment and compared performance with CIPSO [16] and CIGA
[17], the simulation is running on a platform with a 3.2 GHz CPU and 8.0 GB
of RAM.

3.1 Parameters Setting

The weight of objectives are set as w1 = 0.8, w2 = 0.2, the size of population is
set as S = 50 and max iter = 100. The parameters of the EPSO-GA algorithm
are set as wmax = 0.8, wmin = 0.2, cmax = a = b = 0.8, cmin = 0.6. The
parameters of the CIPSO algorithm are set as wmax = 0.9, wmin = 0.4, cmax =
3.5, cmin = 0.5, V1 = 0.5, V2 = 0.1, a = 2, μ = 4. The parameters of the
CIGA algorithm are set as cr = 0.8, pc = 0.15. Coordinates of starting position,
destination and radars in the case are listed in Table 2.
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Table 2. The starting position and the destination of UAV and the coordinates of the
radars.

Environment type Start position End position Radar1 Radar2 Radar3

Z 381 20 55 356 ×
Complex 1 400 131 217 309

3.2 Result of UAV Path Planning

To compare the effect of the proportion of paths obtained by the Q-learning
algorithm on the optimization of the algorithm, the number of paths m obtained
by the Q-learning and the number of paths n obtained by random initialization
were adjusted respectively, and five groups of experiments were conducted in the
complex environment, with each group of experiments running independently for
20 times. The experimental results are shown in Table 3. Where m = 0 and n =
50 means purely random initialization, the initial best fitness is reduce with the
proportion of m increase, and the convergence result of the algorithm is the best
when m = 5 and n = 45. However, the average iteration number increases as m
increases when m > 5. Therefore, compared with the random initialization, the
path obtained by introducing Q-learning reduces the initial best fitness value
of the population, which can accelerate the convergence speed of the algorithm.
However, if the proportion of m is too large, the algorithm may fall into local
optimal and the number of iterations of the algorithm will be increased.

Table 3. Results of EPSO-GA under different m and n values.

Indicator m = 0,n = 50 m = 3,n = 47 m = 5,n = 45 m = 10,n = 40 m = 15,n = 35

Initial best fitness 33.7546 32.2565 30.7846 30.0512 28.365428.365428.3654

Average running time 16.21 15.84 15.3615.3615.36 15.38 16.02

Average iterations 21 18 171717 20 26

The comparative simulations among different algorithms are carried out in
two different environments, including Z-type and a complex environment, each
method is repeated 50 times independently and the best results are chosen. The
generated paths and corresponding convergence curves under different environ-
ments are presented in Fig. 2 and Fig. 3. The statistical results of simulation
are shown in Table 4. As observed in Fig. 2(a) and Fig. 3(a), CIGA, CIPSO
and our proposed method are complete the mission from the staring position to
the destination without any collision with obstacles and radars. In the Z-type
environment, the path generated by CIGA has a longest path and closest to
the radars which the value of path length and threat intensity are 42.1637 and
17.0397 respectively, while CIPSO has a shortest path with 39.2854 and a sec-
ond highest threat intensity with 16.6979. Our method is slightly longer than
CIPSO where the path length is 39.7274, but maintain a relative longer distance
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Fig. 2. Simulation results under Z-type environment.

Fig. 3. Simulation results under complex environment.

from radars which threat intensity is only 9.5938. In the complex environment,
our method complete the mission with the shortest path length and the lowest
threat intensity.

In the Fig. 2(b) and Fig. 3(b), the best fitness of EPSO-GA are obviously
smaller than that of the other algorithms at the initial stage, which are the
results of hybrid initialization. Besides, EPSO-GA holds the fastest convergence
compare with the other methods, while reach its optimal and remain stable in
12th and 17th iteration under two different environments respectively.
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Table 4. Results comparison between the algorithms under different environments.

Indicator Z-type Complex type

EPSO-GA CIPSO CIGA EPSO-GA CIPSO CIGA

Shortest path length 39.7274 39.285439.285439.2854 42.1637 28.106928.106928.1069 29.5298 28.7108

Threat intensity 9.59389.59389.5938 16.6979 17.0397 13.481013.481013.4810 27.8362 16.0080

Success rate (%) 989898 96 98 100100100 98 100

Average running time (s) 6.24 6.87 5.835.835.83 15.36 18.91 14.4614.4614.46

A successful search is defined as finding the optimal solution after 200 itera-
tions. As shown in Table 4, the EPSO-GA algorithm we proposed ranks first in
the success rate. In terms of threat intensity, EPSO-GA are 43.7%, 42.5% better
than CIGA and CIPSO in the Z-type environment, 15.8%, 51.6% in the com-
plex environment respectively. Although our proposed method consumes slightly
more time than the CIGA which due to the adaptive adjustment of parameters
and hybrid initialization, the optimality of the solutions we have obtained. Our
proposed EPSO-GA can effectively generate optimal path and is more practical
in off-line path planing.

Table 5. Results comparison based on different weights under complex environment.

Weights Algorithms Best fitness Average fitnes Average iterations

w1 = 0.9, w2 = 0.4 EPSO-GA 26.302826.302826.3028 27.001527.001527.0015 171717

CIPSO 30.1475 30.7854 20

CIGA 29.1311 30.1227 18

w1 = 0.8, w2 = 0.2 EPSO-GA 25.181725.181725.1817 25.491025.491025.4910 171717

CIPSO 29.1911 32.1429 21

CIGA 26.1702 27.8914 19

w1 = 0.6, w2 = 0.4 EPSO-GA 27.4030 28.032128.032128.0321 191919

CIPSO 28.9213 29.1231 23

CIGA 26.541026.541026.5410 28.2356 19

w1 = 0.5, w2 = 0.5 EPSO-GA 25.321125.321125.3211 25.894025.894025.8940 21

CIPSO 29.1010 29.7414 21

CIGA 26.3007 26.5641 191919

In order to compare the influence of the weight of path length and threat
intensity on the optimization process, four groups of experiments are conducted
in complex environment by adjusting the weights of two sub-objectives, and
each group of experiments is run independently for 20 times. The experimental
results are shown in Table 5. It can be seen that the average iteration number of
each algorithm is the least, the best fitness and the average fitness of ESPO-GA
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algorithm are the minimum, and the obtained path quality is the best when w1

= 0.8, w2 = 0.2.

4 Conclusion

In this paper, a hybridization of EPSO-GA algorithm is proposed for path plan-
ning of UAV in 2D static environment. Q-learning is utilized to initialize paths of
UAV which improves the quality of initial paths and accelerates the convergence
of the EPSO-GA. The acceleration coefficients of EPSO-GA are designed as
adaptive ones by the fitness value to make full use of all particles and strengthen
the global search ability of the algorithm, and a heuristics factor is introduced
into mutation to speed up the convergence of algorithm. Through experiments
in two different environments, it has been shown that our proposed algorithm
has the advantages of path security and fast convergence in the path planning
of single UAV. In the future work, we will concentrate on reducing time con-
sumption of path planning for UAV and 3D environment will be introduced with
dynamic obstacles.
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Abstract. Offline Policy Evaluation (OPE) is a method for evaluating
and selecting complex policies in reinforcement learning for decision-
making using large, offline datasets. Recently, Model-Based Offline Policy
Evaluation (MBOPE) methods have become popular because they are
easy to implement and perform well. The model-based approach provides
a mechanism for approximating the value of a given policy directly using
estimated transition and reward functions of the environment. However,
a challenge remains in selecting an appropriate model from those trained
for further use. We begin by analyzing the upper bound of the difference
between the true value and the approximated value calculated using the
model. Theoretical results show that this difference is related to the
trajectories generated by the given policy on the learned model and the
prediction error of the transition and reward functions at these generated
data points. We then propose a novel criterion inspired by the theoretical
results to determine which trained model is better suited for evaluating
the given policy. Finally, we demonstrate the effectiveness of the proposed
method on both simulated and benchmark offline datasets.

Keywords: Reinforcement Learning · Model Based · Offline Policy
Evaluation

1 Introduction

Reinforcement learning (RL) is a powerful approach for solving the sequential
decision making problems [28]. It has demonstrated excellent performance on
various complex tasks such as Go [27], Atari games [21], and control tasks
[9]. However, RL has a limitation as it requires online interactions with the
environment, making it impractical for real-world problems where data collec-
tion is costly [6]. Offline RL aims to overcome this limitation by using only
offline datasets, prohibiting the agent from interacting with the actual environ-
ment [1,7,14,16]. Offline Policy Evaluation (OPE) is a challenge in Offline RL
that evaluates the expected performance of policies solely based on offline data
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
L. Fang et al. (Eds.): CICAI 2023, LNAI 14474, pp. 285–297, 2024.
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[6,24,37]. This evaluation technique is essential for many practical fields, includ-
ing medicine [22], recommendation systems [18], and education [20]. Model-based
OPE (MBOPE) [6,37] is an important class of methods for OPE.

MBOPE offers a direct approach to approximate the value of a specific pol-
icy using Monte Carlo methods and the trained model. Generally, feed-forward
neural networks are utilized to model complex environments and perform well
in standard RL tasks [4,34]. Nevertheless, previous MBOPE techniques encoun-
tered difficulties in choosing a suitable model from the set of trained models.
Specifically, the training process produces a collection of models with different
hyperparameters, and only one model or an ensemble of models is selected for
OPE. At present, the common method is to compare the validation errors of the
models and select the model with smaller validation errors. However, the local
errors of the model and the degree of fit with the policy to be evaluated are
ignored. To address this problem, we explore the criterion for selecting models
from trained models in this study. Specifically, our contributions can be sum-
marized as follows: (1) We theoretically analyze the error upper bound between
the true value and the estimated value by using MBOPE; (2) We design a new
method for picking models based on the theoretical result; (3) We verify the
effectiveness of the proposed method on simulated and real offline data.

Next, we introduce the work of each part in detail.
Firstly, we analyze the upper bound of the difference between the ground

truth value and the approximated value by MBOPE. This upper bound is depen-
dent on the learned model and describes the quality of the model when applied to
MBOPE. A tighter bound indicates that the model is more suitable for evaluat-
ing the given policy. The theoretical results of this study show that the difference
is related to the trajectories generated by the given policy on the learned model.
Additionally, it is related to the prediction error of the transition and reward
functions at these generated data points.

Then, we propose a new criterion, inspired by theoretical results, to deter-
mine which trained model is better for evaluating a given policy. Designing the
criterion using theoretical results is challenging because the error of the learned
model on the data point generated by unrolling the given policy on the learned
model is unavailable. To overcome this challenge, we first generate fake data
using the model and policy, and then find the nearest data point in the actual
offline dataset to the generated fake data. We then use the prediction error of
the trained model on the found actual data to replace the prediction error on
the generated data. After solving this problem, we can calculate the criterion
using only the model, policy, and offline data.

At last, in this study, we empirically demonstrate the performance of the
proposed method on simulation data and benchmark offline datasets. To demon-
strate the validity, we first design a simulation dataset to show the validation loss
is not enough to choose a suitable model for MBOPE. However, our method can
consider the local error of the model and pick out the most suitable model for
MBOPE for a given policy. We then apply our method on a real offline dataset,
namely the RL Unplugged dataset [8] which contains a suite of benchmarks for
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DeepMind Control Suite [29], a continuous action reinforcement learning bench-
mark. We learn a series of models with different hyperparameters and then use
them to evaluate given policies. We compare the performance of the MBOPE
using the model chosen by validation loss with the performance of the MBOPE
using the model selected by the criterion we designed. In this study, we use the
policies given from an offline policy evaluation benchmark [6]. The results show
that using the model chosen by the proposed criterion can achieve better OPE
performance than using the validation loss.

2 Background

Reinforcement Learning: In this paper we consider a discrete-time Markov
decision process (MDP) [28] which is defined by the tuple (S,A,M, r, γ, p0),
where S and A are the state and action spaces, respectively, M defines the
transition probability P (st+1|st, at) and st+1 ∼ M(st, at), r : rt = r(st, at)
defines the reward function, p0 is the initial state distribution and γ represents
the discount factor. Return (R =

∑H
t=0 γtr(st, at)) is defined as the expected

sum of discounted rewards along a trajectory τ = (s0, a0, . . . , sH , aH) of horizon
length H. A policy which is a conditional distribution over actions conditioned
on states is defined as π(a|s). Reinforcement learning (RL) is dedicated to find-
ing the policy πφ that maximizes the expected sum of discounted rewards, i.e.,

maxφ Eτ∼pπ(τ)

[∑H
t=0 γtr(st, at)

]
, where φ are parameters of the policy, pπ(τ)

is the trajectory distribution and pπ(τ) = p0(s0)
∏H−1

t=0 π(st|st)P (st+1|st, at).
Note that the objective is usually defined as the value function of the pol-
icy [28]: V (π) = Eτ∼pπ(τ)

[∑H
t=0 γtr(st, at)

]
. Model-Based RL (MBRL):

MBRL is characterized by learning the transition model using samples col-
lected [34]. And we use a parametric function M̂θ to denote the learned tran-
sition model. We define the state predicted by the learned model as ŝt+1 and
ŝt+1 ∼ M̂θ(st, at). Similarly, we use r̂θ to denote the learned reward function.
Usually, the model predicts the distribution of the next state and reward as
a multivariate Gaussian with a diagonal covariance structure [12]. And the
model is usually trained by supervised learning [4,12,34], e.g., via maximum
likelihood: JM̂ (θ) = E

[
log P̂ (st+1, rt|st, at)

]
, where (st, at, rt, st+1) are sam-

ples collected by interacting with the true model, P̂ is the learned transition
probability on M̂ . After model learning, the policy π can be optimized with
data generated by the learned model and samples from the actual environ-
ment. Offline Policy Evaluation (OPE): For offline RL, the agent is not
allowed to interact with the real environment, however, can access an offline
dataset of transitions D = {(si

t, a
i
t, r

i
t, s

i
t+1)

N
i=1}. The goal of OPE is to esti-

mate the value V (π) by only using the given dataset of transitions D. A more
exhaustive definition can be found in [16,17]. Model-based OPE (MBOPE):
In MBOPE, we learn the model using the offline data. Then the value func-
tion of a given policy is directly estimated by Monte-Carlo methods using the
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learned model. Specifically, we use the given policy to interact with the learned
model to get some fake trajectories. Then we can calculate the expected sum
of the discounted rewards. We show the pseudo-code of MBOPE in Appendix
(https://github.com/CCreal/C4MBOPE-materials).

3 Related Works

In this study, we follow the research of OPE whose goal is to prevent the risks
and costs related to the online evaluation. Many methods have been proven
effective on OPE, including methods which are based on importance weight-
ing [19,25] and Lagrangian duality [23,32,36]. In this study, we mainly focus
on the model-based approach that belongs to the direct method [5,13,23,33],
a category of algorithms which approximate the value of the given policy by
using the learned transition and reward functions of the environment directly.
For simple cases with finite state and action spaces, we don’t need function
approximation [11,30]. By contrast, for challenging continuous domains, previ-
ous works [10,37] have provided an extensive demonstration of the model-based
OPE approach. Usually, a feed-forward neural network is used to portray the
transition and reward function [10]. Auto-regressive models are used to avoid
assumptions about the independence of different state dimensions and improve
the effectiveness of MBOPE [37]. In practice, we usually train a set of models
and then choose one of them for further use when applying MBOPE methods.
An important problem is how to choose an appropriate model from the trained
models. Now existing works [10,37] usually use the validation loss of the model
as a criterion. Our work is different from these works by designing a totally new
method for model choosing. The idea of choosing the suitable model is similar to
setting the suitable hyperparameter for offline RL [24] which is vital in practical
problems. Note that choosing an appropriate model is also considered in online
Model-Based Reinforcement Learning [15], discussing in which cases we should
use a probabilistic model rather than a deterministic one. Our work is different
from [15] since we consider how to select the model from a set of learned models
rather than how to decide which type of model we should use.

4 Methods

4.1 Theoretical Analysis

In this study, we aim to address the problem of selecting a suitable model from
a set of trained models to evaluate a given policy. Suppose we have a set of
models {M̂k}K

k=1 trained using an offline data set D. Given a policy πj from
a set {πj}J

j=1, we need to evaluate πj using the model chosen from the set of
trained models, by using Monte-Carlo methods. It is common to use validation
loss, which is the prediction error on the validation set (such as MSE loss), to
select the model for further use. However, selecting the model by the validation
loss is not related to the given policy. Therefore, this method does not consider

https://github.com/CCreal/C4MBOPE-materials
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the local accuracy of the region corresponding to the data produced by the
interaction of the given policy with the actual environment. In this study, we
desire to select the corresponding model for each policy to make the evaluation
more accurate when using the chosen model.

To solve the above problem, we first analyze the upper bound of the discrep-
ancy between the actual value and the approximated value calculated using the
learned model. This discrepancy serves as an indicator of the model’s quality
when applied to MBOPE. The upper bound is dependent on both the trained
model and the given policy and the Theorem 1 shows the result. We place the
proof in the appendix.

Theorem 1. Let ηπ be the true value of the policy π, η̂π be the estimated value
using the learned model, then we have

|ηπ − η̂π| ≤ C · Et∼Gemo(γ)Es′∼P t
mix,a′∼π(s′)L(s′, a′) (1)

where P t
mix = βP t

π + (1 − β)P̂ t
π, C = 2γrmax

(1−γ)2 . L(s′, a′), the error of the model at

(s′, a′), is DTV

(
P (s|s′, a′)‖P̂ (s|s′, a′)

)
and Gemo(γ) is a geometric distribution

with parameter γ.

In this paper, P t
mix represents the mixed distribution of P t

π and P̂ t
π, where P t

π is
the state distribution of the Markov process at time step t given policy π and
the environment, while P̂ t

π is the state distribution given the learned model. C is
a constant. rmax is the maximum of the reward. DTV is the total variation dis-
tance and here portrays the error of the model. This theoretical results indicate
that the error of the estimated value of a given policy can be upper bounded
by the expected error of the learned model over the distribution of trajectories
produced by that policy. Specifically, the error depends on how the agent gener-
ates trajectories on the learned model and actual environment. The error of the
learned model at these generated data points also plays a role. The geometric
distribution shows that the error of the estimated value of the given policy is
more relevant to the front part of the resulting trajectory. This is reasonable
because the value of a policy is defined with a discount factor. In the study, β is
set to zero to provide a more convenient bound since it is not possible to gather
trajectories using the given policy on offline policy evaluation tasks. However,
P̂ t

π can be obtained by unrolling the policy on the learned model. After proving
Theorem 1, we will show how to design and calculate a criterion inspired by this
result in the next part.

4.2 Proposed Criterion for Choosing a Trained Model

In this study, we first obtain the theoretical bound of the estimated value and
the actual value of a given policy. Then we introduce how to design and calculate
the criterion based on the theoretical bound. We will also discuss how to use the
proposed criterion to judge which model is better for MBOPE from a series of
trained models. According to Theorem 1, the bound is related to the distribution
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P t
mix of the state and action at time t. However, in our study, we set β to

zero because the distribution induced by the real environment is not available.
Although we can achieve samples from P̂ t by unrolling the given policy on the
learned model, there are still two challenges for calculating the bound. Firstly,
it is difficult to obtain the model error on the sampled data point from P̂ t since
we only know the model error on data points from the given offline data set. To
address this problem, we replace the model error on the data point sampled from
the generated trajectories with the model error on the data point that was picked
from the validation set of the offline data. Specifically, we choose the data point
that is closest to the data point of which we want to know the model error.
Secondly, the TV divergence needed in the theoretical result is not available.
To solve this problem, we use the mean squared error instead to calculate the
criterion.

Algorithm 1. A Criterion for Choosing the Trained Model
Require: the learned models {M̂k}K

k=1, policy πj , discount factor γ, horizon H, set of
initial states S0, batch size N , rmax which is the maximum of the reward in offline
dataset.

1: for k=1,. . . ,K do
2: Bk ← 0
3: for i = 1, 2, . . . , N do
4: Bi

k ← 0
5: Sample initial state s0 from S0.
6: ŝi

0 = s0
7: for t = 0, 1, . . . , H − 1 do
8: Sample action using policy π, ai

t ∼ π(ŝi
t)

9: Sample next state and reward using M̂k: ŝi
t+1, r̂

i
t+1 ∼ M̂k(ŝt, a

i
t)

10: Find the nearest data of (ŝi
t, a

i
t) in validation: (ŝi∗

t , ai∗
t )

11: Calculated the distance d of (ŝi
t, a

i
t) and (ŝi∗

t , ai∗
t ).

12: Find the model prediction error l on (ŝi∗
t , ai∗

t ) in the validation set
13: Bi

k ← Bi
k + (1 − γ)γt (d + l)

14: end for
15: Bi

k ← Bi
k · 2γrmax

(1−γ)2

16: end for
17: Bk = 1

N

∑N
i=1 Bi

k

18: end for
19: k∗ = arg mink Bk

20: return the index k∗ of the best model for πj

After addressing the challenges mentioned above, we propose a practical
method to calculate the criterion (we call it geometric loss criterion). Suppose we
have a set of learned models and know the prediction error (MSE) of each model
on the validation dataset. For a given policy, we first interact with the learned
model using the given policy and generate N trajectories with horizon H. Then
for each pair (ŝt, at), we find the nearest pair (s∗

t , a
∗
t ) from the validation set

of the offline dataset. We can then obtain the distance of (s∗
t , a

∗
t ) and (ŝt, at),
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and the prediction error of the model on (s∗
t , a

∗
t ) is known. Combined with the

probability of the geometric distribution, we obtain the criterion by:

Geometric Loss Criterion := C
1

N

N∑

i=1

H∑

t=0

gt

(
d

(
(ŝi

t, a
i
t), (s

i∗
t , ai∗

t )
)

+ l(si∗
t , ai∗

t )
)
, (2)

where C is 2γrmax

(1−γ)2 . The variable gt represents the probability of the geo-
metric distribution for sampling t, i.e., (1 − γ)γt. We calculate the distance
of the generated data and the corresponding nearest data point in validation
d

(
(si

t, a
i
t), (s

i∗
t , ai∗

t )
)

by taking the Mean Squared Error (MSE) of these two data
points. The prediction loss of the learned model on (si∗

t , ai∗
t ), which we also use

the MSE loss in this paper, is denoted by l(si∗
t , ai∗

t ). To choose the best model,
we need to calculate the criterion of each model for the given policy and then
use these criteria. In this paper, we present the overall algorithm pseudo-code in
Algorithm 1.

5 Experiments

In this study, we designed experiments to answer two questions: (1) Is the vali-
dation loss sufficient to select the appropriate model for MBOPE? (2) Can the
method proposed in this paper find the model for a given policy, which yields a
more precise value estimation? We evaluated our approach on synthetic data and
realistic model-based continuous control benchmarks to answer these questions.

5.1 Experiments on Synthetic Data

In this section, we demonstrate the effectiveness of the proposed criterion
by designing a simulation experiment to evaluate its performance in a one-
dimensional movement problem. Experimental Setup The agent starts at the
origin and has the ability to move either left or right, with the objective of arriv-
ing at either -5 or 5. The true model is symmetric with respect to the origin, and
we need to evaluate two policies. Policy π1 directs the agent to move towards
the negative half-axis and spend the majority of its time there, while policy π2

instructs the agent to spend most of its time on the positive axis. We intend
to use fake models to evaluate the aforementioned policies. We configure the
fake model to have distinct errors on the positive and negative axes while main-
taining a consistent total error. This setting implies that the fake model with
greater errors on the positive half-axis will have reduced errors on the negative
half-axis. By modifying the error on the negative half-axis, we develop a range
of fake models that we then employ for OPE. Further information about the
experimental settings can be found in the Appendix. Results It is evident that
a model exhibiting a lower error on the negative half-axis is better suited for
evaluating policy π1, while conversely, a model with a lower error on the positive
half-axis is more appropriate for evaluating policy π2. Notably, the validation
loss of the fake model remains constant, rendering it unsuitable for selecting an
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appropriate model. Our objective is to demonstrate that our proposed method
can identify appropriate models. Based on Fig. 1, it can be observed that the
estimated value approaches the actual value when the computed geometric loss
criterion is lower. The outcomes reveal the efficacy of the proposed approach.
Given a specific policy, the suggested method outlined in this study can be
employed to select the appropriate model for the evaluation process.

5.2 Experiments on Benchmark Data

In this part, we present our experiments on the DeepMind control suite [29], a
suit of continuous control tasks implemented in MuJoCo [31]. In this study, we
consider the agents using the states as input like in previous works [6,12,34,37].

Fig. 1. The figure displays the results of experiments conducted on synthetic data. The
left column shows the calculated geometric loss criterion, the validation loss for each
model, and the estimated value for π1 using each model. The models are identified by
their prediction error on the negative half-axis. The right column displays the results
for π2. The results indicate that when the proposed criterion is small, the evaluation
error is also small. However, the validation loss of the model remains constant.

Experimental Setup. In this paper, we use datasets from RL Unplugged [8],
an offline RL benchmark suite based on Deepmind control-suite [29], to train
models. For each environment, we train a series of models with different hyper-
parameters such as the epoch number, learning rate, and number of hidden
layers. Further details on the experimental settings for training the models can
be found in the Appendix. Subsequently, we evaluate given policies using the
learned models. As for the policies to be evaluated, we use the benchmark from
a previous work [6]. The benchmark comprises a total of 96 policies generated
by four different algorithms: behavioral cloning [2], D4PG [3], Critic Regular-
ized Regression [35], and RABM [26]. The actual value of each policy can be
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obtained by interacting with the realistic environment. We estimate the value
of each policy by selecting a model from the learned models and then approxi-
mating it using the Monte Carlo method. We investigate whether the proposed
criterion can better indicate the quality of a learned model for OPE compared
to the validation loss when evaluating a given policy. We also compare the per-
formance of our proposed method against a variation of our method (Ours w\o
d) that only use l(si∗

t , ai∗
t ) in Eq. 2.

Table 1. Correlation coefficient results.

Environment Validation loss Ours w/o d Ours

cartpole swingup −0.01±0.29 0.28±0.15 0.45±0.20

cheetah run 0.21±0.14 0.18±0.15 0.33±0.13

finger turn hard −0.30±0.16 –0.17±0.09 −0.19±0.09

fish swim 0.15±0.12 0.12±0.10 0.42±0.26

walker stand −0.20±0.07 −0.20±0.07 0.18±0.21

walker walk 0.15±0.24 0.16±0.28 0.16±0.29

humanoid run −0.06±0.04 −0.06±0.04 0.01±0.03

Results. First, we see whether the geometric loss criterion, rather than the
validation loss, can better point out the quality of a learned model when used
for OPE. To demonstrate the result, we calculate the correlation coefficient of
different assessment criteria and the value error. By utilizing a set of models,
we can estimate the value of a given policy, with the validation loss known.
We can calculate the criterion using the proposed method in this paper. The
correlation coefficient ρC,E shows the correlation between value error and the
proposed criterion, and ρL,E represents the correlation between value error and
validation loss. The average correlation coefficients of all policies are calculated.
The results in Table 1 indicate that our proposed criterion has better average
performance than using validation loss in most environments. Specifically, for
the cartpole swimngup environment, we draw the criterion and validation loss
for each model when used to evaluate a given policy. We present the results of
a portion of the policies generated by D4PG [3] and RABM [26] with different
training stages. From Fig. 2, we observe that the validation loss cannot determine
which model is better when used for OPE. However, the proposed criterion can
provide useful insights.
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Fig. 2. Each subplot corresponds to a particular policy. In each subplot, blue stars
represent a learned model, where the x-coordinate corresponds to the estimated value
error using that model, and the y-coordinate represents the calculated geometric loss
criterion for the model. Orange triangles also correspond to a learned model, while
the y-coordinate represents the validation loss of the model. The correlation coefficient
between the value error and the proposed criterion is denoted by ρC,E , while the corre-
lation between the value error and the validation loss is denoted by ρL,E (Color figure
online).

We aim to determine whether the proposed method’s selected model can
achieve better OPE performance than using the validation loss. For each policy,
we initially select the best model using the validation loss and use it to estimate
the value. Simultaneously, we also use the model with the smallest criterion to
estimate the value of each policy. To demonstrate whether the proposed method
provides more precise value estimates than using the validation loss, we com-
pare the absolute error between the ground truth and the estimated value. The
absolute error of all policies is averaged, and we can observe from Table 2 that
the proposed method has a smaller error compared to using the validation loss



Select Model for Model-Based OPE 295

Table 2. Average Absolute Error results.

Environment Validation loss Ours w/o d Ours

cartpole swingup 26.9±15.1 24.2±19.5 17.5±24.2

cheetah run 13.4±8.37 13.2±8.37 8.52±8.49

finger turn hard 31.0±19.4 35.5±24.6 34.2±29.0

fish swim 27.5±14.2 27.7±14.3 20.1±15.5

walker stand 66.5±27.5 55.5±27.6 58.5±27.3

walker walk 66.7±28.3 57.1±30.5 59.6±30.0

humanoid run 34.3±22.4 32.2±24.8 35.4±27.1

in most environments. In addition, we also compare the performance of different
methods by calculating Spearman’s rank correlation between the ground truth
values and the estimated values. The results are presented in the appendix, which
further exhibits the performance of the proposed method.

6 Conclusion and Future Work

This study aims to discuss the criterion for selecting the best-trained model for
model-based Off-Policy Evaluation (OPE). Initially, we analyze the upper bound
of the difference between the ground truth value and the approximated value
obtained using the model. Subsequently, we propose a new criterion inspired by
the theoretical results to determine which trained model is better suited for eval-
uating a given policy. Finally, we demonstrate the proposed method empirically
using simulation datasets and benchmark offline datasets. In the future, it would
be interesting to combine the proposed method with model-based offline policy
optimization problems, instead of only focusing on policy evaluation problems.
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Abstract. Knowledge graph (KG) has gradually become the cornerstone of
many Artificial Intelligence (AI) tasks, as one of the most effective ways to rep-
resent world knowledge, while these KGs still hardly cover the massive emerging
knowledge in the real world. Knowledge Graph Completion (KGC) tries to rea-
son over known facts and infer the missing links, to improve KG’s coverage. The
conventional KGC algorithms usually map each entity to a unique embedding
vectors, which incurs a linear growth in memory consumption for saving embed-
ded matrices, and results in high computational costs when modeling real-world
KG. Hence, this paper aims to investigate how to strengthen the simplicity (i.e.,
reduce complexity) of KGCmodel and strike a reasonable balance between accu-
racy and complexity. Especially, this paper proposes a novel concept-enhanced
anchor-based entity representation method to learn a fixed-size vocabulary in con-
dition of the collapsed KG, which is built by the selected anchor entities, concept
semantics respect to these anchors and relation types. This work can be viewed as
a flexible plug-in unit to serve many current KGC models. Experiments show that
our model performs competitively in KGC task while retaining less than 10% of
explicit entities in a given KG and less than 10% of parameters.

Keywords: Knowledge Graph · Knowledge Graph Completion ·
Representation Learning · Simplicity Enhancement · Complexity Reduction

1 Introduction

Knowledge Graphs (KGs) are viewed as collections of real-world fact represented in
form of triple (h, r, t), consisting of head entity, relation type and tail entity, respec-
tively. Recently, KGs have significantly boosted the developments of various vertical
fields, such as question answering, machine reading, information retrieval and dia-
logue systems. Since there exists a remarkable increasing-demand for the remarkable of
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high-quality real-world knowledge, the reliability of KG has become increasingly crit-
ical [30]. Therefore, Knowledge Graph Completion (KGC) task and the corresponding
methods, which aims at identifying what the missing relation in an incomplete triple is
or whether the triple in KG is valid or not, has been widely researched.

Recently, various KGC models have been developed and discussed for KG reason-
ing, and have achieved satisfactory results in many KG-oriented tasks [3,8], demon-
strating their ability to understand and explore diverse and complex relationships abil-
ity [12,33]. These methods generally represent entities and relations in triples, as real-
valued vectors and assess triples’ plausibility with these vectors. Take translation-based
KGC model as examples, conventional TransE [1] utilizes the structural signals of
known triples (h + r ≈ t) to project KGs into a continuous semantic vector space,
which triumphantly opens up a new waterway for representing knowledge based on
translation-based methodology. Inspired by this, many other translation-based methods
are introduced, including TransH [34], TransD [11], TransR [13], TrasG [38], RotatE
[22] and QuatDE [7].

The conventional KGC algorithms usually map each entity to a unique embedding
vectors. This kind of shallow search strategy, unfortunately leads to a linear increase
in memory consumption for storing embedded matrices, and incurs high computational
costs when modeling real-world KG [18] [33]. The Natural language processing (NLP)
field has also faced the problem of this kinds of vocabulary being too large to embed
and model all words, and WordPiece technique has been used to solve it. It no longer
sees a word as a whole, but divides it into several sub-words [9]. E.g., the three words
“loved”, “loving” and “loves” actually have the same semantic meaning. However, if
we use word as an unit, they are considered as different words. WordPiece divides the
abovementioned three words into parts such as “love”, “ed”, “ing” and ’es’, which can
distinguish the meaning and tense of the words themselves and availably reduce the size
of vocabulary. By comparing with the commonly used sub-word tokenization strategy
in NLP field, [6] explores a more parameter efficient node embedding strategy to over-
come KGC task, which is regarded as a kind of compositional method for depicting
nodes (i.e., entities) in multi-relational KG with a fixed-size vocabulary. Similar to sub-
word units, it try to tokenize each node as a combination of selected proxy entities and
relations. Although the number of parameters decreased significantly in its experiment,
its performance also decreased significantly.

To overcome this problem, this paper aims at improving performance while main-
taining an equivalent number of parameter magnitude with [6]. Especially, an concept-
enhanced anchor-based method is utilized here to learn a fixed-size vocabulary for the
collapsed KG, which is built by the anchor entity nodes, concept semantics respect to
these anchors and relation types. Given this kind of fixed-size vocabulary, the proposed
model can guide the encoding and embedding of any entities. This work successfully
slashes the scale of trainable parameters, and simultaneously pullups the model’s per-
formance for KGC task. Experiments have shown that the proposed work performs well
in entity prediction task and relation prediction task, while merely retaining less than
∼10% of explicit entities as anchors in the given original KG, and typically has ∼10
times fewer parameters.
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2 Preliminary

2.1 Knowledge Graph

Knowledge Graph (KG, denoted as G = {E,R, E ,R, φE , φR}), usually consists of a
set of triples (h, r, t), wherein h ∈ E represents the head entity, r ∈ R represents
the relation type, and t ∈ E represents the tail entity. E and R indicate the entity set
and relation set, respectively. It is also associated with an entity type mapping function
φE : E → E and a relation type mapping function φR : R → R, wherein notations E
and R separately describe the set of entity types and the set of relation types.

2.2 Knowledge Graph Completion

Knowledge Graph Completion (KGC) is one of the main challenges in the KG field,
since most KGs are incomplete. It mainly aims to predict the missing element in the
given separately triple, which usually consists of several main sub-tasks: entity pre-
diction (EP), relation prediction (RP), etc.,. Wherein, entity prediction task attempts at
predicting the missing entity when given an entity and a relation, i.e., we identify tail
entity t when given (h, r, ?), or similarly identify head entity h when given (?, r, t).
Relation prediction task tries to discriminate the missing relation when given two enti-
ties, i.e., we identify which r is true when given (h, ?, t).

2.3 Concept

Following [10,24], this work depicts a “concept” as a set (or a class, a category, etc.,)
of “entities” or “things” within a domain, such that words belonging to same (as well
as similar) classes get similar semantic representations [23] [36] [5]. E.g., “microsoft”
and “amazon” could be represented by concept COMPANY. Probase [37] is selected
in our study as lexical KG to generate concept for entity, to enhance the performance of
simplified KGC model [30]. Recently, Probase has been widely used as valuable extra-
resource in research about text understanding [19,20,37], text representation [10,28],
information retrieval [27,31], because entity’s concepts are simpler, highly-structural
and more specific when compared with other kinds of semantic information (such as
entity type and entity description, etc.,) [15,16,39]. Uniformly, this work utilizes upper-
case notation C to represent the set of concepts, and utilizes lowercase notation c ∈ C
to describe the concept pre-defined in the lexical KG Probase [21,37].

2.4 Conceptualization

Given a word-formed entity e, instance conceptualization algorithm readily contributes
to distilling the optimal open-domain concepts Ce = {< cj , pj >} from the lexical
KG Probase which own the optimal ability for discriminatively representing the given
entity e [29]. The aforementioned probability pj describes the confidence level of the
concept cj for entity e. E.g., given entity “London” in KG, we could generate the con-
cepts for word(s)-formed entity mention “London” as CLondon = {<“City”,0.503>
,<“Place”,0.075>,<“Area”,0.072>,<“Location”,0.057>, · · · } from Probase. This
paper succinctly adopts the state-of-the-art instance conceptualization algorithm pro-
posed in [10], because it is not central to this study.
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3 Methodology

This work can be viewed as a flexible plug-in unit to be loaded into the many kinds
of current KGC models. Hence, we faithfully follows the native representation learn-
ing procedure and scoring function of current KGC model, and mainly focus on how
to simplify parameter scale for entity representation. To calculate the embedding of a
target entity e, we firstly select top-n anchor entities ({a1, a2, a3, a4} in green circles
as examples) closest to it (left side of Fig. 1, discussed in Sect. 3.1), and then add their
embeddings and their concept embeddings, their respective distances to the entity as
well as the relation types directly connected to the target entity e (right side of Fig. 1,
discussed in Sect. 3.2), to the encoder and finally output the results.

Fig. 1. The architecture of the proposed model. left: Collapsed KG Construction; right: Entity
Representation (take Transformer encoder as an example).

3.1 Collapsed KG Construction

We first construct a Collapsed KG G′ based on the given original KG G (left side of
Fig. 1). Especially, in this Collapsed KG G′, we utilize anchor entities (noted as A with
size of |A|) and their corresponding concepts (noted as C with size of |C|, discussed in
Sect. 2.3), to represent the overall original entities (E with size of |E|) in native KG G,
with condition of |A| + |C| � |E|.

From another perspective: (i) in original KG G, the vocabulary V consists of all
the native entities E and the native relation types R (i.e., V = E ∪ R); while (ii) in
our Collapsed KG G′, the vocabulary V consists of the anchor entities A, the fix-sized
concepts C and the native relation types R (i.e., V = A∪C∪R), wherein the parameter
scale apparently becomes much smaller.

Anchor Entity Set Construction: For constructing anchor entity set A (green circles
in Fig. 1), we follow the intuitive strategy proposed in [6], and randomly select a set
of entities with size of |A| from native entities E. Hence, A ⊂ E and |A| � |E|.
Previous pre-training models determine sub-word units according to the frequency of
lexical co-occurrence. In KG’ situation, the corresponding metric is centrality. [6] has
intriguingly shows that, the effectiveness of selecting anchor entity nodes based on
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centrality is consistent with that of random selection. Besides, other kinds of metrics
could be discussed which will be future work.

Concept Set Construction: For compensating performance of previous KGC simplic-
ity enhancement, this work seeks helps from extra structural high-level semantics, i.e.,
concept. For constructing concept set C (grey circles in Fig. 1), there exist different
choices to construct the concept set C. Choice #1: We can straightly use all the con-
cepts defined in Probase to constructC, which potentially results in high computational-
complexity because this strategy has cover large amount native concepts and multi-
granularity semantics. Choice #2: For balance, we can adopt a clustering algorithm to
project all the concepts in Probase into 5,000 disjoint concept clusters [26,35], wherein
each concept cluster indicates “concept of concepts” which merely represents one sense
or a general topic (|C| = 5, 000), since many native concepts are similar to each other
[32] . For each anchor entity ai ∈ A, we select k concept from C, by instance con-
ceptualization algorithm (Sect. 2.4). In our implementation, we set k = 5 for trade off
complexity and effectiveness.

3.2 Entity Representation

After the vocabulary V = A ∪ C ∪ R is constructed for the Collapsed KG G′, each
target entity e ∈ E (red circle in Fig. 1) utilizes following elements to generate its vector
representation:

(i) The top-n nearest anchor entities respect to target entity e, with BFS or the other
methods;

(ii) The top-k concepts respect to each selected anchor entity;
(iii) The distances between the top-n closest anchor entities and the target entity e;
(iv) The top-m relation types between target entity e and top-n nearest anchor.

Note that, for selecting top-m relation types, an entity can utilize up to m relation
types that are connected to it: (i) If there exist more than m relation types, we ran-
domly sample m relation types; and (ii) if there exist less than m relation types, we
use [PAD] instead. Given a target entity e and an anchor entity a , this work defines
“anchor distance” pa ∈ [0; diameter(G)] as an integer indicating the shortest path dis-
tance between anchor entity a and target entity e in the original KG G. We then project
each integer-formed anchor distance pa to a d-dimensional vector with a relative dis-
tance encoding scheme [6]: pa = fdist.(pa). Moreover, for each concept c, it shares
distance vector with the anchor entity which c belongs to.

For universality, Transformer-based encoder1 is utilized here to generate entity
embeddings e for the given target entity e (shown in right side of Fig. 1):

e = Transformer[{a1, a2, · · · , an}; {p1, p2, · · · , pn}; {c1, c2, · · · , cn×k}; {r1, r2, · · · , rn}] (1)

Finally, the output of [CLS] token in this Transformer-based encoder (yellow rect-
angle in Fig. 1), is viewed as the vector representation of the target entity e. Since this

1 Note that, other kinds of encoder such as MLP, can be used here, which is not the focus of this
work.
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work can be viewed as a flexible entity representation plug-in unit to be loaded into
current KGC models, we faithfully follows the native optimization procedure and scor-
ing function of current KGC model (TransE [1], TransH [34], TransR [13], DKRL [39],
RotatE [22] emphasized in this paper as discussed in details in Sect. 4), and we’ll ignore
that details for this article.

4 Experiments

4.1 Datasets

For the evaluations of entity prediction task and link prediction task, this paper conducts
experiments on the WN18RR (subset of WordNet) and FB15k-237 (subset of Free-
base), which are widely used. Wherein, WN18RR is a lexical database of English [4],
and FB15k-237 includes general human knowledge [25]. Each dataset consists of abun-
dant relational patterns (such as symmetry, inversion, composition) and complex 1-N,
N-1 and N-N of relations. Table 1 describes the summary of the these two datasets.
Besides, as mentioned before, concept signals of entities and relations respect to these
datasets, are generated by instance conceptualization algorithm proposed by [10] based
on Probase [17,37].

Table 1. Summary of WN18RR (WordNet) and FB15k-237 (Freebase) used for entity prediction
task and link prediction task evaluations.

Dataset |E| |R| #train #valid #test

WN18RR 40,943 11 86,835 3,034 3,134

FB15k-237 14,541 237 272,115 17,535 20,466

4.2 Baselines

The baselines include conventional translation-based KGC models, including TransE
[1], TransH [34], TransR [13], DKRL [39], RotatE [22]. For each competitive model
mentioned above, we compare the native KGC model with its variant with help of this
work as a plug-in unit (denoted with suffix of “+(Ours)”). Note that, for each variant, we
faithfully follows the optimization procedure and scoring function of the corresponding
native KGC model.

4.3 Experimental Settings

This section directly reuses the empirical results of several baselines from the previous
literature [13,34,40], since the datasets (as well as the corresponding splitting manners)
and the “unif.” sampling strategy are the same. KG G has performed inverse operations
on all relation type to ensure that each relation type in the given KG G is bidirectional.

Several hyper-parameter settings have been attempted on the validation dataset, for
helping us to investigate the best configuration. Under the “unif.” sampling strategy
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[34], the optimal configurations are concluded as follows: the mini-batch size is set as
32, Adam’s learning rate ε = 2e − 5, dropout rate is 0.1, vector dimension d = 500,
size of anchor entity set |A| = 2, 000, size of contextual anchor entity for each target
entity n = 30, size of contextual relation type m = 5, numbers of concepts respect to
each anchor entity k = 5 for trade-off, on WN18RR dataset; the mini-batch size is set
as 32, ε = 2.5e − 5, dropout rate is 0.1, d = 550, |A| = 1, 000, n = 20, m = 15,
k = 5, on FB15K-237 dataset. For all the comparative models, we train the model until
convergence. For avoiding dataset-specific tuning, most hyper-parameters in addition
to learning rate and training epochs etc., are shared across all datasets. Generally, we
cautiously run all the comparative models 20 times and observe the deviations are less
than 0.10, and meanwhile the improvements are significant.

For evaluation metrics, we mainly use these widely-used automatic evaluation met-
rics: (i) Mean Reciprocal Rank (MRR), indicating the average reciprocal rank of all
tested triples; (ii) HITS@n (n ∈ {1, 3, 10}, calculating the ratio of ground-truth enti-
ties ranked among the top-n.

4.4 Evaluations on Entity Prediction Task

Table 2 and Table 3 summary the overall experimental results respect to entity prediction
task, which is intended to predict the missing entity when given an entity and a relation,
i.e., we identify tail entity t when given (h, r, ?), or similarly identify head entity h
when given (?, r, t). Wherein, |V | denotes vocabulary size (i.e., V = A ∪ C ∪ R), as
discussed in Sect. 3.1. #par. is a total parameter count (millions), which is concluded
based on [18]. MRR% denotes the MRR ratio based on the strongest model.

Table 2. Evaluation results of entity prediction (EP) task on WN18RR.

WN18RR

Method |V | #par. MRR↑ MRR% H@1↑ H@3↑ H@10↑
TransE [1] 40k+22+0 20.0 24.3 100.00 4.3 44.1 53.2

TransE [1]+(Ours) 2k+22+5k 2.2 21.4 88.41 4.2 43.4 52.3

TransH [34] 40k+22+0 20.0 23.1 100.00 4.1 41.9 50.5

TransH [34]+(Ours) 2k+22+5k 2.2 20.3 88.43 3.8 38.5 46.4

TransR [13] 40k+22+0 25.0 23.2 100.00 4.1 42.0 50.7

TransR [13]+(Ours) 2k+22+5k 2.8 20.4 88.43 3.8 38.6 46.6

DKRL [39] 40k+22+0 23.5 26.0 100.00 30.4 47.1 56.9

DKRL [39]+(Ours) 2k+22+5k 2.6 22.9 86.46 28.0 43.3 52.3

RotatE [22] 40k+22+0 41.0 47.6 100.00 42.8 49.2 57.1

RotatE [22]+(Ours) 2k+22+5k 4.6 41.9 88.21 39.4 45.2 52.5
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Table 3. Evaluation results of entity prediction (EP) task on FB15k-237.

FB15k-237

Method |V | #par. MRR↑ MRR% H@1↑ H@3↑ H@10↑
TransE [1] 14.5k+0.5k+0 7.5 27.9 100.00 19.8 37.6 44.1

TransE [1]+(Ours) 1k+0.5k+5k 0.9 22.9 85.58 16.3 30.9 36.2

TransH [34] 14.5k+0.5k+0 7.8 30.7 100.00 21.8 41.4 48.6

TransH [34]+(Ours) 1k+0.5k+5k 0.9 25.2 85.25 17.9 34.0 39.9

TransR [13] 14.5k+0.5k+0 132.3 30.7 100.00 21.8 41.4 48.6

TransR [13]+(Ours) 1k+0.5k+5k 15.5 25.2 85.25 17.9 34.0 39.9

DKRL [39] 14.5k+0.5k+0 11.0 29.8 100.00 21.2 40.2 47.1

DKRL [39]+(Ours) 1k+0.5k+5k 1.3 24.5 75.29 17.4 33.0 38.7

RotatE [22] 14.5k+0.5k+0 29.0 33.8 100.00 24.1 37.5 53.3

RotatE [22]+(Ours) 1k+0.5k+5k 3.4 27.7 84.96 19.8 30.8 43.8

From the result, we observe that: Our work with a fixed-size vocabulary |V | of
<10% of entities sustains more than 84% of MRR metric compared to ∼10x larger
competitive baseline models. E.g., our RotatE variant (i.e., RotatE+(Ours)) achieves
84.95% MRR performance with only maintaining 6.89% entities and 11.82% param-
eter scale, when comparing the native RotatE baseline. Little performance loss is
expected according to the compositional and compressive nature of KG’s collapse (i.e.,
E → A and |A| � |E|). Similar to the inspections from [14,41], the advantages
of our work over baselines on WN18RR (WordNet) is larger than FB15k-237 (Free-
base). Since dataset FB15k-237 embeds more diverse relation types and has a more
complex structure than WN18RR, translation based models methods are reported likely
to hold an advantage for this condition. However, the proposed method achieves sta-
ble performance on FB15k-237 with help of extra concept semantics. Especially, we
leverage high-quality and structural concept semantics from lexical KG Probase, and
these encouraging results shows the advantage of discrete and structural entity’s con-
cept towards continuous and unstructural entity’s description or other kinds of extra
semantics.

Beside, we find that many errors generated by our method, are possibly caused
by the so called closed-world assumption (CWA) [14], assuming that any knowledge
unseen in given KG is incorrect and most existing translation-based KGC models are
usually built and evaluated under this setting. Although there have existed works inves-
tigating open-world assumption (OWA) [2], it requires a lot of labour to manually anno-
tate unseen triples. Evaluations under OWA, will be our future direction.

4.5 Evaluations on Relation Prediction Task

Table 4 and Table 5 summary the overall experimental results respect to relation pre-
diction task, which tries to discriminate the missing relation when given two entities,
i.e., we identify which r is true when given (h, ?, t). From the preliminary result, we
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could observe conclusions similar to previous entity prediction tasks, i.e., our work
with a fixed-size vocabulary V of <10% of entities sustains more than 86% of MRR
metric compared to ∼10x larger competitive baseline models. On bigger KGs, param-
eter efficiency is still pronounced, i.e., on FB15k-237, our work sustains more than
82% of MRR metric compared to ∼10x larger competitive baseline models. While on
WN18RR, the value of MRR% is more than 88%.

Table 4. Evaluation results of relation prediction (RP) task on WN18RR.

WN18RR

Method |V | #par. MRR↑ MRR% H@1↑ H@3↑ H@10↑
TransE [1] 40k+22+0 20.0 46.56 100.00 18.31 22.36 24.95

TransE [1]+(Ours) 2k+22+5k 2.2 41.4 89.21 38.4 46.9 52.3

TransH [34] 40k+22+0 20.0 44.26 100.00 17.46 21.32 23.79

TransH [34]+(Ours) 2k+22+5k 2.2 39.4 89.23 15.5 19.0 21.2

TransR [13] 40k+22+0 25.0 43.87 100.00 17.23 21.04 23.48

TransR [13]+(Ours) 2k+22+5k 2.8 39.0 89.23 15.3 18.7 20.9

DKRL [39] 40k+22+0 23.5 50.11 100.00 52.08 63.62 70.98

DKRL [39]+(Ours) 2k+22+5k 2.6 44.6 88.20 46.4 56.6 63.2

RotatE [22] 40k+22+0 41.0 91.20 100.00 72.89 89.03 96.30

RotatE [22]+(Ours) 2k+22+5k 4.6 81.2 89.11 64.9 79.2 85.7

Table 5. Evaluation results of relation prediction (RP) task on FB15k-237.

FB15k-237

Method |V | #par. MRR↑ MRR% H@1↑ H@3↑ H@10↑
TransE [1] 14.5k+0.5k+0 7.5 63.79 100.00 69.30 69.99 85.60

TransE [1]+(Ours) 1k+0.5k+5k 0.9 54.2 86.57 58.3 58.9 72.0

TransH [34] 14.5k+0.5k+0 7.8 75.71 100.00 82.82 83.64 83.73

TransH [34]+(Ours) 1k+0.5k+5k 0.9 64.4 86.32 69.6 70.3 70.4

TransR [13] 14.5k+0.5k+0 132.3 74.00 100.00 81.60 82.42 82.50

TransR [13]+(Ours) 1k+0.5k+5k 15.5 62.9 86.35 68.6 69.3 69.4

DKRL [39] 14.5k+0.5k+0 11.0 72.63 100.00 80.8 81.6 91.7

DKRL [39]+(Ours) 1k+0.5k+5k 1.3 61.7 82.25 68.0 68.6 77.1

RotatE [22] 14.5k+0.5k+0 29.0 88.91 100.00 82.60 83.43 83.51

RotatE [22]+(Ours) 1k+0.5k+5k 3.4 75.6 86.12 69.5 70.2 70.2
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5 Conclusion

The emergence of large-scale KGs makes it very difficult to learn the vector represen-
tations of all entity nodes. For enhancing the simplicity of entity representation in KGC
task, this work proposes a novel semantic-enhanced anchor-based entity representation
method to learn a fixed-size vocabulary based on the collapsed KG, which is built by the
selected anchor entities, concept semantics respect to these anchors and relation types.
This work can learn entity embeddings on large-scale KGs with fewer anchor entities
(and their corresponding concepts) embeddings and then enhance the generalization
performance of KGC model. Therefore, this work can enhance the implementation and
application capabilities of KG representation learning technology.
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Abstract. This paper introduces a new Convolutional Neural Network
(ConvNet) architecture inspired by a class of partial differential equa-
tions (PDEs) called quasi-linear hyperbolic systems. With comparable
performance on image classification task, it allows for the modification
of the weights via a continuous group of symmetry. This is a signifi-
cant shift from traditional models where the architecture and weights
are essentially fixed. We wish to promote the (internal) symmetry as a
new desirable property for a neural network, and to draw attention to the
PDE perspective in analyzing and interpreting ConvNets in the broader
Deep Learning community.
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1 Introduction

With the tremendous success of Deep Learning in diverse fields from computer
vision [10] to natural language processing [18], the model invariably acts as a
black box of numerical computation [2], with the architecture and the weights
largely fixed, i.e., they can not be modified without changing the output (for
a fixed input), except by permuting neurons or units from the same layer. One
would say that the symmetry of the neural network, the set of transformations
that do not affect the model’s prediction on any input, is

Sym(model) =
∏

i

Sni
,

the product of symmetric groups on ni “letters,” where ni is the number of
interchangeable neurons in the i-th layer.

Although quite large as a group, it does not permit us to modify the model in
any meaningful way. In the case of Convolutional Neural Networks (ConvNets),
the channels are essentially fixed and frozen in place, due to the presence of
coordinate-wise activation functions [21] (such as ReLU), which arguably build
certain semantic contents in the channels [13], thus mixing them would destroy
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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Fig. 1. Schematic of a single block of our ConvNet architecture based on
Eq. (3), to replace the bottleneck block of ResNet50. The trapezoids represent the
increase/decrease in the number of channels. The corresponding components in PDE
are illustrated (best viewed in color).

the model. The nonlinear activation unit is generally thought to be an essential
component for the neural network to fit arbitrary nonlinear functions.

With inspiration and guidance from partial differential equations (PDEs),
specifically first-order quasi-linear hyperbolic systems [1], we introduce a new
architecture of ConvNet with a different type of nonlinearity, which allows us to
remove most of the activations without degrading performance. As a result, the
new architecture admits a continuous group of symmetry (i.e., a Lie group, as
opposed to a discrete group) that allows mixing of the channels; in one version,
it’s the full general linear (GL) group, the set of all invertible ni × ni matrices:

Sym(model) =
∏

i

GL(ni,R) .

With a judicious choice of transformations, we may alter the weights so that the
connections become more sparse, resulting in a smaller model (a kind of lossless
pruning). Since the group is continuous, one might use the method of gradient
descent to search for it. In addition, it may also lead to a better understanding of
the inner workings of the neural network, much like how matrix diagonalization
leads to the decoupling of a system of (linear) differential equations into different
“modes”, which are easier to interpret.

We primarily present the simplest version of our model based on ResNet50,
illustrated in Fig. 1 alongside the corresponding PDE. The nonlinearity is at the
element-wise multiplication of the two branches (3× 3 and 1× 1 conv), and we
apply activations at the end of only four of the 16 blocks. See §5.1 for details.
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This is a preliminary report on our new architecture, and the relevant parts
of partial differential equations behind it. It is our hope that the research com-
munity builds upon and analyzes the properties of this new architecture, and to
take the PDE perspective seriously in designing, analyzing, or simply describing
all aspects of ConvNets. Moreover, given that the Transformer architecture [18]
also involves a similar nonlinearity apart from softmax and activation functions,
it could potentially be made to admit a continuous symmetry as well.

2 Related Work

The link with differential equations has been recognized, and well exploited [4,
8,9,12,16], soon after the introduction of ResNet [10] by He et al. in 2015, if not
known implicitly before; see also [17] for a more recent analysis. With a few
exceptions [12,16], most discussions do not make an emphasis on partial differ-
ential equations, and to the best of our knowledge, little activity has been devoted
to designing new architecture from this perspective. Even though a PDE can be
regarded as an ODE for which the state space is “infinite-dimensional”, or upon
discretization, a finite but large system with interactions only between neigh-
boring pixels, we find the PDE perspective, specifically of hyperbolic systems,
more illuminating and fruitful (albeit limited to ConvNets), and deserves more
attention and further study in the broader Deep Learning community.

A related but distinct field of research is using Deep Learning methods to
solve various PDEs of interests to physicists, applied mathematicians, and engi-
neers. We shall only mention two pioneering works that have attracted the most
attention: Fourier Neural Operators (FNO) [11] and Physics-informed Neural
Networks (PINN) [15].

Symmetry and equivariance often appear in the theoretical discussions
of ConvNets and Graph Neural Networks (GNN) [3,6], though it’s worth point-
ing out the distinction from our usage: More often, we say a network has a
(translational or permutation) symmetry, or is equivariant or invariant (under
translation or permutation), if when we transform the input in a certain way,
the output is also transformed accordingly, or does not change at all; the model
itself remains fixed. In our scenario, we are directly transforming the weights of
the model, which incidentally does not need to be trained. Nevertheless, much
of our work involves finding a good enough model that achieves comparable per-
formance on standard training sets. (It shall be apparent that, like conventional
ConvNets, our model is also equivariant under translations.)

One type of operation, known under the term structural reparametriza-
tion [7], can claim to modify the model after training. However, it can only
merge consecutive layers or operations that are both linear; the basic example is
conv followed by batchnorm. As such, it is better regarded as a trick in training:
for whatever reason, it is better to train with a deeper and more complicated
network than is necessary for the model, and is fundamentally different from the
kind of symmetry that our model has.
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3 Designing ConvNets from the PDE Perspective

Given that ResNet is numerically solving a particular system of PDEs,

∂ui

∂t
=σ

(∑

j

Lijuj

)
, for i = 1, . . . , n

Lij := αij
∂

∂x
+ βij

∂

∂y
+ γij

∂2

∂x∂y
+ · · ·

of n unknowns ui ≡ ui(t, x, y), with initial condition at t = 0, wherein the
coefficients are learned (for background, see Appendix), it is natural to take
inspiration from other PDEs as found in mathematics and physics, and see what
new ConvNet architecture would come out. Here are some natural changes that
one could make:

• Change the constant coefficients to be variables (of x and y), simply as linear
or polynomial functions. The equation would still be linear, but now the space
of PDEs would include, e.g., this special equation (n = 1)

∂u

∂t
= −y

∂u

∂x
+ x

∂u

∂y
,

which is solved by simply rotating the initial data f(x, y) by angle t (around
the origin):

u(t, x, y) = f(x cos t − y sin t, x sin t + y cos t) ,

as can be readily verified. It is reasonable to expect that such a variation on
ResNet would allow the model to make rotations and dilations — in addition
to translations — on the input image.

• One might think that the standard “zero padding” of conv layer corresponds
to the Dirichlet boundary condition: the value of u on the boundary being
fixed at a prescribed value for all time. On closer inspection, it is a little dif-
ferent. One could also experiment with other boundary conditions: the other
most common one is the Neumann condition, that the “normal derivative”
of u on the boundary is prescribed. The different conditions have the effects
that the signals would “bounce back” off the boundary differently.

• In a typical PDE, the matrix of coefficients is constant or slowly varying with
time, while in neural networks the weights from different layers are initialized
independently, drawn from a (normal) distribution. One could try to force the
weights from neighboring layers to correlate, either by weight-sharing or by
introducing a term in the loss function that penalizes large variations between
layers.

Having experimented with some of these ideas on small datasets, we have not
found a specific variation that yields convincing results on the full ImageNet. We
then looked into ways that the coefficients may depend on u itself, which makes
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the equation nonlinear (apart from the activation functions). It may be viewed
as a kind of “dynamic kernel”, but we draw inspiration from a class of PDEs
called quasi-linear hyperbolic systems, which may be the simplest, well-studied
nonlinear systems for which the number of equations can be arbitrary.

In two spatial and one time dimensions, a first-order quasi-linear system
is typically of the form

∂ui

∂t
=

∑

j

Aij(u)
∂uj

∂x
+

∑

j

Bij(u)
∂uj

∂y
, (1)

where the coefficient matrices may depend on u (but not derivatives of u), and
it is hyperbolic1 if A and B are diagonalizable with only real eigenvalues λi(u),
e.g., when A and B are symmetric, for any u. Leaving aside the latter condition,
the simplest example is to make each entry a linear function of u:

Aij(u) =
∑

k

Aijkuk , (2)

and similarly for B. By dimension count, such a tensor would be very large (for
large n), and it would deviate too much from typical ConvNets. Instead, we shall
restrict to

∂ui

∂t
=

∑

j

Aij

∑

k

Cjkuk
∂uj

∂x
+

∑

j

Bij

∑

k

Djkuk
∂uj

∂y
, (3)

which is straightforward to turn into a ConvNet (see §5.1 and Fig. 1 for details),
and the number of parameters is kept at a reasonable level. Since nonlinearity is
already built-in, we thought it would not be necessary to introduce activations, at
least not at every turn; and much to our surprise the model trains just as well, if
not better. With this simple change, the model now has a continuous symmetry,
from mixing of the channels, that is not present in conventional ConvNets with
coordinate-wise activation after every conv layer, and we believe it is a more
significant contribution than matching or breaking state of the art. It is likely
that, with enough compute, ingenuity, and techniques from Neural Architecture
Search, variations of this architecture could compete with the best image models
of comparable size. (We have not tried to incorporate the modifications listed
earlier, as they are all linear and we wish to explore the new nonlinearity on its
own.)

It is observed that, once we remove all the activations, or use only ReLU, the
training is prone to break down: it would fail at a particular epoch, with one or
more samples (either from the training or validation set) causing the network to
output NaN, and the model could not recover from it. To mitigate this, we add
activations such as hardtanh that clip off large values, once every few blocks.

1 The designation may appear cryptic. It originates from the classic wave equation,
which has some semblance in form with the equation of a hyperbola or hyperboloid.
See Appendix §A.3.
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It is also observed that resuming training with a smaller learning rate may get
around the “bad regions” of the parameter space. More analyses are needed to
determine the precise nature and cause of this phenomenon (it might be related
to the formation of “shock waves” in nonlinear hyperbolic equations [1]), and
perhaps other ways to avoid it.

We provide here the details of the activation functions. In standard PyTorch
[14], nn.Hardtanh is implemented as

hardtanh(x) :=

⎧
⎪⎨

⎪⎩

max val x > max val
min val x < min val
x otherwise .

We typically use ±1 as the clip-off values. We also introduce two multi-
dimensional variants that we call “hardball” and “softball,” which appear to
give the best performance. Hardball is so defined that it takes a vector x ∈ R

n

and maps it into the ball of radius R

hardball(x) :=

{
x |x| < R

Rx/|x| |x| ≥ R ,

where |x| is the Euclidean norm. We set R to be the square root of n (the number
of channels), though other choices may be better. Softball is a soft version,

softball(x) :=
x√

1 + |x|2/R2
,

and they both have the property of being equivariant under rotation. (One may
perhaps regard them as normalization layers rather than activation functions.)

4 Symmetry of the Model

The symmetry of our model would depend on the specific implementation, and
may be more complicated than one would naively expect. We shall first consider
it on the level of the PDE.

With a change of coordinates ũi =
∑

j Tijuj for an invertible matrix T , the
general equation (1) with (2)

∂ui

∂t
=

∑

j,k

Aijkuk
∂uj

∂x
+

∑

j,k

Bijkuk
∂uj

∂y

would transform only in the coefficient tensors Aijk and Bijk. Indeed,
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(For clarity, we omit the second half involving B and ∂
∂y .)

∂ũi

∂t
=

∑

j

Tij
∂uj

∂t

=
∑

j

Tij

∑

k,l

Ajklul
∂uk

∂x

=
∑

j

Tij

∑

k,l

Ajkl

∑

m

T−1
lm ũm

∑

r

T−1
kr

∂ũr

∂x

=
∑

m,r

(
∑

j,k,l

TijAjklT
−1
lm T−1

kr

︸ ︷︷ ︸
Ãirm

)
ũm

∂ũr

∂x
.

We note in passing that similar calculations are commonplace in classical differ-
ential geometry when making a change of coordinates on the base space. Here,
we are making a change of coordinates on the “dependent” variables. From a
more abstract point of view, this is the induced representation of GL(V ) on the
tensor product V ⊗ V ∗ ⊗ V ∗ ∼= Hom(V ⊗ V, V ) for a vector space V ∼= R

n.
On the level of the neural network, we only need to make sure that the T−1

comes from the previous layer, i.e., it is the inverse of the T that appears in
transforming the previous block. With such a transformation at each block, we
find that the overall symmetry of the model is

Sym(model) =
∏

i

Gi ,

with(4The group O(n) := {M, n × n matrix | MMT = In} is known as the
orthogonal group, and it preserves the Euclidean norm of Rn.)

Gi =

⎧
⎪⎨

⎪⎩

Sn σ = relu, or any element-wise activation
O(n) σ = hardball, softball, etc.4

GL(n,R) σ = identity .

As noted before, this “fully connected” block would be too costly to train,
if we are to match ResNet in which the last stage uses as many as n = 512
channels. One simple way to reduce the number of parameters is to make the
tensor “block diagonal”, and the transformation would only mix channels from
the same block. The bottleneck block of ResNet addresses this by shrinking the
number of channels before applying the 3× 3 conv, but a similar approach would
introduce additional layers that shield the main operations that we would like
to transform.

If we are to take Aijk to be of the special form as in Eq. (3), i.e., as the
product of two matrices AijCjk (no summation), then it is not guaranteed that
the transformed tensor would still factorize in the same way, for a generic T . By
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simple dimension count, the set of tensors that are factorizable in the prescribed
way is a subvariety (submanifold) of dimension at most 2n2, and one wishes
to find a T ∈ GL(n,R) that keeps the resulting Ãijk on the subvariety. Given
that the dimension of GL(n,R) is n2 and that 2n2 + n2 � n3, it is not a prior
obvious that such transformations exist, apart from simple scalings and Sn, that
are universal for all Aijk.

What one may hope for is that, for a specific Aijk that factors, we can find
such a T . For example, if for some pair of indices j, j′, we have AijCjk = Aij′Cj′k
for all i, k, then we can perform a rotation in the plane of the j and j′ directions:

{
ũj = αuj + βuj′

ũj′ = γuj + δuj′
αδ − βγ �= 0 .

Further investigation, either theoretical or numerical, may be needed to answer
this question satisfactorily. It may be the case that there exists a symmetry that
preserves the output not for all inputs, but only those inputs that are “similar”
to the dataset. It would be a weaker form of symmetry, but no less useful in
practice.

Lastly, it should be remarked that there is a trivial “symmetry” in the tensor
Aijk in the last two indices, i.e., Aijk and Aikj can be interchanged (so long as
their sum is fixed). One may regard this as a redundancy in the parameter space,
for we can force Aijk = Aikj , or Aijk = 0 for j < k (and reduce the dimension
roughly by half), and not due to mixing of the channels. We have not exploited
this in the present work.

5 Experimental Results

5.1 Details of the Architecture

How do we turn Eq. (3) into a ConvNet? We first make the differential operators
∂/∂x and ∂/∂y into 3× 3 convolutional kernels, but we allow the weights to be
trainable instead of fixed. Each incoming channel (each uj) would split into 2
— or better, 4 — channels, and this is conveniently implemented in nn.Conv2d
by setting groups to equal the number of input channels, as in “depthwise
convolution” [5]. The matrices are simply 1 × 1 conv layers, with A and B stacked
into one, and C and D stacked into one. Batchnorm is applied after the 3× 3
and at the end. As with standard ResNet, the time derivative turns into the
skip connection, and we arrive at the architecture of a single block as illustrated
in Fig. 1. We do not enforce symmetry of these matrices to make the equation
hyperbolic in the technical sense. As a general rule, we need not strictly follow
the equation, but take the liberty in relaxing the weights whenever convenient.

One novelty is to make the weights of the 3× 3 conv shared across the groups,
which would make the transformations easier to implement. One may achieve
this by making an nn.Conv2d with 1 input channel and 4 output channels, and at
forward pass, we “repeat” the 4×1×3×3 weights in the zeroth dimension before
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acting on the input tensor. Most of our experiments are with this “minimalist”
3× 3 conv, except the ones marked “no ws” (no weight-sharing) in Table 1.

It may be possible to implement this kind of “variable-coefficient convolu-
tion” natively, instead of using the existing PyTorch layer which is tailored to
conventional convolutions.

For the full design of the neural network, we simply take the classic ResNet50
with [3,4,6,3] as the numbers of blocks in the four stages. No activation is
applied except once only in each stage (e.g., at each downsampling), and we
use nn.Hardtanh or our variants, hardball and softball (see §3 for definitions),
instead of ReLU, lest the training would fail completely or the resulting model
would not work as well.

5.2 Experiments

As is standard in computer vision since the 2012 Deep Learning revolution, we
trained our model as an image classification task, on the ImageNet dataset. The
ImageNet-1k contains 1000 classes of labeled images, and for the sake of faster
iterations, we primarily trained on a 100-class subset on a single GPU, while
maintaining the standard image size of 224× 224.

We use the timm library of PyTorch image models [19] for best practices in
implementing ResNet and its training [20]. We took the official training script for
ResNeXt-50 (SGD, cosine learning rate, with a warmup of 5 epochs, etc.) except
that the peak learning rate is set to 0.3 instead of 0.6, and the total number
of epochs is set to 50. The results are in Table 1, where we mainly record two
ways of modifying the model: changing only the activation function, and altering
the placements of the conv layers within the block, corresponding to modifying
Eq. (3) into Eqs. (4)–(7):

∂ui

∂t
=

∑

k

Cikuk

∑

j

Aij
∂uj

∂x
+

∑

k

Dikuk

∑

j

Bij
∂uj

∂y
(4)

∂ui
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Cikuk
∂ui
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k

Dikuk
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Aij
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Bij
∂

∂y
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Cjkujuk (6)

∂ui

∂t
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Aij
∂

∂x

∑

k

Cjkujuk +
∑

j

Bij
∂

∂y

∑

k

Djkujuk (7)

Note that Eq. (5) only has each ui depending on its own derivatives, and
the model is thus smaller and limited in expressivity or capacity. Equations (6)
and (7) have the derivative acting on the product ujuk, and it is often called a
system of conservation laws. They can easily be rewritten in the form of Eq. (3),
and the difference in performance may be attributable simply to the model size.
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Table 1. Performance on a 100-class subset of ImageNet-1k, trained for 50 epochs
with identical training strategy. For our model, activation is applied either at the end
of each block (@all), or only at downsampling (@ds). Inside the block, the number of
channels increases by a factor of 4, except when indicated with “x6”.

model # parameters top-1 acc activation

ResNet50 23.7M 84.52

MobileNet v3 large 4.33M 82.91

Eq. (3) 8.61M 82.06 relu@all

Eq. (3) 8.61M 82.34 hardtanh@ds

Eq. (3) 8.61M 83.50 hardball@ds

Eq. (3) 8.61M 83.66 softball@ds

Eq. (3) (no ws) 8.73M 84.24 softball@ds

Eq. (3) (no ws, x6) 13.0M 84.58 softball@ds

Eq. (4) 5.70M 81.88 softball@ds

Eq. (5) 4.26M 78.64

Eq. (6) 5.61M 82.52

Eq. (7) (no ws, x6) 13.0M 84.96

It is expected that, when going to the full ImageNet-1k, and allowing longer
training and hyperparameter tuning, the best-performing model may be different
from the ones we found in Table 1.

We refrain from making assertions on why — or if — this class of PDEs
is a better base model for ConvNets, or how the theory of PDE can provide
the ultimate answer to the effectiveness of neural networks as universal function
approximators, using gradient descent. Whatever mechanisms that make ResNet
work, also make our model work.

6 Conclusion

We present a new Convolutional Neural Network architecture inspired by a class
of PDEs called quasi-linear hyperbolic systems, and with preliminary experi-
ments, we found a simple implementation that showed promising results. Even
though it is known, within small circles, the close connection between PDE and
ConvNet, we made the first architecture design directly based on a nonlinear
PDE, and as a result, we are able to remove most of the activation functions
which are generally regarded as indispensable. The new architecture admits a
continuous symmetry that could be exploited, hopefully in future works. We
expect that this opens up a new direction in neural architectural design, demon-
strates the power of the PDE perspective for ConvNets, and opens the door for
other concepts and techniques in nonlinear PDE, both theoretical and numerical,
for improved understanding of deep neural networks.
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Abstract. Deep-learning models are expected to continually learn new
concepts without forgetting old ones in real-world applications with shift-
ing data distributions. However, the notorious catastrophic forgetting
often occurs. Recently, methods based on task subspace modeling have
been developed to address this issue by gradually adding new subspaces
to learn new concepts. In this paper, we reveal that such task-subspace-
modeling methods may suffer from the inter-task confusion issue, leading
to degraded performance in challenging class-incremental learning set-
tings. Concerning addressing the forgetting issue of deep learning models,
we propose a two-stage framework called Dynamic tAsk Subspace Ensem-
ble (DASE), the first stage of which involves the dynamic expansion
of the extractor network for memory efficiency, while the second stage
delivers dynamic learning and aggregation of diverse features. To further
enhance the discriminative capacity of the aggregated features for both
historical and new classes, we also introduce new feature-enhancement
techniques. Experimental results demonstrate that our method achieves
state-of-the-art CIL performance on natural image datasets (CIFAR-100
and ImageNet) and Synthetic Aperture Radar image datasets (MSTAR
and OpenSARShip).

Keywords: class-incremental learning · inter-task confusion · dynamic
task subspace ensemble · memory-efficient

1 Introduction

Most deep-learning models, trained with static training data, cannot adapt to
the data-distribution drifting that is widespread in real-world applications. When
given a dynamically changing task stream, these models often suffer from catas-
trophic forgetting [20,21], where a model learns new task skills by modifying its
parameters that contain old task skills, leading to catastrophic forgetting of its
old skills during that task stream. Concerning addressing the forgetting issue
of deep learning models, many researchers [25,27,31,35] have concentrated on
the setup of class-incremental learning (CIL), where the goal is to sequentially
master the discrimination capabilities of new classes without forgetting those of
historical ones.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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A promising direction that delivers state-of-the-art performance for CIL
lies in dynamic architectures, where the network architecture is dynamically
expanded to deal with the stability-plasticity dilemma [22]. Task subspace model-
ing [2,23], a dynamic-architecture-based method, suggests that low dimensional
subspaces within the whole neural network parameters may be manifested as
capabilities for different tasks, allowing tasks to be represented as latent basis
tasks and their linear combinations [14]. These methods are particularly memory-
efficient due to their minimal demand for new parameters to construct a new
sub-network [2,23] and often employ two steps to solve a CIL task. Step I deals
with the task-ID prediction, i.e., using a minimal-entropy criterion to predict
which task is a data sample from. Step II solves within-task prediction, pre-
dicting a special class within the task from the last step [11]. Although they
work well on some natural image datasets like CIFAR-100 [23], we empirically
reveal that the task-ID prediction based on the minimal-entropy criterion is not
generic for Synthetic Aperture Radar (SAR) CIL tasks with a high degree of
sample similarity between tasks [16]. Due to the unavailability of historical task
data, the features learned in each sub-network, referred to as local features, only
distinguish classes within the task in the task-incremental (TIL) setting, where
the task-id is given. However, we empirically reveal that in the case of CIL, where
task-ID is not provided, there is a high likelihood of incorrect task-ID prediction
with the commonly used minimal-entropy criterion [11,23]. Therefore, the task
subspace model often fails to deliver features that discriminate among all classes
after two steps, a phenomenon known as inter-task confusion [19].

To address the inter-task confusion issue and improve task subspace model-
ing for CIL, we propose a novel two-stage method called Dynamic tAsk Subspace
Ensemble (DASE), which involves dynamic expansion of task subspace hybrid
network and dynamic learning and aggregation of features. The presented DASE
is developed based on empirical experiences [17,35], which show that shallow lay-
ers of a convolutional (conv) network tend to acquire generalized features, while
deep layers specialize in high-level features tailored to specific tasks. Accordingly,
DASE leverages a memory-efficient hybrid network structure that expands shal-
low conv layers using a low-rank reconstruction method and fully expands deep
layers, as illustrated in Fig. 1(a). To preserve the old task skills learned from
previous tasks while also ensuring that the new skills contain concepts from
both the old and new tasks, the presented DASE preserves old feature extrac-
tors for stability and adds the new feature extractor for plasticity, ensuring new
features to be discriminative across all observed classes, thus reducing inter-task
confusion as depicted in Fig. 1(b).

The main contributions of this paper are summarized as follows.

– We empirically analyze that existing CIL methods based on task subspace
modeling may suffer from severe inter-task confusion, which contributes valu-
able insights for future research in developing improved CIL algorithms.

– We propose a novel two-stage framework called DASE that learns the global
discriminative features for CIL, addressing the inter-task confusion and
achieving state-of-the-art performance on a wide range of CIL scenarios.
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Fig. 1. The framework of our method. (a) Step I expands a feature extractor dynami-
cally for each task. When new task data arrives, shallow convolutional layers share coef-
ficients, while we initialize a new set of task-specific subspaces and deep convolutional
layers framed in green for each task. (b) Step II dynamically learns and aggregates the
features for CIL. LKD signifies knowledge distillation loss at the logit level, LCE refers
to the classification loss, and LDIS is the discriminative loss that guides the training
of the feature extractors. (Color figure online)

2 Related Work

Existing CIL methods can be roughly divided into three categories, i.e., replay-
based [1,3,9,25], dynamic-architectures-based [5,31,35], and regularization-
based methods [10,12]. Below we briefly introduce the first two categories that
are most relevant to this paper.

Replay-based methods rely either on exemplar-stored historical data [1,9,25]
or on pseudo-replay via e.g., a GAN generator [3,29], to alleviate catastrophic
forgetting. However, limited storage space for examplar can lead to an imbalance
issue in class samples between historical tasks and the new one [7]. To relieve
that issue, one may resort to the techniques presented in [27,28,30,33] to balance
the old and new predictions. On the other hand, pseudo-replay methods [3,29]
often have high training complexity and are likely computationally expensive to
retain many generators.

Dynamic-architectures-based methods [31,32,35] incrementally enhance net-
work capacity to accommodate new tasks while preserving previously acquired
skills. Although these methods might prevent catastrophic forgetting, they rely
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on an additional task-ID to ensure the network accurately assigns data to the
correct module. This dependency on task-ID makes these methods impractical
for CIL. Existing methods [23,26] employ entropy to forecast the task-ID, but we
empirically reveal that such a strategy is not generally applicable, as revealed in
Sect. 3.1. Recently, a series of methods [27,31,34,35] preserve old feature extrac-
tors to maintain knowledge for old categories. When new tasks come, DER [31]
expands a new backbone per incremental task and concatenates it with old fea-
ture extractors to form a higher dimensional feature space, FOSTER [27] adds
an extra model compression stage to maintain limited model storage and MEMO
[35] decouples the network structure and only expands deep layers. Compared to
MEMO [35], we propose a strategy where shallow layers share coefficients and
gradually expand task-specific subspaces to modify the features from the shallow
layers with a slight shift, enhancing their generalizability across different tasks.

3 Method

We consider the problem of learning T tasks sequentially in CIL. Each task t
encompasses data (Xt,Yt) sampled from the respective training data Dt. Here, Xt

denotes N input data samples for task t, and Yt denotes the matching ground
truth labels. We assume no class overlap between tasks. The objective is to
minimize the statistical risk of all observed tasks, given limited or no access to
prior task data. Unlike TIL, task-ID isn’t provided for inference, necessitating
feature learning capable of task-ID prediction. In this context, we employ data
replay, where the t-th training data D̃t contains new task data from Dt and
selected representative old task data from D̃t−1.

Below, we first analyze the inter-task confusion issue in task subspace modeling
in Sect. 3.1. Then, we discuss the presented Dynamic tAsk Subspace Ensemble
(DASE), with the dynamic task subspace hybrid network expansion presented in
Sect. 3.2 and the dynamic features learning and aggregation for CIL in Sect. 3.3.

3.1 Inter-task Confusion in Task Subspace Modeling

We experimentally reveal that task subspace modeling methods mentioned in
Sect. 1, which gradually add new sub-networks to learn the new tasks, are likely
to suffer from severe inter-task confusion in practical applications.

We first experiment on MSTAR, which is a Synthetic Aperture Radar (SAR)
image dataset consisting of ten classes. The dataset exhibits a high degree of sim-
ilarity between samples across classes, as demonstrated in the supplementary
material. We design a five-task CIL experiment on the MSTAR dataset, with
each task encompassing two classes. After training, we have five sub-networks.
Then, we input the data from the first task to these sub-networks, respectively,
visualize every feature space with t-SNE [18] and use the minimal-entropy cri-
terion to find the task-ID of each sample for the following analysis.

It is expected that all data points originating from task 1 are determined as
task-ID = 1, i.e., all points in Fig. 2(a) should be represented in a dark color,
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Fig. 2. t-SNE visualization of the output features of each sub-network. The data of
the first task (i.e., the data with task-ID = 1) are fed into the five sub-networks,
and the task-ID of each sample is determined with the minimal-entropy criterion. If
the task-ID of a specific sample is determined to be t, it will be presented in a dark
color in the figure of the t-th sub-network and in a light color in other figures. It’s
expected that all points in (a) should be represented in a dark color. However, most
samples with task-ID = 1 are incorrectly determined, such as the i-iv samples, which
are incorrectly determined as the other task-IDs as illustrated in (b) to (e), meaning
the minimal entropy criterion exhibits a high rate of misidentification for the task-ID.

while those in Figs. 2(b) to (e) should be represented in a light color. However,
as depicted in Fig. 2(a), many samples near the decision boundary, indicated
in a light color in the feature space, are given the incorrect task-ID, because
they typically exhibit higher entropy values compared to those from other sub-
networks as illustrated in Fig. 2(b) to (e). Consequently, these samples are prone
to task-ID misidentification, causing substantial inter-task confusion.

Moreover, we observe similar results on CIFAR-10 [13] and MNIST [15]. The
accuracy of task-ID is low, which restricts the accuracy of all classes in CIL,
manifesting different degrees of inter-task confusion in various datasets. More
experimental details are presented in the supplementary material and further
experiments will be presented in Table 1 and Fig. 4.

In CIL, as the task with new class comes in sequentially, the model can-
not learn the global features that are discriminative among all historical data
classes and non-observed future classes. Accordingly, it’s likely that the cause of
inter-task confusion is, i.e., multiple local features sequentially learned are only
discriminative for the classes within the task, and there is a lack of a mechanism
to merge these local features into global ones that can discriminate all observed
classes.

3.2 Dynamic Task Subspace Hybrid Network Expansion

Motivated by the reason for inter-task confusion, we first introduce an effi-
cient method for sub-network expansion, where each new feature extractor is
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constructed by a task subspace hybrid network. It establishes the network foun-
dation for dynamic features learning and aggregation in Sect. 3.3.

Tensor Contraction. As presented in Fig. 1(a), given a conv neural net-
work (CNN), tensor contraction decomposes the weight of each layer, W i ∈
Rcin×cout×k×k of the i-th layer to two parts of parameters according to its shape
as [23,24] in a low-rank manner. The first part is called the task-shared coeffi-
cient αi ∈ Rcin×cout×m, and the second part is called the task-specific subspace
P i ∈ Rm×k×k, where cin and cout are the number of input and output channels,
k is the kernel size and m is the number of bases. Specifically, W i = αi ⊗ P i.

Task Subspace Hybrid Network. As shown in Fig. 1(a), upon the arrival of
the t-th task, we employ tensor contraction to reconstruct the shallow conv layer
as W s

t = αs ⊗ P s
t ; For the deep conv layer W d

t , we initialize a new one for each
task, where t ∈ {1, 2, ..., T}. αs is only initialized when t = 1 and P s

t increases
with the addition of tasks. Therefore, the shallow extractor Φs

t is composed by
multiple shallow conv layers {W s

t }S and the deep extractor Φd
t is composed by

multiple deep conv layers {W d
t }D.

Accordingly, the output of the newly added extractor or called task subspace
hybrid network Φt is

Φt(x) = Φd
t (Φ

s
t (x)). (1)

In the training phase of task 1, the task-shared coefficient αs, the shallow
subspace P s

1 and the deep layer W d
1 are all trainable parameters. In the following

task t, only the parameters of the newly added shallow subspace P s
t and that of

the deep layer W d
t are optimized to learn a new task.

3.3 Dynamic Features Learning and Aggregation

To learn global features for CIL that can discriminate among all observed task
classes, we first introduce the pipeline of dynamic features learning and aggrega-
tion after task subspace hybrid network expansion. Moreover, we propose addi-
tional feature-enhancement techniques for further feature learning.

The Pipeline. Following the training process introduced in Sect. 3.2, at each
task t ∈ {2, ..., T}, we add a new feature extractor Φt while keeping the param-
eters of previous extractors {Φ1, ..., Φt−1} and previous classifier Ht−1 frozen to
preserve the old skills learned from previous tasks. Simultaneously, the parame-
ters for the classes from the old tasks of Ht are initialized with Ht−1. As shown
in Fig. 1(b), considering an image x, drawn from the set of observed data, we
concatenate the extracted features to the super features ut as follows

ut = [Φ1(x), ..., Φt(x)]. (2)

Then we feed the super features ut into the new classifier Ht. Since the classes
of the old and new tasks are highly unbalanced, we use Logits Alignment [27] to
correct the task bias and get the output logits Ft(x) as follows

Ft(x) = γHt(ut), (3)
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where γ is a scale factor vector hyperparameter of Logits Alignment.
We employ the softmax cross entropy as the classification loss as follows

LCE = −
∑

(x,y)∈D̃t

|Yt|∑

i=1

δy=i log [σ(Ft(x))i] , (4)

where σ(·) is softmax function, σ(Ft(x))i is the prediction of the i-th class and
|Yt| denotes all observed classes.

Feature Enhancement. Feature enhancement consists of the logit-level dis-
tillation loss LKD and the discriminative loss LDIS . We employ the former for
avoiding catastrophic forgetting and the latter for further alleviating inter-task
confusion.

For each training image x, we can get Ft(x) and Ft−1(x) from the outputs
of classifiers Ht and Ht−1, respectively. As shown in Fig. 1(b), the logit-level
knowledge distillation loss is calculated as follows

LKD =
∑

(x,y)∈D̃t

cold∑

j=1

KD (σ(Ft−1(x))j , σ(Ft(x))j) , (5)

where KD (·, ·) is the standard logit distillation loss as [6] and cold denotes
the classes from old tasks.

Since the parameters of the old feature extractors remain fixed, the extracted
features for the same input sample by the old feature extractors remain
unchanged. We aim for the features outputted by the new feature extractor
to be capable of distinguishing between the classes of both the new and old
tasks, which allows for more extensive learning of task-specific features for the
new task, leading to improved discrimination between the classes of the new and
old tasks. We employ the softmax cross entropy between the output logit of the
new feature extractor Ft(x) and true labels y ∈ Yt as follows

LDIS = −
∑

(x,y)∈D̃t

|Yt|∑

i=1

δy=i log [σ(Ft(x))i] , (6)

where Ft(x) = Hdis(Φt(x)) and Hdis is the discriminative classifier as shown in
Fig. 1(b). |Yt| denotes all observed classes as in Eq. (4).

As illustrated in Fig. 1(b), the total loss is

L = LCE + LKD + LDIS . (7)

DASE is trained with a uniform combination of the above-mentioned three
losses, i.e., the classification loss LCE calculated by cross-entropy, the logit-level
knowledge distillation loss LKD given by Eq. 5 and a discriminative loss LDIS

to maximum the discrepancy between old-new classes.
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Table 1. Average incremental accuracy on CIFAR-100.

Method Average accuracy of all sessions(%)

B0 5 steps B0 10 steps B0 20 steps B50 5 steps B50 10 steps B50 25 steps

Bound 80.38 80.40 80.41 81.39 81.49 81.74

iCaRL [25] 65.51 64.42 63.50 54.54 53.78 50.60

BiC [30] 66.60 65.08 62.37 54.13 53.21 48.96

WA [33] 67.14 67.08 64.64 62.72 57.57 54.10

Filter Atom [23] 60.27 56.97 51.01 65.44 62.48 -

DER [31] 71.63 69.74 67.98 67.53 66.36 -

MEMO [35] 72.01 70.20 68.10 68.35 66.94 66.12

FOSTER [27] 74.00 72.90 70.65 70.30 67.95 63.83

Ours 75.35 74.12 70.89 72.23 69.86 66.63

4 Experiments

We compare our method with state-of-the-art methods on benchmark CIL
datasets. Ablation experiments are conducted to empirically reveal the role of
each objective function of our method, the robustness of hyperparameters and
the influence of the number of exemplars.

4.1 Experimental Settings

Datasets. We verify the effectiveness of our method on the widely used CIL
benchmark datasets: (i) natural image datasets CIFAR-100 [13], ImageNet-100
and ImageNet-1000 [4]; (ii) Synthetic Aperture Radar (SAR) image datasets
MSTAR and OpenSARShip [8]. Each dataset and more implementation details
are specifically introduced in the supplementary material.

Protocol. (i) CIFAR-100 or ImageNet-100 B0 (base 0): In this protocol,
we train the model gradually with class steps of 5, 10, and 20 for CIFAR-100
and only 10 for ImageNet-100 with a fixed memory size of 2,000 exemplars.
(ii) CIFAR-100 or ImageNet-100 B50 (base 50): We also train the model with
50 classes in the first task and the other 50 classes are gradually divided with
class steps of 2, 5, and 10 for CIFAR-100 and only 10 for ImageNet-100 with 20
exemplars per class. (iii) ImageNet-1000 B0 10 steps: We train all 1000 classes
with 100 classes per step with a fixed memory size of 20,000 exemplars. (iv) For
MSTAR and OpenSARShip, we design three scenarios shown in Table 2.

4.2 Quantitative Results

Evaluation on CIFAR-100. Table 1 summarizes the results of the CIFAR-
100 benchmark. Our method consistently outperforms other methods in differ-
ent incremental settings. Particularly, we achieve 1.93%, 1.91% and 0.51%
improvement under the incremental learning setting of base 50 with 5 steps,
10 steps and 25 steps, respectively. We also surpass the state-of-the-art method
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Fig. 3. Incremental Accuracy on ImageNet. Our method achieves comparable perfor-
mance in the settings of B0 10 steps (left), B50 5 steps (middle) of ImageNet-100 and
B0 10 steps (right) of ImageNet-1000.

Table 2. Three experiment scenarios of MSTAR and OpenSARShip. Class 1–13 are
ZIL131, D7, BTR70, T72, BMP2, BRDM2, T62, BTR60, 2S1, ZSU23/4, Container
Ship, Bulk Carrier and Tanker.

Class 1 2 3 4 5 6 7 8 9 10 11 12 13

Scenario 1 task 1 task 2 task 3 task 4 task 5 task 6 task 7 task 8 task 9 task 10 task 11 task 12

Scenario 2 task 1 task 2 task 3 task 4 task 5 task 6 task 7

Scenario 3 task 1 task 2 task 3

by 1.35%, 1.22% and 0.24% under the incremental learning setting of base 0
with 5 steps, 10 steps and 20 steps, respectively. Filter Atom [23] fails to learn
sufficiently generalized features and performs badly in the B0 configuration with
fewer classes in the first task because it updates coefficients from all layers with
larger parameters only during the first task. In addition, our method, as shown
in Table 1 and 3, achieves both high performance and memory efficiency.

Evaluation on ImageNet. Figure 3 summarizes the results of the ImageNet
benchmark. Our method still outperforms other methods in most settings. Specif-
ically, our method surpasses the state-of-the-art by about 0.85% and 1.02% in
two settings of ImageNet-100. Moreover, we achieve performance comparable to
the state-of-the-art method DyTox [5] under the ImageNet-1000 setting. It illus-
trates that our method is also successful for larger-scale incremental learning.

Evaluation on MSTAR and OpenSARShip. Figure 4 summarizes the
experimental results for the MSTAR and OpenSARShip datasets. We can see
that our method consistently surpasses other methods in three scenarios. Specif-
ically, our method surpass the state-of-the-art with about 1.29%, 0.95% and
0.25% in scenario 1, 2 and 3, respectively. It demonstrates that our method
has good adaptability in the field of SAR remote sensing. However, as demon-
strated in Sect. 3.1, Filter Atom [23] suffers from high inter-task confusion, which
significantly lowers performance.

4.3 Ablation Study

The Effect of Each Objective Function. Table 4 summarizes the results
of our ablative experiments on CIFAR-100 B50 with 5 steps. First, equipping
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Fig. 4. Incremental Accuracy of scenario 1 (Left), 2 (Middle), and 3 (Right). Our
method achieves state-of-the-art performance in three scenarios.

the CE loss gets 65.17% accuracy. In the following, applying KD loss and Log-
its Alignment further gives 1.08% and 2.38% accuracy improvements. Logits
Alignment (LA) better distinguishes between old-new classes and gives marginal
improvements. Finally, DIS loss also reports a large improvement of 3.6%, indi-
cating that this loss effectively alleviates inter-task confusion.

Table 3. The number of parameters (mil-
lion) in CIFAR-100 settings.

Method B0 10 steps B50 10 steps

DER 4.60 2.76

MEMO 3.62 2.22

Our Method 3.63 2.23

Table 4. Ablation on each objective func-
tion.

CE loss KD loss LA DIS loss Avg

� 65.17

� � 66.25

� � � 68.63

� � � � 72.23

Sensitive Study of Hyperparameters. To evaluate the robustness of our
method, we perform experiments on CIFAR-100 B50 5 steps with varied hyper-
parameters m. We test m = 3, 6, 9, 12, 15 and 18 respectively. The experimental
results are shown in Fig. 5(a). We choose the hyperparameter m = 12 with the
best performance. At this point, the shallow layers simply add minimal param-
eters as shown in Table 3.

Fig. 5. Robustness Testing. Sensitive study of the number of bases m (left) and influ-
ence of the number of exemplars (right).
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Effect of Number of Exemplars. In Fig. 5(b), We gradually increase the
number of exemplars from 5 to 200 and report the performance of the model on
CIFAR-100 B50 with 5 steps. We can observe that as the number of exemplars
continues to increase, the average accuracy of our method rises in a majority of
cases. It illustrates that our method can make full use of the information from
historical data and mitigate catastrophic forgetting well.

5 Conclusion

In this study, we empirically reveal that existing task subspace methods may
suffer from severe inter-task confusion under the challenging setup of class-
incremental learning. To deal with that, we present a novel two-stage frame-
work called DASE. Our method dynamically expands the extraction network for
improved memory efficiency, and enables dynamic learning and aggregation of
diverse features, thereby addressing the challenge of inter-task confusion.
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Abstract. Offline RL suffers from the distribution shift problem. One
way to address this issue is to constrain the divergence between the tar-
get policy and the behavior policy. However, directly using the behavior
policy-based constraint has two drawbacks: first, it does not directly dis-
tinguish the in-distribution samples and OOD samples, possibly overly
constraining the target policy and limiting performance. Second, the prac-
tical datasets may be collected from multiple different behavior policies,
which results in a multi-modal distribution, making it hard to represent
the behavior policy. To address this problem, we propose a policy con-
straint method based on the energy-based model. On the one hand, the
energy-based model constrains the target policy by energy function rather
than directly constraining it to the dataset actions, making it suitable for
multi-modal distribution. On the other hand, the energy-based model can
effectively detect OOD samples, avoiding over-constraint of the target pol-
icy and improving the ceiling of the algorithm’s performance. The pro-
posed algorithm is evaluated on the D4RL datasets. Experimental results
show that compared to the behavior policy-based constraint methods, the
energy-based policy constant significantly improves the performance and
outperforms existing offline RL baselines.

Keywords: Reinforcement learning · Offline reinforcement learning ·
Energy-based Model

1 Introduction

RL has made impressive achievements in games [29,31,32] and robotics [2,8,16].
RL learns by trial and error, which requires lots of interactions with environments.
For both games and robotics, it usually first builds a high-fidelity simulator and
then trial-and-error in the simulated environment. Compared to trial-and-error
in the real environment, interacting with the simulator is much cheaper, faster
and safer. However, it is challenging to build precision simulators for many real-
world tasks such as healthcare and autonomous driving. In addition, learning in
an imperfect simulated environment can raise the sim2real gap [21] when employ-
ing the policy in the real world. Some studies tried to directly learn robotic skills
in the real environment [19], but it is expensive and takes several months to collect
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enough experience. Offline RL aims to learn policy from existing history datasets,
which neither requires a simulator nor direct trial-and-error in the real environ-
ment. As a fully data-driven policy learning method, offline RL has great potential
to solve a wide range of real-world control and decision tasks.

One of the previously widely used offline policy learning methods is behav-
ior cloning imitation learning, which imitates expert behavior via a supervised
learning paradigm. However, behavior cloning needs expert demonstrations and
is hard to outperform the behavior policy (the policy used for collecting the
dataset). In the real world, large amounts of datasets are non-expert or subop-
timal, and the cost is much lower compared to the elaborated expert datasets.
Offline RL can learn from these suboptimal datasets and outperform the behav-
ior policy. Offline RL suffers from the distribution shift problem [26], which is
raised when the target policy deviates from the behavior policy. When the distri-
bution shift occurs, the agent will visit out-of-distribution (OOD) samples and
the value function estimation of these OOD samples is inaccurate.

To avoid value estimation on OOD samples, a line of studies in offline RL
focus on constraining the divergence of the learned policy and the behavior pol-
icy [11,12,23,35]. However, directly using the behavior policy-based constraint
has several disadvantages. Firstly, the practical datasets may be collected from
multiple different behavior policies, which results in a multi-modal distribution,
making it hard to effectively constrain the target policy. For example, if there are
two different actions conditioned on the same state, constraining the target policy
to both actions will make it imitate the average action, which is unexpected. Sec-
ondly, the behavior policy-based constraint methods do not directly distinguish
the in-distribution samples and OOD samples, possibly overly constraining the
target policy and limiting its performance. The implicit inductive bias of behav-
ior policy-based constraint methods is that the further away from the dataset, the
more likely to be an OOD sample. It is well-known that neural networks can gener-
alize well, this kind of inductive bias does not take advantage of the generalization
ability of the value function. To address the aforementioned issues, we propose a
policy constraint method based on the energy-based model (EBM) [25]. EBM is
widely used in the deep learning community for OOD detection [6,28], the model
is trained to allocate low energy for in-distribution samples and high energy for
OOD samples. In this paper, we first train the energy model on the offline datasets,
then apply the trained model as an OOD detector to constrain the policy to avoid
visiting OOD actions. Similar to the OOD detection methods, there are several
studies on the uncertainty-based offline RL [1,3]. These approaches make use of
the Q ensembles to measure uncertainty and conservatively estimate the OOD
value function. Compared to the uncertainty-based methods, our energy-based
policy constraint method applies the pre-trained energy model in policy improve-
ment rather than learning Q ensembles in policy evaluation. Another advantage
of EBM is the ability to represent complex multi-modal distribution, this char-
acteristic is exploited in learning more representative RL policy [15] or implicit
behavior cloning [9]. The multi-modal characteristic of EBM makes it suitable for
modeling the monolithic behavior policy when the offline datasets are collected
from different individual behavior policies. We evaluate the proposed algorithm
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on the D4RL Gym tasks, experimental results show that the energy-based pol-
icy constraint method significantly improves the performance compared to these
direct behavior policy-based policy constraint counterparts. We utilize the energy
surface visualization to qualitatively analyze the learned EBM and reveal the dif-
ferent patterns between the energy-based policy constraint loss function and the
behavior cloning-based one.

2 Related Work

Though EBM is widely studied in the deep learning community, to our best
knowledge, it is the first that the EBM be employed in offline RL.

Offline RL. Offline RL can be divided into model-free and model-based methods.
Model-based methods like MOPO [36] and MOReL [20] learn multiple environ-
ment models simultaneously and utilize the prediction differences between these
models as an uncertainty measurement. Among model-free methods, BCQ [12]
employs a generative model to constrain the policy actions near datasets, BEAR
[23] proposes support set constraints to regularize the learned policy. TD3BC [11]
directly adds a behavior cloning loss item during the policy improvement steps.
CQL [24] penalizes the value functions of OOD samples to obtain conservative
value function estimation. SAC-N [1] shows that extending double Q to a larger
size of Q function ensembles can be sufficiently conservative and outperforms
many previous classical offline RL algorithms. EDAC [1] reduces ensemble num-
bers required on SAC-N by increasing ensemble diversity. PBRL [3] penalizes the
uncertainty for the in-distribution target as well as additional OOD sampling
to regularize the learned Q function. IQL [22] employs the SARSA-like updates
and expectile regression to learn the Q function. DT [5] and TT [18] introduce
the transformer network into offline RL and generate actions autoregressively.
Compared to the autoregressive paradigm, Diffuser [17] and Diffusion-QL [34]
employ powerful diffusion probabilistic models to sample the whole trajectory.
The Diffusion-QL learns a more expressive target policy via diffusion models
while our method obtains better behavior policy constraints by energy-based
models, these two methods all use generative models but are orthogonal to each
other.

Energy-Based Model. EBM [25] captures dependencies between variables by
associating scalar energy to each configuration of the variables. JEM [14] rein-
terpret a standard discriminative classifier of p(y|x) as an energy-based model
for the joint distribution p(x, y), which improves calibration, robustness, and
out-of-distribution detection. Liu et al. [28] propose a unified framework using
an energy score for OOD detection. Elflein et al. [6] propose the energy-prior
network which enables the estimation of various uncertainties within an EBM
for classification. SQL [15] employs the EBM to learn expressive energy-based
policies for continuous states and actions, improving exploration and composi-
tionality that allows transferring skills between tasks.
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3 Preliminaries

3.1 Offline RL

RL aims to solve the sequential decision problem modeled by a Markov deci-
sion process (MDP) (S,A, r, P, ρ, γ), with state space S, action space A, reward
function r, dynamic P , initial state distribution ρ and the discount factor γ. RL
learns the policy π(a|s) to maximize the cumulative discount reward and the
optimization objective can be represented as:

J(π) = Es0∼ρ,at∼π(st),st+1∼P (·|st,at)[
∞∑

t=0

γtrt(st, at)], (1)

where the cumulative discount reward is usually approximated by the value
function Q(s0, a0) =

∑∞
t=0 γtrt(st, at).

The overestimated Q values can be exploited by the greedy policy. In the
offline RL setting, inaccurate Q values can not be corrected by collecting new
experiences like online RL. Moreover, the overestimated Q values will propagate
via bootstrap updating and damage the whole Q values estimation. For a given
dataset, these in-distribution Q values can be estimated well while OOD Q values
are inaccurate. Therefore, a line of work in offline RL is to constrain the policy
not to visit OOD actions by constraining the divergence between the learned
policy and the behavior policy like:

πθ := arg max
πθ

Es∼B [Q(s, πθ(s)) − βD(πθ(s), πb(s))], (2)

where D is the divergence criterion and β controls the strength of divergence
constraint and B refers to the dataset batch.

The minimalist offline RL method TD3BC [11] adopts the mean square error
(MSE) between the policy action and the corresponding action in the dataset as
the divergence metric:

πθ := arg max
πθ

Es,a∼B[λQ(s, πθ(s)) − (πθ(s) − a)2]. (3)

3.2 Energy-Based Model

The energy-based model maps a sample (x, y) to a single scalar called energy
Eω(x, y) : Rm+n → R. The energy values can be converted to a conditional
probability density p(y|x) through the Gibbs distribution:

p(y|x) =
e−Eω(x,y)/T

Zω(x)
, (4)

where Eω(x, y) is the energy model, T is the temperature parameter and Zω(x)
is the partition function.
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4 Method

To avoid visiting OOD samples, the policy constants methods restrain the diver-
gence between the target policy and behavior policy, which do not directly distin-
guish OOD samples and make it hard to deal with the multi-modal distribution.
In this paper, we propose an energy-based policy constraint method to address
the above problems. The method pipeline consists of two steps, firstly, an energy
model is trained on the datasets to assign low energy for the datasets samples
and high energy for OOD samples, then, the learned energy model is plugged
into the RL agent as an additional component to constrain the target policy.

4.1 Learning the Energy-Based Model

For a dataset of M samples {si, ai}M
i=1, we aim to learn an energy model to assign

low energy E(si, ai) on those samples in the dataset and high energy E(si, ãi) to
OOD samples, where the OOD samples consist of in-distribution states si and
OOD actions ãi. Similar to the implicit BC method [9], we adopt an InfoNCE-
style [30] loss function to train the model, which is defined as follows:

LEBM = − 1
N

N∑

i=1

log p(ai|si) = − 1
N

N∑

i=1

log
e−Eω(si,ai)

Zω(si)

= − 1
N

N∑

i=1

log
e−Eω(si,ai)

e−Eω(si,ai) +
∑Nneg

j=1 e−Eω(si,ã
j
i )

(5)

where N is the batch size, Nneg is the number of negative samples, note that the
temperature T is Eq. 4 is set to be 1. Since we do not have ground truth OOD
samples, the negative samples are used to surrogate the OOD ones. Specifically,
for each state si in the dataset, we uniform sampling Nneg actions from the
range of [amin, amax] as negative samples. By minimizing the InfoNCE-style
loss function, the energy of dataset samples is pushed down to increase the
conditional probability. At the same time, the energy of negative samples is
pushed up since the loss function will maximize the partition function in Eq. 5.

4.2 Energy-Based Policy Constraint

After training the energy-based model E(s, a), the conditional probability Eq. 4
can be used to constrain the target policy via maximizing this equation. How-
ever, the conditional probability includes partition function Z(s), which needs
negative sampling and can be time-consuming. Instead, we directly plug the
learned energy function E(s, a) as an auxiliary item into the policy optimization
objective:

πθ := arg max
πθ

Es∼B [αQ(s, πθ(s)) − E(s, πθ(s))], (6)

where α is a hyperparameter to control the policy constraint degree.
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Compared to the explicit policy constraint method represented in Eq. 2, the
energy-based policy constraint is an implicit one since the behavior policy is
implicitly modeled by the energy-based model E(s, a). The energy-based model
not only can represent complex multi-modal behavior policy but also act as an
OOD detector. The energy minimum auxiliary item forces the target policy to
stay in the low energy area, i.e. the in-distribution. Compared to the conservative
Q-learning (CQL) [24], CQL pushes down the OOD Q values during the whole
policy learning process while our method pushes up the energy of OOD samples
only at the energy-based model training state, after that, the parameters of
the energy-based model fixed and needs no more updates. Compared to the
uncertainty-based methods [1,3], we adopt the energy-based model to detect
OOD samples rather than uncertainty.

4.3 Algorithm Summary

The energy-based policy constraint (EBPC) algorithm consists of two states, i.e.,
training an EBM neural network first and then learning the energy-constrained
RL policy. For training the EBM, we utilize the InfoNCE-like loss function in
Eq. 5. For each state in the dataset, we sample 200 negative samples from the uni-
form distribution [amin, amax]. In the policy learning state, we build our EBPC
offline RL algorithm based on the TD3 online RL method and modify the policy
optimization objective by adding the energy minimization item. We summarize
the EBPC algorithm1 in Algorithm 1 and Algorithm 2.

Algorithm 1: Energy-based Policy Constraint (EBPC)

Initialize: Initialize value networks Qφ1 , Qφ2 , target networks φ1 ← φ1,
φ2 ← φ2, actor πθ, target actor θ ← θ, and replay buffer D
Setting hyperparameters {c, σ, γ, τ}, α
for i=1 to max steps do

Sample batch B = (s, a, r, s′, d) from dataset D
a′(s′) = clip(πθ̄(s

′) + clip(ε, −c, c), amin, amax), ε ∼ N (0, σ)
y = r + γ(1 − d)minφ1,2 Qφ̄1,2

(s′, a′(s′))
φ1,2 ← arg minφ1,2

1
|B|

∑
B(Qφ1,2(s, a) − y)2

if i mod policy update frequency == 0 then
θ ← arg maxθ

1
|B|

∑
B αQφ1(s, πθ(s)) − E(s, πθ(s))

φ1,2 ← (1 − τ)φ1,2 + τφ1,2

θ ← (1 − τ)θ + τθ
end

end

1 Our implementation is available at https://github.com/qsa-fox/EBPC.

https://github.com/qsa-fox/EBPC
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Algorithm 2: Learning EBM
Initialize: Initialize energy networks Eω and replay buffer D
Setting hyperparameter Nneg

for i=1 to max steps do
Sample batch B = {si, ai}N

i=1 from dataset D
Sample Nneg negative actions ãi for each state si from U(amin, amax)
Calculate LEBM loss using Equation 5
ω ← arg minω LEBM

end

5 Experiments

In the experiments section, the performance of EBPC is compared with several
previous offline RL baseline algorithms on the D4RL gym datasets, including
behavior clone (BC), TD3BC [11], CQL [24], OneStep [4], DT [5], and Rvs-
R [7]. We also study whether the learned EBM can effectively distinguish in-
distribution samples and OOD ones. To answer these questions, we qualitatively
analyze the learned model by visualizing the energy surface and compare the
difference between the energy-based policy constraint and the behavior cloning-
based policy constraint.

5.1 Performance on Offline RL Benchmarks

The D4RL [10] Gym datasets consist of three different environments, i.e., the
halfcheetah, the hopper, and the walker2d, each environment contains several
different datasets. The “random” datasets are collected by a random behavior
policy, the “medium” datasets are collected by a partially-trained policy, and the
“medium-replay” datasets consist of recording all samples in the replay buffer
observed during training until the policy reaches “medium” level of performance
and the “medium-expert” datasets mix up equal amounts of expert demonstra-
tions and suboptimal data.

The most similar counterpart of EBPC is the minimalist TD3BC algorithm,
which adds a behavior cloning penalty in the policy optimization objective while
our method adds the energy function loss item. Compared to the TD3BC, EBPC
significantly improves the performance on most tasks, especially on the “hopper-
medium” and “hopper-medium-replay” tasks. Compared to the CQL algorithm,
our method also outperforms it while keeping simplicity like TD3BC at the same
time.

Experimental Details. For the comparison results in Table 1, the scores for BC,
10%BC, RvS-R, OneStep and DT are referred from the RvS paper and the
scores for IQL and CQL are referred from their official paper. We run 5 seeds on
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Table 1. Normalized scores on the D4RL gym datasets(bold indicates the highest
score). The variances of EBPC are also reported. EBPC receives the highest total
score.

Task name (-v2) BC 10%BC DT RvS-R OneStep CQL TD3BC EBPC

halfcheetah-random 2.3 2.0 2.2 3.9 6.9 18.6 11.7 29.2± 2.6

hopper-random 4.8 4.1 7.5 0.2 7.8 9.1 8.6 8.2± 4.1

walker2d-random 1.7 1.7 2.0 7.7 6.1 2.5 0.9 6.6± 5.9

halfcheetah-medium 42.6 42.5 42.6 41.6 55.6 49.1 48.2 52.9±0.3

hopper-medium 52.9 56.9 67.6 60.2 83.3 64.6 57.7 99.8±1.5

walker2d-medium 75.3 75.0 74.0 71.7 85.6 82.9 83.2 81.5±5.5

halfcheetah-medium-replay 36.6 40.6 36.6 38.0 42.4 47.3 44.6 45.7±0.6

hopper-medium-replay 18.1 75.9 82.7 73.5 71.0 97.8 67.4 100.5±4.3

walker2d-medium-replay 26.0 62.5 66.6 60.6 71.6 86.1 83.7 91.4±3.1

halfcheetah-medium-expert 55.2 92.9 86.8 92.2 93.5 85.8 90.7 78.2± 5.5

hopper-medium-expert 52.5 110.9 107.6 101.7 106.1 102.1 102.0 91.3±12.2

walker2d-medium-expert 107.5 109.0 108.1 106 110.9 109.5 110.1 110.4±0.8

Total 475.5 674.0 684.3 657.3 736.8 755.5 712.9 795.7

the TD3BC and the EBPC algorithms and report the average normalized score.
For each task, we train the algorithm with 2 million steps and evaluate the
performance every 5000 steps. We train the EBM for 500 thousand steps. The
evaluation results are averaged on 10 episodes, and the final scores are reported
in the table. The EBPC algorithm is implemented on top of the TD3. The only
new hyperparameter introduced is the α in Eq. 6, we sweep this hyperparameter
in {0.1, 1.0, 10.0} and find α = 1.0 works well for all tasks.

5.2 Qualitative Analyzation of the EBM

Loss surface visualization technology is widely used to qualitatively analyze the
training characteristic of deep neural networks [13,27]. The reward surface visu-
alization is used to study the stability of different RL algorithms [33]. In this
work, we visualize the energy surface of the learned EBM to qualitatively analyze
whether the learned model can effectively distinguish in-distribution samples and
OOD ones.

To generate the energy surface, we choose the dataset sample (si, ai) as the
center point, and choose two random directions δ and η. We define the energy
surface as the following function:

fi(α, β) = E(si, ai + α
δ

|δ| + β
η

|η| ). (7)
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Fig. 1. Energy surface of the learned EBM on the hopper-medium-replay dataset.

The energy change of high dimensions samples can be visualized by the
energy surface function, Fig. 1 shows the energy surface of the learned EBM
on the hopper-medium-replay dataset, each sub-figure is generated on the same
center point (si, ai) but different random directions. From the energy surface,
it can seem that the center point (si, ai) indeed has the lowest energy. For the
behavior cloning (BC) constraint in TD3BC, the BC penalty is proportional to
the distance between the target policy action and the dataset action, so the cor-
responding loss surface is a bowl-like paraboloid. However, the energy surface
of the learned EBM is more complex. For example, the first sub-figure in Fig. 1
shows a narrow low-energy furrow, which means that the energy is not always
proportional to the distance to the center point in some directions. Figure 2
shows the relationship between distance and energy. In general, greater distance
tends to have greater energy, but there is no strict positive proportion. Some
samples, though far from the dataset samples, still have low energy. This phe-
nomenon can be explained by the generalization ability of neural networks, in
some directions, the network generalizes well, and these samples still stay in
dataset distribution though relatively far from the dataset.
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Fig. 2. Energy surface of the learned EBM on the hopper-medium-replay dataset.

6 Conclusion

One of the key challenges of offline RL is the value overestimation on OOD sam-
ples, thus avoiding visiting OOD samples is critical. Previously policy constraint
methods constrain the target policy to be close to the behavior policy, which
indirectly reduces OOD samples access. In this paper, we adopt the energy-
based model to directly detect OOD samples by assigning low energy to dataset
samples and high energy to negative samples. Experimental results show that the
proposed energy-based policy constraint method not only significantly improves
the performance compared to the behavior policy-based constraint ones, but also
outperforms the previous offline RL baselines. The energy surface visualization
reveals the different patterns between the behavior cloning loss function and the
energy loss function.
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Abstract. Lithology identification of rock is one of the main bases for strati-
graphic division in geology and plays a very important role in oil and gas explo-
ration. In recent years, with the increasing amount of data obtained by MWD and
other methods, it is possible to use artificial intelligence method to dynamically
identify lithology based on these data. This paper establishes a formation lithology
prediction model based on CNN-LSTM-Attention, predicts formation lithology
through drilling parameters and logging data, and verifies the drilling data of a
block in Huizhou, South China Sea. Three artificial intelligence methods, con-
volutional neural network - Long short-term memory neural network -Attention
mechanism (CNN-LSTM-Attention), convolutional neural network - long short-
term memory neural network (CNN-LSTM) and long short-term memory neural
network (LSTM), are compared and analyzed. The results show that the lithology
prediction model proposed in this paper has good accuracy and low error, and has
certain reliability and practicability.

Keywords: Convolutional neural network · Long short-term memory neural
network · Attention mechanism · The lithology prediction

1 Introduction

The upper shale in Huizhou area of the east South China Sea has high clay content,
which is prone to shrinkage and collapse after hydration expansion. The Paleogene strata
have high degree of compaction and high structural stress, and are prone to shaft wall
falling. The lower part is pre-paleogene igneous rock, which is characterized by deep
burial, dense rock, high temperature and low porosity and permeability, and requires
high reservoir protection [19, 20]. Due to the complex lithology in Huizhou block,
accurate and rapid lithology identification and prediction in this area can help drilling
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more efficiently, reduce the complexity of fractured formations, avoid drilling accidents
such as well collapse and sticking to a certain extent, reduce development costs and
improve development efficiency. However, the nonlinear interference among many vari-
ables affecting the drilling process leads to a certain complexity in the identification of
formation lithology. Traditional formation lithology identification methods have certain
limitations, low accuracy and high error, and are difficult tomeet the current requirements
[1].

At present, the main methods for stratigraphic lithology identification are probabilis-
tic statistical lithology identification, cluster analysis lithology identification and neural
network lithology identification. Neural network is widely used in lithology identifica-
tion because of its strong adaptability, fault tolerance and associative memory function.
In 2019, CAI Huihui et al. [2] proposed to replace traditional manual calculation by
using one-dimensional convolutional neural network, to mine comprehensive metallo-
genic information by training geochemical and geophysical element data of metal ores,
and to classify four types of metallogenic prospect areas according to the training results.
In 2020, Duan Youxiang et al. [3] pointed out that a single machine learning method had
a low fault tolerance rate in porosity prediction. The shortcomings of overfitting and so
on put forward the method of building prediction model by selective ensemble learn-
ing based on lithology classification. This method takes into account the influence of
lithology on porosity, overcomes the shortcomings of a single model, and the model has
strong generalization ability. In 2021, Xu Ting; In view of the cost problem of lithology
identification based on supervised learning, et al. [4] proposed an active learning method
for lithology identification. This method can reduce the cost significantly while ensuring
the classification accuracy. In 2022, Lei Mingfeng et al. [6] selected the Mask R-CNN
model and made targeted improvements, proposing an intelligent detection method for
rock flake mineral identification and quantitative content statistics. The accuracy and
error of the method for rock classification meet expectations, but the model has high
data requirements and requires a large number of original images to carry out model
deep learning training. Otherwise, the prediction accuracy of the model will be affected.

Although the above scholars have established various formation lithology prediction
models by using artificial intelligence algorithms, the abovemethods have certain limita-
tions and deficiencies in terms of low accuracy, cost problems and generalization ability.
Therefore, on the basis of the characteristic value of the extracted data of traditional
CNN, this paper combined with the LSTM network to find out the characteristics of
drilling parameters with drilling depth (time series), and added an AMmodule to assign
weights according to the importance of the correlation between drilling parameters and
formation, and built a CNN-LSTM-Attention lithology prediction model. In this paper,
multiple models are adopted for lithology identification. CNN and LSTM in the model
have different functional tasks. Compared with a single model for data processing and
prediction, they can overcome the limitations of input feature redundancy, low precision
and higher data set requirements. Experiments show that this model has the best predic-
tion accuracy, has certain reliability and practicability, and its identification results and
model can provide certain reference for formation lithology identification [5, 7].
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2 CNN-LSTM-Attention Formation Lithology Identification
Model

Based on the data of a well in Huizhou area of the South China Sea, this paper conducts
experiments to identify the underlying lithology to be drilled. In view of the limitations
of traditional lithology prediction methods and CNN, combined with the advantages
of LSTM network, a CNN-LSTM-ATTENTION [8, 9] model is proposed for lithol-
ogy identification to provide decision-making basis for guiding drilling and improving
drilling efficiency.

2.1 Sample Set Data Analysis and Processing

Since the acquired drilling data inevitably has some redundancy, it is very necessary to
carry out dimensionality reduction processing of input vectors based on the importance
of drilling parameters. In addition, data cleaning and data labeling are the basic links
of supervised learning and prediction classification model. Finally, the sample set is
divided into training set and test set according to reasonable proportion.

Taking the integrated drilling parameters as the input vector established by the neural
network model [10], the probability of different formation lithology in the output layer
is obtained through a series of nonlinear transformations of the hidden layer. Among all
the predicted formation lithology, the formation lithology with the highest probability is
determined to be the current predicted formation lithology. Due to the large number of
drilling parameters, the neural network system will be huge if all parameters are treated
as independent input feature vectors (input feature redundancy). Compared with other
models, this paper combines two kinds of neural networks. Compared with the single
LSTM [11, 12] model, the sample set data first reduces the types of input parameters
through CNN to avoid input feature redundancy.

By analyzing the correlation between drilling parameters, data with high correlation
is selected as the input parameters of the model to improve the accuracy of the model
and reduce the redundancy of the established formation lithology prediction model [16].

Since most drilling parameters are non-linear correlated with the target, mutual
information is used to measure the correlation between drilling data. When (X, Y) ~ p
(x, y), the mutual information between variables X and Y is defined as

MI(X;Y) = H(X) + H(Y) − H(X,Y) (1)

where: H (X, Y) is the joint entropy of variables X and Y; H (X) and H (Y) are the
unconditional entropy of X and Y respectively.

The thermal map calculated by mutual information values of drilling parameters is
shown in Fig. 1. It can be seen that the classification of formation lithology is affected by
these parameters. Among them, formation lithology has strong correlation with drilling
parameters such as WOB (weight on bit), WOH (Weight on Hook), RPM (revolutions
perminute), ROP (rate of penetration), SSP (pumping pressure), etc., and has lowmutual
information valuewith displacement and drilling time. Therefore, parameterswith strong
correlation of drilling parameters are selected as input variables of formation lithology
prediction model.
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Fig. 1. Mutual information heat map of drilling data.

Table 1. Statistical analysis of sample input data set

Drilling Parameter Minimum Maximum Mean Standard Deviation

Depth (m) 1018.00 3586.00 2302.10 741.73

WHO (k/bs) 211.80 390.00 309.43 47.43

WOB (k/bs) 0.40 35.50 15.17 6.11

RPM (l/min) 20.00 101.00 63.13 6.66

SSP (n/m2) 488.00 3248.00 2648.03 440.36

ROP (min/m) 0.36 139.19 4.26 8.18

2.2 Model Input Parameter Preprocessing – Pavelet Filter Processing

Due to the complex conditions in downhole drilling, there is a certain error between the
measured value received while drilling and the actual value under the interference of
many factors. Therefore, wavelet filtering is applied for data noise reduction [18].

The analysis signal S (t) is transformed into a wavelet, i.e.

Wf(τ, a) = 1√
a

+∞∫

−∞
X(t) · ϕ

(
t − τ

a

)
dt (2)

where: a is the scale factor, and a> 0, the basicwavelet scaling transformation is realized;
Is the translation factor to realize the translation transformation of the basic wavelet on
the time axis.

This method determines the optimal block size and threshold, and uses the block
threshold to de-noise the original drilling data. The structure before and after de-noising
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is shown in Fig. 2. The original data curve contains many spikes and abrupt changes, and
the curve after forced de-noising by wavelet de-noising is smooth, but its curve trend is
consistent with the trend of the original curve. Keep the changing nature of the original
data.

Fig. 2. Comparison of the effect of wavelet noise reduction
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2.3 CNN-LSTM-Attention Modeling of Formation Lithology Identification

In the network structure of the model [14, 15], the convolutional network consists of two
convolutional layers and one pooled layer. The convolutional filter of the two layers is
128 and 64 respectively, the kernel is 1, the activation function is relu, and the pooled
layer selects the maximum pooled operation to extract features and explore hidden rules
in the lithology data. The features extracted by the convolutional network are input into
the timing rule between the extracted data in the LSTM network, where the inpu_DIM
is 4 and the number of time steps is 4. After the LSTM network, AM module is added
to screen the state at different times. Finally, the retained features are output to the fully
connected layer and combined with Softmax activation function to realize lithology
classification (Fig. 3 and Table 2).

Fig. 3. Lithology identification flow chart

Table 2. Hyperparameters and network structure of the optimal model

Options Parameter

Maximum number of passes 100

Train/test set 80%/20%

Optimization algorithm Adam

Number of hidden layers 20

Number of nodes per layer 70

LSTM [17] has a Gate mechanism, in which the input gate selects the current infor-
mation to input, and the forget gate selects the past information to forget. In fact, it is
also a certain degree of Attention. However, if you want to solve the problem of long-
term dependence, LSTM actually needs to further capture sequence information, and the
performance in long text will slowly decay with the increase of step, and it is difficult to
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retain all useful information. The Attention mechanism in this paper weights the hidden
state of all steps, and focuses attention on the more important hidden state information
in the whole text. Making it easy to visualize those steps is important, but it can lead to
overfitting and increase computation.

TheAttentionmechanism is actually a learningmechanism that continuously adjusts
the weight of each encoder by measuring the contribution of the JTH hidden state of the
encoder and the previous decoder state pair. Thus, it pays more attention to the similar
parts of the input elements and suppresses other useless information. This model assigns
more weight to the main influencing parameters such as WOH, WOB and RPM, and
reduces the weight of parameters such as T GAS main and Return, which improves the
lithology prediction effect. The other two models predict the lithology data with equal
weight, and produce too much weight for other useless information. As a result, the
accuracy of lithology prediction decreases.

3 CNN-LSTM-Attention Model Training and Performance
Evaluation

3.1 CNN-LSTM-Attention Model Training Process

The dataset in this paper is divided into a training set and a test set according to the ratio
of 8:2, with 2054 samples in the training set and 514 samples in the test set. The number
of samples for each training input is 32, the maximum number of iterations is chosen to
be 100, and the selected optimization model algorithm is Adam (Fig. 4).

Fig. 4. Changes of accuracy and loss

The CNN-LSTM-Attention intelligent lithology prediction model has the highest
accuracy and the lowest loss function (the gap between the predicted value and the
actual value is the lowest), and the final accuracy of the test set and training set are 91.6%
and 92.57% respectively. Therefore, the intelligent lithology prediction model proposed
in this paper can more accurately predict the three lithology conditions (mudstone,
sandstone and magmatic rock), and the loss function training set and test set gradually
tend to 0.2, indicating that the prediction effect gradually reaches the actual situation.
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3.2 Performance Evaluation of Neural Network Model for Formation Lithology
Identification

The primary task of realizing the intelligent discrimination of drilling conditions is to
select the best neural network algorithm according to the data characteristics of the sam-
ple set, and then select the evaluation indicators such as accuracy, precision, recall rate
and score to evaluate the classification and discrimination performance of the machine
learning model.

It is often necessary to evaluate the generalization error of machine learning models
and select the model with the smallest generalization error. Therefore, the test set should
be used to test the classification discrimination ability of the model, and the test error
of the test set should be used as an approximation of the generalization error. Four
evaluation metrics, Accuracy, Precision, Recall and -score, are used in this paper [13].
Combining the actual category and the model predicted category for classification, the
confusion matrix of binary classification is shown in Table 1, and the confusion matrix
of multi-classification is shown in Fig. 5 where TP is true positive, FP is false positive,
TN is true negative, and FN is false negative (Table 3).

Table 3. Confusion matrix of binary classification results

Actual value Predicted value

Positive Negative

True TP FN

False FP TN

Fig. 5. Confusion matrix for a multiclass classification problem

Different indexes directly reflect the performance of classification discrimination.
The most common metric is “accuracy,” which is the number of correctly classified
samples divided by the total number of samples. For balanced classification problems,
generally a higher correct rate indicates a better classifier. “Precision” and “recall” are
contradictory measures. “Precision” can reflect how many predictions are correct and
howmany are incorrect for a certain class of test samples. The “recall” shows howmany
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predictions of a certain class of prediction results are correct. The “score” is the harmonic
mean of precision and recall.

According to Table 4, P, A, TPR and Score of CNN-LSTM-Attentionmodel are 0.80,
0.92, 0.88 and 0.84, respectively. These four indicators all tend to 1, which indicates that
the model has high prediction accuracy for lithology prediction. Secondary indicators
A, P, TPR through the confusion matrix based on the extended indicators. P is accuracy,
where bigger is better, and is a measure of how likely a classifier is to actually classify
the positive class as positive. TPR is recall and measures how well a class finds all the
positive classes.

Table 4. Three model evaluation indicators

Algorithm model F1 Sorce P TPR Acc

LSTM 0.7937 0.7669 0.8225 0.8966

CNN-LSTM 0.7762 0.7391 0.8173 0.9042

CNN-LSTM-Attention 0.8403 0.8000 0.8849 0.9257

3.3 Confusion Matrix and Results of CNN-LSTM-Attention Model

The confusion matrix is used to show the overall performance index of the model. It can
be seen from Table 4 and Fig. 6 that the LSTM network and CNN-LSTM network have
strong feature learning ability, and the LSTM lithology prediction rate reaches 89.66%.
After adding and CNN network, the lithology prediction rate of CNN-LSTM reaches
90.42%. After adding the AM module, the lithology prediction rate reaches 92.57%,
which is 2.91% higher than that of the LSTM model and 2.51% higher than that of
the CNN-LSTM model. It can be seen that Acc, F1 Score, P and TPR of CNN-LSTM-
Attention model are better than those of CNN-LSTM model and CNN-LSTM model.
On the one hand, this is because CNNmay convolutional features, and on the other hand,
AM model increases the weight of key parameters.

Figure 7 shows the lithology of part of a well section in Huizhou, South China Sea.
Taking the 50-mwell section from 3000m to 3050m as an example, the actual formation
lithology is compared with the recognition results of CNN-LSTM-Attention model. In
this well section, only the recognition results of adjacent sandstone and mudstone are
different.



356 Z. Liu et al.

Fig. 6. CNN-LSTM-Attention model recognition results

Fig. 7. Partial actual lithology of a well in Huizhou, South China Sea and lithology identified by
CNN-LSTM-Attention model

4 Conclusion

This paper builds a deep lithology prediction method based on CNN-LSTM-Attention
is constructed to fully mine the spatial characteristics of the data.. From the model
evaluation index reference, it shows thatCNN-LSTM-Attentionmodel can achieve better
results in lithology prediction, and further infer the advantages of Attention mechanism.
For the prediction of too long text, it is necessary to assign a large proportion of weight
to important information. By comparing the analysis results, it shows that it has a better
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effect onprediction accuracy. Firstly, it extracts the input parameterswith high correlation
in drilling parameters through CNN, and then redistributes the weights through the
Attention mechanism, and then performs lithology identification through the LSTM
model. Compared with a single model, it has higher accuracy and avoids input feature
redundancy. The model has reference value in the application of lithology identification,
which can quickly and accurately identify the lithology of the target layer, and the
accuracy of lithology identification is 92.57%.
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Abstract. [Objective] Currently, large language model (LLM) is one of research
highlights in the field of natural language processing. This paper selected some
open-source LLMs for deployment and comparison from the perspective of
consumer-grade GPU and support for Chinese and English. [Coverage] This
paper uses keywords search and citation secondary search to collect papers and
information from international computer journals, conferences and open source
code warehouse. [Methods] From the perspective of supporting both Chinese and
English, we selected LLaMA,MOSS, ChatGLM-6B, ColossalChat, and Chinese-
LLaMA-Alpaca for deployment at the same virtual task, on the virtual cluster with
consumer-grade GPU. Furthermore, we made horizontal comparisons on seman-
tic understanding, logical reasoning, code programming, ancient poetry, and legal
questions, and then, discuss the advantages and disadvantages of these models.
[Results] Limited parameters scale, most of them are not very friendly to support
Chinese, have weak Chinese understanding abilities, and have varying abilities in
logical reasoning. At present, researchers have paid less attention to issues such
as Chinese support and resource consumption. They generally focus on increas-
ing the scale of model parameters and using higher graphics card resources for
model training and inference. [Conclusions]Although the development of LLMs
is rapid, manymodels do not fully support Chinese. Understanding Chinese ability
needs to be further improved, and more efforts need to be made in logical reason-
ing. It is believed that in the future, there will be more large language models that
consume lower resources and support stronger Chinese.
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1 Introduction

With the rapid development of artificial intelligence, the scale of obtaining and process-
ing massive text data has rapidly increased, providing sufficient training data for the
development of large language models (LLMs). At the same time, deep learning tech-
nologies such as convolutional neural network and recurrent neural network have made
rapid progress in recent years, providing technical support for the development of LLMs.
In particular, the birth of ChatGPT [1] developed byOpenAI [2] has set off a newwave of
research in the field of natural language processing, demonstrated the ability of artificial
general intelligence (AGI), and attracted extensive attention in the industry. However,
due to the extremely expensive training and deployment of large language models, it
has created certain obstacles for building transparent and open academic research and
application promotion.

In order to promote the open research and application promotion of LLMs in the
Chinese NLP [3–5] community and various fields, this paper started from the perspective
of consumer-grade GPU graphics cards and support for Chinese and English, selected
some open source LLMs and deployed them in virtual cluster. Moreover, horizontal
comparisons will be made on semantic understanding, logical reasoning, code program-
ming, ancient poetry, and legal questions, mainly comparing the loading efficiency of
model parameters and resource utilization, and then discussing the advantages and dis-
advantages of these models. Through this approach, we hope to promote the research
and application of large models, and contribute to the implementation of academic
transparency and openness.

2 Related Work

In order to verify the performance and effectiveness of the universal open source large lan-
guage models in semantic understanding, logical reasoning, code programming, ancient
poetry, and legal questions, we selected several typical open source models, includ-
ing LLaMA [6, 7], MOSS [8], ChatGLM-6B [9–12], ColossalChat [13, 14], Chinese-
LLaMA-Alpaca [15, 16], and chose some common questions in the above fields to test
and verify in the virtual cluster [17, 18] of consumer-grade GPU graphics cards.

2.1 Selection of LLMs

This paper focuses on deploying and comparing several open source LLMs [19–
29], enabling them to complete inference tasks in a consumer-grade acceleration card
environment. These models are open source, highly focused and support for Chinese.

2.2 Selection of Questions

We selected five types of questions covering semantic understanding, logical reasoning,
code programming, ancient poetry, and legal question, including Chinese and English, to
test the response time, GPU andCPU resources consumption, and response effectiveness
of these models. Each question was given a corresponding simple rating standard.
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3 Virtual Cluster and Deployment

The virtual cluster used in this paper is developed by Computer Information Net-
work Center, Chinese Academy of Sciences. It is based on supercomputing hardware
resources, and realizes the construction of heterogeneous computing resources into
configurable, dynamically applied and monitorable virtualization computing resources
to meet the needs of AI applications in various fields for adapting to the running
environment of various software required. It has a high degree of customizability.

3.1 Deployment of Virtualization Task

This section will introduce how to build a LLM runtime environment in virtual cluster
[30] (see Fig. 1).

Fig. 1. Virtualization Task Process. We enter into virtual cluster, submit virtualization task,
configure base image or perform inference tasks for LLMs.

We use the sbatch-vm command to submit a virtualization task, which has kvm-
edit parameter at first time. Then the cluster allocates accelerator card resources and
network resources, and assigns a job ID for this task. We can view the network resource
information assigned to this task through the showip command. Importantly, we can
access this task with SSH, install the required software from internet, and program.
Furthermore, we deploy the above LLMs in the same task, run and monitor the results.

3.2 Deployment of the Models

After starting the virtualization task, we enter the virtualization task to customize the
basic image. Firstly, we configured the base image (Ubuntu 20.04, NVIDIA GPUDriver
520.61, and CUDA 11.8). Secondly, we installed the CONDA environment, PyTorch2.0,
and other running environment for LLMs. Then, we deployed step by step and write
inference test code according to the description of the abovemodel.Moreover, we passed
the above questions as parameters to test programs, run the test codes multiple times,
obtained data such as model parameter loading time, response time of each question,
and GPU resource utilization etc. Finally, we normalized and organized these data to
prepare for the comparison.
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4 Result Analysis

In this section, we compared the loading time, response time, model effects and resource
consumption of the above models.

4.1 Comparison of Model Loading and Problem Response Time

In order to visually compare the performanceof thesemodels in termsofmodel parameter
loading time and Chinese English problem response time, we visualized the data (see
Fig. 2).
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Fig. 2. Response Time (Seconds). The value LOADED represents the model loading time. The
value CN1,CN2,…,EN5 represent Chinese and English questions. The ordinate values represent
the inference response time of these questions.

From the above figure (see Fig. 2), we can see that MOSS has the longest response
time when answering the questions, and there is a significant deviation in response
time for different questions. Even for the same question, there is a significant differ-
ence in language (such as CN4 and EN4). ColossalChat has the shortest response time.
ChatGLM-6Bmodel has a relatively moderate response timewhen dealing with Chinese
and English questions. However, the length of problem inference response time does not
represent the effectiveness of themodels, because theremay be a situation that onemodel
provides search results for certain problems rather than generate results randomly.

4.2 Comparison of Model Effects

Through questionnaire survey, we obtained the average score of each model answering
(see Fig. 3).

ChatGLM-6B has the highest scores and performs well in both Chinese and English
questions. Next is MOSS, but its logical reasoning ability is weak. LLaMA performs
significantly better in dealing with English problems than Chinese problems, and its
understanding of Chinese semantics is also relatively weak. ColossalChat generally has
low scores and needs to be strengthened in terms of Chinese semantic understanding,
logical reasoning, and ancient poetry. Chinese-LLaMA-Alpaca has made significant
progress on the basis of LLaMA, but there is still a certain gap compared toChatGLM-6B
and MOSS.
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Fig. 3. Comparison of model effects. Each question has a maximum score of 10 points. The
left figure shows the Chinese question scores of each model. The right figure shows the English
question scores of each model.

4.3 Comparison of Resource Consumption

The resource consumption of inference question refers to the amount of GPU or CPU
resources occupied by the relevant problem during the model response period as below.

ResCSGPU = Tresponse ∗ (MEMGPU1 + MEMGPU2) (1)

ResCSCPU = Tresponse ∗ MEMCPU (2)

Fig. 4. Resource consumption situation (GPU and CPU). The above two figures represent GPU
resources consumption (ResCSGPU) for Chinese and English problems, respectively. The below
two figures are for CPU resources consumption (ResCSCPU).

It is basically the same in response to Chinese and English problems for each model
from the perspective of CPU resource consumption (below two figures), (see Fig. 4).
However, there are slight differences in CPU resource consumption among different
models, but the difference is not very obvious.

From the perspective of GPU resource consumption (above tow figures), there is a
significant difference in resource consumption between Chinese and English problems.
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Especially for MOSS, it consumes more GPU resources on Chinese problems than on
English problems.

5 Conclusion

Due to time and resource constraints, we have only attempted the aforementioned major
language models. From the above models, we can conclude that the overall performance
of the basic abilities of most large language models is acceptable. There is significant
room for improvement in logical reasoning, code programming, and contextual under-
standing. LLaMA and its derived models exhibit relatively weak performance in logical
reasoning, code generation, and ancient poetry abilities. Both semantic understanding
and keyword extraction in Chinese and English need to be further strengthened. At the
level of basic abilities, ChatGLM-6B and MOSS demonstrate excellent Chinese writing
skills. However, MOSS consumes too much resources and cannot achieve democratiza-
tion. ChatGLM-6B performs better in Chinese question answering, in terms of semantic
understanding, poetry creation, and simple logical reasoning. It also has relatively less
resource consumption and performs well.

In the future, with the improvement of accuracy, large language models will need to
be applied inmore fieldswhile reducing resource consumption to facilitate the promotion
and application.

We have created a video demonstration about ChatGLM-6B which deployed in
the virtual cluster [31].
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Abstract. Shared travel has gradually become one of the hot topics discussed
on social networking platforms such as Micro Blog. In a timely manner, deeper
network community detection on the evaluation content of shared travel in social
networks can effectively conduct research and analysis on the public opinion
orientation related to shared travel, which has great application prospects. The
existing community detection algorithmsgenerallymeasure the similarity of nodes
in the network from the perspective of spatial distance. This paper proposes a
community detection algorithmbased on textual content similarity and sentimental
tendency (CTST), considering thenetwork structure andnode attributes at the same
time. The content similarity and sentimental tendency of network community users
are taken as node attributes, and based on this, an undirected weighted network
is constructed for community detection. This paper conducts experiments with
actual data and analyzes the experimental results. It is found that the modularity
of the community detection results is high and the effect is good.

Keywords: Social Network · Community Detection · Shared Travel · Content
Similarity · Sentimental Tendency · Undirected Weighted Network

1 Introduction

With the development of the Internet and network communication, electronic social
networks such as Facebook, Twitter, WeChat, blogs, etc., have gradually become an
indispensable social channel and way in the daily life of the public [1–4]. Expressing
personal opinions and thoughts on the Internet and sharing daily personal life are the
main ways people utilize such electronic social networks. In this cyberspace, a large
number of Internet users continuously publish massive amounts of information on var-
ious topics, such as posts, pictures, videos, comments and likes. Due to their different
knowledge systems, hobbies, and discussion topics, network users will have different
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information preferences. Users with similar preferences often form communities, where
individuals within the same community act as network nodes, expressing similar opin-
ions in the network space, so the connections within the community will be closer than
the connections between different communities [5–7], which constitutes the so-called
social network.

Micro Blog is one of the most commonly used social networking platforms among
internet users in our country [9–12]. The research on the community structure of Micro
Blog network is a prominent topic in the field of community detection research. At
the same time, the research on it helps to find the behavior rules of user groups within
social networks [5]. It can also facilitate the effective grouping of Micro Blog network
users based on different specific requirements, allowing for the rapid targeting of desired
user groups. This research holds important theoretical and practical significance [1, 13].
The user posting and commenting mechanism of Micro Blog makes the user relation-
ship abstract into an undirected network, in which the nodes of the network represent
each user, and the relationships between users can be represented as edge between the
commenters and the posters of blog posts.

The existing traditional community detection algorithms generally interpret the
results of community detection from the perspective of “distance”, which only considers
the topology of the network, that is, the topological relationship between nodes, while
ignoring the attributes of nodes, making the results of community detection lack seman-
tics and inconvenient to understand and explain [7, 14–16]. In this paper, we propose
a community detection algorithm based on textual content similarity and sentimental
tendency (CTST), aiming at the lack of semantics in the results of some traditional com-
munity detection algorithms, and considering the network topology and node attributes
at the same time [17].

Our contributions are summarized as follows:

• This paper proposes a social network community detection algorithm based on textual
content similarity and sentimental tendency (CTST). In this algorithm, we utilize the
text content as a measure of similarity for node attributes. By combining the network
structure with node attributes, we transform the network into an undirected weighted
graph.

• In addition, we introduce the concept of “sentiment bias value” to represent the
sentimental tendency of text content. We construct the sentiment vector based on
the sentiment analysis of the text content, and combine the sentiment vectors of two
distinct users to obtain the final composite sentiment vector. By further transforming
and calculating the composite sentiment vector, we obtain the sentiment bias value
between two nodes in the network.

• We evaluate our algorithm on two real-world datasets, and the experimental results
verify that our algorithm performs better on undirected weighted networks, with
higher modularity and improved the effect of community detecting.

The rest of the paper is organized as follows. In Sect. 2 we give an overview of
the related work. In Sect. 3 we present and analyze the algorithm. In Sect. 4, we show
experimental results on real-world datasets. Finally, we give conclusion in Sect. 5.
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2 Related Work

Within the research process of social network analysis, the clustering analysis of node
clusters in the network is often referred to as “graph clustering” [18, 19], which is essen-
tially synonymous with the term “community detection”. Sociological theory holds that
members of an online community often share similar views and cognitive understand-
ings regarding specific topic or aspects. Then, when comments on a specific topic are
generated, due to the commonalities among members of the network community, the
entire community will show a certain degree of consistency for these comments [20–23].
Based on this, the consensus reached by community members on these topics follows
certain rules [5, 6], which helps us to study and discover the behavior rules of user groups
within social networks.

With the continuous advancement of research on community structure detection
algorithms in complex networks [24–30], various community detection algorithms have
been continuously proposed and improved. Classic community detection algorithms
mainly include graph segmentation-based methods, hierarchical clustering methods,
modularity-based methods [31–34], and spectral clustering-based methods. The tradi-
tional method based on graph segmentation involves conducting community detection
by iteratively removing edges connecting different communities until there no remaining
inter-community connections in the network. Themain idea of the hierarchical clustering
method is to identify the vertex sets with high similarity, which can be divided into two
types: aggregation algorithm and splitting algorithm according to the different identifi-
cation process. One of the most famous splitting algorithm is the GN algorithm proposed
by Newman and Girvan in 2002 [6, 36], which iteratively divides the structure of the
community by continuously removing the edge with the highest Edge Betweenness Cen-
trality (EBC) in the network. Based on the idea of GN algorithm, Newman proposed
an improved GN algorithm, also known as Fast Newman algorithm [37], aiming at the
shortcomings of GN algorithm in 2004. It is also in this algorithm that the concept
of “Modularity” was first proposed. The method based on spectral clustering [38, 39]
involves analyzing the eigenvectors of the Laplacian operator of the social network as its
fundamental approach. The Fast Unfolding algorithm is another Modularity-based com-
munity detection algorithm [33]. The algorithm emphasizes the concept of “community
folding”, and iteratively analyzes the entire community that has been discovered as a
new node, resulting in the formation of a community structure with a hierarchical orga-
nization. Many domestic scholars have also made a lot of contributions to the research
field of community detection. Z XIE et al. optimized the Fast Unfolding algorithm and
proposed a community detection algorithm with lower time complexity [40]. YW Jiang,
CY Jia and other scholars used the Jaccard distance formula to measure the similarity
between nodes in a social network [41]. They also applied various clustering methods
such as K-means and hierarchical clustering to effectively conduct community detection
in complex networks, yielding positive results.

Most of the traditional community detection algorithms primarilymeasure node sim-
ilarity based on spatial distance and solely focus on the network structure, disregarding
the attributes between nodes, whichmakes the results lack of semantics and inconvenient
to interpret. In this paper, we present the CTST model, which takes into account both
the network structure and node attributes simultaneously. The CTST model utilizes text
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similarity and sentiment tendency as measures of node attribute similarity. By incorpo-
rating these aspects, the CTST model addresses the challenge of sparse attribute data
and facilitates community division. Consequently, the obtained community detection
results possess meaningful semantics and improved interpretability, thereby enhancing
the overall effectiveness of the community detection process.

3 Methodology

In this section, we first describe the overall situation of the CTST model, and give
the mathematical calculation of the content similarity and propose the concept of the
sentiment bias value, and then show the details about our algorithm.

3.1 Overview

Figure 1 shows the overall structure of our CTST model. It can be seen that the CTST
model is generally divided into two routes for processing user comment text. On the one
hand, the upper part of Fig. 1 shows the content similarity calculation route. Firstly, the
CTST model conducts word segmentation on the textual content. Then, it calculates the
tf −idf value of theword entry afterword segmentation, and extracts the text information
eigenvector basedon this. Subsequently, theCTSTmodel employs the proposed formulas
to calculate the cosine similarity between the two eigenvectors. This cosine similarity
value serves as ameasure of the similarity between the two user nodes. On the other hand,
the lower part of Fig. 1 demonstrates the calculation process for sentiment bias values.
In this segment, the model begins by constructing the fundamental sentiment vectors for
the two users, which are subsequently combined. Following a series of transformations,
the sentiment bias value is computed. Lastly, the model integrates the outcomes of both
parts, constructs the undirected weighted network, and performs community detection
on the network based on this framework [42, 43].

W

Fig. 1. The overall logical architecture of our algorithm. It consists of two separate parts. On the
top, it calculates the Content Similarity, and it calculates the Sentiment Bias Value on the bottom.
These two values are then processed into weights, and Community Detection is performed on the
Weighted Network.
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3.2 Content Similarity Calculation

First, we conduct word segmentation on the comment information text content of the
user nodes, and then calculate the tf − idf value of the entry. The tf value represents
the frequency of a certain word in the text. The calculation formula is shown in Formula
(1), where the numerator ni,j represents the frequency of a word in the text dj, and the
denominator represents the total number of words in the entire text, and the tf value is
used to indicate the significance of a word in the entire text content.

tfi,j = ni,j
∑

knk,j
. (1)

idf represents the reverse document frequency, and its calculation formula is shown in
Formula (2). The numerator |D| represents the total number of documents in the corpus,
and the denominator {j : ti ∈ dj} represents the number of documents containing the
word ti, and then takes the logarithm of the quotient to get idf value.

idfi,j = log
|D|

{j : ti ∈ dj} . (2)

Multiply the obtained tf value by the idf value, as shown in Formula (3), to get the
tf − idf value of the term:

tf − idfi,j = tfi,j × idfi,j. (3)

After the tf − idf value of the entry is obtained, the user text information is processed
to obtain the information text eigenvector between any two network user nodes V1 and
V2, and the cosine similarity between the two eigenvectors is then calculated as the
similarity measure s between the two user nodes. The specific calculations are shown in
Formula (4) and Formula (5). Among them, tf − idfV1 represents the text eigenvectors
of user node V1, and tf − idfV2 represents the text eigenvectors of user node V2.

s(V1,V2) = cos(tf − idfV1, tf − idfV2). (4)

cos θ =

n∑

i=1
(V1i × V2i)

√
n∑

i=1
V12i ×

√
n∑

i=1
V22i

. (5)

3.3 Sentiment Bias Value

Each user node in the network has corresponding text information content. Correspond-
ingly, the text information contains the user’s opinions, emotions and attitudes about
the topic. There are two traditional methods for sentiment analysis, one is based on
sentiment dictionary and the other is based on machine learning [44, 45].
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Micro Blog has a mechanism for users to post comments. From an emotional stand-
point, the poster expresses their emotions in the post, and this emotion can have an
impact on the emotional expression of the comment users who reply to the blog post to
some extent. From the perspective of user relationships, these two users not only share
a connection through mutual comments but also have an emotional connection, which
we refer to as “sentiment bias”. To capture this sentiment bias, we first construct a polar
coordinate system. Within this system, the emotional state of each user is represented
by a sentiment vector ei, as shown in Formula (6):

ei = (ρi, ωi). (6)

In the above formula, ρi andωi represent the emotional intensity and the correspond-
ing weight assigned to it, respectively. Each piece of text information exhibits varying
degrees of emotional tendency. To quantify the intensity of emotion, the polar diameter
ρi ∈ [0, 1] is introduced, which represents the emotional score. By transforming and
combining the two sentiment vectors, a composite sentiment vector can be generated
(Fig. 2).

Fig. 2. The basic sentiment vectors of the two users ei and ej are combined to obtain a composite
sentiment vector en.

The composite sentiment vector can be further transformed and calculated to obtain
the final sentiment bias value. The calculation of the sentiment bias value is shown in
Formula (7).

sv = ρn × ωn. (7)

3.4 Weighted Network

We map network users to the graph, where V = {V1,V2, . . . ,Vi, . . . ,Vn} represents a
set of network user nodes, and (Vi,Vj) represents an edge between two nodes. Wij is
the weight of the edge, which comprises the text content similarity value s and the
sentiment bias value between user Vi and user Vj, as shown in Formula (8). Then
WG(V ,E,W ) represents an undirected weighted graph with V as the user node set,



372 J. Gao et al.

E ∈ {(Vi,Vj)|Vi,Vj ∈ V } as the edge set, and W = {Wij : (Vi,Vj) ∈ E} as the
weight set. On this basis, the algorithm is applied to partition the graph into commu-
nities, ultimately yielding the community detection result for the social network user
communities.

Wij = s × 0.5 + sv × 0.5. (8)

4 Experiments

4.1 Datasets

In recent years, shared travel relying on the mobile Internet has become a prominent
topic on social networking platforms likeMicro Blog [46]. Therefore, conducting a com-
prehensive social network community detection based on theMicro Blog social network
and the comment content of shared travel can significantly enhance our understanding
of user groups with diverse preferences. Such research holds great value and practical
significance in studying the characteristics and patterns of user groups and their opinions
in the realm of shared travel [47].

As no publicly available Chinese sentiment analysis dataset specifically related to
the comment content of “shared travel” exists, this paper uses the Micro Blog platform
as the data collection platform. It involves crawling the links of some discussion blog
posts under the relevant entries of “shared travel” on Micro Blog, and processing the
acquired data accordingly. In the actual experiment, a total of 1693 pieces of blog data
were finally obtained, and based on the aforementioned method, an undirected weighted
network was constructed. Additionally, in order to demonstrate the advantages of the
algorithm proposed in this paper on undirected weighted networks, we also conducted
comparative experiments using the well-known Zachary’s Karate Club, which is an
undirected and unweighted network with 34 nodes and 156 edges.

4.2 Experimental Procedure

We initially processed the data and obtained 85 actual users from the blog post dataset.
According to the method described above, an undirected graph with 85 nodes and 396
edges was established. The text information of the users is then calculated using the
approach outlined in Sect. 3.2, resulting in the generation of a similarity matrix, as
depicted in Table 1.
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Table 1. Textual content similarity matrix.

Nodes 1 2 3 … 85

1 0 0.24 0.53 … 0.05

2 0.24 0 0.62 … 0.12

3 0.53 0.62 0 … 0.33

… … … … … …

85 0.05 0.12 0.33 … 0

Then, according to the method described in Sect. 3.3, the sentiment bias value matrix
is calculated and shown in Table 2.

Table 2. Sentiment bias value matrix.

Nodes 1 2 3 … 85

1 0 0.37 0.6 … 0.22

2 0.37 0 0.81 … 0.25

3 0.6 0.81 0 … 0.59

… … … … … …

85 0.22 0.25 0.59 … 0

Finally, a weighted network is constructed according to the contents described in
Sect. 3.4. And based on the aforementioned results, we augment the undirected network
by adding weighted edges and subsequently conduct community detection to analyze
the network structure in greater detail. The process of community detection is divided
into two steps. The first step involves selecting appropriate central nodes as the center
of the clusters. In the second step, the correlation between adjacent nodes is examined
to determine whether to add a node to the cluster. In the experiment, we set the number
of initial central nodes to 2, 3, and 4, respectively, to partition the undirected weighted
network into communities.

4.3 Experimental Results

We employ modularity as a metric to evaluate the results of community detection, which
is a value within the range of [0, 1]. A higher modularity indicates a stronger internal
connection within the community, signifying better overall connectivity in the commu-
nity detection results. Its specific calculation is shown in Formula (9). In the following
formula, Ln represents the edges within the community, L represents the number of
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all edges in the network, and Dn represents the sum of the degrees of all nodes in the
community.

Q =
m∑

n=1

[Ln
L

−
(
Dn

2L

)2

]. (9)

For the three experiments on our dataset, we calculated their modularity separately, and
the results are shown in Table 3.

Table 3. Modularity comparison.

Number of initial central nodes modularity

2 0.298

3 0.329

4 0.443

It can be seen from Table 3 that the modularity increases as the number of initial
central nodes increases, and the best community detection result is achieved when the
number of initial central nodes is 4. Additionally, we also compared the algorithm on
the Zachary’s Karate Club dataset, and found that the modularity of the CTST model
on the undirected weighted network is higher than that on the undirected unweighted
network. This indicates that the community detection effect on the undirected weighted
graph is superior (Fig. 3).

Fig. 3. The comparison results of our CTST model on shared travel dataset and Karate dataset.

5 Conclusion

In this paper, we propose a social network community detection algorithm based on
textual content similarity and sentimental tendency (CTST). We measure the similarity
of user nodes by using the similarity and sentimental tendency of the relevant comment
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texts shared by users on the topic of “shared travel” within the social network as node
attributes. It is worth mentioning that we introduce the concept of sentiment bias value
as a numerical representation of sentiment bias in the emotional orientation part of
the text content. Experiments have shown that our CTST model, which capitalizes on
the wealth of information present in the text content while also considering the network
structure andnode attributes, has the capacity to imbue the results of community detection
with semantics. Moreover, it effectively characterizes similar users within the same
community. It is easier to understand and explain, and to a certain extent solves the
problemof sparse attribute data thatmay be caused by only considering a single situation.
Indeed, the CTST model enhances the similarity and stability among user nodes within
the community, thereby enhancing the overall quality of community detection. In future
work, we will focus on researching the results of community detection based on shared
travel comment content, and analyze its impact on public opinion orientation, and utilize
this knowledge to develop online public opinion monitoring and real-time early warning
systems.
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Abstract. General large language models (LLMs) such as ChatGPT
have shown remarkable success. However, such LLMs have not been
widely adopted for medical purposes, due to poor accuracy and inabil-
ity to provide medical advice. We propose IvyGPT, an LLM based
on LLaMA that is trained and fine-tuned with high-quality medi-
cal question-answer (QA) instances and Reinforcement Learning from
Human Feedback (RLHF). In the training, we used QLoRA to handle 33
billion parameters on a small number of NVIDIA A100 (80 GB) GPUs.
Experimental results show that IvyGPT has outperformed other medical
GPT models. The online demo is available at http://81.71.71.157:52022.
Our demo video can be found at https://youtu.be/O4D74pQh8Is.

Keywords: Large language models · Medical · Reinforcement
Learning

1 Introduction

Large language models (LLMs) have seen rapid growth after the introduction
of ChatGPT [5]. Nevertheless, LLMs such as ChatGPT and GPT-4 are general-
purpose models that are not trained for medical or clinical purposes. Therefore,
the use of LLMs in the medical domain may lead to incorrect or misleading
information, and may result in harmful consequences.

Using LLMs in the medical sector has many advantages. They can potentially
provide a variety of answers like health advice. The applications of LLMs can also
relieve the shortage of healthcare resources, which is a major factor to deteriorate
doctor-patient relationships [4].

Several LLMs for the medical domain have been proposed for the Chinese
language, including HuaTuo [7], ChatMed [9], ZhenNong-TCM [10], and Medi-
calGPT (zh) [2]. However, these models have shortcomings such as small param-
eter sizes (like 6B or 7B) and the lack of high-quality training data conforming
to real doctor-patient scenarios. These limitations restrict their generalization
abilities in medicine. To address these issues, we propose IvyGPT for the medical
settings in China and our contributions in this paper include:
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
L. Fang et al. (Eds.): CICAI 2023, LNAI 14474, pp. 378–382, 2024.
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1. We propose a comprehensive training method for medical LLMs which com-
prises three parts: supervised training, reward model training, and reinforce-
ment learning using the QLoRA method to train large models with 33B
parameters on devices with low computing power.

2. We contribute a high-quality dataset containing verified and realistic scenarios
of doctor-patient conversations.

3. We evaluate the IvyGPT against other LLMs in the medical domain.

2 Methodology

Our approach focuses on integrating high-quality data with human feedback
to enhance the quality of responses in medical consultations. This is achieved
through a two-stage training strategy: Supervised Fine-tuning (SFT) utilizing
mixed data and Reinforcement Learning (RL) derived from human feedback, as
illustrated in Fig. 1.

Fig. 1. Process strategy for IvyGPT training

2.1 Supervised Fine-Tuning

The training of large language models with full parameters can be resource-
intensive. To address this, we employ LoRA [3], which can significantly reduces
the number of trainable parameters required for downstream tasks by freez-
ing the weights of pre-trained models and injecting trainable rank decompo-
sition matrices into each layer of the Transformer architecture. Furthermore,
QLoRA [1] performs a 4-bit quantization of the base model to ensure that the
model can be fine-tuned for Large Language Models (LLMs) with extensive
parameters, even in a low memory footprint.

2.2 Reinforcement Learning from Human Feedback

Reward Model. We generate multiple responses from our supervised fine-tuned
model. These responses are then evaluated by humans, taking into account fac-
tors like informativeness, coherence, adherence to human preferences, and factual



380 R. Wang et al.

accuracy based on real doctors’ diagnoses. We utilize this paired data for the
training of the reward model.

Reinforcement Learning. During the reinforcement learning process, we feed
the top k responses generated by the model for the same question into the reward
model for evaluation, thereby obtaining a score value. To avert the risk of the
model, trained via reinforcement learning, deviating excessively from the model
in the Supervised Fine-Tuning (SFT) stage, we introduce a KL divergence con-
straint during the training process. This ensures that the model attains improved
results without deviating from the intended path.

3 Experiments

3.1 Training Details

Our model was implemented in PyTorch using the Accelerate, PEFT, and trans-
formers packages, with LLaMA-33B [6] as the base model. We trained models
for 3 epochs and saved the weights that performed the best on the validation
set. During the reinforcement learning, We trained models for 2 epochs.

3.2 Dataset

First we used dataset released from HuaTuoGPT [8], and leveraged ChatGPT to
verify grammatical errors and remove common sense errors. Second, we obtained
a large number of real doctor-patient conversations from public websites and
added them to the dataset. Finally, our dataset contains 307,038 sets of Q&As.

As shown in Fig. 2(a), we used a smaller amount of data to complete the
training process of the model. In Fig. 2(b), Comparison of the length of the
model’s response generated for the query is shown. IvyGPT generates an average
word count of 271.05, which is higher than other datasets in the chinese medical
domain. Higher word count of responses indicates that the model can cover richer
information in the response.

Fig. 2. (a) The total amount of data in the training set, (b) The average number of
words in the generated responses
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3.3 Evaluation Results

We used the word2vec-based method of computing cosine similarity to evaluate
semantic similarity of AI answers and human answers. We used the trained 64-
dimensional word2vec model to embed answers. We compared IvyGPT with four
proposed baseline models: HuaTuo, ShenNong, ChatMed, and MedicalGPT for
analysis. We used 100 query pairs to evaluate the semantic similarity between
ChatGPT and the Chinese medical domain model, respectively. The results are
shown in Table 1, and our model obtains the highest semantic similarity. This
implies that our model is better able to capture and express semantic relatedness,
resulting in more accurate and consistent language generation.

Table 1. Semantic similarity comparison with real doctor

Model Score

ShenNong [10] 77.71

HuaTuo [7] 71.20

ChatMed [9] 84.51

MedicalGPT [2] 83.73

ChatGPT 89.13

IvyGPT (ours) 93.58

We compare the output word count of the model with different training
methods. As shown in the Fig. 3(a), the model with reinforcement learning has
richer answers to users’ questions. Figure 3(b) shows that QLoRA has a shorter
training time and is more efficient compared to LoRA.

Fig. 3. (a) The average word count of responses produced by the model after reinforce-
ment learning. (b) The training duration under different fine-tuning methods
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4 Conclusion and Discussion

We propose IvyGPT, a medical LLM trained through supervised fine-tuning
using high-quality medical question-and-answer instances and RLHF. With
QLoRA, IvyGPT is able to load and train a model with 33 billion parameters,
even with limited computational resources. The results show that the responses
generated by IvyGPT have a higher similarity to the Q&A in real doctor-patient
scenarios, indicating its potential in promoting self-service healthcare and sup-
porting healthcare professionals.
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Abstract. Neural network pruning is a widely used approach for reduc-
ing the inference cost of deep models in order to deploy on resource-
limited settings. However, current pruning works lack attention to infor-
mation migration from pruned to the remaining part of the Deep Neural
Network, and on balancing model performance and compression rate. On
these two issues, in this paper, we propose a novel Explicit Information
Migration network Pruning (EIMP) algorithm. Specifically (1) the con-
strained gradient update method transfers valid information from redun-
dant networks to the preserved, and (2) the newly designed λ-decay
regularization method learns the trade-off between the performance and
penalty item. Experiments show that our EIMP algorithm achieves state-
of-the-art performance on several datasets with various benchmark net-
work architectures. Notably, EIMP achieves +1.54% better than SOTA
on ImageNet.

Keywords: Model compression · Neural network pruning · Explicit
information migration · Constrained gradient · Regularization

1 Introduction

With the advancement of deep neural networks (DNN) in recent years [20],
accompanied by the effectiveness, there has been a rising amount of storage,
memory, computation resources, and energy cost [25]. Therefore, neural network
pruning has attracted lots of attention for its capability of reducing model com-
plexity and speeding up inference which is achieved by discarding some redun-
dant structures, such as channels, filters, layers, etc [20,30]. Huge efforts have
been devoted by researchers over years [3,27], which can be roughly divided into
pruning based on criteria [1,2,6,16,21] and learn-able pruning methods [3,18].

The former focuses on directly proposing some theoretically feasible redun-
dancy criteria, like magnitude [20], Hessian [8] and Group Fisher [21], to prune
unimportant weights once and for all, followed by a fine-tuning of the pruned
network. The latter learnable pruning usually automatically selects unimportant
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weights during training. In this line, a variety of approaches add a regulariza-
tion term to the origin loss [20], and we also name them regularization-based
methods. Regularization-based pruning is dedicated to impelling unimportant
weights close to zero so that subsequent shearing operation will affect as little as
possible performance even followed by a simple weight magnitude-based criteria
[29]. And we conduct research on the latter path.

In pruning, [29] has pointed out that, high-redundancy parts in a network
can have helpful information. Directly trimming is detrimental to the model.
From this perspective, learnable regularization-based pruning attempts to auto-
matically transfer useful information from the redundant part to that to be
preserved during training. But there are still problematic hurdles: (1) the pro-
cess of impelling unimportant weights close to zero is too subtle to be perceptible
which deserves further research [3]. (2) previous works, such as L1, L2, L2,1 regu-
larization, etc., ignore the balance between model convergence and pruning [18].
For the first concern, we present a novel constrained gradient update method to
better transfer the model capability to the remaining part. In pruning applica-
tions, we find a practical situation: when the magnitude of the model parameter
is less than a certain threshold τ , the impact of pruning on the performance
can be minimized. We utilize this phenomenon and repel the information of net-
works to be pruned moves towards the threshold τ during training. Different
from the commonly used Stochastic Gradient Descent (SGD), the constrained
gradient update method can proactively prompt redundant parameters to move
below the threshold. The process undergoes information migration so that when
pruning occurs, the model effectiveness suffers as little as possible.

Considering the second issue, we propose the adapted λ-decay regularization.
Pruning in the training procedure causes the model to go from initial model over-
fitting to subnet underfitting and then to pruned net fitting again [24]. During
the underfitting phase, the high-frequency information tends to be lost, so it is
necessary to migrate it from the pruned part to the remaining. Our adapted λ-
decay method regards regularization as a function. When the model has not yet
been converged, the optimization is more performance-oriented. And when the
model is close to the global optimum, the regularization can increase to speed
up the convergence.

The commonality between constrained gradient update and adapted λ-decay
methods is characteristic of adaptive learning. In constrained gradient update,
both S0 and S1 are learning concurrently, but different gradient update methods
allow the pruned conv kernels to gradually decay and knowledge progressively
flows to the retained parts S1. And meanwhile, the structures of the S0 and
S1 sets are dynamically adjusting, so the pruned but potential structures have
chances to be resurrected. Furthermore, the adapted λ-decay method allows the
model to learn performance when it should improve it, and learn convergence
when it should improve it, dynamically balancing this process.

To summarize, our main contributions are as follows:

– We have further explored the explicit information migration for pruning and
propose Explicit Information Migration network Pruning (EIMP) consists
of a constrained gradient update and an adapted λ-decay method.
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– The proposed constrained gradient update method is designed to transfer the
model expressivity to the remaining part during pruning. It ensures the model
compression rate while enhancing its ability as much as possible.

– The adapted λ-decay regularization scheme is simple yet effective, which can
help improve model performance during pruning training.

– Extensive experiments on various networks (i .e. ResNet-32, ResNet-50,
ResNet-110, MobileNet-V1, etc.) and datasets (i .e. CIFAR-10, ImageNet)
verify the effectiveness of the two methods. Combining them has delivered the
best performance against the state-of-the-art. Besides, we find some interest-
ing phenomena and provide some experience for pruning.

2 Related Work

The pruning algorithm is a commonly used model compression algorithm that
can effectively improve the efficiency of model operations [20]. It can be divided
into three paradigms: pruning before training, pruning after training, and prun-
ing during training.

Pruning before training Some work [4,22] direct randomization network, followed
by randomization of the structure of the network and finally training of the model
parameters. [22] think that fine-tuning a pruned model only gives comparable or
worse performance than training that model with randomly initialized weights.

Pruning after training The classic training paradigm is pre-trained a well-trained
model, then prune the unimportant parts by human heuristic algorithm, and
finally fine-tuning, it can be performed once or multiple times. The heuristic
algorithms include based on magnitude [7], Hessian information [21], etc. Some
work introduces trainable structures that adaptively learn the importance of
each computing unit.

Pruning during training Pruning during training is another pruning paradigm
that does not require fine-tuning, as it allows for pruning to be performed concur-
rently with training. It includes soft pruning strategy [3,10,25] and hard pruning
[20,32]. Hard pruning is performed by ADMM [36] algorithm and the projection
operator [32] to directly prune unimportant conv kernels. And the Soft prun-
ing strategy [10] inducing structure sparsity is most relevant to the algorithm
proposed in this paper, pruned conv kernels continue to participate in training
iterations, which means that they are not directly discarded.

3 Method

The overall of our proposed EIMP algorithm is shown in Fig. 1. In this section, we
first introduce the widely-used formulations of channel pruning for deep neural
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networks (DNNs) and floating-point operations (FLOPs), which are used in our
paper and presented in Sect. 3.1. Next, we describe the proposed constrained
gradient update method in Sect. 3.2, and finally present our method of adapted
λ-decay in Sect. 3.3.

Fig. 1. Overall workflow of the proposed approach EIMP. The entire algorithm
EIMP is a pruning-in-training algorithm and it automatically learns how to prune
better by the two designed methods. (a). The constrained gradient update method
helps information flow between networks S0 and S1 and repels valid information to S1.
(b) The adapted λ-decay method automatically balances convergence and performance.

3.1 Preliminaries

Formulation Denote the dataset with N samples as X = {xi}N
i=1, and Y =

{yi}N
i=1 are the corresponding labels, a well-trained model with total L layers

weights as W = {Wl}L
l=1 where Wl ∈ R

cl×cl−1×kl×kl represents the weight
parameter of the l-th layer, l ∈ {1, 2, ..., L}. cl is the channel number of l-th
layer and kl is the kernel size in l-th layer.

Some researchers often insert new layers with parameters W
′

= {W′
l}L

l=1

after each convolution kernel in the original model [18,20]. We denote this layer
as the auxiliary pruning layer, which can be vectors obeying some distribution,
crafted matrices, or even conv layers that are introduced to facilitate the pruning
of the network architecture. That is, if the L2 norm of the auxiliary pruning layer
is approximately or equal to 0, the convolution kernel of the previous layer to
which it is attached is equivalent to having no effect on the model.

min
W,W′

N∑

i=1

L(xi, W, W
′
; yi) + λ ·

L∑

l=1

||W′
l ||2,1 (1)

s. t. RFLOPs ≤ Rbudget (2)

The optimization of previous learn-able regularization-based pruning can be
formulated as Eq. 1−2, where L is the original loss of model, for instance, Cross
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Entropy Loss. ‖·‖2,1 represents l2,1-norm and ‖W′
l‖2,1 =

∑cl
j=1 ||W′

l,j,:,:,:||2. λ
is a scalar coefficient, which balances the origin model loss and sparsification
penalty term, and a larger λ urges a sparser convolution kernel and thus obtains a
more compact network, whereas a smaller λ tends to improve model effectiveness.
RFLOPs means FLOPs of sheared model during pruning training, and Rbudget

is the upper limit of resource constraint.
We consider the stochastic gradient update algorithm, the one-step update

formula for W
′l as shown in Eq. 3, where η

′
is the learning rate for auxiliary

pruning layers training.

W
′(t+1)
l = W

′(t)
l − η

′ · ∇W
′
l
L − η

′ · λ · W
′
l

||W′
l ||2,1

(3)

FLOPs During Pruning. We find when the conv kernel weight is less than the
threshold τ1, pruning it will affect little. Therefore, we only calculate the net-
works satisfying this condition.

3.2 Constrained Gradient Update

We define S0 as the set of structures to be pruned of W
′

and S1 as the set of
remaining structures. The selection process is not done all at once. Initially, all
parameters of W

′
belong to S1 and S0 is an empty set. As pruning progresses,

every few epochs, sort W
′
according to the L2 norm, and when Epoch/u == 0,

calculate Q = m ∗ Epoch/u, where u represents the number of times selection
is executed and m indicates how many convolutional kernels are selected in
each selection. It should be noticed that the Q value will not increase until the
FLOPs value of the S1 set meets the predefined value. After that, put the top
Q minimum structures from S1 into S0. Before each selection, the S0 set is reset
to an empty set, and all parameters of W

′
are again placed in S1. Then, the

selected elements are removed from S1 and added to S0.
To update the parameter weights in the S1 set, we use the SGD method,

which is the same as Eq. 3. For the parameters of network structures to be
pruned in S0, we define the information learning intensity function f(W

′
l,j)

as Eq. 4, which indicates how much the gradient weight for the loss function
contributes to the update of the convolution kernel weight parameters in the S0

set. Thus, the parameter weights in the S0 set are updated according to Eq. 5.

f(W
′l
j ) = λ2 · max(0, τ2 − ||W′l

j ||2) (4)

W
′l
j,t+1 = W

′
j,t

l − η
′ · ∇W

′l
j
L · f(W

′l
j ) − η

′ · λ · W
′l
j

||W′l||2,1
(5)

where λ2 is the coefficient and τ2 is the threshold. By employing the proposed
CGU algorithm, the weights of the S0 set can continuously learn and transfer
information until it reaches a stage where the information is either fully depleted
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or repartitioned into the S1 space. The updated weight of a conv kernel in the
S0 set is monitored by Eq. 5. If the updated weight surpasses the decay rate
of the gradient of the loss function, it implies that the conv kernel is gradually
increasing its significance and will therefore be reclassified into the S1 set.

3.3 Adapted λ-Decay Regularization

Fig. 2. λ
′

function. Different lines in the
graph represent the function under various
values of β.

The convergence of the model is rep-
resented via gradients ϕ of the last
layer in the model. Set the number
of each batch size is B, thus the
average convergence of every batch is
depicted as:

ϕ = ∇L =
1

B × K

B∑

j=1

K∑

i=1

| ∂L
∂zj

i

|

(6)

λ
′
= λ · e−β∗ϕ (7)

where zj
i represents the logit for

the i-th class and j-th input data
among K total classes. In our paper, the regularization coefficients λ are re-
parameterized as a function λ

′
in Eq. 7, which can automatically balance the

effect and convergence during different pruning training phases. Figure 2 shows
that the parameter β controls the elasticity of the regularization term.

min
W,W′

N∑

i=1

L(xi,W,W
′
; yi) + λ

′ ·
L∑

l=1

||W′
l ||2,1 (8)

Therefore, with the constraint Eq. 2, the model optimization Eq. 1 can be
transformed into Eq. 8. It can be seen a rapid decrease in the regularization
term enhances the effectiveness of the model, whereas an increase in the norm
term accelerates the model’s convergence.

Pseudo-code in Algorithm 1 shows the implementation procedure of our pro-
posed pruning methods. In initialization, all structure parameters are regarded
as belonging to S1 set. And during the training process, in every u iterations, a
few structure parameters with the least L2 norm are chosen and added to the
S0 set, where they undergo constrained gradient update rule.

4 Experiments and Results

4.1 Datasets, Networks and Pruning Traning Settings

Datasets and Networks We evaluate the performance of the proposed algorithm
on the CIFAR-10 [15] and ImageNet [26] datasets. (1) On the CIFAR-10 dataset,
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we have investigated three models ResNet-32, ResNet-56 and ResNet-110. All
the models are trained from scratch with initialization, using Cosine Annealing
LR with initial learning rate lr = 0.1, and decayed between 120 epochs and
180 epochs, for a total of 240 epochs. (2) The ImageNet dataset is a widely
used large dataset in the classification task. We have conducted experiments on
the ImageNet dataset using MobileNet-V1 [14] and ResNet-50 models [9] with a
total of 180 epochs, respectively. MobileNet-V1 i+s trained from scratch with a
learning rate of 0.1, batch size of 256, and a decay scheme: cosine learning rate
with initialization lr = 0.01, cosineminimum = 0, and before pruning, its Top-1
accuracy is 69.26%. In addition, ResNet-50 is the official website implementation
integrated into torchvision with Top-1 accuracy 76.15%.

Algorithm 1: The pseudo-code for proposed EIMP.

Input: Pre-trained model W, auxiliary pruning layer W
′
, Target Flops Rbudget,

layer l , regularization coefficient λ, select interval u.
Output: Pruned model W,W

′
.

1 Initialization W
′

with identity matrix;
2 while Epoch < Epoch max do
3 if Epoch%u == 0 and Epoch > 0 then

4 Set S0 = ∅, W
′ ∈ S1;

5 Sort W
′

according to L2 norm;
6 if Rbudget < RFLOPs then
7 Calculate Q = m ∗ Epoch%u;
8 Put the top Q minimum structures from S1 into S0;

9 end

10 end

11 Update W by SGD; if W
′ ∈ S1 then

12 update weight by SGD;

13 else if W
′ ∈ S0 then

14 calculate information learning intensity function by Eq. 4;
15 update weight by Eq. 5;

16 end

17 calculate ϕ = ∇L = 1
B×K

∑B
j=1

∑K
i=1 | ∂L

∂z
j
i

|;
18 update λ

′
= λ · e−β∗ϕ;

19 end

Pruning Traning Settings. As [3] has done, we insert architecture parameters
in the basic block first (3 × 3) conv layers. For ResNet-50 and MobileNet-V1
pruning, we use architecture parameters in the first and second layers in the
bottleneck layer. The pruning process uses consine learning rate with an initial
value of 0.01 and cosine minimum set to 0. The optimizer selects the SGD
algorithm and momentum is set to 0.99. η

′
is optimized by Cosine learning rate
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and initialized with 0.01. Threshold τ1 = 10−5, τ2 = 10−2, λ1 = 10−4, λ2 = 1,
m = 4 and set select interval u = 5. So we obtain the S0 set by selecting the
Top-4 smallest parameters of every 5 epochs.

4.2 Pruning Results on CIFAR-10 and ImageNet

CIFAR-10. Experiments on benchmark models of ResNet-32, ResNet-56 and
ResNet-110 and conducted on CIFAR-10 data and as the Table 1 shows our
pruning obtains the best performance overall comparative experiments. Specifi-
cally speaking, for the ResNet-56 model, we compare our approach with several
recent methods. As the pruning ratio descends to 53.87%, EIMP performs best,
+0.55% Top-1 accuracy. In addition, for ResNet-110, our method gets +0.24%
increase than baseline while the second best only obtains +0.06%. In a word, all
these results validate the effectiveness of EIMP on CIFAR-10 dataset.

ImageNet. On ImageNet data, benchmark networks ResNet-50 and MobileNet-
V1 are tried on, the results of which are shown in Table 2 and verify the superi-
ority of our pruning. As far as we know, with 54.5% compression rate, we achieve
an accuracy improvement of 0.07%, which surpasses the previous SOTA. Mean-
while, in MobileNet-V1 experiments, at the same compression rate, our EIMP
surpasses previous by 1.54%.

Fig. 3. Number of Pruned channels per layer.

4.3 Information Migration Between S0 and S1

As shown in Fig. 3, when the iteration increases, more and more channels are
cut. It can be noticed that between epochs = 32 − 36, some pruned channels



Network Pruning via Explicit Information Migration 391

Table 1. CIFAR-10 dataset experiments compared with state-of-the-art. We
conduct experiments on three models: ResNet-32, ResNet-56 and ResNet-110 with 50–
65% FLOPs drops. Our proposed pruning method achieves obvious gains compared
with others. Δ = (Pruned − Baseline)/Baseline.

Model Method Top-1 Accuracy(%) Flops↓ (%)

Baseline Pruned Δ

ResNet-32 LFPC [12] 92.63 92.12 −0.51 52.60

WML50 [34] 92.63 92.10 −0.53 50.00

EIMP 93.16 93.40 +0.14 53.40

ResNet-56 HRank [19] 93.26 93.17 −0.09 50.00

LFPC [12] 93.59 93.24 −0.35 52.90

SRR-GR [31] 93.38 93.75 +0.37 53.80

GDP [6] 93.90 93.97 +0.07 53.35

ResRep [3] 93.71 93.71 +0.00 52.91

CC [17] 93.33 93.64 +0.31 48.20

AGMG [33] 93.39 92.76 −0.63 50.00

NPPM [5] 93.04 93.40 +0.36 50.00

EIMP 93.80 94.35 +0.55 53.87

SCOP [28] 93.70 93.64 −0.06 56.00

Zhang et al. [35] 93.62 93.68 +0.08 56.00

EIMP 93.80 93.91 +0.11 56.00

ResNet-110 FPGM [11] 93.68 93.74 +0.06 52.30

AGMC [33] 93.68 93.08 −0.60 50.00

ResRep [3] 93.64 93.62 −0.02 58.21

EIMP 94.24 94.46 +0.24 58.21

are revived. That is to say, in our algorithm, information flows bidirectionally
between the pruned and unpruned networks, which enables the proposed algo-
rithm more flexible. And the results highlight the effectiveness of the CGU algo-
rithm in preserving important convolution kernels while pruning.

4.4 Ablation Studies

Overall of EIMP. As a baseline, we use the method in [18], and select Top-
4 smallest L2 norm elements of the auxiliary pruning layer from S1 to S0 set
every 5 epochs and then prune them. For a fair comparison, we use the same base
pruning framework and under the situation of pruning 60% of Flops, compare
the pruned model accuracies of ablation experiments. The impacts of whether
using CGU or adapted λ-decay is investigated in Table 3.

Effectiveness of CGU. To inspect the information migration effectiveness of
CGU, we compare it with other learning-based pruning methods. For example,
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Table 2. ImageNet dataset experiments compared with state-of-the-art.
Results of our method on two models with 54% and 74% FLOPs drops respectively.
Our proposed pruning method achieves obvious gains compared with others.

Model Method Top-1 Accuracy(%) Flops↓ (%)

Baseline Pruned Δ

ResNet-50 MetaPruning [23] 76.60 75.40 −1.20 51.10

FPGM [11] 76.15 74.83 −1.32 53.50

HRank [19] 76.15 74.98 −1.17 42.40

CHEX [13] 77.80 77.40 −0.40 48.78

SRR-GR [31] 76.13 75.76 −0.37 44.10

GroupFisher [21] 76.79 76.42 −0.37 50.00

ResRep [3] 76.15 76.15 −0.00 54.50

EIMP 76.15 76.22 +0.07 54.50

MobileNet-V1 MetaPruning [23] 70.60 66.10 −4.50 73.81

ResRep [3] 70.78 68.02 −2.76 73.91

EIMP 69.26 68.04 −1.22 74.00

Table 3. Effectiveness of EIMP. We train on CIFAR-10 with ResNet-56. λ-decay is
short for adapted λ-decay regularization. The Top-1 accuracy of the pruned networks
and the gaps from the base networks are reported.

Model λ-decay CGU Top-1 Accuracy(%) Δ(%)

ResNet-56 � � 93.21% 0%

� � 93.36% +0.15%

� � 93.55% +0.34%

� � 93.76% +0.55%

in [3], after its division of the conv kernel into S0 and S1 sets, only attenuation is
performed on the S0 set without information migration. Results in Fig. 4 left and
middle demonstrate the superiority of our CGU method over Res in ResRep. We
conduct the experiments on ResNet-56 on the CIFAR-10 and the CGU method
consistently outperforms the Res method in terms of accuracy, because when
the L2 norm of the conv kernels in the S0 set is less than the threshold τ2,
they migrate information to the S1 space to allow the model achieves better
performance.

Robustness of Adapted λ-decay Method. To demonstrate the generalizability of
the adapted λ-decay regularization method, we have transferred the method
to the ResRep framework and verified its performance. Specifically, we trained
the ResNet-32 benchmark network on the CIFAR-10 dataset for a total of 400
epochs, using the same optimizer settings and learning rate as in the Sect. 4.2.
Figure 4 (right) shows the accuracy variation from the 160th epoch to the 480th
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Fig. 4. Ablation Study. Left and Middle: the change in accuracy of the ResNet-56
model on the CIFAR-10 using the Res or CGU algorithms, respectively, along with
the number of channels retained in each layer after pruning. The FLOPs reduction in
this case is 52.9%. Right: the change in accuracy with the use or non-use of the adapt
λ-decay in ResNet-32 model on the CIFAR-10 with FLOPs reduced by 52.94%.

epoch during the pruning training process, with FLOPs reduced by 52.94%. We
can observe that after implementing the λ-decay method, the accuracy can be
improved while reducing the same FLOPs value. This implies that λ-decay can
help the model converge closer to the global optimum.

5 Conclusions

In this paper, we examine the problem of model pruning from the perspective of
information migration and propose an EIMP schema. Our key contribution is the
introduction of a new gradient update rule, referred to as CGU, and an adapted
λ-decay regularization method. The CGU lets the pruned network transfer its
valid information to the retained portion of the model, potentially offering a new
approach for future pruning research. And the adapted λ-decay regularization
enables the automatic trade-off between performance and regularization item,
via assigning varying regularization intensities. Two methods of EIMP can be
easily applied to other DNN frameworks.

References

1. Chen, T.Y., et al.: Only train once: a one-shot neural network training and pruning
framework. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

2. Chin, T.W., Ding, R.Z., Zhang, C., Marculescu, D.: Towards efficient model com-
pression via learned global ranking. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 1518–1528 (2020)

3. Ding, X.H., Hao, T.X., et al.: Resrep: Lossless CNN pruning via decoupling remem-
bering and forgetting. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 4510–4520 (2021)

4. Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable
neural networks. arXiv preprint arXiv:1803.03635 (2018)

5. Gao, S.Q., Huang, F.H., Cai, W.D., Huang, H.: Network pruning via performance
maximization. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 9270–9280 (2021)

http://arxiv.org/abs/1803.03635


394 J. Wu et al.

6. Guo, Y., Yuan, H., Tan, J.C., et al.: GDP: stabilized neural network pruning via
gates with differentiable polarization. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 5239–5250 (2021)

7. Han, S., Pool, J., et al.: Learning both weights and connections for efficient neural
network. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

8. Hassibi, B., et al.: Optimal brain surgeon and general network pruning. In: IEEE
International Conference on Neural Networks, pp. 293–299. IEEE (1993)

9. He, K.M., Zhang, X.Y., Ren, S.Q., Sun, J.: Deep residual learning for image recog-
nition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 770–778 (2016)

10. He, Y., Kang, G.L., et al.: Soft filter pruning for accelerating deep convolutional
neural networks. arXiv preprint arXiv:1808.06866 (2018)

11. He, Y., Liu, P., Wang, Z.W., Hu, Z.L., Yang, Y.: Filter pruning via geometric
median for deep convolutional neural networks acceleration. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4340–
4349 (2019)

12. He, Y., et al.: Learning filter pruning criteria for deep convolutional neural networks
acceleration. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2009–2018 (2020)

13. Hou, Z.J., Qin, M.H., et al.: Chex: channel exploration for CNN model compression.
arXiv preprint arXiv:2203.15794 (2022)

14. Howard, A.G., Zhu, M.L., et al.: Mobilenets: efficient convolutional neural networks
for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

15. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Technical report 0, University of Toronto, Toronto, Ontario (2009)

16. Li, B., Wu, B., Su, J., Wang, G.: EagleEye: fast sub-net evaluation for efficient
neural network pruning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.)
ECCV 2020. LNCS, vol. 12347, pp. 639–654. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-58536-5 38

17. Li, Y.C., Lin, S.H., et al.: Towards compact CNNs via collaborative compression.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6438–6447 (2021)

18. Li, Y.W., Gu, S.H., et al.: Group sparsity: the hinge between filter pruning and
decomposition for network compression. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 8018–8027 (2020)

19. Lin, M.B., Ji, R.R., et al.: Hrank: filter pruning using high-rank feature map.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1529–1538 (2020)

20. Liu, Z., Li, J.G., et al.: Learning efficient convolutional networks through net-
work slimming. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 2736–2744 (2017)

21. Liu, L.Y., et al.: Group fisher pruning for practical network compression. In: Inter-
national Conference on Machine Learning, pp. 7021–7032. PMLR (2021)

22. Liu, Z., et al.: Rethinking the value of network pruning. arXiv preprint
arXiv:1810.05270 (2018)

23. Liu, Z.C., et al.: MetaPruning: meta learning for automatic neural network channel
pruning. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 3296–3305 (2019)

24. Miao, L., et al.: Learning pruning-friendly networks via frank-Wolfe: one-shot,
any-sparsity, and no retraining. In: International Conference on Learning Repre-
sentations (2021)

http://arxiv.org/abs/1808.06866
http://arxiv.org/abs/2203.15794
http://arxiv.org/abs/1704.04861
https://doi.org/10.1007/978-3-030-58536-5_38
https://doi.org/10.1007/978-3-030-58536-5_38
http://arxiv.org/abs/1810.05270


Network Pruning via Explicit Information Migration 395

25. Park, J.H., et al.: Dynamic structure pruning for compressing CNNs.
arXiv:2303.09736 (2023)

26. Russakovsky, O., Deng, J., et al.: Imagenet large scale visual recognition challenge.
Int. J. Comput. Vision 115(3), 211–252 (2015)

27. Shen, M.Y., Yin, H.X., et al.: Structural pruning via latency-saliency knapsack.
arXiv preprint arXiv:2210.06659 (2022)

28. Tang, Y.H., et al.: Scientific control for reliable neural network pruning. Scop. Adv.
Neural. Inf. Process. Syst. 33, 10936–10947 (2020)

29. Wang, H., Qin, C., et al.: Neural pruning via growing regularization. arXiv preprint
arXiv:2012.09243 (2020)

30. Wang, N.G., Liu, C.C., et al.: Deep compression of pre-trained transformer models.
Adv. Neural. Inf. Process. Syst. 35, 14140–14154 (2022)

31. Wang, Z., Li, C.C., Wang, X.Y.: Convolutional neural network pruning with struc-
tural redundancy reduction. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 14913–14922 (2021)

32. Yang, H.C., Gui, S.P., Zhu, Y.H., Liu, J.: Automatic neural network compression by
sparsity-quantization joint learning: A constrained optimization-based approach.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2178–2188 (2020)

33. Yu, S.X., Mazaheri, A., Jannesari, A.: Auto graph encoder-decoder for neural net-
work pruning. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pp. 6362–6372 (2021)

34. Zhang, M., et al.: Weighted mutual learning with diversity-driven model compres-
sion. In: Advances in Neural Information Processing Systems (2022)

35. Zhang, Y.F., et al.: Exploration and estimation for model compression. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 487–496
(2021)

36. Zheng, S., et al.: Fast-and-light stochastic ADMM. In: IJCAI, pp. 2407–2613 (2016)

http://arxiv.org/abs/2303.09736
http://arxiv.org/abs/2210.06659
http://arxiv.org/abs/2012.09243


Multidisciplinary Research with AI



Attention-Based RNA Secondary
Structure Prediction

Liya Hu1 , Xinyi Yang1 , Yuxuan Si1 , Jingyuan Chen1,2(B),
Xinhai Ye1,2 , Zhihua Wang1,2(B), and Fei Wu1,2

1 Zhejiang University, Hangzhou, China
{liyahu,syx sue,jingyuanchen,yexinhai,zhihua.wang,wufei}@zju.edu.cn,

xinyiy.21@intl.zju.edu.cn
2 Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China

Abstract. RNA is a molecule composed of ribonucleotides and plays
a crucial role in biological activities. The computational prediction of
RNA secondary structures has been a long-standing issue in computa-
tional biology. Traditional methods for this problem are based on free
energy minimization, but the performance of these methods has reached
an upper limit. In recent years, various deep learning-based methods
have been proposed, but these models are still primitive and prone to
overfitting, resulting in poor performance across RNA families. In this
paper, we propose two methods, AttnUFold and TransUFold, which uti-
lize the attention mechanism to enhance the model’s learning ability
for the global features of RNA sequences. Additionally, we modify the
loss function to cope with sample distribution imbalances and attempt
to introduce relevant constraints for RNA folding. Compared with the
baseline, the two models have brought improvements in both within-
and cross-family tasks. AttnUFold achieved a high F1 score of 0.852 on
the ArchiveII dataset, surpassing all traditional and most deep learning
methods.

Keywords: RNA secondary structure prediction · Deep learning ·
Attention

1 Introduction

RNA is a common biomolecule that plays a key role in the encoding, decoding,
regulation, and expression of genes. It is a linear molecule composed of ribonu-
cleotides linked by phosphodiester bonds, with four bases in its nucleotides:
adenine (A), cytosine (C), guanine (G), and uracil (U). The spatial structure
of RNA has a greater impact on its function than its ribonucleotides sequence.
However, due to the high experimental cost and limited resolution of RNA mea-
surement, there are significant difficulties in determining the tertiary structure
of RNA through experimental methods such as nuclear magnetic resonance and
X-ray crystallography. Many studies have focused on determining the secondary
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structure of RNA, which is defined as the group of nucleotide pairs with hydrogen
bonds [9].

The traditional methods of RNA secondary structure prediction minimize
the free energy to find the thermodynamically stable state, using a dynamic
programming algorithm to determine the secondary structure that only contains
nested base pairs [1,13,21]. However, due to RNA not completely following the
Watson-Crick base pairing rules similar to DNA [8], and the existence of non-
nested pseudoknot structures, existing models are not accurate. Even if a per-
fect prediction model exists, finding the optimal solution is still NP-complete.
The performance of traditional thermodynamic models has reached an upper
limit [23].

In recent years, deep learning has shown great potential in RNA secondary
structure prediction [4,10,20,22]. Compared with traditional methods, deep
learning methods can predict RNA secondary structures with pseudoknots and
can learn richer features from training data to improve prediction accuracy. Lat-
est deep learning-based RNA secondary structure prediction method UFold [10]
transformed RNA sequences into image inputs and designed relevant channels to
represent base pairing probabilities. However, some issues exist with UFold: (1)
the U-net model UFold used is a pure convolutional architecture, which can only
capture the interactions between bases within the convolution window, leading
to the limited ability to capture the relationships between distant bases; (2)
the input matrix is sparse, indicating a significantly imbalanced distribution in
the input samples; (3) UFold is purely data-driven, with no relevant constraints
introduced in the training stage.

In this paper, we first propose two new methods, AttnUFold and TransU-
Fold, which utilize the attention mechanism [27] to enhance the model’s learning
ability for the global features of RNA sequences. We integrate attention gates
and transformer layers into the traditional U-net architecture to address the
limitations of UFold. Second, we modify the loss function to cope with sample
distribution imbalances and attempt to introduce relevant constraints for RNA
folding. Experiments on various common datasets demonstrate the effectiveness
of our methods.

2 Methods

2.1 Problem Definition

The RNA secondary structure prediction problem is defined as determining the
base pairings for a given RNA sequence [9]. The input RNA sequence with length
L is denoted as x = (x1, x2, . . . , xL), where xi ∈ {A,U,C,G}. The result of RNA
secondary structure prediction is denoted by an adjacency matrix A ∈ {0, 1}L×L,
where Aij = 1 if xi and xj is paired, and 0 otherwise.

2.2 Overview

In our work, the input sequence will be converted into an tensor of size L × L
with 17 channels (see Sect. 2.3). For model design, we add Attention Gate and
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Transformer module to the U-net framework, allowing a larger range of related
nucleotides to be learned from the data. The output of the model is a L × L
adjacency matrix Y , representing the probability score of each nucleotide base
pairing. Subsequently, a post-processing network is employed to convert it into
the 0–1 adjacency matrix Ŷ ∗ representing the final results of actual pairing.

2.3 Data Preprocessing

We follow the steps used in UFold [10] that convert the input sequence to an
tensor of size L×L with 17 channels, in which 16 channels represent 16 distinct
types of base-pairing. Such channels are Kronecker products between the one-hot
representation and itself, hence allowing the model to learn all of the possible
base-pairing, including non-canonical patterns that cause failure in traditional
models. The other channel represents the unique feature of the sequence itself,
which is obtained by the algorithm adopted from CDPFold [30]. It captures the
influence from the adjacent base-pairing and meanwhile overcoming the sparsity
of the input matrix.

2.4 Models

Fig. 1. AttnUFold architecture. The Attention Gate [17] module is added, with an
input 17 × L × L matrix and an output 1 × L × L pairing probability matrix Y .

AttnUFold. AttnUFold model, as illustrated in Fig. 1, is based on U-net and
incorporates the Attention Gate module. The goal of introducing the Attention
Gate Module in this model is to capture the mutual influence among nucleotides
along the entire RNA sequence, overcoming the constraints of the limited feature
extraction range of convolutional kernels. The detailed structure of the Atten-
tion Gate module is depicted in Fig. 2, where F , H and W represent the number
of feature channels, height and width of each matrix respectively. The integra-
tion of the gating matrix provides contextual information extracted from the
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Fig. 2. The Attention Gate architecture. The input matrix xl is scaled with the atten-

tion weights α ∈ [0, 1], which can then adjust the output x̂l
k based on the spatial

information of the gating matrix. The output is formulated by x̂l
k = αl

k · xl
k.

coarse scale, thus disambiguating irrelevant responses in the skip connection of
the U-net model. It focuses on convolutional operations and the relevant compu-
tations of the Attention mechanism, while still retaining the capability to handle
variable-length RNA sequences.

Fig. 3. The sub-module of TransUFold.
TransUFold adds a Transformer structure
to the hidden layer of UFold.

The output of the Attention Gate
Module is the element-wise multipli-
cation between the input matrix xl

and attention weights αl in each layer
l. We use the up-sampled matrix g
as the gating matrix, while the corre-
sponding down-sampled matrix serves
as the input matrix xl for each layer.
The attention weights are obtained by
additive attention shown as follows,
where W represents linear transfor-
mations, σ denotes the sigmoid func-
tion, and bg, bint denotes bias terms:

ĝk = σ1(W gglk + W xxl
k + bg) (1)

αl
k = σ2(W intĝk + bint) (2)

During the training process, we
employ the Adam algorithm to opti-
mize the loss function between the
output and the ground truth pair-
ing matrix. Detailed information of
the loss function can be found in
Sect. 3.4. It is important to note that
the model’s output needs to be converted into the final prediction result by a
post-processing network, as described in Sect. 2.5.

TransUFold. TransUFold is another approach to incorporating the attention
mechanism by introducing the Transformer module into the hidden layer of
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UFold, as shown in Fig. 3. Similar to AttnUFold, TransUFold can handle dif-
ferent lengths of RNA sequences effectively. In our experiment, the input RNA
sequences are within a length of 600, and it is sufficient to align the tensor size
L with 608 in the Transformer module. TransUFold employs the feature map
generated by CNN as the input.

Similar to Chen et al. [3], for the tensor h after U-net encoder layers, we split
h into a series of size P ×P patches {h1

p, . . . ,h
N
p } (N is the number of patches),

and reassemble them into a latent D-dimensional embedding z0. Adding a posi-
tional encoding lets the model learn embedding representations to distinguish
patches at different positions:

z0 = Concat(h1
pE, . . . ,hN

p E) + P (3)

where E ∈ R
(P 2·C)×D, P ∈ R

N×D denotes the patch embedding projection and
the position embedding, respectively, and C is the number of h’s channels. Next,
the latent vector z is further encoded by the Transformer encoder to obtain the
hidden feature.

In the Transformer encoder, Multihead Self-Attention (MSA) and Multi-
Layer Perceptron (MLP) are applied, allowing the model to attend to informa-
tion in different positions. The output of the l-th layer can be formulated as
follows:

z′
l = MSA(LN(zl−1)) + zl−1 (4)

zl = MLP(LN(z′
l)) + z′

l (5)

where LN(·) corresponds to the layer normalization operator and zL is the
encoded tensor representation.

This approach enables feature learning for the entire spatial positions in the
hidden layers, enhancing the model’s ability to learn global features of RNA
sequences.

2.5 Post-processing

The post-processing procedure is needed to convert the scoring matrix Y into
the final RNA secondary structure. We adopt the post-processing method from
E2Efold [4], incorporating hard constraints into RNA secondary structure,
details can be found in Appendix A.

3 Experiment

3.1 Experiment Setup

Datasets. Several benchmark datasets are used in this study: (1) ArchiveII [25],
a widely used dataset for RNA secondary structure prediction which contains
3,975 sequences from 10 RNA families; (2) RNAStralign [26], which contains
37,149 sequences from 8 RNA families, and has 30,451 remaining sequences
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after eliminating redundant sequences and structures; (3) bpRNA-1m [5], one of
the most comprehensive datasets of RNA structures, contains 102,318 sequences
from 2,588 families; (4) bpRNA-new, a dataset derived from Rfam 14.2 [12,
22], contains sequences from 1,500 new RNA families. As every RNA family
that appears in bpRNA-1m or other datasets is excluded from bpRNA-new, it’s
commonly used for evaluating cross-family model generalization.

Regarding the limited training resources, our study is focused on RNA
sequences within a length of 600 only. Redundant sequences are removed in
the same way as E2Efold [4]. Stratified sampling is used to balance training
samples from each RNA family in all test sets. For the RNAStralign dataset, we
use the CD-HIT program [14] to remove redundant sequences and then select
sequences shorter than 600. For the ArchiveII dataset, we follow the same app-
roach as E2Efold [4], extracting RNA sequences shorter than 600 and excluding
sequences present in RNAStralign, in order to form the test set. For the bpRNA-
1m, we apply the training and test sets the same as MXfold2 [22], denoted as
TR0 and TS0, respectively. The non-redundant bpRNA-new dataset is specif-
ically used to test the model’s cross-family prediction capability. The datasets
used in our study are shown in Table 1.

Table 1. Datasets

Name Size Description

RNAStralign 600 20881 The training set in RNAStralign consisted of
sequences with lengths up to 600

test 600 1790 The test set in ArchiveII consisted of sequences
with lengths up to 600

TR0 5038 The bpRNA training set

TS0 1305 The bpRNA test set

bpnew 5401 Cross-family training set

Description. In this study, three experiments are conducted to evaluate the
performance of the AttnUFold and TransUFold models:

1. To assess the within-family prediction capability of the AttnUFold and Tran-
sUFold models, we run tests on the RNAStralign, ArchiveII, and bpRNA
datasets.

2. To assess the cross-family prediction capability of the AttnUFold and Tran-
sUFold models, we run tests on the bpRNA and bpnew datasets.

3. We compare various loss functions by conducting experiments on the AttnU-
Fold model using the bpRNA dataset, as illustrated in Sect. 3.4.

For TransUFold, we set hidden size D as 768, patch size P as 1 and the
number of Transformer Layer is 12. All models are trained using DiceLoss [16]
(see Sect. 3.4) and Adam optimizer with 1 × 10−3 learning rate and 1 × 10−4
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weight decay. All experiments were run on an Intel(R) Xeon(R) Gold 6330 CPU
@ 2.00GHz, and an GeForce RTX 3090 GPU with 24G memory.

Evaluation. The evaluation metrics for RNA secondary structure prediction
consist of precision, recall, and F1 score, as illustrated in equation 6, for evalu-
ating all predicted base pairs in each RNA.

Prec =
TP

TP + FP
, Recall =

TP

TP + FN
, F1 = 2 · Prec · Recall

Prec + Recall
(6)

Table 2. Results on ArchiveII Dataset

Method Precision Recall F1 Score

baseline 0.864 0.802 0.820

AttnUFold 0.936 0.820 0.852

TransUFold 0.873 0.803 0.830

ContexFold 0.873 0.821 0.842

MXfold2 0.788 0.760 0.768

SPOT-RNA 0.743 0.726 0.711

E2Efold 0.734 0.660 0.686

Linearfold 0.724 0.605 0.647

Mfold 0.668 0.590 0.621

Eternafold 0.622 0.802 0.636

RNAfold 0.665 0.594 0.622

RNAsoft 0.664 0.606 0.628

RNAStructure 0.613 0.802 0.631

Contrafold 0.651 0.802 0.665

Table 3. Results on TS0 Dataset

Method Precision Recall F1 Score

baseline 0.514 0.600 0.528

AttnUFold 0.560 0.604 0.554

TransUFold 0.555 0.604 0.547

CNNFold 0.640 0.566 0.582

SPOT-RNA 0.594 0.693 0.619

MXfold2 0.519 0.646 0.558

E2Efold 0.140 0.129 0.130

Mfold 0.501 0.627 0.538

Linearfold 0.561 0.581 0.550

Contrafold 0.528 0.644 0.567

Eternafold 0.516 0.666 0.563

ContexFold 0.529 0.607 0.546

RNAfold 0.494 0.631 0.536

RNAsoft 0.497 0.626 0.535

RNAStructure 0.494 0.622 0.533

3.2 Results on Within-Family Datasets
To assess the secondary structure prediction ability of AttnUFold and TransU-
Fold within RNA families, we evaluate their performance on the RNAStralign-
ArchiveII dataset and the bpRNA dataset. The evaluation results of the repro-
duced UFold (i.e. baseline), AttnUFold, and TransUFold on the ArchiveII
dataset are presented in Table 2. We compare their performance with several
deep learning-based methods, including MXfold2 [22], SPOT-RNA [24], and
E2Efold [4]. Moreover, we compare them with traditional methods such as Con-
textfold [29], Contrafold [7], Linearfold [11], Eternafold [28], RNAfold [15], RNAS-
tructure (Fold) [18], RNAsoft [2], and Mfold [31]. The two highest values for each
metric are indicated in bold. As seen in Table 2, except that ContextFold achieves
an impressive F1 score of 0.842, other traditional methods only reach a maxi-
mum F1 score of 0.665. In contrast, all three deep learning methods surpass the
0.665, with MXfold2 performing the best at 0.768. The baseline model achieves
an F1 score of 0.820, showing a 5.2% improvement over MXfold2. Additionally,
both AttnUFold and TransUFold outperform the baseline across all three met-
rics. TransUFold shows a 1.0% increase in F1 score, while AttnUFold exhibits an
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impressive improvement of 3.2%, surpassing ContextFold. Notably, AttnUFold
achieves a prediction accuracy of 93.6%, which is 6.3% higher than the second-
highest accuracy, highlighting a significant enhancement in prediction precision.

In Table 3, we present the experimental results on the TS0 test set. Over-
all, the performance of UFold-based methods on this dataset is average. Among
the four deep learning methods, AttnUFold outperforms E2Efold by 42.4% and
achieves a comparable level to MXfold2. Its F1 score of 0.554 surpasses the
majority of traditional prediction methods. Both AttnUFold and TransUFold
consistently outperform the baseline across all three evaluation metrics. TransU-
Fold shows a 1.9% improvement in the F1 score, while AttnUFold demonstrates
a greater improvement of 2.6%.

We noticed that the performance of TransUFold is not as good as AttnUFold,
which may have the following reasons: (1) Transformer is a harder structure to
train, which requires a large amount of data, and the number of known RNA
with secondary structure is limited; (2) TransUFold only learns global features
in one hidden layer, unlike AttnUFold, which can obtain global information in
each skip connection; (3) In the patch embedding process, a padding operation
is used, and the actual effective patch range is from 16 to 1444. Therefore, this
padding process may affect the model’s performance.

3.3 Results on Cross-Family Datasets

Table 4. Results on bpRNA-new
Dataset

Method Precision Recall F1 Score

baseline 0.541 0.600 0.552

AttnUFold 0.537 0.635 0.568

TransUFold 0.600 0.564 0.559

CNNFold – – 0.496

MXfold2 0.585 0.710 0.632

SPOT-RNA 0.599 0.619 0.596

E2Efold 0.047 0.031 0.036

Contrafold 0.620 0.736 0.661

TORNADO 0.636 0.638 0.620

ContexFold 0.595 0.539 0.554

RNAfold 0.552 0.720 0.617

The experimental results of cross-family
prediction are presented in Table 4. The
table provides a comparison with deep
learning-based methods, including CNN-
Fold [20], MXfold2 [22], SPOT-RNA [24],
and E2Efold [4], as well as traditional meth-
ods such as Contrafold [7], TORNADO [19],
Contextfold [29], and RNAfold [15]. The
deep learning methods shown in the table
were all trained on the TR0 training set, and
tested on the bpnew test set.

Compared to traditional methods, the
cross-family prediction ability of UFold-
based methods is not particularly outstand-
ing. When compared to deep learning models, the data-driven UFold model
exhibits lower generalization ability than MXfold2, which incorporates thermo-
dynamic constraints into its loss function. However, it is worth noting that the
baseline model achieves an F1 score 5.6% higher than CNNFold, which also
transforms RNA sequences into image inputs. In comparison to the baseline,
both AttnUFold and TransUFold show slight improvements in their F1 scores.
TransUFold has a 0.6% increase, while AttnUFold shows a 1.6% increase. Fur-
thermore, TransUFold achieves an accuracy of 0.600, which is higher than all
other deep-learning methods.
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3.4 Comparison of Loss Functions
Table 5. Different Loss Fuctions’ Results
on TS0 Dataset

Method Precision Recall F1 Score

AttnUFold bce 0.501 0.624 0.536

AttnUFold dice 0.560 0.604 0.554

AttnUFold bce+diag 0.538 0.572 0.527

AttnUFold dice+diag 0.526 0.612 0.536

Due to the highly imbalanced distri-
bution between 0 and 1 in the input
data, and no relevant constraints being
introduced in UFold’s training stage.
To overcome these two limitations, we
apply DiceLoss and DiagLoss as loss
functions, respectively. The training
and testing sets used are TR0 and TS0.

Cross-entropy loss is used for comparison. As shown below, we incorporate
a positive weight ω of 300 from UFold into the cross-entropy calculation, where
A represents the ground truth adjacency matrix.

Loss(Y,A; θ) = −
∑

ij

[Aij log(Yij) + (1 − Aij)log(1 − Yij)] (7)

DiceLoss. Given the prediction matrix Y and the ground truth matrix Y T ,
the smaller value of DiceLoss represents the greater similarity between the two
matrices. DiceLoss is suitable for the imbalanced sample distribution in this
study.

DiceLoss = 1 − 2|Y ∩ Y T |
|Y | + |Y T | (8)

DiagLoss. Regarding to the RNA folding constraint, the output matrix
should have zero diagonal values to ensure that each nucleotide is not paired
with itself. Hence, DiagLoss is applied as follows, where Loss can be Cross-
entropy loss or DiceLoss as mentioned above.

DiagLoss = Loss + c
∑

|xi|2 (9)

The results are presented in Table 5, where the best performance is achieved
by DiceLoss, with an F1 score of 0.554, 1.8% higher than the cross-entropy loss
with positive weight. We observed that incorporating the diagonal constraint
in the loss function does not improve the model’s prediction results and leads
to a decrease in all three metrics instead. It could be attributed to the fact
that the post-processing stage and model training stage are separate. Therefore,
the effect of diagonal constraints during the training process is not reflected in
the final evaluation results. On the other hand, the excellent performance of
DiceLoss indicates that calculating the similarity between the predicted pairing
matrix and the ground truth matrix effectively complements the U-net model
architecture. Other experiments conducted in this study also demonstrate the
improvement brought by DiceLoss.

3.5 Visualization

Prediction Results. We visually showcased the partial prediction results of
the AttnUFold model on the RNAStralign dataset [26]. We convert the pre-
dictions into dot-bracket notation and generate structure diagrams using the
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VARNA [6] tool. Figure 4 highlights the model’s remarkable prediction ability,
as it accurately captures most of the structure in longer RNA sequences, with
only minor discrepancies in certain details.

Fig. 4. The predicted structure of RNA with the ID B05038. The left figure shows the
ground-truth structure, and the right figure shows the predicted structure.

Fig. 5. The attention weight of RNA with the ID tdbD00008575. The left figure shows
its actual secondary structure. The middle figure shows its pairing matrix. The right
figure shows the attention weight coefficient of the last layer attention gate of AttnU-
Fold.

Attention Weights. We visualize the attention weight coefficients in the Atten-
tion Gate module of AttnUFold, as shown in Fig. 5. The sample used is the RNA
sequence with the identifier tdbD00008575 from the RNAStralign dataset, which
consists of 76 base pairs and is perfectly predicted by our model. Specifically,
the visualization process involves extracting the attention weight matrix from
the last layer of the Attention Gate in AttnUFold and summing the 32 channels
to obtain a 2-dimensional coefficient matrix.

The figure provides some insights of our model. First, due to the alignment
operation performed to ensure compatibility with the U-net architecture, indi-
cated by the light green borders on the right and bottom sides of the image, the
model effectively recognizes the padded regions in the input data. Second, we
observe that regions with high attention coefficients align closely with the true
pairing regions, such as the lower-left triangle in the figure, which reflects the
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symmetry of the actual pairings. This indicates that the model correctly identi-
fies potential pairing regions. Interestingly, similar patterns appear in the visu-
alization results of other examples as well, where the attention coefficient matrix
tends to reflect pairing information through the lower-left triangle rather than
the upper-right triangle. The underlying reason for this phenomenon remains to
be explored.

4 Conclusion

In this study, we propose AttenUFold and TransUFold for RNA secondary struc-
ture prediction, two novel models developed based on attention mechanism.
These models incorporate the Attention Gate module and draw inspiration from
the ViT model, marking the first integration of attention mechanism into the field
of RNA secondary structure prediction. Additionally, different loss functions are
explored to overcome the challenge posed by the highly imbalanced 0–1 sample
distribution in the input data. The results demonstrate our method’s significant
performance enhancement across various tasks.
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Abstract. UAVs based on PID controllers are having increasing difficul-
ties in handling complex tasks. Whereas, reinforcement learning-based
high-dimensional models provide an important entry point for flight con-
trol to handle complex and high-dimensional tasks. In this paper, a neural
network controller training framework for outer-loop control is proposed,
which is used as a base platform for velocity controller training. Also, a
reinforcement learning-based quadrotor neural network speed controller
is proposed which maps the state of the UAV to the throttle commands
of the rotor for stable control of speed. In addition, this paper employs
the idea of curriculum learning to help the UAV adapt to a larger speed
tracking range and improve its overall performance. We demonstrate the
performance of the trained neural network controller by comparing it
with a conventional PI controller in simulations, achieving improvements
in both steady-state response time and tracking performance.

Keywords: Reinforcement Learning · Quadrotor · Velocity Controller

1 Introduction

Unmanned Aerial Vehicles are extensively utilized in military exploration, agri-
culture, transportation, and other fields due to their agile maneuverability. In
these complex application scenarios, precise execution of position commands is
crucial, leading to an increasing demand for advanced intelligence in UAV flight
controllers. Traditional UAV controllers typically consist of an outer-loop posi-
tion control loop and an inner-loop attitude control loop. The outer-loop position
control loop generates attitude and thrust commands to track specific trajecto-
ries or speeds, while the inner-loop attitude control loop generates actuation
commands to the rotors to accurately track the target attitude state. However,
these conventional controller architectures face several challenges: (1) classical
PID control algorithms are commonly used for tracking expected values in both
loops. Although PID control can be effective, it relies on small angle assump-
tions that approximate the nonlinear dynamics of UAV as linear. Additionally,
the process of simultaneously adjusting PID parameters is also can be com-
plex and challenging to generalize. (2) Differences in the modal periods of the
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
L. Fang et al. (Eds.): CICAI 2023, LNAI 14474, pp. 411–421, 2024.
https://doi.org/10.1007/978-981-99-9119-8_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-9119-8_37&domain=pdf
https://doi.org/10.1007/978-981-99-9119-8_37


412 Y. Hu et al.

two control loops result in delays between control signals and longer periods for
upper-level position control. Recent research has shown that intelligent control
algorithms based on reinforcement learning offer a promising solution to these
challenges.

For attitude loop control, using reinforcement learning, an optimal attitude
control strategy for UAVs can be achieved without assuming aircraft dynamics,
ensuring that UAVs maintain good attitude stability despite unknown dynam-
ics or unexpected conditions. Deep reinforcement learning uses neural net-
work models instead of traditional control strategies. It has the advantage that
Deep Reinforcement Learning (DRL) has the ability to adapt to any non-linear
input/output mapping. Training data is collected iteratively in a simulation envi-
ronment to adapt the neural network model to the ideal controller distribution.
In [5], a simulation platform for reinforcement learning attitude controllers is
built, which simulates a realistic UAV maneuvering dynamics model and motor
model, and on which the Proximal Policy Optimization (PPO) algorithm-based
attitude controller is trained. Adversarial reinforcement learning algorithms were
proposed by [15] to enhance the capabilities of Sim2Real and based on [5] the
attitude controller was migrated to a real environment for deployment, on top of
which [10] proposed domain randomisation and course adversarial reinforcement
learning to further improve the robustness of the attitude controller.

For position loop control, which is more challenging due to the incorpora-
tion of UAV’s high-level dynamics attributes, Neural network controllers have
been applied to solve specific problems. For instance, [12] addresses the accurate
landing of quadrotors and introduces neural network controllers for quadrotor
landing. In [7], a deep Q-network hierarchy is designed for the autonomous land-
ing of a quadrotor in various simulated environments, demonstrating superior
performance compared to human-controlled aerial vehicles in the presence of
environmental disturbances. [11] applies the Deep Deterministic Policy Gradi-
ent (DDPG) algorithm for outer-loop control of aircraft landing and showcases
the capability and potential of the reinforcement learning approach, validating
its robustness under diverse wind disturbance conditions. In [14], a simulation
platform for a hybrid UAV velocity controller is developed, and a velocity con-
trol strategy is trained on this platform for the hybrid UAV model. While [4]
proposes a reinforcement learning-based position controller, it only addresses
recovery from an arbitrary initial state to a stationary state, limiting its appli-
cability to all cases of UAV position control.

In this work, a simulation platform for training a quadrotor velocity controller
based on the gym-pybullet-drone project [6] was proposed. On top of this, a
DRL-based quadrotor velocity controller was proposed, which maps the target
speed and the quadrotor’s state as inputs directly to the rotor commands. A
PPO-based reinforcement learning strategy is used to train the controller, and
a curriculum learning approach is added on top of this to extend further the
velocity tracking range and robustness of the controller.
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2 Background

2.1 Reinforcement Learning

The RL-based algorithm learns the optimal strategy by allowing agents to inter-
act with the environment continuously so as to maximize returns or to achieve
specific goals [1]. The interaction process between an agent and the environment
is modeled as a Markov Decision Process (MDP). Namely, at a certain time t, an
agent obtains the state value St from the environment, takes the corresponding
action At according to the current state value, changes the environment, and
obtains the state value St+1 at the next time. The state transition is defined as
a probability of transition to state s′. Assume that the current state and action
are denoted as s and a, respectively. Then, the probability of transition to state
s′ can be expressed as pr{St+1 = s′|St = s,At = a}. The behavior of an agent
is defined by its policy, which is essentially a mapping of actions to be taken for
a specific state, as shown in Fig. 1.

Fig. 1. Schematic diagram of the RL framework

2.2 Curriculum Learning

Curriculum learning, introduced by [3] in 2009, is regarded as a training strategy
and has been widely referenced in the field of machine learning. It aims to mimic
the human learning process by initially training on simple tasks and gradually
increasing the training difficulty, enabling the model to accomplish more chal-
lenging tasks. Through curriculum learning, the intelligent agent can organize a
systematic exploration of the state space to address the issue of sparse rewards
and accelerate the convergence rate of the model. Therefore, we incorporate the
concept of curriculum learning into the training process to further enhance the
convergence efficiency and control effectiveness of the model.

3 Simulation Platform

3.1 Framework

We have designed the training framework shown in Fig. 2 as the basis for this
work, which is suitable for training not only velocity controllers but also supports
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the training of inner and outer loop controllers such as attitude and position. In
each interaction, the Pybullet physics engine will give a 12-dimensional variable
O representing the state of the UAV, including the position, attitude angle,
angular velocity, and linear velocity of the quadrotor, which can be expressed as

O = [x, y, z, ϕ, θ, ψ, vx, vy, vz, ωx, ωy, ωz] (1)

Then, the input state S(t) of the neural network controller was calculated
based on the state of the UAV and the target state given by the environment.
Based on S(t) the neural network controller selects an optimal action A(t) based
on its own policy distribution, which corresponds to the throttle commands of
the four motors, denoted as

A(t) = [σ1, σ2, σ3, σ4], σi ∈ [0, 1] (2)

Subsequently, the throttle commands are then fed into the rotor model to
compute the revolutions per minute (RPM) of the propellers. These RPMs are
further supplied as inputs to the quadrotor’s rigid body force model, yielding
the total thrust and torques in the body frame. Finally, the total thrust and
torques will be fed into the physics engine to calculate the quadrotor’s state at
the subsequent time step. The state variables, along with the rewards computed
based on these states, are fed as input into the neural network controller.

The above process constitutes a single simulation step for the controller, with
the neural network controller’s objective being the attainment of the optimal
execution strategy by maximizing long-term rewards.

3.2 Rotor Model

The RPM of the four rotors of a quadrotor is commonly controlled by a throt-
tle command, denoted as σ ∈ [0, 1]. It takes a certain amount of time for the
rotor to reach a steady-state speed, which is referred to as the rotor’s dynamic
response time, denoted as Tm. The dynamic response process of a rotor can be
approximated as a first-order low-pass filter, represented by:

Tm
d�(t)

t
+ �(t) = Cmσ(t) + �0 (3)

Cm is the revolution rate of a rotor. �0 denotes the rotor revolution when
the throttle command is 0. Equation (1) can be further represented as:

�̇(t) =
d�(t)

dt
=

1
Tm

(Cmσ(t) + �m − �(t)) (4)

�̇(t) denotes the change rate of rotor revolution. Finally, the rotor revolution
in the next timestep can be represented as:

�(t + 1) = �̇(t) ∗ dt + �(t) (5)

dt denotes the simulation timestep of the physical engine, and Tm denotes
the response time of the rotor.
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Fig. 2. Controller training Framework

3.3 Quadrotor Model

Depending on the rotational speed of the rotor, we can obtain the total thrust
and the corresponding torque for each axis:

⎡
⎢⎢⎣

f
τy

τy

τz

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cT cT cT cT

−
√
2
2 dcT

√
2
2 dcT

√
2
2 dcT −

√
2
2 dcT√

2
2 dcT −

√
2
2 dcT

√
2
2 dcT −

√
2
2 dcT

cM cM cM cM

⎤
⎥⎥⎦

⎡
⎢⎢⎣

w2
1

w2
2

w2
3

w2
4

⎤
⎥⎥⎦ (6)

where cT and cM denote the drag force factor and torque factor, which depend
mainly on the geometry of the propeller. And wi denotes the RPM of the pro-
pellers.

3.4 Dynamic Model

The quadrotor is considered as a rigid body and its total thrust is always parallel
to the z-axis of the body frame. We can calculate the positional and rotational
dynamics of the quadrotor based on the total thrust and torques on the three
axes in the body frame obtained in (6).

{
ṗe = ve

v̇e = ge3 − f
mRw

b e3
(7)

where p denotes position, v denotes velocity, the right superscript w denotes
the world frame, and the right superscript b denotes the body frame. Re

b denotes
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the rotation matrix from the body frame to the world frame, f denotes the total
thrust, m denotes the quadrotor mass, g denotes the gravitational acceleration,
and e3 is the unit vector of the z-axis in the world frame.

Its attitude model can be written as:
{

Θ̇ = Rw
b · ωb

Jω̇b = −ωb × Jωb + Ga + τ
(8)

where Θ̇ denotes the Euler angle change rate in the world frame, ωb denotes
the angular velocity in the body frame, J denotes the inertia matrix, Ga denotes
the gyroscopic moment, and τ denotes the torque in the three axes. After calcu-
lating the corresponding angular velocity, linear velocity, and linear acceleration,
we integrate them in a simple discrete form in (9) and thus obtain the twelve-
dimensional variables of the quadrotor UAV.

⎧
⎨
⎩

vi = vi−1 + dt · v̇i

pi = pi−1 + dt · vi

Θ = Θ + dt · Θ̇
(9)

4 Neural Network Velocity Controller

4.1 Network Structure

Based on Sect. 3, a neural network velocity controller was trained using the
PPO algorithm. The controller adopts the network structure of the classical
PPO algorithm, shown in Fig. 3. The input S(t) ∈ R12 to the network comes
from the state of the quadrotor and the target velocity, which can be represented
as:

S(t) = [ϕ, θ, ψ, α, β, γ, Pvx
, Pvy

, Pvz
, Ivx

, Ivy
, Ivz

] ∈ R12 (10)

where [ϕ, θ, ψ] respectively denote the quadrotor’s roll, pitch, and yaw angles.
[α, β, γ] respectively denote the angular velocity of the three axes in the body
frame of the quadrotor. [Pvx

, Pvy
, Pvz

] denote the proportional term for the
difference between the line velocity of the quadrotor and the desired velocity.
[Ivx

, Ivy
, Ivz

] denote the integral term. The output of the network is the throttle
commands σi for the four rotors.

Given that the model of the controller does not incorporate temporal net-
works like RNN or LSTM, the incorporation of an integration module will
enhance the tracking performance of the controller [14]. Therefore, an integral
module is incorporated into the model, and its discrete form is shown below:

In = ηIn−1 + Dn (11)

where Dn denotes the velocity error sum in the current timestep. In−1 denotes
cumulative velocity integral in the last timestep. And η is the constant decay
coefficient.
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Fig. 3. Neural Network Controller

4.2 Reward Function

The reward function consists of the following components: (1)Survival reward
gs, which is used to keep the flight stable at the beginning. (2)Velocity error
penalty gv, which is used to ensure the quadrotor tracks the desired velocity as
closely as possible. (3)Angular velocity penalty gω, which is used to ensure that
the quadrotor remains as stable as possible during the tracking and to prevent
constant oscillations.

R(t) = gs − wvgv − wωgω (12)

where wv,wω are the corresponding weights and gs is defined as a constant.

4.3 Normalization

Normalization is a significant part of the training process, as there are gaps
in the magnitudes of the original inputs. If normalization is not performed,
the training process will not converge and result in the accumulative reward
oscillating repeatedly. To address this issue, a normalization step for the state
variables of the quadrotor is adopted.

In our approach, we normalize the state quantities of the UAV by constrain-
ing the velocity and desired velocity within the range of [−3, 3] and the angular
velocity within the range of [−50, 50]. Subsequently, we apply a max-min nor-
malization to ensure that all the state variables fall within a consistent range.

By performing input normalization, we aim to mitigate the adverse effects of
input disparities and facilitate the training process of the controller. This normal-
ization step helps to establish a more stable and effective learning environment,
allowing the controller to converge toward optimal performance.
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4.4 Training Setup

We implemented the PPO algorithm using Python and based on the Stable
Baselines3 library [8]. The training process consists of two phases. In the first
phase, the quadrotor is initialized with a random attitude (pitch and roll angles
randomly selected from the range of [−π/2, π/2] rad/s) and a random target
velocity along each axis (with single-axis velocities randomly selected from the
range of [−1, 1] m/s). At each time step, the controller executes motor commands
within the range of [0,1] and receives a reward based on the current state. When
any of the pitch, roll, and angular velocities exceeds the predefined threshold, it
indicates that the quadrotor has lost stability and is no longer in a controlled
state. In such cases, the early termination is considered.

The simulation operates at a frequency of 240 Hz, and a total of eight million
steps are trained in this phase. In the second phase, we fine-tune the model
trained in the first phase by increasing the task difficulty. The target speed
range is expanded to a single-axis target speed within the range of [−3,3] m/s,
allowing for a larger speed range. We train a total of two million steps in this
stage.

Fig. 4. The mean reward during the training process

The average reward curve for each episode during the final convergence is
illustrated in Fig. 4. It’s worth noting that at the beginning of the second stage,
there is a significant drop in the reward. This reduction is due to the larger
speed variation range, which results in a higher penalty term for tracking speeds,
impacting the overall reward.

In order to enhance the robustness of the controller in real-world control
scenarios, we incorporated noise during the training process [10,15,16]. Specifi-
cally, we added Gaussian noise with a mean of 0 and a variance of 0.1 to several
state variables, including velocity, angular velocity, and attitude of the UAV,
during the training phase. The inclusion of noise helps the controller to adapt
and handle variations and uncertainties that may arise during actual control
tasks, thereby improving its overall robustness.
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5 Result

Since in practice quadrotors do not have an accurate estimation of acceleration,
conventional PID controllers generally rely on proportional and integral terms in
the velocity loop. A comparative analysis is conducted between our controller and
the PI controller. It is worth noting that the NN controller also relies explicitly
only on the proportional and integral terms as input, and its knowledge of the
derivative terms will probably come from its derivation of the pose. Moreover, it
is important to consider that the velocity control loop exhibits a longer steady-
state response time delay in comparison to the attitude control loop, typically
ranging from 0.5 to 1 s, depending on the tracked speed.

To evaluate their performance, both the NN Controller and PI Controller
are initialized from a static state and tasked with tracking four velocity changes
within 12 s. The velocities are randomly altered every 3 s, with the third change
being of greater magnitude. The step response performance of the controllers
with different algorithm implementations under the interference of random
noise is illustrated in Fig. 5. Intuitively, the NN Controller has an advantage
in response latency and exhibits a smoother response curve when tracking larger
velocity changes (6–9 s) in comparison to the PI Controller.

In order to effectively evaluate the tracking performance and emphasize the
impact of high errors, we utilize the root mean square error (RMSE) as a perfor-
mance metric. The RMSE amplifies errors and provides a more comprehensive
measure of the actual tracking error. The formula of RMSE is as follows:

Fig. 5. Comparison of two controllers in the simulation of velocity tracking
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RMSE(x, y, f) =

√√√√ 1
m

m∑
i=1

[f(xi) − yi]2 (13)

The results of the RMSE are presented in the table, clearly demonstrating
that our algorithm outperforms the PI controller in terms of smaller RMSE
values across all three axes. This indicates that our algorithm excels in velocity
tracking for the flight task, achieving superior performance.

Table 1. The RMSE of PI Controller and NN Controller

RMSEx (m/s) RMSEy (m/s) RMSEz (m/s)

PI Controller 0.7942 0.5366 0.6233

NN Controller 0.6773 0.4943 0.5207

6 Conclusion

In this paper, we propose a simulation framework used to train the neural net-
work controller for quadrotors and a novel neural network velocity controller for
quadrotors based on the PPO algorithm. Additionally, we extend the tracking
speed range of the controller by incorporating the concept of curriculum learning.
The obtained controller demonstrates stable tracking control of the quadrotor’s
upper velocity, exhibiting comparable or superior tracking performance com-
pared to the conventional PI controller.

In our future work, we aim to further enhance the algorithm model to improve
the tracking performance of the controller. Additionally, we plan to incorporate
control of the yaw angle of the quadrotor. Furthermore, we intend to deploy the
developed controller to real aircraft and utilize it as the underlying controller
for path planning. By pursuing these avenues, we anticipate achieving signifi-
cant advancements in the tracking capabilities of the controller, expanding its
potential applications, and enhancing its performance in real-world scenarios.
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Abstract. Automated and accurate classification of histopathologi-
cal images of pancreatic cancer can lead to higher survival rates for
more pancreatic cancer patients in the clinic. However, there are very
scarce existing studies for pancreatic cancer, and the diagnosis of
pancreatic cancer remains a challenge for pathologists, especially for
well-differentiated pancreatic cancer with a clinical histological pattern
similar to that of chronic pancreatitis. We propose a hybrid CNN-
Transformer model incorporating deformable atrous spatial pyramids
(DACTransNet) to perform automated and accurate classification of
histopathological images of pancreatic cancer. We elegantly integrate the
powerful local feature extraction capability of CNN for spatial features
and the global modeling capability of transformer for abstract patterns.
Moreover, we imitate pathologists in the clinic by better integrating
deformable convolution and multiscale methods to review histopathol-
ogy slides in pyramidal format. In addition, a migration learning app-
roach was used to improve the classification accuracy of pancreatic cancer
histopathology images. The experimental results show that the proposed
method not only has a high classification accuracy (up to 96%), but
also its good robustness and generalizability as validated by real clini-
cal datasets from multiple centers. Consequently, we provide an effective
tool for the clinical diagnosis of pancreatic cancer.
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1 Introduction

Pancreatic cancer is a highly fatal malignant tumor, known as the “king of
cancers”, with a low 5-year survival rate of only 10% [1]. Clinically, many
patients with pancreatic cancer are mistaken for pancreatitis when early symp-
toms appear and miss the most optimal time for treatment, resulting in a terrible
prognosis. That is why pancreatic cancer has the highest mortality rate among
all malignant tumors [2]. Thus, the accurate classification of pancreatic cancer
plays an important role in the diagnosis and treatment process.

The gold standard for clinical medical diagnosis is the histopathological image
evaluation by pathologists. Currently, there are fewer studies on automated anal-
ysis of histopathological images of pancreatic cancer. One reason may be due to
the scarcity of resources and lack of high-quality annotation because of the low
rate of early diagnosis. Another important reason may be that classification of
pancreatic cancer is challenging because early stage pancreatic cancer is clini-
cally very similar to pancreatitis. Most of the existing models used in studies of
histopathological images are fine-tuned models [3–6] pre-trained on large natural
image datasets (e.g., ImageNet datasets). However, due to the distinctiveness
of histopathological images, such as the differences in data structure between
histopathological images and natural images, as well as the heterogeneity of
tumor cells, these models often result in suboptimal performance.

Recently, there has been significant progress in the accuracy of medical image
analysis facilitated by methods based on Vision Transformers (ViT). Advanced
approaches [7,8] for medical image analysis tasks rely on the ViT framework,
leveraging its remarkable achievements in computer vision tasks. However, com-
pared to methods based on convolutional neural networks, ViT-based models
have certain limitations on their performance. Firstly, the serialization opera-
tion of ViT results in the loss of spatial information modeling. Secondly, ViT
exhibits a higher dependency on large-scale datasets.

To address the aforementioned issues, we propose a novel and efficient hybrid
network architecture called the CNN-Transformer hybrid model for Deformable
Atrous Spatial Pyramids (DACTransNet). Which combines of local features of
convolutional neural networks (CNN) and global features of ViT-based model.
This model incorporates a lightweight transformer block at each layer of the
CNN, allowing for the extraction of local features while considering global con-
textual information. Additionally, we employ a novel Deformable Atrous Spatial
Pyramids (DC-ASPP) module to capture information from multi-scale irregular
objects. Our method offers three primary contributions compared to existing
approaches:

• We propose an integrated model that elegantly combines the local information
of convolutional neural networks (CNN) and the long-range characteristics of
Transformers, allowing for the simultaneous utilization of their strengths to
enhance the model’s ability to extract distinctive features from pancreatic
cancer histopathological images.

• We incorporate deformable convolution into ASPP to extract multi-scale tar-
get information as well as irregular target information via multiple atrous
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convolution layers with different scales of dilatation rate and deformable con-
volution in parallel with the features extracted by the encoder.

• We conducted extensive experiments on multiple central datasets, includ-
ing training on the publicly available TCGA dataset annotated by multi-
ple pathologists and testing on actual clinical datasets from three different
regions. This comprehensive evaluation validated the generalization perfor-
mance and clinical value of our model.

Fig. 1. Illustration of the DACTransNet. DACTransNet contains a CNN-Transformer
backbone and a DC-ASPP block incorporating deformable convolution and atrous
spatial pyramid pooling (ASPP).

2 Related Works

2.1 CNNs for Histopathological Images Classification

Convolutional Neural Networks (CNNs) have considerably contributed to the
development of computational pathology with the development of CNN mod-
els due to their robust feature representation capabilities. Most histopathology
image classification models [9–15] are derived from the prevalent natural image
classification backbone. However, histopathological images are different from
other medical images due to their inherent characteristics, such as extremely
high resolution images, insufficient labeling, and multi-scale information, trinh
et al. [16] developed a multi-scale binary-type coding network to enhance cancer
classification by using binary pattern codes to capture and exploit patterns at
different scales, which are further converted to decimal numbers. Zhang et al.
[17] proposed the concept of a “virtual package” to classify histopathology whole
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slide images through a multi-instance learning (MIL) architecture with a two-
layer feature distillation. However, since resizing the original image causes infor-
mation loss when processing high-resolution images, hou et al. [18] proposed a
novel spatial hierarchical graph neural network framework to improve the clas-
sification accuracy of histopathological images by adding a dynamic structure
learning to obtain the spatial topology and hierarchical dependencies of entities.

2.2 Vision Transformers for Histopathological Images Classification

More recently, transformers, originally proposed for natural language processing
(NLP), have rapidly become the main architecture in computer vision [7,8,19]
and they are considered as alternatives to their CNN counterparts. Several works
have been proposed for the processing of medical images [20–22] because the self-
attention mechanism of the visual transformer is able to directly capture long-
range dependencies. However, due to the limited number of medical images,
especially histopathology images, such methods are difficult to optimize and
computationally expensive, so most existing studies have focused on creating
hybrid CNN-transformer models for feature processing. Zhang et al. [23] pro-
posed a multi-stage hybrid transformer combining the CNN and transformer,
achieving high accuracy on the ROSE image dataset. Zheng et al. [24] proposed
a graph transformer classifier that fuses graph neural networks and transformers
to predict disease grades.

Discussion: Although the mentioned methods (CNNs-based as well as ViT-
based methods) have achieved good results, they still ignore some inherent char-
acteristics of histopathological images, such as the heterogeneity and heterogene-
ity of tumor cells, so they lead to challenging classification tasks of histopatholog-
ical images. Therefore, the problem is how to elegantly combine the advantages
of CNN and transformer, yet reduce the model complexity and classify well for
targets with large shape differences and irregularities.

3 Methodology

For the features of histopathology images, the hybrid architecture of DAC-
transNet is designed to combine the robust local feature extraction capability
of CNN for spatial features and the global modeling capability of transformer
for abstract patterns. The overall architecture is shown in Fig. 1. DACtransNet
consists of two main modules: a hybrid CNN-Transformer network as backbone
and an ASPP module that incorporates deformable convolution. And then the
ASPP module based on deformable convolution is designed to acquire multi-scale
information, and the more robust deformable convolution is used to extract infor-
mation from irregular targets. Our proposed network DACTransNet is optimized
using the standard cross-entropy function as the loss function:

L = −[ylog ŷ + (1 − y)log(1 − ŷ)] (1)

where y is the true label value (positive class value is 1 and negative class value
is 0) and ŷ is the predicted label value (ŷ ∈ (0, 1)).
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Fig. 2. Color normalization visualization, (a) is the image of the training dataset, (b)
is the result of coloring and normalizing the images in the multicenter clinical dataset,
and (c) is the original image in the multicenter clinical dataset, after coloring and
normalizing the images in the test and training sets are closer in style.

3.1 CNN-Transformer Hybrid Network

We propose an integrated backbone that elegantly combines the local informa-
tion of a convolutional neural network (CNN) and the long-range properties of
transformer. It consists of convolutional and transformer blocks in an alternating
superposition.

Convolution Block. To better encode spatial location information, we use con-
volutional blocks to extract local spatial features. First, fine-tuning of VGG19-
Net pre-trained in ImageNet is designed by stacking a stem module and a
CNN bottleneck module in four stages, where the blocks downsample the image
I ∈ R3×H×W with edge size of H and W into abstractive features. The convo-
lutional blocks in the four stages are the same as Conv2, Conv3, Conv4, Conv5.
The modeling process for each convolutional block is shown as follows:

FC
i = ConvBlocki(FT

i−1), i ∈ {1, 2, 3, 4} (2)

where FC
i ∈ R

H

2i+1 × W

2i+1 ×Ci is the local feature obtained from the i − th block.

Transformer Block. The structure of the Transformer layer is shown in the
lower left corner of Fig. 1, which contains a Multi-Headed Self-Attention (MHSA)
layer to model long-range dependencies, two Layer Normalization layers, and a
Multilayer Perceptron (MLP). Traditional ViT-based models use linear position
projections for MHSA computation, which results in the loss of spatial informa-
tion in the transformer, but this is crucial for medical image processing. Existing
methods would alleviate this problem by adding positional encoding, however
this would add additional computational cost and lead to poor optimization
of the model. Therefore, inspired by [25], we replace the position-wise linear
projection before each MHSA in the transformer module with a convolutional
projection operation that employs s × s depth-separable convolution on a two-
dimensional reshaped token mapping. Such an operation allows the model to
further capture local information in the attention mechanism and can remove
the original position embedding, simplifying the computational effort. The mod-
eling process of the Transformer block is shown below:
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Formally, the two-dimensional feature form of the stage i of the convolutional
block outputFC

i ∈ R
H

2i+1 × W

2i+1 ×Ci is given as input, we learn a 2D convolution
operation of kernel size s × s, stride s − o and p padding as a function f(·).
The tokens maps f(xi) obtained after convolutional mapping. Next, the convo-
lutional projection is implemented using a deeply separable convolutional layer
with kernel size s. Finally, the projected tokens are panned to one dimension, i.e.,
Query Q, Key K, V alue V is used as the input for multi-headed self-attention.
The modeling process of this process can be formulated as:

x
q/k/v
i = Flatten(DepthConv2d(Reshape(xi), s)) (3)

where x
q/k/v
i is the token input for Q/K/V matrics at layer i, DepthConv2d

is a deep-wise separable convolution, xi is the token prior to the convolutional
projection, and s refers to the convolution kernel size. Hereinafter, applying a
MHSA, the output is obtained as follows:

SAi = σ(
Q × KT

√
d

)V (4)

where σis the softmax function, d is the dimension of the input token. After
applying a residual operation and MLP, this process can be expressed as follows:

FT
i = MLP (SAi + FC

i ) + SAi (5)

We omitted the layer normalization (LN) in the equation for simplicity. Finally,
the output of Transformer Block is as the input of Convolutional Block at
stage i + 1.

3.2 DC-ASPP Block

To combine information at multiple scales, we introduce an astrous spatial
pyramid pooling (ASPP) block to detect incoming features by using various fil-
ters or pooling operations under multiple perceptual fields and multiple dilation,
although using astrous convolution can obtain larger perceptual fields without
increasing the computation. Since deformable convolution [26] focuses on adding
adaptive 2D spatial offsets to enhance the flexibility of the convolutional sam-
pling locations and to keep the channel dimensions unchanged, we propose a
new feature aggregation module that, by introducing deformable convolution
instead of normal convolution, the sampling locations of the convolution are no
longer limited to fixed sampling locations, making the sampling locations more
flexible and capable of producing more accurate localizations. Thus our pro-
posed DC − ASPP Block enables the network to focus on both overall features
and detailed features and obtain more detailed localization for better feature
extraction capability. Our improved DC − ASPP Block consists of one 1 × 1
convolution, three 3×3 convolutions with rates = (6, 12, 18) (all with 256 filters
and Batch Normalization) and Deformable Convolution, and then the features
of all branches are then concatenated and pass through another 1×1 convolution.
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Table 1. Performance comparison for previous and DACTransNet models on TCGA
datasets. Boldfaced results indicate better results.

Method Accuracy ↑ AUC ↑ F1 Score ↑ Precision ↑ Recall ↑
Normal Tumor Normal Tumor

VGGNet 0.8963 0.9765 0.8381 0.9802 0.7332 0.8663 0.9584

ResNet 0.9451 0.9740 0.8919 0.9734 0.9742 0.9921 0.8224

DenseNet 0.9207 0.9785 0.8439 0.9212 0.9216 0.9754 0.7782

ViT 0.8232 0.9451 0.7293 0.9412 0.6293 0.8073 0.8672

SwinTransformer 0.8719 0.9625 0.7836 0.9381 0.7312 0.8823 0.8442

MobileViT 0.8537 0.9387 0.7545 0.9201 0.7061 0.8742 0.8100

DACTransNet (Ours) 0.9634 0.9894 0.9791 0.9821 1.000 1.000 0.9591

Table 2. Performance comparison for previous and DACTransNet models on center A
datasets. Boldfaced results indicate better results.

Method Accuracy ↑ AUC ↑ F1 Score ↑ Precision ↑ Recall ↑
Normal Tumor Normal Tumor

VGGNet 0.8797 0.9493 0.8692 0.9031 0.8535 0.8764 0.8854

ResNet 0.8822 0.9530 0.8664 0.8822 0.8853 0.9120 0.8482

DenseNet 0.8940 0.9539 0.8758 0.8514 0.8643 0.8833 0.8876

ViT 0.8240 0.9121 0.8166 0.8792 0.7723 0.7893 0.8662

SwinTransformer 0.8541 0.9381 0.8437 0.8852 0.8234 0.8452 0.8651

MobileViT 0.8499 0.9296 0.8372 0.8752 0.8216 0.8482 0.8533

DACTransNet (Ours) 0.8973 0.9714 0.8831 0.8731 0.9344 0.9522 0.8933

4 Experiment

4.1 Datasets and Details

Public Datasets (TCGA). In this study, we utilized the TCGA (The Cancer
Genome Atlas) dataset [27]. Due to the limited availability of pancreatic cancer
histopathological image resources, we opted to use H&E stained tissue slides
from 190 pancreatic cancer patients from the TCGA dataset as the sole training
dataset for our experiments. The entire image is magnified up to a resolution
of 160k×160k pixels at 40× zoom. To facilitate computation and achieve better
classification accuracy, we downscaled the images to a 4x zoom level. Moreover,
because the whole slide images (WSI) are too large to be loaded into memory,
and because the TCGA dataset didn’t contain annotations due to the difficulty
of annotating pancreatic cancer histopathology images, a group of pathologists
collaborated to select annotated portions of the pancreatic cancer WSIs con-
taining both tumor and normal tissue, while maintaining a balanced ratio of
negative and positive samples. To facilitate training, we cropped each WSIs into
non-overlapping patches of 256×256 pixels. 1336 patches were used as the train-
ing dataset, and 164 patches were used as the test dataset.
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Table 3. Performance comparison for previous and DACTransNet models on center B
datasets. Boldfaced results indicate better results.

Method Accuracy ↑ AUC ↑ F1 Score ↑ precision ↑ Recall↑
Normal Tumor Normal Tumor

VGGNet 0.8426 0.9171 0.8443 0.8441 0.8415 0.8382 0.8472

ResNet 0.8594 0.9362 0.8585 0.8413 0.8830 0.8851 0.8354

DenseNet 0.8605 0.9465 0.8534 0.8222 0.9092 0.9184 0.8041

ViT 0.7945 0.8738 0.7963 0.7923 0.7971 0.7942 0.7956

SwinTransformer 0.8417 0.9250 0.8407 0.8312 0.8524 0.8556 0.8293

MobileViT 0.7814 0.9631 0.9171 0.8592 0.9423 0.9511 0.8933

DACTransNet (Ours) 0.8714 0.9631 0.9171 0.8592 0.9243 0.9511 0.8933

Table 4. Performance comparison for previous and DACTransNet models on center C
datasets. Boldfaced results indicate better results.

Method Accuracy ↑ AUC ↑ F1 Score ↑ Precision ↑ Recall↑
Normal Tumor Normal Tumor

VGGNet 0.8655 0.9357 0.8660 0.8661 0.8652 0.8644 0.8672

ResNet 0.9087 0.9738 0.8984 0.8834 0.9154 0.9141 0.8821

DenseNet 0.9039 0.9630 0.9013 0.8793 0.9324 0.9365 0.8722

ViT 0.8444 0.9264 0.8447 0.8412 0.8482 0.8483 0.8412

Swin Transformer 0.8544 0.9536 0.8727 0.8563 0.8920 0.8534 0.8543

MobileViT 0.8522 0.9497 0.8538 0.8632 0.8543 0.8432 0.8543

DACTransNet (Ours) 0.9113 0.9801 0.9091 0.8881 0.9374 0.9432 0.8824

Multicenter Clinical Dataset for External Validation. In order to evalu-
ate the generalization performance of our proposed model, we applied it to clinical
datasets from three different centers, which comprehensively encompassed differ-
ent types of pancreatic cancer. To ensure patient privacy, the clinical datasets from
the three centers were anonymized as Center 1, Center 2, and Center 3, consist-
ing of 30, 35, and 38 H&E stained histopathological slides, respectively. Since the
staining of data from different centers varies widely, color normalization becomes
an essential step in preprocessing. We adopted the method proposed by Jiao et al.
[28], the results after color normalization are shown in Fig2.

Implementation Details. We use Pytorch and the adam optimizer with a
learning rate of 1e-4 to run all our experiments. We used the pre-trained weights
of VGG19-Net pre-trained on imagenet to train our proposed DACTransNet
and ran 300 epochs. To avoid overfitting, our data were enhanced as follows:
rotation (90◦), horizontal, vertical flip and color disturbance. For the TCGA
training dataset, we set the batch size to 4. Appropriate test values, including
recall, precision, F1-score, accuracy, and AUC are calculated to quantify and
compare the model performance of these four test cohorts.
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Fig. 3. Acceptance operating characteristic (ROC) curves.

Table 5. Ablation study on TCGA dataset, Trans denotes transformer layer, DC
denotes deformable convolution. The baseline model we used was VGG19Net.

Models Baseline Trans ASPP DC Accuracy ↑ F1 Score ↑ Precision ↑ Recall ↑
E.1 � 0.8963 0.8308 0.7332 0.9584

E.2 � 0.8444 0.8447 0.8482 0.8412

E.3 � � 0.9123 0.9116 0.8829 0.9422

E.4 � � � 0.9328 0.9521 0.9533 0.9511

E.5 � � � � 0.9634 0.9891 1.0000 0.9591

4.2 Comparison with State-of-the-Art Methods

To demonstrate the effectiveness of our proposed method, we compare our app-
roach with state-of-the-art classification methods, including transformer-based
models and CNN-based models on the ImageNet dataset.

Results on TCGA Dataset. Compared to these models, our approach largely
outperforms both the pre-trained transformer-based model and the CNN-based
model. More specifically, our DACTransNet achieves 96.34% accuracy. From
the results in Table 1, we found that DACTransNet has a relatively significant
advantage in cancer recall compared to the transformer-based and CNN-based
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Fig. 4. Visualization results on an multicenter clinical dataset. Where DAT stands for
our proposed DACTransNet, Swin stands for Swin Transformer, and Mob stands for
MobileViT. The greater the color indicates a higher probability of lesions and conversely
a higher probability of normal tissue.

models pre-trained on the ImageNet dataset, a performance that is consistent
with the requirements of clinical diagnosis, as pathologists must scrutinize and
not overlook any patches that may be cancerous.

Results on Multicenter Clinical Datasets. Then, in order to verify the
portability and robustness of the model, we performed the same tests on multi-
center clinical datasets. The results are shown in Tables 2, 3 and 4. It can be seen
from the results that our model also achieves better results on the multicenter
clinical dataset, which is sufficient to prove the good generalization performance
of our model.

Visualization Results. In addition, we analyze the performance of our pro-
posed DACTransNet model by means of receiver operating characteristic curve
(ROC) curves, as shown in Fig. 3. In the results, our model achieves better
performance both on the internal training dataset and the multicenter clinical
dataset. Finally, we plotted cancer probability heatmaps on all four datasets, as
shown in Fig. 4 and what can be seen is that for the slice shown in CenterA, our
model DACTransNet can achieve a classification accuracy of 98.32%, while the
classification accuracy of VGG-Net is only 89.45%. For more challenging cases,
such as CenterA* and CenterB slices, which are very difficult to classify, because
these two slices show a very rare type of cancer in pancreatic cancer, our model
can achieve a classification accuracy of 64.42%, while VGG-Net only has a clas-
sification accuracy of 56.23%. Finally, for the more common type of pancreatic
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cancer histopathology slides in CenterC, VGG-Net has a classification accuracy
of about 98.67%, while our model can achieve 99.45% classification accuracy.

4.3 Ablation Studies

We conducted a series of ablation studies on the TCGA dataset to investigate the
effectiveness of DACTransNet and to justify the design choices, with the baseline
method being VGG19Net with pre-trained weights, as shown in Table 5.

CNN-Transformer Hybrid Network Backbone. Comparing E.3 with E.1
and E.2, we can see that the hybrid CNN-Transformer approach is significantly
better than the pure CNN approach and pure ViT-based approach, which shows
that CNN and Transformer can indeed make it possible to efficiently process
spatial local information and global background information in a unified block.

DC-ASPP Block. Comparing E.3 and E.4, we can see that the ASPP module
can bring better performance, which indicates that the multi-scale approach is
important for histopathology image classification since pathologists read films
are operating at multiple resolutions. And by for E.5 and E.4, we can see that
deformable convolution can also bring better performance because of the het-
erogeneity of tumor cells, and by adding deformable convolution can be a good
learning effect for irregular cancer types.

5 Conclusion

In this work, to address some of the challenging classification tasks for histopatho-
logical images. We propose a DACTransNet network for pancreatic cancer clas-
sification, which elegantly combines the advantages of CNN and transformer to
improve the model’s ability to model local information and long-distance depen-
dencies, and to classify targets with large differences in shape and irregularities
well. It outperforms pure CNN methods pre-trained on ImageNet or pure Trans-
former methods, and can show better performance on small datasets.
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Abstract. Yue opera, as one of the representatives of China’s intangi-
ble cultural heritage, embodies a profound regional history and folk art.
This paper focuses on utilizing knowledge graphs to promote research
and preservation efforts in the field of Yue Opera’s lineage. By mining
the characteristics of the lineage domain, designing an ontology model,
and employing ChatGPT for knowledge extraction, a knowledge graph
specific to Yue Opera’s lineage is constructed to facilitate knowledge inte-
gration in the domain. Furthermore, this study also develops an appli-
cation prototype named YueGraph (A video is shown in https://github.
com/Ani-li/YueGraph/blob/main/demo.mp4) that explores the knowl-
edge graph of the Yue Opera lineage through question-answering and
visualization. YueGraph has been deployed at the Zhejiang Xiaobaihua
Yue Opera Theatre to provide strong support for the preservation of the
Yue Opera lineage.

Keywords: Yue Opera · Knowledge Graphs · ChatGPT

1 Introduction

Yue opera is renowned as the “second-largest opera genre” in China. Lineage is
a crucial component in the field of Yue opera, as it preserves traditional artistic
techniques and performance methods through the generations via the master-
apprentice system. This practice also allows apprentices to incorporate their
own styles and expressions within the traditional framework, resulting in the
development of various Yue opera genres.

In recent years, the growing recognition of intangible cultural heritage has
propelled the advancement of digital technologies in the field of cultural preser-
vation. Leveraging digital tools and methodologies, the analysis and exploration
of Yue opera lineage can effectively facilitate the integration and study of Yue
opera cultural knowledge, thus injecting new vitality into the development and
inheritance of the Yue opera domain.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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This study focuses on a number of Yue opera performers as research sub-
jects. By constructing a prototype YueGraph, a knowledge graph for the Yue
opera lineage, the transmission chains between Yue opera performers are docu-
mented and investigated. By employing a novel approach to analyze knowledge
in the domain of Yue opera lineage, this research not only enables the discovery
and inference of unknown or implicit semantic relationships, but also lays the
foundation for filling gaps in existing knowledge [1].

2 Related Work

The existing historical and cultural resources in the field of Yue opera lineage are
characterized by diverse and heterogeneous content, often with loosely structured
organizational frameworks, which pose challenges to the utilization of cultural
resources related to Yue opera lineage [2]. Traditional methods of information
organization and retrieval may not adequately address the diversity and hetero-
geneity of these resources.

The knowledge graph, proposed by Google, is a graph-based structure that
is used to establish semantic relationships between entities and allow reasoning
and associative analysis [3]. Knowledge graphs have been widely applied in the
field of historical and humanistic studies. For example, Zhou et al. collected and
organized a huge amount of data on Tang poetry to build a knowledge graph
focused on Tang poems and poets [4]. Yang et al. constructed a knowledge
graph of academic lineages in the Song Dynasty based on data from the Chinese
Biographical Database of the History of the Chinese Academy [5]. Carriero et
al. built the ArCo knowledge graph of Italian cultural heritage based on the
official general catalog and related coding rules of the Italian Ministry of Cultural
Heritage and Activities [6,7].

3 Methodology

We employ a top-down approach to construct a knowledge graph for the domain
of the Yue opera lineage. Starting from high-level concepts and relationships
within the Yue Opera lineage domain, the construction process gradually refines
and elaborates on these concepts. By defining the top-level concepts and relation-
ships of the Yue opera lineage, an overall framework is established. Subsequently,
relevant entity, relationship, and attribute information are extracted from the
data sources. Finally, by employing entity linking, a complete knowledge graph
of the Yue opera lineage is formed.

3.1 Data Sources

The primary data source for this study is the “Encyclopedia of Chinese Yue
Opera” [8]. Considered the most comprehensive and authoritative encyclopedia
on Yue opera, the “Encyclopedia of Chinese Yue Opera” documents the devel-
opment of Yue opera from the mid-19th century to 2005. This compendium
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includes a wealth of representative content related to notable artists, repertoire,
and lyrics in the field of Yue opera. Furthermore, additional data was collected
from web pages and existing databases.

3.2 Ontology Construction

Based on the cultural characteristics of the Yue opera lineage, a feature analysis
is conducted to uncover distinctive attributes and relationships within the set
of core concepts. Under expert guidance, the rules for the ontology model are
defined.

Fig. 1. Ontology concept relationship for Yue opera lineage domain

The feature analysis of Yue opera lineage culture reveals that temporal,
regional, and diverse aspects are significant features. The construction process
adheres to the principles of ontology independence and reusability while minimiz-
ing the number of categories [9]. As a result, four top-level concepts are derived
for the Yue opera lineage domain: “character”, “time”, “location”, and “genre”,
along with their interrelationships, as depicted in Fig. 1. After the overall frame-
work of the ontology is established, further steps are taken to describe the fea-
tures and relationships between concepts. This involves defining the attributes
of the concepts, categorizing the attributes in a specific manner, and imposing
restrictions on the number of possible attribute values.

3.3 Knowledge Extraction

Large-scale pre-trained language models (LLMs) such as ChatGPT [10] have
shown impressive performance with few or zero-shot learning capabilities, where
they can perform well given appropriate prompts [11]. Utilizing a ChatGPT-
based knowledge extraction approach offers flexibility, generality, and transfer-
ability, making it adaptable to various knowledge domains.

We divide the knowledge extraction task into two steps. (1) Define and
explain the professional terms and concepts in the domain of the Yue opera
lineage to ChatGPT, providing additional contextual information to aid in its
understanding of knowledge within this domain as it may not fully understand
domain-specific terminologies [12]. (2) Extract knowledge by querying ChatGPT
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via OpenAI APIs. Descriptive prompt fields encode the data request to provide
contextual cues and the obtained results are parsed and extracted for further
analysis.

Appropriate prompt templates can significantly improve the performance of
ChatGPT. We design prompt templates based on the types of information to
be extracted (entities, relationships, attributes) and the ontology model of Yue
opera lineage. The prompt templates consist primarily of input text, output for-
mat, and target information type, as shown in Fig. 2. Since entities and attributes
share a nominal relationship, attribute extraction is considered a type of rela-
tionship extraction, and the same set of templates can be used. The format for
the entity extraction results is defined as “entity type: specific entity,” while
the format for the relationship extraction results is “specific entity-relationship
type-specific entity.”

Fig. 2. Knowledge extraction workflow and prompt templates based on ChatGPT

3.4 Knowledge Storage

We employ the Neo4j graph database to store and query the knowledge graph of
the Yue opera lineage. Data are structured as a graph model consisting of nodes
and relationships in Neo4j. The nodes are made up of labels and properties,
while relationships are made up of types and properties.

To develop the YueGraph prototype, we extracted 987 entities and 542 rela-
tionships in total. These data were organized as CSV files for easy import into
Neo4j. On the basis of different types of information, we prepare two types of
CSV files: one for storing entities and their attributes and the other for storing
relationships between entities.
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4 Applications

4.1 Question-Answering System

Leveraging a deep understanding of semantic relationships in the domain of the
Yue Opera lineage, a question-answering system has been developed to answer
complex and in-depth questions using semantic reasoning. As illustrated in Fig. 3,
it employs techniques such as tokenization and entity recognition to analyze
user input questions, then matches with the corresponding question templates,
and converts into Cypher commands to query relevant entities or relationships
in Neo4j. This process ultimately generates logically coherent answers to the
questions.

Fig. 3. Yue opera lineage question-answering system

4.2 Visualization

YueGraph also provides visualization of the Yue Opera lineage with d3.js, as
shown in Fig. 4. Users can filter by genres, Cypher commands are used to search
for corresponding entities and relationships in Neo4j. The query results are pre-
sented to users in visual forms, effectively showcasing the lineage relationships
and developmental changes among different factions in Yue Opera.



440 S. Yang et al.

Fig. 4. Visualization of Yue opera lineage domain

Specifically focusing on the master-apprentice relationships, a person rela-
tionship network graph is constructed, where different genres are distinguished
by colors, facilitating the study of lineage paths and relationships between gen-
res. Additionally, line charts and pie charts are utilized to visualize the male-to-
female ratio and distribution of roles, revealing the specific gender distribution
and expertise of genres in Yue Opera.

5 Conclusion

This study investigates the construction and application of a knowledge graph
in the domain of the Yue Opera heritage. The cultural characteristics of the
Yue Opera heritage were explored to build an ontology model. Subsequently,
knowledge was extracted through interactions with ChatGPT, and the workflow
for knowledge extraction using ChatGPT was summarized. Finally, based on
the constructed knowledge graph, a question-answering system is implemented,
and visual representations of the Yue Opera heritage are explored. This research
provides a fresh perspective on the preservation, inheritance and development
of the Yue Opera heritage. In the future, it is possible to enrich the knowledge
graph by incorporating information on repertoire, music, and other aspects, thus
enhancing its comprehensiveness. Furthermore, integrating the Yue Opera her-
itage knowledge graph with knowledge graphs from other domains can facilitate
interdisciplinary knowledge discovery and cross-domain research.
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Abstract. Optical computing is regarded as one of the most promising comput-
ing paradigms for solving the computational bottleneck and accelerating artificial
intelligence in the post-Moore age. While reconfigurable optical processors make
artificial general intelligence (AGI) possible, they often cannot processmultimodal
signals. Here, we propose an integrated all-optical multimodal learning engine
(AOMLE) built by reconfigurable phase-change meta-atoms. The engine archi-
tecture can be mapped to different optical neural networks by laser direct writing
for phase-change materials, enabling more efficient processing of visual and audi-
tory information at the speed of light. The AOMLE provides a cutting-edge idea
for reconfigurable optical processors with increasing demands for complicated AI
models.

Keywords: All-Optical Computing · Reconfigurable Chip · Multimodal
Learning

1 Introduction

The thriving development of photonics has paved the way for faster and more energy-
efficient AI computing. Optical processors are considered one of the most promising
solutions for accelerating AI [1–7], leveraging the unique advantages of light speed,
ultralow power consumption, and multiplexing. As the complexity of AI models contin-
ues to increase, the development of reconfigurable optical processors becomes increas-
ingly important. There is a need to design new devices and explore suitable materials
to make progress [8–12]. Chalcogenide phase-change materials play a crucial role in
the field of reconfigurable photonics [13–16]. The non-volatile materials can transition
between crystalline and amorphous phases under external excitation, exhibiting signif-
icant differences in optical properties [17], which find widespread applications in light
field modulation. Undeniably, reconfigurable optical computing hardware enabled by
phase-change materials has fruitful achievements [18–20]. However, current advanced
optical processors can only demonstrate particular types of information, such as visual

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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signals like images and videos or sequential signals represented by audio. Due to
the monotony of optical computing architecture and coupling signals, there are still
limitations in multimodal signals processing, which prevents optical processors from
progressing toward general computers.

Herein, we propose an integrated all-optical multimode learning engine (AOMLE)
built by reconfigurable phase-change meta-atoms. By arranging phase-change meta-
atoms covering an individual optical waveguide, we map them to different optical neural
networks, enabling light-speed multimodal learning. We successfully reconstruct the
all-optical computing architecture by taking advantage of the excellent properties of
chalcogenide phase-changematerials: disorderedmetasurface corresponds to the optical
scattered neural network suitable for auditory signals, whereas layer-by-layer metalines
corresponds to the optical diffractive neural network that is better for visual signals.
We unify the training models for both optical neural network architectures by solving
Maxwell’s equations, and the adjoint method is used for backpropagation to update
the medium gradient. Finally, we obtain 95.83% accuracy in vowel recognition and
96.34% accuracy in handwritten digit recognition, both of which are comparable to
state-of-the-art electronic platforms and with a boost in energy efficiency. In conclusion,
our proposed all-optical computing engine can efficiently perform multimodal learning,
providing promise for general AI processors.

2 Architecture of AOMLE

Figure 1 depicts the architecture of AOMLE, which is actually a physical neural network
built by phase-change materials. The red and purple marks represent the directions
of data propagation in the feed-forward neural network and recurrent neural network,
respectively, in the artificial neural network model shown in Fig. 1(a), and AOMLE is
mapped to two neural networks by programming the pattern of phase-change materials
covered on the waveguide, as illustrated in Fig. 1(b). The amplitude of light is pre-
coded at the left input port of AOMLE. The optical path is obviously changed as light
propagates through the intermediate training region due to the modulation of phase-
change materials at the top of the waveguide, and the light is eventually coupled out at
the right port, and the intensity is detected by photodetectors to obtain the classification
result. This is the entire inference procedure of AOMLE.

It should be noted that the chalcogenide phase-change material used in AOMLE
is Sb2Se3, and its extinction coefficient in the telecommunication wavelength tends to
be negligible, meaning that intrinsic loss to the propagating light will be minimal. The
refractive index of crystalline Sb2Se3 is around 4.0, it has a stronger effect on the phase
modulation of light than that of amorphous Sb2Se3, so we regard the crystalline phase-
change meta-atom as an effective neuron, which function is to sum the input light and
then transmit them to the next effective neuron. In the nonlinear activation function of the
neural network, we use the Kerr effect of silicon itself to establish a nonlinear connection
between output and input optical power.
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Considering the wave characteristics of light itself, when it propagates through the
disordereddielectric layer, itwill continue to scatter in all directions,whichwill introduce
a feedback loop. This process is equivalent to the recurrent neural network, which ismore
suitable for processing data with time series information. Previous work has also proved
this in theory [21]. Therefore, we use the metasurface formed by the random distribution
of meta-atoms in different crystal phases to map the optical scattered neural network
to AOMLE. It should be pointed out that our preprocessing of time series information
only involves basic operations such as windowing and sampling, and we will not use
spectrogram and other methods to make it into a matrix for subsequent calculation so
that the time step of data will be preserved and the recurrent neural network will be
driven to compute when scattered light propagates backward.

Fig. 1. Architecture of AMOLE. (a) Artificial neural networkmodel. (b) Reconfigurable principle
of AOMLE. (c) A phase-change meta-atom and hardware implementation of AOMLE.
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For the on-chip diffractive neural network, its mathematical model is based on the
Huygens-Fresnel diffraction principle, which reveals that diffractive neurons are essen-
tially secondary wave sources, so their diffractive characteristics are more similar to
convolution operation, even though this is a one-dimensional situation. In this way, we
use crystalline effective neurons to form layers of diffractive metalines as hidden lay-
ers of feedforward neural networks. Furthermore, while the layered optical diffractive
architecture is a subset of the bulk scattered architecture, the modulation mechanism of
different architectures for the propagation light field determines which artificial neural
network model they correspond to and which modal data computing scenarios are better
suitable for.

In the experiment, the waveguide pattern of AOMLE architecture is realized by
optically programming the phase-change materials, and its experimental platform is
shown in Fig. 2. The experimental platform is mainly divided into two types of optical
paths, propagation computation part and laser programming part. For the image input of
the first kind of optical path, the 1550nmCWlaser passes through the beamexpander, and
the image information is programmed by the digital micro-mirror. It is input to a single-
mode fiber through the objective lens after passing through a 4f system. The acoustic-
optical modulator provides waveform information of voice signals to the light, which
is subsequently fed to AOMLE through the fiber. Finally, the photodetector receives
the classified optical signal. The second type of optical path is used to implement the
programming of AOMLE. We reconstruct the device using optical pulses generated by
a 638nm laser diode, and the piezo stage accomplishes the movement required for array
programming.

Fig. 2. Reconfigurable experimental schematic diagram of AOMLE

3 Training Algorithm of AOMLE

Light propagation in theAOMLE training region followsMaxwell’s electromagnetic the-
ory, and the primary light field distribution can be obtained by solving Maxwell’s equa-
tions in the frequency domain. We describe their training methods in relation to the dif-
ferences between the all-optical scattered and diffractive neural networks, respectively.
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The following loss function � is defined.

� = 1

2

N∑

i=1

(Ii − yi)
2 (1)

where Ii denotes the light intensity detected at the i th output port, and yi is the ground
truth as one-hot encoding.

First, we discuss the training process of the AOMLE scattered neural networkmodel.
At this moment, the structure of all phase-change meta-atoms in the training region is
noticed. We use the FDTD method in the frequency domain to solve the primary light
field

−→
E pri(r) of any point r.

(
∇2 − ω2μ0ε(r)

)−→
E pri(r) = −iωμ0

−→
J s (2)

where ε(r) is the complex relative dielectric constant at r, μ0 is the permeability of
vacuum, and

−→
J s is the current source density of the input light field distribution. We

then determine the derivative ∂�/∂
−→
E pri(r) and use it as the excitation source of the

adjoint field
−→
E adj(r). Consequently,

−→
E adj(r) can correspond to any r in the training

region.

(
∇2 − ω2μ0ε(r)

)−→
E adj(r) = − ∂�

∂
−→
E pri(r)

(3)

This is the solution process of two electromagnetic fields in the all-optical scattered
neural network. The structural parameter in the diffractive neural network we are con-
cerned about is a certain layer −→m . According to the previous work [22], we can express
the original field

−→
E pri

(−→m )
and adjoint field

−→
E adj

(−→m )
in each diffractive layer.

−→
E pri

(−→m ) =
(

M∏

m=1

F−1PmF�m

)
−→
E s (4)

−→
E adj

(−→m ) = −→
E pri

(−→m ) ⊗ (Ii − yi) (5)

where F and F−1 denote the discrete Fourier transform and inverse form, Pm and �m

express the diagonal matrix including the light propagation from m th layer to m + 1 th
layer, and phase shifts of m th layer, respectively.

Combining the adjoint field
−→
E adj with the original field

−→
E pri, we get the gradient

of AOMLE’s structural parameters.

∂�

∂�
∝ Re

{−→
E adj · −→

E pri

}
(6)

where ∂�/∂� denotes the gradient value, and� here represents the structural parameter
r and −→m corresponding scattered and diffractive neural network, respectively, and the
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gradient has a linear relationship with the real component of
{−→
E adj · −→

E pri

}
. We can

update the state �� of phase-change meta-atoms.

�� = �t+1 − �t ∝ ∂�

∂�
(7)

The above process represents the training algorithm of AOMLE. It is crucial to
acknowledge that training a scattered neural network requires an inverse design method
rooted in photonics. Genetic algorithms, the adjoint method, generative adversarial net-
works, and reinforcement learning are all common methods for inverse design. For the
proposed on-chip diffractive neural network, the primary modeling approach is based
on the Rayleigh-Sommerfeld diffraction equation, although with substantial compu-
tational complexity. We build a unified model for all-optical scattered and diffractive
neural networks in this work by solving the original and adjoint electromagnetic fields
within the training domain for forward propagation and using the adjoint method for
backpropagation, which enables the realization of a more efficient training algorithm.
The training algorithm flow chart of AOMLE is presented in Fig. 3.

Fig. 3. Training algorithm flow chart of AOMLE

4 Multimodal Learning of AOMLE

According to the reconfigurable properties of AOMLE, we separate multimodal learning
into scattered computing mode (SCM) and diffractive computing mode (DCM). In this
work, we classify vowels and handwritten digital images using disctinct strategies.

In the face of SCM, we conduct vowel recognition tasks using the dataset [23].
This dataset consists of 270 audio messages from individuals of different genders and
covers a variety of pronunciations, including ae, ei and ow. The training epoch of SCM
is set to 30. As shown in Fig. 4(a-b), AOMLE achieves rapid convergence in the vowel
recognition, with the training dataset reaching 96%, and the testing dataset likewise
reaching 95.83%. Figure 4(c) shows the confusion matrix for both the training and
testing dataset. Additionally, the effect of varying the length of the training region on
recognition accuracy is also investigated as depicted in Fig. 4(d). By keeping thewidth of
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Fig. 4. Vowel recognition of SCM. (a-b) The confusion matrix of training dataset and testing
dataset. (c) The loss and accuracy of SCM with training epochs. (d) The relationship between
recognition accuracy and training region length.

the training area constant in AOMLE at 100, we identify that the testing dataset achieves
the greatest accuracy (95.83%) when the training area length is set to 200.

We employ the classical MNIST dataset to assess its performance for DCM. Follow-
ing 30 epochs of training, we achieve a recognition accuracy of 96.82% on the training
dataset and 96.34% on the testing dataset. The confusion matrix is shown in Fig. 5(a-b),
while Fig. 5(c) illustrates the performance of loss function and accuracy in handwrit-
ten digital classification. It is evident that AOMLE and other models have comparable
accuracy. We further explore the scalability of DCM by changing the number of lay-
ers in the diffractive neural network, as presented in Fig. 5(d). By maintaining a fixed
interval between metalines, we show that increasing the number of diffractive layers
improves accuracy. The rate of improvement, however, becomes limited as the number
of layers increases, indicating some redundancy within the neural network. We have
a total of 2000 effective neurons per diffractive layer, which can be further optimized
through pruning. Nevertheless, we decide to use five diffractive layers of meta lines for
handwritten digital image classification, reaching a remarkable accuracy of 96.34% on
the testing dataset.
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Fig. 5. Handwritten digital recognition of DCM. (a-b) The confusion matrix of training dataset
and testing dataset. (c) The loss and accuracy of DCM with training epochs. (d) The scalablity of
diffractive layers.

We conduct a comparative analysis between our proposed AOMLE and several pro-
cessor chips used for intelligent classification tasks in the fields of natural language pro-
cessing andmachine vision, as shown inTable 1. The current optical processors primarily
rely on devices or architectures such asMach-Zehnder interferometer, optical diffraction,
wavelength-divisionmultiplexing, and optical scattering.Upon comparingAOMLEwith
other advanced optical processors, it becomes evident that AOMLE outperforms them
in various indicators, including programmability, processible modality, among others.
Furthermore, AOMLE achieves a remarkable increase in computing energy-efficiency,
surpassing commercial electric processors by several orders of magnitude, while retain-
ing outstanding recognition accuracy. These results highlight AOMLE’s exceptional
competitive edge over both optical and electric processors.
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Table 1. Comparison of state-of-the-art integrated optical and electronic AI chips.

Processor Programmability Modality Energy Latency

Optical
processor

[1] Electrical Audios 30fJ/MAC < 100ps

[3] Optical Images – < 1ns

[4] Electrical Images 1.58pJ/MAC 110ns

[5] Optical Images 17fJ/MAC 250ps

[7] Electrical Images 345fJ/MAC < 60ps

[9] Electrical Images &
Videos

0.82fJ/MAC –

[12] Optical Audios 20pJ/MAC 40ps

Electronic
processor

Google TPU Electrical – 0.43pJ/MAC 1.4ns

Flash Electrical – 7fJ/MAC 15ns

Our work AOMLE Optical Images &
Audios

< 5fJ/MAC < 200ps

5 Conclusion and Discussion

We propose a highly integrated all-optical multimodal learning engine called AOMLE,
which effectively switches tasks based on input data modality and achieve array pro-
gramming using externallymodulated laser pulses. By leveraging the tunable property of
phase-change materials, we successfully implement the reconfigurability of all-optical
scattered and diffractive neural network on a single chip. We update the neural net-
work’s parameters using the unified form of the adjoint method, resulting in exceptional
performance in both vowel recognition and handwritten digit recognition multimodal
tasks.

It is worth mentioning the adjoint method has been widely employed in the inverse
design of photonic devices. However, practical device fabrication often necessitates the
binarization of trained medium parameters. The obtained device parameters of AOMLE
can be quasi-continuous, with the level of discretization depending on the programming
ability of laser pulses. This approach effectively overcomes the constraints imposed by
binarization during fabrication, thereby further enhancing the computing performance
of the optical processor.

Additionally, we utilize externally modulated laser pulses to program the phase-
change materials, enabling precise control and alteration of the refractive index of the
phase-change meta-atoms. Consequently, written laser pulses directly define the device
pattern, eliminating the need for top-down lithography processes. This not only signifi-
cantly enhances the flexibility of the silicon photonic device but also reduces fabrication
errors and phase noise caused by lithography and etching. Collectively, these advan-
tages demonstrate that our proposed AOMLE paves the way for more energy-efficient
and flexible optical artificial intelligence processors.
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Abstract. The brainstem controls almost all normal functions in the life, such as
breathing, memory, movement, and is closely related to many neurological dis-
eases. Despite the importance of the brainstem, the delineation of its functional
sub-regions remains largely unexplored. In this study, we aim to explore func-
tional parcellation of the brainstem using functional magnetic resonance imaging
(fMRI), and propose a novel framework by combining spatial functional con-
nectivity features of the brainstem and NCut spectral clustering. Firstly, func-
tional connectivity between the brainstem and other cortical and sub-cortical brain
regions is estimated using fMRI data. Secondly, the estimated spatial functional
connectivity features are used to detect functional sub-regions of the brainstem
using NCut spectral clustering. Finally, the Dice coefficient was used to evalu-
ate the reproducibility of brainstem functional parcellation. The results show that
the Dice coefficient obtained by the proposed method was 0.74, which is higher
than that of the parcellation using temporal features of the brainstem (Dice coeffi-
cient of 0.32). In addition, NCut spectral clustering outperformed other clustering
methods regarding the reproducibility of brainstem functional parcellation. The
proposedmethod explores the potentials of spatial functional connectivity features
for brainstem functional parcellation. It may serve as a promising tool for studying
the functions and dysfunctions of the brainstem.

Keywords: functional parcellation · functional magnetic resonance imaging ·
functional connectivity · brainstem

1 Introduction

The brainstem, as an indispensable component of the central nervous system, plays a
crucial role in maintaining vital functions in individuals. Many critical physiological
functions, including but not limited to heartbeat, respiration, and digestion, are closely
associatedwith the brainstem [1]. In the human body, it can be regarded as one of themost
crucial organs. Current research indicates that many neurological disorders are related to
brainstem dysfunctions [2]. For instance, the neuropathological changes associated with
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Parkinson’s disease primarily occur in the brainstem [3]. The delineation of functional
sub-regions of the brainstem contributes to the understanding of functional organizations
of the brainstem and its relationship with brain diseases.

While there is a collection of functional parcellation studies for the cortex and sub-
cortex of the brain, functional parcellation of the brainstem remains largely unexplored,
in spite of its importance in the understanding of brain functions and dysfunctions [4].
Currently, the sub-regions of the brainstem are mostly delineated by using anatomical
principles [5, 6]. These methods rely on the morphological features and spatial infor-
mation of different sub-structures [7]. One study conducted in vivo segmentation of the
brainstem by using a semi-supervised approach, resulting in eleven sub-regions of the
brainstem [8]. In another study, a data-driven approach was utilized to extract functional
parcellations of the brainstem [9]. This approach adopted amodularity-based criterion to
generate functional sub-regions of the brainstem using temporal brainstem voxel signals.
While the brainstem voxel signals provide important information regarding the tempo-
ral features of the brainstem, the spatial connectivity pattern between the brainstem and
other cortical and sub-cortical brain regions is another key feature to characterize the
brainstem.However, such spatial features have not been taken into account for functional
parcellation of the brainstem.

In this study, a novel framework was proposed for brainstem functional parcellation
using fMRI, which incorporates spatial functional connectivity features. The proposed
method combines the spatial functional connectivity features of the brainstemwith NCut
spectral clustering [10]. The functional connectivity patterns between the brainstem and
other cortical and subcortical regions of the brain characterize the spatial features of
the brainstem. NCut spectral clustering is used to partition the brainstem into functional
sub-regions based on the similarity between spatial patterns of brainstem voxels. To the
best of our knowledge, this study is the first to utilize spatial functional connectivity
features for the functional parcellation of the brainstem.

2 Materials and Methods

This studyproposes a new framework for brainstem functional parcellation by combining
spatial functional connectivity features of the brainstem and NCut spectral clustering.
Figure 1 shows the overallworkflowof the proposedmethod. Firstly, using fMRIdata, the
functional connectivity betweenbrainstemvoxels and cortical aswell as subcortical brain
regions is estimated, thereby capturing the spatial features of the brainstem. Secondly,
the correlation between spatial functional connectivity features of brainstem voxels is
calculated togenerate a similaritymatrix betweenbrainstemvoxels. Lastly,NCut spectral
clustering [10], an unsupervised machine learning algorithm, is employed to partition
brainstem voxels into functional sub-regions based on the generated similaritymatrix. To
assess the efficacy of the proposed method, the reproducibility of functional sub-region
delineation is evaluated using the Dice coefficient [11].

2.1 fMRI Dataset and Preprocessing

The data for this study was obtained from the publicly available Human Connectome
Project (HCP) dataset [12]. The participantswith substantial headmotion parameters and
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Fig. 1. The overall workflow of the proposed method for brainstem functional parcellation.

those who did not undergo repeated scanning sessions were excluded from the analysis
due to concerns regarding data quality and reliability. As a result, the resting-state fMRI
data from 170 healthy adult participants were included in this study.

The fMRI data was collected using a 3T magnetic field strength and a gradient-echo
EPI sequence. The scanning parameters included a repetition time (TR) of 720ms, an
echo time (TE) of 33.1ms, a flip angle (FA) of 52°, a field of view (FOV) of 208 ×
180mm (RO × PE), a matrix size of 64 × 64, a slice thickness of 2.0mm, 72 slices,
and an isotropic voxel size of 2.0mm. The data was acquired with a multiband factor of
8, an echo spacing of 0.58ms, and a bandwidth (BW) of 2290Hz/Px. Each participant
underwent two fMRI scans, with each scan consisting of 1200 volumes. The total scan
time for each participant was approximately 14 min [13]. In this study, the two scans are
referred to as REST1 and REST2, respectively.

The preprocessing pipeline for HCP data consists of spatial and temporal process-
ing procedures. Spatial preprocessing involves a series of steps, including spatial artifact
removal, surface generation, cross-modal registration, and alignment to a standard space.
On the other hand, temporal preprocessing involves the application of MELODIC ICA,
where artifact and motion-related time courses are regressed out from both volumet-
ric and grayordinate data [12]. Moreover, this approach also acts as a noise reduction
technique for the signals originating from the brainstem region.

A template derived based on multimodal data [14] was used to define the regions of
interest (ROIs), including both brainstem and brain cortex/subcortex. The average time
series within each cortical and subcortical ROIs, as well as the voxel time series within
the brainstem, were extracted for the subsequent analyses.

2.2 Spatial Functional Connectivity Features of Brainstem Voxels

In this study, we evaluated the similarity between voxels of the brainstem using their spa-
tial features (i.e., functional connectivity patterns), rather than commonly used temporal
features (i.e., original fMRI time series) [9]. Specifically, spatial functional connectiv-
ity features were assessed by correlating the signals from brainstem voxels with those
from brain cortical/subcortical ROIs. These functional connectivity features captured the



Brainstem Functional Parcellation Based on Spatial Connectivity Features 455

spatial patterns of interaction between the brainstem and other cortical and subcortical
brain regions. Subsequently, the similarity matrix between the voxels of the brainstem
was constructed by computing the correlation between spatial functional connectivity
features of brainstem voxels.

2.3 NCut Spectral Clustering for Brainstem Functional Parcellation

2.3.1 Clustering Methods

To extract functional sub-regions of the brainstem from the similarity matrix obtained
from brainstem spatial functional connectivity features, we employed NCut spectral
clustering method [15]. Spectral clustering projects the data into a lower-dimensional
space and then applies a clustering algorithm, such as K-means, to group the data points.
By leveraging the spectral properties of the similarity matrix, this method can effectively
capture the underlying structure and identify functional sub-regions of the brainstem
[16].

Given an input sample set D = (x1, x2, . . . , xn), the similarity matrix generation
method, and the number of clusters k, the similarity matrix S is constructed based on
the provided similarity matrix generation method. Subsequently, the similarity matrix
undergoes an absolute value transformation. Furthermore, only the similarity values
corresponding to adjacent voxels are retained, while those values between non-adjacent
voxels is set to zero. This leads to the construction of the adjacency matrix W and the
degreematrix D. Subsequently, the Laplacianmatrix L is computed. The graph partition-

ing requires constructing a normalized Laplacian matrix Ln = D
1

−2 LD
1

−2 . Eigenvalues
of Ln are calculated. The computed eigenvalues are arranged in ascending order, with
the first k eigenvalues being selected to construct the eigenvector f. The eigenvector f
is then normalized to form the n ∗ k dimensional feature matrix H. Each row in H is
treated as a k-dimensional sample, yielding a total of n samples. A clustering method is
then applied, typically utilizing the K-means clustering algorithm. The final outcome of
this process is the cluster partition C = (c1, c2, . . . , ck) [17].

2.3.2 Group-Level Analysis

After obtaining individual-level brainstem functional parcellations using NCut spec-
tral clustering, group-level analysis is performed to derive a population-level brainstem
template. Group-level analysis is a method that combines individual brainstem func-
tional parcellations to obtain a representative brainstem template that captures shared
characteristics of the group.

We employed a two-level analysis to obtain the group-level parcellation [18]. It is
accomplished by constructing an adjacency matrix A of size N ∗N, where N represents
the number of vertices in the brainstem. The edges in the stability graph are weighted
based on the frequency of occurrence of the same parcel assignments for two vertices, vi
and vj, across all individual subject parcellations. Once the stability graph is constructed,
it is further subdivided into different regions using a graph partitioning algorithm, such
as spectral clustering with normalized cuts [19], resulting in a group-level parcellation.
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2.3.3 Optimal Parcellations

Determining the optimal number of functional sub-regions is an important issue. Eigen-
map is one of the methods that can be used for estimating the number of clusters [21].
Eigengap is computed by analyzing the eigenvalues obtained from the spectral decom-
position of a given matrix. Specifically, the eigengap is computed by calculating the
absolute difference between consecutive eigenvalues. Larger eigengap typically indi-
cates significant differences between distinct clusters and serves as a basis for selecting
the appropriate number of clusters. A common approach is to identify the peaks in the
eigenvalue gaps as the optimal number of clusters [22].

2.3.4 Commonly used Clustering Methods

To evaluate the performance of the proposed framework, we compared the performance
ofNCut spectral clusteringwith other commonly clusteringmethods, includingK-means
clustering, modularity and RatioCut spectral clustering. K-means is a widely used clus-
tering algorithm that aims to partition data into k clusters by minimizing the within-
cluster sum of squares [18, 23]. Modularity is a popular community detection method,
which measures the density of connections within communities and compares it to a
random network, aiming to maximize a modularity quality function [24]. RatioCut can
be regarded as a simplification of the NCut clustering method. It disregards considera-
tions of node degrees and connectivity and instead focuses on minimizing the number
of cut edges [25].

2.4 Reproducibility of Brainstem Functional Parcellation

The Dice coefficient was employed to assess the reproducibility of brainstem functional
parcellation [26, 27].

The Dice coefficient measures the overlap between two parcellation results, where a
higher value indicates a greater similarity between the parcellations [28]. The calculation
of the Dice coefficient is as follows:

Dice(A,B) = 2|A ∩ B|
|A| + |B|

The numerator of the Dice coefficient is twice the intersection of sets A and B, and
the denominator is the sum of the lengths of sets A and B. Therefore, the Dice coefficient
ranges from 0 to 1, where a higher value indicates a greater overlap and similarity
between two parcellation results.

3 Experiments

We utilized this framework to extract functional subregions of the brainstem from 170
healthy subjects. Firstly, we built an individual similarity matrix for each subject using
spatial functional connectivity features of the brainstem. Subsequently, NCut spectral
clustering was applied to the matrix of each subject, resulting in an individual brainstem
functional parcellation for each participant. Finally, a two-level group analysis method
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was employed to derive the group-level parcellation by integrating the individual brain-
stem functional parcellation results. The eigengap method was used to select the optimal
number of clusters, and the range of the number of clusters was set to 15–25 by refer-
ring to the previous literature [20]. To evaluate the proposed method, we used the Dice
coefficient between the two scans, REST1 and REST2, to measure the reproducibility
of brainstem functional parcellation. Higher reproducibility indicates better parcellation
performance.

4 Results

We computed the eigen-gap values within the range of 15 to 25 subregions. The eigen-
gap indicates significant transitions in the eigenvalues. As shown in Fig. 2, there is a
substantial jump at 21 clusters, leading to the selection of 21 sub-regions as the optimal
division for functional parcellation of the brainstem.

Fig. 2. Eigen-gap analysis for functional parcellation of the brainstem.

To validate the proposed method, we compared different clustering methods and
featureswith the number of clusters ranging from15 to 25. Specifically,wefirst compared
the reproducibility between the proposed spatial functional connectivity features and
traditional temporal features, and then compared different clustering methods, including
NCut, RatioCut, K-means and modularity.

Figure 3 shows the Dice coefficient of brainstem functional parcellation using the
proposed method with spatial functional connectivity features, compared to that using
temporal fMRI time series features. Theboxplotwas drawnbasedon theDice coefficients
across different number of clusters. It can be seen that the brainstem parcellation based
on spatial connectivity features outperformed that based on temporal features in terms of
the Dice coefficient. This trend was consistent throughout the number of clusters ranging
from15 to 25.

For the optimal parcellation with 21 brainstem subregions, the Dice coefficient using
the proposed method with spatial functional connectivity features was 0.74. Such per-
formance was higher than that obtained using the fMRI temporal time series features,
which yielded a Dice coefficient of 0.32.
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Fig. 3. Comparisons of the reproducibility of brainstem functional parcellation using spatial func-
tional connectivity features and temporal fMRI time series features. The boxplot was drawn based
on the Dice coefficients across different numbers of clusters.

Fig. 4. Comparisons of the reproducibility of brainstem functional parcellation using different
clusteringmethods. The boxplotwas drawnbased on theDice coefficients across different numbers
of clusters.

The reproducibility of different clustering methods using spatial functional connec-
tivity features of the brainstem were compared in Fig. 4. The boxplot was drawn based
on the Dice coefficients across different numbers of clusters. The results showed that
the NCut method achieved higher Dice coefficients compared to other methods. The
consistent trend was observed across different numbers of clusters ranging from 15 to
25.
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When the brainstem was divided into 21 subregions, the results showed that NCut
spectral clustering exhibited the best reproducibility with a Dice coefficient of 0.74,
outperforming that ofRatioCut (aDice coefficient of 0.69),modularity (aDice coefficient
of 0.40), and K-means (a Dice coefficient of 0.27).

Fig. 5. Visualization of functional sub-regions of the brainstem obtained using the proposed
method.

Finally, the group-level brainstem functional parcellation obtained using the pro-
posed method is shown in Fig. 5. The brainstem is partitioned into 21 functional
sub-regions.

5 Conclusions

This study proposed a novel framework for brainstem functional parcellation by com-
bining the spatial functional connectivity features of the brainstem and NCut spectral
clustering. The proposed method exhibited the best reproducibility in terms of Dice
coefficient, outperforming that achieved by using temporal fMRI time series features
and other clustering methods. The results demonstrated the advantage of spatial func-
tional connectivity features of the brainstem over temporal fMRI time series features
and the superiority of NCut spectral clustering. The current study provides the delin-
eation of functional sub-regions of the brainstem, benefiting the exploration of functional
organizations of the brainstem and brainstem pathology of brain diseases.
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Abstract. Feeds recommendation has been widely used in various appli-
cations, such as e-commerce site, where users can constantly browse
products generated by never-ending feeds. It’s important to not only
consider instant metrics but also pay more attention to long-term user
engagement. In this paper, we focus on optimizing user browsing depth,
which represents users’ willingness to stay within the e-commerce feed
streams. By analyzing the ranking and re-ranking stages, we find that
the re-ranking stage is a suitable phase for maximizing user browsing
depth. First, we evaluate the current status of our used re-ranking mod-
ule and identify that the fixed diversity rule neglects unique propensity
to the degree of diversity in each user request. Hence there is a need to
personalize diversity in the granularity of user requests. Then, we note
that the personalized diversity process of user request granularity can be
modelled as a Markov decision process (MDP). Finally, by solving three
issues of MDP elements design, acquisition of interaction data, off-policy
learning and policy selection, we propose a Personalized Diversity Re-
ranking Model in the granularity of user request (PDRM-request) based
on reinforcement learning. We conduct offline experiments and deploy the
PDRM-request model in a live e-commerce site to perform A/B testing.
The results show that the our approach achieves deeper user browsing
depth and more diversified recommended lists than the existing baseline.

Keywords: Reinforcement learning · Personalized diversity ·
E-commerce recommendations

1 Introduction

Users can browse endless products if they want in e-commerce feeds recommen-
dation. Apart from instant feedback, such as clicks and purchases, it is important
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for feeds streams to consider long-term user engagement [17], including user
browsing depth, revisits, and dwell time. This work focuses on user browsing
depth, which is the number of products that a user browses in a single day and
it reflects a user’s tendency to kill time and hang out on the e-commerce site.

In order to optimize the user browsing depth, we review the ranking and re-
ranking modules. The ranking stage aims at improving relevance through super-
vised learning, such as click-through rate or conversion rate [18,22], which is not
suitable for optimizing long-term user engagement. Conversely, the re-ranking
stage is usually the last part of a recommender system and is the closest to the
users. By considering the mutual influences between the recommended items, the
re-ranking module controls the trade-off between relevance and diversity of the
final recommended list, which directly affects the long-term user engagement.
Thus, we analyze our current re-ranking module and observe that it employs a
greedy search method to select products incrementally one by one in each user
request. To maintain the diversity of recommendations and circumvent bad user
experiences, a fixed diversity rule in the sense of product category is adopted
to ensure that similar products are not too close to each other in the final list.
However, we note that this fixed diversity rule does not account for the fact
that each user’s request may have a unique tendency towards diversity. Moti-
vated by this observation, we argue that it is more reasonable to personalize the
relevance-diversity trade-off in the granularity of user requests.

In essence, the personalized diversity process of a user request can be for-
mulated as a MDP [24]. We treat the user’s request as a state and the diversity
rule as an action, where the immediate reward is the number of products the
user browses in each request. In this way, we can optimize the policy of selecting
diversity rule, so as to maximize the cumulative user browsing reward within a
session. Therefore, we not only possess the ability of personalized diversity in the
granularity of user requests, which can meet the personalized and real-time diver-
sity demands of users, but also improve the long-term user participation, i.e.,
user browsing depth. Nevertheless, achieving this personalized diversity policy
presents three challenges. First, designing the MDP elements for the personal-
ized diversity process is difficult. Second, interaction data acquisition for policy
learning should be solved under the current fixed diversity rule situation. Third,
learning and evaluating a policy model is also not easy.

To address these challenges, we first describe our approach in Sect. 3.2 to
the MDP element design. For data collection, since the diversity rule in our
greedy-based re-ranking is fixed, which always selects the same diversity rule for
all user requests, the data generated by it cannot be used for policy learning.
We use a policy which follows a uniform distribution over the action space as a
behavior policy. Our online performance during data collection on a small por-
tion of real traffic doesn’t degrade, thanks to designing balanced diversity rules
and adopting a uniform distribution behavior policy. To handle the third chal-
lenge, we use off-policy REINFORCE algorithm [9] for off-policy learning and
importance sampling technique for off-policy evaluation [25]. We conduct offline
experiment to learn and select a good personalized diversity policy network.
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We call the Personalized Diversity Re-ranking Model in the granularity of user
request as PDRM-request model. Online A/B testing show significant improve-
ments in both the user browsing depth averaged by users and the number of
distinct categories of browsed items averaged by users over the baseline.

2 Background and Motivation

In the context of feed streaming, it is crucial to prioritize long-term user engage-
ment [36], which is exemplified by metrics such as user browsing depth and dwell
time. These metrics demonstrate not only that users can locate items of interest,
but also that they are willing to return to and spend time on the feed stream.
Our work focuses specifically on the user browsing depth, which refers to the
number of products browsed by a user within a single day. A higher brows-
ing depth indicates greater user satisfaction, as it suggests that the user enjoys
scrolling through and exploring the e-commerce portal.

2.1 Greedy-Based Re-ranking

We study the configurations of our existing ranking and re-ranking stages, and
try to find a breakthrough point for maximizing user browsing depth. The rank-
ing stage focuses on instant metrics, such as click-through rate or conversion
rate, and predicts the relevance of each user-item pair based on a scoring func-
tion that is learned from labeled data. It is well-known that it may be sub-optimal
to directly display top items to users as the scoring function applies to each item
individually and overlooks mutual influences between items. Instead, we aim
to provide users with relevant and diverse results that offer more choices and
improve their experience. The re-ranking stage, which controls the relevance-
diversity trade-off of the recommended list, is an appropriate phase to achieve
the maximization of user browsing depth. Thus, we analyze the current status of
our re-ranking module, which takes n items with point-wise relevance scores as
inputs and generates a recommended list of k items for each user request. Please
refer to the supplementary1 for more detailed descriptions.

2.2 Personalized Diversity in User Request Granularity

As mentioned above, the given diversity rule is a critical component for avoiding
bad user experience. However, the diversity rule we applied is fixed, which does
not account for the fact that each user’s request may have a unique propensity for
diversity. On one hand, diversity for recommender system should be user-specific,
depending on the user’s long-term preferences [27]. Users with narrow taste may
be more tolerant of having more similar products in the recommended list, while
those with wider interests may expect more diverse products. On the other hand,
even for the same user, his (her) intentions may differ in different requests. For

1 https://github.com/heli223/PDRM-request-appendix/.

https://github.com/heli223/PDRM-request-appendix/
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example, when a user clicks many products in the same category, it may indicate
that (s)he is very interested in this category at this time. Hence, it is fine to show
similar products in the recommended list. When (s)he clicks on a wide range of
products, (s)he may not have obvious purchasing intention, and the products in
the recommended list can be more diverse. Inspired from this observation, it is
more reasonable to apply the personalized diversity in the granularity of user
requests. Assigning an appropriate diversity rule to each request will make the
person who wants to browse be willing to browse more and make the person who
wants to click continue to click. Nevertheless, industrial recommender system is
a very complicated framework. Considering the convenience and compatibility of
the implementation, we still follow the greedy-based re-ranking approach while
achieving the personalized diversity in the granularity of user request. Although
the list retrieval system (i.e., list generation and list evaluation) [26,28] is popular
recently, we do not apply it as it is not compatible with our used components.
Back to the personalized diversity and our focus (i.e., user browsing depth), we
found that the personalized diversity process of user request granularity can be
modelled as a Markov decision process (MDP) to help optimize user browsing
depth. Therefore, the personalized diversity policy can choose the diversity rule
with a small immediate reward but make big contribution to the rewards for
future user requests. In this way, we not only own the ability of personalized
diversity in the granularity of user requests, but also improve the user browsing
depth.

3 The Proposed Approach

There are indeed challenges in the implementation of personalized diversity pol-
icy based on reinforcement learning. The first challenge is to design appropri-
ate reinforcement learning elements for the personalized diversity process. The
second is related to the fixed diversity rule, which makes it difficult to collect
interaction data for policy learning. The third challenge is off-policy learning
and evaluation, which is not straightforward.

3.1 Overview of the Framework

The personalized diversity re-ranking model (PDRM-request) framework in
Fig. 1 consists of three main parts: a point-wise learning to rank (LTR) model,
a personalized diversity policy network which works in parallel with LTR, and
a re-rank module. The framework works as follows. When a user request comes,
the LTR model assigns a relevance score to each candidate item generated by
the recall phase. Meanwhile, the personalized diversity policy network selects a
diversity rule from a pre-defined set of rules based on the information extracted
from the user request. Once the above both steps are completed, the re-rank
module applies the selected diversity rule to the candidate items with ranking
scores and outputs the recommended list for the user request.
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Fig. 1. The framework of the personalized diversity re-ranking model.

3.2 MDP Formulation of Personalized Diversity Process

The personalized diversity policy network observes information from the user
request, takes a diversity rule from the pre-defined diversity rule set, and receives
immediate feedback from the users. To formalize the sequential interactions
between the user requests and the personalized diversity re-ranking model for
e-commerce feeds recommendation, we represent it as a Markov decision process
(MDP). A MDP is usually defined by a tuple (S,A, R,P, γ), where S is state
space, A is action space, R : S ×A → R is the mean reward function which takes
values in the real number space R, and P : S ×A×S → R is the state transition
probability. The discount factor γ ∈ [0, 1) is used to measure the present value
of future reward. The policy is defined as π : S × A → [0, 1], which represents
the distribution over actions for any state s ∈ S. a ∈ A has a probability π(a|s).

For our personalized diversity re-ranking model, we devise the MDP elements
as follows. State space S: A set of states represented by a tuple at time step
t, denoted as st = (u, reqt, ct, et). Here u denotes the user information, reqt

denotes contextual information of the user request, ct represents items those the
user clicks and et represents the items previously exposed to the user before
step t. Action space A: A finite set of pre-defined diversity rules, where an
action represents a candidate diversity rule available in the re-ranking stage.
Reward R: The mean reward function which takes values in the real number
space R. The immediate reward obtained by taking action a at state s is denoted
as r(s, a) and it is measured by the number of products that a user browses in
each user request to optimize the cumulative users browsing depth. Transition
probability P: The probability of the next state st+1 given the current state
st and action at is represented as p(st+1|st, at). The objective of the agent is
to seek a policy that maximizes the expected discounted cumulative rewards
maxπ J(π) = maxπ Eτ∼π[R(τ)], where R(τ) =

∑|τ |
t=0 γtr(st, at). The expectation

is taken over the trajectories τ obtained by following the policy: s0 ∼ ρ0 is the
initial state, at ∼ π(·|st), and st+1 ∼ p(·|st, at). For specific elements design,
please refer to appendix.
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3.3 Personalized Diversity Policy

We use a policy network to represent the personalized diversity policy πθ(at|st),
which models the user state st and outputs a probability distribution over actions
in the action space. The structure of the policy network is shown in Fig. 2. It first
models the user state st, which contains the long-term user profile, contextual
information of the request, and short-term clicking and browsing history. Taking
the click sequence ct as an example, ci

t is a multi-hot encoding of the i-th clicked
item, which includes its category and brand ID in different granularity. The
embedding of the whole click sequence is modelled by the average embedding
over all items, i.e., ct = 1

|ct|
∑

i Wci
t, where W is the embedding lookup matrix.

The exposure sequence et is modelled in the same way as the click sequence. Then
the user state embedding is formed by concatenating the user profiles, contextual
information, and short-term behavior features: st = u⊕ reqt ⊕ ct ⊕ et, where ⊕
denotes a vector concatenation. Given the state embedding s, we implement a
two layer perceptrons to learn the high-order feature representation h. Finally,
the policy πθ(a|s) is modelled by a softmax layer over all actions.

Fig. 2. The structure of the policy network.

3.4 Off-Policy Learning

Given the explicit representation of πθ(a|s), policy optimization methods are
available to optimize the long-term rewards J(πθ). We focus on REINFORCE
algorithm [30], which optimizes the parameters θ directly by using the gradient
ascent algorithm. Thanks to the log-trick, the gradient of J(πθ) with respect to
the policy parameters can be approximated with the formula [9,28]: ∇θJ(πθ) =
Est∼dπ

t (·),at∼πθ(·|st) [R(st, at)∇θ log πθ(at|st)], where dπ
t (·) denotes the state dis-

tribution of πθ at step t, and R(st, at) =
∑|τ |

t′=t γt′−tr(st′ , at′) denotes the dis-
counted future reward from the t-th step. The vanilla REINFORCE algorithm
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is almost performed on-policy, which means that πθ is deployed and interacts
with users in real time and each policy update only utilizes user feedback col-
lected while acting according to the most recent version of the policy. However,
training the policy online and generating trajectories immediately is not desir-
able in recommender systems due to cost, risk, and infrastructure constraints,
as unsatisfactory policies may harm online performance. Therefore, it is more
crucial to apply off-policy learning in e-commerce instead. An alternative app-
roach is to train the policy network using logged feedback data collected by a
behavior policy β, which is different from the target policy πθ. Since the model
is trained offline, the online performance is not affected by the trial-and-error
online learning process.

Selections of Behavior Policy and Action Space. To achieve off-policy
learning in the personalized diversity re-ranking task, the first step is to collect
logged feedback data using a proper behavior policy with a proper action space.
However, in our applied greedy-based re-ranking approach, the diversity rule
is fixed and always selects the same diversity rule for all requests. Hence, the
data generated by it cannot be used for off-policy learning. To address this, we
use an uniform distribution as the behavior policy β, where actions are equally
selected from a pre-defined action space A for every user request. To construct
candidate action spaces, we follow the guidelines in Sect. 3.2 and create several
candidate rule sets as action space candidates, denoted by A(1),A(2), and so on.
The main differences between these candidates lie in the number of actions, and
the highest (or lowest) degree of the diversity rule in each action space. The
selection of action space A is crucial because a better action space with its uni-
form distribution policy leads to a better starting point of policy optimization.
Thus, we deploy different diversity rule sets along with their uniform distribu-
tion policies on multiple small slices of traffic for A/B testing. The diversity rule
set and its uniform distribution policy which has the best online A/B testing
performance is selected as the final action space and the final behavior policy
for data collection. Thanks to the benefits of constructing a balanced candi-
date diversity rule set and utilizing an uniform distribution policy, the optimal
action space A and its uniform distribution policy β show no significant A/B
testing performance degradation compared to the greedy-based re-ranking app-
roach described in Sect. 2.1. With the selected action space and behavior policy,
we can safely collect logged feedback data for a long period of time to conduct
off-policy learning.

Off-Policy Policy Gradient. With the provided behavior policy, we can
obtain an approximation of the policy gradient ∇θJ(πθ) based on the logged
data collected by policy β. The intuition behind off-policy policy gradient esti-
mation is to circumvent the distribution mismatch between the target policy πθ

and the behavior policy β. To do this, we use importance weighting [20,23] to
derive an approximation of the off-policy REINFORCE gradient. Please refer to
the supplementary for detailed derivation.
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4 Experimental Results

4.1 Offline Experiments

To answer the first research question of how to learn and select a good person-
alized diversity policy network, we conduct offline experiments.

Data Set. We design several diversity rule sets as action space candidates. We
deploy those candidate diversity rule sets by using their uniform distribution
policies on several small portions of traffic. Then, the diversity rule set together
with its uniform distribution policy which has superior online A/B testing result
is used as the action space and the behavior policy to collect the interaction data.
The logged data consists of many user browsing sessions, where each session
contains a complete interaction history {(s1, a1, r1), · · · , (sT , aT , rT )}, starting
from the first user request until the user leaves the recommender system at step
T . When a user’s request arrives, the online service collects the user state st, and
performs the personalized diversity re-ranking according to action at sampled
from the behavior policy, i.e., at ∼ β(·|st). We also record the user’s immediate
reward, which is the number of browsed items of the request. For our offline
experiment, we collect 16 consecutive days of user interaction data from a real-
world e-commerce platform. To make the experimental results be reliable, the
training data and testing data are separated in time order. The first 12 days are
used for training, and the last 4 days are for testing.

Baseline. We denote our personalized diversity re-ranking model in the gran-
ularity of user request as the PDRM-request model. We compare its perfor-
mance with an offline baseline called BASE-uniform, which is based on the
greedy-based re-ranking approach described in Sect. 2.1. BASE-uniform uses the
uniform distribution behavior policy β and the selected action space, which is
the one that performs best during online A/B testing illustrated in Sect. 4.1.

Metrics. To perform policy model selection, we have to evaluate the perfor-
mance of the policy model πθ(at|st) when it is deployed online. In the reinforce-
ment learning setting, we only have access to the log data from the behav-
ior policy β, but we have to exploit them to give a evaluation of πθ. Fol-
lowing [11,25], we use importance sampling technique to correct the distribu-
tion mismatch between the models β and πθ. For the t-th user request, we
denote its discounted future exposure reward under the behavior policy β as
Rβ(st, at) =

∑|τ |
t′=t γt′−trβ(st′ , at′). We use Rπθ(st, at) = πθ(at|st)

β(at|st)
Rβ(st, at)

to estimate the performance of πθ(at|st) if it is deployed for the t-th user
request instead. Then, we sum the discounted future exposure rewards of all
user requests in the test data set for policy πθ and behavior policy β, respec-
tively. We denote the two sums as Rπθ and Rβ , respectively. We then calcu-
late their relative improvement percentage, denoted as ExposureGain, namely,
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ExposureGain = Rπθ

Rβ − 1, which is used as the offline evaluation metric. A
higher value of ExposureGain indicates better model performance. We select
the policy network with the highest ExposureGain value as the optimal policy
network.

Experimental Settings. The policy is implemented as a multi-layer neural
network with an embedding dimension of 5 and two fully connected layers with
256 and 128 hidden units, respectively. As mentioned in Sect. 3.4, we use the off-
policy REINFORCE algorithm based on the work in [9]. During training, we use
the primitive function of the REINFORCE gradient as the objective function.
To update the policy, we use the Adam [16] optimizer with a batch size of 10000
and learning rate of 0.001. The discount factor γ is set to 0.7 for experiment. All
experiments are implemented on TensorFlow2.

Offline Results. We report the best offline evaluation result of the testing
data in Table 1, where BASE − uniform is set as the base. We can observe
that PDRM − request outperforms the baseline BASE − uniform. The result
suggests that our personalized diversity policy model is effective, as it enables
personalized recommendations for users, leading to improved performance.

Table 1. The results of offline evaluation.

Model Exposure Gain

BASE − uniform +0.0%

PDRM − request +0.0648%

4.2 Online Experiments

We focus on the second research question: how well our proposed personalized
diversity re-ranking model performs when it is deployed online.

Baseline. We deploy our model PDRM-request at a real-world e-commerce
site to verify its effectiveness. We point that in order to ensure the online per-
formance, we keep the KL-divergence between the deployed policy πθ and the
uniform distribution β under control. Therefore, we adopt a smoothing operation
over the final action distribution, i.e., softmax operation3. For online compari-
son, we compare it with the BASE-fixed approach, which is the greedy-based
re-ranking described in Sect. 2.1 and applies the given fixed diversity rule.
2 https://www.tensorflow.org/.
3 Other operations, such as epsilon-greedy or PPO algorithm, can be used to control

the distance, which is not the focus of this paper, so we do not discuss it in detail.

https://www.tensorflow.org/
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Online Metrics. We utilize three online metrics, including the user browsing
depth averaged by users (UBD, for short), the number of distinct categories of
browsed items averaged by users (UNOC), and the number of clicks averaged by
users (UCTR, for short). These metrics assess the willingness of users to click
and browse, as well as the diversity of the recommended items. A higher value
of the above metric indicates a better recommendation performance.

Online Results. We present the online experimental results in Table 2, where
we only report the relative improvement of PDRM-request over the BASE-fixed
model, in consideration of commercial concerns. The online A/B testing was con-
ducted for half a month, and the results show that the PDRM-request model has
statistically significant improvements over the BASE-fixed model, with a +0.50%
increase in the UBD metric and a +2.52% improvement in the UNOC metric.
Despite a slight decrease in the UCTR metric, this decrease is not statistically
significant. Overall, our proposed model enhances long-term user engagement
with no significant loss of clicks, and produces a more diversified recommen-
dation result that encourages exploration and alleviates the Matthew Effect in
recommender systems. For more details of an attempt on reward design, limita-
tions, and future work related to our paper, please refer to the supplementary
material due to space constraints.

Table 2. The results of online A/B testing.

Model UBD UNOC UCTR

BASE − fixed +0.0% +0.0% +0.0%

PDRM − request +0.50% (p = 0.0) +2.52% (p = 0.0) −0.22% (p = 0.21)

5 Related Work

The first category related to this paper is reinforcement learning (RL) for rec-
ommendations. Value-based approaches like Q-learning [19], and policy-based
ones such as policy gradients [30] are two classical approaches to solve RL prob-
lems [24]. Applying RL on recommendation and searching tasks has been a hot
research topic recently. Some examples [6,9,15,31–34,36] include DQN-based
RL framework for online news recommendation and policy gradient-based top-
K recommender system for video recommendation.

The second category is re-ranking methods. One class of re-ranking
approaches use multiple point-wise ranked items as inputs, and output the re-
fined scores, by modelling the complex dependencies between items in different
ways [3,4,7,35]. These include ideas such as the listwise context model [3] and
groupwise scoring functions [4], etc. To solve the challenges in re-ranking, there
is another popular class of re-ranking approaches, i.e., list generation and list
evaluation, which is also called as list recall and list ranking [26,28]. Diversity
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management also can be treated as a re-ranking model. More and more stud-
ies have tried to balance instant metrics and diversity in result lists to enhance
user satisfaction [1,2,5,8,10,13,14,29]. For example, the work [1] describes their
journey in tackling the problem of diversity for Airbnb search. Moreover, some
researchers proposed to utilize users’ behaviors for personalized diversified rec-
ommendation [12,21,27].

6 Conclusion

We propose a personalized diversity re-ranking model called PDRM-request,
which is designed to improve user browsing depth in feeds recommendation.
It can be easily deployed as a follow-up component after any ranking module.
Unlike existing models that consider user or user clusters as the granularity for
personalized diversity, this model focuses on the granularity of user requests, tak-
ing into account the fact that different requests have different tendencies towards
diversity. The personalized diversity process is formulated as a Markov decision
process, and an off-policy reinforcement learning approach is employed to learn
the optimal personalized diversity policy that maximizes long-term user engage-
ment. Offline experiments are carried out on real-world data collected from an
e-commerce site to learn and select a good policy. The PDRM-request model is
deployed in a live e-commerce portal. Online A/B testing results show that our
model is effective in improving user browsing depth and UNOC metrics in feeds
recommendation, demonstrating its usefulness in practical applications.
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Abstract. When building seizure prediction systems, the typical
research scenario is patient-specific. In this scenario, the model is limited
to performing well for individual patients and cannot acquire knowledge
transferable to new patients to learn a set of universal parameters appli-
cable to all patients. To this end, we investigate a new task scenario,
domain incremental (DI) learning, which aims to build a unified epilepsy
prediction system that performs well across patients by incrementally
learning new patients. However, the neural network is susceptible to
the problem of catastrophic forgetting (CF) during incremental train-
ing, which quickly forgets the knowledge learned from past tasks due to
differences in domain distributions. To address this problem, we intro-
duce an experience replay (ER) method, which stores a few samples
from previous patients and then replays them in new patient training to
review past knowledge. In addition, we propose a novel ER-based cen-
troid matching method (ER-CM) that computes the class centroid in
the feature space using subsets stored in the memory buffer. The ER-
CM regularizes incremental training by matching the distance between
sample embeddings and class centroid, providing additional guidance for
parameter updates. Experimental results demonstrate that the ER app-
roach substantially reduces CF and significantly improves performance
when combined with CM.

Keywords: Electroencephalogram (EEG) · seizure prediction ·
domain incremental learning · catastrophic forgetting · experience
replay · centroid matching

1 Introduction

Machine learning algorithms [8,10,13,22,23] have been successfully applied in
seizure prediction with excellent performance. However, this success remains lim-
ited due to most state-of-the-art solutions to seizure prediction being developed
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for patient-specific settings. In this scenario, the algorithms cannot consistently
acquire and transfer knowledge across different domains (patients). Specifically,
an algorithm trained in the patient-specific setting can only perform well for
one patient at a time, which is not capable of performing well for all patients
simultaneously. In a more open and real-world scenario, it is critical to learn
a set of parameters that behaves well for all patients to develop a unified and
parameters-shared system. In that perspective, the model could learn more gen-
eral and cross-subject discriminative features and thus acquire superior general-
ization capabilities.

Multi-task learning (joint learning) can learn a set of shared weight parame-
ters from domain-biased distributions across patients, showing outstanding per-
formance on each patient. However, the cost of memory storage and training is
expensive. As the number of patients increases, it becomes infeasible to store
and retrain the entire data for all patients. In addition, multi-task learning is
inefficient since knowledge learned from past tasks cannot be accumulated and
all tasks must be trained from scratch when a new task arrives. Therefore, an
artificial agent must be able to incrementally learn new patients from the task
stream while preserving knowledge of past patients.

Significant distribution differences in the EEG signals across patients have
been observed [11]. During incremental learning, abrupt domain shifts (switching
between patients) and over-biased learning of new data distributions often lead
to forgetting past knowledge in modern neural networks, which is well-known
as catastrophic forgetting (CF) [17]. The modern neural networks quickly forget
what is learned from past tasks, preventing them from learning progressively
on new patients (tasks) [6,15]. In this research, we explore domain incremental
learning, also called lifelong learning or continuous learning. It aims to address
the setting where samples from different tasks (patients) are learned sequentially
in task streams, with each task ideally encountered only once. In this case, the
model is only trained on new patients rather than all patients’ data at once.

Rehearsal-based methods [1,4,7,16,19] in incremental learning have gained
attention recently due to their simplicity and effectiveness, are commonly used
in text and image classification. In this family of methods, a few examples of
previous tasks or embedding features are stored directly in a fixed-size buffer
or compressed in a generative model and then replayed to mitigate CF when
trained on a new patient. In simple terms, rehearsal-based methods use previous
task experiences stored in the memory buffer to help adjust parameters for new
tasks. For instance, experience replay (ER) [4] has shown impressive results in
computer vision by jointly training stacked examples retrieved from the memory
buffer and the current task. We revisit the role of the memory buffer and consider
how to gain additional guidance on updating parameters from it.

Motivated by prototype networks [21], prototypes exist in the feature space,
and all embedding points of each class are clustered around the prototype of that
class. In this paper, we present empirical replay with centroid matching (ER-CM),
a novel method for incremental learning that leverages a few samples in mem-
ory to learn generic class centroids over the time step. The ER-CM regularizes
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the model by minimizing the distance between the feature embeddings and the
corresponding class centroids, which steers the model optimization. Specifically,
ER-CM computes the class centroid from mini-batches retrieved from the memory
buffer and matches stacked samples to the class centroid to obtain sample predic-
tions. We calculate the cross-entropy error between these predictions and labels
and combine the classification loss to constrain the parameters for updating. In
addition, we propose the sliding average update (SAU) strategy to mitigate cen-
troid shifts caused by underrepresented samples in each replay subset (Bm) from
the memory buffer, which is due to the random sampling nature of ER and the lim-
ited size of Bm. Our SAU strategy continuously calculates and updates the class
centroids, providing additional information to preserve the performance of original
tasks.

The main contributions of this work are as follows:

1. We focus on the challenge of incremental learning across patients in the EEG
domain for seizure prediction for the first time. To address this, we introduce
the ER method to alleviate catastrophic forgetting of previously seen tasks.

2. We further propose a novel centroid matching method based on the ER,
termed ER-CM, which assists the model in acquiring broader and more dis-
criminative embedding properties by implicitly limiting the gap between each
embedding vector and the class centroid. To address the centroid shift due
to the limited size and random sampling nature of each replay subset (Bm),
we propose the sliding average update (SAU) strategy, which continuously
updates the class centroids based on each replay subset.

3. Extensive experiments demonstrate that the ER-CM approach consistently
outperforms the ER approach and other baseline approaches in the Children’s
Hospital Boston and the Massachusetts Institute of Technology (CHB-MIT)
[20] and the American Epilepsy Society Prediction Challenge (Kaggle) [3]
databases.

2 Related Work

The Definition of Domain Incremental Learning: Domain incremental
learning for epilepsy prediction studies the problem of progressively learning
from the task stream to classify pre-ictal and inter-ictal signals, in which signif-
icant distribution shifts are frequently noticed among patients. We consider the
problem of supervised EEG classification over the task stream, where the system
receives a set of EEG segments (obtained via the sliding window) and labels from
the current task distribution Dt at time step t. Formally, we define a task stream
with unknown distribution as D = {D1, ...,DN}, where each task consists of
input EEG segments X = {x1, ..., xn} and the associated labels Y = {y1, ..., yn}.
Given a primitive model (e.g., the convolutional neural network) with two com-
ponents: the encoder maps the input EEG samples to d-dimensional embedding
vectors, denoted as f : X → Rd, with parameters θf ; the classifier g : Rd → Rc

that maps the d-dimensional embedding vectors to output predictions of the c
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categories, parameterized as θg. A domain incremental algorithm ADI is defined
as:

ADI
t : 〈(f, g)t−1, (XB , YB)t,Mt−1〉 → 〈(f, g)t,Mt〉 , (1)

where (f, g)t is the encoder and classifier at incremental step t, (XB , YB)t denotes
a mini-batch of size B that the model receives from task Dt, Mt is an external
memory for storing a subset of previously seen samples or a model from the
previous time step Mt−1. The model parameters θf and θg at time step t are
updated based on the mini-batch (XB , YB)t and the memory buffer Mt−1 during
the domain incremental learning.

Evaluation Metrics: To measure the degrees of the model forgetting, we define
the average forgetting Ft to assess how much of the acquired knowledge is lost
from the AUC perspective, which can be formulated as:

fi,j = max
k∈{1,...,i−1}

ak,j − ai,j ,

Ft =
1

t − 1

t−1∑

j=1

ft,j ,∀j < t,
(2)

where at,j represents the AUC evaluated on the test set of task j after training
the network from task 1 to t. fi,j represents the degree of model forgetting for
task j after being trained on tasks 1 to i. Generally, forgetting occurs when the
average AUC decreases with incremental learning new tasks, and the low average
forgetting values indicate less forgetting.

3 Methods

Experience replay (ER) [4] is one of the most competitive methods that has been
widely utilized in various fields. It deploys a memory buffer to store a subset
of data from previous tasks for replay. There are two crucial components are
involved: memory retrieval and memory update. In memory retrieval, ER uses
random sampling to replay samples. For memory update, ER employs reservoir
sampling [24] to ensure that every example in tasks has an equal chance of being
stored in the memory buffer. At incremental step 1, when receiving a mini-batch
(XB , YB), the model optimizes parameters θf and θg using the standard cross-
entropy loss (see time step 1 in Fig. 1). For incremental steps greater than 1,
a mini-batch of size Bm is retrieved from the buffer, and trained jointly with
a mini-batch of size B obtained from the current task. The classifier generates
prediction scores for stacked samples, and the model parameters are optimized
by minimizing the cross-entropy loss between these scores and the actual labels.
The classification loss �ce for time steps greater than 1 can be defined as:

�ce = − 1
Bm + B

Bm+B∑

i=1

yi log ŷi, (3)
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Fig. 1. The overall framework of ER-CM.

where yi is the label corresponding to the ith example, ŷi denotes the prediction
scores for the ith sample (obtained by the softmax function).

The ER method enables the acquisition of knowledge from prior tasks by
simply replaying a few previously seen samples during the new task training. To
obtain additional guidance on updating parameters from these replay samples,
we further propose the ER-based centroid matching (ER-CM) method. ER-CM
guides the model to learn more common semantic features or latent patterns
that existed in both past and current tasks by minimizing the distance between
stacked batches and class centroids in feature space. An overview of ER-CM is
illustrated in Fig. 1. For the incremental step of 1, the standard cross-entropy
loss is used as in ER. For incremental steps greater than 1, both the classification
loss and the centroid matching loss �cm jointly guide the updating of parameters.

The mini-batch (Bm) retrieved from the memory buffer is assumed to contain
a positive and b negative samples (a+b = Bm). The encoder f generates embed-
ding vectors of the replayed subsets, which are used to compute the class centroid
c for positive and negative samples, respectively. The formula is as follows:

c =
{ 1

a

∑a
i=1 f(xi), positive,

1
b

∑b
i=1 f(xi), negative.

(4)

Instead of using the stacked samples of size (B + Bm), the class centroids
are calculated from the representation of the replayed small batch of samples
(XBm

, YBm
). It avoids an overly biased estimation of the class centroid as most

samples that are stacked are taken from the current task (size B). Moreover, the
limited size of each replay subset (Bm) extracted from the memory buffer may
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result in centroid bias due to inadequate sample representation. To address this
issue, we propose the sliding average update (SAU) strategy, which continuously
updates the class centroid based on each replay subset. Specifically, suppose
an observed sequence of class centroid as {c1, c2, ..., cn}, where ci is the class
centroid calculated for the ith replay subset in the task stream. The ith class
centroid after the SAU strategy takes the following form:

f i
cm =

ci−1 + ci
2

, (5)

where c0 is initialized by the standard normal distribution. In cases where only
one class is present in the replay subset, the calculation of class centroid would
not be feasible. In such cases, the class centroid will be preserved as the previ-
ously updated value.

The cosine similarity is adopted to determine the distance of each example
to the class centroid in the latent space, which we use as the prediction scores
y′
i after softmax. Our centroid matching loss is defined as:

y′
i = σ(cosine(f(xi), fcm)),

�cm = − 1
B + Bm

B+Bm∑

i=1

yi log y′
i,

(6)

where σ denotes the softmax function.
The ER-CM incorporates the classification loss (�ce) and the centroid match-

ing loss (�cm) to optimize the final model. The overall loss function can be
expressed as:

� = �ce + λ�cm, (7)

where λ is the loss balance weight, we set 1 in our experiments.

4 Experiments

In this section, we first describe our experimental setup in the DI scenario,
including the benchmark datasets, preprocessing, baselines, and implementation
details. Following that, we evaluate the effectiveness of the proposed methods
and analyze the obtained results.

4.1 Experiment Setup

Preprocessing: We conduct experiments on the CHB-MIT [20] and Kaggle [3].
The CHB-MIT scalp EEG database collected EEG recordings from 22 pediatric
subjects with intractable epilepsy. A total of 182 seizures were recorded and
annotated by experts. These recordings contain 23 cases, each consisting of 9
to 42 consecutive .edf files. We consider the commonly used definition of EEG
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activity periods in works of literature [18,23] of seizure prediction, i.e., inter-
ictal, pre-ictal, seizure prediction horizon (SPH), and ictal. The same setup as
research in [9,12,18] is followed for the rest of the EEG activity period. We set
SPH to 1 min, pre-ictal to 30 min. The inter-ictal indicates the signals between
at least 4 h before the onset and 4 h after the end of the seizure. The seizure
onset period (SOP) refers to the period during which a seizure is expected to
occur after the system is alerted. In cases where the interval between two seizures
is less than 28 min, we regard only one leading seizure. Channel inconsistency
across patients leads to misaligned input shapes of EEG signals stored in the
memory buffer, hindering the network from performing incremental learning
across domains. Consequently, only raw EEG data from 18 channels common to
all patients are loaded. Please refer to [2] for details on specific channels.

The Kaggle records intracranial EEG from 5 dogs and 2 subjects, where the
iEEG signals from the dogs are sampled from 16 electrodes at 400 Hz using an
ambulatory monitoring system (15 electrodes in dog 5), and the iEEG data from
2 patients are sampled at 5000 Hz. The EEG signals are organized into 10-min
EEG segments, where each segment is labeled ‘Pre-ictal’ or ‘Inter-ictal’ and then
stored in the .mat file. The organizer defines the SPH as 5 min, and we similarly
set the SOP as 30 min [10,23]. To align the data shape with those of other dogs,
the iEEG signals sampled from 15 electrodes in dog 5 are zero-padded to 16
channels. As in literature [9,23], we resample the intracranial EEG signals of
dogs to 200 Hz.

Long-range EEG signals from two publicly available datasets were analyzed
using sliding window analysis with a window length of 15 s [9]. For most sub-
jects, there were significantly more inter-ictal signals than pre-ictal signals. The
overlap oversampling strategy with a 15 s sliding window is used to obtain extra
preictal data for training [23,26]. Due to the discrepancy in the EEG electrode
locations of the recorded signals across the two datasets, incremental learning is
not performed jointly for the two datasets but separately for both. In domain
incremental learning, each subject’s EEG data in two datasets was considered as
a separate task, with two classes of EEG samples (positive for pre-ictal and neg-
ative for inter-ictal) available for each task. Subjects in both datasets had 2 to 14
leading seizures. In the patient-specific setting, the leave-one-out cross-validation
strategy is used to assess all leading seizures of each patient separately. How-
ever, the network is trained and evaluated in a domain incremental fashion. The
inconsistent leading seizures across patients makes the above evaluation strategy
infeasible. To make the results more statistically significant and reduce accidental
evaluation errors, we define the last 5-fold leave-one-out cross-validation strat-
egy. Specifically, we temporally load the signals of pre-ictal and inter-ictal of
each seizure to compose an N -fold training set (Both pre-ictal and inter-ictal
signals divided into N parts). We conduct five iterations, each of which selects
one of the last five folds as test data and the remaining N − 1 parts as training
data. We report the average metrics for each patient across all five iterations.
Subjects with fewer than five leading seizures are not evaluated. To prevent over-
fitting during training, we take the first 75% of samples from each fold of the
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Fig. 2. Average AUC at the end of each task observed on CHB-MIT and Kaggle with
replay batch size of 64 and memory (M) of 5k in rehearsal-based methods. Each task
represents a patient. Upon completion of training for the ith task at time step i, the
model’s average performance is evaluated on tasks 1 to i. The ER-CM consistently
outperforms these compared approaches by significant margins.

training data for training and the remaining 25% for validation. Considering
these above definitions and limitations, we evaluated 60 seizures from 11 patients
in CHB-MIT and 38 seizures of 4 dogs from Kaggle.

Architectures and Training Settings: We use RepNet-MMCD [9] as the
architecture for extensive validation in our experiments. RepNet-MMCD is a
lightweight CNN architecture that uses deep separable convolutions to reduce
computational burden during training. In addition, re-parameterization is used
during testing to further mitigate deployment costs. A modified Monte Carlo
dropout strategy is also used to improve model reliability. All baselines use the
same model architecture for a given task stream, which is optimized using the
AdamW [14] optimizer with a mini-batch of size 128. The network consists of a
feature extractor (encoder) and a classifier, trained with learning rates of 0.004
and 0.0003, respectively. We train the model from scratch with 40 epochs and
set 10 patience in the early stopping technique to prevent overfitting.

We compare our proposed ER-CM against the following reference baselines:

– Joint Learning: The method trains the model offline for all patients over
multiple epochs, where mini-batches of each epoch are sampled i.i.d. It is
not an incremental learning method and is typically considered to approxi-
mate the upper bound of the incremental learning task. We set 40 epochs for
training and the mini-batch is 128.

– Fine-Tune: Fine-Tune refers to a model that is incrementally trained without
any measures to avoid forgetting, where model parameters on the new task
are initialized from the previous task parameter vector.

– LwF: Learning without forgetting (LWF) is a regularization method that
utilizes knowledge distillation to preserve experience from past seen task [5].
The student model is trained with the current task, while the teacher model
is trained after learning the last task.

– ER: Experience replay (ER) is a rehearsal-based method that stores replay
samples in a restricted-size memory buffer. It applies random sampling in
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memory retrieval to replay samples and uses reservoir sampling to update
memory.

– MIR: Maximally interfered retrieval [1] is a variant of ER that focus on
the memory update strategy. The MIR algorithm utilizes the principle of
maximum increase in loss after a virtual update to retrieve memory samples
from a larger subset.

4.2 Results

We compare ER-CM with several strong baselines described in Sect. 4.1. From
the Fig. 2, we can make several observations. First, the ER-CM consistently
outperforms these baseline approaches by significant margins over the entire
task streams of two public datasets. With incremental learning of tasks, ER-CM
becomes more prominent against catastrophic forgetting. Moreover, all rehearsal-
based methods (MIR, ER, ER-CM) show comparable performance and greatly
outperform the regularization-based method (LWF).

Table 1. Average performance of all methods on CHB-MIT and Kaggle at the end of
training. The average AUC, average Sn, average recall, average FPR, and average for-
getting are reported for the memory buffer with sizes 3k, 5k, and 10k. The experiments
are executed more than three times and the best performance is marked in bold. The
↑ indicates that a higher value is considered to be better performance.

Method CHB-MIT Kaggle

AUC ↑ Sn ↑ Recall ↑ Forgetting ↓ AUC ↑ Sn ↑ Recall ↑ Forgetting ↓
Joint Learning 0.905 ± 0.019 0.776 ± 0.018 0.913 ± 0.019 – 0.814 ± 0.001 0.526 ± 0.010 0.893 ± 0.001 –

Fine-Tune 0.609 ± 0.005 0.464 ± 0.027 0.687 ± 0.027 0.315 ± 0.025 0.641 ± 0.020 0.289 ± 0.072 0.872 ± 0.061 0.165 ± 0.028

LWF 0.674 ± 0.014 0.667 ± 0.114 0.520 ± 0.104 0.236 ± 0.022 0.675 ± 0.033 0.174 ± 0.103 0.845 ± 0.079 0.196 ± 0.083

M=3k MIR 0.688 ± 0.001 0.562 ± 0.005 0.700 ± 0.010 0.300 ± 0.005 0.710 ± 0.002 0.515 ± 0.018 0.766 ± 0.009 0.186 ± 0.004

ER 0.847 ± 0.012 0.738 ± 0.002 0.863 ± 0.006 0.116 ± 0.018 0.788 ± 0.001 0.525 ± 0.008 0.859 ± 0.005 0.065 ± 0.009

ER-CM 0.865 ± 0.001 0.752 ± 0.013 0.886 ± 0.008 0.098 ± 0.003 0.803 ± 0.002 0.601 ± 0.088 0.851 ± 0.039 0.041 ± 0.004

M=5k MIR 0.695 ± 0.018 0.599 ± 0.023 0.707 ± 0.050 0.290 ± 0.015 0.690 ± 0.023 0.499 ± 0.004 0.740 ± 0.023 0.201 ± 0.026

ER 0.856 ± 0.012 0.736 ± 0.002 0.887 ± 0.016 0.108 ± 0.015 0.786 ± 0.002 0.485 ± 0.014 0.892 ± 0.015 0.074 ± 0.006

ER-CM 0.887 ± 0.002 0.764 ± 0.036 0.909 ± 0.005 0.083 ± 0.008 0.807 ± 0.011 0.518 ± 0.038 0.888 ± 0.005 0.039 ± 0.012

M=10k MIR 0.661 ± 0,006 0.516 ± 0.009 0.731 ± 0.005 0.330 ± 0.001 0.701 ± 0.016 0.535 ± 0.004 0.744 ± 0.010 0.184 ± 0.008

ER 0.858 ± 0.011 0.724 ± 0.018 0.913 ± 0.011 0.103 ± 0.016 0.798 ± 0.006 0.541 ± 0.020 0.880 ± 0.006 0.070 ± 0.011

ER-CM 0.889 ± 0.001 0.753 ± 0.001 0.914 ± 0.001 0.080 ± 0.005 0.815 ± 0.006 0.567 ± 0.030 0.880 ± 0.006 0.036 ± 0.015

To thoroughly assess the robustness of the ER-CM approach and its ability
to generalize to the DI scenario, we conduct comprehensive experiments on the
CHB-MIT and Kaggle datasets, respectively. As shown in Table 1, the ER and
its variant (ER-CM) are substantially superior to the Fine-Tune method, which
lacks any regularization or episodic memory during the training. Besides, ER-
CM noticeably improves upon the baseline ER for the memory buffer sizes of
3k, 5k, and 10k. For example, in the CHB-MIT dataset, CM helps ER with
5k memory achieve gains of 3.6% (0.856 → 0.887), 3.8%, and 2.6% in average
AUC, average sensitivity and average recall, respectively, and effectively reduce
the average forgetting by 19.5%. Interestingly, across all memory buffer settings
shown in Table 1, we can observe that CM mostly preserves knowledge of positive
samples from past tasks (see Sn), while barely forgetting knowledge of negative
samples (see Recall).
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Table 2. Impact of memory buffer size on sliding average update strategy. At the
end of the training, the average performance with and without the SAU strategy is
evaluated for memory buffers of 3k, 5k, and 10k, respectively. The memory batch size
is 64 and the best performance is marked in bold.

Method CHB-MIT Kaggle

AUC ↑ Sn ↑ Recall ↑ Forgetting ↓ AUC ↑ Sn ↑ Recall ↑ Forgetting ↓
M=3k Without SAU 0.860 ± 0.007 0.738 ± 0.026 0.894 ± 0.002 0.109 ± 0.001 0.779 ± 0.004 0.467 ± 0.000 0.885 ± 0.014 0.081 ± 0.001

With SAU 0.865 ± 0.001 0.752 ± 0.013 0.886 ± 0.008 0.098 ± 0.003 0.803 ± 0.002 0.601 ± 0.088 0.851 ± 0.039 0.041 ± 0.004

M=5k Without SAU 0.871 ± 0.005 0.716 ± 0.002 0.909 ± 0.012 0.089 ± 0.001 0.796 ± 0.003 0.493 ± 0.029 0.898 ± 0.016 0.037 ± 0.011

With SAU 0.887 ± 0.002 0.764 ± 0.036 0.909 ± 0.005 0.083 ± 0.008 0.807 ± 0.011 0.518 ± 0.038 0.888 ± 0.005 0.039 ± 0.012

M=10k Without SAU 0.850 ± 0.009 0.714 ± 0.014 0.903 ± 0.003 0.106 ± 0.009 0.795 ± 0.026 0.523 ± 0.030 0.880 ± 0.021 0.057 ± 0.023

With SAU 0.889 ± 0.001 0.753 ± 0.001 0.914 ± 0.001 0.080 ± 0.005 0.815 ± 0.006 0.567 ± 0.030 0.880 ± 0.006 0.036 ± 0.015

4.3 Ablation Studies

We use ER-CM with a replay subset of 64 and a memory buffer of 5k as study
cases to analyze the impacts of memory buffer sizes and the SAU strategy, respec-
tively. Table 2 shows the effect of memory buffer size with and without SAU
strategy. It can be seen that ER-CM with the SAU strategy consistently outper-
forms ER-CM without the SAU strategy. Moreover, when M is increased to 10k,
the performance of ER-CM without the SAU strategy is significantly lower or
even inferior to the baseline ER. For instance, the average AUC of CHB-MIT is
0.850, while the average AUC of ER is 0.858. This can be attributed to the insuf-
ficient representations of samples in the fixed-size replay subset as the memory
size increases, leading to an overly biased estimation of the class centroid during
training. In contrast, the centroid matching with the SAU strategy continually
adjusts and updates the estimate of the new class centroid using information
computed from past replay subsets.

Table 3. Average performance of CNN and AdderNet on CHB-MIT and Kaggle at
the end of training.

Architectures CHB-MIT Kaggle

AUC ↑ Sn ↑ Recall ↑ Forgetting ↓ AUC ↑ Sn ↑ Recall ↑ Forgetting ↓
CNN [25] Joint Learning 0.815 ± 0.025 0.692 ± 0.041 0.820 ± 0.028 – 0.806 ± 0.008 0.491 ± 0.004 0.899 ± 0.017 –

Fine-Tune 0.599 ± 0.009 0.231 ± 0.032 0.872 ± 0.042 0.314 ± 0.017 0.612 ± 0.018 0.493 ± 0.113 0.646 ± 0.141 0.303 ± 0.018

LWF 0.633 ± 0.040 0.500 ± 0.005 0.683 ± 0.044 0.145 ± 0.009 0.564 ± 0.006 0.047 ± 0.019 0.966 ± 0.033 0.261 ± 0.033

MIR 0.683 ± 0.039 0.450 ± 0.015 0.821 ± 0.062 0.214 ± 0.011 0.668 ± 0.050 0.497 ± 0.047 0.733 ± 0.023 0.212 ± 0.044

ER 0.800 ± 0.011 0.621 ± 0.017 0.871 ± 0.018 0.113 ± 0.001 0.742 ± 0.041 0.580 ± 0.115 0.735 ± 0.156 0.107 ± 0.036

ER-CM 0.834 ± 0.011 0.639 ± 0.031 0.892 ± 0.009 0.098 ± 0.008 0.800 ± 0.004 0.493 ± 0.043 0.882 ± 0.012 0.057 ± 0.009

AdderNet [26] Joint Learning 0.872 ± 0.007 0.717 ± 0.034 0.896 ± 0.021 – 0.794 ± 0.028 0.482 ± 0.047 0.919 ± 0.004 –

Fine-Tune 0.608 ± 0.006 0.256 ± 0.033 0.888 ± 0.019 0.328 ± 0.017 0.601 ± 0.015 0.366 ± 0.043 0.774 ± 0.065 0.395 ± 0.022

LWF 0.621 ± 0.019 0.486 ± 0.081 0.638 ± 0.044 0.216 ± 0.034 0.600 ± 0.002 0.340 ± 0.110 0.762 ± 0.128 0.271 ± 0.052

MIR 0.744 ± 0.036 0.588 ± 0.053 0.746 ± 0.045 0.223 ± 0.034 0.748 ± 0.032 0.504 ± 0.071 0.786 ± 0.027 0.131 ± 0.019

ER 0.859 ± 0.015 0.684 ± 0.036 0.902 ± 0.014 0.104 ± 0.017 0.825 ± 0.014 0.572 ± 0.027 0.875 ± 0.041 0.056 ± 0.028

ER-CM 0.880 ± 0.008 0.695 ± 0.022 0.913 ± 0.011 0.093 ± 0.011 0.847 ± 0.007 0.542 ± 0.018 0.919 ± 0.008 0.034 ± 0.012

4.4 Performance on Other Architectures

We extend these approaches to other representative models such as AdderNet
[26] and CNN [25]. The CNN is a classical architecture stacked by standard
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convolutional layers, ReLU activation functions, and max pooling layers. In con-
trast, the AdderNet replaces multiplication with additive operations in convolu-
tional computation to reduce the computational overhead. We follow the training
setup presented in the original paper. As shown in Table 3, the proposed ER-
CM method consistently outperforms other baseline methods on both networks,
which further validates the generalizability of ER-CM.

5 Conclusion

We investigate the problem of catastrophic forgetting in supervised domain incre-
mental scenarios for seizure prediction tasks and present a simple yet effective
solution using the ER method. In addition, we further propose a novel cen-
troid matching (CM) technique that leverages sample embeddings stored in an
episodic memory buffer to compute class centroids and guides the parameter
update by aligning samples with the corresponding class centroid in the feature
space. Our method also implements the SAU strategy that continually adjusts
and updates the current class centroid estimate using prior centroid information.
The empirical analysis of two benchmark datasets demonstrates that CM can
effectively regularize the model, reduce catastrophic forgetting in the DI setting.
We hope that it can inspire other multiclassification problems and expect future
research to further explore its potential and limitations.
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Abstract. Versatile Video Coding (VVC) introduces a new block parti-
tion structure called Multi-Type Tree (MTT), which includes four parti-
tioning modes: horizontal-vertical binary tree partitioning, horizontal-
vertical ternary tree partitioning. This new block partition structure
significantly improves compression performance, but at the same time
greatly increases the computational complexity of VVC. To reduce the
computational complexity of MTT in VVC inter-frame coding, a Mul-
titask learning-Based early MTT partition decision for Versatile Video
Coding is proposed. Firstly, for each Coding Unit (CU), two types of
features related to the optimal MTT partitioning are extracted, namely
encoding parameter features and encoding intermediate information fea-
tures. Secondly, to reduce the number of neural network parameters,
the horizontal or vertical partitioning in MTT is jointly learned, and
lightweight neural networks are constructed to decide whether to skip
the horizontal or vertical partitioning of binary or ternary trees. Experi-
mental results show that under the Random Access (RA) configuration,
the proposed method can reduce the VVC inter-frame computational
complexity by an average of 27.79%, while only increasing the Bjonte-
gaard delta bit rate (BDBR) by 1.14%.

Keywords: Versatile video coding · Multi-type tree · Multi-task
learning · Block partition

1 Introduction

With the rapid development of information acquisition technology, new video
formats continue to emerge, such as 4K/8K and 360◦ panoramic video. Although
the new video formats can give viewers a better visual experience, their data
volume is very large, which brings new serious challenges to the field of video
compression. In order to store and transmit video data more efficiently, in July
2020, Joint Video Explore Team (JVET) launched the new generation video
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compression standard H.266/VVC [1]. Compared with the previous generation
of video compression standard H.265/High Efficiency Video Coding (HEVC),
the coding efficiency has been improved by about 40% while maintaining the
same subjective video quality [2].

Similar to the coding structure of HEVC, VVC is also encoded based on
hybrid coding framework. In order to further improve coding efficiency, VVC
introduced many new coding techniques [3,4]. For example, in order to support
more flexible block partitioning shapes, VVC used a nested multi-type tree based
on Quadtree with nested multi-type tree (QTMT), which increases the number
of partition modes for each CU to six [5]: Non-partition (NT), Quadtree parti-
tion (QT), Horizontal binary tree partition (H BT), Vertical binary tree parti-
tion (V BT), Horizontal ternary tree partition (H TT) and Vertical ternary tree
partition (V TT), as shown in Fig. 1. Under the RA configuration, the QTMT
partitioning structure can reduce the coding rate by 8.5% [6], but it leads to
about 1.7 times more computational complexity for VVC than HEVC [7]. Cur-
rently, the high complexity has become a major obstacle to deploying VVC in
real-time applications on devices that require low power consumption, such as
smartphones and unmanned aerial vehicles. Therefore, it is necessary to study
fast QTMT decision method to reduce the complexity of VVC.

Fig. 1. Six partition modes.

In this paper, a multi-task learning-based early MTT partitioning decision
method for VVC is proposed, which cleverly combines multi-task learning with
the MTT module of VVC for the first time, and effectively solves the problems
of a large number of model parameters and low prediction accuracy. The main
contribution of this paper is as follows:

(1) Some new features related to MTT partitioning have been proposed,
experimental results show that these features have good prediction effect, and
the proposed method can effectively reduce the computational complexity.

(2) A lightweight neural network based on multi-task learning is proposed to
reduce the computational complexity of MTT, the lightweight neural network
model has fewer parameters and low training difficulty.

2 Related Work

2.1 Fast Algorithm in HEVC

The QTMT module of VVC is extended from the Quadtree module of HEVC.
The existing fast algorithms in HEVC can be mainly divided into two categories:
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the methods based on Machine Learning (ML) [8–12] and the methods based
on encoding intermediate information [13–15]. For example, Bouaafia et al. [8]
proposed two fast CU partitioning methods based on ML. The first is the online
Support Vector Machine (SVM) fast algorithm. Another method is to design
a deep convolutional neural network to predict the optimal size of each CU.
Lee et al. [11] used characteristic information based on Sobel operator and rate
distortion to determine the optimal size of each CU in advance. In the method
based on intermediate information. For example, Tan et al. [13] predicted resid-
ual error through statistical analysis and designed a residual threshold to deter-
mine whether the CU needs further division.

2.2 Fast Algorithm in VVC

Since QTMT partitioning in VVC is more complex and flexible than QT par-
titioning in HEVC, the above method cannot be used directly in VVC. Fast
methods in VVC also fall into two categories: the methods based on ML [16–
22] and the methods based on intermediate information [23–26]. In the method
based on ML, methods [16–20] is used for RA configuration inter-frame coding.
For example, Pan et al. [16] designed a Multi-information Convolutional Neu-
ral Network (MF-CNN) model, which jointly uses multi-domain information to
terminate the CU partitioning process in advance. Methods [21,22] are used for
All Intra (AI) configuration intra-frame coding. For example, Tissier et al. [21]
proposed a two-stage learning method is proposed to reduce the computational
complexity of CUs in VVC encoders, including CNN and Decision Tree.

In the method using intermediate coding information, methods [23,24] is
used for inter-frame coding. For example, Won et al. [23] proposed a fast par-
titioning algorithm of binary and ternary trees based on Mean Absolute Error
(MAE) function, using the MAE value to compare with a threshold value to
determine whether to further partition. Methods [25,26] is used for intra-frame
encoding. For example, Peng et al. [26] sets adaptive threshold to classify CUs
into simple, ordinary and complex types according to texture features, and skips
the calculation of all partition modes of simple CU.

3 Background and Motivation

In the VVC encoding process, the current frame is first divided into multiple
Coding Tree Units (CTUs) of the same size. Then, each CTU is divided into CU
leaf nodes, and then CUs is recursively divided. Due to the addition of a variety
of partitioning modes and partitioning rules, the partitioning results of a frame
image become diverse. In order to obtain the best result of the current frame
partitioning, it is necessary to traverse all possible partitioning cases for each CU
and calculate the Rate-Distortion cost (RDcost) for each CU partitioning mode.
Finally, the mode with the lowest RDcost is selected as the best CU partitioning
mode. The RDcost is calculated as follows:

RDcost = D + λ × Km (1)
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where D is the distortion, Km represents the number of bits of mode m, m
includes the six partition modes show in Fig. 1, and λ is the Lagrange multiplier.

Although the exhaustive search method in VVC can obtain the optimal par-
tition mode of CUs, it increases the RDcost calculation several times, which
brings a sharp increase in computational complexity. Figure 2 shows an example
of optimal CU partitioning in a frame of BQSquare sequence in RA configuration,
where the left subgraph is a 128×128 CU partition, Only one partition mode is
selected as the optimal mode for a CU. Therefore, if we can accurately predict
the optimal partition mode of CUs in advance and skip the RDcost calculation
of the remaining partition modes, the complexity will be reduced effectively.

Fig. 2. A Partition Example.

4 Proposed Approach

4.1 Multi-task Learning Model

Multi-task Learning (MTL) can combine datasets from multiple tasks, and
thereby alleviating the problem of data sparsity by utilizing useful informa-
tion from other related learning tasks. In addition, when multiple tasks learn
together, the unrelated parts of the tasks act as trace noise, and adding trace
noise can improve the generalization ability of the model.

In VVC, since the binary tree partitioning of CUs in the same direction is
closely related to the ternary tree partitioning, MTL can be applied to the MTT
module of VVC based on this feature. Therefore, in this paper, the binary tree
horizontal partitioning skip and ternary tree horizontal partitioning skip of the
same CU are combined into a multi-task problem, while the vertical orientation
constitutes another multi-task problem. Then, two types of multitask learning
models are constructed: Horizontal Multitask Model (HMTL) and Vertical Mul-
titask Model (VMTL). In order to reduce the number of parameters in the
model, this paper employs lightweight neural network to build multi-task learn-
ing model. The specific structure of the model is shown in Fig. 3. At the input
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Fig. 3. Network Model.

layer, the residuals, CU information and gradients of two single tasks are input
into the model for feature processing according to the calculation method in
Sect. 4.2, and the obtained features are then processed using a simple two-layer
fully connected (FC) network. The final output is the prediction result of two
single tasks. The multi-task learning model utilizes Mean Square Error (MSE)
as the loss function, which is defined as follows:

MSE(y, y′) =
∑n

i=1(yi − y
′
i)

2

n
(2)

where y′ is the predicted value, y is the actual value, and n is the dimension.

4.2 Feature Analysis

In order to obtain the features most relevant to the optimal partitioning mode,
the coding information of each CU and the corresponding optimal partitioning
mode are extracted as data sets in the original VVC encoding process. In this
paper, eight types of coding information are selected for correlation research.
Then, according to the correlation from high to low, six kinds of encoded infor-
mation are chosen as the input features for the model, Fig. 4 illustrates the
analysis of thermal map characteristics. The dataset is obtained by encoding
the BlowingBubbles sequence, Although the data set is extracted from only one
sequence, the experimental results demonstrate that the model also exhibits good
prediction performance on other sequences, which also proves that the method
proposed in this paper has good generalization. The following is a detailed expla-
nation of the selected features:

1) Maximum subblock residual variance (Max res): In inter-frame coding,
the residual value represents the changes of pixel value. However, block par-
tition tends to divide pixels with similar changes into the same block, so the
partitioning mode becomes more necessary when the variance value of subblock
residuals obtained after partitioning is smaller. The residual value of pixel points
is calculated as follows:

Ri,j = |Pi,j − Oi,j | (3)
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Fig. 4. The analysis of thermal map characteristics. The left is the HMTL data set
and the right is the VMTL data set.

where Ri,j represents the residual value of point (i,j) in the subblock, Pi,j rep-
resents the predicted luma value, and Oi,j represents the original luma value.
In order to ensure that the subblocks of variance calculation are of the same
size, the binary tree partitioning mode is considered to have two subblocks of
equal size, and the ternary tree partitioning mode is considered to have four
subblocks of equal size. Finally, the residual variance values of all CU subblocks
are calculated based on the current partitioning mode, and the maximum value
is normalized as a feature. The variance calculation is as follows:

V ar =

∑H−1
i=0

∑W−1
j=0 (Ri,j − R̄)2

H × W
(4)

where V ar is the residual variance value of subblock, H is the height of subblock,
W is the width, Ri,j is the residual value of subblock point (i, j), R̄ is the average
residual value of subblock.

2) Comparison value of variance of subblock residuals (Comp var): Judging
from only one direction will result in significant prediction errors. Therefore,
within the same partition tree, we can compare the partition modes in two
different directions to obtain the maximum residual variance value of subblock,
and then skip the partition mode with large residual variance value of subblock
through comparison. This feature is calculated as follows:

S =

{
1 V ar H > V ar V

0 V ar H < V ar V
D =

{
1 V ar V > V ar H

0 V ar V < V ar H
(5)

where V ar H represents the maximum residual variance value of current CU
horizontal subblock, V ar V represents the maximum residual variance value
of vertical subblock, S represents the horizontal binary tree and ternary tree
features, and D represents the vertical binary tree and ternary tree features.
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3) Quantization parameter (QP): QP reflects the compression level of spatial
details. A smaller QP value indicates a higher retention of details, leading to a
tendency to divide the data into smaller blocks.

4) Aspect ratio (HW ratio): When the width is larger than the height, CU
tends to be divided vertically. The specific calculation formula of this feature is
as follows:

HW ratio =

⎧
⎪⎨

⎪⎩

H

H + W
Mε {H BT,H TT}

W

H + W
Mε {V BT, V TT}

(6)

where H is the height of the current CU, W is the width, and M is the partition
mode of the current CU.

5) QTMT Depth (Depth): the smaller the depth is, the more likely it is to be
divided, conversely, the larger the depth, the more likely it is not to be divided.

6) Horizontal and vertical gradient ratio (Gard ratio): The gradient value
can effectively represent the motion in a specific direction. In this paper, HMTL
model uses Gh/Gv, VMTL model uses Gv/Gh, and the specific calculation for-
mula of gradient is as follows:

Gh =
H−1∑

i=0

W−1∑

j=0

|Ri,j+1 − Ri,j | Gv =
H−1∑

i=0

W−1∑

j=0

|Ri+1,j − Ri,j | (7)

where Gh and Gv respectively represent horizontal and vertical gradients. H is
the height of the current CU, W is the width, and Ri,j represents the residual
value of the point (i, j).

4.3 Model Training

In order to obtain the lightweight neural network structure with the best per-
formance, we tested five different fully connected network structures. The test
results are shown in Table 1,“Quantity” represents the number of parameters and
“Accuracy” represents the model accuracy. The structure 6×20×20 achieved the
highest prediction accuracy, and both tasks use the same structure.

Table 1. Model Architecture Testing.

Structure 6×10×50 6×30 6×20 6×30×30 6×20×20

Quantity 671 241 161 1171 581

Accuracy 80.14% 78.43% 78.13% 81.48% 83.32%

After data cleaning and redundancy removal, a total of 284,497 data sets
were used to train the previously constructed multi-task model, including 110,589
data sets for the HMTL model and 173,908 data sets for the VMTL model. Train
the model precision convergence about 500 times, and both models achieved an
accuracy of over 80%. Figure 5 illustrates the training process.
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Fig. 5. Train Process. The left is the HMTL model and the right is the VMTL model,
“Acc” represents the accuracy and “Epoch” represents the number of iterations

4.4 The Whole Algorithm Proposed

In this paper, the objective is to identify unnecessary partitioning modes using
the algorithm, skip the calculation of RDcost, and reduce the computational
complexity in the search process for the optimal CU partitioning mode. Addi-
tionally, skip flags are introduced to minimize the impact of incorrect predictions.
For the binary tree or ternary tree partitioning of the same CU, if the HMTL
model predicts the horizontal direction and skips it, the VMTL model will not
make predictions for the vertical direction. The overall flow of the proposed algo-
rithm is presented in Algorithm 1, Where “Skip” indicates that the calculation
of the current mode is skipped ahead of time.

5 Experimental Results and Discussion

5.1 Experimental Conditions

In order to evaluate the performance of the proposed method, the latest test
software VTM19.2 and the test software VTM6.0 of VVC were tested respec-
tively with the original VTM as the anchor point. The experiment employed a
total of 21 recommended general test videos, ranging from Class A1 to Class E,
with RA configuration and QPs of 22, 27, 32, and 37. To mitigate the impact of
incorrect predictions, the decision to skip the partitioning mode was based on a
confidence level exceeding 95% in the model prediction. Therefore, the threshold
(th) is set to 0.05. Encoding performance was evaluated using encoding time
saving TS and BDBR [27]. Typically, better performance is indicated by greater
encoding time reduction and smaller BDBR increase. To quantify coding perfor-
mance, we use a performance metric similar to what is called a “Factor” in [28].
A higher Factor value denotes superior performance, The formulas are defined
as follows:

TS =
Timeorg − Timepre

Timeorg
(8)
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Algorithm 1: Proposed Algorithm
Input: Current mode M , Threshold value th, Binary tree horizontal skip flag

B flag, Ternary tree horizontal skip flag T flag
initialization:B flag=0, T flag=0, p bh=1, p bv=1, p th=1, p tv=1
if M==H BT then

HMTL prediction—>p bh,p th;
if p bh < th then

Skip and B flag=1
else

B flag=0

if M==V BT && B flag=0 then
VMTL prediction—>p bv,p tv;
if p bv < th then

Skip

if M==H TT && p th < th then
Skip and T flag=1;

if M==V TT && p tv < th && T flag=0 then
Skip;

end

Factor =
TS

BDBR
(9)

where Timeorg represents the total encoding time of the original VTM encoder,
and Timepre represents the total encoding time with the proposed algorithm
added. The computer configuration for the experiment is: “11th Gen Intel(R)
Core(TM) i7-11700F @ 2.50GHz, 16GB-RAM”

5.2 Coding Performance Evaluation

Table 2 shows the overall performance of the proposed method. The fast MTT
partitioning method proposed in VTM19.2 can save 13.92%-41.63% encoding
time, with an average saving of 27.79%. The corresponding BDBR increases by
0.56%-1.79%, with an average increase of only 1.14%. To better demonstrate the
effectiveness of the algorithm proposed in this paper, a comparison is made with
the methods proposed by Pan [16] and Li [24]. In order to make the experimental
comparison fair, the same test platform version is used. The algorithm proposed
in this paper is implemented on VTM6.0, and the comparison data with Pan’s
method is obtained. Similarly, Li’s algorithm implemented on VTM19.2 is com-
pared with the experimental results of the algorithm proposed in this paper.
On VTM6.0, Pan’s method achieves an average time reduction of 25.42% with
an average BDBR increase of 2.53%. In contrast, the proposed method achieves
an average time reduction of 26.68% with an average BDBR increase of 0.98%.
On VTM19.2, Li’s algorithm saves an average of 23.95% of time, and BDBR
increases an average of 1.21%. The results indicate that, on average, the pro-
posed method outperforms both Pan’s and Li’s algorithms in terms of TS and
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BDBR. In other words, the method in this paper achieves a greater reduction in
coding time with a smaller increase in BDBR, and get a higher Factor value.

Table 2. Experimental Result.

Class Sequence Pan[16] Li[24] Proposed(V6.0) Proposed(V19.2)

BDBR TS BDBR TS BDBR TS BDBR TS

A1 Campfire 2.80 30.08 1.84 33.35 1.24 30.23 1.31 30.37

FoodMarket4 1.59 42.90 0.70 25.33 0.92 35.82 0.80 41.63

Tango2 3.68 34.05 0.87 21.19 1.39 30.90 1.73 35.66

A2 CatRobot1 5.59 30.62 0.85 16.28 0.61 25.21 0.79 29.11

DaylightRoad2 4.43 29.20 0.91 17.00 1.13 27.21 1.60 31.90

ParkRunning3 1.61 21.30 0.87 27.35 0.73 28.50 0.87 29.54

B MarketPlace 3.22 36.47 1.20 21.54 1.35 30.47 1.38 30.50

RitualDance 2.97 31.23 1.89 29.53 1.52 30.71 1.79 26.86

BasketballDrive 2.96 32.39 1.29 27.14 1.40 30.96 1.59 31.23

BQTerrace 0.98 13.80 0.86 26.45 0.22 23.42 0.56 26.42

Cactus 5.20 25.42 1.12 25.41 0.94 26.19 0.75 27.54

C BasketballDrill 1.59 24.38 1.60 32.98 1.25 28.60 1.54 26.14

PartyScene 1.84 14.94 1.36 33.65 0.69 24.94 0.86 25.33

RaceHorsesC 2.23 22.55 1.92 32.63 1.05 25.87 1.29 26.02

D BasketballPass 1.56 21.18 1.49 22.71 0.75 22.58 0.86 20.58

BlowingBubbles 2.29 16.97 1.44 22.94 0.79 23.63 1.05 23.91

BQSquare 0.84 9.69 1.04 18.78 0.35 15.30 0.65 13.92

RaceHorses 2.24 20.33 1.96 26.83 1.40 25.36 1.38 23.80

E FourPeople 1.76 25.26 0.93 15.63 0.88 23.04 0.97 26.11

Johnny 1.69 24.92 0.63 12.65 0.63 25.77 1.20 28.95

KristenAndSara 2.11 26.21 0.65 13.53 0.92 25.53 0.93 28.13

Average 2.53 25.42 1.21 23.95 0.98 26.68 1.14 27.79

Factor 10.45 19.79 27.22 24.38

5.3 Model Performance Evaluation

In order to provide a clearer analysis of the number of model parameters, a
comparison is made between the network structure in this paper and Pan’s [16]
as shown in Table 3. The number of model parameters used in this paper is only
1162, which is far less than Pan’s model with 25.6M. In addition, the additional
consumption brought by the model is tested under four different QPS. The result
is to take the average of three sequences (BasketballDrill, BlowingBubbles and
FourPeople). The additional time added in this paper is only 0.98% on average,
while the additional time added by the Pan’s model is 5.21%. Combined with the
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experimental test results, it is shown that the neural network model constructed
in this paper can bring better prediction effect with fewer parameters.

Table 3. Model Parameter Quantity.

Structure Quantity Size QP22 QP27 QP32 QP37 Average

Proposed Full-6*20*20 1162 4.528KB 0.73% 0.78% 1.06% 1.38% 0.98%

Pan [16] ResNet-50 25.6M 102.4MB 4.23% 5.18% 5.91% 5.53% 5.21%

6 Conclusion

In order to reduce the computational complexity of VVC inter-frame coding,
this paper proposes a Multitask learning-Based early MTT partition decision
for VVC inter-frame coding. The proposed multi-task learning model is simple
in structure, easy to be integrated into VVC test software, and can effectively
reduce the complexity of coding computation. Experimental results show that
the proposed method can achieve good coding performance on different versions
of the test platform. In the latest test platform VTM19.2, the average BDBR
increase is only 1.14%, and the encoding time can be reduced by 27.79%.
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Abstract. Accurately reconstructing the location and extent of cortical
sources is crucial for cognitive research and clinical applications. Regu-
larization methods that use the L1-norm in the spatial variation domain
effectively estimate cortical extended sources. However, in the variation
domain, employing L1-norm constraint tends to overestimate the extent
of sources. Hence, to achieve more precise estimations of both the loca-
tion and extent of sources, further sparseness-enforced regularizations are
required. In this work, we develop a robust EEG source imaging method,
VSSI-Lp, to estimate extended cortical sources. VSSI-Lp employs the Lp-
norm (0 < p < 1) in the variation domain to promote sparsity. Using
alternating direction method of multipliers (ADMM) and generalized
soft-thresholding (GST) algorithm, we can efficiently derive the solution
of VSSI-Lp. According to numerical simulations plus real data analysis,
VSSI-Lp outperforms both traditional L2 and L1-norm-based methods,
and the L1-norm-based method in the variation domain for reconstruct-
ing extended sources, validating the outstanding performance of Lp-norm
and variation constraint.

Keywords: EEG source imaging · Lp-norm · Variation sparsity ·
generalized soft-thresholding

1 Introduction

As a non-invasive tool, Electroencephalography (EEG) is used extensively in neu-
roscience research because of its excellent millisecond-level time resolution. EEG
source imaging (ESI) aims to reconstruct cortical activities from EEG signals,
essential in neuroscience research and clinical diagnosis (e.g., epileptic seizure
area localization). Moreover, ESI can also provide higher spatial resolution in
BCIs [6,8], obtaining more precise outcomes.
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To handle this ESI task, the current density model uses triangles to represent
sources and divides the cortex into a fixed triangular mesh [12]. With Maxwell’s
equations, the EEG signal is somehow a linear combination of the source ampli-
tudes [9]. Then ESI estimates the potential source activities by solving this linear
inverse problem, which is to find a source configuration that best suits the scalp
EEG measurement. However, the inverse problem is fully underdetermined due
to the candidate sources (typically more than 5000) vastly outnumbered the
scalp EEG electrodes (tens to hundreds) [7,16]. To obtain a unique source con-
figuration, employing appropriate constraints on the source spaces is therefore
necessary.

The most commonly employed constraint is the L2-norm regularization, like
the minimum norm estimate (MNE) [7], which obtains the target source con-
figuration with the minimum energy. However, the solutions of MNE are biased
towards superficial sources because the fields generated by scalp sources are
stronger than the deep sources with less energy [7]. One way to compensate for
this bias is to weight the regularization term with the lead-field matrix, which
is referred to as the weighted MNE (wMNE) [13]. Furthermore, in consider-
ing the dependencies between adjacent sources, the low-resolution electromag-
netic tomography (LORETA) approach was proposed. LORETA minimizes the
L2-norm of the second-order spatial derivative in source space, so as to derive
smoothness and local spatial coherent solutions. In general, these L2-norm-based
methods are welcomed due to their computational efficiency, but they limit spa-
tial resolution as they produce diffused estimations, though.

Sparse methods with L0-norm provide better spatial resolution than the L2-
norm-based approaches, but L0-norm optimization is computationally infeasi-
ble with large-scale data. To approximate the L0-norm, L1-norm constraints
are commonly used [14]. However, the sparse constraint on the original source
space only produces some point sources, providing little information on the size
of cortical activities [7,11]. In contrast, employing L1-norm regularization in
the transform domain, such as variation transform, will provide more accurate
estimations of extended sources [4,12]. Nonetheless, as suggested in [2], in the
transform domain, methods based on L1-norm tend to overestimate the extent of
sources, especially for small-sized sources. Therefore, more sparseness-enforced
constraints are necessary to achieve more accurate estimations [3].

To better approximate the solution of L0-norm with sufficient sparsity, sev-
eral studies have adopted the Lp-norm (0 < p < 1). Lp-norm offers flexible
recovery by controlling the value of p. Moreover, Lp-norm-based methods require
fewer measurements to achieve reliable reconstruction [3]. Therefore we propose
a new ESI algorithm in this work, to accurately estimate locations and extents of
sources, named Variation Sparse Source Imaging based on Lp-norm (VSSI-Lp).
Specifically, we utilize the Lp-norm regularization for spatial variation sources
to obtain sparse and robust solutions in the variation domain. The value of p
is alterable to fit sparsity and noise flexibly, enabling more reliable estimations.
Moreover, we employ the Alternating Direction Method of Multipliers (ADMM)
algorithm [20], in order to solve the optimization problem efficiently.
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The structure of this paper is outlined as follows. In Sect. 2, we introduce the
details of VSSI-Lp. In Sect. 3, we present the simulation design and evaluation
metrics. In Sect. 4, we compare the performance of VSSI-Lp with the benchmark
algorithms, followed by a brief discussion and conclusion in Sect. 5.

2 Method

We can use the following formula to describe the linear relationship between
potential sources and EEG [2,10]

b = Ls + ε (1)

in which b ∈ R
m×1 is the scalp EEG measurement from m sensors. s ∈ R

n×1

denotes the current sources of n sources. L ∈ R
m×n is so-called the lead-field

matrix, describing the conductivity from potential sources to scalp electrodes.
ε is the measurement noise typically assumed to follow a Gaussian distribu-
tion [17].

The goal of ESI is to characterize the location and extents information of
potential source s with a giving EEG data b. Unfortunately, the number of
potential sources n is much bigger than the number of EEG electrodes m, and
numerous source configurations are suitable for the scalp measurements. There-
fore, narrowing the solution space with constraints is needed for the EEG inverse
problem.

s = arg min
s

‖b − Ls‖22 + f(s) (2)

where the former term is the data fitting term, and the latter term is the regu-
larization term which imposes the constraints.

Evidence has revealed that EEG signals largely arise from synchronized neu-
ral electrical activity and the cortical activation is compact [1]. Based on this,
we assume the sources have the attributes that are locally smooth and globally
clustered [10]. To achieve this, we impose sparsity on the variation domain of
sources and penalize the differences in amplitude between adjacent dipoles [4].
Specifically, we introduce the variation operator V , which is defined as

V =

⎡
⎢⎢⎢⎣

v11 v12 · · · v1n

v21 v22 · · · v2n

...
...

. . .
...

vP1 vP2 · · · vPn

⎤
⎥⎥⎥⎦

{
vpi = 1, vpj = −1, i < j; if source i,j share edge p
vpi = 0; otherwise

(3)
Here, P represents the number of edges of all triangular grids in source model.
Each row of matrix V refers to the corresponding triangle edge. The values 1
and -1 in the pth row characterize a pair of adjacent sources over the pth edge.
Then, each non-zero element in the variation source u = V s ∈ R

P×1 denotes the
difference of amplitude between the two adjacent sources. To reconstruct locally
smooth and globally clustered cortical activities, we assume that the variation
source, V s, is sparse.
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Compared to the L2-norm and L1-norm regularization, previous studies have
revealed that the Lp-norm (0 < p < 1) can provide more accurate solutions with
less measurement data [3]. In this work, we employ the Lp-norm regulariza-
tion term to develop a precise and robust ESI method, VSSI-Lp, to reconstruct
extended sources with variation sparsity. The VSSI-Lp algorithm intends to solve
the following non-convex optimization problem

s = arg min
s

‖b − Ls‖22 + λ‖V s‖p
p (4)

where ‖ · ‖p
p = (

∑
i |si|p) with 0 < p < 1, and λ > 0 is the regularization

parameter. In this work, the value of p of the Lp-norm is empirically selected
within the result of simulations.

Equation (4) can be rewritten as

s = arg min
s

‖b − Ls‖22 + λ‖u‖p
p s.t.,u = V s (5)

which can be efficiently solved using the ADMM algorithm. Hence, the aug-
mented Lagrangian function is derived as

L(s,u,z) = ‖b − Ls‖22 + λ‖u‖p
p + z�(V s − u) +

ρ

2
‖V s − u‖22 (6)

where ρ > 0 is the Lagrangian penalty parameter and z ∈ R
P×1 is the

Lagrangian multiplier. The variables s,u,z can be updated by alternately min-
imizing the augmented Lagrangian function L. In the kth iteration, these vari-
ables are updated as

sk+1 = (2L�L + ρV �V )−1[2L�b + V �(ρuk − zk)]

uk+1 = arg min
u

λ‖u‖p
p +

ρ

2
‖V sk+1 − u +

1
ρ
zk‖22

zk+1 = zk + ρ(V sk+1 − uk+1)

(7)

Letting y = V sk+1 + 1
ρzk, uk is optimized as

uk = arg min
u

1
2
‖y − u‖22 +

λ

ρ
‖u‖p

p (8)

which can be solved using the generalized soft-thresholding (GST) function [21].
In each iteration, we alternately update the variables s,u,z. Generally, the

iteration is terminated by reaching the maximum number of iterations or when
the relative change of the estimated source s reaches the tolerance.

As for application details, the proposed method VSSI-Lp was conducted on
a standard PC (Corei9-10980XE CPU 3 GHz and 128 GB RAM). The algorithm
will converge after 500 ADMM iterations, which takes about 35 s, for the given
simulation configurations in Sect. 3. For reproducibility purposes, the code for
the proposed method is available at https://github.com/Mashirops/VSSI-Lp.
git.

https://github.com/Mashirops/VSSI-Lp.git.
https://github.com/Mashirops/VSSI-Lp.git.


504 S. Peng et al.

3 Simulation Design and Performance Metrics

VSSI-Lp is compared with two conventional L2-norm constraint ESI methods:
(1) wMNE [13], (2) LORETA [15], and two sparse constraint methods imple-
mented in the original source domain: (3) L1-norm regularization [19] which
solves

sL1 = arg min
s

‖b − Ls‖22 + λ‖s‖1, (9)

(4) Lp-norm regularization (in this work, we set p = 0.8 only for the following
formula) [21] which solves

sLp
= arg min

s
‖b − Ls‖22 + λ‖s‖p

p, (10)

and (5) VB-SCCD [4].

3.1 Numerical Simulation

Given the absence of ground truth, several Monte Carlo numerical simulations
were conducted with Brainstorm [18], using the default ICBM 152 head struc-
ture, to validate the performance of those ESI algorithms. The cortex surface
was downsampled into 6004 triangular meshes and each triangular stood for a
dipole source perpendicular to the cortical surface. We calculated the lead-field
matrix L through BEM models based on the 64-channel Neuroscan Quik-cap
sensor system.

On the cortex, we randomly selected a seed triangle and added adjacent
triangle grids one by one till the whole area reaches a specified value, so as to
construct an extended source. Then we applied an amplitude on the constructed
source to obtain the ground truth sreal. By multiplying it with the lead-field
matrix L, we obtained the clean EEG signals. To further simulate actual EEG
signals for experiments, we added Gaussian white noise on the clean EEG data.
By changing the signal-to-noise ratio (SNR), the noise level is controllable. Here,
SNR is defined as 10 log10

[
σ2(Ls)
σ2(ε)

]
, where σ2(·) denotes the variance. Monte

Carlo numerical simulations in the following scenarios are conducted:

1) Various SNRs - we made use of four levels of SNR (−5, 0, 5 and 10 dB)
with only one patch source around 6 cm2 to evaluate the robustness of our
proposed ESI method to noise levels;

2) Various number of channels - we considered using data with varying numbers
of channels with SNR = 5 dB, including 100% (62 channels), 75% (47 chan-
nels), 50% (31 channels), and 25% (16 channels) to evaluate the robustness of
our proposed ESI method to different amounts of data. For each simulation,
channels of all non-complete cases were randomly selected.

For each case, we conducted 50 Monte Carlo simulations.
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3.2 Performance Metrics

To fully evaluate the performance of ESI algorithms, we carry our four perfor-
mance metrics. (1) The area under the receiver operating characteristic (ROC)
curve (AUC) [4,11], describing the sensitivity and specificity of the reconstructed
sources. (2) Spatial dispersion (SD) [11,12], measuring the spatial blurring of
the reconstructed sources w.r.t. the ground truth. (3) The distance of localiza-
tion error (DLE) [9,12], measuring the localization error of the reconstructed
sources w.r.t. the ground truth. (4) The normalized relative mean square error
(nRMSE) [10], measuring the relative squared error between the normalized
reconstructed sources and the normalized ground truth.

Details of four performance metrics can be found in [12]. In general, higher
AUC values with lower SD, DLE and nRMSE values imply better performance
of the ESI methods. The significance is assessed using the Kruskal-Wallis test.
Suppose that the statistic from the Kruskal-Wallis test is significant, we will
further conduct Wilcoxon rank sum tests to determine whether VSSI-Lp yields
significantly superior estimations against each benchmark algorithm. The Otsu’s
threshold is employed to visualize the imaging results [10,12].

4 Results

4.1 Simulation Results Analysis

Effect of Different p-values. For the Lp-norm-based methods, the value of
p primarily affects the sparsity of the solutions. Here, we compared the perfor-
mance of VSSI-Lp with various p-values from 0.1 to 0.9 with one patch source
under the SNR = 5 dB, to test the influence of the p-value. Figure 1 depicts
the performance metrics under different values of p. For p < 0.5, the Lp-norm
enforced the sparsity too aggressively, leading to a high error rate in source esti-
mation, evidenced by the low AUC, and large DLE, SD, and nRMSE values.
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Fig. 1. Performance metrics under various values of p. The figure shows the Mean ±
SEM (standard error of the mean) of the results for 50 Monte-Carlo simulations.
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Conversely, the performance of VSSI-Lp remains stable when p ≥ 0.6. Conse-
quently, for VSSI-Lp, the p-value in the later simulations are empirically selected
as 0.6.

Effect of SNRs. Figure 2 presents the performance metrics under various
SNRs. As the SNR increases, all algorithms show improved performance, indi-
cated by the increased AUC (p < 0.05), decreased DLE (p < 0.05), SD (p < 0.05)
and nRMSE (p < 0.05) values. Because L1 and Lp-norm-based methods enforce
sparsity on the original domain, they always produce point estimations, result-
ing in the lowest SD values at all SNR levels. However, the L1 and Lp-norm
regularizations produce many false estimations, indicated by the large DLE val-
ues, and provide little information about source extents, indicated by the lowest
AUC values. VSSI-Lp outperforms VB-SCCD, wMNE and LORETA, indicated
by the largest AUC, lowest SD and nRMSE values.

Figure 3 provides an imaging example under different SNRs. As expected,
wMNE and LORETA produce too diffused estimations, while the L1-norm and
Lp constraint in the original source domain obtained several point sources around
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Fig. 2. Performance metrics of various SNRs. This figure shows the Mean ± SEM of
the results for 50 Monte-Carlo simulations.
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or in the ground truth. VB-SCCD shows better estimations than the other bench-
mark methods, although it provides some spurious sources around the actual
activities. Among all the ESI methods, the reconstructions by the proposed
VSSI-Lp are the most accurate in matching the ground truth.
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Fig. 3. Imaging example under different SNR levels. The thresholds of the estimated
maps are obtained using Ostu’s method.

Effect of the Number of Channels. Figure 4 presents the performance
metrics under different numbers of EEG channels. As the number of channels
decreases, the performance of all methods declines due to the loss of measurement
information. VSSI-Lp exhibits good robustness and provides more accurate infor-
mation on extended sources than other methods even with some missing data,
indicated by larger AUC (p < 0.05) and lower DLE (p < 0.05), SD (p < 0.05,
except for L1-norm) and nRMSE (p < 0.05) values.

4.2 Real Data Result Analysis

In this subsection, we utilized the public EEG dataset to further assess the
practical efficacy of VSSI-Lp, which is the epilepsy EEG data from Brainstorm.
Detailed descriptions can be found at https://neuroimage.usc.edu/brainstorm/
DatasetEpilepsy. In this work, we followed the tutorial of Brainstorm to derive
the head model, lead-field matrix and EEG data for source localization. The
EEG data is presented in Fig. 5(a), which is an average of 58 tails, and the
data at the peak (0 ms) is used for source imaging. Figure 5(b) presents the

https://neuroimage.usc.edu/brainstorm/DatasetEpilepsy.
https://neuroimage.usc.edu/brainstorm/DatasetEpilepsy.
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Fig. 4. Performance metrics of various number of channels. This figure shows the Mean
± SEM of the results for 50 Monte Carlo simulations.

Fig. 5. Estimated sources of epilepsy data. (a) is the waveforms of averaged EEG data;
(b) is the result of each algorithm at 0 ms.
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imaging results. wMNE and LORETA provide diffused estimations, while the
result of LORETA is smoother. L1-norm regularization obtains 2 point sources,
and Lp-norm regularization yields several incoherent point sources around the
left frontal lobe. Results of VSSI-Lp and VB-SCCD provide clear information
about the location and extent of potential sources, which conform to clinical
findings in [5].

5 Discussion and Conclusion

Here in this work, we proposed a new ESI method, VSSI-Lp, to reconstruct
the location and extent of brain activity. VSSI-Lp method enforces the spar-
sity of potential brain sources using the Lp-norm regularization in the variation
domain. By utilizing the ADMM and GST algorithms, the solution of VSSI-Lp

can be efficiently obtained. Numerical simulations and real data analysis reveal
the superior performance of VSSI-Lp.

Due to the highly under-determined nature of ESI, such methods are dif-
ficult to work out. Even worse, it is essential for neuroscience and neurology
applications to infer the spatial distribution of potential brain sources from lim-
ited measurements. Methods based on L2-norm constraint, such as wMNE and
LORETA, produce too blurred and diffused results, indicated by the large DLE
and SD values in Fig. 2. Methods based on L1-norm and Lp-norm improve the
spatial resolution of their estimations by enforcing sparsity in the original source
domain. However, these conventional sparse constrained methods provide little
information on the extent of brain activity because they miss the most active
sources on the cortex.

To estimate the localization and extent of potential extended sources, VB-
SCCD [4] employed L1-norm sparse constraint in the spatial variation domain
which significantly improved the reconstructions of extended sources. However,
as suggested in [2], VB-SCCD over-estimates the extent of cortical activities,
especially for sources with small extents. This may be because the mathematical
properties of L1-norm make it not sparse enough [3]. To enforce sparsity more
aggressively, we proposed VSSI-Lp, which employed the Lp-norm (0 < p < 1)
instead of the L1-norm regularization in the variation domain. Results of Monte
Carlo simulations demonstrate the superiority of VSSI-Lp over VB-SCCD with
higher AUC values and lower DLE, SD, and nRMSE values in most cases.

In this work, the regularization parameter, λ, was selected using cross-
validation. In our future work, we plan to investigate using the Bayesian proba-
bility framework to model VSSI-Lp and allow the model to infer the parameters
automatically. Additionally, we will also apply the proposed method for brain
disease diagnosis, cortical network analysis and fine motor imagery decoding.
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Abstract. Omnidirectional videos (ODVs) play an increasingly impor-
tant role in the application fields of medical, education, advertising,
tourism, etc. Assessing the quality of ODVs is significant for service-
providers to improve the user’s Quality of Experience (QoE). However,
most existing quality assessment studies for ODVs only focus on the
visual distortions of videos, while ignoring that the overall QoE also
depends on the accompanying audio signals. In this paper, we first
establish a large-scale audio-visual quality assessment dataset for omni-
directional videos, which includes 375 distorted omnidirectional audio-
visual (A/V) sequences generated from 15 high-quality pristine omnidi-
rectional A/V contents, and the corresponding perceptual audio-visual
quality scores. Then, we design three baseline methods for full-reference
omnidirectional audio-visual quality assessment (OAVQA), which com-
bine existing state-of-the-art single-mode audio and video QA models via
multimodal fusion strategies. We validate the effectiveness of the A/V
multimodal fusion method for OAVQA on our dataset, which provides
a new benchmark for omnidirectional QoE evaluation. Our dataset is
available at https://github.com/iamazxl/OAVQA.

Keywords: Audio-visual Quality · Omnidirectional videos · Quality
assessment · Dataset

1 Introduction

Virtual Reality (VR) has attracted substantial attention from industry and
research communities due to its ability to provide users with a stereoscopic
and immersive experience through Head-Mounted Displays (HMDs) [6,8]. Omni-
directional Videos (ODVs), a.k.a, 360◦ videos, panoramic videos or spherical
videos, have emerged as a significant form of VR content. By using VR HMDs
and adjusting their head orientation, users can explore the audio-visual content
in any direction. This immersive experience of simulating real-world scenes has
contributed to the popularity of ODVs in various application fields, including
medical, education, advertising, tourism, etc.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
L. Fang et al. (Eds.): CICAI 2023, LNAI 14474, pp. 512–525, 2024.
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Compared to traditional videos, ultra high-definition ODVs contain more
scene information and multi-channel audio information, which results in a dou-
bling of ODV data volume. Due to the huge amount of data, playback stucking
and quality switching caused by network delays and fluctuations usually occur
during video transmission, which leads to the degradation of ODVs quality, and
further affects the QoE of ODVs. Moreover, ODVs may also suffer from the dis-
tortions introduced during the process of capturing or displaying, which further
decreases the QoE. Therefore, to provide users with a smooth viewing experi-
ence, it is important to monitor the quality of ODVs during the procedure of
shooting, codec, transmission, etc., and perform optimization accordingly.

In the past few decades, many objective quality assessment methods have
been proposed for traditional plane videos [19,23], and some recent works have
also explored the problem of audio-visual video quality assessment [21]. Recently,
with the popularity of VR, many studies have explored the problem of omnidirec-
tional image quality assessment [3,24] and omnidirectional video quality assess-
ment [13]. However, most omnidirectional video quality assessment research only
focuses on the single-mode signal, i.e., visual information, few works have inves-
tigated the multimodal quality assessment of ODVs incorporating audio infor-
mation. As an important part of ODVs, spatial audio may strongly influence the
human perceptual quality, thus it is necessary to conduct in-depth research on
the audio-visual quality assessment of the omnidirectional videos.

In this paper, we make three contributions to the omnidirectional audio-
visual quality assessment (OAVQA) field. Firstly, we construct a large-scale
omnidirectional audio-visual quality assessment dataset to solve the poverty
problem of the corresponding dataset. We first collected 15 high-quality ref-
erence omnidirectional audio-visual (A/V) content, and generated 375 distorted
ODVs degraded from them. Subsequently, 22 subjects were recruited to par-
ticipate in the subjective quality assessment experiment, and the audio-visual
quality ratings of the reference and distorted videos were collected. Secondly,
we design three baseline methods for full-reference omnidirectional AVQA. The
baseline models first utilize the existing state-of-the-art audio and video single-
mode quality assessment methods to predict the audio quality and video qual-
ity of ODVs, respectively, then utilize different multimodal fusion strategies to
fuse A/V prediction results and obtain the overall quality results of the ODVs.
Thirdly, we compare and analyze the prediction performance of these models on
our dataset, and establish a new benchmark for future studies on OAVQA.

2 Related Work

2.1 Omnidirectional Video Quality Assessment Dataset

Table 1 provides an overview of several existing omnidirectional video quality
assessment datasets. It can be observed that most of the existing ODV quality
assessment datasets lack spatial audio information, and mainly focus on visual
distortions, while audio distortions are rarely been considered.
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2.2 Quality Assessment Models

Omnidirectional Video Quality Assessment. As a common storage format
of ODVs, ERP projection has severe mapping stretches near the poles. In order to
solve this problem, Yu et al. [31] proposed a spherical PSNR scheme (S-PSNR),
which is based on a set of uniform sampling points on the spherical surface, the
corresponding position on the mapping plane is calculated by different mapping
formulas. Sun et al. proposed the Weighted to Spherically uniform PSNR (WS-
PSNR) [25], which is directly performed in the original format and combined with
different stretching weights according to different mapping methods. Anwar et al.
[1] established an ODVs quality assessment model using the Bayesian inference
method, and evaluated the impact of buffering on users’ perceptual quality at
different bitrates. Fan et al. [10] established an ODVs dataset that contains
various distortions such as compression distortion and quality switching, and
then used machine learning methods to establish VQA models.

Table 1. An overview of omnidirectional video quality assessment datasets. “Mute”
means mute audio and “ambisonics” indicates spatial audio. SI and TI represent spatial
information and temporal information respectively. QP indicates quantization param-
eter and CRF means constant rate factor, which is used to control the video bitrate.

Dataset Video Num Audio Distortion Type QoE

Schatz et al. [22] 10 Mute Stalling MOS(1∼5)

Meng et al. [20] 774 Mute Frame size, Frame rate, Quantization stepsize, Resolutions MOS(1∼10)

Fei et al. [11] 468 Mute Bandwidth, Packet loss, Latency, Presence MOS(1∼5)

Anwar et al. [1] 208 Mute Bitrate, Stalling MOS

Fan et al. [10] 48 Mute Bitrate, Gender, Presence, TI, SI MOS(0∼9)

IVQAD [9] 150 Mute Bitrate, Frame rate, Resolution MOS(1∼5)

VQA-ODV [18] 600 Mute QP, Projection format DMOS(0 ∼ 60)

Fela et al. [12] 576 Ambisonics QP, Resolution, Audio bitrate MOS(0 ∼ 100)

Ours 390 Ambisonics
Audio bitrate, CRF, Resolution,

Noise, Blur, Stucking
MOS(1∼10)

Omnidirectional Audio-Visual Quality Assessment. As an important
part of ODVs, the influence of spatial audio on perceptual quality has rarely
been studied. Zhang et al. [33] presented a quality assessment methodology
for audio-visual multimedia in virtual reality environment. They presented a
panoramic audio-visual dataset and the quality factors which represent different
distortions were applied as the input to neural network. Fela et al. [14] utilized
PSNR and its variants designed for ODVs, i.e., WS-PSNR, CPP-PSNR and S-
PSNR [25,31,32], as the quality scores and studied the perceptual audio-visual
quality prediction based on the fusion of these scores [13]. Four machine learn-
ing models including multiple linear regression, decision tree, random forest, and
support vector machine (SVM), were tested.
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3 Omnidirectional Audio-Visual Quality Assessment
Dataset (OAVQAD)

3.1 Reference and Distorted Contents

We first captured 162 different ODVs with different scenes using a professional
VR camera Insta360 Pro2. Then, we selected 15 high-quality ODVs from the
collected ODVs as the reference videos in our OAVQAD. We utilized FFmpeg
to clip the duration of the selected ODVs to 6 s. Each ODV has a resolution
of 8K (7680 × 3840) in equirectangular projection (ERP) format with a frame
rate of 29.97 fps. All ODVs contain first order ambisonics (FOA) with 48,000 Hz
audio sampling rate and four audio channels. The audio and video formats are
shown in Table 2. The ODV contents include acappella chorus, shopping, guitar
playing, restaurant ordering, etc. Figure 1 shows the ERP format previews of the
selected 15 reference ODVs.

We utilized advanced audio coding (AAC) as the audio encoding method
provided by FFmpeg 4.4, and used constant bitrate (CBR) mode to set the
audio bitrate to 64Kbps, 32Kbps and 16Kbps, respectively, thereby generating
three levels of perceptually well-separated audio compression distortion. Then,
we chose HEVC as the video encoding method provided by FFmpeg libx265
encoder, and for each source video we applied 3 different compression levels,
i.e., 32, 37 and 42 in constant rate factor (CRF) mode. Besides, we also set the
video resolution to three levels including 4K (3840×1920), 2K (1920×960), 1K
(1080×540). Moreover, in order to adapt to a wider range of application sce-
narios, we further introduced more abundant distortion types and added three

Acappella Basketball Canteen Cat Chatting

Class Crossing Discussion Gardener

Greeting Guide

Drawbridge

Guitar Gym Harmonica

Fig. 1. EPR format previews of 15 reference ODVs used in our OAVQAD.

Table 2. Omnidirectional audio and video format parameters.

Resolution Frame rate Bitrate Format Bit depth Duration Encoding

Video 8K 29.97fps 144Mbps YUV420 8bit 6s H.265

Audio - - 3072Kbps FOA 16bit 6s AAC-LC
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types of distortions [5,7] including noise, blur, and stucking, and generated dis-
torted ODVs with various levels of these distortions. To summarize, we applied
25 distortion conditions to 15 reference ODVs, resulting in a total of 375 (15 ×
25) distorted ODVs.

3.2 Subjective Experiment Methodology

Experiment Apparatus. Since the subjective experiment was needed to be
conducted in a VR immersive environment, we used HTC Vive Pro Eye as the
HMD to demonstrate ODVs and collect subjective quality ratings. The subjec-
tive experiment platform used to play 8K ODVs and perform scoring interaction
was build based on Unity 1.1.0 as shown in Fig. 2.

Experiment Procedure. The subjective experiment was conducted in a sub-
jective study room in a university. A total of 22 subjects (14 males and 8 females)
were invited to participate in the subjective experiment. The subjects were
between 20 and 28 years old (mean 22.62, variance 5.23) and were all gradu-
ate and undergraduate students. All subjects had normal or corrected-to-normal
vision and hearing. In the experiment, subjects firstly received the guidance on
the use of VR equipment, including HMD and controllers. Then a training ses-
sion was performed for the subjects, making them be familiarized with the user
interface as well as the general range and types of distortions. In the testing
session, subjects watched 390 ODVs and gave perceptual scores of the overall
A/V quality. The order of the test videos was random for each subject to avoid
bias.

Fig. 2. Demonstration of the subjective experiment interface based on the Unity plat-
form.
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Fig. 3. Histogram of MOS distribution in the database.

3.3 Subjective Data Processing and Analysis

We followed the subjective data processing method recommended by ITU [2,4]
to perform the outlier detection and subject rejection. None of the 22 subjects
was identified as an outlier and eliminated. We normalized the raw scores of
subjects to Z-scores ranging between 0 and 100 and calculated the mean of Z-
scores to obtain the final mean opinion scores (MOSs), which are formulated as
follows:

zij =
rij − μi

σi
, z′

ij =
100 (zij + 3)

6
, (1)

MOSj =
1
N

N∑

i=1

z′
ij , (2)

where rij is the original score of the i-th subject on the j-th sequence, μi

and σi are the mean rating and the standard deviation given by subject i, N is
the total number of subjects. Figure 3 draws the histogram of MOS distribution
over the entire database, indicating that the perceptual quality scores are widely
distributed in the [0, 100] interval, basically covering every score segment, and
generally showing a normal distribution. It also manifests that the perceptual
quality distribution conforms to our expectations and the distortions setting is
quite reasonable.

4 Objective Omnidirectional Audio-Visual Quality
Assessment

4.1 Single-Mode Models

Many video and audio quality assessment methods have been proposed sepa-
rately in previous studies. These quality assessment algorithms, only predict
quality of single-modal audio or video signals, can be called as single-mode qual-
ity assessment methods. We first utilize the existing state-of-the-art single-mode
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quality assessment methods to predict the omnidirectional video and audio qual-
ity, respectively. Since both the single-mode AQA and VQA prediction scores
can characterize one aspect of the distortion severity of the distorted video, it is
reasonable to directly use the single-mode models to predict the overall audio-
visual quality score of the ODVs.

The well-known single-mode assessment models adopted in this paper are
introduced as follows:

– Video: VMAF [19], SSIM [28], MS-SSIM [29], VIFP [23], FSIM [34],
GMSD [30], WS-PSNR [25], CPP-PSNR [32], S-PSNR [31].

– Audio: PEAQ [27], STOI [26], VISQOL [16], LLR [17], SNR [17],
segSNR [15].

4.2 Weighted-Product Fusion

A single-mode audio/visual quality assessment metric can only characterize one
quality aspect thus cannot fully represent the overall subjective perceptual qual-
ity of an ODV. Therefore, it is important to use appropriate multimodal feature
fusion method to predict the A/V quality of ODVs. The simplest fusion method
is to directly multiply the quality scores of a VQA model and an AQA model as
the overall quality score of ODVs.

However, for human audio-visual perception, video and audio quality often
occupy different importance in ODVs, and people may pay more attention to
visual quality. The weighted product can balance the influence of different modal-
ities by assigning different weights to each of them, so the weighted product is
a better choice for score fusion compared to the direct multiplication method.
The weighted product can be formulated as

Qav = Q̂w
v · Q̂1−w

a , (3)

where Q̂a and Q̂v are normalized score of the audio and video, w and 1 − w
represent the weights of video and audio quality respectively, 0 ≤ w ≤ 1. Q̂a and
Q̂v are calculated by Q̂a = Qa−Qamin

Qamax−Qamin
and Q̂v = Qv−Qvmin

Qvmax−Qvmin
, where Qamin ,

Qamax , Qvmin and Qvmax bound Qa and Qv respectively. The optimal weights
depend on the used single-mode A/V quality evaluation models and we vary
the weight from 0 to 1 with 0.05 step increment to find the optimal weight w.
Since the score ranges of the video and audio quality assessment models may
be different, the multiplication method can only be performed after they are
appropriately scaled or normalized.
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Table 3. Video and audio quality prediction algorithms and their corresponding feature
types.

Category Models Feature Decomposed features.

Video VMAF [19] 6 4 scales of VIF, detail loss, motion

SSIM [28] 2 Luminance similarity, contrast and structural similarity

MS-SSIM [29] 6 Luminance similarity, 5 scales of contrast and structural similarity

VIFP [23] 4 4 scales of VIFP features

FSIM [34] 3 Phase congruency, gradient magnitude, and chrominance similarity

GMSD [30] 2 Mean and standard deviation of gradient magnitude similarity

WS-PSNR [25] 3 PSNR of Y, U, V components

CPP-PSNR [32] 3 PSNR of Y, U, V components

S-PSNR [31] 3 PSNR of Y, U, V components

Audio PEAQ [27] 11 11 model output variables before the neural network

STOI [26] 1 The complete algorithm

VISQOL [16] 3 Narrowband, wideband, fullband versions of VISOOL

LLR [17] 1 The complete algorithm

SNR [17] 1 The complete algorithm

seg-SNR [15] 1 The complete algorithm

4.3 Support Vector Regression Fusion

Since Support Vector Regression (SVR) is a commonly used machine learning
algorithm for establishing nonlinear relationships between inputs and outputs,
we also utilize the SVR method to integrate the quality prediction scores of
single-mode models

Qav = SVR(Qv, Qa), (4)

where Qv and Qa represent the quality prediction scores of video and audio,
respectively, and Qav denotes the fused A/V quality scores. In this case, SVR
uses the single-mode quality scores predicted by traditional AQA and VQA
algorithms respectively as the inputs, and the quality score (i.e., MOS) as the
labels for regression function training.

The performance of SVR fusion methods can be further improved by substi-
tuting scores with quality-aware feature vectors fv and fa, which can be either
hand-crafted features or extracted features from existing popular AQA and VQA
models. In this way, we can better fuse video and audio quality prediction results
by fully utilizing the quality features of audio and video, thereby improving
the performance of the entire model. This feature-based fusion method can be
expressed as:

Qav = SVR(fv, fa). (5)

The video and audio quality-aware feature vectors used here are extracted from
some existing AQA and VQA models, which are summarized in Table 3.
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5 Experiment Validation

5.1 Evaluation of Single-Mode Models

We test different single-mode quality assessment models (6 audio models and 9
video models) on our omnidirectional AVQA dataset to analyze the effectiveness
of single-mode quality models. Experimental results are illustrated in Fig. 4.

For AQA models, STOI, VISQOL, SNR, and segSNR yield relatively good
performances on our database, in which STOI achieves the both highest SRCC
and PLCC performance. Most of the VQA models show similar performance, and
all of them are not able to predict A/V quality effectively with SRCC and PLCC
below 0.6. The above analysis shows that most single-mode quality assessment
models have a poor performance on our OAVQAD, indicating the necessity of
fusing single-mode quality prediction results for more accurate OAVQA.

Fig. 4. Performances of single-mode models on overall audio-visual quality prediction.

5.2 Evaluation of Weighted-Product Fusion

For weighted-product fusion methods, we randomly divide the dataset into 80%
training set and 20% test set. All distorted ODVs from the same reference ODVs
are placed in the same set to ensure that the video content of the two set are
completely separated.

In the weighted-product fusion, a total of 54 (9 video models × 6 audio
models) weighted product quality fusion models are generated. In order to
normalize the prediction scores of the single-mode quality prediction mod-
els, the following normalization functions are used: Q

′
VMAF = 1

100QVMAF,
Q

′
WS-PSNR = 1

29 (QWS-PSNR − 23), Q
′
S-PSNR = 1

29 (QS-PSNR − 23), Q
′
CPP-PSNR =

1
29 (QCPP-PSNR−23), Q

′
GMSD = 1− 1

0.26QGMSD, Q
′
PEAQ = 1+ 1

3.5 (QPEAQ−0.21),
Q

′
LLR = 1− 1

1.2−0.7 (|QLLR|−0.7), Q
′
SNR = 1

20QSNR, Q
′
segSNR = 1

35+2 (QsegSNR +
2). The prediction scores of other models are already bounded in [0, 1], no further
normalization is needed.
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Table 4 shows the performance of weighted product fusion models. Among
these methods, the models fused by VQA algorithms VMAF, MS-SSIM, GMSD,
and the AQA algorithms STOI, VISQOL, SNR show relatively better perfor-
mances. The model combining GMSD and STOI achieves the best performance
in terms of SRCC. In addition, with the same AQA components, the perfor-
mance of fusion models using different VQA components has little difference,
which manifests that different AQA components have larger impact on the per-
formance of fusion models. Moreover, the mean optimal weight for visual modal-
ity of 54 weighted product models is 0.7231, suggesting that visual modality has
a greater impact on QoE than audio modality.

5.3 Evaluation of SVR Fusion

SVR fusion includes two methods including the score-based fusion and the
feature-based fusion. A total of 108 (9 video models × 6 audio models × 2
SVR conditions) models are tested and the normalization process is no longer
required. In SVR fusion models, the radial basis function (RBF) is selected as the
kernel function, the parameter γ of the kernel function is 0.05, and the penalty
factor C is 1024. Table 5 shows the performance of SVR fusion models.

Table 4. Performances of weighted-product fusion-based A/V quality models. The top
3 models are in bold.

Criteria Video Weighted Product

Model PEAQ STOI VISQOL LLR SNR segSNR

SRCC VMAF 0.5783 0.7790 0.7157 0.5745 0.7432 0.6660

WS-PSNR 0.5252 0.7348 0.6911 0.5507 0.7124 0.6658

S-PSNR 0.5182 0.7292 0.6886 0.5460 0.7068 0.6576

CPP-PSNR 0.5246 0.7333 0.6914 0.5499 0.7121 0.6652

SSIM 0.5605 0.7717 0.7289 0.5123 0.6783 0.6372

MS-SSIM 0.6131 0.7998 0.7511 0.6161 0.7596 0.6942

VIFP 0.5916 0.7746 0.7332 0.5978 0.7499 0.7017

FSIM 0.5386 0.7563 0.7259 0.5638 0.6632 0.6188

GMSD 0.6151 0.8044 0.7358 0.6246 0.7530 0.6844

PLCC VMAF 0.6124 0.7885 0.7265 0.6324 0.7442 0.6484

WS-PSNR 0.5595 0.7576 0.7407 0.6020 0.7351 0.5960

S-PSNR 0.5558 0.7530 0.7404 0.5966 0.7287 0.5984

CPP-PSNR 0.5594 0.7567 0.7401 0.6001 0.7340 0.5931

SSIM 0.5984 0.7917 0.7604 0.5601 0.6917 0.6886

MS-SSIM 0.6405 0.8124 0.7792 0.6561 0.7710 0.7270

VIFP 0.6188 0.8057 0.7294 0.6415 0.7522 0.6758

FSIM 0.5806 0.7743 0.7682 0.6015 0.6693 0.6650

GMSD 0.6357 0.8112 0.7518 0.6557 0.7587 0.6894



522 X. Zhu et al.

Table 5. Performances of SVR fusion-based A/V quality models. The top 3 models in
terms of each metric are in bold.

Criteria Video SVR (Quality Score) SVR (Quality Feature)

Model PEAQ STOI ViSQOL LLR SNR segSNR PEAQ STOI VISQOL LLR SNR segSNR

SRCC VMAF 0.5481 0.7855 0.7141 0.5676 0.5688 0.6391 0.8343 0.8428 0.8566 0.6052 0.6119 0.6818

WS-PSNR 0.5306 0.7625 0.6974 0.5506 0.5453 0.6269 0.8035 0.7787 0.8171 0.5612 0.5582 0.6346

S-PSNR 0.5221 0.7593 0.6966 0.5418 0.5365 0.6202 0.8030 0.7764 0.8123 0.5550 0.5476 0.6263

CPP-PSNR 0.5301 0.7626 0.6982 0.5495 0.5452 0.6272 0.8039 0.7806 0.8174 0.5612 0.5584 0.6356

SSIM 0.5023 0.7246 0.6734 0.4651 0.5636 0.6222 0.7385 0.7475 0.7654 0.5314 0.5643 0.6492

MS-SSIM 0.5809 0.7984 0.7407 0.5963 0.6020 0.6727 0.8201 0.8342 0.8654 0.6136 0.6103 0.6752

VIFP 0.5983 0.8412 0.8149 0.6149 0.6043 0.6887 0.8751 0.8726 0.8881 0.6545 0.6464 0.7311

FSIM 0.5046 0.7290 0.6775 0.4604 0.5727 0.6227 0.7485 0.7413 0.7646 0.5275 0.5603 0.6357

GMSD 0.5749 0.8048 0.7450 0.6178 0.6020 0.6669 0.8426 0.7982 0.8459 0.6084 0.5940 0.6599

PLCC VMAF 0.5845 0.8111 0.7808 0.6275 0.6075 0.6832 0.8440 0.8543 0.8619 0.6527 0.6552 0.7303

WS-PSNR 0.5789 0.7831 0.7521 0.6125 0.5978 0.6704 0.8113 0.8012 0.8286 0.6312 0.6118 0.6919

S-PSNR 0.5703 0.7802 0.7472 0.6044 0.5895 0.6599 0.8109 0.7975 0.8229 0.6268 0.6030 0.6800

CPP-PSNR 0.5770 0.7832 0.7514 0.6115 0.5974 0.6712 0.8118 0.8026 0.8286 0.6313 0.6122 0.6930

SSIM 0.4297 0.7340 0.7125 0.4892 0.4234 0.5577 0.7656 0.7729 0.7721 0.5641 0.5674 0.6404

MS-SSIM 0.6187 0.8168 0.7874 0.6542 0.6476 0.7075 0.8350 0.8508 0.8697 0.6630 0.6632 0.7191

VIFP 0.6358 0.8565 0.8374 0.6752 0.6591 0.7382 0.8779 0.8828 0.8941 0.6950 0.6862 0.7748

FSIM 0.4275 0.7330 0.7102 0.4827 0.4298 0.5427 0.7647 0.7647 0.7676 0.5556 0.5595 0.6286

GMSD 0.6065 0.8249 0.7986 0.6564 0.6495 0.6964 0.8473 0.8170 0.8539 0.6488 0.6409 0.6889

It can be observed that quality score-based SVR fusion models achieve similar
performance compared with the weighted-product fusion models, while quality
feature-based SVR fusion models achieve much better performance compared to
above two methods. The models combining the AQA components, PEAQ, STOI
and VISQOL, and the VQA components VIFP and GMSD have relatively better
performance.

Figure 5 demonstrates the performance improvement obtained by each single-
mode AQA and VQA model, which further confirms the above phenomenon.
The performance improvement of each single-mode model is calculated by aver-
aging the SRCC improvements of all combinations of this model with the mod-
els from another perceptual mode. It can be observed that only VISQOL and
VIFP models gain performance improvement by replacing weighted-product with
SVR, suggesting that the weighted-product fusion is generally a more feasible
method. Futhermore, Fig. 5 also illustrates that it is more efficient to decom-
pose the single-mode VQA and AQA scores into ODVs’ quality features. It can
be observed that the feature-based regression models achieve different degrees
of performance improvement for different VQA and AQA fusion, among which
PEAQ achieved a significant improvement with nearly 50%. Some of these mod-
els, e.g., STOI, LLR, SNR and segSNR, have a small performance progress
caused by feature extraction, we reasonably speculate that these algorithm mod-
els are not easy to decompose.
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Fig. 5. Performance improvements in terms of SRCC introduced by replacing weighted-
product fusion with quality score-based SVR fusion, and decomposing quality models
into features during SVR fusion.

6 Conclusion

In this work, we construct an informative omnidirectional audio-visual quality
assessment dataset, which involves 390 omnidirectional videos with ambisonics
and the corresponding perceptual scores collected from 22 participants under
immersive environment. Based on our dataset, we design three types of baseline
AVQA models which combine AQA and VQA models via two multimodal fusion
methods to predict quality scores of ODVs. Moreover, quantitative analyses for
the performance of these models are conducted to evaluate the predictive effect of
different objective models. The experiment results on our dataset show that SVR
fusion based on quality-aware features have the best performance. Our dataset,
objective baseline methods and established benchmark can great facilitate the
further research of dataset design and algorithm improvement for OAVQA.
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Abstract. Dysphagia is caused bymovement disorders such as muscular systems
or neurological diseases that participate in speech movement. Speech difficulty
sufferers as the main victim of Dysphagia often have problems with speech accu-
racy and difficulty communicating,which greatly affect their daily life. The correc-
tion and treatment of patients with Dysphagia have become a hot topic in current
research. Clinically, tongue pressure (TP) is used as an indicator to evaluate the
function of the tongue muscle, thus reflect the status of Dysphagia. In this paper,
we designed and produced a sensor that can accurately measure tongue pressure
and developed corresponding hardware and software systems. Based on physio-
therapy, we have developed a WeChat mini-program that not only visually dis-
playsmuscle strength values, but also includes rehabilitation games. Users can use
tongue muscle compression sensor to complete game tasks that increase the moti-
vation of users to perform physiotherapeutic exercises and improve rehabilitation
effectiveness.The demo video of the proposed system is available at:

https://figshare.com/articles/media/sensor_demo_show_mp4/23578689

Keywords: Dysphagia · Pressure Sensor ·Micro Air Bags · Rehabilitative
Training Game

1 Introduction

The tongue is an important muscle organ in the human body, and its interaction with the
hard palate forms the basis of speech and swallowing. Muscular neurological disorders
can cause tongue weakness, leading to speech and swallowing disorders. Dysphagia is
a clinical manifestation of inability to effectively transport food to the stomach due to
damage or weakness of tongue muscles and other organs. Clinically, tongue pressure
(T P) is an important evaluation reference indicator for dysphagia and speech function
[1]. By studying the tongue muscle and lip muscle pressure of children with speech
disorders, we can provide help for language correction, significantly reducing the pain
and suffering of the patient and their family. Currently, medical professionals generally
use TPmeasurement to examine the tongue function, because it has quantifiable strength,
endurance, and training capabilities [2]. TP refers to the force with which the tongue
contacts the hard palate.
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A variety of devices for TP detection have been developed, many based on the prin-
ciple of strain gage manometry. These devices use strain gauges [3], load measurement
[4, 5], force resistors [6, 7] and bulb pressure sensors [8–11]. The instrument can also be
used for dysphagia testing and treatment [2, 12–16]. But they all have problems such as
inconvenient measurement and single function. To address this issue, we designed and
developed a bladder-type sensor and developed corresponding circuits that can accu-
rately reflect TP. We also designed a mobile terminal rehabilitation game to enhance the
motivation for therapeutic exercise.

2 Methods

2.1 Sensor Design and Production

The sensor structure shown in Fig. 1 (a) consists of a silicone layer, a bladder layer,
and a circuit layer, which jointly function to form a TP measurement sensor and achieve
feedback of TP.Wedesigned and printed siliconemolds, and used the silicone impression
method to produce the silicone layer. The circuit layer consists of a pressure sensing chip
and a flexible circuit. We used food-grade silicone adhesive to bond the silicone layer
to the circuit layer. Figure 1 (b) is an example of an experimental diagram of the sensor
in the oral cavity.

Fig. 1. (a) Sensor structure (b) Schematic diagram of the test scenario

Before being used for clinical human testing, the performance of the sensor will be
tested using a pressure machine as a pressure applying device. In the group of adults
without dysphagia or language problems, the average maximum pressure is approxi-
mately 60 kPa, with a range of 40–80 kPa. Tongue force intensity in the group with
dysphagia difficulties is significantly lower than in the normal population. Considering
the actual contact area, the range of TP is approximately 4–10 N.

To evaluate the sensor performance, this experiment used a pressure machine as the
pressure generating device. Figure 2(a) shows the relationship between the sensor output
and pressure. It can be seen from the figure that the sensor’s measurement range is 0–
15 N, and when the pressure exceeds 15 N, the sensor output does not increase further.
A linear regression analysis was performed on the tongue pressure range (4–10 N).
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The corresponding function relationship was y = 4.348x + 89.815, with a correlation
coefficient R2 = 0.991. The linear relationship is strong, and the sensitivity reaches
4.131 kPa/N.

Figure 2(b) shows the status of the sensor under different pressures generated by the
pressure machine. It can be seen that as the pressure increases, the sensor deformation
becomes more obvious, and the cavity volume decreases continuously.

Fig. 2. (a) Sensor pressure-air pressure curve (b) Sensor status under different pressures

2.2 Sensor Design and Production

Thehardware circuit ismainly composedof anArduinoUnomicro-controller, aBMP280
pressure sensor, a LCD1602 display screen, a CC2540 low-power Bluetooth chip, and a
power module. Figure 3 is the hardware framework of the system. The pressure sensor
collects internal air pressure data from the air bag, and the ADC module converts the
pressure value into a digital signal that is written to a register. Through the SPI protocol,
the Uno micro-controller reads the pressure value from the corresponding register. On
the one hand, the Uno communicates with the LCD display screen through the I2C
protocol to transmit pressure data, and the pressure data is displayed real-time on the
LCD display screen. The Uno sends the data through the CC2540 module to the mobile
terminal for communication. The sampling period of the entire process is 0.05 s.

Traditional tongue and lip muscle physiotherapy often involves using a tongue and
lip pressing device to perform resistive exercises to train the strength of the tongue and lip
muscles. However, this exercise can be boring. This research developed a WeChat mini-
program, which is connected to the sensor hardware through Bluetooth. The WeChat
mini-program adds a rehabilitative training game training mode. Users can operate the
game character by pressing the air bag sensor of the tongue and lip muscle to complete
game tasks. Meanwhile, the rehabilitative training game acquires the Bluetooth trans-
mission value through the backend and compares it in real time with the set value. It is
judged that the air bag has been pressed and the bird flies upward. Otherwise, the bird
flies downward.
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Fig. 3. System diagram

During vertical motion, the bird also flies forward at a preset value. A specified
distance is generated to create obstacles, and the lowest height of the obstacle passage
and the width of the passage through which it can pass are randomly generated within
a specified range. Figure 4(a) shows the process of obstacle generation. Figure 4(b) is a
hardware circuit diagram showing a real-time display on the LCD screen.

Fig. 4. (a) Circuit diagram (b) Physical circuit diagram

3 Demonstration Setup

After completing the connection of the hardware circuit, it is necessary to open the
switch of the Bluetooth adapter on the WeChat mini-program side, search for nearby
Bluetooth devices, and select the target Bluetooth device to complete the connection.
Depending on needs, the user can enter the test mode or training mode. Figure 5(a) is
the interface of the WeChat mini-program initialization, where the user can connect to
the Bluetooth adapter and enter the practice mode from this interface, or directly enter
the test mode.
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Fig. 5. (a) WeChat mini-program initialization interface (b) Test mode interface (c) Train mode
interface

4 Conclusion

This demo paper proposes a TP measurement and training system. In the testing mode,
the system can accurately reflect the TP and display it in real time through the tongue
pressure sensor. In the training mode, the user can operate the WeChat mini-program’s
game tasks by pressing the sensor, improving the interest and motivation of the training
exercise. The system has obvious advantages in evaluating and training the tongue and
lip muscles of patients with speech and dysphagia.
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Abstract. [Objective] This paper presents an overview introduction of the Venu-
sAI platform, focusing on its technical updates and sharing the experiences gained
since its deployment. The objective is to highlight the platform’s advancements,
challenges, and valuable insights for other researcher and engineer in the field of
AI platform. [Coverage] This paper uses keywords search and citation secondary
search to collect papers and information from international computer journals,
conferences and open source code warehouse. [Methods] The workflow engine
tailored to different processes is designed for streamlining the AI development and
enhancing operational efficiency. Then the phased optimization strategy is pro-
posed to address unexpected events and ensure smooth resource allocation oper-
ations. Additionally, the disk repair mechanism is utilized to handle disk errors
and maintain data integrity. [Experience] We provide detail of the challenges
and experiences encountered on the VenusAI platform, aiming to share valuable
insights and best practices for AI development. VenusAI’s user-friendly toolsets,
advanced functionalities, and up-to-date datasets and models make it a leading
platform for AI research and development, catering to the diverse needs of both
non-IT professionals and advanced researchers. [Conclusion] In conclusion, the
VenusAI platform has undergone significant technical updates to improve its per-
formance, efficiency, and stability. The implementation of the workflow engine,
operation optimization strategies, and disk repair mechanism has enhanced the
platform’s capabilities and user experience. The experiences gained from man-
aging VenusAI provide valuable insights for the operation of high-performance
computing cluster-based AI platforms. The experience learned and challenges
overcome contribute to the continuous improvement and innovation of VenusAI
and similar platforms in the future.

Keywords: AI platform ·Workflow engine · Research efficiency · Resource
allocation · SLURM framework

1 Introduction

With the rapid development of artificial intelligence (AI) technologies, an increasing
number of research institutes require large-scale computational resources to support their
AI project development. However, traditional computing resources often fail to meet the

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
L. Fang et al. (Eds.): CICAI 2023, LNAI 14474, pp. 532–538, 2024.
https://doi.org/10.1007/978-981-99-9119-8_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-9119-8_48&domain=pdf
https://doi.org/10.1007/978-981-99-9119-8_48


Updates and Experiences of VenusAI Platform 533

demands of flexible, complex calculations [1]. In this context, theVenusAI [2, 3] platform
based on high-performance computing clusters has emerged. Currently, VenusAI con-
sists of three core modules: data, models, and computing power. It offers over 200 online
open datasets, state of the art(SOTA) models, and algorithm services. Researchers can
engage in one-stop AI development activities within an integrated development environ-
ment (IDE) accessible through aweb interface. This significantly enhances the efficiency
and accuracy of AI projects, thereby fostering rapid technological advancements.

VenusAI was officially launched and operationalized in 2022. During its practical
implementation, we identified certain design and technical limitations and undertook
optimization and updates to enhance users’ AI development activities on the platform.
The key technical updates include:

• Workflowengine for different processes:We expanded aworkflowengine that encom-
passes data processing, model development, and permission review processes. The
automation of workflow enhances the overall operational efficiency of the platform.

• Operation Optimization: We implemented optimization techniques during startup,
runtime, and stop stage. These measures prevent resource wastage by monitoring
user activities and ensuring efficient resource allocation.

• Automated repair for disk errors: We incorporated automated repair mechanisms
to address disk errors and ensure the integrity of data storage under faulty disk
conditions.

During the operation and maintenance process, we gained insights into architec-
ture design, functional design requirements, and operational methods from various
perspectives. The main areas of focus included:

• Toolsets: We evaluated and refined the tools available on VenusAI to facilitate user
interactions and streamline AI development processes.

• Usage: We provide diversified services for different users to conduct artificial
intelligence research and development.

• Content: We focused on iterative updates of datasets and models, implementing
efficient methods for data management, model versioning, and tracking changes.

By addressing these areas of improvement and incorporating user feedback, we have
strived to create a more robust and user-friendly AI platform on VenusAI.

2 Related Work

This section compares VenusAI, a high-performance computing cluster-based AI plat-
formutilizing theSLURMframework,with three popular cloud-basedplatforms:Google
Colab [4], IBM Watson [5], and Alibaba Cloud Machine Learning Platform for AI [6].

Google Colab is a widely used cloud-based platform offering GPU and TPU
resources for AI development. IBM Watson provides AI services and integration with
data sources but may lack the same level of control and performance. Alibaba Cloud
Machine Learning Platform for AI offers AI tools and integration with their ecosystem
but relies on Kubernetes for resource management [7–10].
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In contrast, VenusAI’s advantage lies in its high-performance computing clusters and
SLURM framework, which provides powerful computing resources, efficient allocation,
and scalability for large-scale AI projects on HPC.

3 Methods & Updates

In theMethods &Updates section, we introduce a workflow engine designed to enhance
operational efficiency and streamline the AI development process. To address unex-
pected challenges, we implemented a phased optimization strategy for startup and shut-
down processes, ensuring smoother resource allocation operations and enhancing the
platform’s resilience. An important update in VenusAI is the implementation of a disk
repair mechanism using the fsck.ext3 command, which proactively identifies and repairs
disk bad sectors, ensuring data integrity and platform reliability.

3.1 Workflow Engine

To improve operational efficiency and reduce network communication and IO overhead,
we introduced a workflow engine tailored to different processes within VenusAI. This
engine encompasses automated workflows for data processing, model development, and
review. By utilizing this workflow engine, users can navigate seamlessly through the var-
ious stages of AI development, from data preparation to model training and evaluation,
while streamlining the review and approval process. This automation significantly mini-
mizes manual effort, enhances overall efficiency, and optimizes the utilization of compu-
tational resources. Additionally, the standardized framework provided by the workflow
engine ensures consistent and reliable task execution. Overall, the integration of the
workflow engine in VenusAI has streamlined the AI development process, resulting in
improved operational efficiency and reduced network communication and IO overhead
(Fig. 1).

Fig. 1. WorkflowEngine Process.We have built three automated workflows to improve execution
efficiency.

3.2 Operation Optimization

During the actual deployment of VenusAI, we encountered unexpected situations such
as resource scarcity, node failures, network initialization errors, and dependency startup
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conflicts. To address these challenges, we implemented a phased optimization strategy
for startup and shutdown processes. This strategy ensures the proper sequential and
parallel execution of resource allocation stages, effectively mitigating potential issues.

By adopting this phased optimization approach, we can proactively manage and
mitigate the impact of unexpected events, ensuring smoother resource allocation opera-
tions. It enhances the platform’s resilience andminimizes disruptions caused by resource
scarcity or operational challenges. This optimized approach guarantees amore robust and
reliable resource allocation process, contributing to the overall efficiency and stability
of VenusAI.

3.3 Bad-Roads Repair

In addition to the aforementioned updates, we also addressed the issue of disk errors,
specifically related to bad-roads disk. During the shutdown process, if errors occur or
network instability occurs during large file read/write operations, it may lead to disk
bad sectors, primarily due to the ext3 file system. To resolve this issue, we implemented
a automation script for disk repair using the fsck.ext3 mechanism. When encountering
disk bad sectors, VenusAI automatically initiates the disk repair process by invoking the
fsck.ext3 command [11]. This command scans the disk for errors, identifies and repairs
any bad sectors, and ensures the integrity of data storage. By proactively addressing disk
errors, we minimize the risk of data corruption and improve the overall reliability and
performance of the platform.

This update significantly enhances the robustness and stability of VenusAI, ensuring
that disk errors are promptly identified and repaired. By incorporating this disk repair
mechanism, we provide a more reliable platform for AI development, reducing the
impact of disk-related issues on user workflows and data integrity.

4 Guidance & Experience

In this section, we aim to share the challenges and experience of the VenusAI platform,
which serves as a valuable resource for users seeking guidance, inspiration, and best
practices in their AI development journey (Fig. 2).

Fig. 2. Comparison of user usage (different from page view) of various products and services.
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4.1 Toolsets

Statistical analysis of platform usage data over the past 2 years reveals that non-
IT professionals comprise a significant proportion, accounting for a staggering 62%.
Consequently, simplifying workflows, enhancing computing flexibility, and automating
environment configurations have become paramount objectives for AI platform.

To address the challenges faced by non-IT users in computing environment con-
figurations and repetitive setup processes, an AI platform must offer domain-specific
foundational models tailored to different academic disciplines. Additionally, incorpo-
rating pre-built environments and commonly used libraries such as PyTorch, TensorFlow,
Anaconda, and CUDA is essential. Moreover, the integration of flexible data processing
tools like file transfer plugins and error correction utilities greatly enhances users’ effi-
ciency in model development. Furthermore, efficient data visualization tools empower
users to intuitively observe and analyze model results, errors, and other relevant data.
Lastly, the provision of cloud-based Integrated Development Environments (IDEs) like
JupyterLab [12] and VSCode [13] proves instrumental in facilitating remote work, col-
laborative efforts, and addressing challenges related to model environment migration
and mobile demonstrations.

The experience gained from these user-friendly tools demonstrates VenusAI’s com-
mitment to providing accessible and efficient solutions, supporting the diverse needs of
non-IT professionals in their AI development endeavors.

4.2 Flexible Usage Methods

For advancedAI research and development users, the platformgoes beyond the interface-
based operations and offers more sophisticated and advanced functionalities. To cater to
tasks that require distributed computing across multiple nodes, the platform incorporates
anMPI (MessagePassing Interface) program [14], enablingusers towrite customparallel
computing scripts seamlessly. Moreover, by modifying the SLURM job management
system [15], users can leverage the cluster environment through command-line interfaces
for complex tasks such as distributed training and large-scale model inference.

It is important to note that research projects in different domains exhibit varying
demands for computational resources. Therefore, the computing cluster needs to have
a scheduling control mechanism that allows for elastic scaling, expanding during peak
times and contracting during idle periods. This ensures optimal utilization of resources
and efficient allocation based on the ever-changing requirements of diverse scientific
endeavors.

By offering these advanced features and capabilities, VenusAI caters to the needs of
experienced AI researchers, empowering them to tackle complex computational tasks
and unlocking new possibilities for innovation and discovery.

4.3 Datasets

In addition to the platform’s objective functionalities, the content provided plays a crucial
role in enhancing the user experience. Ensuring regular updates of data and models is of
paramount importance for the platform’s continuous development and user satisfaction.
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To meet the evolving needs of users, the platform incorporates popular open-source
datasets, includingCIFAR-10,MS-COCOand ImageNet in the computer vision domain,
Weather and Speech Command in the time series domain, and Sentiment140 in the NLP
domain [16–20]. Furthermore, a diverse range of state-of-the-art artificial intelligence
models such as Autoformer, Informer, MOSS (Massive OpenAI Scaling System), and
LLaMA are made available to users [20–22].

Notably, the introduction of the alphafold2 model service on the VenusAI platform
has resulted in a significant influx of new users and the return of existing users. This
exemplifies the platform’s commitment to staying abreast of advancements in the field
and catering to users’ demands for cutting-edge models. The availability of up-to-date
and sought-after models greatly influences user engagement and satisfaction, further
cementing VenusAI’s position as a leading platform in the AI research and development
landscape.

5 Conclusion

In conclusion, the VenusAI platform has successfully addressed the needs of both non-
IT professionals and advanced AI researchers. By simplifying workflows, enhancing
computational flexibility, and automating environment configurations, the platform has
empowered non-IT professionals to overcome barriers and improve research efficiency.
For advanced AI researchers, the platform offers advanced functionalities, including
cross-node computing and distributed training capabilities. Regular updates of datasets
and models have ensured relevance and attracted a growing user base. Overall, Venu-
sAI’s user-friendly tools and continuous improvements position it as a valuable platform
driving innovation in artificial intelligence research.

Our future plans atVenusAI involve continuous improvement and innovation.Weaim
to expand ourmodel library, embrace emerging technologies, and enhance the scalability
of our computational clusters. We value user feedback and seek collaborations to drive
advancements in AI research. Our goal is to establish VenusAI as a leading platform,
empowering researchers and contributing to the field of artificial intelligence.
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Abstract. With the rapid development of digitalization and big data
technology, numerous online learning materials have become available for
self-regulated online learning. However, there is still a lack of a practi-
cal recommendation platform that can achieve synchronization between
massive online learning materials and multiple users at different stages.
To fill the gaps, we present a synchronized online learning recommen-
dation system (SyncRec). The multi-source heterogeneous information
fusion module integrates online learning materials from different digi-
tal platforms. The dynamic knowledge status tracing module tracks the
real-time knowledge status and learning progress of online learners via
dynamic mapping to a set of knowledge trees. Furthermore, the per-
sonalized recommendation module achieves adaptive recommendation of
digital learning materials for each self-regulated online learner based on
current knowledge status and learning needs as well as preferences. The
demonstrated system helps improve learning outcomes and user expe-
riences. An illustration video could be found here (https://github.com/
Edith-xuan/video/blob/main/demo.mp4).

Keywords: Multi-source Heterogeneous Information Fusion ·
Knowledge Status Tracing · Synchronized Recommendation · Online
Learning

1 Introduction

1.1 Background

Online learning platforms have gained increasing attention in the past decade
due to the rich multimodal learning materials, such as the MOOC platform [1].
However, existing platforms in real practice are not feasible for self-regulated
online learners at different learning stages due to issues of confusion and infor-
mation overload in the e-learning process. Moreover, learning outcomes may vary
among different users, which also presents challenges [2]. There is a need for a
practical system that can synchronize the real-time knowledge status of online
learners at different stages with massive heterogeneous digital learning materi-
als, and further provide adaptive recommendations for online learning. Such a
system can reduce the cognitive overload of self-regulated online learners and
improve both the learning outcomes as well as the learning experiences.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
L. Fang et al. (Eds.): CICAI 2023, LNAI 14474, pp. 539–544, 2024.
https://doi.org/10.1007/978-981-99-9119-8_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-9119-8_49&domain=pdf
https://github.com/Edith-xuan/video/blob/main/demo.mp4
https://github.com/Edith-xuan/video/blob/main/demo.mp4
https://doi.org/10.1007/978-981-99-9119-8_49


540 Y. Zhang et al.

1.2 Literature Review

Existing literature addresses the topic of online learning recommendations from
different perspectives. In some studies, online learning content is recommended
at the group level, such as the multilayer bucket recommendation method for
similar online learners [3], and the clustering strategy-based method for the rec-
ommendation of similar learning content [4]. Others focus on individual-level
online learning recommendations, such as personalized recommendations based
on learner preferences [5], and reinforcement learning-based dynamic recommen-
dations [6]. Moreover, some used a hybrid method with collaborative filtering and
association rules for online learning recommendation [7]. However, there are few
practical online learning recommendation systems that can effectively synchro-
nize massive online learning materials with real-time user knowledge status, as
well as user needs and preferences.

To fill the above gaps, we propose a new online learning recommendation
system that effectively synchronizes heterogeneous online learning materials with
varying user knowledge status and personal needs as well as preferences.

2 Methodology

With fused online learning materials and traced user knowledge status, the sys-
tem achieves adaptive online learning recommendations, as shown in Fig. 1.

Fig. 1. Framework illustration of SynRec system

2.1 Multi-source Heterogeneous Information Fusion

We utilize the Selenium and Python toolkit with robust anti-scraping capability
to facilitate information retrieval from online courses and videos over three digital
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platforms (e.g., MOOC, NetEase Cloud Classroom, and Bilibili). Online learn-
ing materials vary significantly among different platforms. In order to address
the consistency issue, the developed system fuses and integrates multi-source
information. To improve overall performance, the Supabase hosting platform [8]
is used for data storage due to its self-hosting feature and database scalability,
as well as support for frequent requests.

2.2 Dynamic Knowledge Status Tracing

In order to achieve dynamic tracking of the status of user knowledge, we use
chapters from online courses or sequences of e-learning videos as tree nodes. The
developed system utilizes a knowledge graph to capture the dependency between
knowledge points and further provides query functionality. We employ the Neo4j
graph database [9] to create and store the knowledge tree. When a user selects a
learning plan, the learning process starts at the root node of the corresponding
knowledge tree. The system keeps track of changes in user knowledge through
interactive interfaces. After accomplishing the learning on a specific tree node
based on recommended online resources, the user can alter the knowledge status
via interactive self-assessment and automatically enroll into the next stage.

2.3 Personalized Recommendation

Based on the above modules, we further synchronize the fused massive online
learning materials with the tracked real-time user knowledge status, as illustrated
in Fig. 2. We use course/video tags from the fusion module and user knowledge
status from the tracing module to generate candidates via automatic match-
ing. Since the deep learning-based recommendation method could effectively dis-
cover the underlying patterns [10], we further employ a hybrid recommendation

Fig. 2. Personalized adaptive recommendation
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method with traditional matrix factorization and multilayer perceptron (MLP),
which is capable of extracting both low-dimensional and high-dimensional fea-
tures simultaneously. Unlike existing methods, the system generates embedding
vectors based on multiple features, including the user ID, the status of user
knowledge, the online learning material ID, and the ratings. The generalized
matrix factorization (GMF) layer can learn the interactions between users and
online learning materials. The MLP layer can retain the effective components in
the high-dimensional sparse features and transform others into low-dimensional
representations. Nonlinearity is further learned by concatenating multiple fully
connected layers. Finally, the results of the GMF layer and the MLP layer are
combined to generate a predicted rating for recommendations.

3 Application Scenarios

In this demo, information is collected from more than 16000 digital learn-
ing materials and further integrated into the Supabase platform, as shown in
Fig. 3(a). We use course category, number of learners, and teacher information
from MOOC and NetEase platforms to represent the information about tags,
video publishers, and viewer counts respectively. To further illustrate the track-
ing of knowledge status, we use a triplet list that stores the dependency of the
nodes to build a knowledge tree for each learning topic, as shown in Fig. 3(b).
When a user sets up a learning goal via an interactive interface, the system
automatically maps the knowledge status to the root node of the corresponding
knowledge tree. When the user finishes the learning process of the current node,
the system dynamically alters the user knowledge status via a self-assessment
method. Moreover, to improve the fidelity of the recommendations, the system
synchronizes the status of user knowledge with massive learning materials and
displays the recommendations via a user-friendly interface, as shown in Fig. 4.

Fig. 3. (a) multi-source information integration, (b) knowledge tree
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Fig. 4. Recommendation results

4 Conclusion

The proposed system synchronizes the dynamically evolving knowledge status
with heterogeneous multi-source online learning materials. The synchronization
mechanism enables effective recommendation of learning materials for multiple
online learners at different stages. The proposed system with a user-friendly
interface addresses the issues of confusion and cognitive overload during the
self-regulated online learning process and improves learning outcomes as well as
user experiences.

In future work, more interactive functionalities can be introduced to explic-
itly and implicitly retrieve online learner behaviors. The data could then be
augmented with more online resources and user characteristics to improve mod-
eling fidelity. In addition, comprehensive assessments, such as quizzes and tests,
can be incorporated to improve the rationality of the tracing of knowledge status.
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Abstract. The severe challenge encountered in cross-silo federated learning
(FL) is the performance degradation caused by data heterogeneity. To overcome
it, we propose two methods, FedGDI and FedCI, identifying these clients with
unbalanced categories based on an interpretability mechanism. We firstly itera-
tively generate feature maps of last global model and local client models selected,
then these unbalanced local models are identified by comparing the feature maps.
For clients with unbalanced categories, these local update parameters are fur-
ther adjusted by minimizing the gradient distance between the global model and
clients’ models, so as to reduce the adverse impact on the performance of FL
model. We adopt different client-filtering strategies to filter clients. FedGDI fil-
ters clients by taking advantage of the cosine similarity between the gradient
of these local client models and last aggregation global model; FedCI samples
clients by clustering clients based on gradient distance. We evaluate the effec-
tiveness of FedGDI and FedCI through multiple datasets, and from experimental
results it can be concluded that our methods outperform these state-of-the-art
(SOTA) schemes.

Keywords: Federated Learning · Interpretability · Data Heterogeneity

1 Introduction

The emergence of federated learning (FL) [1] makes it possible for clients to jointly
train a model without sharing data. However, due to FL settings for data privacy, differ-
ent clients do not share data information, such as their data distribution, which causes
data imbalance and slows convergence of the global model. For example, multiple e-
commerce platforms aim to jointly train a recommendation model, while user behav-
ior data from different source generally follows different distributions. Thus, solving
adverse impact of data heterogeneity [2] is urgent and beneficial to the application of FL.

To the best of our knowledge, existing researches on solving data heterogeneity
focuses on outputs of FL model, then resolves the problem directly through devised
loss function or privacy-violated knowledge. That is, the FL model is treated as a black-
box [3] model. The operation on a black-box model is not interpretable.

Converting a black-box model into an interpretable model requires the utilization
of interpretability techniques. Current works that generate visual explanations fall into

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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four categories: gradient-based methods [4], activation-based methods [5], region-based
methods [6] and perturbation-based methods [7].

In this paper, we work on exploring the feasibility of interpretability in alleviating
adverse effects caused by data imbalance. Our main goal is to tune the FL optimiza-
tion process in an explainable way. The adjustment for data heterogeneity depends
only on the input of the FL model, not its output. Thus, our solution can be widely
applied to different FL models. Empirical research indicates that client models with
unbalanced categories do mainly learn features of the majority classes. Therefore,
we adopt one activation-based method: Gradient-weighted Class Activation Mapping
(GradCAM) [5], which is capable of characterizing features related to these classifica-
tion results. GradCAM helps capture changes in interpretable results and then identify
clients with unbalanced categories (called unbalanced clients).

Moreover, inspired by the work of detecting malicious clients [8], we design a
gradient distance-based interpretable federated learning method (named FedGDI). We
consider that clients with a larger cosine distance between their own gradient and the
last global aggregation gradient are more likely to have data heterogeneity. So FedGDI
firstly calculate and rank the cosine distance between client gradient and global gradi-
ent to identify clients with greater risk on affecting global model’s performance. The
likelihood of a client data imbalance is then measured by calculating the similarity
of the interpretable results between the client and the last aggregated global model.
Then we narrow the gradient distance difference between the unbalanced client model
and the last global aggregation model. In order to achieve unbiased sampling, we
propose another solution, a clustering-based interpretable federated learning method,
named FedCI. FedCI includes a client-selecting strategy, hierarchical clustering mod-
ified from [9]. We cluster clients based on the similarity between client models, and
then extract clients from the clusters to participate in each FL round. The similarity of
the interpretability results between clients selected and last global aggregation model
is calculated to evaluate unbalanced clients. Then the imbalance client’s parameters are
adjusted like in FedGDI.

Our main contributions are summarized as follows:

– To explore the power of interpretability in alleviating adverse effects caused by the
data imbalance, we designed two interpretable solutions, FedGDI, and FedCI, both
of which not only improved FL model performance but also made the improvement
interpretable.

– We can take advantage of the interpretability to infer the general situation of data
heterogeneity in FL model frameworks.

– We conducted evaluations on four datasets: MNIST [10], CIFAR-10 [11], CIFAR-
100 [11], CINIC-10 [12]. Experimental results show that our solutions outperform
these SOTA solutions. With these encouraging results, we confirm that, employing
the interpretability in cross-silo FL is promising to overcome the influence of data
heterogeneity.

2 Related Work

At present, existing methods [13–21] solving data imbalance are the utilization of
encrypted data privacy information or disclosure of privacy to adjust unbalanced data.
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Table 1. Solutions on data imbalance in cross-silo FL

Technique Proposed Methods Trait

Cryptography Dubhe [13], FedeAMC [15] Expensive overhead

Loss Function Monitor [16], Fed-Focal Loss [17] Application limitation

Devised Framework Astraea [18], FedMA [14], CCVR [19],
FedSens [23], FedPer++ [20]

Privacy violation

Interpretability FedGDI, FedCI Interpretable

Cryptographic Techniques. Zhang et al. [13] introduced Dubhe based on homomor-
phic encryption. Each client decides whether to participate in each round based on a
self-determined probability. And the data distribution is transferred between the client
and the server through an encryption vector to guide the client’s decision. Thus, the
additional encryption operation incurs more computational overhead. Wang et al. [15]
proposed a FL-based AMC (FedeAMC) under the condition of class imbalance and
noise varying. However, either homomorphic encryption or other encryption computa-
tion suffers from heavy computational and communication overheads, and this kind of
solutions are too expensive to be implemented in complex FL models.

Loss Function. Wang et al. [16] designed a monitor mechanism, where the monitor
detects the imbalanced composition of training data in each round by using auxiliary
data and the server loads the self-defined Ratio Loss to alleviate data imbalance. Sarkar
et al. [17] proposed a new loss function called Fed-Focal Loss, which addresses the
class imbalance by reshaping cross-entropy loss. However, the kind of solutions are not
suitable to solve the problem of data imbalance in FL frameworks where the degree of
data imbalance is large. Moreover, the kind of solutions only design the loss function
according to these outputs of FL models, thus it is not practical.

Devised Framework. Duan et al. [18] developed Astraea, a self-balancing data sam-
pling scheme that is dedicated to addressing the class imbalance problem by the
designed mediator to improve of the model accuracy in FL. Lou et al. [19] proposed
the Classifier Calibration with Virtual Representation (CCVR) to alleviate the adverse
effects of data heterogeneity by adjusting the classifier using virtual representation.
Wang et al. [14] designed the Federated matched averaging (FedMA) algorithm, which
constructs the shared global model in a layer-wise manner by matching and averaging
hidden elements with similar feature extraction signatures. Xu et al. [20] performed a
linear combination based classifier collaboration method for achieving better FL model
performance, with a feature-regularized training strategy. However, the server in the
kind of solutions has the global knowledge of class distributions of all participants or
other data information, which violate these strict privacy requirements of participants.

To improve FL performance without expensive overhead, we explored to explore
the feasibility of interpretability in mitigating performance degradation practically
(Table 1).
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3 Preliminaries

3.1 System Model

To formulate cross-silo FL model, we hypothesize that there are n clients, a central
server (CS) and an interpreter, as shown in Fig. 1. Each client j, j ∈ {1,2,3, ...,n}, has
a local dataset Dj, following a dirichlet distribution. In each local round, every client
performs Q iterations of model training. The CS collects local model updates from
selected clients, aggregates local updates to get the global optimization after operations
conducted by the interpreter, and then distributes the updated global model to every
clients. During the local training, clients utilize stochastic gradient descent (SGD) to
update their own model weights. Let η denote the learning rate, andW represent model
weights. The local updateWh

j of j-th client in h-th iteration can be calculated as:

Wh
j =Wh−1

j −ηĠh
j , (1)

where Gh
j is the gradient of the h-th iteration of j-th client.

3.2 Related Notions

The Federated Averaging Algorithm (FedAvg). FedAvg [24] is a distributed frame-
work that allows multiple users to train a machine learning model simultaneously. Local
clients are responsible for training local data to get their own local models, and the cen-
tral server is responsible for weighted aggregation to get the global model: First, local
clients download model parameters from the server, update local model parameters,
and conduct local training. Secondly, the local models are constantly updated through
SGD. When the pre-determined local training times is reached, the updated local model
parameters are uploaded to the server. Then the server sample m clients randomly from
all the clients n. Then the server averages the gradient updates of thesem clients to form
a global update. Finally, the aggregated model parameters are passed back to client
devices. Repeat the above steps until the number of communications reaches the set.
Client sampling formula of FedAvg is as follows:

θt+1 = ∑
i∈St

ni
n

θt+1
i + ∑

i/∈St

ni
n

θt , (2)

where St is the set of clients selected for t-th aggregation, θt represents the current
global model parameters.

Dirichlet Distribution. Dirichlet distribution is a probability distribution, which is
determined by concentration parameter and base distribution. In fact, dirichlet distri-
bution is the conjugate prior of the categorical distribution and multinomial distribu-
tion. Let Dir(·) denote dirichlet distribution, and α denote its concentration parame-
ter. The larger the value of α, the closer the data distribution is to uniform distribu-
tion; the smaller the value of α, the more concentrated the data distribution will be.
Due to the distinct characteristics of the dirichlet distribution (i.e. the summation
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Fig. 1. The System Model of Interpretability-based FL (FedGDI and FedCI)

equal to 1), the Dirichlet distribution is widely used to deal with categorical data
with a source of Gamma-distributed random variates (set gamma distribution as
the base distribution), we can easily sample a random vector x= (x1, . . . ,xK) from
the K-dimensional Dirichlet distribution with parameters (α1, . . . ,αK) (that is, x =
(x1, . . . ,xK) ∼ Dir(α1, . . . ,αK)). First, draw K independent random samples y1, . . . ,yK

from Gamma distributions each with density Gamma(αi,1) =
y

αi−1
i e−yi

Γ(αi)
, and then set

xi =
yi

∑K
j=1 y j

.

The Interpretability. The interpretability [25,26] is used to provide explanations in a
human-comprehensible manner that relate to predicted results provided by models. For
the goal of accountability, these methods related to the interpretability can be divided
into two categories: intrinsic methods and post-hoc methods. Intrinsic methods essen-
tially rely on models that are interpretable by design, often referred as white-box models
or transparent models. That is, intrinsic methods tend to have a strong task dependency,
which limits their practicality. The post-hoc methods are model-agnostic, and they can
be applied to a kind of models (e.g. neural networks) instead of specific models. Thus,
the inherent ability of these post-hoc methods is to explain the model after training,
which are often much more adaptable. In this paper, a post-hoc method is adopted to
make the overall optimization interpretable and practical.

4 Interpretability-Based FL Methods

As shown in Fig. 1, we introduce our solutions in details here: 1. Select clients for local
updates and the corresponding interpretability verification; 2. Perform interpretability
verification on these clients selected; 3. Adjust model parameters.
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4.1 Client-Selecting Strategy

In the initial stage, clients are randomly selected for initial training.

Client-Selecting Strategy in FedGDI. The notion related to the reference gradient [8]
is adopted and modified to improve the practicality of the client-selecting strategy.
We modified the original reference gradient ,generated by a small clean dataset imple-
mented on the server, into last global aggregation gradient (the initial stage: the initial
global aggregation gradient). The empirical study demonstrated that commonly-used
euclidean distance between gradients can’t fully illustrate the offset degree between
local update direction and global aggregation direction. Therefore, the cosine distance is
used to identify clients that might have adverse effects. Clients with greater cosine dis-
tance between their gradients and reference gradient are considered to be more likely to
have data heterogeneity. In each iteration, we select the top 30% of local model updates
with lower cosine distance. Let gi, g0 represent the i-th local gradient and the last global
gradient, respectively. The i-th client’s cosine similarity can be calculated as:

Si =
< gi,g0 >
‖gi‖ · ‖g0‖ . (3)

Client-Selecting Strategy in FedCI. We redefine a representative gradient shown
in [9] as the difference between a local model and last global model, instead of the
difference between local models. Representative gradient Grep is treated as the refer-
ence in subsequent hierarchical clustering. The i-th client’s representative gradient is
computed as:

Wori −η ·Grep =Wupdate → Grep = pi − p0 (4)

where pi and p0 represent the i-th client’s local update and the last global update respec-
tively. According to the similarity of clients’ representative gradients, we can divide
them into c clusters by utilizing the ward’s method [28], and then sample m clients with
cluster sampling for local updates and interpretability verification. Based on empirical
results, when the number of clusters reaches m or the distance between the two nearest
clusters exceeds the set threshold, the clustering stops and c is set. Every γ iterations, we
perform the hierarchical clustering operation, where γ is set as 10 in our experiments.

4.2 Interpretable Verification

These clients selected for interpretability verification are named as validation client.
To assess the learning ability of each validation client model, a single set of samples
extracted from each category of the dataset is set as the validation set Sval , the input of
each validation client model for interpretability results. As described in Algorithm 1,
the interpreter interprets each validation client’s classification results on Sval : These fea-
tures affecting the final classification results are highlighted, where the average gradient
values on the feature map can be calculated as:

ξβ
C =

1
Z ∑

i
∑
j

∂yβ

∂ACi j
, (5)
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Algorithm 1. Similarity calculation of interpretability results
Input: Model structure M, Model parameters Pm, Validation set Sval , and Reference images

imgre f
Output: Similarity Sim
1: Load parameters Pm to model structure M → model Mm

2: Input Sval intoMm: obtain the weights of feature mapW = [w1,w2, ...,wn]
3: Calculate the mean values of the gradient on the feature map with Eq. 5

4: Keep only the positive areas on the validation category β: Lβ
Grad = RELU

(
∑C ξβ

CA
C
)

5: Save the above interpretability results imgcomp

6: Calculate the similarity between imgcomp and imgre f with Eq. 6: Sim= [Sim1...Simε...SimN ]
7: return Sim

Algorithm 2. Dynamic Parameter Adjustment

Input: ModelM, Local parameters of j-th client Pj
l , Last global parameters Pg, Validation data

of j-th client Dj
v, and FL aggregation times T

Output: Adjusted parameters Pj
ad j

1: Load the dataset based on the pre-defined class of dataset
2: Load parameters Pj

l and Pj
g to last global model Mg and j-th client model Mj

l , respectively
3: Determine number of external cycles Tec and internal cycles Tic with Eq. 7
4: for i= 0 to Tec do
5: Input Dj

v toM
j
g: generated gradients Gg

6: for i= 0 to Tic do
7: Input Dj

v toM
j
l : generated gradients Gloc

8: Calculate gradient distance and backward update for parameters Pj
local with Eq. 8

9: return Pj
ad j

where A, C, (i,j), and Z represent the feature map, its channels, its location and its size
respectively, yβ represents its logits and β represents the category. These highlighted
feature maps are saved as interpretability results imgcomp. We then can infer those
clients with imbalanced data: These interpretability results of last aggregated global
model imgre f are taken as the measurement standard. Then the similarity between each
validation client’s N-sized interpretability results imgcomp and the referenced results
imgre f is calculated as follows:

Simε =
2∑N

i=1 |co f ε
x,i||co f ε

y,i|+C

∑N
i=1 |co f ε

x,i|2+∑N
i=1 |co f ε

y,i|2+C
· 2|∑

N
i=1 co f

ε
x,ico f

∗
y,i

ε|+C

2∑N
i=1 |co f ε

x,ico f
∗
y,i

ε|+C
, (6)

where co f ε
x/y,i and co f

∗
x/y,i

ε represent the coefficients of ε-th image x (resp. y) of imgre f
(resp. imgcomp), the complex conjugate of co fx/y,i, respectively, and C denotes a small
positive constant for the robustness. A category with the most variation in the similarity
is considered as its imbalanced category for the validation client.
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Table 2. Comparison results on MNIST and CIFAR-10 (VS. FedMA)

Dataset Method

BASELINE FedMA FedGDI FedCI

MNIST 0.93 0.99 0.99 0.99

CIFAR-10(VGG-9) 0.64 0.74 0.7409 0.7517

4.3 Dynamic Parameter Tuning

As shown in Algorithm 2, these imbalanced client model’s parameters are dynamically
adjusted by minimizing distance between gradients of j-th client model’s parameters Pl
and last global model’s parameters Pg. The number of external cycles Tec and internal
cycles Tic in Dynamic Parameter Adjustment are dynamically determined by FL aggre-
gation times T . The determined equation can be expressed as:

Tec = min{�φT +R	,20},Tic = min{�ψT +O	,30}, (7)

where hyper-parameters of iteration variation φ and ψ are set to 0.5 and 1.5, respec-
tively, then R and O are two positive constant 5 and 10, respectively. The 20 and 30
are added in Eq. 7 for the initial stabilization. Then the adjustment can correct these
adverse parameters by the gradients converging. The distance between gradients can be
computed as the following:

d =
n

∑
k=1

‖gk ′ −gk0
′
‖
2

2 (8)

where gk
′
and gk0

′
are gradients generated by the local client model and last global model

on the k-th sample of the validation set Sval , respectively. To mitigate negative impact
caused by the data heterogeneity, we consider minimizing the above gradient distance to
adjust parameters Pj

ad j. However, the initial phase of FL is unstable and easily affected.
Thus, the dynamic adjustment amplitude is extremely necessary. We flexibly adjust
these above parameters (Tec and Tic) based on FL aggregation times T . Repeat the above
steps for the FL aggregation times until the global model Mg converges.

5 Experiment

Our schemes are classified as the category of devised framework and for improving
the global FL optimization. Thus, we compare our work with FedAvg, FedMA [14]
and CCVR [19], where the FedAvg is the BASELINE, FedMA and CCVR are the
SOTA methods in the category of devised framework. To avoid accidental results, the
following experimental results are the average results of repeated experiments.

5.1 Experiment Settings

The MNIST dataset is a handwritten digits dataset of 10 categories. Both CIFAR-
10 [11] and CIFAR-100 [11] are composed of 60,000 colour images. The CINIC-10
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is a dataset constructed from two different sources: ImageNet and CIFAR-10, which
contains 270,000 images. These proposed methods are implemented on a A5000 GPU.

We adopt these same datasets and network architectures used in comparisons. That
is, a 4-layer CNN network with a 2-layer MLP projection head like CCVR for CIFAR-
10. For CIFAR-100 and CINIC-10, we adopt MobileNetV2 [29]. When comparing with
FedMA, LeNet-5 [30] is adopted on MNIST [10] and VGG-9 [31] on CIFAR-10. 132
clients are set up in the experiment. In each round, 16 clients are selected for local
updates. To simulate practical FL scenarios, we sample pi ∼ DirK(α) and assign a
pi,k proportion of samples from class i to client k, making the data obey the Dirichlet
distribution. Incidentally, we set the parameter α in the Dirichlet distribution to 0.5
unless otherwise specified.

5.2 Results

We evaluate the effectiveness of our designed solutions, compared with the optimal
experimental values of CCVR [19], FedMA [14] and BASELINE.

We compare FedGDI (resp. FedCI) with FedMA (resp. CCVR) on different
datasets. From Table 2 and Table 3, we know that both solutions outperform the SOTA
solutions.

FedGDI and FedCI VS. FedMA. From experiment results shown in Table 2, we
have these following observations: 1) In MNIST, all solutions perform the best and
the BASELINE has only a minor accuracy loss. 2) For CIFAR-10, the accuracy of the
FedGDI and FedCI is higher than that of the FedMA and BASELINE. 3) All solutions
have a downward trend in the FL model accuracy with the data imbalance incurred, but
FedGDI and FedCI are more robust on different datasets. The MNIST structure is sim-
ple, so the improvement effect of all solutions is significant, but for the more complex
CIFAR-10 data set, our methods are more prominent.

FedGDI and FedCI VS. CCVR. As shown in Table 3, it’s apparent that FedGDI and
FedCI achieved higher accuracy than CCVR. Figure 2 shows the accuracy of CIFAR-10
with varying degrees of disequilibrium α. By comparing these results shown in Fig. 2,
we can observe that as the value of α decreases (the greater the degree of imbalance),
our solutions become more competitive.

The main reason of the above trend is that FedGDI and FedCI make targeted adjust-
ments on these negatively affected model parameters based on interpretability results
instead of these FL models’ outputs. The degree of data imbalance does not have a lin-
ear change on the model output, so the method of relying on the model output to adjust
has limitations. Thus, our methods are more robust to the degree of data imbalance
that other solutions. And these solutions like CCVR can only alleviate the performance
degradation of the FL models caused by data imbalance within a certain range.

The Effects of Client-Selecting Strategies. As seen in these above charts and figures,
we can observe that FedCI outperforms FedGDI on different benchmarks. To inves-
tigate reasons for the above phenomena, we conducted related ablation experiments:
the effect of client-selecting strategy alone on the FL performance. From Table 4, we
can infer that the interpretability works better in FedCI. Therefore, we can infer that the
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Table 3. Comparison results on CIFAR-10, CIFAR-100 and CINIC-10 (VS. CCVR)

Dataset Method

BASELINE CCVR FedGDI FedCI

CIFAR-10(CNN+MLP) 0.6939 0.7143 0.7411 0.7504

CIFAR-10(α=0.1) 0.5953 0.6322 0.6418 0.6671

CIFAR-10(α=0.05) 0.5276 0.5556 0.5716 0.5911

CIFAR-100 0.6679 0.6723 0.6746 0.6975

CINIC-10 0.6224 0.7053 0.6923 0.7205

Fig. 2. The robustness to different degrees of disequilibrium (α=0.5, 0.1, 0.05.)

Table 4. Ablation experiments on the effect of interpretability (α=0.5)

Dataset Method

FedGDI FedGDI∗ FedCI FedCI∗

CIFAR-10 0.7411 0.7298 0.7504 0.7306

CIFAR-100 0.6746 0.6645 0.6975 0.6647

CINIC-10 0.6923 0.6425 0.7205 0.6488
FedGDI∗ (resp. FedCI∗) denotes FedGDI (resp. FedCI)
without interpretability.

upper limit of performance improvement ofDynamic Parameter Adjustment depends on
the characteristic of client-selecting strategy (unbiased sampling or biased sampling) as
well. The reason is that the expected value of the client aggregation derived from unbi-
ased sampling is closer to the global aggregation derived from considering all clients.
The unbiased sampling strategy take advantage of client data in FL, that is, some clients
with unique data distribution can be selected.

The Effectiveness of the Interpretability. From Table 4, we can infer that the perfor-
mance gain of FedGDI and FedCI is due to the adoption of the interpretability. These
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client-selecting strategies are not main factors for FL model improvement. Removing
the interpretability part is harmful for improving FL model performance. For instance,
ablation experiments on CINIC-10 show that FL model accuracy decreases by 4.98%
when using FedGDI’s selecting strategy alone, and decreases by 7.17% when using
FedCI’s selecting strategy alone.

6 Conclusion

This paper aims to explore the power of interpretability in solving data heterogeneity
in FL frameworks. To this end, we propose FedGDI and FedCI, both of which employ
the interpretability to alleviate adverse effects caused by the data imbalance. FedGDI
and FedCI successfully improved FL model performance by combining client-filtering
strategies with interpretability. We conducted experiments on different datasets, and
encouraging experiment results demonstrate that our solutions outperform other SOTA
solutions. Furthermore, we also conducted ablation experiments on client-filtering
strategies and interpretability verification. In future, we will further explore the power
of the interpretability in FL frameworks, including exploring how to mitigate model
performance degradation in cross-silo FL with stricter privacy protection.
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Abstract. This demo project is an interactive design demo with a
nature-centric perspective, focusing on bioluminescence in the natural
world. We obtained a dataset related to bioluminescence from iNatural-
ist and performed data visualization to glean insights into the scientific
classification, geographical distribution, and temporal patterns of bio-
luminescence. Based on the insights above, we designed a Biolumines-
cence World Clock, which demonstrates the flow of time by dynamically
changing rhythmic processes of bioluminescence. Moreover, this inter-
face is part of a public data collection service inspired by the Citizen
Science model which contributes to the original data set through new
data gathering and sharing.

Keywords: nature-centred perspective · bioluminescence · data-driven
design

1 Introduction

Bioluminescence is the entry point of this design research that uses data-driven
design as a method and focuses on the investigation of nature-based datasets.
Although bioluminescence is not common in most organisms and the phe-
nomenon is not readily observable, it usually occurs in many marine vertebrates
and invertebrates, as well as some fungi, microorganisms, bacteria, and terres-
trial arthropods such as fireflies. Bioluminescence is functionally essential for
some of these organisms [1], so researchers are still exploring various aspects of
bioluminescence, such as the luminescence mechanisms of different organisms,
the differences in energy transfer processes, and the causes of varied lumines-
cent colours [2]. In addition, the macroscopic aspects of bioluminescence are
also worth investigating to understand lighting process. [3] Different Biolumi-
nescence use luminescencing to achieve diverse physiological meanings, including
courtship [4], attracting communicators, hunting, warning, and defence against
predators (such as cuttlefish) [5].

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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iNaturalist is a nature-related platform where users can upload their obser-
vations of organisms in the natural world. Therefore, on this platform, we were
able to obtain data on bioluminescence observed by users, including the identified
species, the latitude and longitude of the observation locations, and the time of
the organism’s discovery. After conducting data analysis, it was discovered that
bioluminescence exhibit certain patterns in terms of species, geographic distri-
bution, and occurrence time which serve as the inspiration for our demo research
results.

Inspired by the findings above, we have created a demo which includes a
world clock feature along with related alarm clock and stopwatch functions, as
well as the discovering function in Apple Watch, which are inherently connected
to time and geography. We harness the dynamic shifts in various biolumines-
cent phenomena to depict time, enabling individuals to alter their perception of
time and cast the magical bioluminescence of the natural world as the central
character.

2 Data Visualization

We used open-source software RAW Graphs1 and Tableau2 for the dataset analy-
sis witch can be seem in Fig.1. They can support a large number of data formats,
thus allowing us to explore multiple dimensions and configurations of the data
quickly.

Firstly, we looked at the variety and diversity of species that showcase bio-
luminescence, and we visualised them in the sunburst map. The diagram shows
that at the level of Kingdom, among bioluminescent organisms, Fungi is a unique
type, followed by Animalia. In terms of geographical distribution, we employed
Tableau to visualize the latitude and longitude data related to bioluminescence.
Our data visualization revealed that bioluminescent phenomena are predomi-
nantly concentrated in forested regions, coastal areas, and near rivers.

Shifting our focus to the temporal distribution, we conducted an analysis of
bioluminescence over time. This examination allowed us to discern that various
bioluminescent species display unique temporal patterns and rhythms.

3 Design Output

Building upon the insights derived from our data visualization research, we
gained a comprehensive understanding of the scientific classification, geograph-
ical distribution, and temporal distribution of bioluminescence. These findings
were subsequently integrated into our data-driven user interface design, facili-
tating a more informed and data-centric approach to our interface development.

1 https://www.rawgraphs.io/.
2 https://www.tableau.com/.

https://www.rawgraphs.io/
https://www.tableau.com/
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Fig. 1. The result of the visualization of the bioluminescence

3.1 Concept

Our intuition was to transform the data visualisation insights into a biolumines-
cence world clock that can work as a flexible and cross-platform widget integrated
and embodied in daily-use devices such as the Apple Watch and mobile phones.

The data-driven UI design concept is represented by the Bioluminescence
World Clock, which visually portrays the dynamic changes in bioluminescence
to depict the passage of time. Our platform includes a user interface for locating
natural bioluminescent events and uploading data to the cloud, thereby influ-
encing the imagery displayed on the Bioluminescence World Clock.

3.2 Application Field

We employed Houdini as our prototyping software and specifically utilized the
“particle system” function for visualizing dynamic bioluminescent imagery. The
system in Houdini is defined by spatial position data and various adjustable
parameters, while the carrier continually generates new particles. Within the
interface, we have the capability to fine-tune the speed of particle generation and
dissipation. Designers can manipulate particle movement by applying additional
force around the carrier to influence the output’s shape.

3.3 Visual Style

Since the luminescent effect of particles is a chemical reaction related to the
function of luminophores in their bodies, we choose to use the visual effects of
dynamic particles to reflect the repeated chemical reactions of bioluminescence.

By the particle system we mentioned above in Houdini, we can create visual
style bioluminescence made up of different particles. Their movement can be
shaped by particle parameters, external force system, external model, and node
system in the Houdini system, which can reflect their endless vitality.
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4 User Experience

As shown in Fig. 2, we finally generated the dynamics of 12 biolumines-
cence organisms expressing the time flow. Cyanophyta, Panellus, Polychaeta,
Ctenophora, Omphalotus, Mycena, Lampyridae, Merulinidae, Sylliidae, Tubi-
poridae, Pocillopora and Alcyonacea are the most frequent categories in our
datasets.

Our output includes a UI widget in a smartphone application and a wearable
UI widget in the Apple watch: these two interfaces work together to implement
our system. On the Apple watch, we designed functions including clocks, alarms,
stopwatches and the function for users to encounter bioluminescence. The clock,
alarm clock, and stopwatch will use the dynamic changes of the bioluminescence
to display, remind, and calculate the time. The equipment can notice the user’s
closest bioluminescence to help them discover them. Hopefully, we can inspire
more users to discover bioluminescence in this way.

Fig. 2. The output of the interaction design

5 Limitations and Future Work

5.1 More Comprehensive Dataset

We focused on accessible bioluminescent areas but encountered limitations in
regions like Asia and Africa where our platform is underutilized. This led to
a dearth of data in less-explored regions. Collaborating with other datasets
presents an opportunity for data enrichment.

5.2 Remote Interactive Graphics

Ideally, the bioluminescence types and particle movement in the World Clock
could adapt based on continuously observed and uploaded data. As a future
enhancement, we envision a seamless connection between the data used for World
Clock outputs and the cloud-based data from platforms like iNaturalist, allow-
ing real-time updates to influence the UI design. Houdini’s node-based approach
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facilitates the incorporation of external data, making this a technically viable
prospect. However, we acknowledge that implementing this may require addi-
tional project time.
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Abstract. This demo is centered on a nature-centered perspective, pro-
viding individuals with the opportunity to explore the evolution of stro-
matolite phenomena in the natural world. The installation allows users to
manipulate two key natural conditions: water dynamics and light expo-
sure, using acrylic panels, which can control the morphological trans-
formation of simulated image. When user interact with the device, the
unique image generated. The experience is further enriched through
external projection onto a large screen, creating an immersive simula-
tion of natural evolution.

Keywords: nature-centric perspective · stromatolite · interactive
experience

1 Introduction

This project is a design project based on the phenomenon of stromatolites in
nature. Stromatolites are laminated biosedimentary structures usually attributed
to the trapping and binding as well as chemical action of non-skeletal algae in
shallow-water environments [4]. The device aims to create an interactive expe-
rience where people can control the growth of stromatolites by interacting with
the environmental conditions. The fucntion allows users to witness the process of
stromatolites formation, which is influenced by sunlight and water flow, resulting
in different patterns. Stromatolites is a layered growth structure formed by the
combination or precipitation of ancient microbial mats or biofilms (mainly com-
posed of cyanobacteria) with sediment, possibly accompanied by non-biological
surface precipitation [1]. Stromatolites records the interaction between microor-
ganisms, sediment, and flowing water throughout Earth’s history, provides only
a small fraction of the structures preserved in Ordovician and Paleozoic car-
bonates [2], potentially shedding light on the long-term history of life and the
environment.

2 System Design

The growth of stromatolite is closely related to the environmental conditions in
which it exists, with key morphological factors including light exposure, water
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
L. Fang et al. (Eds.): CICAI 2023, LNAI 14474, pp. 562–566, 2024.
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dynamics, and surface microbial presence. [3] Under different environmental con-
ditions, stromatolite exhibits distinct growth patterns. In this demo, we primar-
ily focus on the impact of light exposure and water dynamics on the growth
of stromatolite. By using different lighting ways and predefined water dynam-
ics, the interactive process generates stromatolites models with different shapes.
Our system involves three acrylic panels, light-dependent resistors, Processing
for graphics generation, and a projection device, showed in Fig. 1.

Fig. 1. The hardware setup of the entire interactive system consists of several compo-
nents.

2.1 Water Dynamics Control - Three Acrylic Panels

The research team has created three acrylic panels using laser cutting, with
graphical cues on the panels indicating the magnitude of water dynamics which
can be seem in Fig. 2. Users can select an acrylic panel, which then links to
the algorithm program associated with their chosen water dynamics condition.
These water dynamics conditions are broadly grouped into three levels, each
representing a unique longitudinal cross-sectional shape of stromatolites. And
the algorithm generates shapes based on abstract representations of these natural
stromatolite forms.

2.2 Light Exposure Control - Light-Dependent Resistors

Since the growth of stromatolite depends on light exposure, the position, direc-
tion, and intensity of light, the driving force behind stromatolite growth in
this system is generated by user-controlled lighting. We have set up four light-
dependent resistors at specific positions on the acrylic panel to sense the inten-
sity, position and the duration of light.
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Fig. 2. Hardware device design sketches.

2.3 System Implementation - Arduino and Projection

Various acrylic panels can trigger distinct circuit connections, and these cir-
cuits from multiple panels run in parallel. These signals are then directed to an
Arduino board, which subsequently transmits them to the Processing software
on the computer. Based on the input parameters, diverse stromatolite graphics
are generated. Ultimately, the visuals created in Processing are projected onto
a large screen for display.

3 Algorithm Implementation

The algorithmic graphics for this project are developed in Processing, utilizing
the Java programming language. In the algorithm, we leverage data from four
light-dependent resistors to establish a coordinate system and ascertain the light
source’s position from the flashlight. These visuals are generated through an
agent class, which draws line-shaped graphics with different colors, thickness,
and movement patterns along predefined trajectories.

4 User Experience

The foremost value of this project lies in its ability to transition individuals from
a human-centric perspective to a nature-centric one, highlighting the transfor-
mative processes that nature has undergone over millennia. Human actions and
societal interactions are no longer central to this project; instead, it emphasizes
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the presentation of natural evolution that has unfolded across millennia, achieved
through the interplay of software and hardware components.

In this project, users act as controllers, influencing the environmental factors
that impact stromatolite growth. Through their engagement with the interactive
device, users can observe the gradual vertical development of stromatolites driven
by light exposure. They also witness the alteration of growth patterns and rules
when transitioning between water dynamics conditions, as illustrated in Fig. 3.
This immersion allows users to genuinely experience the enchanting and large-
scale transformations inherent in nature’s long-term evolution. Our aspiration is
for individuals to find inspiration in this interactive demonstration and cultivate
a deeper respect and awe for the natural world.

Fig. 3. Hardware device design sketches.

5 Limitations and Future Work

5.1 Incorporating the Influence of Microbial Conditions

At present, our interactive device primarily focuses on factors like light exposure
and water dynamics, yet we acknowledge that the presence of microbes on layered
rock plays a pivotal role in influencing growth. In our future endeavors, we
aspire to integrate microbial conditions into the growth dynamics of the entire
interactive device.

5.2 Improved Diversity of Stromatolites Growth Patterns

To enhance the distinguishability of stromatolites growth patterns, we aim to
introduce greater diversity in the shapes of stromatolite growth under different
water dynamics conditions.
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Abstract. Simultaneous localization and mapping (SLAM) is the task
to estimate agent’s ego-motion in the map and reconstruct the 3D geo-
metric of an unknown environment in parallel. Although many SLAM
algorithms have been proposed in the past decades, few efforts have
been devoted to conducting accurate real-time dense SLAM on resource-
and computation-constrained platforms. In this paper, we leverage a
shared binary neural network (BNN) architecture to learn robust feature
descriptors for depth estimation and pose estimation modules simulta-
neously, which not only improves the system’s accuracy, but also reduces
the computation cost. Also, we propose several optimization strategies
targeting feature extraction, feature aggregation as well as feature match-
ing, and to accelerate them on embedded platform. Experimental results
demonstrate that our design maintains accurate real-time pose estima-
tion while yielding high-quality dense 3D maps. Our demo video is avail-
able at https://github.com/CICAIsubmission/CICAI2023.

Keywords: Simultaneous localization and mapping · Hardware
accelerator · Real time · Dense map reconstruction

1 Introduction

Among the existing SLAM approaches, feature representation, map density,
running platform are all key factors that are directly related to the applica-
tion scenarios. Therefore, we investigate the state-of-the-art algorithms. Recent
researches [5,7,8] propose SLAM systems that run on embedded SoC, but rely-
ing on handcrafted feature descriptors result in limited ability to cope with the
highly dynamic environments. As an improvement, the work in [6,9] explore
feature representation based on CNN on FPGA to enhance the robustness of
SLAM, but did not implement a complete SLAM system on the SoC. Ling, et
al. [4]implements a dense SLAM that can provide a lot of useful information
for advanced applications such as automatic obstacle avoidance, but it can only
run on CPU/GPU devices which consume a lot of power. It can be seen that
no efforts have been devoted to developing dense stereo SLAM with CNN-based
features on the embedded platforms.

In this paper, we propose a robust hardware-software co-design accelerator
for SLAM task and implement it on embedded platforms. A light weight binary
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
L. Fang et al. (Eds.): CICAI 2023, LNAI 14474, pp. 569–574, 2024.
https://doi.org/10.1007/978-981-99-9119-8_53
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Fig. 1. The architecture of the demo system. ❶ denotes original image left&right.
❷,❸ denote key-points. ❹ denotes the feature of origin image. ❺ denotes the keypoints
of last frame or global map points. ❻ denotes the results of matching. ❼ denotes the
estimated pose of the camera. ❽ denotes optimized keyframes. ❾ denotes depth map
of the current camera perspective. ❿ denotes the global dense map. Finally, the dense
map is transmitted to the display through a router.

neural network(BNN) is applied in our architecture to generate robust feature
descriptors, which is useful for accurate feature matching which is required in
slam system sub-tasks like stereo matching and pose-estimation. To reduce the
hardware resource consumption, we proposeseveral optimization strategies for
hardware implemented algorithms like non-maximal suppression (NMS), heap-
sorting and feature matching. We also optimize the methods for mapping sub-
task while maintaining real-time dense map reconstruction. The experimental
results demonstrate that our accelerator provides more accurate localization and
high-quality dense mapping solution when compared to state-of-the-art SLAM
systems. What’s more, we provide a demo video to explain how the accelerator
runs on the embedded device.

2 Proposed Slam Accelerator

As shown in Fig. 1, we develop an FPGA-based hardware accelerator to alleviate
the computational load on the ARM processor in order to enhance the perfor-
mance of dense stereo SLAM. This hardware accelerator is specifically designed
to target the most time-consuming tasks, namely feature extraction, feature
matching, and stereo matching. Furthermore, we achieve significant improve-
ments in the efficiency of the localization backend and 3D reconstruction pro-
cesses by employing algorithmic optimizations. The implementation details can
be found in [3].

Feature Extraction Accelerator. The feature extraction accelerator is ded-
icated to extracting features from the original images. To obtain the image fea-
tures necessary for key-point association and stereo matching, we integrate a
light-weighted BNN following the work in [1]. To obtain high-quality key-points
for pose estimation, we employ the FAST corner point detection algorithm to
identify candidate key-points. Subsequently, we apply NMS to mitigate the over-
concentration of key-points in texture-rich regions, followed by heap-sorting to
select a fixed number of key-points. The selected key-points are then transmitted
to the ARM processor for further utilization in the localization backend module.
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These components work concurrently within a pipelined structure to maximize
overall throughput.

Feature Matching Accelerator. In order to achieve accurate pose estima-
tion, it is necessary to match the key-points extracted from each frame with
global map points based on the learned binary descriptors. However, low-power
ARM processors cannot handle the computational complexity of feature match-
ing, which takes a long time to complete. To address this challenge, we have
parallelized the matching process by leveraging the capabilities of FPGAs. Our
proposed matching accelerator can efficiently execute the matching task for 1024
key-points in less than 5ms, while without the need for intervention from the
ARM processor.

Stereo Matching Accelerator. Stereo matching accelerator estimates dense
depth maps from stereo images. We follow the StereoEngine accelerator designed
in [1] and integrate it as the stereo matching accelerator. Then, through steps
such as cost aggregation and post-processing, a high-quality dense depth map
can be obtained. The depth map contains accurate distance information for each
pixel, allowing for precise localization of objects and accurate reconstruction of
the 3D environment.

Localization Backend. To reduce redundancy and optimize computational
efficiency in our SLAM system, we implement a strategy to discard keyframes
and sparse features that fall outside the optimization sliding window which do
not contribute to the bundle adjustment (BA) optimization process. This selec-
tive approach allows us to focus computational resources on relevant data points,
improving the overall efficiency of the system without compromising accuracy.

3D-reconstruction. We observed that many voxels were empty or no need to
update. Motivated by this, we propose a coarse-to-fine TSDF calculation method
to expedite the map integration process. It initially searches for chunks (contain-
ing a block of voxels) that are likely to represent item surface at a coarse level
and skips blanks regions. We further subdivide it into smaller chunks, and keep
performing the same surface finding strategy until reaching the minimum voxel
level. By minimizing redundant evaluations and voxel updates, our proposed
method reduces the map integration time from 127 ms to 32 ms.

3 Experiment

Experiment Setup. For the purpose of live demonstration, we deploy our pro-
posed SLAM accelerator on an embedded development board with Xilinx ultra-
scale+ SoC, which is a heterogeneous platform that consists of programmable
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logic as well as a quad-core ARM Cortex-A53 CPU. The stereo images are trans-
mitted to the embedded development board via the TCP-IP protocol. Subse-
quently, all visual SLAM computation is executed on the embedded development
board. The output of the system including Disparity Map, Camera Trajectory
and 3D-reconstruction are then transmitted back to a display via the TCP-IP
protocol to showcase the running effect. We develop the localization sub-task
using Verilog hardware description language and deploy it on the programmable
logic. The mapping sub-task is developed in C++ and implemented on the ARM
Cortex-A53 CPU. To evaluate the performance of the proposed SLAM acceler-
ator in terms of accuracy, real-time responsiveness and 3D map’s density, we
make use of KITTI dataset [2] for both quantitative and qualitative analyses.
The qualitative results of localization and mapping is illustrated in Fig. 2.

Accuracy Evaluation of Localization. The test results on the dataset for
visual SLAM indicate that the accuracy of our method is comparable with CB-
SLAM [4], even though CB-SLAM [4] has worked on a high-performance plat-
form. The accuracy improvement mainly attributes to the learned-features used
for stereo matching and feature matching procedures. Meanwhile, the feature
aggregation strategy also improves the robustness of the feature descriptors.

Fig. 2. Qualitative mapping results on the testing. From top to bottom, column
1: Input Image, Disparity Map obtained through stereo matching; column 2: Camera
Trajectory; column 3: Effect of 3D-reconstruction.

Table 1. Accuracy Evaluation of Online Mapping.

ta/m 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ours 0.398 0.563 0.667 0.737 0.784 0.818 0.842 0.860 0.873 0.885

CB-SLAM [4] 0.342 0.514 0.634 0.715 0.769 0.806 0.833 0.853 0.868 0.881

Ours-fast 0.242 0.382 0.496 0.583 0.648 0.697 0.735 0.765 0.789 0.809

CB-SLAM-fast [4] 0.219 0.350 0.464 0.555 0.626 0.680 0.723 0.756 0.783 0.804
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Performance Evaluation of Online Mapping. Table 1 illustrates the dense
mapping accuracy evaluation results on sequence 05, in which both the imple-
mentations with and without coarse-to-fine (i.e., fast in Table 1) strategies are
taken into consideration. According to Table 1, we can see that our online map-
ping sub-task achieves high-quality 3D mapping than that of CB-SLAM [4].
This is because the learned-features can generate more accurate depth maps for
3D reconstruction. In addition, although the coarse-to-fine strategy generates
less accurate dense map, it significantly speeds up (4×) the 3D reconstruction
procedure, providing alternative solution for online mapping.

Real-Time Performance and Energy Consumption. The proposed accel-
erator runs at 13.1 frames per second (fps) on the target embedded device with
energy consumption of only 6.201 W. The corresponding energy efficiency is
1.01× 108 J/pixel. Compared to [4] (fps: 5.4, power: 36 W) that runs on Intel i7,
our accelerator achieves 2.42× speed up and 14.2× power efficiency.

4 Conclusion

This paper presents an accurate and real-time dense SLAM accelerator, which
can be efficiently deployed on embedded devices. To improve the performance
of our accelerator, we make several optimizations targeting both software and
hardware architecture. The accelerator achieves better performance in terms of
absolute trajectory error, online mapping, real-time responsiveness and energy
efficiency when compared with the state-of-the-art SLAM implementations.
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Abstract. This paper explores the development of land-air amphibious
robots that combine the advantages of ground robots and aerial robots.
The land-air amphibious robot is a multi-modal robot that can move and
work both on land and in the air. They have the ability to perform tasks
in different environments, have a wide range of application scenarios and
high research value, and have aroused the interest of scientific researchers
and research institutions. Based on all the articles we investigated, this
paper first summarizes the research status of land-air amphibious robots
and divides land-air amphibious mobile robots into three categories:
wheeled, tracked, and legged, according to different motion structures
in land travel mode. The article analyzes the advantages and disadvan-
tages of different land-air amphibious robots and discusses the technical
problems and research difficulties in the research of land-air amphibious
robots. In addition, the article also puts forward the vision for the future
development of land-air amphibious robots and the further work that
needs to be done.

Keywords: Land-Air amphibious robots · Structural design · Bionic
mechanisms · Motion modes

1 Introduction

Most mobile robots are usually designed for a single type of motion mode, such
as swimming [1], land walking [2–4] or flying [5], which limits their ability to
move in complex and varied scenes. There are also some deficiencies in their
environmental adaptability. To improve the environmental adaptability of mobile
robots, researchers drew inspiration from amphibians and set out to develop
amphibious robots [6].

The research and development of robotics provide powerful automated tools
for exploring the natural world and improving productivity. In the research and
design of modern mobile robots, to cope with the increasingly complex task
requirements, the working space of mobile robots is no longer limited to a single
environment, and its scope of activity is no longer limited to a single spatial
dimension such as land or air, but is developing in a diversified direction [7]. A
multiphibious mobile robot refers to the use of a variety of different motion mech-
anisms to build a complete robot system to achieve a variety of different forms
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
L. Fang et al. (Eds.): CICAI 2023, LNAI 14474, pp. 575–586, 2024.
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of motion. At present, multiphibious mobile robots mainly include water-land
amphibious robots, land-air amphibious robots, water-air amphibious robots,
triphibious robots [8], and so on. Among them, the multiphibious feature refers
to the robot’s ability to adopt multiple motion modes such as wheeled, legged,
crawling, and flying, including the variability of the motion mode of a single
robot and the combined deformation of multiple robots [9].

To successfully perform various tasks in complex scenarios and flexibly
respond to changing environmental conditions, land-air amphibious robots have
emerged as the times require, which combine the advantages of aircraft and
ground mobile robots. Compared with robots with a single motion mode, land-air
amphibious robots make up for their shortcomings, such as single scene applica-
tion function, limited task execution, low flexibility, and poor adaptability, and
have broad application prospects [10,11]. The significance of land-air amphibi-
ous robots research lies in the ability to play the respective advantages of aerial
robots and land robots at the same time, and the two complement each other.
Land-air amphibious robots can not only perform ground tasks independently
but also can switch to flight mode when the ground task execution conditions
are not met, so they have excellent environmental adaptability.

This paper first summarizes the research status of land-air amphibious
robots, divides the existing land-air amphibious robots into three different types:
wheel-based, track-based, and leg-based, and introduces these three different
types of land-air amphibious robots, and analyzes their advantages and disad-
vantages. Then, the existing technical problems and research difficulties in the
study of land-air amphibious robots are analyzed. Finally, based on the existing
land-air amphibious robots, the idea and future work are put forward, and the
future development of land-air amphibious robots is prospected.

2 Land-Air Amphibious Robots

2.1 Land-Air Amphibious Robots Based on Wheeled Motion

Early land-air amphibious robots usually used wheeled mechanisms as their
ground motion schemes [12]. However, with the deepening of research and the
increasing need to make robots meet the needs of different application scenar-
ios, Meiri N and Zarrouk D proposed a reconfigurable composite flying robot,
“Flying STAR” (FSTAR) [13]. The robot is equipped with a stretching mecha-
nism and propellers, allowing it to fly over obstacles or move inside pipes. When
the extension mechanism of the robot is in operation, the arm of the robot is
extended downward so that the free wheel at the end of the arm touches the
ground, thus entering the land travel mode. The robot can reduce its width
while deforming to adapt to crawling in limited spaces or under obstacles. The
team tested the robot on different outdoor surfaces, recording its fastest ground
speed of 2.6 m/s and a movement speed of 2.21 m/s in a deformation mode at a
15◦ angle. Beyond this speed, the robot will partially or completely lift off the
ground and enter a flight state. Experiments have shown that the robot has high
maneuverability and a very smooth transition between flight and land-walking
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modes. However, the robot can only move on the ground with a fixed attitude
because the wheeled mechanism cannot guarantee motion stability under rough
terrain.

Dudley C J, Woods A C and Leang K K of the University of Utah in the
United States designed a miniature rolling flying robot called “ATR”, with
a total mass of 35 g and a payload of 10 g [14]. The robot’s design revolves
around a tiny quadcopter encased in a lightweight spherical exoskeleton that
can rotate around the quadcopter. The spherical exoskeleton provides flexible
ground motion capabilities while maintaining essential aerial robotic properties.
“ATR” can fly in the air or roll on the ground and can enter and move in narrow
spaces such as wind tunnels. However, the robot has some limitations, one of
which is that the spherical shell is easy to get stuck in the terrain, while it is
prone to deformation when moving, which affects the performance of ground
motion.

To provide a robotic platform capable of implementing multiple motion mech-
anisms to perform flexible and challenging tasks, the team of Kuswadi S, Tamara
M N, and Sahanas D A proposed an adaptive morphology-based flying robot
“PENS-FlyCrawl” [15]. The robot achieves flight by using a dual-rotor mecha-
nism and adds a simple lever with a tilting landing gear function for crawling.
The lever can be rotated 360◦ to simulate the movement effect of a wheeled robot.
The tilt-rotor mechanism enables the dual-rotor aircraft to achieve vertical take-
off, efficient landing, and high-speed flight. However, due to the consideration of
energy efficiency, the flight mechanism chooses dual rotors, which makes stability
the core issue that needs to be solved urgently. At the same time, using a lever
as a ground motion mechanism will cause severe vibration of the overall body of
the robot, which will have a certain impact on the motion stability of the robot.

Fig. 1. Unmanned flying truck “Black Knight Transformers” [16].

In the military field, Advanced Tactics Inc., California, USA has developed a
land-air amphibious aircraft named “Black Knight” [17]. The aircraft combines
the characteristics of an off-road truck and a drone. It is similar to an ordinary
truck when driving on the ground. It uses eight rotor blades when flying, and
the speed in the air can reach 150 miles per hour (about 240 km per hour).
The aircraft is capable of off-road driving on the ground, vertical take-off and
landing, and autonomous flight, with a total weight of about 2000 kg and a
load capacity of more than 450 kg. When driving on the ground, even on rough
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terrain, its speed can still reach 112 km/h; in flight mode, the flight speed can
reach 240 km/h. The rotors used by the “Black Knight” can be interchanged, and
the cargo compartment can also be quickly converted into a crew compartment.
When taking off, the eight-rotor engines extend outward, and the rotors are
tilted forward at a certain angle in the level flight state to increase the level
flight speed. In land travel mode, all rotor engines are folded in to reduce vehicle
width and facilitate traversing tight terrain. The two motion modes of the “Black
Knight” are shown in Fig. 1.

Latscha S, Kofron M, and Stroffolino A from the University of Pennsylvania
combined a snake-like transmission mechanism, a wheeled robot, and a quadro-
tor to design a land-air amphibious robot named “H.E.R.A.L.D” [18] for urban
search and rescue missions. The flight function of H.E.R.A.L.D is mainly real-
ized by quadrotor aircraft, and the task load during flight is increased by using
large-size propellers. In the ground motion mode, the robot is composed of two
serpentine transmission structures with seven degrees of freedom. The quadro-
tor and the snake mechanism are connected by crossed magnetic elements. The
magnetic connection system enables the two to form a passive joint connection
relationship, which reduces energy consumption to a certain extent. In addition,
H.E.R.A.L.D can also separate the quadrotor from the wheeled robot. After
separation, the ground moving mechanism becomes two independent snake-like
robots. Each snake-like robot has seven degrees of freedom and is equipped with
a free wheel at the end, so it can change the direction of movement flexibly and
freely and has strong ground exploration and obstacle-crossing ability. However,
the design of this robot has multiple connecting parts, and there are some safety
risks in practical applications.

2.2 Land-Air Amphibious Robots Based on Tracked Motion

To solve the inherent defects of the poor adaptability of land-air amphibious
robots based on wheeled motion in complex terrain, and considering the advan-
tages of the track mechanism with strong off-road ability, climbing ability, and
not easy to slip on wet, muddy, or soft ground, etc., and is less affected by the
terrain and able to cope with more complex working conditions, engineers and
researchers began to try to use track motion schemes to replace wheeled schemes.

On January 3, 2020, robotics technology supplier Robotic Research LLC
launched a new deformable drone Pegasus-Mini [19], at the 2020 International
Consumer Electronics Show (CES 2020). The drone can travel on land as well
as move in flight. The two sides of the robot are equipped with two “T-shaped”
landing gears, and land tracks are installed on the landing gears so that it can
complete ground tasks like a tank when it lands. The Pegasus-Mini has a compact
structure measuring approximately 16 × 8 in., weighs only 4.2 pounds, and has a
payload of up to 2 pounds. It can operate for up to 30 min in flight mode and up
to two hours in ground operation mode. The robot can switch motion modes by
controlling the rotation of the motors on both sides. However, one of its obvious
disadvantages is that it is susceptible to external interference when the motion
mode is switched, which affects the normal progress of the mode conversion.
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To expand the working space range of quadrotor drones and improve
endurance, and avoid the waste of electric energy caused by long-term flight,
Polish designer Witold Mielniczek developed a new type of land-air amphibious
drone called “X-Tankcopter” [20], as shown in Fig. 2. The appearance design
of the UAV is based on military tanks. It is equipped with land tracks on both
sides, and four propellers with a diameter of 4.5 in. are placed in the middle of the
tracks, making the quadrotor UAV have the function of land and air amphibi-
ous movement. However, since the robot needs an additional power source for
walking on land, there are some disadvantages, such as the extra power battery
increases the load, reduces the endurance, the mechanical structure is relatively
complicated, and mechanical failures are prone to occur.

Fig. 2. X-Tankcopter [20].

In 2021, a technology company called Phractyl demonstrated the land-air
amphibious vehicle they are developing-“Macrobat”. The aircraft is designed
to operate in environments that lack level ground and ground transportation
infrastructure. The Macrobat is a single-seat manned vehicle with a range of 93
miles, a payload of 330 pounds, and a top speed of approximately 112 MPH.
When the Macrobat takes off, the track mechanism will assume part of the
function of the landing gear, lifting the body and tilting it by 45◦ to create a
proper take-off angle. The propulsion system will then activate and generate
enough lift to get it off the ground. Once the aircraft is fully airborne, the
track mechanism automatically retracts under the empennage to minimize drag
for a stable and fast cruising flight. The unique tracked landing gear structure
enables Macrobat to land safely on rough terrain. However, this also means that
the landing must be performed at a very low speed. Otherwise, the excessive
momentum could cause the craft to tip over.

In 2022, five EU countries, Poland, Finland, Spain, the Czech Republic, and
Austria, jointly participated in the development of a composite land-air amphibi-
ous flight platform called “HUUVER”. The platform adopts a combination of a
track mechanism and a multi-rotor lift mechanism. As shown in Fig. 3, HUUVER
completely abandons the car body of the traditional land-air amphibious robot
in appearance but designs a narrow rectangular body structure in the middle of
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the platform for installing various sensor devices. This design makes the HUU-
VER robot platform have good ground obstacle-crossing ability. In the middle
of the track, there are four brushless motors on the left and right, and when
switching to flight motion, eight horizontal propellers start to run. When per-
forming ground tasks, HUUVER mainly uses connected tracks to complete the
movement. However, the disadvantages of this robotic platform are low energy
utilization during track movement and relatively poor maneuvering ability.

Fig. 3. HUUVER UAV first prototype [21].

2.3 Land-Air Amphibious Robot Based on Leg-Foot Motion

With the deepening of people’s understanding of the formation mechanism and
functional characteristics of biological systems, the development of modern bion-
ics provides a new perspective for mobile robots. The design of these robots is
based on the concept of bionics, fusing biological performance with electrome-
chanical systems. They have many advantages, including the ability to adapt to
different environments, a wide range of work spaces, good at avoiding danger,
high survival ability, and excellent spatial mobility. As a result, they can sub-
stitute humans in carrying out various activities in unpredictable environments
[6].

Traditional robots can only inspect steel bridge structures from the outside
because it is difficult for them to navigate inside the complex steel bridge struc-
ture without colliding. To meet the automation needs of long-term inspection
and maintenance of bridge safety, Photchara Ratsamee’s team at Osaka Uni-
versity proposed a composite robot for steel bridge inspection and repair [22].
Modeled on reptilian creatures, the robot has six legs, each with three joints.
At the second joint, the researchers connected the propeller and motor drive
together. When the robot is in flight mode, its six legs will unfold to maintain
overall balance and then take off and land vertically through the lift provided
by the propellers. To keep the robot stable in three-dimensional space, the team
also proposed a control scheme based on the vibration of the vibrator. The core
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idea of this scheme is to compensate for the vibration generated by the joint
actuator during flight. However, the disadvantage of this robot is that the leg
parts are too dense and prone to mutual interference.

Stanford University proposed a composite flying robot called The Stanford
Climbing and Aerial Maneuvering Platform (SCAMP) [23]. Based on the perch-
ing and climbing behavior of various animals, including flightless birds, the robot
can fly, perch and climb outdoor surfaces. In addition to the most basic quadrotor
components, the composite robot is equipped with two elastic barbs for climbing
and two rear feet for support and climbing. Among them, the rear feet can not
only provide a certain amount of traction but also can be used to change the
angle of the robot’s torso, thereby enhancing its ability to adapt to unstructured
terrain. Since the robot platform combines two mechanisms of flying and climb-
ing at the same time, which not only increases the weight but also has a certain
strong coupling effect.

However, most current land-air amphibious robots lack dexterous object
manipulation capabilities beyond basic functions. With the deepening of the
research, it is hoped that the land-air amphibious robot can not only fly like a
bird but also can freely switch the motion mode and can grab objects. Although
flying robots have limited payload capacity, they can use ground contact to grab
objects through specific rotations. Therefore, researchers Fan Shi and Moju Zhao
simulated the behavior of birds grabbing prey based on mechanical analysis and
external contact constraints and proposed a new type of composite flying robot
named “HYDRUS” [24]. The researchers focused on a transformable multi-joint
flying robot, which consists of four rotors and a four-degree-of-freedom “snake”
body, and the bottom is equipped with multiple triangular brackets to act as
“legs and feet”. In the ground mode, the robot first reaches the heavy object
through the foot movement, then fixes the object through the bending of the
body, and finally starts the rotor to lift the object. The most obvious disadvan-
tage of this robot is that the actuators may interfere with each other during
grabbing, which affects the stability of the overall motion.

In the journal SCIENCE ROBOTICS in 2021, Kyunam Kim and Patrick
Spieler proposed a multi-modal mobile robot platform called Legs onboard drone
(LEONARDO) [25]. Through the synchronous control of two sets of distributed
motors and a pair of joints with multiple degrees of freedom, the robot makes up
for the defect between the two different motion mechanisms of flight and walk-
ing. By combining these two different motion mechanisms, LEONARDO has
achieved some complex maneuvers and can maintain a delicate balance under
complex extreme conditions, such as walking on steel wires and sliding skate-
boards. The robot chooses to fly or walk depending on whether the ground is
detected by the plantar contact sensor, take-off and landing are accomplished by
generating appropriate walking and flight trajectories and monitoring the plantar
contact state to switch between the two modes. Using LEONARDO, the exper-
imental team also demonstrated that the robot can use its redundant joints to
achieve agile walking movements, staggered flight maneuvers, and use propellers
and leg joints to descend stairs and cross obstacles. Through the combination of
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mechanical structure design and synchronous control strategy, LEONARDO has
achieved unique multi-modal mobility capabilities, enabling it to complete tasks
and operations that are difficult for single-modal motion robots. However, the
biped mechanical structure adopted by the robot is not stable enough compared
with the quadruped structure, and its control is also difficult. Table 1 summa-
rizes the advantages and disadvantages of land-air amphibious robots based on
different motion structures in the land travel mode.

Table 1. Comparison of land-air amphibious robots based on different motion struc-
tures in land travel mode.

Motion structures in land travel mode Advantages Disadvantages

Wheeled Based Simple, high speed and high efficiency Movement is unstable under rough ground

Tracked Based Strong ability to overcome obstacles on the ground High energy consumption, poor mobility

Legged Based Strong adaptability to complex terrain Complex structure and low movement efficiency

3 Existing Problems of Land-Air Amphibious Robots

The land-air amphibious robots can work in the air as well as on land. Although
this robot has certain potential and application prospects, there are also some
problems and challenges.

1) Complexity: The land-air amphibious robots need to have the ability to move
on land and in the air at the same time, and the robot needs to take into
account the different movement and control requirements in the two environ-
ments, which will lead to the more complex structure and mechanical design
of the robot, increasing the difficulty of research and development and man-
ufacturing.

2) Power and energy: Movement on land and in the air requires the use of dif-
ferent power and energy systems. For example, a robot may use a wheeled
drive system on land, but a thruster or rotor system in the air, which means
that the robot may need to use two different energy systems, which will also
bring a greater load to the robot.

3) Control and navigation: It is a complex and difficult task to realize the
autonomous control and navigation of land-air amphibious robots because
the robots need to have the ability to perceive and navigate in different envi-
ronments (land or air) to perform accurate positioning, path planning, and
obstacle avoidance [26]. At the same time, land-air amphibious robots also
need to be able to switch between land and air motion modes autonomously.

4) Structure and weight: To achieve movement on land and in the air, land-air
amphibious robots may need to have more complex structures and mechanical
components, which may increase the weight of the robot. Greater weight may
have a negative impact on the robot’s performance, such as stability in flight
and walking and the robot’s endurance.



Land-Air Amphibious Robots: A Survey 583

5) Environmental adaptability: Due to the large differences in environmental
conditions such as climate, temperature, and air density between land and air,
the performance and adaptability of robots in these two environments may be
different, so they need to have the ability to adapt to different environmental
conditions.

Although these problems still exist in the current research of land-air
amphibious robots, and there are not enough mature products yet, but with
the continuous development and progress of science and technology, land-air
amphibious robots will continue to innovate and improve, and more and more
solutions to existing problems will emerge. Solutions to problems to meet various
challenges and play an important role in military, rescue, exploration, and other
fields.

4 Future Prospects

At present, the research on land-air amphibious robots is still in its infancy.
Based on the existing land-air amphibious robots, we can provide the following
prospects for the design and development of land-air amphibious robots in the
future:

1) Mechanical structure optimization: By constantly exploring and innovating
new mechanical structure designs, researchers can develop more efficient,
lighter, and more compact land-air amphibious robots. This includes the use
of new materials and the optimization of the overall structural design of the
robot to improve the motion performance and stability of the robot.

2) Autonomous control and intelligent decision-making: By designing more
advanced autonomous control algorithms and intelligent decision-making sys-
tems, the autonomous perception, decision-making, and action capabilities of
land-air amphibious robots in complex environments can be realized so that
robots can adapt to different tasks and environmental requirements.

3) Multi-modal perception and navigation: Further improve the perception and
navigation capabilities of land-air amphibious robots so that they can more
accurately identify the environment on land and in the air. This involves using
multiple sensors, including infrared cameras, LiDAR, barometers, and more,
and fusing the information collected by the sensors to model the surrounding
environment for more accurate positioning navigation, path planning, and
obstacle avoidance.

4) Energy efficiency and endurance: Researchers can work to improve the energy
efficiency and endurance of land-air amphibious robots. This includes the
development of more efficient power systems, new energy technologies, and
intelligent energy management strategies to extend the working time of robots
in different modes.

5) Multi-modal switching ability: During the movement of land-air amphibious
robots, it involves switching between two different motion modes: land and
air. In the future, we can further study how to make the robot perform fast
and stable transition and switch in these two different working states.
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6) Application expansion and safety: Explore the potential of land-air amphibi-
ous robots in various practical application fields, and study how to improve
the safety and reliability of robots.

7) Triphibious robots: Most of the existing multiphibious robots only involve
the ability to work in two kinds of motion scenarios, including land-water
amphibious, land-air amphibious, and air-water amphibious, and there are
few experiments and research on triphibious robots, compared with amphibi-
ous robots, triphibious robots have stronger environmental adaptability,
stronger mobility and better functionality, which makes triphibious robots
have a wider range of application scenarios, and also brings greater develop-
ment difficulty [27].

Through continuous research and innovation in the above aspects, the perfor-
mance and application prospects of land-air amphibious robots will be further
improved, providing more possibilities for future technological development and
practical applications.

5 Conclusion

The research and development of land-air amphibious robots require the integra-
tion of knowledge from multiple disciplines, including machinery, control, mate-
rials, communications, energy and power, physics, robotics, power electronics
technology, and computer science. For now, the research on land-air amphibious
robots is still in the experimental stage, the technology of land-air amphibious
robots is still immature, and the application practice is far from meeting peo-
ple’s expectations. However, with the continuous development and progress of
science and technology, the research on land-air amphibious robots will also be
continuously improved to overcome existing bottlenecks and existing problems
to create robot products that are more in line with actual needs and have more
application value.
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