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Abstract. In this paper, we initiate the study of the Rank Decoding
(RD) problem and LRPC codes with blockwise structures in rank-based
cryptosystems. First, we introduce the blockwise errors (�-errors) where
each error consists of � blocks of coordinates with disjoint supports, and
define the blockwise RD (�-RD) problem as a natural generalization of
the RD problem whose solutions are �-errors (note that the standard
RD problem is actually a special �-RD problem with � = 1). We adapt
the typical attacks on the RD problem to the �-RD problem, and find
that the blockwise structures do not ease the problem too much: the �-
RD problem is still exponentially hard for appropriate choices of � > 1.
Second, we introduce blockwise LRPC (�-LRPC) codes as generalizations
of the standard LPRC codes whose parity-check matrices can be divided
into � sub-matrices with disjoint supports, i.e., the intersection of two
subspaces generated by the entries of any two sub-matrices is a null
space, and investigate the decoding algorithms for �-errors. We find that
the gain of using �-errors in decoding capacity outweighs the complexity
loss in solving the �-RD problem, which makes it possible to design more
efficient rank-based cryptosystems with flexible choices of parameters.

As an application, we show that the two rank-based cryptosystems
submitted to the NIST PQC competition, namely, RQC and ROLLO,
can be greatly improved by using the ideal variants of the �-RD problem
and �-LRPC codes. Concretely, for 128-bit security, our RQC has total
public key and ciphertext sizes of 2.5 KB, which is not only about 50%
more compact than the original RQC, but also smaller than the NIST
Round 4 code-based submissions HQC, BIKE, and Classic McEliece.
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1 Introduction

Since traditional cryptographic schemes based on number theoretic assumptions
are at risk from the possible attacks using quantum computers, the design of
post-quantum cryptosystems, such as code-based cryptosystems, has become the
consensus of industry and academia. Last year, three code-based cryptosystems
using the Hamming metric codes, namely, BIKE, Classic McEliece, and HQC,
had been selected to the fourth round of NIST post-quantum standardization
process for future standardization [35]. As a nice alternative to Hamming met-
ric code-based cryptography, code-based cryptography using the rank metric,
namely, rank-based cryptography, is more efficient in computational efficiency
and bandwidth, and deserves further research as encouraged by NIST [34].

Fqm-Linear Codes with Rank Metric and Rank Decoding Problem.
Codes used in rank-based cryptography are Fqm-linear codes with rank metric
over a degree m extension field Fqm of Fq. Let α = (α1, α2, . . . , αm) ∈ F

m
qm

be a basis of Fqm viewed as an m-dimensional vector space over Fq. Then, any
e = (e1, e1, . . . , en) ∈ F

n
qm has an associated matrix Mat(e) ∈ F

m×n
q such that

e = αMat(e). The rank weight ‖e‖R of e is defined as the rank of Mat(e). The
support Supp(e) of e is the Fq-linear subspace of Fqm spanned by the coordinates
of e. It follows from definition that ‖e‖R equals to the dimension of Supp(e).
The set of errors of length n and weight r is denoted by Sn

r . An Fqm-linear
code ([n, k]qm) with rank metric of length n and dimension k is a dimension k
subspace of Fn

qm , which can be represented by a generator matrix of size k × n
or a parity-check matrix of size (n − k) × n over Fqm .

Let G be the generator matrix of a random [n, k]qm -linear code, y ∈ F
n
qm ,

and r ∈ N. The Rank Decoding (RD) problem is to find x ∈ F
k
qm and e ∈ Sn

r

such that y = xG + e. Although the RD problem is not shown to be NP-hard,
it is very close to the Hamming metric decoding problem which is NP-hard [23],
and can be seen as a structured version of the MinRank problem which is also
NP-hard [17]. Moreover, after more than three decades of study, the best known
algorithms for solving the RD problem are all exponential. This makes the RD
problem a promising hard problem to construct secure cryptosystems.

Rank-Based Cryptography. The first rank-based cryptosystem, known as the
GPT cryptosystem [19], was based on Gabidulin codes [18] which have analogous
structures to Reed-Solomon codes. The GPT cryptosystem and its early variants
were broken by Overbeck attack [38], in the much same way as McEliece schemes
based on Reed-Solomon codes were attacked in [16,39]. The recent variant [28]
was analyzed with some insecure parameters region being found in [15,24]. As
these attacks [15,16,24,38,39] mainly expose the security flaws of the GPT cryp-
tosystem by exploiting the strong algebraic structure of Gabidulin codes, it is
still possible to construct secure and efficient rank-based cryptosystems.

A very significant step was using the Low Rank Parity Check (LRPC) codes
[4,20] and the Gabidulin codes to build cryptosystems [2,20,22,29,30], which
can be viewed as rank metric analogues of the MDPC cryptosystem [33], NTRU
[25], or Alekhnovich [1]. Four cryptosystems of this kind, namely, RQC [30],



286 Y. Song et al.

Lake, Locker [29], and Ouroboros-R [2], were submitted to the NIST PQC stan-
dardization process in 2017, with the latter three being merged into ROLLO in
the second round. The combinatorial attacks [5,21,37] were once considered to
be the most efficient attacks against the parameters region of RQC and ROLLO.
However, it turned out later that the improved dedicated algebraic attacks [7,9]
could greatly reduce the concrete security of RQC and ROLLO. This is the
main reason that RQC and ROLLO were not selected to the third round of the
NIST PQC standardization process. New parameter sets [2,29,30] for RQC and
ROLLO were proposed to provide adequate security against algebraic attacks.
As the new key and ciphertext sizes of RQC and ROLLO remain competitive,
NIST encourages further research on rank-based cryptography [34].

1.1 Our Contribution

We initiate the study of the RD problem and LRPC codes with blockwise struc-
tures to design secure and efficient rank-based cryptosystems. First, we introduce
the blockwise errors (�-errors) where each error consists of � blocks of coordi-
nates with disjoint supports, and define the blockwise RD (�-RD) problem as a
natural generalization of the RD problem whose solutions are �-errors. Notably,
the standard RD problem can be seen as a special �-RD problem with � = 1, or
equivalently the �-RD problem can be treated as a structured RD problem. Since
the attacks may benefit from the blockwise structure, the �-RD problem is inher-
ently not harder than the standard one. Fortunately, this structure does not ease
the problem too much: we only observe a reduction about � times in the expo-
nent to solve the �-RD problem by carefully examining the typical attacks for
the standard RD problem, implying that the �-RD problem is still exponentially
hard for appropriate choices of constant � > 1.

Second, we introduce the blockwise LRPC (�-LRPC) codes as generalizations
of the standard LPRC codes whose parity-check matrices can be divided into �
sub-matrices with disjoint supports, i.e., the intersection of two subspaces gen-
erated by the entries of any two sub-matrices is a null space, and investigate the
decoding algorithms for �-errors. We find that the decoding algorithm can also
benefit from the blockwise structure: the decoding capacity can be significantly
improved by a factor of �. In particular, a suitably defined [n, k]qm �-LRPC code
can actually decode an �-error with weight up to (n − k)/2, which achieves the
decoding capacity of rank codes of optimal distance. This makes it possible to
design more efficient rank-based cryptosystems with flexible choices of parame-
ters, by making a tradeoff between the hardness of the �-RD problem and the
decoding capacity of the �-LPRC codes.

Finally, we show that the two rank-based cryptosystems submitted to the
NIST PQC competition, namely, RQC and ROLLO, can be greatly improved
by using the ideal variants of the �-RD problem and �-LRPC codes. Concretely,
for 128-bit security, our RQC has total public key and ciphertext sizes of 2.5
KB, which is not only about 50% more compact than the original RQC, but also
smaller than the NIST Round 4 code-based submissions HQC, BIKE, and Classic
McEliece. A detailed comparison with related works is given in Subsect. 1.2.
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1.2 Technical Overview

Recall that the set of errors of length n and weight r is denoted by Sn
r . By

definition, all n coordinates of an error e ∈ Sn
r belong to the same support of

dimension r. In particular, let ε = (ε1, . . . , εr) ∈ F
r
qm be a basis of the support

Supp(e), then there is an r × n coefficient matrix C such that e = εC.

The Blockwise Errors (�-errors). Let n = (n1, . . . , n�) and r = (r1, . . . , r�)
be vectors of positive integers. We say that an error e ∈ Sn

r with n =
∑�

i=1 ni

and r =
∑�

i=1 ri is an �-error with parameters n and r if it can be divided
into � sub-vectors e = (e1,e2, . . . ,e�) such that 1) the sub-vector ei ∈ F

ni
qm has

weight ri for all i ∈ {1..�}; and 2) the supports of these sub-vectors are mutually
disjoint, namely, Supp(ei) ∩ Supp(ej) = {0} for all i �= j. Denote Sn

r as the set
of blockwise errors with parameters n and r. By definition, the set Sn

r is exactly
the set Sn

r of �-errors with � = 1. For � > 1, Sn
r is a proper subset of Sn

r . In
particular, for any e = (e1,e2, . . . ,e�) ∈ Sn

r , if we let εi = (εi1, εi2, . . . , εiri
) ∈

F
ri
qm be a basis of Supp(ei), then the coefficient matrix C of e w.r.t. the basis

ε = (ε1, ε2, . . . , ε�), i.e., e = εC, has a special block-diagonal form:

C =

⎛

⎜
⎜
⎜
⎝

C1 0 0 0
0 C2 0 0
...

...
. . .

...
0 0 0 C�

⎞

⎟
⎟
⎟
⎠

∈ F
r×n
q (1)

where ei = εiCi. As we will show later, the attacks can benefit from the block-
diagonal structure.

The Blockwise RD (�-RD) Problem. We define the �-RD problem as a
natural generalization of the RD problem whose solutions are �-errors. Recall
that the RD problem asks an algorithm given as inputs a generator matrix G of
random [n, k]qm -linear code C, a vector y ∈ F

n
qm , and an integer r ∈ N, outputs

x ∈ F
k
qm and e ∈ Sn

r such that y = xG + e. The RD problem can be solved by
finding a codeword e ∈ Sn

r in the [n, k + 1]qm extended code Cy = C + 〈y〉 of
C. Let Hy ∈ F

(n−k−1)×n
qm be the parity-check matrix of Cy . The problem can be

further reduced to find an e ∈ Sn
r such that eH�

y = εCH�
y = 0.

There are two main kinds of attacks for the RD problem, i.e., combinatorial
attacks [5,14,21,37] and algebraic attacks [7–9,21]. The basic idea of the com-
binatorial attacks [5,14,21,37] is to guess some unknown variables about the
equations y = xG + e or eH�

y = εCH�
y = 0 so that they can be directly

solved by using Gaussian eliminations (note that number of equations are much
less than that of the variables). The guess complexity is the main cost for the
combinatorial attacks. In contrast, the algebraic attacks [7–9,21] resort to estab-
lish sufficiently more equations using different algebraic properties such as the
annulator polynomial, so that the error e can be directly found by solving those



288 Y. Song et al.

equations. The complexity of the algebraic attacks is mainly determined by the
number of the unknown variables of those equations. By carefully investigat-
ing the typical attacks, we find that both combinatorial and algebraic attacks
can benefit from the blockwise structures, the basic reason is that the coefficient
matrix C for an �-error has a special block-diagonal form, which allows to greatly
reduce the number of the unknown variables. The take-away message is that the
best cost for solving the �-RD problem is roughly equal to the �-th square root
of the cost for solving the standard RD problem (with the same parameters).
This means that for appropriate choices of constant � > 1 such as � = 2 or 3 in
our applications, the �-RD problem is still exponentially hard.

The Blockwise LRPC (�-LRPC) Codes. Let H ∈ F
(n−k)×n
qm be the parity-

check matrix of an [n, k]qm LRPC code. The entries of H generate an Fq-linear
subspace F of dimension d (for simplicity, we call H a matrix of weight d and
support F ). Let e ∈ Sn

r be an error of support E and let s = He�. Let EF be
the product space of E and F , whose dimension is equal to rd with overwhelming
probability when rd is sufficiently smaller than m. The decoding algorithm works
by first recovering the product space EF using the support Supp(s) of s (which
requires the weight ‖s‖R is equal to the dimension of EF ), then recovering the
error support E from EF , and finally solving the linear equations s = He�

using E. The Decode Failure Rate (DFR) is about q‖s‖R−(n−k) = qrd−(n−k),
implying that an LPRC code of weight d can decode errors of weight up to n−k

d .
We define the blockwise LRPC (�-LRPC) codes as generalizations of the stan-

dard LPRC codes whose parity-check matrices can be divided by columns into �
sub-matrices with disjoint supports. Let n = (n1, . . . , n�) and d = (d1, . . . , d�) be
vectors of positive integers and k ∈ N. We say that an [n, k]qm LRPC code is an
�-LRPC code with parameters n =

∑�
i=1 ni and d =

∑�
i=1 di if its parity-check

matrix H ∈ F
(n−k)×n
qm can be divided into � sub-matrices H = (H1,H2, · · · ,H�)

such that 1) the sub-matrix Hi ∈ F
(n−k)×ni

qm has small weight di for all i ∈ {1..�};
and 2) the supports {Fi = Supp(Hi)} of these sub-matrices are mutually dis-
joint, namely, Fi ∩ Fj = {0} for all i �= j.

The decoding algorithm for �-LRPC codes works the same way as the one
for standard LRPC codes. For traditional errors, an �-LRPC code has the
same decoding capacity as a standard LRPC code. However, it is more pow-
erful when decoding �-errors. This is because for an �-error e ∈ Sn

r with sup-
ports (E1, E2, . . . , E�) and r = (r1, . . . , r�), the product space in consideration
becomes

∑�
i=1 EiFi, whose dimension is upper bounded by

∑�
i=1 ridi < rd,

where r =
∑�

i=1 ri. This means that the �-LRPC code can decode an �-error
with a much larger weight r. Formally, we have the following Theorem 1.1 (see
the proofs in Sect. 4).

Theorem 1.1. When d1 = d2 = · · · = d�, the �-LRPC code allows to decode
�-errors of weight up to r =

∑�
j=1 rj = n−k

d1
. By setting d1 = d2 = · · · = d�= 2,

it can decode �-errors of weight up to n−k
2 .
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Theorem 1.1 implies that when dealing with �-errors, the decoding capacity
for the �-LRPC codes is � times larger than that of the standard LRPC codes.
For example, fixing d = 4, r = 8, and the DFR of q32−n−k, an [n, k]qm LRPC
code can decode errors of weight 8, but an [n, k]qm 2-LRPC codes with parame-
ter d = (d1, d2) = (2, 2) can decode �-errors with parameter r = (r1, r2) = (8, 8)
of weight up to r = r1 + r2 = 16.

Applications. By making a tradeoff between the hardness of the �-RD problem
and the decoding capacity of the �-LRPC codes, it is possible to design more
efficient and secure rank-based cryptosystems with flexible choices of parameters.
In particular, the blockwise structures would lead to larger parameters to reserve
the security, but the gain in decoding capacity still allows us to design more
efficient cryptosystems. As an application, we show that both RQC and ROLLO
cryptosystems can be greatly improved by using the ideal variants of the �-
RD problem and �-LRPC codes. A brief comparison with related coded-based
cryptosystems at the same 128-bit security is summarized in Table 1, which
shows that our RQC is about 50% more compact than the original RQC, and
has smaller sizes than the three code-based cryptosystems using the Hamming
metric, namely, HQC, BIKE, and Classic McEliece.

Table 1. Comparisons of size and DFR for 128-bit security.

Schemes pks (bytes) cts (bytes) total (bytes) DFR

RQC Our 860 1704 2564 –

NIST [30] 1834 3652 5486 –

Lake (ROLLO-I) Our 511 511 1022 2−31

NIST [29] 696 696 1392 2−28

Locker (ROLLO-II) Our 1814 1942 3756 2−131

NIST [29] 1941 2089 4030 2−134

Ouroboros-R (ROLLO-III) Our 623 1166 1789 2−33

TIT 2022 [2] 736 1431 2167 2−28

HQC NIST [31] 2249 4497 6746 –

BIKE NIST [1] 1541 1573 3114 2−128

Classic McEliece NIST [10] 261120 96 261216 –

Ouroboros TIT 2022 [2] 1566 3100 4666 2−128

The public key size (pks), the ciphertext size (cts), total = pks+cts.

1.3 Other Related Works

The idea of using blockwise errors can be seen as an adaption of the LPN/LWE
problem in rank metric [11]. Our blockwise codes are also related to the sum-rank
metric codes [13], where the error is also divided into � blocks and the sum-rank
weight is defined as the sum of rank weight of each block. One main difference
is that we explicitly require the � blocks to have disjoint supports, which is very
crucial for our results in this paper.



290 Y. Song et al.

1.4 Organization

After some notations given in Sect. 2, we define the �-errors and analyze the
complexity of solving the �-RD problem in Sect. 3. Section 4 defines the �-LRPC
codes and analyzes decoding failure probability and error-correcting capability.
In Sect. 5, we apply the ideal �-RD problem and the ideal �-LRPC codes to
improve RQC and ROLLO. We conclude this paper in Sect. 6.

2 Notations

– We denote by N the set of positive integer numbers, q prime or prime power,
and Fqm an extension of degree m of the finite field Fq.

– Let α ∈ Fqm be a primitive element and α = (1, α, . . . , αm−1) be a basis of
Fqm viewed as an Fq vector space.

– Vectors (resp. matrices) are represented by lower-case (resp. upper-case) bold
letters. We say that an algorithm is a PPT algorithm if it is a probabilistic
polynomial-time algorithm.

– If X is a finite set, x
$← X (resp. x

seed←− X ) denotes that x is chosen uniformly
and randomly from the set X (resp. by a seed seed).

– For integers a ≤ b, let {a..b} denote all integers from a to b.
– The number of Fq-subspaces of dimension r of Fqm is given by the Gaussian

coefficient
[

m
r

]

q

=
∏r−1

i=0
qm−qi

qr−qi ≈ qr(m−r).

– The submatrix of a matrix M formed from the rows in I and columns in J is
denoted by MI,J . When I (resp. J) consists of all the rows (resp. columns),
we use the notation M∗,J (resp. MI,∗).

– |M |, |M |I,J , and |M |∗,J are the determinant of the matrix M , the submatrix
MI,J , and the submatrix M∗,J , respectively.

– GLη(Fq) is a general linear group and represents the set of all invertible
matrices of size η over Fq. The matrix Ir is the identity matrix of size r.

– The maximal minor cT of a matrix C of size r × n is the determinant of its
submatrix C∗,T whose column indexes T ⊂ {1..n} and #T = r.

– Cauchy-Binet formula that computes the determinant of the product of A ∈
F

r×n
qm and B ∈ F

n×r
qm is expressed as |AB| =

∑
T⊂{1..n},#T=r |A|∗,T |B|T,∗.

– The Gaussian elimination of a μ × ν matrix of rank ρ over an Fq has a
complexity of O(ρω−2μν) operations in Fq, where ω is the exponent of matrix
multiplication with 2 ≤ ω ≤ 3 and a practical value is 2.81 when more than
a few hundreds rows and columns.

– The complexities are estimated by operations in Fq if there is no ambiguity.
All logarithms are of base 2.

3 The �-RD Problem and Its Complexity

In this section, we first introduce the blockwise errors (�-errors) and the blockwise
RD (�-RD) problem in Subsect. 3.1. Then, to analyze the complexity of the �-RD
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problem, we refine a universal reduction from existing attacks on the RD problem
and analyze the support and coefficient matrices of the �-error in Subsect. 3.2.
Finally, we adapt the typical combinatorial and algebraic attacks to the �-RD
problem in Subsects. 3.3, 3.4 and 3.5, and find that the �-errors do not ease the
problem too much: the �-RD problem is still exponentially hard for appropriate
choices of � > 1.

3.1 The �-Errors and �-RD Problem

Let �, k ∈ N. Let n = (n1, . . . , n�) and r = (r1, . . . , r�) be vectors of positive
integers. Let n =

∑�
i=1 ni and r =

∑�
i=1 ri. We first define the disjointness of

multiple subspaces. We say that � Fq-subspaces {Vi}i∈{1..�} of Fqm are mutually
disjoint if ∀ i, j ∈ {1..�}, i �= j, Vi ∩ Vj = {0}.

Definition 3.1 (Blockwise Errors (�-errors)). Let ei ∈ F
ni
qm be a vector of

weight ri for i ∈ {1..�}. An error e = (e1,e2, . . . ,e�) ∈ F
n
qm is called an �-error

if the supports of � vectors ei’s are mutually disjoint.

Recall that n = (n1, . . . , n�) and r = (r1, . . . , r�) are two vectors of positive
integers. We denote the set of such �-errors by Sn

r . Let Ei be the support of
dimension ri of ei. Because all supports are mutually disjoint, the �-error e can
be viewed as the error of weight r and support E =

∑�
i=1 Ei.

We now define the �-RD problem. This problem is the Rank Decoding (RD)
problem finding the �-errors.

Definition 3.2 (Blockwise RD (�-RD) Problem). Let G be the generator
matrix of a random [n, k]qm-linear code C and y ∈ F

n
qm . The problem is to find

x ∈ F
k
qm and e ∈ Sn

r such that y = xG + e.

Like the dual version of the RD problem using the generator matrix is the
Rank Syndrome Decoding (RSD) problem [23] using the parity-check matrix,
the dual version of the �-RD problem is defined as the �-RSD problem.

Definition 3.3 (Blockwise RSD (�-RSD) Problem). Let H be the parity-
check matrix of a random [n, k]qm-linear code C and s ∈ F

n−k
qm . The problem is

to find e ∈ Sn
r such that s = He�.

Two variants are exactly the standard RD and RSD problems when � = 1. By
the duality, the hardness of two variants is equivalent. Intuitively, two variants
are also hard because they still find a small-weight error.

3.2 Reduction, Support and Coefficient Matrices

In this subsection, we first recall existing attacks on the RD problem, then adapt
the reduction refined from typical attacks to the �-RD problem, finally analyze
support and coefficient matrices of the �-error.
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Attacks on the RD Problem. There currently exist the combinatorial and
algebraic attacks [5,7–9,14,21,37] on the RD problem. Please see Appendix B
of full version [40] for detailed overviews of these attacks. The first combina-
torial attack [14] starts with the RSD problem and is significantly improved in
[37] and further refined in [5,21]. The combinatorial attacks [5,14,21] consist of
subtly guessing the support of error and solving a linear system. The attack [37]
transforms a quadratic multivariate system obtained from the RD problem into
a linear system by guessing the entries of support matrix and coefficient matrix.
Another way is the algebraic attack [21], where one solves a multivariate system
induced from the RD problem based on the annulator polynomial by lineariza-
tion and Gröbner basis. A breakthrough paper [7] shows that the Fqm -linearity
allows to devise a dedicated algebraic attack, i.e., the MaxMinors (MM) mod-
eling. Then the MM modeling is refined and improved in [9] where the authors
also introduced another algebraic modeling, the Support-Minors (SM) modeling.
The SM modeling later is combined with the MM modeling (i.e., the SM-F+

qm

modeling [8]). Both SM and MM modelings reduce the RD problem to solving
a linear system. The analysis in [8] shows that the cost of the SM-F+

qm modeling
is close to those of the combinatorial attack [5] and the MM modeling [9].

To measure the potential complexity loss and ensure the security of schemes,
we adapt typical combinatorial attacks [5,37] and algebraic attacks [9,21] to the
�-RD problem in Subsects. 3.3, 3.4 and 3.5. The reduction technique in attacks
[5,9,21,37] is still available to the �-RD problem. We refine the reduction in
Theorem 3.4.

Theorem 3.4. Solving the �-RD(q,m, n, k, r, �) problem defined by [n, k]qm lin-
ear code C (see Definition 3.2) can be reduced to finding a blockwise codeword
(i.e., an �-error) of weight r in the [n, k + 1]qm extended code of C.
Proof. Once obtaining word y, one adds y to code C and obtains an [n, k +1]qm

extended code Cy = C + 〈y〉 with a generator matrix
(

y
G

)

of size (k + 1) × n.

In this way, e =
(
1 −m

)
(

y
G

)

is exactly a codeword of weight r of Cy . Let

Gy = (Ik+1 R) ∈ F
(k+1)×n
qm be a systematic generator matrix of Cy and Hy =

(−R� In−k−1

) ∈ F
(n−k−1)×n
qm be a systematic parity-check matrix of Cy , where

R ∈ F
(k+1)×(n−k−1)
qm . Then solving the �-RD problem consists in finding an

u ∈ F
k+1
qm of weight ≤ r such that

uGy = e, (2)

or finding an �-error e of weight r such that

eH�
y = 0. (3)


�
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The support and coefficient matrices of the �-error are crucial tools to con-
struct the specific attack modelings by exploiting the reduction in Theorem 3.4.
The entries of two matrices determine the number of variables of algebraic equa-
tions in the attack modelings. We next analyze the forms of two matrices.

Support and Coefficient Matrices of the �-error. Let n = (n1, . . . , n�) and
r = (r1, . . . , r�) be vectors of positive integers. Let e = (e1,e2, . . . ,e�) ∈ Sn

r be
an �-error. If let εi = (εi1, εi2, . . . , εiri

) ∈ F
ri
qm be a basis of support of dimension

ri, then there exists a matrix Ci ∈ F
ri×ni
q of rank ri such that ei = εiCi, If one

expresses the basis εi as a matrix Si ∈ F
m×ri
q of rank ri under the basis α, then

ei = αSiCi. We have e = εC = αSC, where ε = (ε1, ε2, . . . , ε�) ∈ F
r
qm ,

S =
(
S1 S2 · · · S�

) ∈ F
m×r
q , C =

⎛

⎜
⎜
⎜
⎝

C1 0 0 0
0 C2 0 0
...

...
. . .

...
0 0 0 C�

⎞

⎟
⎟
⎟
⎠

∈ F
r×n
q . (4)

We call S and C respectively support matrix and coefficient matrix of e.

Remark 1. The main difference with the standard rank metric error is that the
form of the coefficient matrix C of the �-error is of block-diagonal form. For a
standard rank metric error e ∈ Sn

r , let ε = (ε1, ε2, . . . , εr) ∈ F
r
qm be a basis of

Supp(e), the there is a coefficient matrix C ∈ F
r×n
q of rank r such that e = εC.

Under the basis α, there is a support matrix S ∈ F
m×r
q of rank r such that

ε = αS. Then e = αSC.

Support and Coefficient Matrices with Less Entries. Because all multiples
λe for λ ∈ F

∗
qm are solutions of Eq. (3) due to ‖λe‖R = r, one can specify λ to

be the inverse of the first coordinate of e. Without loss of generality, let the first
coordinate of e be 1, then one can set the first column of C to (1 0 · · · 0)� and
the first column of S to (1 0 · · · 0)�. Then S and C can be further reduced to
two forms with less entries.

– S{1..r},∗ = Ir. By Gaussian elimination on column of S, there is a matrix

P ∈ GLr(q) such that SP =
(

Ir

0(m−r)×1 S′

)

and P −1C =
(

1
C ′

0(r−1)×1

)

where S′ ∈ F
(m−r)×(r−1)
q and C ′ ∈ F

r×(n−1)
q . Then

e = αSC = αSPP −1C = α

(
Ir

0(m−r)×1 S′

) (
1

C ′
0(r−1)×1

)

. (5)

Let s := SP and C := P −1C.
– Ci is of systematic form. By Gaussian elimination on row of C, there

is a matrix Qi ∈ GLri
(q) such that QiCi = (Iri

C ′
i) and SQ−1 =(

1
S′

0(m−1)×1

)

where C ′
i ∈ F

ri×(ni−ri)
q , S′ ∈ F

m×(r−1)
q , and Q =
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⎛

⎜
⎜
⎜
⎝

Q1 0 0 0
0 Q2 0 0
...

...
. . .

...
0 0 0 Q�

⎞

⎟
⎟
⎟
⎠

∈ GLr(q). Then

e = αSC = αSQ−1QC = α

(
1

S′
0(m−1)×1

)

⎛

⎜
⎜
⎜
⎝

Q1C1 0 0 0
0 Q2C2 0 0
...

...
. . .

...
0 0 0 Q�C�

⎞

⎟
⎟
⎟
⎠

.

(6)

Let S := SQ−1 and C := QC.

For solving the �-RD problem, most attacks aim to recover S and C by
solving the algebraic equations obtained from Eqs. (2)–(6). Equation (3) is used
to build the AGHT attacks (Subsect. 3.3). Equations (2), (5) and (6) are used to
build the OJ attack (Subsect. 3.3). Equations (3) and (6) are used to build the
algebraic attack, the MM modeling (Subsect. 3.5). The details of constructing
the algebraic equations can refer to the specific attacks in Subsects. 3.3, 3.4 and
3.5.

3.3 Combinatorial Attacks on the �-RD Problem

In this subsection, we use the AGHT attack [5] and the OJ attack [37] to analyze
the complexity of solving the �-RD problem.

AGHT Attack [5]. The idea is that the solver tries to guess a subspace that
contains the support of the �-error, then checks if the choice is correct. The cost
depends on how to successfully guess such a subspace.

– Guess randomly a t-dimensional subspace F that contains the support
Supp(e) of dimension r =

∑�
i=1 ri of the �-error e.

– Let (f1, f2, . . . , ft) ∈ F
t
qm be a basis of F . One expresses e under this basis

e = (e1, e2, . . . , en) = (f1, f2, . . . , ft)

⎛

⎜
⎜
⎜
⎝

e11 e12 · · · e1n

e21 e22 · · · e2n

...
... · · · ...

et1 et2 · · · etn

⎞

⎟
⎟
⎟
⎠

= (f1, f2, . . . , ft)

⎛

⎜
⎜
⎜
⎝

e1

e2

...
et

⎞

⎟
⎟
⎟
⎠

,
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where ei = (ei1, ei2, . . . , ein) ∈ F
n
q for i ∈ {1..t}. By Eq. (3): Hye� = 0, let

hj is the j-th row of Hy , we have

Hye� =

⎛

⎜
⎜
⎜
⎝

h1

h2

...
hn−k−1

⎞

⎟
⎟
⎟
⎠

(
e�
1 ,e�

2 , . . . ,e�
t

)

⎛

⎜
⎜
⎜
⎝

f1
f2
...
ft

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

h1f1 h1f2 · · · h1ft

h2f1 h2f2 · · · h2ft

...
... · · · ...

hn−k−1f1 hn−k−1f2 · · · hn−k−1ft

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

e�
1

e�
2
...

e�
t

⎞

⎟
⎟
⎟
⎠

= 0n−k−1. (7)

– Express Eq. (7) as a linear system over Fq and solve ei. By expressing hjfi

as a matrix Mat(hjfi) ∈ F
m×n
q under the basis α for j ∈ {1..n − k − 1} and

i ∈ {1..t}, a linear system over Fq with nt unknowns and m(n − k − 1) equa-
tions is obtained. The linear system has only one solution with overwhelming
probability if nt ≤ m(n − k − 1).

– The probability of F ⊃ E is estimated as
[t
r]q

[mr ]
q

≈ q−r(m−t). In this way, the

complexity is O
(
((n − k − 1)m)ωqr� (k+1)m

n �).
– Use Fqm-linearity to decrease the cost. Since, for any λ ∈ F

∗
qm , ‖λe‖R = r

and all multiples λe are solutions of Eq. (3): Hye� = 0, the complexity is
divided by about qm.

As a result, this attack has a complexity of O
(
((n − k − 1)m)ωqr� (k+1)m

n �−m
)
.

In [12], the authors adapted the AGHT attack to the RD problem finding
so-called non-homogeneous errors. Here, inspired by [12], the strategy guessing
the subspace F is that the solver randomly guesses a subspace Fi of dimension
ti that contains the support Ei = Supp(ei) of dimension ri of ei such that all
Fi’s are mutually disjoint, and sets F =

∑�
i=1 Fi. In this way, the dimension of

F is of
∑�

i=1 ti, and F must contain the support of the �-error e.
If one knows Fi, then each entry of ei can be expressed as an Fq-linear

combination of ti elements in a basis of Fi. This means that one can write ei

using niti unknowns in Fq. Doing the same for all ei’s, one obtains
∑�

i=1 niti
unknowns. Then one solves the linear system with

∑�
i=1 niti unknowns and

m(n−k −1) equations for single solution e as long as
∑�

i=1 niti ≤ m(n−k −1).
The most costly part of the attack consists in finding the Fi’s containing Ei for
i ∈ {1..�}. We estimate this probability in Lemma 3.5.

Lemma 3.5. Let E1, E2, . . . , E� be fixed Fq-subspaces of dimension respec-
tively r1, r2, ..., r� of Fqm . The probability that one successfully guesses
Fq-subspaces F1, F2, ..., F� dimension respectively t1, t2, . . . , t� of Fqm such
that all Fi’s are mutually disjoint and Ei ⊂ Fi is estimated as
O

(
q−mr+

∑�−1
i=1 r2

i +
∑�

j=2 rj

∑j−1
i=1 ri+t�r�

)
.
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We give the detailed proof for Lemma 3.5 in Appendix C.1 of full version [40].
Finally, one takes advantage of the Fqm -linearity to raise this probability: for any
λ ∈ F

∗
qm , ‖λe‖R = r and all multiples λe are solutions of Eq. (3): Hye� = 0,

hence the complexity is divided by about qm. The complexity of solving the
�-RD problem by the variant of AGHT attack is estimated as

O
(
(m(n − k − 1))ωqmr−∑�−1

i=1 r2
i −∑�

j=2 rj

∑j−1
i=1 ri−t�r�−m

)

where ti is chosen to maximize t�r� under the constraints
⎧
⎪⎨

⎪⎩

ri ≤ ti, for i ∈ {1..�};
∑�

i=1 ti ≤ m − 1;
∑�

i=1 niti ≤ m(n − k − 1).

OJ Attack. We now analyze the complexity of solving the �-RD problem by the
OJ attack [37]. Let e1 and e2 be the first k+1 and the last n−k−1 coordinates
of e. Let A1 and A2 be the first k + 1 columns and the last n − k − 1 columns
of C. Then e = (e1,e2) = ε(A1,A2) = (αSA1,αSA2). Equation (2) means

uGy = e ⇐⇒ (u uR) = (e1,e2) ⇐⇒ e1R = e2 ⇐⇒ αSA1R = αSA2. (8)

We first analyze the case of the 2-RD problem, then extend conclusions into
general cases. By Equation (8), for j ∈ {1..n − k − 1}, let rj and aj be the j-th
column of R and A2, respectively, then

αSA1rj = αSaj ⇐⇒ αS
(
A1 aj

)
(

rj

−1

)

= 0. (9)

Let
(

rj

−1

)

= Tjα
� where Tj ∈ F

(k+2)×m
q is the matrix expression of

(
rj

−1

)

under the basis α. Equation (9) can be written αS
(
A1 aj

)
Tjα

� = 0. This
means

S(A1 aj)Tj = 0m×m. (10)

The entries of S(A1 aj)Tj are quadratic polynomials. Then Eq. (10) gives a
quadratic multivariate system over Fq with m2 quadratic polynomials in the
entries of S and C.

The OJ attack uses the basis enumeration and the coordinates enumeration
to transform the quadratic multivariate system into a linear system. The former
guesses all entries of S and solves the linear system about the entries of (A1 aj)
to determine C. The latter guesses the entries of C and solves the linear system
about the entries of S to determine S.

When S and C are in the form of Eq. (5) and Eq. (6), the complexities are
presented in Theorem 3.6 and Theorem 3.7. We give their detailed proofs in
Appendix C.2 and Appendix C.3 of full version [40]. The ideas of proofs can be
easily extended to the �-RD problem.
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Theorem 3.6. If S and C are in the form of Eq. (5), the 2-RD problem can
be solved with complexity O (

(kr + r)ωq(m−r)(r−1)
)
by the basis enumeration.

Theorem 3.7. If k = n1, S and C are in the form of Eq. (6), the 2-RD problem
can be solved with complexity O (

(m(r − 1) + (n1 − r1))ωq(r1−1)(n1−r1)+r2
)
by

the coordinates enumeration.

Theorem 3.8. If k = n1, the complexity of solving the �-RD problem by the OJ
attack is estimated as
{

O(
(kr + r)ωq(m−r)(r−1)

)
, BasisEnumeration;

O (
(m(r − 1) + (n1 − r1))ωq(r1−1)(n1−r1)+γ

)
, CoordinatesEnumeration,

where γ = max
{
ri : i ∈ {2..�}} and r =

∑�
i=1 ri.

3.4 Algebraic Attack by Annulator Polynomial

This algebraic attack [21] differs from attacks aiming to recover S and C with
reductions described in Subsect. 3.2. It directly solves x from a multivariate
system obtained from the �-RD instance and the theory of q-polynomials [36],
more specifically annulator polynomials (see Appendix A of full version [40]).
The attack details are outlined in Appendix B.2 of full version [40].

For the �-RD problem finding the �-error e = (e1,e2, . . . ,e�) ∈ Sn
r , the solver

splits y as (y1,y2, . . . ,y�) and splits G as (G1,G2, . . . ,G�) by columns n. Then

(y1,y2, . . . ,y�) = x(G1,G2, . . . ,G�) + (e1,e2, . . . ,e�).

In this way, the �-RD problem is divided into � subproblems, for ν ∈ {1..�},
yν = xGν + eν , then one solves x from one of � subproblems.

Let x = (x1, x2, . . . , xk). For ν ∈ {1..�}, let yν = (y1, y2, . . . , ynν
), Gν =

(gij) i∈{1..k}
j∈{1..nν}

, and eν = (e1, e2, . . . , enν
). Since the entries of eν lie in the support

Supp(eν) of dimension rν , there exists a unique monic q-polynomials P (ν)(u) =
∑rν

δ=0 p
(ν)
δ uqδ

of q-degree rν such that for j ∈ {1..nν}

P (ν)

(

yj −
k∑

i=1

xigij

)

=
rν∑

δ=0

(

p
(ν)
δ yqδ

j −
k∑

i=1

p
(ν)
δ xqδ

i gqδ

ij

)

= P (ν) (ej) = 0. (11)

Equation (11) gives a multivariate system with nν polynomials and (rν + k)
variables p

(ν)
δ and xi. For solving the �-RD problem, one solves xi from this

multivariate system.
The linearization and Gröbner basis techniques are applied to solve xi. The

complexities are given in Theorem 3.9 and the detailed proof is presented in
Appendix C.4 of full version [40].
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Theorem 3.9. The complexity of solving the �-RD problem by annulator poly-
nomials is estimated as

⎧
⎪⎨

⎪⎩

O
(
min

{
(rνk)ωqrν� (k+1)(rν+1)−(nν+1)

rν
� : ν ∈ {1..�}

})
, Linearization;

O
(

min
{

nν

(rν+k+d(ν)
reg−1

d
(ν)
reg

)ω

: ν ∈ {1..�}
})

, Gröbner Basis.

where d
(ν)
reg is the degree of regularity of the semi-regular system.

3.5 Algebraic Attacks by the MaxMinors Modeling

The MaxMinors (MM) modeling [9] is a powerful algebraic attack for crypto-
graphic parameters and reduces the RD problem to solving a linear system.
Equation εCH�

y = 0n−k−1 (obtained from Eq. (3) and e = εC) implies that

CH�
y ∈ F

r×(n−k−1)
qm is not of row full rank because a non-zero vector s belongs

to its left kernel. Then all maximal minors |CH�
y |∗,J of CH�

y are equal to 0 for
J ⊂ {1..n−k−1} and #J = r. By the Cauchy-Binet formula, each |CH�

y |∗,J can
be viewed a non-zero linear combination about all maximal minors cT = |C|∗,T

for T ⊂ {1..n} and #T = r. One views non-zero cT as unknowns and solves
cT from a linear system with

(
n
r

)
unknowns and

(
n−k−1

r

)
equations. Finally, one

determines the entries of C from the cT by using the fact that it is in systematic
form. The MM modeling over Fqm is built

{
PJ = |CH�

y |∗,J : J ⊂ {1..n − k − 1},#J = r
}

, (MM-Fqm) (12)

Unknowns:
(
n
r

)
variables cT ∈ Fq for T ⊂ {1..n} and #T = r,

Equations:
(
n−k−1

r

)
linear equations PJ = 0 over Fqm in cT .

However, this system has many solutions due to
(
n−k−1

r

)
<

(
n
r

)
whereas one

wants more equations than unknowns for a unique solution. To obtain more
equations than unknowns, one unfolds the coefficients of PJ over Fq and obtains
the MM-Fq modeling
{
Pi,J = |CH�

y |∗,J : J ⊂ {1..n − k − 1},#J = r, i ∈ {1..m}} , (MM-Fq) (13)

Unknowns:
(
n
r

)
variables cT ∈ Fq for T ⊂ {1..n} and #T = r,

Equations: m
(
n−k−1

r

)
linear equations Pi,J = 0 over Fq in cT .

We first analyze the case of the 2-RD problem, then extend conclusions to
general cases. By Eq. (6), the matrix C is of form

C =
(

Ir1 C ′
1 0r1×n2

0r2×n1 Ir2 C ′
2

)

∈ F
r×n
q , (14)

where C = (cij) i∈{1..r}
j∈{1..n}

∈ F
r×n
q , C ′

1 ∈ F
r1×(n1−r1)
q , and C ′

2 ∈ F
r2×(n2−r2)
q . One

can easily check
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– |C|∗,({1..r1}\{i}∪{j})∪{n1+1..n1+r2} = (−1)r1−icij for i ∈ {1..r1} and j ∈ {r1 +
1..n1},

– |C|∗,{1..r1}∪({n1+1..n1+r2}\{i}∪{j}) = (−1)n1+r2−icij for i ∈ {n1 + 1..n1 + r2}
and j ∈ {n1 + r2 + 1..n},

– |C|∗,{1..r1}∪{n1+1..n1+r2} = 1.

Therefore, once all cT ’s are solved, one can determine the entries of the matrix
C. Lemma 3.10 bounds the number of equations and unknowns cT .

Lemma 3.10. Under block form of C in Eq. (14), the MM-Fq modeling
obtained from the 2-RD problem contains

(
n1
r1

)(
n2
r2

)
unknowns cT and at most

m
(
n−k−1

r

)
equations.

We give the detailed proof for Lemma 3.10 in Appendix C.5 of full ver-
sion [40].

Remark 2. Our analysis follows the idea of updated RQC [30], where authors
bounded the maximal number of equations. On the one hand, considering less
equations could lead to a higher complexity because in this case one is more likely
to solve an underdetermined system with more unknowns and would guess more
entries of C to transform the system into an overdetermined case (see hybrid
method in the proof of Theorem 3.11). This means that using the maximal num-
ber of equations would give a lower bound of complexity. Cryptographic param-
eters often lead to an underdetermined case. On the other hand, the number of
zero and dependent equations is negligible to the maximal number m

(
n−k−1

r

)

and their impact on complexity is very limited. A thorough analysis in [8,12]
supported this point and we also experimentally verified this when � = 2, 3.

Remark 3. The number of non-zero variables cT is easy to compute. When n
and r are divisible by �, by Stirling approximation, the loss of variables cT is

large due to
(
n/�
r/�

)� ≈ �
�
2

(
n

2πr(n−r)

) �−1
2 (

n
r

)
while comparing with the MM-Fq

modeling obtained from the standard RD problem. See Lemma C.1 in Appendix
C.6 of full version [40] for this proof.

Theorem 3.11. The complexity of solving the 2-RD problem by the MM-Fq

modeling is estimated as
⎧
⎪⎪⎨

⎪⎪⎩

O
(

m
(
n−p−k−1

r

) ((
n1
r1

)(
n2−p

r2

))ω−1
)

, m
(
n−k−1

r

) ≥ (
n1
r1

)(
n2
r2

) − 1;

O
(

qa1r1+a2r2m
(
n−k−1

r

) ((
n1−a1

r1

)(
n2−a2

r2

))ω−1
)

, m
(
n−k−1

r

)
<

(
n1
r1

)(
n2
r2

) − 1.

where p = max
{

i | m
(
n−i−k−1

r

) ≥ (
n1
r1

)(
n2−i

r2

) − 1
}

and (a1, a2) is an integer

pair such that m
(
n−k−1

r

) ≥ (
n1−a1

r1

)(
n2−a2

r2

) − 1 exactly holds.

We give a proof with full details for Theorem 3.11 in Appendix C.7 of full
version [40]. Theorem 3.11 can be extended to the case of the �-RD problem.
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Theorem 3.12. The complexity of solving the �-RD problem by the MM-Fq

modeling is estimated as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

O
(

m
(
n−p−k−1

r

)
(

(
n�−p

r�

) �−1∏

i=1

(
ni

ri

)
)ω−1

)

, m
(
n−k−1

r

) ≥
�∏

i=1

(
ni

ri

) − 1;

O
(

q
∑�

i=1 airim
(
n−k−1

r

)
(

�∏

i=1

(
ni−ai

ri

)
)ω−1

)

, m
(
n−k−1

r

)
<

�∏

i=1

(
ni

ri

) − 1.

where p = max
{

i
∣
∣
∣ m

(
n−i−k−1

r

) ≥ (
n�−i

r�

) �−1∏

i=1

(
ni

ri

) − 1
}

and (a1, a2, . . . , a�) is an

integers sequence such that m
(
n−k−1

r

) ≥
�∏

i=1

(
ni−ai

ri

) − 1 exactly holds.

3.6 Summary of Complexities for Solving the �-RD Problem

At the end of this section, we summarize the complexity gain of solving the �-RD
problem compared with the standard RD problem in Table 2. For the first three
attacks, we only compare the exponential terms.

Table 2. Complexity comparisons of solving the �-RD and RD problems.

Attacks RD(q, m, n, k, r) �-RD(q, m, n, k, r, �)

AGHT q
r

⌈
(k+1)m

n

⌉

−m
q

r

⌈
(k+1)m

n

⌉

−m

OJ q(m−r)(r−1)+2 q(r−1)(k+1) q(m−r)(r−1) q(r1−1)(k−r1)+γ

γ = max
{

ri : i ∈ {2..�}}

Annulator
Polynomial

q
r

⌈
(k+1)(r+1)−(n+1)

r

⌉

n
(r+k+dreg−1

dreg

)ω
min

⎧
⎪⎨

⎪⎩
q

rν

⌈
(k+1)(rν+1)−(nν+1)

rν

⌉

: ν ∈ {1..�}

⎫
⎪⎬

⎪⎭

min

⎧
⎪⎨

⎪⎩
nν

(rν+k+d
(ν)
reg−1

d
(ν)
reg

)
ω

: ν ∈ {1..�}

⎫
⎪⎬

⎪⎭

MM m
(

n−p−k−1
r

) ((
n−p

r

))ω−1

qarm
(

n−k−1
r

) ((
n−a

r

))ω−1
m

(
n−p−k−1

r

)
(

(
n�−p

r�

) �−1∏

i=1

(
ni
ri

)
)ω−1

q

∑�
i=1 airi m

(
n−k−1

r

)
(

�∏

i=1

(
ni−ai

ri

)
)ω−1

Remark 4. The complexity analysis shows that the gain of most attacks on the �-
RD problem benefits from the blockwise structure of �-errors. (1) the OJ and MM
attacks benefits from the block-diagonal form of coefficient matrix C because the
sparse C enables one to solve less variables (multivariable or linear) system; (2)
the AGHT attack is limited because its cost depends on how to successfully guess
a subspace that contains the support of the error; (3) the annulator polynomials
attack benefits from the fact that the �-errors allow to divide the �-RD problem
into � subproblems with the smaller parameters.

For the powerful MM-Fq modeling, in the “underdetermined” case, an inter-
esting result is that the complexity of solving the �-RD problem allows to divide
by a factor � that of solving the standard RD problem.
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Let �|n, �|r, n′ = n/�, and r′ = r/�. For both RD and �-RD instances,
when the parameters (m,n, k, r) satisfy respectively the “underdetermined” con-

ditions: m
(
n−k−1

r

)
<

(
n
r

) − 1 and m
(
n−k−1

r

)
<

(
n′

r′
)� − 1. The attacker chooses

appropriate a and (a1, a2, . . . , a�) such that

m

(
n − k − 1

r

)

≥
(

n − a

r

)

− 1 and m

(
n − k − 1

r

)

≥
�∏

i=1

(
n′ − ai

r′

)

− 1

exactly hold. This means
(
n−a

r

) ≈
�∏

i=1

(
n′−ai

r′
)
. From Lemma C.1 in Appendix

C.6 of full version [40], an appropriate choice is a1 = a2 = · · · = a� and ai = a/�.
At this point,

logq(TRD)
logq(T�-RD)

≈ ar
∑�

i airi

= � =⇒ T�-RD ≈ �
√

TRD,

where TRD and T�-RD are the complexity of solving the RD and �-RD problems,
respectively. This further shows that the speedup really benefits from the block-
diagonal form of C because having C sparse enables one to guess

∑�
i=1 airi

entries of C to convert the “underdetermined” system into an “overdetermined”
system, instead of ar entries in the standard RD problem.

We simulate the complexity of MM-Fq for RD, 2-RD, and 3-RD in Fig. 1.

– (a) The RD instances are estimated with (q,m, n, k) = (2, 200, 200, 100) and
various even values r = 2r′ (r′ ∈ {3..30}). The 2-RD instances are estimated
with (q,m, n, k, n1, n2) = (2, 200, 200, 100, 100, 100) and various values r1 =
r2 ∈ {3..30}.

– (b) The RD instances are estimated with (q,m, n, k) = (2, 100, 200, 100) and
various even values r ∈ {6..40}. The 2-RD instances are estimated with
(q,m, n, k, n1, n2) = (2, 100, 200, 100, 100, 100) and various values r1 = r2 ∈
{3..20}.

– (c) The RD instances are estimated with (q,m, n, k) = (2, 100, 300, 100) and
various values r = 3r′ (r′ ∈ {2..20}). The 3-RD instances are estimated
with (q,m, n, k, n1, n2, n3) = (2, 100, 300, 100, 100, 100, 100) and various val-
ues r1 = r2 = r3 ∈ {2..20}.

Our simulations become interesting as r increases. (a) and (b) in Fig. 1 show
that, when r is divided equally into (r1, r2), the exponential complexity allows
to divide by a factor 2 for r ≥ 10, i.e., T2-RD ≈ √

TRD. (c) in Fig. 1 shows that,
when r is divided equally into (r1, r2, r3), the exponential complexity allows to
divide by a factor 3 for r ≥ 12, i.e., T3-RD ≈ 3

√
TRD. The parameters sizes in (b)

and (c) are exactly the case of cryptography parameters in Sect. 5.

4 The �-LRPC Codes and Decoding Algorithm

In this section, we define the blockwise LRPC (�-LRPC) codes, give its decoding
algorithm, and analyze the decoding failure probability and the error-correcting
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Fig. 1. Complexity trend of RD, 2-RD, and 3-RD by MM-Fq.

capability. We find that the decoding algorithm can benefit from the blockwise
structure: the decoding capacity can be significantly improved by a factor of
�. For cryptography applications in Sect. 5, we finally give the �-Rank Support
Recover (�-RSR) algorithm which is used to recover the support of the �-error.

4.1 The �-LRPC Codes

An [n, k]qm LRPC code [4,20] is defined by a parity-check matrix H ∈ F
(n−k)×n
qm

with small weight. Our [n, k]qm �-LRPC code is defined by a parity-check matrix
consisting of � small-weight matrices of size (n − k) × ni.

Definition 4.1 (Blockwise LRPC (�-LRPC) Codes). Let �, k ∈ N, ni, di ∈
N for i ∈ {1..�}, and n =

∑�
i=1 ni. Let Hi ∈ F

(n−k)×ni

qm be a matrix of weight
di. Let the supports of � matrices Hi’s are mutually disjoint. An [n, k]qm �-
LRPC code of length n and dimension k is defined by a parity-check matrix
H = (H1 H2 · · · H�) ∈ F

(n−k)×n
qm .

Let n = (n1, n2, . . . , n�) and d = (d1, d2, . . . , d�) be vectors of positive inte-
gers. We denote the set of such parity-check matrices by Mn

d (k). Let Fi be
the support of dimension di of Hi. Because all supports are mutually disjoint,
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the matrix H can be viewed as the matrix of weight d =
∑�

i=1 di and support
F =

∑�
i=1 Fi.

We next consider decoding algorithms for two error distributions: the �-errors
and the standard rank metric errors. In this subsection, we analyze the case of
decoding the �-errors. The decoding algorithm is also applied to ROLLO in
Sect. 5. The latter is presented in Appendix D of full version [40], where we show
that for the standard errors, the �-LRPC code has the same decoding capacity
as the standard LRPC code.

4.2 Decoding �-Errors

Let r = (r1, . . . , r�) be a vector of positive integers. Consider an [n, k]qm �-
LRPC code C with generator matrix G ∈ F

k×n
qm and parity-check matrix H =

(H1 H2 · · · H�) ∈ Mn
d (k) of support (F1, F2, . . . , F�). Let y = mG + e be a

received word, where m ∈ F
k
qm and e = (e1,e2, . . . ,e�) ∈ Sn

r with the support
(E1, E2, . . . , E�). The syndrome s = Hy� = He� =

∑�
j=1 Hje

�
j .

The general idea of decoding �-error e uses the fact that the subspace
S = 〈s1, s2, . . . , sn−k〉Fq

generated by s enables one to recover the space
∑�

i=1 EiFi. Once obtaining
∑�

j=1 EjFj , one recovers E1, E2, . . . , E� and com-

putes the support E =
∑�

j=1 Ej of the error e. Finally, the coordinates of e are
computed by solving a linear system. The decoding algorithm is described in
Algorithm 1.

4.3 Correctness of the Decoding Algorithm

The correctness of Algorithm 1 depends on the recovery of correct Ej , which

requires dimS = dim
(∑�

j=1 EjFj

)
and dim

(⋂dj

i=1 Sji

)
= rj for j ∈ {1..�}. We

assume that these two conditions hold.
Step 1: the first step of the algorithm is obvious.
Step 2: we prove that Ej =

⋂dj

i=1 Sji for j ∈ {1..�}. Let (εj1, εj2, . . . , εjrj
) ∈

F
rj

qm be the basis of Ej . Since s = He� =
∑�

j=1 Hje
�
j , H ∈ Mn

d (k) is a matrix
of support (F1, F2, . . . , F�), and e ∈ Sn

r is an �-error of support (E1, E2, . . . , E�),
we have that the entries of Hje

�
j respectively lie in EjFj . Thus, S ⊂ ∑�

j=1 EjFj .

By assumption dimS = dim
(∑�

j=1 EjFj

)
, we have S =

∑�
j=1 EjFj . Further,

for any i ∈ {1..dj}, since fjiεjκ ∈ ∑�
j=1 EjFj for all κ ∈ {1..rj}, we have

εjκ ⊂ Sji = {f−1
ji x : x ∈ S} ⇒ Ej ⊂ Sji. Then, Ej ⊂ ⋂dj

i=1 Sji. By assumption

dim
(⋂dj

i=1 Sji

)
= rj , we have Ej =

⋂dj

i=1 Sji.
Step 3: one expresses e under the basis ε of E:

e = (e1, e2, . . . , en) = (ε1, ε2, . . . , εr)

⎛

⎜
⎜
⎜
⎝

e11 e12 · · · e1n

e21 e22 · · · e2n

...
... · · · ...

er1 er2 · · · ern

⎞

⎟
⎟
⎟
⎠

= (ε1, ε2, . . . , εr)

⎛

⎜
⎜
⎜
⎝

e1

e2

...
er

⎞

⎟
⎟
⎟
⎠

,
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Algorithm 1. Decoding �-errors for �-LRPC codes
Input: the vector y and the parity-check matrix H .
Output: the message m

1: Computing syndrome space:
– Compute the syndrome Hy� = He� =

∑�
i=1 Hie

�
i = s = (s1, s2, . . . , sn−k)�

and the syndrome space S = 〈s1, s2, . . . , sn−k〉Fq .
2: Recovering the support E of the error e:

– Compute Fj from H for j ∈ {1..�}
– Compute the basis (fj1, fj2, . . . , fjdj ) ∈ F

dj

qm of Fj for j ∈ {1..�}
– Compute Sji = f−1

ji S, where all generators of S are multiplied by f−1
ji for

j ∈ {1..�} and i ∈ {1..dj}
– Compute Ej =

⋂dj

i=1 Sji for j ∈ {1..�}
– Compute E =

∑�
j=1 Ej

3: Recovering the error e:
– Compute the basis ε = (ε1, ε2, . . . , εr) ∈ F

r
qm of E

– Write each entry ej of e as ej =
∑r

i=1 eijεj for j ∈ {1..n} in the basis ε
– Solve eij from the linear system He� = s.

4: Recovering m from mG = y − e.

where ei = (ei1, ei2, . . . , ein) for i ∈ {1..r}, and computes ei from Eq. (15):

He� =

⎛

⎜
⎜
⎜
⎝

h1

h2

...
hn−k

⎞

⎟
⎟
⎟
⎠

(e�
1 ,e�

2 , . . . ,e�
r )

⎛

⎜
⎜
⎜
⎝

ε1
ε2
...
εr

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

h1ε1 h1ε2 · · · h1εr

h2ε1 h2ε2 · · · h2εr

...
... · · · ...

hn−kε1 hn−kε2 · · · hn−kεr

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

e�
1

e�
2
...

e�
r

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

s1
s2
...

sn−k

⎞

⎟
⎟
⎟
⎠

, (15)

where hj is the j-th row of H.

There are two methods to solve Eq. (15):

1. Solve-Fqm : Obtaining a linear system with nr unknowns and m(n−k) equa-
tions over Fq by expressing hjεi and sj as a matrix Mat(hjεi) ∈ F

m×n
q and

column vector of length m, respectively, under the basis α. The system has
one solution with overwhelming probability if nr ≤ m(n − k);

2. Solve-EF : As
∑�

j=1 EjFj ⊂ EF , where F =
∑�

j=1 Fj , the entries of hjεi

and sj lie in EF . We then can express Equation (15) under the basis of EF
by expressing hjεi and sj as a matrix of rd × n and column vector of length
rd, respectively. Finally, we will obtain a linear system with nr unknowns and
rd(n − k) equations over Fq. The system has one solution with overwhelming
probability if nr ≤ rd(n − k), where d =

∑�
j=1 dj and r =

∑�
j=1 rj .
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Once all ei’s are obtained, one can recover e. We experimentally find that Solve-
Fqm is more efficient than Solve-EF on SageMath 9.0.

Step 4: the fourth step of the algorithm is obvious.

4.4 The Decoding Complexity

The most costly part is the intersection in Step 2 and solving linear systems
in Step 3. The intersection

⋂dj

i=1 Sji of spaces Sji of dimension μ =
∑�

j=1 rjdj

costs O
(
4μ2m

∑�
j=1 dj

)
operations in Fq for j ∈ {1..�}. By Solve-EF , express-

ing hjεi as a matrix of rd × n in the basis of EF consists in solving n linear
systems with rd unknowns and m equations. This costs (n − k)nrω+1dω oper-
ations in Fq. Expressing sj as a column vector of length rd in the basis of EF
consists in solving a linear system with rd unknowns and m equations. This
costs (n − k)(rd)ω operations in Fq. Solving the linear system He� = s with
nr unknowns and rd(n − k) equations costs about O((nr)ω) operations in Fq.
Thus, the complexity of the decoding algorithm is bounded by O((nr)ω).

4.5 Decoding Failure Probability

By the correctness assumption of Algorithm 1, two cases can make the algorithm
fail: (i) dimS < dim

(∑�
j=1 EjFj

)
; (ii) dim

(⋂dj

i=1 Sji

)
> rj for j ∈ {1..�}.

Propositions 4.2 and 4.3 estimate the probability of two cases.

Proposition 4.2. The probability of dimS < dim
(∑�

j=1 EjFj

)
is bounded by

q−(n−k−μ) where μ =
∑�

j=1 rjdj.

Proposition 4.3. The probability that there is j ∈ {1..�} such that

dim
(⋂dj

i=1 Sji

)
> rj is bounded by

∑�
j=1 qμ−rj

(
qμ−rj −1

qm−rj

)dj−1

where μ =
∑�

j=1 rjdj.

We give the detailed proofs for Propositions 4.2 and 4.3 in Appendices (C.8
and C.9) of full version [40]. Combining these two propositions, we deduce the
decoding failure probability of Algorithm 1 in Theorem 4.4.

Theorem 4.4. Under assumptions that Sji behaves as independent and ran-
dom subspaces containing Ej, the decoding failure probability of Algorithm 1 is

bounded by q−(n−k−μ) +
∑�

j=1 qμ−rj

(
qμ−rj −1

qm−rj

)dj−1

where μ =
∑�

j=1 rjdj.

The analysis shows that the failure probability can be made arbitrarily small.

4.6 Error Correction Capability

From the correctness of Algorithm 1, we have nr ≤ rd(n−k) ⇒ d ≥ n
n−k . Under

this condition, the decoding capacity is constrained by
∑�

j=1 rjdj ≤ n − k. The
following Theorem 4.5 is obvious.
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Theorem 4.5. When d1 = d2 = · · · = d�, the �-LRPC code allows to decode
�-errors of weight up to r =

∑�
j=1 rj = n−k

d1
. By setting d1 = d2 = · · · = d�= 2,

it can decode �-errors of weight up to n−k
2 .

Theorem 4.5 implies that the decoding algorithm can benefit from the block-
wise structure: the decoding capacity can be significantly improved by a factor
of �. An [n, k]qm LRPC code defined by a parity-check matrix of weight d can
decode the standard errors of weight up to r = n−k

d with a DFR of about
qrd−n−k. Let �|d, di = d/�, H ∈ Mn

d (k) be a parity-check matrix of an [n, k]qm

�-LRPC code. This �-LRPC code can decode �-errors in Sn
r of weight up to �r

with the same DFR, which comes from

�∑

j=1

rjdj =
d

�

�∑

j=1

rj ≤ n − k =⇒
�∑

j=1

rj ≤ �(n − k)
d

= �r.

For example, fixing d = 4, r = 8, and the DFR of q32−n−k, an [n, k]qm LRPC
code can decode errors of weight 8, but an [n, k]qm 2-LRPC codes with parameter
d = (d1, d2) = (2, 2) can decode �-errors with parameter r = (r1, r2) = (8, 8) of
weight up to r = r1 + r2 = 16.

For the accurate failure probability of decoding errors of maximal weight, it
is hard to estimate theoretical value and the value in Theorem 4.4 seems not
practical for q > 2. We give a simulation of the decoding algorithm for 2-LRPC
codes on SageMath 9.0. When � = 2 and d1 = d2 = 2, the 2-LRPC codes can
decode 2-errors of weight up to n−k

2 . The simulated result shows that the failure
probability is about 0.73 for q = 2. Figure 2 shows the decreasing trend of the
failure probability as q increases. For q = 2, the failure probability is bounded by
q−(n−k−∑2

j=1 rjdj) = 1. For q > 2, the upper bound of failure probability seems to
be q−(n−k+1−∑2

j=1 rjdj). The code parameters are (m,n, k, n1, n2, r1, r2, d1, d2) =
(43, 44, 22, 22, 22, 6, 5, 2, 2) for q = 2, 3, 5, 7, 11, 13, 17, 19.

4.7 The �-RSR Algorithm

For cryptography applications in Sect. 5, one just recovers the support of the
error. In this subsection, we give the �-Rank Support Recover (�-RSR) algorithm
(Algorithm 2), which is a shortened version of the decoding Algorithm 1 without
the computation of the error. The correctness follows Algorithm 1. The failure
probability follows Theorem 4.4. The cost is only the recovery of support and is
given in Subsect. 4.4.

5 Applications to Cryptography

In this section, we apply the ideal variants of the �-RD problem and the �-LRPC
codes to improve RQC [30] and ROLLO [29] kept in NIST PQC Round 2. Due to
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Fig. 2. Simulated failure probability of decoding 2-errors of weight n−k
2

for 2-LRPC
codes.

Algorithm 2. �-RSR Algorithm
Input: a parity-check matrix H = (H1 H2 · · · H�) ∈ Mn

d (k), a syndrome s ∈ F
n−k
qm ,

r = (r1, r2, . . . , r�).
Output: � spaces Ej of dimensions rj .

1: Compute the syndrome space S = 〈s1, s2, . . . , sn−k〉Fq .
2: Recovering the support Ej for j ∈ {1..�}:

– Compute Fj from Hj

– Compute the basis (fj1, fj2, . . . , fjdj ) of Fj

– Compute Sji = f−1
ji S, where all generators of S are multiplied by f−1

ji for
i ∈ {1..dj}

– Compute Ej =
⋂dj

i=1 Sji

space limitations, we present the ideal variants in Appendix E of full version [40]
and only list improved schemes and comparisons in this section.

RQC [30] and ROLLO [29] include Public Key Encryptions (PKE) and Key
Encapsulation Mechanisms (KEM). RQC is an IND-CCA2 KEM built from its
IND-CPA PKE construction based on the HHK transformation [26] and uses
the Gabidulin codes. We only consider the PKE version of RQC for simplicity.
ROLLO is the merge of the three cryptosystems Laker, Locker, and Ouroboros-
R which all share the same decryption algorithm for the LRPC codes. Laker
(ROLLO-I) and Ouroboros-R (ROLLO-III) are two IND-CPA KEM. Locker
(ROLLO-II) is an IND-CCA2 PKE scheme built from its IND-CPA PKE con-
struction based on the HHK transformation [26]. We only consider the IND-CPA
PKE version of Locker for simplicity.
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5.1 Improved RQC

In this subsection, we improve RQC [30] based on the 2-IRSD and 3-IRSD prob-
lems. Our RQC uses three types of codes: a Gabidulin code C [18] with gener-
ator matrix G ∈ F

k×n
qm which can correct up to �n−k

2 � errors by a deterministic
decoding algorithm C.Decode [6,27], a random [2n, n]qm -ideal code with parity-
check matrix (1 h), and a random [3n, n]qm -ideal code with parity-check matrix(
1 0 h
0 1 s

)

.

– RQC.KGen(λ): Taking 1λ as input, it randomly samples h $← F
n
qm and (x,y) $←

S(n,n)
(wx,wy), computes s = x + hy, and sets the public key pk = (h,s) and the

private key sk = (x,y).
– RQC.Enc(pk,m): Taking the public key pk = (s,h) and a message m ∈ F

k
qm as

input, it randomly samples (r1,r2,e)
$← S(n,n,n)

(wr1 ,wr2 ,we)
, computes u = r1+hr2

and v = mG+ sr2 + e, and returns the ciphertext c = (u,v).
– RQC.Dec(sk,c): Taking a private key sk = (x,y) and the ciphertext c as input,

it computes v uy and returns m .Decode (v uy).

Fig. 3. Description of our RQC PKE scheme.

Correctness. We have v − uy = mG + xr2 + e − r1y. The correctness of
our encryption scheme is based on the decoding capability of the Gabidulin
code C, i.e., the error term xr2 + e − r1y must fulfill: ‖xr2 + e − r1y‖R =
wxwr2 + wywr1 + we ≤ �n−k

2 �.
In the decryption step, one needs to decode an error of weight wxwr2 +

wywr1 + we . This weight increase is slow, which brings the gain of decoding
capacity and saves code parameters. Although the �-errors can also be used to
speed up the attacks for decoding problems, the performance in Table 3 shows
that the gain in the decoding method greatly outweighs the gain in the attacks,
and eventually allows scheme with small parameters.

Theorem 5.1. Under the decisional 2-IRSD and 3-IRSD problems, our RQC
PKE in Fig. 3 is IND-CPA secure.

Proof. The proof is similar to [30] with 2-IRSD and 3-IRSD instances. The two
instances are defined by

s =
(
1 h

)
(

x
y

)

,

(
u

v − mG

)

=
(
1 0 h
0 1 s

)
⎛

⎝
r1

r2

e

⎞

⎠ .


�
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5.2 Improved Lake (ROLLO-I)

In this subsection, we improve Lake based on the 2-IRSD problem and the 2-
ILRPC codes indistinguishability problem. Our Laker has three building blocks:
a random [2n, n]qm 2-ILRPC code with parity-check matrix (x y), the algorithm
2-RSR (see Algorithm 2), and a random [2n, n]qm -ideal code with parity-check
matrix (1 h).

– Lake.KGen(λ): Taking 1λ as input, it samples (x,y) $← S(n,n)
(d1,d2)

and computes
h = x−1y, then it sets the public key pk = h and the private key sk = (x,y).

– Lake.Encap(pk): Taking the public key h as input, it randomly chooses

(e1,e2)
$← S(n,n)

(r1,r2)
and computes c = e1 + he2, E1 = Supp(e1), E2 =

Supp(e2), E = E1 + E2, and K = Hash(E), and returns (c, K).
– Lake.Decap(sk,c): Taking (x,y) and c as input, it computes xc = xe1 +ye2,

executes (E1, E2) ← 2-RSR((x,y),xc, r1, r2), computes E = E1 + E2, and
returns K = Hash(E).

Fig. 4. Description of our Lake KEM scheme.

5.3 Improved Locker (ROLLO-II)

Locker (ROLLO-II [29]) is a PKE scheme and is obtained from ROLLO-I. In
this subsection, we improve ROLLO-II by the 2-IRSD problem. As our Lake, our
Locker has three building blocks: a random [2n, n]qm 2-ILRPC code with parity-
check matrix (x y), the algorithm 2-RSR (see Algorithm 2), and a random
[2n, n]qm -ideal code with parity-check matrix (1 h).

– Locker.KGen(λ): Taking 1λ as input, it samples (x,y) $← S(n,n)
(d1,d2)

and computes
h = x−1y, then it sets the public key pk = h and the private key sk = (x,y).

– Locker.Enc(pk, M): Taking the public key h and a message M as input, it

randomly chooses (e1,e2)
$← S(n,n)

(r1,r2)
, computes c = e1 +he2, E1 = Supp(e1),

E2 = Supp(e2), E = E1 + E2, and the ciphertext C = (c, M ⊕ Hash(E)) =
(c,c ), and returns C.

– Locker.Dec(sk, C): Taking the private key (x,y) and the ciphertext C as input,
it computes xc = xe1 + ye2, executes (E1, E2) ← 2-RSR((x,y),xc, r1, r2),
computes E = E1 + E2, and returns M = c Hash(E).

Fig. 5. Description of our Locker PKE scheme.

In Laker and Locker, the decapsulation and decryption steps obtain the sup-
port of (e1,e2) from xe1−ye2 of weight r1d1+r2d2. This weight increase implies
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that the parameters (r1, r2) and (d1, d2) can be increased a lot. Although the
2-errors and the 2-LRPC codes can also be used to speed up the attacks for
decoding problems, the performance in Tables 4, 5 and 7 shows that the gain in
the decoding method outweighs the gain in the attacks, and eventually allows
schemes with small parameters.

Theorem 5.2. Under the 2-ILRPC codes indistinguishability, and 2-IRSR
problems our Lake KEM in Fig. 4 and Locker PKE in Fig. 5 are IND-CPA secure
in the random oracle model.

Proof. The proofs are similar to [29] with the 2-ILRPC codes indistinguishability
and 2-IRSR instances. The two instances are defined by

0 =
(
1 h

)
(

y
−x

)

, c =
(
1 h

)
(

e1

e2

)

.


�

5.4 Improved Ouroboros-R (ROLLO-III)

In this subsection, we improve ROLLO-III based on the 2-IRSD and 3-IRSD
problems. Our Ouroboros-R has three building blocks: a 3-ILRPC code with
parity-check matrix (h0 h1 1), the algorithm 3-RSR (see Algorithm 2), a
[2n, n]qm -ideal code with parity-check matrix (1 f1), and a [3n, n]qm -ideal code

with parity-check matrix
(
1 0 f0

0 1 f1

)

.

– Ouroboros-R.KGen(λ): Taking 1λ as input, it samples f1
seed←− F

n
qm , and

(h0,h1)
$← S(n,n)

(d1,d2)
, then it computes f0 = h1 + f1h0 and sets the public

key pk = (f0, seed) and the private key sk = (h0,h1).
– Ouroboros-R.Encap(pk): Taking the public key (f0, seed) as input, it randomly

chooses (e0,e1,e)
$← S(n,n,n)

(r1,r2,r3)
, computes c0 = f0e1 + e, c1 = f1e1 + e0,

E1 = Supp(e1), E2 = Supp(e2), E = E1 + E2, and K = Hash(E), sets c =
(c0,c1), and returns (c, K).

– Ouroboros-R.Decap(sk,c): Taking (h0,h1) and c as input, it computes s = c0−
h0c1 = −h0e0+h1e1+e, executes (E1, E2) ← 3-RSR((h0,h1,1),s, r1, r2, r3),
computes E = E1 + E2, and returns K = Hash(E).

Fig. 6. Description of our Ouroboros-R KEM scheme.

In the decapsulation step, one obtains the support of (e0,e1) from h1e1 −
h0e0 + e of weight r1d1 + r2d2 + r3. This weight increasing implies that the
parameters (r1, r2, r3) and (d1, d2) can be increased a lot. Although the blockwise
errors and LRPC codes can also be used to speed up the attacks for decoding
problems, the performance in Tables 6 and 7 shows that the gain in the decoding
method outweighs the gain in the attacks, and eventually allows scheme with
small parameters.



Blockwise Rank Decoding Problem and LRPC Codes 311

Theorem 5.3. Under the decisional 2-IRSD and 3-IRSD problems, our
Ouroboros-R KEM in Fig. 6 is IND-CPA secure in the random oracle model.

Proof. The proof is similar to [2] with the (decisional) 2-IRSD and 3-IRSD
instances. The two instances are defined by

f0 =
(
1 f1

)
(

h1

h0

)

,

(
c0
c1

)

=
(
1 0 f0

0 1 f1

)
⎛

⎝
e
e0

e1

⎞

⎠ .


�

5.5 Performance and Comparison

In this subsection, we compare performance of our RQC and ROLLO with orig-
inal versions.

In Tables 3, 4 and 5, parameters are chosen in two principles. First, the hard-
ness of decoding problems (the 2-IRSD and 3-IRSD problems) is ensured to reach
the target security level. The hardness is estimated by our complexity formulas.
Secondly, the error-correcting capacity of rank metric codes is ensured to sat-
isfy the decryption correctness condition. [n, k]qm Gabidulin codes used in RQC
require k < n ≤ m and correct errors of weight up to �(n−k)/2�; in the decryp-
tion step, the weight of the decoded errors must ≤ �(n − k)/2�. The �-LRPC
codes used in ROLLO must satisfy a reasonable DFR in Theorem 4.4. In Tables
3 and 6, “2n” (“3n”) represents the complexity of solving the 2-IRSD (3-IRSD)
instances in RQC and Ouroboros-R. In Tables 4 and 5, the structural attack is
estimated with parameters (m,n, k, r1, r2) =

(
m, 2n − �n

d �, n − �n
d �, d1.d2

)
; the

message attack is estimated with parameters (m,n, k, r1, r2) = (m, 2n, n, r1, r2).
From Tables (3, 4, 5 and 6), our parameters sizes are smaller than those of the

original ones due to the blockwise stricture, which brings a low complexity redun-
dancy, improved the public key/ciphertext sizes, and more efficient implementa-
tions. The improved performance benefits from that the gain of using �-errors and
�-LRPC codes in decoding capacity outweighs the complexity loss in solving the
�-RD problem. As an example, we provide concrete timings of implementations
for our ROLLO and original versions (Table 7). The benchmark is performed on
Intel(R) Core(TM) i5-7440HQ CPU@ 3.40 GHz with SageMath 9.0. The tests are
available online at https://github.com/YCSong232431/NH-ROLLO. Note that,
we do not compare with most recent works [12,32], where the authors constructed
a series of efficient PKE and KEM schemes without ideal structure by propos-
ing augmented Gabidulin codes and LRPC codes with multiple syndromes. Our
techniques are different from [12,32] and we only consider cryptosystems with
ideal structure and one syndrome.

https://github.com/YCSong232431/NH-ROLLO
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Table 3. Comparison of parameters and sizes for RQC.

Schemes m n k wx wy wr 1 wr 2 we
pks

(bytes)

cts

(bytes)

total

(KB)

Attack

(2n, 3n)
Security

Our RQC 83 79 7 4 4 4 4 4 860 1704 2.5 (2130, 2163) 128

Our RQC 127 113 3 5 5 5 5 5 1834 3652 5.3 (2258, 2214) 192

Our RQC 139 137 5 5 5 6 6 6 2421 4826 7.1 (2271, 2274) 256

Schemes m n k wx wy wr 1 wr 2 we
pks

(bytes)

cts

(bytes)

total

(KB)
Security

RQC (NIST [30]) 127 113 3 7 7 7 7 13 1834 3652 5.3 128

RQC (NIST [30]) 151 149 5 8 8 8 8 16 2853 5690 8.3 192

RQC (NIST [30]) 181 179 3 9 9 9 9 16 4090 8164 12.0 256

pks:
(⌈

mn
8

⌉
+ 40

)
bytes; cts:

(
2

⌈
mn
8

⌉
+ 64

)
bytes; total = pks + cts.

Table 4. Comparison of parameters and sizes for Lake (ROLLO-I).

Schemes m n r1 r2 d1 d2 DFR
pks/cts

(bytes)

Structural attack

y − xh = 0

Message attack

c = e1 + he2
Security

Our Lake 61 67 4 4 5 4 2−31 511 2160 2144 128

Our Lake 71 79 5 5 5 5 2−29 702 2225 2255 192

Our Lake 79 89 5 5 6 5 2−34 879 2281 2266 256

Schemes m n r d DFR pks/cts (bytes) Security

Lake (NIST [29]) 67 83 7 8 2−28 696 128

Lake (NIST [29]) 79 97 8 8 2−34 958 192

Lake (NIST [29]) 97 113 9 9 2−33 1371 256

pks:
⌈

mn
8

⌉
bytes. cts:

⌈
mn
8

⌉
bytes.

Table 5. Comparison of parameters and sizes for Locker (ROLLO-II).

Schemes m n r1r2d1d2 DFR
pks

(bytes)
cts

(bytes)

Structural
attack

y − xh = 0

Message
attack

c = e1 + he2

Security

Our Locker 89 163 4 4 4 4 2−131 1814 1942 2134 2139 128

Our Locker 97 179 4 5 5 5 2−134 2171 2299 2254 2231 192

Our Locker101181 5 5 5 5 2−131 2286 2414 2267 2357 256

Schemes m n rd DFR pks (bytes)cts (bytes)Security

Locker (NIST [29])83189782−134 1941 2089 128

Locker (NIST [29])97193882−130 2341 2469 192

Locker (NIST [29])97211892−136 2559 2687 256

pks:
⌈

mn
8

⌉
bytes; cts:

⌈
mn
8

⌉
+64 bytes. To obtain the IND-CCA2 security, another

hash is added to the ciphertext such that cts =
⌈

mn
8

⌉
+ 2 ∗ 64 bytes.
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Table 6. Comparison of parameters and sizes for Ouroboros-R (ROLLO-III).

Schemes m n r1 r2 r3 d1 d2 DFR
pks

(bytes)

cts

(bytes)

Attacks

(2n, 3n)
Security

Our Ouroboros-R 53 79 4 4 5 4 4 2−33 623 1166 (2147, 2175) 128

Our Ouroboros-R 89 101 6 6 6 4 5 2−33 1164 2248 (2196, 2266) 192

Our Ouroboros-R 97 109 6 6 7 5 5 2−42 1362 2644 (2275, 2308) 256

Schemes m n w wr δ DFR pks (bytes) cts (bytes) Security

Ouroboros-R (TIT [2]) 67 83 7 7 7 2−28 736 1431 128

Ouroboros-R (TIT [2]) 107 113 9 9 9 2−24 1552 3023 192

Ouroboros-R (TIT [2]) 149 151 11 11 11 2−20 2853 5625 256

pks:
(⌈

mn
8

⌉
+ 40

)
bytes and cts:

⌈
2mn
8

⌉
bytes. We update DFR of Ouroboros-R.

Table 7. Timings comparisons of our ROLLO and original ROLLO.

Schemes KGen (ms) Encap (ms) Decap (ms) Security

Our Lake 715 73 257 128

Our Lake 737 100 499 192

Our Lake 1020 118 553 256

Lake (NIST [29]) 995 109 391 128

Lake (NIST [29]) 1220 134 525 192

Lake (NIST [29]) 1390 181 838 256

Schemes KGen (ms) Enc (ms) Dec (ms) Security

Our Locker 2300 232 388 128

Our Locker 2940 280 614 192

Our Locker 3210 301 644 256

Locker (NIST [29]) 2760 258 446 128

Locker (NIST [29]) 3410 314 583 192

Locker (NIST [29]) 2780 333 715 256

Schemes KGen (ms) Encap (ms) Decap (ms) Security

Our Ouroboros-R 101 120 246 128

Our Ouroboros-R 206 247 633 192

Our Ouroboros-R 224 262 798 256

Ouroboros-R (TIT [2]) 130 153 368 128

Ouroboros-R (TIT [2]) 275 308 1040 192

Ouroboros-R (TIT [2]) 504 614 2560 256

6 Conclusion and Future Work

In this paper, we studied blockwise structures in rank-based cryptosystems and
introduced �-errors, �-RD problem, and �-LRPC codes. They are natural gener-
alizations of the standard errors, RD problem, and LRPC codes. We found that
(1) the blockwise structure does not ease the problem too much: the �-RD prob-
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lem is still exponentially hard for appropriate choices of � > 1; (2) the decoding
algorithm can benefit from the blockwise structure: the decoding capacity can
be significantly improved by a factor of �. Interestingly, the gain of the decoding
capacity outweighs the complexity loss in solving the �-RD problem, which allows
to improve RQC and ROLLO. For 128-bit security, our RQC has total public
key and ciphertext sizes of 2.5 KB, which is not only about 50% more compact
than the original RQC, but also smaller than the NIST Round 4 code-based
submissions HQC, BIKE, and Classic McEliece.

Recent works [3,12,32] proposed unstructured PKE and KEM without ideal
structure for more reliable security. We would in next work analyze the com-
plexity of blockwise rank support learning problem and apply the �-LRPC codes
with multiple syndromes to improve unstructured schemes.
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