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Abstract The current conventional power system load forecasting method mainly 
outputs forecasting results by constructing a time model, which leads to poor fore-
casting results due to the lack of effective extraction of feature data of load signals. In 
this regard, an online compression and reconstruction-based load forecasting method 
for distribution network power systems is proposed. By introducing the concept of 
particle swarm ensemble, the discrete situation of power load signal data particles 
is characterized, and data normalization is carried out, and the load signal data is 
compressed and reconstructed. The maximum information coefficient is calculated 
and the load data features are extracted by combining the influencing factors, and 
finally a hybrid prediction model is constructed and the model is solved. In the exper-
iments, the designed method is verified for its prediction effect. The experimental 
results show that the designed method has a good fit between the prediction results 
and the actual load curve, and has a good prediction performance. 

Keywords Online compressive reconstruction · Power systems · Load 
forecasting · Sparse dictionaries 

1 Introduction 

Distribution network power system load forecasting is mainly through the analysis 
of historical operation data of the distribution network, combined with forecasting 
algorithms, to achieve the prediction of the expected load situation of the distribu-
tion system. By predicting the expected power load of the distribution system, the 
operating conditions of the power system can be grasped, thus helping the staff to 
make correct maintenance decisions and realize the effective allocation of power 
resources [1]. If the upcoming power load can be accurately predicted before the
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power peak period, the power system can be pre-adjusted to meet the power demand 
at different time periods and ensure the smooth operation of the power system. Distri-
bution system load forecasting can be divided according to the forecasting cycle, with 
different forecasting objectives and techniques corresponding to different forecasting 
cycles. It is also susceptible to the influence of variable factors such as weather, which 
leads to the instability of the prediction results. At the same time, most of the current 
power systems have a large volume of operational data, and the analysis of historical 
data is a large amount of engineering work, so the use of conventional methods for 
load forecasting not only easily leads to deviations in the forecasting results, but also 
easily affects the forecasting efficiency, which cannot meet the short-term forecasting 
needs. In this paper, we propose an online compression and reconstruction-based load 
forecasting method for distribution network power system, which aims to improve 
the forecasting efficiency and reduce the transmission of edge data by compressing 
and reconstructing the operational data, so as to improve the operational efficiency 
of the forecasting algorithm. 

2 Online Compression Reconstruction-Based Load Signal 
Data Preprocessing for Distribution Network Power 
Systems 

The specific expression of the search space is shown as formula (1) [2–4]. 

D(t) = 1 

mL2 

mΣ

i=1 

[II√
nΣ

d=1 

(pid  − pd )2 (1) 

where m represents the number of power system load signal particles in the search 
space, L2 represents the scale of the search space, n represents the three-dimensional 
vector constant of the search space, pid  represents the node coordinate data of the 
i-th power system load signal particle in the d-th search space, and pd represents 
the average of all node coordinate data[5–7]. The above expression of the search 
space D(t) can characterize the dispersion degree of the power system load signal 
particles in a certain range. When the dispersion degree of the load signal particles in 
a certain range is larger, the value of D(t) will be larger; when the load signal particles 
in a certain range show aggregated distribution, the value of D(t) will be smaller. 
Therefore, the above formula can determine the distribution of load signal particles 
in the search space at a certain time, and the optimal solution search can be realized 
by selecting the most suitable search space, so as to ensure the uniform distribution 
of load signal particles in the search space of power system. After finishing the above 
adjustment, all the data in the collection space of load signal particles of power system 
under uniform distribution are normalized in this paper, and the data fluctuation range 
is adjusted, and the specific calculation formula is shown formula (2).
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x∗ = x − xmin 

xmax − xmin 
(2) 

Among them, xmax and xmin represent the maximum and minimum values of the 
power system load signal particle population under uniform distribution, x represents 
the original load signal particle data, and x∗ represents the particle signal data after 
processing. After the preprocessing of the power system load signal particle data, 
the normalized data is obtained, and the particle signal data is compressed online 
according to the characteristics of the load signal data in the sparse dictionary. In 
this regard, it is necessary to first select a suitable signal measurement matrix, which 
is mainly used to measure the signal scale, and also needs to present a mutually 
independent state with the sparse dictionary. In this paper, the Gaussian random 
matrix Φm×n is chosen to measure the particle signal scale, which is calculated as 
formula (3). 

yt = Φxt = ΦDAs  = Θs (3) 

where yt represents the observed signal, D represents the sparse dictionary, A repre-
sents the perceptual matrix, and s represents the sparse signal obtained after the 
mapping process is completed. By using the above formula, the input power system 
load signal at time t can be projected, thus changing the signal dimension and 
obtaining the particle signal scale. For the sparse signal s, a constraint expression 
needs to be constructed to constrain it, and the specific calculation formula is shown 
formula (4). 

minIIsIIs.t.yt = Θs (4) 

The sparse signal s can be constrained by the above steps, thus converting the 
constraint problem into a dimensional transformation problem, and then the value 
of s is calculated by using the regularized matching algorithm, first inputting the 
training data into the K-SVD sparse dictionary for learning, and then outputting the 
sparse matrix F. The value of the sparse signal is obtained by mapping it one-by-one 
with the actual data, thus outputting the mapping result, and then the load signal is 
online compression and reconstruction, the specific implementation process is shown 
in Fig. 1.

3 Power System Load Signal Data Feature Extraction 

Compared with the mutual information coefficient, the maximum information coef-
ficient can effectively measure the linear relationship between variables and mine 
the linear relationship between data under different attributes and has a better ability 
to deal with discrete data. The higher the value of the maximum information coeffi-
cient, the higher the similarity of the characteristics between the data. In this regard,
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Fig. 1 Online compression and reconstruction process of power system load signal

this paper constructs the maximum information coefficient on the basis of mutual 
information coefficient, and the specific derivation formula is shown formula (5). 

I (x, y) =
∫

p(x, y) log 
p(x, y) 
p(x)p(y) 

(5) 

where p(x, y) represents the probability of joint distribution between load signal 
data x and load signal data y, I (x, y) represents the mutual information coefficient, 
and p(x) and p(y) represent the probability of separate distribution of load signal 
data, respectively. After finding the mutual information coefficient, the value of the 
maximum information coefficient can be solved according to the construction of the 
sampling sample function, and the specific formula is shown formula (6). 

MIC(x, y) = max 
B(n)I (x, y)σ 
log min(x, y) 

(6) 

where B(n) represents the load signal sampling sample function and n represents 
the number of samples. σ represents the correlation coefficient, which characterizes 
the degree of correlation between two variables and corresponds as given in Table 1.

Considering that the temperature factor in the climatic conditions has a large 
influence on the load situation of the power system, seven characteristic factors 
including UV intensity, temperature, and humidity are selected in this paper, and 
the corresponding maximum information coefficients are calculated to compare the 
correlation degree between different climatic factors and the load situation of the 
power system, so that the characteristic factor with the largest correlation degree
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Table 1 Correspondence of 
correlation coefficients Correlation coefficient Degree of correlation 

0.00–0.19 Very low correlation 

0.20–0.39 Low correlation 

0.40–0.59 Moderate correlation 

0.60–0.79 Highly correlated 

0.80–0.99 Extremely high correlation

can be selected. The corresponding characteristic correlation coefficients of specific 
climatic factors are given in Table 2. 

From the Table 2, it can be seen that the characteristic correlation coefficients of 
the two factors, UV intensity and whole hour, are large, which can be judged to be 
highly correlated with the load situation of the power system and can be used as the 
characteristic input variables of the load forecasting model. After the above analysis 
of the factors influencing the load situation, the maximum information coefficient 
values of different factors are set as the threshold values, and if the maximum infor-
mation coefficient value of the factor is higher than the threshold value, it can be 
seen that the factor has a greater degree of influence on the load situation and can be 
used as the input value of the model, as formula (7).

ω = 1/N 
NΣ

i=1 

MICi (Y ) (7) 

where N represents the number of feature variables of load influencing factors, Y 
represents the power system load signal data sequence, and MICi represents the 
maximum information coefficient value under the i-th feature factor. The extracted 
features can not only be used as input data for the load prediction model of the power 
system, but also can be used to judge the degree of influence of the corresponding 
correlation coefficients, which can help to adjust the load operation of the power 
system.

Table 2 Correlation coefficients of characteristics corresponding to climatic factors 

Characteristic Description Significance test Maximum information 
coefficient value 

UV UV intensity Significant 0.65 

Tem Temperature Inconspicuous 0.38 

Hum Humidity Inconspicuous 0.33 

Winds Wind speed Inconspicuous 0.36 

Cloud Cloud cover Inconspicuous 0.12 

Dew Dew point temperature Inconspicuous 0.24 

Hour type Hour Significant 0.78 
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4 Power System Load Forecasting Model Construction 

Firstly, assume that the active values of neurons representing positive propagation 
in the BIGRU network structure at moment t and the active values of neurons repre-
senting negative propagation, thus obtaining the specific expression of the BIGRU 
network model as formula (8). 

⎧ 
⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

c+t = G(xt , c+t−1 ) 
c−t = G(xt , c−t−1 ) 

ht = w+t c+t + w−t c−t + 
bt 

H 

(8) 

where c+t represents the implied values of neurons for positive propagation at time t, 
c−t represents the implied values of neurons for negative propagation, xt represents 
the input load characteristics data of the model, ht represents the pooling infor-
mation at time t, G represents the model output values, w+t and c+t represent the 
implied weights for positive and negative propagation, bt represents the implied bias 
parameters, and H represents the modal confounding function. 

5 Experiment and Analysis 

5.1 Experimental Preparation 

In order to prove that the online compression reconstruction-based distribution grid 
power system load forecasting method proposed in this paper is better than the 
conventional distribution grid power system load forecasting method in terms of 
actual forecasting effect, after the theoretical part of the design is completed, an 
experimental session is constructed to test the actual forecasting effect of the method 
in this paper. In order to ensure the experimental effect, two conventional distri-
bution system load forecasting methods are selected for comparison, namely the 
data mining-based distribution system load forecasting method and the ELM-based 
distribution system load forecasting method. The specific experimental environment 
configuration is given in Table 3.

In this experiment, the historical data of power system operation under a large 
distribution network is retrieved as the dataset for the experiment, and the dataset 
is divided into two parts, which are used for algorithm training and experimental 
testing. The data sampling interval is set to 30 min, and a total of 64 load signal data 
sequences are constructed. The training load results of the model and the test load 
results are used as the standard to finally output the actual predicted load values. 
In order to improve the reliability of the experimental results, the load of the power 
system at different times of the day is selected as the test standard, and three methods
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Table 3 Configuration of 
experimental parameters

Experimental environment parameters Specific configuration 

Simulation platform MATLAB 2021a 

Experimental environment Intel Core(i) i5-9400f 

Software system Windows 7 

Sampling interval 30 min 

Sampling time points 4200 

Training set data volume 3960 

Test set data volume 240

are used to predict it, and the actual prediction performance of the prediction methods 
is judged by comparing the fit between the prediction curve and the actual load curve. 

5.2 Analysis of Test Results 

The comparison criterion chosen for this experiment is the degree of fitting between 
the load prediction curve and the actual load fluctuation curve under different 
methods, the higher the degree of fitting, the higher the prediction accuracy of the 
method for electric load, the specific experimental results are shown in Fig. 2. Among 
them, the thick line part is the actual power system operating load curve. 

In contrast, the fit between the predicted load curves and the actual load operation 
curves under the two conventional methods is smaller, which proves that the load

Fig. 2 Comparison of power 
system load forecast curves 
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prediction method proposed in this paper is better than the conventional prediction 
methods in terms of prediction accuracy. 

6 Concluding Remarks 

This paper addresses the problem of inefficiency of conventional load forecasting 
methods for power systems, combines online compression and reconstruction tech-
nology to process the historical operation data of power systems, and compresses 
and reconstructs the operation data through online learning compression and sensing 
methods. The load prediction algorithm constructed on this basis can effectively 
improve the data transmission efficiency, thus improving the algorithm operation 
efficiency. The experimental results show that the prediction algorithm proposed in 
this paper can achieve accurate prediction of the operating load of the power system 
within the specified time, and it is feasible to ensure the operation efficiency while 
taking into account the prediction accuracy. 
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