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Preface

Welcome to the proceedings of the 11th CCF Big Data Conference (BigData 2023),
which was held in Nanjing, China, from September 8 to 10, 2023. BigData 2023 was
themed “Collaborating Computility and Model, Data Intelligence Leading the Future”
to jointly discuss the opportunities and challenges faced by big data in the era of digital
economy and large models. The aim of BigData 2023 was to provide a high-quality
platform for researchers and practitioners from academia, industry, and government to
share their research results, technical innovations, and applications in the field of big
data.

The topics of the accepted papers include theories and methods of data science,
algorithms, and applications of big data. The papers were all comprehensively double-
blind reviewed and evaluated by three to four qualified and experienced reviewers from
relevant research fields. The 14 full papers accepted for publication were selected from
69 submissions.

On behalf of the organizing committee, our thanks go to the keynote speakers for
sharing their valuable insights with us and to the authors for contributing their work to
this conference. We would like to express sincere thanks to China Computer Federa-
tion (CCF), CCF Expert Committee on Big Data, Nanjing University, Nanjing Normal
University, Nanjing University of Posts and Telecommunications, Yangtze River Delta
Information Intelligence Innovation Research Institute, Jiangsu Computer Society, and
Jiangsu Association of Artificial Intelligence for their support and sponsorship. We
would also like to express our deepest appreciation to the Technical Program Commit-
tee members, reviewers, session chairs, and volunteers for their strong support in the
preparation of this conference.

Last but not least, we highly appreciate Springer publishing the proceedings of
BigData 2023.

November 2023 Enhong Chen
Yang Gao

Longbing Cao
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Long-Term and Short-Term Perception
in Knowledge Tracing

Zihang Chen1, Mengxiao Zhu1(B), Fei Wang2, Shuanghong Shen2,
Zhenya Huang2, and Qi Liu2

1 Anhui Province Key Laboratory of Science Education and Communication,
Institute of Advanced Technology and School of Humanities and Social Sciences,

University of Science and Technology of China, Hefei, China
czh1999@mail.ustc.edu.cn, mxzhu@ustc.edu.cn

2 Anhui Province Key Laboratory of Big Data Analysis and Application, School of
Data Science and School of Computer Science and Technology, University of Science

and Technology of China, Hefei, China
{wf314159,shshen}@mail.ustc.edu.cn, {huangzhy,qiliuql}@ustc.edu.cn

Abstract. Knowledge Tracing (KT) is a fundamental task in contempo-
rary intelligent educational systems, which tracks the knowledge states
of the learners based on their response sequences. KT is crucial for the
effectiveness of computer-assisted intelligent educational systems, such as
intelligent tutoring systems and educational resource recommendation
systems. In recent years, KT models benefited from the deep learning
approaches and improved dramatically compared with the traditional
probabilistic approaches. However, deep learning based KT models also
have significant limitations. For example, Recurrent Neural Network
(RNN)-based KT models can not capture dependencies in long-term
sequences effectively, and attention mechanism-based KT models rely on
the positional encoding to perceive sequential information, which may
disrupt the semantics of the original embeddings. Moreover, the data
sparsity question remains a big challenge in existing KT models. This
study is based on the observation that KT shows a stronger sequential
dependence in the long term than in the short term. In this paper, we
propose a novel KT model called “Long-term and Short-term perception
in knowledge tracing (LSKT)”, which uses multilayer perceptrons and
attention mechanism to capture the long-term and short-term depen-
dencies, and employs 2PL-IRT based embedding to alleviate the data
sparsity question. Extensive experiments on multiple datasets demon-
strate the effectiveness of our proposed LSKT model.

Keywords: Knowledge Tracing · Educational Data Mining ·
Intelligent Education · Deep Learning

1 Introduction

In the past three decades, online learning platforms have experienced rapid devel-
opment, leading to the rise of intelligent education. One fundamental task in
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
E. Chen et al. (Eds.): BigData 2023, CCIS 2005, pp. 1–15, 2023.
https://doi.org/10.1007/978-981-99-8979-9_1
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intelligent education is to track the evolving knowledge states of learners in order
to provide personalized learning resources and plan learners’ learning paths,
which is known as Knowledge Tracing (KT) [1]. Current KT models utilize learn-
ers’ historical question-answering records to infer their abilities to accurately
answer new questions, which dynamically assess the learners’ knowledge states.
Using this approach, intelligent education tasks such as providing appropriately
challenging questions and arranging personalized learning paths are achieved.

In recent years, with the rapid advancement of deep learning, the latest
studies on KT are based on deep learning models. These studies employ sequence
models in deep learning, such as Recurrent Neural Networks (RNNs) [2] and
Attention Mechanisms [3], to model learners’ question-answering sequences. Due
to the significant progress in deep learning, these deep learning-based knowledge
tracing models have achieved outstanding results.

However, despite the accomplishments of previous methods, there are still
inherent limitations. For instance, KT models based on RNNs can not effectively
capture the long-term sequential dependencies. As for the attention-based KT
models, the original attention mechanisms are not sensitive to sequential depen-
dencies in input sequences, requiring additional processing, such as adding posi-
tional embeddings, to make the model aware of the sequence information. Exist-
ing attention-based knowledge tracing models add the learner’s answer record
embeddings and positional embeddings together as inputs to the attention mod-
ule, which may disrupt the underlying semantic of the original answer record
embeddings [4] and lead to a decline in model performance.

The recent developments in Multi-Layer Perceptrons (MLPs), such as MLP-
mixers [5] and gMLP [6], offer a new approach for capturing sequential depen-
dencies in learners’ question-answering records. This approach employs simple
MLPs in the sequence dimension, replacing RNNs and attention mechanisms. By
doing so, it effectively captures long-term sequential dependencies and avoids the
influence of positional embeddings.

On the other hand, in many user modeling tasks, researchers separate user
interaction sequences into long-term and short-term to model them separately.
For instance, in recommendation systems, researchers distinguish between users’
long-term and short-term interests and model them differently [7,8]. Inspired
by these methods, we have applied a similar idea to KT. From a long-term
perspective (the entire answer sequence of learners), their knowledge state con-
stantly changes, and these changing knowledge states also reflect their abilities.
From a short-term perspective (several most recent answer records), a given
learner’s knowledge state is relatively stable, allowing for better diagnosis of the
current level of knowledge mastery. Moreover, we think that long-term answer
sequences exhibit strong sequential dependencies, while the sequential depen-
dencies in short-term answer sequences are weaker. To treat short-term answers
as sequences would introduce unnecessary computations and potentially reduce
the model’s generalization ability.

Additionally, an inevitable challenge in the KT task is the sparsity of data:
many questions are assigned to a small number of students, making it difficult



Long-Term and Short-Term Perception in Knowledge Tracing 3

for current KT models to effectively represent the questions. Inspired by the
two-parameter logistic item response theory (2PL-IRT) [9] model, which uses
two parameters, difficulty and discrimination, to distinguish different questions
with surprising results, we think that utilizing two trainable scalars can effec-
tively represent distinct questions while mitigating over-parameterization and
overfitting challenges stemming from data sparsity.

Based on these perspectives, we propose a model called Long-term and Short-
term perception in Knowledge Tracing (LSKT). It utilizes MLPs to perceive the
long-term sequential dependencies in learners’ answer sequences and employs
attention mechanisms without any positional embeddings to perceive short-term
dependencies. In addition, we have also proposed an embedding method based on
2PL-IRT that effectively mitigates the data sparsity in KT. To validate the effec-
tiveness of the LSKT approach, we conduct extensive experiments and compare
it with multiple baseline models on various datasets. Additionally, we conduct
ablation experiments to further analyze and evaluate the contributions of long-
term perception and short-term perception. In summary, our paper presents the
following contributions:

• We propose a novel model that utilizes MLPs to extract sequential dependen-
cies in KT. This model avoids the additional embedding influence when using
attention mechanisms and overcomes the limitations of RNNs in capturing
long-term sequential dependencies.

• We differentiate between long-term and short-term dependencies in KT and
employ different methods for modeling each.

• Inspired by the 2PL-IRT model, we propose a novel embedding method for
KT that effectively addresses the issue of data sparsity in KT and alleviates
the resulting questions of over-parameterization and overfitting.

• We conduct extensive experiments on multiple datasets, demonstrating the
superior performance of the LSKT model and the effectiveness of its individ-
ual modules.

2 Related Work

2.1 Knowledge Tracing

Existing KT models can be broadly divided into two categories: traditional prob-
abilistic models and deep learning-based methods. In some special cases, tra-
ditional approaches may approximate the performance of deep learning-based
methods. However, in the vast majority of cases, deep learning-based methods
are much more powerful. The most fundamental issue in KT is capturing the
sequential dependencies in learners’ answer sequences, i.e., perceiving the con-
stantly changing knowledge states of learners and the trends in these knowledge
state changes.

The most classic KT model is Bayesian Knowledge Tracing (BKT) [1], which
uses binary variables to represent a learner’s knowledge state as either mas-
tered or not mastered. BKT employs a hidden Markov model to sequentially
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model learners’ response behaviors, treating whether the learner has mastered
the knowledge as a hidden state and whether the learner can answer correctly
as an observable state, capturing the sequential dependencies through transition
state matrices.

On the other hand, deep learning-based KT models represent a learner’s
knowledge mastery level using a high-dimensional vector, providing richer infor-
mation compared to BKT’s binary representation. The first deep learning-based
KT model is Deep Knowledge Tracing (DKT) [10]. DKT utilizes recurrent neural
networks to model learners’ answer sequence, with the hidden layer of the recur-
rent neural network considered as the representation of the learner’s knowledge
state. As learners’ responses update and their knowledge state changes, DKT
updates the learner’s knowledge state through representations of questions and
learner responses. Several extensions of DKT, such as DKT+ [11] and IEKT
[12], have achieved promising results.

With the introduction and development of attention mechanisms, attention-
based KT models have also achieved outstanding performance. The first atten-
tion based KT model is Self-Attentive Knowledge Tracing (SAKT) [13], which
calculates the weights of the past answer behaviors in the current sequence
dependency using attention mechanisms and obtains more complex depen-
dency relationships by stacking multiple attention layers. Subsequently, the more
advanced attention-based KT model SAINT [14] was proposed. It employs the
Transformer architecture to capture sequential dependencies. The Transformer
architecture consists of an encoder for modeling question information and a
decoder for modeling learner responses. With a more sophisticated architecture,
SAINT outperforms SAKT in terms of performance.

In addition to the above methods, there are many other deep learning-based
KT approaches. For example, Dynamic Key-Value Memory Networks (DKVMN)
[15] model knowledge tracing using dynamic key-value pairs; Convolutional
Knowledge Tracing (CKT) [16] employs convolutional neural networks for mod-
eling; Graph-based Interaction Knowledge Tracing (GIKT) [17] utilizes graph
convolutional neural networks for modeling, and so on. However, despite the
significant progress achieved by current methods, there are still certain inherent
limitations, as discussed in Sect. 1.

2.2 Recent Advances in MLP

The Multilayer Perceptron (MLP) is a basic architecture of artificial neural net-
works and one of the most common and earliest deep learning models. In the
early era of machine learning, MLP achieved excellent performance. However,
due to its lack of capabilities in handling sequential data, natural language,
and images, MLP has been replaced by RNNs, convolutional neural networks
(CNNs), attention mechanisms, and other models.

In recent years, researchers have found that simple modifications to the MLP
architecture can lead to remarkable results in the aforementioned tasks. Specif-
ically, the original MLP only projects the input data along a single dimension,
which limits its ability to handle sequential data, images, and other complex data
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types. However, by transposing the input data, it becomes possible to project
along another dimension, enabling the handling of sequences, images, and similar
data. By performing multiple alternating projections along different dimensions,
complex dependency relationships can be captured.

The first work that sparked a resurgence of MLP was MLP-Mixers [5] in
the computer vision field. It modified the MLP architecture using the aforemen-
tioned approach and replaced the attention module in the Transformer archi-
tecture. The results showed state-of-the-art performance in image classification
benchmarks. Subsequently, MLP-based approaches emerged in other domains as
well. For example, Moi-Mixer [18] utilized MLP for sequence recommendation,
and MTS-Mixers [19] employed MLP for time series forecasting. However, the
application of MLP in KT has not been explored.

3 Question Definition

In this section, we provide a formal definition of the Knowledge Tracing task, a
fundamental challenge within intelligent educational systems. The core objective
of this task is to predict a learner’s ability to provide accurate responses to future
questions based on their historical interactions.

3.1 Concepts and Data Representation

Within the context of an intelligent educational system, we consider a collection
of question items denoted as Q = {q1, q2, q3, . . . , qnumq}, and a set of associated
knowledge concepts represented as C = {c1, c2, c3, . . . , cnumc}. Each question
corresponds to a specific knowledge concept. In cases where a question relates to
multiple knowledge concepts, these concepts are treated as a composite knowl-
edge entity. Learners’ responses to questions are binary in nature, with 1 indi-
cating a correct answer and 0 indicating an incorrect answer.

3.2 Interaction Record Representation

The interaction history of a learner within the intelligent educational system
can be succinctly captured as a sequence of tuples: {(q1, c1, r1), (q2, c2, r2),
. . . , (qn, cn, rn)}. Each tuple (qt, ct, rt) constitutes a fundamental unit of inter-
action, where qt signifies the presented question, ct denotes the corresponding
knowledge concept, and rt signifies the correctness of the learner’s response.

3.3 Objective of Knowledge Tracing

At the heart of the knowledge tracing question lies the task of estimating a
learner’s state of knowledge at a specific step t. This involves the prediction
of a learner’s ability to accurately address questions associated with qt+1 and
ct+1 in the subsequent step t+ 1. In simpler terms, given a learner’s interaction
history up to step t, the goal is to provide insights into the learner’s preparedness
for upcoming questions concerning a novel question qt+1 and its corresponding
knowledge concept ct+1.
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4 Method

In this section, we introduce the architecture of the proposed model, as shown in
the Fig. 1. It consists of three layers: 2PL-IRT based embedding layer, long-term
and short-term perception layer, and learner’s response prediction layer. The
detailed description of these three layers is as follows.

4.1 2PL-IRT Based Embedding Layer

In KT tasks, we inevitably confront the challenge of data sparsity. In an intel-
ligent educational system, the number of questions often significantly outstrips
the amount of learners, with many questions being assigned to a small number
of learners. For example, in ASSIST2009 [20], there were 4,217 learners, while
the number of questions reached 26,688. Therefore, in some previous studies,
researchers merely used KC to index questions without distinguishing different
question IDs. However, this approach is evidently flawed, as different questions
sharing the same KC may vary in terms of difficulty and discrimination. Learners
with the same knowledge state may exhibit different performances when faced
with different questions that share the same KC.

Inspired by the simple yet powerful 2PL-IRT model in psychometrics, we
propose a new approach to address this issue. We differentiate different questions
with the same KC through two trainable scalar parameters. More specifically,
we represent the question and interaction at step t in the following way:

xt = ct + c′
t · Repeat(it, d);

yt =xt + at,
(1)

where xt and yt are the representation of question and interaction at step t.
Repeat(·, d) signifies expanding the tensor’s dimension to d by repeating and d
is the embedding size of KC. ct, c′

t, it and at are latent representation of the
original input, which are obtained as following:

ct =Wc · ect ;
c′
t =Wc′ · ect ;
it =Wi · eqt ;
at =Wa · rt,

(2)

where ct and c′
t are the latent representation of KC contained in the question

at step t, it is the IRT factor symbolizes difficulty and discrimination, at is the
representation of learner’s response at step t. ect denotes the one-hot encoding
of the KC contained in the question at step t. eqt denotes the one-hot encoding
of the question id at step t, and rt indicates the one-hot encoding of the learner’s
correctness of answer at step t. Wc ∈ R

d×numc, Wc′ ∈ R
d×numc, Wi ∈ R

2×numq

and Wa ∈ R
d×2 are learnable linear transformation operations. numc is the total

number of KCs and numq is the total number of questions in the dataset.
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4.2 Long-Term and Short-Term Perception Layer

Next, we introduce the Long-term and Short-term Perception Layer used to
perceive the learner’s knowledge state. We introduce the long-term perception
module and the short-term perception module separately.
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Fig. 1. The architecture of the LSKT model. The image on the left depicts the details
of the long-term perception module.

MLP for Long-Term Perception. As mentioned before, we employ MLP to
perceive the long-term dependencies in the learner’s interaction sequence to cir-
cumvent the limitations of attention mechanisms and RNNs, which is depicted in
the left part of Fig. 1. Specifically, we concatenate the learner’s question records
and interaction records embeddings as the input to the long-term perception
module:

Il = W1 · (X ⊕ (Y � 1)), (3)

where X = {x1,x2, . . . ,xn} and Y = {y1,y2, . . . ,yn} are the output of the
embedding layer, which are the latent representation of the questions and inter-
actions. ⊕ is the concatenation symbol and � represents shifting one step
to the right which is used to prevent label leakage. Then X ⊕ (Y � 1) =
{x1 ⊕ 0d,x2 ⊕ y1, . . . ,xn ⊕ yn−1}, where 0d represents a vector of dimension d
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and each element is 0. W1 ∈ R
d×2d is a learnable linear transformation operation

to ensure Il has the same dimensions as X and Y.
The long-term perception module is a stacked structure composed of multiple

sub-modules. Each sub-module consists of two parts: sequence projection and
channel projection.

Sequence Projection. The sequence projection aims to learn the sequential
dependencies in the user interaction series. Assuming that the input matrix for
sequence projection is Z ∈ R

d×n, where d is the embedding size and n is the
length of interaction sequences, then sequence projection linearly projects the
input, producing an output matrix of the same shape (d × n). This can be
specifically represented as:

Sproj(Z) = Z+ (W2 · Z�)�, (4)

where Sproj(·) denotes sequence projection and � denotes transpose. W2 ∈
R

n×n is a learnable linear transformation operation and n is the length of the
learner’s interaction sequence. The lower triangular parts of the matrix W2 are
set to 0 and not altered through backpropagation to prevent label leakage. In
this phase, We use Residual connection [21] to prevent degradation of the deep
neural network.

Feature Projection. Although sequential projection has effectively learned and
integrated sequential information, it only processes sequential information within
the same feature dimension, unable to handle cross-dimensional feature infor-
mation. Therefore, we have also implemented projection on the feature dimen-
sion and introduced non-linear processing capabilities. Specifically, assuming the
input is Ż ∈ R

d×n, the output can be represented as:

Fproj(Ż) = Ż+W4 · σ(W3 · LayerNorm(Ż) + b1) + b2, (5)

where Fproj(·) denotes feature projection and LayerNorm is Layer normaliza-
tion [22]. W3, W4, b1, b2 are trainable parameters and W3, W4 ∈ R

d×d, b1,
b2 ∈ R

d×1. σ is a nonlinear activation function like ReLU.
In the sub-module of Long-term Perception Module, we have adopted one

sequence projection and two feature projections, arranged in the order of Fproj

→ Sproj → Fproj . Therefore, the learner’s knowledge state as perceived by the
Long-term Perception Module would be:

Hl = Fproj(Sproj(Fproj(Il))). (6)

And hl
t ∈ Hl = {hl

1,h
l
2, . . . ,h

l
n} denotes the knowledge state perceived long-

term perception module at step t.

Attention for Short-Term Perception. As mentioned earlier, we use simple
dot product attention to perceive short-term dependencies in learner interaction
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sequences. Specifically, the learner’s knowledge state as perceived by the Short-
term Perception Module would be:

Hs ={hs
1,h

s
2, . . . ,h

s
n};

hs
t = Attention(Q = xt,K ={xt−T , . . . ,xt−1}, V = {yt−T , . . . ,yt−1}),

(7)

where Attention is Scaled Dot-Product Attention [23] and T represents the size
of the short-term perception window that we have set.

4.3 Response Prediction Layer

The purpose of the last layer of the model is to predict the learner’s response to
the current question. In the prediction layer, the knowledge states extracted by
the long-term and short-term perception modules and the question embeddings
are combined as input, which is then further processed by a fully connected
neural network. The processed output is transformed into a predictive probabil-
ity through a sigmoid activation function. This probability value represents the
likelihood of the learner answering the current question correctly. To be more
specific, the probability of the learner answering the current question correctly
at step t is:

r̂t = sigmoid(w · σ(W6 · σ(W5 · (hl
t ⊕ hs

t ⊕ xt) + b3) + b4) + b), (8)

where W5, W6, b3, b4, w and b are trainable parameters and W5 ∈ R
d×3d,

W6 ∈ R
d×d, w ∈ R

1×d, b3, b4 ∈ R
d×1, b is a scalar. In LSKT, all learnable

parameters are trained in an end-to-end fashion by minimizing the binary cross-
entropy loss over all learner responses, which is:

L(θ) = −
∑

i

∑
t
(rit log(r̂

i
t) + (1 − rit) log(1 − r̂it)), (9)

where θ denotes all parameters of LSKT, more details of settings will be specified
in the section experiments.

5 Experiments

This section provides a comprehensive overview of various experiments con-
ducted on multiple real-world datasets.

5.1 Datasets

In this paper, to evaluate the performance of LSKT, we conduct our experiments
on four widely used datasets. The detailed descriptions are provided below::

ASSISTments2009 (AS2009): This dataset [20] consists of math exercises
collected from the free online tutoring platform ASSISTments during the 2009–
2010 school year. The dataset comprises 346,860 interactions involving 4,217
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learners and 26,688 questions. It has served as the standard benchmark for
knowledge tracing methods over the past decade and has been widely used.

NIPS34: This dataset [24] is derived from Tasks 3 & 4 of the NeurIPS 2020
Education Challenge. It collects learners’ answers to multiple-choice diagnostic
math questions and is gathered from the Eedi platform. For each question, we
have selected the leaf nodes from the subject tree as its Knowledge Components
(KCs). The final dataset consists of 1,382,727 interactions, 948 questions, and
57 KCs.

Algebra2005 (AL2005): This dataset is from the KDD Cup 2010 EDM Chal-
lenge [25] and it contains responses of 13–14 year old learners to Algebra ques-
tions. It provides detailed step-level learner responses. The dataset comprises
809,694 interactions involving 574 learners, 210,710 questions, and 112 KCs.

Bridge2006 (BR2006): This dataset is also from the KDD Cup 2010 EDM
Challenge [25]. It includes 3,679,199 interactions, involving 1,146 learners,
207,856 questions, and 493 KCs.

5.2 Baselines

We compared LSKT with seven KT baselines, the details of which were compared
as follows:

DKT [10] uses recurrent neural networks to model learners’ learning behav-
ior. In our implementation, we utilized LSTM.

DKT+ [11] is an improvement over the original DKT model aimed at
enhancing the consistency of knowledge tracking predictions. It achieves this
goal by introducing regularization terms corresponding to reconstruction and
volatility into the original DKT model’s loss function.

DKVMN [15] is a model that predicts students’ knowledge mastery level
directly by exploiting the relationships between latent knowledge components
stored in a static memory matrix key and based on the dynamic memory matrix
value.

SAKT [13] applies attention mechanisms to capture the connection between
the learner and the interaction of the question.

SAINT [14] uses the transformer architecture to address KT placing the
questions and learner responses in the encoder and decoder for processing,
respectively.

ATKT [26] incorporates an attention-based LSTM model. This approach
applies adversarial perturbations to the initial learner interaction sequences,
aiming to mitigate the overfitting and insufficient generalization issues of the
KT model.

IEKT [12] evaluates learners’ knowledge status through the learner Cogni-
tion and Knowledge Acquisition Assessment module.

simpleKT [27] is a powerful and simple baseline method for handling KT
tasks, modeling question-specific variations based on the Rasch model, and using
ordinary dot-product attention functions to extract temporal perceptual infor-
mation embedded in student learning interactions.
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5.3 Experimental Setup

Similar to previous studies on KT models, we randomly selected 20% of the
learner interaction sequences for model evaluation and performed standard 5-
fold cross-validation on the remaining 80% of the sequences. Adam optimizer is
used to optimize the model parameters, and the learning rate is set to 0.001.
The maximum training period is set to 200, and an early stop mechanism is
employed to expedite the model’s training. The embedding dimension is 256,
and the maximum length of learner interaction sequences is 200. The encoder
consists of 4 stacked layers, and the size of the short-term perception window is
set to 8. The model is implemented in PyTorch and trains using an NVIDIA A100
40GB PCIe. Like most existing methods, the primary evaluation metric is AUC,
while ACC is a secondary metric. To ensure standardized experiments, we utilize
pyKT [28], a Python-based benchmarking platform, to conduct our experiments.

5.4 Experimental Results

Our overall prediction performance (i.e., AUC and ACC) is presented in
Table 1. In the table, the best result for each column is highlighted in boldface.
From Table 1, we have observed the following results:

• As shown in Table 1, our proposed LSKT model outperforms all of the 7 base-
lines and achieves the best performance. Furthermore, it has demonstrated
excellent performance on the AS2009 dataset, surpassing the best baseline by
a significant margin of 1.32% in terms of AUC.

• We also observed that methods solely relying on attention, such as SAKT
and SAINT, yielded poorer results. This could be attributed to the negative
impact of positional encoding.

Table 1. The overall performance. LSKT outperforms all baselines on all datasets.

Model AS2009 NIPS34 AL2005 BR2006
AUC ACC AUC ACC AUC ACC AUC ACC

DKT 0.8229 0.7669 0.7718 0.7043 0.9194 0.8684 0.7951 0.8537
DKT+ 0.8248 0.7675 0.7716 0.7055 0.9186 0.8685 0.7978 0.8547
DKVMN 0.8158 0.7600 0.7706 0.7035 0.9158 0.8648 0.7953 0.8535
SAKT 0.7546 0.7236 0.7469 0.6835 0.9060 0.8593 0.7611 0.8472
SAINT 0.7598 0.7316 0.7833 0.7144 0.8680 0.8400 0.7383 0.8382
ATKT 0.8332 0.7697 0.7762 0.7068 0.9223 0.8700 0.8079 0.8563
IEKT 0.7802 0.7348 0.8004 0.7289 0.8330 0.8202 0.8068 0.8533
SimpleKT 0.8384 0.7729 0.8023 0.7301 0.9249 0.8717 0.8111 0.8556
LSKT 0.8494 0.7802 0.8028 0.7308 0.9277 0.8738 0.8162 0.8567
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5.5 Ablation Study

To further investigate the roles of different modules in LSKT, we conducted addi-
tional ablation experiments. We designed four comparative scenarios to enhance
our understanding:

MovS removes the short-term perception module, meaning that we solely
rely on the MLP to perceive the learner’s knowledge state.

MovL removes the long-term perception module, meaning that we solely
rely on the attention to perceive the learner’s knowledge state.

MovIRT removes the IRT-based embedding module, meaning that we per-
form high-dimensional embedding for the question IDs, similar to KC (Knowl-
edge Component), and added the results to the embedding of KCs to obtain the
final embedding.

MovQ does not perform any embedding for the question ID, meaning that
we only use KCs to represent a question.

The results of ablation experiments on four datasets are shown in Fig. 2. From
the data analysis in Fig. 2, we can clearly observe that the overall performance of
LSKT will decline regardless of which module is removed from the model. This
strongly proves that all these modules play a key role in enhancing the perfor-
mance of LSKT. We can also clearly see that removing the long-term perception
module has a much greater impact on performance than removing the short-term
perception module. This further underscores the importance of capturing long-
term sequential dependencies in KT tasks, and the effectiveness of our long-term
perception module in capturing these dependencies. In addition, we found that
rather than using high-dimensional embeddings to represent question IDs, not
representing question IDs actually yields better results in most datasets. This
highlights the significant challenge posed by the data sparsity of question IDs
in KT tasks. However, the 2PL-IRT based embedding method proposed in this
paper can mitigate this issue to a certain extent.

5.6 Hyper-parameters Analysis

In this section, we will discuss how to adjust the basic hyperparameters of LSKT
model to optimize its performance. We investigate the impact of the number of
layers (N) and the size of the short-term perception window (T) on LSKT’s
ability to predict learner performance in the ASSIST2009 dataset.

The results in Fig. 3 show the impact of hyperparameters on the model per-
formance. Particularly, when T is set to 8 and N is set to 4, the best results are
achieved. On the other hand, we also notice that even in the case of N = 1, our
model still demonstrates impressive performance. This means that our model
can achieve excellent results even with a very low parameter count.

6 Conclusion and Future Work

In this paper, we proposed a novel KT model named LSKT, which effectively
integrates the long-term and short-term dependencies in KT tasks using MLP
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Fig. 2. The result of ablation experiments. We use AUC as our evaluation criterion.

Fig. 3. The impact of hyperparameters.
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and attention mechanisms respectively, and enables us to better capture the
dynamics in KT. Additionally, we introduced an embedding method based on
2PL-IRT, which enables the better handeling of the data sparsity issue in KT
tasks. Through comprehensive comparisons with seven commonly used baseline
models on four real-world datasets, we provided evidence of the effectiveness of
LSKT. Moreover, by conducting ablation experiments, we examined and proved
the usefulness and contribution of each component in LSKT.

For future studies, we consider the following two directions. As the first direc-
tion, we focus on the short-term perception approach, which relies solely on
simple attention currently and has a similar mechanism as cognitive diagnostic
questions. In the future work, we intend to introduce techniques in the exist-
ing cognitive diagnostic models to enhance our short-term perception module.
As the second direction, we plan to further explore the size of the short-term
perception window, which is currently set as a fixed hyperparameter. However,
the size may vary between different datasets and learners. In the future work,
we plan to enable the dynamic learning of the appropriate size of the short-term
perception window, which will make our model better fit the needs of different
datasets and individual learners.

Acknowledgment. This work was supported by the National Key Research and
Development Program of China (2021YFF0901004) and the National Natural Science
Foundation of China (62177044).
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Abstract. Time-series forecasting is a challenging task that requires
high accuracy and efficiency. Hybrid models that combine decomposition
algorithms with multiple individual models have demonstrated promis-
ing results for forecasting performance. However, these models also face
the issues of high computational cost and time consumption when deal-
ing with multiple time-series. To address these issues, this paper pro-
poses a novel framework that integrates multivariate variational mode
decomposition (MVMD) with auto-regressive integrated moving average
(ARIMA) using transfer learning (TL), i.e. MVMD-ARIMA-TL. The
framework decomposes multiple time series into sub-sequence groups
with joint or common frequencies, which facilitates the transfer learning
among similar sub-sequences by saving the paring process of source and
target domain. The framework is evaluated on 5 real-world datasets from
various domains such as energy consumption, network traffic, and solar
radiation. The framework is compared with the conventional self-built
MVMD-hybrid framework in terms of ARIMA model fitting time and
normalized root mean square error (NRMSE) for forecasting accuracy.
The results demonstrate that the proposed framework outperforms the
conventional self-built framework by generating enhanced hybrid models
with less model fitting time with the same NRMSE in most cases. This
paper contributes to the literature by introducing a novel decomposition-
based hybrid forecasting framework with transfer learning for multiple
time-series that demand per hybrid model per time-series by addressing
the issues of computing resource scarcity and high time consumption.

Keywords: computing resource scarcity · decomposition-based hybrid
model · multiple time series forecasting · multivariate variational mode
decomposition · transfer learning

1 Introduction

Time-series forecasting is the task of predicting the future values of a series of
data points based on their past and present values. Multiple time-series fore-
casting is a more challenging task that involves predicting multiple interrelated
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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series simultaneously. It has many applications in various domains such as finance
[10], power industry [9], and transportation [11]. With the increasing demand to
develop tools for forecasting futuristic events, time-series models that estimate
future data trends based on historical information, such as individual and hybrid
models, have been widely developed and adopted. Hybrid models are a combina-
tion of multiple individual models such as statistical models, machine learning
models, and deep learning models. Hybrid models have prevailed in the past
decades as they have been tested with better performance than those individual
models to employ multi-methods to acquire the final results [15].

However, most of the existing hybrid models face the issues of high com-
putational cost and time consumption when dealing with multiple time-series
from different data owners such as smart electricity meters. In this condition,
each data owner demands per hybrid model per time-series locally but lack
computing resource themselves. However, conventional self-built hybrid models
need to fit each sub-sequence with a suitable method from scratch for each data
owner, which requires heavy computing locally and an amount of time. These
issues arise when each data owner has multiple time-series of the same nature,
such as multiple time-series representing different aspects or dimensions of a
system or phenomenon, but they can not or will not share data and lack com-
puting resources. Modeling multiple time-series collaboratively to improve the
forecasting performance requires intensive computing and frequent communica-
tion among the data owners, which could be insatiable in data owner that lack
computing resources and has privacy concern.

In this paper, we introduce and evaluate a novel framework that integrates
multivariate variational mode decomposition (MVMD) with auto-regressive inte-
grated moving average (ARIMA) network models using transfer learning (TL),
i.e. MVMD-ARIMA-TL. This framework leverages the advantages of MVMD
[13] to decompose multiple time-series into sub-sequence groups with joint or
common frequencies, which facilitates the transfer of model parameters among
similar sub-sequences by saving the clustering process. After decomposition for
original time-seires, the ARIMA model is used for sub-sequences because it is
quite suitable for simple time-series like these sub-sequences with a single princi-
ple frequency to save computing resources. By using transfer learning, this frame-
work allows each data owner to build their decomposition-based hybrid model
locally and collaboratively, without sharing their raw data or compromising their
privacy. To conclude, we focus on two questions: 1) Can the decomposition-based
hybrid model benefit from transfer learning? 2) Can simple statistical model
ARIMA benefit from transfer learning? Focus on these two questions, our main
contributions to the literature can be summarized as follows:

– A novel decomposition-based hybrid forecasting framework with
transfer learning is proposed to address the issues of high compu-
tational cost and time consumption of hybrid models for multiple
time-series.

– Five real-world datasets from various domains such as energy con-
sumption, network traffic, and solar radiation are used to validate
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the effect of transfer learning in decomposition-based hybrid time-
series models.

– A finding that simple statistical models like ARIMA still can ben-
efit from transfer learning is revealed by utilizing the common fre-
quencies from decomposition by the MVMD, which could save the
paring process of source and target domain in transfer learning.

The rest of the paper is organized as follows: Sect. 2 presents the methodology
of our proposed framework and the strategy of transfer learning for time-series
among various data owners. Section 3 shows the data analysis and experimental
results of our proposed method on 5 real-world datasets and discusses the main
findings, implications, and limitations of this study. Section 4 concludes the paper
with a summary and some future work directions.

2 Method

This section describes the methods we used to test our hypothesis that trans-
fer learning can improve the performance and efficiency of decomposition-based
hybrid models for multiple time-series forecasting. We used 5 real-world datasets
from various domains such as energy consumption, network traffic, and solar
radiation. We applied the MVMD to decompose multiple time-series into sub-
sequence groups with joint or common frequencies. We then built ARIMA models
for each sub-sequence using transfer learning. We evaluated our framework by
comparing it with the conventional self-built MVMD-hybrid framework in terms
of ARIMA model fitting time and normalized root mean square error (NRMSE).

2.1 Datasets

We used 5 publicly available datasets from different domains: 1) Solar power: a
subset of solar power generation from micro-generation units located in Évora
city (Portugal) [8]; 2) Abilene: a subset of network traffic in the American
Research and Education Network (Abilene) [18]; 3) GHI: a subset of solar radi-
ation dataset of global horizontal irradiance from automated solar stations in
Pakistan [16]; 4) Wind speed: a subset of wind speed dataset from automated
solar stations in Pakistan [16]; 5) PV: a subset of Photovoltaic energy genera-
tion dataset in small businesses and residential households in southern Germany
[6]. Table 1 summarizes the details of each dataset. We assumed that each data
owner has only one time-series. We preprocessed the data by applying a clear
sky model [1] to the solar power and PV dataset and removing night-time data
points from the GHI datasets, which aim to normalize the data and remove the
effects of weather and other external factors on solar power generation [8,14].

2.2 The Framework of Proposed Method

This subsection presents the framework of the proposed method for enhancing
the performance and efficiency of decomposition-based hybrid models for mul-
tiple time-series forecasting through the integration of transfer learning. The
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Table 1. Summary of datasets used.

Datasets Unit/Station/
Node

Data sizeTime range Time
granularity

Train sizeTest size
(last day)

Preprocess

Start date End date

Solar
power

V8, V10, V11,
V25, V40

9032 2011/2/1 1:00 2013/3/6 22:00 Hourly 9022 10 clear sky
model [1]

Abilene OD_4-4,
OD_4-10,
OD_7-6, OD_9-5,
OD_9-9,
OD_10-4,
OD_11-10,
OD_11-11,
OD_12-4,
OD_12-7

48096 2004/3/1 0:00 2004/9/10 23:555min 47808 288 N/A

GHI Lahore 3842 2017/3/12 11:102017/4/30 14:0010min 3760 82 night-time
excluded

Bahawalpur 23102 2015/9/18 1:40 23020

Islamabad 28470 2016/4/18 0:50 28388

Khuzdar 42738 2015/9/23 1:30 42656

Quetta 43108 2015/9/18 1:40 43026

Karachi 55274 2015/4/23 1:10 55192

Hyderabad 55352 2015/4/22 1:20 55270

Peshawar 56208 2015/4/11 1:00 56126

Multan 67420 2014/10/21 1:30 67338

Wind
speed

Lahore 7133 2017/3/12 11:202017/5/1 0:00 10min 6988 145 N/A
Bahawalpur 45305 2016/6/20 9:20 45160

Islamabad 54465 2016/4/17 18:40 54320

Hyderabad 84431 2015/9/22 16:20 84286

Karachi 84431 2015/9/22 16:20 84286

Khuzdar 84431 2015/9/22 16:20 84286

Multan 84431 2015/9/22 16:20 84286

Peshawar 84431 2015/9/22 16:20 84286

Quetta 84431 2015/9/22 16:20 84286

PV residential3 4480 2016/2/29 7:00 2017/3/6 15:00 Hourly 4470 10 clear sky
model [1]

residential6 5614 2015/10/25 8:00 5604

industrial1_1 5626 2015/10/24 6:00 5616

industrial1_2 5626 2015/10/25 6:00 5616

industrial3_facade5714 2015/10/16 6:00 5704

industrial3_roof 5714 2015/10/16 6:00 5704

residential4 5768 2015/10/11 7:00 5758

residential1 7808 2015/5/21 18:00 7798

framework, MVMD-hybrid-TL (see the example in Fig. 1), comprises three pri-
mary stages: decomposition of multiple time-series using the MVMD, construc-
tion of sub-models for each sub-sequence utilizing ARIMA with transfer learning,
and reconstruction to generate forecasts for each time-series.

In the first stage, we employ the MVMD to decompose multiple time-series
into sub-sequence groups characterized by joint or common frequencies. This
algorithm enables the decomposition of multiple time-series to provide the sim-
ilarity basis of each time series for transfer learning.

In the second stage, we construct sub-models for each sub-sequence by using
ARIMA with transfer learning. This approach allows us to leverage knowledge
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from similar sub-sequences of multiple sources to enhance the forecasting per-
formance and efficiency of target models.

In the third stage, we reconstruct the forecasts generated by each sub-model
to produce the final forecasts for each time-series. We evaluate our framework
by comparing it with the conventional self-built MVMD-hybrid framework in
terms of model fitting time and NRMSE.

2.3 Baselines

In this subsection, we describe the baselines that we use to evaluate our frame-
work for multiple time-series forecasting. We explain how we use different meth-
ods to obtain the start parameters for ARIMA models, i.e. Hannan Rissa-
nen (HR) method [2], innovations maximum likelihood estimation (Innovations)
method [3] and state-space method (Kalman) [4] for ARIMA models. We take
these methods as the top line since they are based on the computation of data
itself, which could be heavy computing and time-consuming when the time series
is long. We also use no computation (Default set as zeros) for initialization as the
bottom line for comparison in these two models since the transfer start parame-
ters (TSPs) from other data owners are the same as Default in zero computing
while other methods demand certain computing resources. See their complexity
in Table 2.

Table 2. The time and space complexity of comparative methods. Note: N is the
length of time series, k is the dimension of the state vector, p is the number of AR
parameters, and q is the number of MA parameters.

Method Time Complexity Space Complexity

Innovations O(N2) O(N)

Kalman O(k2N + k3) O(k2N + k3)

HR O((p + q)N) O(N)

Default O(p + q) O(N)

TSP O(p + q) O(N)

2.4 Proposed Transfer Learning Strategy

In this subsection, we describe the transfer effect of the proposed MVMD-hybrid-
TL framework. These effects aim to improve the performance and efficiency
of decomposition-based hybrid models for multiple time-series forecasting by
transferring model parameters among similar sub-sequences and collaborating
with other data owners. The overall working of this framework is depicted in
Fig. 1 and its pseudo-code is shown in Algorithm 1. To be specific, the transfer
effect leverages the knowledge representation generated by training models on



A Transfer Learning Enhanced Decomposition-Based Hybrid Framework 21

Fig. 1. The framework of the decomposition-based forecasting model with transfer
learning (taking MVMD-ARIMA-TL as an example). Note: same color blocks represent
similar time series/models; double-arrow lines represent communications/transmissions
one way or both cross data owners.

Algorithm 1. MVMD-hybrid-TL (taking MVMD-ARIMA-TL as an example)

Input: multiple time series from multiple data owners (clients), {V }C
1 .

1: {IMFk,c}K,C
1,1 = MV MD({V }C

1 ) � Decompose the multiple time series into
sub-sequences.

2: for k = 1 : K do � This loop can be done parallel or successively.
3: ̂IMFk,c = ARIMA(IMFk,c)_TSP (IMFk,C �=c) � ARIMA with start parameter from

others clients C �= c.
4: end for
5: {̂V }C

1 = {∑K
k=1

̂IMFk,c + ̂Errc}C
1 � Reconstruct the final forecasting results of one client

by its sub-sequences forecasting results.
Output: forecasting results {̂V }C

1 .
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one time-series and transfers it to enhance the forecasting performance on other
time-series. By applying model parameters transferring among sub-models in
the MVMD-hybrid framework from the source domain, similar time-series in the
target domain may build their MVMD-hybrid model with the same performance
but less fitting time than their self-built hybrid models.

To be illustrative, we give an example following: let’s say multiple time series
from C clients are decomposed into K sub-sequences by the MVMD, 1) parallel
modeling, for each sub-sequence IMFk in target domain c take parameters from
same k-th sub-sequence IMFk in source domains C �= c, which means this target
domain c can take any other domain as source domain C �= c when iteratively
modeling each sub-sequence IMFk; 2) successive modeling, target domain c could
model some sub-sequences {IMFk}k1

1 locally while model other sub-sequences
{IMFk}Kk1

utilizing the parameters from source domains C �= c, which means
each client is source domain for other clients and takes other clients as source
domains in the meantime.

2.5 Evaluation Metrics

For the evaluation of the performance of the proposed MVMD-hybrid-TL frame-
work, we use the Bayesian Information Criterion (BIC) of sub-ARIMA mod-
els, function evaluations (denoted as Feval) in maximum likelihood estimation
(MLE) of sub-ARIMA models, and the model fitting time (in seconds) of sub-
ARIMA models and NRMSE for evaluating the integrated MVMD-hybrid-TL
framework as well. To be specific, BIC and NRMSE are formulated in Formula
1 and Formula 2 respectively below:

BIC = −2 ln(L̂) + k ln(T ), (1)

where T is number of data point and k is the number of parameters in ARIMA
model; L̂ is the maximized value of the likelihood function of the ARIMA model
M , i.e. L̂ = p(x|θ̂,M), where θ̂ are the parameter values that maximize the
likelihood function, x is the observed data.

NRMSE =

√
1
T

∑T
t=1(V̂ − V)2

(
∑T

t=1 V)/T
, (2)

where V is the original time-series, and V̂ is the predicted value of time-series.
Since hybrid models with less BIC in sub-ARIMA models for sub-sequences

do not forecast with less error always, we test hybrid models with metrics other
than NRMSE, the sum of the model fitting time and Feval of sub-ARIMA mod-
els for each IMF in one time-series, and the maximum of model fitting time
and function evaluations of MVMD-ARIMA for one time-series. To be specific,
“time (sum)” and “Feval (sum)” evaluate the performance of the proposed frame-
work for the successive decomposition-based hybrid model while “time (max)”
and “Feval (max)” evaluate the performance of the proposed framework for the
parallel decomposition-based hybrid model.
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3 Results and Discussion

In this section, we present and analyze the results of our experiments on 5 real-
world datasets from various domains. We compare our proposed framework with
the conventional self-built MVMD-hybrid framework in terms of model fitting
time and NRMSE. We also examine the effect of different methods for obtaining
the start parameters for ARIMA models. We use different metrics and boxplots
to evaluate the performance and efficiency of our framework.

3.1 Experimental Settings

To be specific, we assume each data owner has only one time-series since we use
the ARIMA model for all time-series in transfer experiments. To be full proof
of the efficiency of our framework, we traverse all time-series in each dataset by
taking one data owner (one time-series) as the domain source and other data
owners as the target domain in turn (only longer to equal-length or shorter
time-series). For the decomposition of multiple time-series, the optimal number
of modes (sub-sequences) is determined by the rule of least modes to make no
mixing principle frequencies in any one IMF. For sub-ARIMA models, we set the
order of the ARIMA model as the best order of the target model obtained by
stepwise search based on BIC. To be consistent, the optimization methods used
in the MLE of ARIMA models are all the same in one sub-sequence for differ-
ent start parameters. To avoid convergence failure, multiple candidate methods
are used in the optimization, which includes Limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) [5], modified Powell [12] and Nelder-Mead (NM)
[17], and set with the same error tolerance and infinite iteration. All experi-
ments are carried out in a Ubuntu platform: Intel(R) Xeon(R) CPU E5-2620 v4
@ 2.10 GHz 16 core CPU, 64G RAM.

3.2 Comparison of Time-Series and Its Sub-sequences

This subsection presents an example (dataset solar power) of the MVMD for
multiple time-series, which aims to show the common frequencies of these time-
series and explain how the MVMD could be used as a similarity measure. From
Fig. 2a, it can be seen that when multiple time-series that represent the same
kind of nature (i.e. these time-series are all about solar power generation in one
place), they would show common patterns or characteristics among them (i.e.
common frequencies in this study). From Fig. 2b to Fig. 2k, it can be seen that
the commonality of frequencies among multiple time-series is a feasible property
that could be used as asimilarity measure to facilitate the transfer learning and
save the pairing process for the source and target domain since the MVMD would
align the IMFs with common frequencies.

3.3 Comparison of Sub-ARIMA Models

This section presents the improvement of the MVMD-ARIMA approach with
transfer learning against the self-build models, i.e. comparison for ARIMA with
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Fig. 2. The periodogram of the original time series (taking dataset solar power as the
example) and its sub-sequences after decomposition by the MVMD.

TSP from the model of source sub-sequences, start parameters by HR, Innova-
tions and Kalman, and Default setting start parameters with all zeros except
parameter σ is set as one. From Figs. 3, 4, 5, 6 and 7, it can be seen that with
TSPs from similar sub-models of time-series from other data owners, the sub-
ARIMA model would have the same performance but less fitting time and/or
fewer function evaluations in the optimization of MLE of ARIMA than self-built
models.
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Fig. 3. The comparison of BIC, function evaluations and model fitting time of sub-
ARIMA with start parameters by different methods in dataset solar power.

Furthermore, from the in-depth analysis of the sub-ARIMA model with TSPs
obtained from the different methods in Figs. 3 , 4, 5, 6 and 7, it has been observed
that 1) models with TSPs have the same performance (BIC) but fewer func-
tion evaluations in the optimization and fitting time in model building than
the Default in most cases, which implies that ARIMA models with TSPs from
source domain perform better than self-built ARIMA model when no computa-
tion resources locally. 2) Models with TSPs have the same performance (BIC)
but less fitting time in model fitting than those methods (i.e. HR, Innovations,
and Kalman) compute on data itself in most cases though do not show fewer
function evaluations in the optimization of all cases, which implies that ARIMA
models with TSPs from source domain perform better than self-built ARIMA
models that demand heavy computing and much time for start parameters. 3)
TSPs improve the robustness of optimization of MLE of ARIMA because in
those cases where other methods perform poorly, models with TSPs still have a
good performance.
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Fig. 4. The comparison of BIC, function evaluations and model fitting time of sub-
ARIMA with start parameters by different methods in dataset Abilene.

To conclude, TSP from the domain model would help the target model fit
with less time and still has the same performance, though they would not work
in all cases because the optimization of MLE of ARIMA does not only rely
on start parameters. The possible reason behind the failed ones is that 1) these
sub-sequences have optimization problems such as saddle points and plateaus, 2)
start parameters have minimal effect on optimization because no method has not
been best in all cases either, 3) the common frequencies from the decomposition
by the MVMD as similarity for transfer learning maybe not enough, which can
be seen from the last two or three of IMFs of some datasets that have a relative
high principle frequency (see the example of periodogram of dataset solar power
in Fig. 2), which could be the cause of the poor performance of the MVMD in
the separation of high frequencies [7,13]. Following the in-depth analysis of sub-
sequences of these data owners, it has been observed that the better performance
of MVMD-ARIMA with TSP belongs to those target time-series that have more
prominent characteristics similar to domain time-series in the comparison of
sub-sequences, which can be seen the IMFs that have more prominent common
frequencies which mean more rigorous similarity.

3.4 Comparison of MVMD-Hybrid Framework

Based on the transfer effect, we can do collaboration modeling among differ-
ent data owners in the same dataset, which means one data owner builds the
MVMD-hybrid-TL model by building a sub-ARIMA model for only one IMF (or
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Fig. 5. The comparison of BIC, function evaluations and model fitting time of sub-
ARIMA with start parameters by different methods in dataset GHI.

more IMFs in need) and then transfers between each other. Through this, we
could get the MVMD-ARIMA-TL model with less fitting time and the same per-
formance as self-built. To validate this, we use metrics mentioned above beside
NRMSE, i.e. “time (sum)”, “Feval (sum)” and “time (max)”, and “Feval (max)” for
successive and parallel MVMD-ARIMA-TL respectively. The comparison results
are presented in Fig. 8a to Fig. 8e.

From Fig. 8a to Fig. 8e, it is observed that models with TSP have a close
forecasting result (same NRMSE) as models with other methods but less fitting
time. From the in-depth analysis, it can be seen that 1) MVMD-ARIMA models
with TSP have a prominent performance in fitting time and function evalua-
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Fig. 6. The comparison of BIC, function evaluations and model fitting time of sub-
ARIMA with start parameters by different methods in dataset wind speed.

tions than Default, which means collaboration among these similar time-series
does help data owners that have no computation resources for start parameters,
no matter using parallel (fewer max function evaluations and/or less max fit-
ting time) or successively (fewer sum of function evaluations and/or less sum of
fitting time) hybrid models. 2) MVMD-ARIMA models with TSP have a promi-
nent performance in fitting time than those methods computed start parameters
though not show fewer function evaluations in all cases, which means collab-
oration among these similar time-series does help data owners that have not
enough computation resources or time for model building, no matter using par-
allel (fewer max function evaluations and/or less max fitting time) or successively
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Fig. 7. The comparison of BIC, function evaluations and model fitting time of sub-
ARIMA with start parameters by different methods in dataset PV.

Fig. 8. The comparison of BIC, function evaluations and model fitting time of sub-
ARIMA with start parameters by different methods in dataset PV.

(fewer sum of function evaluations and/or less sum of fitting time) hybrid mod-
els. The recorded improvement rises significantly higher in the case of these time
series in one dataset that shows more same principle frequencies (see the exam-
ple of periodogram of dataset solar power in Fig. 2). Hence, it can be concluded
from the results that the proposed MVMD-hybrid-TL framework is reliable and
effective at helping the MVMD-hybrid model with TSP in model fitting time or
computing resources.

4 Conclusion

In this paper, we proposed a novel transfer learning framework (MVMD-hybrid-
TL) that leverages the decomposition method MVMD to cluster sub-sequences
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of multiple time-series with similar characteristics and transfer knowledge across
different domains. The framework can address the challenges of computing
resource scarcity in decomposition-based hybrid models for multiple time-series
forecasting. We conducted experiments on 5 real-world datasets from various
domains such as energy consumption, network traffic, and solar radiation. The
results showed that our framework achieved comparable performance with less
fitting time than the baselines. Our work opens up new possibilities for applying
transfer learning to decomposition-based hybrid models for multiple time-series
prediction tasks.

There are still some works remained we will complement in future work such
as the privacy preservation among the parameters transferred among multiple
data owners and privacy-preserving MVMD to prevent privacy leakage in updat-
ing central frequencies. Besides, it is valuable as well to know how other kinds
of models such as machine learning models or deep learning models would work
in this transfer learning framework for decomposition-based hybrid models.
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Abstract. The aggregation, fusion, sharing, opening, development, and
utilization of public data provide a solid basis for promoting the devel-
opment of e-government and digital economy. These activities rely on an
infrastructure software called public data open platform (PDOP) to pro-
vide enabling services. While China’s national PDOP has yet to be com-
pleted, one pathway is to integrate the existing hundreds of provincial-
level and prefectural-level PDOPs. However, these local PDOPs exhibit
high heterogeneity, e.g., using different data catalogs and different meta-
data formats. In this system paper, we meet the challenge by crawling
and integrating metadata records for datasets registered in existing local
PDOPs, and we develop a prototype PDOP that provides unified search
services over the integrated metadata. We conduct experiments to eval-
uate the core components of our prototype.

Keywords: Open government data · Public data open platform ·
Dataset search · Metadata integration

1 Introduction

Public data (公共数据) refers to the data in the public domain, typically includ-
ing all the data collected or generated by government bodies. Public data is
highly valuable and should be shared and reused, which is critical to the rapid
development of digital economy. An established way of making public data avail-
able is to build a public data open platform (PDOP) which indexes the meta-
data of each open public dataset to be retrieved. Many countries in the world
have developed their national PDOPs such as US government’s data.gov and
UK’s data.gov.uk. In recent years, China has also promoted the construction
of PDOPs. By September 2022, at least 21 provincial-level PDOPs have been
built,1 and there are also many prefectural-level PDOPs. The shared public data
has already improved the effectiveness and efficiency of performing many and
various data-driven tasks, e.g., in the prevention and control for COVID-19.

Motivation. To the best of our knowledge, China’s national PDOP which has
been designed to integrate all the local PDOPs has yet to be completed. Until
1 https://www.gov.cn/zhengce/content/2022-10/28/content 5722322.htm.
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Fig. 1. Two provincial-level PDOPs providing different structures of data catalog for
filtering search results and different metadata attributes in snippets.

the present, there is still a lack of an efficient way to search public data across
different local PDOPs in China, which is challenging due to their heterogeneity.
Indeed, existing provincial-level and prefectural-level PDOPs use their own data
management systems. As illustrated in Fig. 1, they organize datasets into data
catalogs of different structures, and their registered metadata records contain
different attributes. It motivates us to meet the challenge and develop a proto-
type PDOP that integrates existing local PDOPs. Hopefully our solutions and
lessons learned should be useful for completing China’s national PDOP.
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Fig. 2. Overview of our prototype.

Our Work. In this system paper, we present our ongoing work on building
a PDOP that provides unified search services across existing local PDOPs in
China. Figure 2 outlines its architecture. So far, we have crawled 562,038 meta-
data records for datasets registered in 124 local PDOPs, and have integrated het-
erogeneous metadata through rule-based attribute alignment and value cleaning,
and BERT-based data catalog consolidation. Our current prototype provides
keyword-based dataset retrieval with diversity-based re-ranking over the inte-
grated and indexed metadata, and supports faceted search based on attribute
filters. We have conducted experiments to evaluate the core components of our
prototype and provide empirical insights for future research.

Prototype: http://open-data.store/cn-public

Structure of the Paper. In Sect. 2, we describe the crawling and integration
of dataset metadata from existing local PDOPs. In Sect. 3, we introduce the
implementation of dataset search services over integrated metadata. Experiments
are presented in Sect. 4. Related work is discussed in Sect. 5, before we conclude
the paper with future work in Sect. 6.

2 Crawling and Integration of Dataset Metadata

This section describes the methods employed for crawling dataset metadata from
local PDOPs and integrating the crawled metadata in different formats.

2.1 Crawling of Dataset Metadata

At the time of writing the paper, we collected 124 provincial-level and
prefectural-level PDOPs covering 25 provinces. Considering the different website
structures of these PDOPs, we tailored our crawler for each individual PDOP.
We crawled a total of 562,038 metadata records for datasets registered in these
PDOPs.

http://open-data.store/cn-public
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Table 1. Most frequently used metadata attributes.

Attribute Definition Percentage

publisher (来源部门) The entity responsible for making the
dataset available

99.18%

title (标题) A name given to the dataset 97.50%

access rights (开放类型) Information about who can access the
dataset

95.75%

description (描述) A free-text account of the dataset 94.57%

update date (更新时间) Most recent date on which the dataset
was updated

93.56%

release date (发布时间) Date of publication of the dataset 91.31%

format (数据格式) The file formats of the dataset 90.95%

theme (所属主题) A main category of the dataset 87.11%

record URL (详情页网址) The URL of the record describing the
registration of the dataset in a PDOP

84.48%

update frequency (更新频率) The frequency at which the dataset is
published

80.41%

size (数据规模) The size of the dataset 61.17%

industry (所属行业) The industry classification of the
dataset

51.05%

2.2 Integration of Dataset Metadata

Attribute Alignment. Different PDOPs used heterogeneous metadata for-
mats containing different attributes. To index and retrieve the crawled metadata
records in a uniform way, we identified a set of core attributes that were com-
monly used, and then defined a set of mapping rules for each PDOP to convert
its metadata format. Table 1 lists the most frequently used attributes. Seven
attributes were notably used to describe more than 90% of the crawled datasets:
publisher, title, access rights, description, update date, release date, and format.

Attribute Value Cleaning. We also cleaned the values of some attributes.
For example, we converted access rights into a binary value: unconditionally or
conditionally open. We converted all the dates into the YYYY-MM-DD format.
We also consistently used filename extensions to represent file formats.

Data Catalog Consolidation. Considering that different PDOPs used het-
erogeneous data catalogs to organize datasets, to consolidate them into a single
taxonomy to be used for filtering dataset search results, we used the 20 top-
level categories of China’s latest Industrial Classification for National Economic
Activities (GB/T 4754-2017).2 A dataset would be assigned a top-level category
2 http://www.stats.gov.cn/sj/tjbz/gmjjhyfl/202302/P020230213400314380798.pdf.

http://www.stats.gov.cn/sj/tjbz/gmjjhyfl/202302/P020230213400314380798.pdf
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if any of its sub-categories could match the theme or industry attribute of the
dataset. String matching helped assign top-level categories to 300,111 datasets
(53%) in this way. To assign top-level categories to each remaining dataset, we
formulated it as a multi-label classification task and solved it by using a BERT-
based classifier [12] fed with the title and description of the dataset. We trained
the classifier on the assignment performed by string matching.

Fig. 3. Screenshot of a search results page returned by our prototype.

3 Dataset Search over Integrated Metadata

This section describes the design and implementation of our dataset search ser-
vices over integrated metadata. Our prototype incorporates three search mod-
ules: keyword-based retrieval, diversity-based re-ranking, and attribute-based
filtering. Figure 3 illustrates a screenshot of our search results page.

3.1 Keyword-Based Retrieval

Due to the lack of labeled data for training a powerful dense retriever, we imple-
mented keyword-based retrieval by employing field-weighted BM25 [21], a widely
used unsupervised sparse retrieval model. Specifically, given a query q, for each
dataset d, we computed the BM25 score of each of its fields fi ∈ Fd, and then
calculated a weighted sum over all the fields as the relevance score of d:

rel(d, q) =
∑

fi∈Fd

wi · BM25(fi, q), (1)

where wi represents the weight of the i-th field fi. We matched the query with
seven selected metadata attributes as fields with weights in parentheses which
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Fig. 4. Different metadata records for the same dataset collected from different PDOPs.

were tuned empirically: title (1.0), description (0.6), publisher (0.5), publisher’s
province (0.8), publisher’s prefecture (0.8), theme (0.2), and industry (0.2).

Our implementation used Apache Lucene 9.6.03 for offline creating an
inverted index based on which online retrieval would be fast. We used Lucene’s
SmartChineseAnalyzer for parsing and imported a list of stopwords from NLTK.4

As illustrated in Fig. 3, in search results pages, for each returned dataset we
presented a structured snippet containing its selected metadata attributes where
keyword matches were highlighted to help judge its relevance.

3.2 Diversity-Based Re-ranking

Different metadata records for the same dataset may be registered in multiple
PDOPs, e.g., both in a provincial-level PDOP and in a prefectural-level PDOP
as illustrated in Fig. 4, which requires deduplicating search results to improve
diversify. Diversification would also help explore search results in a wider scope.

To achieve a trade-off between query relevance and diversity, inspired by
the concept of maximal marginal relevance (MMR) [2], we re-ranked τ top-
ranked search results, where τ was empirically set to 30 in our implementation.
Specifically, given the τ most relevant datasets computed by Eq. (1), denoted by
Dτ , we re-ranked them in an iterative manner. The dataset selected in the i-th
iteration, denoted by di, was the dataset having the highest relevance score (i.e.,
rel) and the lowest similarity score (i.e., sim) to the datasets already selected in
previous iterations:

di = arg max
d∈Dτ \{d1,...,di−1}

λ · rel(d, q) − (1 − λ) · max
d′∈{d1,...,di−1}

sim(d, d′) , (2)

where the coefficient λ ∈ [0, 1] was empirically set to 0.5 in our implementation.
We calculated an arithmetic mean of the similarities of five selected meta-

data attributes of two datasets as their similarity score. Specifically, for title
and description, we computed normalized edit distance for such descriptive

3 https://lucene.apache.org/.
4 https://www.nltk.org/.

https://lucene.apache.org/
https://www.nltk.org/
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attributes. For example, for two dataset titles fi, fj , we calculated their sim-
ilarity by

1 − EditDistance(fi, fj)
max {|fi|, |fj |} ,

where | · | represents string length used to normalize edit distance into the range
of [0, 1]. For publisher, publisher’s province, and publisher’s prefecture, we per-
formed strict string matching for such nominal attributes. For example, for two
publishers, their similarity would be either 1 representing string equality or 0
representing inequality.

3.3 Attribute-Based Filtering

As illustrated in Fig. 3, we implemented faceted search that allowed the user to
filter the search results based on metadata attributes. Our current prototype
supported four filters based on: publisher’s province (省份), publisher’s prefec-
ture (城市), (consolidated) top-level industrial category (行业), and access rights
(开放类型). The user could specify a value for each of these attributes to filter
the search results.

4 Experiments

We conducted an empirical evaluation of the core components of our prototype.

4.1 Keyword-Based Retrieval

Retrieval Methods. We compared three popular sparse retrieval models:
BM25, TF-IDF (based cosine similarity), and LMD (short for Language
Model using Dirichlet priors for smoothing). We used their implementations
in Lucene.

Test Collection. Due to the lack of a standard test collection for evaluating
dataset search over China’s public data, we followed common practice [15,18]
to construct a test collection over our crawled dataset metadata. Specifically,
we invited two domain experts to create 100 keyword queries about public data
covering all the twenty top-level industrial categories, where 62 queries included
the name of a province or prefecture. For each query, we used each of the three
retrieval models to pool 20 top-ranked datasets. We pooled a total of 3,533
datasets. The domain experts manually annotated each pooled dataset as irrel-
evant (0), partially relevant (1), or relevant (2) as the gold standard. Unpooled
datasets would be assumed to be irrelevant.

Evaluation Metrics. We used two standard metrics for evaluating retrieval
accuracy: NDCG@k (short for normalized discounted cumulative gain) and
MAP@k (short for mean average precision). When calculating MAP scores,
partially relevant and relevant in the gold standard were both treated as relevant.
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Table 2. Accuracy of different keyword-based retrieval methods.

NDCG@5 NDCG@10 MAP@5 MAP@10

BM25 0.7130 0.7070 0.3267 0.4369

TF-IDF 0.6681 0.6763 0.2966 0.4152

LMD 0.5682 0.5797 0.2504 0.3474

Table 3. Diversity after re-ranking different numbers (τ) of search results.

MeanSim@5 MeanSim@10 SimPairs@5 SimPairs@10 Time (ms)

BM25 0.4220 0.3529 3.74 12.16 8.72

+ MMR (τ = 10) 0.2622 0.3529 1.23 12.16 88.20

+ MMR (τ = 20) 0.1781 0.2301 0.38 4.54 323.34

+ MMR (τ = 30) 0.1564 0.1936 0.30 2.72 716.14

+ MMR (τ = 40) 0.1464 0.1781 0.26 2.02 1280.78

+ MMR (τ = 50) 0.1374 0.1671 0.26 1.82 1986.89

TFIDF 0.4477 0.3889 4.09 14.21 44.38

+ MMR (τ = 10) 0.3061 0.3889 1.76 14.21 122.22

+ MMR (τ = 20) 0.2290 0.2815 0.94 7.30 349.02

+ MMR (τ = 30) 0.2006 0.2400 0.65 5.13 747.40

+ MMR (τ = 40) 0.1887 0.2199 0.57 4.13 1328.76

+ MMR (τ = 50) 0.1827 0.2095 0.52 3.56 2045.92

LMD 0.3934 0.3320 3.59 12.47 43.27

+ MMR (τ = 10) 0.2287 0.3320 1.36 12.47 120.75

+ MMR (τ = 20) 0.1406 0.2081 0.39 4.87 348.28

+ MMR (τ = 30) 0.1037 0.1513 0.08 1.63 777.90

+ MMR (τ = 40) 0.0974 0.1336 0.07 0.83 1332.22

+ MMR (τ = 50) 0.0917 0.1223 0.05 0.52 2051.02

Evaluation Results. Table 2 shows the mean scores of each method achieved
over all the queries. The scores were basically at the same level as those observed
on a comparable test collection [18]. BM25 outperformed the other two methods
on all the metrics. TF-IDF achieved higher accuracy than LMD. Therefore, we
chose BM25 to be used in our prototype.

4.2 Diversity-Based Re-ranking

Evaluation Metrics. We used two metrics to evaluate the diversity of search
results after re-ranking different numbers (i.e., τ) of search results: MeanSim@k
and SimPairs@k. The former measured the mean similarity (i.e., sim) between
top-k search results. The latter represented the number of pairs of top-k search
results whose similarity exceeded a threshold of 0.5. We also calculated the mean
time used for responding to a query.
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Evaluation Results. Table 3 shows the mean scores in each setting achieved
over all the queries. By increasing τ to re-rank more search results, both
MeanSim and SimPairs were reduced, i.e., diversity was improved, whereas the
response time increased as expected. A reasonable trade-off between diversity
and response time was observed at τ = 30. Further increasing τ only marginally
improved diversity but used more than one second to process a query. Therefore,
we set τ = 30 in our prototype.

4.3 Data Catalog Consolidation

Evaluation Setup. To evaluate the quality of data catalog consolidation, i.e.,
the accuracy of multi-label classification that assigned top-level industrial cat-
egories to a dataset based on its title and description, we randomly sampled
100 datasets and invited domain experts to manually check their predicted cat-
egories.

Evaluation Results. For 54% of the datasets, their predicted categories were
judged to be totally correct. For 13% of the datasets, their predicted categories
were partially correct, i.e., at least one but not all the predicted categories were
correct. For 33% of the datasets, their predicted categories were incorrect. The
results indicated room for further optimizing our classifier.

5 Related Work

5.1 National PDOPs in Other Countries

Most developed countries in the world have built their national PDOPs such
as US government’s data.gov, UK’s data.gov.uk, Canada’s open.canada.ca, and
Australia’s data.gov.au. Many of such PDOPs adopt a common data man-
agement system called CKAN,5 based on which the metadata records regis-
tered in different PDOPs can be conveniently found, accessed, and interoper-
ated in a consistent manner. For example, the European Open Data Portal
[16] data.europa.eu has integrated metadata records collected from the national
PDOPs of multiple European countries. Empirical studies have been conducted
over these PDOPs. For instance, [14] analyzed the data requests in their query
logs. and [17] characterized handcrafted summaries for datasets registered in
data.gov.uk.

By contrast, China’s national PDOP has yet to be completed, and exist-
ing local PDOPs seem to have adopted different data management systems,
using heterogeneous data catalogs and metadata formats, making their integra-
tion a challenging task. Our work addresses this challenge with the design and
implementation of a prototype PDOP that provides a unified search service over
metadata records crawled and integrated from different local PDOPs.

5 https://ckan.org/.

https://data.gov
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5.2 Dataset Search

Dataset search is a trending research topic, different from conventional keyword-
based data search tasks [9,10,22], with researchers investigating various emerging
research problems related to this topic [4]. A representative effort is Google’s
dataset search engine [1], which offers keyword-based retrieval over metadata
records found on the web. In developing this system, a number of challenges have
been identified, including the heterogeneity of metadata formats. Auctus [3] is
a system that indexes the content summaries of tabular datasets and presents
their data samples in search results pages. CKGSE [27,28], a prototype search
engine for Chinese RDF datasets, offers content snippets [24,26] for each dataset
to assist users in making informed relevance judgments.

Our prototype PDOP is distinguished by the scope of data sources and the
employed techniques. Specifically, we fill the gap by crawling and integrating
metadata records from a large (and increasing) number of China’s local PDOPs
with a unique focus on China’s public data. From the technical perspective,
we train a multi-label classifier to consolidate heterogeneous data catalogs, and
perform diversity-based re-ranking to improve search results, both of which have
not been addressed by existing PDOPs. We also report experimental results
about the effectiveness and efficiency of the core components of our prototype.

6 Conclusion and Future Work

We have designed and implemented a prototype PDOP that represented the first
step toward integrating China’s local PDOPs. We crawled metadata records for
China’s public data from heterogeneous PDOPs, aligned and cleaned metadata
attributes, consolidated data catalogs, and implemented unified keyword-based
retrieval and faceted search services over integrated metadata. We carried out
experiments to evaluate the core components of our prototype. Our solutions and
experimental results are expected to be helpful for completing China’s national
PDOP which in turn would promote the development of China’s digital economy.

We identified the following future directions. First, as shown by our experi-
mental results, there is room for improving search accuracy. We plan to annotate
more data to support training a more powerful dense retriever [6,13]. We will
also explore better ways of consolidating data catalogs [23]. Second, observe that
the quality of metadata is unsatisfying, e.g., for 33% of our crawled datasets,
their descriptions trivially duplicate their titles. Data publishers are suggested to
further improve metadata quality. Automated methods may also be developed to
provide assistance, e.g., generating data summaries [8,11,20] and extracting rep-
resentative data snippets [7,19,25]. Third, our current prototype is focused on
crawling and processing dataset metadata, ignoring the actual data. Previous
research has showed that incorporating dataset content could improve search
accuracy and facilitate users’ comprehension of datasets [5,18]. However, the
large and heterogeneous data poses great challenges to be addressed.
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Abstract. Diabetic retinopathy (DR) is a major ocular complication of
diabetes. Delayed diagnosis of such disease increases the risk of vision
loss and irreversible blindness. With the popularization of computer-
aided diagnosis technology, the use of deep learning for DR classification
has become a current research hotspot. We aim to develop a GA-DCNN
model that can improve the performance of DR classification. In this
paper, a novel global attention-based model called GCA-SA is proposed
to provide fine-grained global lesion information for DR classification.
Furthermore, inspired by genetic algorithm (GA) and ensemble learning
(EL), this paper also proposes a strategy of integrating deep convolu-
tional neural networks (DCNNs) with GA. The GA-DCNN model is
constructed by aggregating GCA-SA and spatial pyramid pooling (SPP)
into three DCNNs and using the strategy of integrating DCNNs with GA.
The experimental results show that the accuracy, specificity and AUC of
the GA-DCNN reach 0.91, 0.94 and 0.93, respectively. Compared with
traditional CNN, GA-DCNN can capture the detailed features of DR
lesions and integrate the classification results of the multiple DCNNs,
effectively improving the detection and classification performance of DR.

Keywords: Diabetic Retinopathy · DCNN · Global Attention ·
Genetic Algorithm · Ensemble Learning

1 Introduction

Diabetic Retinopathy (DR) is a severe chronic eye disease whose incidence is
closely correlated with the dramatic rise in the global number of diabetes patients
[1]. According to statistics, there are about 460 million people with diabetes in
the world, and it is expected to reach 700 million by 2045 [2,3]. Given these
issues and limitations, this study aims to develop a more efficient and accurate
DR classification model. The retinal image is shown in Fig. 1.

At present, the pathogenesis of DR is not very clear, but the early diagno-
sis, drug development and treatment of this retinal disease have attracted the
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Fig. 1. The example of retinal image.

attention of the medical and industrial circles [4]. In recent years, convolutional
neural networks (CNNs) have been continuously developed and have achieved
impressive achievements in various tasks of image processing, classification and
detection [5]. In addition, medical image classification based on deep learning
has entered the stage of clinical experiments, accelerating the development of
computer-aided diagnosis systems [6]. For DR classification, Al-Antary et al.
proposed a multi-scale CNN model that extracts feature maps of fundus images
at different scales for DR classification [7]. Krause et al. used the InceptonV4
network to train many fundus images and improved the performance of DR clas-
sification [8]. Qomariah et al. proposed a CNN with transfer learning and used
a support vector machine algorithm for DR classification, which improved the
accuracy of CNN classification [9]. Yang et al. proposes a two-stage approach that
utilizes a lesion detection module and a lesion classification module to achieve
a bidirectional exchange of lesion information and image-level information and
implements the fine-grained classification task of DR [10].

While deep learning, specifically Convolutional Neural Networks (CNNs), has
made significant strides in the image classification of DR, it still faces various
challenges in clinical applications. On the one hand, the problem of missing labels
on datasets leads to an imbalance of positive and negative samples, and the nor-
mal physiological features in fundus images also interfere with the diagnosis of
DR lesions. On the other hand, retinal diseases have visual similarity. In this
regard, an efficient attention module is used to capture the specific lesion fea-
tures of DR. Kamran et al. proposed a method of connecting two sub-networks
[11]. One network is used for disease encoding in a supervised manner, and
the other network is used for disease attention graph generation in an unsu-
pervised manner, which improves the robustness of CNN. Ding et al. proposed
an attention pyramid network that can learn high-level abstract features and
low-level detailed features to achieve accurate localization of lesion regions [12].
Existing DR classification models often overlook the fine-grained features of the
disease, limiting their efficacy in realworld medical settings. To further improve
the performance of DR classification, this paper proposes a GA-DCNN model
that introduces the novel GCA-SA to highlight key DR features. The classifica-
tion results are integrated by genetic algorithm (GA) with deep convolutional
neural networks (DCNNs). Furthermore, transfer learning strategies are used
to transfer general information to the DR classification domain, improving the
generalization ability of DCNN. The main contributions of this paper can be
summarized as follows:
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– This paper proposes a GCA-SA that aggregates GCA-SA and spatial pyramid
pooling (SPP) [13] into DenseNet201, MobileNet, and InceptionV3. GCA-SA
is used to capture more identifiable DR lesion information, and SPP is used
to receive features of different scales, making up for the defect that traditional
networks only receive fixed-dimensional data. Therefore, the combination of
the two structures can improve the detection performance of DR.

– Inspired by the ensemble learning and the global optimization characteris-
tics of GA, this paper also proposes a strategy of integrating DCNNs with
GA and synthesizes the classification results of three DCNNs to improve the
performance of DR classification.

– Based on the strategy of integrating DCNNs with GA, GA-DCNN is con-
structed. The experimental results on the DR dataset show that the accuracy,
specificity, and AUC reach 0.91, 0.94, and 0.93, respectively. GA-DCNN can
not only improve the detection performance of DR, but also the classification
performance of DR.

The rest of this paper is organized as follows. Section 2 reviews the related
work on deep learning algorithms for DR classification. Section 3 elaborates on
the GA-DCNN model in detail. In Sect. 4, the classification performance of GA-
DCNN is verified by experiments and compared with other classical algorithms.
Sections 5 provides conclusions.

2 Related Work

As an end-to-end feature extractor, CNN can automatically extract subtle lesion
features in fundus images to complete the DR classification task. In this section,
the recent research on DR classification based on deep learning methods is briefly
reviewed.

2.1 Single CNN for DR Classification

There are two main types of single CNN used for DR classification. The first is
based on lesion ROI annotation. Xia et al. proposed a multi-scale segmentation
and classification model based on MSRNet and MS-EfficientNet to achieve accu-
rate detection and classification of microaneurysms [14]. Ramya et al. proposed
a hybrid convolutional neural network combining binary local search optimizer
and particle swarm optimization algorithm for hyperparameter optimization and
then achieved excellent DR classification performance on the public ROC dataset
and ARA400 dataset [15]. Eftekheri et al. [16] proposed a two-stage CNN frame-
work for DR detection and classification. First, a detector is used to select can-
didate regions of MA from the ROI. Then, a classifier is used to separate MA
and non-MA, which improves the detection performance of MA. The second is
based on image-level annotation. Gulshan et al. used InceptionV3 for DR classi-
fication and experimented with the EyePACS dataset with high specificity and
sensitivity as evaluation indicators [17]. The sensitivity and specificity of Incep-
tionV3 for detecting diabetic retinopathy outperform existing models. Lin et
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al. designed a multi-task framework based on the attention mechanism module
[18], which first connected two subtasks, i.e., detection and classification, and
then separated the two subtasks, which enhanced the performance of DR clas-
sification. He et al. proposed two novel attention mechanism modules [19]. The
former explores more discriminative regional features, while the latter captures
subtle lesion information. The two modules were aggregated into the backbone
network to form CABNet for DR classification. Experimental results show that
CABNet significantly improves the performance of DR classification. Previous
work has shown that deep learning is effective for DR classification. The task
of DR classification remains challenging given the limitations of a single CNN
decision.

2.2 Multiple CNNs for DR Classification

To further improve the classification performance of deep learning algorithms,
some researchers try to change the classification structure of a single model in
the past, and use multiple models for parallel training. DR classification algo-
rithms based on multiple CNNs can be roughly divided into two categories.
The first is DR classification through multi-model feature fusion. Nneji et al.
proposed a weighted fusion-based deep learning model (WFDLN), which was
trained on InceptionV3 and VGG16 using CLAHE and CECED processed fun-
dus images, respectively [20], and weighted fusion of the output feature maps
of the two channels. Experiments on the Messidor dataset and Kaggle dataset
show that WFDLN can achieve high precision for DR classification. Li et al.
proposed a lesion-attention pyramid network (LAPN), in which images of three
different resolutions were used as the input of the pyramid sub-network, and
the lesion attention module (LAM) was used to fuse the features of high reso-
lution, low resolution and lesion activation maps [21]. The experimental results
show that this method is superior to other existing methods, and the lesion
activation map with lesion consistency can be used as supplementary evidence
for the clinical diagnosis of DR. Zhao et al. proposed a novel deep fusion net-
work, which fused features of two CNNs to achieve higher accuracy than single
CNN [22]. At the same time, there are fewer network layers with the same
number of parameters. The second approach is to synthesize the decisions of
multiple sub-categories through ensemble learning. Gao et al. ensembled models
based on multiple CNNs [23]. The method first generates three subsets from
the Kaggle dataset and then designed two ensemble learning schemes. In the
first scheme, DensNet121 is used to train three subsets, and the classification
results were then integrated. The second scheme is to train three subsets using
ResNet50, DensNet121 and InceptionV3, respectively, and then integrate the
classification results. The experimental results show that the ensemble learning
strategy can improve classification performance. Zhuang et al. proposed a DR
detection algorithm (DR-IIXRN) based on deep ensemble learning and atten-
tion mechanism [24]. In this model, the severity of DR was initially determined
by improved Inception V3, InceptionResNet V2, Exception, ResNeXt101, and
NASNetLarge, and then a weighted voting algorithm was used to achieve the
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five-class classification of DR. The proposed GA-DCNN uses image-level labels
without additional lesion location information. Most importantly, a global atten-
tion module is introduced to suppress irrelevant feature information, and the
strategy of DCNNs integrated with GA is used to synthesize the classification
results, which improves the classification performance of the model.

3 Methodology

The structure of the proposed GA-DCNN is shown in Fig. 2. The GA-DCNN
model mainly consists of two parts. The first part uses three DCNNs to extract

Fig. 2. The overall structure of GA-DCNN.
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the lesion information in the fundus images, and then uses the GCA-SA module
to obtain the specific expression of the DR feature, and uses the classifier to
generate the prediction result. The second part adds a GA module based on the
first part. The function of the module is to make comprehensive decisions on
the classification results of the three DCNNs through the strategy of integrat-
ing DCNNs with GA, thereby improving the performance of DR detection and
classification.

3.1 Overview of GA-DCNN

As shown in Fig. 2, GA-DCNN uses the three DCNNs (DenseNet201, MobileNet
and InceptionV3) after migration learning on the ImageNet dataset as the back-
bone of feature extraction. It can be seen from Fig. 1 that the feature information
related to the DR classification task only occupies a small part of the entire reti-
nal image (including microaneurysm, hemorrhage, exudate, etc.), or even several
small lesion points. The number of convolutional layers and the size and num-
ber of convolutional kernels of DCNN have great influence on the extraction
of lesion features. Images with single resolution may lose lesion features due
to frequent convolution operations. This paper takes images with three resolu-
tions (224 × 224, 448 × 448 and 512 × 512) as input for image preprocessing,
making the DCNN can not only learn high-resolution global feature informa-
tion, but also learn low-resolution detailed feature information. However, fundus
images have visual similarity and easily confused with the normal physiologi-
cal structure. To enhance the attention to key lesion features, the multi-scale
lesion features extracted from the network are put into the GCA-SA module,
enabling the DCNN to adaptively focus on the most recognizable regions in the
feature map. At the moment, the dimensions of the output features of the model
are inconsistent, and it is difficult to directly put into the full connection layer
for classification operations. SPP can calculate a single feature map from the
image, and fuses local features in any subregion of the image to generate vectors
of fixed length, so as to avoid repeated calculation. The spatial pyramid pool-
ing structure is introduced before the fully connected layer, so that DCNN can
accept multi-scale images and get rid of the limitation of the vector dimension by
the fully connected layer. Since GA has great global optimization properties, it
can obtain optimal results through multiple iterations. Therefore, we introduce
GA into the ensemble learning model and propose a strategy to integrate GA
with DCNNs to synthesize the classification results. GA-DCNN firstly combines
DCNN with GCA-SA and then integrates three improved DCNNs with GA. The
former can improve the ability of model feature extraction, while the latter can
improve the decision-making performance of the model, thereby promoting the
improvement of DR classification performance.

3.2 GCA-SA Module

The core idea of the GCA-SA module is based on the fundus feature map
extracted by DCNN to obtain a more distinguishable feature expression of the
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Fig. 3. Overview of the GCA-SA module.

lesions. The feature maps extracted by DCNN only include high-level expression
of fundus images, while DR classification needs to capture the specific expres-
sion of lesion features. Feature maps of different scales have different feature
expression abilities, and simple feature stacking cannot take advantage of fea-
ture expression. The attention mechanism weights the original feature map by
spatial weight, which can effectively make up for the defect of DCNN’s feature
expression ability. The designed GCA-SA module mainly includes two parts.
First, the feature representation of each channel is obtained according to the
channel attention mechanism, and the attention map of the channel direction is
generated. Second, the spatial feature representations of the lesions are found
according to the feature maps captured by the channel attention module, and
then the spatial orientation attention maps are generated.

Figure 3 illustrates the detailed structure of the GCA-SA module, which
adopts both the channel-attention mechanism and the spatial-attention mecha-
nism to generate lesion-related attention feature maps. Different from the CBAM
module in [25], the channel-attention module adopts a single-branch structure,
while the spatial-attention module adopts a double-branch structure. First, the
channel-attention weights are calculated by the following formula:

Ac = σ(Conv(GAP (FGCA−SA−IN ))) (1)

where σ is the sigmoid activation function, GAP is the global average pool-
ing, and Conv is the convolutional operation. After obtaining the weight of the
channel-attention Ac, it is multiplied by the input feature map to get the lesion
feature in the channel direction:
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F i
GCA = Ac ⊗ FGCA−SA−IN (2)

where ⊗ denotes the product of the corresponding elements. Therefore, the
channel-attention module can acquire DR-related channel features and suppress
DR-unrelated redundant features in the channel direction. The GCA-SA mod-
ule aggregates two spatial feature representations using average pooling and max
pooling operations along the spatial direction, and then calculates the spatial-
attention weight As :

As = σ(Conv([F s
i,max;F

s
i,avg])) (3)

Then, it is multiplied with the output of the channel attention module to generate
lesion features in the spatial orientation:

F i
SA = As ⊗ F i

GCA (4)

The spatial-attention mechanism can acquire DR-related spatial features and
suppress DR-unrelated redundant features in the spatial direction. Finally, the
input and output features of the GCA-SA module are aggregated through resid-
ual connections, and the output feature map is calculated as follows:

FGCA−SA−OUT = BN(Conv(FGCA−SA−IN )) ⊕ FSA (5)

where ⊕ denotes the addition of the corresponding elements. Therefore, the
GCA-SA module captures the correlation between the DR lesions of the channel
and the spatial orientation by updating the weight information.

3.3 The Strategy of Integrating DCNNs with GA

Genetic algorithm is a heuristic global search and optimization algorithm that
simulates biological evolution mechanism [26]. Ensemble learning (EL) can syn-
thesize the decision results of multiple models according to certain rules [27]. The
typical approach for integrating ensemble learning involves taking the average
of the output probabilities from multiple base classifiers to yield the prediction
probabilities of the final model. Due to the inconsistent classification capabilities
of each base classifier, the simple averaging method cannot directly extract the
classification capabilities of each base classifier. This study proposes a strategy
for integrating DCNNs with GA, and the process is shown in Table 1. Consider-
ing the value of λ in Table 1 used to balance the performance of the models, this
paper uses the genetic algorithm to iterate it several times to obtain the optimal
parameter settings. The process is shown in Table 2.
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Table 1. Algorithm 1

For Table 1, after data training, calculate the AUC values of each DCNN
and put them into AUC values. Then, calculate the weights by introducing λ
and normalize them. Finally, apply the model to the testset to obtain prediction
probabilities, and combine them with the weight values to optimize the predic-
tion probabilities, thereby achieving the purpose of correcting prediction results.
The formula for calculating the weight of each DCNN is as follows:

ωi =
AUC values[i]

(
k∑

j=1

AUC values[j])
∗ λi (6)

where, k is the number of DCNN models, λi is a parameter used to balance the
classification performance of the model, λi ∈ [1, 10]. In addition, the predicted
probability value of each DCNN is weighted and summed to calculate the final
predicted probability value. The calculation formula is as follows:

y =
k∑

i=1

ωi ∗ Test probability[i] (7)

where, Test probability is the predicted probability of testset. For Table 2, this
paper uses GA to iterate and optimize in Table 1 and to further enhance the
classification performance of the model. First, the accuracy rate is taken as the
fitness function, and the roulette and elite retention strategies are combined to
perform the selection operation. The calculation formula is as follows:
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Table 2. Algorithm 2

pi =
fi

N∑

k=1

fk

(8)

where fi is the i th fitness value, and pi is the i th selection probability.
Then, according to the crossover strategy, two parental individuals are randomly
selected from the current generation, and two new chromosomes were generated
by single-point crossover. Suppose the individual genes chosen at random are v1
and v2. The calculation formula is as follows:

{
c1 = αv2 + (1 − α)v1
c2 = αv1 + (1 − α)v2

(9)

where α is random parameters, c1 and c2 are genes of newly generated indi-
viduals. Finally, according to the mutation strategy, an individual is randomly
selected from the current generation, and then the gene on the individual is
updated. The calculation formula is as follows:

{
c = v + (1 − v) ∗ (1 − r(1−i/itermax)

2
)r > 0.5

c = v − (v − 0) ∗ (1 − r(1−i/itermax)
2
)r ≤ 0.5

(10)

4 Experiment Results

4.1 Dataset

The DR dataset in this paper comes from the 2021 Asia-Pacific Society of Oph-
thalmology Big Data Competition, and the Alibaba Cloud Tianchi platform



54 Z. Li et al.

provides exclusive technical support for the competition [28]. In order to meet
the experimental requirements of DR classification, 1200 fundus images before
treatment were screened from the original dataset and divided into the training
set and test set according to the ratio of 8:2. Before the experiment, we need
to crop, scale, standardize and separate color channels on the original image. In
order to meet the requirements of multi-scale feature extraction, the resolutions
of the images are adjusted to 224 × 224, 448 × 448 and 512 × 512, respectively.

4.2 Evaluation Metrics

In this paper, images in the dataset are labeled as 0 (no DR) and 1 (with DR),
and the performance of the model is evaluated in terms of Accuracy, Specificity
and Sensitivity. AUC is a performance indicator for classification problems under
different threshold settings.

4.3 Results and Analysis

To evaluate the DR classification performance of the GA-DCNN model, this
paper divides the experiments into three groups. The first group is to verify the
effect of different resolution fundus images on DCNN training, and the second
group is to verify the effect of the GCA-SA module on DCNN classification
performance. The third set of experiments is to verify the effect of the strategy
of integrating DCNNs with GA for DR classification.

Due to the introduction of the spatial pyramid pooling structure in DCNN,
different sizes of pooling kernels are tested. With other parameters fixed, differ-
ent pooling kernels are introduced into three different DCNNs, and the average
accuracy of multiple experiments is taken as the final result.

Table 3. Comparison of the effect of the kernel size of SPP on model performance

Methods Kernel size of SPP Accuracy (%) Sensitivity (%) Specificity(%)

Dense-Net201 [1,2,5] 84.8 85.6 83.7

[1,2,3] 85.8 86.2 85.3

[1,2,4] 86.0 86.7 85.8

MobileNet [1,2,3] 80.5 80.9 80.1

[1,2,5] 85.2 85.8 84.7

[1,2,4] 87.2 87.6 86.8

InceptionV3 [1,2,5] 85.2 85.5 84.6

[1,2,4] 85.8 86.0 85.1

[1,2,3] 86.3 86.6 85.5

Table 3 shows the influence of pooling kernel size on model performance.
DenseNet201 and MobileNet work better when the pooling kernel parameter is
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set to [1,2,4], while InceptionV3 works better when the pooling kernel parameter
is set to [1,2,3]. It can be seen that different pooling kernels have certain differ-
ences in the classification effects for different CNNs. Therefore, setting appropri-
ate pooling kernel parameters is very important for the design of DCNN models.

Experiment 1: To verify the effectiveness of neural network model training
on different resolution images, experiments were conducted on DenseNet201,
MobileNet and InceptionV3. There are inter-class similarities in fundus images,
while subtle differences exist within classes. In other words, abnormal images and
normal images are visually indistinguishable, but there are significant differences.
Usually, image classification needs to compress image data to a fixed size, but
the original resolution of medical images is large, and excessive compression will
lead to information loss when DCNN extracts features.

Therefore, in Experiment 1, images with different resolutions are used as
input, and DCNN is used to extract multi-scale features to compensate for
the loss of information. To prove the above speculation, the following compara-
tive experiment was designed. First, we divided the experimental data into two
groups: the first group was single-resolution images (fundus images of the same
resolution), and the second group was multi-resolution images (fundus images of
three different resolutions). Then, single-resolution images and multi-resolution
images are used as inputs to the three DCNNs, respectively. The pooling kernel
size of the SPP structure is set as [1,2,4]. The results are shown in Table 4.

Table 4. Comparison of model classification results with single-resolution and multi-
resolution images as inputs

Resolution Methods Accuracy (%) Sensitivity(%) Specificity(%)

Single-resolution InceptionV3 79.3 79.8 78.5

DenseNet201 84.3 84.7 83.8

MobileNet 84.5 84.9 84.1

Multi-resolution InceptionV3 85.8 86.0 85.1

DenseNet201 86.0 86.7 85.8

MobileNet 87.2 87.6 86.8

Table 4 shows the classification performance of DR for images of differ-
ent resolutions. It can be seen that our speculation is correct. Compared to
single-resolution images, the performance of the DCNN model is significantly
improved when multi-resolution images are used as input. At the same time, the
training results of DenseNet201 are significantly improved by multi-resolution
images, while the training performance of MobileNet and InceptionV3 are greatly
improved. The experimental results prove that, due to the small lesion area of
medical images, DR classification emphasizes fine-grained feature information,
and multi-resolution images are beneficial to DCNN to learn features of different
scales and achieve accurate detection of lesion information.
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Experiment 2: To verify the influence of the GCA-SA module on the DR
classification performance, the GCA-SA module was introduced into the origi-
nal DCNN based on Experiment 2, and the pooling kernel parameters of SPP
were fixed as [1,2,4]. It can be seen from Table 5 that under the same experi-
mental environment, the GCA-SA module can achieve good performance in the
DR classification task. The experimental results show that without the intro-
duction of the GCA-SA module, the accuracy of the three DCNNs increases
from 84.3%, 84.5% and 79.3% to 85.0%, 85.3% and 80.5%, respectively. After
introducing the GCA-SA module, the accuracies of the three DCNNs improved
from 86.0%, 87.0% and 85.8% to 87.5%, 88.0% and 87.9%, respectively. In addi-
tion, in order to further verify the effect of GCA-SA, CBAM and GCA-SA are
respectively added to different DCNN models. The results show that GCA-SA
has better performance. Therefore, the GCA-SA module can automatically mine
more identifiable lesion features in medical images, remove redundant features
unrelated to DR and improve DR detection performance.

Table 5. Comparison of the influences of the GCA-SA module on DCNN performance

Methods SPP CBAM GCA-SA Accuracy (%) Sensitivity(%) Specificity(%)

DenseNet201 84.3 84.7 83.9

� 84.5 84.8 84.2

� 85.0 85.5 84.3

� 86.0 86.3 85.6

� � 86.3 86.7 86.0

� � 87.5 87.9 87.2

MobileNet 84.5 84.7 84.1

� 84.9 85.3 84.2

� 85.3 85.9 84.7

� 87.0 87.6 86.4

� � 87.2 87.8 86.7

� � 88.0 88.6 87.3

InceptionV3 79.3 79.8 79.1

� 80.0 80.4 79.7

� 80.5 80.9 80.2

� 85.8 86.2 85.3

� � 86.5 86.8 86.1

� � 87.9 88.3 87.2

Experiment 3: To verify the influence of integrating DCNNs with GA on
DR classification performance, on the basis of Experiment 2, three improved
DCNNs were selected with multi-resolution images as input. Different DCNNs
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Fig. 4. Iteration curve of the GA-DCNN.

have different classification effects on the same image. The reason is that different
DCNNs pay different attention to each pixel in the image. It can be seen that
the fusion of the results of different DCNNs can play a complementary role.
Therefore, the strategy of integrating DCNNs with GA is used to synthesize the
classification results of the three DCNNs, and the iteration curve is shown in
Fig. 4.

Table 6. Comparison of results between GA-DCNN and the improved DCNN model

Methods Accuracy (%) Sensitivity (%) Specificity (%)

DenseNet201+SPP+GCA-SA 87.5 87.9 87.2

MobileNet+SPP+GCA-SA 89.1 88.6 87.3

InceptionV3+SPP+GCA-SA 87.9 88.3 87.2

GA-DCNN(Ours) 91.2 91.8 90.7

According to the results in Table 6, the proposed strategy of integrating
DCNNs with GA makes the accuracy, specificity and sensitivity of the test
dataset outperform the results of using a single DCNN model. In the same
experimental setting, Fig. 5 shows that the AUC value of the GA-DCNN model
is also higher than that of a single DCNN. The above results show that inte-
grating DCNNs with GA can effectively compensate for the classification errors
of the three DCNN models by iteratively optimizing the classification results
of the three DCNNs. Therefore, compared with the single DCNN model, the
proposed ensemble strategy can better improve the classification performance of
the overall model.
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Fig. 5. ROC curves of GA-DCNN and improved DCNNs.

Table 7. Comparison of GA-DCNN and classical models

Methods Accuracy (%) Sensitivity (%) Specificity (%)

VGG16 77.4 65.1 87.3

VGG19 80.4 67.9 90.3

ResNet50 70.4 40.6 94.0

ResNet152 67.9 32.1 96.3

DenseNet121 84.5 78.3 89.6

DenseNet169 87.0 82.1 91.0

InceptionResV2 82.4 78.3 85.8

MobileNetV2 87.5 87.5 88.8

NasNetMobile 75.8 54.7 92.5

Bagging 87.8 88.1 87.3

Adaboost 88.9 89.2 88.2

GA-DCNN(Ours) 91.2 91.8 90.7

Finally, in the same experimental environment, GA-DCNN is compared with
classical CNN models. As can be seen from Table 7, GA-DCNN outperforms
other classical models in accuracy, sensitivity and specificity. Therefore, the pro-
posed GA-DCNN model is beneficial to make up for the shortcomings of a single
model, integrates the decisions of multiple models, and improves the performance
of DR classification.
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5 Conclusion

This paper proposes a diabetic retinopathy classification model GA-DCNN based
on the strategy of integrating DCNNs with GA. First, the fundus image features
are highlighted by extracting the green channel and adaptive equalization in
the preprocessing stage, and then the fine-grained lesion information of DR is
learned by combing the DCNN and the GCA-SA modules. Finally, the strategy
of integrating DCNNs with GA is used to make comprehensive decisions on
the three DCNNs, which further improves the performance of DR classification.
The experimental results demonstrate the effectiveness of the GA-DCNN model
in DR detection and classification tasks. Furthermore, future research will be
focused on applying GA-DCNN to the multi-classification task of DR and further
optimizing the model performance by capturing the inter-class similarity of DR.
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Abstract. Fine-grained visual classification (FGVC) heavily relies on
partial localization and part-based discriminant feature learning. The cur-
rent methods mainly focus on extracting information from high-level fea-
tures, while ignoring the influence of low-level features on FGVC. Based
on this, this paper integrates low-level detailed information and high-
level semantic information to improve the model performance by enhanc-
ing the feature representation and accurately locating the discriminant
part. This paper proposes an end-to-end convolutional neural network
combining feature-aligned and attention pyramid (FAAP-CNN), which
consists of three main modules: 1) Feature pyramid: transmits high-level
semantic information in a top-down path. Meanwhile, the semantic gap
and information loss in information transmission are reduced through
feature alignment and feature selection, and the integrity and reliability
of high-level feature information are maintained. 2) Attention pyramid:
pass the detailed information of low-level features in a bottom-up path to
enhance the feature representation; 3) ROI feature refinement: dropblock
and zoom-in are used for feature refinement to effectively eliminate back-
ground noise. The experimental results on three publicly FGVC datasets
show that FAAP-CNN has excellent performance.

Keywords: Fine-grained visual classification · Multi-scale feature
fusion · Attention Pyramid

1 Introduction

As a significant basic topic in computer vision, fine-grained visual classification
(FGVC) has attracted the attention of many scholars, and has been widely used
in many fields such as person re-identification [1], retail commodity recognition
[2]. Compared with traditional classification, FGVC aims to divide category into
different subcategories [3]. Because of the large intra-class variance and small
inter-class variance of fine-grained images, it is much more difficult to classify
fine-grained images than traditional classification tasks.
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In order to address the above challenges, researchers have dealt with the
problems existing in FGVC from different aspects. The current FGVC methods
can be roughly divided into two categories: 1) end-to-end feature encoding [4];
2) regional localization [5]. The former is to capture more subtle features by
calculating higher-order information, while the latter is to locate discriminant
regions by attention mechanisms and deep filters [6].

Although promising results have been reported in the above studies, fur-
ther improvements are limited by low-level information on CNN. Ding et al. [7]
showed that the low-level information of CNN (e.g., color, edge information) is
indeed essential in FGVC tasks. The deep layers of CNN have a relatively large
receptive field and strong representation ability of semantic information, but the
feature map resolution is low and the representation ability of spatial geometric
features is weak [8]. It would make the detailed information of small distinguish-
ing regions lost inevitably. In contrast to the deep layer, the low layer is rich in
feature space information but lacking in semantic information. For fine-grained
images, the small receptive field of low-level features allows it to detect more
subtle parts such as the shape of claws. The high-level features of the receptive
field can detect larger parts such as the bird’s head or even the whole bird. These
are all useful information for FGVC, which can effectively reflect the intra-class
differences of fine-grained images.

Therefore, the feature pyramid structure is introduced to effectively extract
and fuse multi-scale features, integrate high-level semantics and low-level details,
and improve the performance of FGVC. Specifically, this paper designs a novel
FGVC model, which can deal with semantic gap problems in multi-scale feature
fusion, locate discriminant feature regions accurately, and reduce the impact of
background noise on model accuracy availably. The main contributions can be
summarized as follows:

1) A new feature pyramid structure is constructed in this paper, which can solve
with the semantic gap in the fusion process of adjacent features, and effec-
tively reduce the information loss caused by sharp dimensionality reduction.

2) A new attention structure is designed in this paper, which can focus on the
object region, reduce the impact of background noise on classification perfor-
mance, and enable the model to locate the discriminant region precisely.

3) Feature pyramid and attention pyramid constitute a new dual-path archi-
tecture, top-down feature path learning enhances high-level semantic infor-
mation, bottom-up attention path learning low-level detailed representation,
and the dual path structure works together to improve the model accuracy.

4) Three general fine-grained datasets (CUB-200-2011 [9], Stanford Cars [10],
and FGVC-Aircraft [11]) are conducted for experimental verification. Abla-
tion studies and visualization are performed to further verify the model perfor-
mance. The results show that this model can improve the accuracy of FGVC.

The rest of the paper is organized as follows: Sect. 2 summarizes the related
work of FGVC. Section 3 introduces the proposed model framework in detail.
Section 4 discusses the experimental details, the final results and visualization
analysis. And the last part shows the conclusion of this paper.
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2 Related Work

The work of this paper is closely related to multi-scale features and attention
for FGVC. Therefore, the following introduces these two types approaches.

2.1 Methods Using Multi-scale Information

Multi-scale information is accustomed to capturing features of different levels,
providing a richer and more diversified image representation, improving the clas-
sification performance, and enhancing the robustness of model. Therefore, it is
widely used in many fields such as object detection [12] and image classification
[13]. Lin et al. [14] proposed a feature pyramid with a top-down and skip connec-
tion architecture, so that there is rich semantic information at all levels. Xu et
al. [15] studied the characteristics of birds at different scales by using the pyra-
mid to improve the accurate identification in the natural environment. Jiang et
al. [16] adopted multi-scale fusion for the same type of features and multi-view
fusion for different types of features to make the model learn food features from
different granularity. Ding et al. [7] used FPN [14] and attention mechanism to
effectively combine high-level feature semantic information with low-level fea-
ture details to improve FGVC. In this paper, according to the references [7] and
[17], a new feature pyramid structure is designed, which can effectively reduce
the information loss in the process of transferring semantic information from
high-level to low-level, and improve the classification performance of model.

2.2 Methods Using Attention Mechanisms

Since the attention mechanism has the advantages of increasing the interpretabil-
ity of model and enhancing the model’s ability to learn features. Therefore, it is
widely used in semantic segmentation [18], visual question answering [19], image
classification [20] and so on. Fu et al. [21] and Zheng et al. [22] first applied the
attention mechanism to FGVC, effectively improving the precision of FGVC.
Zheng et al. [23] proposed a multi-level attention model to obtain object-level
and partial-level attention respectively. Han et al. [24] took SENet [25] as a
partial positioning network to enhance the feature representation capability of
FGVC. Ding et al. [7] improved on CBAM [26] and used attention mechanism
to transmit low-level feature information to guide feature refinement in stage II.
With reference to [27], this paper improves the attention structure and enhances
multi-scale features by combining space and channel levels: 1) Adopt spatial
information to guide feature refinement in stage II; 2) Use channel information
to transfer low-level details to high-level features.

3 The Convolutional Neural Network Combing
Feature-Aligned and Attention Pyramid

In this section, the convolutional neural network combing feature-aligned and
attention pyramid (FAAP-CNN) is designed. FAAP-CNN is an end-to-end two-
stage network, the first stage adopts the complete image as input, the second
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stage uses the cropped and enlarged local feature information as input. Both
stages share the same network structure and have the same parameters. The
model framework is shown in Fig. 1. Firstly, an image is input to generate a fea-
ture pyramid and an attention pyramid via CNN. Secondly, the spatial attention
pyramid obtained from the original image of stage I is used to guide the feature
refinement of stage II, and the ROI pyramid is constructed by generating the
region of interest through the region proposal generator with NMS operation.
Specifically, the feature refinement is achieved by dropblock to remove the most
discriminative regions of the low-level features, merging and enlarging all ROI
regions. Finally, the refined feature information is adopted as input to carry out
in stage II. The final classification result is the average of stage I and stage II.

Fig. 1. The framework of FAAP-CNN. (a) feature and attention dual pathway; (b)
attention pyramid; (c) ROI pyramid. In this figture, the feature maps are represented
as blue frames and the spatial/channel attention are indicated by green outlines. (Color
figure online)

3.1 Bottom-Up Multi-scale Feature Module

Motivataion. The purpose of this paper is to integrate high-level semantics and
low-level details to improve the performance of FGVC. Therefore, a bottom-up
multi-scale feature module is introduced to transfer high-level semantic infor-
mation to low-level features. Specifically, the output feature maps of each con-
volutional block in the backbone network are denoted as B1, B2,..., Bl, where l
represents the number of blocks. FPN uses feature reduction and feature fusion
to generate new feature maps {Fn, Fn+1, . . . , Fn+N−1} (1 ≤ n ≤ n+N − 1 ≤ l),
the comparison between the original FPN and the FPN proposed in this paper
is shown in Fig. 2. Bk → Fk is used to maintain backbone information, and
Fk+1 → Fk is used to convey high-level semantic information from the top
down. FAM and FDRM are described in detail below.
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Fig. 2. Comparison between the original FPN and our FPN. Bs
k represents the fea-

tures after dimensionality reduction; Fu
k+1 indicates the features after upsampling; Fk

indicates the fusion feature of Fu
k+1 and Bs

k. +© denotes broadcasting addition.

Feature Alignment. Due to the use of upsampling, two adjacent features in
FPN are fused by adding elements, ignoring the semantic gap between feature
maps caused by different depth, which will produce wrong prediction of the
boundary of the object and affect the subsequent localization and recognition.
Therefore, this paper refers to [17] and introduces deformable convolution (DCN)
to adjust the spatial position information of Fk+1, achieving feature alignment
between Bk and Fk+1. The details are shown in Fig. 3. The feature alignment
can be expressed as:

Δi = fo
([

Bs
k, F

u
k+1

])
(1)

F d
k+1 = fa

(
Fu
k+1,Δi

)
(2)

where [ ] denotes the cascade of Bs
k and Fu

k+1, representing the spatial difference
between the two features, and fo indicates the function of learning the offset
from 2D coordinate system; fa denotes the function that adjusts the Fu

k+1 based
on the learned offset. Both functions are implemented using DCN [27].

Fig. 3. The description of feature alignment. N represents N sampling points, and
for 3 × 3 convolution, N = 3 × 3 = 9. For feature maps with [C, h, w], the learned
offset is [2N, h, w]. Each value in Δi denotes the horizontal or vertical offset of the
corresponding feature position.

This paper reviews DCN briefly. DCN is a geometric transformation of the
convolution kernel that enables the model’s attention sampling area to be more
concentrated on the target itself. Firstly, an input feature map di ∈ RHi×Wi and
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a 3× 3 convolution layer are defined. The feature of a position x̂p in feature map
can be expressed by the following formula:

x̂p =
N∑

n=1

wn · (xp + pn) (3)

where N = 3× 3 = 9, wn and pn ∈ {(−1,−1), (−1, 0), . . . , (1, 1)} refers to
the weight and pre-specified offset of the Nth convolution position, respec-
tively. From standard convolution to deformable convolution, an offset-guided
convolution kernel is required to sample the position of the deformable convo-
lution. Deformable convolution attempts to adaptively learn additional offsets
{Δp1,Δp2, . . . ,ΔpN}, the above equation can be re-expressed as:

x̂p =
N∑

n=1

wn · (xp + pn + Δpn) (4)

In this paper, when using deformable convolution in FPN, the connection of
Bk and Fu

k+1 is used to learn the offsets of feature maps, and the spatial position
information of current features is adjusted by formula 1 and 2 to achieve similar
focus areas for adjacent features, thereby achieving feature alignment to address
the semantic gap problem.

Feature Selection. In addition to semantic gap, FPN also has the problem
of information loss. The horizontal connection of 1 × 1 convolution layer can
produce features with the same dimension, but due to the sharp dimensionality
reduction, the extracted feature maps, especially the high-level feature maps,
suffer serious information loss. Therefore, this article proposes a feature dimen-
sionality reduction module, which uses channel weight as an important indi-
cator for feature maps, and sets different sampling ratios for different feature
maps to highlight important information and reduce redundant information. By
recalibrating the feature map, feature dimensionality reduction is achieved. The
FDRM is illustrated in Fig. 4.

Fig. 4. The description of feature selection.

Firstly, the information of Bk is extracted by global average pooling and
global maximum pooling respectively, and the two are added together, and the
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channel weights corresponding to the feature maps are obtained by sigmoid. Sec-
ondly, the feature maps are recalibrated according to the channel weight infor-
mation. Select the first M feature maps with high values, and the rest feature
maps extract global information through global maximum pooling and global
average pooling. Finally, the 1× 1 convolution is used to reduce the dimensions
of the cascaded BM

k and B2
k, and the final feature Bs

k is obtained. In general,
the FDRM can be formulated as:

B2
k = fb

[
AvgPool

(
BC−M

k

)
;MaxPool

(
BC−M

k

)]
(5)

Bs
k = fq

([
BM

k , B2
k

])
(6)

where fq represents 1 × 1 convolution, BM
k represents the first M feature maps,

and BC−M
k represents the remaining feature maps.

The feature maps obtained from the FDRM module not only include impor-
tant feature information, but also reduce the impact of redundant information
in the current layer on subsequent feature fusion, which improves the positioning
accuracy of the attention module to a certain extent.

3.2 Top-Down Attention Module

Motivation. The purpose of this module is to enhance the detailed represen-
tation of features. Since the feature fusion operation introduces deep semantic
information into low-level features, it improves the discriminant ability of low-
level features and helps to identify more subtle parts of objects. Due to the lack
of sufficient semantic information to distinguish objects, low-level features pay
too much attention to noise, which will cause attention deviation. Due to the
lack of detailed information constraints, deep features will lead to the divergence
of attention. Because of the introduction of deep semantic information, the back-
ground noise is effectively suppressed, and the low-level positioning information
provides constraints, which limits the attention to a certain range. Therefore,
this paper uses the attention mechanism after FP, which is helpful to improve
the performance of FGVC.

Fig. 5. The presentation of attention mechanism. The specific process of this module
is much the same as the feature alignment.
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Attention Mechanism. Because the hybrid attention can pay more attention
to the spatial information and semantic information of object, this paper chooses
the hybrid attention enhancement feature. However, the features enhanced by
channel attention and spatial attention will be different to some extent, and
direct fusion and addition operation may destroy the original feature represen-
tation. Therefore, this article introduces DCN to adjust features based on hybrid
attention. The specific details are shown in Fig. 5.

First of all, the spatial enhanced features and channel enhanced features are
aligned along the channel axis, and then 1 × 1 convolution is used to reduce
dimension, and the same position feature values of all channels are added. The
single feature map obtained in this way can better represent the entire image
information, and the offset learned from features containing a lot of information
can more accurately describe the spatial position of the target object. Semantic
information has been integrated through 1 × 1 convolution, so that the position
of the object covered by DCNv2 will be more accurate, so that the features after
spatial enhancement can be fixed in the target object region after adjustment,
and the positioning can be accurate. The detailed implementation of this module
is shown below.

Ac
k = σ (W2 · ReLU (W1 · AvgPool (Fk)) + W2 · ReLU (W1 · MaxPool (Fk)))

(7)
As

k = σ (fb ([AvgPool (Fk) ;MaxPool (Fk)])) (8)

F c
k = Fk ⊗ Ac

k F s
k = Fk ⊗ As

k (9)

Δi = fo ([F s
k , F c

k ]) (10)

F ′
k = fa (F s

k ,Δi) (11)

where Ac
k represents channel attention weight of feature Fk, As

k represents spatial
attention weight of feature Fk, F c

k and F s
k represent channel enhancement feature

and space enhancement feature respectively. fc and fs in Fig. 5 are shown in for-
mulas 8 and 9 respectively. fo and fa have the same meaning as in FAM, meaning
learning from the feature offset and adjusting according to the offset, respectively.

3.3 ROI Feature Refinement

Inspired by the idea of Ding et al. [7], the spatial attention mask is used as the
anchor score, and the non-maximum suppression method is adopted to reduce
the redundant anchor frames, and the final ROI region is denoted as Ri(i = n, n+
1, . . . , n+N − 1). This module mainly uses dropblock and zoomin operations to
refine features. Dropblock sets the activation values of a block to 0, reducing the
model’s dependence on that region and preventing overfitting. For the dropblock
operation, smaller block sizes and higher probabilities may lead the model to
learn more robust features. Therefore, in this paper, the smaller region with
the highest scores is set to 0. Zoomin adjusts the image size and target size by
zooming in on the image. In the ROI feature refinement module, zoomin is used
to adjust the ROI size of the input feature map. Figure 6 shows the process of
guiding feature refinement.
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Fig. 6. Feature refinement.

First, all Ri are mapped into the same space, and dropblock operation is
performed on the ROI feature with the highest anchor box score, and its feature
value is set to 0 to prevent overfitting. Then, find out the minimum horizon-
tal coordinate xmin, maximum horizontal coordinate xmax, minimum vertical
coordinate ymin and maximum vertical coordinate ymax of all anchor frames,
and compose them into four coordinates as the range of the new frame. Finally,
enlarge it to the same size as the original space. Up to this point, the feature
refinement operation is implemented. This operation can effectively remove the
redundant background information and enhance the feature learning ability of
the model.

4 Experimental Results and Analysis

Experimental validation is performed on three FGVC public datasets, including
CUB-200-2011, Stanford Cars, and FGVC-Aircraft. The details of the datasets
are shown in Table 1.

Table 1. The information of datasets

Datasets Classes Training Testing

CUB-200-2011 200 5994 5794
Stanford-Cars 196 8144 8041
FGVC-Aircraft 100 6667 3333

In the analysis of experimental results, the three datasets are replaced by
birds, cars and airs respectively.

4.1 Model Implementation Details

The FAAP-CNN is implemented on ResNet50 pretrained on ImageNet. Specifi-
cally, the final output features of the ResNet50’s last three residual blocks, conv
3, conv 4, and conv 5, are utilized to construct a feature pyramid, denoted as
B3, B4, and B5. And the feature refinement is carried out on B3. Input image
is resized to 448 × 448 pixels. Additionally, pyramid levels are assigned anchors
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with scales of 64, 128, 256 and 1:1 ratio for each anchor. The most active 5,
3, and 1 anchors are chosen for potential refinement. The open-source PyTorch
framework is used for model training, which is conducted on a single TITAN
Xp GPU. Stochastic gradient descent method is adopted for optimization, with
momentum set to 0.9 and a mini-batch size of 16. The initial learning rate is
0.001, which diminishes to 0 based on a cosine annealing schedule. All models
are trained for a total of 100 epochs.

4.2 Comparison with State-of-the-art Methods

Table 2 shows the performance evaluation of the above three datasets. Each
column contains nine representative FGVC methods. This paper presents the
results of model based on ResNet50 as the backbone network. Compared with
the above methods, the FAAP-CNN proposed in this paper has a certain degree
of performance improvement on the three datasets. The comparison results can
be summarized as follows: On birds dataset, the two-stage FAAP-CNN model
proposed in this paper achieves 88.9% accuracy. As can be seen from Table 2, Du
et al. and PMG adopted progressive training strategies to learn complementary
attributes of different granularity, achieving an accuracy of 89.9% and 89.6%,
respectively. On the cars dataset, FAAP-CNN outperforms Du et al. by 0.7%
with an accuracy of 96.1%. On airs dataset, FAAP-CNN achieves the best accu-
racy of 94.9%. Compared with Du et al., the accuracy is improved by 0.8%. The
comparison of the above experimental results can demonstrate the effectiveness
of the proposed model.

Table 2. Comparison results of three datasets

Methods Base Image
resolution

Birds (%) Cars (%) Airs (%)

CIN (AAAI 20 [28]) ResNet50 448× 448 87.5 94.1 92.8

MC-Loss (TIP 20 [29]) ResNet50 448× 448 87.3 93.7 92.6

PMG (ECCV 20 [30]) ResNet50 448× 448 89.6 95.1 93.4

AP-CNN (TIP 21 [7]) ResNet50 448× 448 88.4 95.4 94.1

DTRG (TIP 22 [31]) ResNet50 448× 448 88.8 95.2 94.1

MSAC (ICME 21 [32]) ResNet50 448× 448 88.3 94.6 92.9

Du et al. (TPAMI 21 [33]) ResNet50 448× 448 89.9 95.4 94.1

Song et al. (TPAMI 22 [34]) ResNet50 448× 448 86.2 93.6 91.4

iSICE (CVPR 23 [4]) ResNet50 448× 448 85.9 93.5 92.7

FAAP-CNN (one stage) ResNet50 448× 448 87.9 94.3 93.0

FAAP-CNN (two stage) ResNet50 448× 448 88.9 96.1 94.9

In general, the advantages of FAAP-CNN proposed in this paper lie in two
parts: 1) By establishing a dual path to integrate high-level semantics and low-
level details. The integrity and reliability of high-level feature information are
maintained through feature alignment and feature selection, and the accuracy
of classification and location is improved. 2) Through the ROI-guided feature
refinement stage, the background noise is further eliminated, and the feature
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learning ability of the model in stage II is enhanced, which is conducive to the
improvement of performance.

Table 3. Comparison results of different modules

Methods Base Accuracy (%)

baseline ResNet50 84.1
FP ResNet50 86.6
FP + AP ResNet50 87.2
FP + AP + FDRM ResNet50 87.4
FP + AP + FAM ResNet50 87.5
FP + AP + AAM (adjust spatial features) ResNet50 87.5
FP + AP + AAM (adjust channel features) ResNet50 87.5
FP + AP + FDRM + FAM ResNet50 87.7
FP + AP + FDRM + FAM + AAM ResNet50 87.9

Table 4. Detailed information for the three modules. A: feature pyramid. B: attention
pyramid. C: ROI feature refinement

Methods Base GFlops Params Time

A ResNet50 325.12 27.92M 252.2 s/epoch
A + B ResNet50 341.97 28.20M 315.3 s/epoch
A + B + C ResNet50 565.75 28.20M 658.1 s/epoch

4.3 Ablation Studies

In this paper, some ablation experiments are conducted to analyze the contri-
bution of each module. The following experiments are conducted on the birds
dataset, all using ResNet50 as the backbone network. Table 3 shows the con-
tributions of three modules: feature alignment, feature selection, and attention
alignment. Table 4 represents the parameter details of three modules. Since this
paper focuses on changes made to the AP-CNN model, a comparative analysis of
the computational complexity, params, and training efficiency of AP-CNN and
FAAP-CNN is conducted. The specific results are shown in Table 5.

As shown in Table 3, FP leads obvious performance improvement compared
with baseline, and AP further improves accuracy by enhancing the correlation
between features, indicating that the structure of the dual path is very mean-
ingful for FGVC. With the superposition of FAM, FDRM and AAM, the per-
formance of the model is gradually improved, which shows the significance of
the work proposed in this paper. When AAM is added separately, no matter the
spatial feature or channel feature is adjusted, the performance of the model can
be improved to some extent, which indicates that the module has the same bind-
ing force on the two features, and both of them can focus on the target object
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Table 5. Comparative analysis of FAAP-CNN and AP-CNN

Methods Base GFlops Params Time

AP-CNN ResNet50 31.93 27.96M 389 s/epoch
FAAP-CNN ResNet50 565.75 28.20M 658.1 s/epoch

region. Table 4 shows the details of the calculation cost, parameter and time
spent on a single GPU for the feature module, attention module and ROI refine-
ment module. It can be seen that the three parameters are gradually increasing.
As can be seen from Table 5, the computational complexity of FAAP-CNN is
significantly higher than that of AP-CNN. Generally speaking, the higher the
computational complexity, the longer the required computing time. Therefore,
FAAP-CNN performs poorly in training speed, which is almost twice that of AP-
CNN. In terms of model complexity, the number of parameters in FAAP-CNN
is slightly higher than that in AP-CNN, indicating that the improved module
of the FAAP-CNN model does not add a lot of parameters to the AP-CNN
model, and the improvement in the module is worth considering. Analysis shows
that FAAP-CNN consumes a lot of computational resources during training,
and the model takes longer to converge. In future work, we will further optimize
the structure of the FAAP-CNN model to reduce unnecessary calculations and
reduce the computational complexity of the model.

4.4 Visualization

Fig. 7 shows the ROI pyramid obtained from FAAP-CNN. For each dataset, this
paper selects two test images and uses red, blue, and green boxes to represent

Fig. 7. Visualization of ROI pyramid.
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Fig. 8. Visualization of attention.

regions of interst. As can be intuitively observed in Fig. 7, local regions from
different levels can focus the model on more subtle and discriminative parts.
Figure 8 shows the attention visualization of the model presented in this article.
Compared with the original attention pyramid [7] (AP-CNN) and the attention
pyramid integrated with CBAM, it can be intuitively seen that the attention
structure proposed in this paper can focus on more subtle and discriminative
parts, and its performance is relatively superior.

5 Conclusion

In this paper, a convolutional neural network combining feature-aligned and
attention pyramid is proposed for FGVC. This method uses dual paths to inte-
grate high-level and low-level information to enrich feature representation at
each level. The feature refinement in stage II further eliminates the impact of
background noise on classification and improves the classification performance of
the model. Experimental results show that the proposed method performs well
on three public datasets.
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Abstract. In terms of road depression detection, there are four existing
methods: (1) based on two-dimensional image processing methods, (2)
three-dimensional point cloud modeling and segmentation based meth-
ods, (3) based on machine/deep learning methods, and (2) (3) hybrid
methods. This article proposes a road depression detection algorithm
based on Yolov7, which utilizes the Yolov7 network model to make differ-
ent improvements: to make the localization more accurate, we use WIoU,
which reduces the total loss and improves the AP to a certain extent.
Due to the presence of some small objects in the dataset, small objec-
tive detection has always been a focus of object detection, so ODConv,
which can effectively detect small objects, has been introduced. In the
past, adding attention mechanisms directly added an attention compo-
nent, which would make the model more complex. Therefore, we directly
applied attention mechanisms to existing components without increasing
the complexity of the model and achieving the goal of improving accu-
racy. In addition, we conducted a large number of experiments to verify
the superiority of our model. We not only compare it on our road depres-
sion dataset but also conducted comparative experiments with the recent
state-of-the-art models in the Yolo field on the COCO dataset to verify
its universality. Compared to Yolov7, our model has improved by 14.9%
on AP, while also comparing with the newly proposed Yolov8 model, we
have improved by 2.0% on AP.

Keywords: Road depression detection · Yolov7 · Attention
mechanism · Small objects

1 Introduction

A pothole is a structural road damage with considerable impact formed by the
co-existence of water and traffic. Water seeps into the ground, weakening the soil
under the pavement, and then traffic breaks the affected pavement, resulting in
the loss of part of the pavement mass [1]. Potholes in roads cause significant
inconvenience and pose a major threat to traffic safety. Road diseases such as
cracks and potholes have a significant impact on the structure and service life of
highways. According to The Pothole Facts, about one-third of the 33,000 traffic
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
E. Chen et al. (Eds.): BigData 2023, CCIS 2005, pp. 76–87, 2023.
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accidents in the U.S. are related to poor road conditions. Therefore, inspect-
ing roads frequently and repairing potholes and depressions is necessary [2].
The naked eye directly identifies early inspection through full-time personnel
and simple shooting equipment, which is undoubtedly very time-consuming and
laborious, and the detection accuracy is not high.

In recent years, with the depth use of computers, computer vision technology
has been widely used to obtain three-dimensional road information data and
detect road potholes. The existing road pothole detection methods are mainly
divided into four categories: (1) Classical two-dimensional image processing [3]
on MATLAB, the road is divided into non-defective parts and defective parts
based on the threshold of histogram shape, and then the texture of the pit
shape is extracted based on the geometric characteristics of the defective area
and compared with the surrounding non-defective area to determine whether
it is a pothole area. (2) 3D point cloud modeling and segmentation-based [4]
3D point cloud points with accurate height information are captured during
scanning by 3D laser scanners. Then mesh-based processing methods focus on
a specific feature, such as potholes. (3) Machine/deep learning-based [5] takes
the histogram-based texture metric as the feature of the image and establishes
a nonlinear support vector machine to identify whether the target area is a
pothole. and (4) the mixed [2] first transform the dense disparity map, extract
the potential undamaged area from the transformed disparity map, and model
the difference in the extracted area to obtain the modeling parallax map. By
comparing the difference between the actual parallax map and the modeled
parallax map, the location information of the pothole can be accurately detected.

However, because some potholes will be relatively small, we often want to be
able to detect small potholes as early as possible to prevent them from gradually
evolving into large depressions and making repair costs high, which involves small
object detection. At present, small object detection methods emerge endlessly:
SSD [6] proposes that in convolutional neural networks, the semantic information
contained in the feature map of each output stage is different, and the semantic
information output by the lower layer is more robust, so the lower output layer
can be used to detect small objects, which can effectively improve the detec-
tion accuracy, which is the earliest feature pyramid structure. BiFormer [7] first
filters out irrelevant key-value pairs in coarse-level areas and then applies fine-
grained token-to-token attention in the remaining regions. YOLO-Z [8] improves
the performance of the model detection of small objects to a certain extent by
replacing the Backbone module with Resnet50 [9] and DenseNet [10] based on
Yolov5 [11].

Overall, the main contributions of this work are the following three aspects:

(1) In order to achieve a more accurate localization effect, wise-iou is used to
replace the original DIOU to optimize the loss function and improve the
model’s generalization ability.

(2) To improve the detection accuracy of small potholes, ODConv is used.



78 L. Zhao et al.

(3) In order to guide the object detection process and enhance the detection
accuracy, coordinate attention mechanism is introduced without adding
components.

2 Related Work

This section will briefly review the methods used in this area.

2.1 Object Detection Method

The object detection phase before 2012 is known as the “cold weapon era,” when
detection systems use classifiers to evaluate slices of different measured images.
Since 2014, object detection has been divided into single-stage and two-stage.
The two-stage detector mainly adds a proposed candidate box stage, accord-
ing to the candidate box, to derive the final prediction box, such as R-CNN
[12], run a segmentation algorithm to split an image into small pieces, and then
run a classifier on these small blocks. Yolo [13] is a typical single-stage detector
that constructs object detection as a regression problem into spatially separated
bounding boxes and associated class probabilities. A single neural network pre-
dicts bounding boxes and class probabilities directly from the whole image in
a single evaluation. Because the entire inspection pipeline is a single network,
end-to-end optimization can be done directly on inspection performance.

Yolov7 [14] proposes several bag-of-freebies that can be used for training to
improve accuracy by increasing the burden on training. However, the burden on
inference does not increase, so the detection speed does not slow. At training
time, a module is split into multiple identical or different module branches, and
a multi-branch network is used to obtain better feature representation. When
inference, multiple branches are combined into one equivalent module, reducing
computation and parameters and improving the detection speed. Reference [15–
19] shows that deeper networks can learn and converge efficiently by controlling
the shortest and longest gradient paths. On this basis, Yolov7 proposed E-ELAN.

2.2 Intersection Over Union

The loss function for bounding box regression(BBR) is a critical factor in achiev-
ing object detection. If well-defined, this will bring significant performance gains
to the model. With the improvement of the Yolo algorithm, different kinds of
IoU have also emerged, such as CIoU, DIoU, EIoU, SIoU, etc. Most existing work
assumes that the training data is of high quality and focuses on strengthening
the fitting ability of BBR losses. If BBR is mindlessly enhanced on low-quality
samples, it will specifically impact localization performance. Focal-EIoU [20]
considered this problem but did not fully exploit the potential of non-monotonic
focusing mechanisms(FM) because it used a static focusing mechanism. To solve
this problem, a dynamic non-monotonic focusing mechanism loss method based
on IoU is proposed and named Wise-IoU (WIoU) [21]. Dynamic non-monotonic
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frequency utilizes outliers instead of IoU to evaluate the quality of anchor frames
and provides a sensible gradient gain distribution strategy. This strategy reduces
the competitiveness of high-quality anchor frames while also reducing the harm-
ful gradients generated by low-quality samples. This allows WIoU to focus on
normal-quality anchor frames and improve the overall performance of the detec-
tor. Since it does not involve the aspect ratio calculation, the overall operating
speed will be improved to a certain extent.

2.3 Dynamic Weight Networks

Learning a single static convolution kernel is a typical training paradigm in
each convolutional layer of modern convolutional neural networks [22,23]. Ref-
erence [22,23] shows that learning a linear combination of n convolution kernels,
with attention weights associated with the input, will significantly improve the
accuracy of lightweight convolutional neural networks. Nevertheless, replacing
ordinary convolution with this dynamic convolution will increase the number of
convolution parameters by n times and only focus on the dynamic characteris-
tics of one dimension (the number of convolution kernels) in the kernel space.
Omni-dimensional Dynamic Convolution (ODConv) [24] utilizes a multidimen-
sional attention mechanism (multi-headed SENet [25]) to learn four attention
types (number of convolution kernels, convolution kernel size, number of input
channels, number of output channels) in the kernel space in a parallel manner.
In this way, ODConv with only one core can also achieve the learning effect of
convolution with multiple cores and may even surpass it.

2.4 Attention Mechanism

Reference [26] applies attention mechanisms to computer vision for the first
time. SENet captures the weight of each channel of the input feature layer during
CNN operation. CBAM [27] proposes a simple and effective feedforward convolu-
tional neural network attention module that considers two relatively independent
dimensions of channel and space at the same time. Reference [28] proposes a new
mobile network attention mechanism, which embeds location information into
channel attention, avoiding excessive computational overhead, and can capture
remote dependent information and save accurate location information.

3 Methods

Figure 1 shows the overall architecture diagram of our model using the Yolov7s
model. We used ODConv and attention mechanisms in Backbone and Neck.
Usually, introducing attention mechanisms adds an attention module, meaning
that the model adds a layer and makes the model more complex. To avoid this
problem, based on not breaking the architecture of the original Yolov7s as much
as possible, we follow the way ODConv uses the attention mechanism. If we want
to add an attention mechanism to a component, we can embed it directly into
the component.
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Fig. 1. Overall architecture diagram of YOLOv7 network. The model is mainly com-
posed of three parts: Input, Backbone, and Head. This framework diagram only shows
the parts we have modified, where - OD represents the use of ODConv and - ATT
represents the use of attention mechanism. Since Yolov7 is all stacked by convolution,
the output part has not been modified, so it is represented by CBS-1.

3.1 Network Architecture

The YOLOv7 network model is mainly composed of three parts: Input, Back-
bone, and Head. First, the image is input to the input layer. After a series of
operations, such as slicing and data enhancement for pre-processing, it is sent to
the backbone network to extract the corresponding features. Subsequently, the
extracted features are fused in the Neck module at different scales. The fused
features are fed to the inspection head, and the results are output after testing.

In the Backbone module, the regular convolution is replaced with ODConv
to extract richer semantic features. ODConv can be defined as:

y = (αw1 � αf1 � αc1 � αs1 � W1 + ... + αwn � αfn � αcn � αsn � Wn) × x (1)

where αwi ∈ R represents the attention scalar of the convolution kernel Wi ; αsi ∈
R

k×k, αci ∈ R
cin , αfi ∈ R

cout represents the scalar attention calculated along
the spatial dimension, input channel dimension and output channel dimension of
the convolution kernel Wi, respectively. � represents multiplication operations
in different dimensions along kernel space.

We used the SENet attention module but calculated them with multiple
heads as πi(x), the structure of which is shown in Fig. 2. Specifically, the input
x is first compressed into a feature vector with length by channel-level global
average pooling (GAP) operation. The FC layer maps compressed eigenvectors
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to a low-dimensional space with a reduction ratio of r. For the four head branches,
each branch has an FC layer with output sizes k ×k, cin × 1, cout × 1, n× 1, and
a Softmax or Sigmoid function that generates normalized attention αsi, αci, αfi,
αwi, respectively. In ODConv, for the convolution kernel Wi: (1) αsi assigns an
attention scalar to each filter’s convolution parameter within the spatial position;
(2) αci assigns different attention scalars to the channel of each convolutional
filter; (3) αfi assigns different attention scalars to the convolution filter; (4) αwi

assigns an attention scalar to the entire convolution kernel.

Fig. 2. ODConv uses a new multidimensional attention mechanism to compute four
types of attention αsi, αci, αfi and αwi in the kernel space in parallel.

In principle, these four types of attention are complementary and gradually
multiply them by convolutional kernels in the order of position, channel, filter,
and core, capturing rich contextual information to provide performance guaran-
tees.

3.2 Loss Function Optimization

We use the traditional Yolo loss: box regression loss, classification loss, and object
loss. BBR loss is an important factor in whether the localization is accurate. The
definition of IoU is crucial for calculating BBR losses. We are using WIoUv1,
which is calculated as follows:

LWIoUv1 = RWIoULIoU (2)

RWIoU = exp(
(x − xgt)2 + (y − ygt)2

(W 2
g + H2

g )∗ ) (3)

where,

LIoU = 1 − IoU = 1 − Wi + Hi

Su
(4)

Wg and Hg are the size of the smallest closed box.
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It can be seen from the formula that it has two layers of attention mechanism:
(1)RWIoU ∈ [1, e], which will significantly amplify the LIoU of the ordinary mass
anchor box;(2) LIoU ∈ [0, 1], which will significantly reduce the RWIoU of high-
quality anchor frames, and focus on the distance between the center point when
the anchor frame and the target frame coincide, which weakens the punishment of
geometric factors to a certain extent, reduces training intervention, and improves
the generalization ability of the model accordingly.

3.3 Attention Mechanism

Squeeze-and-Excitation (SE) attention does not take location information into
account when using global pooling, so here the global pooling is decomposed
into one-to-one dimension feature encoding operations:

zhc (h) =
1
W

∑

0≤i<W

xc(h, i) (5)

zwc (w) =
1
H

∑

0≤j<H

xc(j, w) (6)

where c represents the c-layer channel, W represents the weight direction, H
represents the height direction, and z represents the output. This results in a
pair of feature maps with directional awareness.

In order to obtain a feature map that is both channel-aware and sensitive to
position information, the feature maps obtained in Eqs. 5 and 6 are first spliced
together and then sent to a shared 1 × 1 convolution transformation function,
the formula is:

f = δ(F1([zh, zw])) (7)

where [,] is series operations along spatial dimensions, the δ is the nonlinear
activation function, and f ⊆ R

C
r×(H+W ) is the intermediate feature map that

encodes spatial information in the horizontal and vertical directions. Then divide
f into two independent tensors along the spatial dimension, and use two 1 × 1
convolution transformations Fh and Fw to transform the number of channels of
fh and fw to be the same as the input X, respectively, with the formula:

gh = σ(Fh(fh)) (8)

gw = σ(Fw(fw)) (9)

where σ is the sigmoid function. The output gh and gw are expanded and used as
attention weights, respectively. Finally, the output of our coordinate note block
Y can be written as:

yc(i, j) = xc(i, j) × ghc (i) × gwc (j) (10)
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4 Experiments

In this section, we conduct corresponding experiments to evaluate the perfor-
mance of our model. We also conducted ablation studies on the components to
fully validate their effectiveness on our model.

4.1 Datasets and Implementation Details

To train our model, we used a dataset with a total of 3346 images, where the
training set contains 2026 images, the validation set contains 630 images, and
the test set contains 690 images. Before training, nine anchor box sizes suitable
for our dataset have been obtained by the K-means clustering algorithm: 9× 2,
16 × 4, 24 × 7, 39 × 13, 71 × 26, 104 × 51, 160 × 93, 238 × 151, 478 × 204.

We built our network on PyTorch and trained 500 epochs on a PC using two
NVIDIA GeForce GTX 1080 Ti GPUs and 11 GB of memory.

4.2 Comparative Experiments

In order to verify the universality of our model and compare it with the latest
model of the Yolo series, since the PPYOLO series only trained 36 epochs to
get good results, we also only trained 36 epochs, and the results are shown in
Table 1. Among them, the IoU threshold taken by AP test is 0.75.

Table 1. Comparison of different models on the Coco dataset

Models AP val
50−95 AP val AP test

Yolov7 / 51.2 51.4

PPYOLOE-S [29] / 42.7 43.1

PPYOLOE-M [29] / 48.6 48.9

PPYOLOE-L [29] / 50.9 51.4

PPYOLOE-X [29] / 51.9 52.2

Yolov8s [30] 44.9 / /

ours 46.9 66.1 65.3

As can be seen from the above table, our model has improved AP by 14.9%
compared to the original Yolov7, and the effect is very significant. At the same
time, we also compared the latest Yolov8 model, which is 2.0% better. This
shows that our model has a significant improvement in object detection in the
Yolo field.
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4.3 Ablation Experiments

To fully validate the effectiveness of each component in our model, we conducted
an ablation study. W indicates that WIoU is used, O means that ODConv is used,
S means that the SENet attention mechanism is introduced, C means that the
CBAM attention mechanism is introduced, and CA means that the coordinate
attention mechanism is introduced. These models were trained and tested with
the same dataset and metrics, and the experimental results are shown in Table 2.

Table 2. Ablation experiments

Models Precision Recall AP val AP test

Yolov7 79.22 68.22 71.02 70.3

Yolov7s+W 81.11 68.41 71.17 71.3

Yolov7s+O 80.09 68.25 71.13 71.0

Yolov7s+S 79.47 68.07 70.03 68.3

Yolov7s+C 80.97 68.66 71.38 69.9

Yolov7s+CA 81.82 69.26 72.32 71.8

Yolov7s+W+O 82.11 68.92 71.89 72.1

Yolov7s+W+O+CA(ours) 83.07 69.85 72.39 72.3

As can be seen from the above table: (1) Each component we used has
improved in performance, and the most significant improvement effect is the
addition of an attention mechanism, followed by the use of WIoU and then the
use of ODConv. This may be because the ODConv improvement effect on small
objects is more significant, and only small potholes in the corners of some images
are reflected in our dataset. The overall number may not be very large, so the
improvement is not apparent. (2) In order to reflect the effectiveness of the atten-
tion mechanism we use, we use the SENet mechanism and the CBAM mechanism
to compare, and it can be seen that the effect is improved one by one, and it
is also verified that the use of four different types of attention can significantly
improve performance, especially the accuracy, compared to the coordinate atten-
tion mechanism we use with SENet, which improves by 2.35%, which shows that
our model can detect more accurate positive samples. (3) Continuous superposi-
tion of improving components, the performance also improves, showing that our
improvement points do not conflict, and can jointly improve performance.

4.4 Visualize Results

We conducted qualitative experiments on the road depression dataset, compared
our network with the original Yolov7 and Yolov8, and obtained the following
visualizations. It can be seen that our model is superior to the other two models
in terms of both detection and positioning accuracy (Fig. 3).
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Fig. 3. Visualize Results

5 Conclusion

We propose a road detection algorithm based on Yolov7. Based on Yolov7, to
make the positioning more accurate, we used WIoU, the total loss decreased,
and the AP was improved. There will be more or less some small objects in the
data set, so ODConv is introduced to improve the detection accuracy of this
part. In the past, the attention mechanism was directly added to an attention
component, which would make the model more complex, so we directly applied
the attention mechanism to the existing component, which would not increase
the complexity of the model and achieve the purpose of improving accuracy.
In addition, we have conducted a large number of experiments to verify the
superiority of our model.
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Abstract. For 3D shape inference, single-view 3D Face Reconstruc-
tion heavily relies on capturing geometric structure information from
the 2D face. Most 3DMM-based approaches learn the geometry parame-
ters directly from the 2D image appearance, but the limited information
makes it an ill-conditioned task and makes the model struggle to learn the
inference evidences. In this work, we propose that the 2D face boundary
image contains more semantic information in the face contour connecting
lines and can represent the basic geometric structure of the face. In addi-
tion, we propose an Explicit Geometric Modality Network (EGMNet) for
enhancing face shape inference. The EGMNet consists of the appearance
induced shape branch and the boundary induced shape branch. The for-
mer is built with an FPN-based network capable of combining multi-scale
features, while the latter is built with a light-weighted network capable
of extracting rich shape features. Finally, these two modalities’ induced
shape features are combined to achieve shape-enhanced 3D face recon-
struction.

Keywords: 3D Face Reconstruction · Geometric Modality · Shape
enhancement · 3D Morphable Model

1 Introduction

3D face reconstruction is an important task in the fields of computer vision
and image processing. Currently, 3D face reconstruction contributes greatly to
many visual analysis tasks, including medical analysis, virtual reality, and face-
concentrated tasks such as face key point detection [21], face recognition [2], and
face editing [15]. Most existing works follow the famous framework of the 3D
Morphable Model (3DMM), which provides an efficient and effective solution for
3D face reconstruction.

Deep learning has facilitated the development of many advanced learning
tasks, and it also shows great potential for 3D face reconstruction tasks in
the 3DMM framework. However, although the emergence of deep learning has

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
E. Chen et al. (Eds.): BigData 2023, CCIS 2005, pp. 88–98, 2023.
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enhanced the learning capability of facial features, the amount of effective infor-
mation about faces contained in a single 2D face image is always limited, which
is a challenge that cannot be ignored for 3D face reconstruction tasks. Especially
when the target face presents a large pose or occlusion, the incomplete face infor-
mation has a more serious impact on the related tasks. Therefore, in order to
fully exploit the face geometry information, Shang et al. [14] proposed a self-
supervised training architecture that uses the geometric consistency of multiple
views to constrain the pose and depth estimation of faces, thus realizing geomet-
rically accurate face reconstruction. Li et al. proposed a multi-attribute regres-
sion network (MARN) [10], the work design the geometric contour constraint
loss function, using the constraints of sparse 2D face landmarks to improve the
reconstructed geometric contour information.

Fig. 1. 3D reconstruction results of different methods [7,8,20] for comparison, the
reconstructed NME results are shown in the lower right corner. The lower the better.

In fact, in the field of super-resolution image reconstruction [1,5,19], many
scholars have enhanced the localization of edge points by adding edge images of
the original image to the image reconstruction process. Because compared with
the original 2D pixel images, the face contour edge images not only contain facial
landmark points, but also contain more semantic information in the connecting
lines, which can provide a richer facial geometric structure. Inspired by the above
work and the need to fully exploit the facial feature information, it is not difficult
to think that the facial boundary represents the basic contour of the face and
even has a large space to characterize the facial pose, which is helpful for the
localization and pose regression of key facial points.
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In this work, to improve the accuracy of facial shape and pose, we propose
to incorporate facial edge images into the 3D face reconstruction task to achieve
enhancement of edge features. Meanwhile, we propose a two-branch face recon-
struction network based on shape enhancement, which is used to enhance the
ability of the model to extract geometric details. Considering the efficiency of
the model and the ability to extract features, we chose the lighter mobilenet
module and the multi-scale feature fusion module (MFFM) to construct the two
branches of the network separately, and finally combined the features extracted
from the two branches to infer the final 3D facial structure.

2 Method

2.1 Preliminary: 3DMM and Projection

3DMM [2] is a classical 3D face statistical model for recovering 3D face shapes
from 2D facial images, where each 3D face is viewed from two main kinds of
components, i.e., shape and expression. Then, as shown in Eq. (1), the 3D rep-
resentation of each face can be viewed as a linear combination of shape and
expression, denoted as Ws and We.

S = S̄ + αsWs + αeWe (1)

where S̄ denotes the mean 3D face, and the shape basis vector Ws and expression
basis vector We are the principal component bases derived statistically from real
3D facial scan data. αs and αe are the corresponding shape and expression basis
coefficients.

After obtaining the rebuilt 3D face shape S, the perspective projection model
[21] is used to project the 3D surface point S onto the 2D image plane. This
makes it possible to obtain the complete 2D landmark points of the target face,
which largely alleviates the problem of face alignment in large poses. For details,
as shown in Eq. (2), V2d is a weak perspective projection function for obtaining
the 2D positions corresponding to the 3D model vertices, where f is a scaling
factor, Pr is a fixed orthogonal projection matrix, and R and t2d denote the
rotation matrix and translation vector, respectively.

V2d = Pr ∗ f ∗ R ∗ S + t2d (2)

Thus, the network based on the 3DMM model, which finally requires solv-
ing the 62-dimensional parameters P = [f,R, t2d, αs, αe], the pose parameters
{f,R, t2d} are a total of 12-dimensional parameters, αs is a shape factor of 40
dimensions, and αe is an expression factor of 10 dimensions.

3 Network

We propose a boundary mode-enhanced shape inference model, named Explicit
Geometric Modal Network (EGMNet). The network regresses the 3DMM recon-
struction parameters from two different concerns, namely global features and



EGMNet for Shape-Enhanced 3D Face Reconstruction 91

Fig. 2. The architecture of the proposed EGMNet model, contains two main branches,
including the appearance induced shape branch (AIS) and the boundary induced
shape branch (BIS). Both branches are designed based on the lighter mobile blocks
in MobileNet-V2 [13] for efficiency, while BIS is used to extract shape-specific features.
To obtain richer information features, we designed a multi-scale feature fusion module
(MFFM) in the AIS branch. The loss criteria used and the detailed network structure
are shown on the right side of the figure.

facial geometric boundary features, using different representations of 2D face
images. The proposed EGMNet, as shown in Fig. 2, is made up of two main fea-
ture extraction branches: the appearance induced shape branch (AIS) and the
boundary induced shape branch (BIS). First, the 2D face image input to the
network is detected by the edge detection task [4] to obtain the Iedge, the algo-
rithm uses the difference between two adjacent pixels in the diagonal direction to
approximate the gradient magnitude to detect edges, and detects vertical edges
better than edges in other directions, with higher localisation accuracy. For the
input 2D face image f(x, y), the output image is g(x, y) after the edge detection
process. As shown in Eq. (3)

gx = f(x, y) − f(x + 1, y + 1) (3)
gy = f(x + 1, y) − f(x, y + 1)

g(x, y) =
√

g2x + g2y

where gx and gy denote the gradient of the input point (x, y) corresponding to
the x-axis and y-axis, respectively, and g(x, y) is calculated as the joint gradient
of that point. Compared to the original input image, Iedge has a more pronounced
edge geometry structure, which provides more direct shape and pose information.
Therefore, Iedge is used as a new modal image input into the network for learning.

Then, AIS and BIS branches are used to extract features from the global
(Iglobal) and boundary 2D face images (Iedge), respectively. BIS is mainly used to
extract the boundary geometry information from Iedge for feature enhancement.

p = F{CONCAT [Eedge(Iedge), Eglobal(Iglobal)]} (4)
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In Eq. (4), Eedge and Eglobal are the feature extraction modules in BIS and
AIS branches. Finally, the extracted information is combined and used to reason
about the final 3DMM reconstruction parameters ppre. ppre is the 62-dimensional
reconstruction parameter [f,R, t2d, αs, αe] that the model needs to regress, as
mentioned in Sect. 2.

Network Structure. To make the network model lighter and more efficient,
we built the Eedge and Eglobal branches using the mobile blocks in MobileNet-
V2 [13]. As shown in the right part of the Fig. 2, a mobile block contains four
computational modules. The depth-separated convolution used by the mobile
block, which consists primarily of 1 × 1 pointwise convolution, 3 × 3 depthwise
convolution, and 1 × 1 pointwise convolution. This design allows the model to
use a smaller number of parameters and to compute more efficiently.

From the right part of Fig. 2, the Eedge branch is used to process the input
face boundary geometry image Iedge. Since Iedge does not carry much depth
information, we design Eedge as a shallow network consisting of three basic layer
blocks, each layer consists of a mobile block. So Eedge is mainly used to extract
more potential features containing facial geometry and pose details from Iedge.
Considering that the original 2D image contains more information, in order to
balance learning efficiency and learning depth at the same time, we use four
mobile blocks to build the Eglobal branch, and we specifically build a multi-scale
feature fusion module (MFFM). The MFFM module takes reference from the
pyramid network [11] for multi-scale feature fusion to obtain richer information
by combining multi-layer features. The main structure of MFFM is shown in
the lower right corner of Fig. 2. Firstly, the input features of the previous layer
are up-sampled using two-fold inverse convolution, and then the corresponding
low-level features are altered using 1 × 1 convolution to have the same num-
ber of channels as the up-sampled features, and then finally the corresponding
elements of the two features are summed to complete the feature fusion. The
corresponding upper layer fused feature is used as the next layer fused high-level
feature, until finally the final multi-stage fusion feature is obtained. Finally, we
combine the information extracted from the two branches to achieve a more
accurate information representation. Specifically, the multi-stage fused features
of the MFFM are summed with the features obtained from the facial bound-
ary contours (Eedge). The fused features are input into a fully connected layer,
which inference the 3DMM reconstruction parameters [f,R, t2d, αs, αe] and use
this 3DMM reconstruction parameters to regress the 3D shape of the target face.

4 Loss Criteria

We first use the weighted parametric distance cost (WPDC) [21] for constraining
the model in order to reason about more accurate 3DMM reconstruction param-
eters. As shown in Eq. (5) where pg is the ground truth 3D parameter and p
is the 3D parameter predicted by the model. W is a matrix of weight variables
indicating the importance of each dimensional parameter in p.
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Lwpdc = (pg − p)TW (pg − p)
W = diag(w1, w2, ..., w62) (5)

wi =
‖V2d(p̂i) − V2d(pg)‖

max(W )

Then we intend to take the depth into consideration. Chamfer Distance [6]
as Eq. (6) is introduced to calculate between sets of 3D vertices.

Lvcdc =
1
N

∑
x∈V3d(pg)

min
y∈V3d(p)

‖x − y‖2 + (6)

1
N

∑
x∈V3d(p)

min
y∈V3d(pg)

‖x − y‖2

Here, N means the number of vertices and V3d could be calculated by Eq.
(2) without Pr. During calculation, for each vertex in one set, find the minimum
distance in the other set and sum the square distances up as this type of loss.

To enhance the representation of face geometric information, we use sparse
2D face landmarks as a weak constraint to further constrain the basic contours
of the face as follows.

L68 = ‖(f ∗ R ∗ Pr ∗ S68(αid, αex) + t2d)− (7)

(fg ∗ Rg ∗ Pr ∗ S68(α
g
id, α

g
ex) + tg2d)‖2

The parameters in Eq. (7) and the parameters in Eq. (2) have the same
representation, αg

id, and αg
ex, fg, Rg and tg2d are the ground truth values of the

corresponding parameters.
The final loss of our network is shown in Eq. (8). Where λwpdc, λvcdc and λ68

are used to balance the weights of these constraints.

Ltotal = λwpdcLwpdc + λvcdcLvcdc + λ68L68 (8)

5 Experiments

In this section, we focus on the training details of our network on the 300W-
LP [20] dataset, and then evaluate the performance of our proposed method on
dense face alignment and 3D face reconstruction tasks, and compare it with the
latest methods on the AFLW2000-3D and AFLW test datasets.

5.1 Training Details

We use the PyTorch deep learning framework to train the model and use SGD
to optimize our network with a momentum of 0.9 and a weight decay of 5e-4.
We empirically set the initial learning rate to 0.01 and specified a batch size of
64. Our loss function weights λwpdc is set to 1, λ68 and λvcdc are set to 3.
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Fig. 3. Cumulative errors distribution (CED) curves for 3D face reconstruction on
AFLW2000-3D with [7,8,20,21]. The mean NME (%) of each method is shown in the
bottom legend.

5.2 3D Face Reconstruction

In this section, we compare the performance of 3D face reconstruction on the
AFLW2000-3D dataset with methods [7,8,20,21], which have the same pipeline
and final vertex count as ours. The NME metrics are computed between the
aligned 3D geometries for performance evaluation. As shown in Fig. 3, the 3D
shape reconstructed with our method outperforms several of the above meth-
ods. As shown in Fig. 1, our reconstruction results are smoother and have more
details. Note that for uncertain segmentation of the input image, the reconstruc-
tion of [10] is random, so we did not make a fair comparison with this method
in this experiment.

5.3 3D Face Alignment Results

Similarly, to evaluate the performance of the model on the face-dense alignment
task, we used the normalized mean error (NME) as an evaluation metric, tested
on the AFLW and AFLW2000-3D datasets. In the test, we divided the AFLW
and AFLW2000-3D datasets into three gradients according to yaw angle, namely
[0◦, 30◦], [30◦, 60◦] and [60◦, 90◦], and compared the performance of the models
on these three gradients. The results of the comparison on the AFLW dataset
are shown in Table 2, and the results of the comparison on the AFLW2000-3D
dataset are shown in Table 1, and please note that these values are recorded
from their published paper and highlight the best results. Compared to most of
the facial alignment methods, our method is competitive in terms of average,
or different yaw angles. As shown in Fig. 4, we show the visualisation results
of the method in this paper and other methods [7,8] for the face alignment
task on the AFLW2000-3D dataset. We have selected as input images the target
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face in front face, side face and different region occlusion states, as shown in
the first column of Fig. 4. Each method displays two outputs, the first one is
the reconstruction result visualisation image and the second one is the keypoint
alignment visualisation result. The comparison reveals that the method proposed
in this paper not only achieves better reconstruction results, but also possesses
a smaller error in the sparse point alignment task. Especially in the performance
of specific details, such as the key point alignment of the chin contour and the
key point alignment of the mouth part.

Table 1. The NME (%) of 2D face alignment for different range of poses on AFLW2000-
3D with the first good results are highlighted, the lower is better.

Method AFLW2000-3D Dataset (68 pts)
[0◦, 30◦] [30◦, 60◦] [60◦, 90◦] Mean

RCPR [3] 4.260 5.960 13.180 7.800
SDM [17] 3.670 4.940 9.670 6.120
3DDFA (CVPR16) [21] 3.780 4.540 7.930 5.420
Yu et al. [18] 3.620 6.060 9.560 6.410
DAMDNet (ICCVW19) [7] 2.907 3.830 4.953 3.897
MARN (ICPR21) [10] 2.989 3.670 4.613 3.757
MFIRRN (ICASSP21) [9] 2.841 3.572 4.561 3.658
EOSNet (ICIP2022) [16] 2.906 3.739 4.677 3.774
Ours 2.692 3.444 4.656 3.598

Table 2. The NME (%) of 2D face alignment for different range of poses on AFLW
with the first good results are highlighted, the lower is better.

Method AFLW Dataset (21 pts)
[0◦, 30◦] [30◦, 60◦] [60◦, 90◦] Mean

RCPR [3] 5.430 6.580 11.530 7.850
SDM [17] 4.750 5.550 9.340 6.550
DEFA [12] 4.500 5.560 7.330 5.803
3DDFA (CVPR16) [21] 5.000 5.060 6.740 5.600
DAMDNet (ICCVW19) [7] 4.359 5.209 6.028 5.199
MARN (ICPR21) [10] 4.306 4.965 5.775 5.015
MFIRRN (ICASSP21) [9] 4.321 5.051 5.958 5.110
EOSNet (ICIP2022) [16] 4.212 4.935 5.787 4.978
Ours 4.132 4.909 5.775 4.939
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Fig. 4. 2D face alignment results of different methods [7,8] for comparison.

Table 3. Ablation study for validating the efficiency of the boundary induced shape
branch (BIS) and multi-scale feature fusion module (MFFM).

Network AFLW (mean) AFLW2000-3D (mean)

EGMNet (w/o MFFM, BIS) 5.228 4.008
EGMNet (w/o BIS) 5.157 3.851
EGMNet (w/o MFFM) 5.064 3.894
EGMNet 4.939 3.598

5.4 Ablation Study

In this section, we test the degree of impact of each module on the model’s
performance, focusing on the impact of the multi-scale feature fusion module
(MFFM) in the AIS branch, and the boundary induced shape branch (BIS). As
shown in Table 3, alignment results on both datasets are used as a reference. In
addition, in order to verify the usefulness of the three loss functions in training,
we add the three loss functions one by one in training and test the accuracy
of the model on the face alignment task separately. As shown in Table 4, each
part trains the same epoch, WPDC is mainly used to constrain the model to
regress out the accurate 3DMM reconstruction parameters, it is used in the first
step of model training. VCDC is constrained in 3D vertex space to improve the
accuracy of model alignment in 3D vertex space. Finally, the 2D sparse point
distance loss L68 is used for weak supervision.
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Table 4. Ablation experiments to verify the role of three loss functions in training,
shows the results of face alignment on both datasets

Loss Criteria AFLW (mean) AFLW2000-3D (mean)

WPDC 6.602 5.239
WPDC+VCDC 5.060 3.876
WPDC+VCDC+L68 4.939 3.598

6 Conclusion

In this paper, we introduce face geometric boundary images as new representa-
tional features for the single-view 3D face reconstruction task. Compared with
the traditional model, our model improves the accuracy of pose parameters and
shape parameters for model regression by fully exploiting the contour boundary
features. A new approach for 3D face reconstruction is also proposed in the net-
work design. Experiments conducted on the corresponding dataset demonstrate
the effectiveness of our proposed method.

Acknowledgements. This work is supported in part by China Postdoctoral Sci-
ence Foundation (No. 2017M621749)’ National Natural Science Foundation of China
(No. 62106108, 62076135, 61876087, 62276138)’ Natural Science Foundation of Jiangsu
Province (No. BK20210559)’ and Natural Science Research of Jiangsu Higher Educa-
tion Institutions (No. 21KJB520012).

References

1. Ai, W., Tu, X., Cheng, S., Xie, M.: Single image super-resolution via residual neu-
ron attention networks. In: 2020 IEEE International Conference on Image Pro-
cessing (ICIP), pp. 1586–1590 (2020). https://doi.org/10.1109/ICIP40778.2020.
9191314

2. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Pro-
ceedings of the 26th Annual Conference on Computer Graphics and Interactive
Techniques, pp. 187–194 (1999)

3. Burgos-Artizzu, X.P., Perona, P., Dollár, P.: Robust face landmark estimation
under occlusion. In: Proceedings of the IEEE International Conference on Com-
puter Vision, pp. 1513–1520 (2013)

4. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal.
Mach. Intell. 6, 679–698 (1986)

5. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolu-
tional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016).
https://doi.org/10.1109/TPAMI.2015.2439281

6. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object recon-
struction from a single image. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 605–613 (2017)

7. Jiang, L., Wu, X.J., Kittler, J.: Dual attention MobDenseNet (DAMDNet) for
robust 3D face alignment. In: Proceedings of the IEEE/CVF International Con-
ference on Computer Vision Workshops, pp. 504–513 (2019)

https://doi.org/10.1109/ICIP40778.2020.9191314
https://doi.org/10.1109/ICIP40778.2020.9191314
https://doi.org/10.1109/TPAMI.2015.2439281


98 S. Zhang et al.

8. Jiang, L., Wu, X.-J., Kittler, J.: Robust 3D face alignment with efficient fully
convolutional neural networks. In: Zhao, Y., Barnes, N., Chen, B., Westermann,
R., Kong, X., Lin, C. (eds.) ICIG 2019. LNCS, vol. 11902, pp. 266–277. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34110-7_23

9. Li, L., Li, X., Wu, K., Lin, K., Wu, S.: Multi-granularity feature interaction and
relation reasoning for 3D dense alignment and face reconstruction. In: IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, pp. 4265–4269.
IEEE (2021)

10. Li, X., Wu, S.: Multi-attribute regression network for face reconstruction. In: 2020
25th International Conference on Pattern Recognition (ICPR), pp. 7226–7233.
IEEE (2021)

11. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 936–944 (2017). https://doi.org/10.
1109/CVPR.2017.106

12. Liu, Y., Jourabloo, A., Ren, W., Liu, X.: Dense face alignment. In: Proceedings of
the IEEE International Conference on Computer Vision Workshops, pp. 1619–1628
(2017)

13. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2:
inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

14. Shang, J., et al.: Self-supervised monocular 3D face reconstruction by occlusion-
aware multi-view geometry consistency. In: Vedaldi, A., Bischof, H., Brox, T.,
Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 53–70. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58555-6_4

15. Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2Face:
real-time face capture and reenactment of RGB videos. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2387–2395 (2016)

16. Wang, J., Zhang, S., Song, F., Song, G., Yang, M.: Exploring occlusion-sensitive
deep network for single-view 3D face reconstruction. In: 2022 IEEE International
Conference on Image Processing (ICIP), pp. 1821–1825 (2022). https://doi.org/10.
1109/ICIP46576.2022.9897209

17. Xiong, X., De la Torre, F.: Global supervised descent method. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2664–2673
(2015)

18. Yu, R., Saito, S., Li, H., Ceylan, D., Li, H.: Learning dense facial correspondences
in unconstrained images. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 4723–4732 (2017)

19. Zhang, Y., Wu, Y., Chen, L.: MSFSR: a multi-stage face super-resolution with
accurate facial representation via enhanced facial boundaries. In: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
pp. 2120–2129 (2020). https://doi.org/10.1109/CVPRW50498.2020.00260

20. Zhu, X., Lei, Z., Liu, X., Shi, H., Li, S.Z.: Face alignment across large poses: a 3D
solution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 146–155 (2016)

21. Zhu, X., Liu, X., Lei, Z., Li, S.Z.: Face alignment in full pose range: a 3D total
solution. IEEE Trans. Pattern Anal. Mach. Intell. 41(01), 78–92 (2019)

https://doi.org/10.1007/978-3-030-34110-7_23
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1007/978-3-030-58555-6_4
https://doi.org/10.1109/ICIP46576.2022.9897209
https://doi.org/10.1109/ICIP46576.2022.9897209
https://doi.org/10.1109/CVPRW50498.2020.00260


Fine Edge and Texture Prior Guided
Super Resolution Reconstruction Network

Peng Sun , Jialuo Xu , Shuaishuai Dong , and Yi Chen(B)

School of Computer and Electronic Information/School of Artificial Intelligence,
Nanjing Normal University, Nanjing 210023, China

cs chenyi@njnu.edu.cn

Abstract. In recent years, significant progress has been made in the
field of super-resolution through the use of neural networks. Prior knowl-
edge, such as edges and textures, is commonly incorporated into super-
resolution reconstruction networks. However, existing models rely on
fixed operators to extract binary edge and texture information, which
often capture only rough features and fail to accurately represent the
desired edge and texture characteristics. Consequently, this may result in
the generation of spurious edges and difficulties in reconstructing image
texture details. In this study, we propose a novel super-resolution neu-
ral network composed of three branches, with two branches specifically
dedicated to extracting fine edges and textures. These two branches take
the edge map and texture map of the high-resolution image as the target
image, respectively, and are able to construct end-to-end neural net-
works through loss function constraints. Experimental results demon-
strate the superiority of our model in reconstructing sharper edges and
finer textures on benchmark datasets, including Set5, Set14, BSDS100,
Urban100.

Keywords: Image super-resolution · Prior knowledge · Edge · Texture

1 Introduction

Super Resolution (SR) reconstruction has been a popular research area for the
past few decades. The super resolution techniques aim to reconstruct Low Res-
olution (LR) images to High Resolution (HR) images, and while improving the
quality of our life. There are many applications based on super-resolution tech-
nology, such as video reconstruction [3,4], social security [22], medical image
enhancement [14,16],and military remote sensing [26].

With the development of deep learning techniques, super-resolution networks
have achieved rapid progress in the field of single image super-resolution (SISR)
for the past few years. The SRCNN [33] network was the first neural network
designed for this task and showed better results than traditional methods using
only three convolutional layers. Researchers later developed deeper networks like
VDSR [15], EDSR [18], and MDSR, which achieved even better reconstruction
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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outcomes. These models mostly extract information directly from low-resolution
images to generate high-resolution images, but LR contain limited pixel infor-
mation which makes it difficult to reconstruct higher quality image information.

Some studies have shown that incorporating prior knowledge, such as edge
priors [30,36] and texture priors [28], can provide additional pixel information
and improve the reconstruction quality of images. For example, Yang et al. [32]
proposed a method that combines edge maps with LR images for super-resolution
(SR) reconstruction. Fang et al. [11] introduced an edge network to reconstruct
image edges and learn edge features. Wang et al. [28] utilized fixed-class texture
priors to effectively reconstruct the texture details in images. Although these
methods have achieved good reconstruction results by leveraging prior knowl-
edge, they often overlook the differences between textures and edges, as well as
the repetitive nature of textures.

Therefore, we utilize the GLCM (Gray-Level Co-occurrence Matrix) to
extract the most frequently occurring texture features in the image. Additionally,
we employ an edge detection operator to extract fine-grained edge information.
As shown in Fig. 1, the extracted edges and textures differ significantly from the
binary edge operator. Although the extracted texture map contains sufficient
edge information, there are some spurious edges, so we utilize a refined edge
constraint reconstruction to fuse them with features. We use these extracted
texture and edge maps as the target images for the edge and texture branches
of our network. By incorporating loss constraints, we construct an end-to-end
network. In summary, our contributions are as follows:

1. We proposed a novel super-resolution network consists of three branches
designed to extract fine-grained edge and texture information. By fusing
the extracted edge and texture information, not only the internal texture
of the image can be reconstructed, but also the problem of false edges can
be solved using the fine-grained edge map. Numerous experiments demon-
strate that our network helps to guide the super-resolution reconstruction,
thus effectively solving the difficulties of image edge blurring and internal
texture reconstruction.

2. We have devised a novel loss function incorporating three components: image
content, edge, and texture losses. This integrated loss structure guides our
model to converge effectively, enabling accurate reconstruction of image edges
and texture details.

2 Related Works

2.1 Single Image Super-Resolution

In recent years, super-resolution techniques have been widely used in the field of
single image super-resolution. The development of single image super-resolution
can be divided into the following two steps:
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Fig. 1. The figure represents the edge map extracted by Canny, the refined edge map
and the texture map used in this paper, respectively.

In the early stages of super-resolution research, conventional methods relied
on techniques like linear interpolation and bicubic interpolation for image recon-
struction. These interpolation algorithms leveraged neighboring pixel values to
estimate missing pixels. While these approaches offered simplicity and flexibil-
ity, they faced challenges in accurately reconstructing high-frequency details in
super-resolution images.

Subsequently, learning-based methodologies emerged to address the LR-to-
HR mapping challenge. These approaches encompassed a range of techniques,
including sparse-based methods [31], neighborhood embedding methods [7,27],
random forests [23], and notably, convolutional neural networks (CNNs) [33].
With the rapid advancements witnessed in CNN research, they have risen to
prominence, establishing themselves as the prevailing approach in the field.
Prominent CNN models such as EDSR [18], RDN [35], SAN [8], and RFA [19]
have garnered substantial attention, owing to their remarkable performance in
image super-resolution tasks, thus solidifying their position at the forefront of
the field.

2.2 Prior Information Assisted Image Reconstruction

In the past few years, super-resolution networks based on prior information have
had a great impact on the field of super-resolution. Usually, a complex image
contains many edge regions, so the introduction of an edge prior will have an
important impact on the reconstruction of complex images. Tai et al. [25] pro-
posed to combine the advantages of edge-directed SR and learning-based SR.
Yang et al. [32] proposed an edge-guided recursive residual network (DEGREE)
that introduces image edges into a neural network model. The network uses a
bicubic interpolation preprocessed LR image as input and uses existing operators
(e.g. Sobel detector [10], Canny detector [6] etc.), which introduced additional
noise and generates artifacts. Sun et al. [24] used a novel gradient profile prior for
super-resolution reconstruction. Li et al. [17] proposed to use edge information to
introduce an encoder decoder to reconstruct high-resolution images. Fang et al.
[11] proposed the soft-edge information extracted by Edge-Net, which solved the
problem of fake edge appearance compared to the ready-to-use edge extractor.
Zhao et al. [35] proposed IEGSR to accomplish super-resolution reconstruction
using the high-frequency information of the image in the edge region.
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Fig. 2. The general composition of the FETSR network consists of four parts: shallow
feature extraction network (SFEN), fine texture reconstruction network (FTRN), fine
edge reconstruction network (FERN) and Image Refinement Network (IRN).

3 Methodology

3.1 Architecture

The progress of the reconstruction can be divided into the following two steps
in our network. As seen in Fig. 2, first, we reconstruct the rough features by
the SFEN, fine-edge extraction through the FERN and the texture information
extracted by the FTRN. FERN and FTRN contain mainly the MDSR mod-
ule, which is capable of fully extracting multi-scale edge and texture features
through convolutional kernel-size-agnostic convolution. Second, we will concate-
nate and fuse the fine edge, rough features and fine texture information. The
fused image tensor is then fed to the image refinement network and used to
recover high quality images. In detail, FETSR consists of four modules: shallow
feature extraction network (SFEN), a fine edge reconstruction network (FERN),
a fine texture reconstruction network (FTRN), and an image refinement network
(IRN).

In the first stage, the output of these network can be described as:

frough = FSF (ILR) (1)

fedge = FEdge(ILR) (2)

ftexture = Ftexture(ILR) (3)

where ILR is the low-resolution image, FSF , Fedge and Ftexture denote the SFEN,
FERN and FTRN. frough, fedge and ftexture represent the shallow features, the
image fine edge, and the image texture. Then they use fusion layers for merging:

ffusion = Ffusion([frough, fedge, ftexture]) (4)
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where [] operation represents the connection of the feature maps and Ffusion()
denotes the fusion layer, which can achieve features for fusion. In the second
stage, we train the fused image tensor using the refinement network.

ISR = FIRN (ffusion) (5)

where ISR is the reconstructed SR image and FIRN () represents the image refine-
ment network. In training our network, we propose the following loss function
to assist the reconstruction process.

Lloss = Lcontent + λ1Ledge + λ2Ltexture (6)

where λ1 and λ2 are hyper-parameters, Lcontent, Ledge and Ltexture denote the
loss, and this will be discussed in the following chapters.

3.2 Shallow Feature Extraction Network (SFEN)

First, we use SFEN to extract rough image feature. As a general rule that the
rough image features can be easily detected, so a convolutional layer using a
3 × 3 convolutional kernel is applied to map the image to a high dimension.
Then, the low-frequency information of SR image is extracted by using five
identical convolutional layers, each layer is represented as:

fn = wn ∗ fn−1 + bn(n = 1, 2, · · · , 5) (7)

where fn, wn and bn represent the feature maps, weights and biases of the current
convolutional layer output, respectively. fn−1 is the output of the upper layer
and it will feed into the current layer, where n varies from 1 to 5. A related
study found that sufficient shallow features can be extracted with 5 layers of
convolution. Finally, when n = 5, we utilize an upsample module to upscale the
extracted features to the same dimension of the HR.

frough = Fup(f5) (8)

where Fup denotes the up-sample module, which consist of a sub-pixel layer and
employ two convolutional layers for the transition to the image refinement net-
work. The output frough represents the image features extracted by convolution
at a shallow level.

3.3 Fine Texture Reconstruction Network (FTRN)

A prior information is often used for image reconstruction and has led to signif-
icant improvements in image quality. The texture prior is introduced in FTRN,
which can reconstruct the texture details of the HR directly from the LR.

The texture information is extracted by the GLCM method. GLCM repre-
sents the joint distribution of grayscale of two pixels with some spatial position
relationship. The GLCM generation process as follows:
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* A spot (x, y) and a spot (x + a, y + b) in an image form a point pair. Let the
pair of spots have a gray value of (f1, f2) and let the image have a gray value
of at most L, then there will be a L × L combination of f1 and f2.

* For the whole image, the number of occurrences of each (f1, f2) value is
calculated, and then they are arranged into a matrix.

* The total number of times (f1, f2) appears are normalized to obtain the prob-
ability P(f1,f2), which results in a grayscale co-generation matrix.

After obtaining the GLCM of the HR image, we utilize the properties of GLCM
to extract the repeated texture details present in the image. Firstly, a 3 × 3
convolutional kernel is applied to expand the channels, followed by five multi-
scale residual blocks to explore features at different scales. In this part of the
network, the texture feature map is upsampled to match the size of the HR image.
Throughout this process, the LR image is used as the input to the network,
allowing us to directly obtain the texture feature map of the LR image. The
specific equations are as follows:

Ltexture = ‖T (ILR) − Itexture‖1 (9)

where T () denotes the texture reconstruction network, Itexture represents the
texture of the HR extracted by GLCM, T (ILR) displays the reconstructed tex-
ture and make L1 loss with Itexture

3.4 Fine Edge Reconstruction Network (FERN)

To address the issue of excessive false edges in the texture feature map gener-
ated by GLCM, we introduce the following edge extraction operator, which can
produce more refined edge features:

IEdge = div(uh, uv) (10)

where ui = ∇iIHR√
1+|∇IHR|2 , i ∈ {h, v}, h and v represent two dimensions in different

directions (horizontal and vertical), ∇ indicate gradient operation and div()
indicate the divergence operation. FERN has the same network structure as
FTRN, but the target images and loss function utilized are different. The loss
function of FERN is shown as:

Ledge = ‖E(ILR) − Iedge‖1 (11)

where the method of E() stand for the fine edge reconstruction network, Iedge
indicates the fine edge extracted by above methods, E(ILR) displays the fine
edge reconstructed by FERN and make L1 loss with the fine edge detected by
HR images.

3.5 Image Refinement Network (IRN)

For the image refinement module, we integrate the different features extracted
from the aforementioned three branches. These three features enable us to cap-
ture sufficient texture details and obtain accurate edge features effectively. We
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fuse these three features and input them into the feature fine-tuning network.
The entire process can be mathematically represented by the following equation:

fn
rb = (w2 ∗ R(w1 ∗ fn−1

rb + b1) + b2) + fn−1
rb (12)

where wi and bi are commonly used weight parameters in neural networks of the
layer i respectively, i ∈ {1, 2}, fn

rb is the output of the nth residual block. R()
denotes the ReLU activation function.

In addition to the residual blocks, a long skip connection is used in these
part to maintain the features at the input to the IRN and effectively limit the
trouble of the disappearance of gradient. For the IRN last layer, we use a con-
volutional layer to convert the dimension to RGB channels, and then SR images
are reconstructed. In training progress, L1 loss function is used to reduce the
gap between SR image and HR image.

Lcontent = ‖ISR − IHR‖1 (13)

In summary, we have designed a model called FETSR that can effectively recon-
struct SR images. Typically, the edge and texture regions of an image contain
abundant information that is challenging to reconstruct. Experimental results
demonstrate that by incorporating fine-grained edge priors and texture priors,
the reconstructed SR images exhibit accurate edges and rich texture details.

4 Experiments

4.1 Datasets

The DIV2K [1] is a common used dataset in super resolution reconstruction
tasks, which contains 1000 images of various scenes, 800 of them are used for
training, 100 can be used for validation, and 100 can be used for testing. As same
as the previous works, we use a training dataset consisting of 800 images from
DIV2K to train our model and meanwhile use the validation images from DIV2K
to validate our model. During test our model, we employ the following datasets:
Set5 [5], Set14 [34], BSDS100 [2] and Urban100 [13]. All of these test datasets
are commonly used in super resolution and contain a variety of scenarios that
are convincing enough to fully evaluate our model.

4.2 Implements Details

In training our network, we set the patch size to 48 as the input image block
size and the batch size to 16, and constrain our training process by L1 loss, edge
loss, and texture loss, and set the weights to 1, 0.1, and 0.001, respectively. Since
the pixel values of texture maps range from 0 to 255, we need to constrain it
to the same dimension as the edge loss. The parameters of the optimizer are
set to β1 = 0.9, β2 = 0.999, respectively, and the epoch is set to 600, and our
residual block is finally set to 40. All code is based on the pytorch framework
and is trained on 2 TITAN Xp GPUS.
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Fig. 3. A comparison of our model with other models shows that our model is able to
reconstruct better visual effects and finer texture details.

4.3 Qualitative Comparisons and Discussion

As shown in the Fig. 3, we selected different images from the test dataset and
reconstructed them with the available super-resolution. When compared with
other super-resolution methods, our network is able to reconstruct not only
more accurate texture information, but also sharper edges. In the first image,
our reconstructed image has a better visual effect and a clearer reconstruction
for some fine textures. In the second image, we reconstructed more accurate
texture details. The third image clearly shows that the reconstructed image of
our model highlights the edge line part of the floor.

4.4 Quantitative Comparisons and Discussion

As shown in Table 1, our model is compared with other neural network models.
PSNR and SSIM are common metrics for judging the quality of reconstruction in
super-resolution domains. Other methods have difficulty in reconstructing high
quality images by learning the own features of LR images. Our model is able to
effectively reconstruct the edges and textures of the images by using the prior
generated from HR images, and is higher than other models in both PSNR and
SSIM metrics.

5 Analysis and Discussion

5.1 Effectiveness of the Prior Information

It is a very important issue that how to use the effective prior information to aid
the super-resolution reconstruction, so we conducted an experimental analysis of
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Table 1. Quantitative analysis with existing CNN-based models for super-resolution
reconstruction Highlighted indicates the best result.

Scale Algorithm Set5

PSNR↑/SSIM↑
Set14

PSNR↑/SSIM↑
BSDS100

PSNR↑/SSIM↑
Urban100

PSNR↑/SSIM↑
×2 SRCNN [33] 36.71/0.9536 32.32/0.9052 31.36/0.8880 29.54/0.8962

FSRCNN [9] 37.06/0.9554 32.76/0.9078 31.53/0.8912 29.88/0.9024

VDSR [15] 37.53/0.9583 33.05/0.9107 31.92/0.8965 30.79/0.9157

SeaNet [11] 38.08/0.9609 33.75/0.9190 32.27/0.9008 32.50/0.9318

Cross-SRN [20] 38.03/0.9606 33.62/0.9180 32.19/0.8997 32.28/0.9290

MRFN [12] 37.98/0.9611 33.41/0.9159 32.14/0.8997 31.45/0.9221

ESRT [21] 38.03/0.9600 33.75/0.9184 32.25/0.9001 32.58/0.9318

FDSCSR [29] 38.12/0.9609 33.69/0.9191 32.24/0.9004 32.50/0.9315

FETSR (ours) 38.18/0.9612 33.90/0.9206 32.30/0.9010 32.68/0.9335

×3 SRCNN [33] 32.47/0.9067 29.23/0.8201 28.31/0.7832 26.25/0.8028

FSRCNN [9] 33.20/0.9149 29.54/0.8277 28.55/0.7945 26.48/0.8175

VDSR [15] 33.68/0.9201 29.86/0.8312 28.83/0.7966 27.15/0.8315

SeaNet [11] 34.55/0.9282 30.42/0.8444 29.17/0.8071 28.50/0.8594

Cross-SRN [20] 34.43/0.9275 30.33/0.8417 29.09/0.8050 28.23/0.8535

MRFN [12] 34.21/0.9267 30.03/0.8363 28.99/0.8029 27.53/0.8389

ESRT [21] 34.42/0.9268 30.43/0.8433 29.15/0.8063 28.46/0.8574

FDSCSR [29] 34.50/0.9281 30.43/0.8442 29.15/0.8068 28.40/0.8576

FETSR (ours) 34.61/0.9287 30.46/0.8454 29.22/0.8078 28.62/0.8615

×4 SRCNN [33] 30.50/0.8573 27.62/0.7453 26.91/0.6994 24.53/0.7236

FSRCNN [9] 30.73/0.8601 27.71/0.7488 26.98/0.7029 24.62/0.7272

VDSR [15] 31.36/0.8796 28.11/0.7624 27.29/0.7167 25.18/0.7543

SeaNet [11] 32.33/0.8970 28.72/0.7855 27.65/0.7388 26.32/0.7942

Cross-SRN [20] 32.24/0.8954 28.59/0.7817 27.58/0.7364 26.16/0.7881

MRFN [12] 31.90/0.8916 28.31/0.7746 27.43/0.7309 25.46/0.7654

ESRT [21] 32.19/0.8947 28.69/0.7833 27.69/0.7379 26.39/0.7962

FDSCSR [29] 32.36/0.8970 28.67/0.7840 27.63/0.7384 26.33/0.7935

FETSR (ours) 32.43/0.8978 28.74/0.7862 27.70/0.7405 26.41/0.7965

Table 2. On scale x4, experimental results generated by different a prior information.
Highlighted indicates the best result.

Edge Texture Set5
(PSNR↑/SSIM↑)

Set14
(PSNR↑/SSIM↑)

BSDS100
(PSNR↑/SSIM↑)

w/o w/o 32.15/0.8952 28.55/0.7789 27.41/0.7368

w/o w 32.32/0.8974 28.71/0.7861 27.67/0.7396

w w/o 32.33/0.8970 28.72/0.7855 27.65/0.7388

w w 32.43/0.8978 28.74/0.7862 27.70/0.7405



108 P. Sun et al.

Fig. 4. Comparison chart of the ablation experiment, w/o indicates that the prior
information is not introduced, w indicates that the prior information is introduced.

the factors affecting the super-resolution reconstruction. When we introduce only
texture prior, we can see from Table 2 that the reconstruction of the image is not
very good. If only fine edge prior information is introduced, the reconstruction
effect is not very good for high frequency regions with regular pixel points and
textures. As shown in Fig. 4, when we introduce both fine edge prior information
and texture prior information, we can reconstruct the details of the image better.

Table 3. For the study of λ

λ Set5 (PSNR↑/SSIM↑)

λ1= 1, λ2= 1 32.14/0.8874

λ1= 0.1, λ2= 0.1 32.31/0.8950

λ1= 0.1, λ2= 0.01 32.34/0.8962

λ1= 0.1, λ2= 0.001 32.43/0.8978

5.2 Study of λ

During the training process, the setting of hyper-parameters also has an impor-
tant influence on the reconstruction effect. λ1 and λ2 are set to adjust the edge
loss and the texture loss respectively. To weigh the influence of fine edges and
textures in the reconstruction process, we set λ1 to 0.1 and λ2 to 0.001, thus con-
trolling the texture loss and edge loss in the same dimension. From Table 3 We
can see that different super parameter settings lead to different reconstruction
effects.
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6 Conclusion

In this article, we introduce a novel super-resolution network using fine edge
and texture priors. The network consists of four components: a shallow feature
extraction network, a fine texture reconstruction network, a fine edge reconstruc-
tion network, and an image refinement network. Our model uses fine edge and
texture prior to not only reconstruct the internal texture details in the image,
but also effectively avoid reconstructing the wrong edge information.

Acknowledgements. This work is supported by the National Natural Science Foun-
dation of China (Nos. 62377029 and Nos. 22033002).
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Abstract. Fraud detection, especially graph-based approaches, has
received increasing attention in recent years because graph structures
can fully represent the information about the relationships between data,
which facilitates fraudster detection. However, many real-world appli-
cations have encountered difficulties in classifying in unbalanced data,
which is common in areas such as financial fraud. We argue that the
key to this difficulty is not only the data itself, i.e., the unbalanced
number of samples from different classes, but equally stems from the
fading of minority class node features by majority class neighbors due
to the graph neural network neighborhood aggregation mechanism. We
propose a semi-supervised deep graph convolutional classification model
with unbalanced graph nodes that aims to address this challenge by
exploiting the impact of the under-sampled adaptive coordination of the
classifier’s own features on model performance, which is integrated in
a deep graph convolutional network that contains multiple layers of the
same simplified graph network architecture and a nonlinear function that
can be recursively optimized. Extensive experiments show that our app-
roach still yields robust performance even in highly imbalanced graphs
with sparse labels.

Keywords: Class imbalance · Data re-sampling · Graph neural
network · Fraud detection

1 Introduction

1.1 Introduction

Fraud detection is a widely used task with far-reaching implications in var-
ious fields such as security [27], finance [6,19,36,41], healthcare [9,12,15,30],
and censorship [7,22,29]. While a number of techniques have been proposed to
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
E. Chen et al. (Eds.): BigData 2023, CCIS 2005, pp. 112–124, 2023.
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detect fraudsters in multidimensional point sets, fraud detection [1,3,28] based
on graph-structured data has recently received increasing attention as graph data
becomes ubiquitous [42]. In essence, the underlying assumption of graph-based
fraud detection is homogeneous preference, i.e., similarity between nodes and
their neighbors. This is in line with our real-world intuition that similar behaviors
will exist between fraudsters and other fraudsters, which in turn leads to certain
connections that can be made to identify other fraudsters through one fraudster.

However, in the vast majority of fraud detection tasks, the number of nodes in
different categories can vary significantly. For instance, in the real-world review
dataset from YelpChi [29], the ratio of spam reviews to benign reviews is 6:1.
When a fraudulent user’s neighbors are mostly good people and only individ-
ually fraudulent, GNN, whose core idea is message passing, will be disturbed
by neighbors passing messages and then incorrectly identify this fraudster as a
good person because his neighbors are mostly good people [39]. Furthermore,
real-world fraud detection tasks are highly likely to encounter other difficul-
ties, such as fraudsters masquerading as good guys [7], which can cause noise
to be trapped in the dataset, and this noise can interfere with the detection
of fraudsters. Spammers, for example, typically use benign accounts for their
spam comments to occur in order to hide themselves among benign users. This
highly unbalanced, noisy and falsely labeled data poses a serious challenge to
the downstream classification task.

Traditional research on category imbalance problems has been directed in two
main directions: data-level approaches that preprocess the dataset to balance
the distribution, and algorithm-level approaches that modify the loss function
for cost-sensitive adjustment. Most of the imbalanced classification problems on
graph structure have also followed these two directions:

Data-level methods modify the dataset to balance the sample distribution
based on the number of samples in different categories to make it suitable
for standard learning algorithms, and consist of three methods: under-sampling
methods that reduce the number of samples in the majority category [34], over-
sampling methods that generate new minority samples to increase the number of
samples in the minority category [40], and hybrid methods that simultaneously
correcting the distribution of minority and majority class samples [21]. How-
ever, the data-level methods on graphs are based on distance-based and labeling
designs, and they are not suitable for application to datasets with missing values
or false labels, which are common in realistic datasets. This is because fraud-
sters may be at a very close Euclidean distance from their benign neighbors. In
addition, oversampling methods may suffer from large computational costs when
applied to large-scale data.

Algorithm-level methods modify existing classification algorithms, such as
loss functions, in accordance with a priori knowledge to assign corresponding
weights to different samples to mitigate the classification boundaries that favor
majority classes. However, by cost-sensitive tuning methods [4,5,18] when work-
ing with batch-trained classifiers, they may fail on highly imbalanced datasets.
Because they cannot mitigate the problem of too small a proportion of minority
class samples, they may result in minority class samples being included in only
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a few batches, which can quickly drive the model into local minima. Note also
that task-specific cost matrices are usually given in advance by domain experts,
which is not available in many real-world problems.

In summary, none of the mainstream methods currently available can handle
well the classification task on highly imbalanced graphs with missing values or
false labels, which is a common problem encountered in real-world fraud detec-
tion tasks. In addition to the reasons mentioned above, another major reason for
the failure of existing methods in is that they ignore the difficulty of imbalanced
classification tasks, not only stemming from the characteristics of the samples
themselves, such as the presence of noisy samples [26], the overlapping underly-
ing distribution between classes [10], and the distribution gap of sample size in
different categories, but also the influence of the characteristics of the classifier
itself, such as the aggregation of messages in GNNs [13,14,35] may lead to the
minority class adjacent to the majority class features are faded by the majority
class neighbors as a result.

Recent research states that to determine whether a node is homogeneous
or heterogeneous, the concept of node-level homogeneity ratio is defined as the
fraction of neighbors with the same class as the node as a proportion of all
neighbors of the node. Most GNNs work well on strongly homogeneous nodes,
but fail on strongly heterogeneous nodes [20]. The performance gap between
graph neural networks working on homogeneous and heterogeneous nodes will
result in fraud detection tasks suffering from significant challenges. As mentioned
before, this is because the core mechanism of GNNs is neighborhood aggrega-
tion, but in an imbalanced setting, most of the neighbors of the fraudster as
a minority class are likely to be benign nodes as a majority class. As a result,
the features of the fraudsters themselves are easily ignored by the classifier and
the prediction results are dominated by the benign neighbors. We can plan the
sampling strategy accordingly to mitigate the misleading effect of heterogeneous
neighborhoods of strongly heterogeneous nodes on the classifier. The degree of
heterogeneity of nodes is measured by the uncertainty of classifier predictions
rather than the class labels of nodes, since the predictions of heterogeneous nodes
will show greater variance for sparsely labeled datasets. Furthermore, the uncer-
tainty of the prediction results naturally fits the model used for classification as
it is defined relative to the given classifier.

Based on the uncertainty in the prediction of heterogeneous nodes, this paper
proposes a new learning framework named UD-GCN. Instead of simply and
directly balancing the number of samples from different classes or assigning
weights based on labels or distances, we consider the performance differences
of the classifier on different samples and iteratively sample those samples that
can contribute more to the model and provide more favorable information based
on the uncertainty in the prediction results. Majority class samples that provide
more favorable information. The under-sampling strategy is integrated into a
deep graph convolutional neural network that contains many layers of a struc-
turally identical simplified graph convolutional network and a nonlinear func-
tion capable of recursive optimization. This adaptive iterative process allows
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our framework to gradually focus on the more difficult to classify strongly het-
erogeneous samples, while still retaining the knowledge learned from the strongly
homogeneous samples to prevent over-fitting.

In summary, the contributions of this paper are as follows.

• This paper demonstrates the reasons why traditional imbalance learning
methods fail in real-world imbalanced graph classification tasks, which are
informative for other similar classification problems.

• We propose UD-GCN, a semi-supervised learning framework for unbalanced
data classification. By considering the performance gap of classifiers on sam-
ples with different degrees of heterogeneity, our proposed model is automati-
cally optimized in a classifier-specific manner. Compared with existing meth-
ods, UD-GCN is accurate, robust, and adaptive.

• Unlike the mainstream approaches, our model does not require any predefined
distance metric or other prior knowledge, which is usually difficult to obtain
in real-world problems.

2 Methodology

In this section, we introduce the proposed UD-GCN model framework. Sec-
tions 2.1 and 2.2 detail the adaptive sample sampling strategy based on model
uncertainty and the recursive optimization of the deep graph convolution model,
respectively, with iterative details as illustrated in Fig. 1. And the whole algo-
rithm is summarized in Sect. 2.3.

Fig. 1. In each iteration, most classes in the dataset with small uncertainty scores
will be partially discarded, and their discard probability is determined by the adaptive
factor α, a value that increases as the number of layers increases. The sampled new
subset is fed into the l-th layer for learning along with Â to the l − 1-th power.
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2.1 Adaptive Under-Sampling

Since the features of those nodes connected to non-identical nodes themselves are
easily diluted by the information passed from their neighbors, the classification
results of GNNs may exhibit higher uncertainty relative to homogeneous nodes
for heterogeneous nodes. We can determine whether a node is biased homoge-
neous or heterogeneous by capturing the uncertainty of the model. Specifically,
given an undirected graph G = (X, Â) with N nodes and a prediction Ŷ such
that the parameter Wb is a random variable obeying some prior distribution
(e.g., Gaussian distribution W ∼ N (0, I)), the likelihood function of the node
classification model is Eq. (1).

p(Ŷ |V, E) =
∫
W

p(Ŷ |W,X, Â)p(W |X, Â)dW (1)

To obtain the posterior probability distribution p(W |X, Â in Eq. (1), we
choose to approximate the solution using Monte Carlo dropout variational infer-
ence [8]. The loss function is defined as Eq. (2).

L(Wb) = − 1
T

T∑
t=1

Y log(Ŷt) +
1 − θ

2T
‖Wb‖2 (2)

where Ŷt = fŴt
(X, Â) is the output after multiple sampling of different Wb and θ

is the hyper-parameter. After training, we obtain from Eq. (3) an N-dimensional
vector U used to measure the uncertainty level of the model, which represents
the uncertainty score of each node.

E[Ŷ |X, Â] =
∫

Ŷ p(Ŷ |X, Â)dŶ ≈ 1
T

T∑
t=1

Ŷt

U [Ŷ |X, Â] = Var(Ŷ |X, Â) ≈ 1
T

T∑
t=1

(Ŷt − E[Ŷ |X, Â])2
(3)

The advantage of using sample-predicted uncertainty scores in the case of
unbalanced classification is that it fills the gap between the sampling strategy
used to balance the number of sample categories and the classifier capability.
Existing sampling methods almost completely ignore the classifier’s capability.
However, GNN-based classifiers typically exhibit very different performance on
data samples with different degrees of heterogeneity, even if they have the same
imbalance rate, so the imbalance rate does not reflect well the difficulty of the
classification task. In contrast, the uncertainty scores give a good indication
of the task difficulty of the chosen classifier on different samples, allowing our
framework to optimize the classification performance of the model in a classifier-
specific manner. In particular, using the uncertainty level of sample predictions,
rather than the imbalance rate, reduces the reliance on sample labels, allowing
our framework to be applicable to scenarios with sparse samples and spurious
labels.
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Intuitively, data samples can be classified into three categories based on their
corresponding uncertainty scores, i.e., strongly homogeneous samples, strongly
heterogeneous samples and boundary samples: homogeneous samples can be well
classified by GNN models, so each sample contributes a small uncertainty score.
However, due to their large number, their overall contribution cannot be ignored.
For such samples, we only need to keep a small portion as a skeleton to represent
the whole to prevent over-fitting, and then discard most of them because they
have been well learned by the classifier. In contrast, there are also strongly hetero-
geneous samples, each with a large degree of prediction uncertainty even though
their number is usually small. As a result, the sum of uncertainty scores can be
very large. Such samples are usually caused by prominent outliers or outliers,
and forcing the classifier to learn such samples may lead to severe over-fitting.
For the other samples, they can be regarded as boundary samples, which are in
the middle range of heterogeneity and therefore mostly located on the decision
boundary. The boundary samples are the samples that provide the most effective
information during training. Having the classifier learn more about these bound-
ary samples usually helps to further improve the final classification performance.

Inspired by the previous paper, our goal is to design an under-sampling strat-
egy that balances the number of samples from different classes while reducing the
influence of strongly homogeneous and strongly heterogeneous samples on the
classifier and increasing the importance of boundary samples containing higher
amounts of valid information.

In the initial stage of learning, the three sets of samples are downsampled
with the same probability, which is to gently reduce the number of majority
samples and reduce the negative impact of outlier samples on the performance
of the classifier, in order to allow the classifier to focus more on the boundary
samples [16]. As the classifier gradually adapts to the dataset during the learning
process, too many strongly homogeneous samples will prevent the model from
learning in later iterations because they provide less information. To this end,
an adaptive factor α is introduced to coordinate the sampling probability, whose
value gradually increases with iteration, increasing the sampling probability for
samples with higher uncertainty scores and decreasing the sampling probability
for samples with lower uncertainty scores and smaller contributions, allowing
the classifier to learn those strongly heterogeneous samples that are difficult to
classify in order to improve the classification performance. In Fig. 2, the details
of the work of the adaptive factor α are shown with the Cora [31] data set.

In summary, in the early stage of the iteration, our model mainly learns
the boundary samples. In the later part of the iteration, our framework focuses
on the strongly heterogeneous samples while retaining the information learned
from the boundary samples in the earlier stages, which effectively prevents the
occurrence of over-fitting.
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Fig. 2. The Cora data set is used as an example to demonstrate how the adaptive
factor α controls under-sampling. Each subplot represents the percentage of different
uncertainty scores in the dataset. Subplot (a) is the original distribution of all majority
class samples. Subplot (b) is the distribution of the subset of majority class samples
obtained by sampling when α = 0. Subplot (c) is the distribution of the subset of
majority class samples sampled when α → ∞.

2.2 Recursive Optimization for Deep GCN

The graph embedding of the nodes of a semi-supervised node classification vanilla
GCN model with two convolutional layers [14] is given by Eq. (4).

Z = ÂReLU(ÂXW (0))W (1) (4)

where Z ∈ R
N×K is the node embedding matrix, N is the number of nodes,

and K is the number of categories. X ∈ R
N×C is the feature matrix, where C

is the feature dimension. Â = D̃− 1
2 ÃD̃− 1

2 , where Ã = A + I, A ∈ R
N×N is the

adjacency matrix of the undirected graph G, D̃ is the degree matrix of Ã. In
addition, W (0) ∈ R

C×H and W (1) ∈ R
H×K are the weight matrices of the two

layers respectively.
The purpose of building deep graph neural networks is to cooperate with

sampling algorithms to adaptively fill the gap between classifier performance
and data characteristics, while efficiently exploring information from higher-
order neighbors. However, if the number of layers of the graph convolutional
network is increased directly, the local information in the nodes will be lost
because they are smoothed [23]. Fortunately, obtaining an adequate representa-
tion of node features does not require much nonlinear transformation because
the features of each node are usually one-dimensional, rather than multidimen-
sional data structures, and two-layer fully connected neural network is a more
convenient option [11,37,38]. Similarly, we follow this direction. First, to reduce
the optimization cost of the multi-parameter matrix, remove the ReLU [37] and
simplify the embedding to Eq. (5):

Z = ÂlXW (0) . . . W (l−1) = ÂlXW̃ (5)

where W (0) . . . W (l−1) is collapsed to W̃ and Âl denotes the lth power of Â.
In particular, removing the ReLU operation also alleviates the over-smoothing
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Algorithm 1: UD-GCN
Input: Training set G = (X, Â), a two-layer simplified graph convolution f and

the number of layers L
Output: Final prediction F (X, Â)
initialization: P ⇐ minority in G, N ⇐ majority in G, X̂(0) = X and random
under-sample majority subsets N (0) from N , where |N (0)| = |P|

for l=0 to L do
Train the f (l) using X̂(l), P and N (l)

Evaluate the uncertainty of the current layer model U (l) using. Eq.(3)
Update the feature matrix used in the next layer X̂(l+1) = ÂX̂(l)

Update adaptive factor α = tan( lπ
2L

) and sampling weight p(l) = 1

U(l)+α

Under-sample majority subsets N (l+1) from N using p(l), where
|N (l+1)| = |P|

end
return F (X, Â) = f (L)

problem of node embedding [17]. However, this linear stacking transformation
of the graph convolution has limited ability to learn higher-order neighbor infor-
mation. Using a suitable nonlinear function f to replace W̃ of Eq. (5) [2,33], the
final embedding matrix of the l-th layer is obtained as Eq. 6, and the l-th hop
neighbor feature of the current node can be learned.

Z(l) = f(ÂlX) (6)

where ÂlX = Â ·(Âl−1)X. In particular, f is nonlinear rather than linear. It will
be recursively optimized in each layer of the model so that each layer is initialized
using the parameters of the previous layer to guarantee the representation power.

2.3 Algorithm Formalization

Finally, our algorithm is formally described in this subsection, and the details
are given in Algorithm 1. Note that the uncertainty score is updated in each
iteration and the tan function is used to adjust the change in the adaptive factor
α in order to select the sample that contains the most valid information for the
current stage.

3 Experiments

3.1 Experimental Setup

Datasets. The commonly used graph datasets Plantoid paper citation graph
(Cora, CiteSeer, Pubmed) [31] and Amazon co-purchase graph (Photo, Comput-
ers) [25] were chosen to validate the effectiveness of our method. The dataset is
also modified by adjusting the imbalance rate IR to 10 and the tagging rate ρ
to 5% to construct application scenarios with high imbalance and scarce tags.
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Compared Methods. Our approach is compared with three classical GNN
algorithms (GCN [14], GAT [35], GraphSAGE [13], and two imbalanced algo-
rithms applied on graphs (DR-GCN [32] and GraphSMOTE [40] to validate the
performance of our framework in fraud detection tasks on imbalanced graphs.

Metrics. Metrics used to evaluate model performance on classification tasks on
unbalanced datasets should not be biased towards any class of nodes [24]. Since
accuracy does not reflect model performance well, F1-macro (the unweighted
average of F1 scores for each category) was used for evaluation, with higher
scores for the metrics indicating higher performance of these methods.

3.2 Performance Comparison

To test the classification performance of our model on a highly unbalanced
and sparsely labeled dataset, it is compared with all comparative methods. The
results in Table 1 show that our method outperforms all the baselines. To reduce
the effect of randomness, the mean and standard deviation of five independent
runs were performed.

Table 1. Performance comparison for node classification on Imbalance graphs. The
best results are bolded.

Dataset Cora CiteSeer PubMed Photo Computer

GCN 49.2 ± 1.5 44.8 ± 1.2 51.7 ± 1.8 43.4 ± 1.6 39.8 ± 2.6
GAT 46.9 ± 1.6 44.9 ± 2.0 49.2 ± 2.1 47.3 ± 2.4 41.4 ± 2.3
GraphSAGE 43.5+1.2 51.2 ± 1.5 53.4 ± 1.7 43.8 ± 2.2 39.2 ± 1.9
DR-GCN 51.2 ± 1.3 52.5 ± 2.6 77.2 ± 2.3 78.5 ± 2.9 64.4 ± 3.1
GraphSMOTE 49.6 ± 1.1 51.8 ± 1.3 75.4 ± 1.9 77.5 ± 2.3 59.3 ± 2.4
UD-GCN 53.2 ± 1.6 54.7 ± 2.1 78.2 ± 2.1 80.2 ± 2.2 65.4 ± 2.8

The results show that even in the case of a highly unbalanced dataset (IR
= 10) with sparse labels (ρ = 5%), our method performs well, with evaluation
scores significantly better than the other baselines. Specifically, the methods used
for comparison are discussed in two groups. The first group is GCN, GAT and
GraphSAGE, and the second group is DR-GCN and GraphSMOTE.

The performance of the first group of methods is the worst of all the methods
used for comparison because they do not have a mechanism for solving the imbal-
ance problem, resulting in a few classes not being learned sufficiently. Among
them, GAT, which performs better on balanced graphs, instead becomes the
most failed presence among these three methods on highly unbalanced datasets,
because the attention mechanism can only fully perform if it contains more avail-
able information, but highly unbalanced datasets lack enough minority class data
for the model to learn to obtain more accurate output results.
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The second group, DR-GCN and GraphSMOTE are methods designed specif-
ically for unbalanced graphs and are one of the representatives of algorithm-
level methods and data-level methods, respectively. This group of methods has
improved performance relative to the generic graph neural network methods,
however, DR-GCN also does not balance the number of different labeled sam-
ples, which may cause the nonconvex optimization process using gradient descent
update to quickly fall into local extrema. Although GraphSMOTE balances the
class distribution, its distance- and label-based oversampling strategy is not
adapted to label-sparse datasets, and its sampling strategy is completely inde-
pendent of the chosen classifier and cannot obtain samples that are more useful
for the classifier. Therefore both have limited improvement on model perfor-
mance.

3.3 Sensitivity to the Number of Model Layers

UD-GCN has one key hyper-parameter: the number of basic classifier layers l.
As discussed earlier, the stacking of graph convolutions tends to degrade per-
formance by subjecting node embedding to over-smoothing [17]. However, our
deep graph convolution model removes the redundant design to avoid the over-
smoothing problem. This subsection conducts experiments on the dataset to
verify the effect of the number of classifier layers l on the predictive performance
of our model and to test whether this anti-transition smoothing mechanism is
effective. The results are shown in Fig. 3. It can be observed that UD-GCN is
able to improve the performance on all three datasets as the number of layers
increases without performance degradation due to transition smoothing.

Fig. 3. The F1-macro scores of UD-GCN for different number of layers with error bars
as standard deviations for five independent runs. It is quite straightforward to observe
that UD-GCN is able to improve the performance of all three datasets as the number of
layers increases without any degradation in performance due to transition smoothing.
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4 Conclusion

In this paper, we propose a new semi-supervised node classification learning
model for highly unbalanced and sparsely labeled graphs, UD-GCN.We argue
that in addition to the data itself, such as noise, the number of samples in
different categories, the performance gap exhibited by GNN’s ability to aggregate
neighborhood information on nodes with different degrees of heterogeneity is
crucial for performance of the fraud detection task is equally critical. Therefore,
we introduce model prediction uncertainty as a metric for down-sampling the
dataset to fill the gap between sampling strategy and classifier performance. Our
model is tested in the context of a highly unbalanced and label-sparse task. It
yields higher performance compared to other methods. Overall, incorporating
the characteristics of the model itself into the consideration of the data pre-
processing approach may be a promising direction for similar research.
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Abstract. In this paper, we propose a novel framework called Twin
Support Vector Regression with Privileged Information (TSVR+), which
aims to improve the predictive performance of twin support vector regres-
sion by incorporating additional privileged information during the learn-
ing process. This TSVR+ introduces a twin-learning strategy that uti-
lizes both original and privileged features to construct two non-parallel
boundary functions. One for positive deviations and the other for nega-
tive deviations and each boundary function is associated with a different
set of support vectors. Then, by solving two smaller quadratic program-
ming problems, this proposed method achieves faster learning and better
prediction performance. Notably, this twin-boundary approach equipped
with privileged information provides a more robust representation of the
relationship between input features and target values, allowing for better
modeling of complex regression problems. Experimental results on vari-
ous datasets demonstrate the effectiveness of our approach compared to
other regression methods.

Keywords: Twin support vector regression · Twin-learning strategy ·
Privileged information

1 Introduction

Support Vector Regression (SVR) [1] is a machine learning algorithm that has
been widely applied in various domains, including, finance, engineering, and
healthcare, where accurate regression is crucial. Generally, SVR aims to find
a function that can approximate the relationship between input features and
their corresponding target values. This is achieved by defining a hyperplane that
maximizes the margin around the training data points, while allowing a certain
degree of tolerance for errors or deviations from the actual targets. Recently,
a lot of SVR based method have been proposed in kinds of fields and shown
promising performance [2–4,6,7,10,14,15]. Among them, Least Square Support
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Vector Regression (LS-SVR) [10] adopts the quadratic loss function to mea-
sure the empirical risk along with the regularization term. Twin Support Vector
Regression (TSVR) [3,6] extends the traditional SVR, aiming at generating two
functions such that each one determines the down- or up-bound of the unknown
regressor. TSVR allows for better interpretability by providing separate sets of
support vectors for each target variable. Shao et al. proposed Least Squares Twin
Bounded Support Vector Regression (TBSVR) [9] to reduce computational com-
plexity. Moreover, an ensemble support vector regression model is proposed to
establish the relationship between health indicator and battery state-of-health
[2]. Considering that some existing methods fail to consider correlations between
outputs or suffer from high computational complexity and sensitivity to parame-
ters due to noise in multi-output regression tasks, Li et al. [4] proposed a method
called multi-output twin support vector regression (M-TSVR) to overcome these
issues. While TSVR is a powerful algorithm, there are few works to fully exploit
the additional information to deal with the problems under some situations with
privileged information, which causes the performance degradation. The concept
of privileged information was introduced by Vapnik et al. [11] which can be
described as any additional relevant data that captures valuable insights, such
as expert annotations, additional measurements, or other correlated attributes.
Utilizing privileged information can be beneficial in various domains and sce-
narios, especially when it provides additional knowledge, data, or insights that
can improve the model’s learning and predictive capabilities, leading to better
performance on unseen data during testing or deployment. Notably, privileged
information based models aim to leverage additional information that is not
available during the testing or prediction phase [5,12,13]. Related to regression
tasks, based on SVR, Shu et al. [8] presented a unified framework, called V-
SVR+, that systematically addresses three forms of privileged information: con-
tinuous, ordinal, and binary by integrating these types of privileged information
into the learning process of SVR using three distinct losses.

To our knowledge, how to effectively utilize of privileged information is still
an open issue in the field. In this paper, we aim to achieve the model of TSVR+
by using privileged information paradigms. In TSVR+, the objective is to lever-
age privileged information during the training phase to develop a model that
imposes additional constraints on the solution in the original space. Specifically,
we define two linear correcting (slack) function in the privileged information
space to estimate slack variables in the standard twin SVR method using privi-
leged information. Thus, two separate sets of support vectors from original data
and privileged information are constructed for each target variable, capturing
both the positive and negative correlations with the input features. These sup-
port vectors form the basis for modeling the relationships between the input
features and the target variables in a twin-like manner. The optimization prob-
lem in TSVR+ involves minimizing a joint objective function that incorporates
both the individual target variable errors and the twin relationship constraints.
This ensures that the predicted values not only fit the training data well but
also maintain coherence among the target variables. In terms of computational
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efficiency, TSVR+ benefits from the sparsity of the solution obtained through
the support vector framework. This enables faster training and prediction time
compared to other regression methods.

The rest of this paper is shown as follows. In Sect. 2, we introduce some
preliminaries related to our work. Then, in Sect. 3, we propose the twin support
vector regression with privileged information. In Sect. 4, extensive experiments
are conducted to evaluate the effectiveness of our method. Finally, we conclude
our work in Sect. 5.

2 Related Works

2.1 Support Vector Regression

The SVR [1] would like to find a linear regression function f(x) = wT x + b,
tolerating a small error in fitting this given dataset (A, Y ), where w ∈ Rn and
b ∈ R. This can be achieved by utilizing the ε–insensitive loss function that sets
an ε–insensitive tube around the data, within which errors are discarded. Also,
applying the idea of SVM, the function f(x) is made as flat as possible in fitting
the training dataset. The SVR can be formulated as the following constrained
minimization problem:

min
w,b

1
2
‖w‖2 + C(eT ξ + eT ξ∗)

s.t. Y − (Aw + eb) ≥ eε + ξ, ξ ≥ 0,
(Aw + eb) − Y ≥ eε + ξ∗, ξ∗ ≥ 0,

(1)

where C > 0 is the regularization factor that weights the tradeoff between the
fitting errors and the flatness of the linear regression function, ξ and ξ∗ are the
slack vectors reflecting if the samples locate into the ε–insensitive tube or not, e
is the vector of ones of appropriate dimensions.

2.2 Twin Support Vector Regression

In this section, we introduce the Twin Support Vector Regression (TSVR). TSVR
is similar to Twin Support Vector Machine (TSVM) in spirit, as it also derives
a pair of nonparallel planes around the data points. However, there are some
differences in essence. First, the targets of TSVR and TSVM are different, TSVR
aims to find the suitable regressor while TSVM is to construct the classifier.
Second, each of the two QPPs in the TSVM pair has the formulation of a typical
SVM, except that not all patterns appear in the constraints of either problem at
the same time, while all data points appear in the constraints of each of the two
QPPs in the TSVR pair. Third, the TSVM pair finds two hyperplanes such that
each plane is closer to one of the two classes and is as far as possible from the
other, whereas the TSVR pair finds the ε–insensitive up-bound and down-bound
functions for the end regressor. TSVR is obtained by solving the following pair
of QPPs:
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min
w1,b1,ξ

1
2
‖Y − eε1 − (Aw1 + eb1)‖2 + c1e

T ξ

s.t. Y − (Aw1 + eb1) ≥ eε − ξ, ξ ≥ 0,
(2)

min
w2,b2,η

1
2
‖Y + eε2 − (Aw2 + eb2)‖2 + c2e

T η

s.t. (Aw2 + eb2) − Y ≥ eε2 − η, η ≥ 0,
(3)

where c1, c2 > 0, ε1, ε≥0 are parameters, and ξ, η are slack vectors. The TSVR
algorithm finds two functions f1(x) = wT

1 x+ b1 and f2(x) = wT
2 x+ b2, each one

determines the ε–insensitive down- or up-bound regressor.

3 Twin Support Vector Regression with Privileged
Information

In this section, we introduce an efficient approach to TSVR which we have termed
as Twin Support Vector Regression with privileged information (TSVR+). In the
Learning Using Privileged Information (LUPI) setup, during the training phase,
instead of tuples of features and labels, we are given triplets (xi, x

∗
i , yi)

N
i=1, where

feature vectors x∗ represent the additional (i.e., privileged) information. During
the testing phase, features from the privileged space X∗ are not available. The
goal of LUPI is to exploit the privileged information during the training phase
to learn a model that further constrains the solution in the original space X,
and thus it can more accurately describe the testing data. Given the training
data points (A,A∗, Y ), where each row of A and A∗ represent a training point
and an additional information representation respectively, unlike TSVR, in this
paradigm, the slack variables ξ and η are parameterized as a function of privi-
leged information, i.e., ξ = A∗w∗

1+e∗b∗
1 and η = A∗w∗

2+e∗b∗
2. Thus, the TSVR+

algorithm, which implements LUPI in the training phase, solves the following
minimization problem:

min
w1,b1,w∗

1 ,b∗
1

1
2
‖Y − eε1 − (Aw1 + eb1) − (A∗w∗

1 + e∗b∗
1)‖2 + c1e

T (A∗w∗
1 + e∗b∗

1)

s.t. Y − (Aw1 + eb1) ≥ eε − (A∗w∗
1 + e∗b∗

1), (A∗w∗
1 + e∗b∗

1) ≥ 0,
(4)

min
w2,b2,w∗

2 ,b∗
2

1
2
‖Y + eε2 − (Aw2 + eb2) − (A∗w∗

2 + e∗b∗
2)‖2 + c2e

T (A∗w∗
2 + e∗b∗

2)

s.t. (Aw2 + eb2) − Y ≥ eε2 − (A∗w∗
2 + e∗b∗

2), (A∗w∗
2 + e∗b∗

2) ≥ 0,
(5)

where c1, c2 > 0, ε1, ε2 > 0 are parameters. In Eq. (4) and Eq. (5), two non-
parallel boundary functions are introduced by introducing a twin-learning strat-
egy that utilizes both original and privileged features. Specifically, the function
f1(x) determines the ε1–insensitive down-bound regressor, while the function
f2(x) determines the ε2–insensitive up-bound regressor. The first term in the
objective function of (4) or (5) is the sum of squared distances based on both
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original and privileged features. As we can obtain, TSVR+ is comprised of a
pair of QPPs such that each QPP determines the one of up- or down-bound
function by using only one group of constraints. Hence, TSVR+ gives rise to
two smaller sized QPPs. To derive the dual QPPs of TSVR+, we first introduce
the Lagrangian function for the problem (4):

L(w1, b1, w
∗
1 , b

∗
1, α, β)

=
1
2
‖Y − eε1 − (Aw1 + eb1) − (A∗w∗

1 + e∗b∗
1)‖2 + c1e

T (A∗w∗
1 + e∗b∗

1)

− αT (Y − (Aw1 + eb1) − eε + (A∗w∗
1 + e∗b∗

1)) − βT (A∗w∗
1 + e∗b∗

1),

(6)

where α = (α1;α2; . . . ;αl) and β = (β1;β2; . . . ;βl) are the Lagrangian multiplier
vectors. The Karush Kuhn Tucker (KKT) optimality conditions for the problem
Eq. (6) are given by:

− AT (Y − eε1 − (Aw1 + eb1) − (A∗w∗
1 + e∗b∗

1)) + AT α = 0,

− eT (Y − eε1 − (Aw1 + eb1) − (A∗w∗
1 + e∗b∗

1)) + eT α = 0,
Y − (Aw1 + eb1) ≥ eε − (A∗w∗

1 + e∗b∗
1), (A∗w∗

1 + e∗b∗
1) ≥ 0,

αT (Y − (Aw1 + eb1) − eε + (A∗w∗
1 + e∗b∗

1)) = 0, α ≥ 0,

βT (A∗w∗
1 + e∗b∗

1) = 0, β ≥ 0,
c1e − α − β = 0.

(7)

Since β ≥ 0, we have 0 ≤ α ≤ c1e. By calculating Eq. (7), it can be obtained:

−
[

AT

eT

]
((Y − eε1) − [A e]

[
w1

b1

]
− [A∗ e∗]

[
w∗

1

b∗
1

]
) +

[
AT

eT

]
α = 0. (8)

Define

G = [A e], f = Y − eε1, u1 =
[

w1

b1

]
G∗ = [A∗ e∗], u∗

1 =
[

w∗
1

b∗
1

]
, (9)

then we have
−GT f + GT Gu1 + GT G∗u∗

1 + GT α = 0, (10)

i.e.,
− GT f + GT Gu1 + GT G∗u∗

1 + GT α = 0,

i.e., u1 = (GT G)−1GT (f − α) − (GT G)−1GT G∗u∗
1.

(11)

Notice that GT G is always positive semidefinite, it is possible that it may not
be well conditioned in some situations. To overcome this ill-conditioning case,
we introduce a regularization term σI, where σ is a very small positive number.
Therefore, problem (11) is modified to

u1 = (GT G + σI)−1GT (f − α) − (GT G + σI)−1GT G∗u∗
1. (12)
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Substituting Eq. (12) and the above KKT conditions into (9) and discarding the
all constant terms, we obtain the dual QPP for Eq. (7) as follows:

min
α

1
2
αT G(GT G)−1GT α − fT G(GT G)−1GT α + (f − G∗u∗

1)
T α

s.t. 0 ≤ α ≤ c1e.
(13)

Similarly, we consider the problem (5) and obtain its dual as

min
α

1
2
γT G(GT G)−1GT γ + hT G(GT G)−1GT γ − (h − G∗u∗

2)
T γ

s.t. 0 ≤ γ ≤ c2e,
(14)

where h = Y + eε2, u∗
2 =

[
w∗

2

b∗
2

]
and further

u2 =
[

w2

b2

]
= (GT G)−1GT (h + γ) − (GT G)−1GT G∗u∗

2. (15)

Note that in the dual QPPs (13) and (14), we have to compute the inversion
of matrix GT G of size (n + 1) × (n + 1). In general, n is much smaller than
the number of training samples. Further, comparing the above two QPPs with
the dual QPP (4) of standard SVR, we find the latter has another equality
constraint, indicating TSVR+ is far faster in comparison to the standard SVR
in order to find the optimal solution. Once the vectors u1 and u2 are known from
(12) and (15), the two up- and down-bound functions are obtained. Then the
estimated regressor is constructed as follows

f(x) =
1
2
(f1(x) + f2(x)) =

1
2
(w1 + w2)T x +

1
2
(b1 + b2). (16)

4 Experiment

4.1 Datasets and Setting

In this section, to evaluate the effectiveness of the proposed TSVR+, we con-
duct experiments on three benchmark datasets1 and three synthetic datasets.
Specifically, the benchmark datasets includes Wisconsin Breast Cancer dataset,
Boston housing dataset and Marriage-and-Divorce datasets. Wisconsin Breast
Cancer (WBC) dataset was obtained from the University of Wisconsin Hospi-
tals. It has 683 instances and each has 10 features. Boston housing dataset (BH)
contains a total of 506 samples. Each sample includes 13 feature information and
actual housing prices. Marriage-and-Divorce (MD) dataset contains 100 samples
with 31 features. The first 30 columns are features (inputs). The 31th column is
Divorce Probability (Target). Besides, three synthetic datasets consist of 1000
data samples that are generated randomly using the following regression models:
1 https://www.kaggle.com/datasets.

https://www.kaggle.com/datasets
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Synthetic data1 (SynD1):

f(x) = 0.25[1.5(1 − x1) + e2x1−1 sin(3π(x1 − 0.6)2)

+ e3(x2−0.5) sin(4π(x2 − 0.9)2)],
(17)

Synthetic data2 (SynD2):

f2(x) = sin(2πx1) + 4(x2 − 0.5)2, (18)

Synthetic data2 (SynD3):

f3(x) = 20 − 20e−0.2
√

x1/3 − ecos(2πx1) + e

+ x2
2 − 10 cos(2πx2) + 10,

(19)

where x = (x1, · · · , xn)T ∈ [0, 1]n, we use n = 2.
To further demonstrate the performance of our proposed TSVR+, we com-

pared with several SVR based methods, including, Support Vector Regression
(SVR), Twin Support Vector Regression (TSVR), Least Square Twin Support
Vector Regression (LS-TSVR), Twin Parametric Insensitive Support Vector
Regression (TPISVR), Twin Bounded Support Vector Regression (TBSVR). We
adopt the following experimental setting: for all the methods, the percentage
of testing data is selected as 30%. Thus, we obtain 70% data samples as the
gallery set. Motivated by the work of the Mechanical Turk image annotation
[8], samples can be defined to achieve the privileged information, we adopt a
simple selection strategy to label half of the data samples among the gallery
set as privileged information. These privileged samples are only used to train
the model of TSVR+. The parameters for all methods are selected from the
set {10i|i = −10, · · · , 10}. Without loss generality, denote m as the number of
testing samples, ŷi as the prediction value of yi, and y = 1

m

∑
i yi as the aver-

age value of y1, · · · , ym. Then, we use the following five criterions for algorithm
evaluation:

(1) Mean absolute error (MAE): 1
N

∑N
i=1

‖yi−ŷi‖
‖yi+ŷi‖ .

(2) Root mean square error (RMSE):
√

1
N

∑N
i=1 ‖yi − ŷi‖.

(3) Sum squared error of testing (SSE):
∑m

i=1(yi − ŷi)2.
(4) Ratio between sum squared error and sum squared deviation of testing sam-

ples (S1):
∑m

i=1(yi − ŷi)2/
∑m

i=1(yi − y)2.
(5) Ratio between interpretable sum squared deviation and real sum squared

deviation of testing samples (S2):
∑m

i=1(ŷi − y)2/
∑m

i=1(yi − y)2.

For each evaluation criterion, the smaller it is, the better regressing perfor-
mance of learning method has. The results of all methods on three benchmark
datasets and three synthetic datasets are listed in Table 1 and Table 2.
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Table 1. Performance of all methods on different datasets

Dataset Metric SVR TSVR LS-TSVR TBSVR TRISVR TSVR+

WBC MAE 0.0857 0.0705 0.0808 0.0748 0.1212 0.0401
RMSE 0.1154 0.1048 0.1187 0.1088 0.1339 0.0847
SSE 2.7290 2.2497 2.8894 2.4265 3.6741 1.4708
S1 2.2308 1.8391 2.3619 1.9836 3.0034 1.2024
S2 1.2308 0.8405 1.3595 0.9569 2.0034 0.2042

BH MAE 0.1161 0.1043 0.1242 0.1075 0.1086 0.0824
RMSE 0.1825 0.1721 0.1877 0.1743 0.1760 0.1594
SSE 3.3968 3.0220 3.5919 3.0973 3.1598 2.5903
S1 1.6804 1.4949 1.7769 1.5322 1.5631 1.2814
S2 0.6804 0.5288 0.7494 0.5511 0.5769 0.2931

MD MAE 1.2707 1.0094 1.0492 0.9760 1.0896 0.8658
RMSE 1.3042 1.1812 1.3241 1.1932 1.1568 1.0496
SSE 51.0278 41.8572 52.5943 42.7083 40.1484 33.0503
S1 19.7124 16.1697 20.3176 16.4985 15.5096 12.7676
S2 18.7124 16.9029 21.4308 17.1904 14.3726 13.5949

Table 2. Performance of all methods on synthetic datasets

Dataset Metric SVR TSVR LS-TSVR TBSVR TRISVR TSVR+

SynD1 MAE 0.4104 0.4974 0.4113 0.4711 0.7652 0.2138
RMSE 0.4450 0.5259 0.4454 0.5642 0.9022 0.2497
SSE 59.4092 82.9615 59.5086 95.4885 244.1820 18.7102
S1 6.6888 9.3406 6.7000 10.7510 27.4923 3.3397
S2 5.6888 8.3862 5.7276 9.7297 27.8560 2.4361

SynD2 MAE 0.4433 0.2361 0.4616 0.4515 0.3904 0.2125
RMSE 0.5032 0.2795 0.5134 0.5156 0.4583 0.2622
SSE 75.9525 23.4334 79.0862 79.7511 63.0068 20.6229
S1 4.4657 1.3778 4.6499 4.6890 3.7045 1.1676
S2 3.4657 1.3176 4.4173 5.4594 1.5812 1.0620

SynD3 MAE 0.5111 0.4766 0.5101 0.5109 0.3750 0.3595
RMSE 0.6113 0.5806 0.6086 0.7316 0.5260 0.5960
SSE 112.1070 101.1247 111.1260 160.5906 82.9967 38.7813
S1 3.3230 2.9974 3.2939 4.7601 2.4601 1.1495
S2 2.3230 2.0224 2.3185 3.4995 1.5664 0.1721



Twin Support Vector Regression with Privileged Information 133

Table 3. Time analysis on different datasets (s)

Method SVR TSVR LS-TSVR TBSVR TRISVR TSVR+

WBC 0.2917 0.0522 0.0264 0.0692 0.0524 0.0458
BH 0.3440 0.0458 0.0192 0.0585 0.0789 0.0726
MD 0.8552 0.2689 0.3555 0.4183 0.4420 0.3212

4.2 Experiments Analysis

From the results in Table 1 we can obtain that our proposed method achieves
competitive performance compared with the existing methods under all cri-
terions. The predictive performance of TSVR+ is smaller than those of SVR
and other TSVR based regression methods. Specifically, on WBC, the achieved
results of MAE for TSVR, LS-TSVR, TBSVR, TRISVR and TSVR+ are 0.0705,
0.0808, 0.0748, 0.1212, and 0.0401 respectively, the S1 for TSVR, LS-TSVR,
TBSVR, TRISVR, and TSVR+ are 1.8391, 2.3619, 1.9836, 3.0034, and 1.2024,
which indicates that TSVR, TBSVR, and our TSVR+ with small values mean
good agreement between estimations and real-values. Compared with TSVR
based models, we can find that SVR leads to the worst predictive performance,
which demonstrates that twin support vector learning mechanism with a pair of
nonparallel up- and down-bound functions is superior to support vector learn-
ing. Moreover, from Table 2, on SynD1 and SynD2 datasets, we can observe that
our method exhibits the smallest predictive results under all evaluation indica-
tors. On SynD3, the performance also shows better under MAE, RMSE, S1 and
S2 for TSVR+ compared with other methods. Therefore, from the experimental
results on benchmark and synthetic datasets, we can conclude that the proposed
TSVR+ is an effective and competitive regressor for the reason that it can addi-
tionally utilize the privileged information to train a robust model. Besides, to
show a more intuitive regression analysis, we show the true value and the pre-
diction value of all methods on synD2 dataset in Fig. 1(a)–(f). Obviously, our
method obtains better performance.
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Fig. 1. Regression analysis on synD2 dataset

4.3 Computing Time

In this section, we provide the time analysis (s) of all methods on three bench-
mark datasets in Table 3. In general, the time complexity of regression algorithms
depends on the number of training samples and the dimensionality of the feature
space. Training a SVR model typically involves solving a quadratic optimization
problem, which can be computationally intensive (with 0.2917, 0.3440 and 0.8552
on WBC, BH and MD, respectively), while training TSVR based methods with
two small QPP problems result in a faster speed. For TSVM+, it modifies exist-
ing TSVR to incorporate privileged information, which may require additional
computations. For example, TSVR and LS-TSVR show fast learning results.
Notably, our method can achieve better computational efficiency than TBSVR
and TRISVR on most cases.

5 Conclusions

Considering the situations with more additional information in practical applica-
tion, we aim to enhance the performance of TSVM with privileged information
learning framework. Our method utilizes a twin-learning strategy that lever-
ages both original and privileged features to create two non-parallel boundary
functions. By solving smaller quadratic programming problems, our approach
facilitates faster learning and enhances prediction performance. Experimental
evaluations conducted on various datasets demonstrate the effectiveness of our
approach when compared to other existing methods.
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Abstract. With the development of social media, social robots are increasingly
interfering in political elections and economic issues, and detecting social robots
has become a long-standing but unresolved problem. Traditional machine learning
models or methods have gradually become ineffective with the evolution of social
robots. In contrast, analyzing the social network structure where social robots are
located has become a more effective method. However, at present, most of these
methods are based on a single view, ignoring the importance of multi-view infor-
mation in social networks. At the same time, existingmethods have not considered
the influence of potential topic structures. Therefore, to solve the above problems,
this paper proposes a new framework based on multi-view (Multi-View Graph
Transformer, MV-GT). Specifically, MV-GT includes a topic module, a graph
enhancement module, a multi-view Graph Transformer module, and a multi-view
attentionmodule,which can explore the complementarity, consistency, and seman-
tic relevance of multiple different views in online social networks. Experimental
results show that MV-GT outperforms many existing methods and also demon-
strates the effectiveness of multi-view and topic structures in detecting social
robots.

Keywords: Multi-View · Graph Transformer · Topic Structures · Detecting
Social Robots

1 Introduction

Twitter, as a social platform with global influence and coverage, allows users to express
their opinions. However, it also contains a large number of social robots that disguise
themselves as normal users and participate in public discussions while intervening in
the dissemination process [1, 2], and thus influencing public sentiment [3]. As a result,
scholars have been devoted to combating robots in the past decade.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
E. Chen et al. (Eds.): BigData 2023, CCIS 2005, pp. 136–148, 2023.
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Early research on social robot detection heavily relied on feature engineering. Specif-
ically, researchers defined and extracted unique features of social robots from raw data
through domain knowledge, and applied them tomachine learningmodels [4–6]. In order
to further explore the differentiation between normal users and social robots, researchers
proposed the CNN-LSTM model to analyze the internal and external factors of social
behavior in detail [7]. With the rise of graph neural networks, researchers began to use
graphs to describe the social association structure between social robots and normal
users [8]. Graph mining algorithms have also been gradually applied to the detection of
social robots [9]. In this process, researchers have explored from homogeneous graphs to
heterogeneous graphs, with some focusing on heterogeneous networks [10] and multi-
relationship networks [21] to explore the subtle differences between social robots and
normal users. Although these methods have achieved some success, they have several
obvious problems. For example, the social correlation among users’ behaviors under the
same topic in social networks has not been taken into account; the complex behavior
information of social robots has not been captured from a multi-view perspective.

To address the above issues, a new topic structure is proposed to understand the
influence of other users within the community on users’ behavior. Then, this paper
proposes a new Twitter bot detection framework to analyze the significant differences
between users and social bots in social networks from a multi-view perspective. The
main contributions of this paper are summarized as follows:

(1) This paper introduces a new topic structure in the heterogeneous information net-
work, which can help better understand users’ behavior on social media and how
they are influenced by other users, while also helping to identify subtle differences
between bots and real users.

(2) This paper proposes a novel end-to-end Twitter bot detection framework, which can
use multi-view Graph Transformer for fine-grained analysis of different views in
social networks, and dynamically learn the importance and correlation between
different views through attention mechanism, thus improving the accuracy of
identifying and detecting Twitter bot accounts.

(3) Experiments conducted on publicly available datasets show that the proposed model
outperforms state-of-the-art methods in terms of performance. Further analysis also
confirms the effectiveness of the proposed topic structure and multi-view model.

2 Related Work

Userinfo-BaseMethods. Early research mainly relied on manual feature extraction and
combiningmachine learningmodels to differentiate betweennormal users and social bots
[4, 11]. In order to conduct a more in-depth analysis, researchers introduced features
such as time [5, 6] and text semantics [12, 13] based on this foundation. Compared
with early feature extraction methods and machine learning models, these deep learning
models extract higher-level features from user information and behavior through multi-
layer neural networks [14, 15]. These rich features not only help researchers effectively
differentiate between normal users and social bots, but can also capture more complex
features, such as joint features [16], user interaction patterns [17, 18], and contextual
features [19], making the social bot identification process more accurate and reliable.
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Graph-Based Methods. Recent advances in graph neural networks have helped to
better understand the underlying relationships between normal users and social bots,
improving detection efficiency. [8] presented the detection process as a node classifica-
tion problem in a graph, and for the first time, applied graph convolutional networks to
social bot detection. [20] considered the different types of relationships between users
in social networks and identified social bots by constructing a heterogeneous informa-
tion network. To further analyze this, [21] added influence heterogeneity and relation-
ship heterogeneity to the heterogeneous information network to improve the model’s
performance. Meanwhile, [22] considered the similarity of robot behavior in different
social networks and added neighborhood awareness to a multi-relationship network to
explore differences in robot behavior inmultiple domains. In recentwork, Reference [10]
combined reinforcement learning with GNN to adaptively determine the most appropri-
ate multi-hop neighborhood and layer in the GNN architecture, thereby improving the
model’s detection performance for social bots.

Multi-view Methods. Multi-view learning refers to the use of complementary infor-
mation from multiple features or patterns to improve performance, and has achieved
significant success in many fields. [23] proposed the Multi-View Graph Convolutional
Network (MV-GCN) model, which integrates GCN into multi-view learning by utiliz-
ing the interaction relationships and content information between different node objects.
[24] built upon this model and proposed MGAT, which aggregates node representations
of each view through an attention mechanism.

In this paper, inspired by the aforementioned research, we propose a multi-view
based framework for social bot detection, which adaptively learns node representations
for each view and integrates information from various views into a unified node feature
representation. Additionally, it allows for interaction between different views to better
represent the learned content.

3 Methodology

Figure 1 illustrates the framework structure of MV-GT. Specifically, MV-GT includes a
topic structure module for constructing latent semantic structures, a graph augmentation
module for extending multiple views to multi-channel and multi-view, a multi-view
Graph Transformer module, and a multi-view interaction attention module for social bot
detection.
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Fig. 1. Framework Architecture Diagram.

3.1 Topic Graph Construction

Due to the existence of a large number of short texts in users’ tweets, the sparsity of these
texts can lead to poor co-occurrence effects, which can severely impact the establishment
of topic models. In this paper, we construct pseudo-tweets by concatenating all tweets
from the same user, as follows,

di = ‖Jj=1d
j
i , (1)

where ‖ Indicates splicing operation, di
j , di denote the i-th tweet of user j and the

constructed pseudo-tweet. LDA uses a Dirichlet prior with fixed number of topics to
represent the probability distribution over m topics,

Di = (P(T1|di),P(T2|di),P(T3|di), . . . ,P(Tm|di)), (2)

where Di denotes the distribution of tweet topics for user i, The set T represents the
topics that appear in n user tweets, P

(
Tj|di

)
denotes the probability that user i tweet di

belongs to topic Ti. Find users under each topic by filtering the largest Ti,

T = {T1,T2,T3, . . . ,Tm}, (3)

Ti = {u1, u2, u3, . . . , us}, (4)

where T represents the topic cluster, Ti denotes the s-th topic cluster, m denotes the
number of topics, i denotes the users under the i-th topic cluster, and s denotes the
number of users under the corresponding topic cluster; moreover, the number of users
under each topic cluster is not necessarily the same. To further reduce the denseness of
the topic network, the users under each topic cluster are concatenated with probability
p to obtain the final topic structure network. Finally, the users are represented as xi and
are transformed into the initial features of the GNN by a fully connected layer,

x(0)
i = σ(W1 · xi + b1). (5)
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3.2 Graph Augmentation

To reduce the effects of overfitting as well as over-smoothing, DropEdege is chosen
as the graph structure data enhancement method, and by DropEdege on each view, the
multi-view is extended to multi-view multi-channel, which is represented as follows,

Si(Gz) = (V ,Mi � Ez). (6)

where Mi ∈ {0, 1}|V | is the mask vector of channel i acting on the edge set Ev of view
z and Si(Gz) denotes the graph of view z channel i. The patterns of the local structure
of the nodes under each view are captured by multiple channels, multiple subgraphs,
further making the node representations more robust and noise-resistant.

3.3 Mult-view Graph Transformer

In the Multi View Graph Transformer module, the multi head attention mechanism
is introduced into graph learning for multiple views, taking into account the specific
features of each view. Specifically, the c-th attention head mechanism of channel s and
node i under view z is computed by the node features initialized above,

qZ,S
c,i

(l) = wZ,S
c,q

(l) ·x(l−1)
i + bZ,S

c,q
(l)

, (7)

kZ,S
c,j

(l) = wZ,S
c,k

(l) ·x(l−1)
j + bZ,S

c,k
(l)

, (8)

vZ,S
c,i

(l) = wZ,S
c,q

(l) ·x(l−1)
i + bZ,S

c,v
(l)

, (9)

where q, k, and v denote query, key, and value in the attentionmechanism, and (l) denotes

the l-th layer of the model. wZ,S
c,q

(l)
, wZ,S

c,k
(l)
, bZ,S

c,q
(l)
, bZ,S

c,k
(l)

denote the parameters that
can be learned by the attention head c of channel s under view z.Inspired by [25], the
features ei,j of the edges of the different attention heads of the channels s under view z
are also added to the vector calculation as supplementary information for each layer of
the channels s under view z,

eZ,S
c,i,j = WZ,S

c,e
(l) ·eZ,S

i,j + bZ,S
c,e , (10)

further it can be modeled by the attention weights between different nodes,

α
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where α
(l)
c,i,j denotes the c-th attention head weight of the l-th layer between node i and

node j, <q, k> = exp
(
qT k

/√
d
)
is the exponential dot product function, d denotes

the hidden size of each attention head, N (i)Z denotes the neighborhood of node i of
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channel s under view z. Finally, the node i of channel s under view z is obtained by
message aggregation by representing,

xZ,S
i

(l) = 1

C

C∑

c=1

⎡

⎣
∑

j∈N (i)Z,S

α
Z,S
c,i,j

(l)(
vZ,S
c,i

(l) +eZ,S
c,i,j

)
⎤

⎦, (12)

where xZ,S(l)
i is the node representation of layer l of channel s under view z and C is the

number of heads of the attentionmechanism.After completing the learned representation
of the nodes under each channel, the nodes of each channel under view z are subjected
to the splicing operation, to which the connection operation is added due to the layer-
by-layer decay of the node features as follows,

xZ,S
i = ‖Ll=1 x

Z,S
i

(l) +x(0)
i , (13)

where xZ,S
i is the final representation of node i of channel s under view z. The fusion of

multiple channels is accomplished through the connection of cumulative summation, and
to ensure the smoothness of the node features, the nonlinear function and normalization
operation are applied to the above results, and the final representation of node i under
view z is represented through uZi as follows,

βZ
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(

WZ
i
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(15)

3.4 Mult-view Attention

In order to convert the input features into high-level output features by a shared linear
transformation of the learnable weight vector α applied to each node, the coefficients
computed by the attention mechanism can be expressed as,

αz
i = exp

(
LeakyReLU

(
α
(
W · uZi + b

)))

K∑

k=1
exp

(
LeakyReLU

(
α
(
W · uki + b

)))
, (16)

where W and b are learnable parameters, αz
i denotes the weight of different views, and

further the final node can be represented as,

xi =
Z∑

z=1

αZ
i · uZi , (17)

where uzi denotes the representation of node i under view z. The global node represen-
tation xi is generated by weighting and combining the nodes under different views with
αz
i as the weight parameter.
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3.5 Training and Optimization

After the above-mentioned weighted fusion based on the feature weights of the different
views through the attention mechanism, effectively combining the multi-view features,
the final node representation will be obtained and will be used in the MLP layer as
follows,

ŷi = softmax(W2 · LeakyReLU (W1 · xi + b1) + b2), (18)

where ŷi is the predictive label of the model prediction, andW and b are both parameters
that can be learned. The cross-entropy loss was then evaluated for all labeled data:

Loss =
∑

i∈S

[−yi log ŷi − (1 − yi) log
(
1 − ŷi

)] + λ
∑

ω∈θ

ω2, (19)

where s denotes the sets of users in the labeled data, yi denotes the real label of the user,
λ denotes the regular term coefficient, and θ denotes all learnable parameters.

4 Experiments

In this section, a large number of experiments are conducted to verify the effectiveness
of the proposed method. First, the data set is presented, then the experimental results are
shown, and finally the ablation experiments are used to further demonstrate the necessity
of the framework composition.

4.1 Dataset

Since MV-GT is based on multiple views, datasets with specific graph structures need
to be provided. In this paper, TwiBot-20 [26] was used for the main experiments. The
details of this dataset are shown in Table 1.

Table 1. TwiBot-20 data set situation

Data item Amount

User Node 229,573

User Tweet 33,488,192

User Attribute Item 8,723,736

User Relation(Edge) 33,716,171

TwiBot-20 covers a diverse range of bots and real users to better represent the real-
world Twittersphere, so MV-GT can prove applicable to a variety of social bots. The
same segmentation provided in the benchmark is followed, so the results are directly
comparable to previous work.
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4.2 Baselines

Our model was trained for 150 rounds, using AdamW as the optimizer, with a learning
rate of 0.001, a weight decay of 0.0005, a number of topics of 9, and a concatenated edge
probability of 0.4 for the topic view, all experiments were performed on an NVIDIA
Tesla V100, Pytorch 1.12.1 was chosen as the deep learning framework.

This paper aims to provide a comprehensive comparison of various methods used
for Twitter bot detection. In addition to some general methods, the following methods
will be considered for this comparison: Cresci et al., [2], Lee et al., [5], Wei et al., [19],
Yang et al., [28], Kudugunta et al. [30], Alhosseini et al., [8], SATAR [29], BotRGCN
[20], RGT [21].

In order to better analyze the differences between each method, the performance of
the model will be analyzed from several perspectives.

Table 2 shows the performance of the model evaluated in terms of the analysis of
the underlying topic structure, the heterogeneous type of user relationship structure, the
depth of the model, whether the model involves graph neural networks, and whether the
model involves multi-view learning of multiple modalities.

Table 2. Multi-angle model analysis

Method Theme Heterogeneous Deep GNN-base Mult-view Accuracy F1-score

Cresci et al. 0.4793 0.1072

Lee et al. 0.7456 0.7823

Miller et al. 0.4801 0.6266

Wei et al. ✓ 0.7126 0.7515

Yang et al. 0.8191 0.8546

Kudugunta et al. ✓ 0.8174 0.7515

Alhosseini et al. ✓ ✓ 0.6813 0.7318

SATAR ✓ 0.8412 0.8642

BotRGCN ✓ ✓ ✓ 0.8462 0.8707

GCN ✓ 0.8670 /

GAT ✓ 0.7750 /

HGT ✓ ✓ 0.8330 /

SimpleHGN ✓ ✓ 0.8690 /

RGT ✓ ✓ ✓ 0.8664 0.8707

Follower View ✓ ✓ 0.8631 0.8785

Following View ✓ ✓ 0.8614 0.8768

Theme View ✓ ✓ ✓ 0.8622 0.8767

Full Model ✓ ✓ ✓ ✓ ✓ 0.8749 0.8910

The results demonstrate that:

• MV-GT consistently outperforms existing baseline models, including the newly pro-
posed framework RGT [21]. We can achieve 0.8749 in accuracy and 0.8910 in
F1-score.
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• We propose for the first time to analyze the association between Twitter robots and
users based on the underlying theme structure, which helps us explore the subtle
differences between users and social robots under the theme structure.

• The proposed multi-view-based learning achieves the best performance on Twitter
bot recognition, and these results demonstrate the necessity of fine-grained analysis
of social networks through different views and the effectiveness of our method.

4.3 Model Architecture Study

In this paper, we propose a multi-view-based Twitter bot detection method. To demon-
strate the validity of the model, multiple ablation experiments are set up to analyze the
results.

Theme Structure Study
Figure 2 represents the perplexity curve drawn in order to find the optimal number of
topics.

By maximizing the topic probability distribution, corresponding topics are assigned
to each user tweet. Figure 3 shows the dimensionality reduction by t-SNE [27] to further
visualize the topic distribution. The semantic associations between words in the same
topic of tweets posted by users in social networks are large and small, due to the phe-
nomenon of continuous distribution of nodes under the topic, which also illustrates that
the topic structure in the proposed social network is one of the elements affecting user
behavior.

Fig. 2. Confusion curve Fig. 3. Scatterplot of theme distribution

Multi-view Study
To further validate and analyze the effectiveness of multi-view learning, twitter bot
detection is performed using a single view as well as a combination of multiple views
by retaining the rest to separate only the multi-views (Fig. 4).

Learning from multiple views is superior to any single view learning. The results
show that there is also an advantage of topic views over other views, which demonstrates
the necessity of underlying topic structure for the analysis of user behavior. Further,
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Fig. 4. Results of different view combinations

removing any of the views degrades the performance of themodel, andmulti-view learn-
ing can combine information from multiple views together so that the complex behavior
of Twitter bots in social networks can be captured and understood more accurately.

View Fusion Study
An in-depth analysis of the multi-view fusion approach is performed to further demon-
strate the effectiveness of the multi-view fusion method. Figure 5 shows the results of
the comparison experiments.

Different approaches of multi-view fusion methods have advantages and disadvan-
tages. The additive approach can effectively utilize the information of different views,
but may lead to ambiguity and instability of feature representation; the averaging app-
roach can fuse the information of different views, but will ignore the information of
some views; the attention mechanism can focus on the important view information
and improve the data representation, but may ignore the important view features and
lead to the decrease of result accuracy. Therefore, on the basis of attention mechanism,
adding connection operation and view interaction function can better retain the original
feature information and utilize the interconnection between views, thus improving the
performance of multi-view fusion. After comparative experimental analysis, the atten-
tion mechanism with connection operation and view interaction function is better than
several other view fusion methods.

Fig. 5. Comparison experiment of view fusion methods CO means with connection operation
Interact means with view interaction function
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Parameter Sensitivity
We performed sensitivity analysis on the parameters of the model and plotted heat maps
to show the effect of different number of attention heads and layers on the performance
of the model. By analyzing the heat map, the model achieves the best performance when
the number of attention heads is 8 and the number of layers is 8. It indicates that in
social networks, relationships between different nodes may have different importance,
and using multiple attention heads allows the model to focus on these relationships
simultaneously and improve the accuracy of extracting key information. Also, increasing
the number of layers of the model allows the model to understand and reason about the
input data in a deeper way (Fig. 6).

Fig. 6. Number of layers and number of attention heads

5 Conclusion

Social bot detection is an important and challenging task, which requires effective meth-
ods to automatically identify real users to cope with the changing social media users
and related needs. In this paper, we propose a multi-view-based social bot detection
framework, which analyzes the significant differences between users and social bots
under social networks from a multi-view perspective. Based on this, we introduce a
new topic structure through social cognitive theory to analyze the user behavior under
this structure. Further, we also explore the multi-view fusion algorithm and improve it.
We conduct extensive experiments on publicly available benchmarks to demonstrate the
effectiveness of our model against state-of-the-art models. In addition, we explored and
analyzed the effectiveness of topic structure and multiple views for social bot detection
through ablation experiments.We plan to introduce more laws and theories of real-world
user behavior in the future to deeply analyze the differentiation of users and social bots.
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Abstract. Docker and Kubernetes have revolutionized the cloud-native
technology ecosystem by offering robust solutions for containerization
and orchestration workflows. This combination provides unprecedented
speed, scalability, and efficiency in deploying and managing applications
in distributed environments. However, when scheduling complex work-
flows across multi-cluster Kubernetes environments, existing workflow
scheduling systems often fail to provide the necessary support. Inte-
grating workflow scheduling algorithms with multi-cluster scheduling
algorithms poses a complex and challenging problem. In this paper,
we present a comprehensive framework known as the Containerized
Workflow Engine (CWE), specifically designed for multi-cluster Kuber-
netes deployments. The CWE framework employs a two-level scheduling
scheme, which combines the benefits of workflow containerization and
establishes seamless connections between multi-cluster scheduling algo-
rithms and multi-cluster Kubernetes environments. By integrating work-
flow scheduling algorithms with Kubernetes schedulers across Kuber-
netes environments, the CWE framework enables efficient utilization of
resources and improved overall workflow performance. Compared to the
state-of-the-art Argo workflows, CWE performs better in average task
pod execution time and resource utilization.

Keywords: Workflow · Scheduling · Containerized

1 Introduction

Cloud infrastructure is continually evolving due to advancements in cloud-native
technologies, hardware capabilities, networking enhancements, and the adop-
tion of industry standards [21]. Cloud-native technologies, including containers,
microservices, DevOps, Kubernetes [9], and other transformative practices such
as serverless computing, infrastructure as code, and CI/CD, have revolutionized
IT operations, maintenance, and development. Docker [5] and Kubernetes have
emerged as prominent tools for cloud resource management, playing a significant
role in the cloud-native technology ecosystem [13]. However, alternative solutions
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and platforms are available, such as Podma [3] and Apache Mesos [10], catering
to specific use cases and requirements.

Kubernetes is an open-source container orchestration and management plat-
form for automating containerized applications’ deployment, scaling, and man-
agement. It provides a highly scalable, reliable, and user-friendly way to build,
deploy, and manage applications across multiple hosts. Kubernetes defines the
desired state of an application and automates tasks such as container creation,
replication, restarts, and scaling, ensuring that the application runs consistently
with the defined state. It also offers powerful service discovery and load balancing
capabilities, supports horizontal auto-scaling, and enables developers and oper-
ations teams to efficiently build and manage modern distributed applications.

Single-cluster workflow scheduling [12] may face the risk of a single point
of failure. For example, when the cluster experiences a failure, the workflow
may be interrupted or halted. Furthermore, single-cluster workflow scheduling
has limited resource utilization and cannot effectively handle load fluctuations.
Multi-cluster workflow scheduling [22] offers better elasticity, scalability, and
high availability than single-cluster workflow scheduling. Multi-cluster workflow
scheduling can automatically adjust the cluster size based on workflow demands,
ensuring elastic allocation and scalability of resources. Additionally, multi-cluster
workflow scheduling can achieve resource isolation, meet geographical distribu-
tion and data locality requirements, and enhance the performance and efficiency
of workflows.

Argo workflows (Argo) [2] is a powerful open-source workflow orchestration
engine that focuses on managing and orchestrating containerized workloads in
Kubernetes environments. The engine provides rich workflow orchestration capa-
bilities, a visual interface, and close integration with Kubernetes. However, the
current Argo scheduler has a significant drawback: it cannot schedule workflows
across multi-cluster Kubernetes. This means that when it comes to orchestrating
and scheduling workflows across multi-cluster, users need to implement cross-
cluster scheduling logic themselves. This problem poses a challenging issue for
containerized workflow [16,20] scheduling on Kubernetes and urgently requires
an efficient framework closely integrated with Kubernetes to address this prob-
lem.

In this paper, we design a Containerized Workflow Engine, referred to as
CWE, based on the further development of CWB [19]. The main objective of
this system is to support workflow scheduling across multi-cluster Kubernetes
and improve the execution efficiency of workflows by implementing a two-level
scheduling scheme and containerized execution on Kubernetes. The CWE system
consists of two components: Containerized Workflow Controller (CWC) and Con-
tainerized Workflow Scheduler (CWS). The CWC component can be deployed
on high-performance hosts, and its primary function is to receive workflows and
send them to the CWS components in multi-cluster. CWC implements a dual-
channel mechanism, where the fast channel is used for quick workflow forwarding,
while the slow channel ensures accurate routing of workflows to the schedulers.
Additionally, CWC implements load balancing across clusters and within clus-
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ters. Specifically, when CWC receives an actual task, it decides which cluster
to send the new task to based on the current workload of each cluster. CWC
communicates with CWS to understand the load situation of CWS within the
cluster, enabling it to decide whether to send the task to an existing CWS or
start a new one. This design effectively addresses the pressure of large-scale cloud
workflow tasks on the system. It avoids the predicament of a single CWS fac-
ing a sharp decline in performance or even failure to function properly due to
massive requests. The CWS component is deployed in each Kubernetes cluster.
To ensure smooth execution of workflow scheduling, CWS internally employs
advanced workflow scheduling algorithms and utilizes the informer component
to monitor Kubernetes resources. It also uses the Clint-go package to implement
task container creation functionality. CWS utilizes the Goroutine mechanism to
create concurrent task containers after the current task is completed for cases
with multiple parallel successor tasks in a workflow. Furthermore, CWS handles
data dependencies between task containers using the dynamic volume-sharing
feature of StorageClass. Experimental results demonstrate that our CWE system
exhibits better performance in terms of workflow execution efficiency. Compared
to state-of-the-art technologies, CWE achieves a 31.61% improvement in enhanc-
ing workflow execution efficiency. Our contributions are summarized as follows:

– Design a framework for effectively managing containerized workflows within a
Kubernetes environment. This framework incorporates a two-level scheduling
scheme, allowing workflow management across multi-cluster Kubernetes.

– Implement a workflow injection module, CWC, and CWS. The workflow injec-
tion module is designed to handle the task injection process into the CWC
during experiments. The primary role of the CWC is to transmit workflow
tasks to the CWS within the Kubernetes cluster, taking into account the
resource status of the cluster. The CWS is responsible for efficiently schedul-
ing workflows within the Kubernetes environment.

– Provides a case study of containerized workflow in simulated production prac-
tice and presents a detailed performance analysis of CWE compared to other
workflow scheduling solutions.

We have open-sourced the CWE. The source code is publicly available on
GitHub at [4]

2 Related Work

As the standard container orchestration tool in the cloud-native era, Kubernetes
provides rich and comprehensive support for developing the container application
ecosystem. Its emergence offers powerful functionalities for the development and
deployment of cloud-native applications and drives the continuous evolution of
workflow engines. Airflow [1] is a platform to programmatically author, schedule,
and monitor workflows. Airflow provides a user-friendly interface for defining,
scheduling, and monitoring workflows as directed acyclic graph (DAG), offering
features like task dependencies, error handling, and extensibility. Nextflow [7] is
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a bioinformatics workflow manager that enables the development of portable and
reproducible workflows. Nextflow simplifies the creation and execution of scal-
able scientific workflows, supporting large-scale data and computational work-
loads with its DSL and containerization capabilities. Argo is an open-source
container-native workflow engine hosted by Cloud Native Computing Foundation
(CNCF). Argo enables the deployment and management of containerized appli-
cations in Kubernetes clusters, allowing users to define complex workflows as
code with features such as templating and event-driven execution. Volcano [11],
born in Huawei Cloud Native, is CNCF’s first batch computing project. Volcano
optimizes scheduling and resource management for batch and AI workloads on
Kubernetes clusters, improving resource utilization and job performance through
intelligent resource allocation and prioritization. These platforms empower orga-
nizations to streamline and automate their data processing and workflow man-
agement tasks, enhancing productivity and scalability.

Containerized workflow scheduling remains a relatively emerging research
field. Existing technologies and tools, such as Airflow, Nextflow, Argo, and Vol-
cano, primarily focus on workflow scheduling within a single Kubernetes cluster.
However, their support for multi-cluster Kubernetes is not yet comprehensive
enough. Consequently, a framework is needed to operate efficiently in a multi-
cluster Kubernetes environment. Furthermore, Airflow and Nextflow were not
originally intended as native workflow systems for Kubernetes, while Volcano
was primarily focused on batch tasks. Presently, Argo is a cloud-native work-
flow engine specifically designed for Kubernetes. Therefore, in this paper, the
experimental evaluation will primarily compare the submission method using
Argo.

3 Design

This section provides a detailed explanation of the scientific workflow definition
and the two-level scheduling scheme. We present the architectural design of the
CWE and subsequently introduce the CWC and the CWS.

3.1 Scientific Workflow

In large-scale data processing tasks, the workflow [14,15] is typically described
using a DAG to represent a distributed system application comprehensively.
The relationships between tasks can be likened to edges in a DAG graph [23]. In
addition to shared files, dependencies between tasks may involve data transfer,
message queues, API calls, and other means. Container technologies [18] such
as Docker provide a lightweight virtualization solution to encapsulate the exe-
cution environment and required resources for workflow tasks. The advantages
of container technology include isolation, portability, and repeatability, utilizing
container images as static snapshots of containers. In Kubernetes, a Pod is the
smallest scheduling unit, serving as a logical deployable entity consisting one or
more related containers, providing a shared network and storage environment.
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The Kubernetes scheduler determines suitable nodes within the cluster to sched-
ule Pods based on resource requirements, affinity rules, and scheduling policies.

3.2 Two-Level Scheduling Scheme

CWE and Kubernetes combine to implement a two-level scheduling scheme, as
shown in Fig. 1. CWE serves as the interface that connects the workflow injec-
tor module and Kubernetes. Through the CWC module, the workflow schedul-
ing algorithm is used to make scheduling decisions for workflows and distribute
them to the CWS modules of different Kubernetes clusters. The CWS module
is responsible for executing workflow tasks containerized to fully utilize cluster
resources and improve the execution speed of workflows. The CWS module uses
workflow scheduling algorithms to manage cluster resources efficiently, ensur-
ing tasks are scheduled and executed based on task dependencies and resource
requirements.

CWS

kube-apiserver

kube-scheduler kube-controller-
manager

etcdK8S cluster

Multi-Cluster
Scheduling AlgorithmCWC Multi-Cluster
Scheduling AlgorithmCWC

pod

CWS

kube-apiserver

kube-scheduler kube-controller-
manager

etcdK8S cluster

Multi-Cluster
Scheduling AlgorithmCWC

pod

Fig. 1. Two-level scheduling scheme. The two-level scheduling scheme refers to Multi-
cluster scheduling of CWC and workflow scheduling of CWS.

3.3 CWC Architecture

As shown in Fig. 2, CWC includes distributor module, pre-selector module, pres-
sure evaluator module and state tracker module. Algorithm1 shows the details.
The function INITIALIZECLUSTER is responsible for the initialization of a
cluster, involving the allocation of available resources and the computation of
its initial score. To begin, the available resources of the cluster are gathered (line
1). Subsequently, the initial score of the cluster is calculated (lines 2 and 3). This
initial score, along with the available resources, is then appended to the registry
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table (line 4) for future reference. In the subsequent function, TASKSCHEDUL-
ING, the process of task allocation is orchestrated by systematically examining
each cluster entry in the registry table. For each cluster under consideration, the
algorithm first assesses whether the task’s requirements can be accommodated
by the cluster’s available resources (lines 10 and 11). Following this, a predictive
score for the cluster is computed (lines 11 and 12), which aids in the determina-
tion of its suitability for the given task. Ultimately, the task is assigned to the
cluster that best matches with its needs.

Algorithm 1. Scheduling Algorithm
1: function InitializeCluster(Cluster n, Available resources cn, mn, bn, Total

resources Cn, Mn, Bn)
2: if Cluster n is new then
3: Pn = α cn

Cn
+ β mn

Mn
+ γ bn

Bn
�Calculate initial cluster score

4: Add cluster score and available resources to the registry table R
5: end if
6: end function
7:
8: function TaskScheduling(Registry table R, Task t, Task requirements ct, mt, bt)
9: for each cluster n in R do

10: if Task requirements can be met by cluster n then
11: St = α ct

Cn
+ β mt

Mn
+ γ bt

Bn
�Calculate task score

12: Pn = Pn − St �Update cluster score
13: Assign task t to the cluster n
14: end if
15: end for
16: end function

a) Distributor Module: Responsible for sending workflows to CWS in multi-
cluster Kubernetes. Through the distributor module, workflow tasks are intel-
ligently allocated to different Kubernetes, resulting in optimized resource
utilization and streamlined task execution. The module implements flexi-
ble resource allocation and load-balancing strategies, continuously adapting
to demand variations. These capabilities enable higher concurrency, enhance
system scalability, and improve overall performance.
b) Pre-Selector Module: Responsible for establishing a pre-selection table in
advance, utilizing the current Kubernetes resource data obtained from CWS.
This table provides precise information to the controller allocator, ensuring
facilitating quick routing turnover and accurate workflow routing to the opti-
mal scheduler. After scheduling workflows by the allocator module, the pre-
selection table is updated in real-time according to the resource evaluation
algorithm to correct each cluster’s scoring and CWS load values. By pre-
dictive real-time update mechanism enables higher accuracy in pre-selection
tables, improving the efficiency and reliability of workflow scheduling for
CWC, resulting in improved performance.
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Fig. 2. Architecture of the CWC.

c) Pressure Evaluator Module: Responsible for continuously monitoring and
evaluating the workload pressure of each CWS and Kubernetes cluster within
the system and creating a corresponding workload registry table. Analyzing
real-time and historical data calculates workload pressure scores, which indi-
cate the level of resource utilization for each Kubernetes cluster. This informa-
tion is used to optimize workload balancing and routing of workflows to ensure
efficient task execution, maximize resource utilization, and enhance system
performance. The module collaborates with the Pre-Selector and Distribu-
tor modules to analyze workload pressure data and make informed decisions
regarding workflow distribution.
d) State Tracker module: Responsible for real-time monitoring and man-
agement of workflow and CWS statuses. It tracks the progress of work-
flows, ensuring their successful execution and handling failed workflows by
rescheduling them. Furthermore, the module continuously monitors CWS
to detect potential issues and updates the state table accordingly. Through
active tracking of workflow execution, efficient management of failures, and
maintenance of an accurate state table, this module significantly enhances
the reliability and effectiveness of the CWS.

3.4 CWS Architecture

As shown in Fig. 3, CWS includes the scheduler, resource allocator, and tracker
modules.
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Resource Allocator

Scheduler

Tracker

K8S Cluster Resource Pool
Workflow Task PodWorkflow Task Pod

CWCCWC
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W
S

Fig. 3. Architecture of the CWS.

a) Scheduler module: Responsible for implementing critical algorithms for
cloud workflow scheduling. The main objective was to efficiently allocate and
manage workflow tasks submitted by users, ensuring optimal resource alloca-
tion and meeting personalized requirements. The Scheduler module analyzed
task dependencies and resource demands, allocating them effectively among
available Kubernetes cluster resources to achieve optimal execution efficiency
and resource utilization. This module considered factors like task priority,
data transmission between tasks, and resource utilization to formulate appro-
priate scheduling strategies.
b) Resource allocator module: Responsible for implementing the resource allo-
cation functionality for workflow tasks. Its main functions include container-
izing workflow tasks, monitoring Kubernetes resources using the informer
component, creating task containers with the Clint-go package, creating con-
current task containers using the Goroutine mechanism after the current task
is completed, handling data dependencies between task containers through
dynamic volume-sharing using StorageClass, caching resource information
locally to reduce API access pressure, and generating namespaces for achiev-
ing isolated environments for workflow resources. By effectively allocating and
managing workflow tasks, optimizing resource utilization, meeting personal-
ized requirements, and enhancing execution efficiency, this module ultimately
improves the overall workflow performance.
c) Task Tracker module: Responsible for monitoring the execution status
of cloud workflow task containers and providing real-time feedback to the
scheduler to support the orderly execution of task containers. It detects the
health of containers, collects and stores container log information, records the
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execution time of task containers, provides task progress updates, cleans up
containers, and releases resources promptly after completing tasks.

3.5 Workflow Injection Module

The workflow injection module is an independent auxiliary module that operates
separately from the CWE. Its primary functions include generating workflows,
handling input requests from subsequent workflows, and transmitting workflow
information to the CWC via gRPC. This module establishes the overall struc-
ture of workflow tasks and utilizes the Json method to inject configuration files
containing task dependencies into the respective containers.

4 Experimental Evaluation

This section will evaluate the proposed CWE using various evaluation metrics
and discuss its benefits compared to Argo.

4.1 Experimental Setup

To assess the performance of CWE, we have designed the workflow injection
module. This module is containerized for deployment with CWC and CWE.
Effective communication between these modules is facilitated through the gRPC
mechanism.

The Kubernetes cluster used in our experiments consists of one master node
and five worker nodes. Each node equips with a 6-core AMD EPYC 7742 2.2GHz
CPU and 8GB of RAM, running Ubuntu 20.04 and Kubernetes v1.19.6 and
Docker version 18.09.6 and Argo v3.2.9. CWC and workflow injector module are
deployed on a high-performance virtual machine, and CWS is containerized and
deployed into the Kubernetes cluster through Service and Deployment. In order
to evaluate the performance of CWE across multi-cluster Kubernetes, we utilized
a total of nine Kubernetes clusters. Due to Argo’s lack of support for multi-
cluster scheduling, we established a separate Kubernetes cluster comprising three
master nodes and forty-five worker nodes for Argo.

4.2 Workflow Example

In order to validate the application scalability of CWE, we have tailored a cus-
tomized workflow that encompasses all the node-dependent characteristics of the
DAG diagram, accommodating more intricate scenarios. The workflow task pro-
gram employs resource loads to simulate workflow tasks in real-world production
practice.

a) Workflow Topology: We utilize a DAG diagram to represent the workflow,
constructing an experimental example encompassing all the typical charac-
teristics of such a diagram. As shown in Fig. 4, this workflow comprises seven
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tasks featuring branching, crossover, and merging elements. Based on the
interdependencies among task nodes, the scheduling algorithm employed for
this workflow follows a top-down approach, ensuring tasks are scheduled topo-
logically.
b) Workflow Containerization:Taking inspiration from [17], we adopt a
Python application as a workflow task and utilize the Stress tool [6] to emu-
late CPU and memory usage within a defined timeframe. To facilitate this,
we employ the Docker engine to package the Python application into a task
Image file. This task Image file is subsequently stored in either a local Har-
bor [8] or a remote Docker Hub repository, and its image address is initialized
within the workflow injection module. Furthermore, container parameters can
be imported into the task container, specifying CPU cycles, memory alloca-
tion, and duration, all of which contribute to determining the runtime of the
task pod. The task involves CPU forking and memory allocation operations,
executed over 15 s. Within the JSON file, we specify the task pod’s resource
requests and resource limit parameters as 1000 milli cores for CPU and 512Mi
for memory. It is worth noting that the requests and limits fields share the
same parameter values.

Fig. 4. Workflow topology diagram.

4.3 Results and Analysis

In order to evaluate the effectiveness of CWE, our first step is to verify the work-
flow execution efficiency on multi-cluster Kubernetes using CWE. Subsequently,
we will compare CWE and Argo, focusing on workflow execution efficiency and
CPU usage rate. We will now describe the two methods for workflow submission.
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– CWE: We employ the containerized method to deploy CWE. CWC and work-
flow injector module are deployed on a high-performance virtual machine,
while CWS is deployed within each Kubernetes cluster. We use a JSON file
describing a DAG to represent the workflow task dependency relationship.
After going through the workflow injector module, compress the JSON file
using Snappy and submit it to CWC via gRPC.

– Argo: We deployed the Argo Workflow image in the Kubernetes cluster using
the official YAML file provided by Argo. Similar to the CWE, we employ the
same JSON file and leverage a workflow injection module to convert it into a
YAML format that Argo can recognize and then submit to Argo.

a) Workflow task execution efficiency: We package Docker images for CWC,
CWS, and workflow injection modules. We define YAML files for RBAC, Stor-
ageClass, and CWS. CWC and workflow injection modules are containerized
and deployed on high-performance virtual machines with a Docker engine.
The YAML files are deployed in the Kubernetes cluster, where CWS are
scattered and scheduled to the cluster nodes as pods. The components com-
municate with each other using gRPC.
As is shown in Fig. 5, The execution time for each group of workflows has been
averaged across ten experiments. The execution time of the CWE workflow
task was determined by subtracting the start time of the workflow injector
from the successedWorkflows metric. Similarly, the execution time of the Argo
workflow task was determined by subtracting the start time of the workflow
injector from the Successfully metric found in the log of the Argo workflow-
controller pod. The CWE takes 133.3 s to receive 100 workflow tasks from the
workflows injection module until the workflows pod is execution completed,
350.1 s to execution completed 500 workflow tasks, and 825.8 s to execution
completed 1000 workflows tasks. The Argo takes 121.2 s to receive 100 work-
flow tasks from the workflows injection module until the workflows pod is
execution completed, 431.1 s to execution completed 500 workflow tasks and,
1086.89 s to execution completed 1000 workflows tasks. During the initial exe-
cution of 100 workflows, CWE and Argo exhibited similar execution times,
indicating sufficient resources within the Kubernetes cluster. However, as the
workload increased to 500 workflows, CWE experienced a 23.13% decrease in
execution time compared to Argo. This disparity can be attributed to inad-
equate resources within the Kubernetes cluster. When executing 1000 work-
flows, Argo generated workflow task pods exclusively within its namespace,
resulting in a significant accumulation of pods. This accumulation ultimately
led to the restart of the Argo workflow-controller pod. Consequently, CWE
experienced a 31.61% decrease in execution time compared to Argo.
In addition, upon comparing the execution of 500 workflows with that of 1000
workflows, it becomes evident that CWE outperforms in handling larger-scale
workflows. It validates that the CWE is a framework for a large-scale workflow
scheduling tool for multi-cluster Kubernetes.
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Fig. 5. Average execution time of workflow.

b) Resource Usage Comparison: This section aims to utilize Prometheus to
capture the state changes of underlying resources in a Kubernetes cluster
under different numbers of workflows to showcase the CPU utilization charac-
teristics of two engines, CWE and Argo. To ensure accurate performance com-
parisons for CPU usage, it is crucial to address the substantial impact caused
by frequent resource fluctuations. In order to mitigate this influence, we metic-
ulously configure our experimental environment to eliminate any additional
workloads that could affect performance measurements. To enhance the sta-
bility and resource allocation efficiency of the Kubernetes cluster, the Master
node is intentionally excluded from participating in pod scheduling and work-
load, focusing solely on its core administrative tasks.
Figure 6, Fig. 7 show the CPU usage rate of the CWE and Argo over the life-
cycle of 100 and 500 workflows. When executing 100 workflows in two Kuber-
netes clusters with the same number of nodes, the CPU utilization curves
of the two workflow engines are similar. However, the CPU utilization curve
shows significant fluctuations when executing 500 workflows using the Argo
engine. This could be due to the fact that when the Argo workflow engine
executes a large number of workflows simultaneously, all the workflow pods
are launched in the same namespace, resulting in a drastic drop in system
performance and the inability to schedule workflows properly. Regardless of
the type of Kubernetes cluster mode, the available number of CPU cores is
270000 milli. Under no load conditions, the CPU utilization of the Kubernetes
cluster components is 0.7%. After injecting workflows, the CWS is launched
and requires 2 CPU cores. Therefore, after completing workflow execution,
the CPU utilization of CWE will remain at 7%. Due to the prolonged time
required by Argo to clean up completed pods, which marks the end of work-
flow execution, there has been a significant performance degradation issue
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Fig. 6. CPU Usage Rate for 100 Workflows.

Fig. 7. CPU Usage Rate for 500 Workflows.

when a large number of workflow injections occur. We designed CWE that
assigns a separate namespace for each workflow task, enabling resource isola-
tion and more efficient cleanup of completed pods. In a multi-cluster Kuber-
netes environment, our CWE has better performance.

5 Conclusion

In this paper, our CWE has successfully achieved efficient workflow task schedul-
ing across multi-cluster Kubernetes. CWE offers comprehensive workflow man-
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agement functionalities, including task definition, dependency management, and
execution sequencing. It also employs intelligent distributed scheduling strategies
to allocate tasks to different clusters based on resource availability and workload
conditions, thus enhancing the overall system efficiency and performance.

Our experimental results demonstrate a significant improvement in the work-
flow scheduling throughput of CWE compared to the state-of-the-art single-
cluster workflow scheduling engine, Argo, with an approximate increase of
around 31.61% in multi-cluster Kubernetes scenarios. This indicates the superior
scheduling performance and scalability of CWE in multi-cluster environments.

In conclusion, as a multi-cluster workflow scheduling engine, CWE holds
promising prospects for a wide range of applications. By providing flexible work-
flow management functionalities and intelligent distributed scheduling strategies,
CWE significantly improves the efficiency and performance of workflow task
scheduling in multi-cluster environments. Future research can focus on further
refining the scheduling algorithms, optimizing resource management strategies,
and expanding the capabilities of CWE to cater to the growing demands of
containerized workflow tasks.
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Abstract. Electricity theft not only disrupts normal electricity con-
sumption but also poses a significant security threat to the power system.
The widespread deployment of smart meters has led to the collection of
massive amounts of electricity consumption data, which can help iden-
tify electricity theft. However, the challenge of detecting electricity theft
is heightened by the category imbalance in the electricity consumption
data collected. In this study, we address this problem by using ADASYN
resampling technology to balance data categories, and then develop a
model based on Anomaly Transformer (AT) to identify electricity theft
by analyzing historical data that deviates from normal patterns following
a theft. The model uses an attention mechanism to calculate and extract
the series-association between power consumption data streams, and a
Gaussian kernel to calculate the priori-association of the relative tempo-
ral distance between power consumption data points and their neighbors.
We validate the proposed model using the SGCC dataset, and our exper-
imental results demonstrate high accuracy, precision, F1-score, and AUC
values.

Keywords: Electricity theft detection · Anomaly Transformer · Deep
Learning · Non-technical losses · Smart meters

1 Introduction

Line losses in power systems can be divided into technical losses (TL) and non-
technical losses (NTL) [7]. The technical losses caused by aging lines and unrea-
sonable network structure have been well solved with the transformation of the
power grid, so the non-technical losses become more prominent. Among them,
power theft is one of the essential causes of non-technical losses.

Advanced metering infrastructure (AMI) is a technology that connects cus-
tomers and electric utilities through a wide area communication network [21,31].
Smart meters collect customers’ electricity consumption data at a high frequency
to provide a reference for subsequent work by electric utilities. However, attack-
ers can use specialized equipment to hack smart meters, tamper with electricity
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consumption records, or attack meters [11]. This may result in a failure to
extract reference information from the collected electricity consumption data. In
China, incomplete statistics from the national power department indicate that
electricity theft causes an annual loss of more than 10 billion. This highlights the
significant economic losses and safety hazards associated with electricity theft,
including the risk of major accidents such as fires that threaten the safety and
stability of the electric power system.

At present, outdated detection methods, unlabeled collected electricity con-
sumption data, and exponential growth in the amount of data make it difficult
to detect electricity theft in a timely manner and extract valuable information
from the data. However, the emergence of artificial intelligence offers a potential
solution to this problem. Researchers can use AI to identify electricity theft by
detecting patterns in the electricity consumption data following a theft, which
differs from the normal consumption patterns.

The detection of anomalies in electricity use is a primary research focus in the
analysis of electricity usage. At present, conventional Machine Learning (ML)
and Deep Learning (DL) techniques are widely used to identify instances of
electricity theft.

Many researchers have utilized traditional ML methods for detecting power
theft, as these methods are straightforward to comprehend and quick to
train [2,12,17,28]. Traditional ML methods can be classified as supervised learn-
ing and unsupervised learning, depending on whether the model training pro-
cess requires labeled data or not. Random Forest (RF) and K-Nearest Neighbor
(KNN) are classical supervised learning algorithms. RF consists of multiple deci-
sion trees, which have strong resistance to noise, but the presence of multiple
similar decision trees can obscure the actual classification results. The litera-
ture [6,13] proposes RF algorithms for time series anomaly detection. The former
algorithm defines anomalies based on the complexity of the decision tree and uti-
lizes probability to randomly cut the tree across feature dimensions, resulting in
better anomaly detection performance than RF. The latter algorithm employs
a combination of Convolutional Neural Networks (CNN) and RF for detect-
ing power theft. KNN can perform both classification and regression tasks, but
its computational cost increases significantly as the number of features in the
dataset grows too large. In literature [3], a KNN method for detecting elec-
tricity theft was designed by analyzing historical electricity consumption data
and performing feature extraction, resulting in a high accuracy rate. However,
supervised learning anomaly detection methods are limited in this field due to
the challenges posed by handling data labels and selecting appropriate parame-
ters.

In ML, electricity theft detection using unsupervised learning methods is
typically categorized into clustering-based, tree-based, and other methods. In
literature [16], k-means with Local Outlier Factor (LOF) are used to select and
calculate the degree of anomalies for outliers, respectively. In literature [10], an
improved DBSCAN algorithm is used to detect anomalies in time series data
with seasonality, which is more effective than the basic DBSCAN algorithm in
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identifying anomalies. Although many scholars have achieved anomaly detection
through clustering, the selection of radius in the clustering process is an impor-
tant issue that cannot be ignored. Decision Tree (DT) is a classical tree-based
method for anomaly detection, and many researchers [18,19,23] have developed
DT-based models for detecting electrical theft. However, most of these mod-
els ignore the correlation between electricity consumption data. Unsupervised
learning algorithms cannot assess the quality of the resulting model parame-
ters because they do not use abnormal user electricity usage data labels dur-
ing the training process, and traditional machine learning methods rarely take
into account temporal information, which limits their applicability in electricity
anomaly detection scenarios [27]. However, traditional ML relies heavily on fea-
ture engineering, which involves manually designing feature extraction schemes
and incurs high pre-processing costs. In addition, traditional ML requires high-
quality data and has a weak generalization ability, which makes it challenging to
adapt to the electricity theft detection scenario. Deep learning-based methods for
power theft detection, on the other hand, can automatically extract features and
are highly adaptable to large datasets, thereby compensating for the limitations
of traditional ML. In Deep Learning, Neural Networks serve as an end-to-end
architecture that automatically learns the relationship between input and out-
put. In literature [4,9], electrical anomaly detection models based on Recurrent
Neural Networks (RNN) have been developed. The former proposed a method
that combines an Encoder-Decoder framework with RNN. The latter utilized
RNN for electricity consumption prediction and compared the prediction results
with actual consumption, using the difference between the two and a preset
threshold to detect anomalies in power data. Several researchers [8,15,26] have
proposed CNN-LSTM models for identifying customer electricity theft. These
models leverage the Convolutional Neural Network’s (CNN) ability to automat-
ically extract features and the Long Short-Term Memory (LSTM) network’s
superior performance on continuous time-series datasets. Literature [20,24]
proposes electricity consumption anomaly detection models based on LSTM,
the latter focusing more on the former with seasonality and monthly trends.
With continuous research, the Transformer model has been proposed, and its
important component, the self-attention mechanism, has been widely applied
in various fields due to its excellent capabilities. In literature [5], a power theft
detection model was constructed based on a multi-headed attention mechanism,
and a binary input channel was introduced to identify missing values in the
power consumption dataset. Experimental results show that this model achieves
an AUC of 0.92 on the SGCC dataset. In literature [25,29], anomaly detection
models were constructed using the attention mechanism combined with Convolu-
tional Neural Networks (CNN). The literature [22] proposes a multivariate time
series anomaly detection model (OmniAnomaly) based on the combination of
VAE (Variational AutoEncoders) and GRU, which is robust to various devices.
The literature [30] proposes a CAE-M method, which uses a deep convolutional
autoencoder as the feature extraction module, an attention-based bidirectional
long- and short-term memory model and an autoregressive model as the predic-
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tion module, and calculates the error value of the objective function for each test
data, and uses the size of the error value as the basis for judging the normal and
abnormal data categories. Experimental results show that the introduction of
the attention mechanism improves the detection capability of the model. Despite
scholarly research demonstrating the feasibility of DL in power theft detection
scenarios, the following problems still exist:

1) Data imbalance: Electricity theft data is usually scarce, which means that the
number of negative samples in the training data may be very small. In this
case, the model may be overfitted, resulting in a high false alarm rate.

2) The complexity of the model structure: DL models need to be trained several
times or stacked with multiple layers of neural networks if they want high
performance, which will take a lot of time and resources.

In this paper, the Anomaly Transformer(AT)-based electricity theft detection
model is used to identify customers’ electricity theft behavior in response to
the problems of the above studies. Firstly, the electricity consumption data are
processed using resampling techniques to make the proportion of positive and
negative categories in the electricity consumption data suitable for use in the
AT model; secondly, the model uses a multi-headed attention mechanism to
calculate and extract the serial association between electricity consumption data
streams [14] and uses a Gaussian kernel to calculate the priori-association of
the relative temporal distance between electricity consumption data points and
neighboring points [27]. Finally, the difference between the priori-association and
the serial-association is used to discriminate the electricity theft data.

The overall structure of this paper is as follows: Section 2 provides a detailed
analysis of the customer power consumption model and an introduction to the
data pre-processing methods used. Section 3 presents the AT model in detail.
Section 4 gives the experimental results. Finally, Sect. 5 gives a summary of the
paper.

2 Characteristic Analysis and Data Expansion

2.1 Data Analysis

This study utilized the daily consumption records of 42,372 customers from Jan-
uary 1, 2014, to October 30, 2016, which were publicly available from the State
Grid Corporation (SGCC) [1]. The details are presented in Table 1, which high-
lights the significant imbalance between normal customers and electricity theft
customers. Given that data are collected on a daily basis, it is possible for power
consumption data to contain missing or abnormal values due to malfunctioning
smart meters, unreliable transmission of measurement data, unplanned mainte-
nance of the system, and storage issues [32]. To address this issue, missing data
are filled using the linear interpolation method, except when the values are , in
which case they are filled with 0.
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f(xi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi−1+xi+1
2 xi ∈ NaN,

xi−1, xi+1 /∈ NaN

0 xi ∈ NaN,

xi−1orxi+1 ∈ NaN

xi xi /∈ NaN,

(1)

xi denotes the amount of electricity consumption data for a certain customer
on a certain day, or Nan if xi is a non-numeric type. The outliers in the electricity
consumption data are recovered using the 3δ principle, and the 3δ principle is:

f(xi) = min(xi,mean(X) + 3std(X)) (2)

In this paper, X represents a day-by-day vector of electricity consumption
data, where xi denotes the electricity consumption data of day i in X. The mean
and standard deviation of X are denoted by “mean” and “std”, respectively. Only
positive deviations are considered, as the electricity consumption data of each
customer is always greater than or equal to 0. To facilitate faster convergence
of the neural network and avoid numerical problems, normalizing the electricity
consumption data is essential. In this study, we normalize the data using the
linear normalization method:

f (xi) =
xi − min(X)

max(X) − min(X)
(3)

where min(X), max(X) are the minimum and maximum values in X, respectively.

Table 1. Distribution of SGCC dataset.

Description Value

Data collecting time slot 1 January 2014–31 October 2016
Type of data Times series
All customers 42372
Normal customers 38757
Electricity theft customers 3615
Electricity theft ratio/Normal 0.09

2.2 Data Expansion Mechanism

When there is a significant imbalance between electricity theft data and normal
electricity consumption data, the model is highly sensitive to normal electricity
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consumption data, resulting in unsatisfactory classification results. To address
this issue, this paper employs the resampling technique ADASYN to augment
the customer electricity consumption data, which involves the following steps:

Step1: To determine the Euclidean distance between each minority class sample
x and all other minority class samples, perform the following calculation:

Step2: The density of each minority class sample x is determined by calculating
the number of other minority class samples that are within a certain distance
from it.

Step3: To determine the number of synthetic samples to be generated for each
minority class sample x, the distance ratio is calculated by computing the
ratio of its distance to all other minority class samples to the number of
majority class samples whose distance falls within a certain range.

Step4: The number of synthetic samples to be generated for each minority class
sample is determined by calculating the distance ratio.

Step5: To generate synthetic samples for each minority class sample x, a sample
y is randomly selected from its k-nearest neighbors, and an interpolation is
performed between them to create a new synthetic sample. This process is
repeated until the desired number of synthetic samples is obtained.

2.3 Feature Analysis

This study utilizes the SGCC dataset to analyze the characteristics of normal
electricity consumption patterns and electricity theft patterns. Figure 1 illus-
trates the 30-day electricity consumption of normal users and electricity theft
users. It can be observed that the electricity consumption of electricity theft
users has no sharp peaks and is consistently low compared to normal users.
Analyzing the users’ electricity consumption pattern by week reveals an obvious
periodicity for normal users, as shown in Fig. 2(a). Conversely, there is no clear
periodicity in the weekly electricity consumption of electricity theft users, and
the temporal characteristics disappear, as shown in Fig. 2(b). Hence, the elec-
tricity consumption data are segmented strictly according to a 7-day interval
and converted to the following data format:

Xi =

⎡

⎢
⎣

x1,1 ... x1,7

...
. . .

...
xn,1 ... xn,7

⎤

⎥
⎦ (4)

Xi denotes the electricity consumption data of the ith user, and xn,1 denotes
the electricity consumption of the user on Monday of the nth week.

3 Electricity Theft Detection Model

3.1 Electricity Theft Detection Methods

The electricity theft detection model based on Anomaly Transformer (AT) [27]
consists of an anomaly detection module with stacked L-layers and a feedforward
neural network, as shown in Fig. 3.



170 S. Chen et al.

Fig. 1. 30-day electricity consumption line graph of normal users and electricity theft
users.

Fig. 2. (a) is a line graph of electricity consumption data for normal users and (b) is
a line graph of electricity consumption data for theft users.

The anomaly detection of power consumption data consists of two branches:
the priori-association and series-association of power consumption data. The
difference between these two associations is defined as the association difference,
which is used as a criterion for subsequent anomaly detection. The input and
output relationship between the anomaly detection module of the alternately
stacked l-layer and the feedforward neural network can be expressed as follows:

Z l = Layer-Norm
(

Anomaly-Attention
(X l−1

)
+ X l−1

)
(5)

X l = Layer-Norm
(

Feed-Forward
(Z l

)
+ Z l

)
(6)

where l denotes the current layer and x ∈ R
N×dmodel (N is the input timing

length and d is the timing dimension). zl denotes the hidden representation of
the l layer.

Priori-Association: The priori-association incorporates a learnable Gaussian
kernel function, with the center being the index of the corresponding time point.
This module utilizes the single peak of the Gaussian distribution and focuses
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more on neighboring points in the electricity data.

P l = Rescale

([
1√
2πσi

exp(−|j − i|2
2σ2

i

)
]

i,j∈{1,··· ,N}

)

(7)

where σ ∈ R
N×1 is the parameter of the Gaussian kernel function, and P l is the

a priori association of the l layer, computed by the Gaussian kernel to represent
the association weight of the i time point with the j point.

Series-Association: The series-association is derived from a multi-headed
attention calculation in the standard Transformer. The sequential association
of a point is represented by the distribution of attention weights for that point
in the corresponding row of the attention matrix. This module is designed to
extract associations from the original sequence and enable the model to adap-
tively capture the most effective associations.

Q,K,V, σ = X l−1Wl
Q,X l−1Wl

K ,X l−1W1
V ,X l−1Wl

σ (8)

Sl = Softmax

(
QKT

√
dmodel

)

(9)

Y l = SlV (10)

where Q,K,V ∈ R
N×dmodel , σ ∈ R

N×1 are query, key, value and Gaussian
kernel function, W is the matrix of parameters to be trained, respectively,
Sl is the sequence association, and Y l ∈ R

N×dmodel is the hidden representa-
tion of the l layer Anomaly Transformer. In the multi-headed attention mech-
anism, if there are h heads, σ ∈ R

N×h and Y l ∈ R
N×dmodel is connected by{

Y l ∈ R
N×dmodel

}

1≤n≤h
.

Association Discrepancy: The priori-association of anomalies and the series-
association that focuses more on neighboring points exhibit a slight difference.
Conversely, the attention map of normal sequences has a global focus charac-
teristic and is distributed over non-neighboring points, resulting in a substan-
tial difference between these two associations compared to the distinct priori-
association of single peaks. Based on this characterization of association differ-
ences as a metric of anomalies, the degree of difference between a priori associa-
tions and sequential associations is expressed using the symmetrized KL scatter
formula and averaged over association differences from multiple layers, which
can be expressed as:

AssDis(P, S;X) =

[
1
L

L∑

l=1

(
KL(P l

i; ‖ Sl
i;) + KL(Sl

i, ‖ P l
i,)

)
]

i=1,··· ,N

(11)

where l ∈ {1, · · · , L} and KL(· ‖ ·) denotes the calculation of the discrete dis-
tribution between P l, Sl for each row of data, AssDis(P, S;X) represents the
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Fig. 3. General architecture of the model.

point-by-point difference between the prior association of sequence X and the
sequence association. Anomalous points have smaller differences than normal
points.

Minimax Strategy: When λ > 0, minimizing the loss function results in max-
imizing the association difference. However, directly maximizing the association
difference can cause the σ of the Gaussian kernel to become excessively small,
leading to a meaningless prior distribution. Therefore, the problem is solved by
employing a very large minima strategy while changing the direction of λ in
the Loss to realize the switching of the max-min learning direction, which is
formulated as follows:

LTotal (X,P, S, λ;X) = ‖X − X̂‖2F − λ × ‖AssDis(P, S;X)‖1 (12)

Minimize Phase:LTotal

(
X̂, P, Sdetach,−λ;X

)
(13)

Maximize Phase:LTotal

(
X̂, Pdetach, S, λ;X

)
(14)
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where LTotal is the loss function, X̂ is the reconstruction of the original electricity
consumption data sequence, and λ is the balance term.

In the Minimize Phase, the priori-association P is optimized to approximate
the serial association S. This process enables the priori-association to adapt to
the electricity consumption data pattern while avoiding the σ parameter of the
Gaussian kernel from becoming too small.

In the Maximize Phase, the difference between associations is maximized
by optimizing the serial association S. This process focuses the serial associa-
tion more on non-adjacent points, making the reconstruction of anomalies more
challenging.

Anomaly Score: The smaller AssDis and the larger reconstruction loss result
in a higher Anomaly score, as follows:

AnomalyScore (X) = Softmax (−AssDis (P, S;X)) �
[∥
∥
∥Xi,: − X̂i,:

∥
∥
∥
2

2

]

i=1,··· ,N

(15)

3.2 Electricity Theft Detection Specific Process

The theft electricity detection method studied in this article completes the pro-
cess of theft electricity detection in three steps:

Step1: Data pre-processing involved two steps. First, missing values were filled,
and outliers were removed from the acquired customer electricity consump-
tion data. Second, the electricity consumption data were sliced by week and
normalized.

Step2: Data enhancement was performed by resampling the pre-processed data
using the ADASYN resampling method. This method increased the number of
positive and negative class samples, resulting in a relatively balanced dataset.

Step3: The Gaussian kernel function and Multi-Head Attention are used to
extract the priori-association and series-association of electricity consump-
tion data, respectively. The difference between them is increased using the
great minima strategy, which enables anomaly detection through error recon-
struction.

4 Experimental Evaluation

4.1 Data Expansion Performance Evaluation

The ADASYN resampled electricity consumption data is visualized and com-
pared with the original electricity consumption data. Since a customer’s elec-
tricity consumption data consists of 1029 features, the T-SNE algorithm is used
for visualization and analysis. Figure 4 shows the distribution of the original
electricity consumption data on the left and the distribution of the ADASYN
resampled electricity consumption data on the right. The comparison reveals that
the electricity theft data generated by ADASYN after resampling is very similar
to the distribution of the real data. Thus, the electricity theft data generated by
ADASYN is deemed reliable.
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Fig. 4. Comparison of the distribution of raw power consumption data with the power
consumption data after resampling by ADASYN.

4.2 Dataset Preparation

This study strictly analyzes the electricity consumption characteristics of cus-
tomers on a weekly basis. Therefore, the SGCC dataset from January 6, 2014
(Monday) to October 30, 2016 (Sunday) will be used, and the 1029 days of elec-
tricity consumption data for each customer will be divided into 147 weeks. The
42,375 customers will be divided into training and test sets in an 8:2 ratio.

4.3 Evaluation Metrics

In this paper, Accuracy, Precision, Recall, F1-Score, and AUC evaluation metrics
are used to examine the performance of Anomaly Transformer-based power theft
models, calculated as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(16)

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)

F1 − score =
2 ∗ Precision ∗ Recall

Precision + Recall
(19)

In binary classification, TP represents the number of normal users detected as
electricity thieves, while FP represents the number of normal users misidenti-
fied as electricity thieves. TN represents the number of normal users correctly
identified as normal users, and FN represents the number of electricity thieves
misidentified as normal users.

Testing the electricity theft model using only the above evaluation metric
is not sufficient. Based on the experience of other studies, the AUC evaluation
metric is the best performance metric for detecting binary classification tasks.
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The AUC is the area under the ROC curve, which represents the probability
that a pair of samples (one positive and one negative) is randomly selected and
then classified correctly by the trained classifier. The formula for AUC is as
follows:

AUC =

∑
i∈positiveclass Ri − M(M+1)

2

M ∗ N
(20)

where, Ri denotes the serial number of the ith data (the probability is sorted
from largest to smallest), M , N denotes the number of normal electricity users
and electricity theft users respectively.

4.4 Model Parameters

This study compares the proposed electricity theft detection model with
both deep learning methods (CNN, LSTM, CNN-LSTM, OmniAnomaly [22]
, CAE_M [30]) and traditional machine learning methods (KNN, DT) using
the specific parameters listed in Table 2. The experiments were conducted in the
same environment with the same dataset to test the classification effectiveness
of the models.

Table 2. Model Parameters.

Method Parameters

DT max_depth = 5
KNN n_neighbors = 3
CNN kernel_size = 3, filters = 64, batch_size = 147
CNN-LSTM kernel_size = 3, filters = 64, units = 200, batch_size = 147
OmniAnomaly kernel_size = 3, window_size = 5, batch_size = 147
CAE_M kernel_size = 3, window_size = 5,batch_size = 147
AT kernel_size = 3, filters = 64, n_heads = 8, L = 3, d_model

= 512, batch_size = 147

4.5 Analysis of Results

Tables 3 and 4 show the experimental results of electricity theft detection
obtained by AT as well as DT, KNN, CNN, CNN-LSTM, OnmiAnomaly and
CAE_M in two resampling methods, SMOTE and ADASYN.

Table 3 and 4 illustrate that the detection performance of models trained
on the electricity consumption dataset is significantly improved after SMOTE
and ADASYN resampling compared to the original dataset. The AUC values
for most of the electricity theft models using the original data are below 0.6,
with the AUC value for DT only reaching 50.8%. However, after resampling the
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Table 3. Comparison of raw electricity consumption data and SMOTE resampled
electricity consumption data.

Method Original SMOTE
Accuracy Precision Recall F1-Score AUC Accurary Precision Recall F1-Score AUC

DT 0.844 0.100 0.104 0.102 0.510 0.854 0.832 0.888 0.859 0.847
KNN 0.902 0.321 0.141 0.196 0.534 0.739 0.662 0.993 0.795 0.739
CNN 0.909 0.431 0.237 0.306 0.603 0.945 0.913 0.988 0.949 0.878
CNN-LSTM 0.911 0.250 0.065 0.100 0.651 0.959 0.931 0.992 0.961 0.922
OmniAnomaly 0.980 0.901 0.862 0.881 0.926 0.980 0.903 0.862 0.882 0.927
CAE_M 0.974 0.891 0.793 0.839 0.892 0.978 0.901 0.839 0.869 0.915
Proposed 0.985 0.901 0.931 0.914 0.938 0.988 0.900 0.965 0.932 0.978

Table 4. Comparison of raw electricity consumption data and power consumption data
after resampling by ADASYN.

Method Original ADASYN
Accurary Precision Recall F1-Score AUC Accurary Precision Recall F1-Score AUC

DT 0.844 0.100 0.104 0.102 0.510 0.843 0.826 0.869 0.847 0.837
KNN 0.902 0.321 0.141 0.196 0.534 0.760 0.682 0.996 0.809 0.747
CNN 0.909 0.431 0.237 0.306 0.603 0.954 0.927 0.992 0.958 0.929
CNN-LSTM 0.911 0.250 0.065 0.100 0.651 0.966 0.950 0.983 0.966 0.961
OmniAnomaly 0.980 0.901 0.862 0.881 0.926 0.978 0.860 0.885 0.873 0.936
CAE_M 0.974 0.891 0.793 0.839 0.892 0.959 0.821 0.666 0.736 0.826
Proposed 0.985 0.901 0.931 0.914 0.938 0.984 0.990 0.979 0.984 0.982

original data using the SMOTE and ADASYN methods, most of the electricity
theft models have AUC values higher than 80%.

This section presents a comparison of experimental results for the raw power
consumption data, power consumption data after SMOTE resampling, and
power consumption data after ADASYN resampling:

1) The electricity consumption data was processed using the SMOTE resampling
technique and compared to the original data. As shown in Table 3, the AUC
values of DT, KNN, CNN, CNN-LSTM, OmniAnomaly, CAE_M and AT
improved by 0.337, 0.205, 0.275, 0.271, 0.001, 0.023 and 0.040, respectively;

2) The electricity consumption data was processed using the ADASYN resam-
pling technique and compared to the original data. As shown in Table 4,
the AUC values of DT, KNN, CNN, CNN-LSTM, OmniAnomaly, and AT
increased by 0.327, 0.213, 0.326, 0.310, 0.010 and 0.044, respectively. How-
ever, the CAE_M model using the ADASYN resampled dataset is worse than
the original data, and the reasons are still being further analyzed;

3) The electricity consumption data was subjected to both SMOTE resam-
pling and ADASYN resampling. The experimental results indicate that the
ADASYN resampling technique yields higher AUC values for KNN, CNN,
CNN-LSTM, OmniAnomaly and AT compared to the SMOTE resampling
technique by 0.008, 0.051, 0.039, 0.009 and 0.004, respectively.
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Fig. 5. Comparison of AUC obtained experimentally from raw data, after resampling
the data.

As shown in Fig. 5 and Fig. 6, compared to other comparative models, the
theft model used in this paper achieves optimal values of Accuracy, Precision, F1-
score, and AUC under the ADASYN resampling method. Therefore, the results
suggest that the ADASYN method is more suitable for the theft model used in
this paper.

Fig. 6. Comparison of AUC obtained experimentally after resampling data by
ADASYN.

The Anomaly Transformer (AT)-based power theft model offers three key
advantages. Firstly, multidimensional feature extraction is no longer limited
to manual methods or dependent on more complex network structures. Sec-
ondly, feature extraction relies on the dot product of matrices, enabling acceler-
ated computing using hardware such as GPUs. Finally, utilizing the difference
between a priori and serial correlations to distinguish normal data from power
theft data simplifies outlier differentiation.

The analysis of experiments reveals that traditional ML methods can rapidly
process electricity consumption data and have straightforward model struc-
tures. However, traditional ML methods overlook the correlation between data
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attributes when processing electricity usage data, which can impact the detec-
tion performance of the model. Deep learning (DL)-based methods outperform
traditional ML-based methods in experimental results. The method that uses
an Autoencoder also outperforms the traditional ML-based method in terms
of results. Nevertheless, to achieve high accuracy, CNN and CNN-LSTM may
require deeper and more complex network structures or additional training
rounds, which can be time-consuming and resource-intensive. This study demon-
strates that training the electricity theft model three times produces better
results than training CNN and CNN-LSTM models twenty times. OnmiAnomaly
and CAE_M have more complexity, more model structure and number of train-
ings compared to AT. However, AT obtained higher AUC than OnmiAnomaly
and CAE_M. To summarize, the Anomaly Transformer (AT) method demon-
strates higher effectiveness in electricity theft detection compared to other mod-
els, based on the same dataset.

5 Conclusion

This study presents an Anomaly Transformer (AT) model that can effectively
address the issue of electricity theft. As outliers are primarily related to neighbor-
ing points and it is challenging to establish a correlation with the entire sequence,
the AT model utilizes a combination of a multi-headed attention mechanism and
Gaussian kernel function to distinguish normal data from electricity theft data.
The AT model employs a minimax strategy to increase the distance between nor-
mal data and electricity theft data, making it easier for the classifier to identify
electricity theft data and thus improve the detection performance of the model.
The proposed model offers a new approach to detecting electricity theft. Exten-
sive experimental results demonstrate that the AT model is highly effective and
exhibits superior performance compared to traditional ML based models and DL
based models.
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Abstract. The potential of large-scale models to enhance industrial pro-
ductivity and catalyze societal progress is undeniable. However, inherent
challenges-such as lengthy training cycles and the demand for advanced
computational resources-remain daunting. Given recent advancements
in computational adaptability, this paper introduces a systematic app-
roach to effectively fine-tune these models for domain-specific tasks. Our
method encompasses three key phases: (1) a thorough analysis of domain-
specific business needs and data acquisition; (2) precise task segmen-
tation, designing standardized instruction formats to construct a fine-
tuning dataset, and subsequently fine-tuning the large-scale models; (3)
rigorous model validation using a test dataset. Through these steps, we
effectively fine-tuned our training using 5,000 data instances and val-
idated our results with an additional 1,000 test instances. To comple-
ment our study, we provide a comparative analysis of different training
techniques and assess the fine-tuning results on four prominent open-
source models. The conclusions drawn offer valuable insights for the
future application of large-scale models in specialized domains and pave
the way for further research and applications.

Keywords: Large-scale model · Instruction fine-tuning · Vertical task

1 Introduction

In recent years, large-scale pre-trained language models, commonly referred to
as “large models,” have attracted significant attention in the field of natural lan-
guage processing (NLP). In 2018, OpenAI released the first iteration of the Gen-
erative Pretrained Transformer (GPT) model [1,8], marking the commencement
of the “pre-training” era in NLP. However, despite the technology behind GPT is
advanced, it did not immediately garner widespread attention. Instead, Google’s
Bidirectional Encoder Representations from Transformers (BERT) model [2,3]
took center stage. Yet, OpenAI remained undeterred, continuing on the technical
trajectory of GPT and releasing GPT-2 and GPT-3.
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Of particular note is the GPT-3 model, which boasts a massive 175 billion
parameters and introduced the concept of “prompting” [4] for the first time. This
innovative interaction mode offers three main advantages: firstly, it reduces the
need for model fine-tuning, thereby lowering the costs of deploying the model for
new tasks; secondly, it provides users the flexibility to interact with the model,
enabling a wide range of applications and swift experiment iterations; lastly, it
offers a simplified interaction mechanism for non-expert users. As a result, the
introduction of prompts has greatly enhanced the practicality and versatility of
GPT-3.

However, upon deep evaluation of GPT-3’s performance, researchers found
that large models still possess inherent issues typical of deep learning models,
such as poor robustness, limited explainability, and constrained inferencing capa-
bilities. It was only with the advent of ChatGPT [5–7] that perceptions about
large models fundamentally shifted. These models harness vast amounts of data
for knowledge extraction and learning [9], producing models with billions of
parameters, heralding a new era in AI research.

Yet, ChatGPT, being a generative general-purpose large language model,
cannot be directly applied to specific vertical domains, such as medicine, law,
and finance. To adapt large models for specialized domain tasks, fine-tuning
is imperative. This is because these vertical domains possess their unique ter-
minologies and knowledge structures, which might not be fully covered in the
training datasets of large models, and these models might struggle to adapt to
the data distribution of these verticals. For instance, they may misunderstand
professional terminologies or be unfamiliar with specific business content, lead-
ing to unintended errors in real-world applications. More crucially, ensuring the
accuracy and reliability of the inferences drawn by these large models in critical
tasks, such as medical diagnoses or addition, deletion, modification, and query
operations in finance.

To address these challenges, this paper introduces an instruction fine-tuning
method for training large models, aimed at enabling their application in vertical
domains with minimal data. Our approach primarily revolves around Supervised
Fine-Tuning (SFT), a method involving the pre-training of a neural network
model on a source dataset and then creating a new neural network model by
replicating the design and parameters of the source model (excluding the output
layer). Fine-tuning can aid large models in better addressing domain-specific
business needs, reduce potential biases and misconceptions, lower pre-training
costs [4,10], and enhance performance on domain-specific tasks.

In this paper, leveraging instruction-based fine-tuning as a foundation and
using operator data as a case study, we delve into the processes of data col-
lection, standardizing instruction formats, and fine-tuning the parameters of
large models to complete specific tasks in the operator domain, namely NL2SQL
(Natural Language to SQL). NL2SQL is a task that involves converting natural
language queries into their corresponding SQL (Structured Query Language) for-
mat, which is crucial for database querying and management. This task is pivotal
in the operator domain, where rapid, accurate database queries are essential for



Application and Research on a Large Model Training Method 183

efficient operations. By nature, it demands an intricate understanding of both
natural language semantics and SQL syntax, a feat challenging for generic LLMs.

The efficacy of fine-tuning emerges prominently when addressing the com-
plexities of the NL2SQL task. Through fine-tuning, the model acquires a nuanced
understanding of domain-specific terminologies and contexts, which is instru-
mental in translating intricate natural language queries into their SQL counter-
parts. Moreover, the regimented syntax of SQL necessitates meticulous precision;
any deviations can engender substantial discrepancies in database outputs. Fine-
tuning ensures that the model meticulously adheres to SQL’s stringent syntax,
yielding queries that are not only syntactically accurate but also optimized for
performance. Beyond mere syntactical considerations, the semantic integrity of
a query remains paramount. The fine-tuning process imbues the model with the
capability to discern subtle semantic distinctions in natural language queries,
ensuring that the resultant SQL representations faithfully capture the intent of
the original queries.

We fine-tuned the large model using 5,000 data and tested it with 1,000 data
instances. The experimental results met our expectations, further validating that
general-purpose large language models after fine-tuning, can effectively handle
and address domain-specific challenges.

2 Related Work

On March 17th, 2023, OpenAI, Open Research, and the University of Penn-
sylvania published the latest research paper titled “GPTs are GPTs: An Early
Look at the Labor Market Impact Potential of Large Language Models” [11].
. The authors believe that in the current development trend, large models are
gradually becoming a universal technology, which will have profound potential
impacts on the labor market. The paper explores the specific effects of LLMs
(Large Language Models) on various professions and industries. However, large
models have shown certain limitations in their application to vertical domains,
such as misunderstanding of professional vocabulary and unfamiliarity with busi-
ness content. These can lead to unexpected errors in practical applications. To
address the errors produced by large models in vertical domain applications,
we propose a method of instruction fine-tuning for training large models. This
method can enable the application of large models in vertical domains based on
a small amount of data. See Fig. 1

The primary training method for instruction fine-tuning is SFT (Supervised
Fine-Tuning) [12–14]. SFT involves pre-training a neural network model on a
source dataset, then creating a new neural network model, copying the design
and parameters of the source model (except for the output layer). During fine-
tuning, a new output layer is added to the target model and trained on the
target dataset. SFT leverages the parameters and structures of the pre-trained
models to speed up the training process and enhance the model’s performance
on vertical domain-specific tasks.
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Fig. 1. Instruction Finetune Architecture

The leading methods in supervised fine-tuning currently include LoRA [15]
(Low-Rank Adaptation of Large Language Models), P-tuning v2 [16], and Freeze
[17]. They all possess unique advantages and characteristics.

2.1 LoRA

LoRA [15,17], which stands for Low-Rank Adaptation of Large Language Mod-
els, is a distinctive fine-tuning technique. Its fundamental principle involves freez-
ing the pre-trained model’s weight parameters and adding additional network
layers to the model, training only these newly added layer parameters. A signif-
icant advantage of this method is that, due to the fewer added parameters, not
only does the cost of fine-tuning decrease significantly, but similar effects to tun-
ing the full model parameters can be obtained. LoRA freezes pre-trained model
weights and injects the decomposition matrices of trainable rank into each layer
of the Transformer architecture. For instance, for the pre-trained weight matrix
W0,its updates are constrained by using low rank decomposition to represent the
latter. During model fine-tuning, W0is frozen, and only parameters A and B are
fine-tuned. This substantially reduces the number of parameters to be fine-tuned
compared to tuning all parameters.

Among the main advantages of LoRA are that pre-trained model parameters
can be shared, used to build many small LoRA modules for different tasks. By
freezing the shared model and replacing matrices A and B, tasks can be switched
efficiently, significantly reducing storage requirements and the costs of switching
between multiple tasks. When using an adaptive optimizer, LoRA improves fine-
tuning performance and reduces the hardware threshold for fine-tuning by three
times, as there is no need to calculate gradients and save too many model parame-
ters. The low rank decomposition adopts a linear design approach, which enables
the merging of trainable parameter matrices with frozen parameter matrices
during deployment, without introducing inference delays compared to fully
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fine-tuning methods. LoRA does not conflict with various other fine-tuning meth-
ods and can be combined with other fine-tuning methods. The schematic diagram
of LoRA is as follows: See Fig. 2:

Fig. 2. LoRA Schema

2.2 P-Tuning

P-tuning v2 [16] is another fine-tuning method for large language models, an
improved version of P-tuning v1, drawing inspiration from prefix-tuning. Com-
pared to P-tuning v1, P-tuning v2 introduces tunable parameters at the begin-
ning of every layer, while P-tuning v1 only fine-tuned the first layer. The
improvements in P-tuning v2 include removing the Re-paramerization training
acceleration method, adopting multi-task learning optimization, and abandoning
the Verbalizer’s vocabulary Mapping. Instead, it reutilizes [CLS] and character
labels, enhancing its versatility, making it adaptable to sequence labeling tasks.

2.3 Freeze Fine-Tuning

Freeze [17] is another efficient fine-tuning technique for large language models.
The core idea of this method is “parameter freezing.” During the fine-tuning
process, only a subset of the parameters is trained, while all others are frozen.
Specifically, the Freeze method only fine-tunes the full connected layer param-
eters of the last few layers in the Transformer model. Experiments have shown
that shallow layers of the Transformer mainly extract surface features, while
deeper layers tend to extract semantic features. Thus, by only fine-tuning the
full connected layers of the last few layers, the Freeze method manages to max-
imize the fine-tuning effects of large language models efficiently.
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The emergence of these three fine-tuning methods not only enriches the tech-
nical means of fine-tuning large language models but also provides more choices
for different task requirements and resource constraints. The flexibility and uni-
versality of LoRA make it suitable for various complex fine-tuning scenarios; the
parameter efficiency and innovation of P-tuning v2 enable it to perform well on
models of different scales; the fast speed and low cost of Freeze make it an ideal
choice under resource-constrained situations.

3 Methodology

Due to previous work finding that pre-trained language models have a relatively
lower ‘intrinsic dimensions’, it has been observed that during task adaptation,
effective learning can still be obtained even if randomly projected into a smaller
subspace. Because LoRA effectively adds a small parameter module to learn
the changes, it reduces training costs, accelerates training speeds, efficiently
optimizes iterative results, and its versatility makes it suitable for a variety
of complex fine-tuning scenarios. Compared to P-tuning v2 and Freeze, LoRA is
more efficient in adapting to specific vertical domain tasks. Therefore, this paper
chooses LoRA as the foundational fine-tuning technique [18]. The large model is
fine-tuned based on the instruction fine-tuning method of LoRA and applied to
vertical domain tasks. applied to vertical domain tasks.

Suppose that the pre-train matrix is W0 ∈ R
d×k, its updates can be repre-

sented by:

W0 + ΔW = W0 + BA,

where B ∈ R
d×k,A ∈ R

r×k, and r � min(d, k).
(1)

During initialization, matrix A is initialized using random Gaussian values,
while matrix B is initialized with zeros. Throughout the training process, W0

remains frozen and does not receive any gradient updates. In contrast, both A
and B contain trainable parameters. Both W0 and ΔW = BA multiply with
the same input. Their respective output vectors are summed coordinate-wise.
Furthermore, the output dimensions of W0and ΔW are consistent. As a result,
after training is complete, merging the parameters simply involves element-wise
addition at corresponding positions.

h = W0x + ΔWx = W0x + BAx (2)

During the inference process, one only needs to reintegrate the modifications
back into the original model, ensuring that there is no additional latency.

W = W0 + BA (3)

In short, the LoRA training mode uses low-rank decomposition to simu-
late parameter changes, thereby indirectly training large models with a minimal
amount of parameters. This approach enhances training speed and reduces the
hardware threshold for training. See Fig. 3
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Fig. 3. Manual Verification process

In instruction fine-tuning, fields like ‘instruction’ are used to define down-
stream tasks, ‘input’ to specify user inputs, and ‘output’ to denote model out-
puts. Consequently, we establish a dataset format for instruction fine-tuning.
Depending on the different ‘instruction’, different tasks can be defined. From
this, it can be seen that we need to design template formats and sentence struc-
tures for instruction fine-tuning data based on specific tasks.

The primary objective of this paper is to implement the NL2SQL (Natu-
ral Language to SQL) capability through fine-tuning large models. This means
using natural language descriptions to query data in a database and further
supporting search functionalities based on question similarity, including search
history and trending searches. The specific experimental goal of this paper is
solely NL2SQL, converting natural language into executable SQL statements.
The experimental data originates from the telecommunications domain and has
undergone desensitization.

For domain-specific knowledge in telecommunications, such as proprietary
terms like “billing cycle” and “indicators,” general large language models might
not comprehend effectively. To enable the big model to complete specific tasks in
this field, we first enable the big model to understand proprietary terms. Based
on this understanding, we use fixed statement formats and keywords as instruc-
tion bases, specifically for SQL table lookup, and develop specific instruction
statements that include table and column names. This method not only ensures
accurate and speedy database lookups but also reduces ambiguities often encoun-
tered by general models. By associating specific instruction statements with
database structures, the approach offers consistent, reliable responses, enhanc-
ing user experience. Furthermore, it presents a scalable solution that can be
extended to various sectors, providing businesses with data-driven insights and
cost savings. The dataset comprises question texts and corresponding SQL state-
ments. Detailed examples will be presented in the following Sect. 4.5.2
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4 Experiment

4.1 Objective

The objective of this study is to implement the NL2SQL functionality, i.e., the
conversion from natural language to SQL statements, by fine-tuning large models
based on LoRA.

4.2 Dataset

For this experiment, we utilized a dataset provided by a telecommunications
operator, comprising a total of 5,000 records. A specific example of the dataset
is depicted in the following Table 1.

Table 1. Dataset: 5,000 data entries from a specific telecommunications provider

账期 月份 省份ID 省份名称 省份排序 地市ID 地市名称 地市排序 渠道类型

202210 202210 19 山西 25 V0140100 太原市 288 社会实体

202210 202210 19 山西 25 V0140100 太原市 288 自有实体

202210 202210 19 山西 25 V0140100 太原市 288 电子渠道

202210 202210 19 山西 25 V0140100 太原市 288 合计

202210 202210 19 山西 25 V0140100 太原市 288 政企渠道

202210 202210 19 山西 25 V0140200 大同市 289 政企渠道

202210 202210 19 山西 25 V0140200 大同市 289 合计

202210 202210 19 山西 25 V0140200 大同市 289 电子渠道

4.3 Fine-Tuning Pre-trained Models

To accomplish this task, we selected the following four pre-trained models for
fine-tuning:

– Chinese-Llama-7B [19]
– ChatGLM2-6B [20]
– RWKV-7B [21]
– Llama-7B [22]

All these models were fine-tuned using the LoRA approach.
The fine-tuning parameters for each model are as follows: See Table 2:
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Table 2. Fine-tuning Parameters For Each Major Model

Chinese-Llama-7B ChatGLM2-6B RWKV-7B LLaMa-7B

Iterations 3000 3000 3000 3000

Batch Size 1 1 1 1

Epoch 3 Dynamic [0.03,10.28] [500, 100000] 3

Learning Rate 2e−4 2e−2 [4e−4, 1e−5] 2e−4

Network Layers 32 - 6 32

Embedding 1024 - 512 1024

Context Length 2048 128 1024 2048

β 0.9 - 0.9 0.9

ε 1e−8 1e−5 1e−8 1e−8

4.4 Experimental Environment

The experiments were conducted in the following two hardware environments:

– Single NVIDIA A100 GPU with 80G memory.
– Four NVIDIA A100 GPUs, each with 40G memory.

4.5 Experimental Process

4.5.1 Learning Domain Knowledge Using LoRA technology, we fine-tuned
the large models to help them learn the terms and business knowledge specific
to the telecommunications domain. The domain knowledge fine-tuning dataset
consisted of 10,000 entries. Some examples are provided below:

\什么是移动业务出账用户融合渗透率（宽移、移移、金融分期）?
指报告期末移动业务出账用户中宽移融合、移移融合、金融分期用户数
与移动业务出账用户数的比值。
其中：宽移融合、移移融合、金融分期用户数汇总剔重。

什么是移动业务赠款销账用户数?
指报告期内移动业务用户中有赠送话费优惠的用户数。

什么是联通看家生效套餐数?
指报告期内生效的联通看家业务（云存储服务）套餐量，
包含报告期内受理次月1日生效的套餐量。

主营业务收入同比增长率指什么？
报告期内主营业务收入较上年同期值增长率，计算公式：
（本期主营业务收入-上年同期主营业务收入）/上年同期主营业务收入。"
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4.5.2 Task Completion - NL2SQL Fine-tuning was performed on the
telecommunications dataset using instruction-based methods.

The format of the training sample is as follows:

{
"instruction": "现有一张名为DM_KPI_DATA_MARKET_M_ZNZS的SQL表，
其列名和对应中文解释如下：
Y_LY_VALUE：上年同期累计值；
MONTH_ID：账期(月)；
Y_TY_VALUE：本年累计值；
M_LY_VALUE：上年同期值；
PROV_ID：省分ID；
CITY_ID：区县ID；
KPI_CODE：指标编码；
KPI_NAME：指标名称；
RJHB_VALUE：日均环比；
LJTB_VALUE：累计同比；
DATA_TIME：具备时间；
PROV_DESC：省分名；
AREA_DESC：地市名；KPI_VALUE：当月值；M_LM_VALUE：上月值；
AREA_ID：地市；
HB_VALUE：环比。",

"input": "查询为2022年8月的海南省宽带接入未出账用户数的当月值、
上年同期值、本年累计值是多少？",

"output": "select PROV_DESC,MONTH_ID,AREA_DESC,’宽带接入未出账用户
数’,
KPI_VALUE,M_LY_VALUE,Y_TY_VALUE
from DM_KPI_DATA_MARKET_M_ZNZS where PROV_DESC=’海南’
and MONTH_ID=’202208’ and AREA_DESC=’汇总’
and CITY_ID=’-1’ and KPI_NAME=’宽带接入未出账用户数’"
}

4.5.3 Result Validation

Automatic Validation. Initially, the SQL statements generated by the model
were directly applied to the database tables for querying. If the output of the
query is NULL, this implies the data doesn’t exist, and we proceed to manual
verification. If there’s no output or if an error occurs, it indicates that the gener-
ated SQL statement is incorrect. If a numerical result is produced, it progresses
to the manual verification phase.

Manual Verification. For the results produced by the model, manual table
lookups were conducted to confirm the presence of the values and to ascertain
the accuracy of the retrieved data. The verification process can be described as
follows: See Fig. 4:
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Fig. 4. Manual Verification process

Result Compilation. Based on the outcomes of the manual verification, the cor-
rectly generated SQL statements can be categorized into two groups: 1. Data
Non-existent: This refers to the scenarios where the model correctly identified
that the requested data does not exist in the database. 2. Correct Query Results:
This pertains to instances where the model generated the right SQL statement,
leading to accurate retrieval of existing data.

The accuracy rate can then be calculated using the following formula:

AccuracyRate

=
#ofSQLStatmentsGenerated

#ofAllOutputs

=
#ofNULLOutputs + #ofCorrectSQLStatmentsGenerated

#ofAllOutputs

#: Number

(4)

This accuracy rate gives a clear indicator of how well the model performs in
generating SQL queries based on natural language inputs. It indicates both the
model’s ability to recognize non-existent data and its capability to accurately
retrieve existing data.

5 Experimental Result and Analysis

On the foundation of four open-source large models, we first conducted domain
knowledge learning and then fine-tuned the task NL2SQL. The results of fine-
tuning and inference are shown in Table 3

Table 3. Fine-tuning Parameters For Each Major Model. Data = 5000 Data from
anonymous Internet Provider (AIP)

Data Pre-trained Model Accuracy on Train Accuracy on Test

AIP Chinese-Llama-7B 0.98 0.95

AIP LLaMa-7B 0.93 0.7

AIP ChatGLM2-6B 0.91 0.7

AIP RWKV-7B 0.83 0.6
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Table 4. Comparison of training methods and inferencing time cost

Distributed Method Time Cost (s) GPU Usage

Single GPU 178.40 39 GB

Parallelization:torchrun 55.20 38 GB/GPU

Parallelization:deepspeed-zero2 59.68 35 GB/GPU

Parallelization:Pipeline 196.09 17 GB/GPU

To facilitate the deployment of the fine-tuned large model for practical busi-
ness, we used Chinese-Llama-7b as the base model and compared the duration
required by different training and inference methods. The comparison results are
shown in Table 3 and Table 4.

From the experiments, we can observe that the model built on Chinese-
Llama-7b performs the best. The original LLaMA corpus is primarily in English,
while Chinese-Llama-7b incorporated Chinese content and expanded the vocab-
ulary, thus offering better support for the Chinese language. Although our exper-
iment mainly focused on the quality of SQL generation without considering the
framework and other factors, the results might be strongly correlated with the
dataset. Nevertheless, this validates our initial intention: fine-tuning large models
using the LoRA technique can accomplish vertical tasks (Fig. 5).

Fig. 5. A Sample of Inference Result of querying Yunan’s Data
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Table 5. Infrastructure of Large Model

Inference Method Numerical Precision GPU Usage Time Cost(s)

Single GPU FP16 28 GB 17.23

Single GPU INT8 16 GB 49.43

Muti-GPUs∗ FP16 8 GB/GPU 34.45
* On One-Node Pipeline

Through different training methods, see in Table 5, we can balance the uti-
lization of time and space to meet our practical requirements. By employing
various inference methods, we can choose the foundational infrastructure for the
large model based on real-world situations.

6 Conclusion

The use of large-scale models, especially in vertical industries, demonstrates
immense potential and challenges. In this study, using data from a specific
operator as an example, we conducted experiments on the LoRA fine-tuning
technique with 5000 sample data in a hardware environment of a single card
A100 80G and four cards A100 40G. The performance of the fine-tuned model
on the test dataset met expectations, reflecting strong capabilities. This con-
firms the efficacy of the fine-tuning strategy and the adaptability of the chosen
model. Moreover, leveraging the text understanding ability of large models com-
bined with LoRA tuning, we found that the training complexity, computational
resource requirements, and storage resource needs of the NL2SQL model were
significantly reduced. This provides a more economical and efficient solution
for practical applications. It also exemplifies the empirical application of large
models in vertical domains.

This research demonstrates that the model fine-tuning technique based on
instruction fine-tuning can generate large models that meet specific vertical
application requirements. By comparing different large model fine-tuning, train-
ing, and inference strategies, we validated the applicability of large models in
specific vertical tasks and ensured that the costs of training and inference are
manageable.

Fine-tuning based on instruction provides a pathway for developers with lim-
ited but high-quality data to explore their large model application needs. It also
offers enterprises a concrete product implementation plan in vertical domains.
Its controllable costs will also make the widespread application of large models
feasible.
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