®

Check for
updates

Scheduling Containerized Workflow
in Multi-cluster Kubernetes

Danyang Liu', Yuanqing Xia'®, Chenggang Shan?, Guan Wang’,

and Yongkang Wang?!

! School of Automation, Beijing Institute of Technology, Beijing 100081, China
{xia_yuanqing,wang_yk}@bit.edu.cn
2 School of Artificial Intelligence, Zaozhuang University, Zaozhuang 277160, China

Abstract. Docker and Kubernetes have revolutionized the cloud-native
technology ecosystem by offering robust solutions for containerization
and orchestration workflows. This combination provides unprecedented
speed, scalability, and efficiency in deploying and managing applications
in distributed environments. However, when scheduling complex work-
flows across multi-cluster Kubernetes environments, existing workflow
scheduling systems often fail to provide the necessary support. Inte-
grating workflow scheduling algorithms with multi-cluster scheduling
algorithms poses a complex and challenging problem. In this paper,
we present a comprehensive framework known as the Containerized
Workflow Engine (CWE), specifically designed for multi-cluster Kuber-
netes deployments. The CWE framework employs a two-level scheduling
scheme, which combines the benefits of workflow containerization and
establishes seamless connections between multi-cluster scheduling algo-
rithms and multi-cluster Kubernetes environments. By integrating work-
flow scheduling algorithms with Kubernetes schedulers across Kuber-
netes environments, the CWE framework enables efficient utilization of
resources and improved overall workflow performance. Compared to the
state-of-the-art Argo workflows, CWE performs better in average task
pod execution time and resource utilization.

Keywords: Workflow * Scheduling - Containerized

1 Introduction

Cloud infrastructure is continually evolving due to advancements in cloud-native
technologies, hardware capabilities, networking enhancements, and the adop-
tion of industry standards [21]. Cloud-native technologies, including containers,
microservices, DevOps, Kubernetes [9], and other transformative practices such
as serverless computing, infrastructure as code, and CI/CD, have revolutionized
IT operations, maintenance, and development. Docker [5] and Kubernetes have
emerged as prominent tools for cloud resource management, playing a significant
role in the cloud-native technology ecosystem [13]. However, alternative solutions

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
E. Chen et al. (Eds.): BigData 2023, CCIS 2005, pp. 149-163, 2023.
https://doi.org/10.1007/978-981-99-8979-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8979-9_12&domain=pdf
https://doi.org/10.1007/978-981-99-8979-9_12

150 D. Liu et al.

and platforms are available, such as Podma [3] and Apache Mesos [10], catering
to specific use cases and requirements.

Kubernetes is an open-source container orchestration and management plat-
form for automating containerized applications’ deployment, scaling, and man-
agement. It provides a highly scalable, reliable, and user-friendly way to build,
deploy, and manage applications across multiple hosts. Kubernetes defines the
desired state of an application and automates tasks such as container creation,
replication, restarts, and scaling, ensuring that the application runs consistently
with the defined state. It also offers powerful service discovery and load balancing
capabilities, supports horizontal auto-scaling, and enables developers and oper-
ations teams to efficiently build and manage modern distributed applications.

Single-cluster workflow scheduling [12] may face the risk of a single point
of failure. For example, when the cluster experiences a failure, the workflow
may be interrupted or halted. Furthermore, single-cluster workflow scheduling
has limited resource utilization and cannot effectively handle load fluctuations.
Multi-cluster workflow scheduling [22] offers better elasticity, scalability, and
high availability than single-cluster workflow scheduling. Multi-cluster workflow
scheduling can automatically adjust the cluster size based on workflow demands,
ensuring elastic allocation and scalability of resources. Additionally, multi-cluster
workflow scheduling can achieve resource isolation, meet geographical distribu-
tion and data locality requirements, and enhance the performance and efficiency
of workflows.

Argo workflows (Argo) [2] is a powerful open-source workflow orchestration
engine that focuses on managing and orchestrating containerized workloads in
Kubernetes environments. The engine provides rich workflow orchestration capa-
bilities, a visual interface, and close integration with Kubernetes. However, the
current Argo scheduler has a significant drawback: it cannot schedule workflows
across multi-cluster Kubernetes. This means that when it comes to orchestrating
and scheduling workflows across multi-cluster, users need to implement cross-
cluster scheduling logic themselves. This problem poses a challenging issue for
containerized workflow [16,20] scheduling on Kubernetes and urgently requires
an efficient framework closely integrated with Kubernetes to address this prob-
lem.

In this paper, we design a Containerized Workflow Engine, referred to as
CWE, based on the further development of CWB [19]. The main objective of
this system is to support workflow scheduling across multi-cluster Kubernetes
and improve the execution efficiency of workflows by implementing a two-level
scheduling scheme and containerized execution on Kubernetes. The CWE system
consists of two components: Containerized Workflow Controller (CWC) and Con-
tainerized Workflow Scheduler (CWS). The CWC component can be deployed
on high-performance hosts, and its primary function is to receive workflows and
send them to the CWS components in multi-cluster. CWC implements a dual-
channel mechanism, where the fast channel is used for quick workflow forwarding,
while the slow channel ensures accurate routing of workflows to the schedulers.
Additionally, CWC implements load balancing across clusters and within clus-

Scheduling Containerized Workflow in Multi-cluster Kubernetes 151

ters. Specifically, when CWC receives an actual task, it decides which cluster
to send the new task to based on the current workload of each cluster. CWC
communicates with CWS to understand the load situation of CWS within the
cluster, enabling it to decide whether to send the task to an existing CWS or
start a new one. This design effectively addresses the pressure of large-scale cloud
workflow tasks on the system. It avoids the predicament of a single CWS fac-
ing a sharp decline in performance or even failure to function properly due to
massive requests. The CWS component is deployed in each Kubernetes cluster.
To ensure smooth execution of workflow scheduling, CWS internally employs
advanced workflow scheduling algorithms and utilizes the informer component
to monitor Kubernetes resources. It also uses the Clint-go package to implement
task container creation functionality. CWS utilizes the Goroutine mechanism to
create concurrent task containers after the current task is completed for cases
with multiple parallel successor tasks in a workflow. Furthermore, CWS handles
data dependencies between task containers using the dynamic volume-sharing
feature of StorageClass. Experimental results demonstrate that our CWE system
exhibits better performance in terms of workflow execution efficiency. Compared
to state-of-the-art technologies, CWE achieves a 31.61% improvement in enhanc-
ing workflow execution efficiency. Our contributions are summarized as follows:

— Design a framework for effectively managing containerized workflows within a
Kubernetes environment. This framework incorporates a two-level scheduling
scheme, allowing workflow management across multi-cluster Kubernetes.

— Implement a workflow injection module, CWC, and CWS. The workflow injec-
tion module is designed to handle the task injection process into the CWC
during experiments. The primary role of the CWC is to transmit workflow
tasks to the CWS within the Kubernetes cluster, taking into account the
resource status of the cluster. The CWS is responsible for efficiently schedul-
ing workflows within the Kubernetes environment.

— Provides a case study of containerized workflow in simulated production prac-
tice and presents a detailed performance analysis of CWE compared to other
workflow scheduling solutions.

We have open-sourced the CWE. The source code is publicly available on
GitHub at [4]

2 Related Work

As the standard container orchestration tool in the cloud-native era, Kubernetes
provides rich and comprehensive support for developing the container application
ecosystem. Its emergence offers powerful functionalities for the development and
deployment of cloud-native applications and drives the continuous evolution of
workflow engines. Airflow [1] is a platform to programmatically author, schedule,
and monitor workflows. Airflow provides a user-friendly interface for defining,
scheduling, and monitoring workflows as directed acyclic graph (DAG), offering
features like task dependencies, error handling, and extensibility. Nextflow [7] is

152 D. Liu et al.

a bioinformatics workflow manager that enables the development of portable and
reproducible workflows. Nextflow simplifies the creation and execution of scal-
able scientific workflows, supporting large-scale data and computational work-
loads with its DSL and containerization capabilities. Argo is an open-source
container-native workflow engine hosted by Cloud Native Computing Foundation
(CNCF). Argo enables the deployment and management of containerized appli-
cations in Kubernetes clusters, allowing users to define complex workflows as
code with features such as templating and event-driven execution. Volcano [11],
born in Huawei Cloud Native, is CNCF’s first batch computing project. Volcano
optimizes scheduling and resource management for batch and Al workloads on
Kubernetes clusters, improving resource utilization and job performance through
intelligent resource allocation and prioritization. These platforms empower orga-
nizations to streamline and automate their data processing and workflow man-
agement tasks, enhancing productivity and scalability.

Containerized workflow scheduling remains a relatively emerging research
field. Existing technologies and tools, such as Airflow, Nextflow, Argo, and Vol-
cano, primarily focus on workflow scheduling within a single Kubernetes cluster.
However, their support for multi-cluster Kubernetes is not yet comprehensive
enough. Consequently, a framework is needed to operate efficiently in a multi-
cluster Kubernetes environment. Furthermore, Airflow and Nextflow were not
originally intended as native workflow systems for Kubernetes, while Volcano
was primarily focused on batch tasks. Presently, Argo is a cloud-native work-
flow engine specifically designed for Kubernetes. Therefore, in this paper, the
experimental evaluation will primarily compare the submission method using
Argo.

3 Design

This section provides a detailed explanation of the scientific workflow definition
and the two-level scheduling scheme. We present the architectural design of the
CWE and subsequently introduce the CWC and the CWS.

3.1 Scientific Workflow

In large-scale data processing tasks, the workflow [14,15] is typically described
using a DAG to represent a distributed system application comprehensively.
The relationships between tasks can be likened to edges in a DAG graph [23]. In
addition to shared files, dependencies between tasks may involve data transfer,
message queues, API calls, and other means. Container technologies [18] such
as Docker provide a lightweight virtualization solution to encapsulate the exe-
cution environment and required resources for workflow tasks. The advantages
of container technology include isolation, portability, and repeatability, utilizing
container images as static snapshots of containers. In Kubernetes, a Pod is the
smallest scheduling unit, serving as a logical deployable entity consisting one or
more related containers, providing a shared network and storage environment.

Scheduling Containerized Workflow in Multi-cluster Kubernetes 153

The Kubernetes scheduler determines suitable nodes within the cluster to sched-
ule Pods based on resource requirements, affinity rules, and scheduling policies.

3.2 Two-Level Scheduling Scheme

CWE and Kubernetes combine to implement a two-level scheduling scheme, as
shown in Fig. 1. CWE serves as the interface that connects the workflow injec-
tor module and Kubernetes. Through the CWC module, the workflow schedul-
ing algorithm is used to make scheduling decisions for workflows and distribute
them to the CWS modules of different Kubernetes clusters. The CWS module
is responsible for executing workflow tasks containerized to fully utilize cluster
resources and improve the execution speed of workflows. The CWS module uses
workflow scheduling algorithms to manage cluster resources efficiently, ensur-
ing tasks are scheduled and executed based on task dependencies and resource
requirements.

Multi-Cluster
j = | CWC Scheduling Algonthm)]

s <>
(CWS

kube-apiserver

KS8S cluster

kube-scheduler

—

L pod (

Fig. 1. Two-level scheduling scheme. The two-level scheduling scheme refers to Multi-
cluster scheduling of CWC and workflow scheduling of CWS.

3.3 CWC Architecture

As shown in Fig. 2, CWC includes distributor module, pre-selector module, pres-
sure evaluator module and state tracker module. Algorithm 1 shows the details.
The function INITTALIZECLUSTER is responsible for the initialization of a
cluster, involving the allocation of available resources and the computation of
its initial score. To begin, the available resources of the cluster are gathered (line
1). Subsequently, the initial score of the cluster is calculated (lines 2 and 3). This
initial score, along with the available resources, is then appended to the registry

154 D. Liu et al.

table (line 4) for future reference. In the subsequent function, TASKSCHEDUL-
ING, the process of task allocation is orchestrated by systematically examining
each cluster entry in the registry table. For each cluster under consideration, the
algorithm first assesses whether the task’s requirements can be accommodated
by the cluster’s available resources (lines 10 and 11). Following this, a predictive
score for the cluster is computed (lines 11 and 12), which aids in the determina-
tion of its suitability for the given task. Ultimately, the task is assigned to the
cluster that best matches with its needs.

Algorithm 1. Scheduling Algorithm

1: function INITIALIZECLUSTER(Cluster n, Available resources c;,,mn,b,, Total
resources Crn, My, By,)

2 if Cluster n is new then

3 P, = aéﬁ + ﬁﬁ—: + 7%’; >Calculate initial cluster score

4 Add cluster score and available resources to the registry table R

5: end if

6

7

8

: end function

: function TAsKSCHEDULING(Registry table R, Task t, Task requirements c¢, my, bt)
9: for each cluster n in R do

10: if Task requirements can be met by cluster n then

11: S = aé—; + Bg}—; + fyg—’; >Calculate task score
12: P,=P,—- 5 >Update cluster score
13: Assign task t to the cluster n

14: end if

15: end for

16: end function

a) Distributor Module: Responsible for sending workflows to CWS in multi-
cluster Kubernetes. Through the distributor module, workflow tasks are intel-
ligently allocated to different Kubernetes, resulting in optimized resource
utilization and streamlined task execution. The module implements flexi-
ble resource allocation and load-balancing strategies, continuously adapting
to demand variations. These capabilities enable higher concurrency, enhance
system scalability, and improve overall performance.

b) Pre-Selector Module: Responsible for establishing a pre-selection table in
advance, utilizing the current Kubernetes resource data obtained from CWS.
This table provides precise information to the controller allocator, ensuring
facilitating quick routing turnover and accurate workflow routing to the opti-
mal scheduler. After scheduling workflows by the allocator module, the pre-
selection table is updated in real-time according to the resource evaluation
algorithm to correct each cluster’s scoring and CWS load values. By pre-
dictive real-time update mechanism enables higher accuracy in pre-selection
tables, improving the efficiency and reliability of workflow scheduling for
CWC, resulting in improved performance.

Scheduling Containerized Workflow in Multi-cluster Kubernetes 155

Workflow In]ector Module

Bk

fl

/ [{}Workﬂow Q“e“e(gRPC) J \
D

C

Pre-selector

table
[Distributor Pre-selector J

CWS Register table

C
W
C

[Pressure Evaluator]ﬂtagmh.e{ State Tracker J

Workflow sending Gather cluster resource and

\ (gRPC) CWS state(gRPC) /
L ow]

Fig. 2. Architecture of the CWC.

¢) Pressure Evaluator Module: Responsible for continuously monitoring and
evaluating the workload pressure of each CWS and Kubernetes cluster within
the system and creating a corresponding workload registry table. Analyzing
real-time and historical data calculates workload pressure scores, which indi-
cate the level of resource utilization for each Kubernetes cluster. This informa-
tion is used to optimize workload balancing and routing of workflows to ensure
efficient task execution, maximize resource utilization, and enhance system
performance. The module collaborates with the Pre-Selector and Distribu-
tor modules to analyze workload pressure data and make informed decisions
regarding workflow distribution.

d) State Tracker module: Responsible for real-time monitoring and man-
agement of workflow and CWS statuses. It tracks the progress of work-
flows, ensuring their successful execution and handling failed workflows by
rescheduling them. Furthermore, the module continuously monitors CWS
to detect potential issues and updates the state table accordingly. Through
active tracking of workflow execution, efficient management of failures, and
maintenance of an accurate state table, this module significantly enhances
the reliability and effectiveness of the CWS.

3.4 CWS Architecture

As shown in Fig. 3, CWS includes the scheduler, resource allocator, and tracker
modules.

156 D. Liu et al.

/ Scheduler &

Selected task list Ready task list A
Selected task list Task pod state S
Tracker ‘ Resource Allocator
Watch K8S
T Watch K8S
K task pod state Task pod creating resource objects j
/ A 4

Y
Workflow Task Pod)

i

J [KSS Cluster Resource Pool

J

Fig. 3. Architecture of the CWS.

a) Scheduler module: Responsible for implementing critical algorithms for
cloud workflow scheduling. The main objective was to efficiently allocate and
manage workflow tasks submitted by users, ensuring optimal resource alloca-
tion and meeting personalized requirements. The Scheduler module analyzed
task dependencies and resource demands, allocating them effectively among
available Kubernetes cluster resources to achieve optimal execution efficiency
and resource utilization. This module considered factors like task priority,
data transmission between tasks, and resource utilization to formulate appro-
priate scheduling strategies.

b) Resource allocator module: Responsible for implementing the resource allo-
cation functionality for workflow tasks. Its main functions include container-
izing workflow tasks, monitoring Kubernetes resources using the informer
component, creating task containers with the Clint-go package, creating con-
current task containers using the Goroutine mechanism after the current task
is completed, handling data dependencies between task containers through
dynamic volume-sharing using StorageClass, caching resource information
locally to reduce API access pressure, and generating namespaces for achiev-
ing isolated environments for workflow resources. By effectively allocating and
managing workflow tasks, optimizing resource utilization, meeting personal-
ized requirements, and enhancing execution efficiency, this module ultimately
improves the overall workflow performance.

¢) Task Tracker module: Responsible for monitoring the execution status
of cloud workflow task containers and providing real-time feedback to the
scheduler to support the orderly execution of task containers. It detects the
health of containers, collects and stores container log information, records the

Scheduling Containerized Workflow in Multi-cluster Kubernetes 157

execution time of task containers, provides task progress updates, cleans up
containers, and releases resources promptly after completing tasks.

3.5 Workflow Injection Module

The workflow injection module is an independent auxiliary module that operates
separately from the CWE. Its primary functions include generating workflows,
handling input requests from subsequent workflows, and transmitting workflow
information to the CWC via gRPC. This module establishes the overall struc-
ture of workflow tasks and utilizes the Json method to inject configuration files
containing task dependencies into the respective containers.

4 Experimental Evaluation

This section will evaluate the proposed CWE using various evaluation metrics
and discuss its benefits compared to Argo.

4.1 Experimental Setup

To assess the performance of CWE, we have designed the workflow injection
module. This module is containerized for deployment with CWC and CWE.
Effective communication between these modules is facilitated through the gRPC
mechanism.

The Kubernetes cluster used in our experiments consists of one master node
and five worker nodes. Each node equips with a 6-core AMD EPYC 7742 2.2 GHz
CPU and 8 GB of RAM, running Ubuntu 20.04 and Kubernetes v1.19.6 and
Docker version 18.09.6 and Argo v3.2.9. CWC and workflow injector module are
deployed on a high-performance virtual machine, and CWS is containerized and
deployed into the Kubernetes cluster through Service and Deployment. In order
to evaluate the performance of CWE across multi-cluster Kubernetes, we utilized
a total of nine Kubernetes clusters. Due to Argo’s lack of support for multi-
cluster scheduling, we established a separate Kubernetes cluster comprising three
master nodes and forty-five worker nodes for Argo.

4.2 Workflow Example

In order to validate the application scalability of CWE, we have tailored a cus-
tomized workflow that encompasses all the node-dependent characteristics of the
DAG diagram, accommodating more intricate scenarios. The workflow task pro-
gram employs resource loads to simulate workflow tasks in real-world production
practice.

a) Workflow Topology: We utilize a DAG diagram to represent the workflow,
constructing an experimental example encompassing all the typical charac-
teristics of such a diagram. As shown in Fig. 4, this workflow comprises seven

158 D. Liu et al.

tasks featuring branching, crossover, and merging elements. Based on the
interdependencies among task nodes, the scheduling algorithm employed for
this workflow follows a top-down approach, ensuring tasks are scheduled topo-
logically.

b) Workflow Containerization:Taking inspiration from [17], we adopt a
Python application as a workflow task and utilize the Stress tool [6] to emu-
late CPU and memory usage within a defined timeframe. To facilitate this,
we employ the Docker engine to package the Python application into a task
Image file. This task Image file is subsequently stored in either a local Har-
bor [8] or a remote Docker Hub repository, and its image address is initialized
within the workflow injection module. Furthermore, container parameters can
be imported into the task container, specifying CPU cycles, memory alloca-
tion, and duration, all of which contribute to determining the runtime of the
task pod. The task involves CPU forking and memory allocation operations,
executed over 15s. Within the JSON file, we specify the task pod’s resource
requests and resource limit parameters as 1000 milli cores for CPU and 512Mi
for memory. It is worth noting that the requests and limits fields share the
same parameter values.

Fig. 4. Workflow topology diagram.

4.3 Results and Analysis

In order to evaluate the effectiveness of CWE, our first step is to verify the work-
flow execution efficiency on multi-cluster Kubernetes using CWE. Subsequently,
we will compare CWE and Argo, focusing on workflow execution efficiency and
CPU usage rate. We will now describe the two methods for workflow submission.

Scheduling Containerized Workflow in Multi-cluster Kubernetes 159

— CWE: We employ the containerized method to deploy CWE. CWC and work-
flow injector module are deployed on a high-performance virtual machine,
while CWS is deployed within each Kubernetes cluster. We use a JSON file
describing a DAG to represent the workflow task dependency relationship.
After going through the workflow injector module, compress the JSON file
using Snappy and submit it to CWC via gRPC.

— Argo: We deployed the Argo Workflow image in the Kubernetes cluster using
the official YAML file provided by Argo. Similar to the CWE, we employ the
same JSON file and leverage a workflow injection module to convert it into a
YAML format that Argo can recognize and then submit to Argo.

a) Workflow task execution efficiency: We package Docker images for CWC,
CWS, and workflow injection modules. We define YAML files for RBAC, Stor-
ageClass, and CWS. CWC and workflow injection modules are containerized
and deployed on high-performance virtual machines with a Docker engine.
The YAML files are deployed in the Kubernetes cluster, where CWS are
scattered and scheduled to the cluster nodes as pods. The components com-
municate with each other using gRPC.

Asis shown in Fig. 5, The execution time for each group of workflows has been
averaged across ten experiments. The execution time of the CWE workflow
task was determined by subtracting the start time of the workflow injector
from the successed Workflows metric. Similarly, the execution time of the Argo
workflow task was determined by subtracting the start time of the workflow
injector from the Successfully metric found in the log of the Argo workflow-
controller pod. The CWE takes 133.3 s to receive 100 workflow tasks from the
workflows injection module until the workflows pod is execution completed,
350.1s to execution completed 500 workflow tasks, and 825.8s to execution
completed 1000 workflows tasks. The Argo takes 121.2s to receive 100 work-
flow tasks from the workflows injection module until the workflows pod is
execution completed, 431.1s to execution completed 500 workflow tasks and,
1086.89's to execution completed 1000 workflows tasks. During the initial exe-
cution of 100 workflows, CWE and Argo exhibited similar execution times,
indicating sufficient resources within the Kubernetes cluster. However, as the
workload increased to 500 workflows, CWE experienced a 23.13% decrease in
execution time compared to Argo. This disparity can be attributed to inad-
equate resources within the Kubernetes cluster. When executing 1000 work-
flows, Argo generated workflow task pods exclusively within its namespace,
resulting in a significant accumulation of pods. This accumulation ultimately
led to the restart of the Argo workflow-controller pod. Consequently, CWE
experienced a 31.61% decrease in execution time compared to Argo.

In addition, upon comparing the execution of 500 workflows with that of 1000
workflows, it becomes evident that CWE outperforms in handling larger-scale
workflows. It validates that the CWE is a framework for a large-scale workflow
scheduling tool for multi-cluster Kubernetes.

160 D. Liu et al.

1200

B cE

1000

800

600

400

200

Average execution time (Seconds)

100 500 1000
Workflow batch size

Fig. 5. Average execution time of workflow.

b) Resource Usage Comparison: This section aims to utilize Prometheus to
capture the state changes of underlying resources in a Kubernetes cluster
under different numbers of workflows to showcase the CPU utilization charac-
teristics of two engines, CWE and Argo. To ensure accurate performance com-
parisons for CPU usage, it is crucial to address the substantial impact caused
by frequent resource fluctuations. In order to mitigate this influence, we metic-
ulously configure our experimental environment to eliminate any additional
workloads that could affect performance measurements. To enhance the sta-
bility and resource allocation efficiency of the Kubernetes cluster, the Master
node is intentionally excluded from participating in pod scheduling and work-
load, focusing solely on its core administrative tasks.

Figure 6, Fig. 7 show the CPU usage rate of the CWE and Argo over the life-
cycle of 100 and 500 workflows. When executing 100 workflows in two Kuber-
netes clusters with the same number of nodes, the CPU utilization curves
of the two workflow engines are similar. However, the CPU utilization curve
shows significant fluctuations when executing 500 workflows using the Argo
engine. This could be due to the fact that when the Argo workflow engine
executes a large number of workflows simultaneously, all the workflow pods
are launched in the same namespace, resulting in a drastic drop in system
performance and the inability to schedule workflows properly. Regardless of
the type of Kubernetes cluster mode, the available number of CPU cores is
270000 milli. Under no load conditions, the CPU utilization of the Kubernetes
cluster components is 0.7%. After injecting workflows, the CWS is launched
and requires 2 CPU cores. Therefore, after completing workflow execution,
the CPU utilization of CWE will remain at 7%. Due to the prolonged time
required by Argo to clean up completed pods, which marks the end of work-
flow execution, there has been a significant performance degradation issue

Scheduling Containerized Workflow in Multi-cluster Kubernetes 161

100

90

80 |

70 F

60 |

50

40

CPU Usage Rate

30 F

20

L L L L L L L L
0 20 40 60 80 100 120 140
Time (Secoonds)

Fig. 6. CPU Usage Rate for 100 Workflows.

100
Argo
or — CWE
80 |
70 b
(&)
S 60
[
S
oo}
12}
= 40 F
=
O 30 F
20 F
10 F
0 =
L L L L L
0 100 200 300 400

Time (Secoonds)

Fig. 7. CPU Usage Rate for 500 Workflows.

when a large number of workflow injections occur. We designed CWE that
assigns a separate namespace for each workflow task, enabling resource isola-
tion and more efficient cleanup of completed pods. In a multi-cluster Kuber-
netes environment, our CWE has better performance.

5 Conclusion

In this paper, our CWE has successfully achieved efficient workflow task schedul-
ing across multi-cluster Kubernetes. CWE offers comprehensive workflow man-

162 D. Liu et al.

agement functionalities, including task definition, dependency management, and
execution sequencing. It also employs intelligent distributed scheduling strategies
to allocate tasks to different clusters based on resource availability and workload
conditions, thus enhancing the overall system efficiency and performance.

Our experimental results demonstrate a significant improvement in the work-
flow scheduling throughput of CWE compared to the state-of-the-art single-
cluster workflow scheduling engine, Argo, with an approximate increase of
around 31.61% in multi-cluster Kubernetes scenarios. This indicates the superior
scheduling performance and scalability of CWE in multi-cluster environments.

In conclusion, as a multi-cluster workflow scheduling engine, CWE holds
promising prospects for a wide range of applications. By providing flexible work-
flow management functionalities and intelligent distributed scheduling strategies,
CWE significantly improves the efficiency and performance of workflow task
scheduling in multi-cluster environments. Future research can focus on further
refining the scheduling algorithms, optimizing resource management strategies,
and expanding the capabilities of CWE to cater to the growing demands of
containerized workflow tasks.

References

Apache airflow (2023). https://airflow.apache.org/

Argo-workflows - github (2023). https://github.com/argoproj/argo-workflows

The best free and open source container tools (2023). https://podman.io/

CWE - github (2023). https://github.com/liudy093/CWE

Develop faster. Run anywhere (2023). https://www.docker.com/

Linux man page (2023). https://linux.die.net/man/1/stress

Nextflow (2023). https://www.nextflow.io/

Our mission is to be the trusted cloud native repository for kubernetes (2023).

https://goharbor.io/

9. Production-grade container orchestration (2023). https://kubernetes.io/

10. Program against your datacenter like it’s a single pool of resources (2023). https://
mesos.apache.org/

11. Volcano - github (2023). https://github.com/volcano-sh/volcano

12. Adhikari, M., Amgoth, T., Srirama, S.N.: A survey on scheduling strategies for
workflows in cloud environment and emerging trends. ACM Comput. Surv. (CSUR)
52(4), 1-36 (2019)

13. Bernstein, D.: Containers and cloud: from LXC to docker to Kubernetes. IEEE
Cloud Comput. 1(3), 81-84 (2014)

14. Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M.H., Vahi, K.: Charac-
terization of scientific workflows. In: 2008 Third Workshop on Workflows in Support
of Large-Scale Science, pp. 1-10. IEEE (2008)

15. Deelman, E., Gannon, D., Shields, M., Taylor, I.. Workflows and e-science: an
overview of workflow system features and capabilities. Futur. Gener. Comput. Syst.
25(5), 528-540 (2009)

16. Hobson, T., Yildiz, O., Nicolae, B., Huang, J., Peterka, T.: Shared-memory com-

munication for containerized workflows. In: 2021 IEEE/ACM 21st International

Symposium on Cluster, Cloud and Internet Computing (CCGrid), pp. 123-132.

IEEE (2021)

PN O W

https://airflow.apache.org/
https://github.com/argoproj/argo-workflows
https://podman.io/
https://github.com/liudy093/CWE
https://www.docker.com/
https://linux.die.net/man/1/stress
https://www.nextflow.io/
https://goharbor.io/
https://kubernetes.io/
https://mesos.apache.org/
https://mesos.apache.org/
https://github.com/volcano-sh/volcano

17.
18.

19.

20.

21.

22.

23.

Scheduling Containerized Workflow in Multi-cluster Kubernetes 163

Klop, I.: Containerized workflow scheduling (2018)

Pahl, C.: Containerization and the PaaS cloud. IEEE Cloud Comput. 2(3), 24-31
(2015)

Shan, C., Wang, G., Xia, Y., Zhan, Y., Zhang, J.: Containerized workflow builder
for Kubernetes. In: 2021 IEEE 23rd International Conference on High Performance
Computing & Communications; 7th International Conference on Data Science &
Systems; 19th International Conference on Smart City; 7th International Con-
ference on Dependability in Sensor, Cloud & Big Data Systems & Application
(HPCC/DSS/SmartCity/DependSys), pp. 685-692. IEEE (2021)

Shan, C., Xia, Y., Zhan, Y., Zhang, J.: KubeAdaptor: a docking framework for
workflow containerization on Kubernetes. Futur. Gener. Comput. Syst. 148, 584—
599 (2023)

Varghese, B., Buyya, R.: Next generation cloud computing: new trends and
research directions. Futur. Gener. Comput. Syst. 79, 849-861 (2018)

Wang, Y.R., Huang, K.C., Wang, F.J.: Scheduling online mixed-parallel workflows
of rigid tasks in heterogeneous multi-cluster environments. Futur. Gener. Comput.
Syst. 60, 35-47 (2016)

Zheng, C., Tovar, B., Thain, D.: Deploying high throughput scientific workflows on
container schedulers with makeflow and mesos. In: 2017 17th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGRID), pp. 130-
139. IEEE (2017)

	Scheduling Containerized Workflow in Multi-cluster Kubernetes
	1 Introduction
	2 Related Work
	3 Design
	3.1 Scientific Workflow
	3.2 Two-Level Scheduling Scheme
	3.3 CWC Architecture
	3.4 CWS Architecture
	3.5 Workflow Injection Module

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Workflow Example
	4.3 Results and Analysis

	5 Conclusion
	References

