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Abstract. In recent years, significant progress has been made in the
field of super-resolution through the use of neural networks. Prior knowl-
edge, such as edges and textures, is commonly incorporated into super-
resolution reconstruction networks. However, existing models rely on
fixed operators to extract binary edge and texture information, which
often capture only rough features and fail to accurately represent the
desired edge and texture characteristics. Consequently, this may result in
the generation of spurious edges and difficulties in reconstructing image
texture details. In this study, we propose a novel super-resolution neu-
ral network composed of three branches, with two branches specifically
dedicated to extracting fine edges and textures. These two branches take
the edge map and texture map of the high-resolution image as the target
image, respectively, and are able to construct end-to-end neural net-
works through loss function constraints. Experimental results demon-
strate the superiority of our model in reconstructing sharper edges and
finer textures on benchmark datasets, including Set5, Set14, BSDS100,
Urban100.
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1 Introduction

Super Resolution (SR) reconstruction has been a popular research area for the
past few decades. The super resolution techniques aim to reconstruct Low Res-
olution (LR) images to High Resolution (HR) images, and while improving the
quality of our life. There are many applications based on super-resolution tech-
nology, such as video reconstruction [3,4], social security [22], medical image
enhancement [14,16],and military remote sensing [26].

With the development of deep learning techniques, super-resolution networks
have achieved rapid progress in the field of single image super-resolution (SISR)
for the past few years. The SRCNN [33] network was the first neural network
designed for this task and showed better results than traditional methods using
only three convolutional layers. Researchers later developed deeper networks like
VDSR [15], EDSR [18], and MDSR, which achieved even better reconstruction
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outcomes. These models mostly extract information directly from low-resolution
images to generate high-resolution images, but LR contain limited pixel infor-
mation which makes it difficult to reconstruct higher quality image information.

Some studies have shown that incorporating prior knowledge, such as edge
priors [30,36] and texture priors [28], can provide additional pixel information
and improve the reconstruction quality of images. For example, Yang et al. [32]
proposed a method that combines edge maps with LR images for super-resolution
(SR) reconstruction. Fang et al. [11] introduced an edge network to reconstruct
image edges and learn edge features. Wang et al. [28] utilized fixed-class texture
priors to effectively reconstruct the texture details in images. Although these
methods have achieved good reconstruction results by leveraging prior knowl-
edge, they often overlook the differences between textures and edges, as well as
the repetitive nature of textures.

Therefore, we utilize the GLCM (Gray-Level Co-occurrence Matrix) to
extract the most frequently occurring texture features in the image. Additionally,
we employ an edge detection operator to extract fine-grained edge information.
As shown in Fig. 1, the extracted edges and textures differ significantly from the
binary edge operator. Although the extracted texture map contains sufficient
edge information, there are some spurious edges, so we utilize a refined edge
constraint reconstruction to fuse them with features. We use these extracted
texture and edge maps as the target images for the edge and texture branches
of our network. By incorporating loss constraints, we construct an end-to-end
network. In summary, our contributions are as follows:

1. We proposed a novel super-resolution network consists of three branches
designed to extract fine-grained edge and texture information. By fusing
the extracted edge and texture information, not only the internal texture
of the image can be reconstructed, but also the problem of false edges can
be solved using the fine-grained edge map. Numerous experiments demon-
strate that our network helps to guide the super-resolution reconstruction,
thus effectively solving the difficulties of image edge blurring and internal
texture reconstruction.

2. We have devised a novel loss function incorporating three components: image
content, edge, and texture losses. This integrated loss structure guides our
model to converge effectively, enabling accurate reconstruction of image edges
and texture details.

2 Related Works

2.1 Single Image Super-Resolution

In recent years, super-resolution techniques have been widely used in the field of
single image super-resolution. The development of single image super-resolution
can be divided into the following two steps:
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Fig. 1. The figure represents the edge map extracted by Canny, the refined edge map
and the texture map used in this paper, respectively.

In the early stages of super-resolution research, conventional methods relied
on techniques like linear interpolation and bicubic interpolation for image recon-
struction. These interpolation algorithms leveraged neighboring pixel values to
estimate missing pixels. While these approaches offered simplicity and flexibil-
ity, they faced challenges in accurately reconstructing high-frequency details in
super-resolution images.

Subsequently, learning-based methodologies emerged to address the LR-to-
HR mapping challenge. These approaches encompassed a range of techniques,
including sparse-based methods [31], neighborhood embedding methods [7,27],
random forests [23], and notably, convolutional neural networks (CNNs) [33].
With the rapid advancements witnessed in CNN research, they have risen to
prominence, establishing themselves as the prevailing approach in the field.
Prominent CNN models such as EDSR [18], RDN [35], SAN [8], and RFA [19]
have garnered substantial attention, owing to their remarkable performance in
image super-resolution tasks, thus solidifying their position at the forefront of
the field.

2.2 Prior Information Assisted Image Reconstruction

In the past few years, super-resolution networks based on prior information have
had a great impact on the field of super-resolution. Usually, a complex image
contains many edge regions, so the introduction of an edge prior will have an
important impact on the reconstruction of complex images. Tai et al. [25] pro-
posed to combine the advantages of edge-directed SR and learning-based SR.
Yang et al. [32] proposed an edge-guided recursive residual network (DEGREE)
that introduces image edges into a neural network model. The network uses a
bicubic interpolation preprocessed LR image as input and uses existing operators
(e.g. Sobel detector [10], Canny detector [6] etc.), which introduced additional
noise and generates artifacts. Sun et al. [24] used a novel gradient profile prior for
super-resolution reconstruction. Li et al. [17] proposed to use edge information to
introduce an encoder decoder to reconstruct high-resolution images. Fang et al.
[11] proposed the soft-edge information extracted by Edge-Net, which solved the
problem of fake edge appearance compared to the ready-to-use edge extractor.
Zhao et al. [35] proposed IEGSR to accomplish super-resolution reconstruction
using the high-frequency information of the image in the edge region.
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Fig. 2. The general composition of the FETSR network consists of four parts: shallow
feature extraction network (SFEN), fine texture reconstruction network (FTRN), fine
edge reconstruction network (FERN) and Image Refinement Network (IRN).

3 Methodology

3.1 Architecture

The progress of the reconstruction can be divided into the following two steps
in our network. As seen in Fig. 2, first, we reconstruct the rough features by
the SFEN, fine-edge extraction through the FERN and the texture information
extracted by the FTRN. FERN and FTRN contain mainly the MDSR mod-
ule, which is capable of fully extracting multi-scale edge and texture features
through convolutional kernel-size-agnostic convolution. Second, we will concate-
nate and fuse the fine edge, rough features and fine texture information. The
fused image tensor is then fed to the image refinement network and used to
recover high quality images. In detail, FETSR consists of four modules: shallow
feature extraction network (SFEN), a fine edge reconstruction network (FERN),
a fine texture reconstruction network (FTRN), and an image refinement network
(IRN).

In the first stage, the output of these network can be described as:

frough = FSF (ILR) (1)

fedge = FEdge(ILR) (2)

ftexture = Ftexture(ILR) (3)

where ILR is the low-resolution image, FSF , Fedge and Ftexture denote the SFEN,
FERN and FTRN. frough, fedge and ftexture represent the shallow features, the
image fine edge, and the image texture. Then they use fusion layers for merging:

ffusion = Ffusion([frough, fedge, ftexture]) (4)
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where [] operation represents the connection of the feature maps and Ffusion()
denotes the fusion layer, which can achieve features for fusion. In the second
stage, we train the fused image tensor using the refinement network.

ISR = FIRN (ffusion) (5)

where ISR is the reconstructed SR image and FIRN () represents the image refine-
ment network. In training our network, we propose the following loss function
to assist the reconstruction process.

Lloss = Lcontent + λ1Ledge + λ2Ltexture (6)

where λ1 and λ2 are hyper-parameters, Lcontent, Ledge and Ltexture denote the
loss, and this will be discussed in the following chapters.

3.2 Shallow Feature Extraction Network (SFEN)

First, we use SFEN to extract rough image feature. As a general rule that the
rough image features can be easily detected, so a convolutional layer using a
3 × 3 convolutional kernel is applied to map the image to a high dimension.
Then, the low-frequency information of SR image is extracted by using five
identical convolutional layers, each layer is represented as:

fn = wn ∗ fn−1 + bn(n = 1, 2, · · · , 5) (7)

where fn, wn and bn represent the feature maps, weights and biases of the current
convolutional layer output, respectively. fn−1 is the output of the upper layer
and it will feed into the current layer, where n varies from 1 to 5. A related
study found that sufficient shallow features can be extracted with 5 layers of
convolution. Finally, when n = 5, we utilize an upsample module to upscale the
extracted features to the same dimension of the HR.

frough = Fup(f5) (8)

where Fup denotes the up-sample module, which consist of a sub-pixel layer and
employ two convolutional layers for the transition to the image refinement net-
work. The output frough represents the image features extracted by convolution
at a shallow level.

3.3 Fine Texture Reconstruction Network (FTRN)

A prior information is often used for image reconstruction and has led to signif-
icant improvements in image quality. The texture prior is introduced in FTRN,
which can reconstruct the texture details of the HR directly from the LR.

The texture information is extracted by the GLCM method. GLCM repre-
sents the joint distribution of grayscale of two pixels with some spatial position
relationship. The GLCM generation process as follows:
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* A spot (x, y) and a spot (x + a, y + b) in an image form a point pair. Let the
pair of spots have a gray value of (f1, f2) and let the image have a gray value
of at most L, then there will be a L × L combination of f1 and f2.

* For the whole image, the number of occurrences of each (f1, f2) value is
calculated, and then they are arranged into a matrix.

* The total number of times (f1, f2) appears are normalized to obtain the prob-
ability P(f1,f2), which results in a grayscale co-generation matrix.

After obtaining the GLCM of the HR image, we utilize the properties of GLCM
to extract the repeated texture details present in the image. Firstly, a 3 × 3
convolutional kernel is applied to expand the channels, followed by five multi-
scale residual blocks to explore features at different scales. In this part of the
network, the texture feature map is upsampled to match the size of the HR image.
Throughout this process, the LR image is used as the input to the network,
allowing us to directly obtain the texture feature map of the LR image. The
specific equations are as follows:

Ltexture = ‖T (ILR) − Itexture‖1 (9)

where T () denotes the texture reconstruction network, Itexture represents the
texture of the HR extracted by GLCM, T (ILR) displays the reconstructed tex-
ture and make L1 loss with Itexture

3.4 Fine Edge Reconstruction Network (FERN)

To address the issue of excessive false edges in the texture feature map gener-
ated by GLCM, we introduce the following edge extraction operator, which can
produce more refined edge features:

IEdge = div(uh, uv) (10)

where ui = ∇iIHR√
1+|∇IHR|2 , i ∈ {h, v}, h and v represent two dimensions in different

directions (horizontal and vertical), ∇ indicate gradient operation and div()
indicate the divergence operation. FERN has the same network structure as
FTRN, but the target images and loss function utilized are different. The loss
function of FERN is shown as:

Ledge = ‖E(ILR) − Iedge‖1 (11)

where the method of E() stand for the fine edge reconstruction network, Iedge
indicates the fine edge extracted by above methods, E(ILR) displays the fine
edge reconstructed by FERN and make L1 loss with the fine edge detected by
HR images.

3.5 Image Refinement Network (IRN)

For the image refinement module, we integrate the different features extracted
from the aforementioned three branches. These three features enable us to cap-
ture sufficient texture details and obtain accurate edge features effectively. We
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fuse these three features and input them into the feature fine-tuning network.
The entire process can be mathematically represented by the following equation:

fn
rb = (w2 ∗ R(w1 ∗ fn−1

rb + b1) + b2) + fn−1
rb (12)

where wi and bi are commonly used weight parameters in neural networks of the
layer i respectively, i ∈ {1, 2}, fn

rb is the output of the nth residual block. R()
denotes the ReLU activation function.

In addition to the residual blocks, a long skip connection is used in these
part to maintain the features at the input to the IRN and effectively limit the
trouble of the disappearance of gradient. For the IRN last layer, we use a con-
volutional layer to convert the dimension to RGB channels, and then SR images
are reconstructed. In training progress, L1 loss function is used to reduce the
gap between SR image and HR image.

Lcontent = ‖ISR − IHR‖1 (13)

In summary, we have designed a model called FETSR that can effectively recon-
struct SR images. Typically, the edge and texture regions of an image contain
abundant information that is challenging to reconstruct. Experimental results
demonstrate that by incorporating fine-grained edge priors and texture priors,
the reconstructed SR images exhibit accurate edges and rich texture details.

4 Experiments

4.1 Datasets

The DIV2K [1] is a common used dataset in super resolution reconstruction
tasks, which contains 1000 images of various scenes, 800 of them are used for
training, 100 can be used for validation, and 100 can be used for testing. As same
as the previous works, we use a training dataset consisting of 800 images from
DIV2K to train our model and meanwhile use the validation images from DIV2K
to validate our model. During test our model, we employ the following datasets:
Set5 [5], Set14 [34], BSDS100 [2] and Urban100 [13]. All of these test datasets
are commonly used in super resolution and contain a variety of scenarios that
are convincing enough to fully evaluate our model.

4.2 Implements Details

In training our network, we set the patch size to 48 as the input image block
size and the batch size to 16, and constrain our training process by L1 loss, edge
loss, and texture loss, and set the weights to 1, 0.1, and 0.001, respectively. Since
the pixel values of texture maps range from 0 to 255, we need to constrain it
to the same dimension as the edge loss. The parameters of the optimizer are
set to β1 = 0.9, β2 = 0.999, respectively, and the epoch is set to 600, and our
residual block is finally set to 40. All code is based on the pytorch framework
and is trained on 2 TITAN Xp GPUS.
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Fig. 3. A comparison of our model with other models shows that our model is able to
reconstruct better visual effects and finer texture details.

4.3 Qualitative Comparisons and Discussion

As shown in the Fig. 3, we selected different images from the test dataset and
reconstructed them with the available super-resolution. When compared with
other super-resolution methods, our network is able to reconstruct not only
more accurate texture information, but also sharper edges. In the first image,
our reconstructed image has a better visual effect and a clearer reconstruction
for some fine textures. In the second image, we reconstructed more accurate
texture details. The third image clearly shows that the reconstructed image of
our model highlights the edge line part of the floor.

4.4 Quantitative Comparisons and Discussion

As shown in Table 1, our model is compared with other neural network models.
PSNR and SSIM are common metrics for judging the quality of reconstruction in
super-resolution domains. Other methods have difficulty in reconstructing high
quality images by learning the own features of LR images. Our model is able to
effectively reconstruct the edges and textures of the images by using the prior
generated from HR images, and is higher than other models in both PSNR and
SSIM metrics.

5 Analysis and Discussion

5.1 Effectiveness of the Prior Information

It is a very important issue that how to use the effective prior information to aid
the super-resolution reconstruction, so we conducted an experimental analysis of
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Table 1. Quantitative analysis with existing CNN-based models for super-resolution
reconstruction Highlighted indicates the best result.

Scale Algorithm Set5

PSNR↑/SSIM↑
Set14

PSNR↑/SSIM↑
BSDS100

PSNR↑/SSIM↑
Urban100

PSNR↑/SSIM↑
×2 SRCNN [33] 36.71/0.9536 32.32/0.9052 31.36/0.8880 29.54/0.8962

FSRCNN [9] 37.06/0.9554 32.76/0.9078 31.53/0.8912 29.88/0.9024

VDSR [15] 37.53/0.9583 33.05/0.9107 31.92/0.8965 30.79/0.9157

SeaNet [11] 38.08/0.9609 33.75/0.9190 32.27/0.9008 32.50/0.9318

Cross-SRN [20] 38.03/0.9606 33.62/0.9180 32.19/0.8997 32.28/0.9290

MRFN [12] 37.98/0.9611 33.41/0.9159 32.14/0.8997 31.45/0.9221

ESRT [21] 38.03/0.9600 33.75/0.9184 32.25/0.9001 32.58/0.9318

FDSCSR [29] 38.12/0.9609 33.69/0.9191 32.24/0.9004 32.50/0.9315

FETSR (ours) 38.18/0.9612 33.90/0.9206 32.30/0.9010 32.68/0.9335

×3 SRCNN [33] 32.47/0.9067 29.23/0.8201 28.31/0.7832 26.25/0.8028

FSRCNN [9] 33.20/0.9149 29.54/0.8277 28.55/0.7945 26.48/0.8175

VDSR [15] 33.68/0.9201 29.86/0.8312 28.83/0.7966 27.15/0.8315

SeaNet [11] 34.55/0.9282 30.42/0.8444 29.17/0.8071 28.50/0.8594

Cross-SRN [20] 34.43/0.9275 30.33/0.8417 29.09/0.8050 28.23/0.8535

MRFN [12] 34.21/0.9267 30.03/0.8363 28.99/0.8029 27.53/0.8389

ESRT [21] 34.42/0.9268 30.43/0.8433 29.15/0.8063 28.46/0.8574

FDSCSR [29] 34.50/0.9281 30.43/0.8442 29.15/0.8068 28.40/0.8576

FETSR (ours) 34.61/0.9287 30.46/0.8454 29.22/0.8078 28.62/0.8615

×4 SRCNN [33] 30.50/0.8573 27.62/0.7453 26.91/0.6994 24.53/0.7236

FSRCNN [9] 30.73/0.8601 27.71/0.7488 26.98/0.7029 24.62/0.7272

VDSR [15] 31.36/0.8796 28.11/0.7624 27.29/0.7167 25.18/0.7543

SeaNet [11] 32.33/0.8970 28.72/0.7855 27.65/0.7388 26.32/0.7942

Cross-SRN [20] 32.24/0.8954 28.59/0.7817 27.58/0.7364 26.16/0.7881

MRFN [12] 31.90/0.8916 28.31/0.7746 27.43/0.7309 25.46/0.7654

ESRT [21] 32.19/0.8947 28.69/0.7833 27.69/0.7379 26.39/0.7962

FDSCSR [29] 32.36/0.8970 28.67/0.7840 27.63/0.7384 26.33/0.7935

FETSR (ours) 32.43/0.8978 28.74/0.7862 27.70/0.7405 26.41/0.7965

Table 2. On scale x4, experimental results generated by different a prior information.
Highlighted indicates the best result.

Edge Texture Set5
(PSNR↑/SSIM↑)

Set14
(PSNR↑/SSIM↑)

BSDS100
(PSNR↑/SSIM↑)

w/o w/o 32.15/0.8952 28.55/0.7789 27.41/0.7368

w/o w 32.32/0.8974 28.71/0.7861 27.67/0.7396

w w/o 32.33/0.8970 28.72/0.7855 27.65/0.7388

w w 32.43/0.8978 28.74/0.7862 27.70/0.7405
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Fig. 4. Comparison chart of the ablation experiment, w/o indicates that the prior
information is not introduced, w indicates that the prior information is introduced.

the factors affecting the super-resolution reconstruction. When we introduce only
texture prior, we can see from Table 2 that the reconstruction of the image is not
very good. If only fine edge prior information is introduced, the reconstruction
effect is not very good for high frequency regions with regular pixel points and
textures. As shown in Fig. 4, when we introduce both fine edge prior information
and texture prior information, we can reconstruct the details of the image better.

Table 3. For the study of λ

λ Set5 (PSNR↑/SSIM↑)

λ1= 1, λ2= 1 32.14/0.8874

λ1= 0.1, λ2= 0.1 32.31/0.8950

λ1= 0.1, λ2= 0.01 32.34/0.8962

λ1= 0.1, λ2= 0.001 32.43/0.8978

5.2 Study of λ

During the training process, the setting of hyper-parameters also has an impor-
tant influence on the reconstruction effect. λ1 and λ2 are set to adjust the edge
loss and the texture loss respectively. To weigh the influence of fine edges and
textures in the reconstruction process, we set λ1 to 0.1 and λ2 to 0.001, thus con-
trolling the texture loss and edge loss in the same dimension. From Table 3 We
can see that different super parameter settings lead to different reconstruction
effects.
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6 Conclusion

In this article, we introduce a novel super-resolution network using fine edge
and texture priors. The network consists of four components: a shallow feature
extraction network, a fine texture reconstruction network, a fine edge reconstruc-
tion network, and an image refinement network. Our model uses fine edge and
texture prior to not only reconstruct the internal texture details in the image,
but also effectively avoid reconstructing the wrong edge information.

Acknowledgements. This work is supported by the National Natural Science Foun-
dation of China (Nos. 62377029 and Nos. 22033002).
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