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Abstract. Accurately extracting road networks from hyperspectral data using
convolutional neural network models is challenging due to various factors such as
occlusion, changing lighting conditions, and blur. To address this issue, this paper
proposes a new model that combines the advantages of U-net and Transformer
architectures. This hybrid model effectively captures both local and long-range
features, thus improving the accuracy and efficiency of road extraction. Evaluation
of the method is performed on the AeroRIT hyperspectral dataset using perfor-
mance metrics such as overall accuracy, average per-class accuracy, and average
Jaccard index. Compared with traditional convolutional neural network models
such as U-net. The results show that the proposed method improves the average
per-class accuracy by more than 18% over the traditional methods, demonstrating
its potential to optimize road extraction from hyperspectral data. Further research
can focus on improving the accuracy and efficiency of road network extraction
from hyperspectral data.
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Neural Network

1 Introduction

Hyperspectral imaging provides detailed spectral information about materials in a scene,
including roads. However, accurate extraction of roads from hyperspectral data is chal-
lenging due to their complex structure and similarity to other materials. Road extraction
is a specific type of semantic segmentation task, and while deep learning models such
as SegNet, U-net, and ResNet have shown promise, they have limitations such as loss
of details [1, 2, 22] or high computational requirements [3]. To overcome these limita-
tions, we propose a novel approach that combines Transformer and U-net architectures
to capture global and local features, allowing long-range dependencies while maintain-
ing fine-grained details. Few studies have explored this combination for hyperspectral
image segmentation, making our proposed method an innovative one.

The structure of this article is as follows:

Introduction: Outline the goals and motivation of the study.
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Related work: Discusses existing methods for semantic segmentation of hyperspectral
data, road extraction, and deep learning models.
ProposedApproach:Describemethods for enhancing road extraction using deep learning
models, including Transformer and U-Net architectures.
Datasets and Experiments: Details the datasets used for evaluation, the experiments
performed, and a discussion of the results.
Discussion: The proposed method is compared with existing methods and its advantages
and disadvantages are analyzed.
Conclusions and future work: The main findings are summarized and directions for
future research are proposed.
Acknowledgement.

2 Related Work

2.1 Overview of Existing Hyperspectral Data Semantic Segmentation Methods

There are four main categories of methods for semantic segmentation of hyperspectral
data: traditional machine learning, deep learning, hybrid and other methods.

Traditional machine learning methods, including support vector machines [4], and
random forests [5]. They typically involve feature extraction and selection, followed
by applying a classifier to the selected features. Deep learning methods, such as Con-
volutional Neural Networks (CNNs) [6, 23], and fully convolutional networks (FCNs)
[7], have shown great promise in hyperspectral image segmentation. In addition, there
are hybrid approaches [8] that combine traditional machine learning and deep learn-
ing methods. Other methods, such as clustering, graph-based methods [9], and active
learning [10], have also been used for hyperspectral image segmentation.

2.2 Literature Review of Existing Approaches for Road Extraction
in Hyperspectral Data

Extracting roads from hyperspectral data can be divided into two main methods: tra-
ditional methods and deep learning-based methods [11]. Traditional methods utilize
spectral features and statistical/mathematical models to extract roads [12], but have
limitations in handling complex scenes and illumination changes. Deep learning-based
methods, such as U-Net [13] and ResNet [3], have shown great potential for solving such
problems, but require large amounts of annotated data and computational resources.

2.3 Overview of Existing Deep Learning Models for Hyperspectral Data Analysis

Deep learning models have shown great potential in hyperspectral data analysis by
automatically learning complex features from high-dimensional data.

U-Net and SegNet [14] are popular for hyperspectral image segmentation. U-Net
captures both local and global features, but requires more data and computation. SegNet
is computationally efficient and preserves spatial information, but may not perform as
well on tasks requiring high-level context. ResNet is suitable for high-context tasks, but
may not be as effective asU-Net or SegNet for hyperspectral segmentation. Transformers
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[15] achieve state-of-the-art results in language processing but may not be efficient for
large amounts of hyperspectral data.

In our proposed method, we combine Transformer and U-net architectures to pro-
cess hyperspectral images to capture global and local features, allowing long-range
dependencies to be captured while maintaining fine-grained details (Fig. 1).
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Fig. 1. Flowchart of the proposed method. (a) CNNTrans, (b) ViT.

3 Proposed Method

3.1 Description of the Proposed Approach for Improving Road Extraction
with Deep Learning Models

Inspired by the Vision Transformer (ViT) model proposed by Dosovitskiy [16, 21],
for image classification, we modify the U-Net architecture by incorporating a CNN-
Transformer block at the center of the network. This block utilizes the ViT encoder
to extract positional embeddings from the output feature map of U-Net, which is then
passed to the Transformer decoder to generate the final segmentation map. The decoder
consists of multiple Transformer blocks that can perform nonlinear transformations on
input features and capture long-range dependencies in feature maps. This architecture
enables us to efficiently extract road features from hyperspectral data while reducing
computational cost.

The CNN-Transformer block in the proposed approach can be represented by the
following formula:

y = Concat(xcontract,CNN−Transformer(xcenter)) (1)
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where xcontract is the feature map from the contracting path of the U-Net architec-
ture, xcenter is the feature map from the center of the U-Net architecture, and CNN-
Transformer is the modified ViT model followed by a convolutional layer. The output of
the CNN-Transformer block is then concatenated with the corresponding features from
the contracting path and fed into the expansive path.

The multi-head self-attention mechanism in the Transformer block of the ViT model
can be represented by the following formula:

MultiHead(Q,K,V ) = Concat(head1, . . . , headh)W
o (2)

whereQ,K, and V are the query, key, and value matrices, respectively. h is the number of
heads, and headi is the i-th head output.Wo is the output weight matrix used to combine
the concatenated heads. In this model, using the original query (the content of the query),
relative positional embeddings are used as keys, and values refer to the matrix of values
obtained from the input sequence.

The feed-forward network in the Transformer block applies a nonlinear transforma-
tion to the input features and can be represented by the following formula:

FFN (x) = PReLU (xW1 + b1)W2 + b2 (3)

where x is the input feature vector,W1, b1,W2, and b2 are the weights and biases of the
two fully connected layers, and PReLU is the rectified linear unit activation function.

Overall, the proposed approachoffers a promising solution to improve road extraction
from hyperspectral data by leveraging the strengths of both CNN and Transformer-based
networks.

3.2 Details on the Transformer and U-Net Architectures Used

We name the whole work CNNTrans. The input to the model is first normalized by
spectral bands and resized to a fixed resolution of 64x64 pixels. The input is then sub-
jected to four rounds of convolution and max pooling before being fed into the central
convolutional layer of the U-Net architecture and output to the CNN-Transformer block.

The CNN-Transformer block processes the input image by dividing it into equal
blocks, producing tensors of shape (batch_size, num_patches, output_channels). The
output tensor is then reshaped to (batch_size, output-put_channels, num_patches_sqrt,
num_patches_sqrt) and passed through a single convolutional layer before being used
as input to the decoder part of the U-Net architecture. Here, batch_size is the number
of samples in a batch, num_patches is the number of patches (or markers) extracted
and processed by the transformer in the input image, output_channels is the number of
channels in the output feature representation, num_patches_sqrt is the size height and
width dimension, and passed upsampling outputs the final segmentation map.

The ViT part in the CNN-Transformer block captures global contextual information,
while the convolutional layers extract local features. Since the final output of the ViT
model is not the final result, we remove the classification head of the ViT model and
add a convolutional layer at the end to reduce the feature dimension and computational
cost. The output of the CNN-Transformer block is concatenated with the corresponding
features in the contraction path and fed into the expansion path.
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TheVit_conv layer performs a single convolution operation before feeding the output
of the ViT model to the decoder part of the U-Net architecture. The forward method of
the CNNTransformer class processes the input image through the convolutional layers,
ViT model, SignleConv layer and U-Net architecture to produce the final segmentation
map.

4 Dataset and Experiments

4.1 Description of the Dataset Used for Evaluation

To evaluate the proposedCNN-Transformer basedU-Net architecture for road extraction
from hyperspectral data, we use the publicly available AeroRIT dataset [17] with a spa-
tial resolution of 1973 × 3975 pixels covering the spectral range 397 nm–1003 nm, The
step size is 1 nm. The dataset contains 12 spectral bands, which provide important infor-
mation for distinguishing different materials and surfaces in the scene. Furthermore, this
dataset includes ground truth labels of road pixels, which are manually annotated and
considered accurate. Due to the complexity of the scene and the presence of other objects
and materials, the AeroRIT dataset is a challenging benchmark dataset for hyperspec-
tral image analysis, making it suitable for evaluating the performance of our proposed
architecture.

4.2 Description of the Experiments Conducted to Evaluate the Proposed
Approach

Toevaluate the performance of the proposedCNN-Transformer basedU-Net architecture
on road extraction, we conduct a series of experiments on the AeroRIT dataset. The
dataset was randomly split into 80% for training and 20% for testing, ensuring that no
overlapping patches were used in the two groups.

To train the model, we used several parameters to ensure the best results. The PreLU
[18] activation function is used and the mini-batch size is set to 100. The learning rate is
set to 1e−4, and the cross-entropy loss function of the Adam optimizer is applied. The
number of spectral bands used in the analysis will depend on the setting, with 5 options
ranging from 3 (RGB) to 51 (all). Finally, the model is trained for 60 epochs on a single
NVIDIA GTX 3080 GPU with 10 GB of memory.

We evaluated the proposed method using three metrics: Overall Accuracy (OA)
[19], Mean PerClass Accuracy (MPCA), and Mean Jaccard Index (MIOU) [20]. OA
and MPCA report the percentage of correctly classified pixels, while MIOU is used to
mitigate dataset bias when class representations are small. Among these metrics, we
adopt MIOU as the main metric for performance evaluation, because it measures the
overlap between predicted masks and ground truth masks for all classes, which is a good
way to evaluate the same degree of predicted segmentationmaps and ground truth labels.

We compare the performance of the proposed CNN-Transformer based U-Net archi-
tecture with the baseline U-Net architecture and other state-of-the-art road extraction
methods. The experimental results are presented in the next section.
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4.3 Discussion of the Experimental Results

Our experimental results show that the proposed CNNTrans model outperforms other
models in all aspects, among whichMIOU is the most important reference index for this
segmentation task. Specifically, CNNTrans has aMIOUof 74.7,which is 16.1 percentage
points higher than the second-best model, Resnet, and 21.2 percentage points higher than
the worst-performing model, Segnet. We also observe that all models achieve overall
accuracy (OA) scores, with CNNTrans achieving the highest score of 90.4%, followed
by ResNet (89.1%), U-net (89.3%) and Se-gnet (87.2%) (Table 1).

Table 1. Performance of various models on the AeroRIT test set.

Model Overall acc.(OA) ↑ MPCA↑ MIOU↑
Segnet 87.2 66.7 53.5

U-net 89.3 69.2 57.4

ResNet 89.1 68.6 58.6

CNNTrans 90.4 87.4 74.7

5 Discussion

5.1 Comparison of the Proposed Approach with Existing Methods

In this study, we compare the proposed method with several existing methods, including
Segnet, U-Net, ResNet. Experimental results show that all models are able to correctly
classify most of the pixels, but the proposed CNNTrans model achieves the highest
overall performance by using CNN-Transformer block to consider global and local
information.

Overall, our experimental results demonstrate the effectiveness of the proposed
CNNTrans model for the segmentation task on this dataset. However, further research is
needed to investigate the robustness and generalization ability of the proposed method
to other datasets and spectral ranges.

5.2 Discussion of the Strengths and Weaknesses of the Proposed Approach

Compared with existing methods such as Segnet, U-net, ResNet, etc., the advantage
of our proposed method is that it can efficiently process high-dimensional hyperspec-
tral data and capture spatial and spectral information. The combination of Transformer
and U-Net architecture enables us to efficiently process input data and capture relevant
features for accurate segmentation.

However, our proposed method has some limitations. One of the main limitations is
its high computational cost, which may limit its practical use in real-time applications.
Furthermore, the proposed method requires a large amount of labeled data for training,
which may not always be feasible in some applications.
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Overall, our proposed method shows promising results and has potential for fur-
ther optimization and improvement for more efficient and accurate hyperspectral image
segmentation.

6 Conclusion and Future Work

The main contribution of this research is to provide a new solution for hyperspectral
image segmentation. Themethod outperforms existingmethods in terms of overall accu-
racy, MPCA, and MIOU, indicating that it can accurately segment hyperspectral images
and has the potential to advance hyperspectral imaging applications. A limitation of this
approach is its relatively high computational complexity.

Future work could extend the model to include more spectral bands or higher spatial
resolution data and apply it to other types of aerial or satellite imagery for object detection
and segmentation tasks.
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