
Jian Guo
Ron Steinfeld (Eds.)

LN
CS

 1
44

45

29th International Conference on the Theory
and Application of Cryptology and Information Security
Guangzhou, China, December 4–8, 2023
Proceedings, Part VIII

Advances in Cryptology –
ASIACRYPT 2023

Lecture Notes in Computer Science 14445
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Jian Guo · Ron Steinfeld
Editors

Advances in Cryptology –
ASIACRYPT 2023
29th International Conference on the Theory
and Application of Cryptology and Information Security
Guangzhou, China, December 4–8, 2023
Proceedings, Part VIII

Editors
Jian Guo
Nanyang Technological University
Singapore, Singapore

Ron Steinfeld
Monash University
Melbourne, VIC, Australia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-981-99-8741-2 ISBN 978-981-99-8742-9 (eBook)
https://doi.org/10.1007/978-981-99-8742-9

© International Association for Cryptologic Research 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Paper in this product is recyclable.

https://orcid.org/0000-0001-8847-6748
https://orcid.org/0000-0003-1745-4183
https://doi.org/10.1007/978-981-99-8742-9

Preface

The 29th Annual International Conference on the Theory and Application of Cryptology
and Information Security (Asiacrypt 2023) was held in Guangzhou, China, onDecember
4–8, 2023.The conference covered all technical aspects of cryptology, andwas sponsored
by the International Association for Cryptologic Research (IACR).

We received an Asiacrypt record of 376 paper submissions from all over the world,
and the Program Committee (PC) selected 106 papers for publication in the proceedings
of the conference. Due to this large number of papers, the Asiacrypt 2023 program had
3 tracks.

The two program chairs were supported by the great help and excellent advice of six
area chairs, selected to cover themain topic areas of the conference. The area chairs were
Kai-Min Chung for Information-Theoretic and Complexity-Theoretic Cryptography,
Tanja Lange for Efficient and Secure Implementations, Shengli Liu for Public-Key
Cryptography Algorithms and Protocols, Khoa Nguyen for Multi-Party Computation
and Zero-Knowledge, Duong Hieu Phan for Public-Key Primitives with Advanced
Functionalities, and Yu Sasaki for Symmetric-Key Cryptology. Each of the area chairs
helped to lead discussions together with the PC members assigned as paper discussion
lead. Area chairs also helped to decide on the submissions that should be accepted from
their respective areas. We are very grateful for the invaluable contribution provided by
the area chairs.

To review and evaluate the submissions, while keeping the load per PC member
manageable, we selected a record size PC consisting of 105 leading experts from all
over the world, in all six topic areas of cryptology. The two program chairs were not
allowed to submit a paper, and PC members were limited to submit one single-author
paper, or at most two co-authored papers, or at most three co-authored papers all with
students. Each non-PC submission was reviewed by at least three reviewers consisting of
either PC members or their external sub-reviewers, while each PC member submission
received at least four reviews. The strong conflict of interest rules imposed by IACR
ensure that papers are not handled by PC members with a close working relationship
with the authors. There were approximately 420 external reviewers, whose input was
critical to the selection of papers. Submissions were anonymous and their length was
limited to 30 pages excluding the bibliography and supplementary materials.

The review process was conducted using double-blind peer review. The conference
operated a two-round review system with a rebuttal phase. After the reviews and first
round discussions the PC selected 244 submissions to proceed to the second round and
the authors were then invited to participate in an interactive rebuttal phase with the
reviewers to clarify questions and concerns. The remaining 131 papers were rejected,
including one desk reject. The second round involved extensive discussions by the PC
members. After several weeks of additional discussions, the committee selected the final
106 papers to appear in these proceedings.

vi Preface

The eight volumes of the conference proceedings contain the revised versions of the
106 papers that were selected. The final revised versions of papers were not reviewed
again and the authors are responsible for their contents.

The PC nominated and voted for two papers to receive the Best Paper Awards,
and one paper to receive the Best Early Career Paper Award. The Best Paper Awards
went to Thomas Espitau, Alexandre Wallet and Yang Yu for their paper “On Gaussian
Sampling, Smoothing Parameter and Application to Signatures”, and to Kaijie Jiang,
Anyu Wang, Hengyi Luo, Guoxiao Liu, Yang Yu, and Xiaoyun Wang for their paper
“Exploiting the Symmetry of Zn: Randomization and the Automorphism Problem”. The
Best Early Career Paper Award went to Maxime Plancon for the paper “Exploiting
Algebraic Structure in Probing Security”. The authors of those three papers were invited
to submit extended versions of their papers to the Journal of Cryptology. In addition,
the program of Asiacrypt 2023 also included two invited plenary talks, also nominated
and voted by the PC: one talk was given by Mehdi Tibouchi and the other by Xiaoyun
Wang. The conference also featured a rump session chaired by Kang Yang and Yu Yu
which contained short presentations on the latest research results of the field.

Numerous people contributed to the success of Asiacrypt 2023. We would like to
thank all the authors, including those whose submissions were not accepted, for submit-
ting their research results to the conference. We are very grateful to the area chairs, PC
members and external reviewers for contributing their knowledge and expertise, and for
the tremendous amount of work that was done with reading papers and contributing to
the discussions. We are greatly indebted to Jian Weng and Fangguo Zhang, the General
Chairs, for their efforts in organizing the event and to KevinMcCurley and KayMcKelly
for their help with the website and review system. We thank the Asiacrypt 2023 advi-
sory committee members Bart Preneel, Huaxiong Wang, Kai-Min Chung, Yu Sasaki,
Dongdai Lin, Shweta Agrawal and Michel Abdalla for their valuable suggestions. We
are also grateful for the helpful advice and organization material provided to us by the
Eurocrypt 2023 PC co-chairs Carmit Hazay and Martijn Stam and Crypto 2023 PC co-
chairs Helena Handschuh and Anna Lysyanskaya. We also thank the team at Springer
for handling the publication of these conference proceedings.

December 2023 Jian Guo
Ron Steinfeld

Organization

General Chairs

Jian Weng Jinan University, China
Fangguo Zhang Sun Yat-sen University, China

Program Committee Chairs

Jian Guo Nanyang Technological University, Singapore
Ron Steinfeld Monash University, Australia

Program Committee

Behzad Abdolmaleki University of Sheffield, UK
Masayuki Abe NTT Social Informatics Laboratories, Japan
Miguel Ambrona Input Output Global (IOHK), Spain
Daniel Apon MITRE Labs, USA
Shi Bai Florida Atlantic University, USA
Gustavo Banegas Qualcomm, France
Zhenzhen Bao Tsinghua University, China
Andrea Basso University of Bristol, UK
Ward Beullens IBM Research Europe, Switzerland
Katharina Boudgoust Aarhus University, Denmark
Matteo Campanelli Protocol Labs, Denmark
Ignacio Cascudo IMDEA Software Institute, Spain
Wouter Castryck imec-COSIC, KU Leuven, Belgium
Jie Chen East China Normal University, China
Yilei Chen Tsinghua University, China
Jung Hee Cheon Seoul National University and Cryptolab Inc,

South Korea
Sherman S. M. Chow Chinese University of Hong Kong, China
Kai-Min Chung Academia Sinica, Taiwan
Michele Ciampi University of Edinburgh, UK
Bernardo David IT University of Copenhagen, Denmark
Yi Deng Institute of Information Engineering, Chinese

Academy of Sciences, China

viii Organization

Patrick Derbez University of Rennes, France
Xiaoyang Dong Tsinghua University, China
Rafael Dowsley Monash University, Australia
Nico Döttling Helmholtz Center for Information Security,

Germany
Maria Eichlseder Graz University of Technology, Austria
Muhammed F. Esgin Monash University, Australia
Thomas Espitau PQShield, France
Jun Furukawa NEC Corporation, Japan
Aron Gohr Independent Researcher, New Zealand
Junqing Gong ECNU, China
Lorenzo Grassi Ruhr University Bochum, Germany
Tim Güneysu Ruhr University Bochum, Germany
Chun Guo Shandong University, China
Siyao Guo NYU Shanghai, China
Fuchun Guo University of Wollongong, Australia
Mohammad Hajiabadi University of Waterloo, Canada
Lucjan Hanzlik CISPA Helmholtz Center for Information

Security, Germany
Xiaolu Hou Slovak University of Technology, Slovakia
Yuncong Hu Shanghai Jiao Tong University, China
Xinyi Huang Hong Kong University of Science and

Technology (Guangzhou), China
Tibor Jager University of Wuppertal, Germany
Elena Kirshanova Technology Innovation Institute, UAE and I. Kant

Baltic Federal University, Russia
Eyal Kushilevitz Technion, Israel
Russell W. F. Lai Aalto University, Finland
Tanja Lange Eindhoven University of Technology, Netherlands
Hyung Tae Lee Chung-Ang University, South Korea
Eik List Nanyang Technological University, Singapore
Meicheng Liu Institute of Information Engineering, Chinese

Academy of Sciences, China
Guozhen Liu Nanyang Technological University, Singapore
Fukang Liu Tokyo Institute of Technology, Japan
Shengli Liu Shanghai Jiao Tong University, China
Feng-Hao Liu Florida Atlantic University, USA
Hemanta K. Maji Purdue University, USA
Takahiro Matsuda AIST, Japan
Christian Matt Concordium, Switzerland
Tomoyuki Morimae Kyoto University, Japan
Pierrick Méaux University of Luxembourg, Luxembourg

Organization ix

Mridul Nandi Indian Statistical Institute, Kolkata, India
María Naya-Plasencia Inria, France
Khoa Nguyen University of Wollongong, Australia
Ryo Nishimaki NTT Social Informatics Laboratories, Japan
Anca Nitulescu Protocol Labs, France
Ariel Nof Bar Ilan University, Israel
Emmanuela Orsini Bocconi University, Italy
Adam O’Neill UMass Amherst, USA
Morten Øygarden Simula UiB, Norway
Sikhar Patranabis IBM Research, India
Alice Pellet-Mary CNRS and University of Bordeaux, France
Edoardo Persichetti Florida Atlantic University, USA and Sapienza

University, Italy
Duong Hieu Phan Telecom Paris, Institut Polytechnique de Paris,

France
Josef Pieprzyk Data61, CSIRO, Australia and ICS, PAS, Poland
Axel Y. Poschmann PQShield, UAE
Thomas Prest PQShield, France
Adeline Roux-Langlois CNRS, GREYC, France
Amin Sakzad Monash University, Australia
Yu Sasaki NTT Social Informatics Laboratories, Japan
Jae Hong Seo Hanyang University, South Korea
Yaobin Shen UCLouvain, Belgium
Danping Shi Institute of Information Engineering, Chinese

Academy of Sciences, China
Damien Stehlé CryptoLab, France
Bing Sun National University of Defense Technology,

China
Shi-Feng Sun Shanghai Jiao Tong University, China
Keisuke Tanaka Tokyo Institute of Technology, Japan
Qiang Tang University of Sydney, Australia
Vanessa Teague Thinking Cybersecurity Pty Ltd and the

Australian National University, Australia
Jean-Pierre Tillich Inria, Paris, France
Yosuke Todo NTT Social Informatics Laboratories, Japan
Alexandre Wallet University of Rennes, Inria, CNRS, IRISA,

France
Meiqin Wang Shandong University, China
Yongge Wang UNC Charlotte, USA
Yuyu Wang University of Electronic Science and Technology

of China, China
Qingju Wang Telecom Paris, Institut Polytechnique de Paris,

France

x Organization

Benjamin Wesolowski CNRS and ENS Lyon, France
Shuang Wu Huawei International, Singapore, Singapore
Keita Xagawa Technology Innovation Institute, UAE
Chaoping Xing Shanghai Jiao Tong University, China
Jun Xu Institute of Information Engineering, Chinese

Academy of Sciences, China
Takashi Yamakawa NTT Social Informatics Laboratories, Japan
Kang Yang State Key Laboratory of Cryptology, China
Yu Yu Shanghai Jiao Tong University, China
Yang Yu Tsinghua University, Beijing, China
Yupeng Zhang University of Illinois Urbana-Champaign and

Texas A&M University, USA
Liangfeng Zhang ShanghaiTech University, China
Raymond K. Zhao CSIRO’s Data61, Australia
Hong-Sheng Zhou Virginia Commonwealth University, USA

Additional Reviewers

Amit Agarwal
Jooyoung Lee
Léo Ackermann
Akshima
Bar Alon
Ravi Anand
Sarah Arpin
Thomas Attema
Nuttapong Attrapadung
Manuel Barbosa
Razvan Barbulescu
James Bartusek
Carsten Baum
Olivier Bernard
Tyler Besselman
Ritam Bhaumik
Jingguo Bi
Loic Bidoux
Maxime Bombar
Xavier Bonnetain
Joppe Bos
Mariana Botelho da Gama
Christina Boura
Clémence Bouvier
Ross Bowden

Pedro Branco
Lauren Brandt
Alessandro Budroni
Kevin Carrier
André Chailloux
Suvradip Chakraborty
Debasmita Chakraborty
Haokai Chang
Bhuvnesh Chaturvedi
Caicai Chen
Rongmao Chen
Mingjie Chen
Yi Chen
Megan Chen
Yu Long Chen
Xin Chen
Shiyao Chen
Long Chen
Wonhee Cho
Qiaohan Chu
Valerio Cini
James Clements
Ran Cohen
Alexandru Cojocaru
Sandro Coretti-Drayton

Organization xi

Anamaria Costache
Alain Couvreur
Daniele Cozzo
Hongrui Cui
Giuseppe D’Alconzo
Zhaopeng Dai
Quang Dao
Nilanjan Datta
Koen de Boer
Luca De Feo
Paola de Perthuis
Thomas Decru
Rafael del Pino
Julien Devevey
Henri Devillez
Siemen Dhooghe
Yaoling Ding
Jack Doerner
Jelle Don
Mark Douglas Schultz
Benjamin Dowling
Minxin Du
Xiaoqi Duan
Jesko Dujmovic
Moumita Dutta
Avijit Dutta
Ehsan Ebrahimi
Felix Engelmann
Reo Eriguchi
Jonathan Komada Eriksen
Andre Esser
Pouria Fallahpour
Zhiyong Fang
Antonio Faonio
Pooya Farshim
Joël Felderhoff
Jakob Feldtkeller
Weiqi Feng
Xiutao Feng
Shuai Feng
Qi Feng
Hanwen Feng
Antonio Flórez-Gutiérrez
Apostolos Fournaris
Paul Frixons

Ximing Fu
Georg Fuchsbauer
Philippe Gaborit
Rachit Garg
Robin Geelen
Riddhi Ghosal
Koustabh Ghosh
Barbara Gigerl
Niv Gilboa
Valerie Gilchrist
Emanuele Giunta
Xinxin Gong
Huijing Gong
Zheng Gong
Robert Granger
Zichen Gui
Anna Guinet
Qian Guo
Xiaojie Guo
Hosein Hadipour
Mathias Hall-Andersen
Mike Hamburg
Shuai Han
Yonglin Hao
Keisuke Hara
Keitaro Hashimoto
Le He
Brett Hemenway Falk
Minki Hhan
Taiga Hiroka
Akinori Hosoyamada
Chengan Hou
Martha Norberg Hovd
Kai Hu
Tao Huang
Zhenyu Huang
Michael Hutter
Jihun Hwang
Akiko Inoue
Tetsu Iwata
Robin Jadoul
Hansraj Jangir
Dirmanto Jap
Stanislaw Jarecki
Santos Jha

xii Organization

Ashwin Jha
Dingding Jia
Yanxue Jia
Lin Jiao
Daniel Jost
Antoine Joux
Jiayi Kang
Gabriel Kaptchuk
Alexander Karenin
Shuichi Katsumata
Pengzhen Ke
Mustafa Khairallah
Shahram Khazaei
Hamidreza Amini Khorasgani
Hamidreza Khoshakhlagh
Ryo Kikuchi
Jiseung Kim
Minkyu Kim
Suhri Kim
Ravi Kishore
Fuyuki Kitagawa
Susumu Kiyoshima
Michael Klooß
Alexander Koch
Sreehari Kollath
Dimitris Kolonelos
Yashvanth Kondi
Anders Konring
Woong Kook
Dimitri Koshelev
Markus Krausz
Toomas Krips
Daniel Kuijsters
Anunay Kulshrestha
Qiqi Lai
Yi-Fu Lai
Georg Land
Nathalie Lang
Mario Larangeira
Joon-Woo Lee
Keewoo Lee
Hyeonbum Lee
Changmin Lee
Charlotte Lefevre
Julia Len

Antonin Leroux
Andrea Lesavourey
Jannis Leuther
Jie Li
Shuaishuai Li
Huina Li
Yu Li
Yanan Li
Jiangtao Li
Song Song Li
Wenjie Li
Shun Li
Zengpeng Li
Xiao Liang
Wei-Kai Lin
Chengjun Lin
Chao Lin
Cong Ling
Yunhao Ling
Hongqing Liu
Jing Liu
Jiahui Liu
Qipeng Liu
Yamin Liu
Weiran Liu
Tianyi Liu
Siqi Liu
Chen-Da Liu-Zhang
Jinyu Lu
Zhenghao Lu
Stefan Lucks
Yiyuan Luo
Lixia Luo
Jack P. K. Ma
Fermi Ma
Gilles Macario-Rat
Luciano Maino
Christian Majenz
Laurane Marco
Lorenzo Martinico
Loïc Masure
John McVey
Willi Meier
Kelsey Melissaris
Bart Mennink

Organization xiii

Charles Meyer-Hilfiger
Victor Miller
Chohong Min
Marine Minier
Arash Mirzaei
Pratyush Mishra
Tarik Moataz
Johannes Mono
Fabrice Mouhartem
Alice Murphy
Erik Mårtensson
Anne Müller
Marcel Nageler
Yusuke Naito
Barak Nehoran
Patrick Neumann
Tran Ngo
Phuong Hoa Nguyen
Ngoc Khanh Nguyen
Thi Thu Quyen Nguyen
Hai H. Nguyen
Semyon Novoselov
Julian Nowakowski
Arne Tobias Malkenes Ødegaard
Kazuma Ohara
Miyako Ohkubo
Charles Olivier-Anclin
Eran Omri
Yi Ouyang
Tapas Pal
Ying-yu Pan
Jiaxin Pan
Eugenio Paracucchi
Roberto Parisella
Jeongeun Park
Guillermo Pascual-Perez
Alain Passelègue
Octavio Perez-Kempner
Thomas Peters
Phuong Pham
Cécile Pierrot
Erik Pohle
David Pointcheval
Giacomo Pope
Christopher Portmann

Romain Poussier
Lucas Prabel
Sihang Pu
Chen Qian
Luowen Qian
Tian Qiu
Anaïs Querol
Håvard Raddum
Shahram Rasoolzadeh
Divya Ravi
Prasanna Ravi
Marc Renard
Jan Richter-Brockmann
Lawrence Roy
Paul Rösler
Sayandeep Saha
Yusuke Sakai
Niels Samwel
Paolo Santini
Maria Corte-Real Santos
Sara Sarfaraz
Santanu Sarkar
Or Sattath
Markus Schofnegger
Peter Scholl
Dominique Schröder
André Schrottenloher
Jacob Schuldt
Binanda Sengupta
Srinath Setty
Yantian Shen
Yixin Shen
Ferdinand Sibleyras
Janno Siim
Mark Simkin
Scott Simon
Animesh Singh
Nitin Singh
Sayani Sinha
Daniel Slamanig
Fang Song
Ling Song
Yongsoo Song
Jana Sotakova
Gabriele Spini

xiv Organization

Marianna Spyrakou
Lukas Stennes
Marc Stoettinger
Chuanjie Su
Xiangyu Su
Ling Sun
Akira Takahashi
Isobe Takanori
Atsushi Takayasu
Suprita Talnikar
Benjamin Hong Meng Tan
Ertem Nusret Tas
Tadanori Teruya
Masayuki Tezuka
Sri AravindaKrishnan Thyagarajan
Song Tian
Wenlong Tian
Raphael Toledo
Junichi Tomida
Daniel Tschudi
Hikaru Tsuchida
Aleksei Udovenko
Rei Ueno
Barry Van Leeuwen
Wessel van Woerden
Frederik Vercauteren
Sulani Vidhanalage
Benedikt Wagner
Roman Walch
Hendrik Waldner
Han Wang
Luping Wang
Peng Wang
Yuntao Wang
Geng Wang
Shichang Wang
Liping Wang
Jiafan Wang
Zhedong Wang
Kunpeng Wang
Jianfeng Wang
Guilin Wang
Weiqiang Wen
Chenkai Weng
Thom Wiggers

Stella Wohnig
Harry W. H. Wong
Ivy K. Y. Woo
Yu Xia
Zejun Xiang
Yuting Xiao
Zhiye Xie
Yanhong Xu
Jiayu Xu
Lei Xu
Shota Yamada
Kazuki Yamamura
Di Yan
Qianqian Yang
Shaojun Yang
Yanjiang Yang
Li Yao
Yizhou Yao
Kenji Yasunaga
Yuping Ye
Xiuyu Ye
Zeyuan Yin
Kazuki Yoneyama
Yusuke Yoshida
Albert Yu
Quan Yuan
Chen Yuan
Tsz Hon Yuen
Aaram Yun
Riccardo Zanotto
Arantxa Zapico
Shang Zehua
Mark Zhandry
Tianyu Zhang
Zhongyi Zhang
Fan Zhang
Liu Zhang
Yijian Zhang
Shaoxuan Zhang
Zhongliang Zhang
Kai Zhang
Cong Zhang
Jiaheng Zhang
Lulu Zhang
Zhiyu Zhang

Organization xv

Chang-An Zhao
Yongjun Zhao
Chunhuan Zhao
Xiaotong Zhou
Zhelei Zhou

Zijian Zhou
Timo Zijlstra
Jian Zou
Ferdinando Zullo
Cong Zuo

Sponsoring Institutions

– Gold Level Sponsor: Ant Research
– Silver Level Sponsors: Sansec Technology Co., Ltd., Topsec Technologies Group
– Bronze Level Sponsors: IBM, Meta, Sangfor Technologies Inc.

Contents – Part VIII

Quantum Cryptography

Oblivious Transfer from Zero-Knowledge Proofs: Or How to Achieve
Round-Optimal Quantum Oblivious Transfer and Zero-Knowledge Proofs
on Quantum States . 3

Léo Colisson, Garazi Muguruza, and Florian Speelman

On the (Im)plausibility of Public-Key Quantum Money
from Collision-Resistant Hash Functions . 39

Prabhanjan Ananth, Zihan Hu, and Henry Yuen

Key Exchange

Short Concurrent Covert Authenticated Key Exchange (Short cAKE) 75
Karim Eldefrawy, Nicholas Genise, and Stanislaw Jarecki

Generalized Fuzzy Password-Authenticated Key Exchange from Error
Correcting Codes . 110

Jonathan Bootle, Sebastian Faller, Julia Hesse, Kristina Hostáková,
and Johannes Ottenhues

A Generic Construction of Tightly Secure Password-Based Authenticated
Key Exchange . 143

Jiaxin Pan and Runzhi Zeng

An Efficient Strong Asymmetric PAKE Compiler Instantiable from Group
Actions . 176

Ian McQuoid and Jiayu Xu

New SIDH Countermeasures for a More Efficient Key Exchange 208
Andrea Basso and Tako Boris Fouotsa

Symmetric-Key - Design

The Indifferentiability of the Duplex and Its Practical Applications 237
Jean Paul Degabriele, Marc Fischlin, and Jérôme Govinden

Populating the Zoo of Rugged Pseudorandom Permutations 270
Jean Paul Degabriele and Vukašin Karadžić

xviii Contents – Part VIII

Generic Security of the SAFE API and Its Applications . 301
Dmitry Khovratovich, Mario Marhuenda Beltrán, and Bart Mennink

Author Index . 329

Quantum Cryptography

Oblivious Transfer from Zero-Knowledge
Proofs

Or How to Achieve Round-Optimal Quantum Oblivious
Transfer and Zero-Knowledge Proofs on Quantum States

Léo Colisson1,3(B) , Garazi Muguruza2,3, and Florian Speelman2,3

1 Centrum Wiskunde and Informatica, Amsterdam, The Netherlands
leo.colisson@cwi.nl

2 Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
{g.muguruzalasa,f.speelman}@uva.nl
3 QuSoft, Amsterdam, The Netherlands

Abstract. We provide a generic construction to turn any classical
Zero-Knowledge (ZK) protocol into a composable (quantum) oblivious
transfer (OT) protocol, mostly lifting the round-complexity properties
and security guarantees (plain-model/statistical security/unstructured
functions. . .) of the ZK protocol to the resulting OT protocol. Such a
construction is unlikely to exist classically as Cryptomania is believed to
be different from Minicrypt.

In particular, by instantiating our construction using Non-Interactive
ZK (NIZK), we provide the first round-optimal (2-message) quantum OT
protocol secure in the random oracle model, and round-optimal exten-
sions to string and k-out-of-n OT.

At the heart of our construction lies a new method that allows us
to prove properties on a received quantum state without revealing addi-
tional information on it, even in a non-interactive way and/or with sta-
tistical guarantees when using an appropriate classical ZK protocol. We
can notably prove that a state has been partially measured (with arbi-
trary constraints on the set of measured qubits), without revealing any
additional information on this set. This notion can be seen as an ana-
log of ZK to quantum states, and we expect it to be of independent
interest as it extends complexity theory to quantum languages, as illus-
trated by the two new complexity classes we introduce, ZKstatesQIP and
ZKstatesQMA.

Keywords: Quantum Cryptography · Oblivious Transfer ·
Zero-Knowledge on Quantum States · Multi-Party Computing ·
Zero-Knowledge

1 Introduction

Oblivious Transfer (OT) is an extremely powerful primitive, as it was
shown [Kil88] to be sufficient to perform multi-party computing (MPC), allow-
ing multiple parties to jointly compute any function while keeping the input
c© International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14445, pp. 3–38, 2023.
https://doi.org/10.1007/978-981-99-8742-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8742-9_1&domain=pdf
http://orcid.org/0000-0001-8963-4656
http://orcid.org/0000-0003-3792-9908
https://doi.org/10.1007/978-981-99-8742-9_1

4 L. Colisson et al.

of each party secret. Since the introduction of 2-party computing in the sem-
inal article of Yao [Yao82], followed by the famous generalisation to arbi-
trary many parties of Goldreich, Micali and Wigderson [GMW87], OT and
MPC received a tremendous amount of attention [Wie83,PVW08,Rab05,EGL85,
CGS02,DGJ+20,KP17,LT22].

However, all classical OT protocols need to use some structured computa-
tional assumptions providing trapdoors. Said differently, OT (classically) lives
in Cryptomania [Imp95], a world where public-key cryptography exists. On the
other hand, it was recently shown [GLS+21,BCK+21] that quantumly, OT lives
in MiniQCrypt, meaning that it is possible to obtain OT protocols using a much
weaker assumption, based only on (unstructured) one-way functions.

There are many reasons to avoid using trapdoor functions. For instance,
this additional structure can often be exploited by quantum computers, lead-
ing to attacks. As a result, many OT protocols (based on RSA, quadratic
residue, elliptic curves. . .) are vulnerable against quantum adversaries. While
some proposals [PVW08,BD18,Qua20] based on post-quantum assumptions like
the Learning-With-Errors problem (LWE) still seem to resist against quantum
adversaries, minimizing assumptions is an important safety-guard against poten-
tial future attacks on the computational assumptions. Understanding the min-
imal required assumptions is also an active field of research, with the recent
introduction of the notion of pseudo-random quantum states [JLS18], which is
an even weaker assumption than one-way functions.

However, while we know (even classical) 2-message OT protocols—optimal
in term of round complexity—achievable using trapdoors [PVW08,BD18], there
is no known round-optimal protocol requiring no structure (such protocol would
necessary be quantum unless Cryptomania collapses to MiniCrypt). The origi-
nal proposal [CK88] for quantum OT (studied and improved in a long line of
research [BBC+92,MS94,Yao95,DFL+09,Unr10,BF10,GLS+21,BCK+21], see
also this review [SMP22] for quantum OT protocols based on physical assump-
tions, that we will not cover here) requires 7 messages, and [ABK+22] managed
to obtain a 3-message protocol (computationally secure, in the random oracle
model). However, they left the following question open:

Does there exist two-message quantum chosen-input bit OT, that allows both
parties to choose inputs?

They also raise the question of the existence of a 2-message string OT, even
when the bit chosen by the receiver is random. The main bottle-neck to fur-
ther reduce the communication complexity of these protocols is the use of a
“cut-and-choose” approach, where the receiver sends a quantum state and some
commitments on the description of this state, gets a challenge from the sender
to ensure that the quantum states were honestly prepared, and opens some com-
mitments. Classically, we can avoid cut-and-choose by using Non-Interactive
Zero-Knowledge proofs (NIZK) in order to prove an NP statement on a classical
string without revealing anything on that string except the fact that the state-
ment is true. However, defining NIZK proofs on quantum states is challenging

Oblivious Transfer from Zero-Knowledge Proofs 5

as any measurement on a quantum state will irremediably alter it. While NIZK
proofs on Quantum States (NIZKoQS) have been recently introduced [CGK21]
and can be used to prove really advanced properties, they rely on trapdoor func-
tions (LWE), and therefore live in Cryptomania, and are moreover fundamentally
only computationally secure. [CGK21] actually raised two open questions:

Is it possible to do NIZKoQS without relying on LWE? Or with statistical
security?

Fig. 1. Comparison with related works. “RO” stands for Random Oracle, “Plain M.”
stands for “plain model”, “Like ZK” means that the properties (mostly) inherit from the
property of the underlying ZK protocol, the party in the “statistical” column represents
the malicious party allowed to be unbounded to get statistical security (note that
using [WW06] we can get statistical security against the other party (of course we
lose the statistical security against the first party [Lo97]), at the cost of an additional
message).(+1 in the Common Random String model, +2 in the plain model.)

1.1 Contributions

In this work, we answer positively all these open questions. We first state our
results on OT protocols (see also Fig. 1 for a table comparing existing works):

Theorem 1.1 (informal). There exists a (non-black-box1) 2-message string
OT (even k-out-of-n string OT) quantum protocol composably secure in the
1 Our protocol requires the use of a hash function h: since we need to prove statements

on preimages of h in a ZK protocol, this makes our protocol non-black-box with
respect to h since the circuit of h must be known to the verifier. Therefore, even if
the assumptions on h (collision-resistant and hiding) are trivially true if h is modelled
as a random oracle, we cannot directly run the ZK protocol on an oracle since the
source code of h cannot efficiently be sent to the verifier. For this reason, we do not
model h itself as an oracle (this assumption is required by the ZK protocol), and
only assume that h is collision-resistant and hiding.

6 L. Colisson et al.

random oracle model, assuming the existence of a collision-resistant hiding2 func-
tion.

Actually, we provide a much more generic construction that allows us to
obtain a variety of quantum OT protocols, depending on whether we want
to optimize the round-complexity, the security (against unbounded sender, or
unbounded verifier), the setup model (plain-model, Common Reference String
(CRS), Random Oracle), or the computational assumptions (one-way functions,
LWE, etc.).

Theorem 1.2 (informal). Assuming the existence of a collision-resistant hid-
ing one-way function, given any n-message ZK proof (or argument) of knowledge,
we can obtain a n + 1-message OT3 protocol (or n + 2 in the plain model4).

Moreover, if the ZK protocol is secure against any unbounded verifier (resp.
prover) and if the function is statistically hiding (resp. injective), the resulting
OT protocol is secure against any unbounded sender (resp. receiver).

Note that classical ZK is a widely studied primitive as it turns out to
be extremely useful in many applications, including in MPC, authentication,
blockchain protocols [ELE], and more. Trapdoors are not necessary to build
ZK as they can be built using only hash functions, and therefore live in
Minicrypt. Many candidates have been proposed to achieve various ZK flavors:
statistical security against malicious prover or malicious verifier, non-interactive
or constant rounds protocols, security in the plain model, CRS, or random
oracle [GMR85,Lin13,Unr15,PVW08,BD18,HSS11,PS19]. . . In this paper, we
notably consider the non-interactive ZK protocol of Unruh [Unr15], proven
secure in the random oracle model, together with the ZK protocol of Hallgren,
Smith and Song [HSS11], proven secure in the plain-model assuming the hard-
ness of LWE, but much work has been done to study ZK under many other
assumptions [Wat09,AL20,Unr12,BS20,LMS21].

At the heart of our approach lies the first creation of a (potentially statisti-
cally secure when instantiated correctly) ZK protocol on quantum states, that
can be seen as an extension of ZK and complexity theory to quantum languages:

Theorem 1.3 (informal). Under the same assumptions as Theorem 1.2, a
receiver can obtain a quantum state while being sure that a subset T of the qubits
2 Informally, a hiding function h is a function such that it is not possible to get any

information on x given h(x‖r) for sufficiently large random r (this is used for instance
in commitments). Actually, we use in practice a weaker assumption called “second-
bit hardcore” (the function must only hide the second bit of x), since we believe
that we could use the hardcore-bit construction of Goldreich-Levin to weaken the
assumptions further by only assuming that the function is one-way.

3 This holds for all variations of OT: bit OT, string OT, and k-out-of-n OT.
4 The model of security is the same as the ZK protocol if we want a n + 2-message

protocol, and if we add the Common (uniform) Reference String assumption (weaker
than the Random Oracle model) to provide the hash function, we can obtain a
protocol with n + 1 messages.

Oblivious Transfer from Zero-Knowledge Proofs 7

has been measured, without getting any information on T beside the fact that it
fulfills some arbitrary fixed constraints.

The resulting protocol is n-message (n + 1 in the plain model), and can in
particular be non-interactive when using a NIZK protocol. Statistical security
can also be obtained under the conditions described in Theorem 1.2 (the receiver
playing the role of the prover, and the sender the verifier).

We also extend the concept of ZK on Quantum State (ZKoQS), together
with the notion of quantum languages and we define the first two “quantum-
language” based complexity classes ZKstatesQIP and ZKstatesQMA. Finally, we
prove relations between ZKoQS and various ideal functionalities, we prove that
we can realize them, and we show examples of quantum languages belonging to
ZKstatesQIP and ZKstatesQMA.

1.2 Overview of the Main Contributions

In this section, we provide a quick, informal, overview of our approach. The
OT functionality can be described as follows: a sender, Bob, owns two bits5 m0

and m1, and Alice wants to learn mb where the bit b is provided as an input.
Importantly, a malicious Bob should be unable to learn the value b of Alice, and
a malicious Alice should be unable to get information on both m0 and m1.

First Attempt: A Naive OT Protocol. A first remark we can make is that
if we are given a state in the computational basis |l〉 for some bit l, rotating it by
applying a Zm gate for some bit m will leave the state unchanged (up to a global
phases). On the other hand, if we are given a state in the Hadamard basis H |r〉
for some bit r, applying a Zm gate will flip the encoded bit if m = 1, giving the
state H |r ⊕ m〉. Therefore, we can imagine a naive protocol for OT: Alice could
prepare two states |ψ(b)〉 := H |r(b)〉 and |ψ(1−b)〉 := |l〉 for some random bits r(b)

and l, send |ψ(0)〉 and |ψ(1)〉 to Bob, Bob could rotate the i-th qubit according to
Zmi , and measure them in the Hadamard basis, getting outcomes z(i) that will
be sent back to Alice. In the light of the above comment, it is easy to see that
z(b) = mb ⊕r(b) while z(1−b) is a random bit, uncorrelated with m1−b. Therefore,
Alice can easily recover mb = z(b) ⊕ r(b) while she is unable to recover m1−b.
Moreover, because the density matrix of 1

2 (|0〉〈0|+ |1〉〈1|) = 1
2 (|+〉〈+|+ |−〉〈−|)

is the completely mixed state, Bob cannot recover any information on b. . .
Unfortunately, this protocol is not secure: Alice can easily cheat by sending

two |+〉 states to learn both m0 and m1.

The Need for ZK on Quantum State. To avoid this trivial cheating strategy,
we would like, informally, to prove to Bob that at least one of the received states
is in the computational basis. . . without revealing the position of this qubit, and
without destroying that state. So in a sense, we would like a quantum equivalent
of ZK, except that the statement is on a quantum state instead of on a classical
bit string.

5 Our approach also works for strings or k-out-of-n OT.

8 L. Colisson et al.

As a first sight, this might seems to contradict laws of physics: it is impos-
sible to learn the basis of a random state, and anyway any measurement would
certainly disturb the state. However, we can change a bit the procedure to send
|ψ(0)〉 and |ψ(1)〉, by sending instead bigger, more structured states encoding
the original qubit: Bob would then do some (non-destructive) tests on this large
state in order to check that the encoding is valid, and that at least one state is
not in superposition, before collapsing it to a 2-qubit system.

At a high level, it is handy to define the encoded state as a superposition of
pre-images of multiple (publicly known) images of a given hash function h: To
control the number of elements allowed in the superposition, the key idea is to
prove (using this time classical ZK), that the sender knows pre-images to all the
publicly known images, where some of them are tagged as dummy, i.e. forbidden
(e.g. by making sure they start with a 0). This way, if we prove that one of the
two states admits only a single non-dummy preimage (without revealing which
state), this state cannot be in superposition of multiple elements, or it would
be possible to extract a collision of the hash function. Of course, this assume
that the receiver performs some checks to ensure that the quantum state is a
valid encoding and only contains non-dummy preimages of h: this can be done
for instance by checking in superposition that all elements are non-dummy (e.g.
by measuring the first bit and checking that it’s one), and by computing h and
checking (in superposition) that it belongs to the set of allowed images. This way,
ZK is used on a classical string to verify, indirectly, properties on the quantum
state.

More formally, instead of sending |l〉, we sample a random bit string w
(1−b)
l

starting with a 0 (this will be important later, but informally this indicates that
this is a valid, non-dummy element) and send |ψ(1−b)〉 := |l〉 |w(1−b)

l 〉, together
with the hash h

(1−b)
l := h(l‖w

(1−b)
l). Similarly, we can apply this idea on states

in superposition: instead of sending |0〉 + (−1)r
(b) |1〉, we sample similarly w

(b)
0

and w
(b)
1 , and send |ψ(b)〉 := |0〉 |w(b)

0 〉 + (−1)r
(b) |1〉 |w(b)

1 〉, together with the
hashes h

(b)
0 := h(0‖w

(b)
0) and h

(b)
1 := h(1‖w

(b)
1). Of course, now, it is relatively

easy to distinguish both qubits, as the qubit in the computational basis comes
with a single classical hash, while the other comes with two hashes. To avoid
this issue, we add a “dummy” hash by sampling a random w

(1−b)
1−l starting with

a 1 (indicating that the hash is dummy), and defining h
(1−b)
1−l := h(l‖w

(1−b)
1−l).

Importantly, given a hash, it is impossible to see if it is a dummy hash, as
the hash function is hiding its input. However, Alice can prove to Bob, using
classical ZK, that at least one of the provided hashes is a dummy hash, without
revealing its position. Therefore, to sum-up, Alice sends the hashes, proves that
she knows a preimage for all of them and that one of them is a dummy hash (i.e.
its preimage has a 1 in its second position), before sending the states |ψ(0)〉 and
|ψ(1)〉 to Bob (if the ZK proof is non-interactive, she can send everything in a
single message).

Then, after verifying the ZK proof, Bob will verify that |ψ(0)〉 and |ψ(1)〉 are
in a superposition of valid, non-dummy, preimages. More precisely, for i ∈ {0, 1},

Oblivious Transfer from Zero-Knowledge Proofs 9

he applies the unitary |x〉 |w〉 |0〉 → |x〉 |w〉 |w[1] = 0 ∧ h(x‖w) ∈ {h(i)
0 , h

(i)
1 }〉 on

the i-th qubit (after adding an auxiliary qubit), and measures the last register to
check if it is equal to 1. Note that for honestly prepared state, this measurement
will not alter the state, as the last registers always contains a |1〉 and can therefore
be factored out as the state is separable. Once the check is performed, we can
shrink both states to obtain a 2-qubit state by measuring the second register
containing the w’s in the Hadamard basis, getting two outcomes s(i)’s. One can
easily check that since |ψ(1−b)〉 is already in the computational basis, it will not
alter the first qubit, resulting in the |l〉 state, i.e. a qubit in the computational
basis. On the other hand, it is not hard to see that the qubit |ψ(b)〉 will be

turned into |0〉 |w(b)
0 〉 + (−1)r

(b)⊕〈s,w
(b)
0 ⊕w

(b)
1 〉 |1〉, i.e. the final state will be in the

Hadamard basis (the encoded bit might be flipped, but Alice can easily recover
that bit flip knowing the outcomes of the measurements).

This way, we are back to the original requirement of the naive oblivious
transfer described above: Bob can rotate each qubit i using Zmi , measure them
in the Hadamard basis, and send the outcomes z(i) to Alice, together with the
measurements s(0) and s(1). Alice will then be able to recover the final bit mb

by computing r(b) ⊕ 〈s, w(b)
0 ⊕ w

(b)
1 〉 ⊕ z(b).

This protocol is summarized in Protocol 1, and can easily be generalized to
string OT or k-out-of-n OT by sending one “hashed qubit” per bit to transmit,
and proving via ZK the wanted properties on the number and position of the
dummy hashes (e.g. either the first half of hashes are dummy, or the second half).
This will be described in more details below.

Sketch of Security Proof. Interestingly, this method is significantly simpler to
analyse than the interactive cut-and-choose approach used in previous works, as
illustrated by the long line of research trying to prove the security of the original
proposal [BBC+92,MS94,Yao95,DFL+09,Unr10,BF10]. Of course, part of this
analysis is offloaded to the ZK protocol, but we like to see it as a feature: this
allows us to have a more modular protocol (any improvement on ZK directly
implies an improvement on OT), and the analysis only needs to be done once
for the classical ZK protocol.

At a very high level, since the ZK protocol leaks no information on the wit-
ness, and because the hash is hiding6, Bob learns no information on b. Note that
the quantum state does not help as one can see that for any bit string x0, x1

the density matrix of |x〉 where x
$←{x0, x1} is equal to the density matrix of

|x0〉 ± |x1〉, where the sign is randomly chosen. To translate this informal argu-
ment into a composable security proof, we design our simulator by first replacing
the ZK proof with a simulated proof (that does not need access to the witness),
then we turn the dummy hash into a non-dummy hash (indistinguishable since
h is hiding), and we sample |ψ(1−b)〉 like |ψ(b)〉 (indistinguishable by the above

6 In practice, we ask for h to be “second-bit hardcore”, meaning that it is not possible
to learn the second bit of x given h(x), but we could also certainly extend the con-
struction to work for any one-way function using the Goldreich-Levin construction
and rejection sampling.

10 L. Colisson et al.

argument on density matrices). This way, the simulator can extract both m0 and
m1, and provide them to the ideal functionality for OT, that will be in charge
of discarding m1−b and outputting mb. See Theorem 3.1 for more details.

On the other hand, to learn information about both m0 and m1, Alice needs
to produce two non-collapsed states. But the tests performed by Bob force Alice
to send a superposition of non-dummy preimages (in case she does not, the test
might pass with some probability, but the state will be anyway projected on
a superposition of non-dummy valid preimages in that case). However, by the
ZK property, at least one of the classical hashes must be a dummy hash, and
therefore if the corresponding qubit contains a superposition of multiple valid
preimages, one of them must either collide with the dummy hash, or with the non-
dummy one. This collision can even be obtained with non-negligible probability
by measuring the state in the computational basis and comparing the outcome
with the preimages extracted by the simulator during the ZK protocol. More
details can be found in the proof of Theorem 3.1.

Note that if all the properties hold against an unbounded Alice (resp. Bob),
notably by instantiating the protocol with a ZK proof of knowledge and an
injective function h (resp. a statistical ZK and a statistically hiding function) our
OT protocol is secure against an unbounded receiver (resp. sender). Note also
that since our adversaries are non-uniform, we need to find a way to distribute
the function h in such a way that the non-uniform advice cannot depend on h
(or it might hardcode a collision). By relying on the CRS assumption (actually
a uniformly random string is enough), the hash function can be distributed non-
interactively by the CRS (or heuristically replaced with a fixed hash function). If
we want to stay in the plain model we can instead ask Bob to sample the function
and send it to Alice at the beginning of the protocol, adding an additional
message (providing a (n + 2)-message OT protocol instead of n + 1, where n is
the number of messages of the ZK protocol).

ZKoQS and Quantum Language. The above protocol internally proves a
statement on a quantum state, suggesting a quantum analogue to classical
Zero-Knowledge and languages. While this notion was introduced in [CGK21]
([CGK21] actually relies on the Learning-With-Error (LWE) problem while we
do not require such structure, and they are fundamentally only computationally
secure), we extend their definition of ZK, notably introducing the notion of sub-
class needed when the protocol is composed into other protocols, and we provide
a second, MPC-based point of view.

At a high level, a quantum language is, similarly to classical language L ⊆
{0, 1}∗, described by a set of quantum states LQ. Analogously to classical proof
systems, where a proof should be accepted only if x ∈ L, quantumly we expect
the proof to be accepted only if ρ ∈ LQ, where ρ is the obtained quantum state.
Classically, we also divide L into subsets Lw where w’s are called witnesses:
during an honest run of the protocol we expect x ∈ Lw. Similarly, quantumly
we divide LQ into subsets Lω,ωs

, where (ω, ωs) are classical elements7 (say bit
7 For instance, you can think of ω as the basis of ρ, and ωs as the bits encoded in

these basis.

Oblivious Transfer from Zero-Knowledge Proofs 11

strings, we will explain later why we need two elements): like classically8, we
expect to have ρ ∈ Lω,ωs

⊆ Lω during an honest run of the protocol. ω and ωs

can therefore be seen as a partial classical description of ρ. Finally, classically,
the ZK property states that a malicious receiver should not learn w: quantumly
we expect a malicious receiver to be unable to learn ω.

Remark 1.4. Despite the similarities of ZKoQS with the corresponding classical
notions, there are still a few differences with the classical setting:

– First, classical ZK is typically defined in a “mono-directional” way, where the
prover gets as input x and w, and where the verifier learns x and whether
x belongs to L. Quantumly, the prover does get ω as input (analog of w),
but instead of receiving the classical description of ρ (the analog of x), it
outputs ωs, so that (ω, ωs) (partially) describes ρ. One might wonder why ωs

is not sent as an input : While this would certainly be possible, because of
the fundamental non-deterministic nature of quantum mechanics, the qubit
obtained by the receiver will typically not belong to Lω,ωs

after a single round
of interaction (typically, while the basis is always the same, the encoded bit
is random), so we would need another round of communication to correct the
quantum state. In practice, the exact ωs (encoded bit) does not really matter
(but we still want to know its value of course), but we do want to optimize
the number of rounds of communications.

– The second question that one might ask is why we only describe partially ρ
with (ω, ωs) instead of describing the full classical description of ρ (in practice
we do not reveal the bit encoded in the qubit in the computational basis). This
can be explained since if we send the full description of ρ, this gives too much
information to the adversary (distinguisher), to the point that we are unable
to prove the security of the protocol. However, in practice this is not an issue,
since the discarded information on ρ is typically a useless random value, not
needed in the rest of the protocol.

Extensions, and Formalisation of ZKoQS and Quantum Language. In
the rest of the article, we formalize the notion of quantum language (Definition
4.3) and Zero-Knowledge on Quantum states (ZKoQS, Definition 4.5). We define
the corresponding complexity classes ZKstatesQIPS [k] and ZKstatesQMAS (Def-
inition 4.15). While ZKoQS is quite generic, it does not translate naturally to
an ideal functionality, useful to prove the security of protocols in the simulation-
based and composable quantum standalone framework [HSS11]. As a result, we
define a relatively generic ideal functionality that is in charge of applying some
measurement operators (Definition 4.8), and we prove that under some assump-
tions on the measurement operators (called postponable measurements, Defini-
tion 4.9), this functionality implies ZKoQS (Theorem 4.10). While for now we
8 Note that in the formal definitions, we actually formalize them using the more general

notion of simulators for various reasons, to be compatible with simulation-based
proofs, but also since quantumly it is not possible to physically check if a state
belongs to a set, since some distributions of quantum states are different but still
indistinguishable.

12 L. Colisson et al.

do not know a realization of this functionality for any measurement operator, we
consider a particular case (Definition 4.11) where the functionality is in charge
of measuring a subset T of qubits (such that Pred(T) = � for an arbitrary
predicate Pred) and rotating randomly the other qubits. We show in Theorem
4.12 how to realize this functionality, and we prove in Corollary 4.14 that it is a
ZKoQS functionality for the language LPred

SemCol of semi-collapsed states (Definition
4.13). We provide in Corollary 4.16 the implications in term of complexity the-
ory (e.g. LPred

SemCol is in ZKstatesQMARO). We also show in Theorem 4.17 that this
functionality can be used to realize a very generic notion of OT protocol that we
call Pred-OT, and in particular string-OT and k-out-of-n OT (Corollary 4.18).
Finally, since our result requires the use of (NI)ZK protocols, we prove in Sect. 5
that the non-interactive protocol of [Unr15] (proven secure in the RO model)
can be expressed in the quantum standalone framework, and can therefore be
used in our protocol ([HSS11] already provides another interactive protocol in
the plain-model).

1.3 Concurrent Work

A few months after releasing our article online, a related and independent article
was posted on the ArXiV [BKS23], but as noted in [BKS23], our contributions are
orthogonal, with completely different methods. They indeed assume that adver-
saries share EPR pairs before starting the protocol (which is a strong assump-
tion), but they show that in this sufficient to obtain 1-message OT assuming the
hardness of (sub-exponential) LWE (requiring public-key cryptography), and a
2-message OT in the random oracle setting. See Fig. 1 for a detailed comparison.

1.4 Open Problems and Ongoing Works

We expect our method used to build non-interactive OT to be of independent
interest, which also raises a number of open questions. In particular, we do
not know if 2-message OT without structure is possible without multi-qubit
entanglement, if we can build round-efficient OT from even weaker assumptions,
or what are the quantum languages that belong to ZKstatesQMA. More details
can be found in the full version [CMS23].

2 Preliminaries

2.1 Notations

We assume basic familiarities with quantum computing [NC10]. For any Hermi-
tian matrix A, we denote its trace norm as ‖A‖1 := Tr(

√
A†A) =

∑
i |λi| where

λi’s are the eigen-values of A (considered with there multiplicity). We denote the
trace distance between two density matrices ρ and σ as TD(ρ, σ) := 1

2‖ρ − σ‖1.
A bipartite state between two registers or parties A and B will be denoted ρA,B.
For any bit string x and x′, x[i] is the i-th element of x, starting from 1, and

Oblivious Transfer from Zero-Knowledge Proofs 13

〈x, x′〉 := ⊕ix[i]x′[x]. For a gate Z and a quantum state |ψ〉, ZB,i |ψ〉B,E repre-
sents the state obtained after applying Z on the i-th qubit of the register B of ψ
(we might omit the register when it is clear from the context). We might abuse
notations and consider that outputting true is the same as outputting 1, but for
more complex formulas P it can be handy to define δP ∈ {0, 1} such that δP = 1
iff P is true.

2.2 Model of Security

We follow the quantum stand-alone security model defined in [HSS11] that we
quickly summarize here.

This model of security follows the usual real-world/ideal-world paradigm,
where a protocol Π is said to be quantum-standalone (QSA) secure9 if no envi-
ronment Z can distinguish this real world, where corrupted adversaries are
replaced with an arbitrary adversary A, from a so-called ideal-world where
the distinguisher interacts (through a simulator SA) with an ideal functional-
ity F playing the role of a trusted third-party. More formally, we expect to
have REALσ

Π,A,Z ≈ IDEALσ,F , with REALσ
Π,A,Z := Z((Π � A) ⊗ I)σ and

IDEALσ,F
Π̃,SA,Z

:= Z((Π̃ F� SA) ⊗ I)σ, � (resp. F�) being the interaction
between multiple parties (resp. through the functionality F), and σ being a
non-uniform advice. This is pictured in Fig. 2, more details on the framework
are available in the full version [CMS23].

Fig. 2. Real-world and ideal-world executions when Bob is malicious.

Some Functionalities. We present here some ideal functionalities used later,
starting with the main OT functionality:

Definition 2.1 (Functionality for bit oblivious transfer FOT [HSS11]).
We define the ideal functionality FOT for oblivious transfer as follows:
9 If the security holds against a set of unbounded parties S, we denote it as CSs-QSA.

14 L. Colisson et al.

– it receives two messages m0 and m1 from Bob’s interface, or an abort message
– it receives one bit b ∈ {0, 1} from Alice’s interface, or an abort message
– if no party decided to abort, it sends mb to Alice.

We define trivially the dummy parties Π̃ = (Ã, B̃) that forward the
inputs/outputs to/from FOT .

We will then prove that our protocol can trivially be extended to more
advanced OT functionalities. First, we define a generic functionality where the
statements can be proven on any predicate on the bits of the message, we will
then consider particular cases like string OT (to receive strings instead of bits)
or k-out-of-m string OT (to receive k strings among n):

Definition 2.2 (Functionality for predicate oblivious transfer FPred
OT).

Let n ∈ N and Pred: P([n]) → {0, 1} be a predicate10 on any subset of bits. We
define the ideal functionality FPred

OT for predicate oblivious transfer as follows:

– It receives n bits (mi)i∈[n] from Bob’s interface, or an abort message.
– It receive a subset B ⊆ [n] from Alice’s interface (we might also encode B as

a bit string, where B[x] = 1 iff x ∈ B), or an abort message.
– If B = ⊥ or Pred(B) = ⊥, it sends an abort message to Bob.
– If no party decided to abort and Pred(B) = �, it sends (mi)i∈B to Alice.

Otherwise it sends ⊥ to all parties.

We define trivially the dummy parties Π̃ = (Ã, B̃) that forward the
inputs/outputs to/from FOT .

We define particular cases of interest:

– String OT: If n = 2m and Pred(B) is true iff B ∈ {1m0m, 0m1m} then we
call this functionality string OT, denoted F str

OT (to send the two messages ma

and mb, we define m = ma‖mb).
– k-out-of-m string OT: If n = lm and Pred(B) is true iff B = B1‖ . . . Bm

with ∀i, Bi ∈ {0l, 1l}, such that the number of Bi’s equal to 1l is equal to k,
then we call this functionality k-out-of-m string OT, denoted Fk−m

OT (to sent
the m messages ma and mb, we define m = ma‖mb).

Classical Zero-Knowledge (ZK) proofs allow a party (the prover) to prove a
statement to another party (the verifier) without revealing anything beyond the
fact that this statement is true. Our protocols use a ZK protocol as a blackbox.
We define now the functionality corresponding to ZK.

Definition 2.3 (Functionality for zero-knowledge FR
ZK [HSS11]). We

define the ideal functionality FR
ZK for zero-knowledge, where R is a relation

describing a given language L (x ∈ L ⇔ ∃w, xRw):

10 This predicate might depend on a secret witness w known only to the prover, in
which case we always replace Pred(· · ·) with Pred(w, · · ·), w being sent to the ideal
functionalities and used in the ZK proofs. For simplicity, we will omit the witness
from now.

Oblivious Transfer from Zero-Knowledge Proofs 15

– it receives (x,w) from the prover’s (a.k.a. Alice) interface or an abort message
⊥,

– if xRw then the verifier (a.k.a. Bob) receives x otherwise it receives ⊥.

This functionality also implies that the ZK protocol is a proof of knowledge
protocol (PoK, quantumly it is also know as state-preserving as extracting the
witness should not disturb the state of the adversary) as the functionality can
extract the witness. But our protocol could be proven secure in different ways:

– One of them is to assume that the protocol is a state-preserving PoK (PoK
is not needed to extract m0 and m1 from a malicious Bob, but is handy to
extract b from a malicious Alice). That’s the approach taken in this paper
since it has the advantage of applying also in the plain model.

– It should also be possible to obtain similar guarantees without state-
preserving PoK, notably by assuming that the simulator can extract the
queries made to the oracle (either by relying on Common Reference String
(CRS) or on the random oracle model (ROM)). However, this approach is less
modular and seems to rely heavily on CRS/RO and is therefore harder to gen-
eralize to the plain model. Moreover, we already know state-preserving NIZK
PoK in the RO model [Unr15], so this second approach seems less interesting
and will not be explored in this article.

Moreover, we often make the distinction between ZK arguments (compu-
tational soundness against malicious prover), ZK proofs (statistical soundness
against malicious prover) and statistical ZK (ZK also holds against a malicious
unbounded verifier). In the quantum stand-alone formalism, ZK proofs are pro-
tocols that CSP -QSA realize FR

ZK and statistical ZK are protocols that CSV -QSA
realize FR

ZK .
Note that nearly all the properties of our protocol reduce to the properties

of the ZK scheme. If we use a Non-Interactive ZK (NIZK) protocol secure in the
Quantum Random Oracle (OT) model or in the Common Reference String (CRS)
model, then our final protocols will be optimal in term of round complexity (2-
message OT, or 1-message NIZKoQS) but will rely on the RO or CRS assumption.
On the other hand, we may prefer to use a n-message NIZK protocol in the
plain model: in that case our protocols will be secure in the plain model, and
the communication complexity will be n for the NIZKoQS protocol, resulting in
an n + 1-message OT protocol.

There are multiple protocols realising the FR
ZK functionality, either in the

plain model [HSS11] or non-interactively in the random-oracle model [Unr15]
(this last work is not expressed in the quantum stand-alone model, but we prove
in Sect. 5 that it can be reformulated in this framework).

Because we are dealing with non-uniform adversaries, we need to sample hash
functions independently of the non-uniform advice, and this is usually done via a
Common-Reference-String (CRS) assumption. CRS assumes that a string, hon-
estly sampled according to a fixed procedure, can be shared among all parties
(this is typically not counted in the communication as in practice we can often
heuristically take a publicly known string instead, for instance by feeding the

16 L. Colisson et al.

generation procedure with a known uniformly sampled string. . . unless the sam-
pling needs trapdoor which is not our case here). While this adds an assumptions,
it can be practical sometimes to obtain more efficient protocols (in term of com-
munication complexity), and often can be heuristically replaced by a publicly
known string (e.g. if the string contains the description of a collision resistant
function like in our case, we might pick the well known SHA-256 hash function
instead). Note that our protocol can also be realized without a CRS assumption
at the cost of an additional message as discussed in Sect. 3.2 and in Lemma 2.10.
We model CRS as an ideal functionality:

Definition 2.4. Let Gen be a PPT sampling procedure. Then the ideal function-
ality F Gen

CRS samples x ← Gen(1λ) and outputs x to all parties.

2.3 Cryptographic Requirements

Before stating our security guarantees, we need to define some security defi-
nitions. A function is said to have a hardcore second-bit if it is hard to find
the second bit of x given h(x) (note that this notion is weaker than the more
standard notion of hiding as we only need to hide a single bit). More formally:

Definition 2.5 (Hardcore second-bit). We say that a function h has a com-
putational (resp. statistical) hardcore second-bit property if there exists two poly-
nomials n and m, such that for any l ∈ {0, 1}, any QPT (resp. unbounded)
adversary A and for any advice σ = {σλ}λ∈N:

∣
∣
∣Pr

[
A(λ, σλ, h(x)) = 1

∣
∣ x

$←{l} × {0} × {0, 1}n(λ)
]

− Pr
[
A(λ, σλ, h(x)) = 1

∣
∣ x

$← {l} × {1} × {0, 1}n(λ)
]∣
∣
∣ ≤ negl(λ)[λ]

(1)

We extend this definition to a family of functions {hk : {0, 1}n(λ) →
{0, 1}m(λ)}k∈K if for any k ∈ K, hk has a computational hardcore second-bit
property, and if one can efficiently check for any k whether k ∈ K or not.

We note that many functions have (or are expected to have) a hardcore
second-bit property, in particular since it can be seen as a special case of hiding.
It is the case for random functions (e.g. in the RO model), where it is even
possible to get statistical security if the function is lossy (i.e. many inputs map
to the same output), and we expect it to be true for hash functions used nowadays
since they are believed to be hiding. We note that people often consider a weaker
assumption called hardcore bit predicate (even achievable from any one-way
function thanks to the Goldreich-Levin construction [GL89]), where the unknown
bit is a fixed predicate b(x) instead of the second bit of x. While we believe that
our construction could be adapted to that setting (by doing a rejection sampling
to find x such that b(x) has the right value), this complicates the constructions, so
we leave this extension for further work. We will therefore keep this construction
for future works.

Oblivious Transfer from Zero-Knowledge Proofs 17

Definition 2.6 (Collision resistance). A family of functions {hk : {0,
1}l(λ) → {0, 1}m(λ)}k∈K is said to be (computationally) collision-resistant if there
exists a polynomial generation algorithm k ← Genh(1λ) such that for any k ∈ K,
hk can be classically evaluated in polynomial time, and for any (potentially non-
uniform) QPT adversary A and advice {σλ}λ∈N:

Pr [x �= x′ ∧ hk(x) = hk(x′) | k ← Genh(1λ), (x, x′) ← A(k, σλ)] ≤ negl(λ) (2)

Remark 2.7. Note that we do not directly require the functions to be
collapsable [Unr16]—which is often required when considering quantum
adversaries—as we can show that any attack leads to the finding of a collision.
However, we do require the existence of a ZK proof of knowledge scheme, that
may, in turn, require the existence of such a function. Moreover, when considering
unbounded provers, the function is expected to be statistically collision-resistant,
i.e. injective, and is therefore collapsing.

Note that even if we heuristically expect the protocol to stay secure when
we replace hk with a fixed hash function like SHA-256, to prove the security we
need to sample the function hk after the beginning of the protocol. The reason
is that the adversaries are non-uniform (i.e. get an arbitrary advice), and the
advice could contain a collision if it was chosen after hk. As a result, one needs
to decide who is going to sample hk, leading to various tradeoffs:

– If we let a user11 sample the function, then we need to send an additional
message from Bob to Alice, but on the other side we are in the plain-model.

– Otherwise, we can assume that the circuit of hk is provided by a CRS, which
requires no additional round of communication, but we are not anymore in
the plain-model.

In order to keep the proof independent of this choice, we abstract the distribution
of the value of hk in an ideal functionality:

Definition 2.8. Let {hk : {0, 1}l(λ) → {0, 1}m(λ)}k∈K be a family of collision
resistant functions generated by Gen, with a hardcore second-bit property. Then,
we define the ideal functionality F Gen

H as follows. F Gen
H receives an input c from

Bob’s interface, if c = �, the functionality samples k ← Gen(1λ) and sends k
to both parties, otherwise if c ∈ K, it forwards c to Alice’s interface. The ideal
party AI just forwards the received k, while the ideal party BI sends c = � to
the functionality and outputs the received k.

We prove now that this functionality can be realized in the plain-model with
one message or non-interactively in the CRS model.

Lemma 2.9 (FH in the CRS model). In the CRS model (a.k.a. F Gen
CRS-hybrid

model), the trivial 0-message protocol where both Alice and Bob output the value
given by F Gen

CRS realizes the functionality F Gen
H .

11 Only Bob can sample the function as collision resistance must hold against Alice
and a malicious Alice could cheat when generating the function.

18 L. Colisson et al.

The proof in the full version [CMS23].

Lemma 2.10 (FH in the plain model). The 1-message protocol where Bob
samples x ← Gen(1λ) and sends x to Alice, and Alice outputs x only if x ∈ K
realizes the functionality F Gen

H in the plain model.

The proof in the full version [CMS23].

3 Protocol for Bit OT

3.1 The Protocol

While we will define formally ZKoQS later, together with more advanced OT pro-
tocols (string-OT, k-out-of-n OT. . .), in this section we provide a self-contained
description and security proof of our bit-OT protocol. For an intuitive explana-
tion of our protocol, we refer to the overview in Sect. 1.2. The bit OT protocol
is described in Protocol 1.

3.2 Security Proof

We prove now our main theorem, i.e. that Protocol 1 securely realizes the OT
functionality.

Theorem 3.1 (Security and correctness). Let {hk}k∈K be a family of colli-
sion resistant functions sampled by Gen, having the hardcore second-bit property
(Definition 2.5). Let Πh = (Ah,Bh) be a protocol12 CSSh

-QSA realizing F Gen
CRS

and Πzk = (Azk,Bzk) be a protocol that CSS-QSA realizes the ZK functionality
FR

ZK , where (h0
0, h

0
1, h

1
0, h

1
1)R(w0

0, w
0
1, w

1
0, w

1
1) ⇔ ∀c, d, h(d‖wc

d) = hc
d and ∃c, d

such that wc
d[1] = 1.

Then the Protocol 1, in which h is obtained by first running Πh, C-QSA realizes
the functionality FOT . More precisely, it CSS′-QSA realizes FOT for any set S′

of unbounded parties such that:

– S′ ⊆ S ∩ Sh,
– {B} ∈ S′ only if h has the statistical hardcore second-bit property,
– {A} ∈ S′ only if for any k ∈ K, hk is injective (i.e. statistically collision

resistant).

Sketch of Proof. For a first intuitive proof of the correctness and security, we
refer to the corresponding paragraph in Sect. 1.2. We provide here only a sketch

12 As a reminder, this protocol is sampling and distributing a function h according to
Gen, and can either be done without communication in the CRS model (or heuris-
tically if we replace h with a well known collision-resistant hash function), or with
one message in the plain model.

Oblivious Transfer from Zero-Knowledge Proofs 19

Protocol 1: Protocol for (possibly 2-message) bit Oblivious Transfer
Inputs: Alice gets b ∈ {0, 1} as input, Bob gets (m0,m1) ∈ {0, 1}2
Assumption: (Azk,Bzk) is a n-message ZK protocol (Definition 2.3), h is a
collision-resistant (Definition 2.6) and second-bit hardcore (Definition 2.5)
function distributed using FH (Definition 2.8), either non-interactively via a
CRS, heuristically using a fixed hash function, or sent by Bob, adding an
additional message (Lemma 2.10).
Protocol:

1. Alice samples l ∈ {0, 1}, (w(b)
0 , w

(b)
1 , w

(1−b)
l) $← ({0} × {0, 1}n)3 and

w
(1−b)
1−l

$←{1} × {0, 1}n, and computes for all (c, d) ∈ {0, 1}2,
h
(c)
d := h(d‖w

(c)
d). Then, she sends (h(c)

d)c∈{0,1},d∈{0,1} to Bob (if the ZK
protocol is non-interactive she can send it later in a single message with the
NIZK proof and the quantum states) and runs the ZK protocol Azk with
Bob (running Bzk) to prove that:

∃(w(c)
d)c∈{0,1},d∈{0,1},∀c, d, h

(c)
d = h(d‖w

(c)
d)) and ∃c, d s.t. w

(c)
d [1] = 1 (3)

Then, she samples r(b)
$←{0, 1} together with:

|ψ(b)〉 := |0〉 |w(b)
0 〉 + (−1)r

(b) |1〉 |w(b)
1 〉 |ψ(1−b)〉 := |l〉 |w(1−b)

l 〉 (4)

Finally, she sends (|ψ(0)〉 , |ψ(1)〉) to Bob.
2. Bob verifies the ZK proof. Then, he verifies that the quantum state is

honestly prepared by adding an auxiliary qubit and running the unitary:

|x〉 |w〉 |0〉 �→ |x〉 |w〉 |w[1] �= 1 ∧ h(x‖w) = {h
(c)
0 , h

(c)
1 }〉 (5)

and measuring the last auxiliary register, checking if it is equal to 1. If not,
he aborts (and sends an abort message to Alice), otherwise he measures the
second registers of |ψ(0)〉 and |ψ(1)〉 in the Hadamard basis (getting
outcomes (s(0), s(1))). Note that at that step, the first register of |ψ(b)〉
contains a |±〉 state while |ψ(1−b)〉 contains |l〉: this fact will be called
ZKoQS later. Then, for any c ∈ {0, 1}, Bob applies Zmc on |ψ(c)〉 and
measures it in the Hadamard basis ({|+〉 , |−〉}), getting outcome z(c). Bob
sends back (s(c), z(c))c∈{0,1} to Alice.

3. Alice computes α := r(b) ⊕ ⊕
i s(b)[i](w(b)

0 ⊕ w
(b)
1)[i] and outputs α ⊕ z(b)

(that should be equal to mb).

20 L. Colisson et al.

of the proof, and we refer the reader to the full security proof in the full ver-
sion [CMS23].

Malicious Sender (Bob). We consider the case where the adversary A = B̂
corrupts the sender Bob. Informally the goal of the simulator SB̂ is to extract
the two values m0 and m1 from B̂ to provide these two values to the ideal func-
tionality. To that end, at a high level, the simulator will interact with B̂ by
providing a transcript that an honest Alice could provide, except that |ψ(1−b)〉
is sampled like |ψ(b)〉: since the state is now in the Hadamard basis, it can also
recover m1−b following the procedure used by Alice to recover mb. However,
because it is now impossible to run the ZK proof (because the statement is
not even true!) the simulator will run instead the simulator of the ZK proof to
convince the distinguisher that the statement is true while it is not. To prove
that this simulator is valid, we write a series of hybrid games: we start from the
protocol where Alice is honest, then we replace the ZK proof with the simulated
proof (indistinguishable by the ZK property). In the next step we sample w1−b

as a non-dummy witness (i.e. starting with a 0, indistinguishable because the
function h is hiding). Then we set |ψ(1−b)〉 = |0〉 |w(1−b)

0 〉+(−1)r
(1−b) |1〉 |w(1−b)

1 〉
where r(1−b) ← {0, 1} is sampled uniformly at random (indistinguishable because
the density matrices are equal: for any (potentially known) string x and y,
1
2 (|x〉〈x| + |y〉〈y|) = 1

4

∑
r∈{0,1}(|x〉 + (−1)r |y〉)(〈x| + (−1)r 〈y|)). Note that one

might be worried that the output of Alice leaks additional information on this
quantum state: however, the output of Alice is linked with the other, non-dummy,
quantum state and any additional information regarding this dummy state are
anyway discarded. Finally, we can now apply the decoding performed by Alice
on both outputs and output only the one corresponding to mb: this is exactly
the role of the ideal functionality. Since nothing depends on any secret (except
this very last step where the functionality discards m1−b and outputs mb), the
simulator can fully run this procedure. See the full version for details.

Malicious Receiver (Alice). We consider now the case where the adversary
A = Â corrupts the receiver Alice.

Informally the goal of the simulator SÂ is to extract the value b from Alice
in order to provide this value to the ideal functionality, and to appropriately use
the mb provided by the functionality to fake measurement outcomes expected
by Alice. At a high level, since the ZK protocol is a (state-preserving) proof
(or argument) of knowledge (PoK), we can use this property to extract the
witnesses (w(c)

d)c,d. From this witness we can find a w
(b)
d that starts with a 1

in order to learn b. Then, to fake the measurement outcomes, the simulator
can apply exactly the same quantum operations as the one done by the honest
Bob, using the mb given by the functionality, except that the simulator will
choose m1−b = 0. Note that if the malicious Alice really sent a state |ψ(1−b)〉
in the computational basis, then the Zm1−b rotation does nothing, irrespective
of the value of m1−b. Now, if Alice sent a state that is in superposition of two
pre-images with non-negligible amplitude, since it must pass the test checking
that it contains non-dummy preimage of h, then it means that Alice “knows” a

Oblivious Transfer from Zero-Knowledge Proofs 21

collision for h. . . or rather, we can measure the state to get a first preimage and
compare it with the preimages extracted during the ZK protocol to get another
preimage: with non-negligible probability (on the measurement outcome) they
will be different, breaking the collision resistant property of h which contradicts
our assumption. Note that some care must be taken as the probability of finding
a collision differs across runs, but we can formalize this argument as shown is
the full proof. In practice, we will define a few hybrid games, by first replacing
the distribution of h and the ZK protocol by their simulated versions (since the
ZK is a PoK, the simulator can learn b and the preimages of h), then we remove
the Zm1−b rotation (indistinguishable or the state is far from a state in the
computational basis, in which case we can recover a collision). Finally, since this
does not depend on the secret m1−b, we can reorganize the elements to recover
the ideal word. See the full security proof in the full version [CMS23] for more
details. ��

4 (NI)ZKoQS and k-out-of-n String OT

4.1 ZKoQS

The main contribution in our main protocol (Protocol 1) is to provide a method
to prove (potentially non-interactively) a statement on a received quantum state
without revealing much information beside the fact that this statement is true: we
call this property (Non-Interactive) Zero-Knowledge proofs on Quantum State
((NI)ZKoQS), by analogy with their classical analogue. While we have not yet
introduced formally this definition in order to provide a self-contained OT pro-
tocol and proof, we will address this issue here.

NIZKoQS were introduced in [CGK21], but the protocol we present here
is using a very different approach. While [CGK21] can be used to prove more
advanced properties on the obtained quantum state, it also has multiple draw-
backs that were left as open questions:

– First, while their protocol is purely classical, their approach is fundamentally
incompatible with statistical security (like other potential approaches based
on quantum multi-party computing [DNS12,DGJ+20,KKL+23], since these
protocols build upon classical MPC, which are not only impossible to do with
statistical security [Lo97], but they also require OT, which is one application
of ZKoQS). A malicious unbounded verifier/receiver can always fully describe
the received state. On the other hand, with our approach we can get statistical
security for both parties (not as the same time).

– Secondly, [CGK21] relies on lattice based cryptography (LWE), living in Cryp-
tomania, and the protocol is really costly to implement in practice as the
parameters used in the LWE instance lead to very large functions. On the
other side, our approach only relies on hash functions, does not exploit any
structure or trapdoors, and is therefore much more efficient.

Note that the definition of ZKoQS introduced in [CGK21] is slightly too restric-
tive for our setting as their notion of quantum language does not allow states

22 L. Colisson et al.

to be ε-close to the quantum language, the states cannot be entangled with an
adversary, they omit the step where the description is given back to the sender
(which is important when the protocol is used in other protocols), and their adver-
saries are QPT. For this last reason, we introduce different notations inspired
by classical ZK proofs: when the prover is unbounded (resp. bounded) we say
that we have a ZK proof (resp. argument) on quantum states, denoted ZKPoQS
(resp. ZKAoQS). When the verifier is unbounded, we say that we have a sta-
tistical ZKoQS (S-ZKoQS). Note than when the protocol in Non-Interactive (a
single message from the prover to the verifier), we replace the “ZK” with “NIZK”
in these acronyms. We formalize now these concepts.

Quantum Language. First, we define a quantum language (we draw a parallel
with classical ZK in the pictures in the full version, and illustrate this with an
example in Example 4.1), which is informally speaking a set LQ of bipartite
quantum states on two registers V and P that characterizes all states that a
malicious adversary might be able to obtain (the register V being controlled by
the honest verifier, and P by the malicious prover and/or the environment13).
Moreover, we also provide additional information on the honest expected behav-
ior, via sets of (bipartite14) quantum states Lω ⊆ LQ: when the prover is given
as input a class ω (the quantum equivalent15 of witnesses), we expect the final
state to belong to Lω. Because there might be many states in Lω, the prover
will also output a subclass ωs to further describe the final state, interpreted as
“the verifier obtained a state belonging to Lω,ωs

⊆ Lω ⊆ LQ”.

Example 4.1. For instance, one might be interested in LQ defined as the set
of states where the registers V contains exactly two qubits, where at least
one of them is non-entangled with any other qubit and collapsed in the com-
putational basis (think “even if the prover is malicious, any state obtained
by the verifier belongs to LQ, i.e. contains at least one qubit collapsed in
the computational basis). For the honest behavior, we can for instance define
L0,0 = {|+〉 |0〉 , |+〉 |1〉}, L0,1 = {|−〉 |0〉 , |−〉 |1〉}, L1,0 = {|0〉 |+〉 , |1〉 |+〉},
L1,1 = {|0〉 |−〉 , |1〉 |−〉}, L0 = L0,0 ∪ L0,1 and L1 = L1,0 ∪ L1,1: this way,

13 Sometimes, we will write (P,Z) instead of P to denote a more precise cut between
the two sub-registers owned by the prover and the environment.

14 Contrary to LQ that must represent all states potentially obtainable by a malicious
party (hence the need of a second register), here Lω are only used to denote the
states obtainable by honest parties, and can therefore often be seen as a set of states
on a single register owned by the verifier. The reason we define it as a bipartite state
here is that we might later be interested by the generation of truly bipartite states
like graph states.

15 Note that classically, we can see a witness in two different ways: it can be used to
efficiently verify that x ∈ L, but more abstractly it can be seen as a way to partition
L into multiple Lw’s: in an honest setting, given w, we expect to have x ∈ Lw, where
Lw = {x | xRw}. Quantumly, we will use this second point of view, as given ω (the
quantum equivalent of w) we expect in an honest setting to have ρ ∈ Lω, even if ω
cannot be used directly to verify that property once ρ is generated because of the
laws of physics.

Oblivious Transfer from Zero-Knowledge Proofs 23

if the prover gets input 0 and outputs 1, the verifier is expected to output a
state in L0,1 = {|−〉 |0〉 , |−〉 |1〉}: the class ω represents the position of the state
in the Hadamard basis, and the sub-class ωs represents the value encoded in this
state.

Remark 4.2 (On the choice of definition of ω and ωs). Note that (ω, ωs) only
partially describes the state (in our example above, we remove the description
of the state in the computational basis) as otherwise we are unable to prove the
security of the scheme (but the lost information on ρ is anyway of no interest
since it is discarded in the OT protocol). One might also ask why ωs is sent as an
output and is not part of the input ω: while in some cases it might be possible to
move everything inside the input ω and remove ωs (e.g. if we got a |+〉 instead
of a |−〉 the prover could send another message “apply an additional Z gate” to
flip the encoded qubit), but this comes at the cost of an additional message. In
most applications, the exact value of ωs does not really matter as it is only a
random key, while saving an additional round of communication is important.

Definition 4.3 (Quantum Language). Let EV,P = ∪(n,m)∈N2L◦(Hn ⊗ Hm)
be the set of finite dimensional quantum states on two registers. A quantum
language (LQ, C, Cs, {Lω,ωs

}ω∈C,ωs∈Cs
) is characterized by a set LQ ⊆ EV,P of

bipartite quantum states16, a set C ⊆ {0, 1}∗ of classes (or witnesses) motivated
above, a set Cs ⊆ {0, 1}∗ of sub-classes, and for any ω ∈ C, ωs ∈ Cs, a set Lω,ωs

of bipartite quantum states called quantum sub-classes. We also define for any
ω, Lω = ∪ωs∈Cs

Lω,ωs
(some of these sets might be empty in case ω is not a valid

class), and require ∪ωLω ⊆ LQ. Moreover, for any set of quantum states L, we
define ρ ∈ε L ⇔ ∃σ ∈ L,TD(ρ, σ) ≤ ε, and ρ /∈ε L ⇔ ¬(ρ ∈ε L).

ZKoQS. We introduce now ZKoQS, that morally provides three guarantees,
similar to classical ZK:

– Correctness: if the parties are honest, the prover is given a class ω and ends
up with the partial (cf. Remark 4.2) description (ω, ωs) of the state ρ obtained
by the verifier, i.e. such that ρ ∈ Lω,ωs

⊆ Lω ⊆ LQ.
– Soundness: if the sender is malicious, the honest receiver still ends up with

a state ρ ∈ LQ.
– Zero-Knowledge: if the verifier is malicious, they cannot learn the value of

the class/witness ω.

Example 4.4. To continue our above Example 4.1, the correctness guarantees
that given an input bit ω ∈ {0, 1}, the ω-th qubit of ρ is H |ωs〉 while the other
qubit is in the computational basis (we lose the information of the encoded
value). The soundness mostly guarantees that even if the sender is malicious, the
16 LQ represents informally the set of states that any malicious party can generate,

where the first register is the output of the verifier and the second register corre-
sponds to registers potentially controlled by an adversary. Since only LQ is needed
to characterize the security of a protocol, it is sometimes called directly the quantum
language.

24 L. Colisson et al.

received quantum state contains at least one qubit collapsed in the computational
basis. The ZK property guarantees that a malicious verifier cannot learn ω, the
expected position of the qubit in the Hadamard basis.

Note that the formal definition is given with respect to a “simulator”, simu-
lating the whole protocol (and not anymore a single malicious party as usual),
including in the soundness and correctness part (while usually simulators are
only used in the ZK part). While we could define it without any simulator to
get a more restricted definition (and during a first read, it might actually be
easier to replace the simulator with the original process), simulators are helpful
for multiple reasons to make the definition more useful:

– In zero-knowledge: the typical ZK definitions already use simulators to
denote the fact the we can simulate the view of the malicious verifier without
access to the witness. . . Therefore it should come at no surprise that we also
use a simulator in the ZK property.

– In soundness: In a real protocol, a malicious prover might be able to produce
states negligibly close (in trace distance) to the quantum language LQ, but
not strictly speaking in LQ. One might be tempted to introduce an approx-
imate notion ρ ∈ε LQ taking into account trace distance to fix this issue,
unfortunately it is not sufficient as this definition does not take into account
states that are statistically speaking far from LQ, but computationally speak-
ing “close” to LQ. . . Indeed, sometimes provers might actually be able to
produce states far (in trace distance) from any state in LQ, but because they
are computationally bounded, they are unable to exploit that fact. This kind
of false “attack” can actually be done against our protocol if the function h
is not injective (explaining why we require h to be injective when consider-
ing an unbounded malicious receiver), by simply running the ZK protocol in
superposition17: in that case the output state might be relatively close to a
|+〉 or |−〉 if h is well balanced (while we expect the state to be close to |0〉
or |1〉), but a computationally bounded receiver cannot exploit this property
as they need to compute all preimages of h to know if we are close to |+〉 or
|−〉. Simulator are therefore useful in the soundness definition to capture this
“computational distance”, and discard ineffective attacks.

– In correctness: Perhaps surprisingly, we also use a simulator in the cor-
rectness definition. While this might not be useful when considering only a
game-based security notion, we need simulator to prove for instance state-
ments like “If a protocol Π realises a given functionality, then this protocol is
a ZKoQS protocol” (see e.g. Theorem 4.10). Without further details on Π, the
correctness of Π only tells us that Π is indistinguishable from a functionality
that produces states in LQ, but it does not mean that Π itself produces such
states, hence the need of a simulator.

We formalize the notion of ZKoQS:

17 Of course by still measuring the classical transcript to send to the verifier.

Oblivious Transfer from Zero-Knowledge Proofs 25

Definition 4.5 (Zero-Knowledge Proof on Quantum State (ZKoQS)).
Let L := (LQ, C, Cs, {Lω,ωs

}ω∈C,ωs∈Cs
) be a quantum language (Definition 4.3).

We say that a protocol Π = (P,V) is a ZKoQS protocol for L, where P takes as
input a class ω ∈ C and outputs a sub-class ωs ∈ Cs and18 a quantum state ρP,
and V takes no input and outputs a bit a, that is equal to 1 if V does not abort,
together with a quantum state ρV (potentially entangled with ρP), if the following
properties are respected:

– Correctness: There exists a poly-time simulator S and a negligible function
ε such that (P � V) ≈c S, and for any ω such that Lω �= ∅:

Pr [a = 1 ∧ ρV,P ∈ Lω,ωs
| ((ωs, ρ

P), (a, ρV)) ← S(ω)] = 1 (6)

– Soundness: For any malicious prover P̂ = {P̂λ}λ∈N, (QPT for ZKAoQS,
unbounded for ZKPoQS) there exists a simulator SP̂ = {Sλ,P̂}λ∈N (running
in time polynomial in the runtime of P̂) such that (P̂ � V) ≈c SP̂ (≈s for
ZKPoQS), and such that there exists a negligible function ε such that for any
sequence of bipartite state {σP,Z

λ }λ∈N and λ ∈ N:

Pr[a = 1 ∧ ρV,(P,Z) /∈ LQ | (ρP, (a, ρV), ρZ) ← (SP
λ,P̂

⊗ IZ) ⊗ σP,Z
λ] ≤ ε(λ) (7)

– Quantum Zero-Knowledge: For any malicious verifier V̂ = {V̂λ}λ∈N (QPT
for ZKoQS, unbounded for S-ZKoQS), there exists a simulator SV̂(b, ·) (where
b ∈ {0, 1} indicates if Lω is non-empty, and · represents an additionally
quantum input from the environment), and an efficiently computable map ξ·(·)
(such that ∀ω, ξω takes one quantum register as input and outputs a classical
message in Cs and a quantum state ρP), both running in polynomial time in
the runtime of V̂, such that for any ω ∈ C:

(P(ω) � V̂) ≈c (ξω ⊗ I)(SV̂(Lω �= ∅)) (8)

(≈s for ZKPoQS)

It can sometimes be handy to cut the protocol into two phases: the honest verifier
will output the state ρV at the end of the first send phase, wile the output of the
honest prover will be delivered in a second describe phase (allowing the prover
to describe the state outputted earlier by the verifier). A ZKoQS protocol where
each phase consists of a single message is said to be non-interactive (denoted
NIZKoQS, we can similarly add the “NI” prefix to the previously seen notions,
to get NIZKPoQS, S-NIZKoQS. . .). Finally, for a set of parties S, we write
ZKoQSS to denote the fact that the protocol is S-ZKoQS if V ∈ S and ZKPoQS
if P ∈ S.

Note that in ZK protocols, there is a notion of extractability, where a sim-
ulator can extract the witness w from a valid transcript (not all ZK protocols
18 ρP will actually not be necessary in our main application, but we still include it in

case it turns out to be useful in future applications.

26 L. Colisson et al.

are extractable). We could define a similar notion here allowing the simulator to
extract ω, but since LQ might contain states not belonging to any Lω (poten-
tially producible by malicious provers), we need to slightly update the definition
of quantum language by also introducing a special “malicious” subclass ⊥, so that
LQ = ∪ω(Lω ∪ Lω,⊥), and such that the simulator in the soundness property
can extract the ω of the state produced by a malicious adversary:

Definition 4.6 (Extractability). A ZKoQS protocol is said to be extractable
with respect to (Lω,⊥)ω∈C (⊥ being a special subclass not belonging to Cs) such
that LQ = ∪ω(Lω ∪ Lω,⊥), and such that the soundness property is turned into:

– Extractability: For any malicious prover P̂ = {P̂λ}λ∈N, (QPT for ZKAoQS,
unbounded for ZKPoQS) there exists a simulator SP̂ = {Sλ,P̂}λ∈N (running
in time polynomial in the runtime of P̂) such that (P̂ � V) ≈c SP̂ (≈s for
ZKPoQS), and such that there exists a negligible function ε such that for any
sequence of bipartite state {σP,Z

λ }λ∈N and λ ∈ N:

Pr [a = 1 ∧ ρV,(P,Z) /∈ (Lω ∪ Lω,⊥) | (ρP, (a, ρV), ρZ, ω) ← (Sλ,P̂(σ
P
λ)) ⊗ σZ

λ] ≤ ε(λ)

(9)

4.2 Proof of Partial Measurement: A Generic Framework to Get
ZKoQS

While the notion of ZKoQS (Definition 4.5) does not explicitly mention function-
alities, it is often handy to model a ZKoQS protocol inside an ideal functionality
as it is easier to interpret it and use it inside other protocols. While it is not clear
how to translate the ZKoQS definition into a functionality, we provide below a
few ideal functionalities that “imply” ZKoQS. We will first see what is a ZKoQS
ideal functionality, then we will see a class of functionalities that are ZKoQS, and
we will show that our protocol realizes a particular case of these functionalities.

Definition 4.7 (ZKoQS ideal functionality). Let (LQ, C, Cs, {Lω,ωs

}ω∈C,ωs∈Cs
) be a quantum language (Definition 4.3). We say that an ideal func-

tionality F is a ZKoQS (resp. ZKoQSS) ideal functionality for LQ iff for any
protocol Π = (P,V) that quantum standalone realizes F (resp. CSS-QSA-realizes
F), Π is a ZKoQS protocol (resp. ZKoQSS protocol) for LQ (Definition 4.5).

The most natural class of ideal functionalities leading to ZKoQS are the ones
in which the functionality applies an operation (a partial measurement) on an
arbitrary input to enforce some structures on the output state:

Definition 4.8 (Partial measurement FM,f0
PartMeas). Let M := {Mm}m∈M be a

collection of measurement operators19 (i.e. operators such that
∑

m M†
mMm =

I [NC10, Sec. 2.2.3]), implementable in quantum polynomial time, and let
f0 : M → Cs be an efficiently computable function20. Then, we define the proof
of partial measurement functionality FM,f0

PartMeas as follows:
19 They are the most generic way to represent a measurement.
20 Informally, f0 is used to filter some information on the measurement outcome m

during an honest protocol.

Oblivious Transfer from Zero-Knowledge Proofs 27

– FM,f0
PartMeas receives a state ρ from the prover’s interface, together with an abort

bit a.
– If a = ⊥, it sends ⊥ to both parties and stops.
– Otherwise, FM,f0

PartMeas measures ρ using M , obtaining an outcome m ∈ M and
a post-measured state

ρ′ := ξm(ρ) :=
MmρM†

m

Tr(M†
mMmρ)

(10)

– It sends ρ′ to the verifier, and waits back for a message f , such that either
f = ⊥ (in which case the functionality sends ⊥ to the prover to abort and
stops), f = � (in which case the ideal functionality redefines f := f0), or f
is an efficiently computable function f : M → {0, 1}∗.

– Finally, it sends f(m) to the prover.

We would like to prove that this functionality is a ZKoQS functionality, but
not all such functionalities are ZKoQS (in particular, if the post-measured state
contains information on ω, it has no chance of being ZK). For this reason, we
expect our functionality to have an additional property, intuitively saying that
we can postpone the actual measurement after sending the quantum state. While
this might seem counter intuitive, this can actually be realized exploiting entan-
glement, and similar techniques were used in previous works to prove security of
protocols [DFP+14].

Definition 4.9 (Postponable measurement operator). A measurement
operator M outputting a quantum state and a classical measurement outcome
is said to be postponable with respect to a collection of sampling procedures
{Gω}ω∈A outputting a quantum state if there exist a bipartite state ρV,F and
a quantum map M ′ taking as input a bipartite system and outputting a measure-
ment outcome m′ such that for all ω ∈ A, MGω ≈s (IV ⊗ M ′)(ρV,F ⊗ Gω):

(11)

We prove now that such a functionality is a ZKoQS functionality for a given
quantum language and appropriately defined dummy ideal parties:

28 L. Colisson et al.

Theorem 4.10 (FPartMeas implies ZKoQS). Let EV0,P = ∪(n,m)∈N2L◦(Hn ⊗
Hm) be the set of finite dimensional quantum states on two registers V0 and P.
Let C and Cs be two sets, and for any ω ∈ C, let Eω ⊆ EV0,P be a set of bipartite
quantum states. Let M := {Mm}m∈M be a collection of measurement operators
(and ξm as defined in Definition 4.8), and f0 : M → Cs be a function. We define
for any ω ∈ C and ωs ∈ Cs:

Lω,ωs
:= {ρV,P | ∃ρV0,P

0 ∈ Eω,m ∈ M, s.t. ωs = f0(m), ρV,P = ξm(ρV0,P
0)} (12)

Lω := ∪ωs
Lω,ωs

(13)

LQ := {(ξm ⊗ ξ̂f0(m))ρV,(P,Z) | ρ ∈ EV0,(P,Z),m ∈ M,m �= ⊥,

ξ̂f0(m) being an arbitrary CPTP map depending on f0(m).}
(14)

Then, let P̃ and Ṽ be any poly-time ideal parties, such that:

– If Eω = ∅, P̃(ω) sends the abort bit a = ⊥ to the functionality and outputs ⊥.
Otherwise, P̃(ω) produces a state in Eω according to an arbitrary sampling
procedure G, sends the register V0 to the ideal functionality, and outputs the
ωs given back from the functionality together with the register P.

– If Ṽ receives ⊥ from the functionality, it outputs a = ⊥ and stop. Otherwise,
it outputs the state ρ′ given by the functionality together with a bit a = � and
sends back to the functionality f = �.

Then, if M are postponable measurement operators with respect to {Gω}ω,Lω �=∅
(Definition 4.9), FM,f0

PartMeas is a ZKoQS protocol (actually ZKoQSS for any set S,
see Definition 4.7) for the language LQ previously defined.

Sketch of Proof. The proof mostly derives from the definitions, and from the
fact that having postponable operators allows us to push the part of the ideal
functionality that depends on the secret after the interaction with the adver-
sary, preserving the ZK property. We refer to the full security proof in the full
version [CMS23] for more details. ��

While the above results show that we can obtain a ZKoQS protocol from any
protocol realizing the functionality FM,f0

PartMeas (where M must be postponable), we
show in the next section how we can realize such a functionality to prove that
a state was partially collapsed (measured in the computational basis) without
revealing the position of the collapsed qubit. We will then see that, as a corollary,
there exists a ZKoQS protocol for the quantum language of “semi-collapsed”
states.

4.3 Protocol to Prove that a State Has Been Semi-collapsed

We prove now that we can realize the functionality below, that informally mea-
sures a set T of qubits (the measured qubits, chosen by the prover, being con-
straint to respect Pred(T) = �, for an arbitrary predicate Pred), randomly
rotates the other one, and provides the resulting state to the verifier.

Oblivious Transfer from Zero-Knowledge Proofs 29

Definition 4.11 (Semi-collapsing functionality FPred
SemCol). Let n ∈ N, and

Pred: P([n]) → {�,⊥} be an efficiently computable predicate on the subsets of
[n]. We define the semi-collapsing functionality FPred

SemCol as FM,f0
PartMeas (Definition

4.8), where:

– M is the measurement operator that receives a quantum state on two regis-
ters, measures (destructively) the first register21 in the computational basis
to get (an encoding of) T ⊆ [n] and a sequence of bits (r(i))i∈[n]\T , checks if
Pred(T) = �: if not it outputs m = ⊥ and a dummy quantum state |⊥〉. Oth-
erwise, it measures (non-destructively) in the computational basis all qubits
in the second register whose index belongs to the set of “target” qubits T , get-
ting outcomes {m(j)}j∈T , and for any i ∈ [n] \ T , it applies Zr(i)

on the
i-th qubit. Finally it outputs m = (T, (m(j))j∈T , (r(i))i∈[n]\T) and the post-
measured state.

– If m = ⊥, f0(m) = ⊥, otherwise if m = (T, (m(j))j∈T , (r(i))i∈[n]\T), f0(m) =
(r(i))i∈[n]\T).

We also consider the following dummy ideal parties:

– P̃ (T, ρ) samples22 uniformly at random a sequence of bits (r(i))i∈[n]\T , sends
a = Pred(T) and |T, (r(i))i∈[n]\T 〉〈T, (r(i))i∈[n]\T |⊗ρ to the ideal functionality
FPred

SemCol, and forwards the received message from the functionality.
– Ṽ checks if it received a = ⊥ from the functionality, or if the received quantum

state is |⊥〉. If so it sends back f = ⊥ to the functionality and aborts, and
otherwise it sets f = � for the functionality and outputs the quantum state
to the environment.

We prove now that we can realize the functionality FPred
SemCol:

Theorem 4.12 (Realization of FPred
SemCol). Let {hk}k∈K be a family of colli-

sion resistant functions sampled by Gen, having the hardcore second-bit prop-
erty (Definition 2.5). Let Πh = (Ph,Vh) be a protocol23 CSSh

-QSA realizing
F Gen

CRS and Πzk = (Azk,Bzk) be a protocol that CSS-QSA realizes the ZK func-
tionality FR

ZK , where (h(c)
d)c∈[n],d∈{0,1}R(T, (w(c)

d)c∈[n],d∈{0,1}) ⇔ Pred(T) =
� ∧ ∀c, d, h(d‖w

(c)
d) = h

(c)
d and ∀c ∈ T,∃c such that w

(c)
d [1] = 1.

Then, the protocol ΠSemCol (Protocol 2) CSS′-QSA-realizes FPred
SemCol for any S′

such that:
21 Informally this register contains the subset of qubits in the second register to measure

and a (typically random) sequence of Z rotations to apply on the remaining qubits.
Since the first operation of M is to measure them, we can (and will) also consider
them as classical inputs.

22 Note that this sequence of rotations in only needed for correctness as in the real
protocol the non-measured qubits will be arbitrarily rotated.

23 As a reminder, this protocol is sampling and distributing a function h according to
Gen, and can either be done without communication in the CRS model (or heuris-
tically if we replace h with a well known collision-resistant hash function), or with
one message in the plain model.

30 L. Colisson et al.

– S′ ⊆ S ∩ Sh,
– {P} ∈ S′ only if h has the statistical hardcore second-bit property,
– {V} ∈ S′ only if for any k ∈ K, hk is injective (i.e. statistically collision

resistant).

Sketch of Proof. Part of the proofs of this theorem are generalizations of Theorem
3.1. Some care must be taken to show that the distributions in the honest case
(ideal world versus real world) are really indistinguishable, we do so by computing
the appropriate density matrices. There is also a slight difference as here we
measure the state instead of applying a rotation, but it turns out that measuring
is indistinguishable from rotating a state and discarding the rotation angle. We
refer to the full security proof in the full version [CMS23] for more details. ��

We will see that the FPred
SemCol functionality can be used to trivially get more

advanced OT protocols, notably string OT and k-out-of-n OT for any k and n.
But first, we prove that it is a ZKoQS functionality for the quantum language
of “semi-collapsed” states with respect to a predicate Pred. Informally, we define
the quantum language of semi-collapsed states as the set of states such that there
exists a subset T of qubits such that Pred(T) = �, and such that all qubits in
T are collapsed, i.e. measured in the computational basis and equal to |0〉 or |1〉
(therefore not entangled with any other system). Moreover, the identity of the
set T of collapsed qubits stays hidden to a malicious verifier, and in an honest
protocol the non-collapsed qubits are either a |+〉 or a |−〉, this description being
known to the prover.

Definition 4.13 (Semi-collapsed states LPred
SemCol). The quantum language

LPred
SemCol of semi-collapsed states relative to a predicate Pred: P([n]) → {�,⊥}

on the subsets of qubits is composed of the classes C = P([n]) (denoting the set
of collapsed qubits), the sub-classes Cs = {s ∈ {0, 1}∗ | |s| ≤ n} (denoting the
description of the non-collapsed qubits), and the quantum (sub-)classes defined
as follows, for any T ∈ C and ωs ∈ Cs:

– LT,ωs
is the empty set if Pred(T) = false or if |ωs| �= |T |, and otherwise is

the set of all n-qubits states where qubits in T are either |0〉 or |1〉, and other
qubits i (i ∈ {1, . . . , |T |} is the index of the qubits in [n] \ T) are equal to |+〉
if ωs[i] = 0 and |−〉 otherwise.

– LPred
SemCol is the set of bipartite states on registers P and V such that V contains

n qubits, and such that there exists T ⊆ [n] such that Pred(T) = ⊥ and for
any i ∈ T , i-th qubit of register V is not entangled with any other qubit and
either |0〉 or |1〉.

Corollary 4.14 (ZKoQS for semi-collapsed states). Let G′(T) be the
procedure that samples (r(i))i∈[n]

$←{0, 1} and outputs the quantum state
⊗

i Hδi/∈T |a(i)〉 (i.e. all qubits in T are in the computational basis, others are
in the Hadamard basis).

Oblivious Transfer from Zero-Knowledge Proofs 31

Protocol 2: ZKoQS protocol to realize FPred
SemCol

Inputs: The prover P gets T ⊆ [n], a subset of qubits to measure, and the
quantum state ρ(1),...,(n) to partially measure, the verifier V gets no input.
Assumption: Pred is an efficiently computable predicate on subsets of [n],
(Pzk,Vzk) is a n-message ZK protocol (Definition 2.3), h is a
collision-resistant (Definition 2.6) and second-bit hardcore (Definition 2.5)
function distributed using FH (Definition 2.8), either non-interactively via a
CRS, heuristically using a fixed hash function, or sent by the verifier, adding
an additional message (Lemma 2.10).
Protocol:

1. The prover checks if Pred(T) = �, and abort and send ⊥ to V otherwise.
The, she samples ∀d ∈ {0, 1}, i ∈ [n] \ T,w

(i)
d

$← {0} × {0, 1}n and for each
j ∈ T , she measures (non destructively) ρ(j) to get outcome l, and samples
w

(j)
l

$←{0} × {0, 1}n l ∈ {0, 1} and w
(j)
1−l

$←{1} × {0, 1}n. Then, for each
(c, d) ∈ T × {0, 1} she defines h

(c)
d := h(d‖w

(c)
d). Then, she sends

(h(c)
d)c∈[n],d∈{0,1} to the verifier (if the ZK protocol is non-interactive she can

send it later in a single message with the NIZK proof and the quantum
states) and runs the ZK protocol Pzk with the verifier (running Pzk) to
prove that:

∃T ⊆ [n], (w(c)
d)c∈T,d∈{0,1},∀c, d, h

(c)
d = h(d‖w

(c)
d) (15)

and ∀j ∈ T,∃d s.t. w
(j)
d [1] = 1, and Pred(T) = � (16)

Then, she samples for each i ∈ [n] \ T , r(i)
$←{0, 1}, and applies Zr(i)

ρ(i).
Finally, for each c ∈ [n], she applies on ρ(c) the unitary mapping
|x〉 �→ |x〉 |w(c)

x 〉 (we call ρ
(1),...,(n)
1 the resulting state) and she sends

ρ
(1),...,(n)
1 to the verifier.

2. The verifier aborts if the prover aborted or if it received a wrong ZK proof.
Then, it applies on each qubit c the unitary
|x〉 |w〉 �→ |x〉 |w〉 |w[1] �= 1 ∧ ∃d, h(x‖w) = h

(c)
d 〉, and measures the last

auxiliary register, checking if they are all equal to 1. If not, he aborts (and
sends an abort message to the prover), otherwise he measures for each
c ∈ [n] the second registers of ρ(c) (getting outcomes s(c)) in the Hadamard
basis. Finally, it outputs the remaining (first) qubit of each ρ

(c)
1 , and sends

(s(c))c∈[n] to the prover.
3. The prover computes ωs := (r(i) ⊕ ⊕

k s(i)[k](w(i)
0 ⊕ w

(i)
1)[k])i∈[n]\T and

outputs ωs.

32 L. Colisson et al.

The functionality FPred
SemCol (where the ideal party P̃ is slightly updated24:

instead of receiving T and ρ, it receives T ⊆ [n], and samples ρ ← G′(T), before
continuing as usual) is a ZKoQS ideal functionality (Definition 4.7) for the quan-
tum language LPred

SemCol (Definition 4.13).
In particular, if we consider the protocol where the honest prover gets as input

T , picks ρ ← G′(T), and runs Protocol 2, this protocol is a ZKoQS protocol for
the quantum language LPred

SemCol.

This is mostly a corollary of Theorem 4.10. The only non-trivial statement is to
prove that the measurement is postponable: this can be done by teleporting the
state without applying any correction.

4.4 ZKstatesQIPS [k] and ZKstatesQMAS : ZKoQS from a Complexity
Theory Point of View

While we defined ZKoQS using a “cryptographic” definition, we can also consider
them from the point of view of complexity theory. While classically, complexity
classes involve a verifier taking an input x potentially belonging to a given clas-
sical language L, and outputting a single accept bit (this is not an issue as the
input x can anyway be copied by the verifier if it needs to be used later), for
quantum languages this definition turns out to be hard (or even impossible) to
use as the verification procedure will alter the input state. ([KA04] does some-
thing along that line, but needs to send many copies of the input state, which is
of little interest in cryptography as it leads to polynomial security.) To overcome
this issue, it is therefore natural to say that the quantum state belonging to the
quantum language must be an output of the verifier. This is the successful point
of view that we took above, and a similar approach has also been used before
in [RY22] to quantify the complexity to produce a given state by defining a com-
plexity class stateQIP. However, the class stateQIP only captures how hard it is
to generate a given state, but it does not capture any notion of privacy against
a malicious verifier. The following definition addresses this issue:

Definition 4.15 (ZKstatesQIPS [k] and ZKstatesQMAS). Let L be a quantum
language (Definition 4.3), k ∈ N be a number of exchanged messages, S ∈
{∅,P,V} be a subset of parties allowed to be unbounded, and setup be a given
setup assumption (e.g. CRS, Random Oracle, or plain-model). We say that L
belongs to the complexity class ZKstatesQIPsetup

S [k] if there exists a ZKoQSS pro-
tocol for L, secure assuming the setup assumption setup, whose send phase con-
sists of k exchanged messages (note that we might omit S, setup, or k if we do
not want to constraint this parameter).

Similarly, we define ZKstatesQMAsetup
S = ZKstatesQIPsetup

S [1] to capture non-
interactive protocols.
24 FPred

SemCol can be used for any input quantum state, but for the ZKoQS we need to
consider a particular case where the initial state is picked by the party instead of by
the environment. The reason is that in ZKoQS protocols, an honest prover is only
given as input a class.

Oblivious Transfer from Zero-Knowledge Proofs 33

For comparison with other works that introduced stateQIP, see the full ver-
sion [CMS23].

We prove now that LPred
SemCol belongs to these classes:

Corollary 4.16 (LPred
SemCol is in ZKstatesQMARQ). For any predicate Pred, the

quantum language LPred
SemCol belong to ZKstatesQMARQ (where RO stands for Ran-

dom Oracle model). Moreover, assuming the hardness of LWE (see [HSS11] for
the exact assumptions), LPred

SemCol belongs to ZKstatesQIPpm (where pm stands for
plain-model).

More generally, assuming the existence of a k-message ZK protocol CSS-QSA
realizing FZK for any NP statement assuming a setup setup, LPred

SemCol belong to
ZKstatesQIPsetup

S [k].

These statements can be proven using Corollary4.14, together with the construc-
tions of [Unr15,HSS11].

4.5 Applications to Build String and k-out-of-n OT Protocols

We prove in this section that the above functionality FPred
SemCol actually allows us

to have string OT or k-out-of-n OT. But first, we show that we can realize this
functionality:

Theorem 4.17. Let Pred be a predicate on subsets of [n]. Assuming the exis-
tence of a protocol ΠSemCol = (ASemCol,BSemCol) that CSS-QSA-realises FPred

SemCol,
there Protocol 3 CSS-QSA-realises FPred

OT .

This is a generalisation of the last part of the proof of Theorem 3.1.

Protocol 3: Protocol to compile a ZKoQS protocol (ASemCol,BSemCol) for the
quantum language LPred

SemCol into a predicate OT protocol.
Alice(B ⊆ {0, 1}n) Bob((m1, . . . , mn) ∈ {0, 1}n)

If Pred(B) = ⊥, abort.

∀i ∈ [n], r(i) ← {0, 1}
ρ := ⊗i∈[n]H

δi∈B |r(i)〉
(s(i))i∈B ← ASemCol(B, ρ) ρ ← BSemCol

Abort if the previous step aborted. If the previous step aborted, abort.

∀c, apply Zmc on ρ(c) and measure it

in the Hadamard basis (outcome z(c)).

return (r(i) ⊕ s(i) ⊕ z(i))i∈B

∀c, z(c)

34 L. Colisson et al.

Corollary 4.18. By choosing appropriate values for Pred like in Definition 2.2,
the protocol Protocol 3 realizes the string OT functionality F str

OT and the k-out-
of-n OT functionality Fk−m

OT .

This is a direct consequence of Theorem 4.17 and of the definition of Fk−m
OT

and F str
OT . ��

5 Composability of [Unr15]

We show now that the online extractable NIZK protocol from [Unr15] quan-
tum stand-alone realizes the FR

ZK functionality in Definition 2.3, when the RO
assumption is made. This is needed to instantiate Corollary 4.18 with a concrete
ZK protocol.

Theorem 5.1. Let H be a random oracle. The non-interactive protocol ΠH
zk =

(P,V) from [Unr15] quantum stand-alone realizes the classical zero-knowledge
functionality FR

ZK , were x ∈ L ⇔ ∃w, xRw.

The proof in the full version [CMS23].

Corollary 5.2. In the random oracle model, assuming the existence of a
collision-resistant and second-bit hardcore hash function (which holds if h is
modeled as a random oracle model, see discussion in Theorem 1.1), there exists
a protocol realizing the string OT functionality F str

OT and the k-out-of-n OT func-
tionality Fk−m

OT .

Proof. This is a direct consequence of Corollary 4.18 and Theorem 5.1, where
[Unr15] is used to instantiate the ZK protocol. ��

Acknowledgment. The authors deeply thank Christian Schaffner for many insightful
exchanges, together with Stacey Jeffery, Geoffroy Couteau and James Bartusek for
precious discussions, and anonymous reviewers for many helpful comments and for
pointing a mistake (now corrected) in a proof that generalizes our first result. This work
is co-funded by the European Union (ERC, ASC-Q, 101040624) and supported by the
Dutch National Growth Fund (NGF), as part of the Quantum Delta NL programme.

References

[ABK+22] Agarwal, A., Bartusek, J., Khurana, D., Kumar, N.: A new framework for
quantum oblivious transfer. In: Hazay, C., Stam, M. (eds.) EUROCRYPT
2023. LNCS, vol. 14004, pp. 363–394. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-30545-0_13

[AL20] Ananth, P., La Placa, R.L.: Secure quantum extraction protocols. In: Pass,
R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 123–152. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64381-2_5

https://doi.org/10.1007/978-3-031-30545-0_13
https://doi.org/10.1007/978-3-031-30545-0_13
https://doi.org/10.1007/978-3-030-64381-2_5

Oblivious Transfer from Zero-Knowledge Proofs 35

[BBC+92] Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.-H.: Practi-
cal quantum oblivious transfer. In: Feigenbaum, J. (ed.) CRYPTO 1991.
LNCS, vol. 576, pp. 351–366. Springer, Heidelberg (1992). https://doi.org/
10.1007/3-540-46766-1_29

[BCK+21] Bartusek, J., Coladangelo, A., Khurana, D., Ma, F.: One-way functions
imply secure computation in a quantum world. In: Malkin, T., Peikert,
C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 467–496. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-84242-0_17

[BD18] Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT
from LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol.
11240, pp. 370–390. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-03810-6_14

[BF10] Bouman, N.J., Fehr, S.: Sampling in a quantum population, and applica-
tions. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 724–741.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-
7_39

[BKS23] Bartusek, J., Khurana, D., Srinivasan, A.: Secure Computation with
Shared EPR Pairs (Or: How to Teleport in Zero-Knowledge) (2023)

[BS20] Bitansky, N., Shmueli, O.: Post-quantum zero knowledge in constant
rounds. In: Proceedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2020, pp. 269–279, New York, NY, USA.
Association for Computing Machinery, 22 June 2020

[CGK21] Colisson, L., Grosshans, F., Kashefi, E.: Non-destructive Zero-Knowledge
Proofs on Quantum States, and Multi-Party Generation of Authorized
Hidden GHZ States, 10 April 2021

[CGS02] Crépeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum com-
putation. In: Proceedings of the Thiry-Fourth Annual ACM Symposium
on Theory of Computing, STOC ’02, pp. 643–652. Association for Com-
puting Machinery, New York, NY, USA, 19 May 2002

[CK88] Crepeau, C., Kilian, J.: Achieving oblivious transfer using weakened secu-
rity assumptions. In: [Proceedings 1988] 29th Annual Symposium on Foun-
dations of Computer Science. [Proceedings 1988] 29th Annual Symposium
on Foundations of Computer Science, pp. 42–52, October 1988

[CMS23] Colisson, L., Muguruza, G., Speelman, F.: Oblivious transfer from zero-
knowledge proofs, or how to achieve round-optimal quantum oblivious
transfer and zero-knowledge proofs on quantum states. In: ASIACRYPT
2023, 2 March 2023 (2023)

[DFL+09] Damgård, I., Fehr, S., Lunemann, C., Salvail, L., Schaffner, C.: Improving
the security of quantum protocols via commit-and-open. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 408–427. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03356-8_24

[DFP+14] Dunjko, V., Fitzsimons, J.F., Portmann, C., Renner, R.: Composable secu-
rity of delegated quantum computation. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8874, pp. 406–425. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45608-8_22

[DGJ+20] Dulek, Y., Grilo, A.B., Jeffery, S., Majenz, C., Schaffner, C.: Secure multi-
party quantum computation with a dishonest majority. In: Canteaut,
A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 729–758.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_25

https://doi.org/10.1007/3-540-46766-1_29
https://doi.org/10.1007/3-540-46766-1_29
https://doi.org/10.1007/978-3-030-84242-0_17
https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1007/978-3-030-03810-6_14
https://doi.org/10.1007/978-3-642-14623-7_39
https://doi.org/10.1007/978-3-642-14623-7_39
https://doi.org/10.1007/978-3-642-03356-8_24
https://doi.org/10.1007/978-3-662-45608-8_22
https://doi.org/10.1007/978-3-030-45727-3_25

36 L. Colisson et al.

[DNS12] Dupuis, F., Nielsen, J.B., Salvail, L.: Actively secure two-party evalua-
tion of any quantum operation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 794–811. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32009-5_46

[EGL85] Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing
contracts. Commun. ACM 28(6), 637–647 (1985)

[ELE] ELECTRIC COIN COMPANY: Zcash: privacy-protecting digital cur-
rency. Zcash. URL: https://z.cash/. Visited 02 Oct 2023

[GL89] Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions.
In: Proceedings of the Twenty-First Annual ACM Symposium on Theory
of Computing, STOC ’89, pp. 25–32, New York, NY, USA. Association
for Computing Machinery, 1 February 1989

[GLS+21] Grilo, A.B., Lin, H., Song, F., Vaikuntanathan, V.: Oblivious transfer is
in MiniQCrypt. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT
2021. LNCS, vol. 12697, pp. 531–561. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-77886-6_18

[GMR85] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof-systems. In: Proceedings of the Seventeenth Annual ACM
Symposium on Theory of Computing, STOC ’85, pp. 291–304. Associa-
tion for Computing Machinery, New York, NY, USA, 1 December 1985

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game.
In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing, STOC ’87, pp. 218–229. Association for Computing Machin-
ery, New York, NY, USA, 1 January 1987

[HSS11] Hallgren, S., Smith, A., Song, F.: Classical cryptographic protocols in a
quantum world. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 411–428. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9_23

[Imp95] Impagliazzo, R.: A personal view of average-case complexity. In: Tenth
Annual IEEE Conference on Proceedings of Structure in Complexity The-
ory, pp. 134–147, June 1995

[JLS18] Ji, Z., Liu, Y.-K., Song, F.: Pseudorandom quantum states. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 126–152.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_5

[KA04] Kashefi, E., Alves, C.M.: On the complexity of quantum languages, 12
April 2004

[Kil88] Kilian, J.: Founding crytpography on oblivious transfer. In: Proceedings of
the Twentieth Annual ACM Symposium on Theory of Computing, STOC
’88, pp. 20–31. Association for Computing Machinery, New York, NY,
USA, 1 January 1988

[KKL+23] Kapourniotis, T., Kashefi, E., Leichtle, D., Music, L., Ollivier, H.: Asym-
metric quantum secure multi-party computation with weak clients against
dishonest majority, 15 March 2023

[KP17] Kashefi, E., Pappa, A.: Multiparty delegated quantum computing. Cryp-
tography 1(2), 12 (2017)

[Lin13] Lindell, Y.: A note on constant-round zero-knowledge proofs of knowledge.
J. Cryptol. 26(4), 638–654 (2013)

[LMS21] Lombardi, A., Ma, F., Spooner, N.: Post-quantum Zero Knowledge, Revis-
ited (Or: How to Do Quantum Rewinding Undetectably), 23 November
2021

https://doi.org/10.1007/978-3-642-32009-5_46
https://z.cash/
https://doi.org/10.1007/978-3-030-77886-6_18
https://doi.org/10.1007/978-3-030-77886-6_18
https://doi.org/10.1007/978-3-642-22792-9_23
https://doi.org/10.1007/978-3-642-22792-9_23
https://doi.org/10.1007/978-3-319-96878-0_5

Oblivious Transfer from Zero-Knowledge Proofs 37

[Lo97] Lo, H.-K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2),
1154–1162 (1997)

[LT22] Laud, P., Talviste, R.: Review of the State of the art in secure multiparty
computation. In: Cybernetica As (2022)

[MS94] Mayers, D., Salvail, L.: Quantum oblivious transfer is secure against all
individual measurements. In: Proceedings Workshop on Physics and Com-
putation. PhysComp ’94. Proceedings Workshop on Physics and Compu-
tation. PhysComp ’94, pp. 69–77, November 1994

[NC10] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition, December 2010

[PS19] Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from
(plain) learning with errors. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26948-7_4

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient
and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-85174-5_31

[Qua20] Quach, W.: UC-secure OT from LWE, revisited. In: Galdi, C., Kolesnikov,
V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 192–211. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-57990-6_10

[Rab05] Rabin, M.O.: How to exchange secrets with oblivious transfer (2005)
[RY22] Rosenthal, G., Yuen, H.: Interactive proofs for synthesizing quantum

states and unitaries. In: Braverman, M. (ed.) 13th Innovations in The-
oretical Computer Science Conference, ITCS 2022, 31 January–3 Febru-
ary 2022, Berkeley, CA, USA of LIPIcs, vol. 215, pp. 112:1–112:4. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2022)

[SMP22] Santos, M.B., Mateus, P., Pinto, A.N.: Quantum oblivious transfer: a short
review. Entropy 24(7), 945 (2022)

[Unr10] Unruh, D.: Universally composable quantum multi-party computation.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-
5_25

[Unr12] Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson,
T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_10

[Unr15] Unruh, D.: Non-interactive zero-knowledge proofs in the quantum ran-
dom oracle model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 755–784. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46803-6_25

[Unr16] Unruh, D.: Computationally binding quantum commitments. In: Fis-
chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
497–527. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5_18

[Wat09] Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput.
39(1), 25–58 (2009)

[Wie83] Wiesner, S.: Conjugate coding. ACM SIGACT News 15(1), 78–88 (1983)
[WW06] Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay,

S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11761679_14

https://doi.org/10.1007/978-3-030-26948-7_4
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-030-57990-6_10
https://doi.org/10.1007/978-3-642-13190-5_25
https://doi.org/10.1007/978-3-642-13190-5_25
https://doi.org/10.1007/978-3-642-29011-4_10
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-46803-6_25
https://doi.org/10.1007/978-3-662-49896-5_18
https://doi.org/10.1007/978-3-662-49896-5_18
https://doi.org/10.1007/11761679_14

38 L. Colisson et al.

[Yao82] Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium
on Foundations of Computer Science (SFCS 1982), pp. 160–164, November
1982

[Yao95] Yao, A.C.-C.: Security of quantum protocols against coherent measure-
ments. In: Proceedings of the Twenty-Seventh Annual ACM Symposium
on Theory of Computing, STOC ’95, pp. 67–75. Association for Comput-
ing Machinery, New York, NY, USA, 29 May 1995

On the (Im)plausibility of Public-Key
Quantum Money from Collision-Resistant

Hash Functions

Prabhanjan Ananth1 , Zihan Hu2(B) , and Henry Yuen3

1 UCSB, Santa Barbara, USA
prabhanjan@cs.ucsb.edu

2 Tsinghua University, Beijing, China
huzh19@mails.tsinghua.edu.cn

3 Columbia University, New York, USA
hyuen@cs.columbia.edu

Abstract. Public-key quantum money is a cryptographic proposal for
using highly entangled quantum states as currency that is publicly veri-
fiable yet resistant to counterfeiting due to the laws of physics. Despite
significant interest, constructing provably-secure public-key quantum
money schemes based on standard cryptographic assumptions has
remained an elusive goal. Even proposing plausibly-secure candidate
schemes has been a challenge.

These difficulties call for a deeper and systematic study of the struc-
ture of public-key quantum money schemes and the assumptions they can
be based on. Motivated by this, we present the first black-box separation
of quantum money and cryptographic primitives. Specifically, we show
that collision-resistant hash functions cannot be used as a black-box to
construct public-key quantum money schemes where the banknote verifi-
cation makes classical queries to the hash function. Our result involves a
novel combination of state synthesis techniques from quantum complex-
ity theory and simulation techniques, including Zhandry’s compressed
oracle technique.

Keywords: Quantum Cryptography · Quantum Money · Black-Box
Separations

1 Introduction

Unclonable cryptography is an emerging area in quantum cryptography that
leverages the no-cloning principle of quantum mechanics [WZ82,Die82] to
achieve cryptographic primitives that are classically impossible. Over the years,
many interesting unclonable primitives have been proposed and studied. These
include quantum copy-protection [Aar09], one-time programs [BGS13], secure
software leasing [AL21], unclonable encryption [BL20], encryption with certified
deletion [BI20], encryption with unclonable decryption keys [GZ20,CLLZ21],
and tokenized signatures [BS16].
c© International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14445, pp. 39–72, 2023.
https://doi.org/10.1007/978-981-99-8742-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8742-9_2&domain=pdf
http://orcid.org/0000-0001-5387-5730
http://orcid.org/0009-0009-7005-9220
http://orcid.org/0000-0002-2684-1129
https://doi.org/10.1007/978-981-99-8742-9_2

40 P. Ananth et al.

One of the oldest and (arguably) the most popular unclonable primitives
is quantum money, which was first introduced in a seminal work by Wies-
ner [Wie83]. A quantum money scheme enables a bank to issue digital money
represented as quantum states. Informally, the security guarantee states that it is
computationally infeasible to produce counterfeit digital money states. That is,
a malicious user, given one money state, cannot produce two money states that
are both accepted by a pre-defined verification procedure. There are two notions
we can consider here. The first notion is private-key quantum money, where the
verification procedure is private. That is, in order to check whether a money
state is valid, we need to submit the state to the bank which decides its validity.
A more useful notion is public-key quantum money, where anyone can verify the
validity of money states. While private-key money schemes have been extensively
studied and numerous constructions, including information-theoretic ones, have
been proposed, the same cannot be said for public-key quantum money schemes.

Aaronson and Christiano [AC13] first demonstrated the feasibility of uncondi-
tionally secure public-key quantum money in the oracle model; meaning that all
algorithms in the scheme (e.g., the minting and verification algorithms) query a
black-box oracle during their execution. In the standard (i.e., non-oracle) model,
there are two types of constructions known for building quantum money:

– In the first category, we have constructions borrowing sophisticated tools from
different areas of mathematics, such as knot theory [FGH+12], quaternion
algebras [KSS21] and lattices [Zha21]. The constructions in this category have
been susceptible to cryptanalytic attacks as demonstrated by a couple of
recent works [Rob21,BDG22,MLZ22]. We are still in the nascent stages of
understanding the security of these candidates1.

– In the second category, we have constructions based on well-studied (or per-
haps better -studied) cryptographic primitives. In this category, we have con-
structions [Zha21,Shm22a,Shm22b] based on indistinguishability obfuscation
(iO), first initiated by Zhandry [Zha21].

We focus on the second category. Constructions from existing primitives, espe-
cially from those that can be based on well-studied assumptions, would posi-
tion public-key quantum money on firmer foundations. Unfortunately, exist-
ing constructions of indistinguishability obfuscation are either post-quantum
insecure [AJL+19,JLS21,JLS22] or are based on newly introduced crypto-
graphic assumptions [GP21,BDGM20,WW21,DQV+21] that have been sub-
jected to cryptanalytic attacks [HJL21].

The goal of our work is to understand the feasibility of constructing
public-key quantum money from fundamental and well-studied cryptographic
primitives. We approach this direction via the lens of black-box separations.
Black-box separations have been extensively studied in classical cryptogra-
phy [Rud91,Sim98,GKM+00,RTV04,BM09,DLMM11,GKLM12,BDV17]. We
say that a primitive A cannot be constructed from another primitive B in a

1 A recent work by [MLZ22] presents a nice framework capturing many of the candi-
date constructions of public-key quantum money.

On the (Im)plausibility of Public-Key Quantum Money from CRHFs 41

black-box manner if there exists a computational world (defined by an oracle)
where B exists but A does not. Phrased another way, these separations rule out
constructions of primitive A where primitive B is used in a black-box manner. In
this case, we say that there is a black-box separation between A and B. Black-
box separations have been essential in understanding the relationship between
different cryptographic primitives. Perhaps surprisingly, they have also served as
a guiding light in designing cryptographic constructions. One such example is the
setting of identity-based encryption (IBE). A couple of works [BPR+08,PRV12]
demonstrated the difficulty of constructing IBE from the decisional Diffie Hell-
man (DDH) assumption using a black-box construction which prompted the
work of [DG17] who used non-black-box techniques to construct IBE from DDH.

1.1 Our Work

Black-Box Separations for Unclonable Cryptography. We initiate the study of
black-box separations in unclonable cryptography. In this work, we study a black-
box separation between public-key quantum money and (post-quantum secure)
collision-resistant hash functions. To the best of our knowledge, our work takes
the first step in ruling out certain approaches to constructing public-key quantum
money from well-studied cryptographic primitives.

Model. We first discuss the model in which we prove the black-box separation.
We consider two oracles with the first being a random oracle R (i.e., a uniformly
random function) and the second being a PSPACE oracle (i.e., one that can
solve PSPACE-complete problems). We investigate the feasibility of quantum
money schemes and collision-resistant hash functions in the presence of R and
PSPACE. That is, all the algorithms of the quantum money schemes and also
the adversarial entities are given access to the oracles R and PSPACE.

There are two ways we can model a quantum algorithm to have access to an
oracle. The first is classical access, where the algorithms in the quantum money
scheme can only make classical queries to the oracle; that is, each query to the
oracle is measured in the computational basis before forwarding it to the oracle.
If an algorithm A has classical access to an oracle, say U , we denote this by AU .
The second is quantum access, where the algorithms can make superposition
queries. That is, an algorithm can submit a state of the form

∑
x,y αx,y|x〉|y〉 to

the oracle O and it receives back
∑

x,y αx,y|x〉|O(x) ⊕ y〉. If an algorithm A has
quantum access to an oracle U , we denote this by A|U〉.

Our ultimate goal is to obtain black-box separations in the quantum access
model, where the algorithms in the quantum money scheme can query oracles
in superposition. However, there are two major obstacles to achieving this.

First, analyzing the quantum access model in quantum cryptography has
been notoriously challenging. For example, it is not yet known how to general-
ize to the quantum access setting black-box separations between key agreement
protocols – a classical cryptographic primitive – and one-way functions [IR90].
Attempts to tackle special cases have already encountered significant barri-

42 P. Ananth et al.

ers [ACC+22], and have connections to long-standing conjectures in quantum
query complexity (like the Aaronson-Ambainis conjecture [AA09]).

Second, we have to contend with the difficulty that quantum money is an
inherently quantum cryptographic primitive. A black-box separation requires
designing an adversary that can effectively clone a quantum banknote given a
single copy of it. Here one encounters problems of a uniquely quantum nature,
such as the No-Cloning Theorem [WZ82,Die82] and the fact that measuring the
banknote will in general disturb it.

We present partial progress towards the ultimate goal stated above by sim-
plifying the problem and focusing exclusively on this second obstacle: we prove
black-box separations where the banknote verification algorithm in the quan-
tum money schemes makes classical queries to the random oracle R (but still
can make quantum queries to the PSPACE oracle), and the minting algorithm
may still make quantum queries to both R and PSPACE oracles. As we will see,
even this special case of quantum money schemes is already challenging and non-
trivial to analyze. We believe that our techniques may ultimately be extendable
to the general setting (if there indeed exists a black-box impossibility in the gen-
eral setting!), where all algorithms can make quantum queries to all oracles, and
furthermore help prove black-box separations of other quantum cryptographic
primitives.

Main Theorem. We will state our theorem more formally. A quantum money
scheme consists of three quantum polynomial-time (QPT) algorithms, namely
(KeyGen,Mint,Ver), where KeyGen produces a public key-secret key pair, Mint
uses the secret key to produce money states and a serial number associated
with money states and finally, Ver determines the validity of money states using
the public key. We consider oracle-aided quantum money schemes, where these
algorithms have access to a random oracle R and a PSPACE oracle, defined
above.

Theorem 1 (Informal, Theorem 5). Any public-key quantum money scheme
(KeyGen|R〉,|PSPACE〉,Mint|R〉,|PSPACE〉,VerR,|PSPACE〉) is insecure.

By insecurity, we mean the following. There exists a quantum polynomial-time
(QPT) adversary A such that AR,|PSPACE〉, given a money state (pk, ρs, s), where
pk is the public key and s is a serial number, with non-negligible probability, can
produce two (possibly entangled) states that both pass the verification checks
with respect to the same serial number s. The probability is taken over the
randomness of R and also over the randomness of KeyGen,Mint,Ver and A. We
note that only KeyGen and Mint can have quantum access to R, while Ver only
has classical access. On the other hand, we show that the adversary A only needs
classical access to R.

Furthermore, we note that the random oracle R constitutes a collision-
resistant hash function against quantum polynomial-time adversaries that can
make queries to (R, |PSPACE〉) [Zha15]. We note that R still remains collision-
resistant even when the adversaries can make quantum queries to R, not just
classical ones.

On the (Im)plausibility of Public-Key Quantum Money from CRHFs 43

Implications. Our main result rules out a class of public-key quantum money
constructions that (a) base their security on collision-resistant hash functions,
(b) use the hash functions in a black-box way, and (c) where the verification algo-
rithm makes classical queries to the hash function. Clearly, it would be desirable
to generalize the result to the case where the verification algorithm can make
quantum queries to the hash function. However, there are some conceptual chal-
lenges to going beyond classical verification queries (which we discuss in more
detail in Sect. 2.2).

The class of quantum money schemes in this hybrid classical-quantum query
model is quite interesting on its own and a well-motivated setting. For example,
in Zhandry’s public-key quantum money scheme [Zha21], the mint procedure
only needs classical access to the underlying cryptographic primitives (when the
component that uses cryptographic primitives is viewed as a black-box) while
the verification procedure makes quantum queries. In the constructions of copy-
protection due to Coladangelo et al. [CLLZ21,CMP20], the copy-protection algo-
rithm only makes classical queries to the cryptographic primitives in the case
of [CLLZ21] and the random oracle in the case of [CMP20] whereas the eval-
uation algorithm in both constructions make quantum queries. Finally, in the
construction of unclonable encryption in [AKL+22], all the algorithms only make
classical queries to the random oracle. Given these constructions, we believe it
is important to understand what is feasible or impossible for unclonable cryp-
tosystems in the hybrid classical-quantum query model.

Secondly, we believe that the hybrid classical-quantum query model is a
useful testbed for developing techniques needed for black-box separations, and for
gaining insight into the structure of unclonable cryptographic primitives. Even
in this special case, there are a number of technical and conceptual challenges
to overcome in order to get our black-box separation of Theorem 1. We believe
that the techniques developed in this paper will be a useful starting point for
future work in black-box separations in unclonable cryptography.

Other Separations. As a corollary of our main result, we obtain black-box sepa-
rations between public-key quantum money and many other well-studied crypto-
graphic primitives such as one-way functions, private-key encryption and digital
signatures.

Our result also gives a separation between public-key quantum money and
collapsing hash functions in the same setting as above; that is, when Ver makes
classical queries to R. This follows from a result due to Unruh [Unr16] who
showed that random oracles are collapsing. Collapsing hash functions are the
quantum analog of collision-resistant hash functions. Informally speaking, a hash
function is collapsing if an adversary cannot distinguish a uniform superposition
of inputs, say |ψ〉, mapping to a random output y versus a computational basis
state obtained by measuring |ψ〉 in the computational basis. Zhandry [Zha21]
showed that hash functions that are collision-resistant but not collapsing imply
the existence of public-key quantum money. Thus our result rules out a class
of constructions of quantum money from collapsing functions, improving our
understanding of the relationship between them.

44 P. Ananth et al.

Acknowledgments. We thank anonymous conference referees, Qipeng Liu, Yao
Ching Hsieh, and Xingjian Li for their helpful comments. HY is supported by
AFOSR award FA9550-21-1-0040 and NSF CAREER award CCF-2144219.

2 Our Techniques in a Nutshell

We present a high-level overview of the techniques involved in proving Theorem
1. But first, we will briefly discuss the correctness guarantee of oracle-aided
public-key quantum money schemes.

Reusability. In a quantum money scheme (KeyGen,Mint,Ver), we require that
Ver accepts a state and a serial number produced by Mint with overwhelming
probability. However, for all we know, Ver, during the verification process, might
destroy the state. A more useful correctness definition is reusability, which states
that a money state can be repeatedly verified without losing its validity. In
general, one can show that the gentle measurement lemma [Win99] does prove
that correctness implies reusability. However, as observed in [AK22], this is not
the case when Ver has only classical access to an oracle. Specifically, Ver has
classical access to R. Hence, we need to explicitly define δr-reusability in this
setting. Roughly speaking, we require the following: the residual state obtained
after we run the verification process polynomially many times should still be
accepted by Ver with probability at least δr.

2.1 Warmup: Insecurity When R Is Absent

Towards developing techniques to prove Theorem 1, let us first tackle a sim-
pler statement. Suppose we have a secure public-key quantum money scheme
(KeyGen,Mint,Ver). This means that any QPT adversary cannot break the secu-
rity of this scheme. But what about oracle-aided adversaries? In more detail, we
ask the following question: Does there exist a QPT algorithm, given quantum
access to a PSPACE oracle, that violates the security of (KeyGen,Mint,Ver)?

Even this seemingly simple question is challenging! Let us understand why.
Classical cryptographic primitives (even post-quantum secure ones) such as
encryption schemes or digital signatures can be broken by efficient adversaries
who have access to even NP oracles. This follows from the fact that we can
efficiently reduce the problem of breaking the scheme to the problem of deter-
mining membership in a language. For instance, in order to succeed in break-
ing an encryption scheme, the adversary has to decide whether the instance
(pk, ct,m) ∈ L, where pk is a public key, ct is a ciphertext, m is a message and
L consists of instances of the form (pk, ct,m), where ct is an encryption of m
with respect to the public key pk. Implicitly, we are using the fact that pk, ct,m
are binary strings. Emulating a similar approach in the case of quantum money
would result in quantum instances and it is not clear how to leverage PSPACE,
or more generally any classical oracle, to complete the reduction.

On the (Im)plausibility of Public-Key Quantum Money from CRHFs 45

Synthesizing Witness States. Towards addressing the above question, we reduce
the task of breaking the security of the quantum money scheme using PSPACE to
the task of finding states accepted by the verifier in quantum polynomial space.
This reduction is enabled by the following observation, due to Rosenthal and
Yuen [RY21]: a set of pure states computable by a quantum polynomial space
algorithm can be synthesized by a QPT algorithm with quantum access to a
classical PSPACE oracle. Implicit in the result of [RY21] is the following impor-
tant point: in order to synthesize the state using the PSPACE oracle, we need
the entire description of the quantum polynomial space algorithm generating the
pure states.

In more detail, we show the following statement: for every2 verification key
pk, serial number s, there exists a pure state3 ρpk,s that is accepted by Ver(pk, s, ·)
with non-negligible probability and moreover, can be generated by a quantum
polynomial space algorithm.

The first attempt is to follow the classical brute-force search algorithm.
Namely, we repeat the following for exponential times: guess a quantum state
ρ uniformly at random and if ρ is accepted by Ver(pk, s, ·) with non-negligible
probability, output ρ and terminate. (Output an arbitrary state if all the itera-
tions fail.) However, there are two problems with this attempt. Firstly, in gen-
eral, it’s not clear how to calculate the acceptance probability of Ver(pk, s, ρ) in
polynomial space (ρ needs exponential bits to represent). Secondly, ρ might be
destroyed when we calculate the acceptance probability.

To fix the first problem, we note that an estimation of the acceptance prob-
ability is already good enough and it can be done using a method introduced
by Marriott and Watrous [MW05] (called MW technique). The MW technique
allows us to efficiently estimate the acceptance probability of a verification algo-
rithm on a state with only one copy of that state. Furthermore, it does not
disturb the state too much in the sense that the expected acceptance probabil-
ity of the residual state does not decay too significantly, which fixes the second
problem.

This brings us to our second attempt. We repeat the following process expo-
nentially many times: apply the MW technique on a maximally mixed state and
if the estimated acceptance probability happens to be non-negligible, output
the residual state and terminate. (Output an arbitrary state if all the iterations
fail.) As the MW technique is efficient, this algorithm only uses polynomial
space. Furthermore, intuitively we can get a state that is accepted by Ver with
non-negligible acceptance probability, provided that such a state exists.

A Remark About the PSPACE Oracle. Some readers may wonder about the sig-
nificance of the PSPACE oracle – why consider this instead of (say) EXP, an
oracle for exponential time? From a query complexity point of view, where one
only cares about the number of queries made by the adversary to the random
oracle R, the choice of PSPACE oracle versus EXP oracle versus some other clas-

2 Technically, we show a weaker statement which holds for almost every (pk, s).
3 Technically, we require that the reduced density matrix of ρpk,s is accepted by Ver.

46 P. Ananth et al.

sical oracle is not significant; this is because we can assume that the adversary
otherwise has unlimited computational power.

On the other hand, we view our result as presenting a potential “compu-
tational world” (in the sense of Impagliazzo’s worlds [Imp95]) where black-box
access to a hash function (in the form of the random oracle R) does not suffice
to construct (a class of) quantum money schemes. We know that P �= EXP, so
presenting a computational world where adversaries have oracle access to EXP
is irrelevant. However, we do not yet know (as of writing) whether P = PSPACE,
and thus having access to a PSPACE oracle could in principle describe the “true”
computational world that we live in.

2.2 Insecurity in the Presence of R
So far, we considered the task of violating the security of a quantum money
scheme where the honest algorithms did not have access to any oracle. Let us go
back to the oracle-aided quantum money schemes, where, all the algorithms (hon-
est and adversarial) have access to the random oracle and |PSPACE〉. Our goal is
to construct an adversary that violates the security of quantum money schemes.
But didn’t we just solve this problem? Recall that when invoking [RY21], it was
crucial that we knew the entire description of the polynomial space algorithm in
order to synthesize the state. However, when we are considering oracle-aided ver-
ification algorithms, denoted by VerR,|PSPACE〉, we don’t have the full description
of4 VerR,|PSPACE〉. Thus, we cannot carry out the synthesizing process.

A natural approach to fix this is to replace R with a classical database D
(that we have a full description of) and synthesize two states with respect to D.
To be more specific, our QPT adversary AR,|PSPACE〉 does the following: it first
finds a database D (requirements and details to be stated later) and constructs
another circuit VerD,|PSPACE〉 that runs VerR,|PSPACE〉 and when VerR,|PSPACE〉

makes a query to R, the query is answered by D. Then, A synthesizes two states
(s, σ′

s) and (s, σ′′
s), using |PSPACE〉, such that both the states are accepted by

VerD,|PSPACE〉, and outputs the two states σ′
s, σ

′′
s .

What requirements does the database D need to satisfy in order to make
the above construction work? Firstly, we should ensure that there exists a state
that is accepted by VerD,|PSPACE〉(pk, s, ·) with high enough probability. Without
this guarantee, the synthesizing process does not work. Secondly, the synthesiz-
ing process only guarantees that σ′

s and σ′′
s are accepted by VerD,|PSPACE〉 with

high probability. We hope they are also accepted by VerR,|PSPACE〉 with high
probability.

A good candidate for the state in the first requirement is a valid banknote
ρs

5, which is accepted by VerR,|PSPACE〉 with high probability. Thus all we need
is to ensure that VerD,|PSPACE〉 and VerR,|PSPACE〉 behave not too far away from
each other on ρs and the synthesized state σ′

s.
4 The fact that we don’t have the description of R is the problem here.
5 Actually we use the residual state after running verification polynomially many times

on the valid banknote.

On the (Im)plausibility of Public-Key Quantum Money from CRHFs 47

Towards satisfying these requirements, we first focus on a simple case when
KeyGen and Mint make classical queries to R and we later, focus on the quantum
queries case.

KeyGen and Mint: Classical Queries to R
Compiling Out R. Suppose we can magically find a database D, using only
polynomially many queries to R, such that all the query-answer pairs made by
Ver to R are contained in D. In this case, VerD,|PSPACE〉 acts exactly the same as
VerR,|PSPACE〉 on ρs and the synthesized state, so the requirements are satisfied.

Of course, it is wishful for us to hope that we can find a database D by
making only polynomially many queries to R that is perfectly consistent with
the queries made by Ver. Instead, we hope to recover a good enough database
D. In more detail, we aim to recover a database D that captures all the relevant
queries made by KeyGen and Mint.

Let DKeyGen and DMint be the collection of query-answer pairs made by KeyGen
and Mint respectively. A query made by Ver is called bad if this query is in
DKeyGen ∪ DMint and moreover, this query was not recorded in D. If Ver makes
bad queries then the answers returned by D will likely be inconsistent with R.
By the lazy sampling technique, those positions outside D ∪ DKeyGen ∪ DMint are
hidden for everyone. So those bad queries are the only cause for the difference
between VerD,|PSPACE〉 and VerR,|PSPACE〉. Our hope is that the probability of Ver
making bad queries on ρs and σ′

s is upper bounded by an inverse polynomial so
that D is sufficient for successful simulation for both states.

But how do we recover this database D? To see how, we will first focus on a
simple case before dealing with the general case.

State-Independent Database Simulation. Note that the queries made by Ver could
potentially depend on its input state. For now, we will assume that the distribu-
tion of queries made by Ver is independent of the input state. We will deal with
the state-dependent query distributions later.

The first attempt to generate D would be to rely upon techniques introduced
by Canetti, Kalai and Paneth [CKP15] who, in a different context – that of
proving the impossibility of obfuscation in the random oracle model – showed
how to generate a database that is sufficient to simulate the queries made by
the evaluation algorithm. Suppose (s, ρs) is the state generated by Mint. Then,
run VerR,|PSPACE〉(pk, s, ρs) a fixed polynomially many times, referred to as test
executions, by querying R. In each execution of VerR,|PSPACE〉, record all the
queries made by Ver along with their answers. The union of queries made in
all the executions of Ver will be assigned to the database D. In the context
of obfuscation for classical circuits, [CKP15] argue that, except with inverse
polynomial probability, the queries made by the evaluation algorithm can be
successfully simulated by D. This argument is shown by proving an upper bound
on the probability that the evaluation algorithm makes bad queries.

A similar analysis can also be made in our context to argue that D suffices
for successful simulation. That is, we can argue that the state we obtain after all
the executions of Ver (which could be very different from the state we started

48 P. Ananth et al.

off with) can be successfully simulated using D. The same holds for the synthe-
sized state since the queries are state-independent. However, it is crucial for our
analysis to go through that DVer (the query-answer pairs made during Ver) is
independent of the state input to Ver.

State-Dependent Database Simulation. For all we know, DVer could indeed
depend on the input state. In this case, we can no longer appeal to the argu-
ment of [CKP15]. At a high level, the reason is due to the fact that after each
execution of Ver, the money state could potentially change and this would affect
the distribution of DVer in the further executions of Ver in such a way that the
execution of Ver on the final state (which could be different from the input state
in the first execution of Ver) cannot be simulated using the database D.

Instead, we will rely upon a technique due to [AK22], who studied a sim-
ilar problem in the context of copy-protection. They showed that by random-
izing the number of executions, one can argue that the execution of Ver on
the state obtained after all the test executions can be successfully simulated
using D, except with inverse polynomial probability. That is, suppose the ini-
tial state is (s, ρ(0)s) and after running VerR,|PSPACE〉, t number of times where
t

$←− {0, 1, · · · , T}, let the resulting state be (s, ρ(t)s). Let D record all the queries
during the verifications along with the answers. Then, we have the guarantee that
on input ρ

(t)
s , Ver does not make any bad queries, except with inverse polynomial

probability. But how does Ver work on the synthesized state?

Every Mistake We Make is Progress. Notice that each time

– either on the synthesized state, Ver does not make any bad query, in which
case D suffices for successful simulation on the synthesized state

– or we will recover a new query in DKeyGen ∪ DMint that is not contained in D

When the second case happens, our knowledge of DKeyGen ∪ DMint improves.
So we can get a better database D by adding all the queries made. That is,
whenever we fail to get a successful simulation with D, we make progress in the
sense that we necessarily learn a new query in DKeyGen ∪ DMint. Thus, with each
mistake, we make progress. Since there are only a polynomial number of queries
in DKeyGen ∪ DMint, the second case can only happen for polynomial times. So
we will end up with the first case (which is what we want) except with inverse
polynomial probability as long as we try a randomized large enough times.

Our Attack. In more detail, we have the following attack. On input a money
state (s, ρs) and the public key pk, do the following:

1. D ← ∅, ρ
(0)
s ← ρs, t

$←− {0, 1, · · · , T}, j
$←− {0, 1, · · · , N}

2. Test phase: For i = 0, 1, · · · , t, do the following
(a) Run VerR,|PSPACE〉(pk, s, ·) on ρ

(i)
s and obtain ρ

(i+1)
s

(b) Add the query-answer pairs to R into D
3. Update phase: For i = 0, 1, · · · , j, do the following

On the (Im)plausibility of Public-Key Quantum Money from CRHFs 49

(a) Let VerD,|PSPACE〉 be the verification circuit as defined earlier. Using quan-
tum access to PSPACE, synthesize a state (s, σs) as per Sect. 2.1, such that
the state is accepted by VerD,|PSPACE〉

(b) Run VerR,|PSPACE〉(pk, s, ·) on σs and add the query-answer pairs into D
4. Synthesize phase: Using quantum access to PSPACE, synthesize two states

(s, σ′
s) and (s, σ′′

s) such that both the states are accepted by VerD,|PSPACE〉 and
output (s, σ′

s), (s, σ′′
s)

In the technical sections, we analyze the above attack and prove that it works.

KeyGen and Mint : Quantum Queries to R Now let’s move on to the more
general case where KeyGen and Mint can make quantum queries to R. The
important point to note here is the form of our aforementioned attacker. It only
takes advantage of the fact that Ver makes classical queries to R. When KeyGen
and Mint make quantum queries to R while Ver makes classical queries to R, we
can still run the attacker. What is left is to show that the same attacker works
even when KeyGen and Mint make quantum queries to R.

The main difficulty in carrying out the intuitions in Sect. 2.2 to the more
general case is that it’s difficult to define an analog of DKeyGen and DMint. To
give a flavour of the difficulty, let’s first consider two naive attempts.

The first attempt is to define DKeyGen and DMint to be those query-answer
pairs asked (with non-zero amplitudes) during KeyGen and Mint. However, this
attempt suffers from the problem that in this way, DKeyGen ∪ DMint can have
exponential elements. So even if each time we can make progress in the sense
that we recover some new elements in DKeyGen∪DMint, there is no guarantee that
the update phase will terminate in polynomial time.

The second attempt is to only include queries that are asked “heavily” dur-
ing KeyGen and Mint. To be more specific, let DKeyGen and DMint be query-
answer pairs asked with inverse polynomial squared amplitudes during KeyGen
and Mint. However, with this plausible definition, the claim does not hold that
whenever VerD,|PSPACE〉 fails to simulate VerR,|PSPACE〉, we can recover a query
inside DKeyGen ∪ DMint − D, which is a crucial idea underlying our intuitions in
Sect. 2.2. This is because one can always add a random check in the scheme
without enlarging DKeyGen ∪ DMint. In more detail, let Mint make an additional
quantum query to R on 1√

2n

∑2n−1
i=0 |i〉|0〉 to get a state 1√

2n

∑2n−1
i=0 |i〉|R(i)〉,

measure the first register to get a value i which will be included in the serial
number, and include the second register into the money state. Let Ver make an
additional query on i to check whether that part of the money state is R(i). In
this case, it is possible that i /∈ DKeyGen ∪ DMint. But when i /∈ D, VerD,|PSPACE〉

and VerR,|PSPACE〉 can behave differently even if Ver only queries i, which means
the only query we learn from this failure does not give us better knowledge of
DKeyGen ∪ DMint.

Purified View. Our insight is to consider an alternate world called the puri-
fied view. In this alternate world, we run everything coherently; in more detail,
we consider a uniform superposition of R, and run Mint, KeyGen and even the

50 P. Ananth et al.

attacker coherently (i.e., no intermediate measurements). If the attacker is suc-
cessful in this alternate world then he is also successful in the real world where
R and the queries made by Ver to R are measured. We then employ the com-
pressed oracle technique by Zhandry [Zha18] to coherently recover the database
of query-answer pairs recorded during KeyGen,Mint and relate this with the
database recorded during Ver. Using an involved analysis, we then show many
of the insights from the case where KeyGen,Mint make classical queries to R can
be translated to the quantum query setting.

Challenges to Handling Quantum Verification Queries. It is natural to
wonder whether we can similarly use the compressed oracle technique to handle
quantum queries made by Ver. Unfortunately, there are inherent limitations.
Recall that in our attack, the adversary records the verifier’s classical query-
answer pairs in a database, uses this to produce a classical description of a
verification circuit (that does not make any queries to the random oracle), and
submits the circuit description to a PSPACE oracle in order to synthesize a money
state. If the verifier instead makes quantum queries, then a natural idea is to
use Zhandry’s compressed oracle technique again to record the quantum queries.
However, there are two conceptual challenges to implementing this idea.

First, in the compressed oracle technique, the queries are being recorded by
the oracle itself in a “database register”, and not the adversary in the cryp-
tosystem. In our setting, we are trying to construct an adversary to record the
queries, but it does not have access to the oracle’s database register. In gen-
eral, any attempts by the adversary to get some information about the query
positions of Ver could potentially disturb the intermediate states of the Ver algo-
rithm; it is then unclear how to use the original guarantees of Ver. Another way
of saying this is that Zhandry’s compressed oracle technique is typically used
in the security analysis to show limits on the adversary’s ability to break some
cryptosystem. But in our case, we want to use some kind of quantum recording
technique in the adversary’s attack.

Secondly, the natural approach to using the PSPACE oracle is to leverage it
to synthesize alleged banknotes. However, since the PSPACE oracle is a classical
function (which may be accessed in superposition), it requires polynomial-length
classical strings as input. In our approach, the adversary submits a classical
description of a verification circuit with query/answer pairs hardcoded inside.
On the other hand if Ver makes quantum queries, it may query exponentially
many positions of the random oracle R in superposition, and it is unclear how
to “squeeze” the relevant information about the queries into a polynomial-sized
classical string that could be utilized by the PSPACE oracle.

This suggests that we may need a fundamentally new approach to recording
quantum queries in order to handle the case when the verification algorithm
makes quantum queries.

On the (Im)plausibility of Public-Key Quantum Money from CRHFs 51

2.3 Related Work

Quantum Money. The notion of quantum money was first conceived in the paper
by Wiesner [Wie83]. In the same work, a construction of private-key quantum
money was proposed. Wiesner’s construction has been well studied and its lim-
itations [Lut10] and security guarantees [MVW12] have been well understood.
Other constructions of private-key quantum money have also been studied. Ji,
Liu and Song [JLS18] construct private-key quantum money from pseudoran-
dom quantum states. Radian and Sattath [RS22] construct private-key quantum
money with classical bank from quantum hardness of learning with errors.

Regarding public-key quantum money, Aaronson and Christiano [AC13]
present a construction of public-key quantum money in the oracle model.
Zhandry [Zha21] instantiated this oracle and showed how to construct public-
key quantum money based on the existence of post-quantum iO [BGI+01].
Recently, Shmueli [Shm22a] showed how to achieve public-key quantum money
with classical bank, assuming post-quantum iO and quantum hardness of learn-
ing with errors. Constructions [FGH+12,KSS21] of public-key quantum money
from newer assumptions have also been explored although they have been sus-
ceptible to quantum attacks [Rob21,BDG22].

Black-Box Separations in Quantum Cryptography. So far, most of the exist-
ing black-box separations in quantum cryptography have focused on extend-
ing black-box separations for classical cryptographic primitives to the quan-
tum setting. Hosoyamada and Yamakawa [HY20] extend the black-box separa-
tion between collision-resistant hash functions and one-way functions [Sim98] to
the quantum setting. Austrin et al. [ACC+22] showed a black-box separation
between key agreement and one-way functions in the setting when the hon-
est parties can perform quantum computation but only have access to classical
communication. Cao and Xue [CX21] extended classical black-box separations
between one-way permutations and one-way functions to the quantum setting.

3 Preliminaries

For a string x, let |x| denote its length. Let [n] denote the set {0, 1, · · · , n − 1}
for any positive integer n.

3.1 Quantum States, Algorithms, and Oracles

A register R is a finite-dimensional complex Hilbert space. If A,B,C are regis-
ters, for example, then the concatenation ABC denotes the tensor product of
the associated Hilbert spaces. For a linear transformation L and register R, we
sometimes write LR to indicate that L acts on R, and similarly we sometimes
write ρR to indicate that a state ρ is in the register R. We write Tr(·) to denote
trace, and TrR(·) to denote the partial trace over a register R.

For a pure state |ϕ〉, we write ϕ to denote the density matrix |ϕ〉〈ϕ|. Let I
denote the identity matrix. Let TD(ρ, σ) denote the trace distance between two
density matrices ρ, σ.

52 P. Ananth et al.

Quantum Circuits. We specify the model of quantum circuits that we work with
in this paper. For convenience we fix the universal gate set {H,CNOT , T} [NC10,
Chapter 4] (although our results hold for any universal gate set consisting of
gates with algebraic entries). Quantum circuits can include unitary gates from
the aforementioned universal gate set, as well as non-unitary gates that (a)
introduce new qubits initialized in the zero state, (b) trace them out, or (c)
measure them in the standard basis. The description of a circuit is a sequence
of gates (unitary or non-unitary) along with a specification of which qubits they
act on.

We call a sequence of quantum circuits C = (Cx)x∈{0,1}∗ a quantum algo-
rithm. We say that C is polynomial-time if there exists a polynomial p such that
Cx has size at most p(|x|). We say that a quantum algorithm C = (Cx)x∈{0,1}∗

is time-uniform (or simply uniform) if there exists a polynomial-time Turing
machine that on input x outputs the description of Cx.

Let C = (Cx)x∈{0,1}∗ denote a quantum algorithm. Given a string x ∈ {0, 1}∗

and a state ρ whose number of qubits matches the input size of the circuit Cx,
we write C(x, ρ) to denote the output of circuit Cx on input ρ. The output will
in general be a mixed state as the circuit Cx can perform measurements.

Oracle Algorithms. Oracle algorithms are quantum algorithms whose circuits, in
addition to having the gates as described above, have the ability to query (per-
haps in superposition) a function O (called an oracle) which may act on many
qubits. This is essentially the same as the standard quantum query model [NC10,
Chapter 6], except the circuits may perform non-unitary operations such as mea-
surement, reset, and tracing out. Each oracle call is counted as a single gate
towards the size complexity of a circuit. The notion of time-uniformity for oracle
algorithms is the same as with non-oracle algorithms: there is a polynomial-time
Turing machine – which does not have access to the oracle – that outputs the
description of the circuits.

Given an oracle O = (On)n∈N where each On : {0, 1}n → {0, 1} is an n-bit
boolean function, we write CO = (CO

x)x∈{0,1}∗ to denote an oracle algorithm
where each circuit Cx can query any of the functions (On)n∈N (provided that
the oracle does not act on more than the number of qubits of Cx).

In this paper we distinguish between classical and quantum queries. We say
that an oracle algorithm CO makes quantum queries if it can query O in superpo-
sition; this is akin to the standard query model. We say that CO makes classical
queries if, before every oracle call, the input qubits to the oracle are measured in
the standard basis. In this case, the algorithm would be querying the oracle on
a probabilistic mixture of inputs. For clarity, we write C|O〉 to denote C making
quantum queries, and CO to denote C making classical queries.

A specific oracle that we consider throughout is the PSPACE oracle. What
we mean by this is a sequence of functions (PSPACEn)n∈N where for every n,
the function PSPACEn decides n-bit instances of a PSPACE-complete language
(such as Quantified Satisfiability [Pap94]).

Finally, we will consider hybrid oracles O that are composed of two separate
oracles R and the |PSPACE〉 oracle. In this model, the oracle algorithm CO makes

On the (Im)plausibility of Public-Key Quantum Money from CRHFs 53

classical queries to R, and quantum queries to PSPACE. We abuse the notation
and refer to algorithms having access to hybrid oracles as oracle algorithms.

3.2 Public-Key Quantum Money Schemes

Definition 1 (Oracle-aided Public-Key Quantum Money Schemes). An
oracle-aided public-key quantum money scheme SO consists of three uniform
polynomial-time oracle algorithms

(
KeyGenO,MintO,VerO

)
:

– KeyGenO(1n): takes as input a security parameter n in unary notation and
generates secret key-public key pair (sk, pk).

– MintO(sk): takes as input sk and mints banknote ρs associated with the serial
number s.

– VerO(pk, (s, ρs)): takes as inputs pk and an alleged banknote (s, ρs) and out-
puts ρ′

s ⊗ |x〉〈x|, where x ∈ {Accept,Reject} and ρ′
s is the residual state after

the verification.

For simplicity, when we don’t care about the output ρ′
s in VerO, we some-

times denote the event that ρ′
s ⊗ |Accept〉〈Accept| ← VerO(pk, (s, ρs)) as

VerO(pk, (s, ρs)) accepts. When we don’t care about whether VerO accepts, we
write ρ′

s ← VerO(pk, (s, ρs)) to denote that ρ′
s is the residual state after the

verification.

We require the above oracle-aided public-key quantum money scheme to satisfy
both correctness and security properties.

Correctness. We first consider the traditional definition of correctness.
Roughly speaking, correctness states that the verification algorithm accepts the
money state produced by the minting algorithm. Later, we consider a stronger
notion called reusability which stipulates that the residual state after the verifi-
cation is still a valid money state (not necessarily the same as before).

Definition 2 (Correctness). An oracle-aided public-key quantum money
scheme

(
KeyGenO,MintO,VerO

)
is δ-correct if the following holds for every

n ∈ N:
Pr
[
VerO(pk, (s, ρs)) accepts : (sk,pk)←KeyGenO(1n)

(s,ρs)←MintO(sk)

]
≥ δ,

where the probability is also over the choice of O. We omit δ when δ ≥ 1−negl(n).

Reusability. In this work, we consider a stronger notion called reusability.

Definition 3 (Reusability). An oracle-aided public-key quantum money
scheme

(
KeyGenO,MintO,VerO

)
is xδ -reusable if the following holds for every

n ∈ N and for every polynomial q(n):

Pr

⎡

⎣VerO(pk, (s, ρ(q(n))s)) accepts :
(sk,pk)←KeyGenO(1n)

(s,ρ(0)
s)←MintO(sk)

∀i∈[q(n)], ρ(i+1)
s ←VerO(pk,(s,ρ(i)

s))

⎤

⎦ ≥ δ,

54 P. Ananth et al.

where the probability is also over the choice of O. We omit δ when δ ≥ 1−negl(n).

In general, gentle measurement lemma [Win99] can be invoked to prove that
correctness implies reusability. However, this is not the case in our context. The
reason is that the verification algorithm performs intermediate measurements
whenever it makes classical queries to an oracle and these measurements cannot
be deferred to the end.

Security. We consider the following security notion. Basically, it says that no
efficient adversary can produce two alleged banknotes from one valid banknote
with the same serial number.

Definition 4 (Security). An oracle-aided public-key quantum money scheme(
KeyGenO,MintO,VerO

)
is δ-secure if the following holds for every n ∈ N and

for every uniform polynomial-time oracle algorithm AO:

Pr

[
VerO(pk, (s, φ1)) accepts and VerO(pk, (s, φ2)) accepts :

(sk,pk)←KeyGenO(1n)

(s,ρs)←MintO(sk)

φ←AO(pk,(s,ρs))

]
≤ δ,

where the probability is also over the randomness of O. By φi, we mean the
reduced density matrix of φ on the ith register. We omit δ when δ ≤ negl(n).

3.3 Compressed Oracle Techniques

In this section, we present some basics of compressed oracle techniques intro-
duced by Zhandry [Zha18].

For a quantum query algorithm A interacting with a random oracle, let’s
assume that A only queries the random oracle with n-bit input and gets
binary output for simplicity. By the deferred measurement principle, with-
out loss of generality we can write A in the form of a sequence of unitaries
U0, Uf , U1, · · · , Uf , Uk where Uf maps |x〉|y〉 to |x〉|y ⊕ f(x)〉 for a function f
randomly chosen from all the functions with n-bit input and 1-bit output. Then
the behavior of A when interacting with a random oracle can be analyzed in the
following purified view :

– Initialize register A to be the input for A (along with enough ancillas |0〉) and
initialize register F to be a uniform superposition of the truth tables of all
functions from [2n] to {0, 1}.

– Apply U0, UF , U1, · · · , UF , Uk where Ui is acting on A and UF maps |x〉|y〉|f〉F
to |x〉|y ⊕ f(x)〉|f〉F.
In fact, the output (mixed) state of A (we also take the randomness of f into

account) equals the reduced density matrix on the output register of the state we
obtain from the above procedure as Ui, UF commute with computational basis
measurement on F. More generally, the output (mixed) state of a sequence of
algorithms with access to random oracle can also be analyzed in the same way.

On the (Im)plausibility of Public-Key Quantum Money from CRHFs 55

Definition 5 (Fourier basis). |0̂〉 := 1√
2
(|0〉 + |1〉). |1̂〉 := 1√

2
(|0〉 − |1〉).

One can easily check that {|0̂〉, |1̂〉} forms a basis because it’s just the result
of applying hermitian matrix H to |0〉, |1〉. We call this basis as Fourier basis.

The following fact is simple and easy to check, but crucial in compressed
oracle techniques. Roughly speaking, it says that if we see CNOT in Fourier
basis, its control bit and target bit swap.

Lemma 1. The operator defined by |y〉|y′〉 → |y ⊕ y′〉|y′〉 for all y, y′ ∈ {0, 1} is
the same as the operator defined by |ŷ〉|ŷ′〉 → |ŷ〉|ŷ′ ⊕ y〉 for all y, y′ ∈ {0, 1}.
By Lemma 1, when we view the last two registers in Fourier basis, UF becomes

|x〉|ŷ〉|ŷ0〉|ŷ1〉 · · · |ŷ2n−1〉 → |x〉|ŷ〉|ŷ0〉|ŷ1〉 · · · |ŷx−1〉|ŷx ⊕ y〉|ŷx+1〉 · · · |ŷ2n−1〉.
Initially, F is |0̂〉|0̂〉 · · · |0̂〉 and each call of UF only changes one position when

viewed in the above way. So after k calls of UF , the state is in the form of
∑

a,y0,y1,··· ,y2n−1
such that there are at most k non-zero

in y0,y1,··· ,y2n−1

αa,y0,y1,··· ,y2n−1 |a〉A|ŷ0〉|ŷ1〉 · · · |ŷ2n−1〉.

We can record those non-0̂ into a database. To be more specific, there exists a
unitary that maps those |ŷ0〉|ŷ1〉 · · · |ŷ2n−1〉 (perhaps along with some ancillas) to
a database |x1〉|ŷx1〉 · · · |xl〉|ŷxl

〉 (perhaps along with some unused space) where
x1 < x2 < · · · < xl, yxi

�= 0 and l ≤ k. That is, there exists a unitary that can
compress the oracle into a database. Furthermore, the inverse of the unitary can
decompress the database back to the oracle.

4 Our Attack: Classical Queries to the Random Oracle

In this section, we will attack the oracle-aided public-key quantum money scheme
with access to a random oracle R and |PSPACE〉. Formally:

Theorem 2. Reusable and secure oracle-aided public-key quantum money
scheme (KeyGenR,|PSPACE〉,MintR,|PSPACE〉,VerR,|PSPACE〉) does not exist where R
is a random oracle.

But before we dive into the proof, let’s introduce a synthesizer, which will
be a building block for our attacker. The construction of the synthesizer and
its analysis can be found in the full version [AHY23]. Readers can also refer to
Sect. 2.1 for intuitions.

Theorem 3. Let a (called the guarantee), b (called the threshold) be functions
such that b(n) − a(n) ≥ 1

p(n) for every n where p is a polynomial. Let V|PSPACE〉

denote a uniform oracle algorithm. Then there exists a uniform oracle algorithm
Syn (called the synthesizer) such that for every x ∈ S,

Pr
[
V|PSPACE〉(x,Syn|PSPACE〉(x)) accepts

]
≥ a(|x|)

where S :=
{
x : maxρ Pr

[
V|PSPACE〉(x, ρ) accepts

] ≥ b(|x|)}.

56 P. Ananth et al.

Remark 1. In the classical setting it is easy to see that given a (classical) verifier
circuit V (which may make oracle queries to PSPACE), one can find in polynomial
space a witness string y that is accepted by V : one can simply perform brute-
force search over all strings and check whether VPSPACE accepts x. Theorem 3
shows its quantum counterpart: given the description of such a verifier circuit,
with the help of |PSPACE〉, we can efficiently synthesize a witness state ρ that
is accepted by V with probability greater than the desired guarantee (provided
that there exists a witness state with acceptance probability greater than the
threshold), even when the verifier circuit is quantum and can make quantum
queries to the PSPACE oracle.

Our synthesizer in Theorem 3 works for uniform oracle algorithm V|PSPACE〉.
However, in the scheme we aim to attack, the verification algorithm has access
to random oracle R in addition to |PSPACE〉. Inspired by [CKP15,AK22], we
try to remove R and simulate it with a good database. Based on the ideas in
Sect. 2.2, we give the following attacker.

Let O be the hybrid oracle composed of random oracle R and
|PSPACE〉. For a δr-reusable δs-secure oracle-aided quantum money scheme(
KeyGenO,MintO,VerO

)
where δr = 0.99, δs = negl(n), denote l(n) to be

the number of queries to R made by one execution of KeyGenO and MintO.
By efficiency of VerO, there exists a uniform oracle algorithm V|PSPACE〉 =
(V|PSPACE〉

x)x∈{0,1}∗ such that running V
|PSPACE〉
(pk,D,s) (ρ) is the same as running

VerD,|PSPACE〉(pk, (s, ρ)) (i.e. VerO(pk, (s, ρ)) where queries to R are answered
by D).

Let ε = 0.01, b = 1 − √
1 − δr + ε, a = 0.99b. By Theorem 3, there exists

a polynomial-time uniform oracle algorithm Syn|PSPACE〉 which can generate an
“almost optimal” witness state of V

|PSPACE〉
(pk,D,s) with guarantee a and threshold b.

Now let’s construct the adversary AO.

Adversary AO.It takes as input a valid banknote (s, ρs) and public key pk, and
behaves as follows. Let T = � l

ε�, N = 100l/
(
1 − √

1 − δr + ε
)2.

1. D ← ∅, t
$←− [T], j $←− [N] and store ρs into a register M

2. Test phase: Run VerO(pk, s, ·) for t times on the state in register M (the
output residual state will be stored in M) while adding the query-answer
pairs to R into D

3. Update phase: Do the following for j times
(a) σD ← Syn|PSPACE〉(pk,D, s)
(b) Run VerO(pk, (s, σD)) while adding the query-answer pairs to R into D

4. Synthesize phase: Output φ = φ1 ⊗ φ2 where φi ← Syn|PSPACE〉(pk,D, s)

Analysis of AO. The efficiency of A follows directly from the construction. Now
let’s prove that AO outputs what we want. We will use the notations defined in
the construction of AO.

On the (Im)plausibility of Public-Key Quantum Money from CRHFs 57

Theorem 4. Given input (pk, (s, ρs)) generated by KeyGenO and MintO, AO

outputs two alleged banknotes associated with the serial number s that will be
accepted with high probability. Formally:

Pr
[
VerO(pk, (s, φi)) accepts for i = 1, 2

]
≥ 1.8

(
1 −
√

1 − δr + ε
)2

− 1,

where the probability is over the randomness of R, the randomness of the gener-
ation of the input for AO (that is, the randomness of KeyGenO and MintO) and
the randomness of our adversary AO.

Proof. From now on, all the probabilities are over the same randomness as the
probability in the above theorem unless otherwise stated.

Let DKeyGen,DMint be the query-answer pairs made during the execution of
KeyGenO and MintO. Based on the ideas from Sect. 2.2, we will first show that
whenever we fail to simulate using database D, we must query a position inside
DKeyGen ∪DMint −D (i.e. we make a bad query), and our knowledge of DKeyGen ∪
DMint improves. Formally,

Proposition 1. For ρ = φi or the residual state in M after running AO,
∣
∣
∣Pr
[
V

|PSPACE〉
(pk,D,s) (ρ) accepts

]
− Pr

[
VerO(pk, s, ρ) accepts

]∣
∣
∣

≤Pr
[
VerO(pk, s, ρ) queries DKeyGen ∪ DMint − D

]

where D is the database of all query-answer pairs we collect during running AO.

Proof. Expand the probabilities based on whether Ver makes a bad query, and
we can get

∣
∣
∣Pr
[
V

|PSPACE〉
(pk,D,s) (ρ) accepts

]
− Pr

[
VerO(pk, s, ρ) accepts

]∣
∣
∣

=
∣
∣
∣Pr
[
V

|PSPACE〉
(pk,D,s) (ρ) accepts and queries DKeyGen ∪ DMint − D

]

+ Pr
[
V

|PSPACE〉
(pk,D,s) (ρ) accepts and does not query DKeyGen ∪ DMint − D

]

− Pr
[
VerO(pk, s, ρ) accepts and queries DKeyGen ∪ DMint − D

]

− Pr
[
VerO(pk, s, ρ) accepts and does not query DKeyGen ∪ DMint − D

]∣
∣
∣

Notice that by lazy sampling technique, when we run VerO(pk, s, ρ), R can be
simulated with D ∪DKeyGen ∪DMint. So VerO and V

|PSPACE〉
(pk,D,s) act exactly the same

on ρ when they do not query DKeyGen ∪ DMint − D. Thus the above equation
equals to

∣
∣
∣Pr
[
V

|PSPACE〉
(pk,D,s) (ρ) accepts and queries DKeyGen ∪ DMint − D

]

− Pr
[
VerO(pk, s, ρ) accepts and queries DKeyGen ∪ DMint − D

]∣
∣
∣

58 P. Ananth et al.

These two terms are both less or equal to Pr
[
VerO(pk, s, ρ) queries DKeyGen ∪ DMint − D

]
=

Pr
[
[V

|PSPACE〉
(pk,D,s)(ρ) queries DKeyGen ∪ DMint − D

]
and are non-negative. Thus the above equa-

tion is not greater than Pr
[
VerO(pk, s, ρ) queries DKeyGen ∪ DMint − D

]
, which

ends the proof.

The next step is to bound the probability that Ver makes a bad query when
running on the residual state in M and the synthesized state.

Lemma 2. Let ρ be the residual state in M after running AO, then

Pr
[
VerO(pk, s, ρ) queries DKeyGen ∪ DMint − D

]
≤ l

T

Similarly, Pr
[
VerO(pk, s, φi) queries DKeyGen ∪ DMint − D

]
≤ l

N .

Proof. Let D0 = DKeyGen ∪ DMint. We give the proof of the first inequality here
and omit the proof of the second one as it follows from a similar argument. We
expand the probability based on the number of iterations t in the test phase.

Pr
[
VerO(pk, s, ρ) queries DKeyGen ∪ DMint − D

]

=
1

T

T−1∑
t′=0

Pr
[
VerO(pk, s, ρ) queries D0 − D|t = t′

]

≤ 1

T

∑
q∈D0

T−1∑
t′=0

Pr
[
the first one to query qtextamong{VerO(pk, s, ρ(i)

s)}i≥0 is i = t′
]

≤ 1

T
· |D0| ≤ l

T

where ρ
(0)
s = ρs and ρ

(i+1)
s ← VerO(pk, (s, ρ(i)s)).

Combined with Proposition 1, Lemma 2 is saying that D is a good database
for simulation on the residual state ρ. Thus ρ is indeed a good witness state for
V

|PSPACE〉
(pk,D,s) , and our synthesizer can find a good one. Formally,

Lemma 3. Pr
[
V

|PSPACE〉
(pk,D,s) (φi) accepts

]
≥ 0.99

(
1 − √

1 − δr + ε
)2

Proof. From Proposition 1 and Lemma 2, for the residual state ρ (which is the
state after applying polynomial verifications on ρs),

Pr
[
V

|PSPACE〉
(pk,D,s) (ρ) accepts

]
≥ Pr

[
VerO(pk, s, ρ) accepts

]
− l

T
≥ δr − ε

Define S :=
{
(pk,D, s) : maxw Pr

[
V

|PSPACE〉
(pk,D,s) (w) accepts

]
≥ 1−√

1 − δr + ε
}

where the probability is only over the randomness of V. Then by the averaging
argument,

Pr [(pk,D, s) ∈ S] ≥ 1 −
√
1 − δr + ε

On the (Im)plausibility of Public-Key Quantum Money from CRHFs 59

By Theorem 3, our synthesizer works well for all (pk,D, s) ∈ S. That is,
Pr
[
V

|PSPACE〉
(pk,D,s) (Syn|PSPACE〉(pk,D, s)) accepts

]
≥ 0.99(1 − √

1 − δr + ε) where the
probability is only over the randomness of V. Therefore,

Pr
[
V

|PSPACE〉
(pk,D,s) (φi) accepts

]
≥ 0.99

(
1 −
√

1 − δr + ε
)2

.

By Proposition 1 and Lemma 2, D is also a good database for simulation on φi.
Thus the acceptance probability of VerO on φi is also high. Formally,

Pr
[
VerO(pk, s, φi) accepts

]
≥ Pr

[
V

|PSPACE〉
(pk,D,s)(φi) accepts

]
− l

N
≥ 0.9

(
1 −

√
1 − δr + ε

)2

Then Theorem 4 follows from a union bound on φ1 and φ2.

Proof (Proof of Theorem 2). The proposed adversary AO is a valid attack
because when ε = 0.01, δr = 0.99,

1.8
(
1 −
√

1 − δr + ε
)2

− 1 ≥ 1.8(1 − 0.2)2 − 1 ≥ 0.1,

which is non-negligible.

5 Extensions to Quantum Access

In this section, we will explore a more general case where some algorithms can
have quantum access to the random oracle and show our attack also works in
this case. Formally:

Theorem 5. Reusable and secure oracle-aided public-key quantum money
scheme (KeyGen|R〉,|PSPACE〉,Mint|R〉,|PSPACE〉,VerR,|PSPACE〉) does not exist where
R is a random oracle.

Without loss of generality, we can suppose that the algorithms only make
queries to the random oracle on input length m(n) and receive binary output
where m is a polynomial.

Let Ver make q(n) classical queries to R. Let KeyGen and Mint make l(n)
quantum queries to R in total. Denote the reusability and the security of the
scheme as δr and δs respectively where δr = 1 − negl(n), δs = negl(n). When it
is clear from the context, we sometimes omit n for simplicity.

Recall that our attacker in Sect. 4 doesn’t take advantage of the fact that
KeyGen and Mint there can only make classical queries to R. In fact, the same
attacker works even when KeyGen and Mint can make quantum queries to R
(with some modifications on the number of iterations). To be more specific, here
is our construction of the attacker where T (n), N(n), the guarantee a and the
threshold b of Syn will be determined later.

AR,|PSPACE〉It takes as input a valid banknote (s, ρs) and public key pk, and
behaves as follows.

60 P. Ananth et al.

1. D ← ∅, t
$←− [T], j $←− [N] and store ρs into a register M

2. Test phase: Run VerO(pk, s, ·) for t times on the state in register M while
adding the query-answer pairs to R into D

3. Update phase: Do the following for j times
(a) σD ← Syn|PSPACE〉(pk,D, s)
(b) Run VerO(pk, (s, σD)) while adding the query-answer pairs to R into D

4. Synthesize phase: Output φ = φ1 ⊗ φ2 where φi ← Syn|PSPACE〉(pk,D, s)

What is left is to prove an analog of Theorem 4. That is, the output states
of A will be accepted with high probability.

Theorem 6. Given input (pk, (s, ρs)) generated by KeyGen and Mint,
AR,|PSPACE〉 outputs two alleged banknotes associated with the serial number s
that will be accepted with high probability. Formally:

Pr
[
VerR,|PSPACE〉(pk, (s, φi)) accepts for i = 1, 2

]
≥ 1.8

(
1 −
√
1 − δr + ε

)2
− 1,

where the probability is over the randomness of R, the randomness of the gener-
ation of the input for AR,|PSPACE〉 (that is, the randomness of KeyGen|R〉,|PSPACE〉

and Mint|R〉,|PSPACE〉) and the randomness of our adversary AR,|PSPACE〉.

Similar to Theorem 4, we will show that on φi ← Syn|PSPACE〉(pk,D, s), Ver
accepts with high probability and then prove the theorem by union bound.

In Sect. 4, we crucially rely on the fact that whenever we make a mistake,
we make progress in the sense that we make a query inside DKeyGen ∪ DMint − D.
However, now KeyGen,Mint can make quantum queries. As a result, KeyGen and
Mint could “touch” exponentially many positions. Fortunately, the compressed
oracle technique introduced by Zhandry [Zha18] can be seen as a quantum analog
of recording queries into a database. Basically, if we run all the algorithms in
the purified view and see the register containing the oracle (labeled F) in Fourier
basis, then all except polynomial positions are |0̂〉 after polynomial quantum
queries, and thus the register can be compressed using a unitary. See more details
about the compressed oracle technique in Sect. 3.3. In this work, in order to
better mimic DKeyGen ∪ DMint − D in Sect. 4, we take advantage of the fact that
Ver only makes classical queries. To be more specific, we will maintain a register
to store a database D for all the classical queries and only extract those non-|0̂〉
positions outside D to form our analog of DKeyGen ∪DMint −D. We will elaborate
on this idea in Sect. 5.2.

5.1 A Purified View of the Algorithms

From Sect. 3.3, for any sequence of algorithms that make queries to the random
oracle on input length m(n) and receive binary output, we can analyze the output
using a pure state that we obtain by running all the algorithms in the purified
view instead. To show what our attacker AR,|PSPACE〉 looks like in the purified
view, we will start by writing its components in the purified view.

On the (Im)plausibility of Public-Key Quantum Money from CRHFs 61

Quantum Query. Let F store the truth table of the random oracle. A quantum
query to R in the purified view can be written as the unitary

UQ : |x〉Q|y〉A|f〉F → |x〉Q|y ⊕ f(x)〉A|f〉F
where Q stores the query position and A is for the answer bit. (The subscript Q
in UQ is for Quantum queries.)

Classical Query. Without loss of generality, we can suppose for any classical
query to R, the register for query answer is always set to |0〉 before the query.
Notice that a classical query to R is equivalent to a computational basis mea-
surement on the query position followed by a quantum query to R. An extra
computational basis measurement on the answer of the query won’t change the
view. So a classical query in the purified view can be treated as applying the
unitary

UC : |x〉Q|0〉A|f〉F|DR〉DR → |x〉Q|f(x)〉A|f〉F|DR, (x, f(x))〉DR

where DR is a register that we will use to purify the computational basis mea-
surements in the classical queries. By |DR〉, we mean a sequence of query-answer
pairs |(x1, z1), (x2, z2), · · · (xk, zk)〉 where x1, x2, · · · , xk are not necessary to be
distinct but if xi = xj , then zi = zj . Here DR has enough space. That is, by
|(x1, z1), · · · (xk, zk)〉, we actually mean |(x1, z1), · · · (xk, zk),⊥, · · · ,⊥〉 where ⊥
is a special symbol that represents empty. Despite not being standard, we some-
times call DR database. (The subscript C in UC is for Classical queries.)

KeyGen,Mint,Ver and Syn We will use UKeyGen,n, UMint,n, UVer,n and USyn,n to
denote the unitary corresponding to the purified version of KeyGen, Mint, Ver and
Syn on security number n respectively. Then UKeyGen,n, UMint,n and UVer,n are all
in the form of preparing the first query and then repeatedly answering the query
by applying UQ or UC and preparing the next query (or the final output if there is
no further query). In particular, we will write UVer,n as Uq(n)UCUq(n)−1 · · · UCU0.
We will omit the subscript n when it is clear from the context.

Verification While Recording. Let U ′
Ver := UqURUq−1 · · · URU0 where UR (the

subscript R is for Recording) is a unitary that in addition to a classical query
UC , it records the query-answer pair into a database register DA held by A.
That is,

UR : |x〉Q|0〉A|DA〉DA |f〉F|DR〉DR → |x〉Q|f(x)〉A|DA, (x, f(x))〉DA |f〉F|DR, (x, f(x))〉DR

where again by |DA〉 and |DR〉, we mean a sequence of consistent query-answer
pairs that are not necessary to be distinct. DA has enough space.

It’s easy to see that U ′
Ver corresponds to running VerR,|PSPACE〉 while the

adversary records the query-answer pairs made by VerR,|PSPACE〉.

AR,|PSPACE〉 Given these components, the purified version of AR,|PSPACE〉 is the
following (which we will denote by UA):

62 P. Ananth et al.

1. Initialize a register T to be 1√
T

∑T−1
t=0 |t〉T and a register J to be 1√

N

∑N−1
j=0 |j〉J.

2. Test phase: Conditioned on the content in T is t, apply U ′
Ver on the ban-

knote for t times in sequential. (Or equivalently apply unitary UTest :=
∑T (n)−1

t=0 U ′t
Ver ⊗ |t〉〈t|T where U ′t

Ver means applying U ′
Ver for t times.)

3. Update phase: Conditioned on the content in J is j, apply the following for
j times:
(a) Apply USyn on all the query-answer pairs we learn so far (i.e. DA).
(b) Apply U ′

Ver on the state synthesized in item (a).

(Or equivalently apply unitary UUpd :=
∑N(n)−1

j=0 (U ′
VerUSyn)j ⊗ |j〉〈j|J where

(U ′
VerUSyn)j means alternatively applying USyn and U ′

Ver for j times.)

4. Synthesize phase: Apply USyn1 and USyn2 on the query-answer pairs in DA
to obtain two alleged banknotes where USyn1 and USyn2 are just USyn that
generates the synthesized state on different registers.

Simulated Verification. The purified version of a simulated verification
VerD,|PSPACE〉 is also needed as we need to analyze the behavior of the simulated
verification on the residual state after several verifications and the synthesized
state.

We first define a unitary corresponding to a simulated query

UD : |x〉Q|0〉A|D〉DA →
{

|x〉Q|D(x)〉A|D, (x,D(x))〉DA , x ∈ D

|x〉Q
∑1

z=0
1√
2
|z〉A|D, (x, z)〉DA , x /∈ D

where by |D〉, we mean a sequence of consistent query-answer pairs that are not
necessary to be distinct. By x ∈ D, we mean there exists z such that (x, z) is a
pair in D and we will denote this z as D(x). By x /∈ D, we mean for all z, (x, z)
is not a pair in D. (The subscript D in UD is for simulating with Database.)

Then applying UD is exactly answering the query x using D (If x is in the
database, then answer the query using D; Otherwise, give a random answer
while recording this query-answer pair into the database for later use). Thus the
purified version of VerD,|PSPACE〉 is USim := UqUDUq−1 · · · UDU0.

Then the difference of VerR,|PSPACE〉 and VerD,|PSPACE〉 can be analyzed by the
difference of UVer and USim applying on the corresponding register of the pure
state we obtain after UA.

5.2 Compress and Decompress

Intuitively, |0̂〉 position in F is a uniform superposition of the range and it is
unentangled with all other things, so it can be seen as choosing a value from the
range uniformly at random independently, which is exactly what the simulation
does. It is an analog of those positions that are never asked during the sequence
of algorithms in the purely classical query case.

In this subsection, we will show how to extract an analog of D and DKeyGen ∪
DMint − D from the pure state. Roughly speaking, the recorded classical queries

On the (Im)plausibility of Public-Key Quantum Money from CRHFs 63

are an analog of D and we will compress the register F to extract those non-|0̂〉
positions outside D to form our analog of DKeyGen ∪ DMint − D.

We first give a formal description of decompress unitary Decomp as
it’s easier to write down and analyze. Define Decomp : |DF 〉F|DR〉DR →
|f0, · · · , f2m−1〉F|DR〉DR where |DF 〉F can be written as a sequence of pairs
|(x1, ŷ1), (x2, ŷ2), · · · , (xk′ , ŷk′)〉F, |DR〉DR can be written as a sequence of pairs
|(x′

1, z1), (x
′
2, z2), · · · , (x′

k, zk)〉 and the input |DF 〉F|DR〉DR satisfies

– if x′
i = x′

j , then zi = zj ;
– x1 < x2 < · · · < xk′ , ŷi �= 0̂;
– ∀i, j, xj �= x′

i;

and the output satisfies

– If x′
j = i, then fi = zj ;

– If xj = i, then fi = ŷj ;
– If ∀j, xj �= i, x′

j �= i, then fi = 0̂.

That is, we fill f0, f1, · · · , f2l−1 by looking at the pairs in DR and DF , and
we fill all the remaining positions with 0̂.

As our random function has 1-bit outputs, z1, z2, · · · , zk, y1, · · · , yk′ ∈ {0, 1}.
Recall that |0̂〉 = 1√

2
(|0〉 + |1〉), |1̂〉 = 1√

2
(|0〉 − |1〉). One can check that each

two inputs in the above form are orthogonal and they are mapped to orthogonal
outputs. So we can define the outputs of other inputs that are not in the above
form so that Decomp is a unitary.

For simplicity, when we write DR or DF , we mean a sequence of pairs that
satisfies the first or second item of the input requirements above by default,
respectively. The definitions of x ∈ DR,DF and DR(x),DF (x) are the same
as those of D in Sect. 5.1. Define DR ∩ DF = {x : x ∈ DR and x ∈ DF } and
DR ∪ DF = {x : x ∈ DR or x ∈ DF }. By DF − x, we mean the sequence we
obtain after deleting (xi, ŷi) from DF where xi = x.

The inverse operation of the above unitary Decomp is Comp := Decomp†,
which can take our database DR and the truth table in register F as inputs and
compress them into two databases DR and DF . From now on, for any unitary
U , we denote its compressed version as Ũ := CompUDecomp. Since Comp and
Decomp only acts on the registers held by the oracle (F and DR), we can always
analyze the output (which is not in the registers F and DR) of any sequence of
unitaries U1, U2, · · · , Uk using its compressed version Ũ1, Ũ2, · · · , Ũk.

The similarity between DR,DF and D,DKeyGen ∪ DMint − D will be more
clear after looking at the following compressed version of UC , UR and UD from
Sect. 5.1. From the description of Decomp, we can get for DF ∩ DR = ∅,

ŨC(|x〉Q|0〉A|DF 〉F|DR〉DR)

=

⎧
⎪⎨

⎪⎩

|x〉Q|DR(x)〉A|DF 〉F|DR, (x,DR(x))〉DR x ∈ DR
|x〉Q 1√

2

∑1
z=0|z〉A|DF 〉F|DR, (x, z)〉DR x /∈ DR ∪ DF

|x〉Q 1√
2

∑1
z=0(−1)z|z〉A|DF − x〉F|DR, (x, z)〉DR x ∈ DF

64 P. Ananth et al.

ŨR(|x〉Q|0〉A|DA〉DA |DF 〉F|DR〉DR)

=

⎧⎪⎨
⎪⎩

|x〉Q|DR(x)〉A|DA, (x, DR(x))〉DA |DF 〉F|DR, (x, DR(x))〉DR x ∈ DR
|x〉Q 1√

2

∑1
z=0|z〉A|DA, (x, z)〉DA |DF 〉F|DR, (x, z)〉DR x /∈ DR ∪ DF

|x〉Q 1√
2

∑1
z=0(−1)z|z〉A|DA, (x, z)〉DA |DF − x〉F|DR, (x, z)〉DR x ∈ DF

Since UD does not act on F and DR, ŨD = UD.
By the description of ŨC and ŨR, whenever we ask a classical query on input

x ∈ DR, we answer it with our database DR and record (x,DR(x)) for another
time; whenever we ask a classical query on input x /∈ DR ∪ DF , we answer it
with a random z and record (x, z) in our database for later use; whenever we ask
a classical query on input x ∈ DF , we actually copy the answer from the DF ,
record it into DR, and remove x from DF . The above three cases are analogous
to the classical on-the-fly simulation where the query to R inside D can be
answered by D, the query to R inside DKeyGen ∪ DMint − D should be answered
consistently by DKeyGen ∪ DMint − D and we sample a uniformly random answer
to the query to outside (DKeyGen ∪ DMint − D) ∪ D. It is worth pointing out
that ŨC and ŨR maintain the property that DR ∩ DF is empty (analogous to
(DKeyGen ∪ DMint − D) ∩ D = ∅).

Furthermore, recall that UVer = UqUCUq−1 · · · U1UCU0 and Ui does not act
on F or DR. Thus Ũi = Ui, ŨVer = UqŨCUq−1 · · · U1ŨCU0. Similarly, ŨD = UD,
so ŨSim = USim = UqUDUq−1 · · · UDU0.

5.3 Analysis of AR,|PSPACE〉

Here we analyze the acceptance probability of VerR,|PSPACE〉 on the output of our
AR,|PSPACE〉. We reuse our ideas in Sect. 4.

The following proposition can be seen as an analog of Proposition 1.
It basically says that when the behavior of VerR,|PSPACE〉 (corresponding to
ŨVer = UqŨC · · · ŨCU0) is far from the behavior of VerD,|PSPACE〉 (correspond-
ing to ŨSim = UqUD · · · UDU0), the number of pairs in F (analogous to
|DKeyGen ∪ DMint − D|) will drop a lot after the verification. The intuition is that
roughly speaking, ŨC and UD only behave differently when given a query posi-
tion x ∈ DF , in which case x will be excluded from DF after applying ŨC . So it
results in a decrement of the number of pairs in F. Formally:

Proposition 2. Let O denote the observable corresponding to the number of
pairs in F. To be more specific, O =

∑
DF

|DF ||DF 〉〈DF |F where |DF | is the
number of pairs in DF .

For a state |φ〉 in the following form (i.e. it’s in the compressed view and the
contents in DR and DA are the same. G is a register for any irrelevant things),

|φ〉 =
∑

pk,s,m,D,DF ,g
s.t. D∩DF=∅

αpk,s,m,D,DF ,g|pk〉Pk|s〉S|m〉M|D〉DA |DF 〉F|D〉DR |g〉G.

On the (Im)plausibility of Public-Key Quantum Money from CRHFs 65

Let Pr
[
ŨVer accepts when running on |φ〉

]
and Pr

[
ŨSim accepts when running on |φ〉

]

be the acceptance probability of ŨVer and ŨSim when the public key, the serial
number and the alleged money state are in Pk,S and M respectively. Then∣∣∣Pr [ŨVer accepts when running on |φ〉

]
− Pr

[
ŨSim accepts when running on |φ〉

]∣∣∣
≤TD

(
TrFDADR(ŨVer|φ〉〈φ|ŨVer

†
),TrFDADR(ŨSim|φ〉〈φ|ŨSim

†
)
)

≤6

√
q

(
Tr(O|φ〉〈φ|) − Tr(OŨVer|φ〉〈φ|ŨVer

†
)
)

Proof. The first inequality follows immediately from the fact that we can mea-
sure a qubit (not in FDADR) of ŨVer|φ〉 and ŨSim|φ〉 to obtain whether they
accept and the fact that we can not distinguish two states with probability
greater than their trace distance.

As for the second inequality, recall that ŨVer = UqŨC · · · ŨCU0 and ŨSim =
UqUD · · · UDU0. Let U ′

D be the same as UD except that it uses the contents in
DR for simulation instead of the contents in DA. To be more specific,

U ′
D(|x〉Q|0〉A|DR〉DR) =

{
|x〉Q|DR(x)〉A|DR, (x,DR(x))〉DR , x ∈ DR
|x〉Q 1√

2

∑1
z=0|z〉A|DR, (x, z)〉DR , x /∈ DR

Define |φj〉 = ŨCUj−1 · · · ŨCU0|φ〉 where 0 ≤ j ≤ q. In order to analyze the
difference of ŨVer and ŨSim on |φ〉, it’s enough to analyze the difference between
one true query and one simulated query. Formally,

TD
(
TrFDADR (ŨVer|φ〉〈φ|ŨVer

†
),TrFDADR (ŨSim|φ〉〈φ|ŨSim

†
)
)

=TD
(
TrFDADR (UqφqU

†
q),TrFDADR (UqU

′
D · · · U

′
DU0φ0U

†
0U

′†
D · · · U

′†
D U

†
q)

)

≤
q−1∑
j=0

TD
(
TrFDADR (UqU

′
D · · · Uj+1φj+1U

†
j+1U

′†
D · · · U

†
q),TrFDADR (UqU

′
D · · · UjφjU

†
j U

′†
D · · · U

†
q)

)

≤
q−1∑
j=0

TD
(

φj+1, U
′
DUjφjU

†
j U

′†
D

)
=

q−1∑
j=0

TD
(

ŨCUjφjU
†
j ŨC

†
, U

′
DUjφjU

†
j U

′†
D

)

where we use the fact that |φ〉 have the same contents on DA and

DR and thus TrFDADR(ŨSim|φ〉〈φ|ŨSim

†
) equals to TrFDADR(UqU

′
D · · · U ′

DU0φ0

U†
0U ′†

D · · · U ′†
DU†

q).
ŨC and U ′

D act differently only when the query position is inside DF . So
intuitively, the difference between one real query and one simulated query can
be bounded by the weight of queries inside DF , which equals the decrement of
the number of pairs in F after the query. Formally, we give the following lemma
and defer the proof to the full version [AHY23].

Lemma 4. TD
(
ŨCUjφjU

†
j ŨC

†
, U ′

DUjφjU
†
j U ′†

D

)
≤ 6
√

Tr(Oφj) − Tr(Oφj+1).

66 P. Ananth et al.

Insert Lemma 4 into the above inequality, and we can get

TD
(
TrFDADR(ŨVer|φ〉〈φ|ŨVer

†
),TrFDADR(ŨSim|φ〉〈φ|ŨSim

†
)
)

≤
q−1∑

j=0

6
√
Tr(Oφj) − Tr(Oφj+1)

≤6

√
√
√
√q

q−1∑

j=0

(Tr(Oφj) − Tr(Oφj+1)) (Cauchy-Schwarz inequality)

=6

√

q
(
Tr(O|φ〉〈φ|) − Tr(OŨVer|φ〉〈φ|ŨVer

†
)
)

which ends the proof of Proposition 2.
The next lemma is an analog of Lemma 2. Basically, it argues that on average,

the behaviors of VerD,|PSPACE〉 and VerR,|PSPACE〉 are very close on the residual
state ρ after running AR,|PSPACE〉 and the synthesized state even when KeyGen
and Mint can make quantum queries to R.

The intuition of the proof is the following: from Sect. 5.1, the difference
between VerR,|PSPACE〉 and VerD,|PSPACE〉 is the difference between applying UVer

and USim on the same state, which can be transformed to the compressed view
and by Proposition 2, can be bounded by the decrement of the number of pairs
in F after the verification. Roughly speaking, the decrement equals the number
of pairs in DF asked during the verification. But we randomize t and j, so run-
ning another verification on the residual state and the synthesized state should
not decrease the number of pairs in F too much on average. Formally:

Lemma 5. Let ρ be the residual state of ρs after running AR,|PSPACE〉, then

∣∣∣Pr
[
VerR,|PSPACE〉

(pk, (s, ρ)) accepts
]

− Pr
[
VerD,|PSPACE〉

(pk, (s, ρ)) accepts
]∣∣∣ ≤ 6

√
ql

T
,

∣∣∣Pr
[
VerR,|PSPACE〉

(pk, (s, φi)) accepts
]

− Pr
[
VerD,|PSPACE〉

(pk, (s, φi)) accepts
]∣∣∣ ≤ 6

√
ql

N

where the probabilities are taken over the randomness of R, the randomness of
the inputs to the adversary and the randomness of the adversary.

Proof. We will focus on the proof of the first inequality. The proof of the second
one is similar and we refer to the full version [AHY23] for more details.

Let |φ〉 be the whole pure state we obtain by applying the unitaries
ŨKeyGen, ŨMint and ŨA to the state |1n〉|∅〉DA |∅〉F|∅〉DR along with enough ancillas.
Let M be the register corresponding to the residual state ρ. From Sect. 5.1 and
Sect. 5.2, these two probabilities equal to Pr

[
ŨVer accepts when running on |φ〉

]

and Pr
[
ŨSim accepts when running on |φ〉

]
, respectively. It’s easy to see that

every classical query is recorded by the adversary (i.e. |φ〉 has the same contents

On the (Im)plausibility of Public-Key Quantum Money from CRHFs 67

in DA and DR). So from Proposition 2,∣∣∣Pr [VerR,|PSPACE〉(pk, (s, ρ)) accepts
]

− Pr
[
VerD,|PSPACE〉(pk, (s, ρ)) accepts

]∣∣∣
≤6

√
q

(
Tr(O|φ〉〈φ|) − Tr(OŨVer|φ〉〈φ|ŨVer

†
)
)

Denote ŨUpd to be unitary that describes our update phase in the compressed
view. Formally, ŨUpd = CompUUpdDecomp =

∑N(n)−1
j=0 (Ũ ′

VerŨSyn)j ⊗|j〉〈j|J where

Ũ ′
Ver is running on the state synthesized by ŨSyn.

Let |ψ〉 be the pure state corresponding to running A on public key and the
valid banknote until the end of the test phase in the compressed view. That is to
say, |φ〉 = USyn2USyn1ŨUpd|ψ〉 where USyni synthesizes the ith alleged banknote.
Then USyni commutes with O and ŨVer. Thus

Tr(O|φ〉〈φ|) − Tr(OŨVer|φ〉〈φ|ŨVer

†
) = Tr(OŨUpdψŨUpd

†
) − Tr(OŨVerŨUpdψŨUpd

†
ŨVer

†
)

It remains to prove that the above term is bounded by l/T . However, the
update phase between ŨVer and the test phase may bring some trouble. The
following lemma shows that we can remove the update phase without decreasing
the value (analogous to the fact that when all the algorithms can only make
classical queries to R, if we delete some pairs in D, the expected number of
queries inside DKeyGen ∪DMint −D during verification cannot decrease). We defer
the proof to the full version [AHY23].

Lemma 6. We use the same notation as above. Then

Tr(OŨUpdψŨUpd

†
) − Tr(OŨVerŨUpdψŨUpd

†
ŨVer

†
) ≤ Tr(Oψ) − Tr(OŨVerψŨVer

†
)

Recording the queries into DA won’t influence the number of pairs in F, so

Tr(Oψ) − Tr(OŨVerψŨVer

†
) = Tr(Oψ) − Tr(OŨ ′

VerψŨ ′
Ver

†
).

Note that we can also write |ψ〉 as 1√
T (n)

∑T (n)−1
t=0 |ψ(t)〉|t〉T where |ψ(t)〉 is

the state after we run t iterations in the test phase. Then |ψ(t+1)〉 = Ũ ′
Ver|ψ(t)〉.

Combine the above equations, and we can get
∣
∣
∣Pr
[
VerR,|PSPACE〉(pk, (s, ρ)) accepts

]
− Pr

[
VerD,|PSPACE〉(pk, (s, ρ)) accepts

]∣
∣
∣

≤6

√

q

(

Tr(Oψ) − Tr(OŨ ′
VerψŨ ′

Ver

†
)
)

=6

√
√
√
√q

(
1
T

T−1∑

t=0

Tr
(
Oψ(t)

)− 1
T

T−1∑

t=0

Tr
(

OŨ ′
Verψ

(t)Ũ ′
Ver

†)
)

≤6
√

q

T
Tr
(
Oψ(0)

) ≤ 6

√
ql

T

68 P. Ananth et al.

where we use the fact that O, Ũ ′
Ver do not act on T, and the property of com-

pressed oracle techniques that after l(n) quantum queries, there are at most l(n)
non-0̂ elements in F. |ψ(0)〉 is just the state we obtain after we run KeyGen and
Mint (so there are at most l(n) quantum queries) and then apply the unitary
Comp. So there are at most l(n) pairs in F of |ψ(0)〉. Hence Tr

(
Oψ(0)

) ≤ l(n).
Now let’s combine the above results to prove Theorem 6.

Proof (Proof of Theorem 6). Let ε = 0.01, b = 1 − √
1 − δr + ε, a = 0.99b. Let

T (n) = 36q(n)l(n)
ε2 and N(n) = q(n)l(n)

ε2(1−√
1−δr+ε)4

, which are both polynomial in n.

From Lemma 5, Pr
[
VerD,|PSPACE〉(pk, (s, ρ) accepts

]
≥ δr−ε. Hence similar as

Lemma 3, Pr
[
VerD,|PSPACE〉(pk, (s, φi)) accepts

]
≥ 0.99(1−√

1 − δr + ε)2. Again

from Lemma 5, Pr
[
VerR,|PSPACE〉(pk, (s, φi)) accepts

]
≥ 0.9(1 − √

1 − δr + ε)2.
Thus by union bound, the outputs of our adversary pass two verifications simul-
taneously with probability at least 1.8(1 − √

1 − δr + ε)2 − 1, which is non-
negligible when δr ≥ 0.99.

That is, the adversary we construct runs in polynomial time and gives a valid
attack to the scheme (KeyGen|R〉,|PSPACE〉,Mint|R〉,|PSPACE〉,VerR,|PSPACE〉) where
δr ≥ 0.99 and δs = negl(n), which establishes Theorem 5.

References

[AA09] Aaronson, S., Ambainis, A.: The need for structure in quantum speedups.
arXiv preprint arXiv:0911.0996 (2009)

[Aar09] Aaronson, S.: Quantum copy-protection and quantum money. In: 24th
Annual IEEE Conference on Computational Complexity, pp. 229-242. IEEE
Computer Society, Los Alamitos, CA (2009). https://doi.org/10.1109/CCC.
2009.42

[AC13] Aaronson, S., Christiano, P.: Quantum money from hidden subspaces. The-
ory Comput. 9, 349–401 (2013). https://doi.org/10.4086/toc.2013.v009a009

[ACC+22] Austrin, P., Chung, H., Chung, K.-M., Fu, S., Lin, Y.-T., Mahmoody, M.:
On the impossibility of key agreements from quantum random oracles. Cryp-
tology ePrint Archive (2022)

[AHY23] Ananth, P., Hu, Z., Yuen, H.: On the (im)plausibility of public-key quan-
tum money from collision-resistant hash functions. Cryptology ePrint
Archive, Paper 2023/069. https://eprint.iacr.org/2023/069 2023. URL:
https://eprint.iacr.org/2023/069 (cit. on pp. 17, 27-29)

[AJL+19] Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfus-
cation without multilinear maps: new paradigms via low degree weak pseu-
dorandomness and security amplification. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 284–332. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26954-8_10

[AK22] Ananth,. P., Kaleoglu, F.: A note on copy-protection from random oracles.
Cryptology ePrint Archive, Paper 2022/1109. https://eprint.iacr.org/2022/
1109 (2022). https://eprint.iacr.org/2022/1109

http://arxiv.org/abs/0911.0996
https://doi.org/10.1109/CCC.2009.42
https://doi.org/10.1109/CCC.2009.42
https://doi.org/10.4086/toc.2013.v009a009
https://eprint.iacr.org/2023/069
https://doi.org/10.1007/978-3-030-26954-8_10
https://eprint.iacr.org/2022/1109
https://eprint.iacr.org/2022/1109
https://eprint.iacr.org/2022/1109

On the (Im)plausibility of Public-Key Quantum Money from CRHFs 69

[AKL+22] Ananth, P., Kaleoglu, F., Li, X., Liu, Q., Zhandry, M.: On the feasibility
of unclonable encryption, and more. In: Dodis, Y., Shrimpton, T. (eds.)
CRYPTO 2022. LNCS, vol. 13508, pp. 212–241. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-15979-4_8

[AL21] Ananth, P., La Placa, R.L.: Secure software leasing. In: Canteaut, A., Stan-
daert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 501–530.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_17

[BDG22] Bilyk, A., Doliskani, J., Gong, Z.: Cryptanalysis of three quantum money
schemes. arXiv preprint arXiv:2205.10488 (2022)

[BDGM20] Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Factoring and pairings
are not necessary for iO: circularsecure LWE suffices. Cryptology ePrint
Archive (2020)

[BDV17] Bitansky, N., Degwekar, A., Vaikuntanathan, V.: Structure vs. hardness
through the obfuscation lens. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10401, pp. 696–723. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63688-7_23

[BGI+01] Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8_1

[BGS13] Broadbent, A., Gutoski, G., Stebila, D.: Quantum one-time programs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
344–360. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40084-1_20

[BI20] Broadbent, A., Islam, R.: Quantum encryption with certified deletion. In:
Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 92–122.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64381-2_4

[BL20] Broadbent, A., Lord, S.: Uncloneable quantum encryption via oracles. In:
Flammia, S.T. (ed.) 15th Conference on the Theory of Quantum Com-
putation, Communication and Cryptography (TQC 2020), vol. 158. Leib-
niz International Proceedings in Informatics (LIPIcs), pp. 4:1-4:22. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020).
https://doi.org/10.4230/LIPIcs.TQC.2020.4

[BM09] Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal — an
O(n2)-query attack on any key exchange from a random oracle. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 374–390. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03356-8_22

[BPR+08] Boneh, D., Papakonstantinou, P., Rackoff, C., Vahlis, Y., Waters, B.: On
the impossibility of basing identity based encryption on trapdoor permuta-
tions. In: 2008 49th Annual IEEE Symposium on Foundations of Computer
Science, pp. 283–292. IEEE (2008)

[BS16] Ben-David, S., Sattath, O.: Quantum tokens for digital signatures. arXiv
preprint arXiv:1609.09047 (2016)

[CKP15] Canetti, R., Kalai, Y.T., Paneth, O.: On obfuscation with random ora-
cles. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp.
456–467. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46497-7_18

[CLLZ21] Coladangelo, A., Liu, J., Liu, Q., Zhandry, M.: Hidden cosets and appli-
cations to unclonable cryptography. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12825, pp. 556–584. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84242-0_20

https://doi.org/10.1007/978-3-031-15979-4_8
https://doi.org/10.1007/978-3-030-77886-6_17
http://arxiv.org/abs/2205.10488
https://doi.org/10.1007/978-3-319-63688-7_23
https://doi.org/10.1007/978-3-319-63688-7_23
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-642-40084-1_20
https://doi.org/10.1007/978-3-642-40084-1_20
https://doi.org/10.1007/978-3-030-64381-2_4
https://doi.org/10.4230/LIPIcs.TQC.2020.4
https://doi.org/10.1007/978-3-642-03356-8_22
http://arxiv.org/abs/1609.09047
https://doi.org/10.1007/978-3-662-46497-7_18
https://doi.org/10.1007/978-3-662-46497-7_18
https://doi.org/10.1007/978-3-030-84242-0_20

70 P. Ananth et al.

[CMP20] Coladangelo, A., Majenz, C., Poremba, A.: Quantum copy-protection of
compute-and-compare programs in the quantum random oracle model.
arXiv preprint arXiv:2009.13865 (2020)

[CX21] Cao, S., Xue, R.: Being a permutation is also orthogonal to one-wayness in
quantum world: impossibilities of quantum one-way permutations from one-
wayness primitives. In: Theoretical Computer Science, vol. 855, pp. 16–42
(2021)

[DG17] Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman
assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 537–569. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63688-7_18

[Die82] Dieks, D.G.B.J.: Communication by EPR devices. Phys. Lett. A 92(6),
271–272 (1982)

[DLMM11] Dachman-Soled, D., Lindell, Y., Mahmoody, M., Malkin, T.: On the black-
box complexity of optimally-fair coin tossing. In: Ishai, Y. (ed.) TCC 2011.
LNCS, vol. 6597, pp. 450–467. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19571-6_27

[DQV+21] Devadas, L., Quach, W., Vaikuntanathan, V., Wee, H., Wichs, D.: Suc-
cinct LWE sampling, random polynomials, and obfuscation. In: Nissim, K.,
Waters, B. (eds.) TCC 2021. LNCS, vol. 13043, pp. 256–287. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-90453-1_9

[FGH+12] Farhi, E., Gosset, D., Hassidim, A., Lutomirski, A., Shor, P.: Quantum
money from knots. In: Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, pp. 276–289 (2012)

[GKLM12] Goyal, V., Kumar, V., Lokam, S., Mahmoody, M.: On black-box reductions
between predicate encryption schemes. In: Cramer, R. (ed.) TCC 2012.
LNCS, vol. 7194, pp. 440–457. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-28914-9_25

[GKM+00] Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The
relationship between public key encryption and oblivious transfer. In: Pro-
ceedings 41st Annual Symposium on Foundations of Computer Science, pp.
325–335. IEEE (2000)

[GP21] Gay, R., Pass, R.: Indistinguishability obfuscation from circular security. In:
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pp. 736–749 (2021)

[GZ20] Georgiou, M., Zhandry, M.: Unclonable decryption keys. Cryptology ePrint
Archive (2020)

[HJL21] Hopkins, S., Jain, A., Lin, H.: Counterexamples to new circular security
assumptions underlying iO. In: Malkin, T., Peikert, C. (eds.) CRYPTO
2021. LNCS, vol. 12826, pp. 673–700. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-84245-1_23

[HY20] Hosoyamada, A., Yamakawa, T.: Finding collisions in a quantum world:
quantum black-box separation of collision-resistance and one-wayness. In:
Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 3–32.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_1

[Imp95] Impagliazzo, R.: A personal view of average-case complexity. In: Proceed-
ings of Structure in Complexity Theory. Tenth Annual IEEE Conference,
pp. 134–147. IEEE (1995)

[IR90] Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-
way permutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403,

http://arxiv.org/abs/2009.13865
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-642-19571-6_27
https://doi.org/10.1007/978-3-642-19571-6_27
https://doi.org/10.1007/978-3-030-90453-1_9
https://doi.org/10.1007/978-3-642-28914-9_25
https://doi.org/10.1007/978-3-642-28914-9_25
https://doi.org/10.1007/978-3-030-84245-1_23
https://doi.org/10.1007/978-3-030-84245-1_23
https://doi.org/10.1007/978-3-030-64837-4_1

On the (Im)plausibility of Public-Key Quantum Money from CRHFs 71

pp. 8–26. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-
2_2

[JLS18] Ji, Z., Liu, Y.-K., Song, F.: Pseudorandom quantum states. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 126–152.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_5

[JLS21] Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-
founded assumptions. In: Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pp. 60–73 (2021)

[JLS22] Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from LPN over,
DLIN, and PRGs in NC. In: Dunkelman, O., Dziembowski, S. (eds.) EURO-
CRYPT 2022. LNCS, vol. 13275, pp. 670–699. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-06944-4_23

[KSS21] Kane, D.M., Sharif, S., Silverberg, A.: Quantum money from quaternion
algebras. arXiv preprint arXiv:2109.12643 (2021)

[Lut10] Lutomirski, A.: An online attack against Wiesner’s quantum money. arXiv
preprint arXiv:1010.0256 (2010)

[MLZ22] Montgomery, H., Liu, J., Zhandry, M.: Another round of breaking and mak-
ing quantum money: how to not build it from lattices, and more. arXiv
preprint arXiv:2211.11994 (2022)

[MVW12] Molina, A., Vidick, T., Watrous, J.: Optimal counterfeiting attacks and
generalizations for Wiesner’s quantum money. In: Iwama, K., Kawano, Y.,
Murao, M. (eds.) TQC 2012. LNCS, vol. 7582, pp. 45–64. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-35656-8_4

[MW05] Marriott, C., Watrous, J.: Quantum Arthur-Merlin games. Comput. Com-
plex. 14(2), 122–152 (2005)

[NC10] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Infor-
mation. Cambridge University Press, Cambridge (2010)

[Pap94] Papadimitriou, C.H.: Computational Complexity. Addison- Wesley, Boston
(1994)

[PRV12] Papakonstantinou, P.A., Rackoff, C.W., Vahlis, Y.: How powerful are the
DDH hard groups? Cryptology ePrint Archive (2012)

[Rob21] Roberts, B.: Security analysis of quantum lightning. In: Canteaut, A., Stan-
daert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 562–567.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_19

[RS22] Radian, R., Sattath, O.: Semi-quantum money. J. Cryptol. 35(2), 1–70
(2022)

[RTV04] Reingold, O., Trevisan, L., Vadhan, S.: Notions of reducibility between cryp-
tographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–
20. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-
1_1

[Rud91] Rudich, S.: The use of interaction in public cryptosystems. In: Feigenbaum,
J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 242–251. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1_19

[RY21] Rosenthal, G., Yuen, H.: Interactive proofs for synthesizing quantum states
and unitaries. arXiv preprint arXiv:2108.07192 (2021)

[Shm22a] Shmueli, O.: Public-key Quantum money with a classical bank. In: Proceed-
ings of the 54th Annual ACM SIGACT Symposium on Theory of Comput-
ing, pp. 790–803 (2022)

[Shm22b] Shmueli, O.: Semi-quantum tokenized signatures. Cryptology ePrint
Archive (2022)

https://doi.org/10.1007/0-387-34799-2_2
https://doi.org/10.1007/0-387-34799-2_2
https://doi.org/10.1007/978-3-319-96878-0_5
https://doi.org/10.1007/978-3-031-06944-4_23
http://arxiv.org/abs/2109.12643
http://arxiv.org/abs/1010.0256
http://arxiv.org/abs/2211.11994
https://doi.org/10.1007/978-3-642-35656-8_4
https://doi.org/10.1007/978-3-030-77886-6_19
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/978-3-540-24638-1_1
https://doi.org/10.1007/3-540-46766-1_19
http://arxiv.org/abs/2108.07192

72 P. Ananth et al.

[Sim98] Simon, D.R.: Finding collisions on a one-way street: can secure hash func-
tions be based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT
1998. LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0054137

[Unr16] Unruh, D.: Computationally binding quantum commitments. In: Fis-
chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
497–527. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5_18

[Wie83] Wiesner, S.: Conjugate coding. In: ACM SIGACT News 15(1), 78–88 (1983)
[Win99] Winter, A.: Coding theorem and strong converse for quantum channels.

IEEE Trans. Inf. Theory 45(7), 2481–2485 (1999)
[WW21] Wee, H., Wichs, D.: Candidate obfuscation via oblivious LWE sampling.

In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol.
12698, pp. 127–156. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-77883-5_5

[WZ82] Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature
299(5886), 802–803 (1982)

[Zha15] Zhandry, M.: A note on the quantum collision and set equality problems.
Quantum Inf. Comput. 15(7–8), 557–567 (2015)

[Zha18] Zhandry, M.: How to record quantum queries, and applications to quan-
tum indifferentiability. Cryptology ePrint Archive, Paper 2018/276. https://
eprint.iacr.org/2018/276 (2018)

[Zha21] Zhandry, M.: Quantum lightning never strikes the same state twice. Or:
quantum money from cryptographic assumptions. J. Cryptol. 34(1), Paper
No. 6, 56 (2021). issn 0933-2790. https://doi.org/10.1007/s00145-020-
09372-x

https://doi.org/10.1007/BFb0054137
https://doi.org/10.1007/BFb0054137
https://doi.org/10.1007/978-3-662-49896-5_18
https://doi.org/10.1007/978-3-662-49896-5_18
https://doi.org/10.1007/978-3-030-77883-5_5
https://doi.org/10.1007/978-3-030-77883-5_5
https://eprint.iacr.org/2018/276
https://eprint.iacr.org/2018/276
https://doi.org/10.1007/s00145-020-09372-x
https://doi.org/10.1007/s00145-020-09372-x

Key Exchange

Short Concurrent Covert Authenticated
Key Exchange (Short cAKE)

Karim Eldefrawy1 , Nicholas Genise2 , and Stanislaw Jarecki3(B)

1 SRI International, Menlo Park, USA
karim.eldefrawy@sri.com

2 Duality Technologies, Hoboken, USA
ngenise@dualitytech.com

3 University of California, Irvine, Irvine, USA
sjarecki@uci.edu

Abstract. Von Ahn, Hopper and Langford introduced the notion of
steganographic a.k.a. covert computation, to capture distributed compu-
tation where the attackers must not be able to distinguish honest parties
from entities emitting random bitstrings. This indistinguishability should
hold for the duration of the computation except for what is revealed by
the intended outputs of the computed functionality. An important case
of covert computation is mutually authenticated key exchange, a.k.a.
mutual authentication. Mutual authentication is a fundamental primi-
tive often preceding more complex secure protocols used for distributed
computation. However, standard authentication implementations are not
covert, which allows a network adversary to target or block parties who
engage in authentication. Therefore, mutual authentication is one of the
premier use cases of covert computation and has numerous real-world
applications, e.g., for enabling authentication over steganographic chan-
nels in a network controlled by a discriminatory entity.

We improve on the state of the art in covert authentication by present-
ing a protocol that retains covertness and security under concurrent com-
position, has minimal message complexity, and reduces protocol band-
width by an order of magnitude compared to previous constructions. To
model the security of our scheme we develop a UC model which captures
standard features of secure mutual authentication but extends them to
covertness. We prove our construction secure in this UC model. We also
provide a proof-of-concept implementation of our scheme.

1 Introduction

Steganography in the context of secure computation deals with hiding executions
of secure computation protocols.1 Such hiding is only possible if the participat-
ing parties have access to (public) communication channels which are stegano-
graphic, i.e., which naturally exhibit some entropy. Cryptographic protocols over
1 The full version of this paper appears in [22].

N. Genise—This work was done while the second author was at SRI International.

c© International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14445, pp. 75–109, 2023.
https://doi.org/10.1007/978-981-99-8742-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8742-9_3&domain=pdf
http://orcid.org/0000-0002-4008-0047
http://orcid.org/0000-0001-8625-472X
http://orcid.org/0000-0002-5055-2407
https://doi.org/10.1007/978-981-99-8742-9_3

76 K. Eldefrawy et al.

such channels can be steganographic, a.k.a. covert, if all protocol messages the
protocol exchanges cannot be distinguished from (assumed) a priori random
behavior of the communication channels.

The study of covert secure computation was initiated by Hopper et al. [31]
for the two-party case, and by Chandran et al. [15] and Goyal and Jain [29]
for the multi-party case. Both [15,29,31] prove feasibility for covert compu-
tation of arbitrary circuits which tolerates passive and malicious adversaries,
respectively. Subsequently, Jarecki [33] showed that general maliciously-secure
two-party covert computation can be roughly as efficient as standard, i.e., non-
covert, secure computation.

A flagship covert computation application is covert authentication and covert
Authenticated Key Exchange (cAKE). In a cAKE protocol, two parties can
authenticate each other as holders of mutually accepted certificates, but an entity
who does not hold proper certificates, in addition to being unable to authenti-
cate, cannot even distinguish a party that executes a covert AKE from a random
beacon, i.e., from noise on the steganographic channel. In essence, cAKE allows
group members to authenticate one another, but their presence on any stegano-
graphic communication channel is entirely hidden, i.e., they are invisible.

The application of covert computation to covert AKE has been addressed
by Jarecki [32], but the state of the art in covert AKE is significantly lack-
ing in several aspects: large bandwidth, high round complexity, and (a lack
of) security under concurrent composition. Regarding security, the scheme of
[32] achieves only sequential security, and does not ensure independence of keys
across sessions, which is insufficient for full-fledged (covert) AKE.2 Regarding
round complexity and bandwidth, the cAKE protocol in [32] requires 6 mes-
sage flows and relies on a composite-order group (and a factoring assumption),
resulting in bandwidth which can be estimated as at least 3.6 kB. Recent works
on random encodings of elliptic curve points, e.g. [8,47], allow for potentially
dramatic bandwidth reduction if secure cAKE can be instantiated over a prime-
order group.

Covert vs. Standard Authentication. Covert Authenticated Key Exchange
(cAKE) can be formalized as a secure realization of functionality FcAKE[C] shown
in Fig. 1’s entirety, characterized by a given admission function C. Let us first
set the terms by explaining the standard, i.e. non-covert, AKE functionality
FAKE[C, L], characterized by C and a leakage function L, which is portrayed in
the same figure. Reading Fig. 1 with dashed text and without greyed text defines
FAKE[C, L], and with greyed text and without dashed text defines FcAKE.

In an AKE protocol, i.e. a protocol that realizes FAKE, parties P1 and P2 run
on inputs x1 and x2, which represent their authentication tokens, e.g. passwords,
certificates, keys, etc., and if these inputs match each other’s admission policy,
jointly represented by circuit C, then P1 and P2 establish a shared random session

2 In particular, [32] does not imply security against man in the middle attacks.

Short Concurrent Covert Authenticated Key Exchange 77

Fig. 1. Standard AKE functionality FAKE[C, L] includes dashed text & omits greyed
text; Covert AKE functionality FcAKE[C] includes greyed text & omits dashed text.

key K1 = K2, otherwise their outputs K1,K2 are independent.3 If L is a non-
trivial function, then the protocol leaks L(x) on P’s input x to P’s counterparty.

For example, Password Authenticated Key Exchange (PAKE) [5] can be
defined as (secure realization of) FAKE[Cpa] where Cpa is an equality test, i.e.,
Cpa(x1, x2) = 1 if and only if x1 = x2. In another example, a standard notion of
AKE, e.g. [21], which we will call here as a Fixed Public Key AKE (FPK-AKE)
to distinguish it from other AKE types, can be defined as FAKE[Cfpk, Lfpk] where
Cfpk(x1, x2) = 1 iff x1 = (sk1, pk2) and x2 = (sk2, pk1) s.t. pk1, pk2 are the public
keys corresponding to resp. sk1, sk2. Leakage Lfpk is typically omitted in the
works on FPK-AKE, e.g. [3,14], because it is assumed that public keys pk i of
each Pi are public inputs. However, the implicit leakage profile in these works is
Lfpk((skP, pkCP))= (pkP, pkCP) where pkP is a public key corresponding to skP.4

We say that protocol Auth UC-realizes a covert AKE functionality FcAKE if it
does so under a constraint that a real-world party P invoked on input x= ⊥ does
not follow protocol Auth but instead emulates a random beacon Auth$(κ) defined
as follows: In each round, if Auth participant sends an n(κ)-bit message then
Auth$(κ) sends out an n(κ)-bit random bitstring, where κ is a security parameter.
In more detail, a covert AKE functionality FcAKE[C] makes the following changes
to the standard AKE functionality FAKE[C, L]: First, FcAKE eliminates leakage
L(x), equivalently L(x)= ⊥ for all x. Second, FcAKE admits a special input x= ⊥
which designates P as a random beacon, i.e., it tells P to run Auth$(κ) instead
of Auth. Third, FcAKE adds the check that x1 �=⊥ and x2 �=⊥ to the condition
for setting K1 =K2. Fourth, the functionality ensures that if P’s input is ⊥, i.e.
P is a non-participant, then its output is ⊥.

Implications of Covert AKE. The first impact of covert AKE vs. the standard
AKE, is that if we disregard what P1 does with its output key K1, then a mali-

3 Note that Fig. 1 defines AKE as a key exchange without explicit entity authentica-
tion, but the latter can be added to any AKE by testing if parties output the same
key via any key confirmation protocol.

4 In a standard FPK-AKE protocol party P can reveal either key. E.g. Sigma [36] used
in TLS reveals P’s own key pkP, while SKEME [35] reveals key pkCP which party P
assumes for its counterparty, unless it employs key-private encryption [4].

78 K. Eldefrawy et al.

cious P∗
2 cannot distinguish an interaction with a real party P1 (where x1 �= ⊥)

and a random beacon (where x1 =⊥) because in either case FcAKE gives P∗
2 the

same output, a random key K2. Indeed, the only way P∗
2 can distinguish cAKE

participant P1 from a random beacon, is not the cAKE protocol itself, but an
application which P1 might run using cAKE’s output K1. There are three cases
of P1 from P∗

2’s point of view, where x∗
2 is P∗

2’s input to FcAKE:

(1) P1 = protocol party with x1 s.t. C(x1, x
∗
2) = 1, in which case P∗

2 learns K1;
(2) P1 = protocol party with x1 s.t. C(x1, x

∗
2) = 0, in which case K1 is hidden;

(3) P1 = random beacon, represented by x1 = ⊥, in which case K1 = ⊥.

The second property that cAKE adds to a standard AKE is that if the
upper-layer application Π which P1 runs on cAKE’s output K1 continues using
steganographic channels, and P1 encrypts Π’s messages on these channels under
key K1, then P∗

2 cannot distinguish cases (2) and (3). That is, P∗
2 cannot tell a

real-world P1 who ran cAKE on inputs that didn’t match x∗
2 and then runs Π

on cAKE output K1, from a random beacon.5 Detecting case (1) from a random
beacon depends on the upper-layer protocol Π: If Π is non-covert than P∗

2 will
confirm that P1 is a real-world party by running protocol Π on input K1 (which
P∗
2 learns if C(x1, x

∗
2) = 1). However, if protocol Π is itself covert then P1 will

continue to be indistinguishable from a random beacon even in case (1). In other
words, cAKE protocols are composable, e.g. running a covert PIN-authenticated
KE, encrypted by a key created by a covert PAKE, ensures covertness to anyone
except a party who holds both the correct password and the PIN.

Group Covert AKE (Group cAKE). In this work we target a “group”
variant of cAKE. Namely, P’s authentication token is a pair x= (gpk , cert) where
gpk is a public key identifying a group, cert is a certificate of membership in this
group, and the admission function CG(x1, x2) outputs 1 if and only if ∃ gpk
s.t. x1 = (gpk , cert1), x2 = (gpk , cert2), and Ver(gpk , cert1)=Ver(gpk , cert2) = 1,
where Ver stands for certificate verification. In other words, both parties must
assume the same group identified by gpk and each must hold a valid membership
certificate in this group. We assume that key gpk is generated by a trusted group
manager together with a master secret key msk which is used to issue valid
certificates, and that the certification scheme is unforgeable, i.e. that an adversary
which sees any number of valid certificates cert1, ..., certn cannot output cert∗

s.t. Ver(gpk , cert∗) = 1 and ∀ i cert∗ �= cert i.
The above setting of group cAKE is the same as that of group signatures [16],

except that membership certificates are used to authenticate, not to sign,6 and
the authentication is covert. However, note that a straightforward usage of group
signatures for authentication, e.g. where two parties sign a key exchange tran-
script using group signatures, can at best realize FAKE[CG, L] where leakage L

5 This requires encryption with ciphertexts indistinguishable from random bitstrings,
but this is achieved by standard block cipher modes, CBC, OFB, or RND-CTR.

6 Using group signatures for authentication is known as an Identity Escrow [34].

Short Concurrent Covert Authenticated Key Exchange 79

hides Pi’s certificate (and hence Pi’s identity) but reveals the group public key
gpk , because a group signature is verifiable under this key.7

In practice, a certification scheme must admit revocation, i.e. a group man-
ager must be able to revoke a certificate, e.g. by distributing revocation token
rt s.t. (1) there is an efficient procedure Link which links a certificate to this
token, i.e. if Ver(gpk , cert)= 1 then Link(cert , rt) = 1 for rt associated with cert ,
and (2) certificates remain unforgeable in the presence of revocation tokens.8

If Link(cert ,RTset) stands for a procedure which outputs 1 iff ∃ rt ∈ RTset s.t.
Link(cert , rt)= 1, then we define group covert AKE (with revocation), or simply
group cAKE, as FcAKE[CGwr] where CGwr(x1, x2) = 1 iff

1. ∃ gpk s.t. x1 = (gpk , cert1,RTset1) and x2 = (gpk , cert2,RTset2),
2. Ver(gpk , cert1)=Ver(gpk , cert2) = 1,
3. and Link(cert2,RTset1)= Link(cert1,RTset2) = 0.

In other words, parties establish a shared secret key if both assume the same
group public key, both hold valid certificates under this key, and neither certifi-
cate is revoked by the revocation information held by a counterparty.

Applications of Group cAKE. Authentication and key exchange are funda-
mental primitives that regularly precede secure protocols used for distributed
online computations. Identifying executions of such protocols is often used as a
first step when blocking communication [44] or targeting it for filtering or other
attacks [46,48]. Authentication is thus a natural primitive to be protected and
rendered covert to avoid such blocking or targeting. To the best of our knowl-
edge, there are currently no practical covert AKE protocols implemented, let
alone deployed in distributed systems. If they existed, such protocols could help
hide and protect communication required for authentication and key establish-
ment in such systems. Since our work demonstrates that covert authentication
can be realized with a (computation and communication) cost very close to
that required for existing non-covert anonymous authentication (e.g., anony-
mous credentials [11]) or indeed standard non-private authentication (e.g., TLS
handshake with certificate-based authentication), we argue that such protocols
could become an enabling tool in large-scale resilient anonymous communica-
tion systems. Such anonymous communication systems have been the focus of
the recent DARPA research program on developing a distributed system for
Resilient Anonymous communication for Everyone (RACE) [45]. The RACE
program objective was to develop “an anonymous, end-to-end mobile commu-
nication that would be attack-resilient and reside entirely within a contested
network environment,” and its targets included stenographic hiding of commu-
nication participants [45]. An efficient covert authentication could be play an
essential role in such a system.
7 Secret Handshake [2] flips this leakage, realizing FAKE[CG, L′] for L′ that hides gpk

but reveals a one-way function of Pi’s certificate. To complete comparisons, standard
PKI-based AKE realizes FAKE[CG, L′′] s.t. L′′ reveals both a root of trust gpk and a
one-way function of Pi’s certificate, namely Pi’s public key with gpk ’s signature.

8 Here we follow the verifier-local revocation model [10], but other models are possible,
e.g. using cryptographic accumulators [6,12].

80 K. Eldefrawy et al.

Other Variants of Covert AKE. There are other natural variants of covert
AKE which can be implemented using known techniques, but none of them
imply a practical group cAKE. Covert PAKE corresponds to FcAKE[Cpa], for
Cpa defined above. Several known efficient PAKE schemes, e.g. EKE [5] and
SPAKE2 [1], most likely realize FcAKE[Cpa] after simple implementation adjust-
ments, e.g. SPAKE2 should use an elliptic curve with a uniform encoding, which
maps a random curve point to a random fixed-length bitstring, see Sect. 2.1.
(We believe this is likely to hold because these PAKE protocols exchanges ran-
dom group elements, or ideal-cipher encryptions of such elements.) The covert
Fixed Public Key AKE (FPK-AKE) corresponds to FcAKE[Cfpk], for Cfpk defined
above. The work on key-hiding AKE [30] shows that several FPK-AKE protocols,
namely 3DH [40], HMQV [37], and SKEME [35] instantiated with key-private
and PCA-secure encryption, realize FAKE[Cfpk], i.e. FPK-AKE without leakage,
and after similar implementation adjustments as in the case of SPAKE2, these
protocols probably realize FcAKE[Cfpk]. (This is likely to hold for similar rea-
son, because these FPK-AKE protocols exchange random group elements and
ciphertexts.) Another variant is an identity based AKE (IB-AKE), where public
key pk is replaced by an identity and gpk is a public key of a Key Distribution
Center. Covert IB-AKE can be implemented using Identity-Based Encryption
(IBE) with covertly encodable ciphertexts, such as the Boneh-Franklin IBE [9]
given a bilinear map group with a covert encoding.

However, it is unclear how to efficiently implement group cAKE from covert
PAKE, FPK-AKE, or IB-AKE. Using any of these tools each group member
would have to hold a separate token for every other group member (be it a pass-
word, a public key, or an identity), and the authentication protocol would need
to involve n parallel instances of the covert PAKE/FPK-AKE/IB-AKE. Using
the multiplexing technique of [17,39] such parallel execution can be done covertly
at Õ(n) cost, but this would not scale well. Either of these Õ(n)-cost implemen-
tations can be seen as implementing a covert Broadcast Encryption (BE) with
O(n)-sized ciphertext. Indeed, any covert broadcast encryption implies cAKE.
However, even though there are broadcast encryption schemes with sublinear
ciphertexts, e.g. [23], to the best of our knowledge there are no sublinear BE
schemes which are key-private [4], let alone covert.

1.1 Our Contributions

We show the first practical covert group cAKE scheme, with support for certifi-
cate revocation, with the following features:

1. Universally composable (UC) covertness and security: We formalize a univer-
sally composable (UC) [13] functionality for group cAKE, and show a scheme
which realizes it. In particular, this implies that our group cAKE scheme
retains covertness and security under concurrent composition, and that each
session outputs an independent key, as expected of a secure AKE.

2. Practically efficient: Our group cAKE scheme is round minimal, using one
simultaneous flow from each party, and bandwidth efficient, with a message

Short Concurrent Covert Authenticated Key Exchange 81

size of four DDH group elements and two points in a type-3 bilinear curve,
resulting in bandwidth of 351B, factor of 10x improvement over state of the
art. Our group cAKE scheme also has a low computational overhead of 14
exponentiations and 4 + n bilinear maps per party, where n is the size of the
revocation list. Note that these parameters are a constant factor away from
non-covert Group AKE, or indeed any other (A)KE. (The most significant
slowdown compared to standard AKE comes from using bilinear maps.)

Furthermore, the above security and round improvements are enabled by security
improvements in a crucial tool used in covert computation, namely a covert Con-
ditional Key Encapsulation Mechanism (CKEM) [15,32],9 which we construct for
any language with so-called Sigma-protocol, i.e. a 3-round public-coin honest-
verifier zero-knowledge proof of knowledge [20]. Covert CKEM is a covert KEM
version of Witness Encryption [26]: It allows the sender to encrypt a key under
a statement x, where decryption requires knowledge of a witness w for member-
ship of statement x in a language L chosen at encryption. This KEM is covert if
the ciphertext is indistinguishable from a random string, and in particular can-
not be linked to either language L or statement x. The security improvements
in covert CKEM are of independent interest because covert CKEM is a covert
counterpart of a zero-knowledge proof, and as such it is a general-purpose tool
which can find applications in other protocols.

Technical Overview. The high-level idea of our group cAKE construction fol-
lows the blueprint used for group cAKE by Jarecki [32]. Namely, it constructs
group cAKE generically from a covert Identity Escrow (IE) scheme [34] and
a covert CKEM: Each party sends a (covert) commitment to its IE certifi-
cate to the counterparty, and each party runs a CKEM, once as the sender
(S) and once as the receiver (R), where the latter is proving ownership and
validity of the committed certificate. Each party runs the CKEM once as the
receiver and once as the sender, since the protocol covertly computes an AND
statement: given (gpk , cert) from P and (gpk ′, cert ′) from P′, it checks that
(cert ∈ LIE(gpk ′)) ∧ (cert ′ ∈ LIE(gpk)) where LIE(gpk) is the language of valid
IE certificates generated under gpk . Finally, each party checks the received com-
mitted certificate against their revocation list.10 If the revocation check passes,
each party uses the two CKEM outputs to derive a session key.

The main technical challenge is constructing provable secure group cAKE
which is universally composable. To achieve this we implement several significant
upgrades to the covert CKEM notion defined and constructed in [32] (for the
same general class of languages with Sigma-protocols):
(1) First, we combine strong soundness of [32] and simulation-soundness of [7] to
strong simulation-soundness. I.e., we require an efficient extractor that extracts
a witness from an attacker who distinguishes S’s output key from random on

9 Covert CKEM was called ZKSend in [15]. Variants of (covert or non-covert) CKEM
notion include Conditional OT [19], Witness Encryption [26], and Implicit ZK [7].

10 This requires a special-purpose commitment which is hiding only in the sense of
one-wayness, and which allows linking a revocation token to a committed certificate.

82 K. Eldefrawy et al.

instance x in the presence of a simulator which plays R role on any instance
x′ �= x. Strong simulation-soundness is needed in a concurrent group cAKE to
let the reduction extract a certificate forgery from an attacker who decrypts a
covert CKEM on a statement corresponding to a non-revoked certificate, while
the reduction simulates all CKEM’s on behalf of honest R’s.
(2) Second, we amend covert CKEM with a postponed-statement zero-knowledge
property, i.e. we require a postponed-statement simulator for simulating the
CKEM on behalf of a receiver R. Such simulator must compute the same key
an honest R would compute, and do so not only without knowing R’s witness
but also without knowing the statement used by R, until after all covert CKEM
messages are exchanged. A group cAKE scheme requires this property because
the simulator cannot know a priori the group to which a simulated party belongs,
and hence cannot know the “I am a member of group [...]” statement on which
this party runs as a CKEM receiver R. However, once the functionality reveals
e.g. that the simulated R is a member of the same group as the attacker, the
simulator must complete the R simulation on such adaptively revealed statement.
(3) The third change is that we cannot disambiguate between proof/CKEM
instances using labels, which were used to separate between honest and adver-
sarial CKEM instances in e.g. [33]. This change stems from the fact that whereas
in many contexts protocol instances can be tied to some public unique identifiers
of participating parties, we cannot use such public identifiers in the context of
covert authentication. We deal with this technical challenge by strengthening
the strong simulation-soundness property (1) above even further, and requiring
witness extractability from adversary A which decrypts in interaction with a
challenge S(x) instance, even if A has access to (simulated) R(x′) instances for
any x′ values, including x′ = x, with the only constraint that no A-R transcript
equals the A-S transcript. Note that the excluded case of such transcripts being
equal corresponds to a passive attack, i.e. A just transmitting messages between
challenge oracles S and R, a case with which we deal separately.

We construct a covert CKEM, for any Sigma-protocol language, which sat-
isfies this stronger covert CKEM notion, by using stronger building blocks com-
pared to the (Sigma-protocol)-to-(Covert-CKEM) compiler of [32]. First, we
rely on smooth projective hash functions (SPHF) with a property akin to PCA
(plaintext checking attack) security of encryption. Using Random Oracle hash in
derivation of SPHF outputs it is easy to assure this property for standard SPHF’s
of interest. Secondly, we use covert trapdoor commitments, with commitment
instances defined by a random oracle hash applied to CKEM statements, to
enable postponed-statement simulation required by property (2) above. (Intu-
itively, trapdoor commitments allow the simulator to open a message sent on
behalf of an honest party as a CKEM ciphertext corresponding to a group mem-
bership which the functionality reveals in response to a subsequent active attack
against this party.)

We achieve low bandwidth of the fully instantiated group cAKE by instanti-
ating the above with the Identity Escrow scheme implied by Pointcheval-Sanders
(PS) group signatures [42]. The resulting IE certificates involve only two elements

Short Concurrent Covert Authenticated Key Exchange 83

of a type-3 bilinear pairing curve [25], which can be covertly encoded using the
Elligator Squared encoding of Tibouchi [47], with a hash onto group due to
Wahby and Boneh [50]. The CKEM part (for the language of valid IE certifi-
cates) requires sending only 4 group elements (3 for R and 1 for S), and can be
implemented over a standard curve, which can be covertly encoded using e.g.
the Elligator-2 encoding of Bernstein et al. [8].

Restriction to Static Corruptions. We note that our group cAKE scheme
realizes the UC group cAKE model only for the case of static corruptions, i.e.
the adversary can compromise a certificate or reveal a corresponding revocation
token only if this certificate has never been used by an honest party. This is
because our group cAKE scheme has no forward privacy or covertness. In par-
ticular, all past sessions executed by a party on some certificate become identi-
fiable, and hence lose covertness (but only covertness, and not security), if this
certificate is compromised at any point in the future. This lack of forward privacy
comes from the verifier-local revocation mechanism. Enabling forward privacy in
the face of revocation, and doing so covertly, introduces new technical challenges.
For example, we can use our CKEM for a covert proof that a committed certifi-
cate is (or is not) included on a most recent (positive or negative) accumulator
(e.g. [41]) for a given group. However, it is not clear how two group members can
covertly deal with a possible skew between the most recent accumulator values
they assume. We leave solving such challenges to future work.

Related Works. Von Ahn, Hopper, and Langford [49] introduced the notion
of covert 2-party computation and achieved it by performing O(κ) repetitions of
Yao’s garbled circuit evaluations. The underlying circuit was also extended by a
hash function. This protocol guaranteed only secrecy against malicious partici-
pants and not output correctness. Chandran et al. [15] extended this to multiple
parties while achieving correctness, but their protocol was also non-constant-
round, and its efficiency was several orders of magnitude over known non-covert
MPC protocols since each party covertly proves it followed a GMW MPC proto-
col by casting it as an instance of the Hamiltonian Cycle problem. Further, that
proof internally used Yao’s garbled circuits for checking correctness of committed
values. Goyal and Jain [29] subsequently showed that non-constant-round pro-
tocols are necessary to achieve covert computation with black-box simulation
against malicious adversaries, at least in the plain MPC model, i.e., without
access to some trusted parameters. Hence, the former two constructions’ ineffi-
ciencies are necessary without a trusted setup. Jarecki [32] showed a constant-
round covert AKE with O(1) public key operations satisfying a game-based,
group-based covert AKE definition with a trusted setup. This protocol has a
somewhat large communication cost: three rounds and large bandwidth since
it uses composite-order groups. Recently, Kumar and Nguyen [38] gave the first
post-quantum covert group-based AKE with trusted setup by adopting Jarecki’s
construction [32] to a lattice-based construction (three rounds in the ROM).
Kumar and Nguyen do not provide bandwidth estimates, but we expect them
to be somewhat large compared to Jarecki’s original construction since they rely
on trapdoor lattices [27].

84 K. Eldefrawy et al.

None of the aforementioned works are proven secure in the UC framework
[13]. Cho, Dachman-Soled, and Jarecki [17] achieve UC security for covert MPC
of two specific functionalities, namely string equality and set intersection. The
work of Jarecki [33] achieves UC secure 2PC for any function, but its efficiency
is constant-round and sends O(κ|C|) symmetric ciphertexts and O(nκ) group
elements where C is a boolean circuit with n input bits for the function to be
computed. Implementing covert group-based authenticated key exchange using
such generic protocol would be exceedingly costly. An open question is if the
covert group-based AKE of [32] is secure as-is in the UC model despite [32]
using a weaker instantiation of a covert CKEM.

Organization. Section 2 provides preliminaries. Section 3 presents a universally
composable (UC) model of group covert authenticated key exchange (group
cAKE). Section 4 reviews the building blocks used in our construction, namely
covert trapdoor commitments, SPHF’s, and an Identity Escrow (IE). Section 5
uses the first two of these tools to construct a covert CKEM, a key modular com-
ponent of our group cAKE. The group cAKE scheme itself is shown in Sect. 6.
For space constraint reasons, all security proofs, and an overview of our proof of
concept implementation, are deferred to the full version of the paper [22].

2 Preliminaries

We reserve κ for the security parameter throughout the paper. The uniform
distribution on a finite set S is denoted as U(S). We write x ←R X for a random
variable sampled from distribution X , and we write x ←R S for x ←R U(S).

Standard Notation, Σ-Protocols. For lack of space, we defer the review of
standard notions of computational and statistical indistinguishability, notation
for groups with bilinear maps, and the review of Σ-protocols, a special form of
honest-verifier zero-knowledge proof of knowledge [20], to the full version of the
paper on eprint [22]. We note that in this work we assume a slightly strengthened
form of Σ-protocols than in [20], where (1) both the verifier and the simulator use
the same function to recompute the prover’s first message from the rest of the
transcript, (2) prover’s response is a deterministic function of prior messages,
and (3) the simulator samples that response from some uniformly encodable
domain (see [22] for more details).

2.1 Covert Encodings and Random Beacons

We recall the covert encoding and random beacon notions used in steganography.

Definition 2.1. Functions (EC,DC) form a covert encoding of domain D if
there is an l s.t. EC : D → {0, 1}l, DC : {0, 1}l → D is an inverse of EC, and
EC(U(D)) is statistically close to the uniform distribution on {0, 1}l. Function
EC can be randomized but DC must be deterministic. In case EC is randomized
we require EC(U(D); r) to be statistically close to uniform when EC’s randomness
r is a uniform random bitstring of fixed length.

Short Concurrent Covert Authenticated Key Exchange 85

Definition 2.2. We call a finite set S uniformly encodable if it has a covert
encoding. Further, a family of sets S := {S[π]}π∈I indexed by some indexing set
I is uniformly encodable if S[π] is uniformly encodable for each π ∈ I.

Uniformly Encodable Domains. We use the following two uniformly encod-
able sets throughout the paper: (1) an integer range [n] = {0, ..., n− 1}, and (2)
points on an elliptic curve. For the former, if n is near a power of two then we
can send an integer sampled in U([n]) as is. Otherwise, for any t we can encode
t-tuple (ai)i∈[t] sampled from U([n]t) as

∑t−1
i=0 ai · ni + r · nt for r ←R [m] where

m =
2log2(n)+κ/n�. (See e.g. Sect. 3.4 of [47] for a proof.) For uniform encodings
of elliptic curve points we require two sub-cases: (2a) a curve in Montgomery
form and (2b) a pairing friendly curve. In case (2a) we can use the Elligator-2
encoding [8], which takes a random point sampled from a subset S of group
G = E(Fp), where |S|/|G| ≈ 1/2, and injectively maps it to integer range
[(p − 1)/2]. This map is then composed with a uniform encoding of this integer
range. In the random oracle model, if H is an RO hash onto G, see e.g. [50], a
simple way to encode point P sampled from the whole group, i.e. P ←R U(G) as
opposed to P ←R U(S), is to sample r ←R {0, 1}κ until Q = H(r) + P is in S,
where G is a generator of G, and output z = Elligator-2(Q)||r (see [22]). In case
(2b) we can use Tibouchi’s Elligator Squared encoding [47], which represents
a random curve point as a pair of random elements of base field Fq. This ran-
domized map is then composed with a uniform encoding of [q]2, implemented as
above. In summary, Elligator-2 admits a more narrow class of curves than Elli-
gator Squared, but using the above methods, the former creates slightly shorter
encodings than the latter, resp. |p| + 2κ vs. 2|q| + κ bits.

Random Beacons. The term random beacon refers to a network node or party
which broadcasts random bitstrings. Such randomness sources are used for covert
communication and here we use it for covert authentication, and, more generally,
covert computation. We use B$(κ) where B is an interactive algorithm to denote a
random beacon equivalent of B. Namely, if B has a fixed number of rounds and ni

is a polynomial s.t. for each i, the i-th round message of B has (at most) ni(κ)
bits, then B$(κ) is an interactive “algorithm” which performs no computation
except for sending a random bitstring of length ni(κ) in round i.

3 Universally Composable Model for Group Covert AKE

As discussed in the introduction, we define group covert AKE (group cAKE)
as a covert group Authenticated Key Exchange, i.e. a scheme which allows two
parties certified by the same authority, a.k.a. a group manager, to covertly and
securely establish a session key. Covert AKE must be as secure as standard AKE,
i.e. an adversary who engages in sessions with honest parties and observes their
outputs cannot break the security of any session except by using a compromised
but non-revoked certificate. In addition, the protocol must be covert in the sense
that an attacker who does not hold a valid and non-revoked certificate not only

86 K. Eldefrawy et al.

cannot authenticate to an honest party but also cannot distinguish interaction
with that party from an interaction with a random beacon. If such protocol is
implemented over a steganographic channel [31] a party who does not have valid
authentication tokens not only cannot use it to authenticate but also cannot
detect if anyone else uses it to establish authenticated connections.

We define a group cAKE scheme as a tuple of algorithms (KG,CG,Auth) with
the following input/output behavior:

– KG is a key generation algorithm, used by the group manager, s.t. KG(1κ)
generates the group public key, gpk , and a master secret key, msk .

– CG is a certificate generation algorithm, used by the group manager, s.t.
CG(msk) generates a membership certificate cert with a revocation token rt .

– Auth is an interactive algorithm used by two group members to (covertly)
run an authenticated key exchange. Each party runs Auth on local input
(gpk , cert ,RTset), where RTset is a set of revocation tokens representing
revoked parties. Each party outputs (K , rt), where K ∈ {0, 1}κ ∪ {⊥} is a
session key (or ⊥ if no key is established) and rt ∈ RTset∪ {⊥} is a detected
revocation token in RTset, or ⊥ if Auth participant does not detect that a
counterparty uses a certificate corresponding to a revocation token in RTset.

Our notion of AKE does not include explicit entity authentication, i.e., a party
might output K �= ⊥ even though its counterparty is not a valid group member.
However, since key K is secure, the parties can use standard key confirmation
methods to explicitly authenticate a counterparty as a valid group member who
computed the same session key. Moreover, Auth can remain covert even after
adding key confirmation, e.g. if key confirmation messages are computed via
PRF using key K . Note that in the definition above a real-world party P can
output K = ⊥, which violates the (simplified) covert mutual authentication
model of Fig. 1 in Sect. 1. However, w.l.o.g. P is free to run any upper-layer
protocol Π that utilizes Auth output K by replacing K = ⊥ with a random key,
thus preserving its covertness if protocol Π is covert.

Universally Composable Group cAKE. We define security of group cAKE
via a universally composable functionality Fg-cAKE shown in Fig. 2, and we say
that scheme Π = (KG,CG,Auth) is a group cAKE if Π UC-realizes functionality
Fg-cAKE in the standard sense of universal composability [13]. However, we adapt
the UC framework [13] to the covert computation setting so that environment
Z can pass to party P executing an AKE protocol Auth a special input ⊥, which
causes party P to play a role of a random beacon. (The same convention was
adopted by Chandran et al. [15] with regards to one-shot secure computation.)
For simplicity of notation we assume that protocol Auth is symmetric, i.e., the
two participants act symmetrically in the protocol, and that it has a fixed number
of rounds. In this case, on input (NewSession, ssid,⊥) from Z, this party’s session
indexed by identifier ssid is replaced by a random beacon, i.e., it will run Auth$(κ)

instead of Auth, see Sect. 2.
In Definition 3.1 we use the notation of [13], where IdealFg-cAKE,A∗,Z(κ, z)

stands for the output of environment Z in the ideal-world execution defined

Short Concurrent Covert Authenticated Key Exchange 87

by the ideal-world adversary (a.k.a. simulator) algorithm A∗ and functionality
Fg-cAKE, for security parameter κ and Z’s auxiliary input z, and RealΠ,A,Z(κ, z)
stands for Z’s output in the real-world execution between a real-world adversary
A and honest parties acting according to scheme Π, extended as specified above
in case party P receives Z’s input (NewSession, ssid,⊥).

Definition 3.1. Protocol Π = (KG,CG,Auth) realizes a UC Covert Authenti-
cated Key Exchange if for any efficient adversary A there exists an efficient
ideal-world adversary A∗ such that for any efficient environment Z it holds that

{IdealFg-cAKE,A∗,Z(κ, z)}κ∈N,z∈{0,1}∗ ≈c {RealΠ,A,Z(κ, z)}κ∈N,z∈{0,1}∗

Group cAKE Functionality. We explain how functionality Fg-cAKE oper-
ates and how it differs from a standard AKE functionality, e.g. [14,37]. Note
that functionality Fg-cAKE in Fig. 2 is much more complex than functionality
FcAKE[CGwr] in Fig. 1 in Sect. 1. The first difference are environment commands
GInit and CertInit, which are used to initialize groups and generate membership
certificates, and commands CompCert and RevealRT, which model adversarial
compromise of resp. certificates and revocation tokens (which are not assumed
public by default). Command NewSession models party P engaging in group
cAKE on input x = (gpk , cert ,RTset), exactly as FcAKE[CGwr] of Fig. 1, except
that in Fg-cAKE these real-world inputs are replaced by ideal-world identifiers,
resp. gid, cid,RTcids. One aspect of functionality Fg-cAKE is that there can be
many number of such sessions present, and the adversary can “connect” any pair
of such sessions, by passing their messages. Secondly, the adversary can actively
attack any session using some compromised group certificate, and functionality
Fg-cAKE carefully delineates the effect of such attack based on whether the group
assumed by the attacker matched the one used by the attacker party, and if so
then whether the certificate used by the attacker was revoked by the attacked
party.

Below we explain how we model secure initialization and party interactions
with the group manager, and we briefly overview how we model compromise
of credentials and revealing of revocation tokens, and how Fg-cAKE models key
establishment and active (or passive) session attacks. For a more detailed walk
through functionality Fg-cAKE, see the eprint version of this paper [22].

Secure Initialization and Trusted Group Manager. A crucial difference
between Fg-cAKE and standard AKE is that in the latter each party can function
on its own, creating its (private, public) key pair, e.g. as in [30], maybe accessing a
global certificate functionality, e.g. as in [14]. By contrast, the Covert AKE model
Fg-cAKE must explicitly include a group manager party, denoted GM, initialized
via query (GInit, gid) which models generation of a group public key indexed by a
unique identifier gid. Consequently, the Fg-cAKE model assumes a trusted party,
secure channels at initialization, and secure distribution of revocation tokens. We
explain each of these assumptions in turn. Note that identifier gid in command
(GInit, gid) is associated with that group instance by each party P, which can
be realized if GM has a reliable authenticated connection to each party, which

88 K. Eldefrawy et al.

Fig. 2. Fg-cAKE: Group cAKE functionality, static corruptions enforced by boxed text

Short Concurrent Covert Authenticated Key Exchange 89

allows authenticated broadcast of gpk . GM is assumed trusted because the model
does not allow a compromise of GM or the master secret msk held by GM.
Furthermore, when Z’s command (CertInit, gid, cid) to party P, prompting it to
generate a membership certificate with identifier cid (assumed unique within
group gid), we assume that only P can later use it to authenticate. Looking
ahead, we will implement CertInit relying on a secure channel between P and
GM. Party GM will generate the certificate identified by cid, it will send it to P
on the secure channel, and GM will be trusted not to use the certificate itself.

The above assumptions pertain to initialization procedures, but the on-line
authentication will rely on the secure P-to-GM channels in one more aspect,
namely for secure delivery of revocation tokens. The environment tells P to run
the authentication protocol via query (NewSession, ssid, gid, cid,RTcids), which
models P starting an AKE session using its certificate identified by cid within
group gid, where RTcids is a set of identifiers of revoked certificates which P
will use on this session. Crucially, at this step an implementation must allow P
to translate this set of certificate identifiers RTcids into a set RTset of actual
revocation tokens corresponding to these certificates. This can be realized e.g. if
the trusted party GM stores the revocation tokens for all certificates it generates
and that the P-GM channel allows for secure and authenticated transmission of
the revocation tokens from GM to P whenever the environment requests it by
including them in set RTcids input to P in some NewSession query. Note that
the environment can set RTcids in an arbitrary way, which models e.g. parties
that do not receive the revocation tokens of all compromised parties.11

Static Compromise Model. Adversary can compromise any certificate, using
command (CompCert, gid,P, cid), and it can reveal the revocation information
corresponding to any certificate, using command (RevealRT, gid,P, cid). The first
command adds cid to the set CompCertgid of compromised certificate identifiers
in group gid, and both commands add cid to the set RevRTgid of certificate
identifiers whose revocation tokens are revealed to the adversary. A compromised
certificate cid allows the adversary to actively authenticate to other parties using
interface Impersonate, whereas a revealed revocation token implies that party P
which uses it to authenticate can be identified by the adversary, and hence no
longer covert (see the second clause in NewSession interface). Finally, we allow
only for static corruptions, which is implied by marked text fragments in Fig. 2,
which impose that an adversary can compromise a certificate and/or reveal a
revocation token only if this certificate was never used by an honest party. This
is because the group cAKE scheme we show in this work has no forward privacy,
i.e., all past sessions executed by a party on some certificate become identifiable,
and hence lose covertness, if this certificate is compromised at any point in the
future. Because it appears difficult to capture a notion of “revocable covertness”,
i.e., that protocol instances remain covert until a certificate they use is revealed,
we forego on trying to capture such property and limit the model by effectively

11 To see an example of how real-world parties can use scheme Π = (KG,CG,Auth) to
implement the environment’s queries to Fg-cAKE, please see Fig. 5 in Sect. 6.

90 K. Eldefrawy et al.

requiring that the adversary corrupts all certificates and reveals all revocation
tokens at the beginning of the interaction.

AKE Session Establishment and Attacks. Party P starts an AKE session
via command (NewSession, ssid, gid, cid,RTcids). Values gid, cid,RTcids can either
form an input to a real protocol party, or they can be ⊥, in which case this
command triggers an execution of a random beacon. Crucially, if cid is not in
RevRTgid, i.e. a party runs on a certificate whose revocation token is not revealed,
then A∗ gets the same view of the real-world protocol as its view of the random
beacon, i.e. A∗ gets (NewSession,P, ssid,⊥) in either case. Below we will use a
word “session” for both real sessions and random beacons. The adversary can
react to sessions in 3 ways: (1) it can interfere in them, using query Interfere,
which makes real sessions output random keys K on termination, modeled by
query NewKey (random beacon sessions always output K = ⊥, regardless of
adversarial behavior towards them); (2) it can passively connect them to another
session, using query Connect, which will make the two sessions establish a shared
key at termination if they assume same group gid and use certificates which are
not on each other’s revocation lists (otherwise they output independent random
keys); or (3) it can actively attack P’s session using a compromised certificate
cid∗ for some target group gid∗, as modeled by query Impersonate: If gid∗ matches
the gid used by P then Fg-cAKE marks P’s session compromised(cid∗), but when
this session terminates via NewKey then Fg-cAKE lets A∗ set its key to K ∗ only
if cid∗ is not in RTcids used by P. Otherwise P outputs K = ⊥ and cid∗ as the
identifier of a revoked party which P “caught” in this interaction.

(For a more detailed walk-through of the Fg-cAKE session attack and termi-
nation interfaces see the eprint version of the paper [22].)

Note on the Environment. An environment plays a role of an arbitrary appli-
cation utilizing the group cAKE scheme. The role of group cAKE is to make real
AKE sessions indistinguishable from random beacons, but the two send different
outputs to the environment: the former outputs keys, the latter do not. If the
environment leaks that output to the adversary then the benefit of covertness
will disappear. However, this is so in the real-world: If an adversary can tell
that two nodes use the established key to communicate with each other, they
will identify these parties on the application level and the covert property of the
AKE level was “for naught”, at least in that instance. However, if the upper-layer
communication stays successfully hidden in some steganographic channel, then
the adversary continues being unable to detect these parties. The versatility of
a universally composable definition is that it implies the maximum protection
whatever the strength of the upper-layer application: If the upper-layer allows
some sessions to be detected (or even leaks the keys they use), this information
does not help to detect other sessions, and it does not help distinguish anything
from the cryptographic session-establishment protocol instances. The same goes
for the revocation information the AKE sessions take as inputs: If the upper-
layer detects compromised certificates and delivers the revocation information
to all remaining players, the adversary will fail to authenticate to other group
members and it will fail to distinguish their session instances from random bea-

Short Concurrent Covert Authenticated Key Exchange 91

cons. If the revocation information does not propagate to some group member,
the adversary can detect that party using a compromised certificate, but this
inevitable outcome will not help the attacker on any other sessions.

4 Building Blocks: Commitment, SPHF, Identity Escrow

Our group cAKE construction consists of (1) each party sending out a blinded
covert Identity Escrow (IE) certificate, and (2) each party verifying the coun-
terparty’s value using a covert Conditional Key Encapsulation Mechanism
(CKEM). (This group cAKE construction is shown in Fig. 6 in Sect. 6.) The
covert CKEM construction in turn uses a covert Trapdoor Commitment and a
covert Smooth Projective Hash Function (SPHF) which must be secure against
a Plaintext Checking Attack (PCA). In this section we define and show effi-
cient instantiations for each of the three above building blocks, i.e. covert Trap-
door Commitments, in Subsect. 4.1, PCA-secure covert SPHF, in Subsect. 4.2,
and covert IE, in Subsect. 4.3. (The construction of covert CKEM using trap-
door commitments and PCA-secure SPHF is shown in Sect. 5.) To fit bandwidth
restrictions of steganographic channels we instantiate all tools with bandwidth-
efficient schemes, using standard prime-order elliptic curve group for the Trap-
door Commitment and SPHF, and type-3 curves with bilinear pairings for IE.

4.1 Covert Trapdoor Commitment

For the reasons we explain below, we modify the standard notion of a Trap-
door Commitment [24] by splitting the commitment parameter generation into
two phases. First algorithm GPG on input the security parameter κ samples
global commitment parameters π, and then algorithm PG on input π samples
instance-specific parameters π. The commitment and decommitment algorithms
then use pair (π, π) as inputs. The trapdoor parameter generation TPG runs on
the global parameters π output by GPG, but it generates instance parameters π
with the trapdoor tk . Then, the trapdoor commitment algorithm TCom on input
π generates commitment c with a trapdoor td , and the trapdoor decommitment
algorithm TDecom on input (π, π, c, tk , td ,m) generates decommitment d . Cru-
cially, the trapdoor commitment TCom takes only global parameters as inputs,
which allows a simulator to create trapdoor commitments independently from
the instance parameters π.

Definition 4.1. Algorithm tuple (GPG,PG,Com,Decom) forms a trapdoor
commitment scheme if there exists algorithms (TPG,TCom,TDecom) s.t.:

– GPG(1κ) samples global parameters π and defines message space M
– PG(π) samples instance parameters π
– Com(π, π,m) outputs commitment c and decommitment d
– Decom(π, π, c,m, d) outputs 1 or 0

– TPG(π) outputs instance parameters π with trapdoor tk

92 K. Eldefrawy et al.

– TCom(π) outputs commitment c with trapdoor td
– TDecom(π, π, c, tk , td ,m) outputs decommimtment d

The correctness requirement is that if π ← GPG(1κ), π ← PG(π), and (c, d) ←
Com(π, π,m) then Decom(π, π, c,m, d) = 1.

Definition 4.2. We say that a trapdoor commitment scheme forms a covert
perfectly-binding trapdoor commitment if it satisfies the following:

1. Trapdoored and non-trapdoored distributions indistinguishability: For any m
tuples (π, π, c, d) generated by the following two processes are computationally
indistinguishable: sample π ← GPG(1κ) and fix any m ∈ M,

P0 : π ← PG(π), (c, d) ← Com(π, π,m)
P1 : (π, tk) ← TPG(π), (c, td) ← TCom(π),

d ← TDecom(π, π, c, tk , td ,m)

2. Perfect binding: If π ← GPG(1κ) and π ← PG(π), then for any c,m,m ′, d , d ′

it holds except for negligible probability over the coins of GPG and PG, that if
Decom(π, π, c,m, d) = Decom(π, π, c,m ′, d ′) = 1 then m = m ′.

3. Covertness: There is a uniformly encodable set family S s.t. for any m, tuples
(π, π, c) and (π, π, c′) are computationally indistinguishable for π ← GPG(1κ),
π ← PG(π), c ← Com(π, π,m), c′ ←R U(S[π]).

Discussion. The first property is specialized for scenarios where each com-
mitment instance π is used only for a single commitment. This restriction is
not necessary for the implementation shown below, but we use it for simplicity
because it suffices in our CKEM application. Note that perfect binding prop-
erty holds on all non-trapdoored commitment instance parameters π, and it is
unaffected by the equivocability of commitments pertaining to any trapdoored
commitment instances π′. Observe also that the covertness property implies the
standard computational hiding property of the commitment. Finally, we note
that the above properties do not imply non-malleability, and we defer to Sect. 5
for the intuition why that suffices in the CKEM application.

Random Oracle Applications. In the Random Oracle Model (ROM) it can
be convenient to replace the instance generator algorithm PG with a random
oracle, but for that we need an additional property:

Definition 4.3. We say that a trapdoor commitment scheme has RO-
compatible instance parameters if each π output by GPG(1κ) defines set C[π] s.t.
(1) distribution {π}π←PG(π) is computationally indistinguishable from uniform
in C[π], and (2) there exists an RO-indifferentiable hash function H : {0, 1}∗ →
C[π].

The above property allows an application to set instance parameters as π :=
H(lbl), where string lbl can be thought of as a label of that commitment instance.
If a label can be uniquely assigned to a committing party then for all labels

Short Concurrent Covert Authenticated Key Exchange 93

corresponding to adversarial instances the simulator can set H(lbl) by sampling
PG(π), which makes all these instances perfectly binding, while for all labels
corresponding to honest parties the simulator can set H(lbl) by sampling TPG(π),
which makes all these instances equivocable.

In the CKEM application, Sect. 5, the label lbl is a statement x used in a given
CKEM instance. In this way the simulator can “cheat” in the CKEM’s on state-
ments of the simulated parties without affecting the soundness of the CKEM’s
executed by the adversarial parties.12 The same CKEM application also moti-
vates why it is useful for the trapdoor commitment TCom to be independent
of a commitment instance parameter π. Namely, this enables the “statement-
postponed zero-knowledge” property in the CKEM application, where the sim-
ulator at first does not know the statement x used by the CKEM sender on
the onset of simulation, but it can use TCom(π) to create an equivocable com-
mitment, which it can then open to an arbitrary message for any parameter
π = H(x) generated in the trapdoored way.

Instantiation. The trapdoor commitment scheme satisfying all properties of
Definitions 4.1, 4.2 and 4.3, can be implemented with a “Double Pedersen”
commitment in a DDH group G of order q with covert encoding and RO hash
onto the group: Global parameters are π = (g1, g2) ←R G

2, instance parameters
are π = (h1, h2) ←R G

2, and the commitment is c = (gd1 · hm
1 , gd2 · hm

2) where
d ←R Zq is a decommitment. Trapdoor generators TPG and TCom set resp.
(h1, h2) = (gtk1 , gtk2) for tk ←R Zq and c = (gtd1 , gtd2) for td ←R Zq , and trapdoor
decommitment to m opens d s.t. td = d + tk · m mod q . The security proofs for
this construction are deferred to the full version of the paper [22].

4.2 Covert SPHF with PCA-Security

A smooth projective hash function (SPHF) for an NP language L, introduced
by Cramer and Shoup [18], allows two parties to compute a hash on a statement
x ∈ L where one party computes the hash using a random hash key hk and the
statement x, and the other can recompute the same hash using a projection key
hp corresponding to hk and a witness w for x ∈ L. The smoothness property is
that if x �∈ L then the hash value computed using key hk on x is statistically
independent of the projection key hp. In other words, revealing the projection
key hp allows the party that holds witness w for x ∈ L to compute the hash
value, but it hides this value information-theoretically if x �∈ L. In this work we
require two additional properties of SPHF, namely covertness and One-Wayness
under Plaintext Checking Attack (OW-PCA) security, which we define below.

Definition 4.4. A covert smooth projective hash function (covert SPHF) for
NP language L parameterized by π, is a tuple of PPT algorithms (HKG, Hash,
PHash) and set family H indexed by π, where HKG(π) outputs (hk , hp), and
PHash(x,w, hp) and Hash(x, hk) both compute a hash value v s.t. v ∈ H[π].
Furthermore, this tuple must satisfy the following properties:
12 Except if an adversarial party copies a statement of the honest party, in which case

CKEM security comes from the PCA security of SPHF, see Sect. 4.2.

94 K. Eldefrawy et al.

– Correctness: For any (π, x, w) s.t. x ∈ L[π] and w is a witness for x, if
(hk , hp) ← HKG(π) then Hash(x, hk) = PHash(x,w, hp).

– Smoothness: For any π and x �∈ L[π], hash Hash(x, hk) is statistically close
to uniform over H[π] even given hp, i.e. tuples (hp, v) and (hp, v ′) are sta-
tistically close for (hk , hp) ← HKG(π), v ← Hash(x, hk), and v ′ ←R U(H[π]).
Moreover, space H[π] must be super-polynomial in the length of π.

– Covertness: There is a uniformly encodable set S s.t. for any π, distribution
{hp}(hk ,hp) ←R HKG(π) is statistically close to uniform over S[π].

One-Wayness under Plaintext-Checking Attack (OW-PCA) for
SPHF. We define OW-PCA security notion for SPHF in analogy with OW-PCA
security of Key Encapsulation Mechanism (KEM). OW-PCA security of KEM
[28,43] asks that for a random KEM public key pk and ciphertext c, an efficient
attacker cannot, except for negligible probability, output the key k encrypted
in c even given access to a Plaintext-Checking (PCA) oracle, which holds the
corresponding secret key sk and for any (ciphertext,key) query (c′, k′) outputs
1 if k′ = Dec(sk , c′) and 0 otherwise. An SPHF can implement a KEM if L is
hard on average, i.e. if on random x ∈ L it is hard to compute the corresponding
witness w, because statement x, witness w, projection key hp, and hash value v
could play the KEM roles of respectively pk , sk , c, and k. We define the OW-
PCA property of SPHF as requiring that such KEM scheme is OW-PCA secure,
i.e. that for a random (statement, witness) pair (x,w) in L and random HKG(π)
outputs (hk , hp), an efficient attacker cannot output v = Hash(x, hk) even given
access to a PCA oracle, which holds the witness w and for any query (hp′, v ′)
outputs 1 if v ′ = PHash(x,w, hp′) and 0 otherwise.

Following the above parallel to the OW-PCA property of KEM, statement
x, which acts like a public key, should be randomly sampled by the challenger.
However, in the CKEM applications of Sect. 5, we need OW-PCA SPHF for
statements chosen from a “mixed” distribution, where part the statement is
arbitrarily chosen by the adversary and only part is randomly sampled by the
challenger. Specifically, we will consider language LCom of valid commitments
in a covert perfectly-binding trapdoor commitment scheme, see Definition 4.2,
parameterized by global commitment parameters π:

LCom[π] = {(π,m, c) | ∃ d s.t. Decom(π, π, c,m, d) = 1} (1)

Further, we will need OW-PCA security to hold for statements x = (π,m, c)
where components (π,m) are chosen by the adversary on input π while compo-
nent c together with witness d is chosen at random by the OW-PCA challenger.

In general, let L be parameterized by strings π sampled by alg. PGsphf(1κ),
let Lpre[π] be a language of fixed-length prefixes of elements in L[π], and for any
π and xL ∈ Lpre[π], let

RL[π, xL] = {(xR, w) | s.t. (xL, xR) ∈ L[π] and w is its witness}.

Notably from in Eq. 1, xL = (π,m), xR = c, and the witness w is the decommit-
ment d . We define OW-PCA of SPHF for L as follows:

Short Concurrent Covert Authenticated Key Exchange 95

Definition 4.5. SPHF for language L with parameter generation algorithm
PGsphf and prefix language Lpre is One-Way under Plaintext Checking Attack
(OW-PCA) if for any efficient A the following probability is negligible:

Pr [v = Hash(x, hk) | v ← APCA(w,·)(π, x, hp, st)]

where π ← PGsphf(1κ), (xL, st) ← A(π) s.t. xL ∈ Lpre[π], (xR, w) ←R RL[π, xL],
x ← (xL, xR), (hk , hp) ← HKG(π), and oracle PCA(w, ·) on queries (hp′, v ′)
from A outputs 1 if v ′ = PHash(x,w, hp′) and 0 otherwise.

Instantiation. Language LCom[π] in Eq. 1 has a well-known SPHF which sat-
isfies all properties in Definitions 4.4 and 4.5 for the “Double Pedersen” com-
mitment described in Sect. 4.1: The hash key is hk = (hk1, hk2) ←R Z

2
q , the

projection key is hp = (g1)hk1(g2)hk2 , Hash on x = (π,m, c) for c = (c1, c2) sets
v ← (c1/hm

1)hk1(c2/hm
2)hk2 , and PHash on witness d for x sets v ← hpd . The

security proofs for this SPHF are deferred to the full version of the paper [22].

4.3 Covert Identity Escrow

We describe a Covert Identity Escrow (IE) scheme, an essential ingredient in our
group cAKE construction of Sect. 6.

IE Syntax. An Identity Escrow (IE) scheme [34] is an entity authentication
scheme with operational assumptions and privacy properties similar to a group
signature scheme [16]. Namely, a designated party called a group manager (GM)
uses a key generation algorithm KG to first generate a group public key gpk and
a master secret key msk . Then, using the master secret key and a certificate
generation algorithm CG, the group manager can issue each group member a
membership certificate cert together with membership validity witness v . This
pair allows a group member to authenticate herself as belonging to the group,
but this authentication is anonymous in that multiple authentication instances
conducted by the same party cannot be linked. In other words, the verifier is
convinced that it interacts with some group member, in possession of some valid
membership certificate, but it cannot tell which one. Following [10] we use the
Verifier-Local Revocation (VLR) model for IE/group signature, where algorithm
CG produces also a revocation token rt corresponding to certificate cert , and the
authentication between a prover holding (gpk , cert , v) and the verifier holding
gpk and a set of revocation tokens RTset is defined by a triple of algorithms
CertBlind, Ver, Link, as follows:

1. The prover uses a certificate blinding algorithm CertBlind to create a blinded
certificate bc from its certificate cert , and sends bc to the verifier.

2. The prover proves knowledge of witness v corresponding to the blinded cer-
tificate bc using a zero-knowledge proof of knowledge for relation

RIE = {((gpk , bc), v) s.t. Ver(gpk , bc, v) = 1} (2)

96 K. Eldefrawy et al.

3. The verifier accepts if and only if the above proof succeeds and the tracing
algorithm Link does not link the blinded certificate to any revocation token
in set RTset, i.e. if Link(gpk , bc, rt) = 0 for all rt ∈ RTset.

The IE syntax and correctness requirements are formally captured as follows:13

Definition 4.6. An identity escrow (IE) scheme is a tuple of efficient algo-
rithms (KG,CG,CertBlind,Ver, Link) with the following syntax:

– Key Generation alg. KG picks a public key pair, (msk , gpk) ← KG(1κ)
– Certificate Generation alg. CG generates a certificate cert, its validity witness

v, and revocation token rt, (cert , v , rt) ← CG(msk)
– Blinding alg. CertBlind outputs a blinded certificate, bc ← CertBlind(cert)
– Verification alg. Ver, s.t. if (msk , gpk) ← KG(1κ), (cert , v , rt) ← CG(msk),

and bc ← CertBlind(cert), then Ver(gpk , bc, v) = 1
– Tracing alg. Link, s.t. if (msk , gpk) ← KG(1κ), (cert , v , rt) ← CG(msk), and

bc ← CertBlind(cert), then Link(gpk , bc, rt) = 1

IE Security. Below we state the standard IE security properties [34], strength-
ened by covertness needed for our group cAKE construction.

The IE unforgeability property is that the adversary who receives some set
of certificates, cannot create pair (bc, v) which satisfies the verification equation,
i.e. Ver(gpk , bc, v) = 1, but which the tracing algorithm Link fails to link to
the revocation tokens corresponding to the certificates received by the adver-
sary. In the group cAKE application an adversary, in addition to holding some
set of compromised certificates, can also observe revocation tokens and blinded
certificates corresponding to non-compromised certificates. The definition below
captures this by giving the adversary an arbitrary number of revocation tokens
rt and certificates cert from which it can generate blinded certificates on its own:

Definition 4.7. We call an IE scheme unforgeable if for any efficient algorithm
A the probability that b = 1 in the following game is negligible in κ, for m,n
polynomial in κ s.t. m < n:

1. set b ← 0 and (msk , gpk) ← KG(1κ)
2. for i ∈ [1, n] set (cert i, vi, rt i) ← CG(msk)
3. (bc∗, v∗) ← A(gpk , {cert i, vi, rt i}i∈[1,m], {cert i, rt i}i∈[m+1,n])
4. b ← 1 if Ver(gpk , bc∗, v∗) = 1 and Link(gpk , bc∗, rt i) = 0 for all i ∈ [1,m]

(In the above game, tuples (cert i, vi, rt i) for i ∈ [1,m] represent compromised
certificates, set {rt i}i∈[m+1,n] contains all additional revocation tokens the adver-
sary learns, and set {cert i}i∈[m+1,n] can be used to derive all blinded certificates
the adversary receives from non-compromised parties.)

13 More generally, CertBlind should take witness v along with cert as input, and produce
output v ′ along with bc as output, where v ′ is a validity witness for the blinded
certificate bc. We use simpler syntax assuming that v ′ = v because it declutters
notation, and it suffices for IE instantiation from Pointcheval-Sanders signatures [42].

Short Concurrent Covert Authenticated Key Exchange 97

The IE covertness property strengthens the standard IE property of authenti-
cation anonymity [34]. Authentication anonymity asks that an adversary cannot
link blinded certificate bc and decide e.g. whether they are generated from the
same certificate or not. Covertness strengthens this by requiring that blinded
certificates are indistinguishable from random elements in a uniformly encod-
able domain (hence they can be covertly encoded, see Sect. 2.1). Since each
blinded certificate is indistinguishable from random domain element, it follows
in particular that they are unlinkable. Similarly as in the unforgeability property,
the adversary should be able to observe other certificates, hence in the defini-
tion below we hand the adversary the master secret key msk from which it can
generate certificates, blinded certificates, and revocation tokens.

Definition 4.8. We call an IE scheme covert if there is a uniformly encodable
domain D s.t. for any efficient algorithm A quantity |p0 − p1| is negligible in κ
for n,m polynomial in κ, where pb = Pr[b′ = 1] in the following game:

1. (msk , gpk) ← KG(1κ)
2. for i ∈ [1, n] set (cert i, vi, rt i) ← CG(msk)
3. for all (i, j) ∈ [1, n] × [1,m]:

if b = 1 then set bcij ← CertBlind(cert i) else pick bcij ←R D
4. b′ ← A(msk , gpk , {bcij}i∈[1,n],j∈[1,m])

We require that the zero-knowledge proof for relation RIE in Eq. (2) used is
(based on) a Σ-protocol. We need this property to build a covert CKEM for the
same relation using the Σ-to-CKEM compiler of Sect. 5.2.

Definition 4.9. We call an IE scheme Σ-protocol friendly if relation RIE,
Eq. (2), admits a Σ-protocol with a uniformly encodable response space Sz .

Finally, we require IE to satisfy that the same blinded certificate cannot,
except for negligible probability, correspond to two different honestly generated
revocation tokens created on behalf of two different groups. This property allows
the AKE scheme constructed in Sect. 6 to realize the group cAKE functionality
Fg-cAKE of Section 3, which assumes that if the real-world adversary attempts
to authenticate using some group certificate then this implies a unique choice of
a certificate, and hence also a group for which it was generated.

Definition 4.10. We call IE scheme unambiguous if:
(1) the probability that Link(gpk0, bc, rt0) = Link(gpk1, bc, rt1) = 1 is at most
negligible for any efficient A, where (msk b, gpk b) ← KG(1κ), (vb, certb, rtb) ←
CG(msk b) for b ∈ {0, 1}, and bc ← A(msk0, v0, cert0, rt0,msk1, v1, cert1, rt1);
(2) the same holds if the above experiment is adjusted by setting (msk , gpk) ←
KG(1κ) and (vb, certb, rtb) ← CG(msk) for b ∈ {0, 1}, and we measure the prob-
ability that Link(gpk , bc, rt0) = Link(gpk , bc, rt1) = 1.

Instantiation. An IE scheme which satisfies Definitions 4.7, 4.8, and 4.9, can be
implemented using the Pointcheval-Sanders group signature [42]. (We will refer
to this IE instantiation as PS-IE.) Sketching it briefly, if (p,G1,G2,GT , e) is a

98 K. Eldefrawy et al.

bilinear pairing of type-3 with g (ĝ) a generator of G1 (G2), then (1) KG picks
x, y ←R Zp and sets msk = (x, y) and gpk = (X̂, Ŷ) = (ĝx, ĝy), (2) CG(msk)
picks σ̃ ←R G1, v ←R Zp , sets ω̃ = σ̃x+y·v , and outputs certificate cert = (σ̃, ω̃),
validity witness v , and revocation token rt = Ŷ v , (3) CertBlind(cert) picks t ←R

Zp and outputs bc = (σ̃t, ω̃t), (4) Ver(gpk , bc = (σ, ω), v) = 1 iff e(σ, X̂ · Ŷ v) =
e(ω, ĝ), and (5) Link(gpk , bc = (σ, ω), rt) = 1 iff e(σ, X̂ · rt) = e(ω, ĝ). The full
details and security proofs are deferred to the full version of the paper [22].

5 Covert Strong Simulation-Sound Conditional KEM

Conditional Key Encapsulation Mechanism (CKEM) [32] is a KEM counterpart
of Witness Encryption (WE) [26] and Conditional Oblivious Transfer (COT)
[19]. A CKEM for an efficiently verifiable relation R (and a corresponding NP
language LR) is a protocol that allows sender S and receiver R, to establish,
on input a statement x, a secure key K if R holds a witness w s.t. (x,w) ∈ R.
Since CKEM is an encryption counterpart to a zero-knowledge proof, we follow
[7,32,33] and use ZKP terminology referring to CKEM properties, e.g. we call
CKEM sound if S’s output KS is pseudorandom if x �∈ LR, and we call it strong
sound [32] if w is extractable from any algorithm distinguishing KS from random.

Benhamouda et al. [7] strengthened the notion of CKEM (called Implicit
Zero-Knowledge therein) to include simulatability, i.e. that there exists an effi-
cient simulator which for any x ∈ LR computes R’s output KR without the
knowledge of witness w for x, and simulation-soundness, i.e. that adversar-
ial CKEM instances remain sound even in the presence of a simulator which
simulates CKEM instances performed on behalf of honest players. Jarecki [33]
extended simulation-sound CKEM of [7] to covertness, i.e. indistinguishability
of a simulation (and hence also the real receiver) from a random beacon.

Here we adopt the covert zero-knowledge and simulation-sound CKEM
notion which follows the above chain of works, but we modify it in several ways.
First, we combine strong soundness of [32] and simulation-soundness of [7] to
strong simulation-soundness, i.e. we require an efficient extractor that extracts
a witness from an attacker who distinguishes S’s output key from random on
instance x in the presence of a simulator which plays the receiver’s role on
any instance x′ �= x. This is motivated by the group cAKE application where a
reduction must extract a certificate forgery from an attacker who breaks sender’s
security of CKEM on a statement corresponding to a non-revoked certificate.

Our second change is introducing a postponed-statement zero-knowledge prop-
erty to CKEM, which asks that there exists a postponed-statement simulator
which simulates the CKEM on behalf of the receiver, i.e. recovers the same key
KR which an honest receiver would compute, not only without knowing the wit-
ness but also without knowing the statement used by the real-world receiver R,
except after all CKEM messages are exchanged, i.e. in the final key-computation
step of the receiver. This property is crucial in an application like group cAKE,
because in the ideal-world group cAKE scheme, see the group cAKE functional-
ity in Sect. 3, the simulator does not know the group to which a simulated party

Short Concurrent Covert Authenticated Key Exchange 99

belongs. Indeed, the simulator does not even know if a party whose execution
it simulates is a real party which executes the group cAKE for some group or
it is a random beacon. Therefore, the simulator will not know the statement
x on which the real-world party performs the CKEM, except in the final step
in the case that (1) the adversary performs a CKEM for some group, and (2)
the functionality confirms that the honest party involved in this execution is
a real-world receiver R (and not a random beacon) and R runs on the same
group the adversary does. At this point the simulator reconstructs the correct
statement x the real-world R would have used in that case, and passes x to the
postponed-statement CKEM simulator to compute R’s output KR.

The third change is that we cannot use proof labels, which were used to sep-
arate between honest and adversarial proof/CKEM instances in e.g. [33]. This
change stems from the fact that whereas in many applications protocol instances
can be tied to unique identifiers of participating parties, we cannot do so in the
case of covert authentication. Indeed, an adversary A interacting with a covert
authentication system could forward statement x from receiver R to sender S,
and forward S’s CKEM for x from S to R. If in the simulation-soundness game
A learns R’s output KR then A can trivially distinguish S’s output KS from
random, as KS and KR are equal. Since this attack scenario corresponds to the
case of AKE attacker who forwards protocol messages between R and S, we will
handle that case separately as eavesdropper security, while in the simulation-
soundness game we impose a restriction that the challenge A-S interaction tran-
script differs from all A-R transcripts. Note that both the relation RPS−IE for
which we need this CKEM, and the SPHF tool we use to construct the CKEM
scheme below, are malleable, e.g. if the adversary changes statement x = (σ, ω)
to x′ = (σδ, ωδ) then x′ ∈ RPS−IE if x ∈ RPS−IE. However, we obtain sufficient
separation between CKEM instances by deriving the CKEM key via a random
oracle (RO) hash on the SPHF-derived key and an interaction transcript.

In Sect. 5.1 below we define the covert zero-knowledge strong simulation-
sound CKEM, and then in Sect. 5.2 we show a CKEM construction which
achieves this covert CKEM notion in ROM for any relation R with a Σ-protocol.

5.1 Definition of Covert CKEM with Strong Simulation-Soundness

Definition 5.1. A conditional key encapsulation mechanism (CKEM) for rela-
tion R is an algorithms tuple (GPG,Snd,Rec) s.t. parameter generation GPG(1κ)
generates CRS parameter π, and the sender Snd and receiver Rec are interactive
algorithms which run on local respective inputs (π, x) and (π, x, w), where each
of them outputs a session key K as its local output. CKEM correctness requires
that for all (x,w) ∈ R and π ← GPG(1κ), if KS ,KR are respective outputs of
Snd(π, x) and Rec(π, x, w) interacting with each other, then KS = KR.

In the definition below we use the notation P&Out(x) for an interactive algo-
rithm P that runs on input x and attaches its local output to its last message.
(In our case this output will be a CKEM key KS or KR.) For notation P$(κ)

refer to Sect. 2.1.

100 K. Eldefrawy et al.

Definition 5.2. A CKEM for relation R is covert zero-knowledge and strong
simulation-sound if there exist efficient algorithms TGPG and psTGPG which on
input 1κ output parameters π together with trapdoor td, and interactive algo-
rithms TRec and psTRec which runs on input (π, x, td), which satisfy the follow-
ing properties:

1. Setup Indistinguishability: parameters π generated by GPG(1κ), TGPG(1κ),
and psTGPG(1κ), are computationally indistinguishable.

2. Zero-Knowledge: For any efficient A,

{ARecO(π,·)(π)} ≈c {ATRecO(π,td,·)(π)}

for (π, td) ← TGPG(1κ), where oracle RecO(π, ·) runs Rec&Out(π, x, w) and
TRecO(π, td , ·) runs TRec&Out(π, x, td), on any query (x,w) ∈ R sent by A.

3. Statement-Postponed Zero-Knowledge: The above property must hold for
(psTGPG, psTRec) replacing (TGPG,TRec) where psTRec computes all its net-
work messages given (π, td) and only uses x for its local output.

4. Receiver Covertness: For any efficient A, {ARec(π,x,w)(st)} ≈c {ARec$(κ)
(st)}

for π ← GPG(1κ) and (x,w, st) ← A(π) s.t. (x,w) ∈ R.

5. Sender Covertness: For any efficient A, {ASnd(π,x)(st)} ≈c {ASnd$(κ)
(st)} for

π ← GPG(1κ) and (st , x) ← A(π).

6. Passive Security: For any efficient A,

{A(π, st , tr,KS)} ≈c {A(π, st , tr,K ′)}

for π ← GPG(1κ), (x,w, st) ← A(π) s.t. (x,w) ∈ R, (tr,KS ,KR) ←
[Snd(π, x) ↔ Rec(π, x, w)], K ′ ← {0, 1}κ.

7. Strong Simulation-Soundness: There exists an efficient algorithm Ext s.t. for
any deterministic efficient algorithm A = (A1,A2), if ε = |p0 − p1| is non-
negligible, then so is ε′, for pb for b = 0, 1 and ε′ defined as follows:

pb = Pr [b′ = 1 : (π, td , x, st) ← Init[A1](1κ), b′ ← Expb[A2](π, td , x, st)]

ε′ = Pr [(x,w) ∈ R : (π, td , x, st) ← Init[A1](1κ), w ← ExtA2(st)(π, td , x, st)]

where
– Init[A1](1κ) sets (π, td) ← TGPG(1κ) and (x, st) ← ATRec&Out(π,·,td)

1 (π);
– Expb[A2](π, td , x, st) outputs b′ = ASndMod&Out(b,π,x),TRec&Out(π,·,td)

2 (st) s.t.
• SndMod&Out(1, π, x) runs Snd&Out(π, x);
• SndMod&Out(0, π, x) runs Snd(π, x) and then sends K ′

S ← {0, 1}κ;
Moreover, Expb rejects if A2 makes the transcript of an interaction with
SndMod(b, π, x) the same as that of any interaction with TRec(π, x, td).

Short Concurrent Covert Authenticated Key Exchange 101

Discussion. The most direct comparison to the above notion of covert CKEM
is a covert CKEM defined in [33]. Differences from [33] include (1) lack of labels,
(2) strengthening of simulation-soundness to strong simulation-soundness, and
(3) requirement that the CKEM facilitates statement-postponed simulation. Fur-
thermore, (4) we allow the adversary in the strong simulation-soundness game
to interact with the receiver even on the same statement x used in the challenge
sender interaction, with the only constraint of excluding the trivial attack when
the adversary passes all messages between S and R, i.e. when some A-R transcript
equals the A-S transcript. We compensate for the latter constraint with (5) a
passive security requirement, i.e. that if the adversary passes messages between
S and R then the security holds even if the attacker knows the authentication
tokens these parties use.

Fig. 3. Covert CKEM (in ROM) for any relation R with a Σ-protocol

102 K. Eldefrawy et al.

5.2 Compiler from Σ-Protocol to Covert CKEM in ROM

Our covert CKEM protocol, shown in Fig. 3, is a compiler which creates a covert
CKEM for relation R from any Σ-protocol for R. The two other tools this
protocol requires are a covert perfectly-binding trapdoor commitment scheme,
see Sect. 4.1, and a covert and OW-PCA secure SPHF for language LCom[π]
associated with this commitment scheme, see Sect. 4.2 and Eq. (1). In addition,
the compiler uses the ROM, and in particular it assumes that the commitment
scheme has RO-compatible instance parameters, see Sect. 4.1, and it instantiates
the instance parameter generation of the commitment with an RO hash HCom.
Usage of ROM is motivated by the goal of realizing all CKEM security properties
at low cost in computation, communication, and round complexity. In particular,
our CKEM has minimal round complexity: one simultaneous flow.

Comparison with [32]. Our CKEM construction is a modification of the Σ-to-
CKEM compiler of Jarecki [32], where (1) the commitment scheme Com which
R uses to compute c in step R.1 must be a trapdoor commitment, where the
commitment parameters are derived by an RO hash of the statement x, (2) the
covert SPHF has an additional property of OW-PCA security, see Definition 4.5
in Sect. 4.2, and (3) the CKEM key output is not the SPHF hash value itself,
but the RO hash of that value together with the language statement and the
protocol transcript. Intuitively, the first change allows the CKEM to achieve
statement-postponed zero-knowledge, since the trapdoor receiver can create a
commitment without knowing the instance parameter π. The second change
assures security against a passive attacker. The last change allows for a stronger
version of simulation-soundness, see Definition 5.2, which asks that the Sender
CKEM challenge is secure in the presence of Receiver CKEM oracle that can be

Fig. 4. Covert CKEM for Pointcheval-Sanders IE relation RPS−IE.

Short Concurrent Covert Authenticated Key Exchange 103

executed even on the same statement, and the only restriction is that the CKEM
transcripts of the adversary’s interactions with the Sender and the Receiver
cannot be the same. (The case of same transcripts is covered by the passive
security property.) The proof of the following theorem is deferred to the full
version of the paper [22]:

Theorem 5.1. CKEM for R shown in Fig. 3 is covert zero-knowledge and
strong simulation-sound in ROM, if R has a Σ-protocol with uniformly encodable
response space Sz , trapdoor commitment Com is perfectly binding and covert, H
is a CRH, and SPHF for LCom is covert, smooth, and OW-PCA secure.

Efficient Instantiation. In Fig. 4 we show an instantiation of the generic
CKEM from Fig. 3, for relation RPS−IE defined by the Covert IE based on
Pointcheval-Sanders signatures (i.e. PS-IE), see Sect. 4.3, the “Double Pedersen”
trapdoor commitment, see Sect. 4.1, and the associated SPHF, see Sect. 4.2.

6 Construction of Group Covert AKE Protocol

In Figs. 5 and 6 we show algorithms (KG,CG,Auth) which implement a generic
group cAKE construction from covert Identity Escrow (IE) and covert CKEM.
In Fig. 5 we show the group initialization algorithm KG and certificate generation
algorithm CG, which implement respectively the GInit and CertInit interfaces of
UC group cAKE, as defined in Sect. 3. Figure 5 also shows the “input-retrieval”
step in the implementation of the NewSession command, which triggers the online
authentication algorithm Auth. The algorithm Auth itself, executing between
two parties, is shown in Fig. 6. Note that if a party is called with command
(NewSession, ssid,⊥) then it executes as a random beacon, as noted in Fig. 5,
instead of following the Auth protocol of Fig. 6.

The authentication protocol Auth in Fig. 6 uses the same combination of IE
and CKEM as in the covert AKE of [32], i.e. each party commits to its IE cer-
tificate, and then performs a CKEM to (implicitly and covertly) prove that it
knows a valid secret key issued by the group manager, corresponding to this
committed certificate. (Also, similarly as in [32], since the IE supports verifier-
local revocation, each party uses algorithm Link to locally verify the committed
certificate against each revocation token on its revocation list.) In spite of reusing
the same construction paradigm, the novel aspects of this protocol are as fol-
lows: First, thanks to stronger CKEM properties we can show that this generic
protocol realizes UC group cAKE notion defined in Sect. 3. This implies that
the protocol remains covert and secure under concurrent composition, e.g. that
leakage of keys on any session does not endanger either covertness or security
of any other session. Secondly, the strong notion of CKEM allows for minimal
interaction, i.e. both receiver and sender can send only one message without
waiting for their counterparty. Consequently, the generic Auth protocol in Fig. 6
has a minimally-interactive instantiation shown in Fig. 7.

The security of the above group cAKE construction is captured in the fol-
lowing theorem, with a proof deferred to the full version of the paper [22]:

104 K. Eldefrawy et al.

Fig. 5. Generic group cAKE: Initialization and UC interface.

Fig. 6. Generic group cAKE: protocol Auth, using covert encodings for bc/bc′.

Short Concurrent Covert Authenticated Key Exchange 105

Fig. 7. Instantiation of Covert AKE, with IE of Sect. 4.3 and CKEM of Fig. 4

106 K. Eldefrawy et al.

Theorem 6.1. Protocol Π = (KG,CG,Auth) in Figs. 5, 6 realizes UC Covert
Authenticated Key Exchange if IE is secure, covert, and Σ-protocol friendly,
and CKEM is covert zero-knowledge and strong simulation-sound.

Efficient Instantiation. Figure 7 shows a concrete instantiation of the generic
group cAKE scheme shown in Figs. 5, 6. This instantiation uses the PS-IE scheme
based on Pointcheval-Sanders signatures, see Sect. 4.3, and the CKEM from
Sect. 5 instantiated as shown in Fig. 4. (See the full version [22] for a walk through
this instantiation and an explanation of its steps.) Note that the protocol has
minimal interaction, as each party sends a single message without waiting for
the counterparty, and it is quite practical: Its bandwidth is 6 group elements per
party (2 in a base group of a type-3 elliptic curve and 4 in a standard group),
and each party computes 10 fixed-base exp’s, 4 variable-base (multi-)exp’s, and
4 + n bilinear maps, where n is the size of the revocation list.

References

1. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 14

2. Balfanz, D., Durfee, G., Shankar, N., Smetters, D., Staddon, J., Wong, H.-C.:
Secret handshakes from pairing-based key agreements. In: IEEE Symposium on
Security and Privacy (S&P), pp. 180–196 (2003)

3. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and
analysis of authentication and key exchange protocols (extended abstract). In:
Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing
(STOC), pp. 419–428 (1998)

4. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 33

5. Bellovin, S.M., Merritt, M.: Encrypted key-exchange: password-based protocols
secure against dictionary attacks. In: IEEE Computer Society Symposium on
Research in Security and Privacy, pp. 72–84 (1992)

6. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7 24

7. Benhamouda, F., Couteau, G., Pointcheval, D., Wee, H.: Implicit zero-knowledge
arguments and applications to the malicious setting. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 107–129. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 6

8. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve
points indistinguishable from uniform random strings. In: CCS, pp. 967–980. ACM
(2013)

9. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

10. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Atluri,
V., Pfitzmann, B., McDaniel, P. (eds.) ACM CCS 2004, pp. 168–177. ACM Press,
October 2004

https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/978-3-662-48000-7_6
https://doi.org/10.1007/3-540-44647-8_13

Short Concurrent Covert Authenticated Key Exchange 107

11. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

12. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 5

13. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145. IEEE Computer Society (2001)

14. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
337–351. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 22

15. Chandran, N., Goyal, V., Ostrovsky, R., Sahai, A.: Covert multi-party computa-
tion. In: FOCS, pp. 238–248. IEEE Computer Society (2007)

16. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

17. Cho, C., Dachman-Soled, D., Jarecki, S.: Efficient concurrent covert computation
of string equality and set intersection. In: Sako, K. (ed.) CT-RSA 2016. LNCS,
vol. 9610, pp. 164–179. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
29485-8 10

18. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

19. Di Crescenzo, G., Ostrovsky, R., Rajagopalan, S.: Conditional oblivious trans-
fer and timed-release encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 74–89. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 6

20. Damg̊ard, I.: On
∑

-protocols (2010). https://cs.au.dk/SIMivan/Sigma.pdf
21. Diffie, W., Van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated

key exchanges. Des. Codes Crypt. 2, 107–125 (1992)
22. Eldefrawy, K., Genise, N., Jarecki, S.: Short concurrent covert authenticated

key exchange (short cAKE). Cryptology ePrint Archive, Paper 2023/xxx (2023).
https://eprint.iacr.org/2023/xxx

23. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48329-2 40

24. Fischlin, M.: Trapdoor commitment schemes and their applications. Ph.D. thesis,
Goethe University Frankfurt, Frankfurt am Main, Germany (2001)

25. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discret.
Appl. Math. 156(16), 3113–3121 (2008)

26. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Symposium on Theory of Computing Conference, STOC 2013, pp. 467–476.
ACM (2013)

27. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206. ACM (2008)

28. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secret all partial information. In: STOC, pp. 365–377. ACM (1982)

https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-46035-7_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-319-29485-8_10
https://doi.org/10.1007/978-3-319-29485-8_10
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-48910-X_6
https://doi.org/10.1007/3-540-48910-X_6
https://cs.au.dk/~ivan/Sigma.pdf
https://eprint.iacr.org/2023/xxx
https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1007/3-540-48329-2_40

108 K. Eldefrawy et al.

29. Goyal, V., Jain, A.: On the round complexity of covert computation. In: STOC,
pp. 191–200. ACM (2010)

30. Gu, Y., Jarecki, S., Krawczyk, H.: KHAPE: asymmetric PAKE from key-hiding key
exchange. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp.
701–730. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8 24

31. Hopper, N.J., Langford, J., von Ahn, L.: Provably secure steganography. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 77–92. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45708-9 6

32. Jarecki, S.: Practical covert authentication. In: Krawczyk, H. (ed.) PKC 2014.
LNCS, vol. 8383, pp. 611–629. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-54631-0 35

33. Jarecki, S.: Efficient covert two-party computation. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018. LNCS, vol. 10769, pp. 644–674. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-76578-5 22

34. Kilian, J., Petrank, E.: Identity escrow. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 169–185. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0055727

35. Krawczyk, H.: SKEME: a versatile secure key exchange mechanism for internet.
In: 1996 Internet Society Symposium on Network and Distributed System Security
(NDSS), pp. 114–127 (1996)

36. Krawczyk, H.: SIGMA: the ‘SIGn-and-MAc’ approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45146-4 24

37. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

38. Kumar, R., Nguyen, K.: Covert authentication from lattices. In: Ateniese, G., Ven-
turi, D. (eds.) Applied Cryptography and Network Security. ACNS 2022. LNCS,
vol. 13269, pp. 480–500. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-09234-3 24

39. Manulis, M., Pinkas, B., Poettering, B.: Privacy-preserving group discovery with
linear complexity. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp.
420–437. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13708-
2 25

40. Marlinspike, M., Perrin, T.: The X3DH key agreement protocol (2016). https://
signal.org/docs/specifications/x3dh/

41. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30574-3 19

42. Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.)
CT-RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29485-8 7

43. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 348–358. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-25937-4 22

44. Appelbaum, J., Dingledine, R.: How governments have tried to block Tor. https://
oldsite.andreafortuna.org/security/files/TOR/slides-28c3.pdf

45. Sachdeva, A.: DARPA making an anonymous and hack-proof mobile communi-
cation system. FOSSBYTES Online Article (2019). https://fossbytes.com/darpa-
anonymous-hack-proof-mobile-communication-system/

https://doi.org/10.1007/978-3-030-84259-8_24
https://doi.org/10.1007/3-540-45708-9_6
https://doi.org/10.1007/978-3-642-54631-0_35
https://doi.org/10.1007/978-3-642-54631-0_35
https://doi.org/10.1007/978-3-319-76578-5_22
https://doi.org/10.1007/978-3-319-76578-5_22
https://doi.org/10.1007/BFb0055727
https://doi.org/10.1007/BFb0055727
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-031-09234-3_24
https://doi.org/10.1007/978-3-031-09234-3_24
https://doi.org/10.1007/978-3-642-13708-2_25
https://doi.org/10.1007/978-3-642-13708-2_25
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1007/978-3-540-25937-4_22
https://oldsite.andreafortuna.org/security/files/TOR/slides-28c3.pdf
https://oldsite.andreafortuna.org/security/files/TOR/slides-28c3.pdf
https://fossbytes.com/darpa-anonymous-hack-proof-mobile-communication-system/
https://fossbytes.com/darpa-anonymous-hack-proof-mobile-communication-system/

Short Concurrent Covert Authenticated Key Exchange 109

46. Shbair, W.M., Cholez, T., Goichot, A., Chrisment, I.: Efficiently bypassing SNI-
based https filtering. In: 2015 IFIP/IEEE International Symposium on Integrated
Network Management (IM), pp. 990–995 (2015)

47. Tibouchi, M.: Elligator squared: uniform points on elliptic curves of prime order as
uniform random strings. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS,
vol. 8437, pp. 139–156. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45472-5 10

48. Vipin, N.S., Abdul Nizar, M.: Efficient on-line spam filtering for encrypted mes-
sages. In: 2015 IEEE International Conference on Signal Processing, Informatics,
Communication and Energy Systems (SPICES), pp. 1–5 (2015)

49. von Ahn, L., Hopper, N.J., Langford, J.: Covert two-party computation. In: STOC,
pp. 513–522. ACM (2005)

50. Wahby, R.S., Boneh, D.: Fast and simple constant-time hashing to the BLS12-
381 elliptic curve. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(4), 154–179
(2019)

https://doi.org/10.1007/978-3-662-45472-5_10
https://doi.org/10.1007/978-3-662-45472-5_10

Generalized Fuzzy
Password-Authenticated Key Exchange

from Error Correcting Codes

Jonathan Bootle1 , Sebastian Faller1,2 , Julia Hesse1 ,
Kristina Hostáková2 , and Johannes Ottenhues3(B)

1 IBM Research Europe – Zurich, Zürich, Switzerland
2 ETH Zurich, Zürich, Switzerland

3 University of St. Gallen, St. Gallen, Switzerland

johannes.ottenhues@unisg.ch

Abstract. Fuzzy Password-Authenticated Key Exchange (fuzzy PAKE)
allows cryptographic keys to be generated from authentication data that
is both fuzzy and of low entropy. The strong protection against offline
attacks offered by fuzzy PAKE opens an interesting avenue towards
secure biometric authentication, typo-tolerant password authentication,
and automated IoT device pairing. Previous constructions of fuzzy PAKE
are either based on Error Correcting Codes (ECC) or generic multi-party
computation techniques such as Garbled Circuits. While ECC-based con-
structions are significantly more efficient, they rely on multiple special
properties of error correcting codes such as maximum distance separa-
bility and smoothness.

We contribute to the line of research on fuzzy PAKE in two ways.
First, we identify a subtle but devastating gap in the security analysis
of the currently most efficient fuzzy PAKE construction (Dupont et al.,
Eurocrypt 2018), allowing a man-in-the-middle attacker to test individ-
ual password characters. Second, we provide a new fuzzy PAKE scheme
based on ECC and PAKE that provides a built-in protection against
individual password character guesses and requires fewer, more stan-
dard properties of the underlying ECC. Additionally, our construction
offers better error correction capabilities than previous ECC-based fuzzy
PAKEs.

Keywords: Attacks on Public-Key Constructions · Key Exchange
Protocols · Password-Based Cryptography · UC Framework

1 Introduction

Password-authenticated key exchange (PAKE) protocols allow two users to
exchange symmetric keys from plaintext passwords only. PAKEs are a useful

J. Hesse—Author supported by the Swiss National Science Foundation (SNSF) under
the AMBIZIONE grant “Cryptographic Protocols for Human Authentication and the
IoT”. J. Ottenhues—
Author partially funded by the EU-funded Marie Curie ITN TReSPAsS-ETN project
under the grant agreement 860813.

c© International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14445, pp. 110–142, 2023.
https://doi.org/10.1007/978-981-99-8742-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8742-9_4&domain=pdf
http://orcid.org/0000-0003-3582-3368
http://orcid.org/0009-0005-4126-3098
http://orcid.org/0000-0002-2875-6198
http://orcid.org/0000-0001-5235-8416
http://orcid.org/0009-0001-3475-819X
https://doi.org/10.1007/978-981-99-8742-9_4

Generalized Fuzzy PAKE from Error Correcting Codes 111

tool in unlocking smartcards (e.g., German ID card [BFK09,BDFK12,BFK13],
FIDO2 [BBCW21]), securing wireless networks [All22,CNPR22], and pairing IoT
devices [HL19]. First formalized by Bellovin and Merrit [BM92], PAKEs provide
optimal protection of potentially low-entropy passwords, a feature that is called
resistance against offline dictionary attacks. Essentially, a PAKE does not leak
any information about the password used by the counterparty in case of password
mismatch. This guarantee needs to hold against network adversaries observing
the protocol execution as well as active attackers playing one user in the proto-
col. Such strong protection is vital for use cases of PAKE. Without it, any typing
of, e.g., the 6-digit PIN restricting access to a German national ID card would
already expose that PIN to brute-force attacks mounted through malicious card
reader hardware or software. Building secure and efficient PAKEs that even fea-
ture strong universal composability guarantees is fairly simple. The general idea
is to run a Diffie-Hellman key exchange, and either encrypt the Diffie-Hellman
public keys with the password [BM92,BPR00], or derive the group generator
from the password [Jab96,BMP00,Mac01,HS14,HL19]1.

Unfortunately, in many application scenarios of PAKE protocols, usability
can hinder their adoption. Manually entering PINs in stressful situations, such as
unlocking one’s smart ID card next to a waiting officer, or pairing a wearable IoT
device while walking, is prone to repeated mistyping. As another example, con-
sider IoT devices that want to automatically exchange a key with devices located
in their close proximity. These devices can automatically derive passwords from
sensor readings of their direct environment, but they likely end up with similar
but not exactly matching bitstrings. In these situations, key exchange through
PAKE fails even though the legitimate owner of the ID card was present, and
even though the IoT devices were actually sitting next to each other.

In 2018, Dupont et al. [DHP+18] proposed a new cryptographic primitive
called fuzzy PAKE (fPAKE), which allows two users to exchange a symmetric key
from similar passwords. In addition to being a candidate to resolve the usability
issues with password mistyping/mismatching in the aforementioned scenarios,
fuzzy PAKE opens an interesting avenue towards secure biometric authentica-
tion, as it enables secure comparison of consecutive biometric readings without
leaking any other information about the biometric than “match” or “no match”.
To date, fuzzy PAKE is the only cryptographic primitive that can provide such
optimal protection of data that is both noisy and of low entropy.

Dupont et al. [DHP+18] gave two constructions of fuzzy PAKE, one rely-
ing on Garbled Circuits and one relying on error-correcting codes (ECC)2 and
PAKE, using Hamming distance as a metric for similarity of passwords. The
ECC based construction is to the best of our knowledge the most efficient fuzzy

1 [Hv22] provides an excellent overview of PAKEs in the literature, also mentioning
other approaches than building PAKEs through Diffie-Hellman.

2 Dupont et al. [DHP+18] use the terminology of robust secret sharing (RSS) instead
of error-correcting codes, and show how to instantiate RSS with ECC. In this work,
we state their construction in terms of an ECC, as it enables better comparison with
our protocol.

112 J. Bootle et al.

PAKE construction in the literature [DHP+18] so far. At a high level, the proto-
col works as follows. One party takes the role of the sender, chooses a symmetric
key s, encodes it with the error-correcting code to get C ← Enc(s), XORs the
resulting codeword with the password to get E ← C ⊕ pw, and sends E to
the receiver. The receiver XORs the received E with their own password to get
C ′ ← E⊕pw′, and attempts to decode C ′ to retrieve s. Depending on whether pw
and pw′ were similar enough, the codeword C ′ is close enough to C to uniquely
decode to s. The error correction capability of the fuzzy PAKE is hence directly
related to the error correction threshold of the code. However, the protocol as
described above would be prone to offline attacks: the receiver can repeatedly
decode with many password guesses pw′, yielding a list of candidate keys. To
prevent such a dictionary attack, [DHP+18] introduce a “password expansion”
step prior to the encoding of the key. Here, the two parties run a PAKE on every
character of their passwords pw and pw′, yielding key vectors K and K ′ that
match in exactly the same entries as pw and pw′, while the other entries are
uniformly distributed. Because this expansion step requires active participation
of both parties and the vector entries are PAKE keys that are hard to guess, one
party alone cannot turn a password into a key vector. Hence, parties – malicious
or honest – are limited to only one password guess per protocol run.

In fact, to prevent C from leaking information about the key s in case
the receiver is malicious, C is computed by encoding s concatenated with an
extra random input r. The error correcting code must satisfy multiple special
properties, such as a uniformity property, whereby small subsets of codeword
entries appear uniformly random, independently of s, and a smoothness prop-
erty, whereby decoding an extremely noisy codeword results in a random key.
Uniformity is a well-known property, satisfied by the popular Reed-Solomon
codes, which has been extensively studied [CCG+07,CDBN15,Wei16,BCL22],
and can be obtained via various transformations including the method presented
in [DHP+18]. Smoothness is less standard, and [DHP+18] rely on maximum dis-
tance separable codes in order to achieve it.

1.1 Our Contribution

First, we identify a subtle but devastating issue in the ECC-based fuzzy PAKE
construction of [DHP+18]. In a bit more detail, we give an attack that allows
the adversary to make guesses on individual password bits (or characters), allow-
ing them to extract a user’s, e.g., n-bit password from only n executions of the
protocol with that user. Our attack demonstrates that the measures taken by
[DHP+18] to protect against such individual guesses, namely ensuring that an
attacker either guesses “all-or-zero” bits of the password, subtly fails due to
incorrect binding of the different protocol parts. Here, binding refers to ensur-
ing that all messages come from the same sender. Although there exist generic
techniques for binding together messages sent over unauthenticated channels

Generalized Fuzzy PAKE from Error Correcting Codes 113

[BCL+05], they cannot be applied to the construction of [DHP+18] in black-
box way due to its modular layout.3

The effect of our attack is that an active attacker learns one bit of an honest
user’s password by simply messing with an honest protocol run between two
users. While the security notion of fuzzy PAKE [DHP+18] does leak information
about the password, i.e., it leaks the exact password of an honest user to an
attacker, we stress that this attacker must be actively running a session with
the honest user and use close password to the one of the attacked honest user.
Our attack requires much less knowledge from the adversary. In more detail,
it can be executed by a network adversary essentially flipping some bits of the
exchanged messages between honest clients. The attacker only needs to make
an assumption about the distance of the passwords used in the execution. For
example, in settings where fuzzy PAKE is usually executed without the proper
passwords, e.g., mistyping happens only rarely, every honest protocol run would
reveal one bit about the secret password of an honest party to a network attacker.
Deriving such information from honest protocol runs is prohibited by the security
model of [DHP+18].

Fig. 1. Comparison of ECC-based fuzzy PAKE constructions, using a Reed-Solomon
code of rank k, and block length n equal to the size of the password. Sender and
Receiver columns indicate computation complexity. Both protocols are instantiated
with EKE2 [DHP+18] to derive concrete performances. RO, IC, and CRS are required
for the security of EKE2. SA is split authentication. We stress that the ECC-based
[DHP+18] cannot be considered a secure fuzzy PAKE (Sect. 3.2).

Our second contribution is a new fuzzy PAKE protocol based on error-
correcting codes, which directly builds upon the ideas of [DHP+18] but (i) fixes
the previous insecurities, (ii) provides better error-correction capabilities, and
(iii) relies on fewer properties of the underlying code. These improvements come
at the cost of less efficient computation and communication. We provide a high-
level comparison in Fig. 1. For (i), the idea is to ensure that the transformation
of Barak et al. [BCL+05] applies to the whole protocol, simply by instantiating
all building blocks that require interaction between the parties before applying
the transformation. For (ii) we investigate how the (fixed) fuzzy PAKE protocol

3 More precisely, and for the reader who is familiar with the Universal Composability
framework [Can01]: In Sect. 3.2, we argue that the split transformation of Barak et
al. [BCL+05] cannot be meaningfully applied to transform a hybrid protocol that
assumes authenticated channels, to a version that is secure with unauthenticated
channels. In a nutshell, the reason is that the hybrid building blocks are unaffected
by the transformation and do not carry any authentication guarantees.

114 J. Bootle et al.

Fig. 2. Error correction capability for the ECC-based PAKE constructions of
[DHP+18] and in this work using list decoding, for various password lengths n and
a Reed-Solomon code with rank k and block length n. The table shows the number
of password errors below which key exchange will succeed. The ECC threshold refers
to the percentage of errors above which key exchange will fail without leaking infor-
mation about the password. Gray colored cells show parameter settings for which our
construction improves upon previous works.

of [DHP+18], which applies unique decoding of the ECC, benefits from applying
a non-unique decoding technique. Namely, we make use of list decoding which
is a decoding technique that takes a codeword with errors as input, and that
can produce a list of candidate codewords including the original one. When the
number of errors is too large for unique decoding to work, list decoding can still
produce reasonable-sized lists of codewords that still contain the original one.
We give examples of the improved error correction capability of our scheme over
previous works in Fig. 2, For (iii) we leverage new ingredients in our construction
in order to bypass the smoothness property completely.

Intuitively, such non-unique decoding introduces a “correctness error” into
the fuzzy PAKE protocol of [DHP+18], since the receiver decodes a list of key
candidates and has to guess which one is the key of the sender. Moreover, it is
unclear how to generalize the smoothness property and its proof in [DHP+18]
to the list decoding regime, due to the higher number of errors.

Our idea is to restore perfect correctness by letting the sender give a hint
about the correct key to the receiver. This hint, however, needs to be carefully
crafted so that it benefits the correctness of the key exchange without revealing
too much information about the password or the key of the sender. For example,
simply using a hash of the sender’s key is not possible. This is because during
security proofs, the hint may have to be simulated, without knowledge of the key,
against an adversary who does know the key and is able to check that whether
the hint was computed correctly or not. Instead, the sender hashes the encoding
C of s. Based on the uniformity of the error-correcting code, this hint contains
sufficient entropy to prevent information leakage on the key. Furthermore, the
fact that the hint uniquely determines the correct codeword actually allows us
to dispense with the smoothness property completely. Since smoothness, which
relied on maximum distance separability, is no longer needed, the space of pos-
sible codes which can be used in our construction is much larger, opening the
door to codes with even better list-decoding capabilities and fuzzy PAKEs with
even higher error tolerance in future.

Generalized Fuzzy PAKE from Error Correcting Codes 115

Altogether, we are able to give a construction with better error correction
capability than previous schemes in the literature. More formally, we prove the
following in Theorem 2.

Our fuzzy PAKE using a Reed-Solomon code of rank k, block length n, list
decoding, a hint as described above and signing under ephemeral public keys to

achieve binding, is secure and has an error correction capability of
δ = n − 1 − √

(k − 1)n.

We can also apply our results to obtain a fixed version of the fuzzy PAKE
of [DHP+18] et al. by using unique decoding instead of list decoding, offering a
trade-off between runtime (unique decoding is generally faster than list decoding)
and error correction capability (see Fig. 2 for numerical examples of the error
correction terms).

Corollary 1. Our fuzzy PAKE using a Reed-Solomon code of rank k, block
length n, unique decoding, a hint as described above and signing under ephemeral
public keys to achieve binding, is secure and has an error correction capability of
�n−k

2 �. The computational overhead over [DHP+18] is one signature per mes-
sage, and one hash by the sender.

Roadmap. In Sect. 2 we provide preliminaries on error-correcting codes and list
decoding, and on implicit PAKE which is a building block of our and previous
ECC-based fuzzy PAKE protocols. Section 3 recaps fuzzy PAKE including its
security model in the UC framework, explains the fuzzy PAKE of [DHP+18]
and presents an attack that allows to test password bits. In Sect. 4 we give our
improved fuzzy PAKE protocol and prove its security.

1.2 Related Work

Prior to the introduction of fuzzy PAKE by Dupont et al. [DHP+18], several
attempts to base cryptography on low-entropy or noisy shared data have been
made. Information reconciliation [BBR88] and fuzzy extractors [DORS08,RW04]
let two parties identify common randomness in shared noisy bitstrings. However,
the identification comes at the price of leakage, such that these techniques cannot
be used when the shared data is of low entropy, such as in the case of passwords.
Canetti et al. [CFP+16] construct special-purpose schemes for securely compar-
ing the Hamming distance of, e.g., biometric readings. However, the security of
their construction again relies on the data having a certain min-entropy. The
PAKE-based construction for comparison of biometric readings of Boyen et al.
[BDK+05] does not protect against offline attacks on the biometric data and
hence cannot reach the security level of fuzzy PAKEs.

Our construction improves the parameters of [DHP+18] by using list decod-
ing instead of unique decoding, and using a hint to select the correct code-
word. In fact, Cramer et al. [CDD+15] construct robust secret-sharing schemes
using a similar idea, but they ensure that the correct secret is selected using an

116 J. Bootle et al.

algebraic manipulation detection (AMD) code. Putting aside the subtle issues
in [DHP+18] that we address in this paper, our construction is different from
using the robust secret-sharing schemes of [CDD+15] in the [DHP+18] because
incorporating the hint does not constitute an AMD code, and also removes the
smoothness requirement from [DHP+18].

Biometric authentication is a very active area of research. In the following
we list several works that aim at providing secure biometric authentication by
introducing, e.g., additional trust anchors, or by leveraging the entropy in the
biometric scans. BETA [ABM+21] generates a token to be used for authenticat-
ing a client to a server, by letting three client devices communicate over authen-
ticated channels. In the fuzzy PAKE setting, each entity only needs one device
and also a fuzzy PAKE is secure even in unauthenticated channels. Agrawal
et al. [ABMR20] present a protocol for authenticating a user with their bio-
metric by letting the user’s phone, an external terminal and a service provider
communicate to compute the authentication result. Differences to fuzzy PAKE
are that [ABMR20] has three parties instead of two, and their protocol uses
cosine similarity instead of Hamming distance to compare the biometrics. More-
over, [ABMR20] focuses on authentication whereas a fuzzy PAKE achieves key
exchange. Wang et al. [WHC+21] construct authenticated key change for secure
messaging in which the users do not need to store their secret keys but instead
derive them from their biometrics. [WHC+21] uses the biometric as an error
term for LWE samples, which places very strong requirements on the biometric
distribution. A fuzzy PAKE is stronger; its security cannot rely on the distri-
bution of the authentication data, and hence our protocol is secure even when
used with low entropy passwords (or biometrics). Jiang et al. [JLHG22] build
key exchange from fuzzy data, which is also the goal of a fuzzy PAKE. However,
similar to [WHC+21,JLHG22] relies on high entropy of that fuzzy data. A fuzzy
PAKE however does not make any assumptions about the entropy of the authen-
tication data (=passwords). The tools used in [JLHG22] such as secure sketches
are known to be inherently insecure when used on low entropy data. Erwig et
al. [EHOR20] leverages robust secret sharing, which previous fuzzy PAKEs and
our construction also rely on. Contrary to us, [EHOR20] builds an asymmetric
PAKE, with a client and a server party where the latter is not allowed to store
the password in the clear. While this is an extremely relevant setting in prac-
tise, their solutions are computationally expensive and the authors note that
it seems infeasible to go beyond passwords of 40 bits. The works of Chatter-
jee et al. [CAA+16,CWP+17] propose typo-tolerant password authentication
systems. These password authentication systems tolerate mistyping on the user
side, i.e., the user can successfully authenticate to some server even when using
a password slightly different from the one they registered with. While [CAA+16]
corrects a predefined set of most common typos (e.g., capitalization of first let-
ter), the TypTop system [CWP+17] offers personalized adoption to frequent
typos of users, meaning that the system will learn from past typos and apply
certain rules whether to accept these errors in the future. The crucial difference
to fuzzy PAKE is that both these typo-tolerant systems require the server party

Generalized Fuzzy PAKE from Error Correcting Codes 117

to learn the cleartext password of the user, as the password needs to be fed into
the decision procedure as well as into the evolving “accepted typos” cache. The
main goal of fuzzy PAKE is to prevent such transmission of clear-text passwords
among the two parties. The concept of typo tolerance was subsequently carried
over to PAKE [PC20]. Typo-tolerant PAKE is a system to log in to a server
despite of typos in the password. The protocol in [PC20] requires storage and
communication proportional to the number of close passwords, which limits the
potential applications of the protocol. The storage and communication cost of
our protocol only depends on the length of the password but not on the num-
ber of close passwords, which also makes it possible to use our protocol with
biometrics instead of passwords.

In [RX23] it is demonstrated that the common notion of PAKE in the UC-
framework does not automatically guarantee correctness. More concretely, the
ideal functionality FPAKE [CHK+05] does not guarantee that two honest parties
that are not maliciously attacked do output the same key when they run on
the same password. Several ways to overcome these definitional issues were pro-
posed in [RX23]. The most simple way is to demand correctness as a separate
property from the protocol. This style of listing several properties is usually not
desirable in UC-protocols as the additionally demanded properties might not be
preserved under composition. However, [RX23, Thm. 3] shows that any PAKE
protocol that is correct and UC-realizes FPAKE can be interpreted as a protocol
that is secure in an enhanced UC PAKE formalization that ensures correctness
(by modeling the man-in-the-middle adversary as a third protocol party). The
observations of [RX23] rely on the way output is produced in FPAKE and not
on the way how the passwords are checked. Therefore, they also apply to our
FfPAKE (and FiPAKE) functionality and we have to assert correctness separately.

2 Preliminaries

Notation. We denote vectors in boldface, e.g., V ∈ F
n. Let Q ⊆ [n] := {1, . . . , n}.

Then, we denote with V |Q := (V i)i∈Q ∈ F
|Q| the restriction of V to Q. We write

PPT for probabilistic polynomial time.

2.1 Universal Composability (UC)

To formally define and prove security of fuzzy PAKEs, we use the UC framework
of Canetti [Can01] as is standard in the PAKE literature. Our goal here is to
introduce the basic terminology and notation of the UC framework at a very
high level and only to the extent needed for the understanding of later sections.
For a more accurate and formal explanation of the UC framework, we refer the
reader to the work of Canetti [Can01].

In our case, we always consider protocols between two parties (which we
typically denote P0 and P1) that are executed in the presence of a PPT adversary
A who can corrupt any party at the beginning of the protocol execution (i.e., we
consider so-called static corruption). By corruption we mean that the adversary

118 J. Bootle et al.

gets a full control over the corrupt parties and learns their internal state. Parties
and the adversary A get their inputs from a special entity, called the environment
Z, which represents everything external to the protocol execution. Z also receives
outputs from both parties and the adversary. The execution of a protocol in
presence of an adversary A is typically referred to as the “real world”.

In the UC framework, security requirements of a protocol are defined via
ideal functionalities. At a very high level, an ideal functionality F defines the
intended input/output behaviour of parties, the allowed leakage of the proto-
col and the influence of an adversary on the protocol. F communicates with
the environment through dummy parties P0,P1 that simply forward messages
between Z and F . The functionality additionally communicates with an adver-
sary which is typically called the simulator and denoted S. The execution of F
in the presence of a simulator S is typically referred to as the “ideal world”.
We say that a protocol π UC-realizes (or UC-emulates) an ideal functionality F
if for any PPT adversary A, there exists a PPT simulator S such that for any
PPT environment Z the ideal and real worlds are indistinguishable except for
negligible probability. In other words, any attack possible on the protocol π can
be simulated as an attack on the ideal functionality.

One of the main benefits of the UC framework is that it natively supports
protocol composition and hence allows for natural modularization of protocol
designs. Concretely, parties in a protocol can communicate with hybrid ideal
functionalities H1,H2, In such a case, we say that the protocol is a defined
in the “(H1,H2, . . .)-hybrid world”. The UC composition theorem then allows
to securely replace the hybrid ideal functionalities with concrete protocols that
UC-realize those functionalities.

2.2 Error Correcting Codes (ECC)

A linear error-correcting code C over a finite field Fq of order q with rank k and
block length n is a linear subspace C ⊆ F

n
q of dimension k. We can associate C

with an injective linear encoding function Enc : Fk
q → F

n
q , where Im(Enc) = C.

– The Hamming distance d(V ,V ′) between vectors V ,V ′ ∈ F
n
q is defined by

d(V ,V ′) := |{i ∈ [n] : V i 	= V ′
i}| .

– The minimum distance d(C) of a linear code C is defined as

d(C) := min
C ,C ′∈C,C �=C ′

d(C,C ′) .

A linear code over Fq with rank k, blocklength n, and minimum distance d is
referred to as an [n, k, d]q code. The “q” will usually be omitted.

Error Correction. Let e ∈ Z with 0 ≤ e < d/2. A [n, k, d]-code C is said
to be e-error-correcting if there exists a function Dec : Fn

q → F
k
q such that for

Generalized Fuzzy PAKE from Error Correcting Codes 119

all V ∈ F
n
q , M ∈ F

k
q with d(V ,Enc(M)) ≤ e, we have Dec(V) = M . It is

well-known that an [n, k, d]-code is �d−1
2 �-error correcting.

Further, we say that a code is efficiently e-error-correcting if Dec can be
computed in polynomial time in n. Note that all linear codes are efficiently
0-error correcting, as the message associated with an error-free codeword can
simply be recovered via Gaussian elimination.

List Decoding. Let e ∈ Z with 0 ≤ e ≤ n. Let � ∈ N with � ≥ 1. An [n, k, d]-
code C is said to be (e, �)-list-decodable if for all V ∈ F

n
q , the list L of codewords

C ∈ C with d(V ,C) ≤ e contains at most � codewords.
Further, we say that a code is efficiently (e, �)-list-decodable if there is an

algorithm LDec which computes the list of codewords in polynomial time in n.
This necessarily implies that � is polynomial in n. In this case, we will often
simply say that C is efficiently e-list-decodable.

It will be convenient to use shorthand such as “C ∈ LDec(V)” when a
codeword C is part of the output list when LDec is run on input V .

2.3 Randomized Codes

We also consider codes with hiding properties, using terminology from [BCL22].
Let C be a [n, k, d] code. Let kM , kR ∈ N with kM + kR = k. We may consider a
randomized encoding function Enc : FkM

q × F
kR
q → F

n
q defined by Enc(M ,R) :=

Enc(M‖R). When considering Enc, we refer to C as a randomized linear code.

Uniform Codes. A randomized linear code C is said to be B-query uniform if
for any set Q ⊆ [n] with |Q| ≤ B, the distribution of {Enc(M ,R)|Q : R ← F

kR
q }

is uniform over F
Q
q .

Example: Reed-Solomon Codes. Let k, n ∈ N. Let Fq be a field, let s1, . . . , sn

be distinct points in Fq, and let S := {s1, . . . , sn}. The Reed-Solomon code
RS[n, k, S] is defined as

RS[n, k, S] := {(p(s1), . . . , p(sn)) | p ∈ Fq[X], deg(p) ≤ k − 1} ,

with associated encoding function

Enc : (M0, . . . ,Mk−1) → (pM (s1), . . . , pM (sn)) ,

where pM :=
∑k−1

i=0 MiX
i. It is well known that RS[n, k, S] is a [n, k, n − k + 1]

code and that furthermore, when considering a randomised encoding function
for some kR < k, the Reed-Solomon code is kR-query uniform.

We state results on the decodability and list-decodability of Reed-Solomon
codes.

Lemma 1 (Berlekamp-Welch algorithm [KR07]). The code RS[n, k, S] is
�n−k

2 �-error correcting, and Dec is computable in time O(n2).

120 J. Bootle et al.

Lemma 2 (Guruswami-Sudan algorithm [McE03,Gur06,Nie13]). The
code RS[n, k, S] is (e, �)-list decodable with e = n−1−√

(k − 1)n and � = O(n2).
Moreover, the list L can be computed in time O(n9).

Note that some references such as [McE03] allow LDec to produce codewords
with distance greater than e as part of the list L as they can be easily discarded.
We assume that this has already been done and L contains only codewords
within Hamming distance e of the input vector.

While both decoding algorithms run in polynomial time, the asymptotic com-
plexity of LDec in Lemma 2 is much higher than that of Dec in Lemma 1. The
bound of O(n9) in Lemma 2 comes from combining Corollary 3.15 and Table 3.1
in [Nie13].

2.4 Implicit-Only PAKE

A PAKE is a cryptographic protocol π that allows two parties to agree on a
shared key over an unauthenticated channel assuming that both parties know the
same shared password (i.e., a potentially low entropy string), and guarantees that
each party gets a freshly sampled random key if the input passwords are different.
The absence of an authenticated channel and the low-entropy assumption on the
shared password mean that an iPAKE has to take man-in-the-middle and offline
dictionary attacks into account.

The main building block of our construction is an implicit-only PAKE (or
iPAKE for short) put forward by Dupont et al. [DHP+18]. An iPAKE is a
specific type of PAKE that only achieves implicit authentication with respect
to the honest parties as well as the adversary. This means that at the end of
the protocol execution, the two interacting parties do not know if they derived
the same key or not. Moreover, an adversary launching an active attack on
the protocol by trying to guess the password does not get any feedback on the
correctness of their guesses. Dupont et al. [DHP+18] formally defined an iPAKE
as an ideal functionality FiPAKE which we describe in the full version of the paper.

Correctness. Roy and Xu [RX23] showed that ideal UC-functionalities for PAKE
like FPAKE by [CHK+05] do not offer correctness. This shortcoming of FPAKE also
applies to the FiPAKE functionality. In a nutshell, all these functionalities offer
an adversarial interface to prevent successful key exchange that is not subject
to any restrictions. Since protocols that emulate a functionality can allow for
the same attacks than the functionality, even a PAKE where parties always
output random keys could securely realize a PAKE functionality. Further, Roy
and Xu [RX23, Thm. 2] show that it is impossible to incorporate correctness
into FPAKE in the two-party setting. However, they show how to overcome this
limitation by defining PAKE as a three-party protocol, where the third party is
the man-in-the-middle adversary. This formulation is equivalent to demanding
correctness from the PAKE protocol as a separate property [RX23, Thm. 3]. We
therefore also demand that an iPAKE protocol has correctness. Let (K,K ′) ←
outA,π〈P0(pw),P1(pw)〉 denote that P0 outputs K and P1 outputs K ′ when

Generalized Fuzzy PAKE from Error Correcting Codes 121

executing π on input pw ∈ D, respectively and in the presence of adversary A.
Here D denotes a finite alphabet (or dictionary). We adapt their correctness
definition to the setting of implicit-only PAKE here.

Definition 1. We say an iPAKE protocol π is ε-correct if for all pw ∈ D, for
some finite alphabet D, and for all passive (i.e., honest-but-curious) adversaries
A, the probability that in an execution of π with honest parties P0,P1 the first
party P0 on input pw outputs a different key than the second party P1 on input
pw in the presence of A is negligible, i.e.,

Pr[K 	= K ′ | (K,K ′) ← outA,π〈P0(pw),P1(pw)〉] ≤ ε(λ),

where the probability is taken over the random coins of P0,P1, and A. We call
ε the correctness error. We just say π is correct if it has negligible correctness
error.

2.5 Split Authentication

Another building block in our fPAKE construction is Split Authentication, put
forward by Barak et al. [BCL+05]. It is essentially a protocol that implements
something very close to an authenticated channel in an unauthenticated set-
ting. The adversary’s only additional ability is that they can run two separate
executions of an authentication protocol (one with each party) without the two
communicating parties realizing it. In particular, if both parties are honest, split
authentication forces the adversary to decide at the beginning of the communica-
tion whether to launch a man-in-the-middle attack and run a separate protocol
with each party, or to just observe the messages being exchanged and potentially
delay their delivery.

Barak et al. [BCL+05] formalized Split Authentication as an ideal function-
ality FSA which we describe in the full version of the paper.

3 Fuzzy Password-Authenticated Key Exchange

Fuzzy Password-Authenticated Key Exchange (fPAKE for short) is a crypto-
graphic protocol allowing two parties to agree on a shared key in the following
setting: the two parties are connected by an unauthenticated channel, but each
of them holds a noisy version of a shared low-entropy password.

3.1 The FfPAKE Ideal Functionality

Dupont et al. [DHP+18] formalized fPAKE as a UC ideal functionality FfPAKE

which we recall in Fig. 3. Here we describe FfPAKE at a high level and refer the
reader to the work of Dupont et al. for a more detailed discussion.

Parties P0,P1 initiate a password-authenticated key exchange by sending
a NewSession message to the ideal functionality including their version of the
password. To allow for initiator-responder-style protocols, the ideal functionality

122 J. Bootle et al.

allows parties to specify their role, i.e., whether they are the Sender or the
Receiver. Upon receiving a NewSession message, the functionality records the
received password pw and informs the adversary about the NewSession request.

The adversary can then try to guess the recorded password through a
TestPwd query. This interface allows an adversary to mount an active attack
on the protocol. The recorded pw is marked as compromised if adversary’s guess
is “close enough” and interrupted otherwise. The adversary is informed about
the result of their guess. To capture the closeness formally, FfPAKE is parametrized
by error tolerance δ and a metric d, and two passwords pw, pw′ are considered
close enough for key exchange to succeed if d(pw, pw′) ≤ δ.

The functionality outputs a secret key to a party Pi after receiving a
NewKey instruction from the adversary. This captures the ability of network
attackers to arbitrarily delay the termination of the protocol. FfPAKE decides on
the secret key being sent in three different ways (for a formal definition of each
case, see Fig. 3.):

(i) The secret key is specified by the adversary if the adversary success-
fully guessed Pi’s recorded password, which can happen either through a
TestPwd query, or by corrupting P1−i and submitting a password on their
behalf. This case captures the fact that a protocol participant with a close
enough password can bias the final key.

(ii) If both parties are honest, their recorded passwords are δ-close and FfPAKE

already sent a secret key to party P1−i, then Pi gets the same key as P1−i.
This requirement ensures the core functionality of an fPAKE; namely, that
honest parties with close enough passwords output the same key.

(iii) In any other case, FfPAKE sends a freshly sampled random key to ensures
pseudorandomness of keys overall, and uniformity of keys output by parties
with non-matching passwords.

Dupont et al. [DHP+18] additionally defined a modified TestPwd inter-
face that gives more freedom in defining the leakage to the adversary after a
TestPwd query. The functionality is now additionally parametrized by a leak-
age threshold γ ≥ δ and three leakage functions Lc, Lm, Lf defining the leakage
to the adversary depending on the closeness of their guess to the tested pass-
word. See Fig. 5 for a graphical explanation of the extended TestPwd interface
and Fig. 4 for a formal definition of the extension.

We are particularly interested in a TestPwd interface that leaks posi-
tions at which passwords match if the passwords are sufficiently close (follow-
ing [DHP+18], we call this leakage the mask). Our proof of security will rely on
this leaked information. Formally, let FM

fPAKE be the ideal functionality from Fig. 3
except that the TestPwd interface is defined according to Fig. 4 with the fol-
lowing leakage functions (here pw = (pw1, . . . , pwn) and pw′ = (pw′

1, . . . , pw
′
n)):

LM
c (pw, pw′) := ({j s.t. pwj = pw′

j}, “correct guess”),

LM
m (pw, pw′) := ({j s.t. pwj = pw′

j}, “wrong guess”),

LM
f (pw, pw′) := “wrong guess”.

Generalized Fuzzy PAKE from Error Correcting Codes 123

Fig. 3. Ideal functionality FfPAKE [DHP+18]

Fig. 4. A modified TestPwd interface to allow for different leakage [DHP+18]

Correctness of fPAKE . For the same reason as for an iPAKE protocol (see dis-
cussion in Sect. 2.4), we also additionally require that a fuzzy PAKE protocol
has correctness. Let (K,K ′) ← outA,π〈P0(pw),P1(pw′)〉 denote that P0 outputs
K and P1 outputs K ′ when executing π on input pw and pw′, respectively and
in the presence of adversary A.

124 J. Bootle et al.

Fig. 5. A graphical explanation of the relaxed TestPwd interface of Fig. 4. Here, “KE”
stands for successful key exchange (e.g., when 0 to δ errors occur), and “no KE” stands
for failure of key exchange, i.e., both parties outputting uniformly random strings.

Definition 2. We say a fuzzy PAKE protocol π is (δ, ε)-correct if for all
pw, pw′ ∈ D with d(pw, pw′) ≤ δ, where D is a finite alphabet, and for all passive
(i.e., honest-but-curious) adversaries A the probability that in an execution of π
with honest parties P0,P1 the first party P0 on input pw outputs a different key
than the second party P1 on input pw′ in the presence of A is bounded above:

Pr[K 	= K ′ | (K,K ′) ← outA,π〈P0(pw),P1(pw′)〉] ≤ ε(λ),

where the probability is taken over the random coins of P0,P1, and A. We call
ε the correctness error. We just say π is δ-correct if it has negligible correctness
error.

3.2 On the Insecurity of Previous Fuzzy PAKE Constructions

Dupont et al. [DHP+18] proposed a concrete fPAKE protocol (which they
call πRSS

fPAKE) that uses an implicit PAKE (iPAKE) and an error-correcting code
(ECC)4. In this section we explain why, in fact, the πRSS

fPAKE protocol does not
realize the FfPAKE functionality. In order to do so, we first need to discuss the
main ideas of πRSS

fPAKE. We refer the reader to the original work [DHP+18] for
more details.

Description of πRSS
fPAKE. Let pw = (pw1, · · · , pwn) ∈ D = Ln, for some finite

alphabet L, be the input password of the Sender and pw = (pw′
1, · · · , pw′

n) ∈
D = Ln the input password of the Receiver. We typically talk about passwords
being vectors of password characters. In the first stage of the protocol, the two
parties engage in n iPAKE protocols. In the t-th execution, the Sender’s input is
the t-th password character pwt and the Receiver’s input is pw′

t. Parties receive
outputs Kt,K

′
t ∈ Fq respectively. The iPAKE with the correctness property

guarantees that if pwt = pw′
t and there is no attack, then Kt = K ′

t. Otherwise
the keys Kt and K ′

t are independent. At the end of this stage, the parties hold
character keys K := (Kt)t∈[n],K

′ := (K ′
t)t∈[n] ∈ F

n
q respectively.

In the second stage, the Sender samples a random field element U ← Fq and
encodes it using an error correcting code with a hiding property. Let C ∈ F

n
q

4 As already discussed in the introduction, Dupont et al. [DHP+18] use the terminol-
ogy of Robust Secret Sharing instead of ECC.

Generalized Fuzzy PAKE from Error Correcting Codes 125

denote the resulting codeword. The Sender now performs a one-time-pad and
sends E := C + K to the Receiver. The Receiver computes C′ := E − K ′ and
decodes the obtained codeword to U ′. The idea is that if K and K ′ only differ at
a few positions, then both codewords C and C′ decode to the same value thanks
to the error correcting property of the code, and hence both parties output the
same key.

Fig. 6. Description of the πRSS
fPAKE protocol from [DHP+18] that uses n instances of an

�-iPAKE and a signature scheme (KeyGen, Sign,Vfy) whose verification key space is VK
and an error-correcting code (Enc,Dec).

In order to realize the FfPAKE functionality, one needs to bind the n iPAKE
executions and the final message together, as otherwise, active attacks on indi-
vidual iPAKE instances allow to derive information about the corresponding
password characters as observed already in [DHP+18]. To this end, the proto-
col πRSS

fPAKE actually makes use of a labelled iPAKE (or �-iPAKE for short). In
a nutshell, �-iPAKE allows each party to additionally input a public label that
serves as a public authentication string (i.e., any tampering with the label can be
detected efficiently). The Sender then samples a signing key pair (sk, vk) at the
beginning of the πRSS

fPAKE protocol and uses vk as their label in all �-iPAKE execu-
tions. The Receiver checks that all the output labels of the �-iPAKE executions
are the same and aborts if this is not the case. In the last message, the Sender
sends their signature σ = Signsk(E) and vk to the Receiver in addition to E. The
Receiver aborts if vk is not equal to the output labels of the �-iPAKE instances
or with the signature does not verify. See Fig. 6 for a schematic description of
the protocol.

Attack on πRSS
fPAKE. It turns out that the way �-iPAKE instances and the last

message were tightened together in the πRSS
fPAKE protocol is not sufficient to realize

the FfPAKE functionality. Let us assume that both parties enter passwords pw, pw′

whose distance is exactly at the threshold δ, i.e., d(pw, pw′) = δ. This means that
the fPAKE would yield matching keys for both parties if there was no active
attack on the protocol. The adversary can now make one of the �-iPAKE key

126 J. Bootle et al.

exchanges fail by making a wrong guess (without loss of generality, assume the
first one). This perfectly emulates a situation where the first password values pw1

and pw′
1 mismatch. Now, imagine a simulator that ensures indistinguishability

of the ideal execution of FfPAKE from the real protocol execution πRSS
fPAKE where

parties make calls to the �-iPAKE instances. The simulator’s task is to figure
out whether the described attack actually constitutes a successful DoS attack
against the whole fPAKE or not, i.e., whether the passwords entered by both
parties were already at the error tolerance δ and if pw1 = pw′

1. If so, the result of
the attack in the real world is that both parties compute random keys, otherwise
they compute the same key. The only leakage about the passwords accessible by
the simulator is through the TestPwd interface of FfPAKE. Calling this interface,
however, requires the simulator to provide a password γ-close to pw or pw′, as
otherwise parties will already receive randomized keys in the ideal world because
of the session getting interrupted. The probability that the simulator guesses
the password depends on the dictionary size but is not negligibly close to 1.
This results in a significant distinguishing advantage for the environment. We
highlight that this attack has practical implications on the protocol. For the sake
of simplicity, assume that the passwords must match exactly (i.e., δ = 0), and
that the password is encoded as a bit string. An attacker can completely retrieve
a user’s n-bit password from only n executions of the protocol with that user
by guessing one bit per execution. Whenever key exchange is successful the bit
was guessed correctly. For δ > 0, the attack needs slightly more guesses as the
attacker must ensure that the distance from his guess to the user’s password
is exactly at the δ boundary before the bit-wise guessing will work. We now
describe the attack more formally.

Formalizing the Attack on πRSS
fPAKE. To formalize the attack, we need to show that

for every simulator S there exists an environment Z that can distinguish the
interaction with the hybrid world adversary and the protocol from the interac-
tion with the simulator and the ideal functionality with non-negligible proba-
bility. In fact, in Fig. 7, we describe a distinguishing environment Z that can
distinguish the hybrid and ideal worlds with non-negligible probability for all
PPT simulators.

Let us first look at the pseudocode in Fig. 7 and consider that Z interacts
with the hybrid world (i.e., the protocol πRSS

fPAKE making calls to F�-iPAKE, and the
real world dummy adversary A that does what Z tells them to do). One can
easily observe that if the environment’s choice bit is set to b = 0, then the attack
results in DoS (i.e., output keys sk and sk′ are chosen uniformly at random) and
if b = 1, the attack does not disturb the key exchange (i.e. sk = sk′). Hence, if Z
interacts with the hybrid world, they will correctly output HYBRID except with
negligible probability (note that Pr[sk = sk′ | sk $←− Fq, sk

′ $←− Fq] = 1
q , where

q ≈ 2λ).
Let us now focus on the ideal world, where Z interacts with the ideal func-

tionality FfPAKE and a simulator S. The task of S is to make FfPAKE produce
an output indistinguishable from the hybrid world described above. Let us first
summarize all the information that S gets. From the environment, S receives

Generalized Fuzzy PAKE from Error Correcting Codes 127

pw∗
1 ∈ Fp and we can assume that S knows that this character is different from

pw1. According to the definition of FfPAKE, S gets no information about the pass-
words pw,pw′ from FfPAKE by default. The only way S could get information via
FfPAKE is through the TestPwd interface, where S has to guess pw or pw′. If S
guesses one of the passwords wrong, this password gets marked as interrupted,
which means that the simulator loses all power over the keys being output to
both parties (i.e. each party gets a randomly sampled key). In order to get useful
information about the passwords via the TestPwd interface without causing
random keys, the simulator would have to make a close enough guess of one of
the passwords. But since S knows only that pw1 	= pw∗

1 and the passwords were
chosen uniformly at random, the probability that S succeeds in guessing is not
negligibly close to 1 (the exact probability depends, of course, on the size of the
dictionary and γ).

Hence, if S could ensure that the ideal and hybrid worlds were indistinguish-
able, then S would be able to guess b correctly with non-negligible probability.
Since b was chosen uniformly at random from {0, 1} by Z, this is information-
theoretically impossible.

Fig. 7. Pseudocode of an environment Z distinguishing the interaction with the πRSS
fPAKE

protocol in the F�-iPAKE hybrid world from the interaction with the FfPAKE ideal func-
tionality.

128 J. Bootle et al.

3.3 Towards Repairing the Previous Construction

In their work, Dupont et al. mention an alternative way of binding the iPAKE
instances and the last message together (see footnote 6 on page 26 of the eprint
version of their paper [DHP+17]). Instead of using labels and a one-time sig-
nature scheme, they suggest letting the two parties sign every message using
the split transformation put forward by Barak et al. [BCL+05]. A natural first
step when trying to fix the πRSS

fPAKE protocol is hence to follow this alternative
approach. Unfortunately, it turns out that applying the split transformation is
not straightforward.

At a very high level, the split transformation is a generic way to transform a
protocol realizing an ideal functionality F assuming authenticated channels into
a protocol that achieves the same without authenticated channels.5 Instead, the
transformed protocol works in the FSA-hybrid world, where FSA is the ideal
functionality for split authentication recalled in Sect. 2.5.

Intuitively, this seems to be exactly what is needed to bind the iPAKE
instances and the message of πRSS

fPAKE together. Let πplain
fPAKE denote the protocol

which is defined exactly as πRSS
fPAKE except that it uses FiPAKE instead of F�-iPAKE

instances and the sender does not sign the last message. Assume that the sender
and the receiver have an authenticated channel available which they can use for
all the communication happening during all the n iPAKE executions and parties
can use the same channel for the last message. Then the πplain

fPAKE protocol would
be a secure fuzzy PAKE. Unfortunately, this intuition is misleading as it does
not reflect the UC formalization of the πRSS

fPAKE protocol correctly.
The core of the problem is that the result of Barak et al. does not apply to

hybrid protocols like πplain
fPAKE. In a bit more detail, recall that the protocol πplain

fPAKE

is defined in the FiPAKE-hybrid world. This, in particular, means that the only
message sent between the sender and the receiver in πplain

fPAKE is the last message.
The rest of the protocol consists of the communication between a party and
FiPAKE ideal functionality. Sending (only) the last message over an authenticated
channel would not help us to bind the n iPAKE executions together, so such a
protocol could not realize FfPAKE. Hence, applying the split transformation does
not have the desired effect of protecting against active attacks on individual
password characters, like the one described in Fig. 7, in πRSS

fPAKE.

Our Approach. To address this issue, we define a protocol that does not work
in the FiPAKE-hybrid world. Instead, it lets the Sender and the Receiver run
the code of a protocol πiPAKE realizing FiPAKE directly. In a bit more detail, let
us assume that the Sender received pw = (pw1, . . . , pwn) as input. For every
t ∈ [n], our protocol instructs the Sender to run the code of the πiPAKE-sender on
input pwt. Whenever the πiPAKE-sender would have sent a message to the πiPAKE-
receiver instance, the Sender does so via the channel available for the two parties
in our protocol. The Receiver in our protocol is defined analogously. This way,
5 This is an oversimplified statement as the transformed protocol does not realize F

but its split variant, denoted sF . See the work of Barak et al. [BCL+05] for more
details.

Generalized Fuzzy PAKE from Error Correcting Codes 129

all communication happening during the iPAKE executions and the last message
are sent via the same channel between the Sender and the Receiver. Hence, the
split transformation will have the desired effect. We formally prove this intuitive
statement in the next section, where we define our final protocol precisely.

Potential Alternative Approach. Another way to resolve the insufficient binding
of the iPAKE instances and the last message together could be to define a new
building block, “batched iPAKE”. This new iPAKE primitive would take as
input a vector (pwt)t∈[n] and output a vector (Kt)t∈[n]. An adversary would be
allowed to make a TestPwd query, but would always have to test all password
characters (pw∗

t)t∈[n]. Hence, the adversary would be forced to launch a man-
in-the-middle attack either against all iPAKE instances, or none of them, which
would guarantee the binding of the iPAKEs. In order to bind iPAKEs to the last
message, we would require the “batch iPAKE” to be labelled. As in πRSS

fPAKE, the
sender would use their verification key as a label and then use the corresponding
signing key to sign the last message.

4 Our Construction

General Idea. The idea behind our construction is very simple: we modify the
fuzzy PAKE of Dupont et al. [DHP+18] by letting the receiver apply list decod-
ing instead of unique decoding. Since now the receiver ends up with a list of
potential key candidates (or codewords, more precisely), we additionally let the
sender compute a “hint” on which codeword is the correct one. More formally,
the sender adds the hash of the original codeword h := H(C) to the last message.
The receiver applies list decoding which results in a list of candidates C1, . . . ,C�.
They then find the one that satisfies h = H(Cj) and compute U ← Dec(Cj).
The value h is a hint on which of the candidates is the correct one. The benefit
of our construction is that it can correct more errors in the password: for a Reed-
Solomon code of rank k and block length n, unique decoding can correct up to
�n−k

2 � errors (Lemma 1), while list decoding outputs a list containing the original
codeword in the presence of n − 1 − √

(k − 1)n errors. Figure 2 provides several
numerical examples of these terms, demonstrating that for growing password
sizes, the list decoding approach yields a significantly better error correction
capability than the unique decoding approach in [DHP+18].

On the other hand, it is not intuitively clear that the extra information passed
from the sender to the receiver does not void any of the security guarantees of
the protocol. To give an example, consider a different kind of hint h̄ := H(sk),
where sk is the output key of the sender. Such a hint helps the receiver to
choose its output key just as well as the hint h := H(C). However, a fuzzy
PAKE protocol sending h̄ cannot realize FfPAKE. The reason is that h̄ depends
deterministically on secret information known to the sender (namely its output
key sk), and hence it leaves no wiggle room for a simulator, who simply has to
guess sk in order to simulate correctly. While the hint H(C) does include some
randomness contributed by the sender to the encoding algorithm Enc, it is not

130 J. Bootle et al.

straightforward to see that the resulting fuzzy PAKE is simulatable, meaning
that it does not involuntarily reveal any information about the sender’s password
through the hint.

Hence, in the remainder of this section, we carefully analyze the security of
our fuzzy PAKE protocol given in Fig. 8.

Formal Protocol Description. The protocol is depicted in Fig. 8. To be able to fix
previous issues of imperfect binding of messages, and as detailed in Sect. 3.2, we
let parties send messages to each other over functionality FSA (the functionality
was briefly discussed in Sect. 2.5 and is formally defined in the full version of
the paper). The protocol parties take a password from a dictionary D = Ln as
input, where L is some finite alphabet. We write that the sender chooses s $←− F

k
q

and encodes it using Enc(s). One can equivalently say that the sender chooses a
message s0

$←− Fq and randomness r $←− F
k−1
q and uses the randomized encoding

Enc(s0, r). To make our protocol description modular, let πj denote an instance
of a protocol that UC-realizes FiPAKE. We write X ← πj(Pi, sid, pw

Pi) to denote
that Pi outputs X when running πj on sid and pwPi and K ← πj(Pi, sid,X) to
denote that Pi outputs K as response to input X when running πj on sid. For
the sake of simplicity, we assume that the πj protocols are one-round protocols.
For multi-round protocols, one can send every message again over FSA to the
respective other party, like in the first round. Note that it is important that the
receiver only continues the computation with codewords that are within distance
of δ to E⊕K′. Otherwise, the receiver might output the same key as the sender,
even when the passwords were not close enough. We ensure this by letting LDec
only output codewords within distance of δ to the input. As explained in Sect. 2
this can easily be guaranteed by letting LDec discard codewords with distance
> δ. A more formal description of the protocol, using the interfaces of FfPAKE

can be found in the full version of the paper.
We start by proving the correctness of our protocol.

Theorem 1. If C is a randomized linear code which is efficiently δ-list decodable,
H1 is a ε2-collision-resistant hash function and π is ε1-correct and UC-realizes
FiPAKE, then the protocol in Fig. 8 is (δ, ε0)-correct for

ε0 = nε1 + ε2.

Remark 1 (Implications for previous results). Note that our construction implies
(a fixed version of) the original fuzzy PAKE of Dupont et al. [DHP+18] when
falling back to unique decoding algorithms. Indeed, one can simply set the list
size of the list decoding algorithm to 1 and thus obtain unique decoding instead
of list decoding as in [DHP+18], preserving our security analysis. There are two
notable differences in this “fallback” version of our fuzzy PAKE and the one
of [DHP+18]. First, our version applies a proper binding mechanism by using
the split functionality FSA for sending messages [BCL+05], at the cost of one
signature per message (see the full version of the paper for the concrete instan-
tiation). Second, our security proof does not rely on the smoothness property of

Generalized Fuzzy PAKE from Error Correcting Codes 131

Fig. 8. The protocol in the FSA-hybrid model. We drop sid from all messages for brevity.
We recall FSA in the full version of the paper, but for the sake of understanding our
protocol it is enough to know that FSA is used to transmit the protocol messages. With
πj we denote an instances of a protocol that UC-realizes FiPAKE (as described in the
full version of the paper). We write X ← πj(Pi, sid, pw

Pi
j) to denote that Pi outputs

X when running πj on sid with password pwPi
j and K ← πj(Pi, sid, X) to denote that

Pi outputs K as response to input X when running πj on sid.

the underlying code. This enables the usage of a variety of codes for which such
properties are not well researched, or do not hold at all.

Proof. Assume that two honest parties P0,P1 execute the protocol from Fig. 8
on inputs pwP0 and pwP1 with d(pwP0 , pwP1) ≤ δ, respectively. Further, assume
that the adversary A attacking this protocol is passive. Each instance πj of π is
ε1-correct by assumption (see Definition 1). We construct a sequence of hybrids
H0, . . . ,Hn where in the j-th hybrid, we abort the execution of the protocol if
the two parties of πj output different keys even though the respective inputs
pwP0

j and pwP1
j are the same. By the ε1-correctness of π, Hj differs from Hj−1

at most by ε1 for each j ∈ {1, . . . , n}. Now in Hn, as we have d(pwP0 , pwP1) ≤ δ,
there are at least n − δ instances of π where P0 and P1 run on matching inputs
pwP0

j and pwP1
j . Thus, we have Kj = K ′

j for at least n− δ keys. So the codeword
C′ = E ⊕ K ′ that the receiver computes differs from the sender’s C on at
most δ entries. As C is δ-list decodable, the list that is output by LDec contains
the same C that the sender encoded. Now assume that there are two possible
words C,C∗ with s = Dec(C) and s∗ = Dec(C∗) such that H1((sid, sidH), s0) =
H1((sid, sidH), s∗

0) with probability ε2. One can construct an adversary against
the collision-resistance of H1 that internally runs P0(pwP0) and P1(pwP1) and

132 J. Bootle et al.

outputs s0, s
∗
0 as above. We get

Pr[K 	= K ′ | (K,K ′) ← outA,π〈P0(pwP0),P1(pwP1)〉] ≤ nε1 + ε2.

Theorem 2. If C is a RS[n, k, S] code over Fq for q = 2Ω(λ), π UC-realizes
FiPAKE and is correct, and H0 and H1 are modeled as random oracles then the
protocol in Fig. 8 UC-realizes FM

fPAKE in the FSA-hybrid model with error tolerance
δ = n − 1 − √

(k − 1)n and leakage threshold γ = n − k.

We discuss the proof of Theorem 2 in Sect. 5.

4.1 Comparison with Properties and Proof Techniques in [DHP+18]

As previously discussed, prior work [DHP+18] constructs fuzzy PAKE protocols
from linear error-correcting codes, using the fact that the errors in noisy code-
words can be uniquely corrected up to the unique decoding radius. However, in
this work, we wish to offer improved PAKE functionality by using list-decoding
algorithms to correct errors beyond the unique decoding radius. The proof strat-
egy employed in [DHP+18] does not readily generalise to this setting, and the
presence of the hint h becomes crucial in the proof of Theorem 2, as we will
explain.

The PAKE construction of [DHP+18] builds fuzzy PAKE protocols from
robust secret-sharing (RSS) schemes with various special properties, which are
in turn constructed from linear error-correcting codes. First, we summarize the
RSS properties used in the PAKE construction of [DHP+18] and rephrase them
as properties of error-correcting codes. Then, we describe the techniques used in
the proof of the reconstruction and smoothness properties, and how this proof
strategy leads to challenges when we generalize to list-decoding. Finally, we
explain how the inclusion of the hint h allows us to circumvent these issues.

RSS Properties in [DHP+18]. An RSS scheme consists of a sharing algorithm,
which takes a message as input and produces n output shares, and a reconstruc-
tion algorithm, which, on input a list of (possibly corrupted) shares, returns a
secret.

In this work, in line with our study of PAKE protocols from a decoding
perspective, we phrase our algorithms in terms of randomised error-correcting
codes as in Sect. 2.2, instead of RSS schemes. With this view, the randomised
encoding algorithm Enc simply corresponds to a share algorithm with message
space generalised from F to F

kM , and explicit random input R ∈ F
kR .

The PAKE construction of [DHP+18] uses the following properties of ran-
domised encoding algorithms (with their corresponding RSS terminology from
[DHP+18] included for clarity):

– B-query uniformity (Sect. 2.3), which corresponds to strong B-privacy for
RSS;

– the existence of an efficient algorithm for e-error correction (Sect. 2.2), which
corresponds to e-robustness for RSS;

Generalized Fuzzy PAKE from Error Correcting Codes 133

– for all E ⊆ [n] with |E| ≤ e, all M ∈ F
kM , the distribution of

{
Dec(V) : R ← F

kR ,V |E := Enc(M ,R)|E ,V |Ē ← F
Ē

}
(1)

is uniform over F
kM . This corresponds to e-smoothness for RSS;

– e-smoothness on random secrets. This is similar to e-smoothness except that
M is also sampled uniformly at random from F

kM .

The authors of [DHP+18] give a construction of a randomised linear code
with each of the above properties from a standard linear error correcting code.
The construction was originally given as an RSS.

Lemma 3 ([DHP+18, Lemma 5], restated). Given an [n + 1, k, n − k + 2]-
linear code C0, there is a [n, k, n − k + 1] randomised linear code C with
kM = 1, (k − 1)-smoothness, (k − 1)-query uniformity, �n+k

2 �-error correction
and (�n+k

2 � − 1)-smoothness on random secrets.

Arguing Smoothness and Decoding Properties for Lemma 3. The proof of Lemma
3 in [DHP+18] starts by defining C to be the code obtained by puncturing C0

in its last coordinate. Then, (k − 1)-smoothness is proved with respect to the
following decoding algorithm. On input a codeword in C′, the decoding algorithm
selects the subvector of k entries of the codeword and then inverts the submatrix
of the generator matrix of C′ corresponding to these entries on the subvector to
find the original message. Finally, this message vector is combined with the
column of the generator matrix of C corresponding to its last coordinate.

Intuitively, in the case of Reed-Solomon codes, this is like choosing k code-
word entries of a punctured codeword with the last entry missing, and then
interpolating to find out what the last entry should be.

With this decoding algorithm, it is relatively easy to prove smoothness,
because V in Eq. (1) has at least n − k + 1 random entries, so at least one
entry out of the k entries is random. Based on the MDS properties of C, one can
show that the “last coordinate” computed from the k selected entries must also
be random.

In order for this decoding algorithm to be robust, it must be able to select k
error-free positions. Otherwise, the submatrix inversion step will incorporate an
error and produce an incorrect message. In the case of Reed-Solomon codes, this
could be achieved by using another decoding algorithm (such as the Berlekamp-
Welch algorithm) to identify these positions.

Therefore, proving the smoothness property relies heavily on the MDS prop-
erties of C and the existence of efficient decoding algorithms to allow errors in
the codeword to be located.

Moving Beyond the Unique Decoding Radius. In this work, we intend to con-
struct a PAKE scheme which works for errors beyond the unique decoding radius.
In this high-error setting, the natural replacement for a decoding algorithm is a

134 J. Bootle et al.

list-decoding algorithm, which produces all possible codewords within a partic-
ular radius of the transmitted word. The first challenge for our PAKE algorithm
to overcome was to allow the sender and receiver to agree on the same pass-
word, even though decoding may no longer produce a unique codeword which
can be used to determine the password. We solve this problem by way of the
hint h = H(C).

Another challenge is the fact that smoothness, an important property in
the security proofs of [DHP+18], relies heavily on the special decoding strategy
introduced, which must apply a linear map to error-free positions in a codeword
in order to ensure robustness. In this high-error setting, it may be impossible to
identify a unique set of error-free positions in a codeword. Thus, the decoding
strategy above, which involves inverting the generator matrix on an error-free set
of codeword entries, may not be possible either. Therefore, it seems challenging to
construct a list-decoding algorithm with a generalised smoothness property via
a linear decoding algorithm that still returns the correct codeword somewhere in
its list, as the linear decoding step may always be applied to strings with errors
instead of error-free positions.

However, amazingly, the hint that we introduce lets us circumvent this issue.
In order to prove our PAKE protocol secure, we require only that the list decod-
ing algorithm will not produce the same codeword provided by the hint after
many random errors are added to it. This follows almost trivially as adding a
large number of random errors produces a string which is so far away from the
original codeword that the list decoding algorithm cannot produce the original
codeword. This is discussed in detail in the full version of the paper.

5 Proof of Security

To prove that the protocol in Fig. 8 UC-realizes FM
fPAKE, we have to show that

every PPT environment Z has at most negligible advantage in distinguishing
a real execution of the protocol from an ideal execution, with FM

fPAKE and the
simulator that we show in Figs. 9 to 10. We show this using a sequence of hybrid
games. In the following, we give intuition for each of the game hops and prove
the necessary lemmas. We defer the full proof of Theorem 2 to the full version
of the paper.

On Using Other iPAKE Protocols than EKE: The current simulator in Figs. 9
to 10 is written keeping in mind an iPAKE protocol in which each party only
sends one message. However, the simulator can be easily adapted to work with
any iPAKE protocol as follows: Instead of forwarding only one set of messages
({Z∗

j }n
j=1 between Z and the iPAKE simulators, S would forward all iPAKE

messages between Z and the corresponding iPAKE simulator.

Proof (Sketch) . We depict a UC execution of Fig. 8 in the full version of the
paper, which makes all the interfaces of FfPAKE explicit. The general proof strat-
egy of showing indistinguishability of this protocol from FfPAKE is to start with

Generalized Fuzzy PAKE from Error Correcting Codes 135

Fig. 9. The first part of the simulator S for FfPAKE and our Fuzzy PAKE with list-
decoding protocol. S simulates FSA and the random oracles H0 and H1. If we write
“retrieve record” and the record does not exist, S ignores the message.

136 J. Bootle et al.

Fig. 10. The second part of the simulator S for FfPAKE and our Fuzzy PAKE with
list-decoding protocol. S simulates FSA and the random oracles H0 and H1. If we write
“retrieve record” and the record does not exist, S ignores the message.

Fig. 11. This figure shows the layout of our simulator SfPAKE in G3 in a setting without
MitM attack.

Generalized Fuzzy PAKE from Error Correcting Codes 137

the real-world execution of the protocol and replace parts of the protocol with
simulations, step-by-step. The goal is to reach the ideal-world execution where
the simulator can work without using the secret passwords of the participating
parties, but with help from the ideal functionality FM

fPAKE. In the following we
give intuition for every game-hop we make:

Game G0: The proof starts with the real execution of the protocol.
Game G1: We move the whole execution into one machine which we will call

the simulator. We also add dummy parties and a functionality that merely
forwards the input of the parties (i.e. NewSession calls) to the simulator.
Furthermore, the functionality forwards the output of the simulator to the
parties as NewKey messages. This allows the simulator to execute the pro-
tocol on the real inputs pwPi and pwP1−i . The goal of the remaining steps is
to add and adapt interfaces of the ideal functionality until we reach FM

fPAKE

and to make the simulator independent of the input passwords pwPi , pwP1−i

until we reach the simulator as described in Figs. 9 to 10.
Game G2: In this game the simulator aborts on collisions of H0.
Game G3: In this game we use the hypothesis that the iPAKE protocol πj UC-

realizes FiPAKE. There is a simulator SiPAKE that interacts with FiPAKE and
simulates a protocol execution of π. Thus, we can replace each instance πj of
π by an instance Sj

iPAKE of SiPAKE. The simulator S must also simulate FiPAKE

towards SiPAKE to make sure that the simulation works (Fig. 11). Note that S
still needs the input passwords pwPi , pwP1−i to internally run FiPAKE.

Game G4: In this game we equip FM
fPAKE with the TestPwd interface. Also

the NewKey and TestPwd interfaces mark records. Also the NewKey
interface reacts to the marked records. However, S does not use the TestPwd
interfaces yet.

Game G5: SiPAKE might send TestPwd queries to FiPAKE. S still uses the input
passwords to answer these. The games G5 to G8 will changes this. In G5 we
argue that SiPAKE will never send a TestPwd query to FiPAKE if both parties
are honest and no man-in-the-middle attack is mounted. In this case, S can
ignore TestPwd queries from SiPAKE.

Game G6: In this game we start dealing with attacks on an honest sender.
Such an attack will lead to TestPwd queries from the SiPAKE. S can also
send a TestPwd query to FM

fPAKE. We leverage the fact that communication
runs over the split authentication functionality. Because of FSA, the FiPAKE

instances of the sender run in a different authentication set than the iPAKE
instances of the (malicious) receiver. Thus, FiPAKE will never have a successful
key exchange. Either the key is adversarially chosen or it is random. This is
what mitigates the attack from Sect. 3.2.
The general idea in this game is that S collects the TestPwd queries of
the iPAKE simulators, concatenates the passwords and uses this to ask a
TestPwd query to FfPAKE. If the password was close enough (i.e. within
distance γ), then S receives the position of the correct password characters
as leakage from FM

fPAKE. Our simulator then uses this knowledge to simulate
the FiPAKE to Z. If S’s password guess was too far away, it will not receive any

138 J. Bootle et al.

leakage information from FM
fPAKE. In that case, S still uses the input passwords

pwPi , pwP1−i to produce output keys Kj for the iPAKE sessions.
The only difference to G5 is that in the case of an attack on an honest sender,
in G6 the sender gets a random key as output from the functionality and not
from the simulator anymore. However, by the (k − 1)-query uniformity of the
code, we can argue that the output was already independent and uniformly
random in the previous game.

Game G7: In this game we change how S simulates iPAKE keys of an honest
sender when there is a MitM attack or the receiver is corrupt. In the case that
the adversary attacked less than n − γ iPAKE sessions or guessed less than
n − γ characters of the password correctly, S just uses uniformly random
iPAKE keys Kj for all j ∈ [n]. So even for the few successfully attacked
iPAKE sessions the output key will be random. Again, we can use (k − 1)-
query uniformity to argue that the few correct entries of C that an adversary
obtains already looked uniformly random before.

Game G8: In this game, we deal with attacks on honest receivers. Like in the
previous game S can use split authentication and the TestPwd interface of
FM

fPAKE with leakage to deal with n − γ or more attacked iPAKE sessions. In
the case where less than n − γ iPAKE sessions were attacked, S does not try
to decode but instead interrupts the record by sending a TestPwd query to
FM

fPAKE with pw = ⊥. Then it sends a NewKey query with sk = ⊥ to FM
fPAKE,

which causes the output of the receiver to be a independent, uniformly random
value. One can use Lemma 4 to see that in the case of less than n−γ password
characters the LDec algorithm will not output anything that matches the hint
h and, thus, the receiver’s output was an independent uniform random value
already even in the previous game.

Game G9: This game syntactically changes S to remove usage of the provided
input passwords pwPi , pwP1−i in dealing with NewSession and TestPwd
queries. We made sure in the previous games that S does not need pwPi and
pwP1−i anymore for those queries.

Game G10: In this game S is modified such that honest and undisturbed parties
produce output without S using the provided inputs for the parties. For this,
S can use the NewKey interface of FM

fPAKE. The functionality FM
fPAKE will

produce output according to the input passwords. If d(pw, pw′) ≤ δ then
FM

fPAKE produces matching passwords. Because of Lemma 6 the real-world
protocol does the same. If d(pw, pw′) > δ then FM

fPAKE produces independent
keys. By Lemma 5, the real-world protocol does the same. We also replace the
message (E, h) with a uniformly random message, which is indistinguishable
for Z as the iPAKE keys of honest parties are hidden from Z.

Game G11: This is the ideal-world experiment with FM
fPAKE and the simulator

from Figs. 9 to 10.

The following lemma essentially says that given a target vector C, a vector
C̃ with at least γ + 1 = n − k + 1 random entries will have d(C, C̃) ≥ γ + 1.
This is necessary in our protocol to make sure that a malicious sender with a
far away password cannot make the key exchange succeed. In the security proof
of our protocol we use this lemma in G8.

Generalized Fuzzy PAKE from Error Correcting Codes 139

Lemma 4. For q = 2Ω(λ), ∀n, k ∈ N with n ≥ k, ∀A ⊆ [n] with |A| ≤ k − 1,
∀C, C̃ ∈ F

n
q with C̃|Ā $←− F

n−|A|
q , we have

Pr[d(C, C̃) ≥ n − k + 1] ≥ 1 − negl(λ).

The probability is taken over the randomness used to sample C̃|Ā.

Proof. Remember that γ = n − k. Observe that d(C, C̃) = d(C|A, C̃|A) +
d(C|Ā, C̃|Ā). The statement must even hold for d(C|A, C̃|A) = 0 and A maxi-
mally large, i.e., |A| = k − 1 and, thus, |Ā| = n − k + 1 = γ + 1. What remains
to be shown is that d(C|Ā, C̃|Ā) ≥ n − k + 1 = γ + 1 with overwhelming prob-
ability. For d(C|Ā, C̃|Ā) ≥ γ + 1 to hold, C|Ā and C̃|Ā must be distinct in all
γ + 1 coordinates. The probability that C|Ā and C̃|Ā are distinct in a specific
coordinate is 1 − 1

q . Thus, the probability that C|Ā and C̃|Ā are distinct in all
γ + 1 coordinates is (1 − 1

q)γ+1. For constant γ and q = 2λ this probability is
overwhelming in λ.

The next lemma is similar to Lemma 4. One important difference is that in
Lemma 4 C was an arbitrary vector in F

n
q , whereas in Lemma 5 C is a valid

codeword. We use this lemma to guarantee that in our protocol in a session with
an honest sender and an honest receiver, whose passwords mismatch in more
than δ positions, both parties get independent random keys. In particular this
lemma guarantees that the receiver will not be able to decode the codeword,
which will make them output a random key. This is important in the transition
from G9 to G10.

Lemma 5. For s $←− Fq, C ← Enc(s), C̃ ∈ F
n
q and A ⊆ [n] such that |A| ≤ k−1,

C|A = C̃|A, and C̃|Ā $←− F
n−|A|
q , we have that C ∈ LDec(C̃) with negligible

probability.

Proof. From Lemma 4 we get that d(C, C̃) ≥ n − k + 1 with overwhelming
probability. Because n − k + 1 > n − 1 − √

(k − 1)n = δ and LDec(C̃) does not
output candidates C with d(C, C̃) > δ by Lemma 2, we get that C ∈ LDec(C̃)
with negligible probability.

Lemma 6 can be seen as the counterpart of Lemma 5, as we use it to guarantee
that in our protocol two honest parties that have close enough passwords (i.e.
≤ δ) get the same session key. In detail, this lemma guarantees that the honest
receiver is able to correctly decode C ′ = E ⊕K ′, which then leads to successful
key exchange. We use this lemma in the transition from G9 to G10.

Lemma 6. For s $←− Fq, C ← Enc(s), C̃ ∈ F
n
q and A ⊆ [n] such that |A| ≥ n−δ,

C|A = C̃|A, and C̃|Ā $←− F
n−|A|
q , we have that C ∈ LDec(C̃) with overwhelming

probability.

Proof. This follows directly from Lemma 2 with δ = e = n − 1 − �√(k − 1)n�.

140 J. Bootle et al.

References

[ABM+21] Agrawal, S., Badrinarayanan, S., Mohassel, P., Mukherjee, P., Patranabis,
S.: BETA: biometric-enabled threshold authentication. In: Garay, J.A.
(ed.) PKC 2021. LNCS, vol. 12711, pp. 290–318. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-75248-4 11

[ABMR20] Agrawal, S., Badrinarayanan, S., Mukherjee, P., Rindal, P.: Game-set-
MATCH: using mobile devices for seamless external-facing biometric
matching. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS
2020, pp. 1351–1370. ACM Press (2020)

[All22] WiFi Alliance. WPA3 specification version 3.1 (2022). https://
www.wi-fi.org/download.php?file=/sites/default/files/private/WPA3
%20Specification%20v3.1.pdf

[BBCW21] Barbosa, M., Boldyreva, A., Chen, S., Warinschi, B.: Provable security
analysis of FIDO2. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021.
LNCS, vol. 12827, pp. 125–156. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-84252-9 5

[BBR88] Bennett, C.H., Brassard, G., Robert, J.-M.: Privacy amplification by pub-
lic discussion, vol. 17, pp. 210–229 (1988)

[BCL+05] Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computa-
tion without authentication. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 361–377. Springer, Heidelberg (2005). https://doi.org/10.
1007/11535218 22

[BCL22] Bootle, J., Chiesa, A., Liu, S.: Zero-knowledge IOPs with linear-time
prover and polylogarithmic-time verifier. In: Dunkelman, O., Dziem-
bowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13276, pp. 275–304.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07085-3 10

[BDFK12] Bender, J., Dagdelen, Ö., Fischlin, M., Kügler, D.: The PACE—AA proto-
col for machine readable travel documents, and its security. In: Keromytis,
A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 344–358. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32946-3 25

[BDK+05] Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote
authentication using biometric data. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 147–163. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 9

[BFK09] Bender, J., Fischlin, M., Kügler, D.: Security analysis of the PACE key-
agreement protocol. In: Samarati, P., Yung, M., Martinelli, F., Ardagna,
C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 33–48. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04474-8 3

[BFK13] Bender, J., Fischlin, M., Kügler, D.: The PACE—CA protocol for machine
readable travel documents. In: Bloem, R., Lipp, P. (eds.) INTRUST 2013.
LNCS, vol. 8292, pp. 17–35. Springer, Cham (2013). https://doi.org/10.
1007/978-3-319-03491-1 2

[BM92] Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based pro-
tocols secure against dictionary attacks. In: 1992 IEEE Symposium on
Security and Privacy, pp. 72–84. IEEE Computer Society Press (1992)

[BMP00] Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-
authenticated key exchange using Diffie-Hellman. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 156–171. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-45539-6 12

https://doi.org/10.1007/978-3-030-75248-4_11
https://www.wi-fi.org/download.php?file=/sites/default/files/private/WPA3%20Specification%20v3.1.pdf
https://www.wi-fi.org/download.php?file=/sites/default/files/private/WPA3%20Specification%20v3.1.pdf
https://www.wi-fi.org/download.php?file=/sites/default/files/private/WPA3%20Specification%20v3.1.pdf
https://doi.org/10.1007/978-3-030-84252-9_5
https://doi.org/10.1007/978-3-030-84252-9_5
https://doi.org/10.1007/11535218_22
https://doi.org/10.1007/11535218_22
https://doi.org/10.1007/978-3-031-07085-3_10
https://doi.org/10.1007/978-3-642-32946-3_25
https://doi.org/10.1007/11426639_9
https://doi.org/10.1007/11426639_9
https://doi.org/10.1007/978-3-642-04474-8_3
https://doi.org/10.1007/978-3-319-03491-1_2
https://doi.org/10.1007/978-3-319-03491-1_2
https://doi.org/10.1007/3-540-45539-6_12

Generalized Fuzzy PAKE from Error Correcting Codes 141

[BPR00] Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange
secure against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT
2000. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-45539-6 11

[CAA+16] Chatterjee, R., Athayle, A., Akhawe, D., Juels, A., Ristenpart, T.: pASS-
WORD tYPOS and how to correct them securely. In: 2016 IEEE Sym-
posium on Security and Privacy, pp. 799–818. IEEE Computer Society
Press (2016)

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society
Press (2001)

[CCG+07] Chen, H., Cramer, R., Goldwasser, S., de Haan, R., Vaikuntanathan, V.:
Secure computation from random error correcting codes. In: Naor, M.
(ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 291–310. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-72540-4 17

[CDBN15] Cramer, R., Damg̊ard, I., Nielsen, J.B.: Secure Multiparty Computation
and Secret Sharing. Cambridge University Press, Cambridge (2015)

[CDD+15] Cramer, R., Damg̊ard, I.B., Döttling, N., Fehr, S., Spini, G.: Linear secret
sharing schemes from error correcting codes and universal hash functions.
In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057,
pp. 313–336. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 11

[CFP+16] Canetti, R., Fuller, B., Paneth, O., Reyzin, L., Smith, A.: Reusable fuzzy
extractors for low-entropy distributions. In: Fischlin, M., Coron, J.-S.
(eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 117–146. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-49890-3 5

[CHK+05] Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally
composable password-based key exchange. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005).
https://doi.org/10.1007/11426639 24

[CNPR22] Cremers, C., Naor, M., Paz, S., Ronen, E.: CHIP and CRISP: protect-
ing all parties against compromise through identity-binding PAKEs. In:
Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part II. LNCS, vol. 13508,
pp. 668–698. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-
031-15979-4 23

[CWP+17] Chatterjee, R., Woodage, J., Pnueli, Y., Chowdhury, A., Ristenpart, T.:
The TypTop system: personalized typo-tolerant password checking. In:
Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS
2017, pp. 329–346. ACM Press (2017)

[DHP+17] Dupont, P.-A., Hesse, J., Pointcheval, D., Reyzin, L., Yakoubov, S.: Fuzzy
password-authenticated key exchange. Cryptology ePrint Archive, Paper
2017/1111 (2017). https://eprint.iacr.org/2017/1111

[DHP+18] Dupont, P.-A., Hesse, J., Pointcheval, D., Reyzin, L., Yakoubov, S.: Fuzzy
password-authenticated key exchange. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10822, pp. 393–424. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78372-7 13

[DORS08] Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how
to generate strong keys from biometrics and other noisy data. SIAM J.
Comput. 38(1), 97–139 (2008)

https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/978-3-540-72540-4_17
https://doi.org/10.1007/978-3-662-46803-6_11
https://doi.org/10.1007/978-3-662-46803-6_11
https://doi.org/10.1007/978-3-662-49890-3_5
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/978-3-031-15979-4_23
https://doi.org/10.1007/978-3-031-15979-4_23
https://eprint.iacr.org/2017/1111
https://doi.org/10.1007/978-3-319-78372-7_13

142 J. Bootle et al.

[EHOR20] Erwig, A., Hesse, J., Orlt, M., Riahi, S.: Fuzzy asymmetric password-
authenticated key exchange. In: Moriai, S., Wang, H. (eds.) ASIACRYPT
2020. LNCS, vol. 12492, pp. 761–784. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-64834-3 26

[Gur06] Guruswami, V.: Algorithmic results in list decoding. Found. Trends
Theor. Comput. Sci. 2(2), 107–195 (2006)

[HL19] Haase, B., Labrique, B.: AuCPace: efficient verifier-based PAKE protocol
tailored for the IIoT. IACR TCHES 2019(2), 1–48 (2019). https://tches.
iacr.org/index.php/TCHES/article/view/7384

[HS14] Hao, F., Shahandashti, S.F.: The SPEKE protocol revisited. IACR Cryp-
tology ePrint Archive, p. 585 (2014)

[Hv22] Hao, F., van Oorschot, P.C.: SoK: password-authenticated key exchange
- theory, practice, standardization and real-world lessons. In: Suga, Y.,
Sakurai, K., Ding, X., Sako, K. (eds.) ASIACCS 2022, pp. 697–711. ACM
Press (2022)

[Jab96] Jablon, D.P.: Strong password-only authenticated key exchange. Comput.
Commun. Rev. 26(5), 5–26 (1996)

[JLHG22] Jiang, M., Liu, S., Han, S., Gu, D.: Fuzzy authenticated key exchange
with tight security. In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W.
(eds.) ESORICS 2022, Part II. LNCS, vol. 13555, pp. 337–360. Springer,
Heidelberg (2022). https://doi.org/10.1007/978-3-031-17146-8 17

[KR07] Kulhandjian, M., Rudra, A.: Lecture 27: Berlekamp-welch algorithm
(2007)

[Mac01] MacKenzie, P.: On the security of the SPEKE password-authenticated
key exchange protocol. IACR Cryptology ePrint Archive, p. 57 (2001)

[McE03] McEliece, R.J.: The guruswami-sudan decoding algorithm for reed-
solomon codes. IPN Progress Report 42-153 (2003)

[Nie13] Nielsen, J.S.R.: List decoding of algebraic codes (2013)
[PC20] Pongmorrakot, T., Chatterjee, R.: tPAKE: typo-tolerant password-

authenticated key exchange. In: Batina, L., Picek, S., Mondal, M. (eds.)
SPACE 2020. LNCS, vol. 12586, pp. 3–24. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-66626-2 1

[RW04] Renner, R., Wolf, S.: The exact price for unconditionally secure asymmet-
ric cryptography. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 109–125. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24676-3 7

[RX23] Roy, L., Xu, J.: A universally composable PAKE with zero communication
cost. In: Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023, Part I. LNCS,
vol. 13940, pp. 714–743. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-31368-4 25

[Wei16] Weiss, M.: Secure computation and probabilistic checking (2016)
[WHC+21] Wang, M., He, K., Chen, J., Li, Z., Zhao, W., Du, R.: Biometrics-

authenticated key exchange for secure messaging. In: Vigna, G., Shi, E.
(eds.) ACM CCS 2021, pp. 2618–2631. ACM Press (2021)

https://doi.org/10.1007/978-3-030-64834-3_26
https://doi.org/10.1007/978-3-030-64834-3_26
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://doi.org/10.1007/978-3-031-17146-8_17
https://doi.org/10.1007/978-3-030-66626-2_1
https://doi.org/10.1007/978-3-540-24676-3_7
https://doi.org/10.1007/978-3-540-24676-3_7
https://doi.org/10.1007/978-3-031-31368-4_25
https://doi.org/10.1007/978-3-031-31368-4_25

A Generic Construction of Tightly Secure
Password-Based Authenticated Key

Exchange

Jiaxin Pan1,2(B) and Runzhi Zeng2

1 University of Kassel, Kassel, Germany
2 Department of Mathematical Sciences, NTNU - Norwegian University of Science

and Technology, Trondheim, Norway
{jiaxin.pan,runzhi.zeng}@ntnu.no

Abstract. We propose a generic construction of password-based
authenticated key exchange (PAKE) from key encapsulation mechanisms
(KEM). Assuming that the KEM is oneway secure against plaintext-
checkable attacks (OW-PCA), we prove that our PAKE protocol is tightly
secure in the Bellare-Pointcheval-Rogaway model (EUROCRYPT 2000).
Our tight security proofs require ideal ciphers and random oracles. The
OW-PCA security is relatively weak and can be implemented tightly with
the Diffie-Hellman assumption, which generalizes the work of Liu et al.
(PKC 2023), and “almost” tightly with lattice-based assumptions, which
tightens the security loss of the work of Beguinet et al. (ACNS 2023)
and allows more efficient practical implementation with Kyber. Beyond
these, it opens an opportunity of constructing tight PAKE based on var-
ious assumptions.

Keywords: Password-based authenticated key exchange · generic
constructions · tight security · lattices

1 Introduction

While authenticated key exchange (AKE) protocols require a PKI to certify
user public keys, password-based AKE (PAKE) protocols allow a client and a
server to establish a session key, assuming that both parties share a password in
advance. A password is chosen from a small set of possible strings, referred as a
dictionary. Thus, a password has low-entropy and can be memorized by humans.
Hence, it is very convenient, and the design and analysis of PAKE protocols have
drew a lot of attention in the past few years.

After the introduction of Encrypted-Key-Exchange (EKE) protocol by
Bellovin and Merritt [12], many PAKE protocols have been proposed based on
variants of the Diffie-Hellman assumptions, including the well-known SPEKE
[22], SPEKE2 [6], J-PAKE [20], and CPace [19]. There are only a few exception

Supported by the Research Council of Norway under Project No. 324235.
c© International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14445, pp. 143–175, 2023.
https://doi.org/10.1007/978-981-99-8742-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8742-9_5&domain=pdf
http://orcid.org/0000-0002-7459-6850
http://orcid.org/0000-0002-8606-3007
https://doi.org/10.1007/978-981-99-8742-9_5

144 J. Pan and R. Zeng

where PAKE is constructed based on post-quantum assumptions, such as lattices
[13,23,33] and group actions [4].

Security of PAKE. The security requirements on a PAKE protocol are resis-
tance against offline (where an adversary performs an exhaustive search for the
password offline) and online (where an active adversary tries a small number
of passwords to run the protocol) dictionary attacks. Similar to the classical
AKE, forward secrecy is required as well, where the session keys remain secure,
even if the password is corrupted at a later point in time, and also leakage of
a session key should not affect other session keys. Their security is formalized
by either the indistinguishability-based (IND-based) model [10] or the universal
composability (UC) framework [16].

Usually, the advantage of a PAKE protocol εPAKE has the form of:

εPAKE ≤ S/|PW| + L · εProblem, (1)

where S is the number of protocol sessions, PW is the set of all possible pass-
words, εProblem is the advantage of attacking the underlying cryptographic hard
problem, and L is called the security loss. Here we ignore the additive statistical
negligible probability in Eq. (1) for simplicity. Essentially, S/|PW| is the success
probability of online dictionary attacks and Eq. (1) shows that the best attack
on the PAKE protocol is performing an online dictionary attack. This can be
eliminated by restricting the online password guess in practice.

Tight Security. We say a security proof for PAKE tight if L is a small
constant. All the aforementioned PAKE protocols are non-tight. For instance,
according to the analysis of [8], we estimate that the security loss L for the
EKE protocol is O(qD · (S + qD)), where qD is the number of the adversary’s
queries to an ideal cipher. The security bound for the group-action-based pro-
tocol Com-GA-PAKE� in [4] is even worse, and it contains a square root of the
advantage of the underlying assumption (cf. [4, Theorem 2]), due to the Reset
Lemma [9]. This means even if we set up the underlying assumption with 128-bit
security, Com-GA-PAKE� in [4] has only less1 than 64-bit.

We note that X-GA-PAKE� in [4, Section 6] has tight security by restricting
to weak forward secrecy, where an adversary is not allowed to perform active
attacks before password corruptions. This is a rather weak security model.

In this paper, we are interested in tightly secure PAKE with perfect for-
ward secrecy (PFS), namely, adversaries can perform active attacks before pass-
word corruptions. From a theoretical perspective, it is interesting to analyze the
possibility of constructing tightly secure PAKE and under which cryptographic
assumption it is possible. From a practical perspective, it is very desirable to
have tightly secure PAKE (or AKE in general), since these protocols are exe-
cuted in a multi-user, multi-instance scenario. In today’s internet, the scenario
size is often large. A non-tight protocol requires a larger security parameter to
compensate the security loss and results in a less efficient protocol. Even if we
1 This is because of the additional multiplicative loss factor depending on S and the

length of a password in [4, Theorem 2].

A Generic Construction of Tightly Secure PAKE 145

cannot achieve full tightness, a tighter security proof is already more beneficial
than a less tight one of the same protocol, since the tighter proof offers higher
security guarantees.

Our Goal: Tight PAKE Beyond Diffie-Hellman (DH). There are a few
exceptions that construct tight PAKE protocols with PFS, and they are all based
on the DH assumption. Becerra et al. [7] proved tight security of the three-move
PAK protocol [25] using the Gap DH (GDH) assumption [26] in the IND-based
model, where the GDH assumption states that the Computational DH (CDH)
assumption is hard even if the Decisional DH (DDH) assumption is easy. Lately,
Abdalla et al. [2] proved tight security of two-move SPAKE2 in the relaxed UC
framework under the GDH assumption. Very recently, Liu et al. [24] carefully
used the twinning technique [17] to remove the GDH assumption and proved a
variant of the EKE protocol tightly based on the CDH assumption.

Our goal is to construct tightly secure PAKE protocols from post-quantum
assumptions, beyond the DH assumptions. Lattice-based assumptions are the
promising post-quantum ones, and it seems inherent that they do not have any
Gap-like assumption or twinning techniques, since the Decisional and Compu-
tational variants of, for instance, Learning-With-Errors (LWE) assumption [30]
are equivalent.

Regarding the assumption based on group actions, as we discussed earlier,
the Com-GA-PAKE� protocol in [4] needs to rewind an adversary to argue PFS,
and by using the Reset Lemma it leads to a very loose bound. Apart from that,
Com-GA-PAKE� applies the group action in a “bit-by-bit” (wrt the bit-length of
a password) fashion and sends out the resulting element, and thus it is quite
inefficient in terms of both computation and communication complexity.

Finally, we note that Liu et al. [24] did not provide a formal proof on the
PFS of their protocol, but rather an informal remark. In [4], we note a huge gap
between the security loss of a weak FS protocol and a PFS one. Hence, in this
paper we will prove the PFS of our protocol concretely.

1.1 Our Contribution

We propose a generic construction of tightly secure PAKE protocols from key
encapsulation mechanisms (KEMs) in the ideal cipher and random oracle models.
We require the underlying KEM to have the following security:

– Oneway plaintext-checking (OW-PCA) security in the multi-user, multi-
challenge setting, namely, adversary A’s goal is to decapsulate one cipher-
text out of many given ones, and furthermore, A is given an oracle to check
whether a key k is a valid decapsulation of a ciphertext c under some user
j. It is a (slight) multi-user, multi-challenge variant of the original OW-PCA
[27].

– Anonymous ciphertexts under PCA, namely, the challenge ciphertexts do not
leak any information about the corresponding public keys.

– Fuzzy public keys, namely, the generated public keys are indistinguishable
from a random key from all the possible public keys.

146 J. Pan and R. Zeng

Such a KEM can be tightly constructed:

– either generically from pseudorandom PKE against chosen-plaintext attacks
in the multi-user, multi-challenge setting (PR-CPA security2), which states
that the given challenge ciphertexts are pseudorandom. This means, as long
as we have a PR-CPA secure PKE, we have a PAKE protocol that preserves
the tightness of the PKE. With lattices, we do not know a tightly PR-CPA
PKE, but only a scheme (i.e. Regev’s encryption [30]) tightly wrt. the number
of challenges, not wrt. the number of users. This already results in a tighter
PAKE protocol than the analysis from Beguinet et al. [8]. More details will
be provided in “Comparison using Kyber”.

– or directly from the strong DH (stDH) assumption in a prime-order group
[3]. Under this stronger assumption, our resulting PAKE protocol has O(λ)
(which corresponds to the bit-length of a group element) less than the 2DH-
EKE protocol of Liu et al. [24] in terms of protocol transcripts. In fact, using
the twinning technique of Cash et al. [17], we can remove the strong oracle
and have our protocol under the CDH assumption, which is the same protocol
as the 2DH-EKE protocol of Liu et al. Essentially, our direct instantiation
abstracts the key ideas of Liu et al., and our proof for PFS gives a formal
analysis of Liu et al.’s protocol.

Different to other PAKE protocol from group actions [4] and lattices as in [13],
our construction is compact and does not use “bit-by-bit” approaches. Figure 1
briefly summarizes our approaches.

Fig. 1. Overview of our construction. All implications are tight, and the blue ones are
done via generic constructions. OW-PCA security is the core for our “KEM-to-PAKE”
transformation. Please find additional requirements on the KEM in the text. (Color
figure online)

Our proofs are in the IND-based model (aka, the so-called Bellare-
Pointcheval-Rogaway (BPR) model [10]) for readability. We are optimistic that
it is tightly secure in the UC framework and briefly sketch the ideas about how
to lift our proofs in the BPR model to the UC framework in our full version [28].

Comparison Using Kyber [32]. There are only a few efficient PAKE protocols
from lattices. We focus our comparison on the very efficient one by implementing
the CAKE in [8] with Kyber. The reason of not using OCAKE in [8] is because
2 Our security notions are in the multi-user, multi-challenge setting. Hence, for sim-

plicity, we do not write the ‘m’ in the abbreviations.

A Generic Construction of Tightly Secure PAKE 147

OCAKE do not have PFS, but weak FS. Our protocol is similar to CAKE, but
ours has tight reductions from the KEM security.

Unfortunately, by implementing with Kyber, our protocol does not have
tight security, since we cannot prove tight PR-CPA security for Kyber, but
in practice one will consider using Kyber than otherwise. Our security loss is
O(S · (S+qD)) to the Module-LWE assumption, while the security loss of CAKE
is O(qD · (S + qD)), where qD is the number of decryption queries to the ideal
cipher. In practice, qD is the number of adversary A evaluating the symmetric
cipher offline and can be large. We assume qD = 240.

Very different to the standard AKE, in the PAKE setting S should be very
small, since S corresponds to how many attempts an adversary can perform
online dictionary attacks. We usually will limit it. We assume S ≤ 100 ≈ 26.
Hence, although our security bound with Kyber is not tight, it is still much
smaller than CAKE, since S � qD. In fact, we have doubt on the security proof
of CAKE in handling reply attacks3, namely, A can reply the first round message.
To fix it, we need to introduce another multiplicative factor S, but since S is
relatively small we ignore it in our comparison.

Hence, implementing with Kyber-768 (corresponding to AES-192), our pro-
tocol provides about 152-bit security, while CAKE about 112-bit security.

Open Problem. We are optimistic that our protocol can be proven tightly in
the weaker and more efficient randomized half-ideal cipher model [31], and we
leave the formal proof for it as an open problem.

2 Preliminaries

For an integer n, we define the notation [n] := {1, . . . , n}. Let X and Y be two
finite sets. The notation x

$← X denotes sampling an element x from X uniformly
at random.

Let A be an algorithm. If A is probabilistic, then y ← A(x) means that
the variable y is assigned to the output of A on input x. If A is deterministic,
then we may write y := A(x). We write AO to indicate that A has classical
access to oracle O, and A|O〉 to indicate that A has quantum access to oracle O
All algorithms in this paper are probabilistic polynomial-time (PPT), unless we
mention it.

Games. We use code-based games [11] to define and prove security. We implicitly
assume that Boolean flags are initialized to false, numerical types are initialized
to 0, sets and ordered lists are initialized to ∅, and strings are initialized to the
empty string ε. The notation Pr[GA ⇒ 1] denotes the probability that the final
output GA of game G running an adversary A is 1. Let Ev be an (classical)
event. We write Pr[Ev : G] to denote the probability that Ev occurs during the
game G. In our security notions throughout the paper, we let N,μ be numbers

3 More precisely, the argument in [8, page 41] under “Analysis” may not hold true for
reply attacks.

148 J. Pan and R. Zeng

of users and challenges, respectively, which are assumed to be polynomial in the
security parameter λ. For simplicity, in this paper, we do not write λ explicitly.
Instead, we assume every algorithm’s input includes λ.

2.1 Key Encapsulation Mechanism

Definition 1 (Key Encapsulation Mechanism). A KEM KEM consists of
four algorithms (Setup,KG,Encaps,Decaps) and a ciphertext space C, a random-
ness space R, and a KEM key space K. On input security parameters, Setup
outputs a system parameter par. KG(par) outputs a public and secret key pair
(pk, sk). The encapsulation algorithm Encaps, on input pk, outputs a ciphertext
c ∈ C. We also write c := Encaps(pk; r) to indicate the randomness r ∈ R explic-
itly. The decapsulation algorithm Decaps, on input sk and a ciphertext c, outputs
a KEM key k ∈ K or a rejection symbol ⊥ /∈ K. Here Encaps and Decaps also
take par as input, but for simplicity, we do not write explicitly.

Definition 2 (KEM Correctness). Let KEM := (Setup,KG,Encaps,Decaps)
be a KEM scheme and A be an adversary against KEM. We say KEM is (1− δ)-
correct if

Pr [(c, k) ← Encaps(pk) ∧ k �= Decaps(sk, c)] ≤ δ,

where par ← Setup, (pk, sk) ← KG(par).

Definition 3 (Implicit Rejection [14]). A KEM scheme KEM = (Setup,KG,
Encaps,Decaps) has implicit rejection if Decaps(sk, ·) behaves as a pseudorandom
function when the input ciphertext is invalid, where par ← Setup, (pk, sk) ← KG,
and sk is the key of the pseudorandom function. That is, if an input ciphertext
c is invalid, then Decaps(sk, c) will output a pseudorandom key k instead of a
rejection symbol ⊥. A concrete example is shown in Fig. 18.

OW-PCA Security. Let KEM = (Setup,KG,Encaps,Decaps) be a KEM scheme
with ciphertext space C. In Definitions 4 and 5, we define two variants of one-
wayness under plaintext-checking attacks (OW-PCA) security for KEM [27] in
the multi-user, multi-challenge setting. They will be used for the tight security
proof of our PAKE protocol and can be instantiated tightly from the Diffie-
Hellman assumption and Learning-With-Errors assumption. Instead of writing
‘m’ in the abbreviation, we mention the explicit numbers of users and challenge
ciphertexts as N and μ in the abbreviation of security.

Definition 4 (Multi-user-challenge OW-PCA security). Let N and μ be
the numbers of users and challenge ciphertexts per user, respectively. Let A be
an adversary against KEM. We define the (N,μ)-OW-PCA advantage function
of A against KEM

Adv
(N,μ)-OW-PCA
KEM (A) := Pr

[
OW-PCA(N,μ),A

KEM ⇒ 1
]
,

where the game OW-PCA(N,μ),A
KEM is defined in Fig. 2. We say KEM is OW-PCA

secure if Adv(N,μ)-OW-PCA
KEM (A) is negligible for any A.

A Generic Construction of Tightly Secure PAKE 149

GAME OW-PCA(N,μ),A
KEM

01 par ← Setup
02 for i ∈ [N]
03 (pk, sk) ← KG(par)
04 (pk[i], sk[i]) := (pk, sk)
05 for j ∈ [μ] :
06 (c, k) ← Encaps(pk[i])
07 (c[i, j],k[i, j]) := (c, k)
08 (i, j, k∗) ← APco(pk, c)
09 return k∗ ==Decaps(sk[i], c[i, j])

GAME OW-rPCA(N,μ),A
KEM

10 par ← Setup
11 for i ∈ [N]
12 (pk[i], sk[i]) := (pk, sk) ← KG(par)
13 for j ∈ [N · μ] :

14 c[j] := c
$← C

15 (i, j, k∗) ← APco(pk, c)
16 return k∗ ==Decaps(sk[i], c[j])

Oracle Pco(i, c, k)

17 if pk[i] = ⊥
18 return ⊥
19 return k ==Decaps(sk[i], c)

Fig. 2. Security games OW-PCA and OW-rPCA for KEM scheme KEM.

GAME ANO-PCA(N,μ),A
KEM,b

01 par ← Setup
02 for i ∈ [N]
03 (pk[i], sk[i]) := (pk, sk) ← KG(par)
04 for j ∈ [μ] :
05 (c, k) ← Encaps(pk[i])
06 (c0[i, j],k[i, j]) := (c, k)

07 c1[i, j]
$← C

08 b′ ← APco(par,pk, cb)
09 return b′

GAME FUZZYN,A
KEM,b

10 par ← Setup
11 for i ∈ [N]
12 (pk0[i], sk[i]) := (pk, sk) ←
KG(par)

13 pk1[i] := pk
$← PK

14 b′ ← A(par,pkb)
15 return b′

Fig. 3. Security games FUZZY and ANO-PCA for KEM scheme KEM. The Pco oracle
of ANO-PCA is the same as the one of OW-PCA (and OW-rPCA) in Fig. 2.

Definition 5 (OW-PCA security under random ciphertexts). Let N
and μ be the number of users and the number of challenge ciphertexts per
user, respectively. Let A be an adversary against KEM. We define the (N,μ)-
OW-rPCA advantage function of A

Adv
(N,μ)-OW-rPCA
KEM (A) := Pr

[
OW-rPCA(N,μ),A

KEM ⇒ 1
]
,

where OW-rPCA(N,μ),A
KEM is defined in Fig. 2. KEM is OW-rPCA secure if

Adv
(N,μ)-OW-rPCA
KEM (A) is negligible for any A.

Definition 6 (Fuzzy public keys). Let N be the number of users. Let A be
an adversary against KEM. We define the advantage function of A against the
fuzzyness of KEM

AdvN-FUZZY
KEM (A) :=

∣∣∣Pr
[
FUZZYN,A

KEM,0 ⇒ 1
]

− Pr
[
FUZZYN,A

KEM,1 ⇒ 1
]∣∣∣ ,

150 J. Pan and R. Zeng

where the game FUZZYN,A
KEM,b(b ∈ {0, 1}) is defined in Fig. 3. We say KEM has

fuzzy public keys if AdvN-FUZZY
KEM (A) is negligible for any A.

Definition 7 (Anonymous ciphertexts under PCA attacks). Let N and
μ be the numbers of users and challenge ciphertexts per user, respectively. Let
A be an adversary against KEM. We define the advantage function of A against
the ciphertext anonymity (under PCA attacks) of KEM

Adv
(N,μ)-ANO
KEM (A) :=

∣∣∣Pr
[
ANO-PCA(N,μ),A

KEM,0 ⇒ 1
]

− Pr
[
ANO-PCA(N,μ),A

KEM,1 ⇒ 1
]∣∣∣ ,

where the game ANO-PCA(N,μ),A
KEM,b (b ∈ {0, 1}) is defined in Fig. 3. We say KEM

has anonymous ciphertexts under PCA attacks (or simply, anonymous cipher-
texts) if Adv(N,μ)-ANO

KEM (A) is negligible for any A.

It is easy to see that if KEM is OW-PCA secure and has anonymous cipher-
texts under PCA attacks, then it is also OW-rPCA secure, as stated in Lemma 1

Lemma 1 (OW-PCA+ANO-PCA ⇒ OW-rPCA). Let N and μ be the numbers
of users and challenge ciphertexts per user, respectively. Let A be an adversary
against KEM. We have

Adv
(N,μ)-OW-rPCA
KEM (A) ≤ Adv

(N,μ)-OW-PCA
KEM (A) + Adv

(N,μ)-ANO
KEM (A)

2.2 Public-Key Encryption

Public-Key Encryption. A PKE scheme PKE consists of four algorithms
(Setup,KG,Enc,Dec) and a message space M, a randomness space R, and a
ciphertext space C. Setup outputs a system parameter par. KG(par) outputs a
public and secret key pair (pk, sk). The encryption algorithm Enc, on input pk and
a message m ∈ M, outputs a ciphertext c ∈ C. We also write c := Enc(pk,m; r)
to indicate the randomness r ∈ R explicitly. The decryption algorithm Dec, on
input sk and a ciphertext c, outputs a message m′ ∈ M or a rejection symbol
⊥ /∈ M.

Definition 8 (PKE Correctness). Let PKE := (Setup,KG,Enc,Dec) be a
PKE scheme with message space M and A be an adversary against PKE. The
COR advantage of A is defined as

AdvCOR
PKE (A) := Pr

[
CORA

PKE ⇒ 1
]
,

where the COR game is defined in Fig. 4. If there exists a constant δ such that
for all adversary A, AdvCOR

PKE (A) ≤ δ, then we say PKE is (1 − δ)-correct.

We define fuzzyness for PKE, which is essentially the same as the one for
KEM (cf. Definition 6).

A Generic Construction of Tightly Secure PAKE 151

GAME CORA
PKE

01 par ← Setup
02 (pk, sk) ← KG(par)
03 m ← AO(par, pk, sk)
04 c ← Enc(pk, m)
05 if Dec(sk, c) �= m : return 1
06 return 0

Fig. 4. The COR game for a PKE scheme PKE and A. A might have access to some
oracle O (e.g., random oracles). It depends on the specific reduction.

Definition 9 (Fuzzy public key). Let N be the number of users. We say
PKE has fuzzy public keys if for any A, the advantage function of A against the
fuzzyness of PKE

AdvN-FUZZY
PKE (A) :=

∣∣∣Pr
[
FUZZYN,A

PKE,0 ⇒ 1
]

− Pr
[
FUZZYN,A

PKE,1 ⇒ 1
]∣∣∣

is negligible. The game FUZZYN,A
PKE,b(b ∈ {0, 1}) is defined in Fig. 3.

Pseudorandom ciphertext. Let PKE := (KG,Enc,Dec) be a public-key
encryption scheme with message space M and ciphertext space C. We define
PR-CPA (multi-challenge pseudorandomness under chosen-plaintext attacks)
security in Fig. 5.

Definition 10 (Multi-user-challange PR-CPA security). Let N and μ be
the numbers of users and challenge ciphertexts per user. Let A = (A0,A1) be an
adversary against PKE. Consider the games PR-CPA(N,μ),A

PKE,b (b ∈ {0, 1}) defined
in Fig. 5. We define the (N,μ)-PR-CPA advantage function

Adv
(N,μ)-PR-CPA
PKE (A) :=

∣∣∣Pr
[
PR-CPA(N,μ),A

PKE,0 ⇒ 1
]

− Pr
[
PR-CPA(N,μ),A

PKE,1 ⇒ 1
]∣∣∣ .

PKE is PR-CPA secure if Adv(N,μ)-PR-CPA
PKE (A) is negligible for any A.

3 Password-Based Authenticated Key Exchange

3.1 Definition of PAKE

A two-message PAKE protocol PAKE := (Setup, Init,Resp,TerInit) consists of
four algorithms. The setup algorithm Setup, on input security parameter 1λ,
outputs global PAKE protocol parameters par. For simplicity, we ignore the
input of Setup and write par ← Setup.

Let U be a user, S be a server, and pw be the password shared between U
and S. Since we consider the client-server setting, to initiate a session, U will
send the first protocol message. U runs the client’s initialization algorithm Init,

152 J. Pan and R. Zeng

GAME PR-CPA(N,μ),A
PKE,b

01 par ← Setup
02 for i ∈ N
03 (pki, ski) ← KG(par),pk[i] := pki

04 (m, st) ← A0(par,pk) //m has N × μ messages
05 for i ∈ [N]:
06 for j ∈ [μ]

07 c0[i, j] ← Enc(pk[i],m[i, j]), c1[i, j]
$← C

08 b′ ← A1(st, cb)
09 return b′

Fig. 5. Security game PR-CPA for PKE scheme PKE.

which takes the identities U,S and password pw as inputs and outputs a client
message MU and session state st, and then U sends MU to S. On receiving MU, S
runs the server’s derivation algorithm Resp, which takes identities U and S and
the received message MU as input, together with the password pw, to generate a
server message MS and a session key SKS. S sends MS to U. Finally, on receiving
MS, U runs the client’s derivation algorithm TerInit which inputs U,S, the session
state st generated before, the received message MS, and password pw, to generate
a session key sk′

U. In two-message PAKE protocols, the server does not need to
save session state since it can compute the session key right after receiving the
user’s message.

User U(pw) Server S(pw)

(MU, st) ← Init(U, S, pw)
MU

(MS, SKS) ← Resp(S,U,MU, pw)MS

SKU ← TerInit(U, S, st,MS, pw)

st

Fig. 6. Illustration for a two-message PAKE protocol execution between a user U and
a server S.

We define the correctness of PAKE protocols, stating that an honestly exe-
cution between user U and server S (with the same password pwU,S) as in Fig. 6
will produce the same session key SKU = SKS.

Definition 11 (PAKE Correctness). Let PAKE := (Setup, Init,Resp,TerInit)
be a PAKE protocol and let U and S be a user-server pair with password pw. We
say PAKE is ρ-correct, if for any PAKE system parameter par ← Setup, the
following probability is at least ρ.

Pr

⎡
⎣SKU = SKS

∣∣∣∣∣∣
(MU, st) ← Init(U,S, pw)

(MS,SKS) ← Resp(S,U,MU, pw)
SKU ← TerInit(U,S, st,MS, pw)

⎤
⎦

A Generic Construction of Tightly Secure PAKE 153

3.2 Security Model of PAKE

We consider indistinguishability(IND)-based security of PAKE protocols. In this
section, we define the multi-test variant of the Bellare-Pointcheval-Rogaway
model [1,5,10]. We simply denoted it as the BPR model.

In the BPR model, we consider a name space of users U and a name space
of servers S, which are assumed to be disjoint. Oracles provided in this model
rejects queries inconsistent withe these name spaces.

We denote the session key space by SK. Password are bit strings of � and
the password space is defined as PW � {0, 1}�. Each pair of user and server
U × S ∈ U × S holds a shared password pwU,S ∈ PW.

Let P denotes a party (either a user or server). Each party in U ∪ S has
multiple instances πi

P (i is some index) and each instance has its internal state.
The state of an instance πi

P is a tuple (e, tr, key, acc) where

– e is the ephemeral secret chosen by P.
– tr is the trace of the instance, i.e., the names of user and server involved in

the instance and the messages sent and received by P in the instance.
– key is the accepted session key of πi

P.
– acc is a Boolean flag that indicates whether the instance has accepted the

session key. As long as the instance did not receive the last message, acc = ⊥
(which means undefined).

– test is a Boolean flag that indicates whether the instance has been queried
to the Test oracle (which will be defined later).

To access individual components of the state, we write πi
P.(e, tr, key, acc). We

define partnership via matching instance trace.

Definition 12 (Partnering). A user instance πt0
U and a server instance πt1

S

are partnered if and only if

πt0
U .acc = true = πt1

S .acc and πt0
U .tr = πt1

S .tr

Two user instances are never partnered, neither are two server instances. We
define a partnership predicate Partner(πt0

U , πt1
S) which outputs true if and only if

πt0
U and πt1

S are partnered.

Security Game. The security game is played with an adversary A. The experi-
ment draws a random challenge bit β ← {0, 1}, generates the public parameters,
and outputs the public parameters to A. A is allowed to query the following
oracles:

– Execute(U, t1,S, t2): This oracle outputs the protocol messages of an honest
protocol execution between instances πt1

U and πt2
S . By querying this oracle,

the adversary launches passive attacks.

154 J. Pan and R. Zeng

– SendInit,SendResp,SendTerInit: These oracles model active attacks. By
querying these oracles, the adversary sends protocol messages to protocol
instances. For sake of simplicity, we assume that the adversary does not use
these oracles to launch passive attacks (which are already captured by the
Execute oracle).

– Reveal(P, t): By this oracle, the adversary reveals the session key of πt
P.

– Test(P, t): If πt
P is fresh (which will be defined later), then, depending on

the challenge bit β, the oracle outputs either the session key of πt
P or a uni-

formly random key. Otherwise, the oracle outputs ⊥. After this query, the
flag πt

P.test will be set as true.

We denote the game by BPRPAKE. The pseudocode is given in G0 in Fig. 8,
instantiated with our PAKE protocol. Before defining PAKE security, we define
freshness to avoid trivial attacks in this model.

Definition 13 (Freshness). An instance πt
P is fresh if and only if

1. πt
P is accepted.

2. πt
P was not queried to Test or Reveal before.

3. At least one of the following conditions holds:
(a) πt

P accepted during a query to Execute.
(b) There exists more than one (not necessarily fresh) partner instance4.
(c) A unique fresh partner instance exists.
(d) No partner instance exists and the password of P was not corrupted prior

to πt
P is accepted.

By these definitions, we are ready to define the security of PAKE protocols.

Definition 14 (Security of PAKE). Let PAKE be a PAKE protocol and A
be an adversary. The advantage of A against PAKE is defined as

AdvBPRPAKE(A) :=
∣∣∣∣Pr

[
BPRA

PAKE ⇒ 1
]

− 1
2

∣∣∣∣

A PAKE protocol is considered secure if the best the adversary can do is to per-
form an online dictionary attack. Concretely, PAKE is secure if for any adversary
A, AdvBPRPAKE(A) is negligibly close to S

|PW| when passwords in the security game
are drawn independently and uniformly from PW. Here S is the number of send
queries made by A (i.e., the number of sessions during the game BPRPAKE).

4 Our Generic Construction of PAKE

Construction. Let KEM = (Setup,KG,Encaps,Decaps) be a KEM scheme with
public key space PK, ciphertext space C, and KEM key space K. We also require
KEM to have implicit rejection. Let IC1 = (E1,D1) be a symmetric encryption
with key space PW, plaintext space PK, and ciphertext space E1. Let IC2 =

A Generic Construction of Tightly Secure PAKE 155

Alg Init(U, S, pw)

01 (pk, sk) ←
KG(par)
02 e1 := E1(pw, pk)
03 st := (pk, sk, e1)
04 return (e1, st)

Alg TerInit(U, S, st, e2, pw)

05 let (pk, sk, e1) := st
06 c := D2(pw, e2)
07 k := Decaps(sk, c)
08 ctxt := (U, S, e1, e2)
09 SK := H(ctxt, pk, c, k, pw)
10 return SK

Alg Resp(S,U, e1, pw)

11 pk := D1(pw, e1)
12 (c, k) ← Encaps(pk)
13 e2 := E2(pw, c)
14 ctxt := (U, S, e1, e2)
15 SK := H(ctxt, pk, c, k, pw)
16 return (e2, SK)

Fig. 7. Our PAKE protocol Π.

(E2,D2) be a symmetric encryption with key space PW, plaintext space C, and
ciphertext space E2.

We construct our two-message PAKE protocol Π = (Init,Resp,TerInit) as
shown in Fig. 6, where SK is the session key space of PAKE and H : {0, 1}∗ → SK
is a hash function which is used to derive the session key. The system parameter
par is generated by par ← Setup.

The correctness of Π is dependent on KEM. In Fig. 7, one honest execution
of Π includes one KEM encapsulation and decapsulation. So, if KEM is (1 − δ)-
correct, then Π is also (1 − δ)-correct.

Theorem 1. Let H be random oracle and IC1 and IC2 be ideal ciphers. If KEM
is (1−δ)-correct and has implicit rejection, fuzzy public keys, anonymous cipher-
texts, OW-PCA security, and OW-rPCA security (cf. Definitions 4 to 7), then
the PAKE protocol Π in Fig. 7 is secure (wrt Definition 14).

Concretely, for any A against Π, there are adversaries B1-B6 with T(A) ≈
T(Bi)(1 ≤ i ≤ 6) and

AdvBPRΠ (A) ≤ S/|PW| + Advq1-FUZZY
KEM (B1) + Adv

(S,q2+S)-OW-rPCA
KEM (B4)

+ Adv
(S,1)-OW-PCA
KEM (B2) + Adv

(S+q2,S)-OW-PCA
KEM (B5)

+ Adv
(S,1)-ANO
KEM (B3) + Adv

(S+q1,S)-ANO
KEM (B6) + S · δ

+ S2(ηpk + ηct) +
(q21 + S2)

|E1| +
(q22 + S2)

|E2| +
q21

|PK| +
q22
|C| +

(q2H + S2)
|SK| ,

where q1, q2, qH are the numbers of A queries to IC1, IC2, and H respectively. S
is the number of sessions A established in the security game. ηpk and ηct are the
collision probabilities of KG and Encaps, respectively.

Remark 1 (Implementation of Ideal Ciphers). The implementation of IC1 and
IC2 depends on the concrete instantiation of the underlying KEM scheme KEM.
Beguinet et al. provides an implementation if KEM is instantiated with the Kyber
KEM [32] in [8, Section 5.2]. More implementation for group-based schemes and
lattice-based schemes can be found in [31].

4 This essentially forces a secure PAKE protocol not to have more than one partner
instances.

156 J. Pan and R. Zeng

Remark 2. We require KEM to have implicit rejection (cf. Definition 3) because
this simplifies our security proof. More concretely, if the underlying KEM KEM
has implicit rejection, then we only require OW-PCA security to finish our tight
proof. Otherwise, we need the OW-PCVA (cf. [21, Definition 2.1]) security to
detect whether the c is valid in the proof.

4.1 Proof of Theorem 1

Let A be an adversary against PAKE in the BPR game, where N is the number
of parties. Every user-server pair (U,S) ∈ U × S is associated with a password
pwU,S. The game sequences G0-G12 of the proof are given in Figs. 8, 9, 11, 14.

During the game sequences in this proof, we exclude the collisions of outputs
of KG and Encaps in Execute,SendInit,SendResp, and SendTerInit. We
also exclude the collisions of outputs of ideal ciphers and random oracle, i.e.,
IC1 = (E1,D1), IC2 = (E2,D2), and H. If such a collision happens at any time,
then we abort the game. For readability, we do not explicitly define such collision
events in the codes of games sequences.

By the assumption of Theorem 1, the collision probabilities of the outputs of
KG and Encaps are ηpk and ηct, and S is the number of sessions generated (i.e., the
total number of queries to Execute,SendInit,SendResp, and SendTerInit)
during the game and q1, q2, and qH are the numbers of queries to IC1, IC2, and H,
respectively. By birthday bounds and union bounds, such collision events happen
within probability S2(ηpk +ηct)+

(q2
1+S2)
|E1| + (q2

2+S2)
|E2| + q2

1
|PK| +

q2
2

|C| +
(q2

H+S2)
|SK| . Game

G0 is the same as BPRPAKE except that we define such collision events in G0,
we have

∣∣∣Pr
[
BPRA

PAKE ⇒ 1
]

− Pr
[
GA

0 ⇒ 1
]∣∣∣

≤ S2(ηpk + ηct) +
(q21 + S2)

|E1| +
(q22 + S2)

|E2| +
q21

|PK| +
q22
|C| +

(q2H + S2)
|SK|

Moreover, excluding these collisions imply that different instances have dif-
ferent traces and each instance (user’s or server’s) has at most one partnering
instance. By the construction of PAKE, different instances will have different
session keys, since the hash function H take the trace of instance as input.

Game G1. Instead of using the Freshness procedure in the Test oracle, we
assign an additional variable fr to each instance π to explicitly indicate the
freshness of π. Whenever A issues an oracle query related to π, we will update
π.fr in real time according to the freshness definition (cf. Definition 13). This
change is conceptual, so we have

Pr
[
GA

0 ⇒ 1
]
= Pr

[
GA

1 ⇒ 1
]

To save space, for games G2 to Gx, instead of presenting the whole codes of
the game, we only present the codes of changed oracles.

A Generic Construction of Tightly Secure PAKE 157

Game G0-G1

01 par ← Setup
02 for (U, S) ∈ U × S
03 pwU,S ← PW
04 C := ∅
05 β ← {0, 1}
06 b′ ← AO,H,IC1,IC2 (par)
07 return β == b′

Oracle Reveal(P, t)

08 if πt
P.acc 	= true or πt

P.test = true
09 return ⊥
10 if ∃P′ ∈ U ∪ S, t′ s.t.
11 Partner(πt

P, πt′
P′) = true

12 and πt′
P′ .test = true

13 return ⊥
14 for ∀(P′, t′) s.t. πt′

P′ .tr = πt
P.tr //G1

15 πt′
P′ .fr := false //G1

16 return πt
P.key

Oracle Test(P, t)

17 if Freshness(πt
P) = false //G0

18 if πt
P.fr = false //G1

19 return ⊥
20 SK∗

0 := Reveal(P, t), SK∗
1

$← SK
21 if SK∗

0 = ⊥: return ⊥
22 πt

P.test := true
23 return SK∗

β

Oracle Corrupt(U, S)

24 if (U, S) ∈ C: return ⊥
25 C := C ∪ {(U, S)}
26 return pwU,S

Oracle E1(pw, pk)

27 if ∃(pw, pk, e1, ∗) ∈ L1: return e1

28 e1
$← E1\T1, L1 := L1 ∪ {e1}

29 L1 := L1 ∪ (pw, pk, e1, enc)
30 return e1

Oracle E2(pw, c)

31 if ∃(pw, c, e2, ∗) ∈ L2: return e2

32 e2
$← E2\T2, T2 := T2 ∪ {e2}

33 L2 := L2 ∪ (pw, c, e2, enc)
34 return e2

Oracle D1(pw, e1)

35 if ∃(pw, pk, e1, ∗) ∈ L1: return pk

36 pk
$← PK, L1 := L1 ∪ (pw, pk, e1, dec)

37 return pk

Oracle D2(pw, e2)

38 if ∃(pw, c, e2, ∗) ∈ L2: return c

39 c
$← C, L2 := L2 ∪ (pw, c, e2, dec)

40 return c

Oracle Execute(U, t1, S, t2)

41 if π
t1
U 	= ⊥ or π

t2
S 	= ⊥

42 return ⊥
43 let pw := pwU,S

44 (pk, sk) ← KG(par), e1 := E1(pw, pk)
45 (c, k) ← Encaps(pk), e2 := E2(pw, c)
46 ctxt := (U, S, e1, e2)
47 SK := H(ctxt, pk, c, k, pw)
48 π

t1
U

:= ((pk, sk, e1), ctxt, SK, true)

49 π
t2
S

:= ((c, k, e2), ctxt, SK, true)

50 (π
t1
U .fr, π

t2
S .fr) := (true, true) //G1

51 return (U, e1, S, e2)

Oracle SendInit(U, t1, S)

52 if π
t1
U 	= ⊥: return ⊥

53 (pk, sk) ← KG(par)
54 e1 := E1(pwU,S, pk)

55 π
t1
U

:= ((pk, sk, e1), (U, S, e1, ⊥), ⊥, ⊥)

56 π
t1
U .fr := false //G1

57 return (U, e1)

Oracle SendResp(S, t2,U, e1)

58 π
t2
S 	= ⊥: return ⊥

59 if (U, S) ∈ C: π
t2
S .fr := false //G1

60 else π
t2
S .fr := true //G1

61 pk := D1(pwU,S, e1)

62 (c, k) ← Encaps(pk)
63 e2 := E2(pwU,S, c)

64 ctxt := (U, S, e1, e2)
65 SK := H(ctxt, pk, c, k, pwU,S)

66 π
t2
S

:= ((c, k, e2), ctxt, SK, true)
67 return (S, e2)

Oracle SendTerInit(U, t1, S, e2)

68 if π
t1
U = ⊥ and π

t1
U .tr 	= (U, S, ∗, ∗)

69 return ⊥
70 let (pk, sk, e1) := π

t1
U .e

71 c := D2(pw, e2), k := Decaps(sk, c)

72 if ∃t2 s.t. π
t2
S .fr = true //G1

73 and π
t2
S .tr = (U, S, e1, e2) //G1

74 π
t1
U .fr := true //G1

75 else if (U, S) /∈ C: π
t1
U .fr := true //G1

76 else π
t1
U .fr := false //G1

77 ctxt := (U, S, e1, e2)
78 SK := H(ctxt, pk, c, k, pwU,S)

79 π
t1
U .(tr, key, acc) := (ctxt, SK, true)

80 return true

Oracle H(U, S, e1, e2, pk, c, k, pw)

81 if LH[U, S, e1, e2, pk, c, k, pw] = ⊥
82 SK

$← SK
83 LH[U, S, e1, e2, pk, c, k, pw] := SK
84 return LH[U, S, e1, e2, pk, c, k, pw]

Fig. 8. Games in proving Theorem 1. A has access to the set of PAKE oracles
{Execute,SendInit,SendResp,SendTerInit,Corrupt,Reveal,Test}, random
oracle H, and ideal ciphers IC1 = (E1,D1) and IC2 = (E2,D2).

158 J. Pan and R. Zeng

Oracle Execute(U, t1, S, t2)

01 if πt1
U �= ⊥ or πt2

S �= ⊥
02 return ⊥
03 pw := pwU,S

04 (pk, sk) ← KG(par), e1 := E1(pw, pk)
//G1-G4

05 (c, k) ← Encaps(pk), e2 := E2(pw, c)
//G1-G3

06 c
$← C, e2 := E2(pw, c) //G4

07 e1
$← E1\T1, T1 := T1 ∪ {e1} //G5

08 e2
$← E2\T2, T2 := T2 ∪ {e2} //G5

09 ctxt := (U, S, e1, e2)
10 SK := H(ctxt, pk, c, k, pw) //G1-G2

11 SK
$← SK //G3-G5

12 πt1
U := ((pk, sk, e1), ctxt, SK, true) //G1-G3

13 πt2
S := ((c, k, e2), ctxt, SK, true) //G1-G3

14 πt1
U := ((⊥, ⊥, e1), ctxt, SK, true) //G4-G5

15 πt2
S := ((⊥, ⊥, e2), ctxt, SK, true) //G4-G5

16 (πt1
U .fr, πt2

S .fr) := (true, true)
17 return (U, e1, S, e2)

Oracle D1(pw, e1)
18 if ∃(pw, pk, e1, ∗) ∈ L1

19 return pk

20 pk
$← PK //G1

21 (pk, sk) ← KG //G2-G5

22 Lkey := Lkey ∪ {(pk, sk)}
//G2-G5

23 L1 := L1 ∪ {(pw, pk, e1, dec)}
24 return pk

Fig. 9. Oracles Execute and D1 in the games sequence G1-G5.

Game G2. We change the output of D1. When A queries D1(pw, e1) where e1
is not generated from E1(pw, ·), we generate pk via (pk, sk) ← KG instead of
pk

$← PK. Such (pk, sk) is recorded in Lkey. cf. Lines 20 ro 22.
The difference between G1 and G2 can be bounded by using the fuzzyness

of KEM. The bound is given in Lemma 2. For readability, we continue the proof
of Lemma 1 and postpone the proof of Lemma 2 to our full version [28].

Lemma 2. With notations and assumptions from G1 and G2 in the proof of
Theorem 1, there is an adversary B1 with T(B1) ≈ T(A) and

∣∣Pr [
GA

1 ⇒ 1
] − Pr

[
GA

2 ⇒ 1
]∣∣ ≤ Advq1-FUZZY

KEM (B1)

After this change, all pk generated by querying D1 (i.e., there exists (pw, e1)
s.t. (pw, pk, e1,dec) ∈ L1) will always have a secret key sk such that (pk, sk) ∈
Lkey. This fact is crucial for our later simulation.

Game G3. In this game, session keys of instances generated in Execute are all
uniformly at random and independent of H (cf. Lines 10 to 11).

Let Queryexec be the event that A queries the hash input of the session key
of an instance generated in Execute. Since H is a random oracle, if Queryexec
does not happen, then A cannot detect the modification made in G3. We have

∣∣Pr [
GA

2 ⇒ 1
] − Pr

[
GA

3 ⇒ 1
]∣∣ ≤ Pr [Queryexec]

A Generic Construction of Tightly Secure PAKE 159

We construct an adversary B2 against the OW-PCA security of KEM in Fig. 10
such that T(B2) ≈ T(A) and Pr [Queryexec] ≤ Adv

(S,1)-OW-PCA
KEM (B2). Concretely,

B2 inputs a OW-PCA challenge (par,pk, c) and has access to a plaintext checking
oracle Pco. Since A’s number of queries to Execute is S and there is only one
KEM ciphertext generated per query to Execute, we need at most S challenge
public keys and one challenge ciphertexts per public key.

Reduction BPco(·,·,·)
2 (par,pk, c)

01 cnt := 0, LE := ∅
02 i∗ := ⊥, j∗ := ⊥, k∗ := ⊥
03 Queryexec := false
04 for (U, S) ∈ U × S
05 pwU,S ← PW
06 C := ∅, β ← {0, 1}
07 b′ ← AO,H,IC1,IC2(par)
08 return (i∗, j∗, k∗)

Oracle H(U, S, e1, e2, pk, c, k, pw)

09 ctxt := (U, S, e1, e2)
10 if ∃i′ s.t. (ctxt, (pk, i′), c, pw) ∈ LE

11 and Pco(cnt∗, c, k) = 1
12 Queryexec := true
13 (i∗, j∗, k∗) := (i′, 1, k)
14 if LH[U, S, e1, e2, pk, c, k, pw] = ⊥
15 SK

$← SK
16 LH[U, S, e1, e2, pk, c, k, pw] := SK
17 return LH[U, S, e1, e2, pk, c, k, pw]

Oracle Execute(U, t1, S, t2)

18 if πt1
U �= ⊥ or πt2

S �= ⊥
19 return ⊥
20 pw := pwU,S, cnt := cnt+ 1
21 pk := pk[cnt], e1 := E1(pw, pk)
22 c := c[cnt, 1], e2 := E2(pw, c)
23 ctxt := (U, S, e1, e2)
24 LE := LE ∪ {(ctxt, (pk, cnt), c, pw)}
25 SK

$← SK
26 πt1

U := ((pk, ⊥, e1), tr, SK, true)
27 πt2

S := ((c, ⊥, e2), tr, SK, true)
28 (πt1

U .fr, πt2
S .fr) := (true, true)

29 return (U, e1, S, e2)

Fig. 10. Reduction B2 in bounding the probability difference between G2 and G3.
Highlighted parts show how B2 uses Pco and challenge input to simulate G3. All
other oracles (except Execute and H) are the same as in G2.

B2 uses (i∗, j∗, k∗) to store its OW solution and uses LE to record the intended
hash input of session keys generated in Execute (cf. Line 24). Although B2 does
not have secret keys of pk and KEM keys of c, it can still simulate G3 since this
information is not required in simulating Execute. Moreover, B2 uses LE and
Pco to determine whether Queryexec happens (cf. Lines 10 to 13).

If A queried H(U,S, e1, e2, pk, c, k, pw), where (U,S, e1, e2, pk, c, k, pw) is the
intended hash input of a session key SK generated in Execute, then by the
construction of PAKE and Lines 21 to 24, there exists cnt∗ ∈ [S] such that
(U,S, e1, e2, (pk, cnt∗), c, pw) ∈ LE, c = c[cnt∗, 1], and k = Decaps(sk, c), where
sk is the secret key of pk[cnt∗]. This means that k is the OW solution of c[cnt∗, 1],
and thus B2 records the OW solution (cf. Line 13) and returns it when the game
ends. Therefore, we have

∣∣Pr [
GA

2 ⇒ 1
] − Pr

[
GA

3 ⇒ 1
]∣∣ ≤ Pr [Queryexec] ≤ Adv

(S,1)-OW-PCA
KEM (B2).

160 J. Pan and R. Zeng

Game G4. We change the generation of c in Execute (cf. Line 06). In this
game, c is sampled from C uniformly at random instead of using Encaps. More-
over, we no longer store the information about pk, sk, c, and k in the outputting
instances from Execute (cf. Lines 14 to 15). The later modification is concep-
tual since the game does not need this information to simulate Execute.

The difference between G3 and G4 can be bounded by using the ciphertext
anonymity of KEM. The bound is given in Lemma 3. We continue the proof of
Theorem 1 and postpone the proof of Lemma 3 to our full version [28].

Lemma 3. With notations and assumptions from G3 and G4 in the proof of
Theorem 1, there is an adversary B3 with T(B3) ≈ T(A) and

∣∣Pr [
GA

3 ⇒ 1
] − Pr

[
GA

4 ⇒ 1
]∣∣ ≤ Adv

(S,1)-ANO
KEM (B3)

Game G5. We postpone the generation of pk and c in Execute. Concretely,
when A issues a query (U, t1,S, t2) to Execute, we sample e1 and e2 uniformly
at random (cf. Lines 07 to 08) and postpone the generation of pk and c and
usage of IC1 and IC2 to the time that A queries D1(pwU,S, e1) or D2(pwU,S, e2),
respectively. The change made in G2 ensures that pk output by D1(pwU,S, e1)
is generated using KG, and the change made in G4 ensures that c output by
D2(pwU,S, e2) is generated via uniformly sampling over C. Therefore, G5 is con-
ceptually equivalent to G4, which means

Pr
[
GA

4 ⇒ 1
]
= Pr

[
GA

5 ⇒ 1
]

Game G6. We rewrite the codes of SendInit, SendResp, and SendTerInit

in Fig. 11. In this game, SendResp and SendTerInit compute session keys
based on the freshness of instances. SendResp in G6 is equivalent to the one
in G5. For SendTerInit in G6, if the user instance πt1

U has a matching server
instance and such instance is fresh, then we make these two instances have the
same session key (cf. Line 46). These changes are for further game transitions and
they are conceptual if KEM has perfect correctness. Here we need to consider the
correctness error of KEM since now we directly set up πt1

U ’s session key without
decapsulation. There are at most S queries to SendTerInit, by a union bound,
we have ∣∣Pr [

GA
5 ⇒ 1

] − Pr
[
GA

6 ⇒ 1
]∣∣ ≤ S · δ.

Game G7. We use two flags Guessuser and Guessser (which are initialized as
false) to indicate whether the following events happen:

– When A queries SendResp(S, t2,U, e1), if (U,S) is uncorrupted, e1 is not
generated from U’s instance (cf. Line 37), and ∃pk such that e1 is generated
via querying E1(pwU,S, pk), then we set Guessser as true (cf. Lines 23 to 24).

– When A queries SendTerInit(U, t1,S, e2), if πt1
U does not have matching

session, (U,S) is uncorrupted, e2 is not generated from S’s instance (cf. Line
30), and ∃c such that e2 is generated via querying E2(pwU,S, c), then we set
Guessuser as true (cf. Lines 53 to 53).

A Generic Construction of Tightly Secure PAKE 161

Game G6-G10

01 par ← Setup
02 for (U, S) ∈ U : pwU,S ← PW
03 C := ∅, β ← {0, 1}
04 Guessuser := false //G7-G10
05 Guessser := false //G7-G10

06 b′ ← AO,H,IC1,IC2 (par)
07 return β == b′

Oracle SendResp(S, t2,U, e1)

08 π
t2
S 	= ⊥: return ⊥

09 if (U, S) ∈ C
10 π

t2
S .fr := false

11 pk := D1(pwU,S, e1)

12 (c, k) ← Encaps(pk)
13 e2 := E2(pwU,S, c)

14 ctxt := (U, S, e1, e2)
15 SK := H(ctxt, pk, c, k, pwU,S)

16 else
17 π

t2
S .fr := true

18 pk := D1(pwU,S, e1)

19 (c, k) ← Encaps(pk)
20 e2 := E2(pwU,S, c)

21 ctxt := (U, S, e1, e2)
22 SK := H(ctxt, pk, c, k, pwU,S)

23 if e1 /∈ LU
1 and ∃pk s.t.

(pwU,S, pk, e1, enc) ∈ L1 //G7-G10

24 Guessser := true //G7-G10
25 else
26 SK

$← SK //G9-G10

27 c
$← C, e2 := E2(pwU,S, c) //G10

28 π
t2
S .(e, tr) := ((c, k, e2), ctxt)

29 π
t2
S .(key, acc) := (SK, true)

30 LS
2 := LS

2 ∪ {e2} //G7-G10
31 return (S, e2)

Oracle SendInit(U, t1, S)

32 if π
t1
U 	= ⊥: return ⊥

33 (pk, sk) ← KG(par), e1 := E1(pwU,S, pk)

34 e1
$← E1\T1, T1 := T1 ∪ {e1} //G9-G10

35 pk := D1(pwU,S, e1) //G9-G10

36 Retrieve sk s.t. (pk, sk) ∈ Lkey //G9-G10

37 LU
1 := LU

1 ∪ {e1} //G7-G10

38 π
t1
U

:= ((pk, sk, e1), (U, S, e1, ⊥), ⊥, ⊥)

39 π
t1
U .fr := false

40 return (U, e1)

Oracle SendTerInit(U, t1, S, e2)

41 if π
t1
U = ⊥ and π

t1
U .tr 	= (U, S, ∗, ∗)

42 return ⊥
43 (pk, sk, e1) := π

t1
U .e

44 if ∃t2 s.t. π
t2
S .fr = true

45 and π
t2
S .tr = (U, S, e1, e2)

46 π
t1
U .fr := true, SK := π

t2
S .key

47 else
48 ctxt := (U, S, e1, e2)
49 if (U, S) /∈ C
50 π

t1
U .fr := true

51 c := D2(pwU,S, e2), k := Decaps(sk, c)

52 SK := H(ctxt, pk, c, k, pwU,S)

53 if e2 /∈ LS
2 and ∃c s.t.

(pwU,S, c, e2, enc) ∈ L2 //G7-G10

54 Guessuser := true //G7-G10
55 else //G8-G10

56 SK
$← SK //G8-G10

57 else
58 π

t1
U .fr := false

59 c := D2(pwU,S, e2), k := Decaps(sk, c)

60 SK := H(ctxt, pk, c, k, pwU,S)

61 π
t1
U .(tr, key, acc) := (ctxt, SK, true)

62 return true

Fig. 11. Oracles SendInit,SendResp, and SendTerInit in games G6-G10. For any
user U, LU

1 records all e1 sent by U. Similarly, LS
2 records all e2 sent by server S. All

these lists are initialized as ∅.

These two flags are internal and do not influence the game, and thus G7 is
equivalent to G6.

Pr
[
GA

6 ⇒ 1
]
= Pr

[
GA

7 ⇒ 1
]
.

This step is crucial for our proof. Looking ahead, A triggered Guessuser (or
Guessser, similarly) means that A queried E1(pwU,S, pk) for some pk without
corrupting pwU,S. In this case, such pk is controlled by A (i.e., not output by the
security game), and thus we cannot embed challenge public key into such pk when
constructing reduction. Such events happen means that the adversary performs
a successful online dictionary attack. We delay the analysis of the happening
probability of such events.

Game G8. Fresh user instances that do not have matching session and do not
trigger Guessuser will generate uniformly random session keys. Concretely, when
A queries SendTerInit(U, t1,S, e2), if πt1

U does not have matching instance,

162 J. Pan and R. Zeng

Reduction BPco
4 (par,pk, c)

01 cnt1 := 0, cnt2 := 0, Lct := ∅
02 i∗ := ⊥, j∗ := ⊥, k∗ := ⊥
03 for (U, S) ∈ U : pwU,S ← PW
04 C := ∅, β ← {0, 1}
05 Guessuser := false,Guessser := false
06 Querysend := false

07 b′ ← AO,H,IC1,IC2 (par)
08 return (i∗, j∗, k∗)

Oracle SendInit(U, t1, S)

09 if π
t1
U 	= ⊥: return ⊥

10 cnt1 := cnt1 + 1, pk := pk[cnt1]

11 e1 := E1(pwU,S, pk), LU
1 := LU

1 ∪ {e1}
12 π

t1
U

:= ((pk, cnt1, e1), (U, S, e1, ⊥), ⊥, ⊥)
13 return (U, e1)

Oracle D2(pw, e2)

14 if ∃(pw, c, e2, ∗) ∈ L2: return c
15 cnt2 := cnt2 + 1, c := c[cnt2]
16 Lct := Lct ∪ {(c, cnt2)}
17 L2 := L2 ∪ (pw, c, e2, dec)
18 return c

Oracle H(U, S, e1, e2, pk, c, k, pw)

19 ctxt := (U, S, e1, e2)
20 if ∃i, SK s.t. (ctxt, (pk, i), c, pw, SK) ∈ L′

SK
21 and Pco(i, c, k) = 1
22 LH[U, S, e1, e2, pk, c, k, pw] := SK
23 if ∃i, j s.t. (ctxt, (pk, i), (c, j)) ∈ LSK
24 and Pco(i, c, k) = 1
25 (i∗, j∗, k∗) := (i, j, k),Querysend := true
26 if LH[U, S, e1, e2, pk, c, k, pw] = ⊥
27 LH[U, S, e1, e2, pk, c, k, pw] := SK

$← SK
28 return LH[U, S, e1, e2, pk, c, k, pw]

Oracle SendTerInit(U, t1, S, e2)

29 if π
t1
U = ⊥ and π

t1
U .tr 	= (U, S, ∗, ∗)

30 return ⊥
31 (pk, i, e1) := π

t1
U .e

32 if ∃t2 s.t. π
t2
S .fr = true

33 and π
t2
S .tr = (U, S, e1, e2)

34 π
t1
U .fr := true, SK := π

t2
S .key

35 else
36 ctxt := (U, S, e1, e2), c := D2(pw, e2)
37 if (U, S) /∈ C
38 π

t1
U .fr := true

39 c := D2(pw, e2)

40 if e2 /∈ LS
2 and ∃c s.t.

(pwU,S, c, e2, enc) ∈ L2

41 Guessuser := true
42 SK := Patch(ctxt, pk, i, c)
43 else
44 Retrieve j s.t. (c, j) ∈ Lct

45 SK
$← SK

46 LSK := LSK ∪ (ctxt, (pk, i), (c, j))
47 else
48 π

t1
U .fr := false

49 SK := Patch(ctxt, pk, i, c)

50 π
t1
U .(tr, key, acc) := (ctxt, SK, true)

51 return true

Procedure Patch(ctxt, pk, i, c)

52 (U, S, e1, e2) := ctxt, pw := pwU,S

53 if ∃k s.t. Pco(i, k, c) = 1
54 and LH[ctxt, pk, c, k, pw] 	= ⊥
55 SK := LH[ctxt, pk, c, k, pw]
56 else
57 SK

$← SK
58 L′

SK := L′
SK ∪ (ctxt, (pk, i), c, pw, SK)

59 return SK

Fig. 12. Reduction B4 in bounding the probability difference between G7 and G8.
Highlighted parts show how B4 uses Pco and challenge input to simulate G8. A4 also
uses a procedure Patch to patch H. All other oracles not shown in the figure are the
same as in G8 (cf. Figs. 8, 9 and 11).

(U,S) is uncorrupted, and e2 does not trigger Guessuser, then we sample the
session key uniformly at random and independent of H (cf. Lines 55 ro 56).

Since session keys in G7 are generated via random oracle H, to distinguish
G8 and G7, A needs to query one of the intended hash inputs of such random
session keys. Let Querysend be such querying event. To bound the happening
probability of Querysend, we construct an reduction B4 with T(A) ≈ T(B4) in
Fig. 12 which attacks OW-rPCA security of KEM. B4 works as follows:

1. On input a OW-rPCA challenge (par,pk, c), B4 embeds public keys in pk into
queries to SendInit (cf. Line 02) and embeds challenge ciphertexts in D2 (cf.
Line 15). Counter cnt1 and cnt2 are used to record the indexes of embedded
public keys and ciphertexts, respectively.

2. Since B4 does not have secret keys of challenge public keys (cf. Line 02), it
cannot decrypt KEM ciphertexts and thus cannot directly compute session

A Generic Construction of Tightly Secure PAKE 163

keys of user instances or determine whether A has queried the hash input of
such session keys (even if these keys are not fresh). To deal with it, we use
RO patching technique to make the simulation consistent.
Concretely, we define a procedure Patch which uses Pco oracle to determine
if A has queried the intended hash input of the session key of some specific
user instances. If so, it returns the recorded session key. Otherwise, it samples
a random session key, records this session key in L′

SK, and returns it. Later,
if A’s RO query matches a recorded session key, then B4 patches the RO and
returns this key (cf. Lines 20 to 22).
When A queries SendTerInit(U, t1,S, e2), where πt1

U does not have fresh
matching instance and either e2 triggers Guessuser or (U,S) is corrupted, B4

uses the procedure to compute the session key (cf. Lines 42 and 49).
3. When A queries SendTerInit(U, t1,S, e2), if πt1

U does not have fresh match-
ing instance, (U,S) is corrupted, and e2 does not trigger Guessuser, then e2 is
not generated by querying E2(pwU,S, e2), which means that c = D2(pwU,S, e2)
is one of the embedded ciphertext (cf. Line 15). B4 records such query in LSK
(cf. Line 46) to determine whether Querysend happens.
When A queried H(U,S, e1, e2, pk, c, k, pwU,S), if this query match one record
in LSK and k is the decapsulated key of a embedded challenge ciphertext c
(cf. Line 23), then this RO query is the intended hash input of one of the
session keys recorded in Line 46. In this case, Querysend will be triggered, and
B4 will use (i∗, j∗, k∗) to record the OW solution of c (cf. Line 25).

Since A’s numbers of queries to Init and D2 are S and q2, respectively, B4

needs at most S challenge public keys and (q2 + S) challenge ciphertexts per
public keys during the simulation. If Querysend happens, then B4 finds the OW
solution of one of the challenge ciphertexts. Therefore, we have

∣∣Pr [
GA

7 ⇒ 1
] − Pr

[
GA

8 ⇒ 1
]∣∣ ≤ Pr [Querysend] ≤ Adv

(S,q2+S)-OW-rPCA
KEM (B4)

Game G9. We change SendInit and SendResp.

1. In SendInit, instead of generating (pk, sk) ← KG and e1 := E1(pwU,S, pk), we
firstly sample e1 uniformly at random and then generate (pk, sk) by querying
D1(pwU,S, e1) (cf. Lines 34 to 36).

2. Fresh server instances that do not trigger Guessser will generate uniformly
random session keys. Concretely, when A queries SendResp(S, t2,U, e1), if
(U,S) is uncorrupted and e1 does not trigger Guessser, then we sample the
session key uniformly at random and independent of H (cf. Lines 25 to 26).

Similar to our argument in bounding G7 and G8, to distinguish G8 and
G9, A needs to query one of the intended hash inputs of such random session
keys. Let Queryresp be such querying event. We construct an reduction B5 with
T(A) ≈ T(B5) in Fig. 12 to bound the happening probability of Queryresp. B5

attacks OW-PCA security of KEM and works as follows:

1. On input a OW-PCA challenge (par,pk, c), B5 embeds challenge public keys
pk into queries to D1 (cf. Line 31). By Lines 34 to 36, public keys generated

164 J. Pan and R. Zeng

Reduction B5(par,pk, c)

01 cnt1 := 0, i∗ := ⊥, j∗ := ⊥, k∗ := ⊥
02 for (U, S) ∈ U
03 pwU,S ← PW, LU

1 := ∅, LS
2 := ∅

04 C := ∅, β ← {0, 1}
05 Guessuser := false,Guessser := false
06 Queryresp := false

07 b′ ← AO,H,IC1,IC2 (par)
08 return (i∗, j∗, k∗)

Oracle SendTerInit(U, t1, S, e2)

09 if π
t1
U = ⊥ and π

t1
U .tr 	= (U, S, ∗, ∗)

10 return ⊥
11 (pk, i, e1) := π

t1
U .e, c := D2(pw, e2)

12 if ∃t2 s.t. π
t2
S .fr = true

13 and π
t2
S .tr = (U, S, e1, e2)

14 π
t1
U .fr := true, SK := π

t2
S .key

15 else
16 ctxt := (U, S, e1, e2)
17 if (U, S) /∈ C
18 π

t1
U .fr := true

19 if e2 /∈ LS
2 and ∃c s.t.

(pwU,S, c, e2, enc) ∈ L2

20 Guessuser := true
21 SK := Patch(ctxt, pk, i, c)

22 else SK
$← SK

23 else
24 π

t1
U .fr := false

25 SK := Patch(ctxt, pk, i, c)

26 π
t1
U .(tr, key, acc) := (ctxt, SK, true)

27 return true

Oracle D1(pw, e1)

28 if ∃(pw, pk, e1, ∗) ∈ L1
29 return c
30 cnt2[cnt1] := 0, cnt1 := cnt1 + 1
31 pk := pk[cnt1], Lkey := Lkey ∪ {(pk, cnt1)}
32 L2 := L2 ∪ (pw, pk, e1, dec)
33 return c

Oracle SendResp(S, t2,U, e1)

34 π
t2
S 	= ⊥: return ⊥

35 pk := D1(pwU,S, e1)

36 if (U, S) ∈ C
37 π

t2
S .fr := false

38 (c, k) ← Encaps(pk), e2 := E2(pwU,S, c)

39 ctxt := (U, S, e1, e2)
40 SK := H(ctxt, pk, c, k, pwU,S)

41 else
42 π

t2
S .fr := true

43 if e1 /∈ LU
1 and ∃pk s.t.

(pwU,S, pk, e1, enc) ∈ L1

44 Guessser := true
45 (c, k) ← Encaps(pk), e2 := E2(pwU,S, c)

46 SK := H(ctxt, pk, c, k, pwU,S)

47 else
48 Retrieve i s.t. (pk, i) ∈ Lkey

49 cnt2[i] := cnt2[i] + 1, j := cnt2[i]
50 c := c[i, j], e2 := E2(pwU,S, c)

51 LSK := LSK ∪ {(ctxt, (pk, i), (c, j))}
52 SK

$← SK
53 LS

2 := LS
2 ∪ {e2}

54 π
t2
S

:= ((c, k, e2), ctxt, SK, true)
55 return (S, e2)

Oracle H((U, S, e1, e2), pk, c, k, pw)

56 ctxt := (U, S, e1, e2)
57 if ∃i, SK s.t. (ctxt, (pk, i), c, pw, SK) ∈ L′

SK and Pco(i, c, k) = 1
58 LH[U, S, e1, e2, pk, c, k, pw] := SK
59 if ∃i, j s.t. (ctxt, (pk, i), (c, j)) ∈ LSK and Pco(i, c, k) = 1
60 (i∗, j∗, k∗) := (i, j, k),Queryresp := true

61 if LH[U, S, e1, e2, pk, c, k, pw] = ⊥
62 LH[U, S, e1, e2, pk, c, k, pw] := SK

$← SK
63 return LH[U, S, e1, e2, pk, c, k, pw]

Fig. 13. Reduction B5 in bounding the probability difference between G8 and G9.
Highlighted parts show how B5 uses Pco and challenge input to simulate G9. All
other oracles not shown in the figure are the same as in G8 (cf. Figs. 8, 9 and 11).
Procedure Patch is the same as the one shown in Fig. 12.

in SendInit are also from pk. Similar to B4, B5 uses the Patch procedure in
Fig. 12 to compute the session keys of user instances. Counter cnt1 and vector
of counters cnt2 are used to record the indexes of embedded public keys and
ciphertexts, respectively.

2. When A queries SendResp(S, t2,U, e1), if πt2
S is fresh (which means that

(U,S) is uncorrupted) and e1 does not trigger Guessser, then by our definition
of Guessser, e1 is not generated by querying E1(pwU,S, pk). This means that
pk = D1(pwU,S, e1) is one of the embedded public key (cf. Line 31). In this
case, B5 embeds one challenge ciphertext with respect to pk (cf. Line 50)

A Generic Construction of Tightly Secure PAKE 165

and records such query in LSK (cf. Line 51) to determine whether Queryresp
happens.
When A queried H(U,S, e1, e2, pk, c, k, pwU,S), if this query match one record
in LSK and k is the decapsulated key of a embedded challenge ciphertext c
(cf. Line 59), then this RO query is the intended hash input of one of the
session keys recorded in Line 51. In this case, Queryresp will be triggered, and
B5 will use (i∗, j∗, k∗) to record the OW solution of the embedded challenge
ciphertext c (cf. Line 60).

Since A’s numbers of queries to (SendInit,SendResp) and D2 are S and
q2 respectively, B5 needs at most S + q2 challenge public keys and S challenge
ciphertexts per public keys during the simulation. If Queryresp happens, then B5

finds the OW solution of one of challenge ciphertexts in c. Therefore, we have
∣∣Pr [

GA
8 ⇒ 1

] − Pr
[
GA

9 ⇒ 1
]∣∣ ≤ Pr

[
Queryresp

] ≤ Adv
(S+q2,S)-OW-PCA
KEM (B5)

Game G10. We sample KEM ciphertext uniformly at random for server
instances that are fresh and do not trigger Queryresp (cf. Line 27). Similar to
the argument of bounding G3 and G4 (cf. Lemma 3), We can use the ciphertext
anonymity of KEM to upper bound the probability difference between G9 and
G10. The bound is given in Lemma 4. We continue the proof of Theorem 1 and
postpone the proof of Lemma 4 to our full version [28].

Lemma 4. With notations and assumptions from G9 and G10 in the proof of
Theorem 1, there is an adversary B6 with T(B6) ≈ T(A) and

∣∣Pr [
GA

9 ⇒ 1
] − Pr

[
GA

10 ⇒ 1
]∣∣ ≤ Adv

(S+q1,S)-ANO
KEM (B6)

In game transition G10-G12 (shown in Fig. 14), we bound the happening
probabilities of Guessser and Guessuser.

Game G11. We do not use passwords to simulate the protocol messages of
fresh instances that do not trigger Guessser and Guessuser. Concretely, we change
SendInit,SendResp, and SendTerInit as follows:

– In SendResp, if the server instance πt2
S is fresh and does not trigger Guessser,

then we sample e2 uniformly at random and without using pwU,S and c (cf.
Lines 33 to 34). Moreover, we only store e2 as the ephemeral secret of πt2

S (cf.
Line 41). These changes are conceptual since we do not need c to compute the
session key and if A queries D2(pwU,S, e2) later, then we will return random
c (which are the same as in G10).

– Similarly, in SendInit, we generate e1 uniformly at random and without
using pwU,S and pk (cf. Lines 49 to 52) and only store e1 as the ephemeral
secret of πt1

U (cf. Lines 52 to 53 and Line 59). Later, if A corrupts (U,S) and
queries SendTerInit to finish the user instance πt1

U , we retrieve necessary
information to compute the session key (cf. Lines 82 to 83). These changes

166 J. Pan and R. Zeng

Game G10-G12

01 par ← Setup
02 for (U, S) ∈ U : pwU,S ← PW //G10-G11

03 C := ∅, β ← {0, 1}
04 Guessuser := false,Guessser := false
05 b′ ← AO,H,IC1,IC2 (par)
06 for (U, S) ∈ U × S //G12
07 if (U, S) /∈ C: pwU,S ← PW //G12

08 if ∃S′ s.t. pwU,S′ ∈ Lpw //G12

09 Guessuser := true //G12
10 if ∃U′ s.t. pwU′,S ∈ Lpw //G12

11 Guessser := true //G12
12 return β == b′

Oracle Corrupt(U, S)

13 if (U, S) ∈ C: return ⊥
14 C := C ∪ {(U, S)}
15 pwU,S ← PW //G12

16 return pwU,S

Oracle SendResp(S, t2,U, e1)

17 π
t2
S 	= ⊥: return ⊥

18 if (U, S) ∈ C
19 π

t2
S .fr := false

20 pk := D1(pwU,S, e1), (c, k) ← Encaps(pk)

21 e2 := E2(pwU,S, c), ctxt := (U, S, e1, e2)

22 SK := H(ctxt, pk, c, k, pwU,S)

23 else
24 π

t2
S .fr := true

25 if e1 /∈ LU
1 and ∃pk s.t.

(pwU,S, pk, e1, enc) ∈ L1 //G10-G11

26 Guessser := true //G10-G11
27 pk := D1(pwU,S, e1) //G10-G11

28 (c, k) ← Encaps(pk) //G10-G11
29 e2 := E2(pwU,S, c) //G10-G11

30 ctxt := (U, S, e1, e2) //G10-G11
31 SK := H(ctxt, pk, c, k, pwU,S)

//G10-G11
32 else //G10-G11
33 c ← C, e2 := E2(pwU,S, c) //G10

34 e2
$← E2\T2, T2 := T2 ∪ {e2} //G11

35 SK
$← SK //G10-G11

36 if e1 /∈ LU
1 //G12

37 for (pw, pk) s.t.
(pw, pk, e1, enc) ∈ L1 //G12

38 Lpw := Lpw ∪ {pw} //G12

39 e2
$← E2\T2, T2 := T2 ∪ {e2} //G12

40 SK
$← SK //G12

41 π
t2
S .(e, tr) := ((c, k, e2), ctxt) //G10

42 π
t2
S .(e, tr) := ((⊥, ⊥, e2), ctxt) //G11-G12

43 π
t2
S .(key, acc) := (SK, true)

44 LS
2 := LS

2 ∪ {e2}
45 return (S, e2)

Oracle SendInit(U, t1, S)

46 if π
t1
U 	= ⊥: return ⊥

47 e1
$← E1\T1, L1 := L1 ∪ {e1}

48 LU
1 := LU

1 ∪ {e1}
49 pk := D1(pwU,S, e1) //G10

50 Retrieve sk s.t. (pk, sk) ∈ Lkey //G10

51 π
t1
U

:= ((pk, sk, e1),
(U, S, e1, ⊥), ⊥, ⊥) //G10

52 π
t1
U .e := (⊥, ⊥, e1) //G11-G12

53 π
t1
U .tr := (U, S, e1, ⊥) //G11-G12

54 π
t1
U .fr := false

55 return (U, e1)

Oracle SendTerInit(U, t1, S, e2)

56 if π
t1
U = ⊥ and π

t1
U .tr 	= (U, S, ∗, ∗)

57 return ⊥
58 (pk, sk, e1) := π

t1
U .e //G10

59 (⊥, ⊥, e1) := π
t1
U .e //G11

60 if ∃t2 s.t. π
t2
S .fr = true

61 and π
t2
S .tr = (U, S, e1, e2)

62 π
t1
U .fr := true, SK := π

t2
S .key

63 else
64 ctxt := (U, S, e1, e2)
65 if (U, S) /∈ C
66 π

t1
U .fr := true

67 if e2 /∈ LS
2 and ∃c s.t.

(pwU,S, c, e2, enc) ∈ L2 //G10-G11

68 pk := D1(pwU,S, e1) //G11

69 Retrieve sk s.t.
(pk, sk) ∈ Lkey //G11

70 Guessuser := true //G10-G11
71 c := D2(pwU,S, e2) //G10-G11

72 k := Decaps(sk, c) //G10-G11
73 SK := H(ctxt, pk, c, k, pwU,S)

//G10-G11
74 else //G10-G11

75 SK
$← SK //G10-G11

76 if e2 /∈ LS
2

77 for (pw, c) s.t.
(pw, c, e2, enc) ∈ L2 //G12

78 Lpw := Lpw ∪ {pw} //G12

79 SK
$← SK //G12

80 else
81 π

t1
U .fr := false

82 pk := D1(pwU,S, e1) //G11-G12

83 Retrieve sk s.t.
(pk, sk) ∈ Lkey //G11-G12

84 c := D2(pwU,S, e2)

85 k := Decaps(sk, c)
86 SK := H(ctxt, pk, c, k, pwU,S)

87 π
t1
U .(tr, key, acc) := (ctxt, SK, true)

88 return true

Fig. 14. Oracles SendInit,SendResp, and SendTerInit in games G10-G12.

A Generic Construction of Tightly Secure PAKE 167

are also conceptual, since session keys of such instances are independently
and uniformly random. We have

Pr
[
GA

10 ⇒ 1
]
= Pr

[
GA

11 ⇒ 1
]

Game G12. We postpone the generation of passwords and the determination of
whether Guessuser or Guessser happen. For simplicity, we define event GUESS as
Guessuser ∨ Guessser.

1. We generate passwords as late as possible. passwords are generated only when
A issues Corrupt queries or after A ends with output b′ (cf. Lines 06, 07 to
15).

2. Since the passwords of uncorrupted parties do not exist before A termi-
nates, we cannot determine whether GUESS happens when A is running.
To deal with it, we postpone such determination. When A issues SendResp

or SendTerInit queries, we records all potential passwords that may match
the actual password of the specific user-server pair (cf. Lines 37 to 38 and
Lines 76 to 78). After A outputs b′, the passwords of uncorrupted user-server
pairs are generated, and then we use these passwords to determine whether
Guessuser or Guessser happen (cf. Lines 06 to 11).

3. Now all fresh instances will accept random session keys independent of H and
passwords (Lines 40 and 79).

If GUESS does not happen in both game, then these changes are conceptual.
We have

Pr
[
GA

11 ⇒ 1 | ¬GUESS in GA
11

]
= Pr

[
GA

12 ⇒ 1 | ¬GUESS in GA
12

]

We claim that GUESS happens in G11 if and only if it happens in G12. It is
straightforward to see that GUESS happens in G11 then it also happens in G12,
since in G12 we records all potential passwords in Lpw that may trigger GUESS in
G11. If GUESS happens in G12, then there exists pwU,S ∈ Lpw. Moreover, pwU,S

is recorded in Lpw only if (U,S) is uncorrupted. By (cf. Lines 37 to 38 and Lines
76 to 78), pwU,S ∈ Lpw means that there exists (pk, e1) (resp., (c, e2)) such that
e1 /∈ LU

1 (resp., e2 /∈ LS
2) and (pwU,S, pk, e1, enc) ∈ L1 (resp., (pwU,S, c, e2, enc) ∈

L2), and thus either Guessuser or Guessser will be triggered in G11. Therefore, if
GUESS happens in G12, then GUESS also happens in G11. Now we have

∣∣Pr [
GA

11 ⇒ 1
] − Pr

[
GA

12 ⇒ 1
]∣∣ ≤ Pr

[
GUESS in GA

11

]
= Pr

[
GUESS in GA

12

]

Furthermore, we claim that every query to SendResp or SendTerInit will
add at most one password into Lpw. That is, at most one password will be
recorded in Lpw in every execution of Lines 37 to 38 or Lines 76 to 78. To
see this, suppose that there are two passwords pw and pw′ are recorded during
a execution of Lines 37 to 38. By Line 37, we have (pw, c, e2, enc) ∈ L2 and
(pw′, c′, e2, enc) ∈ L2 for some c and c′. This means that e2 is generated by
querying E2(pw, c) and E2(pw′, c′), which is impossible since we simulate E2 in a

168 J. Pan and R. Zeng

Game G12

01 par ← Setup
02 C := ∅, β ← {0, 1}
03 Guessuser := false,Guessser := false
04 b′ ← AO,H,IC1,IC2 (par)
05 for (U, S) ∈ U × S
06 if (U, S) /∈ C: pwU,S ← PW
07 if ∃S′ s.t. pwU,S′ ∈ Lpw

08 Guessuser := true
09 if ∃U′ s.t. pwU′,S ∈ Lpw

10 Guessser := true
11 return β == b′

Oracle Execute(U, t1, S, t2)

12 if π
t1
U 	= ⊥ or π

t2
S 	= ⊥

13 return ⊥
14 e1

$← E1\T1, T1 := T1 ∪ {e1}
15 e2

$← E2\T2, T2 := T2 ∪ {e2}
16 ctxt := (U, S, e1, e2), SK

$← SK
17 π

t1
U

:= ((⊥, ⊥, e1), ctxt, SK, true)

18 π
t2
S

:= ((⊥, ⊥, e2), ctxt, SK, true)

19 (π
t1
U .fr, π

t2
S .fr) := (true, true)

20 return (U, e1, S, e2)

Oracle Corrupt(U, S)

21 if (U, S) ∈ C: return ⊥
22 C := C ∪ {(U, S)}
23 pwU,S ← PW
24 return pwU,S

Oracle E1(pw, pk)

25 if ∃(pw, pk, e1, ∗) ∈ L1: return e1

26 e1
$← E1\T1, T1 := T1 ∪ {e1}

27 L1 := L1 ∪ (pw, pk, e1, enc)
28 return e1

Oracle E2(pw, c)

29 if ∃(pw, c, e2, ∗) ∈ L2: return e2

30 e2
$← E2\T2, T2 := T2 ∪ {e2}

31 L2 := L2 ∪ (pw, c, e2, enc)
32 return e2

Oracle D1(pw, e1)

33 if ∃(pw, pk, e1, ∗) ∈ L1
34 return pk
35 (pk, sk) ← KG
36 Lkey := Lkey ∪ {(pk, sk)}
37 L1 := L1 ∪ {(pw, pk, e1, dec)}
38 return pk

Oracle D2(pw, e2)

39 if ∃(pw, c, e2, ∗) ∈ L2: return c

40 c
$← C, L2 := L2 ∪ (pw, c, e2, dec)

41 return c

Oracle SendInit(U, t1, S)

42 if π
t1
U 	= ⊥: return ⊥

43 e1
$← E1\T1, T1 := T1 ∪ {e1}

44 LU
1 := LU

1 ∪ {e1}
45 π

t1
U

:= ((⊥, ⊥, e1), (U, S, e1, ⊥), ⊥, ⊥)

46 π
t1
U .fr := false

47 return (U, e1)

Oracle SendResp(S, t2,U, e1)

48 π
t2
S 	= ⊥: return ⊥

49 if (U, S) ∈ C
50 π

t2
S .fr := false

51 pk := D1(pwU,S, e1)

52 (c, k) ← Encaps(pk)
53 e2 := E2(pwU,S, c), ctxt := (U, S, e1, e2)

54 SK := H(ctxt, pk, c, k, pwU,S)

55 else
56 π

t2
S .fr := true, SK $← SK

57 if e1 /∈ LU
1

58 for (pw, pk) s.t. (pw, pk, e1, enc) ∈ L1
59 Lpw := Lpw ∪ {pw}
60 e2

$← E2\T2, T2 := T2 ∪ {e2}
61 π

t2
S

:= ((⊥, ⊥, e2), ctxt, SK, true)

62 LS
2 := LS

2 ∪ {e2}
63 return (S, e2)

Oracle SendTerInit(U, t1, S, e2)

64 if π
t1
U = ⊥ and π

t1
U .tr 	= (U, S, ∗, ∗)

65 return ⊥
66 if ∃t2 s.t. π

t2
S .fr = true

67 and π
t2
S .tr = (U, S, e1, e2)

68 π
t1
U .fr := true, SK := π

t2
S .key

69 else
70 ctxt := (U, S, e1, e2)
71 if (U, S) /∈ C
72 π

t1
U .fr := true, SK $← SK

73 if e2 /∈ LS
2

74 for (pw, c) s.t. (pw, c, e2, enc) ∈ L2
75 Lpw := Lpw ∪ {pw}
76 else
77 π

t1
U .fr := false

78 pk := D1(pwU,S, e1)

79 Retrieve sk s.t. (pk, sk) ∈ Lkey

80 c := D2(pwU,S, e2), k := Decaps(sk, c)

81 SK := H(ctxt, pk, c, k, pwU,S)

82 π
t1
U .(tr, key, acc) := (ctxt, SK, true)

83 return true

Oracle H(U, S, e1, e2, pk, c, k, pw)

84 if LH[U, S, e1, e2, pk, c, k, pw] = ⊥
85 LH[U, S, e1, e2, pk, c, k, pw] := SK

$← SK
86 return LH[U, S, e1, e2, pk, c, k, pw]

Fig. 15. Final game G12 in proving Theorem 1. A has access to the set of PAKE ora-
cles {Execute,SendInit,SendResp,SendTerInit,Corrupt,Reveal,Test}, ran-
dom oracle H, and ideal ciphers IC1 = (E1,D1) and IC2 = (E2,D2). Oracles Reveal
and Test are the same as in G1 (cf. Fig. 8) so we omit their description here.

A Generic Construction of Tightly Secure PAKE 169

collision-free way. Similar argument applies for Lines 76 to 78. Therefore, every
query to SendResp or SendTerInit will add at most one password into Lpw.

Now we can bound the happening probability of GUESS in G12. A clean
description of G12 is given in Fig. 15. In G12, passwords of uncorrupted user-
server pairs are undefined before A issues Corrupt queries or ends with output
b′. Moreover, oracles Execute,SendInit,SendResp, and SendTerInit can
be simulated without using uncorrupted passwords. Therefore, uncorrupted pass-
words are perfectly hidden from A’s view. Since A issues S queries to SendResp

and SendTerInit, we have |Lpw| ≤ S and

Pr
[
GUESS in GA

12

] ≤ S

|PW|
All fresh instances in G12 will accept independently and uniformly random

session keys, so we also have

Pr
[
GA

12 ⇒ 1
]
=

1
2

Combining all the probability differences in the games sequence, we have

AdvBPRΠ (A) ≤ S

|PW| + Advq1-FUZZY
KEM (B1) + Adv

(S,q2+S)-OW-rPCA
KEM (B4)

+ Adv
(S,1)-OW-PCA
KEM (B2) + Adv

(S+q2,S)-OW-PCA
KEM (B5)

+ Adv
(S,1)-ANO
KEM (B3) + Adv

(S+q1,S)-ANO
KEM (B6) + S · δ

+ S2(ηpk + ηct) +
(q21 + S2)

|E1| +
(q22 + S2)

|E2| +
q21

|PK| +
q22
|C| +

(q2H + S2)
|SK|

5 Instantiations of the Underlying KEM

5.1 Direct Diffie-Hellman-Based Constructions

Diffie-Hellman Assumptions. We recall the multi-user and multi-challenge
strong Diffie-Hellman assumption. Let G be a group generation algorithm that
on input security parameters outputs a group description (G, g, p), where p is an
odd prime and G is a p-order group with generator g.

Definition 15 (Multi-Instance stDH [3]). Let N and μ be integers. We say
the stDH problem is hard on G, if for any A, the (N,μ)-stDH advantage of A
against G

Adv
(N,μ)-stDH
G (A) := Pr

[
stDH

(N,μ),A
G ⇒ 1

]
.

is negligible, where stDH
(N,μ),A
G is defined in Fig. 16.

170 J. Pan and R. Zeng

GAME stDH
(N,μ),A
G

01 par := (G, g, p) ← G
02 for i ∈ [N]

03 xi
$← Zp,X[i] := Xi := gxi

04 for j ∈ [μ] :

05 yj
$← Zp,Y[j] := Yj := gyj

06 (i∗, j∗, Z∗) ← AstDH(par,X,Y)
07 return Z∗ = Y

xi∗
j∗

Oracle Pco(i, Y, Z)

08 if X[i] = ⊥
09 return ⊥
10 return Z == Y xi

Fig. 16. Security games OW-PCA and OW-rPCA for KEM scheme KEM.

KG1

01 x
$← Zp

02 X := gx

03 pk := X
04 sk := (x, pk)
05 return (pk, sk)

Encaps1(pk)

06 r
$← Zp

07 R := gr ∈ G

08 k := H(pk, R, Xr)
09 c := R
10 return (c, k)

Decaps1(sk, R)

11 parse (x, pk) =: sk
12 parse R =: c
13 k := H(pk, R, Rx)
14 return k

Fig. 17. KEM scheme KEMstDH = (Setup1,KG1,Encaps1,Decaps1).

Construction based on strong DH. In Fig. 17, we construct a KEM
scheme KEMstDH with plaintext space G and ciphertext space of G. KEMstDH

is essentially the hashed ElGamal KEM [3,17].
KEMstDH has perfect public key fuzzyness and ciphertext anonymity (even

under PCA). This is because X
$← G is equivalent to (x $← Zp,X := gx).

Therefore, we have

Adv
(N,μ)-ANO
KEMstDH

(A) = 0, AdvN-FUZZY
KEMstDH

(A) = 0

for any integers N and μ, and adversary A (even unbounded).
It is well-known that the hash ElGamal KEM is tightly IND-CCA secure

(which implies OW-PCA security) if the (1, 1)-stDH assumption holds [15]. By
using the random self-reducibility of Diffie-Hellman assumption, one can show
that the (N,μ)-OW-PCA security can be tightly reduced to the (1, 1)-stDH
assumption.

5.2 Generic Constructions

Let PKE0 = (KG0,Enc0,Dec0) be a PKE scheme with public key space PK,
message space M, randomness space R, and ciphertext space C. Let � and L be
integers. Let G : PK×M → R, H : PK×M×C → {0, 1}L, and H′ : PK×{0, 1}�×
C → {0, 1}L be hash functions. Let PKE0 = (Setup0,KG0,Enc0,Dec0) be a PKE
scheme. In Fig. 18, we define a generic transformation for KEM schemes. We
denote such transformation as KEM = TU	⊥[PKE0,G,H,H′]. TU	⊥ is essentially a
combination of the T transformation and the U	⊥ transformation in [21]. KEM has

A Generic Construction of Tightly Secure PAKE 171

the same public key space and ciphertext space with PKE0. The Setup algorithm
of KEM is the same as the one of PKE0.

KG(par)

01 (pk, sk) ← KG0(par)

02 s
$← {0, 1}�

03 sk′ := (pk, sk, s)
04 return (pk, sk′)

Encaps(pk)

05 m
$← M′

06 r := G(pk, m)
07 c := Enc0(pk, m; r)
08 k := H(pk, c, m)
09 return (c, k)

Decaps((pk, sk, s), c)

10 m′ := Dec0(sk, c)
11 if m′ �= ⊥
12 and c =
Enc0(pk, m

′;G(pk, m′))
13 k := H(pk, c, m′)
14 else k := H′(pk, c, s)
15 return k

Fig. 18. KEM scheme KEM = (Setup,KG,Encaps,Decaps) from the generic transfor-
mation TU�⊥[PKE0,G,H,H′], where G,H, and H′ are hash functions, PKE0 = (Setup0,
KG0,Enc0,Dec0) is a PKE scheme, and Setup = Setup0.

Correctness of KEM. We follow the correctness proof of [21, Theorem 3.1].

Decaps has decapsulation error if its input is c = Enc0(pk,m′;G(pk,m′)) for some
m′ and Dec0(sk, c) �= m′. If PKE0 is (1 − δPKE0)-correct, such event happens
within probability qG · δPKE0 if we treat G as a random oracle and assume G will
be queried at most qG times. Therefore, KEM is (1 − qG · δPKE0)-correct.

Security. In Theorems 2 to 4, we show if PKE0 has fuzzy public keys and
PR-CPA security, then KEM has fuzzy public keys, anonymous ciphertexts
(under PCA attacks), and OW-(r)PCA security.

It is easy to see TU	⊥ transformation preserves the public key fuzzyness of
the underlying PKE.

Theorem 2. Let N be the number of users. If PKE0 has fuzzy public keys, then
KEM = TU	⊥[PKE0,G,H,H′] in Fig. 18 also has fuzzy public keys. Concretely, for
any adversary A against KEM, there exists an adversary B with T(A) ≈ T(B)
and

AdvN-FUZZY
KEM (A) ≤ AdvN-FUZZY

PKE0
(B)

Theorems 3 and 4 show shat if PKE0 is PR-CPA secure, then KEM =
TU	⊥[PKE0,G,H,H′] has OW-CPA security and ciphertext anonymity under
PCA attacks. For readability, we postpone their proofs to our full version [28].

Theorem 3. Let N and μ be the numbers of users and challenge ciphertexts per
user. If PKE0 is PR-CPA secure and (1− δ)-correct and G,H, and H′ be random
oracles, then KEM = TU	⊥[PKE0,G,H,H′] has anonymous ciphertext under PCA
attacks (cf. Definition 7).

172 J. Pan and R. Zeng

Concretely, for any A against KEM, there exists B = (B0,B1) with T(A) ≈
T(B) and

Adv
(N,μ)-ANO
KEM (A) ≤ 2Adv(N,μ)-PR-CPA

PKE0
(B) + 2NqG · δ +

NμqG
|M|

+
2N(qH′ + qPco)

2�
+

N2μ2 + q2G
|R| +

2N2μ2 + q2H + q2H′

2L
,

where qG, qH, qH′ , and qPco are the numbers of A’s queries to G,H,H′, and Pco.

Theorem 4. Let N and μ be the numbers of users and challenge ciphertexts
per user. If PKE0 is PR-CPA secure and G,H, and H′ be random oracles, then
KEM = TU	⊥[PKE0,G,H,H′] is OW-PCA secure.

Concretely, for any A against KEM’s (N,μ)-OW-PCA security, there exists
B with T(A) ≈ T(B) and

Adv
(N,μ)-OW-PCA
KEM (A) ≤ 2Adv(N,μ)-PR-CPA

PKE0
(B) + 2NqG · δ +

Nμ(qG + qH)
|M|

+
2N(qH′ + qPco)

2�
+

N2μ2 + q2G
|R| +

2N2μ2 + q2H + q2H′

2L
,

where qG, qH, qH′ , and qPco are the numbers of A’s queries to G,H,H′, and Pco.

By combining Lemma 1 and Theorems 3 and 4, we have Theorem 5.

Theorem 5. Let N and μ be the numbers of users and challenge ciphertexts
per user. If PKE0 is PR-CPA secure and G,H, and H′ be random oracles, then
KEM = TU	⊥[PKE0,G,H,H′] is OW-rPCA secure.

Concretely, for any A against KEM’s (N,μ)-OW-rPCA security, there exists
B with T(A) ≈ T(B) and

Adv
(N,μ)-OW-rPCA
KEM (A) ≤ 4Adv

(N,μ)-PR-CPA
PKE0

(B) + 4NqG · δ +
Nμ(2qG + qH)

|M|

+
4N(qH′ + qPco)

2�
+

2(N2μ2 + q2G)

|R| +
2(2N2μ2 + q2H + q2H′)

2L
,

where qG, qH, qH′ , and qPco are the numbers of A’s queries to G,H,H′, and Pco.

5.3 Lattice-Based Instantiations

We discuss two lattice-based instantiations of the PAKE protocol Π (Fig. 7). The
first one is the well-known Regev’s encryption [29,30] which is based on learning
with error (LWE) assumption. The second one is the Kyber.PKE scheme [32],
which is based on the module LWE (MLWE) assumption. For simplicity, we only
discuss the security loss of these schemes (from their assumptions) and the final
security loss of Π instantiated with these schemes. For more background about
lattices, please refer to [18,29,30,32].

A Generic Construction of Tightly Secure PAKE 173

Let λ the security parameter. Let S and qIC be the number of session and the
number of A’s queries to ideal ciphers (IC1, IC2) in Fig. 7. Let εLWE and εmlwe be
the best computational advantage against the LWE and MLWE assumptions,
respectively. We use negl(λ) to denote negligible (about λ) statistical terms. Such
terms do not influence tightness.

Regev Encryption. We use the multi-bit version of Regev’s encryption,
denoted as PKERegev, in [29]. As shown in [29, Lemma 7.3, Lemma 7.4], the
public keys of this scheme are indistinguishable from random by using a LWE
problem instance, and the ciphertexts are pseudorandom under random public
keys. Suppose this scheme encrypts Θ(λ) bits, then we have

AdvN-FUZZY
PKERegev

(A) ≤ O(Nλ) · εLWE, Adv
(N,μ)-PR-CPA
PKERegev

(A) ≤ O(Nλ) · εLWE + negl(λ)

We can use the TU	⊥ transformation to transform PKERegev into a KEM
scheme and then use the KEM scheme to instantiate Π (Fig. 7). By plugging
these bounds into Theorems 3 to 5 and then Theorem 1, we have

AdvBPRΠ[PKERegev]
(A) ≤ O(λ · (qIC + S)) · εLWE

Kyber PKE. We consider the Kyber.CPAPKE scheme (denoted as PKEkyber)
in [32]. The pseudorandomness and fuzzyness proofs of PKEkyber are the same
as in [8, Lemmata 1 and 2, Corollary 1]. Since the MLWE assumption does not
have random self-reducibility, we can use a standard hybrid argument to extend
such proofs to multi-user-challenge setting. We have

AdvN-FUZZY
PKERegev

(A) ≤ N · εmlwe, Adv
(N,μ)-PR-CPA
PKERegev

(A) ≤ Nμ · 2εmlwe

By using the TU	⊥ transformation, we can transform PKEkyber into a KEM
scheme. Then we use the KEM scheme to instantiate Π (Fig. 7). By Theorems
1 and 3 to 5, we have

AdvBPRΠ[PKEkyber
(A) ≤ O(S · (qIC + S)) · εmlwe

References

1. Abdalla, M., Barbosa, M.: Perfect forward security of SPAKE2. Cryptology ePrint
Archive, Report 2019/1194 (2019). https://eprint.iacr.org/2019/1194

2. Abdalla, M., Barbosa, M., Bradley, T., Jarecki, S., Katz, J., Xu, J.: Universally
composable relaxed password authenticated key exchange. In: Micciancio, D., Ris-
tenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 278–307. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_10

3. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
143–158. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-9_12

https://eprint.iacr.org/2019/1194
https://doi.org/10.1007/978-3-030-56784-2_10
https://doi.org/10.1007/3-540-45353-9_12

174 J. Pan and R. Zeng

4. Abdalla, M., Eisenhofer, T., Kiltz, E., Kunzweiler, S., Riepel, D.: Password-
authenticated key exchange from group actions. In: Dodis, Y., Shrimpton, T.
(eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 699–728. Springer, Heidelberg
(2022). https://doi.org/10.1007/978-3-031-15979-4_24

5. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol.
3386, pp. 65–84. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
30580-4_6

6. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_14

7. Becerra, J., Iovino, V., Ostrev, D., Šala, P., Škrobot, M.: Tightly-secure PAK(E).
In: Capkun, S., Chow, S.S.M. (eds.) CANS 2017. LNCS, vol. 11261, pp. 27–48.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02641-7_2

8. Beguinet, H., Chevalier, C., Pointcheval, D., Ricosset, T., Rossi, M.: GeT a CAKE:
generic transformations from key encaspulation mechanisms to password authen-
ticated key exchanges. ACNS 2023 (2023). https://eprint.iacr.org/2023/470

9. Bellare, M., Palacio, A.: GQ and Schnorr identification schemes: proofs of secu-
rity against impersonation under active and concurrent attacks. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45708-9_11

10. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6_11

11. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679_25

12. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: 1992 IEEE Symposium on Security and Pri-
vacy, pp. 72–84. IEEE Computer Society Press (1992)

13. Benhamouda, F., Blazy, O., Ducas, L., Quach, W.: Hash proof systems over lat-
tices revisited. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol.
10770, pp. 644–674. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76581-5_22

14. Bernstein, D.J., Persichetti, E.: Towards KEM unification. Cryptology ePrint
Archive, Report 2018/526 (2018). https://eprint.iacr.org/2018/526

15. Bhattacharyya, R.: Memory-tight reductions for practical key encapsulation mech-
anisms. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part
I. LNCS, vol. 12110, pp. 249–278. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45374-9_9

16. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005). https://doi.org/10.
1007/11426639_24

17. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_8

https://doi.org/10.1007/978-3-031-15979-4_24
https://doi.org/10.1007/978-3-540-30580-4_6
https://doi.org/10.1007/978-3-540-30580-4_6
https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1007/978-3-030-02641-7_2
https://eprint.iacr.org/2023/470
https://doi.org/10.1007/3-540-45708-9_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-319-76581-5_22
https://doi.org/10.1007/978-3-319-76581-5_22
https://eprint.iacr.org/2018/526
https://doi.org/10.1007/978-3-030-45374-9_9
https://doi.org/10.1007/978-3-030-45374-9_9
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/978-3-540-78967-3_8

A Generic Construction of Tightly Secure PAKE 175

18. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press (2008)

19. Haase, B., Labrique, B.: AuCPace: efficient verifier-based PAKE protocol tailored
for the IIoT. IACR TCHES 2019(2), 1–48 (2019). https://tches.iacr.org/index.
php/TCHES/article/view/7384

20. Hao, F., Ryan, P.: J-PAKE: authenticated key exchange without PKI. Cryptology
ePrint Archive, Report 2010/190 (2010). https://eprint.iacr.org/2010/190

21. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS,
vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-70500-2_12

22. Jablon, D.P.: Strong password-only authenticated key exchange. SIGCOMM Com-
put. Commun. Rev. 26(5), 5–26 (1996). https://doi.org/10.1145/242896.242897

23. Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based
authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10366-7_37

24. Liu, X., Liu, S., Han, S., Gu, D.: EKE meets tight security in the Universally
Composable framework. In: Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023, Part
I. LNCS, vol. 13940, pp. 685–713. Springer, Heidelberg (2023). https://doi.org/10.
1007/978-3-031-31368-4_24

25. MacKenzie, P.: The PAK suite: protocols for password-authenticated key exchange
(2002)

26. Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems for the
security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 104–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-
2_8

27. Okamoto, T., Pointcheval, D.: REACT: rapid enhanced-security asymmetric cryp-
tosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp.
159–174. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45353-9_13

28. Pan, J., Zeng, R.: A generic construction of tightly secure password-based authen-
ticated key exchange. Cryptology ePrint Archive (2023). https://ia.cr/2023/1334

29. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and compos-
able oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5_31

30. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 84–93. ACM Press
(2005)

31. Santos, B.F.D., Gu, Y., Jarecki, S.: Randomized half-ideal cipher on groups with
applications to UC (a)PAKE. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023,
Part V. LNCS, vol. 14008, pp. 128–156. Springer, Heidelberg (2023). https://doi.
org/10.1007/978-3-031-30589-4_5

32. Schwabe, P., et al.: CRYSTALS-KYBER. Technical report, National Institute of
Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-
cryptography/post-quantum-cryptography-standardization/round-3-submissions

33. Zhang, J., Yu, Yu.: Two-round PAKE from approximate SPH and instantiations
from lattices. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS,
vol. 10626, pp. 37–67. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70700-6_2

https://tches.iacr.org/index.php/TCHES/article/view/7384
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://eprint.iacr.org/2010/190
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1145/242896.242897
https://doi.org/10.1007/978-3-642-10366-7_37
https://doi.org/10.1007/978-3-642-10366-7_37
https://doi.org/10.1007/978-3-031-31368-4_24
https://doi.org/10.1007/978-3-031-31368-4_24
https://doi.org/10.1007/3-540-44586-2_8
https://doi.org/10.1007/3-540-44586-2_8
https://doi.org/10.1007/3-540-45353-9_13
https://ia.cr/2023/1334
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-031-30589-4_5
https://doi.org/10.1007/978-3-031-30589-4_5
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/978-3-319-70700-6_2
https://doi.org/10.1007/978-3-319-70700-6_2

An Efficient Strong Asymmetric PAKE
Compiler Instantiable from Group

Actions

Ian McQuoid and Jiayu Xu(B)

Oregon State University, Corvallis, USA
{mcquoidi,xujiay}@oregonstate.edu

Abstract. Password-authenticated key exchange (PAKE) is a class of
protocols enabling two parties to convert a shared (possibly low-entropy)
password into a high-entropy joint session key. Strong asymmetric PAKE
(saPAKE), an extension that models the client-server setting where
servers may store a client’s password for repeated authentication, was
the subject of standardization efforts by the IETF in 2019–20. In this
work, we present the most computationally efficient saPAKE protocol
so far: a compiler from PAKE to saPAKE which costs only 2 messages
and 7 group exponentiations in total (3 for client and 4 for server) when
instantiated with suitable underlying PAKE protocols. In addition to
being efficient, our saPAKE protocol is conceptually simple and achieves
the strongest notion of universally composable (UC) security.

In addition to classical assumptions and classical PAKE, we may
instantiate our PAKE-to-saPAKE compiler with cryptographic group
actions, such as the isogeny-based CSIDH, and post-quantum PAKE.
This yields the first saPAKE protocol from post-quantum assumptions
as all previous constructions rely on cryptographic assumptions weak to
Shor’s algorithm.

1 Introduction

Password-authenticated key exchange (PAKE) [10] constitutes a class of proto-
cols allowing two parties to compute a shared cryptographic key exactly when
both parties hold the same (possibly low-entropy) input string, i.e., a “pass-
word”. Integrally, PAKE is in the “password-only” setting and does not rely on
key distribution through e.g., a PKI as trusted infrastructure may not always
be available and additionally has a history of insecurities. Traditionally, pass-
words were assumed to come from some low-entropy distribution. This modeling
represented the distribution of human-memorable inputs which have been esti-
mated to only have 30 bits of entropy [27]. Because such passwords come from
low-entropy or enumerable distributions, an adversary may always impersonate
an honest party and perform a series of online invocations of the protocol to
learn the password with non-negligible probability. A key property of PAKE is
that this inevitable method should be the only efficient attack — with multiple

c© International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14445, pp. 176–207, 2023.
https://doi.org/10.1007/978-981-99-8742-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8742-9_6&domain=pdf
https://doi.org/10.1007/978-981-99-8742-9_6

An Efficient Strong Asymmetric PAKE Compiler Instantiable 177

guesses from a single interaction computationally infeasible. A shortcoming of
PAKE is that it only models symmetric roles and precludes inherent asymme-
tries in the client-server setting. As passwords continue to be the most common
form of client-server authentication on the internet, it is incumbent on us to
model password storage and, indeed, compromise of the server.

Asymmetric PAKE (aPAKE) [11,26] is a PAKE variant modeling the client-
server setting where the client inputs its password pw in the clear and the server
inputs a one-way function or digest of the password F (pw). The parties then
arrive at the same key if and only if the client supplies the preimage of the server’s
digest. Asymmetric PAKE is comparable to the model of a server storing pub-
licly salted hashes of the user’s password, and is vulnerable to pre-computation
attacks where an adversary may pre-compute possible password files (pw, F (pw))
the server could hold and, on compromise, recover the password almost imme-
diately by checking the server’s storage against the pre-computed table to test
each of its guesses.

To prevent pre-computation attacks, Jarecki, Krawczyk and Xu [31] intro-
duced the concept of strong asymmetric PAKE (saPAKE), a variant of aPAKE
where an adversary must spend time proportional to the number of password
guesses made after compromising the server in order to recover the password.
This is analogous to the server’s password salt being private, and achieves the
original intention of aPAKE — a PAKE that is resilient to (adaptive) server
compromise. Note that as the server holds enough information to verify itself to
a client, there exists an inevitable attack on the server’s storage: the adversary
may locally run the online protocol acting as both the client and as the server,
testing the equality of the two output keys. Such an attack has runtime linear in
the number of offline password guesses made. Strong asymmetric security guar-
antees that (asymptotically) this is the best possible complexity by showing a
tight lower-bound on the complexity of a post-compromise attack.

Recent years have witnessed increasing interests in (sa)PAKE including the
standardization efforts by the IETF in 2019–20. Despite this, saPAKE protocols
have proven difficult to construct, and all existing protocols suffer from issues
regarding either security or efficiency (see Sect. 1.2 for a detailed discussion).
Furthermore, while resilience to quantum adversaries is a major concern of the
PAKE community, all known constructions are based on classical assumptions
and are easily broken by quantum adversaries. During the IETF’s PAKE stan-
dardization process, the notion of “quantum-annoyingness” was proposed [41]
and was subsequently formalized by Eaton and Stebila [23]. Roughly, a PAKE
scheme is quantum-annoying if solving a discrete logarithm or integer factoriza-
tion problem does not subsequently break the entire session; rather, each solu-
tion only allows the adversary an additional password guess. While quantum-
annoyingness is a good stepping stone to protecting saPAKE protocols against
quantum adversaries, it remains a major open problem in the area of PAKE to
construct an saPAKE protocol under post-quantum assumptions.

178 I. McQuoid and J. Xu

1.1 Our Contributions

In this paper, we propose two compilers from PAKE to saPAKE. We prove the
security of both compilers in the Universal Composability (UC) framework; con-
cretely, both compilers realize the standard UC saPAKE functionality [15,31] if
the underlying PAKE protocol realizes the standard UC PAKE functionality [17].
UC-security for (sa)PAKE has superseded traditional game-based definitions due
to multiple advantages, including security under arbitrary composition, modeling
of adversarially-chosen password distribution, and therefore modeling password
reuse across different accounts.

The first of our protocols (see Sect. 3) works in a cryptographic group. It is a
compiler which adds only 3 exponentiations and 1 message — which can be sent in
parallel with the server’s PAKE message — on top of PAKE. For instantiations
of UC PAKE such as certain variants of encrypted key exchange (EKE) [24,34]
this results in the most efficient saPAKE protocols to date with only 2 messages
and 7 exponentiations. In addition to being computationally efficient and concep-
tually simple, the resulting saPAKE inherits the underlying PAKE’s quantum-
annoying property. The only other quantum-annoying saPAKE protocol known is
CRISP [21] which additionally relies on bilinear pairings. Our protocol is proven
UC-secure in the generic group model (GGM) for offline security and the algebraic
group model (AGM) plus the discrete logarithm (DL) assumption for online secu-
rity, in addition to the random oracle model (ROM). We note that using the GGM
for offline security but not online security is standard for saPAKE protocols whose
server storage is group-based [15,21]; see Sect. 2.5 for a detailed explanation.

The second compiler (see Sect. 5.2) follows the same formula as the first, but
can be instantiated with cryptographic group actions [6,20,36] such as isogeny-
based assumptions like CSIDH [18]. Just as the first, the second compiler only
costs 3 group actions and 1 message from the server on top of PAKE. When
compiling from PAKE protocols based on lattices [24], we obtain the first effi-
cient saPAKE protocol from post-quantum assumptions realizing the standard
UC functionality. Additionally, even if the assumptions on the group action fail,
our protocol still provides (symmetric) PAKE security as the server’s message is
independent of the password. This allows our protocol to use newer assumptions
like CSIDH without future breakthroughs in isogeny cryptanalysis completely
invalidating security. Our protocol is UC-secure in the generic group action model
with twists (GGAM�) for offline security and the algebraic group action model
with twists (AGAM�) plus the group-action discrete logarithm (GA-DL) assump-
tion for online security, in addition to the ROM. One caveat is that our protocol is
proven secure under post-quantum assumptions, but not against quantum adver-
saries, as that would require a security analysis in the quantum-accessible random
oracle model (QROM) [13], which we do not consider. We leave constructing an
saPAKE secure against quantum adversaries as future work.1

1 Constructing a UC-secure saPAKE in the QROM seems out of reach, since there has
been very little work that considers a quantum adversary in the UC framework [42],
and we do not know of any protocol (PAKE or not) that is proven UC-secure in the
QROM.

An Efficient Strong Asymmetric PAKE Compiler Instantiable 179

1.2 Comparison with Previous Results

To date, there are four known saPAKE protocols. The first two, due to Jarecki,
Krawczyk, and Xu, come from the original saPAKE paper [31] and are con-
structed from a MitM-secure oblivious pseudorandom function (OPRF) and
compile (respectively) an aPAKE or authenticated key exchange (AKE) into
an saPAKE protocol. The second compiler, called OPAQUE, was standardized
by the IETF in 2020 [14], and when based on classical assumptions, the resultant
protocols are efficient (their costs can be found in Table 1). However, OPAQUE
only realizes a weak UC saPAKE functionality (which we call F−

saPAKE), which
includes two significant and contrived relaxations of the standard saPAKE func-
tionality:

– F−
saPAKE allows for delayed extraction, namely the ideal adversary’s password

guess can happen even after the session completes. The password guess inter-
face is meant to model the real-world scenario where the adversary runs an
honest party’s algorithm on a candidate password and interacts with the other
honest party in order to test if the candidate password is the correct one.
Clearly, such attacks cannot be carried out after the session already ends.2

– In F−
saPAKE, compromising one open (i.e., not completed) session automati-

cally results in compromising all other open sessions without any additional
command from the ideal adversary. This significantly weakens saPAKE secu-
rity: consider a MitM adversary that attempts to attack two open sessions in
parallel, the first of which fails and the second of which succeeds (i.e., result-
ing in a compromised session). In the real world, it should not be the case
that the first session — in which the wrong password guess is already used
— can be compromised, let alone compromised without any additional work
from the adversary. However, this is exactly what F−

saPAKE allows!

We stress that neither weakening above is inherent or “natural”. Few PAKE
and aPAKE protocols that were proven UC-secure need the first relaxation, and
none of them needs the second; for saPAKE, two of the other three existing
protocols (see below) need neither of the two relaxations. In fact, the two relax-
ations appear to be the result of tailoring the UC saPAKE functionality to fit
the OPAQUE protocol, as evident in [31, p.12]:

In our context, either requirement prevents proving security of the protocols
obtained via our general compiler [...], including the OPAQUE protocol
[...]. For this reason we relax [FsaPAKE] to obtain our definition of UC
Strong aPAKE functionality [F−

saPAKE].

2 This change is similar in spirit to the FrPAKE functionality (r for “relaxed”) for
symmetric PAKE in [1].

180 I. McQuoid and J. Xu

By contrast, our protocol realizes the standard UC saPAKE functionality
without either of the two relaxations.3

Finally, we note that the assumptions in OPAQUE and in our protocol are
incomparable: the security of OPAQUE relies on the very strong one-more gap
Diffie-Hellman (OMGDH) assumption, which has been proven in the GGM but
is not equivalent to DL in the AGM [9].4 By contrast, the online part of our
protocol is proven secure in the AGM+DL, without relying on any “one-more”
type assumptions.

We now compare our saPAKE protocol with the other three saPAKEs in
the literature. The third protocol called strong AuCPace, due to Haase and
Labrique [29], is very similar in spirit to the both previous compilers and runs
a modified version of OPRF before a (symmetric) PAKE protocol. Our com-
piler and their protocol follow the same intuition compiling a PAKE by way
of a sub-session-specific dictionary map using an ephemeral salt. Where the
strong AuCPace protocol communicates the server’s long-term salt by way of
an OPRF, we simply blind the server’s long-term salt with a random exponent.
This alteration allows our compiler to use fewer exponentiations. Furthermore,
strong AuCPace only realizes a weaker UC saPAKE functionality (which requires
the first relaxation of the full FsaPAKE functionality as in F−

saPAKE, but not the
second).

The fourth protocol, due to Bradley, Jarecki, and Xu [15], follows the
“commit-and-SPHF” paradigm [32] of PAKE design and realizes the full
FsaPAKE functionality. However, their protocol requires roughly three times as
many exponentiations as ours; furthermore, it is unclear if their protocol can be
converted to use post-quantum assumptions. We also note that their analysis
of offline security is similar to ours, but our analysis is much more accurate;
see Sect. 2.4 for a detailed explanation.

The final protocol is CRISP due to Cremers et al. [21] which is conceptually
similar to our protocol and compiles a PAKE protocol into a strong identity-
binding PAKE (siPAKE) — a stronger primitive than saPAKE. However, the
CRISP compiler critically relies on bilinear pairings which increases the compu-
tational and communication burden of the protocol while restricting the groups
over which we can implement the compiler. Further, this reliance on pairings
means the CRISP compiler has no post-quantum instantiation.

Regarding security assumptions, the offline security analyses of both [15]
and [21] rely on the GGM as we do ([21] additionally requires the GGM for a
bilinear group with a hash-to-group operation), but their online security is based
on standard group assumptions. By contrast, our protocol needs the stronger
online AGM (plus the DL assumption). To the best of our knowledge, this is
the first instance of applying the AGM to the UC framework since the original

3 The other saPAKE construction in [31], presented as a warm-up, seems to require
these two relaxations as well, and is much less efficient. An accurate comparison is
difficult since the security proof of that protocol is outdated (see [31, Section 4]).

4 [9, Section 10] shows that the one-more discrete logarithm (OMDL) assumption,
which is weaker than OMGDH, cannot be proven equivalent to DL in the AGM.

An Efficient Strong Asymmetric PAKE Compiler Instantiable 181

Table 1. A comparison of UC-secure saPAKE schemes. (1) E denotes exponentiations,
H denotes hashing into the group, P denotes pairing evaluations, and A denotes group
actions; (2) although both OPAQUE and AuCPace only achieves relaxed security, AuC-
Pace realizes a stronger functionality than OPAQUE; (3) on/off denotes if we require
the assumption in the online or offline phases respectively; (4) GGM+ denotes the
extended generic group model [21] including hashing to the group, pairing evaluation,
and isomorphism evaluation.

client server rounds security assumption model

CKEM-

saPAKE [15]

13E 8E 2 full 2-SDH, DDH ROM+off

GGM

OPAQUE

HQMV [31]

5E, 1H 4E 3 relaxed OMGDH ROM

JKX18

Compiler [31]

2E, 1H,

aPAKE

1E,

aPAKE

3C relaxed OMGDH ROM

CRISP [21] 6E, 3P,

3H,

PAKE

3E, 3P,

1H,

PAKE

3 full (siPAKE) CDH off GGM+

AuCPace [29] 6E, 2H 5E, 1H 3 relaxed sSDH, OMGDH ROM

Ours Fig. 6 E, PAKE 2E,

PAKE

2 full CDH ROM + off

GGM + on

AGM

Ours Fig. 7 A, PAKE 2A,

PAKE

2 full GACDH ROM + off

GGAM� + on

AGAM�

work on UC-AGM [2]. The security of [29] relies on the ROM and a number of
strong and non-standard group assumptions such as strong simultaneous CDH
(sSDH) [5].

saPAKE under Post-Quantum Assumptions. Very few password-based
protocols under post-quantum assumptions have been proposed. The only such
aPAKE protocol that we know of is the recent one by Freitas, Gu, and
Jarecki [24], which can be instantiated under lattice assumptions. However, it is
not a strong aPAKE, i.e., it is subject to pre-computation attacks.5

The recent OPRF protocol due to Basso [8] is based on isogeny assumptions,
and may provide some hope for constructing an saPAKE under post-quantum
assumptions — by compiling the OPRF with some suitable aPAKE/AKE, as in
the paradigm of the JKX compiler [31]. However, this OPRF protocol is only
claimed to realize a UC OPRF functionality that does not take into account
adaptive server compromise, which is crucial for saPAKE (and even aPAKE)
security. As such, it is unclear whether this OPRF yields an saPAKE under
post-quantum assumptions. Even if it does, the resulting saPAKE would only
achieve the weak saPAKE functionality F−

saPAKE with the two aforementioned
shortcomings; furthermore, it would be less computationally efficient, take 2

5 Another possible way to construct an aPAKE from post-quantum assumptions is
to take a post-quantum UC oblivious transfer (OT), use the OT-to-PAKE com-
piler from [16] to obtain a UC PAKE, and then use the PAKE-to-aPAKE compiler
from [26]. This also yields an aPAKE but not an saPAKE.

182 I. McQuoid and J. Xu

additional rounds, and require significantly more bits of communication when
compared with our protocol based on group actions.

2 Preliminaries

2.1 Notation

We use κ to denote the security parameter. For an integer n, [n] denotes the set
{1, . . . , n}. For a probability distribution D over some set, we denote sampling
an element d according to the distribution by d ← D; we extend this notation
naturally to probabilistic algorithms a ← A(x1, x2, . . .) where the implicit distri-
bution is defined by A’s random coins. For a set S with no obvious accompanying
distribution, we overload this notation to denote sampling from S according to
the uniform distribution s ← S. For deterministic processes f , we denote assign-
ment of f(x1, x2, . . .) to y by y := f(x1, x2, . . .). Finally, we use “PPT” as a
shorthand for “probabilistic polynomial-time”.

2.2 Computational Assumptions

Throughout this work, we use a cyclic group G with generator g and of prime
order p, where 2κ ≤ p < 2κ+1. We assume (G, g, p) is public information and
is omitted from all parties’ inputs. We use the multiplicative notation for the
group operation.

Definition 1 (The Discrete Logarithm (DL) Problem). Let a ← Z
∗
p.

Given ga, the Discrete Logarithm Problem asks one to compute a.

Definition 2 (The Computational Diffie-Hellman (CDH) Problem).
Let (a, b) ← (Z∗

p)
2. Given a tuple (ga, gb), the Computational Diffie-Hellman

Problem asks one to compute gab.

The advantage of an adversary A, denoted AdvDL
A (resp. AdvCDH

A), is the
probability that A solves the DL (resp. CDH) problem. The corresponding hard-
ness assumptions state that there is no PPT adversary A whose advantage is
non-negligible.6 In Sect. 5.1, we use the natural extensions of these problems to
group actions.

2.3 UC saPAKE Security Model

We recall the UC functionalities for PAKE [17] (Fig. 1) and saPAKE [31] (Fig. 2
and Fig. 3). Note that both functionalities only have implicit authentication,

6 Note that we sample exponents from Z
∗
p rather than Zp, i.e., 0 is excluded. This

makes the protocol description and proof cleaner. It is obvious that our versions
of DL and CDH assumptions are equivalent to the standard versions where the
exponents are sampled from Zp.

An Efficient Strong Asymmetric PAKE Compiler Instantiable 183

which is standard in the PAKE literature; explicit authentication can be achieved
by adding a single key confirmation flow [28].

The (Symmetric) PAKE Functionality FPAKE. In a PAKE protocol, two
parties run a session on their (respective) passwords in order to generate a shared
key k, modeled by the NewSession interface. If the MitM adversary does not inter-
fere with the session, the two honest parties arrive at the same key k exactly
when their passwords match. The only possible attack is the inevitable online
guessing attack, in which the MitM adversary guesses a password pw∗ and inter-
acts with an honest party by running the counterparty’s algorithm on pw∗. This
is modeled by the TestPwd interface, through which the ideal adversary can con-
trol an honest party’s key using the NewKey interface if the password guess is
correct, i.e., pw∗ is equal to this party’s password.

Functionality FPAKE

Storage:

– two maps, sessionStatus and session

Upon receiving (NewSession, sid, P, P′, role, pw) from P:

1. Send (NewSession, sid, P, P′, role) to A∗.
2. If there is no record session[(sid, ·, ·)] or exactly one record

sessionStatus[(sid, P′, P)], set session[(sid, P, P′)] := pw and
sessionStatus[(sid, P, P′)] := fresh.

Upon receiving (TestPwd, sid, P, pw∗) from A∗:

1. If sessionStatus[(sid, P, P′)] is not fresh, ignore this query.
2. Otherwise:

1. Retrieve pw := session[(sid, P, P′)].
2. If pw = pw∗, set sessionStatus[(sid, P, P′)] := compromised and return “correct

guess” to A∗.
3. Otherwise, set sessionStatus[(sid, P, P′)] := interrupted and return “wrong

guess” to A∗.

Upon receiving (NewKey, sid, P, k∗) from A∗ where |k∗| = κ:

1. If sessionStatus[(sid, P, P′)] is defined, but is not completed:
1. If the record is compromised, set k := k∗.
2. Else, if the record is fresh, (sid, k′) was sent to P′, session[(sid, P, P′)] =

session[(sid, P′, P)], and at the time sessionStatus[(sid, P′, P)] was fresh, set
k := k′.

3. Otherwise, sample k ← {0, 1}κ.
2. Finally, set sessionStatus[(sid, P, P′)] := completed and send (sid, k) to P.

Fig. 1. Ideal functionality FPAKE

184 I. McQuoid and J. Xu

The saPAKE Functionality FsaPAKE. As (s)aPAKE is meant to model the
extension of PAKE to the client-server setting, we follow convention by calling
one of the parties the client C, and calling corresponding counterparty the server
S. C runs an saPAKE session on a (plain) password pw′ through the ClientSession
interface, while S runs the session on a password file file[(sid,C,S)] — represent-
ing the password underlying server’s stored password digest — which is created
through the StorePwdFile interface. Similar to PAKE, if the MitM adversary
does not interfere with the session, the two honest parties arrive at the same
key k exactly when file[(sid,C,S)] = pw′. The StorePwdFile interface represents
client registration, but is traditionally non-interactive with the server presum-
ably receiving the password out-of-band e.g., over an authenticated and secure
channel and then securely erasing the password after storing the file.7

In addition to the online attack interface TestPwd, FsaPAKE also models
adaptive server compromise through the StealPwdFile interface. After send-
ing StealPwdFile, the ideal adversary gains access to two additional interfaces:
OfflineTestPwd and Impersonate which allow the adversary to perform an offline
dictionary attack — i.e., make a password guess without invoking an online
session — and authenticate with an honest client, respectively. To exclude pre-
computation attacks, the OfflineTestPwd interface ignores all messages until
StealPwdFile is sent.

2.4 Simulation Rate

As repeatedly pointed out in prior works [15,26,30,31], the (s)aPAKE function-
ality alone is not enough to model the offline security guarantees expected from
(s)aPAKE protocols. Roughly speaking, offline security is concerned with the
runtime of an offline dictionary attack after server compromise, or equivalently,
how many passwords a real adversary can test per idealized model query (in our
context, generic group operation). Although not explicit in the functionality,
(s)aPAKE security requires that the server’s storage be a tight one-way function
of the password: namely, there should be a linear relationship between the num-
ber of password tests and the number of idealized model queries an adversary
makes. For example, if the server storage is a traditional salted hash (s,H(pw, s))
where H is a random oracle and s is the salt, then each post-compromise query
to H tests at most one password.

In the saPAKE ideal functionality, the adversary’s post-compromise password
tests are modeled by the OfflineTestPwd interface. From the description of the
functionality (Fig. 2), it is clear that each OfflineTestPwd command tests one
password. However, there is an important caveat: as previously observed [26,31],
the UC-modeling of (s)aPAKE requires a restriction on the simulator limiting
the simulator’s access to the OfflineTestPwd interface. Indeed, given unmediated
access to the interface,
7 In some sense this is counter to the one of the goals of saPAKE which is to prevent

the server from ever seeing the client’s password. Our informal description of the
protocol has the client generate the password file themselves and send it over a
secured channel, but formally the server will still generate the file.

An Efficient Strong Asymmetric PAKE Compiler Instantiable 185

Functionality FsaPAKE

Storage:

– Four maps: fileStatus, file, sessionStatus, session

Password Registration
Upon receiving (StorePwdFile, sid, C, pw) from S, if file[(sid, C, S)] is undefined, set
file[(sid, C, S)] := pw and set fileStatus[(sid, C, S)] := uncompromised.

Stealing Password Data
Upon receiving (StealPwdFile, sid) from A∗:

1. If file[(sid, C, S)] is undefined, return “no password file” to A∗.
2. Otherwise:

1. If fileStatus[(sid, C, S)] = uncompromised, set fileStatus[(sid, C, S)] := stolen.
2. Return “password file stolen” to A∗.

Upon receiving (OfflineTestPwd, sid, pw∗) from A∗:

1. If fileStatus[(sid, C, S)] = stolen:
1. Retrieve pw := file[(sid, C, S)].
2. If pw = pw∗, return “correct guess” to A∗.
3. Otherwise, return “wrong guess” to A∗.

Password Authentication
Upon receiving (ClientSession, sid, ssid, S, pw′) from C:

1. Send (ClientSession, sid, ssid, C, S) to A∗.
2. If sessionStatus[(sid, ssid, C, S)] is undefined, set session[(sid, ssid, C, S)] := pw′ and

set sessionStatus[(sid, ssid, C, S)] := fresh.

Upon receiving (ServerSession, sid, ssid) from S:

1. If file[(sid, C, S)] is undefined, ignore this query.
2. Otherwise, retrieve pw := file[(sid, C, S)] and send (ServerSession, sid, ssid, C, S) to

A∗.
3. If sessionStatus[(sid, ssid, S, C)] is undefined, set session[(sid, ssid, S, C)] := pw and

set sessionStatus[(sid, ssid, S, C)] := fresh.

Fig. 2. Ideal functionality FsaPAKE (part 1)

1. Protocols which realize FaPAKE also realize FsaPAKE [15,21,31]: When the
aPAKE simulator would send a pre-compromise OfflineTestPwd command, the
saPAKE simulator instead catalogues the command and upon compromise of
the server, it sends OfflineTestPwd for each catalogued command.

2. Assuming the password dictionary Dict has polynomial size, simply letting
the server store the plain password is “secure” (and any PAKE is also an
saPAKE) [30]: upon compromise of the server, the simulator iterates through
Dict sending OfflineTestPwd for each possible password.

186 I. McQuoid and J. Xu

Active Session Attacks
Upon receiving (TestPwd, sid, ssid, P, pw∗) from A∗:

1. If sessionStatus[(sid, ssid, P, P′)] is undefined, ignore this query.
2. Otherwise, retrieve pw′ := session[(sid, ssid, P, P′)].
3. If sessionStatus[(sid, ssid, P, P′)] = fresh:

1. If pw′ = pw∗, return “correct guess” to A∗ and set
sessionStatus[(sid, ssid, P, P′)] := compromised.

2. Otherwise, set sessionStatus[(sid, ssid, P, P′)] := interrupted and return “wrong
guess” to A∗.

Upon receiving (Impersonate, sid, ssid) from A∗:

1. If sessionStatus[(sid, ssid, C, S)] = fresh:
1. If fileStatus[(C, S)] = stolen and file[(sid, C, S)] = session[(sid, ssid, C, S)], set

sessionStatus[(sid, ssid, C, S)] := compromised and return “correct guess” to
A∗.

2. Otherwise set sessionStatus[(sid, ssid, C, S)] := interrupted and return “wrong
guess” to A∗.

Key Generation
Upon receiving (NewKey, sid, ssid, P, k∗) from A∗ where |k∗| = κ:

1. If sessionStatus[(sid, ssid, P, P′)] is defined, but is not completed:
1. If the record is compromised, set k := k∗.
2. Else, if the record is fresh, (sid, ssid, k′) was sent to P′,

session[(sid, ssid, P, P′)] = session[(sid, ssid, P′, P)], and at the time
sessionStatus[(sid, ssid, P′, P)] was fresh, set k := k′.

3. Otherwise, sample k ← {0, 1}κ.
2. Finally, set sessionStatus[(sid, ssid, P, P′)] := completed and send (sid, ssid, k) to P.

Fig. 3. Ideal functionality FsaPAKE (part 2)

To rule out such degenerate protocols and to model the tight one-wayness
of the password storage, we must restrict ourselves to simulators with limited
access to the OfflineTestPwd interface. To these ends, we make explicit the ratio
of the idealized model queries and the password guesses the adversary makes.
We define the simulation rate

r =
OfflineTestPwd commands sent by the simulator

ideal model queries made by the adversary

of a protocol as the number of passwords that can be tested per a real adversary’s
ideal model query, and the “tight one-wayness” property can be expressed by
requiring the simulation rate to be constant.8 In the example above, the simula-
tion rate of server storage (s,H(pw, s)) is 1. We then restrict the saPAKE simu-
lator to only send at most r OfflineTestPwd commands when the real adversary

8 The term “simulation rate” is borrowed from [35].

An Efficient Strong Asymmetric PAKE Compiler Instantiable 187

makes an idealized model query, and disallow OfflineTestPwd from the simulator
otherwise.

Hesse [30] proposes a way to formalize this intuitive change by restricting the
simulator so that it may access OfflineTestPwd as long as its runtime remains
locally T -bounded [30, Definition 3]. In other words, given any real-world adver-
sary which runs in time T (n), this change restricts the simulator to run in time
T (n) as well, where n is the number of input bits provided by the environment
and functionality minus the adversary’s output bits.9 For the sake of simplicity,
in this work we instead use the equivalent intuition of a “ticketing” mechanism
as is common for limiting a simulator’s actions. Our simulators will (conceptu-
ally) receive r “test tickets” whenever the real world adversary would make a
specific oracle query and consume one of these tickets when the simulator sends
OfflineTestPwd to FsaPAKE. We then restrict our proofs to only consider simula-
tors which do not send OfflineTestPwd when they have no tickets to consume.

Bradley, Jarecki, and Xu [15] prove the offline security of their saPAKE
protocol in the GGM as we do; using our terminology, [15, Theorem 4] states
that the simulation rate of their protocol is O(1). While the offline security proof
of our protocol is similar to theirs, we present a concrete analysis and show that
our protocol has simulation rate 2. To the best of our knowledge, this is the first
concrete offline security analysis of saPAKE in the GGM. We additionally show
that our protocol achieves a simulation rate of 1 in the generic group action
(with twists) model.

2.5 Idealized Models

The Random Oracle and Generic Group Models. Our UC random oracle
and generic group functionalities can be found in Fig. 4 and Fig. 5, respectively.
For simplicity, we use a variant of the GGM where the adversary is allowed to
compute AcBd for group elements A,B and integers c, d of its choice in a single
query ; such a step corresponds to at least log max{c, d} steps in the standard
GGM where the adversary can only perform one multiplication or division per
query.10

The Algebraic Group Model. The algebraic group model, proposed by Fuchs-
bauer, Kiltz, and Loss [25], is an idealized model between the GGM and the
standard model intended to analyze the security of group-based protocols.11

Roughly speaking, the AGM requires the adversary to be algebraic, namely when

9 [15] uses a simpler formalization that is problematic; see [30, Appendix D] for a
discussion.

10 When we say in Sect. 2.4 that the simulation rate of our protocol is 2 in the GGM,
we refer to this GGM variant. It is likely that the simulation rate is smaller than 1
in the standard GGM, although we do not perform a detailed analysis in this case.

11 While the GGM is widely used to prove lower bounds for cryptographic assump-
tions, it is considered problematic to use it on the protocol level; see, e.g., [40] for a
discussion.

188 I. McQuoid and J. Xu

Functionality FRO

Parameters:

– range H
Storage:

– map H : {0, 1}∗ → H.

Upon receiving (Eval, sid, x) from P:

1. If H[x] is undefined, sample H[x] ← H.
2. Send (Eval, sid, H[x]) to P.

Fig. 4. Ideal functionality FRO

Functionality FGG

Parameters:

– handle set G ⊆ {0, 1}κ

– prime p

Storage:

– map DL : G → Zp.

Upon receiving (Multi, sid, A, B, c, d) from P:

1. Retrieve a := DL[A] and b := DL[B]; if either are undefined, sample them and set
DL accordingly.

2. If there does not exist a g′ ∈ G such that DL[g′] := ca + db, sample g′ ← G, and
set DL[g′] := ca + db.

3. In all cases, send (Multi, sid, g′) to P.

Fig. 5. Ideal functionality FGG

it outputs a group element X, it must also output its algebraic representation
[X]x = (λ1, . . . , λn) ∈ Z

n
p such that

X = Xλ1
1 · · · Xλn

n ,

where X1, . . . , Xn are group elements in the adversary’s view so far.
The following lemma was proven in [25]:

Lemma 1. The DL and CDH assumptions are equivalent in the AGM. Con-
cretely, for any CDH solver A, there is a DL solver B whose runtime is approx-
imately equal to that of A such that AdvDL

B = AdvCDH
A .

An Efficient Strong Asymmetric PAKE Compiler Instantiable 189

Given this lemma, we can claim that a protocol is secure in the AGM+DL while
constructing a reduction to CDH, with no additional security loss. This is the
approach we take in the security proof of our protocol.

Abdalla et al. [2] considered algebraic adversaries in the UC framework; in
particular, they showed that the composition theorem still holds if we restrict
the adversary (and the environment) to be algebraic, and as in the standard UC
framework, we can still assume w.l.o.g. that the adversary is “dummy”.

Offline Security in the GGM and Online Security in the AGM. As
in prior works [15,21], the offline security analysis of our saPAKE protocol is
done in the GGM. This seems necessary as the offline security — the server’s
storage is a tight one-way function of the password — is essentially a lower-
bound result. However, as mentioned above, using the GGM on the protocol
level (online security) might be viewed as problematic. Cremers et al. [21] state
that their entire security result is in the GGM (see [21, Theorem 2]), while noting
that the GGM is only used in the offline security analysis. Bradley et al. [15]
state “we do not rely on GGM in the security analysis of the saPAKE protocol
that uses [a tight one-way function] as the password file” (see [15, p.14]), and
the authors take a more modular (yet less intuitive) approach: they abstract out
the server storage as a separate primitive called salted tight one-way function
(STOWF), prove that the server storage in their protocol is a UC STOWF in the
GGM, and then show their protocol is a UC saPAKE without the GGM given
a UC STOWF (plus some additional game-based properties). For readability,
we follow the approach of Cremers et al. [21] and assume that the adversary
must perform group operations via generic group queries only while doing an
offline attack, while in online attacks the only constraint is that it must behave
algebraically. However, we note that a more formal separation is straightforward
by modeling the server storage as a STOWF similar to Bradley et al. [15].

3 Our saPAKE Protocol

Overview. Our starting point is the following näıve Diffie-Hellman-like protocol:
The server S stores gh where h = H(pw), picks a random integer r and sends
R = gr to the client C, and the two parties output ghr as the session key (Rh for
C and (gh)r for S). The problem with this protocol is that ghr has low entropy
in the view of an eavesdropper that sees R = gr. But since the two parties agree
upon a low-entropy value, we can boost it into a high-entropy value by running
a PAKE on top of it with ghr as the input.

This yields an aPAKE but not a strong aPAKE: since the server storage
is gH(pw), an attacker can pre-compute the table of (x, gH(x)) for all candidate
passwords x before compromising the server. To make it an saPAKE, we simply
replace the fixed group base g with a variable base S = gs for a random integer
s; that is, the server stores (S, sw = SH(pw)) instead of gH(pw) (sw for “salted
password”). This prevents the aforementioned attack as the adversary does not
know S pre-compromise.

190 I. McQuoid and J. Xu

Public parameters:
Random Oracle H : {0, 1}∗ → Z

∗
p

Generic Group (G, g, p)

client server

registration phase

on input pw:

s ← Z
∗
p, S := gs

h := H(pw), sw := Sh

(S, sw)

store (S, sw)

login phase

on input pw′:
r ← Z

∗
p

R := Sr, rw := swr

R

h′ := H(pw′)
If R = 1G , rw′ ← G
Else, rw′ := Rh′

PAKE
rw′ rw

sk′ sk

Fig. 6. Graphical representation of our protocol. See text for omitted details.

We note that using (S, sw = SH(pw)) as server storage in saPAKE was origi-
nally suggested in [15, Section 3]. However, [15] dismisses this idea because the
server storage is malleable: an adversary that compromises the server (but with-
out performing an offline dictionary attack) can impersonate the server using an
alternative server storage (Sr∗

, swr∗
) for a random integer r∗, and the UC simu-

lator cannot tell this is an impersonation attack if DDH is hard in the group. One
of our critical observations is that such an impersonation attack can be detected
by the UC simulator in the AGM, since the adversary must output r∗ as part of
the algebraic representation — so the simulator can tell that (S, sw, Sr∗

, swr∗
)

forms a DH tuple. See the proof overview in Sect. 4 for more details.
Below we formally present our saPAKE protocol, together with a graphic

illustration.

Registration Phase

On input (StorePwdFile, sid,C,pw), S

1. Samples s ← Z
∗
p.

2. Sends (Eval, sid,pw) to FRO receiving (Eval, sid, h).

An Efficient Strong Asymmetric PAKE Compiler Instantiable 191

3. Sends (Multi, sid, g, s) and (Multi, sid, g, sh) to FGG receiving (Multi, sid, S)
and (Multi, sid, sw).

4. Stores file[sid] := (S, sw).

Server Compromise

Upon receiving (StealPwdFile, sid) from A, S retrieves file[sid] and sends it to A.
If there is no such record, S responds with “no password file”.

Login Phase

1. On input (ServerSession, sid, ssid), S
1. Retrieves (S, sw) := file[sid].
2. Samples r ← Z

∗
p.

3. Sends (Multi, sid, S, r) and (Multi, sid, sw, r) to FGG receiving
(Multi, sid, R) and (Multi, sid, rw).

4. Sends (sid, ssid, R) to C and (NewSession, sid||ssid||R,S,C,S, rw) to
FPAKE.

2. On input (ClientSession, sid, ssid,S,pw′) and upon receiving (sid, ssid, R) from
S, C
1. Sends (Eval, sid,pw′) to FRO receiving (Eval, sid, h′).
2. If R = 1G , samples rw′ ← G. Else, sends (Multi, sid, R, h′) to FGG receiv-

ing (Multi, sid, rw′).
3. Sends (NewSession, sid||ssid||R,C,S,C, rw′) to FPAKE.

3. Either party, upon receiving (sid||ssid||R, k) from FPAKE, outputs
(sid, ssid, k).

See Fig. 6 for a graphic illustration of our protocol. Note that in Fig. 6 the
registration phase is done interactively, where the client computes the password
file and sends it to the server via a secure channel; whereas in the formal descrip-
tion the server computes the password file on its own using the password (and
then erases the password). Figure 6 is more likely to match real-world applica-
tions, whereas the formal description matches the UC saPAKE functionality. An
additional difference is the addition of R to the sid for the PAKE session. This
is needed so A can’t test password ratios in the honest-honest case.

Correctness. As pointed out in [37], correctness of (sa)PAKE — the two parties
output the same key if their passwords match and there is no active attack —
is not implied by UC-security and needs to be checked separately. It is trivial
to see that our saPAKE protocol is correct assuming the underlying PAKE
protocol is correct: if pw′ = pw, then h′ = h and thus rw = swr = (Sh)r = Shr

and rw′ = Rh′
= Rh = (Sr)h = Shr, so the two parties’ inputs to the PAKE

protocol are equal. By the correctness of PAKE, their output keys are also equal.

192 I. McQuoid and J. Xu

4 Security Proof

Theorem 1. The protocol in Sect. 3 UC-realizes FsaPAKE (Fig. 2, Fig. 3) with
simulation rate r = 2 in the (FPAKE,FRO,FGG)-hybrid model using the AGM
for online analysis and the GGM for offline analysis, in the setting where both
the client and the server can be statically corrupted and assuming the DL problem
is hard in group (G, g, p).

Proof Overview. We provide a brief overview of the simulation strategy.

Offline security : At a high level, offline security requires that given (S, sw = Sh)
for h randomly chosen from a polynomial-size set H, it takes time linear in |H|
to find h. This “discrete logarithm over a sparse set” problem has been studied
(in the GGM) by Schnorr [38, Lemma 3], of which our argument is essentially
a rewrite. The simulator creates a formal variable P representing logS sw, and
since each generic group query by the adversary computes a linear function (in
the exponent), the simulator records the corresponding linear function ui + viP,
and tries to solve equations

ui + viP = uj + vjP,

where the solutions are candidate DL values (which are then tested via
OfflineTestPwd queries). The reason we solve equations of this form is because
the adversary can only learn information about the discrete logarithms of group
elements by string comparison (equality checking) of their handles. The difficulty
here is to show a lower bound of the number of solutions when the set H has
polynomial size, which is the main technical contribution of [38] and which we
repeat here.

Online security : The simulator must detect online saPAKE password tests; in
particular, when the adversary sends a TestPwd message on a certain rw∗ to
FPAKE, the simulator must extract the corresponding password guess pw∗ on the
saPAKE level. Since the PAKE-level password rw is supposed to be SH(pw)·r =
RH(pw) (where R is the server’s message), pw∗ can be easily extracted via looking
at all H queries and checking which one satisfies RH(pw∗) = rw∗.12

The simulator also needs to detect impersonation attacks, i.e., the adver-
sary executes the server’s algorithm after compromising it without knowing the
saPAKE password. Since the server’s storage is (S, sw = SH(pw)), the adversary
can choose an integer r∗, send R∗ := Sr∗

to client, and then send a TestPwd mes-
sage for C on swr∗

— which will result in “correct guess” if C’s password is pw.
While this seems not simulatable without the AGM, in the AGM the simulator
can extract r∗ from R∗, so when the adversary uses rw∗ in a TestPwd message,
the simulator can check if rw∗ = swr∗

(and send Impersonate to FsaPAKE if this
is the case).

12 Note that if R = 1G, the adversary can make a valid password guess without making
any H query by setting rw∗ = 1G. While this happens with negligible probability,
simply excluding this case makes the proof cleaner.

An Efficient Strong Asymmetric PAKE Compiler Instantiable 193

Note that in the two attacking scenarios above, only the second (the imper-
sonation attack) needs the AGM.

The rest of the section is dedicated to the formal proof of Theorem 1. The
simulator is described in Sect. 4.1, and we argue that this simulator generates an
ideal-world view that is indistinguishable from the real-world view in Sect. 4.2.

4.1 Simulator

We construct the following simulator Sim for any PPT environment Z. As stan-
dard in UC, we assume that the real adversary A is “dummy”, i.e., it merely
passes messages to and from Z. Without loss of generality, we also assume that
all FRO and FGG queries are made via A, i.e., Z does not make these queries on
its own. In the following, the session id is always included as part of a random
oracle input and is omitted (i.e., H(sid, x) is simplified to H(x)).

Stealing the Password File and Offline Queries

1. Upon receiving (StealPwdFile, sid) from A sent to S, send (StealPwdFile, sid)
to FsaPAKE.
A. If FsaPAKE returns “password file stolen”

I. Mark S compromised.
II. If file[sid] is undefined

1. Sample a pair of group handles (S, sw) ← G2 and return (S, sw)
to A from S.

2. Create a formal variable P representing the discrete logarithm of
sw relative to base S and sample s ← Z

∗
p.

3. Store DL[S] := s and DL[sw] := sP.
B. Otherwise, return “no password file” to A.

2. Upon receiving (Eval, sid, x) from A sent to FRO:
A. If H(x) is undefined, sample y ← Zp and record H(x) := y.
B. If there exists x′ �= x such that H(x′) = H(x), output Collision and abort.
C. If S is marked compromised, send (OfflineTestPwd, sid, x) to FsaPAKE.

I. If FsaPAKE returns “correct guess”, replace formal variable P with
H(x) in all future responses and store serverPW[sid] := x.

D. Return (Eval, sid,H(x)) to A.
3. Upon receiving (Multi, sid, A,B, c, d) from A to FGG:

A. If DL[g], for generator g associated with sid, is undefined, set DL[g] = 1.
B. If either DL[A] or DL[B] is undefined, sample the missing logarithm(s)

from Zp.
C. Interpret a := DL[A] and b := DL[B] as linear combinations over Zp of

{1,P}, and record linear function ca + db denoted γ:

a = α1 + α2P

b = β1 + β2P

γ = (cα1 + dβ1) + (cα2 + dβ2)P

194 I. McQuoid and J. Xu

D. If S is marked compromised:
I. Suppose this is the t-th query A made to FGG post-compromise. Then

let u1s+v1sP, . . . , ut+2s+vt+2sP be the t+2 linear equations, recorded
in chronological order, after compromise such that (u1, v1) = (1, 0),
(u2, v2) = (0, 1), and ut+2s + vt+2sP is the linear function recorded
during the current query.

II. Compute all solutions to the t + 1 equations

(vi − vt+2)Xt+2,i = ut+2 − ui,

where i ∈ [t + 1]. Let the solutions be ht+2,i.
III. For any ht+2,i = H(xt+2,i), send (OfflineTestPwd, sid, xt+2,i) to

FsaPAKE. If more than 2t OfflineTestPwd commands would be sent
in total (i.e., there is no “ticket” from Z to send an OfflineTestPwd
command), output OfflineFailure and abort.

IV. Whenever FsaPAKE returns “correct guess”, replace formal variable P

with ht+2,i in this and all future responses and store serverPW[sid] :=
xt+2,i.

E. If γ is a fresh discrete logarithm, that is, for all previously generated
handles Ci, DL[Ci] �= γ, then sample a new handle C from the set of
handles G and set DL[C] := γ. Otherwise there is an existing handle Ci

such that DL[Ci] = γ; in this case output Collision and abort.
F. Return (Multi, sid, C) to A.

Password Authentication

4. Upon receiving (ServerSession, sid, ssid,C,S) from FsaPAKE:
A. If file[sid] is undefined

I. Sample a pair of group handles (S, sw) ← G2 and store file[sid] :=
(S, sw).

II. Create a formal variable P representing the discrete logarithm of sw
relative to base S and sample s ← Z

∗
p.

III. Store DL[S] := s and DL[sw] := sP.
B. If serverSession[sid, ssid] is undefined, then set serverSession[sid, ssid] :=

(C,S,⊥).
C. Sample r ← Z

∗
p, compute R := gr, and send (sid, ssid, R) to C from S.

D. Send (NewSession, sid||ssid||R,S,C,S) to A from FPAKE, set
serverSession[sid, ssid] := (C,S, R), and mark serverSession[sid, ssid]
as “PAKE active”.

5. Upon receiving (ClientSession, sid, ssid,C,S) from FsaPAKE:
A. If clientSession[sid, ssid] is undefined, then set clientSession[sid, ssid] :=

(C,S,⊥).
B. Wait to receive (sid, ssid, [R∗]x) from S sent to C.13
C. Send (NewSession, sid||ssid||R∗,C,S,C) to A from FPAKE, set

clientSession[sid, ssid] := (C,S, R∗), and mark clientSession[sid, ssid]
as “PAKE active”.

13 Formally A only sends (sid, ssid, R∗) to C, and additionally outputs [R∗]x as the
algebraic representation of R∗. We use this compact form for brevity.

An Efficient Strong Asymmetric PAKE Compiler Instantiable 195

Active Session Attacks

6. Upon receiving (TestPwd, sid||ssid||R,S, [rw∗]x) from A sent to FPAKE, if
there is a record serverSession[sid, ssid] = (C,S, R) marked “PAKE active”:
A. Check if there exists an x such that rw∗ = RH(x). If so, x is uniquely

defined (if there were two such x, the simulator would have output
Collision and aborted). Otherwise set x := ⊥.

B. Send (TestPwd, sid, ssid,S, x) to FsaPAKE and relay the response (“correct
guess” or “wrong guess”) to A from FPAKE.

C. If FsaPAKE returns “correct guess”, replace formal variable P with H(x)
in all future responses and store serverPW[sid] := x.

7. Upon receiving (TestPwd, sid||ssid||R∗,C, [rw∗]x) from A sent to FPAKE, if
there is a record clientSession[sid, ssid] = (C,S, R∗) marked “PAKE active”:
A. If (1) S is marked compromised and (S, sw) was previously given to A upon

server compromise, and (2) [1]x �= [R∗]x = r∗[S]x and [rw∗]x = r∗[sw]x ,
then send (Impersonate, sid, ssid) to FsaPAKE and relay the response (“cor-
rect guess” or “wrong guess”) to A from FPAKE.

B. Otherwise (i.e., no Impersonate command was sent):
I. Check if there exists an x such that rw∗ = (R∗)H(x). If so, x is uniquely

defined. Otherwise set x := ⊥.
II. Send (TestPwd, sid, ssid,C, x) to FsaPAKE and relay the response

(“correct guess” or “wrong guess”) to A from FPAKE.
III. If FsaPAKE returns “correct guess”, replace formal variable P with

H(x) in all future responses.

Key Generation

8. Upon receiving (NewKey, sid||ssid||R,C, k∗) from A to FPAKE such that there
is a record (C,S, R) := clientSession[sid, ssid] marked “PAKE active”:
A. If there is a corresponding PAKE session for the server (i.e.,

serverSession[sid, ssid] = (C,S, R∗)) and R∗ �= R (i.e., A modifies the
message before PAKE), send (TestPwd, sid, ssid,C,⊥) to FsaPAKE.

B. Regardless, send (NewKey, sid, ssid,C, k∗) to FsaPAKE and mark
clientSession[sid, ssid] as “PAKE completed”.

9. Upon receiving (NewKey, sid||ssid||R,S, k∗) from A to FPAKE such that there
is a record (C,S, R) := serverSession[sid, ssid] marked “PAKE active”:
A. If there is a corresponding PAKE session for the client (i.e.,

clientSession[sid, ssid] = (C,S, R∗)) and R∗ �= R (i.e., A modifies the mes-
sage before PAKE), send (TestPwd, sid, ssid,S,⊥) to FsaPAKE.

B. Regardless, send (NewKey, sid, ssid,S, k∗) to FsaPAKE and mark
serverSession[sid, ssid] as “PAKE completed”.

4.2 Proof of Indistinguishability

We now show that the simulator in Sect. 4.1 generates a view indistinguishable
from the real world for any PPT environment Z. We will proceed by a series of

196 I. McQuoid and J. Xu

hybrids starting in the real world and ending in the ideal world. We use Disti,i+1
Z

to denote Z’s distinguishing advantage between Hybrids i and i + 1.
Hybrid 0: Real world

In this hybrid, the environment instructs the “dummy” adversary to play the
role of a man-in-the-middle attacker between C and S. Recall that C’s and S’s
passwords are denoted pw′ and pw, respectively.

Hybrid 1: Ruling out random oracle and generic group collisions
In this hybrid, the challenger outputs Collision and aborts if there exist x �= x′

such that H(x) = H(x′), or A �= A′ ∈ G such that their handles are equal.
Assuming A makes qRO Eval queries to FRO and qGG Multi queries to FGG, we
have that

Dist0,1
Z ≤ Pr[Collision] ≤ q2RO + q2GG

2p
,

which is a negligible function of κ since 2κ ≤ p < 2κ+1.
Hybrid 2: Modifying R

In this hybrid, if R∗ �= R (i.e., A modifies the message from S to C
before PAKE) and A does not send (TestPwd, sid||ssid||R,S, ·) to FPAKE (resp.
(TestPwd, sid||ssid||R∗,C, ·)), then when A sends (NewKey, sid||ssid||R,S, ·) to
FPAKE (resp. (NewKey, sid||ssid||R∗,C, ·)), S (resp. C) outputs a random key in
{0, 1}κ (independent of everything else).

In Hybrid 1, C’s session id in FPAKE is sid||ssid||R∗, and S’s session id is
sid||ssid||R. Therefore, if R∗ �= R and there is no active attack on PAKE, FPAKE

will output independent random keys to C and S — exactly what Hybrid 2 does.
We have that

Dist1,2Z = 0.

Hybrid 3: Testing server’s password
In this hybrid, when A sends (TestPwd, sid||ssid||R,S, [rw∗]x) to FPAKE and the
server PAKE sub-session is active, FPAKE returns “correct guess” and marks the
sub-session compromised if A has queried H(pw) = z and rw∗ = Rz. Otherwise
FPAKE returns “wrong guess” and marks the sub-session interrupted.

In Hybrid 2, FPAKE returns “correct guess” (and marks the sub-session
compromised) if and only if rw∗ = RH(pw). Therefore, Hybrid 3 and Hybrid 2 are
identical unless A includes rw∗ = RH(pw) in a TestPwd message without query-
ing z = H(pw). Call this event GuessServerrw. Note that A only learns R = Sr,
and potentially S and sw = SH(pw) (if S is compromised); (S, sw, R, rw∗) forms a
DH tuple. Therefore, an environment Z that causes GuessServerrw can be turned
into a reduction B1 that solves the CDH problem in (G, g, p): Suppose there are
at most � sub-sessions. B1(A,B) samples i ← [�] as a guess that GuessServerrw
happens in the i-th sub-session, runs the code of the Hybrid 3 challenger with
S := gs, sw := As, and R := Bs where R is the S-to-C message in the i-th sub-
session (note that S and sw remain the same across all sub-sessions), and upon
receiving rw∗, B1 outputs (rw∗)1/s.14 Clearly B1 wins if and only if GuessServerrw

14 Note that A never queries H(pw) if GuessServerrw happens, so B1 can set S as gs

and sw = SH(pw) as As.

An Efficient Strong Asymmetric PAKE Compiler Instantiable 197

happens in the i-th sub-session. We have that

Dist2,3Z ≤ Pr[GuessServerrw] ≤ � · AdvCDH
B1

,

which is a negligible function of κ since the DL problem is hard in (G, g, p),
and the CDH problem and the DL problem are equivalent in the AGM (see
Lemma 1).

Hybrid 4: Impersonation attacks
In this hybrid, when A sends (TestPwd, sid||ssid||R∗,C, [rw∗]x) to FPAKE and
the client PAKE sub-session is active, do the following if (1) S is compromised
and (S, sw) was given to A upon server compromise, and (2) there exists r ∈ Zp

such that [1]x �= [R∗]x = r[S]x and [rw∗]x = r[sw]x :

– If pw′ = pw, then FPAKE returns “correct guess” and marks the sub-session
compromised;

– Otherwise FPAKE returns “wrong guess” and marks the sub-session
interrupted.

Note that the change from Hybrid 3 to Hybrid 4 is made only if both (1) and
(2) hold; in other words, if either (1) or (2) does not hold, there is no change
from Hybrid 3 to Hybrid 4. Now assume (1) and (2) hold. Then we have:

– R∗ = Sr and rw∗ = swr, so (S,R∗, sw, rw∗) forms a DH tuple;
– sw = SH(pw) and rw′ = (R∗)H(pw′), so (S,R∗, sw, rw′) forms a DH tuple if

and only if pw′ = pw (note that collisions in H have been ruled out).

Thus, rw∗ = rw′ if and only if (S,R∗, sw, rw′) forms a DH tuple, which in turn
happens if and only if pw′ = pw. In Hybrid 3, FPAKE returns “correct guess” if
and only if rw∗ = rw′, whereas in Hybrid 4, FPAKE returns “correct guess” if
and only if pw′ = pw. This means that the conditions on which FPAKE returns
“correct guess” in Hybrid 3 and in Hybrid 4 are equivalent. Thus, Hybrid 3 and
Hybrid 4 are identical in Z’s view, and

Dist3,4Z = 0.

Hybrid 5: Testing client’s password
In this hybrid, when A sends (TestPwd, sid||ssid||R∗,C, [rw∗]x) to FPAKE and the
client PAKE sub-session is active, if either (1) or (2) defined in Hybrid 4 does not
hold, do the following: FPAKE returns “correct guess” and marks the sub-session
compromised if A has queried H(pw′) = z and rw∗ = (R∗)z. Otherwise FPAKE

returns “wrong guess” and marks the sub-session interrupted.
In Hybrid 4, FPAKE returns “correct guess” (and marks the sub-session

compromised) if and only if rw∗ = (R∗)H(pw′). Therefore, Hybrid 5 and Hybrid 4
are identical unless A includes rw∗ = (R∗)H(pw′) in a TestPwd message without
querying z = H(pw′). Call this event GuessClientrw. If pw′ �= pw, then H(pw′)
is independent of the rest of the experiment, so GuessClientrw happens with
probability 1/p over the choice of random oracle outputs.

198 I. McQuoid and J. Xu

If instead pw′ = pw, an environment Z that causes GuessClientrw can be
turned into a reduction B2 that solves the DL problem in (G, g, p). B2(Q) sam-
ples i ← [�] as before, and runs the code of the Hybrid 3 challenger with
S := gs and sw := Qs in the i-th sub-session (so q = log Q is embedded as
H(pw)). When B2 receives R∗ and rw∗ along with their algebraic representations
(a, b, c, t1, . . . , ti) and (α, β, γ, τ1, . . . , τi) based on g, S, sw, R1, . . . , Ri (where Rj

is the S-to-C message in the j-th sub-session), B2 can obtain the expressions
R∗ = gdQe by condensing gaSb

∏
j R

tj
i = ga+sb+

∑
j srjtj and swc = Qsc;

similarly it can obtain rw∗ = gδQε. Combining these two equations with
rw∗ = (R∗)H(pw′) = (R∗)H(pw) = (R∗)q we have

q2e + (d − ε)q − δ = 0,

from which B2 may solve for q when either e �= 0 or d − ε �= 0. (Such equations
are not generally solvable, but assuming GuessClientrw happens, there exists a
solution. If there are two solutions, B2 may verify which one is correct by checking
if gq = Q for each candidate solution.) If both are 0, we have e = δ = 0 and
d = ε, so R∗ = gd and rw∗ = Qd which we covered in Hybrid 4.

We conclude that

Dist4,5Z ≤ Pr[GuessClientrw] ≤ max
{

� · AdvDL
B2

,
1
p

}

,

which is a negligible function of κ since the DL problem is hard in (G, g, p).
Hybrid 6: Offline attacks

In this hybrid, S defines its password file file[sid] as (S, sw) ← G2, rather than
S ← G and sw := SH(pw). Furthermore, when A computes SH(pw) via generic
group queries, program the result as sw.

The difference between Hybrid 6 and Hybrid 5 is that in Hybrid 5 sw is
defined as SH(pw), while in Hybrid 6 it is chosen at random from G and when A
computes SH(pw), the result is programmed to be SH(pw). We can see that Z’s
views in these two hybrids are identical, so

Dist5,6Z = 0.

Combining all results above, we get

Dist0,6Z ≤ q2RO + q2GG + 4
2p

+ �(AdvCDH
B1

+ AdvCDH
B2

),

which is a negligible function of κ.

Comparison Between Hybrid 6 and the Ideal World. We now compare
Z’s views in Hybrid 6 and in the ideal world. Hybrid 6 is a modified real world
whose challenger, among other things, includes FPAKE with modified behavior
(in particular, the rules on when sessions are marked compromised or interrupted

An Efficient Strong Asymmetric PAKE Compiler Instantiable 199

are changed); we argue that in Z’s view this challenger is identical to the com-
bination of FsaPAKE and the simulator Sim in the ideal world. First note that
both games output Collision and abort if there is a collision in either H or the
generic group. Below we assume that Collision does not happen.

We first analyze FPAKE’s response to A (“correct guess” or “wrong guess”)
upon a TestPwd command. In both Hybrid 6 and the ideal world, we have:

– When A sends (TestPwd, sid||ssid||R,S, [rw∗]x) to FPAKE and the server
PAKE sub-session is active:

• If A has queried H(pw) = z and rw∗ = Rz, then FPAKE returns “correct
guess”;

• Otherwise FPAKE returns “wrong guess”.
This can be seen from Hybrid 3 above and steps 6A and 6B of the simulator.15

– When A sends (TestPwd, sid||ssid||R∗,C, [rw∗]x) to FPAKE and the client
PAKE sub-session is active, if (1) S is compromised and (S, sw) was given to
A upon server compromise, and (2) A has computed (R∗, rw∗) as (Sr, swr)
for some r ∈ Zp:

• If pw′ = pw, then FPAKE returns “correct guess”;
• Otherwise FPAKE returns “wrong guess”.

This can be seen from Hybrid 4 above and step 7A of the simulator.
– When A sends (TestPwd, sid||ssid||R∗,C, [rw∗]x) to FPAKE and the client

PAKE sub-session is active, if either (1) or (2) above does not hold:
• If A has queried H(pw′) = z and rw∗ = (R∗)z, then FPAKE returns

“correct guess”;
• Otherwise FPAKE returns “wrong guess”.

This can be seen from Hybrid 5 above and steps 7B(I) and 7B(II) of the
simulator.

Next, we analyze C and S’s output keys when A sends NewKey to FPAKE.
We first consider Hybrid 6. From Hybrids 3–5, we can see that whenever A sends
a TestPwd command to FPAKE resulting in “correct guess”, FPAKE marks the
corresponding sub-session compromised. Then when A sends NewKey, FPAKE

lets the corresponding party output the key that A specifies. On the other hand,
if the TestPwd command results in “wrong guess”, the sub-session is marked
interrupted, and when NewKey is sent, the corresponding party outputs an inde-
pendent random key.

In the ideal world, when A sends a TestPwd command aimed at FPAKE,
Sim always sends its own TestPwd command to FsaPAKE and relays FsaPAKE’s
answer to A. This means that if A receives “correct guess”, FsaPAKE marks the
corresponding session compromised; after that, when A sends NewKey, FsaPAKE

15 In the ideal world, Sim checks if there exists pw∗ such that A has queried
H(pw∗) = z and rw∗ = Rz; if not, Sim defines pw∗ := ⊥. Then Sim sends
(TestPwd, sid||ssid||R, S, pw∗) to FsaPAKE. FsaPAKE sends “correct guess” to Sim if
and only if pw∗ = pw′, and Sim relays the answer to A. Since we have ruled out
collisions in H, A receives “correct guess” if and only if A has queried H(pw) = z
and rw∗ = Rz. The cases below can be seen similarly.

200 I. McQuoid and J. Xu

lets the corresponding party output the key that A specifies. Similarly, if A
receives “wrong guess”, FsaPAKE marks the corresponding session interrupted,
and when A sends NewKey, FsaPAKE lets the corresponding party output an
independent random key.

In other words, in both Hybrid 6 and the ideal world, C or S outputs
the key that A specifies if A has sent a TestPwd command aimed at FPAKE

resulting in “correct guess”, and outputs an independent random key if the
TestPwd command results in “wrong guess”. The remaining case is that A
does not send a TestPwd command. We argue that in this case, when A sends
(NewKey, sid||ssid||R,S, k∗) and (NewKey, sid||ssid||R∗,C, k∗) aimed at FPAKE,
in both Hybrid 6 and the ideal world,

– If R∗ = R (i.e., A does not modify the message before PAKE), C and S output
the same random key;

– Otherwise C and S output independent random keys.

In Hybrid 6, if R∗ = R, FPAKE ensures that C and S output the same random
key; otherwise they output independent random keys due to Hybrid 2. In the
ideal world, if R∗ = R, Sim does not send any TestPwd command to FsaPAKE,
so FsaPAKE ensures that C and S output the same random key; otherwise Sim
sends (TestPwd, ssid,C,⊥) and (TestPwd, ssid,S,⊥) to FsaPAKE (steps 8A and
9A), and FsaPAKE marks both C sub-session and S sub-session interrupted, so
C and S output independent random keys — which is exactly what happens in
Hybrid 6.

We finally consider offline attacks. In Hybrid 6, S’s password file is (S, sw) ←
G2, and when A computes SH(pw) via random oracle and generic group queries,
the result is programmed as sw. In the ideal world, this is exactly what Sim does
in steps 1–3: whenever A makes a post-compromise generic group query, Sim
solves for all x such that A tests if sw = SH(x), sends (OfflineTestPwd, sid, x)
to FsaPAKE, and if FsaPAKE returns “correct guess” (i.e., x = pw), then Sim
programs sw := SH(x). The only difference is that in the ideal world, if at any
point A makes t generic group queries but Sim needs to send more than 2t
OfflineTestPwd commands (i.e., Sim runs out of “tickets”), then Sim outputs
OfflineFailure and aborts.

In sum, we have proven that Z’s views in Hybrid 6 and in the ideal world
are identical, unless OfflineFailure happens. Since we have also proven that Z’s
views in the real world and in Hybrid 6 are indistinguishable, this means that
Z’s views in the real world and in the ideal world are indistinguishable as long
as OfflineFailure happens with negligible probability.

Lemma 2. Pr[OfflineFailure] is a negligible function of κ.

As mentioned in the proof overview, this is essentially rendering the proof of
[38, Lemma 3] in the UC setting; for completeness, we include the proof of the
lemma above in the full version of this paper.

An Efficient Strong Asymmetric PAKE Compiler Instantiable 201

5 An SaPAKE from Group Actions

In this section we extend the analysis of the compiler in Sect. 3 to the generic
group action model (GGAM).

5.1 Group Actions

Until this point, our compiler has relied on classical assumptions in crypto-
graphic groups, specifically the hardness of the DL problem. However, Shor has
shown [39] that discrete logarithms can be computed in polynomial time using
a sufficiently large quantum computer. Our compiled protocols are not alone
in this insecurity; indeed, previous UC-secure saPAKE protocols are built from
Diffie-Hellman assumptions in groups [15,21,31] and thus are vulnerable to an
adversary who can compute discrete logarithms.

As a competitor to the DL assumption, Couveignes [20] proposed replac-
ing the group operations in traditional Diffie-Hellman with cryptographic group
actions (therein referred to as hard homogenous spaces). For a group G and a
set X , a group action � is a map from G × X to X — analogous to exponentia-
tion in classical groups — which respects group operations in G; integrally, there
is no group law on X which makes group actions resilient to Shor’s algorithm.
Following Couveignes’ work, group actions have been used to construct various
cryptographic schemes including symmetric PAKE [4].

We recall the definition of group actions:

Definition 3 (Group Action). A group action of a group (G, e, ·) on a set X
is a mapping � : G×X → X , usually written using infix notation as g �x, which
satisfies the following two properties:

1. Identity: e � x = x for all x ∈ X .
2. Compatibility: g � g′ � x = (g · g′) � x for all g, g′ ∈ G and x ∈ X .

We additionally consider three properties of group actions:

1. Freeness: A group action (G,X , �) is said to be free when g�x = x =⇒ g = e
for any x ∈ X .

2. Transitivity : A group action (G,X , �) is said to be transitive when X is the
only orbit under G. In other words, ∀x, y ∈ X , ∃g ∈ G | x = g � y.

3. Regularity : A group action (G,X , �) is said to be regular when the action is
both free and transitive.

For the rest of the paper, we will only consider actions which are regular and
for which G is abelian. In the context of our protocol in Sect. 3, we can view the
action of Z∗

p on G \ {e} in the natural way a � g = ga. Indeed, the only operation
our protocol requires is exponentiation, so an honest party and simulator will
only interact with G through this action. However, the additional structure G
imposes disallows us from analyzing it as a generic group action.

As we wish to relate the security of our protocol to computational assump-
tions, we will further restrict our group actions to those with polynomial-time
algorithms:

202 I. McQuoid and J. Xu

Definition 4 (Effective Group Action). A group action (G,X , �) is said to
be effective with respect to a computation security parameter κ if the following
properties are satisfied:

1. G is finite and there exist polynomial-time algorithms (in κ) for the following:
(a) Membership Testing: Decide if a given bitstring represents an element in

G.
(b) Equality Testing: Decide if two given bitstrings represent the same element

in G.
(c) Sampling: Sample an element g from G according to some distribution

DG. For the purpose of our protocol, we assume that DG is statistically
close to the uniform distribution UG on G.

(d) Operation: Compute g · g′ for any two elements g, g′ ∈ G.
(e) Inversion: Compute g−1 for any element g ∈ G.

2. X is finite (note that |G| = |X | for regular actions) and there exist polynomial-
time algorithms (in κ) for the following:
(a) Membership Testing: Decide if a given bitstring represents an element in

X .
(b) Unique Representation: Compute a unique bitstring x! canonically repre-

senting a given element x ∈ X .
3. There exists a distinguished element x̃ ∈ X with known representation. We

will refer to x̃ as the origin.
4. There exists a polynomial-time algorithm (in κ) to evaluate the group action

for any g ∈ G and x ∈ X .

An important category of post-quantum assumptions are those of isogeny-based
cryptographic group actions, the formost of which is CSIDH [18]. Briefly, given
a prime p = 4 · �1 · · · �n − 1 for �i small distinct odd primes, and elliptic curve
E0 = y2 = x3 + x over Fp with Fp-rational endomorphism ring O, then

� : cl(O) × E��p(O) → E��p(O)
� : ([a], E) �→ E/a

is a regular group action where cl(O) is the ideal-class group of O and E��p(O) is
the set of all elliptic curves over Fp with Fp-rational endomorphism ring O [18].

To capture actions like CSIDH, we follow Duman et al. ’s framework [22] and
extend our definitions to include an additional operation called a twist

τ : X → X
τ : (g � x) �→ g−1 � x

which has a polynomial-time algorithm. As our results concern abelian groups,
we will instead use additive notation and write τ : (g � x) �→ (−g) � x. It is
important to note that there is no corresponding operation for classical crypto-
graphic groups assuming the inverse CDH Problem is hard (which is equivalent
to the DL problem in the GGM [7]). Our protocol and simulator do not make use
of the twist operation, and our proofs can readily be adapted to group actions

An Efficient Strong Asymmetric PAKE Compiler Instantiable 203

without twists. However, to capture assumptions such as CSIDH, we provide the
operation to the environment.

Finally, we assume that the structure of G is known including a minimal set
of generators {g1, . . . , gn}. Indeed, effective group actions over abelian groups are
quantum-equivalent to effective group actions over known-order groups through
a generalization of Shor’s algorithm [19] which computes an isomorphism G �
Zm1 ×Zm2 × · · · ×Zmn

along with a minimal set of generators. CSIDH-512, for
example, is known to have a cyclic group of order

N =3 · 37 · 1407181 · 51593604295295867744293584889
· 31599414504681995853008278745587832204909

with generator 〈3, π − 1〉 i.e., G � ZN [12].

5.2 The Protocol

Our compiler in Fig. 7 is the natural extension of our compiler in Fig. 6 replacing
the group operations with group actions. As the compiler runs independently
of the PAKE protocol, we may instantiate the PAKE from classical assump-
tions [3,34], group actions (using the generic transform [16] from OT [33] to
UC PAKE), or lattice assumptions [24] with instantiations using post-quantum
assumptions resulting in the first UC-secure saPAKE protocols (realizing the
full functionality) from post-quantum assumptions. Note that the recent group
action PAKE protocol due to Abdalla et al. [4] is not known to be compatible
with our compiler as their protocol has not been proven UC-secure.

5.3 Security Analysis

Theorem 2. The protocol in Sect. 5.2 UC-realizes FsaPAKE (Fig. 2, Fig. 3) with
simulation rate r = 1 in the (FPAKE,FRO,FGA�)-hybrid model using the
AGAM� for online analysis and the GGAM� for offline analysis, in the set-
ting where both the client and the server can be statically corrupted and assum-
ing the GA-DL problem is hard for known-order, abelian, effective group action
(Zm1 × · · · × Zmn

,X , x̃, �), where �2, �3, the number of mi divisible by 2 and 3,
are O(log (κ)). (See the full version of this paper for a formal description of the
GGAM functionality FGA� .)

The proof of this theorem is substantially similar to that of Sect. 1, so we
only provide a sketch here and defer the full proof to the full version. The main
change is that when the environment would produce server-to-client messages
R∗ = gaswb and PAKE inputs rw∗ = gcswd in the online phase, it instead
produces elements of the form a � x̃, b � sw, or c � −sw. The non-trivial change
we must make is in Hybrid 5, when A produces R∗ and rw∗, A does not query
z = H(pw′), and pw = pw′. We now consider the case where R∗ is of the
form (a + b(s + q)) � x̃ where b ∈ {−1, 0, 1} and similarly rw∗ is of the form

204 I. McQuoid and J. Xu

Public parameters:
Random Oracle H : {0, 1}∗ → G

Generic Group Action (G, X , x̃, �)

client server

registration phase

on input pw:

s ← G, S := s � x̃
h := H(pw), sw := h � S

(S, sw)

store (S, sw)

login phase

on input pw′:
r ← G

R := r � S, rw := r � sw

R

h′ := H(pw′), rw′ := h′ � R

PAKE
rw′ rw

sk′ sk

Fig. 7. Strong Asymmetric PAKE from Group Actions

(c + d(s + q)) � x̃ (for d ∈ {−1, 0, 1}) which combined with rw∗ = H(pw′) � R∗ =
H(pw) � R∗ = q � R∗ arrives at

q(d − 1 − b) = a + bs − c − ds.

Here, we have that (d − b) ∈ {−2,−1, 0, 1, 2} which means (d − 1 − b) ∈
{−3,−2,−1, 0, 1}. Just as before, this equivalence actually hides a system of
modulo-equivalences. The i-th equivalence in the system has a single solution
when gcd ((d − 1 − b),mi) = 1 and at most |d − 1 − b| solutions otherwise. As
our reduction may verify possible solutions for q by computing (q � x̃) ?= Q, we
must show that the total number of solutions to this system is polynomial in κ.
The total number of solutions is

|[q]| =
∏

i∈[N]

gcd ((d − 1 − b),mi)

≤ 2�2 · 2�3

where �2 is the number of mi such that gcd (2,mi) �= 1 and �3 is the number of
mi such that gcd (3,mi) �= 1. If both 2�2 and 2�3 are polynomial in κ then there
are a polynomial number of possible solutions and the reduction may extract
the correct q.

An Efficient Strong Asymmetric PAKE Compiler Instantiable 205

CSIDH-512, for instance, has �2 = 0, �3 = 1 and we can achieve the same
bound as Lemma 2 since |H| < qRO is excluded when we remove collisions.

References

1. Abdalla, M., Barbosa, M., Bradley, T., Jarecki, S., Katz, J., Xu, J.: Universally
composable relaxed password authenticated key exchange. In: Micciancio, D., Ris-
tenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 278–307. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56784-2 10

2. Abdalla, M., Barbosa, M., Katz, J., Loss, J., Xu, J.: Algebraic adversaries
in the universal composability framework. In: Tibouchi, M., Wang, H. (eds.) ASI-
ACRYPT 2021. LNCS, vol. 13092, pp. 311–341. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-92078-4 11

3. Abdalla, M., Barbosa, M., Rønne, P.B., Ryan, P.Y., Šala, P.: Security character-
ization of J-PAKE and its variants. Cryptology ePrint Archive, Report 2021/824
(2021). https://eprint.iacr.org/2021/824

4. Abdalla, M., Eisenhofer, T., Kiltz, E., Kunzweiler, S., Riepel, D.: Password-
Authenticated Key Exchange from Group Actions. In: Dodis, Y., Shrimpton, T.
(eds) Advances in Cryptology. CRYPTO 2022. LNCS, vol. 13508, pp. 699–728.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4 24

5. Abdalla, M., Haase, B., Hesse, J.: Security analysis of CPace. In: Tibouchi, M.,
Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 711–741. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-92068-5 24

6. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12492, pp. 411–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64834-3 14

7. Bao, F., Deng, R.H., Zhu, H.F.: Variations of Diffie-Hellman problem. In: Qing, S.,
Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-39927-8 28

8. Basso, A.: A post-quantum round-optimal oblivious PRF from isogenies. Cryptol-
ogy ePrint Archive, Paper 2023/225 (2023). https://eprint.iacr.org/2023/225

9. Bauer, B., Fuchsbauer, G., Loss, J.: A classification of computational assumptions
in the algebraic group model. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020. LNCS, vol. 12171, pp. 121–151. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-56880-1 5

10. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: 1992 IEEE Symposium on Security and Pri-
vacy, May 1992

11. Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: a password-based
protocol secure against dictionary attacks and password file compromise. In: ACM
CCS 1993, November 1993

12. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 9

13. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 3

https://doi.org/10.1007/978-3-030-56784-2_10
https://doi.org/10.1007/978-3-030-92078-4_11
https://doi.org/10.1007/978-3-030-92078-4_11
https://eprint.iacr.org/2021/824
https://doi.org/10.1007/978-3-031-15979-4_24
https://doi.org/10.1007/978-3-030-92068-5_24
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-540-39927-8_28
https://eprint.iacr.org/2023/225
https://doi.org/10.1007/978-3-030-56880-1_5
https://doi.org/10.1007/978-3-030-56880-1_5
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3

206 I. McQuoid and J. Xu

14. Bourdrez, D., Krawczyk, H., Lewi, K., Wood, C.: The opaque asymmet-
ric PAKE protocol (2023). https://cfrg.github.io/draft-irtf-cfrg-opaque/draft-irtf-
cfrg-opaque.html

15. Bradley, T., Jarecki, S., Xu, J.: Strong asymmetric PAKE based on trapdoor
CKEM. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694,
pp. 798–825. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-
8 26

16. Canetti, R., Dachman-Soled, D., Vaikuntanathan, V., Wee, H.: Efficient password
authenticated key exchange via oblivious transfer. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 449–466. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30057-8 27

17. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005). https://doi.org/10.
1007/11426639 24

18. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

19. Cheung, K.K., Mosca, M.: Decomposing finite abelian groups. Quantum Inf. Com-
put. 1(3), 26–32 (2001)

20. J.-M. Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006). https://eprint.iacr.org/2006/291

21. Cremers, C., Naor, M., Paz, S., Ronen, E.: CHIP and CRISP: Protecting All Parties
Against Compromise Through Identity-Binding PAKEs. In: Dodis, Y., Shrimpton,
T. (eds.) Advances in Cryptology. CRYPTO 2022. LNCS, vol. 13508, pp. 668–698.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4 23

22. Duman, J., Hartmann, D., Kiltz, E., Kunzweiler, S., Lehmann, J., Riepel, D.:
Generic models for group actions. In: Boldyreva, A., Kolesnikov, V. (eds.) Public-
Key Cryptography. PKC 2023. LNCS. vol. 13940, pp. 406–435. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-31368-4 15

23. Eaton, E., Stebila, D.: The “Quantum Annoying” property of password-
authenticated key exchange protocols. In: Cheon, J.H., Tillich, J.-P. (eds.)
PQCrypto 2021 2021. LNCS, vol. 12841, pp. 154–173. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-81293-5 9

24. Santos, B.F.D., Gu, Y., Jarecki, S.: Randomized Half-Ideal Cipher on Groups with
Applications to UC (a)PAKE. In: Hazay, C., Stam, M. (eds.) Advances in Cryptol-
ogy. EUROCRYPT 2023. LNCS, vol. 14008, pp. 128–156. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-30589-4 5

25. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

26. Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-based
key exchange resilient to server compromise. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175 9

27. Grassi, P., Garcia, M., Fenton, J., et al.: NIST digital identity guidelines (2020).
https://csrc.nist.gov/publications/detail/sp/800-63/3/final

28. A. Groce and J. Katz. A new framework for efficient password-based authenticated
key exchange. In: ACM CCS 2010, October 2010

https://cfrg.github.io/draft-irtf-cfrg-opaque/draft-irtf-cfrg-opaque.html
https://cfrg.github.io/draft-irtf-cfrg-opaque/draft-irtf-cfrg-opaque.html
https://doi.org/10.1007/978-3-030-26954-8_26
https://doi.org/10.1007/978-3-030-26954-8_26
https://doi.org/10.1007/978-3-642-30057-8_27
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://eprint.iacr.org/2006/291
https://doi.org/10.1007/978-3-031-15979-4_23
https://doi.org/10.1007/978-3-031-31368-4_15
https://doi.org/10.1007/978-3-030-81293-5_9
https://doi.org/10.1007/978-3-031-30589-4_5
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/11818175_9
https://csrc.nist.gov/publications/detail/sp/800-63/3/final

An Efficient Strong Asymmetric PAKE Compiler Instantiable 207

29. Hasse, B., Labrique, B.: AuCPace: efficient verifier-based PAKE protocol tailored
for the IIoT. In: CHES 2019, August 2019

30. Hesse, J.: Separating symmetric and asymmetric password-authenticated key
exchange. In: SCN 2020, September 2020

31. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78372-7 15

32. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44987-6 29

33. Lai, Y.-F., Galbraith, S.D., Delpech de Saint Guilhem, C.: Compact, efficient and
UC-secure isogeny-based oblivious transfer. In: Canteaut, A., Standaert, F.-X.
(eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 213–241. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77870-5 8

34. McQuoid, I., Rosulek, M., Roy, L.: Minimal symmetric PAKE and 1-out-of-N OT
from programmable-once public functions. In: ACM CCS 2020, November 2020

35. McQuoid, I., Rosulek, M., Xu, J.: How to obfuscate MPC inputs. In: Kiltz, E.,
Vaikuntanathan, V. (eds.) Theory of Cryptography. TCC 2022. LNCS, vol. 13748,
pp. 151–180. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22365-5 6

36. Rostovtsev, A., Stolbunov, A.: Public-Key Cryptosystem Based On Isogenies.
Cryptology ePrint Archive, Report 2006/145 (2006). https://eprint.iacr.org/2006/
145

37. Roy, L., Xu, J.: A universally composable PAKE with zero communication cost. In:
Boldyreva, A., Kolesnikov, V. (eds.) Public-Key Cryptography. PKC 2023. LNCS,
vol. 13940, pp. 714–743. Springer, Cham (2023). https://doi.org/10.1007/978-3-
031-31368-4 25

38. Schnorr, C.: Small generic hardcore subsets for the discrete logarithm: short secret
DL-keys. Inf. Process. Lett. 79(2), 93–98 (2001)

39. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

40. Stern, J., Pointcheval, D., Malone-Lee, J., Smart, N.P.: Flaws in applying proof
methodologies to signature schemes. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 93–110. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 7

41. Thomas, S.: Re: [cfrg] proposed PAKE selection process. CFRG Mailing list (2019).
https://mailarchive.ietf.org/arch/msg/cfrg/dtf91cmavpzT47U3AVxrVGNB5UM

42. Unruh, D.: Universally composable quantum multi-party computation. In: Gilbert,
H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13190-5 25

https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/978-3-030-77870-5_8
https://doi.org/10.1007/978-3-031-22365-5_6
https://eprint.iacr.org/2006/145
https://eprint.iacr.org/2006/145
https://doi.org/10.1007/978-3-031-31368-4_25
https://doi.org/10.1007/978-3-031-31368-4_25
https://doi.org/10.1007/3-540-45708-9_7
https://doi.org/10.1007/3-540-45708-9_7
https://mailarchive.ietf.org/arch/msg/cfrg/dtf91cmavpzT47U3AVxrVGNB5UM
https://doi.org/10.1007/978-3-642-13190-5_25

New SIDH Countermeasures for a More
Efficient Key Exchange

Andrea Basso1 and Tako Boris Fouotsa2(B)

1 University of Bristol, Bristol, UK
andrea.basso@bristol.ac.uk
2 EPFL, Lausanne, Switzerland

tako.fouotsa@epfl.ch

Abstract. The Supersingular Isogeny Diffie-Hellman (SIDH) protocol
has been the main and most efficient isogeny-based encryption protocol,
until a series of breakthroughs led to a polynomial-time key-recovery
attack. While some countermeasures have been proposed, the resulting
schemes are significantly slower and larger than the original SIDH.

In this work, we propose a new countermeasure technique that leads
to significantly more efficient and compact protocols. To do so, we intro-
duce the concept of artificially oriented curves, which are curves with an
associated pair of subgroups. We show that this information is sufficient
to build parallel isogenies and thus obtain an SIDH-like key exchange,
while also revealing significantly less information compared to previous
constructions.

After introducing artificially oriented curves, we formalize several
related computational problems and thoroughly assess their presumed
hardness. We then translate the SIDH key exchange to the artificially ori-
ented setting, obtaining the key-exchange protocols binSIDH, or binary
SIDH, and terSIDH, or ternary SIDH, which respectively rely on fixed-
degree and variable-degree isogenies.

Lastly, we also provide a proof-of-concept implementation of the pro-
posed protocols. Despite being implemented in a high-level language, ter-
SIDH has very competitive running times, which suggests that terSIDH
might be the most efficient isogeny-based encryption protocol.

1 Introduction

Given two elliptic curves, finding an isogeny between them is widely believed
to be a computationally hard problem. This has led to the development of
several cryptographic protocols, whose security relies on the hardness of some
isogeny-related problem. While the first constructions date back to 1996 [22],
the first practical isogeny-based protocol was the Supersingular Isogeny Diffie-
Hellman (SIDH) key exchange [35]. After a decade of improvements and analysis,
the protocol became the most efficient and well-known encryption scheme from
isogenies, and it progressed through the four rounds of the NIST standardization
process.
c© International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14445, pp. 208–233, 2023.
https://doi.org/10.1007/978-981-99-8742-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8742-9_7&domain=pdf
http://orcid.org/0000-0002-3270-1069
http://orcid.org/0000-0003-1821-8406
https://doi.org/10.1007/978-981-99-8742-9_7

New SIDH Countermeasures for a More Efficient Key Exchange 209

The security of the protocol, however, did not rely on the pure isogeny prob-
lem: finding an isogeny between two supersingular elliptic curves. The problem
is hard, but its lack of structure makes it hard to obtain cryptographic function-
alities off it. Thus, SIDH needed to reveal additional information in the form
of torsion images: not only were the domain and codomain of the secret isoge-
nies known, but also their actions on a torsion subgroup of coprime order. This
additional information has been studied over the years, and it has been shown
to lead to some active attacks [33] and key-recovery attacks when the endomor-
phism ring of the two curves is known [33] or when the protocol uses unbalanced
parameters [40,42]. However, all these attacks came short of affecting the secu-
rity of SIDH. The situation changed when a series of works [9,38,43] developed
a polynomial-time attack against SIDH for all possible parameters.

These attacks do not affect the security of other isogeny-based protocols,
such as CSIDH [11] and SQISign [27], but they affect those protocols that reveal
images of torsion points, such as SÉTA [24]. Some countermeasures against the
SIDH attacks have been proposed [29]: they are based on scaling the torsion
images (M-SIDH) or computing variable-degree isogenies (MD-SIDH). However,
the complexity of the attacks against these protocols scale with the number of
distinct primes dividing the isogeny degrees: thus, to be secure, these proto-
cols require extremely large parameters, which lead to high running times and
communication costs.

Besides M-SIDH and MD-SIDH, the only currently secure encryption pro-
tocols based on isogenies are CSIDH [11] and FESTA [5]. However, the first is
vulnerable to a subexponential quantum attack [39], which makes it hard to
estimate the quantum security of a given parameter set. The more conservative
estimates require large primes, which lead to impractically inefficient running
times [16]. The second, FESTA, is a recent public-key encryption protocol based
on a constructive application of the SIDH attacks. While the initial results are
promising, the protocol computes isogenies between elliptic curves of large prime
degree (around 216) and isogenies between abelian varieties, which both affect
the efficiency of the protocol. A third key-exchange protocol, pSIDH [37], offered
interesting properties but was recently broken by Chen, Imran, Ivanyos, Kutas,
Leroux and Petit [14].

In this work, we aim to fill the gap by proposing new countermeasures against
the SIDH attacks that lead to a practically efficient SIDH-like key-exchange
protocol. To do so, we introduce the concept of artificial orientations: an artificial
A-orientation A on a supersingular elliptic curve E is a pair of cyclic disjoint
subgroups of E[A] of order A. Given an artificial orientation A = (G1, G2), an
A-isogeny φ is an isogeny whose kernel is the direct sum of a cyclic subgroup
of G1 and a cyclic subgroup of G2. In other words, φ can be written as the
composition φ = φ2 ◦φ1, where kerφ1 ⊂ G1, kerφ2 ⊂ φ1(G2), and the degrees of
φ1 and φ2 are coprime. While an artificial orientation does not reveal the same
information as a standard orientation [18], it provides an interpolation between
the original SIDH construction and the oriented protocols, such as CSIDH [11],
OSIDH [18], and SCALLOP [26]. On one hand, artificial orientations and their

210 A. Basso and T. B. Fouotsa

images provide enough information to compute parallel isogenies, similarly to
torsion images in SIDH; on the other, orientations always imply an artificial
orientation, because given an orientation it is possible to recover the images of
two cyclic disjoint groups, i.e. an artificial orientation. For example, in CSIDH,
the images of the groups ker(π − 1)∩ E[�] and ker(π+1)∩ E[�] under the secret
isogeny φ : E → E′ are given by ker(π − 1) ∩ E′[�] and ker(π + 1) ∩ E′[�],
respectively [10, Section 6.1].

Contributions. In this paper, we formalize the concept of artificial orientations
and introduce some computational problems related to artificially oriented iso-
genies. We thoroughly assess the presumed hardness of these problems and we
survey potential attacks. Then, we propose binSIDH, or binary SIDH, the first
protocol that translates SIDH to the artificially-oriented setting. In other words,
both parties compute an oriented isogeny, one whose kernel is the direct sum
of two cyclic subgroups of the orientation, and reveal the images of a second
orientation under the secret isogeny. This allows both parties to obtain a shared
secret while revealing significantly less information.

As in SIDH, such a key exchange is limited to fixed-degree isogenies, which
is helpful to develop constant-time implementations and zero-knowledge proofs
of isogeny knowledge. Then, we generalize binSIDH to the case of variable-degree
isogenies to obtain terSIDH, or ternary SIDH, which achieves smaller parameters.

The two protocols, binSIDH and terSIDH, require both parties to use artifi-
cially oriented isogenies, which results in a balanced protocol where the compu-
tational requirements of both parties is similar. We also propose a new technique
that allows one party to compute SIDH-like isogenies, at the cost of the other
party computing longer oriented ones. This allows one party to be significantly
more efficient, which is particularly useful in advanced protocols between clients
and servers with unbalanced computational power: not only can the client be
more efficient than the server, but if the protocol requires proofs of isogeny
knowledge, those of the client can be computed much more efficiently as well.
Since the same technique can be applied to binSIDH and terSIDH, we obtain two
new variants: binSIDHhyb and terSIDHhyb.

Lastly, we generate parameter sets for all four protocols, for all security levels,
and we provide a SageMath proof-of-concept implementation of all proposed
protocols. Despite being implemented in a high-level language, terSIDH has very
competitive running times when compared to existing implementations of other
isogeny-based encryption schemes.

2 Preliminaries

In this section, we briefly introduce the SIDH protocol and the recent key-
recovery attacks. For more background information on elliptic curves and isoge-
nies, we refer the reader to [44].

New SIDH Countermeasures for a More Efficient Key Exchange 211

2.1 SIDH

SIDH, or Supersingular Isogeny Diffie-Hellman [35], is a key-exchange proto-
col based on isogenies between supersingular elliptic curves. The main protocol
parameters are a prime p of the form p = ABf − 1, where A = 2a and B = 3b,
and a starting supersingular elliptic curve E0 defined over Fp2 . The protocol also
specifies two bases PA, QA and PB , QB that generate, respectively, E0[A] and
E0[B].

The first party, say Alice, generates her public key by sampling a random
secret key skA = α ∈ ZA, computing the isogeny φA : E0 → EA with kernel
kerφA = 〈PA+[α]QA〉, and revealing pkA = (EA, RA = φA(PB), SA = φA(QB)).
The second party, say Bob, proceeds analogously with an isogeny of degree B:
he samples skB = β ∈ ZB , computes the isogeny φB : E0 → EB with kernel
kerφB = 〈PB + [β]QB〉, and reveals pkB = (EB , RB = φB(PA), SB = φB(QA)).
Then, after exchanging public keys, both parties can obtain the same shared
secret by computing the push-forward of their isogeny under the other party’s
isogeny. Concretely, Alice computes the isogeny φ′

A : EB → EAB with ker-
nel kerφ′

A = 〈RB + [α]SB〉 = φB(kerφA), while Bob computes the isogeny
φ′
B : EA → EBA with kernel kerφ′

B = 〈RA + [b]SA〉 = φA(kerφB). The two
isogenies are the correct push-forwards, and thus φA, φB , φ′

A, φ′
B form a commu-

tative diagram. Hence, the codomain curves EAB and EBA are isomorphic, and
their j-invariant is the shared secret known to both Alice and Bob.

2.2 Polynomial Time Attacks on SIDH

The security of the SIDH protocol relies on the hardness of recovering a secret
isogeny from its action on a torsion basis. In a series of works by Castryck and
Decru [9], Maino, Martindale, Panny, Pope and Wesolowski [38], and Robert [43],
the authors show the problem can be solved in polynomial time when the torsion
information is sufficiently large compared to the degree of the isogeny. This leads
to an efficient key-recovery attack on all instances of SIDH.

The attacks slightly vary in their techniques, but they all rely on Kani’s
theorem [36], which implies that given an SIDH square with specific properties,
there exists an isogeny between the principally polarized abelian surface obtained
by gluing two curves in the SIDH square to the principally polarized abelian
surface obtained by gluing the other two curves in the square. It is possible to
generate an SIDH square with the desired properties and compute the genus-
two isogeny from the image points revealed in SIDH; evaluating such an isogeny
allows an attacker to evaluate the secret isogeny on any point, which in turn can
be used to recover the secret isogeny.

For the purpose of this work, the SIDH attacks can be abstracted as a generic
algorithm that recovers an isogeny φ : E0 → E1 of degree d when it receives
the curves E0, E1, the degree d, and the points P0, Q0 and φ(P0), φ(Q0), where
P0, Q0 are linearly independent points of order n and n2 > 4d. There is no known
technique that allows extending such attacks to a case where the image points
are not known exactly: indeed, all attacks on the proposed countermeasures [29],

212 A. Basso and T. B. Fouotsa

as well as the potential attacks discussed in this work, need to recover the exact
torsion images to apply the attacks.

3 Artificial Orientations

In this section, we introduce artificial orientations, the main ingredient that
powers the countermeasures against the SIDH attacks. In the rest of the paper,
the integers A and B are assumed to be smooth, coprime with each other, and
square-free.1 They also define a prime p of the form p = ABf − 1, where f is a
small cofactor needed for primality; thus, the values A and B are always smaller
than p and coprime with it.

Artificial orientations are composed of two independent subgroups. This is
formalized in Definition 1, and we provide more information on how to explicitly
compute such isogenies in Eq. (2) in Sect. 4.1.

Definition 1. Let E be a supersingular elliptic curve defined over Fp2 , and let
A be an integer. An artificial A-orientation (of E) is a pair A = (G1, G2) where
G1, G2 ⊂ E[A] are cyclic groups of order A and G1 ∩ G2 = {0}. (E,A) is called
an artificially A-oriented curve.

Remark 1. Artificial orientations are known in the number theory literature as
split Cartan level structures. We prefer the artificial orientation name as it may
be more familiar to those who know isogeny-based cryptography, but the con-
nection may lead to useful insights. For instance, see [17] for an analysis of the
mixing properties of the isogeny graph with split Cartan level structures.

Given an artificially A-oriented curve (E,A), one can compute a range of
isogenies whose kernels arise from A = (G1, G2). We formalize this concept,
which we call A-isogenies, in the following definition.

Definition 2. Let (E,A) where A = (G1, G2) be an artificially A-oriented
curve. An isogeny φ : E → E′ is said to be an A-isogeny if kerφ is the direct
sum of a subgroup of G1 and a subgroup of G2, that is kerφ = H1 ⊕ H2 where
Hi is a subgroup of Gi for i = 1, 2.

If (E,A) is an artificially A-oriented curve and φ : E → E′ is a non-trivial A-
isogeny, then the artificial A-orientation on E cannot be carried onto E′ through
φ. In fact, since φ is non-trivial and kerφ is the direct sum of a subgroup of G1

and a subgroup of G2, then at least one of the groups φ(G1) and φ(G2) has order
strictly smaller than A. In order to be able to carry the artificial A-orientation
on E onto E′ it is necessary that the degree of the isogeny considered is coprime
to A. We have the following definition for artificially A-oriented B-isogenous
curves.

1 The square-free property is not necessary for the correctness of the protocols, but
square divisors of A and B decrease the efficiency of the protocols without increasing
their security.

New SIDH Countermeasures for a More Efficient Key Exchange 213

Definition 3. Let (E,A) and (E′,A′) be two artificially A-oriented curves and
let B be an integer coprime to A. We say that (E,A) and (E′,A′) are B-isogenous
if there exists an isogeny φ : E → E′ of degree B such that A′ = φ(A), that is if
A = (G1, G2) and A′ = (G′

1, G
′
2), then G′

1 = φ(G1) and G′
2 = φ(G2).

Remark 2. Note that B-isogenous oriented curves include images of subgroups.
These can be represented by choosing a random generator. Thus, if we fix gen-
erators 〈P1〉 = G1 and 〈P2〉 = G2, the subgroups G′

1 and G′
2 are represented by

[α]φ(P1) and [β]φ(P2) respectively, for some unknown α, β ∈ ZA.

3.1 A Comparison of A-Isogenies with Existing Techniques

In this section, we discuss the main differences between artificially oriented iso-
genies and fully oriented isogenies, such as those used in CSIDH and SCALLOP,
and between oriented isogenies and the more generic isogenies used in SIDH,
M-SIDH, and MD-SIDH.

A-Isogenies vs Group Actions. Artificially oriented isogenies share similar-
ities with those that arise from group actions, such as the isogenies in CSIDH,
OSIDH, and SCALLOP. In both instances, isogenies are restricted to specific
subsets of all possible isogenies, and the action of secret isogenies on two inde-
pendent subgroups is revealed [10, Section 6.1]. However, artificially oriented
isogenies are significantly different from those in CSIDH and SCALLOP: first,
given any supersingular elliptic curve, it is always possible to attach an artificial
orientation to it, unlike in CSIDH, where the curves need to be defined over Fp

and the orientation is already available through the Frobenius endomorphism; or
SCALLOP, where not all supersingular elliptic curves are oriented and a stan-
dard orientation needs to be provided. Most importantly, artificial orientations
do not give rise to a commutative group action as the one from standard orienta-
tions, which means that the quantum subexponential attack by Childs, Jao, and
Soukharev [15] does not apply. Similarly, artificial orientations are also immune
to the attacks on OSIDH [23].

A-Isogenies vs SIDH. The main difference between SIDH-like isogenies and
artificially A-oriented isogenies is the amount of information needed to compute
their push-forwards. In the SIDH case, the kernel of the isogeny (say ψ) is gen-
erated by a point of the form P + [α]Q. The kernel of the push-forward of ψ
through φ is generated by the point φ(P) + [α]φ(Q). Therefore, the images of
torsion points P and Q are needed in order to compute the push-forward of ψ
through φ. Conversely, A-isogenies are limited to those that arise from A. Hence,
only the push-forward of the artificial orientation is needed, which means only
the images of two cyclic torsion groups are revealed. This prevents torsion point
attacks [9,38,40,42,43].

A-Isogenies vs M-SIDH. In M-SIDH and MD-SIDH [29], isogenies are defined
as in SIDH, but to compute their push-forwards, the torsion points images are
revealed while scaled (or masked) with the same scalar β. This means that

214 A. Basso and T. B. Fouotsa

instead of revealing φ(P) and φ(Q) as in SIDH, one reveals [β]φ(P) and [β]φ(Q).
This is significantly more information than what is revealed to compute the push-
forwards of A-isogenies, since the image of an artificial orientation is equivalent,
as discussed in Remark 2, to revealing [α]φ(P) and [β]φ(Q), for independent val-
ues α and β. From a subgroup perspective, push-forwards of A-isogenies require
the images of two cyclic disjoint subgroups, whereas M-SIDH reveals two image
points scaled with the same value, which is equivalent to the images of three
cyclic disjoint groups of order ord(P) (see [4, Lemma 1] and [30, Lemma 1]).

3.2 Security Assumptions

Having introduced artificial orientations, we now introduce three computational
problems that relate to artificially oriented curves and isogenies. The first prob-
lem, which we refer to as the Supersingular Isogeny Problem for artificially A-
oriented curves (SSIP-A), asks to recover an isogeny given its domain, together
with an artificial orientation, and its codomain, together with a compatible ori-
entation. This corresponds to finding a path of length B in the isogeny graph
with split Cartan level structure.

Problem 1 (SSIP-A). Let (E,A) be an artificially A-oriented curve and let B
be an integer coprime to A. Let φ : E → E′ be a cyclic isogeny of degree B and
let A′ = φ(A). Given (E,A) and (E′,A′) and the degree B, compute φ.

In Problem 1, there is no constraint on the isogeny φ, apart from its degree
being B. When an artificial B-orientation B is provided on E, then one may
restrict to B-isogenies. This leads to the (supersingular) Artificially Oriented
Isogeny Problem (AOIP).

Problem 2 (AOIP). Let (E,A) an artificially A-oriented curve and let B be an
integer coprime to A. Let B be an artificial B-orientation on E. Let φ : E → E′

be a cyclic B-isogeny of degree B and let A′ = φ(A). Given (E,A,B) and
(E′,A′), compute φ.

We can also study a problem that is, in some sense, the converse of Problem 1.
Rather than considering general isogenies and the image of an artificial orienta-
tion, we can focus on the case where the isogeny is artificially oriented, but more
torsion image information is revealed. This is summarized in the Supersingular
Isogeny Problem for B-isogenies (SSIP-B) problem.

Problem 3 (SSIP-B). Let (E,A) be an artificially A-oriented curve and let B
be an integer coprime to A. Let φ : E → E′ be a cyclic A-isogeny of degree A,
with B
 A. Let also P,Q be a basis of E[B]. Given (E,A), together with the
points P,Q, and the curve E′ with the points φ(P) and φ(Q), compute φ.

If B �
 A, such a problem could be solved with the techniques introduced
in the SIDH attacks [9,38,43]. However, for larger choices of B (when compared
to A), Problem 3 is believed to be secure, and its hardness can be used to build
more efficient protocols, as we will see in Sect. 5.

New SIDH Countermeasures for a More Efficient Key Exchange 215

3.3 Hardness Analysis

In this section, we study the computational problems that we introduced, analyze
potential attacks, and justify their assumed hardness.

Finding an Isogeny from the Orientation Image. The first problem, Prob-
lem 1 is already known in the literature, as it was recently introduced with a dif-
ferent notation in [5, Problem 7], where it was called the Computational isogeny
with scaled-torsion (CIST) problem. As argued in [5], the problem appears to be
hard because the images of two subgroups do not provide enough information
for the SIDH attacks to be applicable. Given two images [α]φ(P) and [β]φ(Q),
scaled by independent values α and β, an attacker can easily recover the product
αβ from pairing computations, but this is similarly insufficient to recover the
exact images that would enable the SIDH attacks. An attacker may attempt
to brute force the missing information, but this is computationally infeasible if
the degree of the secret isogeny is sufficiently large, which in turn makes the
order of the torsion information to be guessed large enough for the attack to
be infeasible. Note that the information revealed in Problem 1 is comparable to
that in CSIDH and SCALLOP, and significantly less than that in M-SIDH and
MD-SIDH. It is thus likely that an attack that can solve Problem 1 in its most
general form, can do so for such protocols as well.

Since not enough information is revealed for the SIDH attacks to apply, the
attack on starting curves with small endomorphisms [29] does also not apply
here. It is thus possible to choose a starting curve with known endomorphism
ring. Very recent analysis [12] has shown it is possible to recover an isogeny
from its scaled action and thus solve Problem 1 when the starting curve E0 and
the corresponding orientation has specific properties relative to the Frobenius
conjugate E

(p)
0 of E0. It is thus important to select parameters that avoid these

issues; since the endomorphism ring of the starting curve can be public, this can
be done in a transparent manner without the need of a trusted setup. We further
expand on the choice of the artificial orientation and of the starting curve at the
end of this section.

Finding an Oriented Isogeny from the Orientation Image. In Problem 2,
the degree of the isogeny φ is not necessarily known: the degree of a B-isogeny can
range across all values dividing the order B of the subgroups in B, which poses a
first barrier to the application of the SIDH attacks. However, even if we restrict
to isogenies of full degree, i.e. deg φ = B, the torsion information that is revealed
is the same as that in Problem 1, and thus a similar analysis follows. The fact
that the unknown isogeny is a B-isogeny does not interact in any meaningful way
with the SIDH attacks or the revealed torsion information: as such, it appears
to be hard for an attacker to exploit such attacks to solve Problem 2. Hence,
it seems likely that any attack would have to disregard the artificial orientation
and focus on recovering an isogeny between two given curves; however, since the
isogeny is a B-isogeny, this problem is easier than the general case.

216 A. Basso and T. B. Fouotsa

First, an attacker can simply brute force all the possible isogenies. If we
restrict ourselves to isogenies of full degrees, there are 2t possible B-isogenies,
where t is the numbers of primes dividing B. This suggests that the degree of the
isogeny should be the product of at least t = λ distinct primes. Second, generic
attacks to recover an isogeny between two given curves, such as the meet-in-the-
middle (MITM), van Oorschot-Wiener (vOW) [46], Delfs-Galbraith [28] attacks,
are not applicable since the prime characteristic and the isogeny degree, being
the product of at least λ distinct primes, are sufficiently large to make these
attacks computationally infeasible. However, it is possible to devise an enhanced
MITM attack that exploits the nature of the B-isogenies: the attacker fixes an
attack parameter 0 ≤ t′ ≤ t and then computes 2t

′
B-isogenies starting from

E0. These are chosen of the largest degree, i.e. the attacker first computes the
isogenies with degree corresponding to the largest primes dividing B, so that the
end curves are as close to E′ as possible. The attacker stores the j-invariants of
the codomain curves and starts a random walk of the correct degree from E′,
in the hope of finding a collision. The cost of the attack depends on the choice
of t′: the first part requires 2t

′
computations, while the second part requires

computing all the possible isogenies of a specific degree (the product of the
smaller t − t′ primes dividing B, assuming that B is square-free) starting from
E′. This technique yields a better attack than a simple brute-force approach,
and thus it would require larger parameters, albeit only moderately larger ones.

Example 1. For instance, when B is the product of the first 128 primes (the
case most suitable to this attack), the attack is optimal for t = 106, since such
a value minimizes the product of the costs of the MITM attack and the brute-
force attack. Setting t = 106 corresponds to an attack where 2106 isogenies are
computed and 2106 j-invariants are stored in memory. Thus, to obtain λ = 128
bits of security, we would need the B-isogeny to have a degree B that is the
product of the t = 154 smallest primes. This ensures that the optimal attack
requires t > 128. We remark that the security estimates depend not only on the
number of distinct primes dividing B, but also on the size of the specific primes.

The previous attack considers an attacker that has accesses to unbounded
memory. This is far from realistic, and we can obtain better estimates of the
attack possibilities when we impose an upper bound to the amount of mem-
ory available. We follow the security analysis of SIDH [1,34], and we limit our
analysis to attackers with 280 units of memory for any security level.2 In this set-
ting, the best attack is a vOW version of the enhanced MITM attack presented
before, which allows the attacker to trade higher computational costs for a lower
memory requirement. As shown in [1], a vOW search has a computational cost
of approximately

N3/2/w1/2,

where N is the number of collision points and w is the number of memory
units available. In our case, we have N = 2t

′
, and w = 280. This suggests that,

2 More precisely, we consider attackers that can store up to 280 j-invariants. Given
the size of the primes used, this corresponds to more than 290 bits of memory.

New SIDH Countermeasures for a More Efficient Key Exchange 217

for λ = 128, this attack outperforms a brute-force search, but only marginally.
If we set the degree B to be the product of the first t distinct primes, the
enhanced vOW attack requires t = 137 (compared to t = 128, as suggested by
the brute-force attack). However, for higher security levels, the brute-force attack
outperforms the enhanced vOW attack, because the memory bound remains
constant across all security levels, and thus it has a larger performance impact
on higher security levels. Thus, for λ ∈ {192, 256}, we can choose t = λ.

The case with variable-degree isogenies follows similarly. A brute-force app-
roach requires an attacker to compute isogenies starting from all previously vis-
ited curves, rather than just the end ones. In other words, the attack starts with
a set of visited curves S = {E0}; for each prime pi, the attacker computes two
isogenies starting for all curves in S and adds the codomain curves to S. We
restrict ourselves to the case where the maximum degree is square free, as we
will choose for the parameters of terSIDH, since higher powers decrease efficiency
without improving security. In this case, the complexity of the attack is the same
a brute-force attack with fixed-degree isogenies with three options at each node.

Overall, the rest of the attack proceeds similarly: as in the binSIDH case,
the parameter t needs to be selected to avoid a brute-force attack, where the
specific value depends on the exponents of the primes dividing B. The enhanced
MITM and vOW attacks similarly apply to the variable-degree case: in this
case, however, the enhanced vOW attack outperforms a brute-force attack at
all commonly used security levels, and thus the parameters need to be slightly
larger than what a brute-force attack would suggest.

Finding an Isogeny from the Full Torsion Image. Lastly, Problem 3 is
vulnerable to the SIDH attacks, as discussed when introduced. However, the A-
isogeny needs to have a large degree A to be secure from the attacks outlined
above, and thus the torsion points would need a large order B for the SIDH
attacks to be applicable. More precisely, the attacks are possible when B2 > 4A,
but an attacker could guess part of the isogeny so that the remaining part is short
enough to be recovered through the SIDH attacks. This would suggest that if
2t

′
B2 ≈ A, an attacker can recover the unknown isogeny after iterating through

2t
′

isogenies. This is the case for generic isogenies, but in the case of oriented
ones, the attacker can brute force much longer isogenies at the same cost, since
there are only limited options for any prime degree dividing A. In particular,
after 2t

′
computations, the attacker obtains isogenies of degree At′ , the product

of the t′ largest primes dividing A. Thus, Problem 3 is secure against the SIDH
attacks when At′B2 ≤ A.

Assuming this condition is satisfied, Problem 3 appears to be secure since
the oriented-isogeny structure does not interact with the revealed torsion infor-
mation, which does not make the problem easier. Lastly, before the attacks
by Castryck and Decru, Maino, Martindale, Panny, Pope and Wesolowski, and
Robert, SIDH with unbalanced parameters was vulnerable to torsion-point
attacks [40,42] that relied on knowledge of the endomorphism ring of the

218 A. Basso and T. B. Fouotsa

starting curve. These attacks similarly do not apply to Problem 3 since the
torsion information is much lower than what is needed.

3.4 On the Choice of the Artificial Orientation

As mentioned earlier in this section, a recent analysis [12] has shown it is possible
to solve Problem 1 in some particular cases:

– When the starting curve E0 is defined over Fp and the corresponding ori-
entation (G1, G2) is such that G1, G2 or both are fixed by the Frobenius
endomorphism.

– When the curve E0 is not defined over Fp, the attacks also extends to the
case where the curve E0 and its Frobenius conjugate E

(p)
0 are connected by

a short isogeny ψ : E0 → E
(p)
0 and the artificial orientation (G1, G2) is such

that G1, G2 or both are fixed by the endomorphism π ◦ ̂ψ.
– When the starting curve admits a small endomorphism that fixes one or both

groups G1 and G2 in a given artificial orientation.

We describe here another specific case where Problem 1 is potentially easy
to solve. Assume that E0 is defined over Fp (or it is close to its Frobenius
conjugate; the case follows similarly) and fix an artificial orientation (G1, G2)
where some subgroups of G1 and G2 are fixed by the Frobenius endomorphism.
Let φ : E0 → E be a secret isogeny artificially oriented by (G1, G2); then, when
the end curve E is also defined over Fp, this indicates that the kernel of the secret
isogeny is fixed by the Frobenius endomorphism, which discards any artificially
oriented isogeny whose kernel is not fixed by the Frobenius. This means that one
can discard several impossible secret keys just by looking at the field of definition
of the end curve. In order to avoid this, either all of the end curves need to be
defined over Fp, or none of them can be defined over Fp. In the first case, G1 and
G2 are fixed by the Frobenius and the artificial orientation is the same as that of
CSIDH. As highlighted above, this is not secure, hence the end curves should be
defined over Fp2 . To ensure this, no subgroup of the groups G1 and G2 should
be fixed by the Frobenius. For any given prime �, there are � + 1 cyclic groups
of order �, and at most two of them are fixed by the Frobenius endomorphism.
Hence � − 1 cyclic groups of order � are not fixed by the Frobenius, and these
ones can be used in the artificial orientations. Note that when � = 2, there
may be only one group that is not fixed by the Frobenius: in such a case, the
isogeny degrees A and B can be selected to be both odd. This issue with this
approach is that there is no guarantee that none of the attacks from [12] listed
earlier does not apply. For example, there is no guarantee that the groups in
the artificial orientations are not fixed by a small endomorphism (that could be
exploited by an attacker). Therefore, all the strategies proposed till now do not
provide enough insurance that the starting curve and the artificial orientations
are secure.

In order to avoid all the problematic cases discussed above, we propose to
use a uniformly random supersingular elliptic curve as a starting curve. Such a

New SIDH Countermeasures for a More Efficient Key Exchange 219

curve is defined over Fp2 with overwhelming probability (≈ 1− 1√
p), it is far from

Fp curves, and it is not connected to its Frobenius conjugate by a short isogeny
(with overwhelming probability). Such a curve can be generated by performing a
long publicly-verifiable uniformly-random walk starting from a known supersin-
gular elliptic curve. Practically, this walk can be computed by “nothing-up-my-
sleeve” techniques: fix a seed s (say, the string "binSIDH+terSIDH"), compute
its hash h = H(s) (where H is a cryptographically secure hash function), and
pass it as input to the CGL hash function [13]. The CGL output curve is then
the starting curve E0 of binSIDH and terSIDH. The artificial orientations are
then generated as A = (〈PA〉, 〈QA〉) and B = (〈PB〉, 〈QB〉), where (PA, QA)
and (PB , QB) are canonical bases of E0[A] and E0[B], respectively. Note that
this approach is publicly verifiable by anyone and does not required any trusted
setup.

In the rest of this paper, we assume that the starting curve E0 and the
artificial orientations are chosen this way.

4 The binSIDH and terSIDH Protocols

In this section, we propose two new protocols: binSIDH and terSIDH. Both proto-
cols translate the SIDH key exchange to the setting of artificially oriented curves
and isogenies. The former restricts itself to fixed-degree isogenies, while the latter
relies on variable-degree isogenies to improve on efficiency and compactness.

4.1 binSIDH

We first introduce binSIDH, which restricts itself to isogenies of full degree. The
protocols rely on the fact that A-oriented curves provide sufficient information
to compute parallel isogenies. More formally, let A be a product of t distinct
primes A =

∏t
i=1 pi and write A = A1A2 for a multiplicative splitting of A

with gcd(A1, A2) = 1. Then, given two A-oriented curves (E,A) and (E′,A′)
connected by a B-isogeny φ : E → E′, where A = (〈G1〉, 〈G2〉) and A′ =
(〈G′

1〉, 〈G′
2〉), the isogenies

ψ : E → E/〈[A1]G1 + [A2]G2〉, ψ′ : E′ → E′/〈[A1]G′
1 + [A2]G′

2〉

are parallel, i.e. we have kerψ′ = φ(kerψ) and the codomain curves are also
B-isogenous, connected by the isogeny φ′ with kernel kerφ′ = ψ(kerφ).

The isogenies ψ and ψ′ are thus determined by the splitting of A as A =
A1A2. In other words, if we represent the subgroups 〈G1〉 and 〈G2〉 as

〈G1〉 = 〈G1
1, G

2
1, . . . , G

t
1〉,

〈G2〉 = 〈G1
2, G

2
2, . . . , G

t
2〉, where

{

ord(Gi
1) = pi,

ord(Gi
2) = pi,

(1)

then the kernel of ψ is determined by selectively choosing either Gi
1 or Gi

2 to
be in the kernel of ψ, for every i ∈ [t]. The same holds for the isogeny ψ′ and

220 A. Basso and T. B. Fouotsa

the generators G′
1 and G′

2. This suggests the following notation: if we fix an
artificial A-orientation (E,A = (G1, G2)), where A =

∏t
i=1 pi, we can associate

a vector a ∈ {1, 2}t to any A-oriented isogeny φ by writing

kerφ = 〈G1
a1

, G2
a2

, . . . , Gt
at

〉, (2)

where the points Gi
1 and Gi

2 are defined as in Eq. (1) and ai denotes the i-th
element of a. Throughout the rest of the paper, we write 〈a,A〉 to denote the
subgroup corresponding to the orientation A with secret vector a, as computed
in Eq. (2).

We showed in Sect. 3.2 that we consider it secure to reveal artificially oriented
curves since the SIDH attacks are inapplicable. Moreover, artificial orientations
allow computations of parallel isogenies, and if the order A is sufficiently com-
posite, the number of potential parallel isogenies is exponentially large. That
is because the value A is the product of t distinct primes, which means there
are 2t potential splittings A = A1A2. This suggests it is possible to replicate the
SIDH key exchange with artificially oriented isogenies and to obtain a secure
protocol that is immune to the SIDH attacks. We call the resulting construction
binSIDH, and we represent it in Fig. 1.

Setup. Let λ be the security parameter and t an integer depending on λ. Let p =
ABf−1 be a prime such that A =

∏t
i=1 �i and B =

∏t
i=1 qi are coprime integers,

�i, qi are distinct small primes, A ≈ B ≈ √
p and f is a small cofactor. Let E0

be a supersingular elliptic curve defined over Fp2 with #E0(Fp2) = (p+1)2. Let
A be an artificial A-orientation on E0 and let B be an artificial B-orientation
on E0. The public parameters are E0, p, A, B, A and B.

KeyGen. Alice samples uniformly at random a vector a from {1, 2}t and computes
the A-oriented isogeny φA : E0 → EA of degree A defined by a. She also computes
the push forward B′ of B on EA through φA. Her secret key is a and her public
key is (EA,B′). Analogously, Bob samples uniformly at random a vector b from
{1, 2}t and computes the B-oriented isogeny φB : E0 → EB of degree B defined
by b. He also computes the push forward A′ of A on EB through φB . His secret
key is b and his public key is (EB ,A′).

SharedKey. Upon receiving Bob’s public key (EB ,A′), Alice checks that A′

is an artificial A-orientation on EB , if not she aborts. She computes the A′-
oriented isogeny φ′

A : EB → EBA of degree A defined by a. Her shared
key is j(EBA). Similarly, upon receiving (EA,B′), Bob checks that B′ is an
artificial B-orientation on EA, if not he aborts. He computes the B′-oriented
isogeny φ′

B : EA → EAB of degree B defined by b. His shared key is j(EAB).

Fig. 1. The binSIDH protocol.

New SIDH Countermeasures for a More Efficient Key Exchange 221

4.2 The terSIDH Variant

We now introduce terSIDH, a variant of binSIDH that is more efficient and more
compact, but these improvements come at the cost of relying on variable-degree
isogenies. In binSIDH, every A-oriented isogeny φ is determined by a binary
choice for each prime pi dividing A: the pi-degree isogeny has kernel generated
by either Gi

1 or Gi
2. However, we can introduce a third option by allowing the

isogeny to not have a pi component. In other words, write φ as the composition
of t isogenies φ = φt ◦ . . . φ2 ◦ φ1; then, the isogeny φi has kernel generated by
Gi

1, Gi
2, or O. We thus extend the notation introduced in the previous section

by letting the vector a have entries in {0, 1, 2}, and we set Gi
0 = O for all i ∈ [t].

The full protocol is described in Fig. 2.
Compared to binSIDH, terSIDH introduces more choices for each prime pi. In

particular, it provides three choices, which means that every pi dividing p + 1
provides log2 3 ≈ 1.6 bits of security. Interestingly, terSIDH is the first counter-
measure technique against the SIDH attacks that can provide more than one bit
of security per prime pi. This means that, to provide enough security, the isogeny
degrees should be at least the product of t ≈ λ/1.6 primes, and thus terSIDH
can use significantly smaller parameters and shorter isogenies, leading to a more
efficient and more compact protocol. However, to achieve this, we necessarily rely
on variable-degree isogenies. This has some disadvantages: from an implementa-
tion perspective, the varying degree may make it harder to obtain constant-time
implementations, as seen in the case of CSIDH implementations [2,16]. The other
issue, as argued in [3,7], is that it appears to be hard to construct zero-knowledge
proofs of variable-degree isogenies because all known approaches invariably leak
the secret isogeny degree. This causes a major issue in the development of proofs
of terSIDH public key correctness, and it may prevent terSIDH from being an
SIDH drop-in replacement for advanced constructions.

Setup. Let λ be the security parameter and t an integer depending on λ. Let p =
ABf−1 be a prime such that A =

∏t
i=1 �i and B =

∏t
i=1 qi are coprime integers,

�i, qi are distinct small primes, A ≈ B ≈ √
p and f is a small cofactor. Let E0

be a supersingular elliptic curve defined over Fp2 with #E0(Fp2) = (p+1)2. Let
A be an artificial A-orientation on E0 and let B be an artificial B-orientation
on E0. The public parameters are E0, p, A, B, A and B.

KeyGen. Alice samples uniformly at random a vector a from {0, 1, 2}t and com-
putes the A-oriented isogeny φA : E0 → EA defined by a, whose degree divides A.
She also computes the push forward B′ of B on EA through φA. Her secret key is
a and her public key is (EA,B′). Analogously, Bob samples uniformly at random
a vector b from {0, 1, 2}t and computes the B-oriented isogeny φB : E0 → EB

defined by b, whose degree divides B. He also computes the push forward A′ of
A on EA through φB . His secret key is b and his public key is (EB ,A′).

222 A. Basso and T. B. Fouotsa

SharedKey. Upon receiving Bob’s public key (EB ,A′), Alice checks that A′ is an
artificial A-orientation on EB , if not she aborts. She computes the A′-oriented
isogeny φ′

A : EB → EBA of degree A defined by a. Her shared key is j(EBA). Sim-
ilarly, upon receiving (EA,B′), Bob checks that B′ is an artificial B-orientation
on EA, if not he aborts. He computes the B′-oriented isogeny φ′

B : EA → EAB

of degree B defined by b. His shared key is j(EAB).

Fig. 2. The terSIDH protocol. This is nearly the same as Fig. 1, with the main difference
being that KeyGen samples ternary secrets.

4.3 One More Variant

It is possible to define a third variant of these protocols that relies on partial
artificial orientations. Rather than revealing the images of two linearly indepen-
dent points G1 and G2, the protocol only reveals the image of one point G.
Then, for each Gi of coprime order that make up G, the possible isogenies are
computed by choosing whether Gi in the kernel of the isogeny or not. Using the
vector notation, its entries are chosen in {0, 1}.

Since the choice is binary, such a protocol would require similar parame-
ters as binSIDH, while also having the disadvantages of variable-degree isogenies
discussed in the context of terSIDH. As such, it does not appear to have any
meaningful advantage over the proposed constructions. However, the informa-
tion that is revealed about the secret isogeny is less: not only its degree remains
unknown, as in terSIDH, but its action on a single cyclic group is revealed. This
suggests that such a variant might be relevant if further cryptanalytic break-
throughs affect the security of binSIDH and terSIDH.

5 An Oriented/Non-oriented Hybrid Approach

There are applications where it is desirable for one party to be significantly more
efficient than the other. For example, this is the case for resource-constrained
devices communicating to powerful servers, but it also arises in advanced con-
structions: for instance, in oblivious pseudorandom function protocols, it is gen-
erally desired that the client is more efficient than the server. In this section, we
propose a technique that allows us to introduce trade-offs between the two par-
ties and enable one participant to obtain more efficient zero-knowledge proofs,
which makes this approach more appealing for advanced protocols that requires
proofs of isogeny knowledge. This technique has the added benefit of reduc-
ing the overall prime size for binSIDH, while the ternary variant has primes of
comparable size as terSIDH.

In the previously presented protocols, both parties relied on artificially ori-
ented isogenies to avoid the SIDH attacks. However, the artificial orientation
also requires to use significantly longer isogenies than those used in the original

New SIDH Countermeasures for a More Efficient Key Exchange 223

SIDH protocol. This suggests that it may be possible to reveal some unscaled
torsion information without affecting the security of the protocol, and if the
isogeny is sufficiently long, the revealed torsion may be large enough to allow
the computation of parallel isogenies that also guarantee sufficient security. In
other words, we can build a secure protocol through a hybrid approach where
one party computes binSIDH-like (or terSIDH-like) isogenies while the other party
computes SIDH-like isogenies.

More formally, let Bob denote the party computing binSIDH-like isogenies,
which means he computes artificially B-oriented isogenies where B = �1 · · · �n;
let Alice be the party computing SIDH-like isogenies of degree A, i.e. isogenies
whose kernel is generated by PA + [α]QA, for some secret α ∈ ZA and fixed
points PA, QA. Fix a starting curve E0, points PA, QA, and a B-orientation
B = (G1, G2), Alice’s public key consists of the codomain of her secret isogeny,
together with the image of B under her secret isogeny, while Bob’s public key
includes the codomain of his secret B-oriented isogeny, together with the images
of PA and QA.

Since Alice is computing SIDH-like isogenies, the degree of her secret isogeny
can be very smooth (concretely, this will be a power of two); while this reduces
the size of the isogeny degree of one party, the degree of the other party needs to
increase to guarantee sufficient security. Thus, the resulting prime p is generally
of comparable size to that used in binSIDH and terSIDH. With this setup, we can
take A to be considerably smaller and smoother than B; this means that Alice

Setup. Let λ be the security parameter and t an integer depending on λ. Let p = ABf−1
be a prime such that A = 2a (a ≈ 2λ) and B =

∏t
i=1 �i are coprime integers, �i are

distinct small odd primes, and f is a small cofactor. Let E0 a be a supersingular elliptic
curve defined over Fp2 with #E0(Fp2) = (p + 1)2. Let B be an artificial B-orientation
on E0 and set E0[A] = 〈PA, QA〉. The public parameters are E0, p, PA, QA and B.

KeyGen (Alice). Alice samples uniformly at random an integer α ∈ Z/AZ and computes
φA : E0 → EA of kernel 〈PA + [α]QA〉. Her secret key is α and her public key is the
artificially B-oriented curve (EA, φA(B)).

KeyGen (Bob). Bob samples uniformly at random a vector b from {1, 2}t and computes
the B-oriented isogeny φB : E0 → EB of degree B defined by b. His secret key is b
and his public key is (EB , φB(PA), φB(QA)).

SharedKey (Alice). Upon receiving Bob’s public key (EB , R, S), Alice checks that
eA(R, S) = eA(PA, QA)

B , if not she aborts. She computes the isogeny φ′
A : EB → EBA

of kernel 〈R + [α]S〉. Her shared key is j(EBA).

SharedKey (Bob). Upon receiving (EA,B′), Bob checks that B′ is an artificial B-
orientation on EA, if not he aborts. He computes the B′-oriented isogeny φ′

B : EA →
EAB of degree B defined by b. His shared key is j(EAB).

Fig. 3. The binSIDHhyb protocol. A similar variant, based on terSIDH, can be obtained
by changing Bob’s KeyGen algorithm to sample vectors from {0, 1, 2}t.

224 A. Basso and T. B. Fouotsa

can be much more efficient in computing her isogenies. Not only that, but zero-
knowledge proofs of knowledge of an A-isogeny, both ad-hoc [25] and generic [20],
can be much more compact and efficient. More generally, computing SIDH-like
isogenies allows one party to fully reuse the range of techniques developed for
SIDH. The resulting schemes are described in Fig. 3.

6 Security Analysis

In this section, we analyze the security of the proposed protocols, both binSIDH
and terSIDH, as well as their hybrid variants binSIDHhyb and terSIDHhyb.

We analyzed the hardness assumptions relative to artificial orientations in
Sect. 3.2, which guarantees it is unfeasible for an attacker to recover a secret key
from a public key. In particular, the hardness of Problem 2 guarantees the secu-
rity of binSIDH and terSIDH against key-recovery attacks, while the hardness of
Problem 1 and 3 protects binSIDHhyb and terSIDHhyb from key-recovery attacks
(Problem 1 for Alice’s public key and Problem 3 for Bob’s). However, the secu-
rity of the key-exchange protocols, as well as any other protocol built on those,
depends on the hardness of a different problem, which we call the Artificially
Oriented Computational Diffie-Hellman (AO-CDH) problem.

Problem 4 (AO-CDH). Let the notation be as in Fig. 1. Let φA : E0 → EA

be a A-isogeny, and φB : E0 → EB be a B-isogeny. Given (EA, φA(B)) and
(EB , φB(A)), compute j(EAB), where EAB is the codomain of the push-forward
of φA under φB (or vice versa).

The problem, as stated, guarantees the security of terSIDH. We can easily
obtain similar problems for the remaining protocols by either requiring that the
isogenies have fixed degrees (binSIDH) or allowing one party to use unoriented
isogenies (binSIDHhyb, terSIDHhyb). We can also consider a decisional variant of
these problems, where given an additional j-invariant j′, the problem asks to
determine whether j′ = j(EAB). While the security of the proposed protocols
does not depend on such decisional problems, advanced constructions based on
these protocols might require such an assumption.

The relationship between these problems and those introduced in Sect. 3.2 is
similar to that between the Computational Diffie-Hellman problem and the Dis-
crete Logarithm problem, or between the Supersingular Computational Diffie-
Hellman problem and the Computational Supersingular Isogeny problem [35].
While there exists no known reduction from the problems in Sect. 3.2 to Prob-
lem 4, it is likely that any attack that breaks the proposed protocols would need
to efficiently solve the problems of Sect. 3.2.

Remark 3. In binSIDH and terSIDH, the two parties reveal the codomain of their
secret isogenies, together with only the images of two disjoint cyclic subgroups.
This is, in some sense, optimal, as it is the minimum amount of information
needed for the other party to compute the push-forwards. Thus, if any major
cryptanalytic breakthrough managed to break binSIDH and terSIDH, it seems

New SIDH Countermeasures for a More Efficient Key Exchange 225

likely that any possible SIDH-like construction would equally be broken, includ-
ing the existing countermeasures against the SIDH attacks [29].

6.1 The Relation with the Uber-Isogeny Problem

When proposing SÉTA [24], its authors also introduced the Uber-isogeny prob-
lem, which is the following:

Problem 5 (O-Uber Isogeny Problem). Let p > 3 be a prime and let O =
Z[w] be a quadratic order of discriminant Δ. Let E0 and E be two O-oriented
supersingular curves, and let θ ∈ End(E0) be an endomorphism such that Z[θ] ∼=
O, that is θ allows to explicitly embed Z[θ] into End(E0). Given E0, E and θ,
find a power-smooth ideal a of norm co-prime with Δ such that [a] ∈ Cl(O) is
such that E ∼= a ∗ E0.

In other words, φ : E0 → E is an O-oriented isogeny, one is given the actual
embedding of O into End(E0) but not that of O into End(E), and one is asked
to recover φ, or an equivalent isogeny of power-smooth degree. The authors of
SÉTA [24] showed that the security of SIDH [35], CSIDH [11], OSIDH [19] and
SÉTA [24] reduces to the Uber-isogeny problem. It is natural to wonder whether
the security of our schemes can similarly be reduced to the Uber-isogeny problem
as well. As we will show below, this is possible when the endomorphism ring of
the starting curve E0 is known, but the reduction is not trivial. In what follows,
we relate Problem 4 to the Uber-isogeny problem.

A first approach proceeds as follows. Let φA : E0 → EA be Alice’s artificially
oriented isogeny with respect to an artificial orientation A = (G1, G2). If the
endomorphism ring End(E0) ∼= O0 of the starting curve E0 is known, then one
can efficiently compute an endomorphism θ ∈ End(E0) such that θ(G1) = G1

and θ(G2) = G2. Let w be a quaternion such that its norm and trace agree
with θ, i.e. ww = N(w) = deg θ and w + w = tr(w) = θ + ̂θ, and set O =
Z[w]. Then E0 and EA are O-oriented supersingular curves, and θ provides the
actual embedding of O into End(E0). Any algorithm that solves the Uber-isogeny
problem can be used to recover a power-smooth O-oriented isogeny ψA : E0 →
EA.

Such a reduction, however, presents an issue: with high probability, the recov-
ered isogeny ψA : E0 → EA cannot be used as the secret in binSIDH. This is
because Bob only reveals φB(A), which allows the attacker to compute only the
push-forwards of isogenies oriented by (G1, G2) and thus whose degree divides
the order A. This implies that the knowledge of ψA is not sufficient to compute
the shared secret in the key exchange. To solve this issue, we force both Alice’s
artificial orientation and Bob’s artificial orientation to be restrictions of the same
bigger O-orientation on E0.

As before, let us assume that the endomorphism ring End(E0) ∼= O0 of the
starting curve E0 is known. Let A = (Ga

1 , G
a
2) and B = (Gb

1, G
b
2) be Alice’s and

Bob’s artificial orientations, respectively. Set G1 = Ga
1 ⊕ Gb

1 and G2 = Ga
2 ⊕ Gb

2.
It is possible to efficiently compute an endomorphism θ ∈ End(E0) such that

226 A. Basso and T. B. Fouotsa

θ(G1) = G1 and θ(G2) = G2. Let w be a quaternion such that w+w = tr(w) =
θ + ̂θ and ww = N(w) = deg θ, and set O = Z[w]. Then E0, EA and EB are all
O-oriented supersingular elliptic curves, and θ provides the actual embedding
of O into End(E0). Moreover, both Alice’s artificially oriented secret isogeny
φA : E0 → EA and Bob’s artificially oriented secret isogeny φB : E0 → EB are O-
oriented. Thus, the reduction starts by first using the algorithm to solve the Uber-
isogeny problem with E0 and EA to recover a power-smooth O-oriented isogeny
ψA : E0 → EA, and then with E0 and EB to recover a power-smooth O-oriented
isogeny ψB : E0 → EB . Now, since all curves are O-oriented the underlying
binSIDH scheme can be interpreted within the framework of the OSIDH [19]
protocol. To obtain the shared secret, the reduction concludes by computing
the push-forward ψ′

B of ψB through ψA (or vice-versa). The j-invariant of the
codomain of ψ′

B is the shared key.

6.2 Adaptive Security

SIDH has been known to be vulnerable to active adaptive attacks [30,33], i.e.
attacks where the target has a long-term static key and the attacker is a partic-
ipant of the key exchange. In this section, we show how the proposed protocols
are unfortunately similarly vulnerable to adaptive attacks.

In binSIDHhyb and terSIDHhyb, one party computes SIDH-like isogenies. As
such, they are vulnerable to exactly the same attacks that SIDH is. We can thus
focus on active attacks against oriented isogenies, which covers the remaining
cases.

Let us assume Alice is the target party, while Bob plays the role of the
attacker. For simplicity, let us also assume we are in the case of binSIDH, where
Alice’s secret is the binary vector a ∈ {1, 2}t. The case of terSIDH follows simi-
larly.

Bob can use potentially malicious public keys and check whether both parties
obtained the same shared secret. In other words, the attacker has access to the
following oracle:

O(E,A, j′) =

{

true if j(E/〈a,A〉) = j′,
false otherwise.

Write A, the order of the artificial orientation A, as A =
∏t

i=1 pi. To target
the i-th bit of the secret key ai, the attacker can honestly compute the curve
EB and the image orientation A = (G1, G2) and write Gj = H1

j ⊕ . . . ⊕ Ht
j for

j ∈ {1, 2}, where each Hk
j has order pk, which are all pairwise coprime. Then, if

Ii1 is any cyclic subgroup of order pi such that Ii1 ∩ Hi
1 = {O}, the attacker can

define A′ = (G′
1, G2), where G′

i is the same subgroup as Gi with Hi
1 replaced

by Ii1, i.e. G′
1 = H1

1 ⊕ . . . ⊕ Ii1 ⊕ . . . ⊕ Ht
1. The attacker can also obtain the

j-invariant jAB corresponding to the shared secret of an honest exchange and
query the oracle O(EB ,A′, jAB). If the oracle returns true, the shared secret is
unchanged: this means that modified subgroup did not affect the computations,

New SIDH Countermeasures for a More Efficient Key Exchange 227

and thus ai = 2. Otherwise, the modified subgroup did change the shared secret,
and thus ai = 1.

The active attack against the proposed protocols is slightly more powerful
than the GPST attack. It does not involve carefully crafted torsion points, and
it allows to target any bit of the secret key without necessarily proceeding in
order. In the PKE setting, one party can achieve long-term security with the
use of the Fujisaki-Okamoto transform [31], while in the key exchange setting,
it is possible to obtain active security for both parties, thus obtaining a non-
interactive key exchange, by introducing a proof of public key correctness. For
artifically oriented curves, this can be achieved by adapting the zero-knowledge
proof of masked public keys from [3] to work with independently scaled points.

7 Implementation

7.1 Parameter Selection

Following the security analysis of Sect. 3.2, we generated parameter sets for the
four proposed protocols at security levels λ ∈ {128, 192, 256}.

In binSIDH and terSIDH, both parties rely on oriented isogenies, and thus
the degrees corresponding to both isogenies need to be quite large: in the case of
binSIDH, at least the product of λ distinct primes. This is reduced to λ/ log2(3)
for terSIDH, since each prime provides log2(3) bits of security. To obtain a bal-
anced trade-off between the two parties, we assign consecutive primes to different
parties; in other words, the degree of Alice’s isogenies is the product of t even-
index primes, while the degree of Bob’s isogenies is the product of t odd-index
primes. Moreover, the isogeny degrees need to be coprime, and thus the under-
lying prime necessarily needs to be larger than the product of the first 2λ in
binSIDH (2λ/ log2(3) in terSIDH). The resulting parameter sets for binSIDH and
terSIDH are summarized in Table 1, where we also list the corresponding public
key sizes.

Remark 4 (Public-key compression). As in SIDH, public keys can be compressed
by expressing the torsion points with respect to a deterministically generated
basis [21]. This requires three coefficients in SIDH since both points can be
scaled by the same value without affecting the SIDH computations, which means
that one of the four coefficients can be fixed to one. In our case, however, the
two points that generate artificial orientations can be scaled independently: this
means that the public keys of the proposed protocols can be compressed to only
two coefficients.

The size of the primes and public keys of binSIDH and terSIDH is a stark
improvement over those of the existing countermeasures M-SIDH and MD-
SIDH [29]. For instance, at λ = 128, the primes of binSIDH and terSIDH are
2.5× and 8.8× smaller than those in M-SIDH and MD-SIDH, respectively.3

3 Interestingly, in the terSIDH case, the variable-degree isogenies allow us to achieve
smaller parameters, while in MD-SIDH, the variable-degree isogenies require larger
parameters because of the information leakage due to pairing computations.

228 A. Basso and T. B. Fouotsa

Table 1. Parameters for binSIDH and terSIDH. The coloumn t reports the number of
distinct primes dividing the degrees of Alice’s and Bob’s isogenies, while their smooth-
ness bound is reported in the B column. The columns |pk| and |pkcmp| reports the size
of the public keys of both parties, respectively uncompressed and compressed.

Alice Bob
λ log p t B |pk| |pkcmp| t B |pk| |pkcmp|

binSIDH 128 2421 134 211 1816 907 134 211 1816 909
192 3710 192 212 2783 1390 192 212 2783 1392
256 5201 256 212 3901 1949 256 212 3901 1950

terSIDH 128 1568 93 211 1176 587 93 211 1176 588
192 2295 128 211 1722 860 128 211 1722 861
256 3035 162 212 2277 1137 162 212 2277 1139

binSIDHhyb 128 2004 1 2 1503 937 203 211 1503 565
192 3126 1 2 2345 1465 296 211 2345 878
256 4267 1 2 3201 2004 387 212 3201 1195

terSIDHhyb 128 1532 1 2 1149 701 156 210 1149 447
192 2373 1 2 1780 1089 226 211 1780 690
256 3216 1 2 2412 1479 293 211 2412 932

While terSIDHhyb requires larger parameters than terSIDH, binSIDHhyb manages
to be smaller and more efficient than binSIDH. When compared to M-SIDH, the
underlying prime in binSIDHhyb is 2.9× smaller.

7.2 Implementation Results

We developed a proof-of-concept implementation of all four protocols in Sage-
Math [45], based on the Kummer Line library [41] to estimate the running
times of the proposed protocols4. We report the average running times on an
Apple M1 PRO CPU in Table 2.

The results of Table 2 show that the ternary variants significantly outperforms
the binary ones, especially at higher security levels. This is because binSIDH uses
larger prime fields and larger-degree isogenies than terSIDH.5 Moreover, terSIDH
does not need to compute full-degree isogenies due to its varying-degree nature: it
is thus likely that the benefits of this are reduced in a constant-time optimization.
Nonetheless, the results of terSIDH are encouraging. At security λ = 128, the
SharedKey computations take around 1.4 s, while key generation (which is run
4 The source code is available at https://github.com/binary-ternarySIDH/bin-

terSIDH-SageMath.
5 The specific SageMath implementation of VéluSqrt [6] that we rely on does not

outperform Vélu’s formulae [47] until the isogeny degree is extremely large. We thus
expect a low-level implementation to significantly improve the computation times of
high-degree isogenies, more so than for lower-degree ones.

https://github.com/binary-ternarySIDH/bin-terSIDH-SageMath
https://github.com/binary-ternarySIDH/bin-terSIDH-SageMath

New SIDH Countermeasures for a More Efficient Key Exchange 229

Table 2. Execution times in seconds of the SageMath proof-of-concept implementation.
Since it is a PoC in a high-level language, we expect an optimized implementation of
the same protocols to be several times more efficient.

Timings (s)
λ log p KeyGenA KeyGenB SharedKeyA SharedKeyB

binSIDH 128 2421 13.69 13.86 9.40 9.46

192 3710 48.69 49.36 27.39 27.81

256 5201 140.79 140.57 94.13 95.67

terSIDH 128 1570 2.07 2.09 1.38 1.38

192 2297 6.84 6.83 4.50 4.39

256 3039 15.68 16.03 10.00 10.35

binSIDHhyb 128 2004 0.23 14.33 0.22 10.66

192 3126 0.62 56.77 0.61 42.85

256 4267 1.41 157.58 1.34 117.07

terSIDHhyb 128 1532 0.16 3.21 0.16 1.96

192 2373 0.47 13.44 0.44 10.01

256 3216 0.94 34.66 0.90 23.57

less often) requires about two seconds. The current implementation is only a
proof of concept in a high-level language: we can thus expect it to be several
times faster once optimally implemented in a low-level language.

Despite the lack of optimizations, the current implementation already outper-
forms optimized implementations of CSIDH with parameters sufficiently large
to guarantee post-quantum security [16], which require between 2.8 and 5.8 s to
compute a group action at security level one.6 Very recently, a new implementa-
tion of CSIDH [8] achieves lower running times for a single group action, which
takes between 0.9 and 4.6 s. While the CSIDH implementation with a smaller
prime outperforms the SageMath implementation of terSIDHhyb, the former is
heavily optimized: we thus expect a similarly optimized implementation ter-
SIDHhyb to be significantly more efficient than CSIDH.

Comparing to other protocols, our proof-of-concept implementation outper-
forms the PoC implementation of FESTA [5], which is based on the same Sage-
Math library and takes 3.5 s to encrypt and 10.1 s to decrypt. It is thus mostly
likely that terSIDH provides the most efficient key exchange and encryption pro-
tocol among all isogeny-based protocols.

Moreover, the results of the hybrid variants show that it is possible to have
very low running times for one party, at the cost of a slight increase in the
running times of the other party. The hybrid variants significantly reduce the
overall running time of a complete key exchange.

6 Note, however, that the CSIDH implementations are constant-time, and that CSIDH
does not require the Fujisaki-Okamoto [32] to obtain IND-CCA security.

230 A. Basso and T. B. Fouotsa

8 Conclusion

In this work, we introduced artificial orientations, and proposed two new pro-
tocols, binSIDH and terSIDH, that translate the SIDH key exchange to the arti-
ficially oriented isogeny setting. This allows us to develop two protocols that
are resistant against the SIDH attacks, while also achieving significantly smaller
parameters than the previously proposed countermeasures. We also proposed bin-
SIDHhyb and terSIDHhyb, hybrid variants of binSIDH and terSIDH respectively,
that allow one party to have very short and efficient isogenies. To validate the
concrete efficiency of the protocols, we developed a proof-of-concept implementa-
tion. Despite being far from optimal, it already outperforms existing implemen-
tations of other isogeny-based encryption protocols (both key exchanges and
public-key encryption protocols), which suggests that optimized implementa-
tions of terSIDH and its hybrid variant might have practical running times.

In future work, we are interested in developing efficient and optimized imple-
mentations of binSIDH and terSIDH to accurately measure their running times.
Moreover, this work opens up new possibilities that were previously closed by
the SIDH attacks. In particular, it is interesting to assess the impact of the
proposed protocols on the SIDH-based constructions, such as the round-optimal
OPRF construction by Basso [3], where we expect binSIDH and terSIDH to have
a significant impact in reducing prime size and computational costs.

Acknowlegements. We would like to express our gratitude to the anonymous review-
ers of ASIACRYPT 2023 for their valuable comments that helped improve this paper.
We thank Wouter Castryck and Fre Vercauteren for sharing their early draft on attacks
on some instances of M-SIDH and FESTA, the attacks described in this draft were
useful in the security analysis of our schemes. The first author has been supported in
part by EPSRC via grant EP/R012288/1, under the RISE (http://www.ukrise.org)
programme.

References

1. Adj, G., Cervantes-Vázquez, D., Chi-Domínguez, J.J., Menezes, A., Rodríguez-
Henríquez, F.: On the cost of computing isogenies between supersingular elliptic
curves. In: Cid, C., Jacobson, M.J., Jr. (eds.) SAC 2018. LNCS, vol. 11349, pp.
322–343. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-10970-
7_15

2. Banegas, G., et al.: CTIDH: faster constant-time CSIDH. IACR TCHES 2021(4),
351–387 (2021). https://doi.org/10.46586/tches.v2021.i4.351-387, https://tches.
iacr.org/index.php/TCHES/article/view/9069

3. Basso, A.: A post-quantum round-optimal oblivious PRF from isogenies. Cryptol-
ogy ePrint Archive, Report 2023/225 (2023). https://eprint.iacr.org/2023/225

4. Basso, A., Kutas, P., Merz, S.-P., Petit, C., Sanso, A.: Cryptanalysis of an oblivious
PRF from supersingular isogenies. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT
2021, Part I. LNCS, vol. 13090, pp. 160–184. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-92062-3_6

http://www.ukrise.org
https://doi.org/10.1007/978-3-030-10970-7_15
https://doi.org/10.1007/978-3-030-10970-7_15
https://doi.org/10.46586/tches.v2021.i4.351-387
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://tches.iacr.org/index.php/TCHES/article/view/9069
https://eprint.iacr.org/2023/225
https://doi.org/10.1007/978-3-030-92062-3_6
https://doi.org/10.1007/978-3-030-92062-3_6

New SIDH Countermeasures for a More Efficient Key Exchange 231

5. Basso, A., Maino, L., Pope, G.: FESTA: fast encryption from supersingular torsion
attacks. Cryptology ePrint Archive, Paper 2023/660 (2023). https://eprint.iacr.
org/2023/660, https://eprint.iacr.org/2023/660

6. Bernstein, D.J., De Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies
of large prime degree. Open Book Series 4(1), 39–55 (2020). https://doi.org/10.
2140/obs.2020.4.39

7. Beullens, W., Feo, L.D., Galbraith, S.D., Petit, C.: Proving knowledge of isogenies
- a survey. Cryptology ePrint Archive, Paper 2023/671 (2023). https://eprint.iacr.
org/2023/671, https://eprint.iacr.org/2023/671

8. Campos, F., et al.: On the practicality of post-quantum tls using large-parameter
csidh. Cryptology ePrint Archive, Paper 2023/793 (2023). https://eprint.iacr.org/
2023/793, https://eprint.iacr.org/2023/793

9. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. In: Hazay,
C., Stam, M. (eds.) Advances in Cryptology - EUROCRYPT 2023. LNCS, vol.
14008, pp. 423–447. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
30589-4_15

10. Castryck, W., Houben, M., Merz, S.P., Mula, M., van Buuren, S., Vercauteren, F.:
Weak instances of class group action based cryptography via self-pairings. Cryp-
tology ePrint Archive, Paper 2023/549 (2023). https://eprint.iacr.org/2023/549,
https://eprint.iacr.org/2023/549

11. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03332-3_15

12. Castryck, W., Vercauteren, F.: A polynomial time attack on instances of M-SIDH
and FESTA. To appear in ASIACRYPT 2023 (2023)

13. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from
expander graphs. J. Cryptol. 22(1), 93–113 (2009). https://doi.org/10.1007/
s00145-007-9002-x

14. Chen, M., Imran, M., Ivanyos, G., Kutas, P., Leroux, A., Petit, C.: Hidden stabi-
lizers, the isogeny to endomorphism ring problem and the cryptanalysis of psidh
(2023)

15. Childs, A.M., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quan-
tum subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014). https://doi.org/10.
1515/jmc-2012-0016

16. Chávez-Saab, J., Chi-Domínguez, J.J., Jaques, S., Rodríguez-Henríquez, F.: The
SQALE of CSIDH: sublinear Vélu quantum-resistant isogeny action with low expo-
nents. J. Cryptogr. Eng. 12(3), 349–368 (2022). https://doi.org/10.1007/s13389-
021-00271-w

17. Codogni, G., Lido, G.: Spectral theory of isogeny graphs (2023)
18. Colò, L., Kohel, D.: Orienting supersingular isogeny graphs. Cryptology ePrint

Archive, Report 2020/985 (2020). https://eprint.iacr.org/2020/985
19. Colò, L., Kohel, D.: Orienting supersingular isogeny graphs. J. Mathematical Cryp-

tol. 14(1), 414–437 (2020)
20. Cong, K., Lai, Y.F., Levin, S.: Efficient isogeny proofs using generic techniques.

Cryptology ePrint Archive, Report 2023/037 (2023). https://eprint.iacr.org/2023/
037

21. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient com-
pression of SIDH public keys. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017, Part I. LNCS, vol. 10210, pp. 679–706. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56620-7_24

https://eprint.iacr.org/2023/660
https://eprint.iacr.org/2023/660
https://eprint.iacr.org/2023/660
https://doi.org/10.2140/obs.2020.4.39
https://doi.org/10.2140/obs.2020.4.39
https://eprint.iacr.org/2023/671
https://eprint.iacr.org/2023/671
https://eprint.iacr.org/2023/671
https://eprint.iacr.org/2023/793
https://eprint.iacr.org/2023/793
https://eprint.iacr.org/2023/793
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-031-30589-4_15
https://eprint.iacr.org/2023/549
https://eprint.iacr.org/2023/549
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1007/s00145-007-9002-x
https://doi.org/10.1515/jmc-2012-0016
https://doi.org/10.1515/jmc-2012-0016
https://doi.org/10.1007/s13389-021-00271-w
https://doi.org/10.1007/s13389-021-00271-w
https://eprint.iacr.org/2020/985
https://eprint.iacr.org/2023/037
https://eprint.iacr.org/2023/037
https://doi.org/10.1007/978-3-319-56620-7_24
https://doi.org/10.1007/978-3-319-56620-7_24

232 A. Basso and T. B. Fouotsa

22. Couveignes, J.M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006/291 (2006). https://eprint.iacr.org/2006/291

23. Dartois, P., De Feo, L.: On the security of OSIDH. Cryptology ePrint Archive,
Report 2021/1681 (2021). https://eprint.iacr.org/2021/1681

24. De Feo, L., et al.: Séta: supersingular encryption from torsion attacks. In: Tibouchi,
M., Wang, H. (eds.) ASIACRYPT 2021, Part IV. LNCS, vol. 13093, pp. 249–278.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5_9

25. De Feo, L., Dobson, S., Galbraith, S.D., Zobernig, L.: SIDH proof of knowledge.
In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part II. LNCS, vol. 13792, pp.
310–339. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22966-
4_11

26. De Feo, L., et al.: SCALLOP: scaling the CSI-FiSh. In: Boldyreva, A., Kolesnikov,
V. (eds.) Public-Key Cryptography - PKC 2023. LNCS, vol. 13940, pp. 345–375.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-31368-4_13

27. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: compact
post-quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H.
(eds.) ASIACRYPT 2020, Part I. LNCS, vol. 12491, pp. 64–93. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64837-4_3

28. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic
curves over Fp. Designs Codes Cryptography 78(2), 425–440 (2016). https://doi.
org/10.1007/s10623-014-0010-1

29. Fouotsa, T.B., Moriya, T., Petit, C.: M-SIDH and MD-SIDH: countering SIDH
attacks by masking information. In: Hazay, C., Stam, M. (eds.) Advances in Cryp-
tology - EUROCRYPT 2023. LNCS, vol. 14008, pp. 282–309. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-30589-4_10

30. Fouotsa, T.B., Petit, C.: A new adaptive attack on SIDH. In: Galbraith, S.D. (ed.)
CT-RSA 2022. LNCS, vol. 13161, pp. 322–344. Springer, Cham (2022). https://
doi.org/10.1007/978-3-030-95312-6_14

31. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski, B.S., Jr. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 16–30. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052225

32. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34

33. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6_3

34. Jao, D., et al.: SIKE. Technical report, National Institute of Standards and Tech-
nology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/post-
quantum-cryptography-standardization/round-3-submissions

35. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071,
pp. 19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-
5_2

36. Kani, E.: The number of curves of genus two with elliptic differentials. Journal für
die reine undangewandte Mathematik 1997(485), 93–122 (1997). https://doi.org/
10.1515/crll.1997.485.93

37. Leroux, A.: A new isogeny representation and applications to cryptography. In:
Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part II. LNCS, vol. 13792, pp.
3–35. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22966-4_1

https://eprint.iacr.org/2006/291
https://eprint.iacr.org/2021/1681
https://doi.org/10.1007/978-3-030-92068-5_9
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-031-22966-4_11
https://doi.org/10.1007/978-3-031-31368-4_13
https://doi.org/10.1007/978-3-030-64837-4_3
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/s10623-014-0010-1
https://doi.org/10.1007/978-3-031-30589-4_10
https://doi.org/10.1007/978-3-030-95312-6_14
https://doi.org/10.1007/978-3-030-95312-6_14
https://doi.org/10.1007/BFb0052225
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1515/crll.1997.485.93
https://doi.org/10.1515/crll.1997.485.93
https://doi.org/10.1007/978-3-031-22966-4_1

New SIDH Countermeasures for a More Efficient Key Exchange 233

38. Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A direct key
recovery attack on SIDH. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology
- EUROCRYPT 2023. LNCS, vol. 14008, pp. 448–471. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-30589-4_16

39. Peikert, C.: He gives C-sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 463–492. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45724-2_16

40. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp.
330–353. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_12

41. Pope, G.: Kummer Isogeny SageMath Library. https://github.com/jack4818/
KummerIsogeny (2023)

42. de Quehen, V., et al.: Improved torsion-point attacks on SIDH variants. In: Malkin,
T., Peikert, C. (eds.) CRYPTO 2021, Part III. LNCS, vol. 12827, pp. 432–470.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_15

43. Robert, D.: Breaking SIDH in polynomial time. In: Hazay, C., Stam, M. (eds.)
Advances in Cryptology - EUROCRYPT 2023. LNCS, vol. 14008, pp. 472–503.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_17

44. Silverman, J.H.: The Arithmetic of Elliptic Curves, vol. 106. Springer, New York
(2009). https://doi.org/10.1007/978-0-387-09494-6

45. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
9.8) (2023). https://www.sagemath.org

46. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptol. 12(1), 1–28 (1999). https://doi.org/10.1007/PL00003816

47. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris, Séries A 273,
305–347 (1971)

https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-319-70697-9_12
https://github.com/jack4818/KummerIsogeny
https://github.com/jack4818/KummerIsogeny
https://doi.org/10.1007/978-3-030-84252-9_15
https://doi.org/10.1007/978-3-031-30589-4_17
https://doi.org/10.1007/978-0-387-09494-6
https://www.sagemath.org
https://doi.org/10.1007/PL00003816

Symmetric-Key - Design

The Indifferentiability of the Duplex
and Its Practical Applications

Jean Paul Degabriele1,3(B), Marc Fischlin2 , and Jérôme Govinden3

1 Cryptography Research Center, Technology Innovation Institute, Abu Dhabi, UAE
jeanpaul.degabriele@tii.ae

2 Cryptoplexity, Technische Universität Darmstadt, Darmstadt, Germany
marc.fischlin@cryptoplexity.de

3 CNS, Technische Universität Darmstadt, Darmstadt, Germany
jerome.govinden@tu-darmstadt.de

Abstract. The Duplex construction, introduced by Bertoni et al. (SAC
2011), is the Swiss Army knife of permutation-based cryptography. It
can be used to realise a variety of cryptographic objects—ranging from
hash functions and MACs, to authenticated encryption and symmetric
ratchets. Testament to this is the STROBE protocol framework which is a
software cryptographic library based solely on the Duplex combined with
a rich set of function calls. While prior works have typically focused their
attention on specific uses of the Duplex, our focus here is its indifferentia-
bility. More specifically, we consider the indifferentiability of the Duplex
construction from an online random oracle—an idealisation which shares
its same interface. As one of our main results we establish the indifferen-
tiability of the Duplex from an online random oracle. However indiffer-
entiability only holds for the standard Duplex construction and we show
that the full-state variant of the Duplex cannot meet this notion. Our
indifferentiability theorem provides the theoretical justification for the
security of the Duplex in a variety of scenarios, amongst others, its use as
a general-purpose cryptographic primitive in the STROBE framework.
Next we move our attention to AEAD schemes based on the Duplex,
namely SpongeWrap, which is the basis for NIST’s Lightweight Cryp-
tography standard Ascon. We harness the power of indifferentiability
by establishing that SpongeWrap offers security against key-dependent
message inputs, related-key attacks, and is also committing.

1 Introduction

Permutation-based cryptography supplants the block cipher with an unkeyed
public permutation as the central building block for realising symmetric-key
cryptographic primitives. The approach has led to innovative and versatile
designs in symmetric-key cryptography and is now establishing itself as a field
of study in its own right. The SHA-3 standard is a prime example of its suc-
cess, which brings to light the versatility of the approach in yielding a variety of
primitives such as SHA-3, SHAKE, KMAC, TupleHash, and ParallelHash [30]
c© International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14445, pp. 237–269, 2023.
https://doi.org/10.1007/978-981-99-8742-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8742-9_8&domain=pdf
http://orcid.org/0000-0003-0597-8297
http://orcid.org/0000-0003-2658-3251
https://doi.org/10.1007/978-981-99-8742-9_8

238 J. P. Degabriele et al.

from the same underlying construction, i.e., the Sponge [11]. The fact that the
Sponge turned out to be such a versatile construct is not that surprising when
one considers the central role that the random oracle [9] plays in cryptography
in general. The power of the random oracle comes both from its conceptual
simplicity and its ability to be a drop-in replacement for a multitude of crypto-
graphic primitives. With minor cosmetic changes, a random oracle can serve as
a one-way function, a collision-resistant hash, a pseudorandom generator, a ran-
domness extractor, or a pseudorandom function. In turn, the Sponge inherits all
these lucrative properties from the random oracle through its indifferentiability
theorem, under the assumption that the underlying public permutation acts as
a random permutation.

In 2011, permutation-based cryptography received a boost from the advent
of the Duplex construction [12]. The Duplex construction supersedes the Sponge
in that it can perfectly mimic the Sponge but allows for yet more functional-
ity. Whereas the Sponge operates in two phases, an ‘absorb’ phase in which an
input is gradually mixed into the state followed by a ‘squeeze’ phase in which
an output is gradually extracted from the state until it is of the desired size,
the Duplex is capable of absorbing input and squeezing output simultaneously.
The main motivation behind the design of the Duplex is that it allows for more
efficient permutation-based AEAD schemes. In principle an AEAD scheme can
be constructed from two Sponge instances, one operating as a pseudorandom
generator and the other serving as a message authentication code. However that
would entail passing over the data twice, whereas the Duplex yields a more effi-
cient scheme that can process the data in one pass. A one-pass AEAD scheme
based on the Duplex, known as SpongeWrap, was proposed in [12]. Many candi-
dates of the CAESAR competition and the NIST lightweight competition were
based on SpongeWrap. This includes in particular Ascon [21], the new NIST
lightweight crypto standard and CAESAR’s primary choice for authenticated
encryption.

More recently, the Duplex has taken a life of its own among practition-
ers who, having recognised its elegance and versatility, have written crypto-
graphic libraries that are based solely on this one primitive. Two such examples
are the STROBE protocol framework by Mike Hamburg [29] and the State-
ful Hash Object (SHO) within Trevor Perrin’s Noise Protocol framework [37].
STROBE and SHO are fairly similar frameworks for realising protocols from
Duplex instances. A typical scenario would have two parties maintaining one or
more Duplex instances to encrypt and decrypt messages, possibly incorporating
a symmetric ratchet functionality, where either party can produce or verify, a
MAC tag or a hash digest, of the transcript at any point in time. The tenet
behind frameworks like STROBE and SHO is that the Duplex behaves like an
idealised cryptographic primitive that can be plugged into any protocol and
it will retain its security. Clearly, this would hold true if the Duplex, like the
Sponge, were backed by an indifferentiability theorem, but unfortunately no such
result exists in the literature. In fact, it is not even clear what ideal-functionality
behaviour one can expect from the Duplex.

The Indifferentiability of the Duplex and Its Applications 239

When the Duplex was first proposed in [12], it was observed that a sequence
of queries to the Duplex could be evaluated by mapping that sequence of inputs
to a separate input sequence and then feeding that to the Sponge. Accordingly,
it was then argued that if the Sponge is secure then the Duplex must also be
secure. This argument was formalised in the security proof of SpongeWrap in that
same paper, by first proving the security of SpongeWrap in the random oracle
model and then invoking the indifferentiability of the Sponge. While perfectly
legitimate, this security treatment is lacking in some respects. By reducing the
security of SpongeWrap directly to that of the Sponge, the security of the Duplex
was left uncovered. In particular, a formal security definition for the Duplex was
not provided. This left unattended the question of what security one should
expect from the Duplex, thereby failing to recognise its merit as a cryptographic
primitive in its own right. In principle one could rely on the mapping from
the Duplex to the Sponge but we contend that this approach is cumbersome,
unintuitive, and error-prone. Another drawback of this approach is that the
mapping from the Duplex to the Sponge entails an unnecessary degradation
in the resulting security bound. Indeed, as we expand upon later, the security
bound for SpongeWrap that results from applying this method is actually worse
than that presented in [12], an issue that thus far seems to have gone unnoticed.

Motivated by the popularity of the Duplex and its varied applications, we
provide the first treatment of the Duplex in the indifferentiability framework
of Maurer, Renner, and Holenstein [34]. While there have been a number of
works that consider the security of the Duplex in terms of indistinguishability,
our proof of indifferentiability is beneficial for a number of reasons. First off, we
provide an idealisation of the Duplex that gives a direct and intuitive way to
reason about the Duplex construction and the security of its applications. We call
this ideal functionality the online random oracle. The composition theorem then
guarantees that we can replace an instance of the Duplex with the online random
oracle, with the usual care regarding multi-stage games [38]. Thus our treatment
provides the formal justification for employing the Duplex as a general-purpose
primitive, as done in STROBE and SHO for instance. Our indifferentiability
result is also useful in the case where the Duplex is endowed with a secret key,
as in an AEAD scheme. In particular it allows for a simpler and more direct
security analysis in the online random oracle model as opposed to a more involved
analysis in the random permutation model. Besides simplifying the analysis in
the standard AEAD setting, the online random oracle model also enables an
easier treatment with respect to stronger security models, such as related-key
and key-dependent-input security.

1.1 Summary of Our Contributions

The Online Random Oracle. Before we can delve into examining the indiffer-
entiability of the Duplex with respect to an ideal permutation we need to identify
a suitable ideal functionality. Our answer is the online random oracle (ORO),
which is a natural adaptation of the random oracle to a stateful primitive that
can be interacted with in an online manner, allowing to iterate over the outputs

240 J. P. Degabriele et al.

by appending new inputs. Besides enabling our treatment of indifferentiability,
we believe this abstraction to be more intuitive, concise, and direct than having
to map the sequence of inputs for the Duplex to a sequence of inputs for the
Sponge and then replacing it with a random oracle.

A peculiarity of the ORO is that it only takes inputs of a fixed size, which in
turn allows us to analyse the Duplex without padding. While this may seem more
restrictive at first, since the Duplex can only take inputs of a certain size, it actu-
ally renders our treatment more general. In the Sponge construction, padding
is not only required to allow for arbitrary-length inputs but it is also necessary
for security and indifferentiability to hold. In particular, padding is required to
delineate the boundary between input and output, thereby excluding the possi-
bility of two inputs (say x and x‖0r) having related outputs. Now, in order to
map the Duplex to the Sponge, the Duplex needs to include ‘Sponge-compliant’
padding in every round as in [12]. Consequently, a security treatment based on
this mapping relies crucially on the presence of this padding. Lifting the need
for sponge-compliant padding removes this extra layer of complexity, reducing
padding from a matter of security to one of functionality, and allows practition-
ers the freedom to use the padding that best fits their application. While some
AEAD constructions include sponge-compliant padding, e.g., Ketje [13], others
do not, e.g. Ascon [21]. Accordingly our treatment serves in part to justify this
latter type of constructions. Finally, we provide the ORO with a more pragmatic
API that supports multiple concurrent sessions and the ability to switch easily
between them. This serves to bring the ORO closer to practice, and although
it may seem like a superficiality the specifics of the API have an effect on the
simulator’s efficiency used to prove indifferentiability.

Indifferentiability of the Duplex. We start by considering a variant of the
Duplex that appeared in [20,22,35,36], known as the full-state Duplex, and show
that indifferentiability is out of reach for this variant. This result justifies our
choice of restricting our attention to the Duplex without full state absorption,
requiring that the encoding functions cannot affect the entire input. We then go
on to prove our main result of indifferentiability between the Duplex and the
ORO. This result can be leveraged in a variety of settings. For instance, an imme-
diate consequence is that the Duplex yields an online randomness extractor [24].
Alternatively, by lifting constructions based on the Duplex to the ORO model
one can employ proof techniques similar to the random oracle model, like ‘pro-
grammability’ and ‘extractability’. We emphasize that we obtain a fairly good
indifferentiability bound and that our simulator is very efficient. This serves to
make our result all the more usable and meaningful in practice, resulting in good
bounds when composability is invoked.

Stronger Security for SpongeWrap. Our indifferentiability theorem is prof-
itable also for the case where the Duplex is used as keyed primitive, its most
popular application being the realisation of one-pass AEAD schemes. We use it
to revisit the security of SpongeWrap in more demanding settings that, to the

The Indifferentiability of the Duplex and Its Applications 241

best of our knowledge, have not been considered so far: key-dependent message
(KDM) security, related-key attacks (RKA), and commitment (CMT). KDM
security guarantees security when an AEAD scheme is used to encrypt a mes-
sage that depends on the key or an application where a number of keys are used
to encrypt each other in the form of a cycle. Such cases arise in disk encryption,
hardware security modules, and key management/distribution systems. RKA
security models scenarios such as fault-injection attacks where an adversary may
obtain ciphertexts evaluated under modified key values which is a concern when
an adversary gets access to the hardware the scheme is running on. Recent works
[1,28,32] have highlighted several practical issues, in relation to message frank-
ing, password-based AEAD, key rotation, and envelope encryption, that arise
when an AEAD is non-committing.

We prove SpongeWrap to be KDM-AEAD secure as defined by Bellare and
Keelveedhi [7]. To this end we first prove that the (nonce-based SpongeWrap
version of the) ORO achieves KDM-AEAD security. Then we can apply the
composition theorem of Barbosa and Farshim [5] for indifferentiable Authenti-
cated Encryption to conclude that the nonce-based SpongeWrap of the Duplex
is also secure. We provide a similar treatment covering security against related-
key attacks (RKA-AEAD) and committing security (CMT-AEAD). Our analysis
serves to highlight the fact that AEAD schemes based on the Duplex automati-
cally offer these attractive properties without requiring any alteration that would
detriment their efficiency or any additional assumption beyond what is already
required.

2 Preliminaries

Notation. Unless otherwise stated, an algorithm may be randomised. For any
algorithm A we use y ← A(x1, x2, . . .) to denote the process of running A on
the indicated inputs and fresh random coins, and assigning the output to y.
By convention the running time of an adversary refers to the sum of its actual
running time and the size of its description. We generically refer to the resources
of an adversary as any subset of the following quantities: its running time, the
number of queries that it makes to its oracles, and the total length (in bits) of
its oracle queries. We write B.sub1, B.sub2, . . . to denote a group of algorithms
that share state and refer to them collectively as B.

If S is a set then |S| denotes its size, and z � S denotes the process of
selecting an element from S uniformly at random and assigning it to z. When
assigning a value y to variable x or table entry T [x] we write x ← y or T [x] ←
y. We assume throughout that tables are initialized to ⊥ entries and sets are
initially empty. When T is a table, we write x ∈ T to indicate that the table
entry T [x] �= ⊥. For sets X and Y , the set of all functions mapping from X to
Y is denoted by Func(X,Y).

For a bit b and a positive integer n, we denote by bn the string composed of
b repeated n times. With {0, 1}n we denote the set of all binary strings of length
n, and {0, 1}∗ denotes the set of all binary strings of finite length. The empty

242 J. P. Degabriele et al.

string is represented by ε. For any two strings u and v, |u| denotes the length
of u in bits, u ‖ v denotes their concatenation, and u ⊕ v denotes their bitwise
XOR operation. For n ∈ N and u ∈ {0, 1}∗, (u1, . . . , u�)

n←− u denotes the n-bit
parsing of u where |ui| = n for all 1 ≤ i < � and 0 < |ui| ≤ n. For a boolean
expression exp, we denote its encoding into a single bit as 〈exp〉. We use u[i, j]
to denote the substring of u from bit i to bit j inclusive, where the indexes start
at 1. For a positive integer n ≤ |u|, we use �u�n to denote the strings obtained
by truncating u to its leftmost n bits. We denote by [t] the set {1, . . . , t}, t ∈ N.

We will at times make use of the code-based game-playing framework by
Bellare and Rogaway [10]. Here the interaction between a game and the adversary
is implicit, whereby the adversary is given as its input the output of the initialize
procedure, it has oracle access to the other procedures described in the game, and
its output is fed into the finalize procedure. The output of the finalize procedure
is the output of the game. For a game Gm and an adversary A, GmA ⇒ x denotes
the event that Gm outputs x when interacting with A. Similarly, AGm ⇒ y
denotes the event that A outputs y when interacting with Gm.

AEAD Syntax. An authenticated encryption scheme with associated data
SE = (K,E,D) is a triple of efficient algorithms such that:

– The key generation algorithm K is randomised, takes no input, and samples
k-bit strings according to some distribution.

– The encryption algorithm E : {0, 1}k ×{0, 1}n ×{0, 1}∗ ×{0, 1}∗ → {0, 1}∗ is
deterministic and takes as input a secret key K, a nonce N , associated data
A, and a message M to return a ciphertext C.

– The decryption algorithm D : {0, 1}k×{0, 1}n×{0, 1}∗×{0, 1}∗ → {0, 1}∗∪{⊥
} is deterministic and takes as input a secret key K, a nonce N , associated
data A, and a ciphertext C to return a message M ∈ {0, 1}∗ or M = ⊥
indicating an invalid set of inputs.

We require that an authenticated encryption scheme be both correct and tidy.
Correctness requires that for all K,N,A,M it hold that if E(K,N,A,M) = C
then D(K,N,A,C) = M . In a similar manner, tidiness requires that for all
K,N,A,C it hold that if D(K,N,A,C) = M �= ⊥ then E(K,N,A,M) = C.
Moreover, encryption must be length regular, i.e., we assume a function cl(·, ·)
such that |C| = cl(|A|, |M |) for any C returned by E(·, ·, A,M).

2.1 The Duplex

The Duplex is a construction similar to the Sponge that is based on some public
permutation p over b-bit strings. A user can interact with the Duplex either via
an initialisation call Dup.init or a next call Dup.next. An initialisation call starts
a session which sets the initial state to some fixed value IV and processes the
given input. The session can then be updated via one or more next calls. Both
type of calls take an input of size r bits and return an output of r bits. The

The Indifferentiability of the Duplex and Its Applications 243

Fig. 1. The Duplex construction from a public permutation p, where r is the (input)
rate and encode maps the r-bit input X to b = r + c bits resp. decode maps the
permutation’s output to r bits again. Algorithm GenID generates a unique identifier in
order to be able to handle multiple sessions simultaneously.

value r is called the rate of the Duplex. A detailed pseudocode description of
the Duplex is shown in Fig. 1.

The internal working of the Duplex is also described pictorially in Fig. 2. The
function encode works by appending the bits 0c to its inputs and decode reverses
this operation by truncating the rightmost c bits of its input. The quantity c is
known as the capacity where c = b − r. At any point the state of the Duplex
consists of a b-bit string S. We use SR and SC to denote the leftmost r bits and
the right most c bits of S respectively. We will slightly abuse terminology by
referring to SR and SC as the rate component and capacity component of S.

Typically, constructions based on the Duplex will need to use some form of
padding to handle variable length inputs. Our formulation of the Duplex does
not consider such padding to be part of it. This increases the generality of our
treatment, in that security, specifically indifferentiability, will not rely on the
particular type of padding being used as long as the input is of the right size. In
contrast, note that for the Sponge to be indifferentiable from a random oracle it
requires a specific type of padding, even if the input size is restricted to be an
integral multiple of the rate.

Finally, note that we let the Duplex support multiple sessions. We do so
by extending the interface to return a session identifier after each initialisation
call and require that every subsequent next call refer to a specific session. Past
formulations of the Duplex could support only a single session at any point in
time where an initialisation call would automatically erase the state of the prior
session. In contrast our interface allows one to easily switch between sessions
without having to repeat the prior inputs in order to advance the Duplex to
its last state. This reflects a more realistic implementation of the Duplex that
relieves its users from making unnecessary queries.

244 J. P. Degabriele et al.

Fig. 2. Duplex based on permutation p. Note that the encoding and decoding functions
in each round only access the same rate part of the intermediate state, i.e., the same
bit positions, independent of the round. Subscripts in inputs and outputs denote the
number of p applications which have been made so far.

2.2 Prior Security Treatments of the Duplex

The Duplex construction first appeared in [12] as a way of ‘duplexing’ the Sponge
in order to realise one-pass AEAD schemes, like SpongeWrap, from public per-
mutations. The crucial observation behind the design of the Duplex was that a
call to Duplex could be mapped to a call to the Sponge, thereby reducing an
instance of the Duplex to a sequence of Sponge calls. This was stated as the
Duplexing-Sponge lemma (cf. [12, Lemma 3]), and was then used to analyse the
AEAD security of SpongeWrap. Namely, in the AEAD game, Duplex queries
were translated to Sponge queries to allow for an analysis of SpongeWrap in the
random oracle model. The result was then translated to the random permutation
model by leveraging the indifferentiability of the Sponge.

While this observation was very insightful and valuable in leading to the
creation of the Duplex, there are significant limitations in resting the security
of the Duplex on this approach. To begin with, it lacks a compact and intuitive
security definition for the Duplex. This limits our understanding of the Duplex
as well as our ability to use it correctly and securely. For instance, there are
fundamental differences between the Duplex and the Sponge, which are easy to
overlook if we restrict ourselves to think of the former in terms of the latter.
One case in point is the fact that the Duplex is a stateful construction whereas
the Sponge is in contrast stateless. Moreover, mapping from Duplex to Sponge
introduces an additional step in the analysis which adds unnecessarily to its
complexity. Secondly, by viewing the Duplex in terms of the Sponge we are
implicitly imposing any limitation that may be specific to the Sponge onto the
Duplex. For instance, a subtle condition for this mapping work is the inclusion
of ‘Sponge-compliant’ padding in every permutation call within the Duplex—
see [12,13] for details. While such padding is necessary in the case of the Sponge
for indifferentiability to hold true, as we will show, this turns out not to be the
case for the Duplex.

The Indifferentiability of the Duplex and Its Applications 245

Subsequent works on the Duplex, namely [20,22,35,36], have focused on the
Full-State Keyed Duplex (FSKD)—a variant of the Duplex which is always keyed
and that can admit inputs covering the full width b of the permutation. Exploit-
ing the fact that this primitive is always keyed, these treatments focus on secu-
rity in terms of indistinguishability. An overview of the Duplex variants and their
security in the sense of indistinguishability can be found in [35]. Instead we focus
here on the indifferentiability of the Duplex. As mentioned before, indifferentia-
bility is impossible to achieve for the full-state keyed Duplex.

2.3 Other Related Work

Barbosa and Farshim have introduced the notion of indifferentiable Authenti-
cated Encryption (iAE) [5]. Moreover they show that indifferentiable Authen-
ticated Encryption automatically guarantees security against Key-Dependent
Messages, Related-Key Attacks, and is committing. They present two ideal func-
tionalities for AEAD corresponding to the offline and online syntaxed. Both are
based on random injections, as introduced by Rogaway and Shrimpton [39]. Both
idealisations, have appealing properties but they also result in rather strong
objects. Unfortunately, as we explain in Sect. 7.2, it is not possible for a Duplex-
based single-pass AEAD scheme, like SpongeWrap, to be indifferentiable from
either of these functionalities. Our work addresses this gap by showing that
SpongeWrap achieves these advanced security properties based on the indiffer-
entiability of the Duplex, even if SpongeWrap is itself not iAE secure.

3 The Online Random Oracle

We propose the Online Random Oracle (ORO) as an idealisation of the Duplex
construction. This functionality is similar in spirit to the Ideal Extendible Input
Function (IXIF) described in [20] for the Full-State Keyed Duplex. However,
there are some important differences between the two—which we explain below.
As the name suggests, the ORO functionality can be viewed as an online adapta-
tion of the well-known random oracle functionality. A session is initiated with a
call to ORO.init, after which the input and output of the ORO can be extended
by r bits at a time via calls to ORO.next. The ORO is not forgetful, in the
sense that distinct sessions are subject to the condition that a common prefix
across their input sequences will result in a common prefix in their corresponding
output sequences. A pseudocode description of the online random oracle is pre-
sented in Fig. 3. Internally, for each session id, the corresponding input sequence
is mapped to a path (a string) Pid, where for each path a corresponding output
is sampled uniformly at random and stored in a table.

246 J. P. Degabriele et al.

Fig. 3. A lazy-sampled view of the Online Random Oracle functionality. Here, r is the
input and output size and Tab is a table, initialized as empty by setting all entries to
⊥. Algorithm GenID generates a unique identifier to support multiple sessions.

Sessions and Identifiers. Unlike a random oracle, the ORO is a stateful object
which introduces some additional complexity in modelling it as a shared resource.
Namely the output to a query depends on prior queries and when shared among
multiple algorithms we need to ensure that the queries of one algorithm do not
interfere with another algorithm’s queries. We use sessions precisely to circum-
vent this issue. At each ORO.init call a unique session identifier is created and
returned together with the output. A session identifier is simply a string and
we do not impose any further restriction on its format except the existence of
some algorithm GenID that can generate them uniquely and efficiently. Accord-
ingly GenID can simply increment a counter value or a random string. Then in
each ORO.next call the algorithm specifies which session should be updated. We
require that any algorithm with access to the ORO only make ORO.next calls to
session which it obtained from calls to ORO.init. Note that this requirement does
not limit access to the ORO in any way, it simply ensures that distinct parties
cannot interfere in each other’s sessions. Moreover, all sessions, irrespective of
which entity initiates them, are answered using the same randomness which can
alternatively be viewed as being sampled all at once at the beginning of the
game.

Differences Between the ORO and the IXIF. First let us observe that
the ORO and the IXIF serve different purposes: the former one is tailored for
indifferentiability whereas the other is intended for indistinguishability. Besides
targeting distinct security notions, they also model different constructions. While
the IXIF is intended as an idealisation of the full-state keyed Duplex, the ORO is
an idealisation of the unkeyed Duplex without full-state absorption, and, accord-
ingly, the two present different interfaces. A more subtle discrepancy is that the
full-state keyed Duplex described in [20] is “phased” differently from the stan-
dard Duplex [12], in that the input is not inserted at the same point where the
output is extracted.

The Indifferentiability of the Duplex and Its Applications 247

Fig. 4. Issues with stateful constructions in the indifferentiability framework: The state
changes by the simulator S in the ideal world may be detectable by the distinguisher
D .

In addition to the main input the IXIF takes a flag and during an initialisation
call it additionally takes a key handle and an initialisation vector. The flag
determines how the internal path is constructed. If the flag is set, the path
is constructed such that it also depends on the output that the IXIF returns.
Otherwise the path is constructed as in the case of the ORO. The different
phasing and flag introduced in [20] is meant to reflect applications where the the
adversary’s ability to overwrite the Duplex input is limited thereby allowing for
a better security bound in such cases. Follow-up works have introduced yet other
ways of phasing the Duplex, see [35] for a recent summary. In this work we stick
with the original Duplex phasing and reflect the more conservative setting where
the distinguisher can adaptively choose its input based on the prior output.

In the IXIF, the key handle reflects a multi-user setting where the distin-
guisher can query multiple instances of the IXIF—each instance corresponding
to a distinct pair of key and initialisation vector. Clearly the key handle serves
a very different purpose from that of a session identifier in the ORO, but they
also present a different interface. In contrast to the ORO, only one IXIF instance
exists at any point in time and thus one cannot progress two or more instances
simultaneously. That is, any sequence of inputs to a particular instance have to
be evaluated consecutively from start to end. While this is without loss of gen-
erality a construction such as NORX [4] that requires two or more simultaneous
instances is forced to repeat all prior queries when switching from one instance
to another.

4 Indifferentiability

In this section we recall the basic definitions of indifferentiability and discuss
some peculiarities relevant to out results. Indifferentiability has been defined
by Maurer et al. [34] in terms of random systems; we use here the algorithmic
approach of Coron et al. [19]:

248 J. P. Degabriele et al.

Definition 1. An algorithm C with access to an ideal primitive f is indifferen-
tiable from an ideal object R if there exists a simulator Sim such that for any
distinguisher D the advantage

Advindiff
C,f,R,Sim (D) =

∣
∣
∣Pr

[

DCf ,f = 1
]

− Pr
[

DR,SimR

= 1
]∣
∣
∣

is negligible.

We note that we are usually interested in efficient simulators Sim.

4.1 Indifferentiability of Stateful Constructions

Our online random oracle functionality is stateful, it keeps the path Pid of pre-
vious queries for next calls. Indifferentiability has so far been mostly used for
stateless ideal objects such as (plain) random oracles and ideal ciphers. But
the framework also allows for stateful constructions such as our online random
oracle. This switch, however, may cause inconsistencies in the state of the con-
struction if we carelessly move from the real world to the ideal world (see Fig. 4).
In the real world only the distinguisher queries the construction and alters the
state. In the ideal world both the distinguisher and the simulator may query the
ideal object, and in most solutions the simulator actually does query the ideal
primitive to ensure matching answers. But then the distinguisher may be able
to detect such state changes via calls to the construction.

Consider our scenario with the online random oracle. We argue that it is
necessary to distinguish between the paths under control of the distinguisher D
and the simulator Sim, otherwise no construction can be indifferentiable. Suppose
that the distinguisher D and the simulator Sim have access to the same instance
id and state Pid. Then the distinguisher (in either world) first queries init(X0)
and then next(X1, id) and next(X2, id) for random X0,X1,X2 to the construction
oracle. Let Z be the result of the final call. Afterwards it “resets” the state
of the online random oracle by another call init(X0) followed by next(X1) to
Pid = X0||X1. Now the distinguisher makes a call IV ⊕ encode(X0) to the
primitive oracle. Afterwards it makes a query next(X2, id) to the construction
oracle and then checks that it obtains once more the same result Z.

In the real world the state Pid = X0||X1 of the construction before D ’s final
call next(X2, id) will be sound and make the oracle return the same result Z as
earlier. In contrast, in the ideal world our simulator will have changed the state
to Pid = X0 when simulating the primitive call about X0, in order to provide a
consistent answer. It is conceivable that any simulator would need to change the
state, and if this happens then reconstructing the expected state Pid = X0||X1

is impossible, because the random value X1 is unknown to the simulator. But
then, with overwhelming probability, the distinguisher gets a mismatching value
in the final call next(X2, id).

We note that the indifferentiability framework already assumes different
interfaces for distinguisher and simulator such that one could keep one state
for D and a separate one for Sim to avoid the problems above. We have chosen

The Indifferentiability of the Duplex and Its Applications 249

the version with identifiers id since it is closer to real-life scenarios of various
instances. In terms of our indifferentiability proof for Duplex it also allows the
simulator to minimize the calls to the online random oracle to simulate answers
for the primitive.

4.2 Indifferentiability and Multistage Games

Indifferentiability comes with compositional guarantees in the sense that, instead
of using a construction Cf based on ideal primitive f in so-called single-stage
security game, one can securely use the indifferentiable ideal construction in the
game. However, as pointed out by Ristenpart et al. [38] the composition theorem
of indifferentiability does not necessarily provide security for multistage security
games. Following the terminology in [5] we can view multistage security games
GCf ,A f

1,A f
2,...,A f

n as games in which several adversarial instances A f
1 ,A f

2 , . . . ,A f
n

with access to the ideal primitive f communicate with each other (through the
game) in restricted form. The problem for the indifferentiability simulator Sim
is that it usually needs to keep larger state for consistent simulations of the
primitive, which it may not be able to pass along if we join the simulator and
adversary into a single adversary against the game according to the composition
theorem.

Key-dependent message security and security against related-key attacks for
AEAD schemes are two prominent examples of multistage games where the gen-
eral composition results cannot be applied. For key-dependent message security
the adversary can see encryptions under message which may depend on the
key. In the most simple form the adversary picks a function φ for the encryption
scheme, one applies φ(K) to the key to derive the message M , and then encrypts
M under this key and returns the ciphertext to the adversary A . In the model
with ideal primitives the function φ (and other algorithms) may depend on f . As
discussed in [26] we can then view the attack as a two-stage game in which A f

1

chooses φf and A f
2 picks the key, evaluates φf , and returns the ciphertext back

to A1. Now we have two adversarial instances with restricted communication,
such that simulating the local instances by a single simulator is infeasible (and
even impossible, as [38] shows).

Barbosa and Farshim [5] discuss that one can resurrect compositional guar-
antees if one can virtually reduce the adversarial instances to a single stage. This
is the case if only one of the adversarial instances has access to primitive f, but
the other instances can only access Cf . Since the game has access to Cf , too,
one can execute the other instances via the game directly. More generally, they
present the following theorem:

Theorem 1 ([5, Theorem 2]). Let (C, f) be indifferentiable from R via
some simulator Sim. Let GCf ,A f

1,A Cf

2 ,...,A Cf

n be a security game for adversary
(A1, . . . ,An). Then there exists an adversary (B1, . . . ,Bn) and a distinguisher
D such that

Pr
[

GCf ,A f
1,A Cf

2 ,...,A Cf

n

]

≤ Pr
[

GR,BR
1,BR

2,...,BR
n

]

+Advindiff
C,f,R,Sim (D) .

250 J. P. Degabriele et al.

For key-dependent message security we can thus guarantee composition if
we let φ not depend on the primitive f but on the construction Cf only. Similar
restrictions apply to our other applications.

5 Differentiability of Full-State Duplex

In this section we show that one cannot achieve indifferentiability of the full-
state duplex where the round inputs Xi may affect the entire state. This is in
sharp contrast to the indistinguishability results in [20,22,35,36] and shows that
one cannot prove the stronger security guarantees of indifferentiability for this
duplex version.

Recall that indifferentiability [34] allows to compare ideal objects. More con-
cretely, assume that we have a construction C based on some ideal primitive f,
like the duplex construction Dup based on the ideal permutation p. We would
like to argue that the construction Cf looks like another ideal object R, say, our
online random oracle ORO. The distinguisher D against the construction may
also have access to the primitive f (and even the inverse permutation p−1 in
case of the duplex), running an attack DCf ,f . This is contrasted with the setting
where D communicates with the ideal object R and a simulator SimR simulating
the absent primitive in this setting. Indifferentiability then says that

Advindiff
C,f,R,Sim (D) =

∣
∣
∣Pr

[

DCf ,f = 1
]

− Pr
[

DR,SimR

= 1
]∣
∣
∣

is negligible.
Below we argue that the full-state duplex cannot achieve indifferentiability

from an online random oracle. Our result holds even under very mild assump-
tions, namely when the round-outputs Zi only consists of a single bit and if D
does not have access to the inverse permutation p−1. To capture the full-state
property in our generalised duplex setting we assume that for some round i,
given any string Yi ∈ {0, 1}r+c, one can (efficiently) determine an Xi such that
Yi = encode(Xi). In the attack below we describe for simplicity how the attack
works if i = 1. It can be easily adapted for other values of i ≥ 1.

Our distinguisher D I1,I2 , described in Fig. 5, has access to two oracle inter-
faces, either instantiated with Dupp and p in the real world, or with ORO and
SimORO in the ideal world. For the analysis first assume that we are in the real
world and I1 is the duplex construction and I2 the permutation p. Then the first
call to I1 about X||W in Line 4 computes

p(p(IV ⊕ encode(X)) ⊕ encode(W)) = p(Y ⊕ encode(W))

such that
Z = decode(p(Y ⊕ encode(W))).

The Indifferentiability of the Duplex and Its Applications 251

Fig. 5. Distinguisher D I1,I2 against Full-State Duplex.

The second call to I1 in Line 6 about X ′||W ′ is processed as:

p(p(IV ⊕ encode(X ′)) ⊕ encode(W ′)) = p(Y ′ ⊕ encode(W) ⊕ Y ⊕ Y ′)
= p(Y ⊕ encode(W))

such that
Z ′ = decode(p(Y ⊕ encode(W))).

In this case both calls thus yield the same value Z = Z ′ such that our distin-
guisher outputs 1.

Assume now that we are in the ideal setting and I1 is an (online) random
oracle ORO and I2 the simulator Sim instead. Since the inputs X||W and X ′||W ′

are distinct by assumption about X �= X ′, the random oracle returns the same
values Z = Z ′ with probability at most 2−|Z| ≤ 1

2 . It follows that the distin-
guisher returns 1 with probability at most 1

2 in this case. The overall advantage
of the distinguisher is therefore at least 1

2 , showing that it successfully tells both
cases apart.

While the attack we described exploits the full state absorption that happens
just after the first round of the Duplex, it can be easily adapted to exploit full
state absorption of the later rounds. When the full state absorption happens at
the initial round, the attack can be adapted by using in addition I−1

2 to construct
X ′,W ′ differently. Instead of choosing X ′ different from X and computing W ′

such that encode(W ′) = encode(W)⊕ I2(IV ⊕encode(X))⊕ I2(IV ⊕encode(X ′)),
we can choose W ′ different from W and compute X ′ such that encode(X ′) =
IV ⊕ I−1

2 (encode(W ′)⊕ encode(W)⊕ I2(IV ⊕ encode(X))). The attack then pro-
ceeds similarly as above with the same advantage.

6 Indifferentiability of Duplex from ORO

In this section we show, via a code-based argument, that the Duplex construction
is indifferentiable from ORO.

252 J. P. Degabriele et al.

6.1 Security Statement

As we have seen in the previous section, the security of the Duplex depends on
the encoding and decoding functions. In the following we consider the basic case
where all round functions are of the form encode(X) = X ‖ 0c for all rounds
such that the leading r bits form the rate part, and to which the input is simply
added in the Duplex iterations. Each decoding function decode(S) truncates
the capacity component and outputs the rate part of r bits in clear. Call these
functions plain.

Theorem 2. Let Dup be the Duplex construction described in Fig. 1 with plain
encoding and decoding functions, composed from a random permutation p over
b-bit strings, and let c denote its capacity. Further let ORO be the online random
oracle with rate r = b − c. Then there exists a simulator Sim such that for every
distinguisher D making qp queries to its permutation oracle and qc queries to
its construction oracle, where qp, qc ≤ 2c−2, its advantage in differentiating Dup
from ORO is bounded by

Advindiff
Dup,p,ORO,Sim (D) ≤ (qp + qc + 1)2 + 6qpqc

2c
.

Let (r ·�) be a bound on the maximum number of bits queried in an ORO session.
Then for each of the qp queries it receives, Sim runs in time proportional to �
and makes at most � calls to the ORO.

Proof Overview. The proof proceeds via a sequence of games, G0–G7. We
start from the real-world game where the distinguisher D interacts with a ran-
dom permutation p and the Duplex construction instantiated with this same
random permutation. We then transform this game, step by step, to the ideal-
world game, where the distinguisher has access to the online random oracle ORO
and a simulator Sim, and argue that any two consecutive games can only be dis-
tinguished with (at most) negligible probability. Note that we build our simulator
gradually as we progress through the game sequence, and accordingly we define
several distinct simulator algorithms in the process. However, the simulator that
the indifferentiability theorem refers to, is the one in the final game (G7). We
also remark that the strategy of this simulator is independent of the distinguisher
in question, as required by the standard notion of strong indifferentiability.

Analogous to the proof of indifferentiability for the Sponge [11], we associate
to our simulator a directed graph, that evolves as D and Dup query the sim-
ulator. In this directed graph each node represents a string of size b, and an
edge (U, V) represents the mapping U → V . Accordingly, a forward query to the
simulator on input U returns V , denoted as V ← Sim(U,+), and similarly, an
inverse query to the simulator on input V returns U , denoted as U ← Sim(V,−).
The simulator maintains this directed graph in a data structure G, where for any
node U , G.in(U) identifies the predecessor of U and G.out(U) its successor. From
this directed graph of input-output mappings, we can derive a second directed
graph, which we refer to as the capacity graph, by collapsing all nodes sharing

The Indifferentiability of the Duplex and Its Applications 253

the same capacity component into a single node identified by that capacity com-
ponent. The simulator will ensure that no two adjacent nodes share the same
capacity component, and thus all edges in the graph of input-output mappings
will transfer to the capacity graph. The reason we care about the capacity graph
is that every session evaluated by the Duplex will correspond to a unique path
on the capacity graph. More specifically, calls to DupSim will result in a directed
tree, rooted at IV C , where each session corresponds to a path between the root
and a leaf node. Consequently, the simulator must ensure that if the queries it
receives from D correspond to edges on this tree they must be consistent with
the online random oracle as otherwise D would be able to differentiate the real
world from the ideal world. To accomplish this, our simulator will maintain its
own copy of this tree and only extend it through forward (+) queries for which
the queried node is already in the tree and then add a freshly sampled node
adjacent to the queried node. The ability to detect when a query extends a path
in the tree allows the simulator to recover the path corresponding to the relevant
session on the online random oracle and sample the new node consistently with
it. In addition the simulator will ensure that queries involving nodes outside the
tree and inverse queries do not interfere with the tree structure.

A key requirement of the simulator is that it needs to simulate p from ORO
without any knowledge of D ’s queries to ORO. A natural approach to prove
indifferentiability, which is also the approach we adopt, is to start from p and
transform it gradually into the desired simulator. However in the real world p has
an interface to the construction which indirectly informs it of the distinguisher’s
queries to the construction. Consequently, the central challenge in the proof,
when transitioning from p to the final simulator, is in dropping the simulator’s
interface to the construction. The reason this is problematic is that removing the
construction interface can alter the simulator’s internal state, as it is no longer
affected by the distinguisher’s queries to the construction. This was also noted
in [17], pointing out that the original indifferentiability proof of the Sponge [11]
overlooked this step. In turn, [17] provided its own indifferentiability proof of
the Sponge. We note, however, that we handle this transition quite differently
from [17], and, in fact, our proof strategy turns out to be significantly different
from that in [17] or [11]. Moreover, we are obviously considering a different
construction (the Duplex instead of the Sponge) from these prior works, and,
because we adopt a code-based proof approach, we also delve deeper into the
implementation details of the simulator which allows us to better quantify its
resources.

Below is an outline of the game transitions in our proof. Some of the games have
a boxed (or unboxed) variant which is a reformulation of the prior game that
is mainly intended for better exposition. In this outline we only list the game
variant in which the substantive alteration occurs.

Game G0: This is the real-world game where the distinguisher D is given access
to the Duplex Dupp via its construction oracle, as well as direct oracle access
to the random permutation p.

254 J. P. Degabriele et al.

Game G1: In this game, instead of sampling the random permutation at the
start of the game we implement p through lazy-sampling where we store the
input-output mappings as a directed graph in the data structure G. As this
is merely a syntactic change, G0 and G1 are perfectly indistinguishable.

Game G2: We now replace p with a simulator Simfc that samples nodes in the
graph according to a different distribution. Specifically, it ensures that all
sampled nodes have a fresh capacity component and samples the rate compo-
nent uniformly at random. To accomplish this, Simfc maintains a list C of the
capacity component of every node that is added to G and IV C , and samples
the capacity component uniformly from the set {0, 1}c \ C.
Note that distinct nodes in G can still share the same capacity component,
as queried nodes are also added to G and there is no restriction on which
nodes can be queried. However this modification ensures that no two adja-
cent nodes share the same capacity component and consequently the capacity
graph contains no loops. Moreover since all sampled nodes have a fresh capac-
ity component, there will also be no cycles in the capacity graph.
We also introduce some labeling that leaves the game functionally unaltered,
but which will become handy later on. Everytime a node is added to G, we
mark it with ‘$’ or ‘∗’ to indicate whether the node was added via sampling or
as a query input, respectively. Note that, due to the fresh-capacity sampling,
for each capacity component stored in C there exists at most one node with
that capacity component and the mark $. We call such a node the represen-
tative of that capacity component and we additionally store it alongside each
entry in C (if it exists).

Game G3: We now adapt the simulator’s behaviour to take into account the
interface from which it receives a query. We do so by providing two separate
interfaces: Simp which handles direct primitive queries from the distinguisher,
and Simc which handles internal calls from the construction. We also intro-
duce new labelling and in this game the interface-dependent behaviour of
the simulator differs only in how this labelling is applied. Every node that is
added to G is additionally labelled with ‘d’ or ‘t’, where ‘t’ represents nodes
on a computation path of the duplex (starting with “root” IV and poten-
tially branching of from an earlier computation path, thus forming a tree of
paths), and ‘d’ marks disconnected nodes through direct primitive queries.
This labelling extends to the corresponding entries in C and is applied as fol-
lows. Nodes added by Simc are always labelled with ‘t’, whereas nodes added
by Simp are labelled with ‘d’ except when (1) there already exists another
node in G with the same capacity component labelled ‘t’, or (2) the node’s
predecessor is labelled ‘t’. In addition the node IV is labelled ‘t’ before any
query is made.
Through this labelling we have effectively subdivided C into two disjoint sets
Cd and Ct. Thus, the capacity graph can now be subdivided into two sub-
graphs whose nodes correspond to these two sets. Of particular note is the
capacity subgraph corresponding to Ct, which represents Duplex evaluations
carried out by the distinguisher either through its construction oracle or com-
puted locally via its primitive oracle. Specifically, this capacity subgraph is

The Indifferentiability of the Duplex and Its Applications 255

a directed tree (hence the label ‘t’) with IV C as its root, and every path
from the root to any other node corresponds to a unique sequence of Duplex
queries. While the two subgraphs can be connected in general, edges can only
be directed from Cd to Ct and not vice versa.
At this point we have a two-part simulator which imposes enough structure
on the graph to allow it to discern queries that relate to a Duplex session
from ones that do not. In the remaining game transitions we further separate
Simp from Simc, and we gradually transform DupSimc into the ORO and Simp

into our final simulator.
Game G4: In this game we introduce an ORO instance, but we only make it

accessible to the simulator and not the distinguisher. That is, the construc-
tion oracle continues to be the Duplex construction, which makes primitive
queries to the simulator, which in turn can now query the ORO. The simu-
lator will now use the ORO to sample the rate component of nodes labelled
($,t) rather than sampling them uniformly at random. The sampling of the
capacity components remains unchanged.
Now, every node labelled ($,t) corresponds to a distinct node in the tree
within the capacity graph. In turn every node in the tree identifies a distinct
sequence of Duplex queries determined by the path from the root to that
node. Thus, for every new node labelled ($,t) the simulator will determine
this sequence of Duplex queries, submit them to the ORO, and assign its final
output as the rate component of that node. Intuitively, we have adjusted the
simulator to sample the nodes in the graph so that the output of the Duplex
matches that of the ORO. In addition, we have not altered the output distri-
bution of the simulator because every node identifies a distinct sequence of
Duplex queries, and accordingly the corresponding ORO output is guaranteed
to be uniformly distributed.

Game G5: In the previous game we have aligned the output of the construction
oracle with the ORO. Looking ahead, we ultimately want that the current
combination of the Duplex accessing Simp which in turn accesses the ORO be
replaced with the ORO directly. Although the construction oracle is already
reproducing the output of the ORO, we are not yet ready to make this swap.
The main reason is that Simc and Simp share memory, and thus the presence
of Simc heavily affects the operation of Simp. In this and the next game hop,
we work towards lifting the influence that Simc has on Simp in preparation
for that last step.
In this game we make four main changes. The first one is that we remove any
internal calls that Simp makes to Simc, so that they are separate algorithms,
although they still share memory. The second change is to let Simp keep
track of “its own copy” of Ct. Technically, we introduce another label p to
identify the nodes marked ‘t’ that are sampled by Simp. We store the capacity
components of these nodes in a new data structure Lp, initialised to {IV C},
and it clearly follows that Lp ⊆ Ct. Moreover the set Ct \ Lp identifies the
capacity components of the nodes sampled by Simc. The third change is that
we replace the lines which test for membership in Ct with a membership test
in Lp. This change makes partial progress in making Simp rely on the data

256 J. P. Degabriele et al.

that it generates itself. The fourth, and perhaps the most important part
of this game hop, is to limit the possibility of Simp outputting a node with
a capacity component contained in Lp ⊆ Ct. The most direct way in which
the distinguisher can cause this, is by reproducing the internal Duplex calls
corresponding to prior construction queries. To avoid this, we change Simp

so that it overwrites these capacity components, previously set by Simc, by
resampling them anew. Since construction queries do not reveal the capacity
components of the nodes that they sample, this resampling will ensure that
they remain hidden from the distinguisher with high probability. As a result
of this modification, the distinguisher will then be unlikely to query these
values to Simp. The technical challenge of this game hop lies in showing that
this resampling leaves the distribution of Simp’s outputs largely unaffected.

Game G6: We now adjust the sampling procedures in Simp so that it is not
affected by data structures which Simc writes to. More specifically, it will
now sample capacity components from {0, 1}c \ Cd ∪ Lp instead of {0, 1}c \
C. Note that we now sample from a slightly larger set, and by using the
fundamental lemma of game playing, it can be shown that this modification
is only detectable if at any point the sampled value lies in their set difference,
i.e., Ct \ Lp. This happens only with small probability.

Game G7: We are finally ready to replace the combination of the Duplex con-
struction, Simc, and the ORO, directly with the ORO itself. We can make this
change because at this point Simc is for the most part acting as a relay for-
warding calls to the ORO and forwarding back its replies. The only side effect
is that Simc adds nodes into the data structure G when forwarding queries
between the Duplex and the ORO. When we replace the Duplex with the ORO
these values will no longer be added to G, which is still used by Simp. However
this would only affect the operation of Simp if it is ever queried on the nodes
added by Simc. Once again, these are the nodes whose capacity components
are contained in Ct \ Lp, and most importantly, are hidden from the distin-
guisher. Thus this swap will only be noticeable with negligible probability
and Simp now serves as the final indifferentiability simulator.

The full details of the proof can be found in the full version of this paper.

7 Revisiting the Security of SpongeWrap

Having shown the Duplex to be indifferentiable from the ORO we now put this
result to use by analysing the security of constructions based on the Duplex.
Specifically, we can now leverage the indifferentiability of the Duplex to translate
security proofs in the ORO model to security proofs in the random permutation
model. One reason why this is advantageous is that we generally expect secu-
rity proofs in the ORO model to be simpler and more intuitive than ones in the
random permutation model. The target of our analysis will be SpongeWrap [12],
which is arguably the most direct approach for constructing an AEAD scheme

The Indifferentiability of the Duplex and Its Applications 257

from the Duplex, and it also served as the basis for several other Duplex-
based AEAD constructions—such as NIST’s Lightweight Cryptography stan-
dard Ascon [21]. Towards proving stronger security for SpongeWrap, one avenue
would be to prove it indifferentiable from one of the ideal AEAD primitives
put forth by Barbosa and Farshim [5]. As shown therein, this would automat-
ically imply that SpongeWrap retains security under related-key attacks and
key-dependent messages, offers misuse resistance, and is suitable for message
franking applications. Unfortunately, for reasons that we explain in Sect. 7.2,
SpongeWrap, and generally most Duplex-based AEAD schemes, are unable to
meet the idealised AEAD notions put forth in [5]. Nevertheless, with the excep-
tion of misuse-resistance, all security properties implied by ideal AEAD are still
perfectly within reach. In the rest of this section, we show, in the ORO model,
that SpongeWrap benefits from these advanced security properties and then use
Theorem 2 to translate these results to the random permutation model.

7.1 A Nonce-Based Variant of SpongeWrap

SpongeWrap was introduced in [12] as a one-pass AEAD scheme based on the
Duplex where its security was argued based on the indifferentiability of the
Sponge. As explained in Sect. 2.2, this approach has some drawbacks. Most
notably, it results in an effective security bound on the order of O(

N4
)

when
the total query count entails N permutation calls. In contrast, our analysis will
result in a bound on the order of O(

N2
)

. This quantitative improvement is a
direct consequence of basing the security analysis in the online random oracle
model as opposed to the random oracle model.

A pseudocode description of SpongeWrap (nSW[Dup]), expressed as a func-
tion of the Duplex is shown in Fig. 6, together with a pictorial description of
the encryption and decryption procedures in Figs. 7 and 8. It is assumed that
pad(·, r−1) only appends bits at the end of its first input such that it constitutes
an injective mapping to strings of size a(r − 1) for some integer a ≥ 1. In every
Duplex call, a bit is appended to each input in order to delineate the boundary
between the associated data and the message and between the ciphertext and
the tag. Specifically, this bit is always set to zero except for the last block of the
associated data and the last block of the message. This variant of SpongeWrap
differs from its original formulation in two ways. It explicitly exposes a fixed-
size nonce, whereas in the original version, the associated data was required to
be non-empty and non-repeating, thereby filling the role of a variable-length
nonce. Thus our adaptation of SpongeWrap makes it compliant with the stan-
dard nonce-based AEAD syntax. Secondly, it does away with Sponge-compliant
padding at every permutation call since it is not needed for the indifferentiability
of the Duplex.

258 J. P. Degabriele et al.

Fig. 6. Pseudocode description of SpongeWrap (nSW[Dup]) expressed as a function of
the Duplex.

We analyse SpongeWrap with respect to KDM, RKA and context commit-
ment security. Being already a fairly efficient scheme (it is the basis for several
CAESAR candidates) it is noteworthy that nSW[Dup] achieves KDM, RKA and
context commitment security without any additional overhead or assumptions.
In comparison, other AEAD constructions that achieve KDM-AEAD security
are the ideal AEAD constructions by Barbosa and Farshim [5] and the generic
transformation by Bellare and Keelveedhi [7]. The fastest construction from [5]
is a three-pass scheme, where each pass can be implemented via a Sponge eval-
uation, and the construction from [7] augments an AEAD scheme with a pre-
computation step requiring a hash evaluation and re-keying the AEAD scheme
for every encryption/decryption call. For RKA-AEAD security, the construction
from Barbosa and Farshim [5] and the construction N* from Faust et al. [27] are
both three-pass schemes. Finally, for context commitment, the different existing
constructions (cf. [18, Table 2]) require an additional function evaluation that
could be a hash, a MAC or a PRF.

The Indifferentiability of the Duplex and Its Applications 259

Fig. 7. Encryption of SpongeWrap (nSW[Dup]). The key K, nonce N and associated
data A gets padded into u blocks as (Xa

1 , . . . , X
a
u)

r−1←−− pad(K‖N‖A, r − 1) and the
plaintext gets padded into v blocks as (Xm

1 , . . . , Xm
v)

r−1←−− pad(M, r−1) with u, v ≥ 1.

7.2 SpongeWrap Is Differentiable from Ideal AEAD

In [5] Barbosa and Farshim put forth two ideal AEAD functionalities correspond-
ing to the online and offline syntaxes. In broad terms, the offline functionality
corresponds to a tweakable length-expanding random injection, and the online
(encryption) functionality processes each call through a tweakable random injec-
tion where its output additionally yields a state that is fed back into the tweak
of the next call, but its input and output are expanded to also carry a state.
Being a random injection with sufficient expansion, it directly follows that the
offline ideal AEAD functionality is misuse-resistant [39]. On the other hand, it
is well known that a single-pass scheme, like SpongeWrap, cannot be misuse-
resistant. Accordingly, indifferentiability with respect to the offline functionality
is unattainable. As for the online functionality, it is not misuse-resistant when
considering the aggregate ciphertext over multiple calls. However, it still guar-
antees that the first encryption call of two distinct messages under the same
nonce-key pair will yield totally uncorrelated ciphertexts. Clearly, SpongeWrap
does not meet this requirement since a repeated nonce-key pair will always xor
the message with the same string.

260 J. P. Degabriele et al.

Fig. 8. Decryption of SpongeWrap (nSW[Dup]). The key K, nonce N and associated
data A gets padded into u blocks as (Xa

1 , . . . , X
a
u)

r−1←−− pad(K‖N‖A, r − 1) and the
ciphertext gets padded into v blocks as (Xc

1 , . . . , X
c
v)

r−1←−− pad(C, r− 1) with u, v ≥ 1.

7.3 KDM-AEAD Security

Key-dependent-message security in the context of symmetric encryption was first
studied by Black, Rogaway, and Shrimpton in [16]. Subsequently, Bellare and
Keelveedhi [7] extended this security notion to nonce-based AEAD schemes. By
means of generic attacks, they showed that key-dependent-data security is only
possible when nonces are sampled at random and the header is independent of the
key. Accordingly, only one of the four security definitions that they considered
is satisfiable—reproduced here as Definition 2 and its corresponding game is
described in Fig. 9. In order to constrain the nonce to be sampled uniformly
at random, it is sampled by the Enc oracle and then returned to the adversary
rather than being chosen directly by the adversary. Also note that the Dec oracle
returns either the � symbol to indicate a prohibited input, or a bit indicating
whether decryption succeeded or failed. As noted in [7], this latter choice is
without loss of generality.

The Indifferentiability of the Duplex and Its Applications 261

Fig. 9. The KDAE game for defining AEAD security in the presence of key-dependent
messages.

Definition 2 (KDM-AEAD Security). Let SE = (K,E,D) be an AEAD
scheme with key size k and the KDAE game be as defined in Fig. 9. Further let A
be any adversary whose queries are such that φ : ({0, 1}k)w → {0, 1}ol(φ), where
the output length ol(φ) of φ is constant and w is its input to Initialize. Then
its corresponding KDAE advantage is given by:

Advkdae
SE (A) = 2 · Pr

[

KDAEA ⇒ true
]

− 1 .

If we work with idealised schemes such as the Duplex with the permutation p then
the message-derivation function φ, chosen by the adversary in each encryption
query, may depend on the idealised primitives as well. Formally, the descrip-
tion of the function φ may entail oracle gates, where we write φ(·) to denote
such functions. However, as noted in [38], if we allow φ to call p directly, then
we demonstrably cannot apply the composition theorem for indifferentiability
anymore. On the other hand, as pointed out by Barbosa and Farshim [5], com-
positional guarantees luckily still hold if φ only makes calls to the construction
instead of direct calls to the primitive. See also Sect. 4.2 for a more comprehen-
sive discussion. In particular, if we transfer the compositional result in [5] to our
setting, it suffices to consider KDM security with respect to the online random
oracle (where each function φ may call ORO). Then the security of SpongeWrap
(nSW[Dup]) in the p-model with respect to key-derivation functions of the form
φDup[p] follows, where the difference in the advantages between the two settings
is bounded by the indifferentiability advantage Advindiff

Dup,p,ORO,Sim (D) for the dis-
tinguisher D consisting of the security game running ASim. The KDM-AEAD
security of SpongeWrap in the online random oracle model is stated formally in
Theorem 3 below, and its proof can be found in the full version of this paper.

262 J. P. Degabriele et al.

Theorem 3 (SpongeWrap is KDM-AEAD Secure in the ORO-model).
Let nSW[ORO] = (K,E,D) be the AEAD scheme described in Fig. 6 in the online
random oracle model having key size k, nonce size n, and tag size t. Further, let
A be a KDAE adversary initialising w keys and making qe encryption queries,
qd decryption queries, and qo queries to the ORO. Let qφ denote the number of
queries to the ORO that all key derivation function φ can make in total. Then
for any such adversary querying key-derivation functions of the form φORO, its
corresponding KDAE advantage is bounded by:

Advkdae
nSW[ORO] (A) ≤ q2e + qeqφ

2n
+

wqo + w2

2k
+

qd

2t
.

Translating the KDM Bound from the ORO-model to the p-model
We now apply the composition theorem [5, Theorem 1] to show the security
of SpongeWrap (nSW[Dup]). By combining the result in Theorem 3 with the
composition theorem re-stated in Theorem 1, we obtain the following result,
whose proof can be found in the full version of this paper.

Theorem 4 (SpongeWrap is KDM-AEAD Secure in the p-model). Let
nSW[Dup] = (K,E,D) be the AEAD scheme described in Fig. 6 in the p-model
having key size k, nonce size n, and tag size t. Further, let A be a KDAE adver-
sary initialising w keys and making qe encryption queries, qd decryption queries,
qp primitive queries. Let qφ denote the maximum number of construction queries
that all key derivation function φ can make in total. Then for any such adver-
sary querying key-derivation functions of the form φDup, its corresponding KDAE
advantage is bounded by:

Advkdae
nSW[Dup] (A) ≤ q2e + qeqφ

2n
+

wqp + w2

2k
+

qd

2t
+

(qp + �(qe + qd) + qφ + 1)2

2c

+
6qp(�(qe + qd) + qφ)

2c
.

where � · r is a bound on the maximum input bit length made to the duplex
construction during an encryption/decryption query.

7.4 RKA-AEAD Security

Related-key attacks were first introduced as a cryptanalysis tool for block
cipher [15,31]. Motivated by real attacks, related-key security was then formally
studied by Bellare and Kohno [8] for pseudorandom permutations and func-
tions. From then, the notion was extended to other primitives such as encryp-
tion schemes [3] and MACs [14]. For authenticated encryption, Lu et al. [33]
defined RKA security for probabilistic schemes as a combination of two security
notions: indistinguishability security against related-key attacks (IND-RKA) and
integrity security against related-key attacks (INT-RKA). Later, Faust et al. [27]
defined an all-in-one RKA security notion for nonce-based AEAD schemes, which
we reproduce in Definition 3 and denote RKA-AEAD security. This security

The Indifferentiability of the Duplex and Its Applications 263

Fig. 10. The RKAE game for defining AEAD security under related keys.

notion implies the classical all-in-one AEAD security notion from [39] by con-
sidering the identity function as the only related-key-deriving (RKD) function
allowed.

Definition 3 (RKA-AEAD Security). Let SE = (K,E,D) be an AEAD
scheme, Φ ⊂ Func(K,K) and the RKAE game be defined as in Fig. 10. Further,
let A be any adversary whose queries are such that ϕ ∈ Φ and (ϕ,N) never
repeats across their encryption queries. Then its corresponding RKAE advantage
is given by:

Advrkae
SE (A, Φ) = 2Pr

[

RKAEA ⇒ true
]

− 1 .

In the previous definition, the RKAE advantage depends on a set Φ of related-
key deriving functions. This restriction is necessary, as Bellare and Kohno [8]
showed that RKA security is only achievable for restricted sets of related-key
deriving functions. For the ideal cipher to be RKA secure, they showed that
output-unpredictability (Definition 4) and collision resistance (Definition 5) are
sufficient conditions on the set of related-key deriving functions.

Definition 4 (Output-unpredictability for Φ.). Let K be a set of keys and
Φ ⊂ Func(K,K). Let r, r′ be positive integers. Then

InSecup
Φ (r, r′) = max

F⊆Φ,X⊆K,|F |≤r,|X|≤r′
PrK�K [{ϕ(K) : ϕ ∈ F } ∩ X �= ∅]

is defined as the (r,r′)-output-unpredictability of Φ.

In the previous definition, the maximum is over all multisets F of at most r
elements of Φ.

264 J. P. Degabriele et al.

Definition 5 (Collision resistance for Φ.). Let K be a set of keys and Φ ⊂
Func(K,K). Let r be a positive integer. Then

InSeccr
Φ (r) = max

F⊆Φ,|F |≤r
PrK�K [|{ϕ(K) : ϕ ∈ F }| < |F |]

is defined as the r-collision resistance of Φ.

Similarly as in the KDM case, when working with idealised schemes such as the
Duplex with an ideal permutation p, the key-derivation functions ϕ, chosen by
the adversary in each encryption/decryption query, can call the idealised prim-
itive. We again write ϕ(·) to denote such functions with access to an oracle (·)
and Φ(·) to denote a set of them. To be able to leverage the indifferentiability
of the Duplex from ORO and apply the composition theorem, we restrict our
analysis to RKD functions that can make only calls to the construction and
cannot make calls to the primitive. As shown by Albrecht et al. [2], new restric-
tions must be added on the set of related key-derivation functions when the key
derivation function is dependent on the cipher. In the case of RKA security of
the ideal cipher, they introduced the notion of oracle-independence for a set of
RKD functions. We adapt this notion to the duplex construction in Definition 6
and call it query independence.

Definition 6 (Query independence for ΦDup.). Let K be a set of keys and
ΦDup be a set of related-key-deriving functions on the key space K.
Then InSecqi

ΦDup(r, r′) is defined as the maximum probability that for any multi-
set F of at most r elements of ΦDup and making at most r′ queries to the duplex
construction Dup, when running successively all elements ϕDup of F over a ran-
dom input key K, one of the key derived by a ϕDup hits one of the path queried
to Dup by another or the same ϕDup, i.e.,

InSecqi
ΦDup(r, r′) = max

F⊆ΦDup,|F |≤r,
∑

ϕ∈F |Qry[ϕDup(K)]|≤r′
PrK�K[∃ϕDup

1 , ϕDup
2

∈ F,∃P ∈ Qry[ϕDup
2 (K)], ϕDup

1 (K) = [P]K],

where Qry[ϕDup(K)] denotes the set of queries placed to Dup by ϕDup when run
on input K. We call InSecqi

ΦDup(r, r′) the (r, r′)-query independence of ΦDup.

In the previous definition, the maximum is over all multisets F of at most r
elements of ΦDup. Note that any set Φ of oracle-free related-key-deriving functions
is query independent.

Similarly as in previous works analysing the RKA security of a scheme with
RKD functions dependent on the cipher, when restricting the set of RKD func-
tions to be output-unpredictable, collision resistant and query independent, we
can show that SpongeWrap is RKA-AEAD secure. The RKA-AEAD security of
SpongeWrap in the online random oracle model is stated formally in Theorem 5
below, and its proof can be found in the full version of this paper.

The Indifferentiability of the Duplex and Its Applications 265

Fig. 11. The CMT game defining context-commiting AEAD security.

Theorem 5 (SpongeWrap is RKA-AEAD Secure in the ORO-model).
Let nSW[ORO] = (K,E,D) be the AEAD scheme described in Fig. 6 in the online
random oracle model having tag size t and ΦORO be a set of related-key-deriving
functions on the key space K. Further, let A be a RKAE adversary making qe

encryption queries, qd decryption queries, and qo queries to the ORO. Let qϕ

denote the number of queries to the ORO that all key derivation function ϕ can
make in total. Then for any such adversary querying key-derivation functions
of the form ϕORO ∈ ΦORO and never repeating a pair (ϕORO, N) across their
encryption queries, its corresponding RKAE advantage is bounded by:

Advrkae
nSW[ORO]

(A, ΦORO
) ≤ InSecup

ΦORO(qe + qd, qo) + InSeccr
ΦORO(qe + qd)

+ InSecqi
ΦORO(qe, qϕ) +

qd

2t
.

Similarly as done in Theorem 4 for the KDM case, combining the composition
Theorem 1 with the result from Theorem 5 yields the RKA-AEAD security of
SpongeWrap in the p-model, where the related-key-deriving functions have only
access to the Duplex construction.

7.5 CMT-AEAD Security

Following previous works on commitment of authenticated encryption schemes
[1,23,25,28], Bellare and Hoang [6] proposed multiple security notions for com-
mitting AEAD. The strongest notion for tidy AEAD schemes, denoted CMT-3
originally, and called context-committing here, is reproduced in Definition 7 with
its associated game in Fig. 11. It says that the adversary wins if it creates distinct
inputs to the AEAD scheme resulting in the same ciphertext. Since the adver-
sary has full control over the input to the AEAD scheme, including the key, the
security game only consists of the Finalize procedure checking the adversary’s
choice for a collision.

Definition 7 (CMT-AEAD Security). Let SE = (K,E,D) be an AEAD
scheme and the CMT game be as defined in Fig. 11. Then the CMT advantage
of an adversary A is given by:

Advcmt
SE (A) = Pr

[

CMTA ⇒ true
]

.

CMT-AEAD security notably implies r-BIND security [28], making CMT-AEAD
secure schemes suitable for message franking applications. The CMT-AEAD

266 J. P. Degabriele et al.

security of SpongeWrap in the online random oracle model stated in Theorem 6,
follows immediately from the collision resistance of ORO, assuming a sufficiently
long tag. The proof of the following theorem can be found in the full version of
this paper.

Theorem 6 (SpongeWrap is CMT-AEAD Secure in the ORO-model).
Let nSW[ORO] = (K,E,D) be the AEAD scheme described in Fig. 6 in the online
random oracle model and having tag size t. Further, let A be a CMT adversary
making qo oracle queries to the ORO. Then for any such adversary, its corre-
sponding CMT advantage is bounded by:

Advcmt
nSW[ORO] (A) ≤ q2o

2t+1
.

As CMT-AEAD security is modelled as a single-stage game, simply com-
bining the composition Theorem 1 with the result from Theorem 6 yields the
CMT-AEAD security of SpongeWrap in the p-model.

Acknowledgments. We thank Aishwarya Thiruvengadam for her input during ear-
lier stages of this work. We are grateful to the anonymous ASIACRYPT 2023 reviewers
for their constructive comments. This research was supported by the German Federal
Ministry of Education and Research and the Hessen State Ministry for Higher Educa-
tion, Research and the Arts within their joint support of the National Research Center
for Applied Cybersecurity ATHENE.

References

1. Albertini, A., Duong, T., Gueron, S., Kölbl, S., Luykx, A., Schmieg, S.: How
to abuse and fix authenticated encryption without key commitment. In: Butler,
K.R.B., Thomas, K. (eds.) USENIX Security 2022, pp. 3291–3308. USENIX Asso-
ciation (2022)

2. Albrecht, M.R., Farshim, P., Paterson, K.G., Watson, G.J.: On cipher-dependent
related-key attacks in the ideal-cipher model. In: Joux, A. (ed.) FSE 2011. LNCS,
vol. 6733, pp. 128–145. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-21702-9_8

3. Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks
and applications. In: Innovations in Computer Science - ICS 2011, pp. 45–60 (2011)

4. Aumasson, J.P., Jovanovic, P., Neves, S.: NORX: parallel and scalable AEAD. In:
Kutylowski, M., Vaidya, J. (eds.) ESORICS 2014, Part II. LNCS, vol. 8713, pp.
19–36. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-319-11212-1_2

5. Barbosa, M., Farshim, P.: Indifferentiable authenticated encryption. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 187–220.
Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-96884-1_7

6. Bellare, M., Hoang, V.T.: Efficient schemes for committing authenticated encryp-
tion. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II.
LNCS, vol. 13276, pp. 845–875. Springer, Heidelberg (2022). https://doi.org/10.
1007/978-3-031-07085-3_29

https://doi.org/10.1007/978-3-642-21702-9_8
https://doi.org/10.1007/978-3-642-21702-9_8
https://doi.org/10.1007/978-3-319-11212-1_2
https://doi.org/10.1007/978-3-319-96884-1_7
https://doi.org/10.1007/978-3-031-07085-3_29
https://doi.org/10.1007/978-3-031-07085-3_29

The Indifferentiability of the Duplex and Its Applications 267

7. Bellare, M., Keelveedhi, S.: Authenticated and misuse-resistant encryption of key-
dependent data. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 610–
629. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_35

8. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 491–506. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-39200-9_31

9. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) ACM CCS 93, pp. 62–73. ACM Press (1993). https://doi.org/10.1145/
168588.168596

10. Bellare, M., Rogaway, P.: The security of triple encryption and a framework
for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679_25

11. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiabil-
ity of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 181–197. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78967-3_11

12. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge:
single-pass authenticated encryption and other applications. In: Miri, A., Vau-
denay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28496-0_19

13. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Ketje v2. Sub-
mission to the CAESAR Competition (2016). https://keccak.team/files/Ketjev2-
doc2.0.pdf

14. Bhattacharyya, R., Roy, A.: Secure message authentication against related-key
attack. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 305–324. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3_16

15. Biham, E.: New types of cryptanalytic attacks using related keys (extended
abstract). In: Helleseth, T. (ed.) EUROCRYPT’93. LNCS, vol. 765, pp. 398–409.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_34

16. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36492-7_6

17. Canteaut, A., Fuhr, T., Naya-Plasencia, M., Paillier, P., Reinhard, J.R., Videau,
M.: A unified indifferentiability proof for permutation- or block cipher-based hash
functions. Cryptology ePrint Archive, Report 2012/363 (2012). https://eprint.iacr.
org/2012/363

18. Chan, J., Rogaway, P.: On committing authenticated-encryption. In: Atluri, V.,
Di Pietro, R., Jensen, C.D., Meng, W. (eds.) ESORICS 2022, Part II. LNCS, vol.
13555, pp. 275–294. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-
031-17146-8_14

19. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård revisited: how
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_26

20. Daemen, J., Mennink, B., Assche, G.V.: Full-state keyed duplex with built-in multi-
user support. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS,
vol. 10625, pp. 606–637. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-319-70697-9_21

https://doi.org/10.1007/978-3-642-22792-9_35
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-642-28496-0_19
https://keccak.team/files/Ketjev2-doc2.0.pdf
https://keccak.team/files/Ketjev2-doc2.0.pdf
https://doi.org/10.1007/978-3-662-43933-3_16
https://doi.org/10.1007/3-540-48285-7_34
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-36492-7_6
https://eprint.iacr.org/2012/363
https://eprint.iacr.org/2012/363
https://doi.org/10.1007/978-3-031-17146-8_14
https://doi.org/10.1007/978-3-031-17146-8_14
https://doi.org/10.1007/11535218_26
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-319-70697-9_21

268 J. P. Degabriele et al.

21. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submission to
the CAESAR Competition (2016). http://competitions.cr.yp.to/round3/asconv12.
pdf

22. Dobraunig, C., Mennink, B.: Leakage resilience of the duplex construction. In: Gal-
braith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923, pp.
225–255. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-34618-
8_8

23. Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast message franking: from
invisible salamanders to encryptment. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 155–186. Springer, Heidelberg (2018).
https://doi.org/10.1007/978-3-319-96884-1_6

24. Dodis, Y., Pointcheval, D., Ruhault, S., Vergnaud, D., Wichs, D.: Security analysis
of pseudo-random number generators with input: /dev/random is not robust. In:
Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 647–658. ACM
Press (2013). https://doi.org/10.1145/2508859.2516653

25. Farshim, P., Orlandi, C., Roşie, R.: Security of symmetric primitives under incor-
rect usage of keys. IACR Trans. Symm. Cryptol. 2017(1), 449–473 (2017). https://
doi.org/10.13154/tosc.v2017.i1.449-473

26. Farshim, P., Procter, G.: The related-key security of iterated even-mansour ciphers.
In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 342–363. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48116-5_17

27. Faust, S., Krämer, J., Orlt, M., Struck, P.: On the related-key attack security of
authenticated encryption schemes. In: Security and Cryptography for Networks:
13th International Conference, SCN 2022, Amalfi (SA), Italy, September 12–14,
2022, Proceedings, pp. 362–386. Springer (2022)

28. Grubbs, P., Lu, J., Ristenpart, T.: Message franking via committing authenticated
encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol.
10403, pp. 66–97. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-
63697-9_3

29. Hamburg, M.: The STROBE protocol framework. Cryptology ePrint Archive,
Report 2017/003 (2017). https://eprint.iacr.org/2017/003

30. Kelsey, J., Chang, S.J., Perlner, R.: SHA-3 derived functions: cSHAKE, KMAC,
TupleHash, and ParallelHash. NIST SP 800–185 (2016). https://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-185.pdf

31. Knudsen, L.R.: Cryptanalysis of loki91. In: Advances in Cryptology - AUSCRYPT
1992, vol. 718, pp. 196–208 (1992). https://doi.org/10.1007/3-540-57220-1_62

32. Len, J., Grubbs, P., Ristenpart, T.: Partitioning oracle attacks. In: Bailey, M.,
Greenstadt, R. (eds.) USENIX Security 2021, pp. 195–212. USENIX Association
(2021)

33. Lu, X., Li, B., Jia, D.: KDM-CCA security from RKA secure authenticated encryp-
tion. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol.
9056, pp. 559–583. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46800-5_22

34. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results
on reductions, and applications to the random oracle methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24638-1_2

35. Mennink, B.: Understanding the duplex and its security. Cryptology ePrint
Archive, Report 2022/1340 (2022). https://eprint.iacr.org/2022/1340

http://competitions.cr.yp.to/round3/asconv12.pdf
http://competitions.cr.yp.to/round3/asconv12.pdf
https://doi.org/10.1007/978-3-030-34618-8_8
https://doi.org/10.1007/978-3-030-34618-8_8
https://doi.org/10.1007/978-3-319-96884-1_6
https://doi.org/10.1145/2508859.2516653
https://doi.org/10.13154/tosc.v2017.i1.449-473
https://doi.org/10.13154/tosc.v2017.i1.449-473
https://doi.org/10.1007/978-3-662-48116-5_17
https://doi.org/10.1007/978-3-319-63697-9_3
https://doi.org/10.1007/978-3-319-63697-9_3
https://eprint.iacr.org/2017/003
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
https://doi.org/10.1007/3-540-57220-1_62
https://doi.org/10.1007/978-3-662-46800-5_22
https://doi.org/10.1007/978-3-662-46800-5_22
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2
https://eprint.iacr.org/2022/1340

The Indifferentiability of the Duplex and Its Applications 269

36. Mennink, B., Reyhanitabar, R., Vizár, D.: Security of full-state keyed sponge and
duplex: applications to authenticated encryption. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 465–489. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48800-3_19

37. Perrin, T.: Stateful hash objects: API and constructions (2018). https://github.
com/noiseprotocol/sho_spec/blob/master/output/sho.pdf

38. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: limitations
of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4_27

39. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_23

https://doi.org/10.1007/978-3-662-48800-3_19
https://github.com/noiseprotocol/sho_spec/blob/master/output/sho.pdf
https://github.com/noiseprotocol/sho_spec/blob/master/output/sho.pdf
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/11761679_23

Populating the Zoo of Rugged
Pseudorandom Permutations

Jean Paul Degabriele1(B) and Vukašin Karadžić2

1 Technology Innovation Institute, Abu Dhabi, UAE
jeanpaul.degabriele@tii.ae

2 Technische Universität Darmstadt, Darmstadt, Germany

vukasin.karadzic@tu-darmstadt.de

Abstract. A Rugged Pseudorandom Permutation (RPRP) is a variable-
input-length tweakable cipher satisfying a security notion that is inter-
mediate between tweakable PRP and tweakable SPRP. It was intro-
duced at CRYPTO 2022 by Degabriele and Karadžić, who additionally
showed how to generically convert such a primitive into nonce-based
and nonce-hiding AEAD schemes satisfying either misuse-resistance or
release-of-unverified-plaintext security as well as Nonce-Set AEAD which
has applications in protocols like QUIC and DTLS. Their work shows
that RPRPs are powerful and versatile cryptographic primitives. How-
ever, the RPRP security notion itself can seem rather contrived, and the
motivation behind it is not immediately clear. Moreover, they only pro-
vided a single RPRP construction, called UIV, which puts into question
the generality of their modular approach and whether other instanti-
ations are even possible. In this work, we address this question posi-
tively by presenting new RPRP constructions, thereby validating their
modular approach and providing further justification in support of the
RPRP security definition. Furthermore, we present a more refined view
of their results by showing that strictly weaker RPRP variants, which
we introduce, suffice for many of their transformations. From a theoreti-
cal perspective, our results show that the well-known three-round Feistel
structure achieves stronger security as a permutation than a mere pseu-
dorandom permutation—as was established in the seminal result by Luby
and Rackoff. We conclude on a more practical note by showing how to
extend the left domain of one RPRP construction for applications that
require larger values in order to meet the desired level of security.

Keywords: Tweakable Wide-Block Ciphers · Rugged Pseudorandom
Permutations · Hash-Encipher-Counter · Three-Round Feistel ·
Domain Extension

1 Introduction

A Rugged Pseudorandom Permutation (RPRP) is a tweakable variable-input-
length cipher satisfying a security notion intermediate between a tweakable Pseu-
dorandom Permutation (PRP) and a tweakable Strong Pseudorandom Permu-
tation (SPRP). It was introduced in [13] where it was shown how to generically
c© International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14445, pp. 270–300, 2023.
https://doi.org/10.1007/978-981-99-8742-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8742-9_9&domain=pdf
https://doi.org/10.1007/978-981-99-8742-9_9

Populating the Zoo of Rugged Pseudorandom Permutations 271

convert such a primitive into nonce-based and nonce-hiding AEAD schemes that
are either misuse-resistant [22] or secure under the release of unverified plain-
text [3]. That work revisited the classical encode-then-encipher paradigm [5,23]
and showed analogous constructions that can be instantiated with a weaker
primitive—a Rugged PRP instead of a tweakable Strong PRP. Although the
encode-then-encipher paradigm is more than twenty years old, it is often dis-
missed because variable-length tweakable SPRPs are rather inefficient to con-
struct. However, Rugged PRPs can be constructed more efficiently, and their
introduction extends the encode-then-encipher paradigm with a new set of trade-
offs between security and efficiency. In addition, Degabriele and Karadžić intro-
duced Nonce-Set AEAD as a conceptual building block from which a variety of
order-resilient secure channels, such as QUIC and DTLS, can be easily realised.
Indeed they presented a generic way of transforming any Nonce-Set AEAD
scheme into an order-resilient channel with any desired functionality, and, in
addition, it is simpler than QUIC. Thus, another application of Rugged PRPs
is that they can easily be transformed into Nonce-Set AEAD schemes with the
added benefit of yielding more compact ciphertexts than alternative construc-
tions. The Authenticate-with-Nonce (AwN) construction, presented in [13], does
exactly this. It outperforms other constructions by ‘overloading’ the use of the
nonce to additionally provide authentication without introducing further redun-
dancy in the ciphertext. Another important application of Rugged PRPs is that
they suffice to construct onion encryption schemes that can be used in Tor [12].

Taking a closer look at Rugged Pseudorandom Permutations, one of their
salient features is the asymmetry in the security required from the encipher
and decipher algorithms. Roughly speaking, the security definition requires the
encipher algorithm to be pseudorandom, but it only imposes a strictly weaker
requirement on the decipher algorithm. In the security game, the adversary is
given three oracles: an Encipher oracle, a Decipher oracle, and a Guess oracle.
The Encipher oracle is equivalent to that in the tweakable (S)PRP games. The
Decipher oracle works analogously, but the adversary is significantly restricted
in what it can query to this oracle. Finally, the Guess oracle provides an alterna-
tive way of interacting with the decipher algorithm. Namely, the adversary can
attempt to guess part of the output of the decipher algorithm for an input of its
choice, and the oracle returns a single bit indicating success or failure. In contrast
to the Decipher oracle, there are no restrictions on the adversary besides that
it does not query an input for which it already knows the corresponding output
of the decipher algorithm, which is necessary as it would allow for trivial win
conditions. This way, the two oracles offer different tradeoffs in how the adver-
sary can interact with the decipher algorithm. Nevertheless, the combination of
these two oracles still exposes the decipher algorithm significantly less than the
tweakable SPRP game—which is why the RPRP notion is strictly weaker.

As can be noted from the above, the RPRP definition is more involved than
the better-known tweakable PRP and SPRP definitions, and the intuition behind
it is not immediately clear. Degabriele and Karadžić state that the RPRP def-
inition is tailored to capture the features needed by the encode-then-encipher

272 J. P. Degabriele and V. Karadžić

paradigm and other transforms while at the same time being within reach of
more efficient constructions. However, they only present a single RPRP con-
struction, called UIV [13], which raises the question of whether this is a contrived
security definition that revolves around this single construction. That is, is the
abstract notion of a Rugged PRP really justified and is it natural enough for it to
be instantiable by other constructions? Their work exposes several applications
of RPRPs where they present several transformations for realising higher-level
primitives generically from any RPRP. However, the value of their modular app-
roach is rather limited if there exists no other instantiation thereof. In that case,
we could just as well focus our attention on this single construction and ignore
the security definition. Another limitation of the UIV construction, and [13] more
generally, is its rigid security parameterisation. The quantitative security of the
UIV construction is closely tied to the block size of the underlying tweakable
blockcipher. In the AwN construction, which is used to construct order-resilient
channels like QUIC and DTLS, this block size corresponds to a security budget
that has to be divided between the overall bit-level security and the amount of
reordering that the channel can tolerate. Accordingly, the AES-based instantia-
tion of UIV suggested in [13], while offering good performance on hardware with
AES-NI support, may be incapable of delivering the required tradeoff between
(multi-user) security and tolerance to reordering that is required in practice by
protocols like QUIC and DTLS.

NIST has recently renewed its interest in blockcipher modes of operation with
the potential goal of standardising constructions of tweakable variable-length
ciphers [19]. In this work, we take a deeper look into Rugged PRPs by revisiting
their security definition and presenting new constructions that address the above
limitations. Our results complement the work of Degabriele and Karadžić by
making a stronger case for the general applicability of Rugged PRPs and their
potential role in the upcoming NIST standardisation effort. More specifically, we
make contributions in the following directions:

Security Definitions. The asymmetry between the encipher and decipher algo-
rithms gives rise to a broader set of possibilities when applying the encode-then-
encipher paradigm. Namely, one could naturally use the encipher algorithm to
encrypt and decipher to decrypt, or alternatively, use the decipher algorithm to
encrypt and encipher to decrypt. These correspond to the EtE and EtD trans-
forms presented in [13], which have two variants each—yielding either nonce-
based AEAD or nonce-hiding AEAD. Compared to the classical encode-then-
encipher paradigm (relying on an SPRP), the restrictions on the decipher algo-
rithm render the analysis of these transforms more challenging. A notable feature
of these transforms is that their security proofs do not require all three oracles
at once. More specifically, the EtE security proofs do not make any use of the
Decipher oracle, whereas the EtD ones do not make any use of the Guess oracle.
This prompts us to consider two natural relaxations of the RPRP notion, which
were not considered in [13], but which still suffice to enable these transforms. By
dropping access to the Guess oracle, we obtain the RPRPd notion, and similarly,

Populating the Zoo of Rugged Pseudorandom Permutations 273

removing access to the Decipher oracle yields the RPRPg notion. We study the
relation between the three notions and present separations showing that these
two relaxations result in strictly weaker notions. We will show that introduc-
ing these relaxed notions allows us to instantiate the EtE and EtD transforms
with a wider class of constructions. That said, there are other applications—
such as onion encryption [12]—which still require a full-fledged RPRP, and thus
we do not consider our notions to be a replacement but rather a more refined
characterisation.

New Constructions. We present three new variable-length tweakable cipher
constructions that meet on the three Rugged PRP notions. The first construc-
tion, and the one that achieves the strongest of the three notions, namely the
RPRP security, is the Hash–Encipher–Counter (HEC) construction. It is based
on the HCTR construction [24], which achieves tweakable SPRP security and
can be seen as a lightweight version of it. It improves over UIV by making do
with just a blockcipher rather than a tweakable blockcipher and requiring only
a single blockcipher key rather than two, thereby reducing the key-scheduling
time. This latter aspect is beneficial, for instance, when it (or the correspond-
ing RPRP-based AEAD scheme) is used in a ratcheted configuration where
its key is updated after every message that is encrypted. The other two con-
structions are based on the classical Feistel construction. More specifically, they
consist of three rounds of an unbalanced Feistel structure, which we refer to
as Expand-Compress-Expand (ECE) and Compress-Expand-Compress (CEC),
where the naming refers to the order in which the underlying pseudorandom
functions appear in the construction. Here, we supersede the classical result of
Luby and Rackoff by showing that each of these three-round Feistel construc-
tions achieves one of the two restricted RPRP variants (each of which is strictly
stronger than tweakable PRP) but not the other. We note that the Feistel con-
structions are not of mere theoretical interest as they can be instantiated quite
efficiently, even if they require three rounds. In particular, recent work has shown
efficient instantiations using permutation-based cryptography with very compet-
itive performance [4].

Left-Domain Extension. The security definition of Rugged PRPs requires the
tweakable cipher to be defined over a split domain. In [13], the authors assume
a split domain of the form {0, 1}n × {0, 1}≥m and refer to the two strings that
compose an element in this domain as the left and right components. Indeed,
their UIV construction, as well as the constructions we introduce, satisfy this
syntax. In their transforms, the security of the resulting scheme is always depen-
dent on the size of the left part of the domain n. In the UIV construction as well
as our HEC construction the value of n is fixed by the block size of the under-
lying (tweakable) blockcipher, which is typically 128 bits. As mentioned earlier,
in the Nonce-Set AEAD construction presented in [13], the value n has to be
divided between the overall bit-level security and the amount of reordering that
the channel can tolerate. In a setting like QUIC and DTLS, where an adversary

274 J. P. Degabriele and V. Karadžić

may have multiple forgery attempts and a high degree of reordering should be
tolerated, the resulting quantitative security for n = 128 may not be satisfactory,
especially when considering multi-user security.

One advantage of the Feistel constructions, especially when instantiated with
permutation-based primitives, is that they allow for a high degree of freedom in
tuning the value of n. In the case of UIV and HEC, adjusting n is not as straightfor-
ward, however. Domain extension for blockciphers and tweakable blockciphers
has been studied in several prior works. In HEC, there is a single blockcipher
instance used throughout various parts of the construction, and replacing all
instances would be rather detrimental to performance. On the other hand, in
UIV, the tweakable blockcipher whose blocksize determines n is keyed with a
separate key, allowing us to replace it with other constructions. We identify two
suitable constructions and show how they can be used to extend the left domain
of UIV and improve its security when used to construct Nonce-Set AEAD and
order-resilient channels like QUIC and DTLS.

1.1 Related Work

The HCTR construction, which our RPRP scheme HEC is based on, was intro-
duced in 2005 by Wang, Feng and Wu. A THCTR [14] is a “tweakable HCTR”
construction that appeared in 2019. The authors claimed it achieves beyond-
birthday-bound security. However, that was disproven in [2]. The HCTR2 con-
struction [9] is another recent direct “descendant” of HCTR. The HCTR2 miti-
gates two minor bugs in HCTR specification by changing the hash function and
introducing one more masking value in the construction. In addition, HCTR2
construction has a smaller key size than HCTR and a tighter bound. Minematsu
and Iwata proposed a beyond-birthday-bound scheme called LargeBlock1 that
is similar to HCTR [18]. A more interesting point about this construction is the
extended size of the left input, which makes it related to the domain extender
idea we deal with in Sect. 6. However, the LargeBlock1 construction in question
is neither a tweakable cipher, nor is it VIL.

As mentioned before, the UIV construction from [13] is the only other con-
struction proved so far to be a RPRP. It has the same number of keys as our
HEC construction, though it needs one more key-scheduling setup step. The con-
structions are similar in the sense that both have a 2-round pass, but they differ
in the underlying building blocks (e.g., UIV uses a tweakable blockcipher, HEC a
blockcipher).

Using Feistel schemes to build PRPs or SPRPs is an idea that dates back to
the seminal work of Luby and Rackoff [16]. Since then, there has been much work
on this conceptual idea. We are interested in more recent work, namely that of
[1,4]. The unbalanced Feistel schemes we present in this work closely resemble
the schemes based on the three-round unbalanced Feistel that appear in those
works. First of our unbalanced three-round Feistel schemes, the ECE scheme,
looks similar to Deck-JAMBO [4]. The other, CEC constructions, is similar to
Deck-BOREE [4] and could be seen as an abstraction of the RIV scheme [1].
However, there is one crucial distinction between our work and theirs. The target

Populating the Zoo of Rugged Pseudorandom Permutations 275

cryptographic primitive and security notion they target is AE(AD). We treat the
aforementioned schemes ECE and CEC in the setting of VIL tweakable ciphers.

2 Preliminaries

Notation. For any string X we denote its length in bits by |X| and ε denotes the
empty string. For any integer 0 < a ≤ |X|, �X�a denotes the substring consisting
of the first a bits of X, and �X�a denotes the substring consisting of the last
a bits of X. For any two integers a and b, 〈a〉2 denotes a’s representation as a
binary string, and if 0 < b ≤ a we denote the falling factorial a(a−1) · · · (a−b+1)
by (a)b. For a real number r > 0, �r� denotes the first integer that is greater
than or equal to r.

For any set S, s ←$S denotes the process of uniformly sampling an element
from the set S and assigning it to s. We use IC(K,X) to denote the set of all
ciphers over the domain X and key space K. Similarly 2-Func(T ,X) denotes
the set of all functions {+,−} × T × X → X . Sampling uniformly at random
from 2-Func(T ,X) yields what is sometimes referred to as a two-sided random
function, that can alternatively be viewed as a pair of independent random
functions T × X → X .

For an event E and process P , we denote with Pr [P : E] the probability of
event E occuring after running process P .

Tweakable Ciphers. A tweakable cipher is an algorithm

˜EE : K × T × X → X
that, for (K,T) ∈ K × T , identifies a permutation ˜EE(K,T, ·) over the domain
X . We refer to K and T as key space and tweak space, respectively. We write
the inverse of ˜EE as ˜EE

−1
(K,T, ·). We define ˜EEK(T, ·) := ˜EE(K,T, ·) and

˜EE
−1

K (T, ·) := ˜EE
−1

(K,T, ·). One of the two classical security definitions for
tweakable ciphers is the strong tweakable pseudorandom permutation (STPRP)
security notion. Intuitively the notion implies that an adversary cannot distin-
guish between a STPRP-secure cipher keyed with a random key and an ideal
cipher with key space T . The definition of STPRP advantage is given below.

Definition 1 (STPRP Advantage). Let ˜EE be a tweakable cipher defined over
(K, T ,X). Then for any adversary A its STPRP advantage is defined as:

Advstprp
˜EE

(A) =
∣

∣

∣Pr
[

K ←$K : A˜EEK(·,·),˜EE−1
K (·,·) ⇒ 1

]

−Pr
[

˜Π ←$ IC(T ,X) : A ˜Π(·,·), ˜Π−1(·,·) ⇒ 1
]∣

∣

∣ .

In the weaker TPRP notion the adversary only has access to the encipher oracle,
and the advantage is then defined analogously.

If the tweak set is a singleton, then a tweakable cipher becomes just a cipher.
Furthermore, if X = {0, 1}n, we call the cipher a blockcipher. The security notion
for (block)ciphers adjust accordingly, and we denote them with PRP and SPRP.

276 J. P. Degabriele and V. Karadžić

Hash Functions. A hash function is a function

H : H × {0, 1}∗ → Y

taking as an input a hash key h ∈ H and a string X ∈ {0, 1}∗ and outputting an
element from output space Y. In this work, we will mainly use hash functions
with output space {0, 1}n.

Security. There are many security notions a hash function can satisfy. We are
interested in the almost-XOR-universal (AXU) hash functions, the definition of
which follows.

Definition 2. Let H be a hash function with key space H and output space Y.
We call H ε1-AXU if for all bit string pairs (X1,X2), with X1 = X2, and Y ∈ Y
it holds

Prh ←$H [Hh(X1) ⊕ Hh(X2) = Y] ≤ ε1.

PRFs. Let FE : {0, 1}k ×{0, 1}≥n ×{0, 1}l → {0, 1}∗ be a variable-input-length
(VIL) variable-output-length (VOL) function with key of size k bits. The first
input is X ∈ {0, 1}≥n and the second input L ∈ {0, 1}l is the size of output the
function should produce.

We expect the function FE to behave as an independent PRF for every output
length L. The PRF security definition of FE uses a VOL random function R∞.
For an input (X,L), function R∞ outputs a uniformly random string of length
L bits. Formally, the security is then defined as follows.

Definition 3. For an adversary A, the PRF advantage of VOL function FE :
{0, 1}k × {0, 1}≥n × {0, 1}l → {0, 1}∗ is defined as

Advprf
FE (A) =

∣

∣

∣Pr
[

K ←$K : AFEK(·,·) ⇒ 1
]

− Pr
[

AR∞(·,·) ⇒ 1
]∣

∣

∣ .

We also make use of VIL functions with fixed output size. Let FC : {0, 1}k ×
{0, 1}≥m → {0, 1}n VIL function with output size n. The key is k bits long and
m the minimum size of the function input.

Definition 4. For an adversary A, the PRF security of VIL function FC :
{0, 1}k × {0, 1}≥m → {0, 1}n is defined as

Advprf
FC (A) =

∣

∣

∣Pr
[

K ←$K : AFCK(·) ⇒ 1
]

− Pr
[

AR∞(·,n) ⇒ 1
]∣

∣

∣ .

H-Coefficient Technique. In all of the proofs in this paper, we utilize the H-
coefficient technique. The H-coefficient technique [6,20] is a tool used for bound-
ing the advantage of a computationally unbounded adversary A, which is trying
to distinguish whether it is interacting with the real or the ideal world. The
adversary A can make oracle queries to either the real construction (in the real
world) or its ideal equivalent (in the ideal world). The list of A’s queries and

Populating the Zoo of Rugged Pseudorandom Permutations 277

corresponding answers is contained in a transcript τ . A transcript τ is called
attainable if the probability that τ is generated during A’s interaction with the
ideal world is greater than 0.

A rough tutorial for the application of the H-coefficient technique goes as fol-
lows. We define what the transcript looks like. Then, one defines what it means
for a transcript to be bad. After that, we need to calculate the probability that
some transcript is bad. Finally, one should calculate the interpolation proba-
bilities of some good attainable transcript appearing in the real world and it
appearing in the ideal world. A transcript is called good if it is not bad. By
applying the theorem we give below, one obtains a bound on the adversary’s
distinguishing advantage.

Letting Xr and Xi denote random variables corresponding to the transcript
generated during A’s interaction with the real and ideal world, the H-Coefficient
technique is applied using the following theorem.

Theorem 1. Let A be a computationally unbounded adversary trying to distin-
guish between a real world, represented by the game Greal, and an ideal world,
represented by the game Gideal. Let T be the set of all attainable transcripts and
let Tbad be a set of transcripts deemed to be bad. Define Tgood := T \Tbad. If there
exist εbad, εratio ≥ 0 such that for all transcripts τ ′ ∈ Tgood

Pr [Xr = τ ′]
Pr [Xi = τ ′]

≥ 1 − εratio and Pr [Xi ∈ Tbad] ≤ εbad,

then it holds
∣

∣Pr
[

AGreal ⇒ 1
]

− Pr
[

AGideal ⇒ 1
]∣

∣ ≤ εbad + εratio.

3 RPRPs, Its Derivatives and Relations Among Them

The RPRP security notion for VIL tweakable ciphers over a split domain was
introduced by Degabriele and Karadžić [13]. The RPRP security game they
present offers the adversary access to the decipher algorithm via two oracles.
One is a “restricted” decipher oracle De, and the other is an oracle Gu they
call guess oracle. The game in question is given in Fig. 1 together with games
RPRPd and RPRPg, which are our contributions. We present two subvariants of
the RPRP game, namely these RPRPd and RPRPg games. In the RPRPd game,
the adversary has access to En and De oracles, while in the RPRPg game, the
adversary has access to En and Gu oracles. The restrictions imposed by the
RPRP game are also present in the subvariant games. We aim to investigate
the relations between the RPRP security notion and the security notions cor-
responding to the subvariants. For completeness, we reiterate the definition of
RPRP advantage in the following and present analogous advantage definitions
for RPRPd and RPRPg notions.

278 J. P. Degabriele and V. Karadžić

Fig. 1. The games used to define RPRP, RPRPd and RPRPg security for a tweakable
cipher ˜EE.

Definition 5 (RPRP /RPRPg Advantage). Let ˜EE be a tweakable cipher over
a split domain (XL × XR). Then for a positive integer v and an adversary
A attacking the RPRP /RPRPg security of ˜EE the corresponding advantage is
defined as

Advrprp/rprpg
˜EE

(A, v) =
∣

∣

∣2Pr
[

RPRPA,v
˜EE

/RPRPgA,v
˜EE

⇒ 1
]

− 1
∣

∣

∣ .

Definition 6 (RPRPd Advantage). Let ˜EE be a tweakable cipher over a split
domain (XL × XR). Then for an adversary A attacking the RPRPd security of
˜EE the corresponding advantage is defined as

Advrprpd
˜EE

(A) =
∣

∣

∣2Pr
[

RPRPdA
˜EE

⇒ 1
]

− 1
∣

∣

∣ .

Populating the Zoo of Rugged Pseudorandom Permutations 279

Fig. 2. Relations between RPRP notions. Solid arrows indicate trivial implications.
Dotted, stroke-out arrows indicate separations.

3.1 Relations Between RPRP Notions

Now that we have defined the RPRP subvariants, we can continue showing
the relations between RPRP, RPRPd, and RPRPg notions. It is obvious that
RPRP security implies both RPRPd and RPRPg notions since in the games of
the latter notions, the adversary has one oracle access less than in the RPRP
game. Therefore, if it cannot distinguish while having access to all three oracles,
it cannot distinguish having access to just two.

The interesting relations are those between RPRPg and RPRPd notions. As
we will show next, neither implies the other notion. We show the RPRPg �

RPRPd separation in a general way. In contrast, for the other way around, we
show the separation with the help of a concrete construction. In Fig. 2 we give
an overview of the established relations.

3.1.1 RPRPg � RPRPd. Let ˜EE be a RPRPg-secure tweakable cipher and
assume k = n. We construct a tweakable cipher ˜EE

′
that is not RPRPd secure.

The cipher ˜EE
′

has the same key and tweak space, domain and range, and is
defined as follows.

˜EE
′
K(T,XL, XR) =

⎧

⎪

⎨

⎪

⎩

(0n, 0n), if (T,XL, XR) = (0n,K, 0n)

˜EEK(0n,K, 0n), if (XL, XR) = ˜EE
−1

K (0n, 0n, 0n) ∧ T = 0n

˜EEK(T,XL, XR), otherwise.

Now in the RPRPd game, an adversary can correctly guess the bit b by first
querying De(0n, 0n, 0n) and taking the left output XL as a key guess. It then
checks if it is interacting with the real world by making some enciphering queries
and checking if the answers are equal to the outputs it could calculate itself with
the key guess.

The attack can easily be adapted to the cases where k < n or k > n.

˜EE
′
is RPRPg Secure. We argue informally why this reduction holds. Our

“rewired” ˜EE
′
differs from ˜EE only for two values. Problematic queries are the

ones where the cipher ˜EE
′

would be queried on these differing values. If the
adversary does not make problematic queries, the reduction is obvious. If the
adversary makes a problematic query, it could break the security of ˜EE

′
. How-

ever, the probability of the adversary making a problematic query is small.

280 J. P. Degabriele and V. Karadžić

Fig. 3. Pseudocode description of 3-round Feistel construction ECE.

The probability that the adversary queries the encipher oracle with (0n,K,
0n) is equal to the probability that it guesses a secret random key. The proba-
bility that the adversary queries the encipher oracle with (0n,XL,XR), where

(XL,XR) = ˜EE
−1

K (0n, 0n, 0n) is also small, since ˜EEK is by assumption indistin-
guishable from an ideal cipher.

As for the guess oracle, the problematic queries would be Gu(0n, 0n, 0n, {K}),
and Gu(0n, YL, YR, {XL}), where (YL, YR) = ˜EEK(0n,K, 0n) and (XL,XR) =
˜EE

−1

K (0n, 0n, 0n). Since it is by assumption hard to guess the left deciphering
output in ˜EE, the probability of the adversary making successful guess queries
will be small.

Hence, the RPRPg security of ˜EE
′

reduces to the RPRPg security of ˜EE,
except for the small probability of these problematic queries occurring. ��

3.1.2 RPRPd � RPRPg. In proving the separation in the other direction
we do not have the generality we had in the previous case. Here we give a
concrete construction and show it is RPRPd secure, but not RPRPg secure.
The construction in question is an unbalanced three-round Feistel construction.
We present it, together with the separation result, in the following Sect. 4.

4 3-Round Feistel Construction

For an unbalanced 3-round Feistel construction, it is natural to consider two
variants. The first one is Expand-Compress-Expand (ECE) variant, where in the
first and third round, the left part is expanded and added to the right part, and
in the second round, the right part is compressed and added to the left part.

The expanding and compressing are realised using a VOL PRF FE : {0, 1}k ×
{0, 1}n × {0, 1}l → {0, 1}≥m and VIL PRF FC : {0, 1}k × {0, 1}≥m → {0, 1}n,
respectively. We sometimes call FE an expanding PRF, and FC a compress-
ing PRF. The graphical representation of the ECE encipher algorithm is given
in Fig. 4 and pseudocode description of its encipher and decipher algorithms
in Fig. 3. The second variant of an unbalanced 3-round Feistel we consider
is Compress-Expand-Compress (CEC) construction, where the first and third

Populating the Zoo of Rugged Pseudorandom Permutations 281

Fig. 4. Graphical representation of 3-round Feistel construction ECE, realized from
expanding PRF FE and compressing PRF FC.

rounds are compressing, and the second one is expanding. The graphical rep-
resentation of the CEC encipher algorithm is given in Fig. 6 and pseudocode
description of its encipher and decipher algorithms in Fig. 5. The expanding
PRF admits, in this case, three inputs, where the first two are the values the
PRF should be evaluated on, and the third one is the output length1.

One may wonder why only the second rounds in the constructions admit the
tweak T . The reason is that in both ECE and CEC constructions, tweaking just the
second round is enough to make them RPRPd and RPRPg secure, respectively.
Going further, we show, as a negative result, that a three-round Feistel cipher is
not a RPRP. Specifically, in the following, we present an attack against RPRPg
security of the ECE variant. The same attack works in the RPRP game, where one
does not use the deciphering oracle. This attack makes the first step of showing
the RPRPd � RPRPg separation.

ECE is not RPRPg Secure. To break the RPRPg security of ECE, the adversary
A executes the following steps.

1. Query (Y 1
L , Y 1

R) ← En(T,XL,XR), with XL = XR.
2. Query (Y 2

L , Y 2
R) ← En(T,XL, Y 1

R)
3. Query o ← Gu(T, Y 1

L ,XR, {Y 1
L ⊕ Y 2

L ⊕ XL})
4. output 1 if o = true, otherwise output 0.

1 One can equivalently write FEK2(T, I, |XR|) as FEK2(T‖I, |XR|).

282 J. P. Degabriele and V. Karadžić

Fig. 5. Pseudocode description of 3-round Feistel construction CEC.

In the following calculation we omit second inputs to the expanding PRFs,
|XR| or |YR|, for the sake of readability. The result of its first query is

Y 1
L = XL ⊕ FCK2(T,XR ⊕ FEK1(XL))

and

Y 1
R = XR ⊕ FEK1(XL) ⊕ FEK3(XL ⊕ FCK2(T,XR ⊕ FEK1(XL)))

Similarly, the output of its second query is

Y 2
L = XL ⊕ FCK2(T, Y 1

R ⊕ FEK1(XL))
and

Y 2
R = Y 1

R ⊕ FEK1(XL) ⊕ FEK3(Y
2
L)

The last query A makes is a guess oracle query, and A outputs that result
as its final guess (real or ideal world). Suppose the adversary has access to the
real cipher, and let us look at the guess oracle query. Left part of the deciphered
input inside the Gu oracle would be

X3
L = Y 1

L ⊕ FCK2(T,XR ⊕ FEK3(Y
1
L)).

On the other hand, the guessed value is equal to

XL ⊕ FCK2(T,XR ⊕ FEK1(XL))
︸ ︷︷ ︸

Y 1
L

⊕XL ⊕ FCK2(T, Y 1
R ⊕ FEK1(XL))

︸ ︷︷ ︸

Y 2
L

⊕XL

= Y 1
L ⊕ FCK2(T, Y 1

R ⊕ FEK1(XL)) = Y 1
L ⊕ FCK2(T,XR ⊕ FEK3(Y

1
L)),

which is exactly equal to X3
L. Therefore, the adversary A always outputs 1 if

the bit b in the RPRP game is 1. On the other hand, in the ideal world (b = 0),
the guess oracle returns true with very small probability. Overall, A wins the
RPRPg game with high probability.

ECE is RPRPd Secure. The other part of the separation comes next. In The-
orem 2, we give the result for RPRPd security of ECE. The proof utilizes the
H-coefficient technique, focusing on finding collisions in the input of inner PRFs.

Populating the Zoo of Rugged Pseudorandom Permutations 283

Fig. 6. Graphical representation of 3-round Feistel construction CEC, realized from
compressing PRF FC and expanding PRF FE.

There already exist proofs for 3-round Feistel being a secure PRP. However, our
proof required a different analysis since we are trying to prove a stronger notion
(and a tweakable one at that). There is no reference proof for the 3-round Feistel
that considers decipher queries, and that is what we needed to take care of in our
analysis. The full, detailed proof can be found in the full version of this paper.

Theorem 2. Let ECE be the construction defined in Fig. 3 over the domain
{0, 1}n × {0, 1}≥m. For an adversary A making qen encipher and qde decipher
queries, there exist adversaries B and C such that

Advrprpd
ECE (A) ≤ 2Advprf

FE (B) + Advprf
FC (C) +

q2

2n+m
+

q2

2m+1
+

q2en
2n

+
qenqde
2n−1

,

under the assumption that qen + qde ≤ 1
2n+m−1 , and where q = qen + qde. The

resulting PRF adversary B makes at most qen+qgu queries, whereas the resulting
PRF adversary C makes at most qen + qgu queries.

As it can be seen from the bound, in order for ECE to have meaningful security,
the minimal size of the right input m needs to be large enough (i.e., m ≥ n).

We can now continue with analyzing the security of the CEC construction.
The results for the CEC construction are the opposite of those for ECE. The CEC
construction is not RPRPd secure, and an attack against RPRPd security of
CEC can be found in the full version of this paper. On the other hand, CEC does
achieve RPRPg security.

CEC is RPRPg Secure. We present the result for RPRPg security of CEC in
Theorem 3. The proof utilizes the H-coefficient technique, and it was challenging
to incorporate the analysis of guess oracle queries. The peculiarities of the guess
oracle, namely the fact that the only thing leaked to the adversary is whether
XL ∈ V , contrast the conventional approach in the H-coefficient technique where

284 J. P. Degabriele and V. Karadžić

the whole output of the enciphering or deciphering needs to be included in a
query transcript. In the case of a guess query, that would mean the internally
deciphered (XL,XR) needs to be a part of the query transcript. We “circumvent”
this challenge by defining a more complex sampling procedure that builds the
transcript in the ideal world of the H-coefficient technique. The full, detailed
proof can be found in the full version of this paper.

Theorem 3. Let CEC be the construction defined in Fig. 6 over the domain
{0, 1}n × {0, 1}≥m. For an adversary A making qen encipher and qgu guess
queries, there exist adversaries B and C such that

Advrprpg
CEC (A, v) ≤ 2Advprf

FC (B) + Advprf
FE (C) +

q2en
2n+m+1

+
q2en + q2gu

2n+1
+

qenqgu + qguv

2n
+

q2en + q2gu
2m+1

+
3qenqgu

2m
.

The resulting PRF adversary B makes at most qen + qgu queries, whereas the
resulting PRF adversary C makes at most qen + qgu queries.

As the security bound shows, in order for CEC to have meaningful security, the
minimal size of the right input m needs to be large enough (i.e., m ≥ n).

4.1 Instantiating ECE and CEC

Instantiating the constructions ECE and CEC reduces to how one instantiates
the expanding and compressing round functions. For the compressing PRF FC,
one could use the Hash-then-PRF paradigm and instantiate the function with
an efficient almost-universal hash function together with a fixed-input-size PRF
that could be AES or the ChaCha20 block function. The FE could be instantiated
using AES in Counter mode or the stream cipher ChaCha20.

Another option would be to instantiate FC with Xoofff [10], a so-called deck
function. A deck function is a variable-input and variable-output length PRF, so
it is also an excellent candidate for instantiating the expanding FE. Using Xoofff
for both FE and FC enables us to instantiate our 3-round Feistel schemes with
a single permutation-based primitive, which would also offer very competitive
performance [4,10].

5 HEC

We now present one of our main contributions, a construction called HEC (Hash–
Encipher–Counter), which we base on a tweakable VIL cipher HCTR [24], orig-
inally proven to be STPRP secure. Our goal is to construct a cipher satisfying
the weaker notion of RPRP security and a natural step in achieving that is to
try and reduce the complexity of HCTR. The original HCTR construction con-
sists of three layers, the first and the third one being an AXU hash function
“compressing” layers that process the right part of the plaintext. The middle

Populating the Zoo of Rugged Pseudorandom Permutations 285

Fig. 7. Pseudocode description of HEC[H,E].

“expanding” layer is a simple counter mode. We modify HCTR in two ways to
arrive at our construction HEC.

The first step is removing the lower hash layer. The second step is introducing
a n-bit key KC that is used for masking the left output value YL. The pseudocode
of the HEC construction encipher and decipher algorithm is presented in Fig. 7.
A graphical representation of it is given in Fig. 8.

Just removing the lower layer in HCTR is not enough to achieve RPRP
security, the masking key needs to be present. We give in the full version of this
paper an attack against RPRPd security of the variant that does not have the
masking key KC , therefore showing such construction would not satisfy RPRP
security as well. The attack exploits the fact that one can make such a query to
the construction’s De oracle so that the decipher algorithm of the underlying
blockcipher is queried with a value that has already been output by its encipher
algorithm.

Note that the alteration we made to the HCTR construction to arrive at the
HEC construction makes HEC insecure against an STPRP adversary. Querying
(T, YL, YR) and (T, YL, Y ′

R) to the decipher oracle, for YR = Y ′
R, leads to the

respective outputs (XL,XR) and (X ′
L,X ′

R). It will hold XR ⊕ YR = X ′
R ⊕ Y ′

R,
which would be true in the ideal world with a very small probability.

HEC Security. Continuing, we prove HEC is a secure RPRP. We use the H-
coefficient technique in our proof, and the proof takes care of inputs of all valid
lengths, i.e., inputs with a length that is not a multiple of blocksize n. Other
relevant works on tweakable cipher constructions prove the security for inputs
that end on a full block. Compared to the proof of other known RPRP scheme,
namely that of the UIV scheme, the proof we give is much more involved since
HEC construction is concrete, as opposed to the more abstract UIV. The HEC
security theorem and the corresponding proof follow.

Theorem 4. Let HEC be the construction defined in Fig. 7 over the domain
{0, 1}n × {0, 1}≥m, with H being an ε1-AXU hash function. For any positive
integer v and an adversary A making qen encipher queries, qde decipher queries
and qgu guess queries, such that every query input is at most ln bits long, there
exists an adversary B such that

286 J. P. Degabriele and V. Karadžić

Fig. 8. Graphical representation of the HEC enciphering algorithm.

Advrprp
HEC (A, v) ≤ Advsprp

E (B) +
q2

2n+m
+ q1qε1 +

q1ql
2

2n−2
+

q1ql

2n−1

+
q21
2n

+ 2qguv max{ 1
2n−1

, ε1},

where q = qen + qde + qgu, q1 = qen + qde and under the assumption q ≤ 2n+m−1.
The resulting SPRP adversary B makes at most ql oracle queries in total to its
own encipher and decipher oracle.

Proof. Without loss of generality, we assume that the adversary does not make
redundant queries. That is, the adversary does not repeat queries to either of
the oracles or make queries that the game will restrict.

Our starting game is the real world (b = 1) of the RPRP game. Using the
standard argument, we first replace the blockcipher E in the construction with a
random permutation Π. This adds a SPRP advantage term of E to the bound.
We have

Advrprp
HEC (A, v) ≤ Advsprp

E (B) + Advrprp
HEC∗(A, v), (1)

where HEC∗ is the HEC construction having a random permutation Π instead of a
blockcipher. We now aim to apply the H-coefficient technique and Theorem 1 in
order to bound A’s distinguishing advantage between HEC∗ and the ideal world
(b = 0) of HEC’s RPRP game.

The first step in doing that is defining the real and ideal worlds in the H-
coefficient technique. In the real world, the adversary interacts with HEC∗ via
oracles En,De and Gu. In the ideal world, the adversary has access to En,De
and Gu oracles given in Fig. 9. In words, for each tweak T and input length
n + |XR| (or n + |YR|), a separate random permutation is lazily sampled with
the help of the table ˜Π. Note that the ideal world corresponds to the ideal world
of the RPRP game.

Populating the Zoo of Rugged Pseudorandom Permutations 287

Fig. 9. The ideal world for H-coefficient technique application in Theorem 4 (HEC is
RPRP).

The transcript τ is structured as follows

τ = (τ ′, h,KC) ,

where τ ′ contains the queries adversary made during the interaction with the
real or ideal world. The h and KC in the real world correspond to the real hash
and masking key appearing in HEC∗. On the other hand, in the ideal world, the
two keys are sampled at the end, the exact sampling procedure being explained
later.
As for τ ′, two types of queries are stored there:

1. Queries (T i,Xi
L,Xi

R, Y i
L, Y i

R, Ri), corresponding to the queries to En and De
oracles. If the input (or output) length is a multiple of blockcipher size, then
Ri = ε. Otherwise, for Xi

R that has k full blocks and r more bits, where
r < n, Ri in the real world contains the last n − r bits of the last blockcipher
(permutation) output in counter mode. That is,

Ri := �Π(IV ⊕ 〈k + 1〉2)�n−r

In the ideal world Ri is sampled by the simulator S at the end. We define S
shortly.

2. Queries (T i, Y i
L, Y i

R,V i, oi,Xi
L,Xi

R, Ri), corresponding to the queries to Gu
oracle. The variable oi corresponds to the answer of the guess oracle, and
for a query from an attainable transcript, its value will always be false. In
the real world, (Xi

L,Xi
R) corresponds to (XL,XR) that would internally be

deciphered on input (T i, Y i
L, Y i

R). The value Ri is defined analogously as in
the case of encipher and decipher query. As for the ideal world, the simulator
defined below samples these values.

The simulator S runs in the ideal world after the adversary has finished its
interaction with the oracles, and executes the following steps (in the given order).

i. It uniformly samples the hash key h and the masking key KC .

288 J. P. Degabriele and V. Karadžić

ii. It iterates through all En and De queries and for each query (T i,Xi
L,Xi

R,
Y i

L, Y i
R), it sets Ri := ε if Xi

R has k full blocks. Otherwise, Xi
R does not end

on a full block, but it has k full blocks and r more bits, where r < n. The
simulator S in that case sets Ri ←$ {0, 1}n−r.

iii. It iterates through all Gu queries and for each query (T i, Y i
L, Y i

R,V i) it first
determines if the triple (T i, Y i

L, Y i
R) is fresh.

• (T i, Y i
L, Y i

R) appears for the first time in a guess query : The simulator
checks if Y i

L is new. We call Y i
L new if there is no En or De query (occur-

ring either before or after this i-th guess query) or an earlier Gu query
in τ ′ that contains Y i

L.
If Y i

L is new, then (Xi
L,Xi

R) is sampled according to the permutation
˜Π−1(T i, ·, ·). The variable Ri := ε if r = 0, otherwise Ri ←$ {0, 1}n−r.
If Y i

L is not new, let j-th query be the first En, De query (T j ,Xj
L,Xj

R, Y j
L ,

Y j
R, Rj) or the first Gu query2 (T j , Y j

L , Y j
R,V j , false,Xj

L,Xj
R, Rj) such

that Y i
L = Y j

L . Then set Xi
R := Xj

R ⊕Y j
R ⊕Y i

R, Xi
L := Xj

L ⊕Hh(T j ,Xj
R)⊕

Hh(T i,Xi
R) and Ri := Rj . Note that the term Xj

R ⊕Y j
R would be the key

stream produced by the counter mode if we were in the real world.
• (T i, Y i

L, Y i
R) does not appear for the first time in a guess query : The sim-

ulator takes the values (Xj
L,Xj

R, Rj) from some previous j-th guess query
with the same (T i, Y i

L, Y i
R) and sets

(Xi
L,Xi

R, Ri) := (Xj
L,Xj

R, Rj).

In the rest of the proof, we assume that li denotes the length of the input of the
i-th query. We will sometimes write the right value Xi

R of length kn + r as

xi
1‖xi

2‖ · · · ‖xi
k‖xi

k+1,

where 0 ≤ r < n. For 1 ≤ j ≤ k, xi
j ∈ {0, 1}n. If r = 0, then xi

k+1 ∈ {0, 1}r,
otherwise xi

k+1 = ε. We do the same for right value Y i
R and write it as

yi
1‖yi

2‖ · · · ‖yi
k‖yi

k+1.

Defining and Bounding the Bad Transcripts. We now define what it means
for an attainable transcript to be bad. The intuition for the following bad tran-
script conditions is as follows. The [B1.*] conditions ensure that for two En/De
queries, there will be no collisions in the input or the output of the underlying
blockcipher, that is, permutation. The [B2.*] conditions are similar to [B1.*]
conditions. They ensure that for one En/De and one Gu query that has new
YL, there will be no collisions in the input or the output of the underlying block-
cipher, that is, permutation. The condition [B3] excludes guess oracle queries
that would be deemed successful in the real world.

Definition 7. A transcript τ = (τ ′, h,KC) is called bad, if in τ ′ there exist:

2 In case of a Gu query, it will hold j < i.

Populating the Zoo of Rugged Pseudorandom Permutations 289

[B1] Two En / De queries (T i,Xi
L,Xi

R, Y i
L, Y i

R, Ri) and (T j ,Xj
L,Xj

R, Y j
L , Y j

R,

Rj), with
∣

∣Xi
R

∣

∣ = kin + ri,
∣

∣

∣X
j
R

∣

∣

∣ = kjn + rj and 0 ≤ ri, rj < n, such that one
of the following conditions hold:

[B1.1] Xi
L ⊕ Hh(T i,Xi

R) = Xj
L ⊕ Hh(T j ,Xj

R), with i = j.
[B1.2] IV i ⊕ 〈ctri〉2 = IV j ⊕ 〈ctrj〉2 with ctri ∈ {1, . . . , ki + 1}, ctrj ∈
{1, . . . , kj + 1} and i = j.
[B1.3] Xi

L ⊕ Hh(T i,Xi
R) = IV j ⊕ 〈ctrj〉2 with ctrj ∈ {1, . . . , kj + 1}.

[B1.4] Y i
L ⊕ KC = Y j

L ⊕ KC , with i = j.
[B1.5] Y i

L ⊕ KC = xj
ctrj ⊕ yj

ctrj with ctrj ∈ {1, . . . , kj},
or, if rj > 0, Y i

L ⊕ KC = (xj
kj+1 ⊕ yj

kj+1)‖Rj

[B1.6] xi
ctri ⊕ yi

ctri = xj
ctrj ⊕ yj

ctrj with ctri ∈ {1, . . . , ki} and ctrj ∈
{1, . . . kj},
or, if rj > 0, xi

ctri ⊕ yi
ctri = (xj

kj+1 ⊕ yj
kj+1)‖Rj with ctri ∈ {1, . . . , ki},

or, if i = j, ri > 0 and rj > 0, (xi
ki+1 ⊕ yi

ki+1)‖Ri = (xj
kj+1 ⊕ yj

kj+1)‖Rj.
[B2] One En / De query and one Gu query with new YL, such that one of
the following conditions hold:

[B2.1] Xi
L ⊕ Hh(T i,Xi

R) = Xj
L ⊕ Hh(T j ,Xj

R), with i being En/De query
and j being Gu query or vice versa.
[B2.2] IV i ⊕〈ctri〉2 = IV j ⊕〈ctrj〉2 with ctri ∈ {1, . . . , ki + 1} and ctrj ∈
{1, . . . , kj + 1}, and with i being En/De query and j being Gu query or
vice versa.
[B2.3] Xi

L ⊕ Hh(T i,Xi
R) = IV j ⊕ 〈ctrj〉2 with ctrj ∈ {1, . . . , kj + 1}, and

with i being En/De query and j being Gu query or vice versa.
[B2.4] i being En/De query and j being Gu query, or vice versa, and:
Y i

L ⊕ KC = xj
ctrj ⊕ yj

ctrj with ctrj ∈ {1, . . . , kj},
or, if rj > 0, Y i

L ⊕ KC = (xj
kj+1 ⊕ yj

kj+1)‖Rj.
[B2.5] i being En/De query and j being Gu query, or vice versa, and:
xi
ctri ⊕ yi

ctri = xj
ctrj ⊕ yj

ctrj with ctri ∈ {1, . . . , ki} and ctrj ∈ {1, . . . kj},
or, if rj > 0, xi

ctri ⊕ yi
ctri = (xj

kj+1 ⊕ yj
kj+1)‖Rj with ctri ∈ {1, . . . , ki},

or, if i = j, ri > 0 and rj > 0, (xi
ki+1 ⊕ yi

ki+1)‖Ri = (xj
kj+1 ⊕ yj

kj+1)‖Rj.
[B3] One Gu query (T i, Y i

L, Y i
R,V i, oi,Xi

L,Xi
R, Ri) such that Xi

L ∈ V i.

Now, let τ be some attainable transcript in the ideal world. We bound the
probabilities of above defined conditions holding true in the ideal world.

[B1.1] We rewrite the condition as

Hh(T i,Xi
R) ⊕ Hh(T j ,Xj

R) = Xi
L ⊕ Xj

L.

The equation above holds, by the AXU property of H, with probability at
most ε1. Summing over all i and j, with i = j, we get the term

(

q1
2

)

ε1 ≤ q21ε1
2

. (2)

290 J. P. Degabriele and V. Karadžić

[B1.2] Without loss of generality, assume i < j. By expanding IV i and IV j ,
the condition becomes

Xi
L ⊕ Hh(T i,Xi

R) ⊕ Y i
L ⊕ 〈ctri〉2 = Xj

L ⊕ Hh(T j ,Xj
R) ⊕ Y j

L ⊕ 〈ctrj〉2
We fix some ctri and ctrj . If j-th query was an encipher query, we bound
the equation above over the distribution of Y j

L . Otherwise j-th query was a
decipher query and then we bound the equation over the distribution of Xj

L.
Assuming q1 ≤ 2n+m−1 ≤ 2lj−1, the upper bound for the equation above
holding true is

2lj−n

2lj − (j − 1)
≤ 2lj−n

2lj − q1
≤ 2lj−n

2lj−1
=

1
2n−1

.

Summing up over all i and j, with i = j, we arrive at the term
(

q1
2

)

l2

2n−1
≤ q21l

2

2n
. (3)

[B1.3] There are two possibilities here. The first one is, i = j. The equation,
when IV j is expanded, becomes

Xi
L ⊕ Hh(T i,Xi

R) = Xj
L ⊕ Hh(T j ,Xj

R) ⊕ Y j
L ⊕ KC ⊕ 〈ctrj〉2.

For a fixed ctrj , the probability of the equation being true is 1
2n , taken over

the randomness of KC . Summing up over all i, j and ctrj , with i = j, the
total probability for condition [B1.3] in this case is at most q1(q1−1)l

2n .
The other option is that i = j. The condition equation is then reduced to
Y i

L ⊕ 〈ctri〉2 = KC . The probability of the equation being true is 1
2n in this

case as well, taken over the randomness of KC . There are q possibilities for
i, therefore summing over i and ctrj , the bound becomes q1l

2n .
Adding up the bounds of both cases, the total term for bounding the proba-
bility of this condition holding true is

q21l

2n
. (4)

[B1.4] Without loss of generality, assume i < j. The condition of [B1.4] is
equivalent to Y i

L = Y j
L . We differentiate 4 subcases here.

• Both queries are encipher queries. The probability of the condition being
true is 1

2n−1 , taken over the draw of Y j
L and assuming q1 ≤ 2n+m−1.

• Both queries are decipher queries. The probability of the condition being
true is 0, since the adversary would not make j-th query with Y j

L repeat-
ing.

• i-th query is encipher query, j-th query is decipher query. The probability
of the condition being true is 0, since the adversary would not make j-th
query with Y j

L repeating.

Populating the Zoo of Rugged Pseudorandom Permutations 291

• i-th query is decipher query, j-th query is encipher query. The probabil-
ity of the condition being true is 1

2n−1 , taken over the draw of Y j
L and

assuming q1 ≤ 2n+m−1.
Summing up over all i and j, the total bound for condition [B1.4] becomes

(

q1
2

)

1
2n−1

≤ q21
2n

. (5)

[B1.5] We differentiate here two subcases.
• lj = kjn. For a fixed ctrj , the probability of the equation being true is

1
2n , taken over the randomness of KC .

• lj = kjn + rj , for rj > 0. The probability of bad condition occurring can
be rewritten as

Pr
[

�Y i
L ⊕ KC�rj

= (xj
kj+1 ⊕ yj

kj+1) ∧ �Y i
L ⊕ KC�n−rj

= Rj
]

.

The probability of the first equation holding true can be bounded by 1
2rj

,
taken over randomness of KC , and the probability of second equation
being true is 1

2n−rj
, since Rj is sampled uniformly at random. In total,

the probability is bounded by
1
2n

.

Summing up over all i, j and ctrj , the total bound for condition [B1.5] holding
true is

q21l

2n
. (6)

[B1.6] We differentiate three subcases here.
• ri = rj = 0. Assume first that i = j. In that case the, probability of a

condition being true for some fixed ctri1 = ctri2 is at most 1
2n−1 , taken

over the sampling of yi’s in case the query was an encipher query, or xi’s
in case the query was a decipher query.
In case of i = j, the probability is calculated analogously and one gets
the same bound 1

2n−1 .
• rj > 0. We fix some ctri. The probability of bad condition occurring can

be rewritten as

Pr
[

�xi
ctri ⊕ yi

ctri�rj
= (xj

kj+1 ⊕ yj
kj+1) ∧ �xi

ctri ⊕ yi
ctri�n−rj

= Rj
]

.

The equation above is bounded by 1
2rj−1

1
2n−rj

= 1
2n−1 , taken over the

distribution of Rj and xi
ctri/yi

ctri or xj
kj+1/yj

kj+1.
• Both ri > 0 and rj > 0. Without loss of generality assume ri ≤ rj . The

probability of bad condition occurring can be rewritten as

Pr
[

�xi
ki+1 ⊕ yi

ki+1�ri
= �xj

kj+1 ⊕ yj
kj+1�ri

∧ Ri = �xj
kj+1 ⊕ yj

kj+1�n−ri

]

.

This is bounded by 1
2ri−1

1
2n−ri

= 1
2n−1 , where the calculation is analogous

to the calculation from the previous subcase.

292 J. P. Degabriele and V. Karadžić

Summing up over all i, j, ctri and ctrj , the final bound for condition [B1.6]
occurring is

q21l
2

2n−1
. (7)

[B2.1] This condition holds true with probability at most

q1qguε1, (8)

where the probability is calculated similarly as in condition [B1.1].
[B2.2] This condition holds true with probability at most

q1qgul
2

2n−1
, (9)

where the probability is calculated similarly as in condition [B1.2] and assum-
ing q ≤ 2n+m−1.
[B2.3] This condition holds true with probability at most

q1qgul

2n
, (10)

where the probability is calculated similarly as in condition [B1.3].
[B2.4] This condition holds true with probability at most

q1qgul

2n
, (11)

where the probability is calculated similarly as in condition [B1.5].
[B2.5] This condition holds true with probability at most

q1qgul
2

2n−1
, (12)

where the probability is calculated similarly as in condition [B1.6] and assum-
ing q ≤ 2n+m−1.
[B3] Let us fix some X∗

L ∈ V i. We immediately differentiate two cases. The
first one is when Y i

L is new. In that case, (Xi
L,Xi

R) is sampled according to
˜Π and it holds

Pr
[

Xi
L = X∗

L

]

≤ 2li−n

2li − (q1 + qgu)
≤ 1

2n−1
,

assuming q ≤ 2n+m−1 ≤ 2li−1. The second case is when Y i
L is not new. Then

it holds Xi
L = Xj

L ⊕ Hh(T j ,Xj
R) ⊕ Hh(T i,Xi

R), where the j-th query is the
one in which Y i

L appears in for the first time. If (T i,Xi
R) = (T j ,Xj

R), we can
reduce the probability of the equation X∗

L = Xi
L holding true to ε1. Otherwise

(T i,Xi
R) = (T j ,Xj

R) and the equation reduces to X∗
L = Xj

L, which can again
be bounded by 1

2n−1 . The bound, for the case when Y i
L is not new, is then

max{ 1
2n−1 , ε1}. Summing up over all X∗

L in V i and then over all guess oracle

Populating the Zoo of Rugged Pseudorandom Permutations 293

queries, we have that the probability of the condition [B3] being true is at
most

2qguv max{ 1
2n−1

, ε1}. (13)

Adding up the bounds in (2)–(13) we have that the probability of an attainable
transcript τ in the ideal world being bad is bounded by

εbad ≤ q1qε1 +
q1ql

2

2n−2
+

q1ql

2n−1
+

q21
2n

+ 2qguv max{ 1
2n−1

, ε1}.

Bounding the Ratio of Good Transcripts. Fix some good and an attainable
transcript (τ ′, h,KC). We split the encipher, decipher and guess queries that
have new YL in τ ′ into two disjoint sets τ ′

1 and τ ′
2. The set τ ′

1 contains queries
whose length is a multiple of n and τ ′

2 contains all other En,De and Gu queries
(with new YL). We note here that we defined the term of “new YL” in the ideal
world, but the “new YL” has the same meaning in the real world. Furthermore,
each of τ ′

1 and τ ′
2 is further “decomposed” into smaller disjoint subsets that only

contain queries of the same length. That is, for l1,1, l1,2, ..., l1,c1 , where every l1,i

is a multiple of n, we have disjoint sets τ1,1, . . . , τ1,c1 , with τ1,i containing queries
of length l1,i. Therefore, it holds

τ ′
1 = τ1,1 ∪ · · · ∪ τ1,c1 .

Similarly, for l2,1, . . . , l2,c2 , where every l2,i is not a multiple of n, we have disjoint
sets τ2,1, . . . , τ2,c2 , with τ2,i containing queries of length l2,i. It holds

τ ′
2 = τ2,1 ∪ · · · ∪ τ2,c2 .

In addition, for queries in τ ′
1 we let k′

1,i denote the number of blocks in the whole
input3, i.e. l1,i = k′

1,in. With k′
2,i we denote the number of full blocks for a query

in τ ′
2 with length l2,i, i.e. l2,i = k′

2,in + r2,i. We denote the cardinality of set τb,i

with tb,i. We also introduce an equivalence relation ∼T , where two queries from
set τb,i are related if and only if they have the same tweak T . This equivalence
relation partitions the set τb,i into equivalence classes by the tweak T , and there
will be w[b, i] classes with j-th equivalence class having tb,i,j number of queries
in it. It then holds tb,i = tb,i,1 + · · · + tb,i,w[b,i], for w[b, i] being the number of
queried tweaks for queries in τb,i. Finally, with uyl we denote the number of guess
oracle queries that contain new YL and we let H denote the key space of the
HEC’s AXU hash function H.

Ideal World. The interpolation probability for the hash key h and the masking
key KC is 1

|H|
1
2n . The interpolation probabilities of queries in τ ′

1 and τ ′
2 are

c1
∏

i=1

1
(2l1,i)t1,i,1 · · · (2l1,i)t1,i,w[1,i]

and
c2
∏

i=1

1
(2l2,i)t2,i,1 · · · (2l2,i)t2,i,w[2,i]

1
2(n−r2,i)t2,i

,

3 Following the previous notation, it holds k′
1,i = k1,i + 1, where k1,i is the number of

full blocks in the right part of the input.

294 J. P. Degabriele and V. Karadžić

respectively. As for the interpolation probability of guess oracle queries that do
not contain a new YL, we fix some such query (T i, Y i

L, Y i
R,V i, false,Xi

L,Xi
R, Ri).

Since YL is not new, there exists some En, De or Gu query with the same YL.
The variables Xi

L, Xi
R and Ri then have the following value

Xi
R = Xj

R ⊕ Y j
R ⊕ Y i

R, Xi
L = Xj

L ⊕ Hh(T j ,Xj
R) ⊕ Hh(T i,Xi

R), Ri = Rj .

The values in the right-hand side of the three equations above are already fixed,
so the interpolation probability for the triple (Xi

R,Xi
L, Ri) is equal to 1.

In total, the interpolation probability for a transcript τ in the ideal world
Pr [Xi = τ] is

1
|H|

1
2n

×
c1
∏

i=1

1
(2l1,i)t1,i,1 · · · (2l1,i)t1,i,w[1,i]

×
c2
∏

i=1

1
(2l2,i)t2,i,1 · · · (2l2,i)t2,i,w[2,i]

1
2(n−r2,i)t2,i

× 1qgu−uyl.

Real World. The interpolation probability for the hash key h and the masking
key KC is 1

|H|
1
2n in the real world as well. For queries in τ ′

1 and τ ′
2 we know there

are no input and output collisions to the underlying blockcipher (permutation).
Then, for example for some j-th query in τ ′

1 that has k′
1,i blocks, the interpolation

probability that its input maps to its output is

1
(2n − σ)(2n − σ − 1) · · · (2n − σ − (k′

1,i − 1))
,

where σ represents the number of blocks processed in all the queries preceding
the i-th query. By the above, the interpolation probability in total for queries in
τ ′
1 and τ ′

2 is

1
(2n)t1,1k′

1,1+···+t1,c1k′
1,c1

+t2,1(k′
2,1+1)+···+t2,c2 (k

′
2,c2

+1)
.

As for the guess oracle queries that do not have a new YL, considering we have
already “fixed” the values related to this YL (e.g., the IV = Π−1(YL ⊕ KC) ⊕
YL ⊕ KC and with that the keystream produced by the counter mode), the
interpolation probability for Xi

R appearing in that guess query transcript will
be 1. Similarly for Xi

L = Π−1(YL ⊕KC)⊕Hh(Xi
R), everything on the right-hand

side has already been fixed and therefore the Xi
L appears in that transcript with

probability 1. In total, the interpolation probability for a transcript τ in the real
world Pr [Xr = τ] is

1
|H|

1
2n

× 1
(2n)t1,1k′

1,1+···+t1,c1k′
1,c1

+t2,1(k′
2,1+1)+···+t2,c2 (k

′
2,c2

+1)
× 1qgu−uyl.

Populating the Zoo of Rugged Pseudorandom Permutations 295

Interpolation Ratio. Finally, the interpolation ratio Pr[Xr=τ]
Pr[Xi=τ] for a good transcript

τ is
∏c1

i=1(2
l1,i)t1,i,1 · · · (2l1,i)t1,i,w[1,i] ×

∏c2
i=1(2

l2,i)t2,i,1 · · · (2l2,i)t2,i,w[2,i]2
(n−r2,i)t2,i

(2n)t1,1k′
1,1+···+t1,c1k′

1,c1
+t2,1(k′

2,1+1)+···+t2,c2 (k
′
2,c2

+1)
.

Going further, by applying simple theorems about falling factorials, that can be
found in the full version of this paper, both in the enumerator and the denomi-
nator, it follows that the term above is greater or equal than

∏c1
i=1(2

l1,i)t1,i

(2n)t1,1k′
1,1+···+t1,c1k′

1,c1

×
∏c2

i=1(2
l2,i)t2,i2

(n−r2,i)t2,i

(2n)t2,1(k′
2,1+1)+···+t2,c2 (k

′
2,c2

+1)
.

Another application of the theorems about falling factorials, that we present in
the full version of this paper, tells us the expression above is greater or equal
than

c2
∏

i=1

(2k2,in+r2,i)t2,i2
(n−r2,i)t2,i

(2n)t2,i(k2,i+1)
.

Finally, with some more calculation and applying the Weierstrass inequality we
get

Pr [Xr = τ]
Pr [Xi = τ]

≥
c2
∏

i=1

(2k2,in+r2,i − q)t2,i2(n−r2,i)t2,i

2nt2,i(k2,i+1)

=
c2
∏

i=1

(

(2k2,in+r2,i − q)2n−r2,i

2n(k2,i+1)

)t2,i

=
c2
∏

i=1

(

1 − q

2k2,in+r2,i

)t2,i

≥ 1 − q

c2
∑

i=1

t2,i

2k2,in+r2,i
≥ 1 − q

c2
∑

i=1

t2,i

2n+m
≥ 1 − q2

2n+m
,

therefore εratio = q2

2n+m .

Summing up (1), εbad and εratio one achieves the bound from the theorem state-
ment. ��

6 RPRP Domain Extension

In the case of UIV and HEC, the size of the left domain XL is inherently equal
to the size of the underlying (tweakable) blockcipher. Typical (tweakable) block-
ciphers have a block size of at most 128 bits, as is the case for AES, for
instance. This can be a limiting factor in some RPRP applications, namely,
in using RPRPs as a building block to arrive at the order-resilient secure chan-
nel. Namely, if one considers the order-resilient secure channel construction from
[13, Section 6], instantiated with the nonce-set AEAD scheme AwN, the overall

296 J. P. Degabriele and V. Karadžić

security of the channel reduces to the security of the underlying RPRP scheme.
The RPRP advantage term of the UIV scheme is bounded by

Advstprp
˜E∗ (B) + Advprf

F (C) +
qguv

2n−1
+

q(q − 1)
2n+1

+
qen(qen − 1)

2n+1
+

q1(q1 − 1)
2n+m+1

,

where ˜E∗ and F are the underlying tweakable blockcipher and PRF, respectively.
The term qguv

2n−1 in that bound corresponds to the integrity term of the order-
resilient secure channel, where the qgu would be the number of forgery attempts
the channel adversary makes. The product qguv can grow quickly in specific
use cases. Firstly, certain application will “embed” information in the nonce,
consequently making the v large (i.e. up to 264). Secondly, some applications
with long-lived channels that cannot be rekeyed easily could need to withstand
unlimited adversarial forgery attempts. Because of the two reasons above, the
integrity term qguv

2n−1 can quickly become large, leading to a need to extend the
left domain of the underlying RPRP. If one doubles the size of XL from {0, 1}n

to {0, 1}2n, the term above becomes qguv
22n−1 .

In addition, we also get an interesting “side effect” of the domain extension.
Namely, the other three independent terms in the bound improve as well, e.g.
the term qen(qen−1)

2n+1 becomes qen(qen−1)
22n+1 . Assuming that the STPRP security of

˜E∗ and PRF security of F can also be strengthened, the overall security of the
UIV construction (and thus the order-resilient secure channel it builds) would
improve. However, we do not investigate this “side effect” further in this work.

In the following subsections, we present two possible black-box solutions for
extending the left domain of the UIV construction [13]. The graphical represen-
tations of the UIV enciphering algorithm and these extender constructions are
given in Fig. 10. We will call the UIV using one of these extender constructions
an extended UIV.

We do not consider domain extenders for HEC in this work since the block-
cipher used in the left part is also used throughout the whole construction.
Therefore, replacing all appearances of it in a black-box manner would damage
the performance. However, we leave finding specific domain extender options for
HEC as an avenue for future work.

6.1 CDMS Extender

For our first extender, we use the construction of Coron et al. [8] that transforms
a n-bit tweakable blockcipher into a 2n-bit tweakable cipher using a 3-round
Feistel scheme. We denote this construction with CDMS. The idea of using CDMS
for domain extension inside a VIL cipher is not new. Shrimpton and Terashima
utilized the same approach to instantiate their PIV construction [23].

The CDMS construction assumes the tweakable blockcipher admits tweaks
of size ω. The size of the “outer” tweak, which is here (T,XR), is then ω − n.
Denoting the underlying tweakable blockcipher with ˜E, we can express the secu-
rity of the UIV construction extended with CDMS using the following theorem,
which is an adaptation of the original theorem for RPRP security of UIV [13,
Theorem 1], using the result of Coron et al. [8] transform.

Populating the Zoo of Rugged Pseudorandom Permutations 297

Fig. 10. Top left: Extended UIV construction with a black-box tweakable blockcipher
˜E; Bottom left: CDMS extender; Right: LRW2 + LDT extender.

Theorem 5. Let extended UIV be the scheme over the domain {0, 1}2n ×
{0, 1}≥m using the CDMS extender. For any positive integer v and an adver-
sary A making qen encipher queries, qde decipher queries and qgu guess queries
under the constraint that qguv ≤ 22n−1, there exist adversaries B and C such
that

Advrprp
UIV[CDMS](A, v) ≤ 3Advstprp

˜E
(B) +

q2

22n
+ Advprf

F (C)

+
qguv

22n−1
+

q2

22n+1
+

q2en
22n+1

+
q21

22n+m+1
,

where q = qen + qde + qgu and q1 = qen + qde. The resulting STPRP adversary B
makes at most qen encipher queries and qde + qgu decipher queries, whereas the
resulting PRF adversary C makes at most qen + qde + qgu queries.

6.2 LRW2 + LDT Extender

For our second extender we use the LRW2 [15] instantiation of ˜E∗ with the 3-
round length doubler construction LDT [7] by Chen, Mennink and Nandi serving

298 J. P. Degabriele and V. Karadžić

as the underlying blockcipher. In contrast to the previous extender, the LDT
extends the UIV domain to {0, 1}n+s × {0, 1}≥m, for a fixed s ∈ [n + 1, 2n − 1].
The advantage this extender offers is the variable length extension since the
doubling of the left domain could be overabundant in some cases.

The LDT construction can “encipher” and “decipher” a [n + 1, 2n − 1]-bit
string, using a n-bit tweakable blockcipher and a swapping function swap(X,Y)
:= (Y,X) that takes two inputs X,Y of size 1 ≤ s ≤ n − 1. In our case, LDT
has fixed input size, i.e. fixed s, so the security for LDT we need is plain SPRP
security, in contrast to the VSPRP (variable-input SPRP) notion used in [7].

We can express the security of the UIV construction extended with LRW2+
LDT using the following theorem, which is an adaptation of the original theorem
for RPRP security of UIV as well, using the result of the LRW2 transform [15].

Theorem 6. Let extended UIV be the scheme over the domain {0, 1}n+s ×
{0, 1}≥m using the LRW2+LDT extender and let H be a ε1-AXU hash func-
tion with output space {0, 1}n+s. For any positive integer v and an adversary A
making qen encipher queries, qde decipher queries and qgu guess queries under
the constraint that qguv ≤ 2n+s−1, there exist adversaries B and C such that

Advrprp
UIV[LRW2+LDT](A, v) ≤ Advsprp

LDT(B) + 3ε1q2 + Advprf
F (C)

+
qguv

2n+s−1
+

q2

2n+s+1
+

q2en
2n+s+1

+
q21

2n+s+m+1
,

where q = qen + qde + qgu and q1 = qen + qde. The resulting STPRP adversary B
makes at most qen encipher queries and qde + qgu decipher queries, whereas the
resulting PRF adversary C makes at most qen + qde + qgu queries.

Interpreting Corollary 2 from [7], the SPRP advantage of the LDT construction
in the bound above gives at least 2n

3 bits of security.
One should take care when instantiating the LRW2 AXU hash function H

since it needs to have a non-standard output size. One natural approach is con-
catenating and truncating two independently keyed AXU hash functions. Start
with a n-bit AXU H′ and construct a 2n-bit AXU by concatenating two instances
of H′ keyed with two independent keys. After that, truncate the output to the
desired output size n′ ∈ [n + 1, 2n − 1], which would incur a security loss of
2n−n′ bits. Examples of concatenating and truncating AXU hash functions can
be found in these works [11,17,21].

7 Conclusion

In this work, we gave multiple new results on rugged pseudorandom permuta-
tions. The first group of results introduced the RPRPd and RPRPd variations
of the main RPRP definition. Then, we showed two interesting results about
the 3-round unbalanced Feistel scheme. First, that the ECE scheme satisfies the
RPRPd but not the RPRPg security, and second, that the CEC scheme satisfies
the RPRPg but not the RPRPd security.

Populating the Zoo of Rugged Pseudorandom Permutations 299

After that, we presented the HEC scheme and proved it RPRP secure, mak-
ing it, together with the UIV scheme, the only other construction proven to be
RPRP secure so far. In the end, we showed that the left domain of the UIV
construction could be extended using the 3-round CDMS and LDT schemes in
a black-box manner, providing better security than the “plain” UIV, which fur-
thermore can be beneficial for order-resilient channels that are instantiated with
UIV as presented in [13, Section 6].

Collectively, these findings contribute to a deeper understanding of the RPRP
notion and show that it is more natural than it may seem.

Acknowledgments. We thank the anonymous ASIACRYPT 2023 reviewers for their
constructive comments. This research was supported by the German Federal Ministry of
Education and Research and the Hessen State Ministry for Higher Education, Research
and the Arts within their joint support of the National Research Center for Applied
Cybersecurity ATHENE.

References

1. Abed, F., Forler, C., List, E., Lucks, S., Wenzel, J.: RIV for robust authenticated
encryption. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 23–42. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5 2

2. Andreeva, E., Bhati, A.S., Preneel, B., Vizár, D.: 1, 2, 3, fork: Counter mode
variants based on a generalized forkcipher. IACR Trans. Symm. Cryptol. 2021(3),
1–35 (2021)

3. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How
to securely release unverified plaintext in authenticated encryption. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 105–125. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 6

4. Bacuieti, N., Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: Jammin’ on the
deck. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part II. LNCS, vol.
13792, pp. 555–584. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-
031-22966-4 19

5. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: how to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 24

6. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 19

7. Chen, Y.L., Mennink, B., Nandi, M.: Short variable length domain extenders with
beyond birthday bound security. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT
2018, Part I. LNCS, vol. 11272, pp. 244–274. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03326-2 9

8. Coron, J.-S., Dodis, Y., Mandal, A., Seurin, Y.: A domain extender for the ideal
cipher. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 273–289. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2 17

9. Crowley, P., Huckleberry, N., Biggers, E.: Length-preserving encryption with
HCTR2. Cryptology ePrint Archive, Report 2021/1441 (2021). https://eprint.iacr.
org/2021/1441

https://doi.org/10.1007/978-3-662-52993-5_2
https://doi.org/10.1007/978-3-662-45611-8_6
https://doi.org/10.1007/978-3-031-22966-4_19
https://doi.org/10.1007/978-3-031-22966-4_19
https://doi.org/10.1007/3-540-44448-3_24
https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-030-03326-2_9
https://doi.org/10.1007/978-3-030-03326-2_9
https://doi.org/10.1007/978-3-642-11799-2_17
https://eprint.iacr.org/2021/1441
https://eprint.iacr.org/2021/1441

300 J. P. Degabriele and V. Karadžić

10. Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: The design of Xoodoo and
Xoofff. IACR Trans. Symm. Cryptol. 2018(4), 1–38 (2018)

11. Degabriele, J.P., Govinden, J., Günther, F., Paterson, K.G.: The security of
ChaCha20-Poly1305 in the multi-user setting. In: Vigna, G., Shi, E. (eds.) ACM
CCS 2021, pp. 1981–2003. ACM Press, November 2021

12. Degabriele, J.P., Karadžić, V., Melloni, A., Münch, J.-P., Stam, M.: Rugged pseu-
dorandom permutations and their applications. Presented at the IACR Real World
Crypto Symposium (2022)

13. Degabriele, J.P., Karadžić, V.: Overloading the nonce: rugged PRPs, nonce-set
AEAD, and order-resilient channels. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO
2022, Part IV. LNCS, vol. 13510, pp. 264–295. Springer, Heidelberg (2022). https://
doi.org/10.1007/978-3-031-15985-5 10

14. Dutta, A., Nandi, M.: Tweakable HCTR: a BBB secure tweakable encipher-
ing scheme. In: Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. LNCS,
vol. 11356, pp. 47–69. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
05378-9 3

15. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. J. Cryptol. 24(3),
588–613 (2011)

16. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

17. McGrew, D.A., Viega, J.: The security and performance of the galois/counter mode
of operation (full version). Cryptology ePrint Archive, Report 2004/193 (2004).
https://eprint.iacr.org/2004/193

18. Minematsu, K., Iwata, T.: Building blockcipher from tweakable blockcipher:
extending FSE 2009 proposal. In: Chen, L. (ed.) IMACC 2011. LNCS, vol. 7089, pp.
391–412. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25516-
8 24

19. National Institute of Standards and Technology (NIST): The Third NIST Work-
shop on Block Cipher Modes of Operation (2023). https://csrc.nist.gov/Events/
2023/third-workshop-on-block-cipher-modes-of-operation

20. Patarin, J.: The “Coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04159-4 21

21. Rogaway, P.: Bucket hashing and its application to fast message authentication.
In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 29–42. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4 3

22. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 23

23. Shrimpton, T., Terashima, R.S.: A modular framework for building variable-input-
length tweakable ciphers. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part
I. LNCS, vol. 8269, pp. 405–423. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-42033-7 21

24. Wang, P., Feng, D., Wu, W.: HCTR: a variable-input-length enciphering mode.
In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 175–188.
Springer, Heidelberg (2005). https://doi.org/10.1007/11599548 15

https://doi.org/10.1007/978-3-031-15985-5_10
https://doi.org/10.1007/978-3-031-15985-5_10
https://doi.org/10.1007/978-3-030-05378-9_3
https://doi.org/10.1007/978-3-030-05378-9_3
https://eprint.iacr.org/2004/193
https://doi.org/10.1007/978-3-642-25516-8_24
https://doi.org/10.1007/978-3-642-25516-8_24
https://csrc.nist.gov/Events/2023/third-workshop-on-block-cipher-modes-of-operation
https://csrc.nist.gov/Events/2023/third-workshop-on-block-cipher-modes-of-operation
https://doi.org/10.1007/978-3-642-04159-4_21
https://doi.org/10.1007/3-540-44750-4_3
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/978-3-642-42033-7_21
https://doi.org/10.1007/978-3-642-42033-7_21
https://doi.org/10.1007/11599548_15

Generic Security of the SAFE API
and Its Applications

Dmitry Khovratovich1, Mario Marhuenda Beltrán2(B) , and Bart Mennink2

1 Ethereum Foundation, Luxembourg City, Luxembourg
2 Radboud University, Nijmegen, The Netherlands

{m.marhuenda,b.mennink}@cs.ru.nl

Abstract. We provide security foundations for SAFE, a recently intro-
duced API framework for sponge-based hash functions tailored to prime-
field-based protocols. SAFE aims to provide a robust and foolproof inter-
face, has been implemented in the Neptune hash framework and some
zero-knowledge proof projects, but despite its usability and applicability
it currently lacks any security proof. Such a proof would not be straight-
forward as SAFE abuses the inner part of the sponge and fills it with
protocol-specific data.

In this work we identify the SAFECore as versatile variant sponge
construction underlying SAFE, we prove indifferentiability of SAFECore
for all (binary and prime) fields up to around |Fp|c/2 queries, where Fp

is the underlying field and c the capacity, and we apply this security
result to various use cases. We show that the SAFE-based protocols
of plain hashing, authenticated encryption, verifiable computation, non-
interactive proofs, and commitment schemes are secure against a wide
class of adversaries, including those dealing with multiple invocations of
a sponge in a single application. Our results pave the way of using SAFE
with the full taxonomy of hash functions, including SNARK-, lattice-,
and x86-friendly hashes.

Keywords: SAFE · sponge · API · field elements · indifferentiability

1 Introduction

The sponge construction is a permutation-based mode for cryptographic hashing.
It was first introduced by Bertoni et al. [13], and it quickly gained in popularity,
in particular in light of the SHA-3 competition [34], which was won by the Keccak
sponge function [11]. The sponge operates on a b-bit state, which is split into a
c-bit inner part, where c is called the “capacity”, and an r-bit outer part, where
r is called the “rate”. On input of a message, the sponge first injectively pads
this message and splits it into r-bit chunks. These chunks are then absorbed
one by one by adding them to the outer part of the state, where each addition
is interleaved with an evaluation of a b-bit permutation of the state. After the
message is absorbed, digests are squeezed r bits at a time by extracting them
from the outer part.
c© International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14445, pp. 301–327, 2023.
https://doi.org/10.1007/978-981-99-8742-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8742-9_10&domain=pdf
http://orcid.org/0009-0001-1877-7024
http://orcid.org/0000-0001-6679-1878
https://doi.org/10.1007/978-981-99-8742-9_10

302 D. Khovratovich et al.

Under the assumption that the permutation is random, Bertoni et al. [13]
proved that the sponge behaves like a random oracle up to around 2c/2 queries
in the indifferentiability framework [30]. Naito and Ohta proved a similar result
for a slightly more general setting where the initial message block can be r + c/2
bits, and the squeezing is performed with around r + c/2 − log2(c) bits at a
time [33].

These are powerful results: they imply that the sponge construction behaves
like a random oracle and can replace it as such in many applications, as long
as less than 2c/2 evaluations of the permutation are made. They imply that
finding collisions, preimages, or second preimages is not easier than finding them
for a random oracle (up to this bound),1 but they can also be used in keyed
applications [11]. Improved but comparable results for keyed applications are
derived by using the sponge’s sibling, namely the duplex construction [9,10,18,
20,32]. A thorough account of the duplex can be found in the work by Mennink
[31].

1.1 Field-Based Sponges and SAFE API

Both the sponge and the duplex specification, however, see their inputs and out-
puts as raw bits, and leave application-specific encoding to the users. The exact
encoding, as long as it is injective and reasonably simple, does not pose a perfor-
mance problem for regular hash functions such as SHA-2/3 as they are usually
not a bottleneck in applications. The situation is drastically different in protocols
that operate on prime field elements rather than on bits, and particularly in those
that deal with verifiable computation of hash functions – e.g. private cryptocur-
rencies and mixers [2,26], recursive proof systems [15,27], and zero-knowledge
virtual machine (ZKVM) computations [39]. The infamous example of Zcash’s
transaction requiring 40 s to be generated triggered the design of field-oriented
hash functions Poseidon [23], Rescue [4], MiMC [3], and Reinforced Concrete [22].
With many of these functions designed in the sponge framework, it became cru-
cial to utilize as much throughput of the sponge as possible, ideally removing all
possible overhead such as padding. Indeed, a sponge-based hash function with
a rate of r = 2 elements spends one permutation to hash a pair of unpadded
field elements, but two permutation calls if the input is padded. For obvious rea-
sons, a straightforward removal of padding or building a hash function directly
from the inner permutation rather than the sponge framework has led to ter-
rible bugs [1] and, in general case, to bad practices. Extensive use of a sponge
function may also incur domain-separation issues or even cross-oracle collisions,
i.e. collisions between the implementations of two different random oracles in
the same protocol.

Another problem, not specific to sponge functions, arises in the context of
the interactive protocols and the Fiat-Shamir heuristic [21] to make them non-
interactive. Researchers have found several critical bugs in the implementations
of Fiat-Shamir [8,17,19,25], which are partly attributed to the fact that the

1 For preimage resistance, an improved result is derived, cf. [28].

Generic Security of the SAFE API and Its Applications 303

protocol state is stateful and interactive whereas the older hash functions from
the SHA family are not interactive and few implementations are stateful. It is
natural to implement Fiat-Shamir via sponges, but no concrete design has been
proposed so far.

To salvage this issue, Aumasson et al. [5] proposed SAFE (Sponge API
for Field Elements), a generic API for sponge functions specifically tailored
towards its use on field elements. They also provided a production-ready ref-
erence implementation. SAFE has already been implemented in Filecoin’s Nep-
tune hash framework and has been integrated in other zero-knowledge proof
projects [29,37]. A sponge call in SAFE takes as input an input-output (IO)
pattern IO , that among others contains the particular order of the absorb calls
and squeeze calls, and optionally a domain separator D. The IO and D are
then hashed onto c/2 elements of the inner part of the state (using a general
collision resistant hash function like SHA-3). Then, it operates a sponge in an
online mode, where data is absorbed as it comes and squeezed as it is needed,
provided the absorbing and squeezing happen in accordance with the IO pattern
IO . At first sight, this IO pattern seems to limit the generality as it encodes the
upcoming hash in advance, but this is not a problem for most applications of
SAFE: e.g. Merkle trees, interactive protocols, and verifiable encryption of cryp-
tocurrency transactions all know how much data and in which order should be
hashed. On the other hand, the usage of the IO avoids the need to use padding,
eliminates misuse patterns by limiting the set of callable operations, and con-
tributes to avoiding collisions between instantiations of different oracles. As such,
SAFE forms a versatile API for many protocols that use hash functions under
the hood, and would like to do it securely.

One may wonder the choice of using two different hash functions, a regular
one for absorbing the IO pattern and the domain separator, and a field-oriented
one for the online mode. However, there are multiple reasons to do so. First,
since IO and D are usually protocol constants, it makes sense to precompute
the initial state of SAFE. If IO and D were simply absorbed into the sponge, the
size of the precomputation would be b field elements. By hashing them into the
inner part, we reduce this to c/2 field elements. Second, since D is optional and
of variable length, it would require an extra padding (and a specification of it)
to make sure it does not overlap with the future absorptions. This extra padding
can be costly if working over large fields. Third, the hashing of IO and D is
currently independent of the sponge used within SAFE. This allows us to reuse
hashed states across different sponges while still providing the same security.
This also emphasizes that the processing of IO is different from processing the
data as those are inputs that are generated by different roles: protocol designer
and protocol party, respectively.

304 D. Khovratovich et al.

1.2 Generic and Improved Security of SAFE API

It is clear that SAFE API is a versatile API with many potential applications.
For example, it has already found employment in the Filecoin’s Neptune2 hash
framework. However, despite all its utility, a rigorous analysis of SAFE API,
providing a tight bound on its security, is missing. It is possible to argue security
of SAFE in the random oracle model using the indifferentiability result of Naito
and Ohta [33], but the resulting bound is not quite as good. Most importantly,
Naito and Ohta apply an injective padding to the message, which is absent in
SAFE. In addition, as in SAFE the encoding of the IO and D are hashed into
only c/2 field elements of the inner part, an adaptation of the security proof of
Naito and Ohta to this setting would give c/4 field element security at best. For
authenticated encryption applications, i.e. where absorbing rounds and squeezing
rounds are interleaved, an additional point of concern is raised as one uses the
same IO pattern for different message lengths.

These issues leave us with an undesired situation: (i) the security proof is not
rigorous, and (ii) even if it were correct, only security up to |Fp|c/4 evaluations
is guaranteed due to possible hash function collisions.

In order to both derive a rigorous analysis and to improve this |Fp|c/4 bound,
we first describe a variant sponge construction, called SAFECore, on top of a
cryptographic hash function H and a permutation P. It gets as input an IO
pattern IO ∈ (N+)∗, optionally a domain separator D ∈ {0, 1}∗, and a message
M of appropriate length. The IO pattern is required to be of even length, and
alternatingly describes the number of field elements absorbed and squeezed. Note
that this definition is slightly different from the IO pattern in the SAFE API,
but the changes are only cosmetic and are made to make the security proof easier
to construct and process. Besides, a translation between the two is clear. The
SAFECore construction then operates by first hashing the IO pattern and the
domain separator onto the entire inner part (as opposed to half of it) using hash
function H, and processing a sponge as usual using permutation P. The message
is required to be of appropriate length as dictated by the IO pattern IO , and
the number of squeezed blocks will be determined by the next element in IO .
We stress that this seems like a restriction compared to the original SAFE API,
but this restriction is solely to make the proof convenient; after all, SAFECore
will be used as a building block to argue security of the SAFE API. A detailed
description of SAFECore is given in Sect. 3, including our security result (proof
in Sect. 4) guaranteeing indifferentiability up to |Fp|c/2 queries. Here, we stress
that we have improved security compared to what was suggested for the SAFE
API based on the work of Naito and Ohta. This is because of our observation
that one can hash the IO pattern and the domain separator onto the entire inner
part, without any risk and thus with a free security improvement from |Fp|c/4

to |Fp|c/2. The observation is comparable to the truncated permutation without
initial value construction of Grassi and Mennink [24] with significant difference
that their construction only makes one permutation call on input of a partially
random partially chosen state, instead of a full-fledged sponge.
2 https://github.com/filecoin-project/neptune/tree/master/src/sponge.

https://github.com/filecoin-project/neptune/tree/master/src/sponge

Generic Security of the SAFE API and Its Applications 305

Our proof is field-agnostic, which extends the domain of SAFE from the
originally envisioned 256-bit fields to both bigger and smaller ones: processing
380-bit curve coordinates [14], 64-bit hashes for verifiable computation based
on FRI commitments [35], 12-bit hashes for aggregating post-quantum signa-
tures [36], and other lattice-based scenarios.

1.3 Applications

We stress that SAFECore is not made to be run only in isolation, it rather serves
as a building block to argue security of the much more versatile and user-friendly
SAFE API. In more detail, the specification of the SAFE API [5] (discussed in
Sect. 5) is very general, but to assure generality in a foolproof interface, it follows
strict rules with respect to the IO pattern IO and the upcoming absorbing
and squeezing evaluations. SAFECore, in turn, is defined in such a way that
it is possible to describe any correct application of the SAFE API in terms
of the SAFECore construction. This immediately implies generic security of the
application in light of our indifferentiability result of Theorem 2.

To exemplify this, we discuss in Sects. 5.1–5.4 various applications of SAFE
based on those given by the designers [5]: plain hashing, commitment schemes,
interactive protocols, and authenticated encryption. For each of these applica-
tions, we describe exactly how they can be built by using SAFECore internally,
and we derive generic security in the appropriate model for the application.
We demonstrate that all applications achieve 128-bit security in their respective
model, provided c ≥ μ elements and provided they output μ elements, where μ
is the number of field elements that correspond to 256 bits (or a little less). For
example, for prime fields stemming from elliptic curve groups, we typically set
μ = 1. Likewise, for 64-bit Goldilocks prime field [35], we would have μ = 4.

Our results, in fact, imply something stronger. Each particular application
defines for the underlying protocols which kind of adversaries it protects against.
As SAFE requires the protocol that uses it to specify the length of input and
output messages, in many real-world scenarios the application does not bother
with collisions or preimages that violate the specification. We call this setting
single-oracle security. A less frequent case is when the application needs protec-
tion against inputs of other lengths too. This case may arise when a protocol
employs different random oracles that take different inputs. We call this scenario
cross-oracle security. We show that when all the oracles are implemented with
SAFECore, and the adversary has only limited control on how these oracles are
initialized using the IO pattern and the domain separation, then the security
still holds up to 128-bit security.

Theorem 1. (Informal) Let P be a cryptographic protocol that employs ran-
dom oracles R1,R2, . . . ,Rk and is secure in the random oracle model against
adversaries that make up to 2λ queries to the oracles. Then, the implementation
of this protocol with oracle Ri instantiated with the SAFE API using a field of
size at least 22λ and a domain separator Di (pairwise distinct) is secure against
adversaries that make up to 2λ queries to underlying hash H and permutation P.

306 D. Khovratovich et al.

A more detailed statement can be found in Sect. 5.

1.4 Outline

Section 2 introduces the notation we will use and the necessary context, such as
the sponge construction and the indifferentiability framework. Section 3 describes
the SAFECore construction in detail and its generic security result (Theorem 2).
In Sect. 4 we give a formal proof of the security result. We discuss the SAFE
API in detail in Sect. 5, where we also demonstrate how the security of SAFECore
implies the security of any proper evaluation of the SAFE API. In Sects. 5.1–5.4
this fundamental observation is applied to various use cases of the SAFE API
in order to derive simple and meaningful security claims. The work is concluded
in Sect. 6.

2 Preliminaries

2.1 Notation

We use machine typographic fonts to denote functions (e.g. A, a), upper case
bold to denote sets (e.g. A,B), and case sans-serif to denote variables (e.g. a, b).
To denote the set of natural numbers, we use N. We use ∅ to denote the empty
set and S∗ = ∪∞

i=0S
i for a set S. Given x ∈ S∗, there exists a unique n so that

x ∈ Sn, we denote it by len(x) = n. Abusing notation, we denote the empty

string by ∅ as well. For a finite set S, we say that x $←− S when x is sampled
uniformly from S. Throughout, we will use r to denote the rate and c to denote
the capacity. For an explanation of their meaning see Sect. 3.1.

Given a tuple x = (x1, x2, . . .) ∈ S∗, we also denote it x = x1‖x2‖ . . . and
we use both notations interchangeably. We denote x [1 : k] = (x1, . . . , xk). We
denote by leftr : S∗ → Sr and rightc : S∗ → Sc the functions defined by
leftr (mr‖mrest) = mr and rightc(mrest‖mc) = mc.

Given M ∈ S∗, we denote cutr (M) = (M1, . . . , M�), where:

M1 = M [1 : r] ,
M2 = M [r + 1 : 2r] ,
M3 = M [2r + 1 : 3r] ,

...

M� = M [(� − 1)r + 1 : len(M)]‖0−M mod r ,

where 0� denotes the all 0’s string of bits of length �. We denote by padr (·) an
injective padding, e.g. an injective function S∗ → (Sr)∗. A usual padding is the
10-padding, which works by appending one 1 and filling the rest with 0’s, in the
case elements S can be represented by a string of bits, e.g. when S is a finite
field.

We use RO to denote a random oracle [6].

Generic Security of the SAFE API and Its Applications 307

Fig. 1. Sponge construction, with a requested output of n bits.

2.2 Security Model

In this paper, we use the indifferentiability framework, first introduced by Maurer
et al. [30] and refined to the context of hash functions by Coron et al. [16]. We
introduce the indifferentiability framework below. We will use it to analyze the
SAFECore construction in Sect. 3.

Consider a construction C, relying on an ideal primitive P: CP : S∗ → S∗.
Then consider a simulator, S, with the same interface as P. Finally, we consider
a distinguisher D, which is an algorithm having access to either (RO, SRO) or (CP, P).
In the first case we say that D is in the ideal world, denoted by WI , whereas in
the second case, it is said to be in the real world, denoted by WR. The goal of
D is to determine in which world it was placed. If D determines it is in WR, it
outputs 0, and 1 otherwise.

The advantage of D is defined as:

Adviff
C,S(D) =

∣
∣Pr

[

DWI ⇒ 1
] − Pr

[

DWR ⇒ 1
]∣
∣ . (1)

2.3 Sponge Construction

In this section, we give a description of the standard sponge construction oper-
ating on bits. Let b, r , c ∈ N such that b = r + c. Let P : {0, 1}b → {0, 1}b be a
permutation.

First, the sponge gets an input, (M ,n) ∈ {0, 1}∗×N+. It absorbs the message
M and then it squeezes n bits as output. A formal description is given in Fig. 1
and Algorithm 1.

2.4 Limitations in Application

The sponge construction is a powerful versatile tool. In particular, it can be used
to argue security of the duplex construction and security of keyed applications
of the sponge (e.g. the keyed sponge [12]) or keyed applications of the duplex
(e.g. SpongeWrap [10]).

308 D. Khovratovich et al.

Algorithm 1. Sponge construction
Data: input (M ,n) ∈ {0, 1}∗ × N+

Result: output Z ∈ {0, 1}∞

1: S = 0b � State of the sponge construction
2: Z = ∅ � Output string
3: (M1, . . . ,M�) = padr (M)
4: for 1 ≤ i ≤ � do � Absorb
5: S ← P(S ⊕ (Mi‖0c))
6: end for
7: for 1 ≤ i ≤ � n

r
	 do � Squeeze

8: Z ← Z‖leftr (S)
9: S ← P(S)

10: end for
11: return Z [1 : n] � Z[1 : n] means the first n bits

On the downside, however, the sponge requires an injective padding. A typical
choice for this is the 10-padding, which on input of a message M ∈ {0, 1}∗

appends a single 1 and a sufficient number of 0’s such that the resulting string
is in ({0, 1}r)∗. Although in most use cases this is fine, it is problematic if the
sponge is not applied on raw bits but rather on (large) field elements where we
take a low value for r . For example, if one uses a permutation on top of two
field elements, one simply takes c = r = 1, and padding always incurs an extra
permutation call.

We stress that one cannot simply discard the 10-padding. The reason for
this is that ending with a 0r -block could be problematic. Consider, for the sake
of example, a simplified setting where the sponge is evaluated for two padded
messages, M ∈ {0, 1}3r with a requested digest of 2r bits and M ′ = M ‖0r ∈
{0, 1}4r with a requested digest of r bits. In this case, we will necessarily have

Sponge(M , 2r)[r + 1 : 2r] = Sponge(M ′, r)[1 : r] ,

which would happen for a RO with negligible probability.
We stress that it is possible to have padded messages ending with a 0r-

block, but only in very restricted settings, where in particular overlapping
squeeze/absorb evaluations are avoided. This case is, however, not supported
by the current sponge indifferentiability proofs [13,33].

3 SAFECore Construction

In this section, we will describe the SAFECore construction, which will be a
building block that we will use in Sect. 5 to argue security of the full SAFE API.
We first describe the construction in Sect. 3.1, we give an extensive example use
case in Sect. 3.2, and we discuss the security of SAFECore in Sect. 3.3.

Generic Security of the SAFE API and Its Applications 309

3.1 Construction

In this section we give a description of the SAFECore construction. Consider
a finite field Fp. Let b, r , c ∈ N such that b = r + c. Let P : F

b
p → F

b
p be a

permutation, and let H : (N+)∗ × {0, 1}∗ → F
c
p be a hash function. Given X =

(Xr,Xc) ∈ F
b
p, we reuse the previous notation: leftr(X) = Xr and rightc(X) =

Xc.
SAFECore takes an input (IO ,D ,M) ∈ (N+)∗ × {0, 1}∗ × (Fp)∗. Here, IO is

the input-output (IO) pattern, D , an optional domain separator that will mostly
be of use in the applications in Sect. 5, and message, M , which is expected
to obey to IO in a certain way. To be precise, IO is a tuple of even length,
that we decompose as IO = (I1, O1, . . . , I�, O�), where the Ii correspond to the
number of elements of Fp absorbed and the Oi correspond to the number of
elements of Fp squeezed. Looking ahead, the SAFE API alternates absorbing
phases with squeezing phases as prescribed by IO . As SAFECore will be used as
a building block, it is more restricted. To be precise, in SAFECore the message
M is restricted to the condition that its length len(M) should be equal to
I1 + I2 + · · · + Ik for some k ≤ �. In this case, the number of squeezed elements
will be Ok.

Formally, we define the set of acceptable inputs:

I =

⎧

⎪⎪⎨

⎪⎪⎩

(IO ,D ,M) ∈ (N+)∗ × {0, 1}∗ × (Fp)∗

∣
∣
∣
∣
∣
∣
∣
∣

IO = (I1, O1, . . . , I�, O�) ,

∃ k such that len(M) =
k∑

j=1

Ij

⎫

⎪⎪⎬

⎪⎪⎭

.

(2)

For any (IO ,D ,M) ∈ I, we define absrnds(IO ,M) as the unique number k such
that len(M) =

∑k
j=1 Ij .

On input of a tuple (IO ,D ,M) ∈ I, SAFECore evaluates H on input of (IO ,D)
to obtain a value H ∈ F

c
p, which it uses to initialize the inner part of the sponge.

Then, a variant of the sponge is used to absorb M in accordance with the IO
pattern IO . For this, a specific padding function SAFECorePad (Algorithm 2),
will be employed. SAFECorePad properly pads each absorption round (noting
that Ij is expressed in terms of elements and not in terms of r-element blocks)
and for blank evaluations of in-between squeezing rounds. Then, at the end,
it squeezes Oabsrnds(IO,M) elements in Fp. We stress that this last step is not in
accordance with how the SAFE API works, recalling that it alternates absorbing
and squeezing phases, but after all, SAFECore is defined more restrictively as
being an easy-to-analyze building block for the SAFE API. A full description of
the SAFECore construction is given in Fig. 2 and Algorithm 3.

3.2 Example

Consider an instantiation of SAFECore with parameters c = 2, r = 2. A typical
IO pattern could be IO = (8, 6, 5, 3, 4, 7). In the SAFE API (that we will discuss

310 D. Khovratovich et al.

Fig. 2. SAFECore construction, where the input message M is of length I1 + · · · + Ik

elements and the digest consists of Ok elements. The function SAFECorePad is described
in Algorithm 3.

Algorithm 2. Description of SAFECorePad
Data: input (IO ,M) ∈ I
Result: output M ′ ∈ (Fr

p)∗

1: k = absrnds(IO ,M)
2: M ′ = ∅ � Output string
3: for 1 ≤ i ≤ k − 1 do
4: M ′ ← M ′‖M [I1 + · · · + Ii−1 + 1 : I1 + · · · + Ii]‖0−Ii mod r

5: M ′ ← M ′‖0r�Oi/r�

6: end for
7: M ′ ← M ′‖M [I1 + · · · + Ik−1 + 1 : I1 + · · · + Ik]‖0−Ik mod r

8: return M ′

in Sect. 5), this pattern means that we start with absorbing 8 elements in Fp

(which happens in 4 rounds, as r = 2), followed by squeezing 6 elements in Fp

(which happens in 3 rounds), followed by absorbing 5 elements (which happens
in 3 rounds), and so on. However, SAFECore is more restrictive than that, in
order to be able to have an easy-to-analyze building block for the SAFE API.
Concretely, for the example IO , there are three permissible message lengths:

– 8 elements from Fp, in which case the output consists of 6 elements from Fp;
– 13 elements from Fp, in which case the output consists of 3 elements from Fp;
– 17 elements from Fp, in which case the output consists of 7 elements from Fp.

We remark that, although IO puts restrictions on the length of M , one may
allow arbitrary-length squeezing at the end. We have not included this option
in our formalization in order to stay close to the SAFE API, but the security
analysis in our work would allow this.

3.3 Security of SAFECore Construction

When D is in the real world, we count the cost of queries by how many times H
and P are called, where duplicate queries are only counted once. For our running

Generic Security of the SAFE API and Its Applications 311

Algorithm 3. Description of SAFECore
Data: input (IO ,D ,M) ∈ I
Result: output Z ∈ (Fp)∗

1: S = 0r‖H(IO ,D) � State of the SAFECore construction
2: Z = ∅ � Output string
3: M ′ = SAFECorePad(IO ,M) � See Algorithm 2
4: for 1 ≤ i ≤ len(M ′)/r do � Absorb
5: S ← P(S ⊕ (M ′[r · (i − 1) + 1 : r · i]‖0c))
6: end for
7: k = absrnds(IO ,M)
8: for 1 ≤ i ≤ �Ok/r	 do � Squeeze
9: Z ← Z‖leftr (S)

10: S ← P(S)
11: end for
12: return Z [1 : Ok] � Z[1 : Ok] means the first Ok elements

example of Sect. 3.2, if one makes three evaluations of SAFECore as suggested,
where the three message inputs are prefixes of each other, the total cost is the
total number of unique permutation evaluations, which happens to be as much
as the cost of the longest query of the three.

When D is in the ideal world, we likewise count the cost of queries by how
many times H and P would have been called, had the same query been made in
the real world.

We now state the main security result.

Theorem 2 (Security of SAFECore). Let C be the SAFECore construction based
on a random oracle H and random permutation P. There exists a simulator S,
such that for any distinguisher D making at most QH unique hash queries and QP

unique primitive queries:

Adviff
C,S(D) ≤ 3 · (

QH

2

)

+ 2 · (QP

2

)

+ 4 · QP · QH

|Fp|c +
3 · (

QP

2

)

|Fp|b . (3)

The proof is given in Sect. 4.

4 Proof of Theorem 2

Let C be the SAFECore construction based on a random oracle H and random per-
mutation P. Our goal is to construct a simulator S such that for any distinguisher
D, the following distance is “small”, in a precise way:

Adviff
C,S(D) =

∣
∣
∣Pr

[

DRO,S
RO ⇒ 1

]

− Pr
[

DC
H,P,H,P ⇒ 1

]∣
∣
∣ . (4)

Here, S simulates both the hash function H, and the construction P in both
directions, i.e., it simulates both P and P−1. Abusing notation, we denote S =

312 D. Khovratovich et al.

(SH, SP, SP−1).3 The world (RO, SRO) is called the ideal world and (CH,P, H, P) is
called the real world. These worlds are depicted in Fig. 3.

First, in Sect. 4.1, we will describe our simulator. In Sect. 4.2 we will describe
an intermediate world and apply the triangle inequality to derive two easier-to-
bound distances from (4). These two distances are then bounded in Sects. 4.4
and 4.5, using bad events introduced in Sect. 4.3. The proof is inspired by that
of Naito and Ohta [33], but in addition taking into account the hashing func-
tionality and its related bad events.

4.1 Simulator

We first define Iext (read I extended):

Iext =
⋃

(IO,D,M)∈I

⎧

⎪⎨

⎪⎩

(IO ,D ,M ′‖M ′′)

∣
∣
∣
∣
∣
∣
∣

M ′ = SAFECorePad(IO ,M) ,

M ′′ ∈ {∅, 0r, . . . , 0r(�Ok/r�−1)} ,

where k = absrnds(IO ,M)

⎫

⎪⎬

⎪⎭

,

where the function SAFECorePad is defined in Algorithm 3. Intuitively Iext covers
all tuples for which the simulator knows that, if it receives an input value X to
SP “completing” (IO ,D ,M) ∈ Iext, it will have to output a value consistent
with the random oracle. However, it will also need to know which bits of the
output of the (variable output length) RO it has to select. Therefore, for any
(IO ,D ,M) ∈ Iext, we define 0elts(IO ,M) as the total number of elements (i.e.
the length of len(M ′′)) attached to M ′.

The simulator can be queried through three interfaces: SH, SP, and S−1
P . It

maintains tables CH and CP recording the query-response pairs of each query:
any input-output tuple SH(IO ,D) �→ H is stored as (IO ,D,H) in CH, and any
input-output tuple SP(X) �→ Y or S−1

P (Y) �→ X is stored as (X,Y) in CP.
Furthermore, we define:

DH = {(IO ,D) ∈ (N+)∗ × {0, 1}∗ | ∃H ∈ F
c
p s.t. (IO ,D ,H) ∈ CH} ,

RH = {H ∈ F
c
p | ∃(IO ,D) ∈ (N+)∗ × {0, 1}∗ s.t. (IO ,D ,H) ∈ CH} ,

DP = {X ∈ F
b
p | ∃Y ∈ F

b
p s.t. (X,Y) ∈ CP} ,

RP = {Y ∈ F
b
p | ∃X ∈ F

b
p s.t. (X,Y) ∈ CP} .

The simulator maintains a graph that it uses to avoid discrepancies that D
might detect. We adopt the graph representation from Bertoni et al. [13].

The nodes are elements of Fb
p. Two nodes X ,Y ∈ F

b
p are joined by an edge

if ∃M ∈ F
r
p such that (X ⊕ (M‖0c),Y) ∈ CP. Then M is the label of the edge

joining X and Y , which we denote as X M−→ Y . We write X −→ Y to denote
that X and Y are linked through a 0-string label. We say that X is a root node
if there exists (IO ,D ,H) ∈ CH so that X = 0r‖H . For simplicity, we denote

X M1−−→ Y M2−−→ Z by X
M1‖M2=====⇒ Z . The graph is initialized by the simulator as

3 Here, we omit the superscript RO on S to simplify notation.

Generic Security of the SAFE API and Its Applications 313

Algorithm 4. Simulator S
Function SH:
Data: input (IO ,D) ∈ (N+)∗ × {0, 1}∗

Result: output H ∈ F
c
p

1: H
$←− F

c
p

2: CH ← CH ∪ {(IO ,D ,H)}
3: return H

Function SP:
Data: input X ∈ F

b
p

Result: output Y ∈ F
b
p

1: if ∃(IO ,D ,M ‖u) ∈ Iext,H ∈ F
c
p : (IO ,D ,H) ∈ CH ∧

(
0r‖H M

=⇒ X ⊕ (u‖0c)
)
then

2: α ← 0elts(IO ,M ‖u)
3: M ′ ← leftlen(M‖u)−α(M ‖u)
4: Yr ← RO(IO ,D ,M ′)[α + 1 : α + r]

5: Yc
$←− F

c
p

6: Y ← Yr‖Yc

7: else
8: Y

$←− F
b
p

9: end if
10: CP ← CP ∪ {(X ,Y)}
11: return Y

Function S−1
P :

Data: input Y ∈ F
b
p

Result: output X ∈ F
b
p

1: X
$←− F

b
p

2: CP ← CP ∪ {(X ,Y)}
3: return Y

being empty, then it is updated lazily in the following way: When a query is
made, it is added to the table, and the proper edges and labels are added to the
graph.

The three simulator interfaces are formally described in Algorithm 4. Here,
we recall that the distinguisher does not make redundant queries.

4.2 Intermediate World

We will use an intermediate world, which we denote WS . This world behaves
like the real world, with the exception that the ideal primitives, i.e. H and P, are
replaced by the simulator interfaces. The world is depicted in Fig. 3.

By the triangle inequality, we have:

(4) ≤ ∣
∣Pr[DWI ⇒ 1] − Pr[DWS ⇒ 1]

∣
∣ (5)

+
∣
∣Pr[DWS ⇒ 1] − Pr[DWR ⇒ 1]

∣
∣ . (6)

Distance (5) is bounded in Sect. 4.4 and distance (6) is bounded in Sect. 4.5.
Before doing so, we define bad events in Sect. 4.3.

314 D. Khovratovich et al.

Fig. 3. Worlds involved in the security proof.

4.3 Bad Events

When the distinguisher makes a query, the simulator will try to maintain con-
sistency with the ideal world. However, it is possible that an earlier response is
such that the simulator cannot guarantee consistency anymore. To capture these
cases, we will define additional bad events. Note that the distinguisher can make
Q queries, QH of which to the hash interface and QP of which to the permutation
interface. Consider i ∈ {1, . . . ,Q}. We define the following bad events:

– CollHi : the i-th query is a query (IO ,D ,H) to SH and there exists
(IO ′,D ′,H ′) ∈ CH such that (IO ,D) �= (IO ′,D ′) and H = H ′.

– CollPi : the i-th query is a query (X,Y) to SP or S−1
P and there exists

(X ′, Y ′) ∈ CP such that either4

• X �= X ′ and Y = Y ′, or
• Y �= Y ′ and X = X ′.

– ConnectPi : either
• the i-th query is a query (X,Y) to SP and there exists (X ′, Y ′) ∈ CP such

that rightc(Y) = rightc(X
′), or

• the i-th query is a query (X,Y) to S−1
P and there exists (X ′, Y ′) ∈ CP

such that rightc(X) = rightc(Y
′).

– ConnectPHi : either
• the i-th query is a query (X,Y) to SP and there exists (IO ,D ,H) ∈ CH

such that rightc(Y) = H, or
• the i-th query is a query (X,Y) to S−1

P and there exists (IO ,D ,H) ∈ CH

such that rightc(X) = H, or
• the i-th query is a query (IO ,D ,H) to SH and there exists (X,Y) ∈ CP

such that H = rightc(X) or H = rightc(Y).

We furthermore define:

Badi = CollHi ∨ CollPi ∨ ConnectPi ∨ ConnectPHi .

4 Here, we remark that the distinguisher never makes a redundant query, so it can
never set the former condition in an inverse query or the latter condition in a forward
query.

Generic Security of the SAFE API and Its Applications 315

For each of the bad events Eventi ∈ {Badi ,CollHi ,CollPi ,ConnectPi ,
ConnectPHi}, we write:

Event =
Q
⋃

i=1

Eventi .

Bad event CollH registers hash collisions, which are problematic as they
would allow different IO patterns and domain separators leading to the same
root in the graph. Bad event CollP registers collisions in the permutation inter-
face. Bad event ConnectP registers the case that a permutation query acci-
dentally extends a path in the graph. Finally, bad event ConnectPH registers
accidentally making a non-rooted path rooted and registers accidental collisions
at the H-value.

For each of these events, if relevant, we add a superscript (like Bad(1),
Bad(2), or Bad(3)) to indicate to which of the games (see Fig. 3) it applies.

The bad events are quite straightforward to bound, and we can obtain the
following lemma. In this lemma, we consider both the general bad event Bad as
the isolated bad event CollP, as both results are needed separately.

Lemma 1. For any distinguisher D making at most QH unique hash queries and
QP unique primitive queries, the following holds for j = 1, 2:

Pr[CollP(j)] ≤
(
QP

2

)

|Fp|b , (7)

Pr[Bad(j)] ≤
(
QH

2

)

+
(
QP

2

)

+ 2 · QP · QH

|Fp|c +

(
QP

2

)

|Fp|b , (8)

and the following holds for j = 1, 2, 3:

Pr[CollH(j)] ≤
(
QH

2

)

|Fp|c . (9)

Proof. The bad events can in fact be easily bounded in isolation:

Pr[Bad] ≤ Pr[CollH] + Pr[CollP] + Pr[ConnectP] + Pr[ConnectPH] .

For each of these four events, Event ∈ {CollH,CollP,ConnectP,
ConnectPH}, we observe that:

Pr[Event] ≤
Q

∑

i=1

Pr[Eventi | ¬Eventi−1] ≤
Q

∑

i=1

Pr[Eventi] .

We will now consider the events separately, where the reasoning for CollH holds
for j = 1, 2, 3 and the reasoning of the other events for j = 1, 2. In the rest of
this proof we omit the superscript.

CollH. Note that this bad event only involves hash queries, so w.l.o.g. i runs
from 1 to QH. At the point of the i-th query, there are at most i−1 tuples in CH.

316 D. Khovratovich et al.

As the response H of the i-th query is uniformly randomly selected from F
c
p, it

sets the bad event with probability (i − 1)/|Fp|c. We thus obtain that:

Pr[CollH] ≤
QH∑

i=1

i − 1
|Fp|c ≤

(
QH

2

)

|Fp|c .

CollP. Note that this bad event only involved primitive queries, so w.l.o.g. i runs
from 1 to QP. At the point of the i-th query, there are at most i − 1 tuples in
CP. If the i-th query is a forward query, since the b elements of Y are uniformly
randomly selected from Fp, it sets the bad event with probability (i − 1)/|Fp|b.
The same holds in case the i-th query is an inverse query. As any query is either
a forward or an inverse query (not both), we obtain that:

Pr[CollP] ≤
QP∑

i=1

i − 1
|Fp|b ≤

(
QP

2

)

|Fp|b .

ConnectP. Note that this bad event only involves primitive queries, so w.l.o.g.
i runs from 1 to QP. At the point of the i-th query, there are at most i − 1
tuples in CP. If the i-th query is a forward query, as the c inner elements of Y
are uniformly randomly selected from F

c
p, it sets the bad event with probability

(i − 1)/|Fp|c. The same holds in case the i-th query is an inverse query. As any
query is either a forward or an inverse query (not both), we obtain that

Pr[ConnectP] ≤
QP∑

i=1

i − 1
|Fp|c ≤

(
QP

2

)

|Fp|c .

ConnectPH. Any query to SP/S
−1
P may set the bad event if its response (either

Y in forward queries or X in inverse queries) has its c inner elements equal to
H for an earlier query to SH. Likewise, any query to SH may set the bad event if
its response H equals the c inner elements of any X or Y for an earlier query to
SP/S

−1
P . As all fresh inner values and all fresh values H are uniformly randomly

selected from F
c
p, and there are at most QP queries to SP/S

−1
P and at most QH

queries to SH, and any pair sets bad with probability 2/|Fp|c. We thus obtain
that:

Pr[ConnectPH] ≤ 2 · QP · QH

|Fp|c .

Conclusion. The lemma immediately follows by adding the individual bad
events. ��

4.4 Bound of (5)

We will use the following lemma, which informally states that the simulator in
game 2 operates consistently with the random oracle in game 1 as long as no
bad event occurs.

Generic Security of the SAFE API and Its Applications 317

Lemma 2. Unless a bad event happens in game 1 or game 2, we always have
the following result. For any rooted path in the simulator graph of the following
form

0r‖H
SAFECorePad(M)
==========⇒ Y1 −→ · · · −→ Y� , (10)

where (IO ,D,H) ∈ CH, (IO ,D ,M) ∈ I, and where � ≤ �Ok/r� for k =
absrnds(IO ,M),

leftr(Y1)‖ · · · ‖leftr(Y�) = RO(IO ,D , SAFECorePad(M))[1 : r · �] . (11)

Proof. We proceed by induction on the number of queries the distinguisher D

makes. Clearly, Bad(j)
1 never happens. Assume that the lemma holds for any

simulator performing Q − 1 queries. Consider distinguisher D making its Q-th
query, where Bad(j)

i has not occurred for i < Q. By hypothesis,

leftr(Y1)‖ · · · ‖leftr(Y�) = RO(IO ,D , SAFECorePad(M))[1 : r · �] , � < Q

for any path on the simulator’s graph.
Assume Bad(j)

Q does not occur in the Q-th query and suppose there is a path
on the simulator’s graph contradicting (10). In other words, there is a path:

0r‖H
SAFECorePad(M)
==========⇒ Y1 −→ · · · −→ Y�−1 −→ Y� ,

where necessarily

leftr(Y1)‖ · · · ‖leftr(Y�−1) = RO(IO ,D , SAFECorePad(M))[1 : r · (� − 1)]

but

leftr(Yl) �= RO(IO ,D , SAFECorePad(M))[r · (� − 1) + 1 : r · �] .

By the construction of the simulator, we know there must be another path from
0r‖H to Y� satisfying (10). This implies that in the simulator’s graph there
is a node with two out-going (or two in-going) edges, in which case CollPQ

must have occurred, there is a rooted node with an in-going edge, in which case
ConnectPHQ must have occurred, there is a cycle, in which case ConnectPQ

must have occurred, or the selection of (IO ,D) was ambiguous in the first place,
in which case CollHQ must have occurred. Since by hypothesis, neither of those
occurred, we conclude that the result holds. ��

From Lemma 2, we can conclude that WI and WS are identical, i.e. their
outputs are identically distributed, as long as Bad does not happen in either
world. More formally, by the fundamental lemma of game playing [7] (or by [38])
we have:

Pr[DWI ⇒ 1 | ¬Bad(1)] = Pr[DWS ⇒ 1 | ¬Bad(2)] .

318 D. Khovratovich et al.

Similar to Naito and Ohta [33, Section 3.4], we obtain from (8) of Lemma 1:5

(5) ≤ Pr[Bad(1)] + Pr[Bad(2)] ≤ 2 · (
QH

2

)

+ 2 · (QP

2

)

+ 4 · QP · QH

|Fp|c +
2 · (

QP

2

)

|Fp|b .

(12)

4.5 Bound of (6)

The intermediate world WS and the real world WR (see Fig. 3) are identi-
cal, except for the fact that P/P−1 is a permutation whereas SP/S

−1
P is a

random function. First note that SP queries its oracle on input of a tuple
(IO ,D , SAFECorePad(M)), which is always distinct for each evaluation. Thus,
the outputs of SP/S−1

P are always uniformly randomly drawn. In the real world,
it may happen that P is evaluated twice for the same value for a different con-
struction evaluation, while this would not happen in the intermediate world.
However, this would only happen in case of event CollH(3). Assuming that this
never happens, the two oracles P/P−1 and SP/S

−1
P are identical as long as the lat-

ter does not output colliding values, which would in turn trigger event CollP(2).
From (7) and (9) of Lemma 1:

(6) ≤ Pr[CollH(3)] + Pr[CollP(2)] ≤
(
QH

2

)

|Fp|c +

(
QP

2

)

|Fp|b .

5 SAFE API

The SAFE API [5] considers a sponge with a state of b = r + c field elements in
F
b
p, where r is the rate and c the capacity. The sponge operates on a permutation

P : Fb
p → F

b
p. In addition, a hash function H : (N+)∗ × {0, 1}∗ → F

c
p is involved

upon initialization. A sponge object exposes four operations:

– START. This operation officially marks the start of a sponge life. It receives as
input an IO pattern, IO , and a domain separator D . The input, IO , prescribes
exactly the sequence of future calls and their respective lengths in the form of
a string of 32-bit words (the exact encoding is slightly different from that of
Sect. 3, but the difference is irrelevant for the current discussion), and D is an
arbitrary domain separator which could for instance be used to distinguish
between different use cases. It feeds IO and D into the hash function to obtain
a c-element tag T = H(IO ,D). This tag is then used to initialize the inner
part of the state.

– ABSORB. It receives as input a length L and an array X [L] of L field elements,
and absorbs them r elements at a time, interleaved with a call of P. The
function also checks if the input matches the IO pattern.

5 In their work, Naito and Ohta omitted a factor 2, which is included here. Our bound
can also be derived from [38, Lemma 1].

Generic Security of the SAFE API and Its Applications 319

– SQUEEZE. It receives as input a length L stating the requested number of
blocks, and squeezes them r elements at a time, interleaved with a call of P.
The function also checks if the input matches the IO pattern.

– FINISH. This operation officially marks the end of a sponge life. It receives
no input and outputs ‘OK ’ or ‘NOK ’, depending on whether the sponge
evaluation was correctly executed.

It is important to note that the functions ABSORB and SQUEEZE can be evaluated
element-wise, and they only evaluate the permutation once they exhausted the
entire outer part, i.e. once they absorbed/squeezed r elements. In addition, a
transition from ABSORB to SQUEEZE is always made through a permutation eval-
uation, even if they did not exhaust the outer part. The other way around, this is
not the case: one can e.g. squeeze r elements and then absorb r elements before
the next permutation call is made. Details on this, and how it is implemented,
can be found in [5].

Example 1. We will explain how the example of Sect. 3.2 would appear in
the SAFE API, with parameters c = 2, r = 2. We have an IO pattern
IO = (8, 6, 5, 3, 4, 7), and any domain separator D . Let M = M [1 : 17] be
any input of the correct length. We describe two different ways to process this
IO pattern, domain separator, and message using the SAFE API in Algorithms 5
and 6. The two evaluations are, in fact, equivalent. For example, in Algorithm 5,
line 3 incurs 4 evaluations of P (recall that r = 2), whereas in Algorithm 6, line 3
incurs 2 evaluations of P and line 4 incurs 2 evaluations of P. The two evaluations
in Algorithms 5 and 6 succeed upon finishing; if there were a mismatch between
the number of absorbed/squeezed elements and what was prescribed by the IO
pattern, finish would fail.

Algorithm 5. Example evaluation of
SAFE API
1: Z = ∅
2: START(IO ,D)
3: ABSORB(8,M [1 : 8])
4: Z ← Z‖SQUEEZE(6)
5: ABSORB(5,M [9 : 13])
6: Z ← Z‖SQUEEZE(3)
7: ABSORB(4,M [14 : 17])
8: Z ← Z‖SQUEEZE(7)
9: return FINISH() ? Z : ⊥

Algorithm 6. Example evaluation of
SAFE API
1: Z = ∅
2: START(IO ,D)
3: ABSORB(5,M [1 : 5])
4: ABSORB(3,M [6 : 8])
5: Z ← Z‖SQUEEZE(3)
6: Z ← Z‖SQUEEZE(3)
7: ABSORB(4,M [9 : 12])
8: ABSORB(1,M [13])
9: Z ← Z‖SQUEEZE(3)

10: ABSORB(4,M [14 : 17])
11: Z ← Z‖SQUEEZE(3)
12: Z ← Z‖SQUEEZE(4)
13: return FINISH() ? Z : ⊥

320 D. Khovratovich et al.

By definition, these evaluations of the SAFE operations are covered almost
exactly by SAFECore, with the crucial difference that SAFE for efficiency
and implementation reasons allows element-wise data processing whereas in
SAFECore all inputs are basically absorbed at once before the first squeezing
starts. It turns out that this does not restrict the generality of SAFECore, and in
particular, we can argue security of any use case of the SAFE API. For example,
for Example 1, we have

Z ← SAFECore(IO ,D ,M [1 : 8]) (13a)
‖ SAFECore(IO ,D ,M [1 : 13]) (13b)
‖ SAFECore(IO ,D ,M [1 : 17]) . (13c)

Note that in SAFECore, the function SAFECorePad assures proper padding of
M to account for squeezing rounds in (13b) and (13c). Because in Theorem 2
we proved that SAFECore is indifferentiable from a random oracle up to bound
(4), we can obtain that the output string (13) is indistinguishable from random,
provided QH,QP � |Fp|c/2.

This result can be straightforwardly generalized to the observation that all
outputs of an evaluation of the SAFE API are indistinguishable from random,
except in case two evaluations have a common prefix. To understand this, let us
first consider the example case above, where we query the SAFE API on input
of IO = (8, 6, 5, 3, 4, 7), any domain separator D , and on two different messages
M = M [1 : 17] and M ′ = M ′[1 : 17] satisfying that M [1 : 8] = M ′[1 : 8]. Then,
in the evaluation of the SAFE API in Algorithm 5 or 6, the first 6 squeezed
elements will be equal in the two evaluations, the remaining 10 elements may
be either equal or independently distributed depending on the values M [9 : 17]
and M ′[9 : 17]. This can in fact also be concluded from (13).

More formally, we say that two tuples (IO ,D ,M) and (IO ′,D ′,M ′) have a
common prefix of k phases if

(IO ,D ,M [1 : I1 + I2 + · · · + Ik]) = (IO ′,D ′,M ′[1 : I1 + I2 + · · · + Ik])

but

M [I1 + I2 + · · · + Ik + 1 : I1 + I2 + · · · + Ik+1] �=
M ′[I1 + I2 + · · · + Ik + 1 : I1 + I2 + · · · + Ik+1] .

Then, in the SAFE API, the first O1 + O2 + · · · + Ok squeezed elements will
be identical but the future squeezes will be mutually independent. Obviously,
common digests for common prefixes is not a bug, but rather a feature that is also
present in duplex constructions [9,10,18,20,32]. By using different IO patterns
IO �= IO ′, different domain separators D �= D ′, or a nonce that initializes M ,
the problem is avoided all the way.

We can conclude the following for the SAFE API.

Corollary 1 (Security of SAFE API). Under the assumption that H is a
random oracle and P a random permutation, and as long as the total number of

Generic Security of the SAFE API and Its Applications 321

primitive evaluations QH,QP are less than |Fp|c/2, outputs of SAFE are indistin-
guishable from random up to common prefix.

This corollary, in turn, has immediate consequences for many practical use cases
of the SAFE API. In the remainder of this section, we discuss various examples in
more detail. In each of these applications, μ ∈ N is the number of field elements
that correspond to 256 bits (or a little less), and we take c ≥ μ.

5.1 Fixed-Length Hashing

In order to hash an array of � ∈ N field elements M = M [1 : �] ∈ F
�
p and obtain

a digest of μ elements, one can evaluate the SAFE operations as follows. First,
we fix IO pattern IO = (�, μ) and arbitrary domain separator D. Then, the hash
digest is generated as follows:
1: START(IO ,D)
2: ABSORB(�,M [1 : �])
3: Z ← SQUEEZE(μ)
4: return FINISH() ? Z : ⊥

By definition, this is exactly the same as evaluating SAFECore:

Z ← SAFECore(IO ,D,M) , (14)

where M is restricted to match the IO pattern IO and the length of Z is pre-
scribed by IO as well. Note that, just like in the comparison of Algorithms 5
and 6, for hashing the consumer is allowed to absorb and squeeze element-wise,
but it does not matter much. We obtain the following corollary.

Corollary 2. Under the assumption that H is a random oracle and P a ran-
dom permutation, above fixed-length hashing construction outputs Z that is
indistinguishable from random as long as the total number of START calls and
the total number of permutation calls do not exceed |Fp|c/2. In particular, for
c ≥ μ = logp 2256−ε the fixed-length hashing construction is preimage resistant
against an adversary that makes at most min{|Fp|c/2, |Fp|μ} queries and collision
resistant against an adversary that makes at most min{|Fp|c/2, |Fp|μ/2} queries
implying security up to 128 − ε/2 bits.

Merkle tree hashing is a subclass of this scenario.

5.2 Commitment Schemes

In order to commit to � d-tuples of field elements X1,X2, . . . , X� ∈ F
d
p and

randomness R ∈ Fp and obtain a digest of μ elements, one can evaluate the
SAFE operations as follows. First, we fix IO pattern IO = (� · d + 1, μ) and
arbitrary domain separator D. Then, the commitment is generated as follows:
1: START(IO ,D)
2: ABSORB(� · d + 1,X1||X2|| . . . ||X�||R)
3: Z ← SQUEEZE(μ)

322 D. Khovratovich et al.

4: return FINISH() ? Z : ⊥
By definition, this is exactly the same as evaluating SAFECore:

Z ← SAFECore(IO ,D,X1‖X2‖ · · · ‖X�‖R) , (15)

just like for the example of Sect. 5.1. In fact, the application is merely identical,
but the security model is different. Here, we do not aim for collision or preimage
resistance as in Corollary 2, but rather to binding and hiding. Moreover, as
our adversary can freely choose IO and D, our security results applies not to a
single invocation of a commitment scheme but also to protocols where several
commitment schemes are used in parallel.

Corollary 3. Under the assumption that H is a random oracle and P a ran-
dom permutation, above commitment scheme construction outputs Z that is
indistinguishable from random as long as the total number of START calls and
the total number of permutation calls do not exceed |Fp|c/2. In particular, for
c ≥ μ = log|Fp| 2256−ε the commitment scheme construction is computationally
binding and hiding against an adversary that makes at most min{|Fp|c/2, |Fp|μ}
queries to H and P, implying security up to 128 − ε/2 bits.

Note that the IO pattern will be the same for committing �·d 1-field elements.
If this difference matters for an application, a domain separator should be used.

5.3 Multi-round Interactive Protocols

A non-interactive argument of knowledge is often based on a multi-round inter-
active protocol, where a verifier is replaced by a hash function within the Fiat-
Shamir paradigm. SAFE is suitable for implementing such a hash with minimum
overhead. As an example, consider a 5-round protocol. Let n ∈ N be the length
of the common input, and let λ1, λ2, λ3 ∈ N be the lengths of proof elements:

– Prover and verifier agree on the common input N ∈ F
n
p ;

– Prover prepares and sends proof elements π1 ∈ F
λ1
p and π2 ∈ F

λ2
p ;

– Verifier responds with challenge C1 ∈ F
μ
p ;

– Prover prepares and sends proof element π3 ∈ F
λ3
p ;

– Verifier responds with challenges C2, C3 ∈ F
μ
p ;

– Prover sends final proof π4.

Here the prover sends a proof of knowledge in three steps while getting verifier’s
challenges in-between. To make the protocol non-interactive we apply the Fiat-
Shamir transformation where the challenges are generated as follows. First, we
fix IO pattern IO = (n + λ1 + λ2, μ, λ3, 2μ) and arbitrary domain separator D.
Then, the challenges are generated as follows:
1: START(IO ,D)
2: ABSORB(n + λ1 + λ2, N‖π1‖π2)
3: C1 ← SQUEEZE(μ)
4: ABSORB(λ3, π3)

Generic Security of the SAFE API and Its Applications 323

5: C2 ← SQUEEZE(μ)
6: C3 ← SQUEEZE(μ)
7: return FINISH() ? (C1, C2, C3) : ⊥

By definition, this is exactly the same as evaluating SAFECore:

C1 ← SAFECore(IO ,D,N‖π1‖π2) , (16a)
C2‖C3 ← SAFECore(IO ,D,N‖π1‖π2‖π3) . (16b)

We obtain, by security of SAFECore, that this non-interactive version of the
protocol is as secure as the interactive one up to the security of SAFECore. We
note that as our adversary is powerful enough to choose arbitrary IO and D, the
security holds when several such protocols co-exist in one application, whether
in parallel or recursively.

Corollary 4. Suppose the multi-round interactive protocol construction is com-
putationally sound against an adversary that makes up to 2t calls to H and P
assuming H is a random oracle and P a random permutation. Then the non-
interactive protocol (above) outputs (C1, C2, C3) that are indistinguishable from
random as long as the total number of START calls and the total number of per-
mutation calls do not exceed |Fp|c/2. In particular, for c ≥ μ = log|Fp| 2256−ε the
non-interactive protocol construction is sound against an adversary that makes
at most min{2t, |Fp|c/2, |Fp|μ} queries, implying security up to 128 − ε/2 bits.

5.4 Authenticated Encryption

SAFE allows to perform authenticated encryption using the SpongeWrap
mode [10], with subtle differences that the 1-padding (present in the original
SpongeWrap) can be avoided by using the IO pattern de facto as prefix. Let k
be the key length, n the nonce length, and t the tag length. In order to encrypt
and authenticate � blocks of data M1,M2, . . . , M� each of length λi with key
K ∈ F

k
p and nonce N ∈ F

n
p in order to obtain ciphertext blocks C1, C2, . . . , C�

and tag T ∈ F
μ
p , we proceed as follows. First, we fix IO pattern

IO = (k + n, λ1, λ1, λ2, λ2, . . . , λ�, λ�, μ)

and an arbitrary domain separator D. Then, the message is encrypted and
authenticated as follows:
1: START(IO ,D)
2: ABSORB(k + n,K‖N)
3: Z1 ← SQUEEZE(λ1)
4: ABSORB(λ1,M1)
5: Z2 ← SQUEEZE(λ2)
6: ABSORB(λ2,M2)
7: · · ·
8: Z� ← SQUEEZE(λ�)
9: ABSORB(λ�,M�)

324 D. Khovratovich et al.

10: T ← SQUEEZE(μ)
11: (C1, C2, . . . , C�) ← (Z1 + M1, Z2 + M2, . . . , Z� + M�)
12: return FINISH() ? (C1, . . . , C�, T) : ⊥

By definition, this is exactly the same as evaluating SAFECore:

Z1 ← SAFECore(IO ,D,K‖N) , (17a)
Z2 ← SAFECore(IO ,D,K‖N‖M1) , (17b)

...
Z� ← SAFECore(IO ,D,K‖N‖M1‖ · · · ‖M�−1) , (17c)
T ← SAFECore(IO ,D,K‖N‖M1‖ · · · ‖M�) , (17d)

with the final output being (Z1 + M1, Z2 + M2, . . . , Z� + M�, T). We obtain, by
security of SAFECore, that this authenticated encryption scheme is secure.

Corollary 5. Under the assumption that H is a random oracle and P a ran-
dom permutation, above authenticated encryption construction outputs Z that
is indistinguishable from random as long as the total number of START calls
and the total number of permutation calls do not exceed |Fp|c/2. In partic-
ular, for c ≥ μ = log|Fp| 2256−ε the authenticated encryption construction
offers confidentiality and authenticity against an adversary that makes at most
min{|Fp|c/2, |Fp|μ} queries, implying security up to 128 − ε/2 bits.

This construction is the most efficient when λi ≡ 0 mod r, that is, all blocks
fit the rate parameter of the sponge. This mode can be adapted to support
associated data (authenticated but not encrypted), in the same vein as the
SpongeWrap mode. Note that there is no padding overhead, nor we spend
unneeded calls to the inner permutation.

6 Conclusion

We have formally proven the security of the SAFE API with applications to many
use cases, from hashing to interactive protocols. A number of typical applications
have been highlighted in Sects. 5.1–5.4, but extensions to protocol composition,
variable-length hashing, PRNGs, and support of multiple fields are possible. The
most important observation is that it is possible to get rid of the padding schemes
at the (arguably smaller) cost of pre-declaring the pattern of absorptions and
squeezes. As the majority of applications of the SAFE API know this pattern in
advance, we have placed no significant burden on the designers. Our results, per-
haps surprisingly, demonstrated that SAFE API is better than it was originally
considered. In particular, our results demonstrate that the full inner part of the
sponge can be used to hash the IO pattern onto, without any security loss. This
principle can be used in the future applications of sponges, which may put all
the application/run metadata (properly processed) into the capacity, and then
run the sponge in a simple but flexible and foolproof way.

Generic Security of the SAFE API and Its Applications 325

Acknowledgements. We would like to thank Mary Maller for fruitful discussions
on the applications of our result. Mario Marhuenda Beltrán and Bart Mennink are
supported by the Netherlands Organisation for Scientific Research (NWO) under grant
VI.Vidi.203.099.

References

1. Longsight faulty design (2018). https://github.com/zcash/zcash/issues/2233#
issuecomment-416648993

2. Tornado Cash Privacy Solution Version 1.4 (2021). https://tornado.cash/Tornado.
cash whitepaper v1.4.pdf

3. Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp.
191–219. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-
6 7

4. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
symmetric-key primitives for advanced cryptographic protocols. IACR Trans. Sym-
metric Cryptol. 2020(3), 1–45 (2020). https://doi.org/10.13154/tosc.v2020.i3.1-45

5. Aumasson, J., Khovratovich, D., Quine, P.: SAFE: Sponge API for Field Elements.
Cryptology ePrint Archive, Paper 2023/522 (2023). https://eprint.iacr.org/2023/
522

6. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) CCS 1993, Proceedings of the 1st ACM Conference on Computer and
Communications Security, Fairfax, Virginia, USA, 3–5 November 1993, pp. 62–73.
ACM (1993). https://doi.org/10.1145/168588.168596

7. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple
encryption. Cryptology ePrint Archive, Paper 2004/331 (2004). https://eprint.iacr.
org/2004/331

8. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of
the Fiat-Shamir heuristic and applications to helios. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 38

9. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.:
Farfalle: parallel permutation-based cryptography. IACR Trans. Symmetric Cryp-
tol. 2017(4), 1–38 (2017). https://tosc.iacr.org/index.php/ToSC/article/view/801

10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge:
single-pass authenticated encryption and other applications. In: Miri, A., Vau-
denay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28496-0 19

11. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Keccak. In: International Con-
ference on the Theory and Application of Cryptographic Techniques (2013)

12. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge Functions (2007)
13. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability

of the sponge construction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol.
4965, pp. 181–197. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78967-3 11

14. Bowe, S.: BLS12-381: New zk-SNARK elliptic curve construction (2017). https://
electriccoin.co/blog/new-snark-curve

https://github.com/zcash/zcash/issues/2233#issuecomment-416648993
https://github.com/zcash/zcash/issues/2233#issuecomment-416648993
https://tornado.cash/Tornado.cash_whitepaper_v1.4.pdf
https://tornado.cash/Tornado.cash_whitepaper_v1.4.pdf
https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://eprint.iacr.org/2023/522
https://eprint.iacr.org/2023/522
https://doi.org/10.1145/168588.168596
https://eprint.iacr.org/2004/331
https://eprint.iacr.org/2004/331
https://doi.org/10.1007/978-3-642-34961-4_38
https://tosc.iacr.org/index.php/ToSC/article/view/801
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11
https://electriccoin.co/blog/new-snark-curve
https://electriccoin.co/blog/new-snark-curve

326 D. Khovratovich et al.

15. Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recur-
sive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020,
Part I. LNCS, vol. 12105, pp. 769–793. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-45721-1 27

16. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: how
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 26

17. Cortier, V., Gaudry, P., Yang, Q.: How to fake zero-knowledge proofs, again. In: E-
Vote-Id 2020-The International Conference for Electronic Voting (2020). https://
hal.inria.fr/hal-02928953/document

18. Daemen, J., Mennink, B., Van Assche, G.: Full-state keyed duplex with built-in
multi-user support. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II.
LNCS, vol. 10625, pp. 606–637. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70697-9 21

19. Dao, Q., Miller, J., Wright, O., Grubbs, P.: Weak Fiat-Shamir Attacks on Modern
Proof Systems. Cryptology ePrint Archive, Paper 2023/691 (2023). https://eprint.
iacr.org/2023/691.pdf

20. Dobraunig, C., Mennink, B.: Leakage resilience of the duplex construction. In:
Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923,
pp. 225–255. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8 8

21. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

22. Grassi, L., Khovratovich, D., Lüftenegger, R., Rechberger, C., Schofnegger, M.,
Walch, R.: Reinforced concrete: a fast hash function for verifiable computation. In:
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2022, pp. 1323–1335. Association for Computing Machinery,
New York (2022). https://doi.org/10.1145/3548606.3560686

23. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Posei-
don: a new hash function for zero-knowledge proof systems. In: Bailey, M., Green-
stadt, R. (eds.) 30th USENIX Security Symposium, USENIX Security 2021, 11–13
August 2021, pp. 519–535. USENIX Association (2021). https://www.usenix.org/
conference/usenixsecurity21/presentation/grassi

24. Grassi, L., Mennink, B.: Security of truncated permutation without initial value.
In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part II. LNCS, vol. 13792, pp.
620–650. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22966-4 21

25. Haines, T., Lewis, S.J., Pereira, O., Teague, V.: How not to prove your election
outcome. In: 2020 IEEE Symposium on Security and Privacy, SP 2020, San Fran-
cisco, CA, USA, 18–21 May 2020, pp. 644–660. IEEE (2020). https://doi.org/10.
1109/SP40000.2020.00048

26. Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: ZCash protocol specification
(2023). https://github.com/zcash/zips/blob/master/protocol/protocol.pdf

27. Kothapalli, A., Setty, S., Tzialla, I.: Nova: recursive zero-knowledge arguments
from folding schemes. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV.
LNCS, vol. 13510, pp. 359–388. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-22966-4 21

28. Lefevre, C., Mennink, B.: Tight preimage resistance of the sponge construction. In:
Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV. LNCS, vol. 13510, pp.
185–204. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15985-5 7

29. Maller, M., Khovratovich, D.: Baloo: open source implementation (2022). https://
github.com/mmaller/caulk-dev/tree/main/baloo

https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/11535218_26
https://hal.inria.fr/hal-02928953/document
https://hal.inria.fr/hal-02928953/document
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-319-70697-9_21
https://eprint.iacr.org/2023/691.pdf
https://eprint.iacr.org/2023/691.pdf
https://doi.org/10.1007/978-3-030-34618-8_8
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/3548606.3560686
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi
https://doi.org/10.1007/978-3-031-22966-4_21
https://doi.org/10.1109/SP40000.2020.00048
https://doi.org/10.1109/SP40000.2020.00048
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://doi.org/10.1007/978-3-031-22966-4_21
https://doi.org/10.1007/978-3-031-22966-4_21
https://doi.org/10.1007/978-3-031-15985-5_7
https://github.com/mmaller/caulk-dev/tree/main/baloo
https://github.com/mmaller/caulk-dev/tree/main/baloo

Generic Security of the SAFE API and Its Applications 327

30. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24638-1 2

31. Mennink, B.: Understanding the duplex and its security. IACR Trans. Symmet-
ric Cryptol. 2023(2), 1–46 (2023). https://tosc.iacr.org/index.php/ToSC/article/
view/10976

32. Mennink, B., Reyhanitabar, R., Vizár, D.: Security of full-state keyed sponge and
duplex: applications to authenticated encryption. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 465–489. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48800-3 19

33. Naito, Y., Ohta, K.: Improved indifferentiable security analysis of PHOTON. In:
Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 340–357.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7 20

34. NIST: SHA-3 competition. In: International Conference on the Theory and Appli-
cation of Cryptographic Techniques (2007–2012)

35. Polygon Team: Introducing Plonky2 (2017). https://polygon.technology/blog/
introducing-plonky2

36. Prest, T., et al.: Falcon: fast-Fourier lattice-based compact signatures over NTRU.
Submission NIST’s Post-quantum Cryptogr. Standardization Process 36(5), 1–75
(2018)

37. Setty, S.: Nova: open source implementation
38. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.

Cryptology ePrint Archive, Paper 2004/332 (2004). https://eprint.iacr.org/2004/
332

39. Zhang, Y.: Introducing zkEVM (2022). https://scroll.io/blog/zkEVM

https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2
https://tosc.iacr.org/index.php/ToSC/article/view/10976
https://tosc.iacr.org/index.php/ToSC/article/view/10976
https://doi.org/10.1007/978-3-662-48800-3_19
https://doi.org/10.1007/978-3-319-10879-7_20
https://polygon.technology/blog/introducing-plonky2
https://polygon.technology/blog/introducing-plonky2
https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332
https://scroll.io/blog/zkEVM

Author Index

A
Ananth, Prabhanjan 39

B
Basso, Andrea 208
Beltrán, Mario Marhuenda 301
Bootle, Jonathan 110

C
Colisson, Léo 3

D
Degabriele, Jean Paul 237, 270

E
Eldefrawy, Karim 75

F
Faller, Sebastian 110
Fischlin, Marc 237
Fouotsa, Tako Boris 208

G
Genise, Nicholas 75
Govinden, Jérôme 237

H
Hesse, Julia 110
Hostáková, Kristina 110
Hu, Zihan 39

J
Jarecki, Stanislaw 75

K
Karadžić, Vukašin 270
Khovratovich, Dmitry 301

M
McQuoid, Ian 176
Mennink, Bart 301
Muguruza, Garazi 3

O
Ottenhues, Johannes 110

P
Pan, Jiaxin 143

S
Speelman, Florian 3

X
Xu, Jiayu 176

Y
Yuen, Henry 39

Z
Zeng, Runzhi 143

© International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14445, p. 329, 2023.
https://doi.org/10.1007/978-981-99-8742-9

https://doi.org/10.1007/978-981-99-8742-9

	 Preface
	 Organization
	 Contents – Part VIII
	Quantum Cryptography
	Oblivious Transfer from Zero-Knowledge Proofs
	1 Introduction
	1.1 Contributions
	1.2 Overview of the Main Contributions
	1.3 Concurrent Work
	1.4 Open Problems and Ongoing Works

	2 Preliminaries
	2.1 Notations
	2.2 Model of Security
	2.3 Cryptographic Requirements

	3 Protocol for Bit OT
	3.1 The Protocol
	3.2 Security Proof

	4 (NI)ZKoQS and k-out-of-n String OT
	4.1 ZKoQS
	4.2 Proof of Partial Measurement: A Generic Framework to Get ZKoQS
	4.3 Protocol to Prove that a State Has Been Semi-collapsed
	4.4 [def:ZKstatesQIP]ZKstatesQIPS[k] and [def:ZKstatesQIP]ZKstatesQMAS: ZKoQS from a Complexity Theory Point of View
	4.5 Applications to Build String and k-out-of-n OT Protocols

	5 Composability of ch1Unr15spsNonInteractiveZeroKnowledgeProofs
	References

	On the (Im)plausibility of Public-Key Quantum Money from Collision-Resistant Hash Functions
	1 Introduction
	1.1 Our Work

	2 Our Techniques in a Nutshell
	2.1 Warmup: Insecurity When R Is Absent
	2.2 Insecurity in the Presence of R
	2.3 Related Work

	3 Preliminaries
	3.1 Quantum States, Algorithms, and Oracles
	3.2 Public-Key Quantum Money Schemes
	3.3 Compressed Oracle Techniques

	4 Our Attack: Classical Queries to the Random Oracle
	5 Extensions to Quantum Access
	5.1 A Purified View of the Algorithms
	5.2 Compress and Decompress
	5.3 Analysis of AR, 69640972 PSPACE"526930B

	References

	Key Exchange
	Short Concurrent Covert Authenticated Key Exchange (Short cAKE)
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Covert Encodings and Random Beacons

	3 Universally Composable Model for Group Covert AKE
	4 Building Blocks: Commitment, SPHF, Identity Escrow
	4.1 Covert Trapdoor Commitment
	4.2 Covert SPHF with PCA-Security
	4.3 Covert Identity Escrow

	5 Covert Strong Simulation-Sound Conditional KEM
	5.1 Definition of Covert CKEM with Strong Simulation-Soundness
	5.2 Compiler from -Protocol to Covert CKEM in ROM

	6 Construction of Group Covert AKE Protocol
	References

	Generalized Fuzzy Password-Authenticated Key Exchange from Error Correcting Codes
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Universal Composability (UC)
	2.2 Error Correcting Codes (ECC)
	2.3 Randomized Codes
	2.4 Implicit-Only PAKE
	2.5 Split Authentication

	3 Fuzzy Password-Authenticated Key Exchange
	3.1 The F fPAKE Ideal Functionality
	3.2 On the Insecurity of Previous Fuzzy PAKE Constructions
	3.3 Towards Repairing the Previous Construction

	4 Our Construction
	4.1 Comparison with Properties and Proof Techniques in ch4EC:DHPRY18

	5 Proof of Security
	References

	A Generic Construction of Tightly Secure Password-Based Authenticated Key Exchange
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Key Encapsulation Mechanism
	2.2 Public-Key Encryption

	3 Password-Based Authenticated Key Exchange
	3.1 Definition of PAKE
	3.2 Security Model of PAKE

	4 Our Generic Construction of PAKE
	4.1 Proof of Theorem 1

	5 Instantiations of the Underlying KEM
	5.1 Direct Diffie-Hellman-Based Constructions
	5.2 Generic Constructions
	5.3 Lattice-Based Instantiations

	References

	An Efficient Strong Asymmetric PAKE Compiler Instantiable from Group Actions
	1 Introduction
	1.1 Our Contributions
	1.2 Comparison with Previous Results

	2 Preliminaries
	2.1 Notation
	2.2 Computational Assumptions
	2.3 UC saPAKE Security Model
	2.4 Simulation Rate
	2.5 Idealized Models

	3 Our saPAKE Protocol
	4 Security Proof
	4.1 Simulator
	4.2 Proof of Indistinguishability

	5 An SaPAKE from Group Actions
	5.1 Group Actions
	5.2 The Protocol
	5.3 Security Analysis

	References

	New SIDH Countermeasures for a More Efficient Key Exchange
	1 Introduction
	2 Preliminaries
	2.1 SIDH
	2.2 Polynomial Time Attacks on SIDH

	3 Artificial Orientations
	3.1 A Comparison of A-Isogenies with Existing Techniques
	3.2 Security Assumptions
	3.3 Hardness Analysis
	3.4 On the Choice of the Artificial Orientation

	4 The binSIDH and terSIDH Protocols
	4.1 binSIDH
	4.2 The terSIDH Variant
	4.3 One More Variant

	5 An Oriented/Non-oriented Hybrid Approach
	6 Security Analysis
	6.1 The Relation with the Uber-Isogeny Problem
	6.2 Adaptive Security

	7 Implementation
	7.1 Parameter Selection
	7.2 Implementation Results

	8 Conclusion
	References

	Symmetric-Key - Design
	The Indifferentiability of the Duplex and Its Practical Applications
	1 Introduction
	1.1 Summary of Our Contributions

	2 Preliminaries
	2.1 The Duplex
	2.2 Prior Security Treatments of the Duplex
	2.3 Other Related Work

	3 The Online Random Oracle
	4 Indifferentiability
	4.1 Indifferentiability of Stateful Constructions
	4.2 Indifferentiability and Multistage Games

	5 Differentiability of Full-State Duplex
	6 Indifferentiability of Duplex from ORO
	6.1 Security Statement

	7 Revisiting the Security of SpongeWrap
	7.1 A Nonce-Based Variant of SpongeWrap
	7.2 SpongeWrap Is Differentiable from Ideal AEAD
	7.3 KDM-AEAD Security
	7.4 RKA-AEAD Security
	7.5 CMT-AEAD Security

	References

	Populating the Zoo of Rugged Pseudorandom Permutations
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 RPRPs, Its Derivatives and Relations Among Them
	3.1 Relations Between RPRP Notions

	4 3-Round Feistel Construction
	4.1 Instantiating ECE and CEC

	5 HEC
	6 RPRP Domain Extension
	6.1 CDMS Extender
	6.2 LRW2 + LDT Extender

	7 Conclusion
	References

	Generic Security of the SAFE API and Its Applications
	1 Introduction
	1.1 Field-Based Sponges and SAFE API
	1.2 Generic and Improved Security of SAFE API
	1.3 Applications
	1.4 Outline

	2 Preliminaries
	2.1 Notation
	2.2 Security Model
	2.3 Sponge Construction
	2.4 Limitations in Application

	3 SAFECore Construction
	3.1 Construction
	3.2 Example
	3.3 Security of SAFECore Construction

	4 Proof of Theorem 2
	4.1 Simulator
	4.2 Intermediate World
	4.3 Bad Events
	4.4 Bound of (5)
	4.5 Bound of (6)

	5 SAFE API
	5.1 Fixed-Length Hashing
	5.2 Commitment Schemes
	5.3 Multi-round Interactive Protocols
	5.4 Authenticated Encryption

	6 Conclusion
	References

	Author Index

