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Abstract. 3D human pose and shape estimation and clothed 3D human
reconstruction are two hot topics in the community of computer vision.
3D human pose and shape estimation aims to estimate the 3D poses
and body shapes of “naked” humans under clothes, while clothed 3D
human reconstruction refers to reconstructing the surfaces of humans
wearing clothes. These two topics are closely related, but researchers
usually study them separately. In this paper, we enhance the accuracy
of the 3D human pose and body shape estimation by the reconstructed
clothed 3D human models. Our method consists of two main compo-
nents: the 3D body mesh recovery module and the clothed 3D human
reconstruction module. In the 3D body mesh recovery module, an inter-
mediate 3D body mesh is first recovered from the input image by a graph
convolutional network (GCN), and then the 3D body pose and shape
parameters are estimated by a regressor. In the clothed human recon-
struction module, two clothed human surface models are respectively
reconstructed under the guidance of the recovered 3D body mesh and
the ground-truth 3D body mesh. At the training phase, losses which are
described by the residuals among the two reconstructed clothed human
models and ground truth are passed back into the 3D body mesh recov-
ery module and used for boosting the body mesh recovery module. The
quantitative and qualitative experimental results on THuman2.0, and
LSP show that our method outperforms the current state-of-the-art 3D
human pose and shape estimation methods.
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1 Introduction

In order to describe 3D human poses and body shapes with a finer gran-
ularity while reducing the difficulty of algorithms, the majority of meth-
ods [3,8,11,24,25] usually represent human bodies by parametric models such
as SMPL [16]. In this way, algorithms only need to output low-dimensional pose
and shape parameters, which are then used to recover the corresponding 3D
body meshes via the parametric models. Another hot topic is called clothed
3D human reconstruction [15,22,27], which refers to reconstructing 3D surface
meshes of humans with clothes. Although 3D human pose and shape estima-
tion and clothed 3D human reconstruction have different goals, representations,
methodologies, and outputs, they are two closely related topics.

Fig. 1. Our method can recover accurate 3D poses and body shapes of humans wearing
both tight-fitting and loose-fitting clothes.

Estimating 3D human pose and shape from monocular images is quite
challenging, not only because it is an inherently ill-posed problem, but also
due to complex body kinematic structures, various body shapes, and cloth-
ing occlusions. To address these challenges, two different paradigms have
been investigated: optimization-based methods and regression-based methods.
Optimization-based methods [1,21] usually suffer from local minima due to poor
initialization. Thus, the recent mainstream methods [2,3,8,12,18,24,25] have
focused on the regression-based paradigm, which usually employs deep learning
techniques to regress 3D human poses and shapes directly from the input image
information in an end-to-end manner. However, these methods often fail to pro-
duce satisfactory results on humans wearing complex and loose-fitting clothing,
as the issue caused by clothing occlusions is not given sufficient consideration.

Recently, clothed 3D human reconstruction [15,22,27] has developed rapidly,
and most of these methods employ estimated 3D body models as a geometri-
cal prior. Although the estimated 3D body models can help clothed 3D human
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reconstruction methods recover more plausible global topologies, inaccurate esti-
mation of 3D human poses and shapes usually leads to poor clothed human
reconstructions [15,27]. The accuracy of 3D human pose and shape estimation
determines the quality of clothed 3D human models reconstructed by these meth-
ods. Conversely, the results of clothed 3D human reconstruction effectively indi-
cate the accuracy of 3D human pose and shape estimation. Based on this insight,
we argue that clothed 3D human reconstruction can be employed to enhance the
accuracy of 3D human pose and shape estimation.

In this paper, we propose a 3D human pose and shape estimation method
enhanced by clothed 3D human reconstruction. Our method consists of two main
components: the 3D body mesh recovery module and the clothed human recon-
struction module. In the 3D body mesh recovery module, an intermediate 3D
body mesh is first recovered from an initial SMPL model by a GCN, and then
the 3D body pose and shape parameters are estimated by a regressor. In the
clothed human reconstruction module, two clothed human surface models are
respectively reconstructed under the guidance of the recovered 3D body mesh
and the ground-truth 3D body mesh. At the training phase, losses which are
described by the residuals among the two reconstructed clothed human models
and ground truth are passed back into the 3D body mesh recovery module and
used for optimizing the body mesh recovery module. As illustrated in Fig. 1, our
method can recover accurate 3D poses and body shapes of humans with both
tight-fitting and loose-fitting clothes. Quantitative and qualitative experimen-
tal results show that our method achieves state-of-the-art performance on the
THuman2.0 and LSP datasets.

In summary, the main contributions of this paper are three-fold:

• We propose a 3D human pose and shape estimation method enhanced by
clothed 3D human reconstruction. Our method is the first method that
employs reconstructed clothed 3D human models to enhance the accuracy
of 3D human pose and shape estimation.

• We propose to use both the absolute and relative clothed 3D human recon-
struction errors as losses pass them back into the 3D body mesh recovery
module and use them for optimizing the body mesh recovery module.

• Our method recovers accurate 3D poses and body shapes of humans wearing
both tight-fitting and loose-fitting clothes.

2 Related Work

In recent years, 3D technology has found extensive applications in various indus-
tries, such as transportation [14,26]. In addition, the field of 3D digital human
body technology has also made great development and progress.

2.1 3D Human Pose and Shape Estimation

3D human pose and shape estimation methods can be roughly divided into two
categories: optimization-based methods and regression-based methods.
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Optimization-Based Methods. Optimization-based methods [1,6,13]
attempt to fit a 3D body meshes to the image observation in an explicit iter-
ative manner. Although these optimization-based methods have demonstrated
high accuracy in many cases, they may be susceptible to local optima due to poor
initialization. Additionally, the iterative optimization processes involved in these
methods are time-consuming. Regression-based methods [2,3,8,12,18,24,25]
directly regress the parameters from the input image. With the prosperity of deep
learning, many researchers have recently shifted their focus from optimization-
based methods to regression-based methods. Kanazawa et al. [8] proposed an
end-to-end 3D body mesh recovery framework called HMR, which uses rich and
useful mesh representation parameterized by shape and 3D joint angles and uti-
lizes a generative adversary network to constrain body poses. Zeng et al. [24]
recovered 3D body meshes by establishing a dense correspondence between the
mesh and local image features in UV space. In contrast to most methods that
regress SMPL parameters, works proposed by Choi et al. [2] and Kolotouros et
al. [12] employ graph convolutional neural networks to estimate 3D locations of
vertices on the 3D body models. Despite these regression-based methods yielding
promising results on people with tight-fitting clothes, they often fail to produce
satisfactory results on humans wearing complex and loose-fitting clothing.

2.2 Clothed 3D Human Reconstruction

In recent years, clothed 3D human reconstruction tends to be guided by the use
of parametric human models. Parametric model guided clothed 3D human recon-
struction methods [5,15,22,27,28] employ a 3D body model (e.g., SMPL [16]) to
guide the reconstruction of the human surface. DeepHuman [28] uses the SMPL
model to constrain the degrees of freedom in the output space. HEI-Human [15]
and PaMIR [27] also employ the SMPL model as a geometrical prior when using
implicit functions to reconstruct surface details of clothed humans. Although
the estimated SMPL models can help clothed 3D human reconstruction meth-
ods recover more plausible global topology, inaccurate estimation of 3D human
poses and shapes often results in poor clothed human reconstructions (Fig. 2).

3 Method

3.1 3D Body Mesh Recovery

Inspired by GCMR [12], we first employ a GCN to predict the vertex coordinates
of the intermediate 3D body mesh and then use a regressor to estimate the SMPL
model parameters. Given a single input image, visual features are extracted by a
CNN-based encoder, e.g., ResNet-50 [4]. The visual features are then embedded
in the GCN for predicting an intermediate 3D body mesh. Finally, the vertices
of the intermediate 3D body mesh are input into the regressor for estimating the
SPML model parameters.

For the GCN, we start from a non-parametric 3D deformable graph, which is
initiated by a T-pose SMPL template. As the original SMPL model has as many
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Fig. 2. Overview of our method. Our method consists of two main components: the 3D
body mesh recovery module and the clothed human reconstruction module. Given an
input image, visual features are first extracted by an image encoder, the image features
are then embedded into a GCN for recovering an intermediate 3D body mesh (Mg). The
intermediate 3D body mesh is fed into a parameter regressor for regressing the pose and
shape parameters of the SMPL model (Mr). Two clothed human models (Spt and Sgt)
are respectively reconstructed under the guidance of the recovered 3D body mesh (Mr)
and the ground-truth 3D body mesh (Mt). Losses which are described by the residuals
among the reconstructed clothed human models Spt and ground-truth clothed human
models Sgt are employed for optimizing the body mesh recovery module.

as 6890 vertices, we use a down-sampling strategy to simplify it to N(N < 6890)
vertices. Driven by the visual features embedded in each vertex of the graph,
GCN is employed to shift the vertices. Following the work of Kipf et al. [10], our
GCN is formulated as:

V̂ = Ã(DT ⊕ F )W (1)

where T ∈ R
K×3 and D ∈ R

N×K respectively denote the SMPL template and
the down-sampling matrix, Ã ∈ R

N×N denotes the row-normalized adjacency
matrix of the graph, F ∈ R

N×f is the visual feature vector, W ∈ R
(3+f)×3

denotes the weight matrix, and V̂ ∈ R
N×3 is the predicted coordinate vector.

To facilitate regressing the SMPL model parameters, we up-sample V̂ to 6890
vertices using the bilateral interpolation algorithm and obtain the intermediate
3D body mesh Mg ∈ R

6890×3. Essentially, our GCN is equivalent to performing
a full join operation for each vertex with visual features and then performing a
neighborhood averaging operation. Neighborhood averaging is essential for gen-
erating high-quality shapes since it forces neighboring vertices to have similar
features so that the output shape is smooth. In addition to regressing the coordi-
nates of each vertex on the intermediate 3D body mesh, our GCN also estimates
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camera parameters of the weakly perspective camera model, i.e., the scale and
translation parameters [s, t], t ∈ R

2.
To obtain more smooth and regular 3D body meshes, we employ a regres-

sor to estimate the pose and shape parameters of the parametric SMPL model
given the intermediate 3D body mesh as input. A specific 3D human body mesh
(Mr(β, θ) ∈ R

6890X3) is described by SMPL [16] using a set of pose parameters
(θ ∈ R

24X3) and a set of shape parameters (β ∈ R
10):

Mr(β, θ) = W (TP (β, θ), J(β), θ, ω) (2)

where TP (β, θ) =
−
T +BS(β) +BP (θ), J(β;J ,

−
T, S) = J (

−
T +BS(β;S)),

−
T is the

standard human body model, W (·) is the fusion mask function, J(·) describes
the displacement of joint points due to body size change, ω is the fusion weight
matrix, BP (·) is the pose fusion function, BS (·) is the shape fusion function, J
is a function that transforms rest vertices into rest joints.

Our parameter regressor is simply implemented by a three-layer multi-layer
perceptron, which takes the 3D vertex coordinates of the intermediate 3D body
mesh as input and outputs the pose (θ) and shape (β) parameters of the SMPL
model. The estimated pose and shape parameters are converted to 3D body mesh
using the SMPL model described by Eq. 2. So that we can compare whether the
3D body mesh described by the estimated parameters is consistent with the
intermediate 3D body mesh.

3.2 Clothed Human Reconstruction

3D body meshes are employed to guide clothed human reconstruction. Similar to
PIFu [20], we define the surface of a clothed 3D human model as a level set of an
occupancy prediction function F(·). For each 3D point p in the occupancy field,
the occupancy prediction function predicts whether it is on the surface of the
clothed 3D human model. To leverage image features and 3D body meshes for
predicting the occupancy probability of p, our occupancy probability function F
also takes the input image (I) and the 3D body mesh (M∗) as condition variables
and thus is formulated as:

S(p |I,M∗ ) = F(
..

U(
..

f(I), π(p)),
...

U(
...

f (M∗), p)) (3)

where
..

f and
...

f are two encoders that respectively extract features from the input
image and the 3D body model, π(·) denotes the weak perspective transformation
that maps the 3D coordinates of point p in the 2D feature plane, and

..

U(·) and
...

U(·) are two sampling functions that respectively take features from the feature
maps extracted from the input image and the 3D body mesh. In practice, the two
encoders (

..

f and
...

f ) and the occupancy prediction function (F) are implemented
by deep neural networks. In our method, S(p) < 0.5 indicates that point p is
inside the surface while S(p) > 0.5 denotes point p is outside the surface. Hence,
the surface of a clothed human model can be denoted as a set of points:

S∗ = {p;S(p|I,M∗) := 0.5} (4)
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where M∗ can be expressed as Mr or Mt, S∗ can be expressed as Spt or Sgt.
Specifically, the recovered 3D body model Mr to guide clothed human recon-
struction and obtain Spt, and the ground-truth 3D body model Mt to guide
clothed human reconstruction and obtain Sgt. To facilitate voxelized the recon-
structed results, we converted this point set into a mesh using the Marching
Cubes algorithm [17].

Then, the residuals among the reconstructed clothed human models Spt, Sgt

and ground-truth clothed human model (S∗) can be passed back into the 3D
body mesh recovery module for boosting the accuracy of the 3D body pose and
shape parameters.

3.3 Loss Functions

We employ a 3-step training scheme. (S1) We train the GCN to recover the inter-
mediate body mesh. (S2) We fix the trained GCN and then train the regressor
to estimate the pose and shape parameters of the 3D body. (S3) We unfix the
GCN and then retrain the whole network. The loss functions used in these three
steps are respectively represented by Lgcn, Lreg, and LR.

The GCN used for recovering the intermediate body mesh is trained using two
kinds of supervision, that is, the mesh vertices alignment loss (Lv) and the joints
alignment loss (LJ ). Hence, Lgcn can be formulated as Lgcn = λvLv + λjLJ .

Besides the losses used to train the GCN, an additional parameter loss (Lp)
is also employed to train the regressor. So, Lreg can be formulated as Lreg =
λvLv + λjLJ + λpLp.

As mentioned before, the results of clothed 3D human reconstruction indicate
the accuracy of the 3D body pose and shape estimation. Hence, we use the
residuals among the reconstructed clothed human models Spt, Sgt and ground-
truth clothed human model S∗ to describe the losses and pass them back into the
3D body mesh recovery module and used for optimizing the body mesh recovery
module:

LR1 =
1
np

np∑

i=1

|Spt(pi) − S∗(pi)|2 (5)

LR2 = LR1 − 1
np

np∑

i=1

|Sgt(pi) − S∗(pi)|2 (6)

where np is the number of sampled points, and pi is the sampled point. The
LR1 loss represents the absolute reconstruction errors, while LR2 describes the
relative reconstruction loss which removes reconstruction errors due to factors
other than 3D human pose and shape estimation. Our clothed human recon-
struction loss considers both the absolute reconstruction loss and the relative
reconstruction loss:

LR = λr1LR1 + λr2LR2 (7)
where λr is a weight to balance these two losses. Finally, the total loss for training
the whole network is defined as:

Ltol = Lgcn + Lreg + λrLR (8)
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4 Experimental Results

4.1 Datasets

Our method is trained on the training set of THuman2.0 [23] and tested on the
testing set of THuman2.0 as well as LSP datasets [7]. The THuman2.0 dataset
is composed of 526 high-resolution 3D scans of 526 subjects with various body
shapes and poses. The data in THuman2.0 is randomly split into a training
set and a testing set at a ratio of 4:1. For each 3D scan, we render it from
360 views and obtain 360 〈RGB image, 3D body mesh〉 pairs. As a result, the
training set is extended and contains 151,200 training data in total. The LSP [7]
dataset consists of 2,000 in-the-wild images of sportsmen with difficult poses.
Since LSP doesn’t provide any ground-truth SMPL annotation, it is only used
for qualitative evaluation in our experiments.

4.2 Implementation Details

In our implementation, ResNet-50 [4] is employed as the image encoder, the
network architecture proposed in [10] is adopted to implement our GCN, the
multiple layer perceptron is employed to construct the parameter regressor and
the network of PaMIR [27] is adopted to reconstruct the surface of clothed
humans. All our networks are implemented based on PyTorch [19]. Adam [9] is
employed for optimizing our networks. In the whole training phase, the learning
rate is fixed to 3×10−4, and the batch size is set as 16. Our networks are totally
trained for 20 epochs, and it takes about 5 days on a computer with a single
NVIDIA GeForce RTX 3080 GPU.

4.3 Comparisons

(1) Quantitative Comparisons

Table 1. Quantitative comparisons on the THuman2.0 dataset.

Method Publication MPJPE PA-MPJPE MVPE

SPIN [11] ICCV’2019 64.2 48.9 80.5
GCMR [12] CVPR’2019 93.7 67.3 111.0
DecoMR [24] CVPR’2020 112.5 84.5 126.1
PyMAF [25] ICCV’2021 66.9 49.6 83.8
3DCrowdNet [3] CVPR’2022 101.3 93.9 118.3
Ours – 42.9 34.6 46.5

Same as other methods [11,12,25], we use three quantitative metrics (MPJPE,
PA-MPJPE, and MPVE) to calculate the experimental results. Table 1 shows
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the quantitative comparisons on THuman2.0. Our method achieves an MPJPE
of 42.9mm, a PA-MPJPE of 34.6mm, and an MVPE of 46.5mm, and out-
performs all the other methods involved in the comparison. In terms of pose
estimation, our method outperforms the second-best method (i.e., PyMAF [25])
by an MPJPE of 24.0mm and a PA-MPJPE of 15.0mm. In terms of shape esti-
mation, our method also achieves the lowest MVPE of 37.3mm. It can be seen
that due to the influence of loose clothing obscuration, most advanced methods
are unable to accurately identify not only the human postural motion under the
clothing but also the human shape.

(2) Qualitative Comparisons

Fig. 3. Qualitative comparisons on the THuman 2.0 dataset.

Fig. 4. Qualitative comparisons on the LSP dataset.

We compare our method qualitatively with SPIN [11], GCMR [12], DecoMR [24],
PyMAF [25] and 3DCrowdNet [3]. We first test these methods on the testing set
of THuman2.0 and then test them on LSP for cross-dataset evaluation. Figure 3
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shows the results produced by these four methods and our methods on THu-
man2.0. It can be seen that our method produces the most accurate poses and
body shapes that are similar to ground-truth models, whether examined from
the visible view or invisible view. Figure 4 illustrates the cross-dataset results on
the LSP datasets. Our method still outputs 3D body models with accurate poses
and body shapes, while other methods do not estimate the postures of legs and
arms precisely in most of their results.

4.4 Ablation Study

To verify that the accuracy of estimated 3D human poses and shapes can be
boosted by clothed 3D human reconstruction, we train four different models
(m1∼m4) of our method using different loss functions and test these models on
the Thuman2.0 dataset. The quantitative results achieved by these models are
shown in Table 2. Without all the two reconstruction loss functions (i.e., the m1
model), our method only yields an MPJPE of 65.6mm, a PA-MPJPE of 44.2
mm, and an MVPE of 65.1 mm. By adding the LR1 loss (i.e., the m2 model),
the MPJPE, PA-MPJPE, and MVPE are respectively decreased by 12.7 mm, 9.2
mm, and 16.5 mm. By adding the LR2 loss (i.e., the m3 model), the MPJPE, PA-
MPJPE, and MVPE are respectively decreased by 10.4 mm, 6.5 mm, and 12.7
mm. These results indicate that both the absolute reconstruction errors LR1 and
the relative reconstruction loss LR2 are beneficial for the accuracy of estimated
3D human poses and shapes. When using both these two reconstruction losses,
the MPJPE, PA-MPJPE, and MVPE respectively drop to 42.9 mm, 34.6 mm,
and 46.5 mm.

Table 2. Comparisons of our method trained with different loss functions.

Models Loss Functions MPJPE PA-MPJPE MVPE

m1 Lreg 65.6 44.2 65.1
m2 Lreg + LR1 52.9 35.0 48.6
m3 Lreg + LR2 55.2 37.7 52.4
m4 Lreg + LR(Ltol) 42.9 34.6 46.5

5 Conclusion

Estimating 3D human pose and body shape from a single image is challenging.
In this paper, we have proposed a 3D human pose and shape estimation method
enhanced by clothed 3D human reconstruction. Two clothed 3D human models
are respectively reconstructed under the guidance of the recovered 3D body
mesh and the ground-truth 3D body mesh. The ablation study has validated
that the accuracy of the estimated 3D human poses and shapes is significantly
improved by our method. Experimental results show that our method achieves
state-of-the-art performance.
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