
A New Formulation of the Linear
Equivalence Problem and Shorter LESS

Signatures

Edoardo Persichetti1,2(B) and Paolo Santini3

1 Florida Atlantic University, Boca Raton, USA
epersichetti@fau.edu

2 Sapienza University of Rome, Rome, Italy
3 Marche Polytechnic University, Ancona, Italy

Abstract. The Linear Equivalence Problem (LEP) asks to find a linear
isometry between a given pair of linear codes; in the Hamming weight
this is known as a monomial map. LEP has been used in cryptography to
design the family of LESS signatures, which includes also some advanced
schemes, such as ring and identity-based signatures. All of these schemes
are obtained applying the Fiat-Shamir transformation to a Sigma pro-
tocol, in which the prover’s responses contain a description of how the
monomial map acts on all code coordinates; such a description consti-
tutes the vast majority of the signature size. In this paper, we propose a
new formulation of LEP, which we refer to as Information-Set (IS)-LEP.
Exploiting IS-LEP, it is enough for the prover to provide the descrip-
tion of the monomial action only on an information set, instead of all
the coordinates. Thanks to this new formulation, we are able to dras-
tically reduce signature sizes for all LESS signature schemes, without
any relevant computational overhead. We prove that IS-LEP and LEP
are completely equivalent (indeed, the same problem), which means that
improvement comes with no additional security assumption, either.

1 Introduction

The Code Equivalence Problem (CEP) is a traditional problem of coding the-
ory, which asks to determine whether two given linear codes are equivalent to
each other. For the canonical (and most studied) case of isometries in the Ham-
ming metric, the notion of equivalence is linked to the existence of a generalized
permutation (i.e. with non-unitary scaling factors), also known as monomial
transformation. In such a setting, the problem is normally referred to as the
Linear Equivalence Problem (LEP).

The computational version of LEP, which is of interest in cryptography, may
appear to be somewhat less secure than other problems from coding theory such
as the well-known Syndrome Decoding Problem (SDP); unlike SDP, in fact, LEP
is probably not NP-hard, since this would imply the collapse of the polynomial
hierarchy [PR97]. Nevertheless, perhaps surprisingly, the best known algorithms
for LEP (at least, for the regime of interest) utilize an SDP solver as a subroutine.

c© International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14444, pp. 351–378, 2023.
https://doi.org/10.1007/978-981-99-8739-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8739-9_12&domain=pdf
https://doi.org/10.1007/978-981-99-8739-9_12

352 E. Persichetti and P. Santini

Moreover, the application of an isometry to a linear code can be described as a
(non-commutative) group action with certain nice properties, which is exactly
the key for its use in cryptographic applications.

1.1 Related Works

The first cryptosystem built on LEP was presented in 2020 as LESS, acronym for
Linear Equivalence Signature Scheme [BMPS20]. The paper describes a simple 3-
pass Zero-Knowledge Identification (ZK-ID) protocol, following in the footsteps
of [GMW19], and then shows how this can be transformed into a full-fledged
signature scheme via Fiat-Shamir. It is worth noting that LESS is part of a col-
lection of schemes leveraging this framework, relying on tools from a wide vari-
ety of setting, including polynomials [Pat96], isogenies [FG19], lattices [DvW22],
matrix codes [CNP+23], trilinear forms [TDJ+22,DG22] etc.

In a follow-up work [BBPS21], the authors refine the scheme using some
familiar protocol-level techniques such as the use of multiple keys (to amplify
soundness) and fixed-weight challenge strings (to reduce signature length), as
seen for instance in [BKV19]; the work also features new parameters, adjusted
to withstand a novel LEP solver introduced by Beullens [Beu21]. In fact, a com-
prehensive study of solvers for LEP was subsequently put together in [BBPS23],
with the aim of presenting a clear picture of the best attack techniques, and a tool
for selecting secure parameters. The group action structure connected to LEP
proved to be appealing as a potential building block in many constructions, devel-
oped in ensuing works: some successfully, such as the ring and identity-based
signatures proposed in [BBN+22], some unsuccessfully (e.g. [ZZ21,PRS22]).

The essential structure of the LESS protocol is as follows. Starting from a
public code C , the prover generates their public key as C ′ “ μ(C) where μ is a
linear isometry. Then, the protocol goes as in Fig. 1.

Fig. 1. Representation of the proof of knowledge structure in LESS

In each execution of the protocol, the prover samples an ephemeral map τ and
commits to C ∗ “ τ(C). The verifier then asks to disclose one of the following two
maps: the one on the left between C and C ∗, or the one on the right between C ∗

and C ′. The honest prover is always able to provide both maps, i.e., can always
construct a graph like the one in Fig. 1. A cheating prover, instead, can only craft
one of the two maps at a given time and try to guess which one is going to be
asked; he cannot, however, reproduce the full graph, without knowing the secret
key (which requires to solve a LEP instance). This informal argument of witness
extractability intuitively leads to a soundness error of 1/2; to achieve λ bits of

A New Formulation of the Linear Equivalence Problem 353

security, it is then necessary to utilize standard error amplification techniques
such as parallel repetitions.

Linear codes are customarily represented through their generator matrices,
whereas isometries consist of column transformations together with a change of
basis. This means that, in practice, C ′ is represented as Sμ(G), where G P F

kˆn
q

is a generator matrix for C and S is non-singular of size k. To check that two
codes are equal, one can compute a special generator matrix, say, the one in
systematic form, which can be naturally obtained with one Gaussian elimination.
This allows to greatly reduce the communication cost, because the prover can
commit to the hash of the systematic generator of C ∗: the verifier will recompute
such a matrix, hash it, and check consistence with the commitment. Without
this consideration, the LESS scheme would not be practical, since the size of
commitments would be gigantic.

Two meaningful improvements appeared in [BBPS21]. The first one consists
in allowing for more than two equivalent codes in the public key, which allows
to enrich the graph in Fig. 1 with some additional maps on the right. The corre-
sponding graph is reported in Fig. 2; in the figure, we are denoting τ ′

i “ τ ◦ μ´1
i

and are using s for the number of codes.

Fig. 2. The LESS-FM proof of knowledge with multiple keys

With this variant, the verifier will choose either the map on the left or one of the
s´1 maps on the right. It is easy to see that an adversary can reply correctly only
by guessing, in advance, which instance will be selected by the prover. This leads
to an amplified soundness error of 1

s and, consequently, only λ
log2(s)

repetitions
are required. With respect to the LESS scheme, this leads to an improvement
for what concerns both the signature size and the computational overhead on
the verifier’s side, since the number of parallel repetitions is reduced by a factor
log2(s). Obviously, the price to pay is a steep increase in public key size.

354 E. Persichetti and P. Santini

The second optimization introduced in LESS-FM consists of using challenges
with a non-uniform distribution, so that the map on the left is the one queried
most frequently. This is because such a map, being entirely random, can be
represented compactly by the seed used to generate it. To preserve the soundness
error, which now behaves like a binomial coefficient, one needs to increase the
number of overall repetitions; however, the number of maps on the right which
are verified (which cannot be compressed with seeds) is much smaller. This yields
a significant reduction in signature size, which is further improved by utilizing
a seed tree [BKP20] to efficiently transmit the seeds.

1.2 Our Contributions

In this work, we describe a new technique which greatly improves the perfor-
mance of the scheme. Unlike the ones described in LESS-FM, which are some-
what standard techniques applicable to any Sigma protocol with the same struc-
ture, our improvement is specific to the LEP setting.

A New Method for Verification. In a nutshell, our technique consists of a com-
pact way to verify the maps of the graph in Fig. 2. The main idea is based on
the following key observation: if two linear codes are linearly equivalent, once
two information sets are mapped to each other, the remaining coordinates are
identical up to a linear isometry (i.e. a monomial), whose existence can be effi-
ciently checked. This means that the prover does not need to include the entire
map in his response, since a description of how the map acts on an information
set would be enough. This brings to a direct improvement in the signature size
of LESS signature schemes: instead of n log2(n) ` n log2(q ´ 1) bits, the binary
size for equivalences on the right is reduced to only k log2(n) ` k log2(q ´ 1)
bits. This reduces the size of responses by a factor equal to the code rate k/n:
since the codes employed in LESS have all rate « 1/2, we essentially halve the
communication cost (factoring out the cost of the small overhead due to seeds,
salts and other minor items).

A New Notion of Equivalence. Our improvement comes with several technical
caveats. The main concern is that we have to make sure that this novel way to
verify that two codes are indeed equivalent, does not introduce vulnerabilities.
To do this, we introduce a new notion of equivalence, which we call Information
Set (IS) - linear equivalence, to emphasize that the focus is on how the linear
map acts on an information set. We then show that the associated decisional
problem, which we call IS-LEP, is literally the same as LEP: any solver for IS-
LEP can in fact be used to solve LEP, and viceversa. Formally, what we prove
is something stronger, namely that any “YES” (resp. “NO”) instance for LEP
is also a “YES” (resp. “NO”) instance for IS-LEP: this implies that IS-LEP and
LEP are actually the same problem. The definition of IS-LEP is the focus of
Sect. 4.

A New Formulation of the Linear Equivalence Problem 355

Application to Proofs of Knowledge. In Sect. 5 we deal with the practical problem
of embedding the verification of IS-LEP into proof-of-knowledge protocols as in
Figs. 1 and 2. Indeed, unlike the existing schemes, in this case the prover cannot
commit anymore to the systematic form of C ∗. The issue is that now the prover
provides only a truncated representation for the maps on the right: the verifier
computes a code which is identical to C ∗ only in k out of n coordinates, so its
systematic form will be different from the one of C ∗. To circumvent this issue,
we modify the verification procedure and require that, after the computation of
the systematic form, both the verifier and the prover execute an ad-hoc function
which is an invariant under truncated monomial maps. We show that these extra
steps have a cost which is much smaller than that of Gaussian elimination so
that, in practice, the overall computational cost is only slightly affected. We also
address the problem of communicating the information set which is used for
verification: with a proper way to represent the truncated map, this cost can be
entirely removed.

Practical Outlook. Finally, in Sect. 6 we present some new instances of LESS
signatures. These include new instances also for the ring signatures described
in [BBN+22]. These are formulated with additional constraints and guidelines
in mind, oriented at providing the best performance for the intended use case,
and desired security level. Indeed, after recalling the state-of-the-art attacks on
LEP, we propose a simple procedure to design secure LEP instances. This leads to
parameters that are slightly larger than those employed in [BBPS21,BBN+22]
but are more conservative. To be sure, this new procedure not only rules out
the best attacks, i.e. the ones based on finding low-weight codewords (which
is computationally equivalent to SDP), but also possible improvements to such
attacks. This provides a very high level of confidence on the new parameters:
new attacks, in order to significantly lower the security level, would need to be
radically different from those based on low-weight codeword finding.

As mentioned before, the sizes resulting from this process are nearly half of
those that would be obtained without our improvement. To be precise, we are
able to produce signature sizes that range between 5 and 8.5 KiB, for NIST’s
security category 1. We also propose parameters for categories 3 and 5, ranging
respectively between 14 and 18.5 KiB for the former, and 26 and 32.5 KiB for the
latter. In all cases except one, the sum of our public keys and signatures is below
100KiB. To complete the picture, we include also some implementation figures,
that we obtain by a reference implementation in ANSI C. While these numbers
are far from optimized, they are still useful to show that the scheme is practical:
indeed, the number of cycles is comparable with that obtained measuring the
reference code of e.g. SPHINCS+.

2 Notation and Background

In this section we establish the notation that we will use throughout the paper,
as well as recall basic concepts about linear codes.

356 E. Persichetti and P. Santini

2.1 Notation

As usual, we use Fq to indicate the finite field with q elements and F
∗
q to indicate

its multiplicative group. Given a matrix A over Fq, we write ai to indicate its
i-th column. The general linear group formed by the non singular k ˆk matrices
over Fq is indicated as GLk. For an ordered set J , we write AJ to indicate
the matrix formed by the columns of A that are indexed by the elements in J ;
equivalent notation is adopted for vectors. The identity with size k is indicated
as Ik, while 0 denotes the null-matrix (its dimensions will always be clear from
the context). The standard matrix product between A and B is indicated as
AB, i.e., without any operator. In some cases, to avoid confusion with other
operations, we will make it explicit and write the product as A · B.

We denote by Sn the symmetric group on n elements, and consider its ele-
ments as permutations of n objects. We represent permutations in one-line nota-
tion, as n-tuples of the form π :“ (i1, i2, · · · , in), so that π(j) “ ij , i.e., π moves
the j-th element to position ij . For a vector a “ (a1, · · · , an), it holds that

π(a) “ (
aπ´1(1), · · · , aπ´1(n)

)
.

We denote by Mn the set of monomial transformations, that is, transformations
of the form μ :“ (π,v) with π P Sn and v P F

∗n
q , acting as follows

μ(a) “ π(a)

⎛

⎜
⎜
⎜
⎝

v1
v2

. . .
vn

⎞

⎟
⎟
⎟
⎠

“ (
v1aπ´1(1), · · · , vnaπ´1(n)

)
.

We naturally extend the action of monomials on matrices A, i.e., μ(A) indicates
the matrix resulting from the action of μ on the columns of A. For two mono-
mials μ, μ′ P Mn, we write μ ◦ μ′ to denote the monomial resulting from their
combination.

2.2 Linear Codes

A linear code C Ď F
n
q is a k-dimensional subspace of F

n
q . The quantity R “

k/n is called code rate, and any vector c P C is called codeword. A canonical
representation for a code is through a generator matrix, that is, a full-rank
matrix G P F

kˆn
q such that C “ {

uG | u P F
k
q

}
. Codes admit multiple generator

matrices: for any S P GLk, which can be seen as a change of basis, it holds that
SG and G generate the same code. The dual code C⊥ is the set of all vectors that
are orthogonal to codewords in C , that is, C⊥ “ {

v P F
n
q | cv� “ 0, ∀c P C

}
.

It is easy to see that C⊥ is a linear subspace of Fn
q with dimension r “ n ´ k

(which is normally called redundancy). The dual code is generated by a full-rank
matrix H P F

rˆn
q , which is called parity-check matrix and is such that GH� “ 0.

Obviously, for any S P GLr, H and SH are parity-check matrices for the same
code.

A New Formulation of the Linear Equivalence Problem 357

For J Ď {1, · · · , n}, we write CJ :“ {cJ | c P C }. We say that a set J with
size k is an information set for a code C if, for any two distinct c, c′ P C , it
holds that cJ ‰ c′

J , which implies that CJ contains qk elements. Equivalently,
J is an information set if, for G being a generator matrix for C , it holds that
GJ is non singular. Normally, we say that a generator matrix G is in systematic
form if G “ (

Ik,V
)
, where Ik is the identity matrix of size k and V P F

kˆ(n´k)
q .

This matrix exists whenever J “ {1, · · · , k} is an information set: starting from
any generator matrix G, we obtain the one in systematic form as G´1

J G. Also,
the systematic matrix is an invariant under changes of basis: if G′ “ SG, then
its systematic form is G′´1

J G′ “ G´1
J S´1SG “ G´1

J G.
In principle, there is no guarantee that {1, · · · , k} is an information set. Thus,

sometimes one considers a slightly more general definition: given a matrix G, its
systematic form is G´1

J G, where J is the first (according to some lexicographic
ordering) subset of {1, · · · , n} of size k and such that GJ is non-singular. We
refer to this operation as Row Reduced Echelon Form (RREF) with respect to J .
To encompass the canonical definition of systematic matrix, we impose that the
lexicographically first set is {1, · · · , k}. It is easy to see that also this generalized
definition is invariant under changes of basis: to emphasize this property, we
will write SF(C) to denote the function that, on input a linear code, returns its
systematic form.

Finally, we summarize here the traditional notion of equivalence between two
codes, in the Hamming metric. To do this, we first clarify that we indicate with
μ(C) the linear code obtained by applying the monomial transformation μ to
all the codewords c P C .

Definition 1 (Linear Equivalence). We say that two codes C ,C ′ Ď F
n
q are

linearly equivalent, and write C „ C ′, if there exists a monomial transformation
μ P Mn such that C ′ “ μ(C). That is, given generator matrices G,G′ P F

kˆn
q

for C and C ′, respectively, the two codes are linearly equivalent if G′ “ Sμ(G)
for some non-singular matrix S P GLk, or analogously, if SF(C ′) “ SF(μ(C)).

The above definition encompasses the weaker notion of permutation equiva-
lence, which is the particular case where the monomial μ is a permutation.

3 The Code Equivalence Problem

The code equivalence problem generically asks, on input two codes C and C ′, to
find a linear isometry mapping one code into the other. The problem is sometimes
distinguished into two versions, depending on the type of isometry that one
desires to identify. We present here only the more general one.

Problem 1 (Linear Equivalence Problem (LEP)). Given C ,C ′ Ď F
n
q with

dimension k, decide if C „ C ′, i.e., if there exists μ P Mn such that C ′ “ μ(C).
Equivalently, given G,G′ P F

kˆn
q (generators for C and C ′, respectively), decide

whether there exist μ P Mn and S P GLk such that G′ “ Sμ(G).

The Permutation Equivalence Problem (PEP) is just a special case of LEP, since
any permutation is a monomial with scalar factors equal to 1.

358 E. Persichetti and P. Santini

Avoiding Weak Instances. Given its importance in coding theory, LEP has been
studied for decades. As we have already mentioned, a well-known result states
that the NP-completeness of LEP would imply a collapse of the polynomial hier-
archy [PR97]. For PEP, there exist certain algorithms that can have a polynomial
running time [Sen00,BOS19]. Namely, these attacks take times in O

(
n3 ` q

˜k
)

and O
(
n2.3`˜k

)
, respectively, where k̃ is the dimension of the hull, that is, the

linear code C ∩ C⊥. For random codes, the size of the hull tends to a small
constant [Sen97], so that the above attacks become essentially polynomial in the
code length. To counter these attacks, it suffices to use codes with large enough
hull, or even self-orthogonal codes, that is, codes such that C Ď C⊥. In this
extreme case, in fact, the hull is equal to the code itself, so that k̃ “ k “ Rn,
and the attacks in [Sen00,BOS19] take exponential time.

For LEP, however, it is still safe to use random codes, provided that the
underlying finite field is sufficiently large. Indeed, there exists a polynomial time
map that takes any LEP instance into a PEP instance, so that any solver for
PEP can be used to solve LEP. However, when q ě 5, this reduction always ends
in a self-dual code [SS13]. This guarantees that the algorithms in [Sen00,BOS19]
have maximum, exponential running time.

Attacks Based on Low-Weight Codeword Finding. The other class of attacks
against PEP and LEP is characterized by the search for codewords with low
Hamming weight (or subcodes with small support) [Leo82,Beu21,BBPS23]. The
description of these attacks requires several technicalities which, due to lack of
space, we cannot report here. Yet, they all share the common principle of looking
at a small set of codewords (or subcodes) from which the action of μ can be
recovered. For instance, Leon’s algorithm [Leo82] requires to find, for each code,
all codewords with weight ď w, that is,

A “ {c P C | wt(c) ď w} , A′ “ {c′ P C ′ | wt(c′) ď w} .

This guarantees that μ(A) “ A′ and, when w ! n, we have |A| ! |C | “ qk:
roughly, since A and A′ contain a few codewords, reconstructing μ gets easy.
Modern algorithms relax the requirements of Leon and, instead, aim to find
a sufficiently large number of collisions. This idea has been first proposed in
[Beu21] and then refined in [BBPS23]. Here, by collision, we refer to a pair of
codewords c P C , c′ P C ′ such that μ(c) “ c′. When the Hamming weights of
c and c′ are sufficiently small, collisions can be determined efficiently. The gain
with respect to Leon’s algorithm depends on several technicalities but, as a rule
of thumb, it is enough to consider that this attack outperforms Leon’s only if q
is sufficiently large.

Note that the attack in [Beu21] actually uses two-dimensional subcodes
instead of codewords. However, as observed in [BBPS23], this attack can be
improved by first finding low-weight codewords and then using them to build
subcodes. This allows to improve upon the attack in [Beu21] since the compo-
nent codewords have a much smaller support size than the resulting subcode,
hence finding them is much easier.

A New Formulation of the Linear Equivalence Problem 359

Conservative Design Criteria. In practice, once weak instances are excluded,
the best attacks against LEP are those based on low-weight codeword finding.
Fortunately, this is one of the oldest and most studied problems in coding theory
and we have a pretty consolidated picture about the cost of the best solvers,
which are Information-Set Decoding (ISD) algorithms. In particular, for non-
binary fields, the state-of-the-art is Peters’ ISD [Pet10]. In the following, we will
denote by CISD(q, n, k, w) the cost of finding a single codeword with weight w,
in a code defined over Fq, with length n and dimension k.

Looking at the attacks summarized above, we see that they all follow a general
model, where an attacker always pursues the following strategy: i) produce two
lists L1 and L2 with short codewords, ii) find collisions, i.e., pairs of elements in
L1 and L2 that are presumably mapped by μ, and iii) use collisions to reconstruct
the secret monomial. To obtain a conservative point of view on these attacks,
we make the following choices:

– we assume that the technique employed to find collisions has no cost;
– we assume that the attacker never finds fake collisions, i.e., never considers

(c, c′) as a collision even if c ‰ μ(c′). Note that fake collisions may make the
monomial reconstruction unfeasible or, at the very least, much more compli-
cated. In fact, the possibility of fake collisions is exactly the reason why the
attacks in [Beu21,BBPS23] focus only on short codewords and, most impor-
tantly, work only when the finite field is large enough;

– we assume that knowing one collision is enough to retrieve significant and
useful information about the secret monomial. Notice that all attacks, instead,
require to find a sufficiently large number of collisions. For instance, Leon’s
algorithm requires to determine all codewords with some bounded weight.
Analogously, the attacks in [Beu21,BBPS23] reconstruct exactly the secret
monomial only if a sufficiently large number of (not fake) collisions is available.
Yet, there may be ways to improve the monomial reconstruction phase (i.e.,
efficient techniques that require a smaller number of collisions), or to make
use of some partial information. To show why this a concrete possibility,
consider the case in which C contains only one minimum weight codeword c.
This gets mapped into c′ “ μ(c) P C ′. The pair (c, c′) already provides some
information about μ: for instance, if ci “ 0 and c′

j ‰ 0, we learn that μ does
not move i in position j.

Taking into account the above three conservative assumptions, we use the fol-
lowing criterion to select secure LEP instances.

Criterion 1. Let q, n, k denote, respectively, the finite field size, code length
and dimension. We consider only q ě 5 and random codes. We select n, k, q so
that, for any w P {1, · · · , n}, finding lists L1 Ď C and L2 Ď C ′ with weight-w
codewords and such that L2 ∩ μ(L1) is non empty (where {μ(c) | c P L1}), takes
time greater than 2λ.

360 E. Persichetti and P. Santini

This translates into a very simple way to select parameters. Indeed, let L1 and
L2 have the same size �. Then, the cost to produce these lists is

f
(
�,N(w)

) · CISD(n, k, q, w)
N(w)

,

where f(�,N(w)) counts the number of ISD calls to find � distinct codewords.
The term N(w) accounts for the number of codewords with weight w: since codes
are random, this is well estimated as

N(w) “
(

n

w

)
(q ´ 1)wq´(n´k).

The cost of each ISD call is divided by N(w) to take into account existence of
multiple solutions.
We now observe that, on average, we have

|L2 ∩ μ(L1)| “ |L1| · |L2|
N(w)

“ �2

N(w)
.

Indeed, for each codeword in L2, there is only one good collision among the N(w)
codewords in C . Since we populate L1 with � random codewords, the probability
that such a codeword is indeed in L1 is �

N(w) . It follows that, in order to have at
least one collision in the expectation, it must hold that �2 ě N(w), which implies
� ě √

N(w). So, � ! N(w) and � calls to ISD return, with high probability, �
distinct codewords [Beu21]. Consequently, we have

f
(
�,N(w)

) « � “ √
N(w).

Consequently, Criterion 1 translates into the following criterion.

Criterion 2. We consider random codes defined over Fq with q ě 5, and choose
q, n, k so that, for any w, it holds that

1
√

N(w)
· CISD(n, k, q, w) > 2λ.

The above criterion emphasizes the fact that, when weak instances are avoided
and in light of existing attacks, solving LEP reduces to finding low-weight code-
words.

At the end of the day, as we will see in Sect. 6, the parameters we consider in
this paper are only slightly bigger than those previously proposed in [BBPS21].

A New Formulation of the Linear Equivalence Problem 361

4 A New Formulation

In this section we show that LEP can be reformulated using a more convenient
notion of equivalence, which allows for a much more compact representation for
the solution to the equivalence problem. We introduce a new definition of equiv-
alence between codes, which we call Information Set (IS) - Linear Equivalence,
and then define the associated decisional problem, which we call IS-LEP. The
main difference between LEP and IS-LEP is in that, for the latter, one is inter-
ested only in how the linear map acts on an information set (i.e., on k positions
instead of n). We then show that IS-LEP is effectively the same as LEP, namely,
that any “YES” (resp., “NO”) instance of IS-LEP is also a “YES” (resp., “NO”)
instance for LEP.

4.1 Splitting Monomials with Respect to Information Sets

To begin, we introduce some additional notation, which will help improve the
readability of the next topics.

Definition 2. Let G “ (g1, · · · ,gn) P F
kˆn
q , μ “ (π,v) P Mn and G′ “

μ(G). For any J ′ “ {j′
1, · · · , j′

k} Ď {1, · · · , n}, we define J “ π´1(J ′) “{
π´1(j′) | j′ P J ′}. We define μ(J �→J ′) P Mk as the monomial transformation

such that μ(J �→J ′)(GJ) “ G′
J ′ . Equivalently, we define μ(\J �→\J ′) P Mn´k as the

monomial transformation such that μ(\J �→\J ′)(G{1,··· ,n}\J) “ G′
{1,··· ,n}\J ′ .

Determining μ(J �→J ′) from the knowledge of μ “ (π,v) and J ′ is easy. Indeed,
let us express μ(J �→J ′) “ (

π(J �→J ′),v(J �→J ′)
)
. Then, it is enough to apply the

following rule: if the i-th column of G′
J ′ corresponds to the j-th column of GJ ,

multiplied by α, then we set π(J �→J ′)(j) “ i and v
(J �→J ′)
i “ α. With analogous

reasoning, one can compute μ(\J �→\J ′).
Splitting the action of a monomial with respect to a set J ′ is useful to under-

stand how the map acts inside and outside an information set. Indeed, it is easy
to verify that the following relation holds

G′ “ S · μ(G) “⇒
{
G′

J ′ “ S · μ(J �→J ′)(GJ),
G′

{1,··· ,n}\J ′ “ S · μ(\J �→\J ′)(G{1,··· ,n}\J).
(1)

We will frequently make use of the above relations to describe how monomial
transformations act on specific sets of coordinates.

Example 1. Let us consider the example of n “ 8 and μ “ (π,v), with π “
(6, 5, 1, 3, 4, 7, 8, 2) and v “ (2, 3, 1, 5, 3, 4, 6, 1) over F7. We describe how μ can
be split, considering the set J ′ “ {2, 3, 6, 7}. We observe that the permutation
acts as follows (we are denoting a′ “ π(a)):

362 E. Persichetti and P. Santini

a1

a′
1

a2

a′
2

a3

a′
3

a4

a′
4

a5

a′
5

a6

a′
6

a7

a′
7

a8

a′
8

We have J “ {1, 4, 6, 8}, π(J �→J ′) “ (3, 2, 4, 1) and π(\J �→\J ′) “ (3, 1, 2, 4). Con-
sidering also the action of v, we have that μ(a) is:

2a3 3a8 1a4 5a5 3a2 4a1 6a6 1a7

Hence, v(J �→J ′) “ (3, 1, 4, 6) and v(\J �→\J ′) “ (2, 5, 3, 1).

4.2 LEP with Information Sets

We are now ready to introduce the new notion of equivalence between codes
which, at a first glance, may seem rather different from the traditional notion
used to define LEP. Perhaps surprisingly, we are able to prove that the two
notions are exactly the same.

Definition 3 (Information Set (IS) - Linear Equivalence). We say that
two codes C ,C ′ Ď F

n
q are Information Set (IS) linearly equivalent, and write

C
∗„ C ′, if there exist monomial transformations μ̃ P Mn, ζ P Mn´k and an

information set J ′ for both C ′ and C̃ “ μ̃(C) such that, for any codeword c̃ P C̃ ,
there exists a codeword in c′ P C ′ with

i) c̃J ′ “ c′
J ′ ;

ii) c̃{1,··· ,n}\J ′ “ ζ
(
c′

{1,··· ,n}\J ′
)
.

Equivalently, given generator matrices G̃,G′ P F
kˆn
q for C̃ and C ′, it must be

G̃´1
J ′ G̃{1,··· ,n}\J ′ “ ζ

(
G′´1

J ′ G′
{1,··· ,n}\J ′

)
.

In other words, the two systematic generator matrices (computed with respect to
the set J ′) have the non-systematic parts which are identical, up to a monomial
transformation.

We associate this new notion of equivalence with the following decisional
problem.

Problem 2 (Information Set-Linear Equivalence (IS-LEP)). Given two
linear codes C ,C ′, determine whether C

∗„ C ′.

A New Formulation of the Linear Equivalence Problem 363

In the next theorem we prove the core result of this section: LEP is equivalent
to IS-LEP. Technically, we show that two codes are linearly equivalent if and
only if they are also IS-linearly equivalent: this implies that any “YES” (resp.
“NO”) instance (C ,C ′) for LEP is a “YES” (resp. “NO”) instance for IS-LEP,
and viceversa. Hence, IS-linear equivalence is merely a different formulation of
the traditional notion of linear equivalence.

Before showing the full proof, as a warm up, we provide a small example
which captures the essence of the relation between LEP and IS-LEP. Let C and
C ′ be two equivalent codes and assume that J ′ “ {1, · · · , k} is an information
set for C ′. First, note that any solution μ for LEP is also a solution for IS-LEP:
this corresponds to the special case of ζ in Definition 3 being the identity. Now,
let μ̃ be a solution for IS-LEP and C̃ “ μ̃(C): since we are considering RREF
to the first k columns, we get

SF(C ′) “ (
Ik,A

)
, SF(C̃) “ (

Ik, ζ(A)
)
.

Then, C̃ „ C ′ are equivalent. But since C̃ „ C , by transitive property we get
that C „ C ′. The proof of the following theorem makes use of the above ideas,
but does not restrict to a particular choice for J ′; also, the proof is constructive,
i.e., it shows explicit relations between solutions for LEP and IS-LEP.

Theorem 1 (Equivalence between IS-LEP and LEP). For any pair of
linear codes C ,C ′ Ď F

n
q , it holds C „ C ′ ⇐⇒ C

∗„ C ′.

Proof. We first prove that C „ C ′ implies C ∗„ C ′. Let us consider two generator
matrices G,G′ P F

kˆn
q for two equivalent codes C and C ′. Consequently, it holds

G′ “ Sμ(G) for some non-singular S P F
kˆk
q and μ “ (π,v) P Mn. We now show

that C and C ′ are also IS-linearly equivalent. Let J ′ be an information set for
C ′, and J “ π´1(J ′) (recall Definition 2). Because of (1), we have

G′
J ′ “ Sμ(J �→J ′)(GJ), G′

{1,··· ,n}\J ′ “ Sμ(\J �→\J ′)(G{1,··· ,n}\J).

Representing the action of monomials through matrices, we rewrite the above
relations as

G′
J ′ “ SGJM′, G′

{1,··· ,n}\J ′ “ SG{1,··· ,n}\JM′′,

with M′ P F
kˆk
q and M′′ P F

(n´k)ˆ(n´k)
q . Reducing G′ with respect to J ′, and

considering only the non-systematic part, we obtain the matrix

A “ G′´1
J ′ G′

{1,··· ,n}\J ′

“ (
SGJM′)´1

SG{1,··· ,n}\JM′′

“ M′´1G´1
J G{1,··· ,n}\JM′′.

Let μ̃ P Mn be an arbitrary monomial such that μ̃(J �→J ′) “ μ(J �→J ′) and,
generically, μ̃(\J �→\J ′) “ μ(\J �→\J ′) ◦ ζ, where ζ P Mn´k can be any mono-
mial transformation. Using again matrices to represent monomials, we associate

364 E. Persichetti and P. Santini

μ̃(J �→J ′) “ μ(J �→J ′) with M′ and μ̃(\J �→\J ′) with M̃′′ which, in general, is differ-
ent from M′′. Let G̃ “ μ̃(G), and consider the non-systematic part of the matrix
we obtain by row reducing with respect to J ′. Taking again (1) into account, we
have

G̃´1
J ′ G̃{1,··· ,n}\J ′ “ (

GJM′)´1
G{1,··· ,n}\JM̃′′

“ M′´1G´1
J G{1,··· ,n}\J︸ ︷︷ ︸
AM′′´1

M̃′′

“ AM′′´1M̃′′ “ ζ(A)

with ζ P Mn´k being the monomial associated to M′′´1M̃′′. This proves that C
and C ′ are indeed IS-linearly equivalent.

We now show the other way around, i.e., that two codes that are IS-linearly
equivalent are also linearly equivalent. We consider again two generator matrices
G and G′ and assume we know an information set J ′ and monomials μ̃ P Mn,
ζ P Mn´k that satisfy the requirements for IS-linear equivalence. Let G̃ “ μ̃(G).
The non-systematic parts of G′ and G̃, when reducing with respect to J ′, are

A′ “ G′´1
J ′ G′

{1,··· ,n}\J ′ , Ã “ G̃´1
J ′ G̃{1,··· ,n}\J ′ .

By definition of IS-linear equivalence, we have that A′ and Ã are linearly equiv-
alent, i.e.,

Ã “ ζ(A′) “ A′Z “ G′´1
J ′ G′

{1,··· ,n}\J ′Z,

for some monomial ζ P Mn´k associated with the matrix Z P F
(n´k)ˆ(n´k)
q . Let

us again split the action of μ̃, using the information set J ′. We write μ̃ “ (π̃, ṽ),
set J “ π̃´1(J ′) and represent μ̃(J �→J ′) and μ̃(\J �→\J ′) through the monomial
matrices M̃′ P F

kˆk
q and M̃′′ P F

(n´k)ˆ(n´k)
q . We then have

G̃J ′ “ μ̃(J �→J ′)(GJ) “ GJM̃′,

G̃{1,··· ,n}\J ′ “ μ̃(\J �→\J ′)(G{1,··· ,n}\J) “ G{1,··· ,n}\JM̃′′.

Thus

Ã “ G̃´1
J ′ G̃{1,··· ,n}\J ′

“ (
GJM̃′)´1(

G{1,··· ,n}\JM̃′′).

Recalling that Ã “ A′Z “⇒ ÃZ´1 “ A′, we get

(
GJM̃′)´1

G{1,··· ,n}\J︸ ︷︷ ︸
˜A

M̃′′Z´1 “ G′´1
J ′ G′

{1,··· ,n}\J ′
︸ ︷︷ ︸

A′

,

from which
G{1,··· ,n}\JM̃′′Z´1 “ GJM̃′G′´1

J ′ G′
{1,··· ,n}\J ′ . (2)

A New Formulation of the Linear Equivalence Problem 365

We are now finally ready to determine the S P GLk and μ P Mn that would
solve LEP on G and G′. Indeed, let μ such that μ(J �→J ′) corresponds to M̃′ and
μ(\J �→\J ′) corresponds to M̃′′Z´1, and S “ G′

J ′M̃′´1G´1
J . In the positions of

Sμ(G) which are indexed by J ′, we have

Sμ(J �→J ′)(GJ) “ SGJM̃′

“ G′
J ′M̃′´1G´1

J GJM̃′ “ G′
J ′ ,

while in the positions which are not indexed by J ′,

Sμ(\J �→\J ′)(G) “ SG{1,··· ,n}\JM̃′′Z´1

“ G′
J ′M̃′´1G´1

J︸ ︷︷ ︸
S

GJM̃′G′´1
J ′ G′

{1,··· ,n}\J ′
︸ ︷︷ ︸

G{1,··· ,n}\J
˜M′′Z´1

(Using (2))

“ G′
{1,··· ,n}\J ′ .

��
We conclude this section by showing how, from the knowledge of a solution

for LEP, one can derive a solution to IS-LEP, which is more convenient in terms
of communication cost. This depends on how the action of a monomial can be
represented. To this end, we introduce the following functions, which we will use
to represent the action of μ̃.

Definition 4. Let μ “ (π,v) P Mn. For J ′ “ {j′
1, · · · , j′

k} Ď {1, · · · , n} with
size k, we define

Trunc(μ, J ′) “ (
π∗,v∗)

“
((

π´1(j′
1), π

´1(j′
2), · · · , π´1(j′

k)
)

,
(
vj′

1
, vj′

2
, · · · , vj′

k

))
.

Notice that π∗ is an ordered subset of {1, · · · , n} with size k, that is, π∗ “
(j∗

1 , · · · , j∗
k). Also, v∗ “ (v∗

1 , · · · , v∗
k) “ vJ ′ is represented as a length-k vector

over F
∗
q .

Definition 5. We define Apply
(
(π∗,v∗),G

)
as the function that outputs the

matrix U P F
kˆk
q such that, if the i-th entry of π∗ is j P {1, · · · , n}, has i-th

column ui “ v∗
i gj, where gj denotes the j-column of G.

Remark 1. The elements of π∗ and J “ π´1(J ′) are the same, but have a different
order. While J represents an information set (and, coherently with the notation
we are using, is a non-ordered set), π∗ is meant to describe how π acts on the
coordinates which are moved to J ′. Consequently, it is important that π∗ is seen
as an ordered set. Notice that π∗ describes the action of π only on k coordinates
(hence, the function is called Trunc, which stand for truncated).

Remark 2. If J ′ is the information set that has been used to compute (π∗,v∗)
using the monomial μ and J “ π´1(J ′), then U “ μ(J �→J ′)(G).

366 E. Persichetti and P. Santini

We first observe that representing π∗ requires k log2(n) bits while v∗ takes
k log2(q ´ 1) bits. The implication on signatures based on LEP is easy to
see. In fact, all existing schemes communicate monomial transformations using
n log2(n)`n log2(q´1) bits, i.e., the action of the monomial is fully represented.
We are aiming at reducing this size thanks to the convenient representation we
have defined above. However, this requires some additional technical steps (e.g.
modifications in how commitments are computed). Thus, we postpone this dis-
cussion to the next section, and we conclude the current one by showing that
communicating Trunc(μ, J ′) is enough to verify a solution to IS-LEP, in a time
which is essentially not modified with respect to LEP.

Proposition 1. Let C and C ′ be two linearly equivalent codes, i.e., there exists
μ “ (π,v) P Mn such that C ′ “ μ(C). Let G,G′ P F

kˆn
q be generator matrices

for such codes. To show that C and C ′ are IS-linearly equivalent, it is enough
to provide J ′ and Trunc(μ, J ′). Verifying the solution for IS-LEP takes a time
which is polynomial in n and, in practice, is the same as computing two RREFs.

Proof. Since the codes are linearly equivalent, there exists S P GLk such that
G′ “ Sμ(G). Let us indicate J “ π´1(J ′); notice that J is known because of π∗

(see Remark 1). Thanks to (1), we can write

G′
J ′ “ Sμ(J �→J ′)(GJ),

G′
{1,··· ,n}\J ′ “ Sμ(\J �→\J ′)(G{1,··· ,n}\J).

Let U “ Apply
(
(π∗,v∗),G

)
, and notice that

U “ G{1,··· ,n}\π∗ “ G{1,··· ,n}\J .

Indeed, we consider that π∗ is identical to J , up to a reordering of the elements,
hence {1, · · · , n} \ {j∗

1 , · · · , j∗
k} “ {1, · · · , n} \ J . Let μ̃ P Mn be any monomial

such that Trunc(μ, J ′) “ Trunc(μ̃, J ′) and G̃ “ μ̃(G). We now compute the
RREFs of both G′ and G̃ with respect to J ′. The non-systematic parts of the
two matrices are, respectively,

A′ “ G′´1
J ′ G′

{1,··· ,n}\J ′

“ (
S · μ(J �→J ′)(GJ)

)´1 · S · μ(\J �→\J ′)(G{1,··· ,n}\J)

“ (
μ(J �→J ′)(GJ)

)´1 · μ(\J �→\J ′)(G{1,··· ,n}\J)

“ (
μ(J �→J ′)(GJ)

)´1 · G{1,··· ,n}\JZ,

and

Ã “ G̃´1
J ′ G̃{1,··· ,n}\J ′

“ (
μ(J �→J ′)(GJ)

)´1 · G{1,··· ,n}\J

“ A′ · Z´1,

A New Formulation of the Linear Equivalence Problem 367

where Z is the matrix associated to μ(\J �→\J ′). To conclude verification, one
should acknowledge that indeed A′ and Ã are identical, up to a monomial trans-
formation. This can be easily verified. For instance, it is enough to consider scalar
multiples of the columns in A′ and search whether Ã contains an identical col-
umn. Namely, we start with i “ 1 (i.e., consider the first column a′

i “ a′
1): if,

in Ã, we find a column in position j P {1, · · · , n ´ k} and such that za′
1 “ ã′

j ,
then we know that ζ moves the first coordinate in position j, and scales it by z.
We then repeat the reasoning, considering i “ 2 and searching for the matching
column in the positions {1, · · · , n ´ k} \ {j}. Iterating this procedure, we have
that we successfully end the search (i.e., we find a match for all columns of A′) if
and only if there indeed exists such a monomial Z. The cost of this procedure is
O(n2), which is smaller than that of computing the RREFs, which is in O(n3).
��
In the next section, we show how IS-LEP can be employed to build ZK proofs.
We anticipate that, in such applications, we will not need to transmit J ′; fur-
thermore, we will use a different approach to determine if the non systematic
parts of two matrices are equal up to a monomial transformation (based on the
computation of an ad-hoc invariant).

Remark 3. Even though we stated LEP and IS-LEP as decisional problems,
they can be reformulated as search problems. The proofs of Theorem 1 and
Proposition 1 show, constructively, reductions in both ways, even for the search
versions.

Example 2. Let q “ 11, n “ 5 and k “ 2. Let C be the code generated by

G “
(

9 3 1 1 4
2 5 5 10 1

)
.

Let μ “ (π,v) with π “ (2, 1, 5, 3, 4) and v “ (5, 6, 8, 9, 3) and C ′ “ μ(C). To

represent the code, we use the generator matrix G′ “ Sμ(G) with S “
(

0 4
4 10

)
,

so that

G′ “
(

1 4 1 3 5
2 6 7 3 8

)
.

Let J ′ “ {1, 4}, which is an information set for C ′ since G′
J ′ “

(
1 3
2 3

)
is non-

singular (its determinant is 8). We have Trunc(μ, J ′) “ (π∗,v∗) where π∗ “
{π´1(1), π´1(4)} “ {j∗

1 , j∗
2} “ {2, 5} and v∗ “ vJ ′ “ (v∗

1 , v
∗
2) “ (5, 9). We now

consider U “ Apply
(
(π∗,v∗),G

)
and have

U “ (
v∗
1gj∗

1
, v∗

2gj∗
2

) “ (
5g2 , 9g5

) “
(

5 ·
(

3
5

)
, 9 ·

(
4
1

))
“

(
4 3
3 9

)
.

Since {1, · · · , n} \ {j∗
1 , j∗

2} “ {1, 3, 4}, we have

G{1,··· ,n}\π∗ “ (g1,g3,g4) “
(

9 1 1
2 5 10

)
.

368 E. Persichetti and P. Santini

We now compute the non-systematic part of G′, after RREF with respect to J ′,
and obtain

A′ “ G′´1
J ′ G′

{1,··· ,n}\J ′ “ (g′
1,g

′
4)

´1(g′
2,g

′
3,g

′
5)

“
(

1 3
2 3

)´1 (
4 1 5
6 7 8

)
“

(
2 6 3
8 2 8

)
.

Finally, we have

Ã “ U´1G{1,··· ,n}\π∗ “
(

4 3
3 9

)´1 (
9 1 1
2 5 10

)
“

(
4 1 9
5 10 3

)
.

Now, we observe that

a′
1 “ 6 · ã1, a′

2 “ 8 · ã3, ã3 “ 8 · a′
2.

This confirms that A′ and Ã are equal, up to a monomial transformation.

5 Compact Proofs of Equivalence from IS-LEP

Recall that, in a proof-of-knowledge constructed from LEP, the protocol goes as
follows (see Fig. 1):

– there are two equivalent (public) codes C and C′, with C′ “ σ(C) for some
(secret) map μ;

– the prover samples a random transformation τ P Mn and commits to C∗ “
τ(C); this is done by applying a function Commit(C∗) whose output is h P
{0; 1}2λ;

– the verifier either asks for the random map (i.e., a proof that C „ C∗) and
receives τ , or for the one involving the public code (i.e., a proof that C∗ „ C′)
and receives τ ′ “ τ ◦ μ´1;

– the verifier either checks that h “ Commit
(
τ(C)

)
, or that h “ Commit

(
τ ′(C′)

)
.

Note that we must necessarily assume that the commitment is obtained via a
hash function, since otherwise one would need to publish C∗, which requires at
least k(n ´ k) log2(q) bits (assuming a generator matrix in systematic form is
employed). Currently, the commitment function is implemented as

Commit “ Hash
(
SF(C)

)
: C 	→ {0, 1}2λ.

This works well since it satisfies two fundamental properties:

i) the systematic generator matrix is an invariant of the code;
ii) the commitment function is relatively easy to compute.

A New Formulation of the Linear Equivalence Problem 369

The second property is obviously necessary to have a practical scheme, while
the first one is crucial to guarantee verification, when the verifier asks for the
equivalence on the right. Indeed, in this case he computes τ ′(G′), which generates
the same code as τ(G). However, the two generator matrices are not the same:
generically, it holds that τ(G′) “ S · τ ′(G) for some non-singular S P GLk.
Thanks to use of the systematic form, we get rid of this discrepancy.

To put it differently, the systematic form is used as an easy-to-compute rep-
resentative for a code1. As we have seen in the previous section, with the IS-LEP
formulation we can reduce significantly the communication cost. However, the
commitment function which is currently employed will not work anymore, since
the prover provides only a portion of τ ′. In this section we describe an efficient
solution to circumvent this issue. This requires to modify the commitment func-
tion and use a new invariant which, fortunately, can be computed with a cost
which is comparable with that of a RREF. This leads to a direct improvement in
all schemes based on LEP, for what concerns all relevant aspects: we reduce the
communication cost (in practice k « 0.5n so we almost halve it) and essentially
keep the computational cost unchanged. Also, we do not introduce a new secu-
rity assumption since, as we showed in the previous section, IS-LEP and LEP
are two different formulations of the very same problem.

5.1 A New Invariant for Codes

Let us recall the concept of lexicographic ordering for vectors and matrices over
a finite field.

Definition 6 (Lexicographic Ordering). We define a lexicographic ordering
over Fq “ {x1, x2, · · · , xq} as

x1

Lex
< x2

Lex
< · · · Lex

< xq.

For two vectors a,b, we write a
Lex
< b if there exists an i such that aj “ bj for all

j < i, and ai

Lex
< bi. Analogously, for two matrices A and B, we write A

Lex
< B

if there exists an i such that aj “ bj for all j < i and ai

Lex
< bi, where ai and

bi denote the i-th columns of A and B, respectively. We write A
Lexď B if either

A “ B or A
Lex
< B.

Using the notion of lexicographic ordering defined above, we can define a rep-
resentative for the orbit of a matrix, under the action of monomial transforma-
tions2.

1 There exist other invariants, but their computation is much harder. For instance,
the prover may commit to the hash of the weight enumerator function. However, its
computation requires O(qk) operations and is obviously unfeasible.

2 In the context of code linear equivalence, these concepts have been first used by
Beullens [Beu21].

370 E. Persichetti and P. Santini

Definition 7 (First Lexicographic Matrix). Given A P F
mˆu
q , we denote

its orbit under the action of Mu as Mu(A) “ {τ(A) |τ P Mu }. Then, we define
MinLex(A) as the function that returns the first lexicographic matrix in the orbit,
that is

MinLex(A) “ A∗ ⇐⇒ A∗ Lexď Â, ∀Â P Mu(A).

Note that the above definitions hold for any arbitrary choice of lexicographic
ordering. However, since we are mostly interested in prime finite fields, from

now on we focus on the simplest and most natural ordering, that is 0
Lex
< 1

Lex
<

2
Lex
< · · · Lex

< q ´ 1. If A has m rows and u columns, computing MinLex takes in
the worst case O(um) operations over Fq: indeed, it is enough to first scale each
column so that the first non null element is 1 and then sort the columns so that
they are in ascending lexicographic ordering. An example is given in Fig. 3.

Fig. 3. Example of computation of MinLex, for a matrix with m “ 2 rows, u “ 4
columns, with values over F11.

We finally have all the necessary tools to define our proposed invariant func-
tion, which we call SF∗. Details about how the function operates are given in
Algorithm 1. Basically, it computes the systematic form and then computes
MinLex on the non systematic part. Since computing MinLex is much easier than
a RREF, computing SF∗ comes with a cost which is slightly larger than that of
SF. We observe that, in the wide majority of cases, the employed information set
is J∗ “ {1, · · · , k} (i.e., the one that is tested first). Indeed, the probability that
this set is valid can be estimated by considering the probability that a random
k ˆ k matrix over Fq is non-singular, that is

k´1∏

i“1

1 ´ q´i « 1 ´ 1
q
.

For instance, for q “ 127, this is approximately 0.992.
To conclude this section, we show that the function SF∗ possesses exactly the

invariance properties we need.

Proposition 2. Let G,G′ P F
kˆn
q be the generator matrices of two linearly

equivalent codes, i.e., G′ “ Sμ(G) for some S P GLk and μ P Mn. Let J∗,A∗ “
SF∗(G′). Let (π∗,v∗) “ Trunc(μ, J∗) and U “ Apply

(
(π∗,v∗),G

)
. Then, for

any μ and any S, it holds that

A∗ “ MinLex(U´1G{1,··· ,n}\π∗).

A New Formulation of the Linear Equivalence Problem 371

Proof. Let J be the set of columns that get moved to J∗. Because of RREF, the
effect of S gets canceled. So, RREF with respect to J∗ yields

A′ “ U´1G′
{1,··· ,n}\J∗ “ U´1μ(J �→J∗)(G{1,··· ,n}\J),

which is identical (up to a monomial transformation) to

A′′ “ U´1G{1,··· ,n}\π∗ “ U´1G{1,··· ,n}\J .

This means that they are in the same orbit, i.e., A′ P Mn´k(A′′): computation
of MinLex returns the same matrix. ��

Algorithm 1: Function SF∗

Input: matrix G P F
kˆn
q

Output: set J∗ Ď {1, · · · , n}, matrix A∗ P F
kˆ(n´k)
q

1 Find the first J∗ Ď {1, · · · , n} of size k and such that Rank(GJ∗) “ k;
2 Set A “ G´1

J∗G{1,··· ,n}\J∗ ;// Non systematic part after RREF

3 Compute A∗ “ MinLex(A);// Compute first lexicographic matrix

4 Return J∗, A∗.

5.2 Proof-of-Knowledge with IS-LEP

We now describe how the proof-of-knowledge protocol used in the family of LESS
schemes [BMPS20,BBPS21,BBN+22] can be reformulated to take into account
IS-LEP. In Fig. 4 we have reported the description of one round of the LESS-FM
protocol, taking into account verification based on IS-LEP.

The protocol possesses all the properties that are required by a ZK proof of
knowledge. Completeness holds because of Proposition 2, while Zero-Knowledge
is guaranteed by the fact that (π∗,v∗) is a truncated representation of τ ′, which
is uniformly distributed over Mn. The only property which is not obvious is
special soundness; for this reason, we present a detailed analysis next.

Proposition 3. The protocol of Fig. 4 is 2-special sound.

Proof. Let us consider two accepting transcripts, associated with the same com-
mitment h and two different challenges b and b̃. We assume that both b and b̃
are different from 0 (the case where one of the challenges is 0 trivially follows
and is therefore omitted). We denote by (π∗,v∗) the response for challenge b,
and by (π̃∗, ṽ∗) the one for challenge b̃. We now show that, from the knowledge
of these two accepting transcripts, either a hash collision has been found, or a
monomial map from Cb to C

˜b can be computed in polynomial time.

372 E. Persichetti and P. Santini

Fig. 4. One round of LESS-FM using IS-LEP

Let U “ Apply
(
(π∗,v∗,)Gb

)
and Ũ “ Apply

(
(π̃∗, ṽ∗),G

˜b

)
. Since both are

accepting transcripts, it follows that either a hash collision has been found, or

MinLex
(
U´1(G′

b){1,··· ,n}\π∗
︸ ︷︷ ︸

A

) “ MinLex
(
Ũ´1(G′

˜b
){1,··· ,n}\π̃∗

︸ ︷︷ ︸
˜A

)
.

This means that one knows two monomial transformations ζ, ζ̃ P Mn´k such
that ζ(A) “ ζ̃(Ã) “ A∗.

Remember that what Apply does is applying a monomial transformation that
modifies only the k coordinates which are included in π∗. In other words, starting
from Gb, one possesses the generator matrix for an equivalent code, in the form(
U,G′

b{1,··· ,n}\π∗
)
. Let us denote by σ P Mn the monomial such that σ(G′

b) “
(
U,G′

b{1,··· ,n}\π∗
)
. Doing RREF with respect to the first k positions, we find a

generator matrix for the same code, in the form
(
Ik,A

)
. If we now apply another

monomial transformation σ′ P Mn, acting as the identity in the first k positions
and as ζ in the last n ´ k positions, we end up with

(
Ik, ζ(A)

) “ (
Ik,A∗). This

means that Cb, the code generated by Gb, is equivalent to the one C ∗ generated
by

(
Ik,A∗): the equivalence between the two codes is given by σ′ ◦ σ.

The same chain of transformations can be applied to G′
˜b
, and would bring

us to the code generated by
(
Ik, ζ̃(Ã)

) “ (
Ik,A∗). To summarize all the trans-

formations we used, see Fig. 5.

A New Formulation of the Linear Equivalence Problem 373

Fig. 5. Transformations from Cb and C
˜b to a common code C ∗

In the end, we found a code C ∗ which is equivalent to both Cb and C
˜b, and we

also know the transformations that map Cb into C ∗ and C
˜b into C ∗. Combining

such transformations, we are able to find a map between Cb and C
˜b. ��

For what concerns computational complexity, as in LESS-FM, the most time
consuming operation remains the systematic form computation.

6 New Instances for LESS Signatures

In this section, we report on the practical impact of our new techniques, in the
context of LESS, as well as schemes derived from it. To begin with, we recall
the parameters that were proposed in LESS-FM. Table 1, below, is an excerpt
from [BBPS21].

Table 1. Parameter sets for LESS-FM, for λ “ 128 classical bits of security.

Optimization Criterion Type Code Params Prot. Params pk (KiB) sig (KiB)

n k q t ω s

Min. pk size Mono 198 94 251 283 28 2 9.77 15.2

Min. sig size Perm 235 108 251 66 19 16 205.74 5.25

Min. pk + sig size Perm 230 115 127 233 31 2 11.57 10.39

374 E. Persichetti and P. Santini

At this point, a few comments on these parameters are due. First, note that
two out of three parameter sets use permutation equivalence, namely those
which aim at minimizing the signature in some way. This make sense, since
a permutation can be described utilizing only n log2(n) bits, as opposed to the
n log2(n)`n log2(q´1) necessary for a monomial matrix; the latter term includes
in fact the cost of storing the non-zero scaling factors. However, in this work (as
well as subsequent ones) we will focus mainly on the monomial case. In fact,
using permutations requires additional care in the definition of the protocol.
For instance, as we have seen in Sect. 3, it makes the scheme vulnerable to cer-
tain types of algebraic attacks, so that it is not safe to use random codes. This
presents a challenge in practice, as generating self-orthogonal codes can be quite
expensive.

Secondly, as mentioned at the end of Sect. 3, we adopt a new, conservative
criterion for choosing parameters with respect to best attacks, which leads to
different choices for code lengths and dimensions. Furthermore, we include in
our thought process some considerations connected to implementation efficiency,
which were absent in the LESS-FM work: for instance, we restrict our attention
to the value q “ 127, which is optimal in this sense, and avoid parameters which
would yield excessive data sizes. With respect to the latter, we decide then to
remain within the psychological threshold of 100 kB.

Finally, as we transition from a mostly theoretical design, to one with a
practical outlook, we provide parameters for higher security levels. For this, we
follow NIST’s guidance and align with their proposed definitions for categories
1, 3 and 5. We report the new data in Table 2, with a slightly different layout.
Indeed, we no longer need to specify the type of equivalence considered, since this
is always monomial. Also, the optimization criterion is no longer purely aimed
at “minimizing” quantities. Instead, we use the nomenclature LESS-αβ which
recalls simultaneously the security level achieved (via the number α P {1, 3, 5}),
and the characteristics of the resulting choice (via the letter β). To be precise,
we use “b” for “balanced”, i.e. a set which yields similar sizes for public key and
signature; “s” for “short”, i.e. a set which sacrifices public-key size in favor of
signature; and “i”, only for category 1, for an “intermediate” set.

To illustrate the advantage of our technique, in Table 2 we have reported
signature sizes for both the scheme with, and without the new technique; to do
so, we have use the format x(y) where x is the optimized signature size, and y
the unoptimized one.

Next, we report some timings. We start with those obtained for an unopti-
mized reference implementation in ANSI C, which are to be considered purely in
the spirit of exemplification. The values are collected on an Intel Core i7-12700K,
on a P-core, clocked at 4.9 GHz. Clock cycle values collected via rtdscp, as aver-
ages of 100 primitive runs. The computer is endowed with 64 GiB of PC5-19200
DDR5 and is running Debian 11. The source was compiled with gcc 10.2.1-
20210110 (version packaged with the distribution), with -O3 -march=native
compilation options (Table 3).

A New Formulation of the Linear Equivalence Problem 375

Table 2. New parameter sets for LESS, for different security categories.

NIST Cat. Parameter Set Code Params Prot. Params pk (KiB) sig (KiB)

n k q t ω s

1 LESS-1b 252 126 127 247 30 2 13.6 8.4 (15.3)

LESS-1i 244 20 4 40.8 5.8 (10.7)

LESS-1s 198 17 8 95.2 5.0 (9.2)

3 LESS-3b 400 200 127 759 33 2 34.2 16.8 (30.5)

LESS-3s 895 26 3 68.5 13.4 (24.2)

5 LESS-5b 548 274 127 1352 40 2 64.2 29.8 (53.8)

LESS-5s 907 37 3 128.5 26.6 (48.8)

Table 3. Timings for the reference implementation of LESS.

NIST Cat. Parameter Set KeyGen (Mcycles) Sign (Mcycles) Verify (Mcycles)

1 LESS-1b 3.4 878.7 890.8

LESS-1i 9.8 876.6 883.6

LESS-1s 23.0 703.6 714.7

3 LESS-3b 9.3 7224.1 7315.8

LESS-3s 18.3 8527.4 8608.6

5 LESS-5b 24.4 33787.7 34014.0

LESS-5s 48.0 22621.5 22703.3

To provide a hint at the improved performance that we can obtain by leverag-
ing more advanced tools, we report below the results of an additional implemen-
tation. Since, as explained above, the RREF computation is by far the most
expensive operation, this implementation is realized by amending the ANSI
C reference code with Gaussian Elimination code implemented using AVX2 C
intrinsics. The test system was a Dell OptiPlex XE4, a mid-range 2022 desktop
system with Intel Core i7-12700 CPU running at 2.1 GHz. The test programs
were executed on a single CPU thread with frequency scaling disabled. The sys-
tem has 64GB of physical RAM and was running Ubuntu 22.04.2 LTS Linux
operating system, and the C test code was compiled with gcc 11.3.0 packaged
in that operating system. Compilation and optimization flags were \verb|-Wall
-Wextra -Ofast -march=native|.

To complete our showcase, we report below the data obtained while applying
our technique to the LESS-based ring signature scheme (Table 4).

Table 5 is an excerpt from [BBN+22], with some caveats. First, note that
the parameter s is missing, as the optimization involving multiple codes was
not used; instead, we have a new parameter r corresponding to the size of the
ring of users. Secondly, all the instances presented in [BBN+22] were based on
permutation equivalence (and thus the “Type” column is omitted). In this case,

376 E. Persichetti and P. Santini

Table 4. Timings for the additional implementation of LESS.

NIST Cat. Parameter Set KeyGen (Mcycles) Sign (Mcycles) Verify (Mcycles)

1 LESS-1b 0.9 263.6 271.4

LESS-1i 2.3 254.3 263.4

LESS-1s 5.1 206.6 213.4

3 LESS-3b 2.8 2446.9 2521.4

LESS-3s 5.2 2984.3 3075.1

5 LESS-5b 6.4 10212.6 10458.8

LESS-5s 11.7 6763.2 7016.5

Table 5. Parameter sets for ring signatures based on LESS, for λ “ 128 classical bits
of security.

Parameter Set Code Params Prot. Params pk (kB) sig (kB)

n k q t ω r

I 230 115 127 233 31 23 11.6 8.6 (10.8)

II 26 11.6 (13.8)

III 212 17.5 (19.7)

IV 221 26.5 (28.7)

rather than presenting entirely new parameters based on (IS-)LEP, we simply
calculate the sizes that we would obtain applying our technique to PEP, i.e.
replacing n log2(n) bits with k log2(n) bits whenever a permutation needs to be
transmitted. We use the same x(y) format as above, where now the unoptimized
value y corresponds to the sizes appearing in [BBN+22].

Note that, compared to the reduction obtained for LESS, in the case of ring
signature the improvement is considerably less relevant. This is mainly because
a large part of the signature size, in such a scheme, is comprised of the cost
of transmitting a Merkle proof, which is proportional to the (logarithm) of the
number of users in the ring. It is worth considering, however, that this is exactly
the feature that makes the scheme appealing in the first place, and so we are
satisfied with our improvement being less impactful in this case.

Acknowledgements. The work of the first author is generously sponsored by NSF
grant 1906360 and NSA grant H98230-22-1-0328.

A New Formulation of the Linear Equivalence Problem 377

References

[BBN+22] Barenghi, A., Biasse, J.-F., Ngo, T., Persichetti, E., Santini, P.: Advanced
signature functionalities from the code equivalence problem. Int. J. Comput. Math.
Comput. Syst. Theory 7(2), 112–128 (2022)

[BBPS21] Barenghi, A., Biasse, J.-F., Persichetti, E., Santini, P.: LESS-FM: fine-
tuning signatures from the code equivalence problem. In: Cheon, J.H., Tillich, J.-P.
(eds.) PQCrypto 2021 2021. LNCS, vol. 12841, pp. 23–43. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-81293-5 2

[BBPS23] Barenghi, A., Biasse, J.-F., Persichetti, E., Santini, P.: On the computational
hardness of the code equivalence problem in cryptography. Adv. Math. Commun.
17(1), 23–55 (2023)

[Beu21] Beullens, W.: Not enough LESS: an improved algorithm for solving code equiv-
alence problems over Fq. In: Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.)
SAC 2020. LNCS, vol. 12804, pp. 387–403. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-81652-0 15

[BKP20] Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: logarithmic
(linkable) ring signatures from isogenies and lattices. In: Moriai, S., Wang, H. (eds.)
ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 464–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64834-3 16

[BKV19] Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny
based signatures through class group computations. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 9

[BMPS20] Biasse, J.-F., Micheli, G., Persichetti, E., Santini, P.: LESS is more:
code-based signatures without syndromes. In: Nitaj, A., Youssef, A. (eds.)
AFRICACRYPT 2020. LNCS, vol. 12174, pp. 45–65. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-51938-4 3

[BOS19] Bardet, M., Otmani, A., Saeed-Taha, M.: Permutation code equivalence is
not harder than graph isomorphism when hulls are trivial. In: IEEE ISIT 2019, pp.
2464–2468 (2019)

[CNP+23] Chou, T., et al.: Take your MEDS: digital signatures from matrix code
equivalence. In: El Mrabet, N., De Feo, L., Duquesne, S. (eds.) AFRICACRYPT
2023. LNCS, vol. 14064, pp. 28–52. Springer, Cham (2023). https://doi.org/10.
1007/978-3-031-37679-5 2

[DG22] D’Alconzo, G., Gangemi, A.: Trifors: Linkable trilinear forms ring signature.
Cryptology ePrint Archive (2022)

[DvW22] Ducas, L., van Woerden, W.: On the lattice isomorphism problem, quadratic
forms, remarkable lattices, and cryptography. In: Dunkelman, O., Dziembowski,
S. (eds.) EUROCRYPT 2022, Part III. LNCS, vol. 13277, pp. 643–673. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-07082-2 23

[FG19] De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class
group actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol.
11478, pp. 759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17659-4 26

[GMW19] Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design. In: Providing Sound
Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali,
pp. 285–306 (2019)

https://doi.org/10.1007/978-3-030-81293-5_2
https://doi.org/10.1007/978-3-030-81652-0_15
https://doi.org/10.1007/978-3-030-81652-0_15
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-031-37679-5_2
https://doi.org/10.1007/978-3-031-37679-5_2
https://doi.org/10.1007/978-3-031-07082-2_23
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-030-17659-4_26

378 E. Persichetti and P. Santini

[Leo82] Leon, J.: Computing automorphism groups of error-correcting codes. IEEE
Trans. Inf. Theory 28(3), 496–511 (1982)

[Pat96] Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomi-
als (IP): two new families of asymmetric algorithms. In: Maurer, U. (ed.) EURO-
CRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). https://
doi.org/10.1007/3-540-68339-9 4

[Pet10] Peters, C.: Information-set decoding for linear codes over Fq. In: Sendrier, N.
(ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 81–94. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12929-2 7

[PR97] Petrank, E., Roth, R.M.: Is code equivalence easy to decide? IEEE Trans. Inf.
Theory 43(5), 1602–1604 (1997)

[PRS22] Persichetti, E., Randrianarisoa, T.H., Santini, P.: An attack on a non-
interactive key exchange from code equivalence. Tatra Mt. Math. Publ. 82(2), 53–64
(2022)

[Sen97] Sendrier, N.: On the dimension of the hull. SIAM J. Discret. Math. 10(2),
282–293 (1997)

[Sen00] Sendrier, N.: The support splitting algorithm. IEEE Trans. Inf. Theory 46,
1193–1203 (2000)

[SS13] Sendrier, N., Simos, D.E.: The hardness of code equivalence over Fq and its
application to code-based cryptography. In: Gaborit, P. (ed.) PQCrypto 2013.
LNCS, vol. 7932, pp. 203–216. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38616-9 14

[TDJ+22] Gang, G., Duong, D.H., Joux, A., Plantard, T., Qiao, Y., Susilo, W.: Practi-
cal post-quantum signature schemes from isomorphism problems of trilinear forms.
In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part III. LNCS,
vol. 13277, pp. 582–612. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-07082-2 21

[ZZ21] Zhang, Z., Zhang, F.: Code-based non-interactive key exchange can be made.
Cryptology ePrint Archive, Report 2021/1619 (2021)

https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/978-3-642-12929-2_7
https://doi.org/10.1007/978-3-642-38616-9_14
https://doi.org/10.1007/978-3-642-38616-9_14
https://doi.org/10.1007/978-3-031-07082-2_21
https://doi.org/10.1007/978-3-031-07082-2_21

	A New Formulation of the Linear Equivalence Problem and Shorter LESS Signatures
	1 Introduction
	1.1 Related Works
	1.2 Our Contributions

	2 Notation and Background
	2.1 Notation
	2.2 Linear Codes

	3 The Code Equivalence Problem
	4 A New Formulation
	4.1 Splitting Monomials with Respect to Information Sets
	4.2 LEP with Information Sets

	5 Compact Proofs of Equivalence from IS-LEP
	5.1 A New Invariant for Codes
	5.2 Proof-of-Knowledge with IS-LEP

	6 New Instances for LESS Signatures
	References

