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Abstract. Heart failure is a group of complex clinical syndromes due
to any structural or dysfunctional abnormality of the heart that results
in impaired filling or ejection capacity of the ventricles. Using histor-
ical Electronic Health Records (EHRs) to forecast the risk of critical
events in heart failure (HF) patients is an important area of research
in the field of personalized medicine. However, it is difficult for some
machine learning models to predict the risk of critical events owing to
data imbalance and poor feature performance in the EHR data of HF
patients. While time series-based deep neural networks have achieved
excellent results, they lack interpretability. To solve these problems, this
study focuses on proposing a deep neural network prediction model of
critical events in heart failure patients based on Contrastive learning and
Attention mechanism (CLANet). We evaluate our model on a real-world
medical dataset, and the experimental results demonstrate that CLANet
improves by 2–10% over the conventional methods.

Keywords: Heart failure · Contrastive learning · Critical event
prediction · Electronic Health Records

1 Introduction

Heart failure is a worldwide disease that has developed into a worldwide health-
care burden [16]. There are currently approximately 26 million Heart failure
patients worldwide. The prevalence of HF is estimated to be 1–2%, and the rate
in people over 70 years of age in Europe and the United States is more than 10%
[13]. Recent epidemiological evidence shows that the prevalence of Heart failure
in China has increased by 44% in the last 15 years. More than 9 million people in
China have Heart failure. Therefore, early detection of the risk of critical events
in HF patients can reduce the cost of medical care and help doctors formulate
a more suitable treatment plan based on the prediction results of critical events
in HF patients, helping patients prolong their lives [18].

In recent years, some simple and scalable methods inspired by deep learning
have been proposed for automatically representing features, such as One-Hot
[17] and Skip-Gram [12]. However, these methods often treat each feature as a
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discrete and independent word, which introduces the problem of data sparseness,
making it difficult for them to capture the latent semantic content between
medical variables.

Most previous studies use only a single type of data(e.g., ICD codes or clini-
cal note), or simply concatenate different types of clinical variables into a whole,
ignoring the differences between different types of clinical variables [10]. In fact,
each type of medical data represents a different health state of patients, so it
is necessary to consider the characteristic information contained in each type
of medical data separately. However, existing methods largely ignore this phe-
nomenon. Critical event prediction models are primarily designed to help clin-
icians make clinical decisions. Without interpretability, clinicians cannot deter-
mine whether these predictions can be trusted.

To solve the above problems, we have proposed CLANet. When the EHR
data of heart failure patients are input, CLANet can mine the semantic infor-
mation of the same type of medical variables and different types of medical
variables through self-attention. Secondly, Bi-LSTM can also be used to capture
the temporal dependencies. At the same time, soft-attention is also used to cap-
ture variable-level and visit-level attention scores in the patient’s EHR. Finally,
contrastive learning was used to compute the similarity of patient pairs. At the
same time, the patient representation is used to make predictions about the risk
of patient critical events.

In summary, our contributions are as follows:

1. We propose CLANet, an interpretable deep learning model for predicting
patient risk of critical events using EHR data from patients with heart failure.
In particular, CLANet incorporates multi-layered attention mechanisms that
can capture the semantic information. It can also track fine-grained effects of
each medical variable and each visit in patient’s medical records.

2. We introduce contrastive learning by constructing a contrastive loss function.
This allows the model to perform well with unbalanced data and effectively
improves the predictive performance of the model.

3. We conduct an experimental evaluation on a real EHR dataset, and empiri-
cally illustrate that CLANet can achieve state-of-the-art performance.

2 Related Work

In recent years, an increasing number of studies have centred around the use of
EHR data to predict patient risk of critical events, including mortality prediction
[4], readmission [7], ICU transfer [3], and length of stay prediction [1]. Critical
event risk prediction models based on longitudinal EHR data fall into two main
categories, namely approaches based on machine learning models and approaches
based on deep learning models.

2.1 Machine Learning Predictive Models Using EHR Data

Machine learning [14] methods mainly extract features from EHR datasets man-
ually and then make predictions with machine learning models. For example,
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Panahiazar et al. [15] designed a risk prediction model using support vector
machines, additional trees, logistic regression, decision trees, and random forests.

Despite the promising results obtained with these methods, the results of
these models depend heavily on the quality of the features manually selected by
the experimenter. The acquisition of these features requires the introduction of
expert knowledge and the use of complex statistics to process the data, which
makes it difficult to transfer to other application scenarios. Secondly, the perfor-
mance of machine learning cannot be guaranteed for datasets with sparse and
imbalanced data.

2.2 Deep Learning Predictive Models Using EHR Data

Deep learning is capable to automatically extracting features from patient his-
torical EHR data and is being used by an increasing number of researchers. Two
variants of deep learning, CNN and RNN are the most commonly used deep
learning models. While CNN [5] can automatically extract features and pre-
serve adjacency relationships between input and neighbouring variables, it treats
patient EHR data as chronological records and loses the correlation between
parts and wholes.

In comparison, RNN [11] has better temporal modelling capabilities and are
therefore more widely used. For example, Le et al. [9] proposed an LSTM-based
dual memory neural computer (DMNC) to solve the asynchronous multi-view
sequence problem, which allows for view interactions and long-term dependencies
to be modelled. The model achieved the best results on the MIMIC-III dataset
[8]. Although the RNN performs well in predicting critical events, it lacks inter-
pretability, so the attention mechanism is usually used in EHR-based temporal
prediction models. RETAIN [2] is a well-known interpretable prediction model,
which consists of two recurrent neural networks and attention mechanism to learn
forward and backward representations of patients respectively. Self-attentive and
soft-attentive mechanisms are also used in our proposed CLANet.

3 Methodology

The task of predicting critical events in patients with heart failure is mainly
divided into two tasks: mortality prediction and ICU transfer prediction. Our
proposed model (CLANet) predicts the following four tasks: 48-hour mortality,
7-day mortality, in-hospital mortality and ICU transfer.

3.1 Data Processing

The EHR data used in this paper contain five main types of data. The EHR
data of different patients are not the same. Therefore, it is necessary to process
the data. If one-hot coding is used to directly represent patients, it will cause
data redundancy, because in the MIMIC-III dataset, except for heart failure,
there are a total of 3583 diseases in heart failure patients, most of which have



A Contrastive Learning-Based Interpretable Prediction Model 291

Fig. 1. The architecture of representation learning moudle.

only been diagnosed in a few patients and are easily treatable. Medication and
surgery have the same problem (Fig. 1).

To solve the above problems, the method used in this paper is to first extract
the heart failure patients in the dataset and divide them into two categories,
namely, death and survival. Death is marked as positive and survival is marked
as negative. Then the diagnosis, medication and surgery information in the EHR
of the patients were extracted, and these variables of each patient were spliced
into sentences, each variable was equivalent to a word, and the same type of
patients were spliced into an article. Then the importance of each diagnosis,
drug and surgery was calculated from the article using the idea of TF-IDF. The
formula is as follows:

impi =
poi∑
j poi

× log
|POS| + |NEG|

sni
+

pni∑
j pni

× log
|POS|
spi + 1

(1)

where poi represents the number of occurrences of the variable Vi in POS and
NEG,

∑
j poi represents the sum of all variables appearing in POS and NEG, sni

represents the sentences containing variable Vi in the articles POS and NEG. pni

represents the number of occurrences of the variable Vi in POS,
∑

j pni represents
the number of all variables in POS, and spi represents the total number of
sentences containing variable Vi in POS. In this paper, the basis of the original
TF-IDF is improved. Variables that score higher in positive examples are given
more weight.
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3.2 Representation Learning Moudle

The representation learning module mainly includes a feature learning layer and
a representation learning layer. The feature learning layer mainly learns the
features in the patient’s EHR data through 1D-CNN and self-attention. The
representation learning layer obtains the patient representation mainly through
the soft-attention mechanism and Bi-LSTM.

Feature Learning Layer. The first layer of the feature learning layer uses the
information from each patient visit to obtain the embedding of the variables.
There are two main reasons for using 1D-CNN to represent each medical vari-
able: firstly, discrete medical variables cannot be directly used for deep learning
networks. Secondly, the direct use of one-hot to represent patient visit informa-
tion does not well capture the correlation between different medical variables.

We first use 1D-CNN to embed each medical variable, specifically, the input
vector Vi = <v1

i , v
2
i , · · · , vm

i >, Where m represents the number of different
examinations for patients. Then the relevant information embedding Rt of the
patient can be obtained by the following formula:

Rt = Re LU

(
M∑

t=1

Wevt + be

)

(2)

where vt represents the feature of the tth timestamp, We is the convolution
kernel, and be is the bias parameter.

The second layer of the feature learning layer is the self-attention layer, which
performs self-attention on each medical data to obtain the internal relationship
of each type of medical variable. A representation of each visit in the EHR of HF
patients is then obtained. Firstly, the representation vector Rt obtained by 1D-
CNN is used as input, and the self-attention mechanism constructs a key matrix
Ki, query matrix Qi and value matrix Vi according to Eq. (3), where KWi, QWi

and V Wi are trainable weight parameter matrices. Then, the attention weight
matrix Ai is computed according to Eq. (4), where dk represents the latitude of
the input vector. Finally, the output matrix Oi is computed as a weighted sum
according to Eq. (5).

Ki = KWiRi, Qi = QWiRi, Vi = V WiRi (3)

Ai = softmax
(

QiK
T
i√

dk

)

(4)

Oi = ViAi (5)

Sj
i =

m∑

k=1

vk
i αjk

i (6)

where Ai = <a1
i , a

2
i , . . . , a

m
i >, aj

i = <αj1
i , αj2

i , . . . , αjm
i >, αjk

i is the influence
of variable vk

i on variable vj
i . Si = <s1i , s

2
i , . . . , s

m
i >, where sji is the output
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matrix of rji . It can be calculated by formula (6). We end up with five output
vectors.

Then, the obtained output vectors are concatenated to obtain the joint rep-
resentation Ei of the patient, and then the contextual semantic relationships
of different types of data are obtained through the self-attention mechanism.
Finally, the output vector Ni is obtained by the following formula:

Ki = KWiEi, Qi = QWiEi, Vi = V WiEi (7)

Ni = softmax
(

QiK
T
i√

dk

)

Vi (8)

Representation Learning Layer. It contains three sub-layers: variable-level atten-
tion, Bi-LSTM, visit-level attention. variable-level attention uses the output vec-
tor Ni = <N1

i , N2
i , . . . , Nn

i > obtained by the feature learning layer to compute
the contribution of medical variable in a visit. Soft-attention is then utilized to
obtain the contribution of the medical variables to the visit. The formula is as
follows:

αj
i = softmax

(
gTi tan h

(
CWin

j
i

))
(9)

fi =
m∑

j=1

αj
in

j
i (10)

where CWi is the trainable weight parameter matrix and gi is the trainable
context vector. According to Eq. (9), the contribution of each medical variable
is calculated. Finally, the contribution of all medical variables is aggregated.
Obtain the representation vector fi of patient visits.

Visit-level attention uses the visit vector obtained earlier and computes the
importance of each visit. The temporal dependence between visits is first cap-
tured by Bi-LSTM, and then the importance of each visit is computed using
soft-attention. This is done primarily because patient visits are a sequential pro-
cess. Specifically, the patient’s visit vector fi is first fed into a Bi-LSTM in
chronological order, which is made up of a forward network and a backward net-
work that can make full use of the information from the past and the future. The
forward LSTM reads f1 to ft and computed the forward hidden state sequence
<�h1,�h2, . . . ,�ht>, given the input vector �fi and the previous hidden state �hi−1.
The hidden state is computed by the following formula:

−→
hi = LSTM

(−→
fi ,

−−→
hi−1

)
(11)

Similarly, the backward LSTM reads the embedding vector sequence in
reverse order, generating the backward hidden state sequence <

←−
h1,

←−
h2, . . . ,

←−
ht>.

The hidden state hi is a combination of forward and backward hidden states,
calculate by the following formula:

hi =
[−→
hi ;

←−
hi

]
(12)
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Then, soft-attention uses a linear transformation normalized by softmax to
calculate attention weights according to Eq. (13). Finally, the representation
vector z representing the patient is calculated by summarizing the importance
of the medical variables for the heart failure patient according to Eq. (14). where
w is a trainable vector, b is a trainable scalar, and β represents the importance
of the hospital visit hi.

β = softmax
(
wThi + b

)
(13)

z =
n∑

i=1

βihi (14)

3.3 Contrastive Learning Layer

We introduce contrastive learning [6] to improve the classification ability of the
model and solve the sample Sparse data problem in the experimental data. First,
we construct the sample pair, if their labels are consistent, the label is set to
0, otherwise the label is set to 1. The representation learning module is used
to generate the patient representation, and then the similarity of the patient
representation in each sample pair is calculated. The following contrastive loss
function is used to bring patients with consistent labels closer together and to
pull patients with inconsistent labels apart.

LDist = (1 − Y )
1
2

(DW )2 + (Y )
1
2

{max (0,m − DW )}2 (15)

where Y is the label. Dw is the Euclidean distance between the patient represen-
tations of the model’s output. The max function takes 0 or the margin m minus
the maximum in the distance. In this experiment, the m = 1.

3.4 Loss Function

To obtain appropriate model parameters and predict critical events of heart
failure patients, a sigmoid function was used to predict the labels of patients,
and the cross-entropy between real visit label yi and the predicted visit label ŷi
was used as the prediction loss function:

LCE = − 1
2N

N∑

i=1

yT
i log ŷi + (1 − yi)

T log (1 − ŷi) (16)

where yi is the true label of the ith heart failure patient. ŷi is the score of the
ith patient calculated by CLANet. We use the adma optimizer to optimize the
above formulation.

Since the contrastive learning module and the prediction of critical events
in heart failure patients can mutually benefit from joint training to obtain the
clustered patient representation and the prediction of critical events in heart
failure patients, the loss can be expressed as follows:

L = LCE + λDist LDist (17)
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The contrastive loss function is scaled by a non-negative hyperparameter λ.
In this experiment, the hyperparameter λ = 0.5.

4 Experiments

4.1 Dataset Description

The EHR dataset used in this experiment is the MIMIC-III [8]. Firstly, the data
contains demographics, medications, laboratory tests, surgical codes, diagnosis
codes. In this study, a variety of information about the patient is used, because
whether it is age, laboratory tests, diagnosis, or drug and surgical information,
it is essential to predict the health status of the patient. Secondly, because this
paper is the critical event prediction of heart failure patients, so 10436 patients
diagnosed with heart failure were extracted.

4.2 Implement Details

In this study, machine learning methods are mainly implemented using scikit-
learn. All deep learning models in this study were implemented using tensorflow
2.6.0 and all methods used adam optimizer with learning rate set to 0.001. A
computer with 90 GB of RAM and a Tesla A40 GPU was used for training.
The batch-size was set to 512 for all deep learning models. To avoid overfitting,
we introduce dropout strategy and Dropout rate is 0.5. At the same time, the
early stopping strategy and L2 regularization are also used. For the proposed
CLANet, the embedding size of 1D-CNN for each variable is 256, and the hidden
units of LSTM are 30. We randomly split the training, validation and test sets
into 0.7 : 0.2 : 0.1. Three measures were used to evaluate the performance of the
model: Accuracy, F1-score, and AUC. For all models, we repeat the experiments
20 times and report the average evaluation metric of the test performance.

4.3 Baselines

LR: It is a generalized linear regression analysis model, which is part of the
supervised learning in machine learning.

RF: It is a form of ensemble learning, combining many decision trees into a
forest.

XGBOOST: It is a decision tree based ensemble algorithm for classification
and regression problems.

Bi-LSTM: It is an important variant of deep learning that can handle
sequence problems well.

Diople [11]: It is a Bi-RNN model for diagnostic prediction tasks with an
attention mechanism that represents a patient’s visit as a series of unordered
sets composed of multiple unique medical codes.

Retain: It is a combination of two recurrent neural networks and an attention
mechanism to learn forward and backward representations of patients respec-
tively, and visit-level weights and variable-level weights can be obtained.
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IoHAN [4]: It is an interpretable outcome prediction model based on hierar-
chical attention, which obtains variable-level and visit-level attention of patients.

Table 1. Performance of Baselines and CLANet on Four key Event Prediction Tasks.

Model 48 h 7day in-hosptial ICU Transfer

Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC

LR 0.727 0.705 0.756 0.725 0.741 0.747 0.731 0.761 0.750 0.798 0.802 0.876

RF 0.756 0.739 0.666 0.763 0.742 0.669 0.779 0.782 0.669 0.819 0.806 0.809

XGBOOST 0.763 0.750 0.671 0.774 0.766 0.694 0.793 0.763 0.702 0.821 0.803 0.842

Bi-LSTM 0.788 0.796 0.726 0.792 0.808 0.752 0.806 0.822 0.758 0.818 0.805 0.879

Diople 0.804 0.821 0.787 0.812 0.822 0.797 0.817 0.826 0.794 0.813 0.806 0.880

Retain 0.813 0.822 0.786 0.806 0.818 0.805 0.819 0.823 0.795 0.814 0.806 0.885

IoHAN 0.817 0.811 0.791 0.827 0.834 0.810 0.827 0.835 0.796 0.819 0.801 0.886

CLANet 0.832 0.829 0.808 0.826 0.844 0.810 0.843 0.841 0.815 0.841 0.811 0.893

4.4 Result Analysis

Table 1 presents the average performance of the proposed CLANet and other
baseline models on the four tasks. It can be seen that CLANet exhibits stable
and excellent performance. And we achieve state-of-the-art performance on most
metrics.

We first focus on classical machine learning methods, including LR, RF and
XGBOOST. Machine learning methods generally show lower performance com-
pared to deep learning methods. The main reason is that they cannot model a
patient’s visit as a sequence, but only the patient’s visit sequence as a whole. On
the mortality prediction task, the machine learning model achieves 5% lower F1-
score and AUC scores than deep learning baselines such as Bi-LSTM. However,
on the ICU Transfer task, machine learning methods perform no worse or even
better than many deep learning-based methods. The reason for this phenomenon
may be that individual signals may be more important than timing information
for ICU Transfer tasks. In this case, deep learning models such as Bi-LSTM may
suffer from overfitting. Through the attention mechanism and contrastive learn-
ing, CLANet can extract the medical variables that have a key impact on the
outcome, and can distinguish the representations of patients, which can achieve
better prediction results.

As an ordinary deep learning model, the performance of Bi-LSTM is sta-
ble, and the performance gap between the Bi-LSTM model and any other deep
learning models on the ICU Transfer task is not large. This is mainly because
heart failure is a chronic disease, and for the ICU Transfer task, simple deep
learning models can capture key variables easily. However, it did not perform
as well on the mortality prediction task. For the mortality prediction task, the
performance of all attention-based models is outstanding, mainly due to the fact
that deep learning can capture key variables in time-series information, and then
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amplify these medical variables through the attention mechanism. Although both
RETAIN and IoHAN use hierarchical attention, contrast learning is introduced
in our model to better distinguish patient representations and achieve the best
classification results. In particular, on the ICU Transfer task, CLANet achieves
the optimal performance on each metric.

4.5 Ablation Study

In this section, we focus on the comparison between CLANet and its variants that
change parts of the full CLANet model. The setup is the same as the previous
experiment, but this time we run it 5 times to get the average performance.

CLANet-TF: It is a variant of CLANet without the critical code extraction
module and directly using all medical variables.

CLANet-SEA: It is a variant of CLANet without self-attention. The final
representation of the patient is directly obtained through variable-level and visit-
level attention and Bi-LSTM.

CLANet-SOA: It is a variant of CLANet without soft-attention. Specifically,
it directly uses self-attention and Bi-LSTM to obtain the final representation.

CLANet-ATT: It is a variant of CLANet without attention mechanism.
Specifically, it directly uses Bi-LSTM to obtain the final representation.

CLANet-CL: It is a variant of CLANet without contrastive learning, specifi-
cally, it does not construct sample pairs and directly uses the cross-entropy loss
to predict the critical event risk.

Table 2. Average Performance for CLANet’s Variants.

Model 48 h in-hospital ICU Transfer

Acc F1 AUC Acc F1 AUC Acc F1 AUC

CLANet-TF 0.752 0.725 0.729 0.785 0.720 0.796 0.807 0.794 0.825

CLANet-SEA 0.815 0.820 0.804 0.823 0.827 0.789 0.811 0.796 0.889

CLANet-SOA 0.809 0.806 0.795 0.802 0.820 0.785 0.821 0.805 0.882

CLANet-ATT 0.792 0.807 0.759 0.801 0.816 0.796 0.814 0.801 0.877

CLANet-CL 0.819 0.809 0.793 0.820 0.828 0.801 0.809 0.793 0.858

CLANet 0.832 0.819 0.808 0.843 0.841 0.825 0.841 0.811 0.893

The experimental results are presented in Table 2. It can be seen that after
the deletion of TF-IDF, the model performance significantly decreases, mainly
because the patient visit information is composed of medical variables. The long-
tailed distribution of each medical variable may cause redundancy, so this paper
uses the keyword extraction method commonly used in NLP to extract key
influencing variables and improve the prediction performance of the model. In
the mortality prediction task, CLANet-ATT performs the worst and CLANet
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performs the best. This shows that all sub-layers of CLANet contribute to the
final critical event risk prediction.

Secondly, the performance of CLANet-SEA is better than CLANet-SOA,
indicating the effectiveness of variable-level and visit-level attention, mainly
because the patient information in MIMIC-III is mainly from icu, and the col-
lected information is not rich enough, and the contextual information is relatively
fixed, so the contextual information of patient visit information is not obvious
enough. However, CLANet-SOA performs better than no attention mechanism,
indicating that the self-attention layer improves the predictive ability of the
model. Finally, it can be seen that when the contrastive learning module of the
model is removed, the predictive ability of the model is significantly decreased,
suggesting that contrastive learning has a facilitating effect on critical event
prediction. Especially in ICU Transfer task, due to the simple task, the deep
learning model has difficulty learning useful knowledge, which is prone to cause
overfitting. Therefore, when we remove contrast learning, the model effect will
reach the minimum.

5 Conclusions

Predicting the risk of critical events in HF patients using EHR data is one of
the key issues in medical event prediction. The existing critical event prediction
models cannot solve the problem of multi-data fusion and interpretability well.
To solve the aforementioned problems, we propose CLANet, a multi-layer atten-
tion mechanism model based on contrastive learning. Experimental results on
MIMIC-III show that CLANet outperforms existing models in terms of predic-
tion performance.
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