
A Generic Construction of Tightly Secure
Password-Based Authenticated Key

Exchange

Jiaxin Pan1,2(B) and Runzhi Zeng2

1 University of Kassel, Kassel, Germany
2 Department of Mathematical Sciences, NTNU - Norwegian University of Science

and Technology, Trondheim, Norway
{jiaxin.pan,runzhi.zeng}@ntnu.no

Abstract. We propose a generic construction of password-based
authenticated key exchange (PAKE) from key encapsulation mechanisms
(KEM). Assuming that the KEM is oneway secure against plaintext-
checkable attacks (OW-PCA), we prove that our PAKE protocol is tightly
secure in the Bellare-Pointcheval-Rogaway model (EUROCRYPT 2000).
Our tight security proofs require ideal ciphers and random oracles. The
OW-PCA security is relatively weak and can be implemented tightly with
the Diffie-Hellman assumption, which generalizes the work of Liu et al.
(PKC 2023), and “almost” tightly with lattice-based assumptions, which
tightens the security loss of the work of Beguinet et al. (ACNS 2023)
and allows more efficient practical implementation with Kyber. Beyond
these, it opens an opportunity of constructing tight PAKE based on var-
ious assumptions.

Keywords: Password-based authenticated key exchange · generic
constructions · tight security · lattices

1 Introduction

While authenticated key exchange (AKE) protocols require a PKI to certify
user public keys, password-based AKE (PAKE) protocols allow a client and a
server to establish a session key, assuming that both parties share a password in
advance. A password is chosen from a small set of possible strings, referred as a
dictionary. Thus, a password has low-entropy and can be memorized by humans.
Hence, it is very convenient, and the design and analysis of PAKE protocols have
drew a lot of attention in the past few years.

After the introduction of Encrypted-Key-Exchange (EKE) protocol by
Bellovin and Merritt [12], many PAKE protocols have been proposed based on
variants of the Diffie-Hellman assumptions, including the well-known SPEKE
[22], SPEKE2 [6], J-PAKE [20], and CPace [19]. There are only a few exception

Supported by the Research Council of Norway under Project No. 324235.
c© International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14445, pp. 143–175, 2023.
https://doi.org/10.1007/978-981-99-8742-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8742-9_5&domain=pdf
http://orcid.org/0000-0002-7459-6850
http://orcid.org/0000-0002-8606-3007
https://doi.org/10.1007/978-981-99-8742-9_5

144 J. Pan and R. Zeng

where PAKE is constructed based on post-quantum assumptions, such as lattices
[13,23,33] and group actions [4].

Security of PAKE. The security requirements on a PAKE protocol are resis-
tance against offline (where an adversary performs an exhaustive search for the
password offline) and online (where an active adversary tries a small number
of passwords to run the protocol) dictionary attacks. Similar to the classical
AKE, forward secrecy is required as well, where the session keys remain secure,
even if the password is corrupted at a later point in time, and also leakage of
a session key should not affect other session keys. Their security is formalized
by either the indistinguishability-based (IND-based) model [10] or the universal
composability (UC) framework [16].

Usually, the advantage of a PAKE protocol εPAKE has the form of:

εPAKE ≤ S/|PW| + L · εProblem, (1)

where S is the number of protocol sessions, PW is the set of all possible pass-
words, εProblem is the advantage of attacking the underlying cryptographic hard
problem, and L is called the security loss. Here we ignore the additive statistical
negligible probability in Eq. (1) for simplicity. Essentially, S/|PW| is the success
probability of online dictionary attacks and Eq. (1) shows that the best attack
on the PAKE protocol is performing an online dictionary attack. This can be
eliminated by restricting the online password guess in practice.

Tight Security. We say a security proof for PAKE tight if L is a small
constant. All the aforementioned PAKE protocols are non-tight. For instance,
according to the analysis of [8], we estimate that the security loss L for the
EKE protocol is O(qD · (S + qD)), where qD is the number of the adversary’s
queries to an ideal cipher. The security bound for the group-action-based pro-
tocol Com-GA-PAKE� in [4] is even worse, and it contains a square root of the
advantage of the underlying assumption (cf. [4, Theorem 2]), due to the Reset
Lemma [9]. This means even if we set up the underlying assumption with 128-bit
security, Com-GA-PAKE� in [4] has only less1 than 64-bit.

We note that X-GA-PAKE� in [4, Section 6] has tight security by restricting
to weak forward secrecy, where an adversary is not allowed to perform active
attacks before password corruptions. This is a rather weak security model.

In this paper, we are interested in tightly secure PAKE with perfect for-
ward secrecy (PFS), namely, adversaries can perform active attacks before pass-
word corruptions. From a theoretical perspective, it is interesting to analyze the
possibility of constructing tightly secure PAKE and under which cryptographic
assumption it is possible. From a practical perspective, it is very desirable to
have tightly secure PAKE (or AKE in general), since these protocols are exe-
cuted in a multi-user, multi-instance scenario. In today’s internet, the scenario
size is often large. A non-tight protocol requires a larger security parameter to
compensate the security loss and results in a less efficient protocol. Even if we
1 This is because of the additional multiplicative loss factor depending on S and the

length of a password in [4, Theorem 2].

A Generic Construction of Tightly Secure PAKE 145

cannot achieve full tightness, a tighter security proof is already more beneficial
than a less tight one of the same protocol, since the tighter proof offers higher
security guarantees.

Our Goal: Tight PAKE Beyond Diffie-Hellman (DH). There are a few
exceptions that construct tight PAKE protocols with PFS, and they are all based
on the DH assumption. Becerra et al. [7] proved tight security of the three-move
PAK protocol [25] using the Gap DH (GDH) assumption [26] in the IND-based
model, where the GDH assumption states that the Computational DH (CDH)
assumption is hard even if the Decisional DH (DDH) assumption is easy. Lately,
Abdalla et al. [2] proved tight security of two-move SPAKE2 in the relaxed UC
framework under the GDH assumption. Very recently, Liu et al. [24] carefully
used the twinning technique [17] to remove the GDH assumption and proved a
variant of the EKE protocol tightly based on the CDH assumption.

Our goal is to construct tightly secure PAKE protocols from post-quantum
assumptions, beyond the DH assumptions. Lattice-based assumptions are the
promising post-quantum ones, and it seems inherent that they do not have any
Gap-like assumption or twinning techniques, since the Decisional and Compu-
tational variants of, for instance, Learning-With-Errors (LWE) assumption [30]
are equivalent.

Regarding the assumption based on group actions, as we discussed earlier,
the Com-GA-PAKE� protocol in [4] needs to rewind an adversary to argue PFS,
and by using the Reset Lemma it leads to a very loose bound. Apart from that,
Com-GA-PAKE� applies the group action in a “bit-by-bit” (wrt the bit-length of
a password) fashion and sends out the resulting element, and thus it is quite
inefficient in terms of both computation and communication complexity.

Finally, we note that Liu et al. [24] did not provide a formal proof on the
PFS of their protocol, but rather an informal remark. In [4], we note a huge gap
between the security loss of a weak FS protocol and a PFS one. Hence, in this
paper we will prove the PFS of our protocol concretely.

1.1 Our Contribution

We propose a generic construction of tightly secure PAKE protocols from key
encapsulation mechanisms (KEMs) in the ideal cipher and random oracle models.
We require the underlying KEM to have the following security:

– Oneway plaintext-checking (OW-PCA) security in the multi-user, multi-
challenge setting, namely, adversary A’s goal is to decapsulate one cipher-
text out of many given ones, and furthermore, A is given an oracle to check
whether a key k is a valid decapsulation of a ciphertext c under some user
j. It is a (slight) multi-user, multi-challenge variant of the original OW-PCA
[27].

– Anonymous ciphertexts under PCA, namely, the challenge ciphertexts do not
leak any information about the corresponding public keys.

– Fuzzy public keys, namely, the generated public keys are indistinguishable
from a random key from all the possible public keys.

146 J. Pan and R. Zeng

Such a KEM can be tightly constructed:

– either generically from pseudorandom PKE against chosen-plaintext attacks
in the multi-user, multi-challenge setting (PR-CPA security2), which states
that the given challenge ciphertexts are pseudorandom. This means, as long
as we have a PR-CPA secure PKE, we have a PAKE protocol that preserves
the tightness of the PKE. With lattices, we do not know a tightly PR-CPA
PKE, but only a scheme (i.e. Regev’s encryption [30]) tightly wrt. the number
of challenges, not wrt. the number of users. This already results in a tighter
PAKE protocol than the analysis from Beguinet et al. [8]. More details will
be provided in “Comparison using Kyber”.

– or directly from the strong DH (stDH) assumption in a prime-order group
[3]. Under this stronger assumption, our resulting PAKE protocol has O(λ)
(which corresponds to the bit-length of a group element) less than the 2DH-
EKE protocol of Liu et al. [24] in terms of protocol transcripts. In fact, using
the twinning technique of Cash et al. [17], we can remove the strong oracle
and have our protocol under the CDH assumption, which is the same protocol
as the 2DH-EKE protocol of Liu et al. Essentially, our direct instantiation
abstracts the key ideas of Liu et al., and our proof for PFS gives a formal
analysis of Liu et al.’s protocol.

Different to other PAKE protocol from group actions [4] and lattices as in [13],
our construction is compact and does not use “bit-by-bit” approaches. Figure 1
briefly summarizes our approaches.

Fig. 1. Overview of our construction. All implications are tight, and the blue ones are
done via generic constructions. OW-PCA security is the core for our “KEM-to-PAKE”
transformation. Please find additional requirements on the KEM in the text. (Color
figure online)

Our proofs are in the IND-based model (aka, the so-called Bellare-
Pointcheval-Rogaway (BPR) model [10]) for readability. We are optimistic that
it is tightly secure in the UC framework and briefly sketch the ideas about how
to lift our proofs in the BPR model to the UC framework in our full version [28].

Comparison Using Kyber [32]. There are only a few efficient PAKE protocols
from lattices. We focus our comparison on the very efficient one by implementing
the CAKE in [8] with Kyber. The reason of not using OCAKE in [8] is because
2 Our security notions are in the multi-user, multi-challenge setting. Hence, for sim-

plicity, we do not write the ‘m’ in the abbreviations.

A Generic Construction of Tightly Secure PAKE 147

OCAKE do not have PFS, but weak FS. Our protocol is similar to CAKE, but
ours has tight reductions from the KEM security.

Unfortunately, by implementing with Kyber, our protocol does not have
tight security, since we cannot prove tight PR-CPA security for Kyber, but
in practice one will consider using Kyber than otherwise. Our security loss is
O(S · (S+qD)) to the Module-LWE assumption, while the security loss of CAKE
is O(qD · (S + qD)), where qD is the number of decryption queries to the ideal
cipher. In practice, qD is the number of adversary A evaluating the symmetric
cipher offline and can be large. We assume qD = 240.

Very different to the standard AKE, in the PAKE setting S should be very
small, since S corresponds to how many attempts an adversary can perform
online dictionary attacks. We usually will limit it. We assume S ≤ 100 ≈ 26.
Hence, although our security bound with Kyber is not tight, it is still much
smaller than CAKE, since S � qD. In fact, we have doubt on the security proof
of CAKE in handling reply attacks3, namely, A can reply the first round message.
To fix it, we need to introduce another multiplicative factor S, but since S is
relatively small we ignore it in our comparison.

Hence, implementing with Kyber-768 (corresponding to AES-192), our pro-
tocol provides about 152-bit security, while CAKE about 112-bit security.

Open Problem. We are optimistic that our protocol can be proven tightly in
the weaker and more efficient randomized half-ideal cipher model [31], and we
leave the formal proof for it as an open problem.

2 Preliminaries

For an integer n, we define the notation [n] := {1, . . . , n}. Let X and Y be two
finite sets. The notation x

$← X denotes sampling an element x from X uniformly
at random.

Let A be an algorithm. If A is probabilistic, then y ← A(x) means that
the variable y is assigned to the output of A on input x. If A is deterministic,
then we may write y := A(x). We write AO to indicate that A has classical
access to oracle O, and A|O〉 to indicate that A has quantum access to oracle O
All algorithms in this paper are probabilistic polynomial-time (PPT), unless we
mention it.

Games. We use code-based games [11] to define and prove security. We implicitly
assume that Boolean flags are initialized to false, numerical types are initialized
to 0, sets and ordered lists are initialized to ∅, and strings are initialized to the
empty string ε. The notation Pr[GA ⇒ 1] denotes the probability that the final
output GA of game G running an adversary A is 1. Let Ev be an (classical)
event. We write Pr[Ev : G] to denote the probability that Ev occurs during the
game G. In our security notions throughout the paper, we let N,μ be numbers

3 More precisely, the argument in [8, page 41] under “Analysis” may not hold true for
reply attacks.

148 J. Pan and R. Zeng

of users and challenges, respectively, which are assumed to be polynomial in the
security parameter λ. For simplicity, in this paper, we do not write λ explicitly.
Instead, we assume every algorithm’s input includes λ.

2.1 Key Encapsulation Mechanism

Definition 1 (Key Encapsulation Mechanism). A KEM KEM consists of
four algorithms (Setup,KG,Encaps,Decaps) and a ciphertext space C, a random-
ness space R, and a KEM key space K. On input security parameters, Setup
outputs a system parameter par. KG(par) outputs a public and secret key pair
(pk, sk). The encapsulation algorithm Encaps, on input pk, outputs a ciphertext
c ∈ C. We also write c := Encaps(pk; r) to indicate the randomness r ∈ R explic-
itly. The decapsulation algorithm Decaps, on input sk and a ciphertext c, outputs
a KEM key k ∈ K or a rejection symbol ⊥ /∈ K. Here Encaps and Decaps also
take par as input, but for simplicity, we do not write explicitly.

Definition 2 (KEM Correctness). Let KEM := (Setup,KG,Encaps,Decaps)
be a KEM scheme and A be an adversary against KEM. We say KEM is (1− δ)-
correct if

Pr [(c, k) ← Encaps(pk) ∧ k �= Decaps(sk, c)] ≤ δ,

where par ← Setup, (pk, sk) ← KG(par).

Definition 3 (Implicit Rejection [14]). A KEM scheme KEM = (Setup,KG,
Encaps,Decaps) has implicit rejection if Decaps(sk, ·) behaves as a pseudorandom
function when the input ciphertext is invalid, where par ← Setup, (pk, sk) ← KG,
and sk is the key of the pseudorandom function. That is, if an input ciphertext
c is invalid, then Decaps(sk, c) will output a pseudorandom key k instead of a
rejection symbol ⊥. A concrete example is shown in Fig. 18.

OW-PCA Security. Let KEM = (Setup,KG,Encaps,Decaps) be a KEM scheme
with ciphertext space C. In Definitions 4 and 5, we define two variants of one-
wayness under plaintext-checking attacks (OW-PCA) security for KEM [27] in
the multi-user, multi-challenge setting. They will be used for the tight security
proof of our PAKE protocol and can be instantiated tightly from the Diffie-
Hellman assumption and Learning-With-Errors assumption. Instead of writing
‘m’ in the abbreviation, we mention the explicit numbers of users and challenge
ciphertexts as N and μ in the abbreviation of security.

Definition 4 (Multi-user-challenge OW-PCA security). Let N and μ be
the numbers of users and challenge ciphertexts per user, respectively. Let A be
an adversary against KEM. We define the (N,μ)-OW-PCA advantage function
of A against KEM

Adv
(N,μ)-OW-PCA
KEM (A) := Pr

[
OW-PCA(N,μ),A

KEM ⇒ 1
]
,

where the game OW-PCA(N,μ),A
KEM is defined in Fig. 2. We say KEM is OW-PCA

secure if Adv(N,μ)-OW-PCA
KEM (A) is negligible for any A.

A Generic Construction of Tightly Secure PAKE 149

GAME OW-PCA(N,μ),A
KEM

01 par ← Setup
02 for i ∈ [N]
03 (pk, sk) ← KG(par)
04 (pk[i], sk[i]) := (pk, sk)
05 for j ∈ [μ] :
06 (c, k) ← Encaps(pk[i])
07 (c[i, j],k[i, j]) := (c, k)
08 (i, j, k∗) ← APco(pk, c)
09 return k∗ ==Decaps(sk[i], c[i, j])

GAME OW-rPCA(N,μ),A
KEM

10 par ← Setup
11 for i ∈ [N]
12 (pk[i], sk[i]) := (pk, sk) ← KG(par)
13 for j ∈ [N · μ] :

14 c[j] := c
$← C

15 (i, j, k∗) ← APco(pk, c)
16 return k∗ ==Decaps(sk[i], c[j])

Oracle Pco(i, c, k)

17 if pk[i] = ⊥
18 return ⊥
19 return k ==Decaps(sk[i], c)

Fig. 2. Security games OW-PCA and OW-rPCA for KEM scheme KEM.

GAME ANO-PCA(N,μ),A
KEM,b

01 par ← Setup
02 for i ∈ [N]
03 (pk[i], sk[i]) := (pk, sk) ← KG(par)
04 for j ∈ [μ] :
05 (c, k) ← Encaps(pk[i])
06 (c0[i, j],k[i, j]) := (c, k)

07 c1[i, j]
$← C

08 b′ ← APco(par,pk, cb)
09 return b′

GAME FUZZYN,A
KEM,b

10 par ← Setup
11 for i ∈ [N]
12 (pk0[i], sk[i]) := (pk, sk) ←
KG(par)

13 pk1[i] := pk
$← PK

14 b′ ← A(par,pkb)
15 return b′

Fig. 3. Security games FUZZY and ANO-PCA for KEM scheme KEM. The Pco oracle
of ANO-PCA is the same as the one of OW-PCA (and OW-rPCA) in Fig. 2.

Definition 5 (OW-PCA security under random ciphertexts). Let N
and μ be the number of users and the number of challenge ciphertexts per
user, respectively. Let A be an adversary against KEM. We define the (N,μ)-
OW-rPCA advantage function of A

Adv
(N,μ)-OW-rPCA
KEM (A) := Pr

[
OW-rPCA(N,μ),A

KEM ⇒ 1
]
,

where OW-rPCA(N,μ),A
KEM is defined in Fig. 2. KEM is OW-rPCA secure if

Adv
(N,μ)-OW-rPCA
KEM (A) is negligible for any A.

Definition 6 (Fuzzy public keys). Let N be the number of users. Let A be
an adversary against KEM. We define the advantage function of A against the
fuzzyness of KEM

AdvN-FUZZY
KEM (A) :=

∣∣∣Pr
[
FUZZYN,A

KEM,0 ⇒ 1
]

− Pr
[
FUZZYN,A

KEM,1 ⇒ 1
]∣∣∣ ,

150 J. Pan and R. Zeng

where the game FUZZYN,A
KEM,b(b ∈ {0, 1}) is defined in Fig. 3. We say KEM has

fuzzy public keys if AdvN-FUZZY
KEM (A) is negligible for any A.

Definition 7 (Anonymous ciphertexts under PCA attacks). Let N and
μ be the numbers of users and challenge ciphertexts per user, respectively. Let
A be an adversary against KEM. We define the advantage function of A against
the ciphertext anonymity (under PCA attacks) of KEM

Adv
(N,μ)-ANO
KEM (A) :=

∣∣∣Pr
[
ANO-PCA(N,μ),A

KEM,0 ⇒ 1
]

− Pr
[
ANO-PCA(N,μ),A

KEM,1 ⇒ 1
]∣∣∣ ,

where the game ANO-PCA(N,μ),A
KEM,b (b ∈ {0, 1}) is defined in Fig. 3. We say KEM

has anonymous ciphertexts under PCA attacks (or simply, anonymous cipher-
texts) if Adv(N,μ)-ANO

KEM (A) is negligible for any A.

It is easy to see that if KEM is OW-PCA secure and has anonymous cipher-
texts under PCA attacks, then it is also OW-rPCA secure, as stated in Lemma 1

Lemma 1 (OW-PCA+ANO-PCA ⇒ OW-rPCA). Let N and μ be the numbers
of users and challenge ciphertexts per user, respectively. Let A be an adversary
against KEM. We have

Adv
(N,μ)-OW-rPCA
KEM (A) ≤ Adv

(N,μ)-OW-PCA
KEM (A) + Adv

(N,μ)-ANO
KEM (A)

2.2 Public-Key Encryption

Public-Key Encryption. A PKE scheme PKE consists of four algorithms
(Setup,KG,Enc,Dec) and a message space M, a randomness space R, and a
ciphertext space C. Setup outputs a system parameter par. KG(par) outputs a
public and secret key pair (pk, sk). The encryption algorithm Enc, on input pk and
a message m ∈ M, outputs a ciphertext c ∈ C. We also write c := Enc(pk,m; r)
to indicate the randomness r ∈ R explicitly. The decryption algorithm Dec, on
input sk and a ciphertext c, outputs a message m′ ∈ M or a rejection symbol
⊥ /∈ M.

Definition 8 (PKE Correctness). Let PKE := (Setup,KG,Enc,Dec) be a
PKE scheme with message space M and A be an adversary against PKE. The
COR advantage of A is defined as

AdvCOR
PKE (A) := Pr

[
CORA

PKE ⇒ 1
]
,

where the COR game is defined in Fig. 4. If there exists a constant δ such that
for all adversary A, AdvCOR

PKE (A) ≤ δ, then we say PKE is (1 − δ)-correct.

We define fuzzyness for PKE, which is essentially the same as the one for
KEM (cf. Definition 6).

A Generic Construction of Tightly Secure PAKE 151

GAME CORA
PKE

01 par ← Setup
02 (pk, sk) ← KG(par)
03 m ← AO(par, pk, sk)
04 c ← Enc(pk, m)
05 if Dec(sk, c) �= m : return 1
06 return 0

Fig. 4. The COR game for a PKE scheme PKE and A. A might have access to some
oracle O (e.g., random oracles). It depends on the specific reduction.

Definition 9 (Fuzzy public key). Let N be the number of users. We say
PKE has fuzzy public keys if for any A, the advantage function of A against the
fuzzyness of PKE

AdvN-FUZZY
PKE (A) :=

∣∣∣Pr
[
FUZZYN,A

PKE,0 ⇒ 1
]

− Pr
[
FUZZYN,A

PKE,1 ⇒ 1
]∣∣∣

is negligible. The game FUZZYN,A
PKE,b(b ∈ {0, 1}) is defined in Fig. 3.

Pseudorandom ciphertext. Let PKE := (KG,Enc,Dec) be a public-key
encryption scheme with message space M and ciphertext space C. We define
PR-CPA (multi-challenge pseudorandomness under chosen-plaintext attacks)
security in Fig. 5.

Definition 10 (Multi-user-challange PR-CPA security). Let N and μ be
the numbers of users and challenge ciphertexts per user. Let A = (A0,A1) be an
adversary against PKE. Consider the games PR-CPA(N,μ),A

PKE,b (b ∈ {0, 1}) defined
in Fig. 5. We define the (N,μ)-PR-CPA advantage function

Adv
(N,μ)-PR-CPA
PKE (A) :=

∣∣∣Pr
[
PR-CPA(N,μ),A

PKE,0 ⇒ 1
]

− Pr
[
PR-CPA(N,μ),A

PKE,1 ⇒ 1
]∣∣∣ .

PKE is PR-CPA secure if Adv(N,μ)-PR-CPA
PKE (A) is negligible for any A.

3 Password-Based Authenticated Key Exchange

3.1 Definition of PAKE

A two-message PAKE protocol PAKE := (Setup, Init,Resp,TerInit) consists of
four algorithms. The setup algorithm Setup, on input security parameter 1λ,
outputs global PAKE protocol parameters par. For simplicity, we ignore the
input of Setup and write par ← Setup.

Let U be a user, S be a server, and pw be the password shared between U
and S. Since we consider the client-server setting, to initiate a session, U will
send the first protocol message. U runs the client’s initialization algorithm Init,

152 J. Pan and R. Zeng

GAME PR-CPA(N,μ),A
PKE,b

01 par ← Setup
02 for i ∈ N
03 (pki, ski) ← KG(par),pk[i] := pki

04 (m, st) ← A0(par,pk) //m has N × μ messages
05 for i ∈ [N]:
06 for j ∈ [μ]

07 c0[i, j] ← Enc(pk[i],m[i, j]), c1[i, j]
$← C

08 b′ ← A1(st, cb)
09 return b′

Fig. 5. Security game PR-CPA for PKE scheme PKE.

which takes the identities U,S and password pw as inputs and outputs a client
message MU and session state st, and then U sends MU to S. On receiving MU, S
runs the server’s derivation algorithm Resp, which takes identities U and S and
the received message MU as input, together with the password pw, to generate a
server message MS and a session key SKS. S sends MS to U. Finally, on receiving
MS, U runs the client’s derivation algorithm TerInit which inputs U,S, the session
state st generated before, the received message MS, and password pw, to generate
a session key sk′

U. In two-message PAKE protocols, the server does not need to
save session state since it can compute the session key right after receiving the
user’s message.

User U(pw) Server S(pw)

(MU, st) ← Init(U, S, pw)
MU

(MS, SKS) ← Resp(S,U,MU, pw)MS

SKU ← TerInit(U, S, st,MS, pw)

st

Fig. 6. Illustration for a two-message PAKE protocol execution between a user U and
a server S.

We define the correctness of PAKE protocols, stating that an honestly exe-
cution between user U and server S (with the same password pwU,S) as in Fig. 6
will produce the same session key SKU = SKS.

Definition 11 (PAKE Correctness). Let PAKE := (Setup, Init,Resp,TerInit)
be a PAKE protocol and let U and S be a user-server pair with password pw. We
say PAKE is ρ-correct, if for any PAKE system parameter par ← Setup, the
following probability is at least ρ.

Pr

⎡
⎣SKU = SKS

∣∣∣∣∣∣
(MU, st) ← Init(U,S, pw)

(MS,SKS) ← Resp(S,U,MU, pw)
SKU ← TerInit(U,S, st,MS, pw)

⎤
⎦

A Generic Construction of Tightly Secure PAKE 153

3.2 Security Model of PAKE

We consider indistinguishability(IND)-based security of PAKE protocols. In this
section, we define the multi-test variant of the Bellare-Pointcheval-Rogaway
model [1,5,10]. We simply denoted it as the BPR model.

In the BPR model, we consider a name space of users U and a name space
of servers S, which are assumed to be disjoint. Oracles provided in this model
rejects queries inconsistent withe these name spaces.

We denote the session key space by SK. Password are bit strings of � and
the password space is defined as PW � {0, 1}�. Each pair of user and server
U × S ∈ U × S holds a shared password pwU,S ∈ PW.

Let P denotes a party (either a user or server). Each party in U ∪ S has
multiple instances πi

P (i is some index) and each instance has its internal state.
The state of an instance πi

P is a tuple (e, tr, key, acc) where

– e is the ephemeral secret chosen by P.
– tr is the trace of the instance, i.e., the names of user and server involved in

the instance and the messages sent and received by P in the instance.
– key is the accepted session key of πi

P.
– acc is a Boolean flag that indicates whether the instance has accepted the

session key. As long as the instance did not receive the last message, acc = ⊥
(which means undefined).

– test is a Boolean flag that indicates whether the instance has been queried
to the Test oracle (which will be defined later).

To access individual components of the state, we write πi
P.(e, tr, key, acc). We

define partnership via matching instance trace.

Definition 12 (Partnering). A user instance πt0
U and a server instance πt1

S

are partnered if and only if

πt0
U .acc = true = πt1

S .acc and πt0
U .tr = πt1

S .tr

Two user instances are never partnered, neither are two server instances. We
define a partnership predicate Partner(πt0

U , πt1
S) which outputs true if and only if

πt0
U and πt1

S are partnered.

Security Game. The security game is played with an adversary A. The experi-
ment draws a random challenge bit β ← {0, 1}, generates the public parameters,
and outputs the public parameters to A. A is allowed to query the following
oracles:

– Execute(U, t1,S, t2): This oracle outputs the protocol messages of an honest
protocol execution between instances πt1

U and πt2
S . By querying this oracle,

the adversary launches passive attacks.

154 J. Pan and R. Zeng

– SendInit,SendResp,SendTerInit: These oracles model active attacks. By
querying these oracles, the adversary sends protocol messages to protocol
instances. For sake of simplicity, we assume that the adversary does not use
these oracles to launch passive attacks (which are already captured by the
Execute oracle).

– Reveal(P, t): By this oracle, the adversary reveals the session key of πt
P.

– Test(P, t): If πt
P is fresh (which will be defined later), then, depending on

the challenge bit β, the oracle outputs either the session key of πt
P or a uni-

formly random key. Otherwise, the oracle outputs ⊥. After this query, the
flag πt

P.test will be set as true.

We denote the game by BPRPAKE. The pseudocode is given in G0 in Fig. 8,
instantiated with our PAKE protocol. Before defining PAKE security, we define
freshness to avoid trivial attacks in this model.

Definition 13 (Freshness). An instance πt
P is fresh if and only if

1. πt
P is accepted.

2. πt
P was not queried to Test or Reveal before.

3. At least one of the following conditions holds:
(a) πt

P accepted during a query to Execute.
(b) There exists more than one (not necessarily fresh) partner instance4.
(c) A unique fresh partner instance exists.
(d) No partner instance exists and the password of P was not corrupted prior

to πt
P is accepted.

By these definitions, we are ready to define the security of PAKE protocols.

Definition 14 (Security of PAKE). Let PAKE be a PAKE protocol and A
be an adversary. The advantage of A against PAKE is defined as

AdvBPRPAKE(A) :=
∣∣∣∣Pr

[
BPRA

PAKE ⇒ 1
]

− 1
2

∣∣∣∣

A PAKE protocol is considered secure if the best the adversary can do is to per-
form an online dictionary attack. Concretely, PAKE is secure if for any adversary
A, AdvBPRPAKE(A) is negligibly close to S

|PW| when passwords in the security game
are drawn independently and uniformly from PW. Here S is the number of send
queries made by A (i.e., the number of sessions during the game BPRPAKE).

4 Our Generic Construction of PAKE

Construction. Let KEM = (Setup,KG,Encaps,Decaps) be a KEM scheme with
public key space PK, ciphertext space C, and KEM key space K. We also require
KEM to have implicit rejection. Let IC1 = (E1,D1) be a symmetric encryption
with key space PW, plaintext space PK, and ciphertext space E1. Let IC2 =

A Generic Construction of Tightly Secure PAKE 155

Alg Init(U, S, pw)

01 (pk, sk) ←
KG(par)
02 e1 := E1(pw, pk)
03 st := (pk, sk, e1)
04 return (e1, st)

Alg TerInit(U, S, st, e2, pw)

05 let (pk, sk, e1) := st
06 c := D2(pw, e2)
07 k := Decaps(sk, c)
08 ctxt := (U, S, e1, e2)
09 SK := H(ctxt, pk, c, k, pw)
10 return SK

Alg Resp(S,U, e1, pw)

11 pk := D1(pw, e1)
12 (c, k) ← Encaps(pk)
13 e2 := E2(pw, c)
14 ctxt := (U, S, e1, e2)
15 SK := H(ctxt, pk, c, k, pw)
16 return (e2, SK)

Fig. 7. Our PAKE protocol Π.

(E2,D2) be a symmetric encryption with key space PW, plaintext space C, and
ciphertext space E2.

We construct our two-message PAKE protocol Π = (Init,Resp,TerInit) as
shown in Fig. 6, where SK is the session key space of PAKE and H : {0, 1}∗ → SK
is a hash function which is used to derive the session key. The system parameter
par is generated by par ← Setup.

The correctness of Π is dependent on KEM. In Fig. 7, one honest execution
of Π includes one KEM encapsulation and decapsulation. So, if KEM is (1 − δ)-
correct, then Π is also (1 − δ)-correct.

Theorem 1. Let H be random oracle and IC1 and IC2 be ideal ciphers. If KEM
is (1−δ)-correct and has implicit rejection, fuzzy public keys, anonymous cipher-
texts, OW-PCA security, and OW-rPCA security (cf. Definitions 4 to 7), then
the PAKE protocol Π in Fig. 7 is secure (wrt Definition 14).

Concretely, for any A against Π, there are adversaries B1-B6 with T(A) ≈
T(Bi)(1 ≤ i ≤ 6) and

AdvBPRΠ (A) ≤ S/|PW| + Advq1-FUZZY
KEM (B1) + Adv

(S,q2+S)-OW-rPCA
KEM (B4)

+ Adv
(S,1)-OW-PCA
KEM (B2) + Adv

(S+q2,S)-OW-PCA
KEM (B5)

+ Adv
(S,1)-ANO
KEM (B3) + Adv

(S+q1,S)-ANO
KEM (B6) + S · δ

+ S2(ηpk + ηct) +
(q21 + S2)

|E1| +
(q22 + S2)

|E2| +
q21

|PK| +
q22
|C| +

(q2H + S2)
|SK| ,

where q1, q2, qH are the numbers of A queries to IC1, IC2, and H respectively. S
is the number of sessions A established in the security game. ηpk and ηct are the
collision probabilities of KG and Encaps, respectively.

Remark 1 (Implementation of Ideal Ciphers). The implementation of IC1 and
IC2 depends on the concrete instantiation of the underlying KEM scheme KEM.
Beguinet et al. provides an implementation if KEM is instantiated with the Kyber
KEM [32] in [8, Section 5.2]. More implementation for group-based schemes and
lattice-based schemes can be found in [31].

4 This essentially forces a secure PAKE protocol not to have more than one partner
instances.

156 J. Pan and R. Zeng

Remark 2. We require KEM to have implicit rejection (cf. Definition 3) because
this simplifies our security proof. More concretely, if the underlying KEM KEM
has implicit rejection, then we only require OW-PCA security to finish our tight
proof. Otherwise, we need the OW-PCVA (cf. [21, Definition 2.1]) security to
detect whether the c is valid in the proof.

4.1 Proof of Theorem 1

Let A be an adversary against PAKE in the BPR game, where N is the number
of parties. Every user-server pair (U,S) ∈ U × S is associated with a password
pwU,S. The game sequences G0-G12 of the proof are given in Figs. 8, 9, 11, 14.

During the game sequences in this proof, we exclude the collisions of outputs
of KG and Encaps in Execute,SendInit,SendResp, and SendTerInit. We
also exclude the collisions of outputs of ideal ciphers and random oracle, i.e.,
IC1 = (E1,D1), IC2 = (E2,D2), and H. If such a collision happens at any time,
then we abort the game. For readability, we do not explicitly define such collision
events in the codes of games sequences.

By the assumption of Theorem 1, the collision probabilities of the outputs of
KG and Encaps are ηpk and ηct, and S is the number of sessions generated (i.e., the
total number of queries to Execute,SendInit,SendResp, and SendTerInit)
during the game and q1, q2, and qH are the numbers of queries to IC1, IC2, and H,
respectively. By birthday bounds and union bounds, such collision events happen
within probability S2(ηpk +ηct)+

(q2
1+S2)
|E1| + (q2

2+S2)
|E2| + q2

1
|PK| +

q2
2

|C| +
(q2

H+S2)
|SK| . Game

G0 is the same as BPRPAKE except that we define such collision events in G0,
we have

∣∣∣Pr
[
BPRA

PAKE ⇒ 1
]

− Pr
[
GA

0 ⇒ 1
]∣∣∣

≤ S2(ηpk + ηct) +
(q21 + S2)

|E1| +
(q22 + S2)

|E2| +
q21

|PK| +
q22
|C| +

(q2H + S2)
|SK|

Moreover, excluding these collisions imply that different instances have dif-
ferent traces and each instance (user’s or server’s) has at most one partnering
instance. By the construction of PAKE, different instances will have different
session keys, since the hash function H take the trace of instance as input.

Game G1. Instead of using the Freshness procedure in the Test oracle, we
assign an additional variable fr to each instance π to explicitly indicate the
freshness of π. Whenever A issues an oracle query related to π, we will update
π.fr in real time according to the freshness definition (cf. Definition 13). This
change is conceptual, so we have

Pr
[
GA

0 ⇒ 1
]
= Pr

[
GA

1 ⇒ 1
]

To save space, for games G2 to Gx, instead of presenting the whole codes of
the game, we only present the codes of changed oracles.

A Generic Construction of Tightly Secure PAKE 157

Game G0-G1

01 par ← Setup
02 for (U, S) ∈ U × S
03 pwU,S ← PW
04 C := ∅
05 β ← {0, 1}
06 b′ ← AO,H,IC1,IC2 (par)
07 return β == b′

Oracle Reveal(P, t)

08 if πt
P.acc 	= true or πt

P.test = true
09 return ⊥
10 if ∃P′ ∈ U ∪ S, t′ s.t.
11 Partner(πt

P, πt′
P′) = true

12 and πt′
P′ .test = true

13 return ⊥
14 for ∀(P′, t′) s.t. πt′

P′ .tr = πt
P.tr //G1

15 πt′
P′ .fr := false //G1

16 return πt
P.key

Oracle Test(P, t)

17 if Freshness(πt
P) = false //G0

18 if πt
P.fr = false //G1

19 return ⊥
20 SK∗

0 := Reveal(P, t), SK∗
1

$← SK
21 if SK∗

0 = ⊥: return ⊥
22 πt

P.test := true
23 return SK∗

β

Oracle Corrupt(U, S)

24 if (U, S) ∈ C: return ⊥
25 C := C ∪ {(U, S)}
26 return pwU,S

Oracle E1(pw, pk)

27 if ∃(pw, pk, e1, ∗) ∈ L1: return e1

28 e1
$← E1\T1, L1 := L1 ∪ {e1}

29 L1 := L1 ∪ (pw, pk, e1, enc)
30 return e1

Oracle E2(pw, c)

31 if ∃(pw, c, e2, ∗) ∈ L2: return e2

32 e2
$← E2\T2, T2 := T2 ∪ {e2}

33 L2 := L2 ∪ (pw, c, e2, enc)
34 return e2

Oracle D1(pw, e1)

35 if ∃(pw, pk, e1, ∗) ∈ L1: return pk

36 pk
$← PK, L1 := L1 ∪ (pw, pk, e1, dec)

37 return pk

Oracle D2(pw, e2)

38 if ∃(pw, c, e2, ∗) ∈ L2: return c

39 c
$← C, L2 := L2 ∪ (pw, c, e2, dec)

40 return c

Oracle Execute(U, t1, S, t2)

41 if π
t1
U 	= ⊥ or π

t2
S 	= ⊥

42 return ⊥
43 let pw := pwU,S

44 (pk, sk) ← KG(par), e1 := E1(pw, pk)
45 (c, k) ← Encaps(pk), e2 := E2(pw, c)
46 ctxt := (U, S, e1, e2)
47 SK := H(ctxt, pk, c, k, pw)
48 π

t1
U

:= ((pk, sk, e1), ctxt, SK, true)

49 π
t2
S

:= ((c, k, e2), ctxt, SK, true)

50 (π
t1
U .fr, π

t2
S .fr) := (true, true) //G1

51 return (U, e1, S, e2)

Oracle SendInit(U, t1, S)

52 if π
t1
U 	= ⊥: return ⊥

53 (pk, sk) ← KG(par)
54 e1 := E1(pwU,S, pk)

55 π
t1
U

:= ((pk, sk, e1), (U, S, e1, ⊥), ⊥, ⊥)

56 π
t1
U .fr := false //G1

57 return (U, e1)

Oracle SendResp(S, t2,U, e1)

58 π
t2
S 	= ⊥: return ⊥

59 if (U, S) ∈ C: π
t2
S .fr := false //G1

60 else π
t2
S .fr := true //G1

61 pk := D1(pwU,S, e1)

62 (c, k) ← Encaps(pk)
63 e2 := E2(pwU,S, c)

64 ctxt := (U, S, e1, e2)
65 SK := H(ctxt, pk, c, k, pwU,S)

66 π
t2
S

:= ((c, k, e2), ctxt, SK, true)
67 return (S, e2)

Oracle SendTerInit(U, t1, S, e2)

68 if π
t1
U = ⊥ and π

t1
U .tr 	= (U, S, ∗, ∗)

69 return ⊥
70 let (pk, sk, e1) := π

t1
U .e

71 c := D2(pw, e2), k := Decaps(sk, c)

72 if ∃t2 s.t. π
t2
S .fr = true //G1

73 and π
t2
S .tr = (U, S, e1, e2) //G1

74 π
t1
U .fr := true //G1

75 else if (U, S) /∈ C: π
t1
U .fr := true //G1

76 else π
t1
U .fr := false //G1

77 ctxt := (U, S, e1, e2)
78 SK := H(ctxt, pk, c, k, pwU,S)

79 π
t1
U .(tr, key, acc) := (ctxt, SK, true)

80 return true

Oracle H(U, S, e1, e2, pk, c, k, pw)

81 if LH[U, S, e1, e2, pk, c, k, pw] = ⊥
82 SK

$← SK
83 LH[U, S, e1, e2, pk, c, k, pw] := SK
84 return LH[U, S, e1, e2, pk, c, k, pw]

Fig. 8. Games in proving Theorem 1. A has access to the set of PAKE oracles
{Execute,SendInit,SendResp,SendTerInit,Corrupt,Reveal,Test}, random
oracle H, and ideal ciphers IC1 = (E1,D1) and IC2 = (E2,D2).

158 J. Pan and R. Zeng

Oracle Execute(U, t1, S, t2)

01 if πt1
U �= ⊥ or πt2

S �= ⊥
02 return ⊥
03 pw := pwU,S

04 (pk, sk) ← KG(par), e1 := E1(pw, pk)
//G1-G4

05 (c, k) ← Encaps(pk), e2 := E2(pw, c)
//G1-G3

06 c
$← C, e2 := E2(pw, c) //G4

07 e1
$← E1\T1, T1 := T1 ∪ {e1} //G5

08 e2
$← E2\T2, T2 := T2 ∪ {e2} //G5

09 ctxt := (U, S, e1, e2)
10 SK := H(ctxt, pk, c, k, pw) //G1-G2

11 SK
$← SK //G3-G5

12 πt1
U := ((pk, sk, e1), ctxt, SK, true) //G1-G3

13 πt2
S := ((c, k, e2), ctxt, SK, true) //G1-G3

14 πt1
U := ((⊥, ⊥, e1), ctxt, SK, true) //G4-G5

15 πt2
S := ((⊥, ⊥, e2), ctxt, SK, true) //G4-G5

16 (πt1
U .fr, πt2

S .fr) := (true, true)
17 return (U, e1, S, e2)

Oracle D1(pw, e1)
18 if ∃(pw, pk, e1, ∗) ∈ L1

19 return pk

20 pk
$← PK //G1

21 (pk, sk) ← KG //G2-G5

22 Lkey := Lkey ∪ {(pk, sk)}
//G2-G5

23 L1 := L1 ∪ {(pw, pk, e1, dec)}
24 return pk

Fig. 9. Oracles Execute and D1 in the games sequence G1-G5.

Game G2. We change the output of D1. When A queries D1(pw, e1) where e1
is not generated from E1(pw, ·), we generate pk via (pk, sk) ← KG instead of
pk

$← PK. Such (pk, sk) is recorded in Lkey. cf. Lines 20 ro 22.
The difference between G1 and G2 can be bounded by using the fuzzyness

of KEM. The bound is given in Lemma 2. For readability, we continue the proof
of Lemma 1 and postpone the proof of Lemma 2 to our full version [28].

Lemma 2. With notations and assumptions from G1 and G2 in the proof of
Theorem 1, there is an adversary B1 with T(B1) ≈ T(A) and

∣∣Pr [
GA

1 ⇒ 1
] − Pr

[
GA

2 ⇒ 1
]∣∣ ≤ Advq1-FUZZY

KEM (B1)

After this change, all pk generated by querying D1 (i.e., there exists (pw, e1)
s.t. (pw, pk, e1,dec) ∈ L1) will always have a secret key sk such that (pk, sk) ∈
Lkey. This fact is crucial for our later simulation.

Game G3. In this game, session keys of instances generated in Execute are all
uniformly at random and independent of H (cf. Lines 10 to 11).

Let Queryexec be the event that A queries the hash input of the session key
of an instance generated in Execute. Since H is a random oracle, if Queryexec
does not happen, then A cannot detect the modification made in G3. We have

∣∣Pr [
GA

2 ⇒ 1
] − Pr

[
GA

3 ⇒ 1
]∣∣ ≤ Pr [Queryexec]

A Generic Construction of Tightly Secure PAKE 159

We construct an adversary B2 against the OW-PCA security of KEM in Fig. 10
such that T(B2) ≈ T(A) and Pr [Queryexec] ≤ Adv

(S,1)-OW-PCA
KEM (B2). Concretely,

B2 inputs a OW-PCA challenge (par,pk, c) and has access to a plaintext checking
oracle Pco. Since A’s number of queries to Execute is S and there is only one
KEM ciphertext generated per query to Execute, we need at most S challenge
public keys and one challenge ciphertexts per public key.

Reduction BPco(·,·,·)
2 (par,pk, c)

01 cnt := 0, LE := ∅
02 i∗ := ⊥, j∗ := ⊥, k∗ := ⊥
03 Queryexec := false
04 for (U, S) ∈ U × S
05 pwU,S ← PW
06 C := ∅, β ← {0, 1}
07 b′ ← AO,H,IC1,IC2(par)
08 return (i∗, j∗, k∗)

Oracle H(U, S, e1, e2, pk, c, k, pw)

09 ctxt := (U, S, e1, e2)
10 if ∃i′ s.t. (ctxt, (pk, i′), c, pw) ∈ LE

11 and Pco(cnt∗, c, k) = 1
12 Queryexec := true
13 (i∗, j∗, k∗) := (i′, 1, k)
14 if LH[U, S, e1, e2, pk, c, k, pw] = ⊥
15 SK

$← SK
16 LH[U, S, e1, e2, pk, c, k, pw] := SK
17 return LH[U, S, e1, e2, pk, c, k, pw]

Oracle Execute(U, t1, S, t2)

18 if πt1
U �= ⊥ or πt2

S �= ⊥
19 return ⊥
20 pw := pwU,S, cnt := cnt+ 1
21 pk := pk[cnt], e1 := E1(pw, pk)
22 c := c[cnt, 1], e2 := E2(pw, c)
23 ctxt := (U, S, e1, e2)
24 LE := LE ∪ {(ctxt, (pk, cnt), c, pw)}
25 SK

$← SK
26 πt1

U := ((pk, ⊥, e1), tr, SK, true)
27 πt2

S := ((c, ⊥, e2), tr, SK, true)
28 (πt1

U .fr, πt2
S .fr) := (true, true)

29 return (U, e1, S, e2)

Fig. 10. Reduction B2 in bounding the probability difference between G2 and G3.
Highlighted parts show how B2 uses Pco and challenge input to simulate G3. All
other oracles (except Execute and H) are the same as in G2.

B2 uses (i∗, j∗, k∗) to store its OW solution and uses LE to record the intended
hash input of session keys generated in Execute (cf. Line 24). Although B2 does
not have secret keys of pk and KEM keys of c, it can still simulate G3 since this
information is not required in simulating Execute. Moreover, B2 uses LE and
Pco to determine whether Queryexec happens (cf. Lines 10 to 13).

If A queried H(U,S, e1, e2, pk, c, k, pw), where (U,S, e1, e2, pk, c, k, pw) is the
intended hash input of a session key SK generated in Execute, then by the
construction of PAKE and Lines 21 to 24, there exists cnt∗ ∈ [S] such that
(U,S, e1, e2, (pk, cnt∗), c, pw) ∈ LE, c = c[cnt∗, 1], and k = Decaps(sk, c), where
sk is the secret key of pk[cnt∗]. This means that k is the OW solution of c[cnt∗, 1],
and thus B2 records the OW solution (cf. Line 13) and returns it when the game
ends. Therefore, we have

∣∣Pr [
GA

2 ⇒ 1
] − Pr

[
GA

3 ⇒ 1
]∣∣ ≤ Pr [Queryexec] ≤ Adv

(S,1)-OW-PCA
KEM (B2).

160 J. Pan and R. Zeng

Game G4. We change the generation of c in Execute (cf. Line 06). In this
game, c is sampled from C uniformly at random instead of using Encaps. More-
over, we no longer store the information about pk, sk, c, and k in the outputting
instances from Execute (cf. Lines 14 to 15). The later modification is concep-
tual since the game does not need this information to simulate Execute.

The difference between G3 and G4 can be bounded by using the ciphertext
anonymity of KEM. The bound is given in Lemma 3. We continue the proof of
Theorem 1 and postpone the proof of Lemma 3 to our full version [28].

Lemma 3. With notations and assumptions from G3 and G4 in the proof of
Theorem 1, there is an adversary B3 with T(B3) ≈ T(A) and

∣∣Pr [
GA

3 ⇒ 1
] − Pr

[
GA

4 ⇒ 1
]∣∣ ≤ Adv

(S,1)-ANO
KEM (B3)

Game G5. We postpone the generation of pk and c in Execute. Concretely,
when A issues a query (U, t1,S, t2) to Execute, we sample e1 and e2 uniformly
at random (cf. Lines 07 to 08) and postpone the generation of pk and c and
usage of IC1 and IC2 to the time that A queries D1(pwU,S, e1) or D2(pwU,S, e2),
respectively. The change made in G2 ensures that pk output by D1(pwU,S, e1)
is generated using KG, and the change made in G4 ensures that c output by
D2(pwU,S, e2) is generated via uniformly sampling over C. Therefore, G5 is con-
ceptually equivalent to G4, which means

Pr
[
GA

4 ⇒ 1
]
= Pr

[
GA

5 ⇒ 1
]

Game G6. We rewrite the codes of SendInit, SendResp, and SendTerInit

in Fig. 11. In this game, SendResp and SendTerInit compute session keys
based on the freshness of instances. SendResp in G6 is equivalent to the one
in G5. For SendTerInit in G6, if the user instance πt1

U has a matching server
instance and such instance is fresh, then we make these two instances have the
same session key (cf. Line 46). These changes are for further game transitions and
they are conceptual if KEM has perfect correctness. Here we need to consider the
correctness error of KEM since now we directly set up πt1

U ’s session key without
decapsulation. There are at most S queries to SendTerInit, by a union bound,
we have ∣∣Pr [

GA
5 ⇒ 1

] − Pr
[
GA

6 ⇒ 1
]∣∣ ≤ S · δ.

Game G7. We use two flags Guessuser and Guessser (which are initialized as
false) to indicate whether the following events happen:

– When A queries SendResp(S, t2,U, e1), if (U,S) is uncorrupted, e1 is not
generated from U’s instance (cf. Line 37), and ∃pk such that e1 is generated
via querying E1(pwU,S, pk), then we set Guessser as true (cf. Lines 23 to 24).

– When A queries SendTerInit(U, t1,S, e2), if πt1
U does not have matching

session, (U,S) is uncorrupted, e2 is not generated from S’s instance (cf. Line
30), and ∃c such that e2 is generated via querying E2(pwU,S, c), then we set
Guessuser as true (cf. Lines 53 to 53).

A Generic Construction of Tightly Secure PAKE 161

Game G6-G10

01 par ← Setup
02 for (U, S) ∈ U : pwU,S ← PW
03 C := ∅, β ← {0, 1}
04 Guessuser := false //G7-G10
05 Guessser := false //G7-G10

06 b′ ← AO,H,IC1,IC2 (par)
07 return β == b′

Oracle SendResp(S, t2,U, e1)

08 π
t2
S 	= ⊥: return ⊥

09 if (U, S) ∈ C
10 π

t2
S .fr := false

11 pk := D1(pwU,S, e1)

12 (c, k) ← Encaps(pk)
13 e2 := E2(pwU,S, c)

14 ctxt := (U, S, e1, e2)
15 SK := H(ctxt, pk, c, k, pwU,S)

16 else
17 π

t2
S .fr := true

18 pk := D1(pwU,S, e1)

19 (c, k) ← Encaps(pk)
20 e2 := E2(pwU,S, c)

21 ctxt := (U, S, e1, e2)
22 SK := H(ctxt, pk, c, k, pwU,S)

23 if e1 /∈ LU
1 and ∃pk s.t.

(pwU,S, pk, e1, enc) ∈ L1 //G7-G10

24 Guessser := true //G7-G10
25 else
26 SK

$← SK //G9-G10

27 c
$← C, e2 := E2(pwU,S, c) //G10

28 π
t2
S .(e, tr) := ((c, k, e2), ctxt)

29 π
t2
S .(key, acc) := (SK, true)

30 LS
2 := LS

2 ∪ {e2} //G7-G10
31 return (S, e2)

Oracle SendInit(U, t1, S)

32 if π
t1
U 	= ⊥: return ⊥

33 (pk, sk) ← KG(par), e1 := E1(pwU,S, pk)

34 e1
$← E1\T1, T1 := T1 ∪ {e1} //G9-G10

35 pk := D1(pwU,S, e1) //G9-G10

36 Retrieve sk s.t. (pk, sk) ∈ Lkey //G9-G10

37 LU
1 := LU

1 ∪ {e1} //G7-G10

38 π
t1
U

:= ((pk, sk, e1), (U, S, e1, ⊥), ⊥, ⊥)

39 π
t1
U .fr := false

40 return (U, e1)

Oracle SendTerInit(U, t1, S, e2)

41 if π
t1
U = ⊥ and π

t1
U .tr 	= (U, S, ∗, ∗)

42 return ⊥
43 (pk, sk, e1) := π

t1
U .e

44 if ∃t2 s.t. π
t2
S .fr = true

45 and π
t2
S .tr = (U, S, e1, e2)

46 π
t1
U .fr := true, SK := π

t2
S .key

47 else
48 ctxt := (U, S, e1, e2)
49 if (U, S) /∈ C
50 π

t1
U .fr := true

51 c := D2(pwU,S, e2), k := Decaps(sk, c)

52 SK := H(ctxt, pk, c, k, pwU,S)

53 if e2 /∈ LS
2 and ∃c s.t.

(pwU,S, c, e2, enc) ∈ L2 //G7-G10

54 Guessuser := true //G7-G10
55 else //G8-G10

56 SK
$← SK //G8-G10

57 else
58 π

t1
U .fr := false

59 c := D2(pwU,S, e2), k := Decaps(sk, c)

60 SK := H(ctxt, pk, c, k, pwU,S)

61 π
t1
U .(tr, key, acc) := (ctxt, SK, true)

62 return true

Fig. 11. Oracles SendInit,SendResp, and SendTerInit in games G6-G10. For any
user U, LU

1 records all e1 sent by U. Similarly, LS
2 records all e2 sent by server S. All

these lists are initialized as ∅.

These two flags are internal and do not influence the game, and thus G7 is
equivalent to G6.

Pr
[
GA

6 ⇒ 1
]
= Pr

[
GA

7 ⇒ 1
]
.

This step is crucial for our proof. Looking ahead, A triggered Guessuser (or
Guessser, similarly) means that A queried E1(pwU,S, pk) for some pk without
corrupting pwU,S. In this case, such pk is controlled by A (i.e., not output by the
security game), and thus we cannot embed challenge public key into such pk when
constructing reduction. Such events happen means that the adversary performs
a successful online dictionary attack. We delay the analysis of the happening
probability of such events.

Game G8. Fresh user instances that do not have matching session and do not
trigger Guessuser will generate uniformly random session keys. Concretely, when
A queries SendTerInit(U, t1,S, e2), if πt1

U does not have matching instance,

162 J. Pan and R. Zeng

Reduction BPco
4 (par,pk, c)

01 cnt1 := 0, cnt2 := 0, Lct := ∅
02 i∗ := ⊥, j∗ := ⊥, k∗ := ⊥
03 for (U, S) ∈ U : pwU,S ← PW
04 C := ∅, β ← {0, 1}
05 Guessuser := false,Guessser := false
06 Querysend := false

07 b′ ← AO,H,IC1,IC2 (par)
08 return (i∗, j∗, k∗)

Oracle SendInit(U, t1, S)

09 if π
t1
U 	= ⊥: return ⊥

10 cnt1 := cnt1 + 1, pk := pk[cnt1]

11 e1 := E1(pwU,S, pk), LU
1 := LU

1 ∪ {e1}
12 π

t1
U

:= ((pk, cnt1, e1), (U, S, e1, ⊥), ⊥, ⊥)
13 return (U, e1)

Oracle D2(pw, e2)

14 if ∃(pw, c, e2, ∗) ∈ L2: return c
15 cnt2 := cnt2 + 1, c := c[cnt2]
16 Lct := Lct ∪ {(c, cnt2)}
17 L2 := L2 ∪ (pw, c, e2, dec)
18 return c

Oracle H(U, S, e1, e2, pk, c, k, pw)

19 ctxt := (U, S, e1, e2)
20 if ∃i, SK s.t. (ctxt, (pk, i), c, pw, SK) ∈ L′

SK
21 and Pco(i, c, k) = 1
22 LH[U, S, e1, e2, pk, c, k, pw] := SK
23 if ∃i, j s.t. (ctxt, (pk, i), (c, j)) ∈ LSK
24 and Pco(i, c, k) = 1
25 (i∗, j∗, k∗) := (i, j, k),Querysend := true
26 if LH[U, S, e1, e2, pk, c, k, pw] = ⊥
27 LH[U, S, e1, e2, pk, c, k, pw] := SK

$← SK
28 return LH[U, S, e1, e2, pk, c, k, pw]

Oracle SendTerInit(U, t1, S, e2)

29 if π
t1
U = ⊥ and π

t1
U .tr 	= (U, S, ∗, ∗)

30 return ⊥
31 (pk, i, e1) := π

t1
U .e

32 if ∃t2 s.t. π
t2
S .fr = true

33 and π
t2
S .tr = (U, S, e1, e2)

34 π
t1
U .fr := true, SK := π

t2
S .key

35 else
36 ctxt := (U, S, e1, e2), c := D2(pw, e2)
37 if (U, S) /∈ C
38 π

t1
U .fr := true

39 c := D2(pw, e2)

40 if e2 /∈ LS
2 and ∃c s.t.

(pwU,S, c, e2, enc) ∈ L2

41 Guessuser := true
42 SK := Patch(ctxt, pk, i, c)
43 else
44 Retrieve j s.t. (c, j) ∈ Lct

45 SK
$← SK

46 LSK := LSK ∪ (ctxt, (pk, i), (c, j))
47 else
48 π

t1
U .fr := false

49 SK := Patch(ctxt, pk, i, c)

50 π
t1
U .(tr, key, acc) := (ctxt, SK, true)

51 return true

Procedure Patch(ctxt, pk, i, c)

52 (U, S, e1, e2) := ctxt, pw := pwU,S

53 if ∃k s.t. Pco(i, k, c) = 1
54 and LH[ctxt, pk, c, k, pw] 	= ⊥
55 SK := LH[ctxt, pk, c, k, pw]
56 else
57 SK

$← SK
58 L′

SK := L′
SK ∪ (ctxt, (pk, i), c, pw, SK)

59 return SK

Fig. 12. Reduction B4 in bounding the probability difference between G7 and G8.
Highlighted parts show how B4 uses Pco and challenge input to simulate G8. A4 also
uses a procedure Patch to patch H. All other oracles not shown in the figure are the
same as in G8 (cf. Figs. 8, 9 and 11).

(U,S) is uncorrupted, and e2 does not trigger Guessuser, then we sample the
session key uniformly at random and independent of H (cf. Lines 55 ro 56).

Since session keys in G7 are generated via random oracle H, to distinguish
G8 and G7, A needs to query one of the intended hash inputs of such random
session keys. Let Querysend be such querying event. To bound the happening
probability of Querysend, we construct an reduction B4 with T(A) ≈ T(B4) in
Fig. 12 which attacks OW-rPCA security of KEM. B4 works as follows:

1. On input a OW-rPCA challenge (par,pk, c), B4 embeds public keys in pk into
queries to SendInit (cf. Line 02) and embeds challenge ciphertexts in D2 (cf.
Line 15). Counter cnt1 and cnt2 are used to record the indexes of embedded
public keys and ciphertexts, respectively.

2. Since B4 does not have secret keys of challenge public keys (cf. Line 02), it
cannot decrypt KEM ciphertexts and thus cannot directly compute session

A Generic Construction of Tightly Secure PAKE 163

keys of user instances or determine whether A has queried the hash input of
such session keys (even if these keys are not fresh). To deal with it, we use
RO patching technique to make the simulation consistent.
Concretely, we define a procedure Patch which uses Pco oracle to determine
if A has queried the intended hash input of the session key of some specific
user instances. If so, it returns the recorded session key. Otherwise, it samples
a random session key, records this session key in L′

SK, and returns it. Later,
if A’s RO query matches a recorded session key, then B4 patches the RO and
returns this key (cf. Lines 20 to 22).
When A queries SendTerInit(U, t1,S, e2), where πt1

U does not have fresh
matching instance and either e2 triggers Guessuser or (U,S) is corrupted, B4

uses the procedure to compute the session key (cf. Lines 42 and 49).
3. When A queries SendTerInit(U, t1,S, e2), if πt1

U does not have fresh match-
ing instance, (U,S) is corrupted, and e2 does not trigger Guessuser, then e2 is
not generated by querying E2(pwU,S, e2), which means that c = D2(pwU,S, e2)
is one of the embedded ciphertext (cf. Line 15). B4 records such query in LSK
(cf. Line 46) to determine whether Querysend happens.
When A queried H(U,S, e1, e2, pk, c, k, pwU,S), if this query match one record
in LSK and k is the decapsulated key of a embedded challenge ciphertext c
(cf. Line 23), then this RO query is the intended hash input of one of the
session keys recorded in Line 46. In this case, Querysend will be triggered, and
B4 will use (i∗, j∗, k∗) to record the OW solution of c (cf. Line 25).

Since A’s numbers of queries to Init and D2 are S and q2, respectively, B4

needs at most S challenge public keys and (q2 + S) challenge ciphertexts per
public keys during the simulation. If Querysend happens, then B4 finds the OW
solution of one of the challenge ciphertexts. Therefore, we have

∣∣Pr [
GA

7 ⇒ 1
] − Pr

[
GA

8 ⇒ 1
]∣∣ ≤ Pr [Querysend] ≤ Adv

(S,q2+S)-OW-rPCA
KEM (B4)

Game G9. We change SendInit and SendResp.

1. In SendInit, instead of generating (pk, sk) ← KG and e1 := E1(pwU,S, pk), we
firstly sample e1 uniformly at random and then generate (pk, sk) by querying
D1(pwU,S, e1) (cf. Lines 34 to 36).

2. Fresh server instances that do not trigger Guessser will generate uniformly
random session keys. Concretely, when A queries SendResp(S, t2,U, e1), if
(U,S) is uncorrupted and e1 does not trigger Guessser, then we sample the
session key uniformly at random and independent of H (cf. Lines 25 to 26).

Similar to our argument in bounding G7 and G8, to distinguish G8 and
G9, A needs to query one of the intended hash inputs of such random session
keys. Let Queryresp be such querying event. We construct an reduction B5 with
T(A) ≈ T(B5) in Fig. 12 to bound the happening probability of Queryresp. B5

attacks OW-PCA security of KEM and works as follows:

1. On input a OW-PCA challenge (par,pk, c), B5 embeds challenge public keys
pk into queries to D1 (cf. Line 31). By Lines 34 to 36, public keys generated

164 J. Pan and R. Zeng

Reduction B5(par,pk, c)

01 cnt1 := 0, i∗ := ⊥, j∗ := ⊥, k∗ := ⊥
02 for (U, S) ∈ U
03 pwU,S ← PW, LU

1 := ∅, LS
2 := ∅

04 C := ∅, β ← {0, 1}
05 Guessuser := false,Guessser := false
06 Queryresp := false

07 b′ ← AO,H,IC1,IC2 (par)
08 return (i∗, j∗, k∗)

Oracle SendTerInit(U, t1, S, e2)

09 if π
t1
U = ⊥ and π

t1
U .tr 	= (U, S, ∗, ∗)

10 return ⊥
11 (pk, i, e1) := π

t1
U .e, c := D2(pw, e2)

12 if ∃t2 s.t. π
t2
S .fr = true

13 and π
t2
S .tr = (U, S, e1, e2)

14 π
t1
U .fr := true, SK := π

t2
S .key

15 else
16 ctxt := (U, S, e1, e2)
17 if (U, S) /∈ C
18 π

t1
U .fr := true

19 if e2 /∈ LS
2 and ∃c s.t.

(pwU,S, c, e2, enc) ∈ L2

20 Guessuser := true
21 SK := Patch(ctxt, pk, i, c)

22 else SK
$← SK

23 else
24 π

t1
U .fr := false

25 SK := Patch(ctxt, pk, i, c)

26 π
t1
U .(tr, key, acc) := (ctxt, SK, true)

27 return true

Oracle D1(pw, e1)

28 if ∃(pw, pk, e1, ∗) ∈ L1
29 return c
30 cnt2[cnt1] := 0, cnt1 := cnt1 + 1
31 pk := pk[cnt1], Lkey := Lkey ∪ {(pk, cnt1)}
32 L2 := L2 ∪ (pw, pk, e1, dec)
33 return c

Oracle SendResp(S, t2,U, e1)

34 π
t2
S 	= ⊥: return ⊥

35 pk := D1(pwU,S, e1)

36 if (U, S) ∈ C
37 π

t2
S .fr := false

38 (c, k) ← Encaps(pk), e2 := E2(pwU,S, c)

39 ctxt := (U, S, e1, e2)
40 SK := H(ctxt, pk, c, k, pwU,S)

41 else
42 π

t2
S .fr := true

43 if e1 /∈ LU
1 and ∃pk s.t.

(pwU,S, pk, e1, enc) ∈ L1

44 Guessser := true
45 (c, k) ← Encaps(pk), e2 := E2(pwU,S, c)

46 SK := H(ctxt, pk, c, k, pwU,S)

47 else
48 Retrieve i s.t. (pk, i) ∈ Lkey

49 cnt2[i] := cnt2[i] + 1, j := cnt2[i]
50 c := c[i, j], e2 := E2(pwU,S, c)

51 LSK := LSK ∪ {(ctxt, (pk, i), (c, j))}
52 SK

$← SK
53 LS

2 := LS
2 ∪ {e2}

54 π
t2
S

:= ((c, k, e2), ctxt, SK, true)
55 return (S, e2)

Oracle H((U, S, e1, e2), pk, c, k, pw)

56 ctxt := (U, S, e1, e2)
57 if ∃i, SK s.t. (ctxt, (pk, i), c, pw, SK) ∈ L′

SK and Pco(i, c, k) = 1
58 LH[U, S, e1, e2, pk, c, k, pw] := SK
59 if ∃i, j s.t. (ctxt, (pk, i), (c, j)) ∈ LSK and Pco(i, c, k) = 1
60 (i∗, j∗, k∗) := (i, j, k),Queryresp := true

61 if LH[U, S, e1, e2, pk, c, k, pw] = ⊥
62 LH[U, S, e1, e2, pk, c, k, pw] := SK

$← SK
63 return LH[U, S, e1, e2, pk, c, k, pw]

Fig. 13. Reduction B5 in bounding the probability difference between G8 and G9.
Highlighted parts show how B5 uses Pco and challenge input to simulate G9. All
other oracles not shown in the figure are the same as in G8 (cf. Figs. 8, 9 and 11).
Procedure Patch is the same as the one shown in Fig. 12.

in SendInit are also from pk. Similar to B4, B5 uses the Patch procedure in
Fig. 12 to compute the session keys of user instances. Counter cnt1 and vector
of counters cnt2 are used to record the indexes of embedded public keys and
ciphertexts, respectively.

2. When A queries SendResp(S, t2,U, e1), if πt2
S is fresh (which means that

(U,S) is uncorrupted) and e1 does not trigger Guessser, then by our definition
of Guessser, e1 is not generated by querying E1(pwU,S, pk). This means that
pk = D1(pwU,S, e1) is one of the embedded public key (cf. Line 31). In this
case, B5 embeds one challenge ciphertext with respect to pk (cf. Line 50)

A Generic Construction of Tightly Secure PAKE 165

and records such query in LSK (cf. Line 51) to determine whether Queryresp
happens.
When A queried H(U,S, e1, e2, pk, c, k, pwU,S), if this query match one record
in LSK and k is the decapsulated key of a embedded challenge ciphertext c
(cf. Line 59), then this RO query is the intended hash input of one of the
session keys recorded in Line 51. In this case, Queryresp will be triggered, and
B5 will use (i∗, j∗, k∗) to record the OW solution of the embedded challenge
ciphertext c (cf. Line 60).

Since A’s numbers of queries to (SendInit,SendResp) and D2 are S and
q2 respectively, B5 needs at most S + q2 challenge public keys and S challenge
ciphertexts per public keys during the simulation. If Queryresp happens, then B5

finds the OW solution of one of challenge ciphertexts in c. Therefore, we have
∣∣Pr [

GA
8 ⇒ 1

] − Pr
[
GA

9 ⇒ 1
]∣∣ ≤ Pr

[
Queryresp

] ≤ Adv
(S+q2,S)-OW-PCA
KEM (B5)

Game G10. We sample KEM ciphertext uniformly at random for server
instances that are fresh and do not trigger Queryresp (cf. Line 27). Similar to
the argument of bounding G3 and G4 (cf. Lemma 3), We can use the ciphertext
anonymity of KEM to upper bound the probability difference between G9 and
G10. The bound is given in Lemma 4. We continue the proof of Theorem 1 and
postpone the proof of Lemma 4 to our full version [28].

Lemma 4. With notations and assumptions from G9 and G10 in the proof of
Theorem 1, there is an adversary B6 with T(B6) ≈ T(A) and

∣∣Pr [
GA

9 ⇒ 1
] − Pr

[
GA

10 ⇒ 1
]∣∣ ≤ Adv

(S+q1,S)-ANO
KEM (B6)

In game transition G10-G12 (shown in Fig. 14), we bound the happening
probabilities of Guessser and Guessuser.

Game G11. We do not use passwords to simulate the protocol messages of
fresh instances that do not trigger Guessser and Guessuser. Concretely, we change
SendInit,SendResp, and SendTerInit as follows:

– In SendResp, if the server instance πt2
S is fresh and does not trigger Guessser,

then we sample e2 uniformly at random and without using pwU,S and c (cf.
Lines 33 to 34). Moreover, we only store e2 as the ephemeral secret of πt2

S (cf.
Line 41). These changes are conceptual since we do not need c to compute the
session key and if A queries D2(pwU,S, e2) later, then we will return random
c (which are the same as in G10).

– Similarly, in SendInit, we generate e1 uniformly at random and without
using pwU,S and pk (cf. Lines 49 to 52) and only store e1 as the ephemeral
secret of πt1

U (cf. Lines 52 to 53 and Line 59). Later, if A corrupts (U,S) and
queries SendTerInit to finish the user instance πt1

U , we retrieve necessary
information to compute the session key (cf. Lines 82 to 83). These changes

166 J. Pan and R. Zeng

Game G10-G12

01 par ← Setup
02 for (U, S) ∈ U : pwU,S ← PW //G10-G11

03 C := ∅, β ← {0, 1}
04 Guessuser := false,Guessser := false
05 b′ ← AO,H,IC1,IC2 (par)
06 for (U, S) ∈ U × S //G12
07 if (U, S) /∈ C: pwU,S ← PW //G12

08 if ∃S′ s.t. pwU,S′ ∈ Lpw //G12

09 Guessuser := true //G12
10 if ∃U′ s.t. pwU′,S ∈ Lpw //G12

11 Guessser := true //G12
12 return β == b′

Oracle Corrupt(U, S)

13 if (U, S) ∈ C: return ⊥
14 C := C ∪ {(U, S)}
15 pwU,S ← PW //G12

16 return pwU,S

Oracle SendResp(S, t2,U, e1)

17 π
t2
S 	= ⊥: return ⊥

18 if (U, S) ∈ C
19 π

t2
S .fr := false

20 pk := D1(pwU,S, e1), (c, k) ← Encaps(pk)

21 e2 := E2(pwU,S, c), ctxt := (U, S, e1, e2)

22 SK := H(ctxt, pk, c, k, pwU,S)

23 else
24 π

t2
S .fr := true

25 if e1 /∈ LU
1 and ∃pk s.t.

(pwU,S, pk, e1, enc) ∈ L1 //G10-G11

26 Guessser := true //G10-G11
27 pk := D1(pwU,S, e1) //G10-G11

28 (c, k) ← Encaps(pk) //G10-G11
29 e2 := E2(pwU,S, c) //G10-G11

30 ctxt := (U, S, e1, e2) //G10-G11
31 SK := H(ctxt, pk, c, k, pwU,S)

//G10-G11
32 else //G10-G11
33 c ← C, e2 := E2(pwU,S, c) //G10

34 e2
$← E2\T2, T2 := T2 ∪ {e2} //G11

35 SK
$← SK //G10-G11

36 if e1 /∈ LU
1 //G12

37 for (pw, pk) s.t.
(pw, pk, e1, enc) ∈ L1 //G12

38 Lpw := Lpw ∪ {pw} //G12

39 e2
$← E2\T2, T2 := T2 ∪ {e2} //G12

40 SK
$← SK //G12

41 π
t2
S .(e, tr) := ((c, k, e2), ctxt) //G10

42 π
t2
S .(e, tr) := ((⊥, ⊥, e2), ctxt) //G11-G12

43 π
t2
S .(key, acc) := (SK, true)

44 LS
2 := LS

2 ∪ {e2}
45 return (S, e2)

Oracle SendInit(U, t1, S)

46 if π
t1
U 	= ⊥: return ⊥

47 e1
$← E1\T1, L1 := L1 ∪ {e1}

48 LU
1 := LU

1 ∪ {e1}
49 pk := D1(pwU,S, e1) //G10

50 Retrieve sk s.t. (pk, sk) ∈ Lkey //G10

51 π
t1
U

:= ((pk, sk, e1),
(U, S, e1, ⊥), ⊥, ⊥) //G10

52 π
t1
U .e := (⊥, ⊥, e1) //G11-G12

53 π
t1
U .tr := (U, S, e1, ⊥) //G11-G12

54 π
t1
U .fr := false

55 return (U, e1)

Oracle SendTerInit(U, t1, S, e2)

56 if π
t1
U = ⊥ and π

t1
U .tr 	= (U, S, ∗, ∗)

57 return ⊥
58 (pk, sk, e1) := π

t1
U .e //G10

59 (⊥, ⊥, e1) := π
t1
U .e //G11

60 if ∃t2 s.t. π
t2
S .fr = true

61 and π
t2
S .tr = (U, S, e1, e2)

62 π
t1
U .fr := true, SK := π

t2
S .key

63 else
64 ctxt := (U, S, e1, e2)
65 if (U, S) /∈ C
66 π

t1
U .fr := true

67 if e2 /∈ LS
2 and ∃c s.t.

(pwU,S, c, e2, enc) ∈ L2 //G10-G11

68 pk := D1(pwU,S, e1) //G11

69 Retrieve sk s.t.
(pk, sk) ∈ Lkey //G11

70 Guessuser := true //G10-G11
71 c := D2(pwU,S, e2) //G10-G11

72 k := Decaps(sk, c) //G10-G11
73 SK := H(ctxt, pk, c, k, pwU,S)

//G10-G11
74 else //G10-G11

75 SK
$← SK //G10-G11

76 if e2 /∈ LS
2

77 for (pw, c) s.t.
(pw, c, e2, enc) ∈ L2 //G12

78 Lpw := Lpw ∪ {pw} //G12

79 SK
$← SK //G12

80 else
81 π

t1
U .fr := false

82 pk := D1(pwU,S, e1) //G11-G12

83 Retrieve sk s.t.
(pk, sk) ∈ Lkey //G11-G12

84 c := D2(pwU,S, e2)

85 k := Decaps(sk, c)
86 SK := H(ctxt, pk, c, k, pwU,S)

87 π
t1
U .(tr, key, acc) := (ctxt, SK, true)

88 return true

Fig. 14. Oracles SendInit,SendResp, and SendTerInit in games G10-G12.

A Generic Construction of Tightly Secure PAKE 167

are also conceptual, since session keys of such instances are independently
and uniformly random. We have

Pr
[
GA

10 ⇒ 1
]
= Pr

[
GA

11 ⇒ 1
]

Game G12. We postpone the generation of passwords and the determination of
whether Guessuser or Guessser happen. For simplicity, we define event GUESS as
Guessuser ∨ Guessser.

1. We generate passwords as late as possible. passwords are generated only when
A issues Corrupt queries or after A ends with output b′ (cf. Lines 06, 07 to
15).

2. Since the passwords of uncorrupted parties do not exist before A termi-
nates, we cannot determine whether GUESS happens when A is running.
To deal with it, we postpone such determination. When A issues SendResp

or SendTerInit queries, we records all potential passwords that may match
the actual password of the specific user-server pair (cf. Lines 37 to 38 and
Lines 76 to 78). After A outputs b′, the passwords of uncorrupted user-server
pairs are generated, and then we use these passwords to determine whether
Guessuser or Guessser happen (cf. Lines 06 to 11).

3. Now all fresh instances will accept random session keys independent of H and
passwords (Lines 40 and 79).

If GUESS does not happen in both game, then these changes are conceptual.
We have

Pr
[
GA

11 ⇒ 1 | ¬GUESS in GA
11

]
= Pr

[
GA

12 ⇒ 1 | ¬GUESS in GA
12

]

We claim that GUESS happens in G11 if and only if it happens in G12. It is
straightforward to see that GUESS happens in G11 then it also happens in G12,
since in G12 we records all potential passwords in Lpw that may trigger GUESS in
G11. If GUESS happens in G12, then there exists pwU,S ∈ Lpw. Moreover, pwU,S

is recorded in Lpw only if (U,S) is uncorrupted. By (cf. Lines 37 to 38 and Lines
76 to 78), pwU,S ∈ Lpw means that there exists (pk, e1) (resp., (c, e2)) such that
e1 /∈ LU

1 (resp., e2 /∈ LS
2) and (pwU,S, pk, e1, enc) ∈ L1 (resp., (pwU,S, c, e2, enc) ∈

L2), and thus either Guessuser or Guessser will be triggered in G11. Therefore, if
GUESS happens in G12, then GUESS also happens in G11. Now we have

∣∣Pr [
GA

11 ⇒ 1
] − Pr

[
GA

12 ⇒ 1
]∣∣ ≤ Pr

[
GUESS in GA

11

]
= Pr

[
GUESS in GA

12

]

Furthermore, we claim that every query to SendResp or SendTerInit will
add at most one password into Lpw. That is, at most one password will be
recorded in Lpw in every execution of Lines 37 to 38 or Lines 76 to 78. To
see this, suppose that there are two passwords pw and pw′ are recorded during
a execution of Lines 37 to 38. By Line 37, we have (pw, c, e2, enc) ∈ L2 and
(pw′, c′, e2, enc) ∈ L2 for some c and c′. This means that e2 is generated by
querying E2(pw, c) and E2(pw′, c′), which is impossible since we simulate E2 in a

168 J. Pan and R. Zeng

Game G12

01 par ← Setup
02 C := ∅, β ← {0, 1}
03 Guessuser := false,Guessser := false
04 b′ ← AO,H,IC1,IC2 (par)
05 for (U, S) ∈ U × S
06 if (U, S) /∈ C: pwU,S ← PW
07 if ∃S′ s.t. pwU,S′ ∈ Lpw

08 Guessuser := true
09 if ∃U′ s.t. pwU′,S ∈ Lpw

10 Guessser := true
11 return β == b′

Oracle Execute(U, t1, S, t2)

12 if π
t1
U 	= ⊥ or π

t2
S 	= ⊥

13 return ⊥
14 e1

$← E1\T1, T1 := T1 ∪ {e1}
15 e2

$← E2\T2, T2 := T2 ∪ {e2}
16 ctxt := (U, S, e1, e2), SK

$← SK
17 π

t1
U

:= ((⊥, ⊥, e1), ctxt, SK, true)

18 π
t2
S

:= ((⊥, ⊥, e2), ctxt, SK, true)

19 (π
t1
U .fr, π

t2
S .fr) := (true, true)

20 return (U, e1, S, e2)

Oracle Corrupt(U, S)

21 if (U, S) ∈ C: return ⊥
22 C := C ∪ {(U, S)}
23 pwU,S ← PW
24 return pwU,S

Oracle E1(pw, pk)

25 if ∃(pw, pk, e1, ∗) ∈ L1: return e1

26 e1
$← E1\T1, T1 := T1 ∪ {e1}

27 L1 := L1 ∪ (pw, pk, e1, enc)
28 return e1

Oracle E2(pw, c)

29 if ∃(pw, c, e2, ∗) ∈ L2: return e2

30 e2
$← E2\T2, T2 := T2 ∪ {e2}

31 L2 := L2 ∪ (pw, c, e2, enc)
32 return e2

Oracle D1(pw, e1)

33 if ∃(pw, pk, e1, ∗) ∈ L1
34 return pk
35 (pk, sk) ← KG
36 Lkey := Lkey ∪ {(pk, sk)}
37 L1 := L1 ∪ {(pw, pk, e1, dec)}
38 return pk

Oracle D2(pw, e2)

39 if ∃(pw, c, e2, ∗) ∈ L2: return c

40 c
$← C, L2 := L2 ∪ (pw, c, e2, dec)

41 return c

Oracle SendInit(U, t1, S)

42 if π
t1
U 	= ⊥: return ⊥

43 e1
$← E1\T1, T1 := T1 ∪ {e1}

44 LU
1 := LU

1 ∪ {e1}
45 π

t1
U

:= ((⊥, ⊥, e1), (U, S, e1, ⊥), ⊥, ⊥)

46 π
t1
U .fr := false

47 return (U, e1)

Oracle SendResp(S, t2,U, e1)

48 π
t2
S 	= ⊥: return ⊥

49 if (U, S) ∈ C
50 π

t2
S .fr := false

51 pk := D1(pwU,S, e1)

52 (c, k) ← Encaps(pk)
53 e2 := E2(pwU,S, c), ctxt := (U, S, e1, e2)

54 SK := H(ctxt, pk, c, k, pwU,S)

55 else
56 π

t2
S .fr := true, SK $← SK

57 if e1 /∈ LU
1

58 for (pw, pk) s.t. (pw, pk, e1, enc) ∈ L1
59 Lpw := Lpw ∪ {pw}
60 e2

$← E2\T2, T2 := T2 ∪ {e2}
61 π

t2
S

:= ((⊥, ⊥, e2), ctxt, SK, true)

62 LS
2 := LS

2 ∪ {e2}
63 return (S, e2)

Oracle SendTerInit(U, t1, S, e2)

64 if π
t1
U = ⊥ and π

t1
U .tr 	= (U, S, ∗, ∗)

65 return ⊥
66 if ∃t2 s.t. π

t2
S .fr = true

67 and π
t2
S .tr = (U, S, e1, e2)

68 π
t1
U .fr := true, SK := π

t2
S .key

69 else
70 ctxt := (U, S, e1, e2)
71 if (U, S) /∈ C
72 π

t1
U .fr := true, SK $← SK

73 if e2 /∈ LS
2

74 for (pw, c) s.t. (pw, c, e2, enc) ∈ L2
75 Lpw := Lpw ∪ {pw}
76 else
77 π

t1
U .fr := false

78 pk := D1(pwU,S, e1)

79 Retrieve sk s.t. (pk, sk) ∈ Lkey

80 c := D2(pwU,S, e2), k := Decaps(sk, c)

81 SK := H(ctxt, pk, c, k, pwU,S)

82 π
t1
U .(tr, key, acc) := (ctxt, SK, true)

83 return true

Oracle H(U, S, e1, e2, pk, c, k, pw)

84 if LH[U, S, e1, e2, pk, c, k, pw] = ⊥
85 LH[U, S, e1, e2, pk, c, k, pw] := SK

$← SK
86 return LH[U, S, e1, e2, pk, c, k, pw]

Fig. 15. Final game G12 in proving Theorem 1. A has access to the set of PAKE ora-
cles {Execute,SendInit,SendResp,SendTerInit,Corrupt,Reveal,Test}, ran-
dom oracle H, and ideal ciphers IC1 = (E1,D1) and IC2 = (E2,D2). Oracles Reveal
and Test are the same as in G1 (cf. Fig. 8) so we omit their description here.

A Generic Construction of Tightly Secure PAKE 169

collision-free way. Similar argument applies for Lines 76 to 78. Therefore, every
query to SendResp or SendTerInit will add at most one password into Lpw.

Now we can bound the happening probability of GUESS in G12. A clean
description of G12 is given in Fig. 15. In G12, passwords of uncorrupted user-
server pairs are undefined before A issues Corrupt queries or ends with output
b′. Moreover, oracles Execute,SendInit,SendResp, and SendTerInit can
be simulated without using uncorrupted passwords. Therefore, uncorrupted pass-
words are perfectly hidden from A’s view. Since A issues S queries to SendResp

and SendTerInit, we have |Lpw| ≤ S and

Pr
[
GUESS in GA

12

] ≤ S

|PW|
All fresh instances in G12 will accept independently and uniformly random

session keys, so we also have

Pr
[
GA

12 ⇒ 1
]
=

1
2

Combining all the probability differences in the games sequence, we have

AdvBPRΠ (A) ≤ S

|PW| + Advq1-FUZZY
KEM (B1) + Adv

(S,q2+S)-OW-rPCA
KEM (B4)

+ Adv
(S,1)-OW-PCA
KEM (B2) + Adv

(S+q2,S)-OW-PCA
KEM (B5)

+ Adv
(S,1)-ANO
KEM (B3) + Adv

(S+q1,S)-ANO
KEM (B6) + S · δ

+ S2(ηpk + ηct) +
(q21 + S2)

|E1| +
(q22 + S2)

|E2| +
q21

|PK| +
q22
|C| +

(q2H + S2)
|SK|

5 Instantiations of the Underlying KEM

5.1 Direct Diffie-Hellman-Based Constructions

Diffie-Hellman Assumptions. We recall the multi-user and multi-challenge
strong Diffie-Hellman assumption. Let G be a group generation algorithm that
on input security parameters outputs a group description (G, g, p), where p is an
odd prime and G is a p-order group with generator g.

Definition 15 (Multi-Instance stDH [3]). Let N and μ be integers. We say
the stDH problem is hard on G, if for any A, the (N,μ)-stDH advantage of A
against G

Adv
(N,μ)-stDH
G (A) := Pr

[
stDH

(N,μ),A
G ⇒ 1

]
.

is negligible, where stDH
(N,μ),A
G is defined in Fig. 16.

170 J. Pan and R. Zeng

GAME stDH
(N,μ),A
G

01 par := (G, g, p) ← G
02 for i ∈ [N]

03 xi
$← Zp,X[i] := Xi := gxi

04 for j ∈ [μ] :

05 yj
$← Zp,Y[j] := Yj := gyj

06 (i∗, j∗, Z∗) ← AstDH(par,X,Y)
07 return Z∗ = Y

xi∗
j∗

Oracle Pco(i, Y, Z)

08 if X[i] = ⊥
09 return ⊥
10 return Z == Y xi

Fig. 16. Security games OW-PCA and OW-rPCA for KEM scheme KEM.

KG1

01 x
$← Zp

02 X := gx

03 pk := X
04 sk := (x, pk)
05 return (pk, sk)

Encaps1(pk)

06 r
$← Zp

07 R := gr ∈ G

08 k := H(pk, R, Xr)
09 c := R
10 return (c, k)

Decaps1(sk, R)

11 parse (x, pk) =: sk
12 parse R =: c
13 k := H(pk, R, Rx)
14 return k

Fig. 17. KEM scheme KEMstDH = (Setup1,KG1,Encaps1,Decaps1).

Construction based on strong DH. In Fig. 17, we construct a KEM
scheme KEMstDH with plaintext space G and ciphertext space of G. KEMstDH

is essentially the hashed ElGamal KEM [3,17].
KEMstDH has perfect public key fuzzyness and ciphertext anonymity (even

under PCA). This is because X
$← G is equivalent to (x $← Zp,X := gx).

Therefore, we have

Adv
(N,μ)-ANO
KEMstDH

(A) = 0, AdvN-FUZZY
KEMstDH

(A) = 0

for any integers N and μ, and adversary A (even unbounded).
It is well-known that the hash ElGamal KEM is tightly IND-CCA secure

(which implies OW-PCA security) if the (1, 1)-stDH assumption holds [15]. By
using the random self-reducibility of Diffie-Hellman assumption, one can show
that the (N,μ)-OW-PCA security can be tightly reduced to the (1, 1)-stDH
assumption.

5.2 Generic Constructions

Let PKE0 = (KG0,Enc0,Dec0) be a PKE scheme with public key space PK,
message space M, randomness space R, and ciphertext space C. Let � and L be
integers. Let G : PK×M → R, H : PK×M×C → {0, 1}L, and H′ : PK×{0, 1}�×
C → {0, 1}L be hash functions. Let PKE0 = (Setup0,KG0,Enc0,Dec0) be a PKE
scheme. In Fig. 18, we define a generic transformation for KEM schemes. We
denote such transformation as KEM = TU	⊥[PKE0,G,H,H′]. TU	⊥ is essentially a
combination of the T transformation and the U	⊥ transformation in [21]. KEM has

A Generic Construction of Tightly Secure PAKE 171

the same public key space and ciphertext space with PKE0. The Setup algorithm
of KEM is the same as the one of PKE0.

KG(par)

01 (pk, sk) ← KG0(par)

02 s
$← {0, 1}�

03 sk′ := (pk, sk, s)
04 return (pk, sk′)

Encaps(pk)

05 m
$← M′

06 r := G(pk, m)
07 c := Enc0(pk, m; r)
08 k := H(pk, c, m)
09 return (c, k)

Decaps((pk, sk, s), c)

10 m′ := Dec0(sk, c)
11 if m′ �= ⊥
12 and c =
Enc0(pk, m

′;G(pk, m′))
13 k := H(pk, c, m′)
14 else k := H′(pk, c, s)
15 return k

Fig. 18. KEM scheme KEM = (Setup,KG,Encaps,Decaps) from the generic transfor-
mation TU�⊥[PKE0,G,H,H′], where G,H, and H′ are hash functions, PKE0 = (Setup0,
KG0,Enc0,Dec0) is a PKE scheme, and Setup = Setup0.

Correctness of KEM. We follow the correctness proof of [21, Theorem 3.1].

Decaps has decapsulation error if its input is c = Enc0(pk,m′;G(pk,m′)) for some
m′ and Dec0(sk, c) �= m′. If PKE0 is (1 − δPKE0)-correct, such event happens
within probability qG · δPKE0 if we treat G as a random oracle and assume G will
be queried at most qG times. Therefore, KEM is (1 − qG · δPKE0)-correct.

Security. In Theorems 2 to 4, we show if PKE0 has fuzzy public keys and
PR-CPA security, then KEM has fuzzy public keys, anonymous ciphertexts
(under PCA attacks), and OW-(r)PCA security.

It is easy to see TU	⊥ transformation preserves the public key fuzzyness of
the underlying PKE.

Theorem 2. Let N be the number of users. If PKE0 has fuzzy public keys, then
KEM = TU	⊥[PKE0,G,H,H′] in Fig. 18 also has fuzzy public keys. Concretely, for
any adversary A against KEM, there exists an adversary B with T(A) ≈ T(B)
and

AdvN-FUZZY
KEM (A) ≤ AdvN-FUZZY

PKE0
(B)

Theorems 3 and 4 show shat if PKE0 is PR-CPA secure, then KEM =
TU	⊥[PKE0,G,H,H′] has OW-CPA security and ciphertext anonymity under
PCA attacks. For readability, we postpone their proofs to our full version [28].

Theorem 3. Let N and μ be the numbers of users and challenge ciphertexts per
user. If PKE0 is PR-CPA secure and (1− δ)-correct and G,H, and H′ be random
oracles, then KEM = TU	⊥[PKE0,G,H,H′] has anonymous ciphertext under PCA
attacks (cf. Definition 7).

172 J. Pan and R. Zeng

Concretely, for any A against KEM, there exists B = (B0,B1) with T(A) ≈
T(B) and

Adv
(N,μ)-ANO
KEM (A) ≤ 2Adv(N,μ)-PR-CPA

PKE0
(B) + 2NqG · δ +

NμqG
|M|

+
2N(qH′ + qPco)

2�
+

N2μ2 + q2G
|R| +

2N2μ2 + q2H + q2H′

2L
,

where qG, qH, qH′ , and qPco are the numbers of A’s queries to G,H,H′, and Pco.

Theorem 4. Let N and μ be the numbers of users and challenge ciphertexts
per user. If PKE0 is PR-CPA secure and G,H, and H′ be random oracles, then
KEM = TU	⊥[PKE0,G,H,H′] is OW-PCA secure.

Concretely, for any A against KEM’s (N,μ)-OW-PCA security, there exists
B with T(A) ≈ T(B) and

Adv
(N,μ)-OW-PCA
KEM (A) ≤ 2Adv(N,μ)-PR-CPA

PKE0
(B) + 2NqG · δ +

Nμ(qG + qH)
|M|

+
2N(qH′ + qPco)

2�
+

N2μ2 + q2G
|R| +

2N2μ2 + q2H + q2H′

2L
,

where qG, qH, qH′ , and qPco are the numbers of A’s queries to G,H,H′, and Pco.

By combining Lemma 1 and Theorems 3 and 4, we have Theorem 5.

Theorem 5. Let N and μ be the numbers of users and challenge ciphertexts
per user. If PKE0 is PR-CPA secure and G,H, and H′ be random oracles, then
KEM = TU	⊥[PKE0,G,H,H′] is OW-rPCA secure.

Concretely, for any A against KEM’s (N,μ)-OW-rPCA security, there exists
B with T(A) ≈ T(B) and

Adv
(N,μ)-OW-rPCA
KEM (A) ≤ 4Adv

(N,μ)-PR-CPA
PKE0

(B) + 4NqG · δ +
Nμ(2qG + qH)

|M|

+
4N(qH′ + qPco)

2�
+

2(N2μ2 + q2G)

|R| +
2(2N2μ2 + q2H + q2H′)

2L
,

where qG, qH, qH′ , and qPco are the numbers of A’s queries to G,H,H′, and Pco.

5.3 Lattice-Based Instantiations

We discuss two lattice-based instantiations of the PAKE protocol Π (Fig. 7). The
first one is the well-known Regev’s encryption [29,30] which is based on learning
with error (LWE) assumption. The second one is the Kyber.PKE scheme [32],
which is based on the module LWE (MLWE) assumption. For simplicity, we only
discuss the security loss of these schemes (from their assumptions) and the final
security loss of Π instantiated with these schemes. For more background about
lattices, please refer to [18,29,30,32].

A Generic Construction of Tightly Secure PAKE 173

Let λ the security parameter. Let S and qIC be the number of session and the
number of A’s queries to ideal ciphers (IC1, IC2) in Fig. 7. Let εLWE and εmlwe be
the best computational advantage against the LWE and MLWE assumptions,
respectively. We use negl(λ) to denote negligible (about λ) statistical terms. Such
terms do not influence tightness.

Regev Encryption. We use the multi-bit version of Regev’s encryption,
denoted as PKERegev, in [29]. As shown in [29, Lemma 7.3, Lemma 7.4], the
public keys of this scheme are indistinguishable from random by using a LWE
problem instance, and the ciphertexts are pseudorandom under random public
keys. Suppose this scheme encrypts Θ(λ) bits, then we have

AdvN-FUZZY
PKERegev

(A) ≤ O(Nλ) · εLWE, Adv
(N,μ)-PR-CPA
PKERegev

(A) ≤ O(Nλ) · εLWE + negl(λ)

We can use the TU	⊥ transformation to transform PKERegev into a KEM
scheme and then use the KEM scheme to instantiate Π (Fig. 7). By plugging
these bounds into Theorems 3 to 5 and then Theorem 1, we have

AdvBPRΠ[PKERegev]
(A) ≤ O(λ · (qIC + S)) · εLWE

Kyber PKE. We consider the Kyber.CPAPKE scheme (denoted as PKEkyber)
in [32]. The pseudorandomness and fuzzyness proofs of PKEkyber are the same
as in [8, Lemmata 1 and 2, Corollary 1]. Since the MLWE assumption does not
have random self-reducibility, we can use a standard hybrid argument to extend
such proofs to multi-user-challenge setting. We have

AdvN-FUZZY
PKERegev

(A) ≤ N · εmlwe, Adv
(N,μ)-PR-CPA
PKERegev

(A) ≤ Nμ · 2εmlwe

By using the TU	⊥ transformation, we can transform PKEkyber into a KEM
scheme. Then we use the KEM scheme to instantiate Π (Fig. 7). By Theorems
1 and 3 to 5, we have

AdvBPRΠ[PKEkyber
(A) ≤ O(S · (qIC + S)) · εmlwe

References

1. Abdalla, M., Barbosa, M.: Perfect forward security of SPAKE2. Cryptology ePrint
Archive, Report 2019/1194 (2019). https://eprint.iacr.org/2019/1194

2. Abdalla, M., Barbosa, M., Bradley, T., Jarecki, S., Katz, J., Xu, J.: Universally
composable relaxed password authenticated key exchange. In: Micciancio, D., Ris-
tenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 278–307. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_10

3. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9_12

https://eprint.iacr.org/2019/1194
https://doi.org/10.1007/978-3-030-56784-2_10
https://doi.org/10.1007/3-540-45353-9_12

174 J. Pan and R. Zeng

4. Abdalla, M., Eisenhofer, T., Kiltz, E., Kunzweiler, S., Riepel, D.: Password-
authenticated key exchange from group actions. In: Dodis, Y., Shrimpton, T.
(eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 699–728. Springer, Heidelberg
(2022). https://doi.org/10.1007/978-3-031-15979-4_24

5. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol.
3386, pp. 65–84. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
30580-4_6

6. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_14

7. Becerra, J., Iovino, V., Ostrev, D., Šala, P., Škrobot, M.: Tightly-secure PAK(E).
In: Capkun, S., Chow, S.S.M. (eds.) CANS 2017. LNCS, vol. 11261, pp. 27–48.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02641-7_2

8. Beguinet, H., Chevalier, C., Pointcheval, D., Ricosset, T., Rossi, M.: GeT a CAKE:
generic transformations from key encaspulation mechanisms to password authen-
ticated key exchanges. ACNS 2023 (2023). https://eprint.iacr.org/2023/470

9. Bellare, M., Palacio, A.: GQ and Schnorr identification schemes: proofs of secu-
rity against impersonation under active and concurrent attacks. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45708-9_11

10. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6_11

11. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679_25

12. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: 1992 IEEE Symposium on Security and Pri-
vacy, pp. 72–84. IEEE Computer Society Press (1992)

13. Benhamouda, F., Blazy, O., Ducas, L., Quach, W.: Hash proof systems over lat-
tices revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol.
10770, pp. 644–674. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76581-5_22

14. Bernstein, D.J., Persichetti, E.: Towards KEM unification. Cryptology ePrint
Archive, Report 2018/526 (2018). https://eprint.iacr.org/2018/526

15. Bhattacharyya, R.: Memory-tight reductions for practical key encapsulation mech-
anisms. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part
I. LNCS, vol. 12110, pp. 249–278. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45374-9_9

16. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005). https://doi.org/10.
1007/11426639_24

17. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_8

https://doi.org/10.1007/978-3-031-15979-4_24
https://doi.org/10.1007/978-3-540-30580-4_6
https://doi.org/10.1007/978-3-540-30580-4_6
https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1007/978-3-030-02641-7_2
https://eprint.iacr.org/2023/470
https://doi.org/10.1007/3-540-45708-9_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-319-76581-5_22
https://doi.org/10.1007/978-3-319-76581-5_22
https://eprint.iacr.org/2018/526
https://doi.org/10.1007/978-3-030-45374-9_9
https://doi.org/10.1007/978-3-030-45374-9_9
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/978-3-540-78967-3_8

A Generic Construction of Tightly Secure PAKE 175

18. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press (2008)

19. Haase, B., Labrique, B.: AuCPace: efficient verifier-based PAKE protocol tailored
for the IIoT. IACR TCHES 2019(2), 1–48 (2019). https://tches.iacr.org/index.
php/TCHES/article/view/7384

20. Hao, F., Ryan, P.: J-PAKE: authenticated key exchange without PKI. Cryptology
ePrint Archive, Report 2010/190 (2010). https://eprint.iacr.org/2010/190

21. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS,
vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70500-2_12

22. Jablon, D.P.: Strong password-only authenticated key exchange. SIGCOMM Com-
put. Commun. Rev. 26(5), 5–26 (1996). https://doi.org/10.1145/242896.242897

23. Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based
authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10366-7_37

24. Liu, X., Liu, S., Han, S., Gu, D.: EKE meets tight security in the Universally
Composable framework. In: Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023, Part
I. LNCS, vol. 13940, pp. 685–713. Springer, Heidelberg (2023). https://doi.org/10.
1007/978-3-031-31368-4_24

25. MacKenzie, P.: The PAK suite: protocols for password-authenticated key exchange
(2002)

26. Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems for the
security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 104–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-
2_8

27. Okamoto, T., Pointcheval, D.: REACT: rapid enhanced-security asymmetric cryp-
tosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
159–174. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45353-9_13

28. Pan, J., Zeng, R.: A generic construction of tightly secure password-based authen-
ticated key exchange. Cryptology ePrint Archive (2023). https://ia.cr/2023/1334

29. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5_31

30. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press
(2005)

31. Santos, B.F.D., Gu, Y., Jarecki, S.: Randomized half-ideal cipher on groups with
applications to UC (a)PAKE. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023,
Part V. LNCS, vol. 14008, pp. 128–156. Springer, Heidelberg (2023). https://doi.
org/10.1007/978-3-031-30589-4_5

32. Schwabe, P., et al.: CRYSTALS-KYBER. Technical report, National Institute of
Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-
cryptography/post-quantum-cryptography-standardization/round-3-submissions

33. Zhang, J., Yu, Yu.: Two-round PAKE from approximate SPH and instantiations
from lattices. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS,
vol. 10626, pp. 37–67. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6_2

https://tches.iacr.org/index.php/TCHES/article/view/7384
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://eprint.iacr.org/2010/190
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1145/242896.242897
https://doi.org/10.1007/978-3-642-10366-7_37
https://doi.org/10.1007/978-3-642-10366-7_37
https://doi.org/10.1007/978-3-031-31368-4_24
https://doi.org/10.1007/978-3-031-31368-4_24
https://doi.org/10.1007/3-540-44586-2_8
https://doi.org/10.1007/3-540-44586-2_8
https://doi.org/10.1007/3-540-45353-9_13
https://ia.cr/2023/1334
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-031-30589-4_5
https://doi.org/10.1007/978-3-031-30589-4_5
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/978-3-319-70700-6_2
https://doi.org/10.1007/978-3-319-70700-6_2

	A Generic Construction of Tightly Secure Password-Based Authenticated Key Exchange
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Key Encapsulation Mechanism
	2.2 Public-Key Encryption

	3 Password-Based Authenticated Key Exchange
	3.1 Definition of PAKE
	3.2 Security Model of PAKE

	4 Our Generic Construction of PAKE
	4.1 Proof of Theorem 1

	5 Instantiations of the Underlying KEM
	5.1 Direct Diffie-Hellman-Based Constructions
	5.2 Generic Constructions
	5.3 Lattice-Based Instantiations

	References

