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Preface

The 29th Annual International Conference on the Theory and Application of Cryptology
and Information Security (Asiacrypt 2023) was held in Guangzhou, China, onDecember
4–8, 2023.The conference covered all technical aspects of cryptology, andwas sponsored
by the International Association for Cryptologic Research (IACR).

We received an Asiacrypt record of 376 paper submissions from all over the world,
and the Program Committee (PC) selected 106 papers for publication in the proceedings
of the conference. Due to this large number of papers, the Asiacrypt 2023 program had
3 tracks.

The two program chairs were supported by the great help and excellent advice of six
area chairs, selected to cover themain topic areas of the conference. The area chairs were
Kai-Min Chung for Information-Theoretic and Complexity-Theoretic Cryptography,
Tanja Lange for Efficient and Secure Implementations, Shengli Liu for Public-Key
Cryptography Algorithms and Protocols, Khoa Nguyen for Multi-Party Computation
and Zero-Knowledge, Duong Hieu Phan for Public-Key Primitives with Advanced
Functionalities, and Yu Sasaki for Symmetric-Key Cryptology. Each of the area chairs
helped to lead discussions together with the PC members assigned as paper discussion
lead. Area chairs also helped to decide on the submissions that should be accepted from
their respective areas. We are very grateful for the invaluable contribution provided by
the area chairs.

To review and evaluate the submissions, while keeping the load per PC member
manageable, we selected a record size PC consisting of 105 leading experts from all
over the world, in all six topic areas of cryptology. The two program chairs were not
allowed to submit a paper, and PC members were limited to submit one single-author
paper, or at most two co-authored papers, or at most three co-authored papers all with
students. Each non-PC submission was reviewed by at least three reviewers consisting of
either PC members or their external sub-reviewers, while each PC member submission
received at least four reviews. The strong conflict of interest rules imposed by IACR
ensure that papers are not handled by PC members with a close working relationship
with the authors. There were approximately 420 external reviewers, whose input was
critical to the selection of papers. Submissions were anonymous and their length was
limited to 30 pages excluding the bibliography and supplementary materials.

The review process was conducted using double-blind peer review. The conference
operated a two-round review system with a rebuttal phase. After the reviews and first
round discussions the PC selected 244 submissions to proceed to the second round and
the authors were then invited to participate in an interactive rebuttal phase with the
reviewers to clarify questions and concerns. The remaining 131 papers were rejected,
including one desk reject. The second round involved extensive discussions by the PC
members. After several weeks of additional discussions, the committee selected the final
106 papers to appear in these proceedings.
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The eight volumes of the conference proceedings contain the revised versions of the
106 papers that were selected. The final revised versions of papers were not reviewed
again and the authors are responsible for their contents.

The PC nominated and voted for two papers to receive the Best Paper Awards,
and one paper to receive the Best Early Career Paper Award. The Best Paper Awards
went to Thomas Espitau, Alexandre Wallet and Yang Yu for their paper “On Gaussian
Sampling, Smoothing Parameter and Application to Signatures”, and to Kaijie Jiang,
Anyu Wang, Hengyi Luo, Guoxiao Liu, Yang Yu, and Xiaoyun Wang for their paper
“Exploiting the Symmetry of Zn: Randomization and the Automorphism Problem”. The
Best Early Career Paper Award went to Maxime Plancon for the paper “Exploiting
Algebraic Structure in Probing Security”. The authors of those three papers were invited
to submit extended versions of their papers to the Journal of Cryptology. In addition,
the program of Asiacrypt 2023 also included two invited plenary talks, also nominated
and voted by the PC: one talk was given by Mehdi Tibouchi and the other by Xiaoyun
Wang. The conference also featured a rump session chaired by Kang Yang and Yu Yu
which contained short presentations on the latest research results of the field.

Numerous people contributed to the success of Asiacrypt 2023. We would like to
thank all the authors, including those whose submissions were not accepted, for submit-
ting their research results to the conference. We are very grateful to the area chairs, PC
members and external reviewers for contributing their knowledge and expertise, and for
the tremendous amount of work that was done with reading papers and contributing to
the discussions. We are greatly indebted to Jian Weng and Fangguo Zhang, the General
Chairs, for their efforts in organizing the event and to KevinMcCurley and KayMcKelly
for their help with the website and review system. We thank the Asiacrypt 2023 advi-
sory committee members Bart Preneel, Huaxiong Wang, Kai-Min Chung, Yu Sasaki,
Dongdai Lin, Shweta Agrawal and Michel Abdalla for their valuable suggestions. We
are also grateful for the helpful advice and organization material provided to us by the
Eurocrypt 2023 PC co-chairs Carmit Hazay and Martijn Stam and Crypto 2023 PC co-
chairs Helena Handschuh and Anna Lysyanskaya. We also thank the team at Springer
for handling the publication of these conference proceedings.

December 2023 Jian Guo
Ron Steinfeld
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ANTRAG: Annular NTRU Trapdoor
Generation

Making MITAKA as Secure as FALCON

Thomas Espitau1 , Thi Thu Quyen Nguyen2 , Chao Sun3(B) ,
Mehdi Tibouchi4 , and Alexandre Wallet5

1 PQShield SAS, Paris, France
2 IDEMIA & Normandie Univ., UNICAEN, ENSICAEN, CNRS, GREYC,

Paris, France
thi-thu-quyen.nguyen@inria.fr
3 Osaka University, Suita, Japan

c-sun@ist.osaka-u.ac.jp
4 NTT Social Informatics Laboratories, Yokosuka, Japan

mehdi.tibouchi@ntt.com
5 IRISA, Univ. Rennes 1, Inria, Bretagne-Atlantique Center, Rennes, France

alexandre.wallet@inria.fr

Abstract. In this paper, we introduce a novel trapdoor generation tech-
nique for Prest’s hybrid sampler over NTRU lattices. Prest’s sampler is
used in particular in the recently proposed Mitaka signature scheme
(Eurocrypt 2022), a variant of the Falcon signature scheme, one of
the candidates selected by NIST for standardization. Mitaka was intro-
duced to address Falcon’s main drawback, namely the fact that the
lattice Gaussian sampler used in its signature generation is highly com-
plex, difficult to implement correctly, to parallelize or protect against
side-channels, and to instantiate over rings of dimension not a power
of two to reach intermediate security levels. Prest’s sampler is consider-
ably simpler and solves these various issues, but when applying the same
trapdoor generation approach as Falcon, the resulting signatures have
far lower security in equal dimension. The Mitaka paper showed how
certain randomness-recycling techniques could be used to mitigate this
security loss, but the resulting scheme is still substantially less secure
than Falcon (by around 20 to 50 bits of CoreSVP security depending
on the parameters), and has much slower key generation.

Our new trapdoor generation techniques solves all of those issues sat-
isfactorily: it gives rise to a much simpler and faster key generation algo-
rithm than Mitaka’s (achieving similar speeds to Falcon), and is able to
comfortably generate trapdoors reaching the same NIST security levels
as Falcon as well. It can also be easily adapted to rings of intermediate
dimensions, in order to support the same versatility as Mitaka in terms
of parameter selection. All in all, this new technique combines all the
advantages of both Falcon and Mitaka (and more) with none of the
drawbacks.

c© International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14444, pp. 3–36, 2023.
https://doi.org/10.1007/978-981-99-8739-9_1
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http://orcid.org/0000-0002-7655-9594
http://orcid.org/0009-0001-3364-3593
http://orcid.org/0000-0002-1461-1473
http://orcid.org/0000-0002-2736-2963
http://orcid.org/0000-0003-0492-2435
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Keywords: Post-quantum cryptography · Hash-and-sign lattice-based
signatures · NTRU trapdoors · Discrete Gaussian sampling

1 Introduction

1.1 Hash-and-Sign Lattice-Based Signatures

From GGH to Falcon. Falcon [34] is one of the three signature schemes
already selected for standardization in the NIST post-quantum competition.
It represents the state of the art in hash-and-sign lattice-based signatures,
one of the two main paradigms for constructing lattice-based signatures along-
side Lyubashevsky’s Fiat–Shamir with aborts [24,25] (which is also represented
among the final selected candidates of the NIST competition in the form of
Dilithium [26]).

This makes Falcon the culmination of a long line of research in constructing
signature schemes from lattice trapdoors. The basic idea, which dates back to the
late 1990s with the GGH [22] and NTRUSign [23] signature schemes, is to use
as the signing key a “good” basis (the trapdoor) of a certain lattice allowing
to approximate the closest vector problem within a good factor, and as the
verification key a “bad” basis which allows to test membership but not decode
large errors. The signature algorithm then hashes a given message to a vector
in the ambient space of the lattice, and uses the trapdoor to find a relatively
close lattice point to that vector. The difference is the signature, which is verified
by checking that it is small and that its difference with the hashed vector does
indeed belong to the lattice.

The GGH scheme, as well as several successive variants of NTRUSign, were
eventually broken by statistical attacks [10,21,29]: it turned out that signatures
would leak partial information about the secret trapdoor, that could then be
progressively recovered by an attacker. This problem was finally solved in 2008,
when Gentry, Peikert and Vaikuntanathan (GPV) [20] showed how to use Gaus-
sian sampling in the lattice in order to guarantee that signatures would reveal
no information about the trapdoor.

GPV Signatures over NTRU Lattices. In order to instantiate the GPV frame-
work efficiently in practice, one then needs lattices with compact representation
and efficiently computable trapdoors, which has so far been achieved using mod-
ule lattices over rings—in fact, mostly rank-2 modules over cyclotomic rings,
exactly corresponding to NTRU lattices (although higher rank modules, namely
ModNTRU lattices, have been shown to be usable as well in certain ranges of
parameters [7]). This was first carried out by Ducas, Lyubashevsky and Prest
(DLP) [9], who analyzed trapdoor generation for power-of-two cyclotomic ring
NTRU lattices and constructed corresponding GPV-style signatures. DLP sig-
natures are compact, but the signing algorithm is rather slow: quadratic in the
dimension 2d of the lattice. This is because the lattice Gaussian sampling algo-
rithm that forms the core of its signing procedure (namely Klein–GPV sampling,
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in essence a randomized version of Babai’s nearest plane algorithm for approx-
imate CVP) cannot directly take advantage of the algebraic structure of the
lattice, and thus operates on the full (2d) × (2d) matrix of the lattice basis as
well as its Gram–Schmidt orthogonalization.

Falcon is a direct descendant of the DLP scheme, that replaces the generic,
quadratic complexity Klein–GPV sampler in signature generation by an efficient,
quasilinear complexity lattice Gaussian sampler that does take advantage of the
ring structure. Specifically, that new algorithm is constructed by randomizing
the Fast Fourier Orthogonalization (FFO) algorithm of Ducas and Prest [12],
and operates in a tree-like fashion traversing the subfields of the power-of-two
cyclotomic field over which the NTRU lattice is defined. This makes Falcon
particularly attractive in various ways: it offers particularly compact signatures
and keys (providing the best bandwidth requirements of all signature schemes
in the NIST competition), achieves high security levels in relatively small lattice
dimensions, and has both fast signing and very efficient verification speeds.

However, the FFO-based Gaussian sampler is also the source of Falcon’s
main drawbacks: it is a really contrived algorithm that is difficult to implement
correctly, parallelize or protect against side-channels. It is also really difficult
to adapt to other rings than power-of-two cyclotomics, which drastically limits
Falcon’s versatility in terms of parameter selection: in fact, recent versions of
Falcon in the NIST competition only target either the lowest NIST security
level (using cyclotomic fields of dimension 512) or the highest (using fields of
dimension 1024) and nothing in-between.1

1.2 The Hybrid Sampler and MITAKA

The Peikert and Hybrid Samplers. After the publication of the DLP paper,
Ducas and Prest explored and analyzed other approaches for lattice Gaussian
sampling over NTRU lattices, as discussed in depth in Prest’s Ph.D. thesis [32],
with a view towards overcoming the quadratic complexity of the naive Klein–
GPV sampler. While the introduction of the FFO sampler was the final step
of that exploration, they also considered two other major approaches along the
way, which also achieve quasilinear complexity (see also [11]).

The first approach was not actually novel: it was the ring version of Peikert’s
lattice Gaussian sampler [30], which is the randomization of the Babai rounding
algorithm for approximate CVP, just like Klein–GPV is the randomization of
Babai’s nearest plane. For NTRU lattices, this algorithm consists of independent
one-dimensional Gaussian samplings for each vector component (hence a linear
number in total), as well as 2 × 2 matrix-vector products over the ring, amount-
ing to a constant number of ring multiplications, that are all quasilinear when
using FFT-based fast arithmetic. Thus, Peikert’s sampler for NTRU lattices is
quasilinear as required. However, Ducas and Prest analyzed the quality of NTRU

1 The earliest version of the Falcon specification [33] also included an intermediate
parameter set of dimension 768, but the corresponding algorithms were so compli-
cated that it was eventually dropped.
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trapdoors (generated in the same way as DLP) with respect to Peikert’s sam-
pler, and found that it was much worse than for Klein–GPV, both concretely
and asymptotically. In other words, for the same choice of parameters, it would
reduce security considerably to instantiate DLP with Peikert’s sampler instead
of Klein–GPV (and to recover the same security, a large increase in the dimen-
sion of the underlying ring, and hence the size of keys and signatures, would be
required).

As a kind of middle ground between Peikert (fast but less secure) and Klein–
GPV (secure but much slower), they introduced as a second approach the hybrid
sampler, which uses the same structure as Klein–GPV (a randomized nearest
plane algorithm) but over the larger ring instead of over Z. In the rank-2 case
of NTRU, this reduces to just two “nearest plane” iterations consisting of Gaus-
sian sampling over the ring, which is itself carried out using Peikert’s sampler
with respect to a short basis of the ring. This algorithm remains quasilinear,
but achieves a significantly better quality than Peikert for DLP-style NTRU
trapdoors, although not as good as Klein–GPV. Concretely, for those NTRU
trapdoors over the cyclotomic ring of dimension 512 (resp. 1024), signatures
instantiated with the hybrid sampler achieve a little over 80 bits (resp. 200 bits)
of classical CoreSVP security, compared to over 120 bits (resp. 280 bits) for
Klein–GPV.

Pros and Cons of Hybrid vs. FFO. This substantial security loss is presumably
the main reason that led to the hybrid sampler being abandoned in favor of the
FFO sampler (which achieves the same quality as Klein–GPV but with quasi-
linear complexity) in the Falcon scheme. Indeed, security aside, the hybrid
sampler has a number of advantages compared to the FFO sampler of Falcon:
it is considerably simpler to implement, somewhat more efficient in equal dimen-
sion, easily parallelizable and less difficult to protect against side-channels; it also
has an online-offline structure that can be convenient for certain applications,
and it is easier to instantiate over non power-of-two cyclotomics, making it easier
to reach intermediate security levels.

For these reasons, the use of the hybrid sampler to instantiate signatures
over NTRU lattices was recently revisited by Espitau et al. as part of their
proposed scheme Mitaka [15]. One of the key contributions of that paper is
an optimization of trapdoor generation for the hybrid sampler that mitigates
the security loss by making it possible to construct better quality trapdoor in
reasonable time. Combined with the various advantages of the hybrid sampler,
this allows the authors of Mitaka to achieve a trade-off between simplicity
and security that they argue can be more attractive than Falcon. However,
despite their efforts, Mitaka remains substantially less secure than Falcon in
equal dimension (it loses over 20 bits of classical CoreSVP security over rings of
dimension 512, and over 50 bits over rings of dimension 1024), with a much slower
and more contrived key generation algorithm as well. In particular, Mitaka falls
short of NIST security level I in dimension 512 and of level V in dimension 1024,
making it less than ideal from the standpoint of parameter selection.
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1.3 Contributions and Technical Overview of This Paper

In this paper, we introduce a novel trapdoor generation technique for Prest’s
hybrid sampler that solves the issues faced by Mitaka in a natural and elegant
fashion. Our technique gives rise to a much simpler and faster key generation
algorithm than Mitaka’s (achieving similar speeds to Falcon), and it is able
to comfortably generate trapdoors reaching the same NIST security levels as
Falcon. It can also be easily adapted to rings of intermediate dimensions, in
order to support the same versatility as Mitaka in terms of parameter selection
(just with better security). All in all, this new technique achieves in some sense
the best of both worlds between Falcon and Mitaka.

NTRU Trapdoors and Their Quality. In order to give a overview of the technical
ideas involved, we need to recall a few facts about NTRU trapdoors and their
quality with respect to the Klein–GPV and hybrid samplers. For simplicity, we
concentrate on the special case of power-of-two cyclotomic rings R = Z[x]/(xd +
1). Over such a ring, an NTRU lattice is simply a full-rank submodule lattice of
R2 generated by the columns of a matrix of the form:

Bh =
[
1 0
h q

]

for some rational prime number q and some ring element h coprime to q. Note
that this can also be described as a lattice of pairs (u, v) ∈ R2 such that uh−v =
0 mod q.

A trapdoor for this lattice is a relatively short basis:

Bf,g =
[
f F
g G

]

where the basis vectors (f, g) and (F,G) are not much larger than the normalized
volume

√
detBh =

√
q of the lattice. Since those vectors belong to the lattice, we

have in particular that g/f = G/F = h mod q. Moreover, since the determinants
are equal up to a unit of R, we can impose without loss of generality that
fG − gF = q.

Using the trapdoor Bf,g, lattice Gaussian samplers are able to output lattice
vectors following a Gaussian distribution on the lattice of standard deviation2

a small multiple α
√

q of the normalized volume
√

q. The factor α is the quality,
and depends both on the trapdoor and on the sampler itself. The lower the qual-
ity, the better the trapdoor, and the higher the security level of the resulting
signature scheme. For the Klein–GPV sampler, one can show that the quality α
is (1/

√
q times) the maximum norm of a vector in the Gram–Schmidt orthogo-

nalization of the basis Bf,g regarded as a (2d)× (2d) matrix over Z, whereas for
the hybrid sampler, it is similar but with the Gram–Schmidt orthogonalization
over R itself.
2 The actual standard deviation also includes an additional factor (the smoothing

parameter of the ring) which we omit in this overview for simplicity’s sake.
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Those quantities admit a simple expression in terms of the embeddings of the
ring elements f and g. Recall that the embeddings are the d ring homomorphisms
ϕi : R → C; when elements of R are seen as polynomials, these embeddings are
simply the evaluation morphisms ϕi(u) = u(ζi) where the ζi’s are the d primitive
2d-th roots of unity in C. Then, quality of the basis Bf,g with respect to the
Klein–GPV sampler admits the following simple expression:

(αGPV)2 = max
(1

d

d∑
i=1

|ϕi(f)|2 + |ϕi(g)|2
q

,
1
d

d∑
i=1

q

|ϕi(f)|2 + |ϕi(g)|2
)
.

Similarly, the quality with respect to the hybrid sampler satisfies:

(αhybrid)2 = max
1�i�d

(
max

( |ϕi(f)|2 + |ϕi(g)|2
q

,
q

|ϕi(f)|2 + |ϕi(g)|2
))

.

Note that |ϕi(f)|2+ |ϕi(g)|2 = ϕi(ff∗+gg∗) where the star denotes the complex
conjugation automorphism of R (defined by x∗ = 1/x = −xd−1). Thus, put
differently, one can say that a trapdoor Bf,g achieves quality α or better for the
Klein–GPV sampler if and only if the embeddings of (ff∗ + gg∗)/q and of its
inverse are at most α on average, whereas quality α or better is obtained for
the hybrid sampler if all of the embeddings of these values are at most α. This
shows in particular that the quality of a given trapdoor is always at least as
good for Klein–GPV as it is for the hybrid sampler, which explains why it may
be easier in practice to construct good quality trapdoors for the former than for
the latter.

Trapdoor Generation in Falcon and Mitaka. Now, the way trapdoors are
generated in Falcon is by sampling f and g according to a discrete Gaussian in
R (which can easily be done by sampling the coefficients as discrete Gaussians
over Z) so that their expected length is a bit over

√
q, and verifying using the

condition above that the quality with respect to the Klein–GPV (or equivalently
Falcon’s) sampler is αFalcon = 1.17 or better, and restarting otherwise (the
value 1.17 here is chosen roughly as small as possible while keeping the number
of repetitions relatively small).

The approach to generate trapdoors in Mitaka is similar using the quality
formula for the hybrid sampler, and a target quality of αMitaka = 2.04 in dimen-
sion 512 (and slightly increasing as the dimension becomes larger). Doing so
directly would take too many repetitions, however; therefore, the candidates for
f and g are actually obtained by linear combinations of smaller Gaussian vec-
tors and by applying Galois automorphisms to generate many candidate vectors
(f, g) from a limited number of discrete Gaussian samples. Using that approach,
Mitaka achieves the stated quality with a comparable number of discrete Gaus-
sian samples as Falcon; its key generation algorithm is much slower, however,
as it has to carry out an exhaustive search on a much larger set of possible
candidates.
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Our Antrag Strategy: Annular NTRU Trapdoor Generation. In both Falcon
and Mitaka, however, the overall strategy is to generate random-looking can-
didates (f, g) of plausible length, and repeat until the target quality is reached.
In this paper, we suggest a completely different strategy that is in some sense
much simpler and more natural: just pick the pair (f, g) uniformly at random in
the set of vectors that satisfy the desired quality level. We propose and analyze
this approach specifically for the hybrid sampler.3

Concretely, yet another way of reformulating the quality condition for the
hybrid sampler is to say that the quality is α or better if and only if for all the
embeddings ϕi, one has:

q/α2 � |ϕi(f)|2 + |ϕi(g)|2 � α2q.

In other words, for each embedding, the pair
(|ϕi(f)|, |ϕi(g)|) lies in the annulus

A
(√

q/α, α
√

q
)

bounded by the circles of radii
√

q/α and α
√

q—or more precisely,
in the arc A+

α = A+
(√

q/α, α
√

q
)

of that annulus located in the upper-right
quadrant of the plane since those absolute values are non-negative numbers.
Our approach is then to sample f and g by their embeddings (i.e., directly in
the Fourier domain), and select those embeddings uniformly and independently
at random in the desired space. Namely, we sample d/2 pairs (xi, yi) in the arc
of annulus A+

α , and set the i-th embedding of f (resp. g) to a uniformly random
complex number of absolute value xi (resp. of absolute value yi).

An obvious issue is that the elements f and g constructed in this way will
generally not lie in the ring itself: after mapping back to the coefficient domain
by Fourier inversion, their coefficients are a priori arbitrary real numbers instead
of integers. But this is easy to address: we simply round coefficient-wise to obtain
an actual ring element.

A second issue is that this rounding step will not necessarily preserve the
quality property we started from: the embeddings of the rounded values do
not necessarily remain in the correct domain. In fact, the probability that all
embeddings remain in the correct domain after rounding is very low. But there is
again a simple workaround: we just carry out our original continuous sampling in
the Fourier domain from a slightly smaller annulus than the target one. Instead
of picking the pairs (xi, yi) in A+

α as above, we sample them uniformly in some
A+(r,R) with r slightly larger than

√
q/α and R slightly smaller than α

√
q.

This considerably increases the probability that, after rounding, all of the pairs(|ϕi(f)|, |ϕi(g)|) will in fact end up in A+
α .

And voilá: the description above is essentially a complete trapdoor genera-
tion algorithm for the hybrid sampler, that easily reaches the same NIST security

3 One could consider doing so for Klein–GPV as well, but this appears less relevant
for two reasons. First, since 1.17 is already quite close to the theoretical optimal
quality of 1, and since the number of repetitions in Falcon’s key generation is fairly
modest, there is not much to gain in the Klein–GPV setting. Second, the space of
key candidates has a less elegant geometric description, making it more difficult to
sample uniformly in it. Extending the approach to ModFalcon [7], however, could
be an interesting, albeit challenging, avenue for future research.
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Table 1. Comparison with Falcon and Mitaka for the same dimensions 512 and
1024 and the same modulus q = 12289 (excerpt from Table 4).

Falcon [34] Mitaka [15] This paper

d 512 1024 512 1024 512 1024

Quality α 1.17 1.17 2.04 2.33 1.15 1.23

Classical sec. 123 284 102 233 124 264

Key size (bytes) 896 1792 896 1792 896 1792

Sig. size (bytes) 666 1280 713 1405 646 1260

levels as Falcon. Concretely, we target α = 1.15 in dimension 512 (even better
than Falcon’s 1.17) and α = 1.23 in dimension 1024 (which comfortably exceeds
the 256 bits of classical CoreSVP security corresponding to NIST level V), and
with those numbers, we achieve key generation speeds close to Falcon’s, while
benefiting of all the advantages of Mitaka in terms of simplicity of implementa-
tion, efficiency, parallelizability and so on as far as signing in concerned.

Our Contributions. The main contribution of this paper is to introduce, ana-
lyze and implement the Antrag trapdoor generation algorithm for the hybrid
sampler described above.

The analysis includes a heuristic estimate of the success probability of sam-
pling in the required domain, as well as a discussion of possible attacks on the
resulting keys (and even though our security analysis is in a very optimistic
model for the attacker, we find no weakness as long as the original sampling
domain A+(r,R) is not chosen to be extremely narrow), and concrete parame-
ters to instantiate a signature scheme.

We also provide a full portable C implementation of the corresponding sig-
nature scheme [36] based on those of Falcon and Mitaka. In fact, since the
C implementation of Mitaka did not include the key generation algorithm,
our implementation is the first complete implementation of the corresponding
paradigm. This implementation lets us compare the performance of our key gen-
eration with Falcon’s, and we find that they are quite close.

Although most of the previous discussion was in the context of power-of-two
cyclotomics, our approach also extends with little change to other base rings
such as the cyclotomic rings with 3-smooth conductors considered in Mitaka
(and we actually provide an analysis in a more general setting still). In particu-
lar, it is still possible to map candidate continuous random values generated in
the Fourier domain to the ring by coefficient-wise rounding (we could consider
other decoding techniques, but this one is sufficient for our purposes; it was in
fact already used in the original ternary version of Falcon: see [33, Algorithm
10]). This only changes the distribution of the “rounding error” and hence the
success probability slightly, but the analysis carries over easily. It follows that
our approach supports the same versatility as Mitaka in terms of parameter
selection (Table 1).
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2 Preliminaries

For two real numbers 0 � r � R, we denote by A(r,R) the annulus limited by
radii r and R, i.e. the following subset of the plane R

2: A(r,R) :=
{
(x, y) ∈

R
2 | r2 � x2 + y2 � R2

}
. We also denote by A+(r,R) the arc of annulus in the

upper-right quadrant of the plane, i.e., A+(r,R) :=
{
(x, y) ∈ A(r,R) | x, y � 0

}
.

When f is a real-valued function over a countable set S, we write f(S) =∑
s∈S f(s) assuming that this sum is absolutely convergent. We note �·� the

rounding of a real number to its closest integer. We extend this notation for
the coefficient-wise rounding of polynomials. If x = (x1, . . . , xk) is a random
variable, we let E[x] the expected vector and Cov(x) its covariance matrix. The
variance of a scalar random variable x is denoted by Var[x].

Write At for the transpose of any matrix A. A lattice L is a discrete additive
subgroup in a Euclidean space. When the space is R

m, and if it is generated by
(the columns of) B ∈ R

m×d, we also write L (B) = {Bx|x ∈ Z
d}. If B has full

column rank, then we call B a basis and d the rank of L . When the ambient
space is equipped with a norm || · ||, the volume of L is vol(L ) = det(BtB)1/2 =
|det(B)| for any basis B.

2.1 Cyclotomic Fields

Let m be a positive integer, and d = φ(m) be the degree of the m-th cyclotomic
polynomial Φm (φ is the Euler totient function). Let ζ to be a m-th primitive root
of 1. Then for a fixed m, K := Q(ζ) is the cyclotomic field associated with Φm,
and its ring of algebraic integers is R := Z[ζ]. The field automorphism induced by
ζ �→ ζ−1 = ζ̄ corresponds to the complex conjugation, and we write f∗ the image
of f ∈ K under this automorphism. We have K � Q[x]/(Φm(x)) and R �
Z[x]/(Φm(x)), and both are contained in KR := K ⊗ R = R[x]/(Φm(x)). Each
f =

∑d−1
i=0 fiζ

i ∈ KR can be identified with its coefficient vector (f0, · · · , fd−1) ∈
R

d. The complex conjugation operation extends naturally to KR, and K +
R

is the
subspace of elements satisfying f∗ = f .

The cyclotomic field K comes with d complex field embeddings ϕi : K → C

that maps f seen as a polynomial to its evaluations at ζk where gcd(k,m) = 1.
This defines the so-called canonical embedding ϕ(f) := (ϕ1(f), . . . , ϕd(f)). It
extends straightforwardly to KR and identifies it to the space H = {v ∈ C

d : vi =
vd/2+i, 1 � i � d/2}. Note that ϕ(fg) = (ϕi(f)ϕi(g))0<i�d. When needed, this
embedding extends entry-wise to vectors or matrices over KR. We let K ++

R
be

the subset of K +
R

which have all positive coordinates in the canonical embedding.
We have a partial ordering over K +

R
by f 
 g if and only if f − g ∈ K ++

R
. The

algebra KR is also equipped with a norm NK (x) =
∏

i ϕ(x), which extends the
standard field norm.

The next technical lemma is useful in our analyses, and is obtained by ele-
mentary trigonometric identities.

Lemma 1. Let ζ = exp(iθ) with θ = 2kπ
m and gcd(k,m) = 1 be a m-th

primitive root of the unity, and d = φ(m). Let S(θ) =
∑d−1

j=0 ζ2j. We have
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S(θ) = sin(θd)
sin θ eiθ(d−1) and

Re S(θ) =
1
2

+
sin((2d − 1)θ)

2 sin θ
and Im S(θ) =

sin(dθ) sin((d − 1)θ)
sin θ

.

Remark 1. If m is a power of 2 then 2d = m so we always have S(θ) = 0.

2.2 NTRU Lattices

This work deals with free R-modules of rank 2 in K 2, or in other words, groups
of the form M = Rx + Ry where x = (x1, x2),y = (y1, y2) span K 2. Given
f, g ∈ R such that f is invertible modulo some prime q ∈ Z, we let h = f−1g
mod q. The NTRU module determined by h is LNTRU = {(u, v) ∈ R2 : uh−v =
0 mod q}. Two bases of this free module are of particular interest:

Bh =
[
1 0
h q

]
and Bf,g =

[
f F
g G

]
,

where F,G ∈ R are such that fG−gF = q and (F,G) should be relatively small.
This module is usually seen as a lattice of volume qd in R

2d in the coefficient
embedding.

We equip the ambient space K 2
R

with the inner product 〈x,y〉K = x∗
1y1 +

x∗
2y2. The well-known Gram-Schmidt orthogonalization procedure for a pair of

linearly independent vectors b1,b2 ∈ K 2 is defined as

b̃1 := b1, b̃2 := b2 − 〈b1,b2〉K
〈b1,b1〉K · b̃1.

One readily checks that 〈b̃1, b̃2〉 = 0. The Gram-Schmidt matrix with columns
b̃1, b̃2 is denoted by B̃ and we have det B̃ = detB. We also let |B|K =
max(||ϕ(〈b̃1, b̃1〉)||∞, ||ϕ(〈b̃2, b̃2〉)||∞)1/2.

Lemma 2. Let Bf,g be a basis of an NTRU module and b1 = (f, g). We have√
q � |Bf,g|K and

|Bf,g|2K = max
(

||ϕ(〈b1,b1〉K )||∞,

∥∥∥∥ q2

ϕ(〈b1,b1〉K )

∥∥∥∥
∞

)
.

2.3 Gaussian and Chi-Squared Distributions

For μ ∈ R and σ > 0 we let N (μ, σ2) be the normal distribution of mean μ and
standard deviation σ, that is, the continuous distribution over R with density
proportional to exp

( − (x − μ)2/(2σ2)
)
. In higher dimensions, for Σ a positive

definite matrix and a vector μ ∈ R
k, we let N (μ,Σ) be the normal distribution

of density proportional to exp
( − 1

2 (x − μ)tΣ−1(x − μ)
)
.

Let T ∼ N (μ, σ2Ik) be a k-dimensional spherical normal random vector. The
random variable ‖T‖2 follows a non central chi-squared distribution of degree k,
non-centrality c := ‖μ‖2 and scaling σ2, denoted by χ2(k, σ2; c). Its expectation,
variance and cumulative distribution function are described by the following
classical result.
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Lemma 3. Let U be a random variable distributed as χ2(k, σ2; c). We have
E[U ] = σ2k + c and Var[U ] = 2σ2(σ2k + 2c). For 0 � a < b, we have P[a �
U � b] = Qk/2(

√
c/σ,

√
a/σ) − Qk/2(

√
c/σ,

√
b/σ), where Qk/2 is the Marcum

Q-function of order k/2.

Moreover, the Marcum Q-function Qm of integer order m satisfies the following
inequalities.

Lemma 4 ([3,35]). For integer m and u, v � 0, the following inequalities hold:

Qm(u, v) � 1 − 1
2
e−(u−v)2/2 ifu � v;

Qm(u, v) � e−(v−u)2/2 ·
(

1 +
(v/u)m−1 − 1
π · (1 − u/v)

)
ifu � v.

We also note that the independent sum of a χ2(k, σ2; c) variable and a
χ2(k′, σ2; c′) variable, for the same scaling σ2, follows a χ2(k + k′, σ2; c + c′)
distribution.

In the general case where T ∼ N (μ,Σ), let λi > 0 be the eigenvalues of
the positive definite symmetric matrix Σ. If P is an orthogonal matrix that
diagonalizes Σ, let ν = (ν1, . . . , νk) := Pμ. Then ‖T‖2 ∼ χ2(1, λ1; ν2

1) + · · · +
χ2(1, λk; ν2

k). This distribution is called the weighted sum of k independent non
central chi-squared variables. There is no known closed form for its cumulative
distribution function, but there exist tools to evaluate it numerically (e.g., the
Python package chi2comb).

3 New Trapdoor Algorithms for Hybrid Sampling

3.1 Hash-then-Sign Over Lattices in a Nutshell

The rationale behind this design is that a signature corresponds to a short Gaus-
sian vector in a lattice LNTRU centered at the hash of a (salted) message. On the
one hand, these vectors can only be generated efficiently with the knowledge of
a trapdoor Bf,g, that is, a basis with good quality for a given sampling method.
On the other hand, verifying amounts to checking lattice membership and that
the vector is indeed shorter than a threshold. For the sake of completeness, we
recap this design in the form of high-level, generic algorithms KeyGen, Sign,
Verify corresponding to the current efficient instantiations.

In Algorithm 1, the procedure Sample differs from Falcon to Mitaka. The
former relies on the FFO sampler (a Fast-Fourier-like version of the GPV sam-
pler [20], while the latter prefers the simpler hybrid sampler of Ducas-Prest [11].
Lattice membership is implicitly checked at the first step of Algorithm 2. We
finish the section with a high-level description of KeyGen in Algorithm 3. Its
purpose is to generate a pair (h,Bf,g) where Bf,g should have a good quality
with respect to the selected instantiation of Sample. For simplicity, we omit in
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Algorithm 1: Signing

Input: A message m, a trapdoor Bf,g, a standard deviation parameter σ
Result: the first component s0 of s = (s0, s1) ∈ R2 such that c − s has a

distribution close to DL NTRU,c,σ.
1 r ←$ {0, 1}320

2 c ← (0,H(m||r))
3 v ← Sample(Bf,g, c, σ)
4 (s0, s1) ← c − v
5 return s0

Algorithm 2: Verification

Input: A message m, a salt r, s0 ∈ R, a public key h and a threshold β
Result: Accept or reject

1 s1 ← H(m||r) + s0h mod q
2 if ‖(s0, s1)‖ > β then
3 Reject.
4 end if
5 Accept.

its description the additional secret data related to the sampler. The procedure
GoodPair, our focus in this work, outputs (f, g) ∈ R2 with the guarantee that
the basis Bf,g output by NTRUSolve will have quality α or better for the choice
of Sample.

3.2 NTRU Trapdoors in FALCON and MITAKA

With respect to Prest’s hybrid sampler, an NTRU trapdoor Bf,g has a quality
α defined as

α = |Bf,g|K /
√

q, (1)

where we recall that |Bf,g|2K = max
(
‖ϕ(ff∗ + gg∗)‖∞,

∥∥ q2

ϕ(ff∗+gg∗)
∥∥

∞
)
. The

quality with respect to the Klein–GPV sampler admits a similar expression.
In hash-and-sign signatures, security against forgery attacks is driven by the

standard deviation of the sampler, which is essentially α
√

q. As the smaller the
value of α, the harder forgery becomes, the goal of KeyGen in schemes such as
DLP [9], Falcon [34] and Mitaka [15] is to construct in reasonable time bases
Bf,g with α as small as possible (and in particular, smaller than a given threshold
related to the acceptance radius of signature verification). In other words, the
goal is to instantiate efficiently the procedure GoodPair.

An important observation regarding NTRU trapdoors is that the knowledge
of the first basis vector (f, g) alone is sufficient to determine the quality of the
whole basis (see for example Lemma 2 for Mitaka). As a result, to test if a
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Algorithm 3: Generic NTRU Trapdoor generator

Input: A degree d, a modulus q, a target quality α
Result: a public key h ∈ R and the trapdoor Bf,g

1 (f, g) ← GoodPair(d, q, α)
2 Bf,g ← NTRUSolve(f, g, q)
3 h ← gf−1 mod q
4 return (h,Bf,g).

vector (f, g) can be completed into a trapdoor Bf,g reaching the desired quality
threshold, it is not necessary to compute the second vector (F,G), which is a
notoriously costly operation, even accounting for optimizations such as [31].

In DLP, Falcon and Mitaka, GoodPair is a trial-and-error routine, gen-
erating many potential candidate first vectors (f, g) and testing whether they
satisfy the required quality threshold. The candidates themselves are generated
as discrete Gaussian vectors in R2 with the correct expected length. In that
way, Falcon reaches quality α = 1.17 with respect to its FFO-based sampler
(that admits the same quality metric as Klein–GPV). Doing this directly for
the hybrid sampler, as discussed in [32], only achieves quality � 3 in dimension
512, and even larger in higher dimensions. As a result, the Mitaka paper has
to introduce randomness recycling and other techniques on top of this general
approach in order to increase the number of candidates and improve the achiev-
able quality; with those improvements, Mitaka reaches α = 2.04 in dimension
512 (which translates to 20 fewer bits of security compared to Falcon, and is
thus unfortunately not sufficient to reach NIST security level I).

3.3 ANTRAG: Annular NTRU Trapdoor Generation

The main contribution of this paper is a novel instantiation of GoodPair for the
hybrid sampler, resulting in a NTRU trapdoor generation algorithm achieving
much better quality than Mitaka, while reaching the same security NIST levels
as Falcon.

The intuition behind our new approach stems from the following observation.
For a fixed α � 1, requiring a trapdoor Bf,g to satisfy |Bf,g|K � α

√
q is

equivalent to enforcing that for all 1 � i � d, we have

q

α2
� |ϕi(f)|2 + |ϕi(g)|2 � α2q, (2)

(where we recall that the ϕi(f) are the embeddings of f in C, and similarly for
g). Equivalently, this means that for all i, the pair

(|ϕi(f)|, |ϕi(g)|) belongs to
the arc of annulus A+

α := A+
(√

q/α, α
√

q
)
.
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Algorithm 4: Candidate pairs from uniform annulus sampling

Input: 0 < r < R, the radii of A+(r, R)
Result: z, z′ ∈ C such that

(|z|, |z′|) is uniformly distributed in A+(r, R)
1 u ←↩ U (

[r2, R2]
)

2 ρ ← √
u

3 θ ←↩ U (
[0, π/2]

)

4 (x, y) ← (
ρ cos θ, ρ sin θ

)
/* (x, y) ←↩ U (

A+(r, R)
)
*/

5 ω, ω′ ←↩ U (
[0, 2π]

)

6 (z, z′) ← (
x · eiω, y · eiω′

)
7 return (z, z′)

Fig. 1. (|z|, |w|) is sampled
uniformly in the annulus
A+(r, R).

It is thus natural to try and sample f and
g from their embeddings (i.e., in the Fourier
domain), by picking the pairs

(
ϕi(f), ϕi(g)

)
as

uniform random pairs of complex numbers such
that satisfying the condition that the pair of their
magnitudes belongs to A+

α : in other words, pick
(xi, yi) uniformly at random in A+

α and then sam-
ple ϕi(f) and ϕi(g) as uniform complex numbers
of magnitudes xi and yi respectively. Note that
only d/2 pairs are needed, as the remaining ones
are determined by conjugation.

Moreover, sampling uniformly in an annulus (or, as in our case, an arc of
annulus) in polar coordinates (ρ, θ) is easy: it suffices to sample the angle θ and
the square ρ2 of the radial coordinate uniformly in their respective ranges. This
is because the area element in polar coordinates is ρ dρ dθ = 1

2d(ρ2) dθ. This
gives rise to Algorithm 4 for sampling the pairs of embeddings.

However, one soon realizes that the real polynomials f̃ , g̃ corresponding to
the embeddings generated by the Algorithm 4 (via the inverse Fourier trans-
form ϕ−1) do not always have integer coefficients, and hence do not generally
correspond to ring elements. In general, they are elements of the R-algebra KR.

In order to obtain actual ring elements, a natural solution is to round those
real polynomials f̃ , g̃ coefficient-wise. This yields f = �f̃� and g = �g̃� in R,
which are potential candidates for a trapdoor. It turns out, however, that if
one starts from f̃ , g̃ uniform with their embeddings of magnitude in A+

α , the
resulting rounded ring elements are very unlikely to also have their embeddings
of magnitude in that arc of annulus. Thus, they do not typically give rise to
a trapdoor of the desired quality. This is because rounding adds an additive
term (essentially uniformly distributed in [−1/2, 1/2)) to each coefficient, which
translates to an additive “error” on each embedding, making it unlikely that the
embeddings all remain in the desired domain.

A straightforward workaround is to compensate this decoding error by sam-
pling the embeddings of f̃ , g̃ from a narrower annulus A+(r,R) for some radii
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Algorithm 5: Antrag trapdoor generation

Input: The degree d, the modulus q, a target quality α, and starting radii
r, R such that

√
q/α < r < R < α

√
q.

Result: f, g ∈ R2 such that q
α2 � |ϕi(f)|2 + |ϕi(g)|2 � α2q for all i.

1 repeat
2 for 1 � i � d/2 do
3 using Algorithm 4, sample (zi, wi) ∈ C

2 uniformly such that(|zi|, |wi|
) ∈ A+(r, R).

4 end for

5 f̃ ← ϕ−1(z1, . . . , zd/2) ∈ KR

6 g̃ ← ϕ−1(w1, . . . , wd/2) ∈ KR

7 f ← �f̃�
8 g ← �g̃�
9 until

(|ϕi(f)|, |ϕi(g)|) ∈ A+
(√

q/α, α
√

q
)
for all i = 1, . . . , d/2

10 return (f, g)

r,R such that
√

q/α < r < R < α
√

q. This yields Algorithm 5, which is our
proposed Antrag trapdoor generation algorithm.

Remark 2. One could consider carrying out the decoding to the ring differently,
for example by sampling discrete Gaussians f and g in R centered at f̃ and
g̃ respectively. The resulting algorithm would be simpler to analyze in some
ways, and might be seen as better behaved in a certain sense, but it does have
a major drawback: it introduces a much larger decoding error (on the order of
the smoothing parameter ηε(Z) of Z on each coefficient, instead of the standard
deviation 1/

√
12 of the uniform distribution in [−1/2, 1/2), so about 4 times

larger). As a result, in this work, we focus on the rounding approach.

3.4 On the Distribution of Embeddings

We have mentioned above that taking the magnitudes of the embeddings of f̃
and g̃ in A+

α was very unlikely to result in f and g of the required quality α
after rounding, but that the probability increased greatly when choosing f̃ and
g̃ with embedding magnitudes in a narrower arc of annulus A+(r,R). We choose
the bounds r and R as complementary convex combinations of α

√
q and

√
q/α;

in other words, we set:

r =
1 − ξ

2
α
√

q +
1 + ξ

2
·
√

q

α
and R =

1 + ξ

2
α
√

q +
1 − ξ

2
·
√

q

α
(3)

for some constant ξ ∈ (0, 1), so that A+(r,R) corresponds to the middle ξ-
fraction of A+

α . We will later specifically choose ξ = 1/3 (i.e., A+(r,R) as the
“middle third” of A+

α ) to fix ideas, and because it yields the following expression
for r and R with minimal coefficient height:

r =
(1

3
α +

2
3

· 1
α

)√
q and R =

(2
3
α +

1
3

· 1
α

)√
q.
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In this section, we would like to provide a model allowing us to quantify the
claim that sampling f̃ and g̃ in this A+(r,R) increases success probability. To
that end, write e = (ef , eg) =

(
f − f̃ , g − g̃

) ∈ K 2
R

for the error term introduced
by rounding. We would like to control the distribution of the embeddings of ef

and eg in order to estimate the likelihood that the condition
(|ϕi(f)|, |ϕi(g)|)

will be satisfied for all i.
In the polynomial basis, we write ef =

∑d−1
j=0 e

(j)
f xj and similarly for eg.

Heuristically, we expect the coefficients e
(j)
f and e

(j)
g to behave essentially like

independent uniform random variables in [−1/2, 1/2).4 This is well-supported
by experiments (see the full version of this paper [17]).

Now consider a single embedding ϕθ, and recall that we are interested in an
a priori arbitrary cyclotomic base ring, so that ϕθ is defined by the evaluation
at some primitive m-th root of unity ζ = eiθ. We therefore have:

ϕθ(ef ) = xθ + iyθ with xθ =
d−1∑
j=0

e
(j)
f cos(jθ) and yθ =

d−1∑
j=0

e
(j)
f sin(jθ).

This expresses the real and imaginary parts xθ, yθ of ϕθ(ef ) as the sum of d
independent random variables, with d relatively large, so by the central limit
theorem, ϕθ(ef ) should essentially behave5 like a normal random variable in C,
essentially determined by its expectation and covariance.

Now since e
(j)
f has mean 0 and variance 1/12 for all j, we obtain that E[xθ] =

E[yθ] = 0. Therefore, the pair (xθ, yθ) has mean 0, and its covariance matrix is
easily expressed as follows:

Σθ =
d

24
I2 + E(θ) where E(θ) =

1
24

[
Re S(θ) Im S(θ)
Im S(θ) −Re S(θ)

]
.

Note that Σθ has eigenvalues λθ
+ = d+|S(θ)|

24 and λθ
− = d−|S(θ)|

24 . We thus expect
that ϕθ(ef ) follows the normal distribution N (0, Σθ), and the same argument
applies to ϕθ(eg) as well. Moreover, heuristically, those two normal distributions
should be independent (this is again well-verified in practice), therefore, we can
write

(ϕθ(ef ), ϕθ(eg)) ∼ N
(

0,

(
Σθ 0
0 Σθ

))
(4)

This leads us to model the distribution of the embeddings of secret keys as
follows.

Heuristic 1. Let (f, g) ∈ K 2 a pair output by Algorithm 5, corresponding to
(f̃ , g̃) ∈ K 2

R
obtained from the executions of Algorithm 4. For the embedding ϕθ

4 This is equivalent to saying that the distribution of f̃ and g̃ is uniform modulo R
in KR, which should indeed happen as soon as we have sufficient width (i.e., if we
exceed a regularity metric analogous to the smoothing parameters for Gaussians).

5 This can in fact be made rigorous with the Berry–Esseen theorem.
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corresponding to the primitive root of unity eiθ,
(
ϕθ(f), ϕθ(g)

)
is distributed as

(
ϕθ(f), ϕθ(g)

) ∼ N ( (
ϕθ(f̃), ϕθ(g̃)

)
, I2 ⊗ Σθ

)
.

Moreover, the pairs (ϕθ(f), ϕθ(g)) as ϕθ ranges through all the embeddings of
K are independently distributed.

Note that this heuristic considers the pair (ϕθ(f), ϕθ(g)), which is actually
supported on dense but countable subgroup of C

2, as following a continuous
distribution. This has the merit of allowing an analysis while being an accurate
representation of the situation according to our experiments.

Under this heuristic we can express the expected length of the embeddings
of secret keys and related elements, which will be useful in the security analysis.
The proof is provided in the full version of this paper [17].

Proposition 1 (Heuristic). Keeping the notation of Algorithm 5, let (f, g) be
a random variable following the distribution of its output. Let θ be an argument
of a primitive m-th root of unity, and let ϕθ be the corresponding embedding.
Then:

E
[|ϕθ(f)|2 + |ϕθ(g)|2] =

d

6
+

r2 + R2

2
.

Let ‖ · ‖θ be the norm induced by the quadratic form Σθ. Then we also have:

E
[|ϕθ(f)|4 + |ϕθ(g)|4] =

5
8
(R4 + r4) + R2r2 +

d

12
(R2 + r2) +

d2

36
+ T (θ),

where T (θ) := |S(θ)|2/72 + 4 · E[‖ϕθ(f̃)‖2θ + ‖ϕθ(g̃)‖2θ
]
.

4 Success Probability and Security Analysis

In this section, we first concentrate on the case of a power-of-two cyclotomic
base ring, in which, under Heuristic 1, all the embeddings of f and g are simply
modeled as independent and identically distributed isotropic normal variates,
which simplifies the analysis somewhat. In this context, we analyze the success
probability of Algorithm 5 as well as the security of the resulting scheme, which
lets us derive concrete parameters.

At the end of the section, we also briefly describe how the analysis extends
to the more general setting of cyclotomic rings with conductor m = 2kp�, with
further details provided in the full version of this paper [17].

4.1 Success Probability over Power-of-Two Cyclotomics

Suppose that K is a cyclotomic field of conductor a power of two, and let
(f̃ , g̃) ∈ K 2

R
and (f, g) ∈ R2 be generated as in Steps 5–6 and Steps 7–8 of

Algorithm 5 respectively.
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We first fix one embedding ϕθ : K → C of K , and try to determine the
probability with which the test of Step 10 of Algorithm 5 is satisfied with respect
to that particular embedding. In other words, we want to estimate the probability
that:

q/α2 � |ϕθ(f)|2 + |ϕθ(g)|2 � α2q. (5)

Now, according to Heuristic 1, the pair
(
ϕθ(f), ϕθ(g)

) ∈ C
2 follows a normal dis-

tribution centered at
(
ϕθ(f̃), ϕθ(g̃)

)
of scalar covariance d

24I4 (since over power-
of-two cyclotomic fields, E(θ) = 0 for all θ). Therefore, for fixed (f̃ , g̃) and
following the definitions of Sect. 2.3, the squared norm:∥∥(

ϕθ(f), ϕθ(g)
)‖2 = |ϕθ(f)|2 + |ϕθ(g)|2

follows a non central chi-squared distribution χ2(4, σ2; c) of degree 4, non-
centrality c = |ϕθ(f̃)|2 + |ϕθ(g̃)|2 and scaling σ2 = d/24. In particular, the
probability that condition (5) does not depend on the exact position of the pair(
ϕθ(f̃), ϕθ(g̃)

)
, but only on its squared norm c, or equivalently on:

β :=
1√
q

∥∥(
ϕθ(f̃), ϕθ(g̃)

)‖.

We denote the probability that condition (5) is satisfied for a certain value β
by psucc(β). According to Lemma 3, the probability psucc(β) can be expressed in
terms of the Marcum Q-function Q2 as follows:

psucc(β) = Q2(τβ, τ/α) − Q2(τβ, τα) where τ =

√
24q

d
.

Based on this result, we will first provide a simple but loose lower bound of the
success probability of Algorithm 5, and then derive a more complicated but tight
estimate that we can use for numerical estimates and parameter selection.

Bounding the Success Probability Below. According to Lemma 4, the following
bounds on the Marcum Q function hold for any 1/α � β � α:

Q2(τβ, τ/α) � 1 − 1
2

exp
( − τ2

2
(β − 1/α)2

)

Q2(τβ, τα) �
(
1 +

α/β

π

)
exp

( − τ2

2
(α − β)2

)

from which it follows that:

psucc(β) � 1−1
2
uτ (β−1/α)−(

1+
α/β

π

)
uτ (α−β) where uτ (x) = exp

(−τ2

2
x2

)
.

(6)
We write β = (α + 1/α)/2 + t(α − 1/α)/2 for some t ∈ (−1, 1). Recall

furthermore from Eq. (3) that we have set:

r√
q

= (α + 1/α)/2 − ξ(α − 1/α)/2 and
R√
q

= (α + 1/α)/2 + ξ(α − 1/α)/2
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so that t actually varies in [−ξ, ξ]. In particular, we have:

α

β
� α

r
=

α
1−ξ
2 α + 1+ξ

2
1
α

=
2

1 − ξ
· 1
1 + 1+ξ

1−ξ
1

α2

� 2
1 − ξ

.

Thus, inequality (6) becomes:

psucc(β) � 1 − 1
2
uτ

(
(1 − t)δ

) − (
1 +

2/π

1 − ξ

)
uτ

(
(1 + t)δ)

)
for δ =

α − 1/α

2
.

Since uτ is a decreasing function, both uτ

(
(1−t)δ

)
and uτ

(
(1+t)δ

)
are bounded

above by uτ

(
(1 − ξ)δ

)
, so that:

psucc(β) � 1 − Kξuτ

(
(1 − ξ)δ

)
with Kξ =

3
2

+
2/π

1 − ξ

holds for all β ∈ [r/
√

q,R/
√

q].
As a result, the overall success probability psucc-one for a single embedding

(which is the probability that condition (5) holds when the starting embed-
ding pair

(|ϕθ(f̃)|, |ϕθ(g̃)|) is sampled uniformly in A+(r,R)) is similarly lower
bounded as:

psucc-one � 1 − Kξuτ

(
(1 − ξ)δ

)
(7)

and under our independence heuristic, the success probability psucc-all for all d/2
embeddings at the same time satisfies:

psucc-all �
(
1 − Kξuτ

(
(1 − ξ)δ

))d/2

.

To reach an overall success probability of 1/M (i.e., M repetitions on average),
it therefore suffices to have:

d

2
log

(
1 − Kξuτ

(
(1 − ξ)δ

))
� − log M.

Using the usual first order approximation log(1−x) ≈ −x, this yields d
2Kξuτ

(
(1−

ξ)δ
)

� log M , or equivalently:

α − 1/α

2
� d

12(1 − ξ)2q
log

Kξd

2 log M
.

This shows that a quality α is achievable (with repetition rate up to M) as long
as:

α �
√

A +
√

1 + A where A =
d

12(1 − ξ)2q
log

Kξd

2 log M
. (8)

In particular, we see that, as long as q = Ω(d log d), quality measures α = O(1)
are achievable with any constant repetition rate. This is similar to Falcon and
unlike Mitaka [14, Appendix C] and the original approach for the Peikert and
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hybrid samplers [32], where α increases as a power function of the dimension
independently of q.

As discussed in the previous section, we choose ξ = 1/3 to fix ideas, so that
the starting annulus becomes the “middle third” of the target annulus (we will
see below that this choice is very safe). Condition (8) above with M = 4 and
q = 12289 shows that one can reach quality at least α = 1.24 in dimension 512
and α = 1.38 in dimension 1024 with this modulus q and repetition rate up to 4.
This is already much better than the quality parameters achievable by Mitaka,
but since we have used loose inequalities throughout, these are actually rough
lower bounds.

More Precise Expression of Success Probability. For concrete parameter selec-
tion, and also to test the validity of our heuristic assumptions, it is useful to
write down the exact expression of success probability according to our model.

Recall that the success probability psucc-one for a single embedding is
the probability that condition (5) holds when the starting embedding pair(|ϕθ(f̃)|, |ϕθ(g̃)|) is sampled uniformly in A+(r,R). In other words, psucc-one
is the expected value of psucc(β) for β2 uniformly distributed in [r2/q,R2/q].
Therefore:

psucc-one =
q

R2 − r2

∫ R2/q

r2/q

psucc(
√

B) dB =
2q

R2 − r2

∫ R/
√

q

r/
√

q

psucc(β)β dβ.

Carrying out the change of variables β = (α+1/α)/2+t(α−1/α)/2 and plugging
in the expression of psucc(β) in terms of Q2, we finally get:

psucc-one =
1
2ξ

∫ ξ

−ξ

F (α, t) ·
(
1 + t

α − 1
α

α + 1
α

)
dt

1.15 1.20 1.25 1.30 1.35 1.40
α

0

1

2

3

4

5

6

7

lo
g 2
(M

)

512
1024

(a) q = 12289

1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60
α

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

lo
g 2
(M

)

512
1024

(b) q = 3329

Fig. 2. Base 2 logarithm of the repetition rate M of Algorithm 5 as a function of α,
for d ∈ {512, 1024} and q ∈ {12289, 3329}. The continuous lines are obtained based on
our model, and the triangle data points are measured by simulations (averaging 100
iterations of the algorithm for each data point).
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where

F (α, t) = Q2

(
τ
(α + 1

α

2
+ t

α − 1
α

2

)
, τ/α

)
− Q2

(
τ
(α + 1

α

2
+ t

α − 1
α

2

)
, τα

)
,

and 1/M = psucc-all = p
d/2
succ-one. This makes it easy to solve numerically for α

in order to reach a certain repetition rate. Again for q = 12289, we find that
we reach repetition rate M = 4 for α ≈ 1.143 in dimension d = 512, and for
α ≈ 1.229 for d = 1024. For q = 3329, the same repetition rate is reached for
α ≈ 1.290 for d = 512 and α ≈ 1.478 for d = 1024. Moreover, this allows us to
confirm that our model very closely matches experiments, as demonstrated on
Fig. 2.

4.2 Security Analysis for Power-of-Two Cyclotomics

In order to assess the concrete security of the resulting signature scheme, we
proceed using the usual cryptanalytic methodology of estimating the complexity
of the best attacks against key recovery attacks on the one hand, and signature
forgery on the other. In the hash-and-sign paradigm, the security of the forgery
is a function of the standard deviation of the lattice Gaussian sampler used in
the signature function, which itself depends on the quality α of the trapdoor.
A first straightforward observation is that, since our work has only modified
which trapdoors are used for signing, and not how they are used in signing, our
modifications cannot have a negative impact on the resilience against forgery. On
the contrary, we have shown how to increase the trapdoor quality, and therefore
our new approach increases the security against forging attackers. As such our
focus will now be the resilience to key recovery attacks.

In Sect. 4.2.1, we go through a short review of the general lattice reduction
approach for key recovery, which is the current best attack when no additional
information is provided to the attacker (seeing as combinatorial or hybrid attacks
are irrelevant in our setting, with dense, non-ternary keys). Nevertheless, by
changing the sampling of the good trapdoors, we might have restricted to a
possibly smaller set of secret keys, or to a possibly much more geometrically
constrained set of keys. Indeed, all their complex embeddings must lie in a pub-
licly described annulus, so an adversary could use this additional information to
gather more power for an attack.

In Sect. 4.2.2 we present a new approach exploiting this additional geometric
information. It is reminiscent of the subfield attacks [1,6], however here we stop
the descent in the subfields at the totally real subfield K + (the set of elements
satisfying f = f∗). Indeed, this subfield encodes the length information of the
pair (f, g) in the elements (ff∗, gg∗) and its collection of embeddings. In the
extreme (unlikely) case where the annulus would be a circle, an adversary would
know this element exactly, and could use the Gentry-Szydlo attack [21] to recover
f or g. Our situation could be summed-up as an “approximate” Gentry-Szydlo
attack, where too much proximity of all the embeddings to a known circle could
be exploited by an attacker through lattice reduction.
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Our trapdoor generator could output keys with embeddings that would all
be close to some circle, and we call these temporarily potentially weak keys. Our
analysis will show that these potentially weak keys are in fact not so weak, or
in other words, that we have some freedom for parametrization with respect to
the available space (α − α−1)

√
q. This ensures a good success rate for Antrag.

Ultimately, the attack will use lattice reduction but on a different lattice than
in the direct, standard key-recovery context, and will try to recover (ff∗, gg∗).

For the context of Sect. 4.2.2, we need the expected length of (f, g) and
(ff∗, gg∗). These two properties are gathered in the next result. The proof,
a direct application of Proposition 1, is provided in the full version of this
paper [17].

Corollary 1. With the notation of Algorithm 5, let (f, g) be a random variable
following the distribution of its output. Then we have E[‖(f, g)‖2] = d

6 + R2+r2

2

and E[‖(ff∗, gg∗)‖2] = 5
8 (R4 + r4) + R2r2 + d

6 (R2 + r2) + d2

36 .

4.2.1 Classical Attack Against NTRU Keys
The key recovery in this context consists in constructing the algebraic lattice
over R spanned by the vectors (0, q) and (1, h) (i.e. the public basis attached to
the NTRU key) and retrieving the lattice vector s = (f, g) among all possible
lattice vectors of norm bounded by ‖s‖ (or a functionally equivalent vector, for
instance (μ · f, μ · g) for any unit μ of the ring of integer of the number field).
From Corollary 1 we obtain E[‖s‖2] � qA, where A = d

6q + 1
9

(
5α2

2 + 5
α2 + 4

)
.

Since the attack is easier when the key to recover is longer, we take the value qA
acting as E[‖s‖2]. In order to avoid enumerating and testing all integer vectors
in the sphere of radius

√
qS, which would contain a large number of vectors

under the Gaussian heuristic6, namely around
(

qA
q

)d

= Ad, we make use of the
projection trick (see also [15,18]). This technique involves reducing the public
basis with some lattice reduction algorithm, and seeking for the projection of
the secret key onto the lattice spanned by the few last Gram-Schmidt vectors of
this reduced basis. If we find the projection of the secret key, we can retrieve the
full key by using the Babai nearest plane algorithm to lift it to a lattice vector
of the desired norm.

More precisely we proceed as follows. Set β to be the block size parameter of
the DBKZ algorithm [28] and start by reducing the public basis with this latter
algorithm. Call [b1, . . . ,b2d] the resulting vectors. Then if we can recover the pro-
jection of the secret key onto P, the orthogonal space to span(b1, . . . ,b2d−β−1),
then we can retrieve in polynomial time the full key by Babai nearest plane
algorithm to lift it to a lattice vector of the desired norm. Hence it suffices to
be able find the projection of the secret key among the shortest vector of the
6 The Gaussian heuristic predicts the number of vectors of length at most � in a

random lattice Γ of volume V to be a vΓ (�)/V + o(1) for large enough �, where
vΓ (�) is the volume of the sphere of radius � for the measure induced by the inner
product on Γ .
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lattice generated by the last β vectors projected onto P. Classically, sieving on

this projected lattice will recover all vectors of norm smaller than
√

4
3�, where �

is the norm of the 2d − β-th Gram-Schmidt vector b̃2d−β of the reduced basis.
The expected length of the projection is usually estimated under the Geo-

metric Series Assumption (GSA). Instantiated on NTRU lattices, it states that
the Gram-Schmidt vectors of the basis outputted by DBKZ with block-size β
satisfy the relations (see Cor 2. of [28]):

‖b̃i‖ = δ
2(d−i)+1
β

√
q where δβ =

(
(πβ)1/β · β

2πe

) 1
2(β−1)

.

Therefore, we expect that � = δ
−2(d−β)+1
β

√
q ≈ √

q ·
(

β
2πe

)1− d
β−1

. Moreover,
assuming that s behaves as a random vector, and using the GSA to bound
the norm of the Gram-Schmidt vectors [b̃1, . . . , b̃2d−β ], the (squared) norm of
its projection over P concentrates around β

2d · E[‖s‖2] = Aqβ
2d . Hence, we will

retrieve the projection among the sieved vectors if Aqβ
2d � 4

3�2, that is if the
following condition is fulfilled:

A � 8d

3β
δ
4(β−d)+2
β . (9)

Remark 3. On the Use of the GSA. In order to make a more accurate assessment
of potential attacks, numerical models of the profile of the Gram-Schmidt length
derived from simulations of the behavior of (D)BKZ can be utilized instead of
relying solely on the Gaussian heuristic approximation (GSA). While this section
focuses on using the GSA for the purpose of simplifying the formulae and pre-
senting the information in a clear manner, it is important to note that predictive
models that generate a “Z-shaped” profile are employed in the estimation scripts.

On the Size of the Enumeration Window. In the previous description we
only considered the space P, orthogonal to span (b1, . . . , b2d−β−1). It is natural
to want to extend its dimension, and choose the optimal one. It appears that
for the specific parameters of our work, this optimization would only result in a
difference of less than a single bit of security. Besides, on the one hand, by using
the exact block size beta we can extract the vectors we need to sieve for free
from the preliminary run of DBKZ, avoiding the need for an additional sieving
pass. On the other hand, using a larger dimension for the additional sieving
pass adds a non-negligible cost. Note that this is a consequence of the Core-SVP
methodology, which we discuss in more details in Sect. 4.3 which ignores the
polynomial overhead cost of (D)BKZ.

4.2.2 Towards a Subfield Attack
Given the knowledge of the relative norm M = ff∗+gg∗, the structure of NTRU
keys allows an attacker to determine both ff∗ and gg∗. Note that (ff∗, gg∗)
is in the NTRU lattice of hh∗ over the totally real subfield K +, meaning
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that ff∗ · hh∗ ≡ gg∗ (mod q). Thus, we deduce that gg∗ = Mhh∗
1+hh∗ mod q and

fg∗ = Mh∗
1+hh∗ mod q over R—a step we refer to as “algebra”. As observed in [19],

since f and g are chosen to be co-prime, the attacker can recover a Z-basis of the
principal ideal (g) in addition to gg∗ through a greatest common divisor com-
putation between the ideals (fg∗) and (gg∗). The attacker can finally retrieve g
modulo units through the application of either the Gentry-Szydlo algorithm for
power-of-two cyclotomic number fields or its extension for arbitrary cyclotomics,
as demonstrated in the attack of Espitau et al. in [13].

Now if the attacker does not know the value of M exactly, but has a fairly
good approximation of it, the preliminary “algebra” can be replaced by lattice
reduction. Indeed, write ff∗ + gg∗ = qN + E for a known7 N and a small E, so
that (ff∗, gg∗, E) is a rather short solution of the linear system

{
HX − Y = 0 mod q,

X + Y − E = qN,
(10)

where H = hh∗. More precisely, this value would not correspond to an element
of the ring R, but solving such a system amounts to finding a short vector inside
the coset (0, 0, qN)+L (considered inside the extended NTRU lattice in (K +)3

corresponding to {(u, v, w)|uH = v (mod q)}). A (row) basis of the lattice L
corresponding to (10) is given by:

L =
(

1 H H + 1
0 q q

)
.

and the most efficient known algorithms to solve this problem are essentially
variations of lattice reduction and decoding (see for instance [16]), and amount
in estimating the hardness of retrieving a vector of a given norm inside L . We
now give the details to find lower bound on the parameters of the key generation
algorithm to make such attacks infeasible.

Distribution of the Relative Norm Vector. We now want to estimate the expected
length of (ff∗, gg∗, E). By Corollary 1, we know already E[‖ff∗, gg∗‖2]. To
determine the remaining term E[‖E‖2], we must select a convenient value for
qN . For this, fix an embedding ϕθ, and let (F,G) = (ϕθ(ff∗), ϕθ(gg∗)) and
(F̃ , G̃) = (|ϕθ(f̃)|2, |ϕθ(g̃)|2) as in Proposition 1, so that E[F + G] = d

6 + R2+r2

2 .
Since each embedding of ff∗ + gg∗ averages around this (public!) value, we
conveniently choose it for qN . From ff∗ + gg∗ − qN = E and the definition
of the variance, we obtain E[‖E‖2] = Var[F + G]. It follows that (see the full
version of this paper for details [17]):

7 A typical “known” N would be the radius of a well-chosen circle inside the annulus.
This value would not correspond to a ring element in general, but one can reduce to
this case in a similar way as SIS and ISIS relate.
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E[‖E‖2] = Var
[
d

6
+ F̃ + G̃

]
+ E

[
d

12

(
d

6
+ 2F̃ + 2G̃

)]

=
(R2 − r2)2

12
+

d

12
(R2 + r2) +

d2

72
.

For convenience in the next paragraphs, we write E[‖ff∗, gg∗‖2] = 2q2x and
E[‖E‖2] = q2y, then:

x · q2 =
5
16

(R4 + r4) +
1
2
(R · r)2 +

d

12
(R2 + r2) +

d2

72
,

y · q2 =
1
12

(
R2 − r2

)2 +
d

12
(
R2 + r2

)
+

d2

72
.

Mounting the Lattice Attack. In order to find a short solution for the system in
Equation (10), it is known that ‖ff∗‖2 and ‖gg∗‖2 approximate to xq2 and ‖E‖2
concentrates to yq2. This results in the vector (ff∗, gg∗, E) being unbalanced
with the first two coefficients being significantly larger than the third one. To
address this issue, we can utilize a technique similar to the rescaling approach
proposed in [4,18].

It has been observed that in the estimation procedure outlined in Sect. 4.2.1,
the ratio of the length of the secret vector to the normalized volume of the
lattice is the only relevant quantity. As such, we can run the same attack under
any quadratic twist of the norm of the lattice, by replacing the �2 norm with
any quadratic form of determinant 1, and selecting the one that minimizes the
desired ratio. By following the proof technique in [18], we can restrict ourselves
to quadratic forms corresponding to diagonal matrices.

Therefore, to view the corresponding lattice problem in a more suitable man-
ner, we want to analyze it under the twisted (Euclidean) norm encoded by the

Gram matrix (clearly of determinant 1) Gη = diag(η, η, 1/η2) with for η =
(

y
x

) 1
3 .

Then under this new norm ‖ · ‖η, we find that:

E
[‖(ff∗, gg∗, E)‖2η

]
= ηE

[‖ff∗‖2] + ηE
[‖gg∗‖2] +

E
[‖E‖2]
η2

= 3q2
(
x2y

) 1
3 .

Under this norm the lattice L has K +-volume:

det(LGηLT ) =

∣∣∣∣∣
[

ηH2 + η + (H+1)2

η2 ηHq + (H+1)q
η2

ηHq + (H+1)q
η2 ηq2 + q2

η2

]∣∣∣∣∣ = q2
(

η2 +
2
η

)
,

giving a lattice of normalized volume being
√

q(η2 + 2
η )

1
4 as of K +-rank 2. The

attack is then similar as the one in Sect. 4.2.1 but where we want to recover a
vector of squared norm 3q2(x2y)

1
3 in a Z-lattice8 of normalized (squared) volume

2q(η2 + 1
η )

1
2 of rank 2d

2 = d, yielding a condition of the form:

8 The factor 2 accounting here for the normalized discriminant of the totally real
subfield.
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β

d
3q2

(
x2y

) 1
3 � 2q

(
η2 +

2
η

) 1
2

δ
2(2β−d+1)
β (11)

simplifying into:

q � 2d

3β

√
y + 2x

x2y
δ
2(2β−d+1)
β .

4.2.3 Further Optimizations
Beyond the projection trick and the rescaling, we can apply a final standard
optimization to this lattice reduction part as there is an unbalance between the
size of the secret vector we want to recover and the normalized volume of the
lattice. Instead of working with the full lattice coming from the descent of L
over Z, we can instead consider the lattice spanned by a subset of the vectors
of the public basis and perform the decoding within this sublattice. The only
interesting subset seems to consists in forgetting the k � d

2 first vectors (dropping
the so-called q-vectors would not be beneficial as it would actually sparsify the
lattice, making the attack worst). Doing so, the rank is of course reduced by k,
at the cost of working with a lattice with covolume proportionally q

k
2(d−k) bigger.

The condition of (11) updates into9:

β(d − k)
(d − k)d

3q2
(
x2y

) 1
3 � 2q

n
2n−2k

(
η2 +

2
η

) 1
2

δ
2(2β−d+k+1)
β ,

for all k ∈ {
0, . . . , d

2

}
, which in turn simplifies to:

q � min
0�k� n

2

(
2d

3β

√
y + 2x

x2y
δ
2(2β−d+1)
β

) 2n−2k
n−2k

. (12)

The right-hand-side term increases as y becomes smaller making the attack
easier and easier, recovering the intuition presented that knowing exactly the
value of ff∗+gg∗) leads to a complete key recovery in polynomial time. However,
because of the rounding to the ring of integer this term cannot be 0: it converges
to a term which is greater than d2

72 + dq
6 . Thus, the condition is never satisfied

for cryptographically relevant parameters.

Remark 4 (On other subfield type attacks and related). We can also approach
the problem as solving a noisy-ring SIS instance (namely (1 + H)F = N + E
(mod q)) or as solving a NTRU instance with a hint, in the spirit of [8]). In both
cases, we are in fine decoding a lattice point at distance ‖E‖ inside a lattice of
normalized volume comparable to q. Up to some minor unessential constants,
all three approaches give comparable results.

It is tempting to go further and try projection to other subfields, but the ratio
secret size to normalized volume is increasing, worsening the attack. It indicates
that we shall only focus on the plain NTRU and on the totally real subfield.
9 This assumes the coefficients of s are balanced, which is a reasonable assumption

after the rescaling by η.
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Conclusion of Our Security Analysis. We presented two attacks on the distri-
bution of the keys: the classical attack by reducing directly to an SVP instance
form the (public) NTRU lattice and a more involved one which involves descend-
ing the problem to the totally real subfield and making use of the fact that the
relative norm is somewhat close to a known integer. After careful optimization, it
appears that this latter attack is never relevant in practice. Thus, the parameter
selection only deals with the former attack, using the standard methodology, as
we explain below.

4.3 Practical Security Assessment

This analysis translates into concrete bit-security estimates following the
methodology of NewHope [2] (so-called “core-SVP methodology”). In this
model [5], the bit complexity of lattice sieving (which is asymptotically the best
SVP oracle) is taken as �0.292β� in the classical setting and �0.259β� in the
quantum setting in dimension β. Using the analysis presented, we can tailor the
radius α of the final annulus to match the desired security level (NIST-I and
NIST-V). The size of the signature is then derived similarly as in [18].

4.4 Extension to More General Cyclotomic Rings

As discussed at the beginning of this section, the analysis so far has concentrated
on base fields K that are cyclotomic with power-of-two conductor for the sake of
simplicity, but it extends with relatively few changes to a more general setting.
Specifically, in the full version of this paper [17], we show that both the success
probability estimates and the security analysis carry over to cyclotomic conduc-
tors of the form m = 2�pk for some odd prime p. This setting encompasses in
particular the case of 3-smooth conductors m = 2�3k for which parameters are
proposed in the Mitaka paper [15] (and for which we also propose parameters
below), and provides plenty of leeway to reach essentially any desired security
level.10

While the analysis in this more general setting closely mimics the one pre-
sented so far, we briefly highlight the ways in which it does differ. The key change
is that, for these conductors, the covariance matrix in Heuristic 1 is no longer
scalar, making the estimation of the meaningful quantities more subtle. We give
a high-level description of the situation here, referring to the full version of this
paper [17] for details.

First, for the success probability of Algorithm 5, the conditional distribution
of the embeddings of (f, g) becomes the sum of two non-central χ2 distributions
with different scaling parameters, each corresponding to the eigenvalues λθ

+, λθ
−

10 One could in principle generalize the analysis even further (e.g., to arbitrary cyclo-
tomic conductors), but this would introduce additional technicalities (such as the
need to replace the power basis by the so-called powerful basis in order to obtain a
well-behaved matrix for the canonical embedding), and would really be of theoretical
interest at best.
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of Σθ. This complicates the analysis somewhat, but counterparts to the results
of Sect. 4.1 can still be obtained, either through numerical computations or by
upper and lower bounding Σθ by scalar matrices independent of θ.

Second, regarding the security analysis with respect to key recovery attacks,
the length of the secret keys is also impacted by the additional error term T (θ)
in Proposition 1. Qualitatively speaking, the behavior in the case m = 2�pk

is however quite close to the power-of-two case, since for most embeddings,
|S(θ)| =

∣∣ sin(dθ)
sin θ

∣∣ is small compared to d: only a handful of embeddings have
a phase θ close to a multiple of π. We use the worst of these embeddings to
bound from above the magnitude of T (θ), and find that even this pessimistic
estimate only has negligible impact on the security level. Lastly, while we could
rely on the identity d‖x‖2 = ‖ϕ(x)‖2 in the power-of-two case, this is not true
anymore for general conductors; we rely on upper bounds instead. Nevertheless,
the geometry of the power basis for 3-smooth conductors remains quite good,
acting at worst as an additional

√
2 factor.

5 ANTRAG in Practice

5.1 Optimization and Parameter Selection

In [18] new techniques to compress lattice-based hash-then-sign schemes were
presented. Theoretically, they can all be applied to Antrag’s signatures as well.
One of these technique is a fine-tuned encoding approach for discrete Gaussian
vectors, and is oblivious to the actual structure of the secret keys—we thus con-
sider it done by default when estimating the bit size of signatures. The two other
techniques are choosing a smaller modulus q than the popular choice q = 12289
on the one hand, and elliptical sampling on the other hand. They have more
impact on the key generation step, and although they were shown somewhat
equivalent when applied to scheme such as Falcon or Mitaka, the situation is
different for Antrag.

We first discuss smaller moduli. From our analysis in Sect. 3 and Sect. 4,
the annulus where candidate pairs are sampled becomes relatively smaller as
q decreases, which noticeably impacts the success probability of Algorithm 5.
To keep a small rejection rate in practice, we are led to decrease the quality of
the key pairs, or in other words, to use a larger parameter α. Fortunately, it
was pointed out in [18] that there is a range for such smaller q where, at fixed
dimension, the key recovery becomes harder. This actually means that reducing
q and increasing α does not necessarily translate to a substantially lower security
level. We note however that q cannot be chosen arbitrarily small, as attacks exist
for very small q.

The situation for elliptical sampling is less attractive for the following rea-
son. Candidates should now be sampled in well-chosen elliptic annuli rather than
circular ones. We can easily sample continuously uniformly in such annuli, but
when carrying out the decoding back to the ring (e.g., by coefficient-wise round-
ing), we still incur an error term on embeddings that behaves like an isotropic
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normal distribution of standard deviation Ω(
√

q). After the addition of the error
term, embeddings sampled more towards the direction of the major axis of the
ellipse are more likely than in a spherical case to end up in the target elliptical
annulus, but embeddings sampled in the direction of the minor axis have much
lower probability of success, and this has a much greater effect on overall success
probability, constraining the choice of the quality parameter α. In the end, we
find that rather than using elliptical sampling in our setting with a certain skew-
ing factor γ, it is essentially just as effective to reduce the modulus q by the same
factor γ instead (which additionally has the advantage of reducing public key
size). As a result, we omit the detailed analysis of this less attractive approach.

We present our parameter selection in Table 2 for power-of-two cyclotomics,
and Table 3 for the 3-smooth case. For all parameter sets, we set the quality α
with two decimal places in such a way as to reach a repetition rate M of around
3 to 4. For the moduli, we give both the choices of q found in the literature
as well as smaller candidates that also have close to optimal splitting in the
ambient ring, should one wish to rely on NTT multiplication to slightly speed
up verification.

Table 2. Practical parameter selection, power-of-two case

q = 12289 q = 3329

d 512 1024 512 1024

Quality α 1.15 1.23 1.23 1.48

Repetition rate M 3 4 4 4

Bit security (C/Q) 124/113 264/240 121/110 265/240

Verification key size (bytes) 896 1792 768 1536

Signature size (bytes) 646 1260 591 1176

Table 3. Practical parameter selection for Antrag, 3-smooth conductor case.

(a) Modulus q = 12289

d 648 768 864 972

Quality α 1.17 1.19 1.21 1.22

Repetition rate M 4 3 3 4

Bit security (C/Q) 166/151 196/178 222/201 251/227

Verification key size (bytes) 1134 1344 1512 1701

Signature size (bytes) 808 952 1069 1200

(b) Various moduli. For d = 768, 864, 972, the right column shows moduli of [15].

d = 648 d = 768 d = 864 d = 972

Modulus q 3889 9721 3329 18433 3727 10369 4373 17497

Quality α 1.32 1.19 1.39 1.16 1.40 1.23 1.40 1.18

Expected repetitions 4 4 4 3 4 3 4 4

Bit security (C/Q) 159/144 164/149 192/174 195/177 220/200 222/201 254/230 250/227

Verification key size (bytes) 972 1134 1152 1440 1296 1512 1580 1823

Signature size (bytes) 747 796 883 977 1000 1058 1133 1225
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5.2 Implementation Results

We have implemented our trapdoor generation algorithm Antrag as well as the
resulting complete signature scheme in portable C based on the source codes of
Falcon and Mitaka. The code is publicly available on GitHub [36].

Since the signature scheme arising from Antrag is essentially identical to
Mitaka for signing and verification, we largely reuse the code of Mitaka for
those parts. Key generation consists of the original algorithm presented in this
paper to generate the first basis vector (f, g), along with code to solve the NTRU
equation in order to deduce (F,G), for which we basically reuse the code of Fal-
con, which follows the techniques presented in [31]. The Fast Fourier transform
and the resulting code for ring arithmetic are similarly borrowed from Falcon.

We note that, since the C code of Mitaka itself did not include a key gen-
eration algorithm (only precomputed fixed keys obtained using separate Python
scripts), our implementation constitutes, to the best of our knowledge, the first
full C implementation of a hybrid sampler-based signature.

In view of the simplicity of our trapdoor generation, the code is fairly straight-
forward. In particular, since the floating point uniform distributions we generate
for the absolute values of the embeddings are bounded away from zero, there is
no subtlety related to precision loss for values close to zero (this is unlike the
Box–Muller algorithm used in signing, for which we reuse Mitaka’s code that
behaves properly in that respect). The only trick worth mentioning is a check
in the generation of (f, g) which rejects early the pairs such that the cyclotomic
integer prime above 2 divides both f and g (this is a necessary condition for the
later computation of F and G to succeed, so it saves some time to test it early).

As explained above, dimension 512 and 1024 are supported, and our
GoodPair algorithm naturally extends to other conductors such as the 3-smooth

Table 4. Performance comparison with Falcon and Mitaka.

Falcon [34] Mitaka [15] This paper

d 512 1024 512 1024 512 1024

Quality α 1.17 1.17 2.04 2.33 1.15 1.23

Classical sec. 123 284 102 233 124 264

Key size (bytes) 896 1792 896 1792 896 1792

Sig. size (bytes) 666 1280 713 1405 646 1260

keygen speed (Mcycles) — — — — 9.5 33.2

keygen speed (ms) 4.2 12.4 1657∗ 6214∗ 3.5 12.3

sign speed (kcycles) — — 299 584 298 586

sign speed (μs) 184 371 111 217 111 218

verif speed (kcycles) — — 20 41 20 40

verif speed (μs) 18 36 8 16 8 15
∗ Timings for the optimized SageMath implementation (excluding
NTRUSolve), since no C implementation exists.
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cyclotomics considered in Mitaka to reach intermediate dimensions, as well as
the signing and verification procedure. However, suitably optimized FFT code
is needed for those intermediate rings, and more importantly, the NTRUSolve
code of [31] needs to be adapted as well, in the spirit of, e.g., [27]. Neither of
those steps are difficult in principle, but they represent a significant engineering
effort left as future work.

A performance comparison with Falcon and Mitaka is provided in Table 4,
using the same modulus q = 12289 for consistency. Compilation is carried out
with gcc 13.2.1 with -O3 -march=native optimizations enabled. Timings are
collected on a single core of an AMD Ryzen 7 PRO 6860Z @ 2.7 GHz laptop with
hyperthreading and frequency scaling disabled. Cycle counts are not provided
for Falcon, since the Falcon benchmarking tool only measures clock time.

As noted previously, the Mitaka C implementation does not include a key
generation procedure. For reference, we provide the timings for the numpy-based
SageMath implementation of the Mitaka key generation procedure instead, not
including the cost of NTRUSolve, so that only the highly optimized GoodPair
code is accounted for. As expected from the fact that Mitaka needs to explore
a search space of millions of key candidates, the timings are orders of magnitude
worse than Falcon and Antrag.

The running time of our key generation is close to that of Falcon. Signing
speeds are basically identical to Mitaka since we mostly reuse that code (up to
very minor optimizations). Verification is consistent across all three schemes.
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7. Chuengsatiansup, C., Prest, T., Stehlé, D., Wallet, A., Xagawa, K.: ModFalcon:
compact signatures based on module-NTRU lattices. In: Sun, H.M., Shieh, S.P.,
Gu, G., Ateniese, G. (eds.) ASIACCS 20, pp. 853–866. ACM Press, October 2020

8. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side information:
attacks and concrete security estimation. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12171, pp. 329–358. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-56880-1 12

9. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over
NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 22–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
45608-8 2

10. Ducas, L., Nguyen, P.Q.: Learning a zonotope and more: cryptanalysis of
NTRUSign countermeasures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 433–450. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34961-4 27

11. Ducas, L., Prest, T.: A hybrid Gaussian sampler for lattices over rings. Cryptology
ePrint Archive, Report 2015/660 (2015). https://eprint.iacr.org/2015/660

12. Ducas, L., Prest, T.: Fast Fourier orthogonalization. In: Abramov, S.A., Zima,
E.V., Gao, X. (eds.) ISSAC 2016, pp. 191–198. ACM (2016)

13. Espitau, T., Fouque, P.A., Gérard, B., Tibouchi, M.: Side-channel attacks on BLISS
lattice-based signatures: exploiting branch tracing against strongSwan and elec-
tromagnetic emanations in microcontrollers. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1857–1874. ACM Press, Octo-
ber/November 2017

14. Espitau, T., et al.: MITAKA: a simpler, parallelizable, maskable variant of fal-
con. Cryptology ePrint Archive, Report 2021/1486 (2021). https://eprint.iacr.org/
2021/1486

15. Espitau, T., et al.: MITAKA: a simpler, parallelizable, maskable variant of falcon.
In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part III. LNCS,
vol. 13277, pp. 222–253. Springer, Heidelberg (2022). https://doi.org/10.1007/978-
3-031-07082-2 9

16. Espitau, T., Kirchner, P.: The nearest-colattice algorithm. Cryptology ePrint
Archive, Report 2020/694 (2020). https://eprint.iacr.org/2020/694

17. Espitau, T., Nguyen, T.T.Q., Sun, C., Tibouchi, M., Wallet, A.: Antrag: annular
NTRU trapdoor generation. Cryptology ePrint Archive, Paper 2023/1335 (2023).
https://eprint.iacr.org/2023/1335

18. Espitau, T., Tibouchi, M., Wallet, A., Yu, Y.: Shorter hash-and-sign lattice-based
signatures. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part II. LNCS, vol.
13508, pp. 245–275. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-
031-15979-4 9

https://doi.org/10.1007/978-3-319-08344-5_21
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-642-34961-4_27
https://doi.org/10.1007/978-3-642-34961-4_27
https://eprint.iacr.org/2015/660
https://eprint.iacr.org/2021/1486
https://eprint.iacr.org/2021/1486
https://doi.org/10.1007/978-3-031-07082-2_9
https://doi.org/10.1007/978-3-031-07082-2_9
https://eprint.iacr.org/2020/694
https://eprint.iacr.org/2023/1335
https://doi.org/10.1007/978-3-031-15979-4_9
https://doi.org/10.1007/978-3-031-15979-4_9


Antrag: Annular NTRU Trapdoor Generation 35

19. Fouque, P.-A., Kirchner, P., Tibouchi, M., Wallet, A., Yu, Y.: Key recovery from
gram–Schmidt norm leakage in hash-and-sign signatures over NTRU lattices. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 34–63.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 2

20. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press, May 2008

21. Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 20

22. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
112–131. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052231

23. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36563-X 9

24. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

25. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

26. Lyubashevsky, V., et al.: CRYSTALS-DILITHIUM. Technical report, National
Institute of Standards and Technology (2022). https://csrc.nist.gov/Projects/post-
quantum-cryptography/selected-algorithms-2022

27. Lyubashevsky, V., Seiler, G.: NTTRU: truly fast NTRU using NTT. IACR TCHES
2019(3), 180–201 (2019). https://tches.iacr.org/index.php/TCHES/article/view/
8293

28. Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction. In: Fis-
chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 820–849.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 31

29. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and
NTRU signatures. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 271–288. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 17

30. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 5

31. Pornin, T., Prest, T.: More efficient algorithms for the NTRU key generation using
the field norm. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 504–
533. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6 17

32. Prest, T.: Gaussian sampling in lattice-based cryptography. Ph.D. thesis, École
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Abstract. We describe an adaptation of Schnorr’s signature to the lat-
tice setting, which relies on Gaussian convolution rather than flooding
or rejection sampling as previous approaches. It does not involve any
abort, can be proved secure in the ROM and QROM using existing anal-
yses of the Fiat-Shamir transform, and enjoys smaller signature sizes
(both asymptotically and for concrete security levels).

1 Introduction

Schnorr’s identification protocol [Sch91] allows secure authentication between a
prover and a verifier based on the hardness on the discrete logarithm problem
in a cyclic group of order p, generated by an element g. The prover’s public
verification key is simply a group element gs, whose discrete logarithm s forms
the prover’s signing key. The identification protocol proceeds as follows: the
prover first commits to some uniform y ←↩ U(Zp) by sending gy to a verifier.
The latter returns some challenge c ∈ Zp, to which the prover replies with a
response z, namely z = y + cs mod p. Here, no information about s is revealed
as z is still uniform modulo p. However, a verifier is convinced that the prover
knows s as it can verify gz = gy(gs)c. This can be compiled into a signature
scheme by using the Fiat-Shamir heuristic [FS86].

Adapting this protocol to the lattice setting has proved challenging. At a
high-level, the approach adopted in [Lyu09,Lyu12] and subsequent works pro-
ceeds as follows. The discrete logarithms s is replaced with a short, tall matrix S
in Z

k×m, whereas y and z are replaced with elements y and z of Z
k and the

generator g is replaced with a uniform matrix A ∈ Z
m×k
q . The challenge vec-

tor c belongs to a finite subset of Z
m, typically designed to have the shortest

possible vectors under the constraint that the challenge has sufficiently high
min-entropy to prevent guessing. For security, one needs z and hence y to be
short. Leaving things as they are described so far would make signatures leak
the secret matrix S, as z is centered around E[y]+Sc (see [ASY22] for a detailed
key recovery). A solution could be to take a large enough standard deviation to
“flood” this center (this is considered for example in [DPSZ12, Appendix A.1] in
c© International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14444, pp. 37–64, 2023.
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the context of zero-knowledge proofs), but this results in very large signatures
as the modulus then needs to grow exponentially with the security parameter λ
(see the discussion in [ASY22]). The most efficient approach so far, introduced
by Lyubashevsky [Lyu09,Lyu12] and notably leading to Dilithium [DKL+18],
relies on rejection sampling to erase the center from z. This comes at the cost of
restarting the protocol multiple times before finally outputting an appropriately
distributed response z. This strategy still allows the identification protocol to
be compiled into a signature, using a variant of the Fiat-Shamir heuristic called
Fiat-Shamir with Aborts. To obtain shorter signatures, Ducas et al. [DDLL13]
suggested to reject a bimodal Gaussian distribution against a Gaussian distri-
bution. This was later argued in [DFPS22] to be essentially optimal among
pairs of source and target distributions. Finally, we note that Fiat-Shamir with
Aborts turns out to be complex to analyze, and flaws in many analyses have
been recently discovered [DFPS23,BBD+23].

Removing rejection sampling while keeping similar signature sizes has been
a long-standing open problem. Steps in this direction were made in [BCM21] for
instance. The authors noticed that in the setting where y is sampled uniformly
in a hypercube and one uses signature truncation [BG14], one rejection condition
out of two is superfluous. They however argue that removing the second one is
difficult.

Contribution. We introduce a new paradigm for adapting Schnorr’s identifica-
tion protocol to the lattice setting. It relies on Gaussian convolution, rather than
flooding or rejection sampling. Our G + G (Gaussian Plus Gaussian) identifica-
tion protocol can be compiled into a signature using the Fiat-Shamir heuristic
(without aborts), in the Quantum Random Oracle Model (QROM). The result-
ing signature is asymptotically more compact than those based on rejection sam-
pling and its analysis relies on the well-understood properties of the standard
Fiat-Shamir transform. Finally, we provide concrete parameters which show that
G + G is competitive with the state-of-the-art optimizations of Lyubashevsky’s
signature.

Technical Overview. G + G involves two Gaussians that are being summed.
The first one is y and the second one corresponds to Sc. The first difficulty
that we face is that S is fixed and c is publicly known as part of the resulting
signature and hence cannot be assumed random for the sake of studying the
distribution of z.

To introduce the required new randomness, we start from BLISS [DDLL13].
The verification key A ∈ Z

m×k
2q and the signing key S ∈ Z

k×m satisfy the
relation AS = qIm mod 2q. Among the variants of Lyubashesvky’s signature,
it is a specificity of BLISS to work modulo 2q, which is particularly useful in
our case. The commitment of the prover is w = Ay mod 2q, and upon receiv-
ing c ∈ {0, 1}m, the prover replies with either z = y + Sc or z = y − Sc with
probability 1/2 each. The verifier checks that z is short and Az = w+qc mod 2q.
This check works for both values of z that the prover chose from. This can be
explained by observing that the verification views c modulo 2, i.e., as a coset
of Z

m/2Zm, and negating it does not change the coset. This observation was
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used in [Duc14] to take negations of individual coordinates of c to minimize the
Euclidean norm of Sc and hence decrease the standard deviation of y necessary
to hide Sc via rejection sampling. We go further and let the prover extend the
coset c sent by the verifier to a Gaussian sample with support 2Zm + c and cen-
ter 0. The verification equation above still holds, and we now have our second
Gaussian.

At this stage, the prover samples a Gaussian y over Z
k, receives a uniform

coset c ∈ Z
m/2Zm from the verifier, produces a Gaussian sample x with sup-

port 2Zm + c and computes z = y + Sx. Equivalently, it samples k Gaussian
with support 2SZm and center −Sc, which will be used to cancel the center Sc,
and returns z = y + k + Sc. In order to obtain the zero-knowledge property
(i.e., be able to simulate signatures without knowing the signing key), we aim to
prove that the distribution of the Gaussian convolution z can be sampled from
publicly. If y and k were continuous Gaussians, we would set their covariance
matrices Σy and Σk such that Σy +Σk = Σz for a known covariance matrix Σz

for z. To fix the ideas, we could set Σz = σ2I for some σ > 0, i.e., the distri-
bution of z is a spherical Gaussian, and set Σy = σ2I − Σk. If we sample x
from a spherical Gaussian with standard deviation s > 0, then Σk = s2SS�

and Σy = σ2I − s2SS� (by taking σ sufficiently large, the latter is indeed
definite positive). This is the choice we actually make for G + G, but there is
flexibility.

The above over-simplifies the situation as the Gaussians we manipulate
are discrete rather than continuous. Further, their supports do not have the
same dimensions. Indeed, the support of y is Z

k whereas the support of k is
exactly 2SZm +Sc whose span has dimension m < k: the second Gaussian lives
in a smaller dimension and its support is sparser. This is illustrated in Fig. 1.

Fig. 1. The sum of two Gaussians with compensating covariance matrices is a spherical
Gaussian, even when the second Gaussian is rank-deficient. In the G+ G identification
protocol and signature, the first Gaussian corresponds to y, the second Gaussian is
associated to Sc and the resulting one corresponds to z.

Thanks to the above, if the covariance matrices are set appropriately, then
G + G is honest-verifier zero-knowledge (HVZK). The proofs of completeness and
soundness are adapted from [DDLL13].

Our final goal is to apply the Fiat-Shamir heuristic on this protocol to get a
signature scheme. This heuristic replaces the uniform challenge with one derived
from a hash function called on input the commitment and the message to be
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signed. The signature is then the whole transcript. As the commitment of G + G
can be recomputed from the challenge and its response, we actually exclude it
from the signature for compactness. Then, as long as G + G is complete, the
resulting signature is correct. Moreover, the security reduction proceeds in two
steps. First, it is shown that the EU-CMA security of the signature can be reduced
to the EU-NMA security of the signature, where no signature query can be made.
To do so, one shows that signatures queries can be answered with simulated ones
(up to reprogramming the random oracle) from the HVZK property, as long as
the commitment Ay has sufficiently high min-entropy. This is technically more
complex than for Lyubashevsky’s signatures as y is distributed from a skewed
Gaussian. Second, computational soundness (resp. lossy-soundness) implies secu-
rity against no-message attacks for different parametrizations.

Comparison with BLISS. Among variants of Lyubashevsky’s signatures, BLISS
provides the smallest z: its expected norm can be as small as σ1(S)m/

√
log M

(up to a constant factor), where σ1(S) is the largest singular value of S and M
is the expected number of repetitions (see [DFPS22, Appendix C]). Further, an
argument is made in [DFPS22] that this is essentially optimal for Lyubashevsky’s
signatures, even if we allow to optimize over the choice of source and target
distributions. In the case of G + G, the strongest constraint on parameters is
essentially that the standard deviation σ of z be sufficiently large to “smooth out”
the lattice 2SZm. By using a variant of the HVZK property based on the Rényi
divergence rather than the statistical distance, which suffices for the signature
application, it suffices that σ be above σ1(S)

√
log QS , up to a constant factor,

where QS is the maximum number of signature queries that the adversary is
allowed to make. As a result, the expected norm of z in G + G is σ1(S)

√
m log QS .

We conclude by observing that log QS is typically much smaller than m, and
that the

√
log M term from BLISS cannot grow sufficiently to compensate for

the difference. More concretely, if we set M = λΘ(1), QS = λΘ(1) and m = Θ(λ),
where λ is the security parameter, then the expected norms of z in BLISS and
G + G respectively grow as σ1(S) · λ/

√
log λ and σ1(S) · √

λ log λ.

Optimization and Concrete Parameters. While all key generation techniques pre-
sented in [DDLL13] can be used with our G + G protocol, we present alterna-
tive versions which offer more flexibility. A first improvement is that we can
set AS = qJ mod 2q, where J ∈ Z

m×�
q is only rectangular and full column-rank

rather than set to the identity. When instantiating G + G with the MLWE and
MSIS hardness assumptions [BGV12,LS15] over a ring R = Z[x]/(xn +1) with n
a power of 2, we take j = (xn/2 + 1, 0, . . . , 0). This allows us to replace the lat-
tice 2sR with (xn/2 −1)sR, and to decrease the standard deviation of z by a fac-
tor

√
2. Overall, we obtain signature sizes that are between 20% and 30% smaller

than those in [DFPS22], or 35% to 45% smaller than Dilithium [DKL+18].

Related Work. As pointed out in [CLMQ21], GPV signatures [GPV08] can be
seen as a special case of the lattice-based Fiat-Shamir signatures by considering a
specific instance of the hash function and adapting parameters. This analysis can
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be extended to G + G, and we then recover the hash-and sign scheme described
in [YJW23]. More details are provided in Appendix B.

2 Preliminaries

For any integers k ≥ m, we let Ik denote the k × k identity matrix as well
as Jk,m = (Im|0m×(k−m))� denote the k × m matrix whose first m diagonal
elements are 1 and all others are 0. The notations log and ln respectively refer
to the base-2 and natural logarithms. The notation ‖·‖ refers to the Euclidean
norm, while ‖·‖∞ refers to the infinity norm.

2.1 Probabilities

Let P,Q be two discrete random variables. The min-entropy of P is defined as

H∞(P ) = − log max
x∈Supp(P )

Pr[P = x] .

The conditional min-entropy of P on Q is defined as

H∞(P |Q) = − log
∑

y∈Supp(Q)

Pr[Q = y] · max
x∈Supp(P )

Pr[P = x|Q = y] .

Let Ω = Supp(P ) ∪ Supp(Q). The statistical distance between P and Q is
defined as Δ(P,Q) =

∑
x∈Ω |Pr[P = x] − Pr[Q = x]|/2.

If Supp(P ) ⊆ Supp(Q), the Rényi divergence of infinite order between P
and Q is defined as

R∞(P‖Q) = sup
x∈Supp(P )

Pr[P = x]
Pr[Q = x]

∈ [1,+∞] .

We will use the following properties of the Rényi divergence.

Lemma 1 ([vEH14]). Let P and Q be two discrete random variables such
that Supp(P ) ⊆ Supp(Q). Let f : Supp(Q) → X be a (possibly probabilistic)
function. Let E ⊆ Supp(P ) be an event. The Rényi divergence satisfies the prob-
ability preservation property:

Pr[P ∈ E] ≤ R∞(P‖Q) · Pr[Q ∈ E] (1)

and the data processing inequality:

R∞(f(P )‖f(Q)) ≤ R∞(P‖Q) . (2)

We will also use the following result.
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Lemma 2. Let ε < 1. Let P and Q be two random variables taking values in
some countable set Ω. Let c ∈ R be a constant such that

∀a ∈ Ω : Pr[Q = a] = c(1 − δ(a)) Pr[P = a] ,

for some function δ : Ω → [0, ε]. Then it holds that:

R∞(P‖Q) ≤ 1
1 − ε

, R∞(Q‖P ) ≤ 1
1 − ε

and Δ(P,Q) ≤ ε

1 − ε
.

Proof. Let us first note that (1 − ε)c ≤ 1 ≤ c, by summing the above equality
over all a ∈ Ω and applying the bounds on δ(a). Then we have

R∞(P‖Q) = sup
a∈Ω

Pr[P = a]
Pr[Q = a]

= sup
a∈Ω

1
c(1 − δ(a))

≤ 1
1 − ε

.

We also have

R∞(Q‖P ) = sup
a∈Ω

Pr[Q = a]
Pr[P = a]

= sup
a∈Ω

c(1 − δ(a)) ≤ c ≤ 1
1 − ε

.

Finally, we refer to [BF11, Lemma A.2] for the third bound. �

2.2 Lattice Gaussian Distributions

Let k > 0, c ∈ R
k and Σ ∈ R

k×k be a positive-definite symmetric matrix.
The Gaussian function with covariance parameter Σ and center parameter c is
defined as

ρΣ,c : x �→ exp
(−π(x − c)�Σ−1(x − c)

)
.

The Gaussian distribution over the lattice Λ ⊆ span(Σ) with covariance param-
eter Σ and center parameter c is the distribution with support Λ and probability
mass function

DΛ,Σ,c : x �→ ρΣ,c(x)∑
y∈Λ ρΣ,c(y)

.

If Σ = σ2Ik, we write ρσ,c and DΛ,σ,c. We omit c when it is 0. We also
define DΛ+c,Σ = DΛ,Σ,−c + c. For convenience, we let ρΣ,c(S) denote the quan-
tity

∑
y∈S ρΣ,c(y) for any countable set S.

For spherical Gaussians, the upper and lower part of a vector are statistically
independent. This is not the case anymore for general covariance matrices. The
following lemma give the conditional distribution of the lower part of a Gaussian
vector, given the upper part. The proof is adaptated from the continuous setting
and relies on writing the covariance as a 2×2 block matrix and inverting it using
the Schur complement of the upper left matrix.

Lemma 3 (Conditional distribution). Let k ≥ m > 0, Σ ∈ R
k×k be a

symmetric positive-definite matrix and c ∈ R
k. Write

c =
(
c1

c2

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,
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where c1 ∈ R
k−m and Σ11 ∈ R

(k−m)×(k−m). Let (Y �
1 |Y �

2 ) ←↩ DZk,Σ,c, where Y1

takes values in Z
k−m. Given any y1 ∈ Z

k−m, the conditional distribution of Y2

conditioned on Y1 = y1 is D
Zm,Σ,c, where

c = c2 + Σ21Σ
−1
11 (y1 − c1) and Σ = Σ22 − Σ21Σ

−1
11 Σ12.

Proof. As Σ is symmetric and positive-definite, both Σ11 and Σ22 are also sym-
metric and positive-definite and thus invertible. This is shown by considering
vectors of the form (x�|(0m)�)� or ((0k−m)�|y�)�. Let us write the block
inverse of Σ as follows:

Σ−1 =

(
Σ−1

11 + Σ−1
11 Σ−1

12 Σ
−1

Σ21Σ
−1
11 −Σ−1

11 Σ−1
12 Σ

−1

−Σ
−1

Σ21Σ
−1
11 Σ

−1

)
=

(
S11 S12

S21 S22

)
.

This formula also ensures that Σ is invertible, as it is a diagonal block of the
positive definite symmetric matrix Σ−1.

Let y2 ∈ Z
m. The probability that Y2 = y2 conditioned on Y1 = y1 is

ρΣ,c

(
y1

y2

) / ∑

y∈Zm

ρΣ,c

(
y1

y

)
.

Let us then study ρΣ,c((y�
1 |y�)�) by expanding it and completing the square.

ρΣ,c

(
y1

y

)
∼ exp

(−π
(
(y − c)�S22(y − c)

))
= ρΣ,c(y) ,

where the notation ∼ hides terms that do not depend on y. Using the fact that
the probability mass sums to 1, we obtain that the distribution of Y2 conditioned
on Y1 = y1 is D

Zm,Σ,c. �
As showed in [GPV08], Gaussian distributions can be sampled from by using

Klein’s algorithm [Kle00]. We will rely on the following variant.

Lemma 4 (Adapted from [BLP+13], Lemma 2.3). There is a ppt algorithm
that, given a basis B = (b1, . . . ,b�) of a full-rank �-dimensional lattice Λ, a
positive definite symmetric matrix Σ and c ∈ R

� returns a sample from DΛ,Σ,c,
assuming that

√
ln(2� + 4)/π · maxi ‖Σ−1/2bi‖ ≤ 1.

2.3 Smoothing Parameter

Given a k-dimensional lattice Λ ⊆ R
k, its dual lattice Λ∗ is defined as the

set Λ∗ = {x ∈ span(Λ) | x�y ∈ Z,∀y ∈ Λ}. If B is a basis of Λ, then (B†)� is a
basis of Λ∗.

Given a lattice Λ ⊆ R
k and ε > 0, the smoothing parameter ηε(Λ) of the

lattice Λ is defined as the smallest σ such that ρ1/σ(Λ∗\{0}) ≤ ε. The smoothing
parameter satisfies the following two properties.
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Lemma 5 ([ZXZ18],Theorem 2). Let k > 1 and ε < 0.086k. Let Λ ⊆ R
k be

a full-rank lattice with basis B = (b1, . . . ,bk). It holds that

ηε(Λ) ≤
√

ln(k − 1 + 2k/ε)
π

· max
i≤k

‖bi‖ .

Lemma 6 ([MR07]). Let Λ be a k-dimensional full-rank lattice. Let ε > 0
and Σ ∈ R

k×k be a definite positive symmetric matrix with all singular values
larger than ηε(Λ) and c ∈ R

k. We have

ρΣ,c(Λ) ∈
√

detΣ
det Λ

· [1 − ε, 1 + ε] and
ρΣ,c(Λ)
ρΣ(Λ)

∈
[
1 − ε

1 + ε
, 1

]
.

The last upper bound holds for all Σ.

The following lemma (adapted from [BMKMS22, Lemma 1]) is at the core of
the completeness and zero-knowledge proofs. While [BMKMS22] does not give
explicit statistical bounds, we note that Lemma 6 above, which is applied at
the end of the proof from [BMKMS22], allows us to do so when combined with
Lemma 2. A further adaptation is the use of the smoothing parameter bound
from Lemma 5. Note that the dimension involved for this condition is � rather
than k, as this is the small-rank lattice that needs to be smoothed out (the
corresponding condition from [BMKMS22, Lemma 1] is stronger than needed).

Lemma 7 (Gaussian decomposition, [BMKMS22], Lemma 1). Let k ≥ �,
ε ∈ (0, 1) and S ∈ Z

k×�. Let s ≥ √
2 ln(� − 1 + 2�/ε)/π and σ ≥ √

8σ1(S) · s.
Define

Σ(S) = σ2Ik − s2SS� ,

and let y ←↩ DZk,Σ(S) and k ←↩ DZ�,s,−c/2 for any c ∈ Z
�. Then Σ(S) is positive

definite and the distribution Pz of z = y + S(2k + c) satisfies

R∞(Pz‖DZk,σ) ≤ 1 + ε

1 − ε
and Δ(Pz,DZk,σ) ≤ 2ε

1 − ε
.

Note that the matrix Σ(S) is positive definite since σ ≥ √
2σ1(S) · s ensures

that all singular values of σ2Ik are larger than those of s2SS�.

2.4 Cryptographic Definitions

We recall the definition of an identification scheme and how such a scheme
can be transformed into a digital signature via the Fiat-Shamir transform (see
Fig. 6, p.25). For an identification scheme ID and a hash function H (modeled
as a random oracle in the analysis), we let FS[ID,H] denote the resulting signa-
ture scheme. Details about correctness and security of FS[ID,H] are provided in
Appendix A.

Definition 1 (Identification Scheme). An identification scheme is a tuple of
PPT algorithms ID = (Igen,P,V) such that:
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– Igen : On input the security parameter 1λ, algorithm Igen outputs a verification
key vk and a signing key sk. We assume that vk defines the challenge space C.

– P : The prover P = (P1,P2) is split into two algorithms: given sk, algorithm P1

produces a commitment w (first message sent to the verifier) and a state st;
algorithm P2, on input (sk, w, st) and a uniformly random challenge c ∈ C
sent by the verifier in response to commitment w, outputs an answer z.

– V : On input (vk, w, c, z), the deterministic verifier V outputs 1 or 0.

We let P(sk, vk) ↔ V(vk) denote the transcript (w, c, z) of an interaction between
the prover and the verifier, as illustrated in Fig. 2.

P(sk, vk) V(vk)
w

c
c U(C)

z Accept
or Reject

Fig. 2. Interaction Between P and V

We further define the following properties of identification schemes and
recall their roles in the analysis of the signature obtained by applying the Fiat-
Shamir transform to an identification protocol. We first recall completeness and
commitment-recoverability, which allow to prove correctness of FS[ID,H].

Definition 2 (Completeness and commitment-recoverability).
An identification scheme ID = (Igen,P,V) is ε-complete for some ε > 0 if for
any (vk, sk) ← Igen(1λ), for any challenge c ∈ C, we have:

Pr
[
V(vk, (w, c, z)) = 0 | (w, c, z) ← (P(sk, vk) ↔ V(vk))

]
≤ ε ,

where the randomness is taken over the random coins of P.
In addition, ID satisfies commitment-recoverability if for any public key vk,

challenge c ∈ C, and answer z, there is at most one commitment w such that
the transcript (w, c, z) is valid, and there exists a PPT algorithm Rec such that
w = Rec(vk, c, z).

We then recall the definitions of honest-verifier zero-knowledge and commit-
ment min-entropy, which allow to reduce EU-CMA security of FS[ID,H] to its
EU-NMA security.

Definition 3 (HVZK and commitment min-entropy).] An identification
scheme ID = (Igen,P,V) is Honest-Verifier Zero-Knowledge if there exists a PPT
simulator Sim such that one of the following holds:

• Δ((w, c, z) ← (P(sk, vk) ↔ V(vk)) , Sim(c, vk)) ≤ ε. In this case, we say
that ID is ε-HVZK.
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• R∞((w, c, z) ← (P(sk, vk) ↔ V(vk)) ‖ Sim(c, vk)) ≤ 1+ε. In this case, we say
that ID is (1 + ε)-divergence HVZK.

Furthermore, we say that ID satisfies α-Min Entropy or has α bits of commitment
min-entropy if for any (vk, sk) in the range of IGen:

H∞
(
w|(w, c, z) ← (P(sk, vk) ↔ V(vk))

)
≥ α .

Finally, we recall the notions of lossiness and lossy-soundness, which allow
to prove EU-NMA security of FS[ID,H] in the QROM.

Definition 4 (Lossiness and lossy-soundness). An identification scheme
ID = (Igen,P,V) is lossy and εls-lossy sound for some εls > 0 if there exists a
PPT lossy key generation algorithm LossyIGen that, on input a security param-
eter, outputs a verification key vkls such that vkls is indistinguishable from a
verification key vk generated by IGen.

Moreover, for any (unbounded) P∗ interacting with V, we have:

Pr
[
V(vkls, (w, c, z)) = 1 | (w, c, z) ← (P∗(vkls) ↔ V(vkls))

]
≤ εls .

If we only consider classical adversaries, EU-NMA security of FS[ID,H] can
be argued by relying on the simpler notion of special soundness.

Definition 5 (Special soundness). Let ID = (Igen,P,V) be an identification
scheme. It is special sound if for any PPT adversary A, the quantity

Pr
[
V(vk, (w, c0, z0)) = 1 ∧ V(vk, (w, c1, z1)) = 1 | (w, c0, z0, c1, z1) ← A(vk)

]

is negl(λ), where the probability is over the choice of vk and the coins of A.

We now briefly recall the formalism of digital signatures.

Definition 6. A signature scheme is a tuple (KeyGen, Sign,Verify) of PPT algo-
rithms with the following specifications:

• KeyGen : 1λ → (vk, sk) takes as input a security parameter λ and outputs a
verification key vk and a signing key sk.

• Sign : (sk, μ) → σ takes as inputs a signing key sk and a message μ and
outputs a signature σ.

• Verify : (vk, μ, σ) → b ∈ {0, 1} takes as inputs a verification key vk, a mes-
sage μ and a signature σ and accepts (b = 1) or rejects (b = 0).

We say that it is ε-correct if for any pair (vk, sk) in the range of KeyGen and μ,

Pr
[
Verify(vk, μ,Sign(sk, μ)) = 1

]
≥ 1 − negl(λ),

where the probability is taken over the random coins of Sign.
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Finally, we recall the weak and strong Existential Unforgeability under Cho-
sen Message Attack (EU-CMA and sEU-CMA) and the Existential Unforgeabil-
ity under No Message Attack (EU-NMA) security game for digital signatures.

Definition 7. Let δ > 0. A signature scheme (KeyGen,Sign,Verify) is said to
be δ-EU-CMA (resp. δ-EU-NMA) secure if no ppt adversary A given vk and
access to a signing oracle (resp. without access to a signing oracle) has probabil-
ity ≥ δ over the choice of the signing and verification keys (vk, sk) ← KeyGen(1λ)
and its random coins of outputting (μ∗, σ∗) such that

1. μ∗ was not queried to the signing oracle,
2. Verify(vk, μ∗, σ∗) = 1, i.e., the forged signature must be accepted.

The scheme is said δ-EU-CMA secure in the ROM if the above holds when the
adversary can also make queries to a random oracle that models some hash
function used in the scheme. The probability of forging a signature is also called
the advantage of A. If condition 1 is replaced with σ∗ is not an answer of a
signature query for μ∗, the scheme is instead said δ-sEU-CMA.

2.5 Hardness Assumptions

The security of our constructions relies on the hardness of two lattice prob-
lems, namely the decisional Learning with Errors problem and the Short Integer
Solution problem.

Definition 8 (Learning With Errors). Let m, k > 0 and q ≥ 2. Let χ
be a distribution over Z. The LWEm,k,�,q,χ assumption states that no (quan-
tum) adversary has non-negligible advantage in distinguishing (A,AS + E)
from (A,U), where A ←↩ U(Zm×k

q ), U ←↩ U(Zm×�
q ) and (S�|E�)� ←↩ χk+m×�.

Definition 9 (Short Integer Solution). Let m, k, γ > 0 and q ≥ 2 be a
modulus. The SISm,k,q,γ assumption states that no (quantum) adversary has non-
negligible probability of finding s ∈ Z

k such that

As = 0 mod q and 0 < ‖s‖ ≤ γ ,

when given A ←↩ U(Zm×k
q ) as input.

3 The G + G Identification Protocol

In this section, we first describe the G + G identification protocol, then prove the
required properties to compile it into a signature using the Fiat-Shamir heuristic,
and then discuss asymptotic parameters.
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3.1 Description of the Scheme

Let us first introduce the parameters of the scheme as well as some notations.
Let m ≥ � > 0, k > m + � and J = Jm,�. Let χ be a distribution over Z.
Let C ⊆ Z

�
2 be the challenge space, which we assume to be finite. Let σ, s ≥ 0

and define Σ : Zk×� → R
k×k as

Σ : S �→ σ2Ik − s2SS�.

The scheme is also parametrized by an odd modulus q and an acceptance
bound γ.

The G + G identification protocol is described in Fig. 3. The instance genera-
tion algorithm samples a verification key A ∈ Z

m×k
2q and a signing key S ∈ Z

k×�

with small-magnitude coefficients such that A · S = qJ mod 2q. In the first
phase of the interaction, the prover samples a vector y with well-crafted covari-
ance matrix, and sends the commitment w = Ay mod 2q to the verifier. The
protocol is public-coin, i.e., the verifier just samples c uniformly in the challenge
space and sends it to the prover. After receiving c, the prover samples a Gaussian
vector k over the lattice coset 2SZ� + c. The covariance matrices of y and k are
set so that the Gaussian plus Gaussian sum is statistically close to a spherical
Gaussian distribution.

The first sampling that the prover has to perform is well-defined only if Σ(S)
is definite positive, which we show thanks to Lemma 7. The first sampling is
implemented using Lemma 4, which requires σ2 − s2σ1(S)2 ≥ √

ln(2� + 4)/π,
where we let σ1(S) denote the largest singular value of S. The protocol can then
be executed in polynomial time.

IGen(1λ):

1: A1 (Zm×(k−m−�)
q )

2: (S1,S2) (k−m−�)×� × χm×�

3: B A1S1 + S2 mod q
4: A (qJ − 2B|2A1|2Im) ∈ Z

m×k
2q

5: S (I�|S�
1 |S�

2 )� ∈ Z
k×�

6: vk A, sk S
7: return (vk, sk)

P(A,S) V(A)
y

Zk,Σ(S)

w Ay mod 2q w

c
c (C)

k

U
χ

D

U
D

Z�,s,−c/2

z y + 2Sk+ Sc
z Accept if

Az = w + qJc mod 2q
and z γ

Fig. 3. The G+ G Identification Protocol.
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Combining this identification protocol with the Fiat-Shamir (without aborts)
paradigm, we then obtain a lattice-based signature FS[G + G,H], as stated in the
following Theorem. The correctness and security of the scheme are inherited from
the properties of the underlying identification protocol.

Theorem 1. Let m ≥ � > 0, k > m+�, ε ∈ (0, 1/2], s ≥ √
2 ln(� − 1 + 2�/ε)/π

and σ ≥ √
8σ1(S) · s for all S ∈ Z

k×� in the range of IGen. Let γ and εc be such
that Prz←↩D

Zk,σ
[‖z‖ > γ] ≤ εc/3. Let q > max(2γ, σ ·ηε(Zm)) be an odd modulus.

Then the signature scheme FS[G + G,H] is εc-correct and:

• EU-CMA-secure in the ROM under the SISm,k,q,2γ assumption. Namely, for
any adversary A against the EU-CMA security of FS[G + G,H] making at
most QS sign queries and at most QH hash queries, there exists an adver-
sary B against the SISm,k,q,2γ assumption such that:

AdvEU−CMA(A) ≤
(

1 + ε

1 − ε

)QS
[
QH ·

(√
AdvSISm,k,q,2γ (B) +

2
|C|

)]

+ 3QS/2 ·
√

(QH + QS + 1) · s−m ;

• EU-CMA-secure in the QROM under the LWEk−m−�,m,�,χ,q assumption,
assuming that 1/|C|+(|C|2(2γ + 1)2k)/qm is negligible. Namely, for any quan-
tum adversary A against the EU-CMA security of FS[G + G,H] making at
most QS classical sign queries and at most QH quantum hash queries, there
exists an adversary B against the LWEk−m−�,m,�,χ,q assumption such that:

AdvEU−CMA(A) ≤
(

1 + ε

1 − ε

)QS

AdvLWEk−m−�,m,�,χ,q(B)

+
(

1 + ε

1 − ε

)QS

8(QH + 1)2 ·
(

1
|C| +

|C|2(2γ + 1)2k

qm

)

+ 3QS/2 ·
√

(QH + QS + 1) · s−m .

Moreover, these two bounds holds when A is an adversary against the sEU-CMA
security of the scheme by adding an extra +QS · s−m term on the right hand
side.

The proof of Theorem 1 follows from Corollaries 1, 2, 3, and 4, which are
derived from the properties of the underlying identification protocol proved in
Sects. 3.2, 3.3, and 3.4, by applying the Fiat-Shamir transform. The Fiat-Shamir
transform results are reminded in Appendix A.

3.2 Completeness and Commitment Recoverability

We first show that the G + G protocol is complete and commitment recover-
able. As a corollary, we obtain that the resulting Fiat-Shamir signature scheme
FS[G + G,H] is correct.
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Theorem 2. Let m ≥ � > 0, k > m+�, ε ∈ (0, 1/2], s ≥ √
2 ln(� − 1 + 2�/ε)/π

and σ ≥ √
8σ1(S) · s for all S ∈ Z

k×� in the range of IGen. Let γ and εc be such
that Prz←↩D

Zk,σ
[‖z‖ > γ] ≤ εc/3. Let q > 2γ be an odd modulus. Then the G + G

identification protocol is εc-complete and achieves commitment-recoverability.

Proof. First, we note that AS = qJ mod 2q holds for any matrix pair output
by IGen. Then, in order to pass the first verification step, a transcript (w, c, z)
must satisfy:

Az = A(y + 2Sk + Sc) = w + 0 + qJc mod 2q . (3)

In particular, this defines a unique commitment w = Az − qJc mod 2q such
that (w, c, z) can be a valid transcript, and w is efficiently recoverable, by defin-
ing Rec as Rec(A, c, z) := Az − qJc mod 2q.

Now, we note that an honestly generated transcript (w, c, z) always satisfies
Eq. (3). The probability preservation property of the Rényi divergence (Eq. (1))
and Lemma 7 give the following bound:

Pr
(w,c,z)

[‖z‖ > γ] ≤ R∞(Pz‖DZk,σ) · Pr
z←↩D

Zk,σ

[‖z‖ > γ]

≤ 1 + ε

1 − ε
· Pr
z←↩D

Zk,σ

[‖z‖ > γ]

≤ 1 + 1/2
1 − 1/2

· Pr
z←↩D

Zk,σ

[‖z‖ > γ].

Then the probability that an honest transcript (w, c, z) be rejected at most ≤
3 · Prz←↩D

Zk,σ
[‖z‖ > γ]. �

We then obtain the following corollary.

Corollary 1. Using the same assumptions as in Theorem 2, the resulting sig-
nature scheme FS[G + G,H] is εc-correct.

Note that correctness of FS[G + G,H] does not require to assume that H is
modeled as a random oracle, as Lemma 7 holds without relying on the random-
ness of c. This is in contrast to Lemma 8 that generically considers completeness
of signatures obtained using the Fiat-Shamir transform.

3.3 Honest-Verifier Zero-Knowledge and Commitment Min-Entropy

We now show that the G + G protocol is HVZK and has large commitment min-
entropy. As a corollary, we obtain that the signature scheme FS[G + G,H] is
EU-CMA-secure provided it is EU-NMA-secure.

Theorem 3. Let m ≥ � > 0, k > m+�, ε ∈ (0, 1/2], s ≥ √
2 ln(� − 1 + 2�/ε)/π

and σ ≥ √
8σ1(S) · s for all S ∈ Z

k×� in the range of IGen. Let q > σ · ηε(Zm) be
an odd modulus. Then the G + G identification protocol satisfies:
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• (1 + ε)/(1 − ε)-divergence HVZK,
• 2ε/(1 − ε)-HVZK.

In addition, its commitment min-entropy is ≥ m · log(s/3).

Proof. We prove both properties separately. We start by proving HVZK, which
is inherited from Lemma 7 and then focus on commitment min-entropy.

HVZK. The simulator on input a challenge c ∈ C and a public matrix A
samples z ←↩ D

Zk,
√

2σ, sets w = Az − qJc and returns (w, c, z) as a transcript.
As everything here is a function of z and c, we can rely on Lemma 7. The
bounds from the above claim are immediately inherited from the latter lemma
by applying the data processing inequalities (which we recall in Eq. (2) for the
Rényi divergence – the same inequality holds replacing the Rényi divergence by
the statistical distance). This completes the zero-knowledge analysis.

Commitment Min-Entropy. Let w ∈ Z
m
2q and (Y �

1 , Y �
2 )� ←↩ DZk,Σ(S),

where Y1 takes values in Z
k−m. Given a matrix A = (A0|2Im) ∈ Z

m×k
2q , it

holds that

Pr
(Y1,Y2)

[A0Y1 + 2Y2 = w mod 2q] = Pr
(Y1,Y2)

[2Y2 = w − A0Y1 mod 2q]

≤ Pr
(Y1,Y2)

[Y2 = (w − A0Y1)ζ mod q] ,

where ζ is the modular inverse of 2 mod q. Hence, the min-entropy of the com-
mitment is ≥ H∞(Y2 mod q|Y1) and we move on to bounding the latter quantity
from below. Note that there exist σ ≥ σ1 ≥ · · · ≥ σm ≥ (σ2 − s2σ1(S)2)1/2

and Q ∈ R
m×m orthogonal such that

Σ(S) = Q

⎛

⎜⎝
σ2

1

. . .
σ2

m

⎞

⎟⎠Q�.

Let y1 ∈ Z
k−m be fixed. The distribution of Y2 conditioned on Y1 = y1

is exactly D
Zm,Σ,c, as defined in Lemma 3 (with c = 0). Let σ2

1 (resp. σ2
m)

be the largest (resp. smallest) eigenvalue of Σ and c = (c1, . . . , cm)�. We
are interested in obtaining an upper bound on ρΣ,c(z + qZm)/ρΣ,c(Z

m) for
all z ∈ (−q/2, q/2]m. Indeed, this quantity corresponds to all values taken
by the probability mass function of the random variable Y2 mod q conditioned
on Y1 = y1, namely PrY2|Y1=y1(Y2 = z mod q) =

∑
u∈qZm ρΣ,c(z+u)/ρΣ,c(Z

m).

As Σ
−1

is the bottom right submatrix of Σ−1 of size m×m, it holds that for
any y ∈ R

m, we have y�Σ
−1

y ∈ ‖y‖2 · [1/σ2
1 , 1/σ2

m]. Hence all singular values σi

of Σ lie in [(σ2−s2σ1(S)2)1/2, σ]. Thanks to the theorem assumptions, we obtain
that all σi’s are above ηε(Zm). Using Lemma 6, it holds that

ρΣ,c(Z
m) ≥ (1 − ε) ·

√
detΣ ≥ (1 − ε) ·

(
σ2 − s2σ1(S)2

)m/2

.
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The latter is ≥ (1 − ε) · (sσ1(S))m, by assumption on σ. For the numerator, we
first use Lemma 6 once more, to obtain:

ρΣ,c(z + qZm) ≤ ρΣ(qZm) = 1 + ρΣ(qZm \ {0}) ≤ 1 + ρσ(qZm \ {0}) .

Rewriting the assumption on q we have 1/σ > ηε((1/q)Zm). Note that the dual
lattice of (1/q)Zm is qZm. Hence, we have ρσ(qZm \{0}) ≤ ε by definition of the
smoothing parameter. The result follows by noting that for any S in the range
of IGen, we have σ1(S) ≥ 1 as S includes an identity matrix. �
We then obtain the following corollary as an application of Theorem 6.

Corollary 2. Using the same assumptions as in Theorem 3 the resulting sig-
nature scheme FS[G + G,H] is EU-CMA-secure (and sEU-CMA-secure) in the
QROM, provided it is EU-NMA-secure. Namely, for any (possibly quantum)
adversary A against the EU-CMA security of FS[G + G,H] making at most QS

(classical) sign queries and at most QH (possibly quantum) hash queries, there
exists an adversary B against the EU-NMA security of FS[G + G,H] such that:

AdvEU−CMA(A) ≤
(

1 +
2ε

1 − ε

)QS

AdvEU−NMA(B)

+ 3QS/2 ·
√

(QH + QS + 1) · (sσ1(S))−m .

The bound holds with an extra QS · (sσ1(S))−m term when A is an adversary
against the sEU-CMA security of FS[G + G,H].

3.4 Special Soundness and Lossy Soundness

To complete the analysis, we show that (i) G + G is special-sound, and that
(ii) G + G is a lossy identification scheme with lossy-soundness. As a corollary, we
obtain that the signature scheme FS[G + G,H] is EU-NMA-secure in the ROM,
and in the QROM under some parameters constraint.

Theorem 4. Let m ≥ � > 0, k > m+�, ε ∈ (0, 1/2], s ≥ √
2 ln(� − 1 + 2�/ε)/π

and σ ≥ √
8σ1(S) · s for all S ∈ Z

k×� in the range of IGen. Let γ > 0 and q > 2γ
be an odd modulus. Then the G + G identification protocol is:

• special-sound, under the SISm,k,q,2γ assumption,
• lossy, under the LWEk−m−�,m,�,χ,q assumption,
• εls-lossy sound for

εls =
1
|C| +

|C|2(2γ + 1)2k

qm
.

Proof. We first prove G + G achieves special soundness, and then explain how
to set our identification scheme in lossy mode.

Special Soundness. Assume there exists a PPT adversary A which, given the
verification key vk = A, produces two valid transcripts (w, c0, z0), (w, c1, z1)
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with c0 �= c1. It can be turned into an SISm,k,q,2γ solver. Indeed, by definition,
such transcripts satisfy A(z0 − z1) = qJ(c1 − c0) mod 2q.

Notice that we have A(z0 − z1) = 0 mod q, which implies that z0 − z1 is a
solution to the SIS instance defined by A. In addition, when reducing modulo 2,
we also have A(z0 −z1) = J(c1 −c0) mod 2, which implies that z0 �= z1. Finally,
note that the condition on γ implies that ‖z0 − z1‖ ≤ 2γ (as transcript validity
implies ‖z‖ ≤ γ), and that z0 − z1 �= 0 mod q.

Hence, there exists an adversary B against the SISm,k,q,2γ problem such that:

Adv(A) ≤ AdvSISm,k,q,2γ (B) .

Let us now focus on lossy-soundness. We first define a lossy key generation
algorithm, and then argue about lossy-soundness.

Lossiness. The lossy key generation algorithm LossyIGen only modifies the gen-
eration of B. Recall that in IGen, the latter is defined as B ← A1S1 + S2,
with A1 ←↩ U(Zm×(k−m−�)

q ) and (S1,S2) ←↩ χ
(k−m−�)×�
η × χm×�

η . The lossy
key generation algorithm LossyIGen samples it as B ←↩ U(Zm×�

q ). Lossy veri-
fication keys are computationally indistinguishable from non-lossy ones, under
the LWEk−m−�,m,�,η,q assumption.

εls-lossy Soundness. First note that, if the lossy verification key A is such
that, for all commitment w, there exists at most one challenge c such that there
exists z with (w, c, z) passing verification, then, as the challenge is sampled uni-
formly and independently of w, an (unbounded) prover cannot pass verification,
except with probability at most 1/|C|.

We then focus on proving that the above holds with overwhelming prob-
ability over the choice of the lossy key A. By contradiction, assume there
exists w, c0, c1, z0, z1 with ‖z0‖, ‖z1‖ ≤ γ and c0 �= c1 ∈ C, such that we have
both Az0 = w + qJc0 mod 2q and Az1 = w + qJc1 mod 2q. Then, we have:

A(z0 − z1) = qJ(c1 − c0) mod 2q .

Recall that A is of the form (qJ − 2B|2A1|2Im), with A1,B uniform over Zq.
Hence, the matrix A mod q is of the form (B|A1|Im), since q is odd. Then the
above implies that (B|A1|Im)(z0 − z1) = 0 mod q with z0 − z1 �= 0 mod q. This
happens with probability at most 1/qm.

To conclude, note that there are at most (2γ +1)2k · |C|2 choices for z0, z1, c0

and c1. A union bound therefore implies that the probability over A that there
is a commitment with at least two challenges permitting valid transcripts is at
most |C|2(2γ + 1)2k/qm. Our lossy identification scheme is then εls-lossy-sound,
with

εls ≤ 1
|C| +

|C|2(2γ + 1)2k

qm
,

which completes the proof of the theorem. �
We then obtain the following corollary as an application of Lemma 10.
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Corollary 3. Using the same assumptions as in Theorem 4, the resulting sig-
nature scheme FS[G + G,H] is EU-NMA-secure, in the ROM. Namely, for any
adversary A against the EU-NMA security of FS[G + G,H], there exists an adver-
sary B against the SISm,k,q,2γ assumption such that:

AdvEU−NMA(A) ≤ QH ·
(√

AdvSISm,k,q,2γ (B) +
2
|C|

)
.

We also obtain the following corollary as an application of Theorem 7.

Corollary 4. Using the same assumptions as in Theorem 4, and if εls is neg-
ligible, the signature scheme FS[G + G,H] is EU-NMA-secure, in the QROM.
Namely, for any (possibly quantum) adversary A against the EU-NMA security
of FS[G + G,H] making at most QH (possibly quantum) hash queries, there exists
a quantum adversary B against the LWEk−m−�,m,�,χ,q assumption such that:

AdvEU−NMA(A) ≤ AdvLWEk−m−�,m,�,χ,q(B)+8(QH+1)2·
(

1
|C| +

|C|2(2γ + 1)2k

qm

)
.

To conclude this section, we introduce an additional assumption of a simi-
lar flavour as the SelfTargetMSIS assumption [KLS18], which allows to directly
prove EU-NMA-security of FS[G + G,H] in the QROM as it is (up to LWE) the
EU-NMA security game of the resulting signature. As for SelfTargetMSIS, this
problem can be related in the ROM to SIS, using the special soundness property
of the scheme.

Definition 10 (GpGSelfTargetSIS). Let m ≥ � > 0, k > m + �. Let γ > 0
and q > 2γ be an odd modulus. The GpGTargetSISm,k,�,γ,q states that given
a matrix A := (qJ − 2B|2A1|2Im) ∈ Z

m×k
2q , where A1 ←↩ U(Zm×(k−m−�)

q )
and B ←↩ U(Zm×�

q ), and oracle access to a hash function H, it is computa-
tionally hard to find c ∈ C, z ∈ Z

k and μ ∈ {0, 1}� such that H(Az−qJc, μ) = c
and ‖z‖ ≤ γ.

3.5 Asymptotic Parameters Analysis

Our analysis above is applicable to the following instantiation of parameters, as
a function of the security parameter λ and the number of signature queries QS .
We assume QS to be a large polynomial in λ. We consider k, �,m linear in λ.
We set χ as D

Z,
√

k with tailcutting to get samples in {−k, . . . , 0, . . . , k} with
overwhelming probability. We let ε = 1/QS .

We make the security of the G + G scheme rely on the following two assump-
tions. First, the LWEk−m−�,k,�,q,χ assumption, where

√
k = αq. This LWE

parametrization is compatible with the reduction from worst-case lattice prob-
lems from [Reg09]. Second, the SISm,k,β assumption, where β = O(

√
kσ). The

SIS parametrization is compatible with the reductions from worst-case lattice
problems from [MR07,GPV08] when q ≥ Ω(

√
kβ). The hardness of both prob-

lems is balanced out when α ≈ 1/β.
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Further, the distribution of z is centered Gaussian with standard devia-
tion σ = 4σ1(S)

√
ln(� − 1 + 2�/ε)/π, which is O(σ1(S)

√
log(QSλ)). Moreover

as σ1(S) = O(λ), the norm of z is at most β = O(λ3/2 log1/2 QS). Finally, we
set q = Θ(λ2 log1/2 QS).

The verification key and a signature respectively have bit-sizes O(λ2 log λ)
and O(λ log λ).

4 Optimizations and Concrete Parameters

In order to decrease the sizes of a lattice-based scheme, a common approach is
to replace Z with a cyclotomic polynomial ring of the form R = Z[x]/(1 + xn),
where n is a power of 2, and to rely on the intractability of the module versions of
SIS and LWE [BGV12,LS15]. Gaussian distributions are extended by considering
the coefficients of the polynomials.

4.1 Description of the Module-Based Scheme

In this section, we propose parameters for an optimized, module version of the
G + G signature, that we present in Fig. 4.

As in Sect. 3, let m > 0, k > m + 1 and � = 1. Let j = (ζ∗, 0, . . . , 0) ∈ Rm,
where ζ = 1+xn/2 and ζ∗ = 1−xn/2 satisfy ζ∗ζ = 2 mod 1+xn. The challenge
space is R/ζ∗R. We let η > 0 and χη = U({y ∈ R|‖y‖∞ ≤ η}). Given s ∈ R,
we define rot(s) as the n × n matrix whose (i, j)-th entry is the coefficient of
degree n−1− j of xi ·s mod 1+xn. This matrix maps the coefficient embedding
of a polynomial c to the coefficient embedding of sc. We extend this definition
to vectors coordinate-wise and we define Σ(s) = Σ(rot(s)), where Σ is borrowed
from Sect. 3. This gives rise to the signature scheme presented in Fig. 4.

KeyGen(1λ) :

1: A0 U(Rm×k−m−1
q )

2: do (s1, s2) k−m−1
η × χm

η

3: s (1|s�
1 |s�

2 )� ∈ Rk
2q

4: while ‖ζs‖ ≥ S
5: b A0s1 + s2 mod q
6: A (−2b+ qj|2A0|2Im)
7: return (vk, sk) = (A, s)

Sign(A, s, μ) :
1: y Rk,Σ(s)
2: w Ay mod 2q
3: c H(w, μ)
4: u

χ

D

DR,s,−c/2

5: z y + (ζu + c)s
6: return (z, c)

Verify(A, μ, z, c) :
1: w Az − qcj mod 2q
2: if c = H(w, μ)
3: and ‖z‖ ≤ γ then
4: return 1
5: end if
6: return 0

Fig. 4. The Module G+ G Signature Scheme.

Beyond relying on polynomial rings, we consider various improvements and
optimizations, which we discuss now.

KeyGen: The key generation step includes a rejection sampling step. The thresh-
old S will be set such that about 50% of the keys will be rejected. This helps
controlling the upper bound on the smoothing parameter of the secret lattice.
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Sign: Instead of computing z = y + (2u + c)s, we compute z = y + (ζu + c)s.
As As = j mod 2q, we have ζAs = 0 mod 2q by definition of j. Thus, the
identity Az− qcj = Ay mod 2q still holds. The main advantage of this modi-
fication is that the secret lattice is now ζsR instead of 2sR, whose smoothing
parameter is a factor

√
2 smaller.

Verify: The verification bound is set to γ = 1.01 · √
nkσ, and the signer may

verify that its signature is accepted before outputting it, up to restarting in
the somewhat rare event that it is not.

An analysis similar to the one from the previous section would bring the
following result. We omit the QROM analysis relying on the lossy-soundness,
as the concrete parameters we propose in the next section are outside of the
parameters range required for this analysis to hold.

Theorem 5. Let n > 0 be a power of two defining a polynomial ring R =
Z[x]/(xn + 1). Let m > 0, k > m + 1, ε ∈ (0, 1/2], s ≥ √

2 ln(n − 1 + 2n/ε)/π

and σ ≥ √
2σ1(S) · s for all S ∈ Z

kn×n in the range of rot(IGen). Let γ and εc be
such that Prz←↩DRk,σ

[‖z‖ > γ] ≤ εc/3. Let q > max(2γ, σ · ηε(Zmn)) be an odd
modulus.

Then the signature scheme from Fig. 4 is εc-correct and EU-CMA-secure in
the ROM under the MSISn,m,k,q,2γ assumption. Namely, for any adversary A
against the EU-CMA security of FS[G + G,H] making at most QS sign queries
and at most QH hash queries, there is an adversary B against the MSISn,m,k,q,2γ

assumption such that:

AdvEU−CMA(A) ≤
(

1 + ε

1 − ε

)QS
[
QH ·

(√
AdvMSISn,m,k,q,2γ (B) +

2
|C|

)]

+ 3QS/2 ·
√

(QH + QS + 1) · s−mn .

This bound holds when A is an adversary against the sEU-CMA security of the
scheme by adding an extra “+QS · s−m” term on the right hand side.

4.2 Concrete Parameters

We now give concrete parameters and estimates of the public key and signa-
ture sizes resulting from these optimizations in Table 1. This gives rise to the
following estimates. The script we used is derived from the one provided with
Dilithium [DKL+18] and is available as supplementary material. We made the
following additional assumptions:

• We use the compression technique from [BG14] to get rid of the lower log α
bits of the signature, except the lowest.1 The hint resulting from the compres-
sion technique is assumed to follow a Gaussian distribution whose standard

1 As our key generation algorithm outputs a A with 2Im, what we cut is cyclically
bit-shifted.
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Table 1. Parameter sets for the Module G+ G signature scheme. Numbers in paren-
theses for SIS security are for strong unforgeability.

Target Security 120 180 260

n 256 256 256
q 95233 50177 202753
S 23.33 27.59 32.97
s 14.22 14.22 14.22
σ 331.91 392.57 469.12
γ 13885.1830 18857.9404 33367.4202
(m, k − m) (2,4) (3,5) (4,7)
η 1 1 1
α 128 128 1024
BKZ block-size b to break SIS 415 (338) 619 (512) 924 (777)
Best Known Classical bit-cost 121 (98) 181 (149) 270 (227)
Best Known Quantum bit-cost 106 (86) 159 (131) 237 (199)
BKZ block-size b to break LWE 411 615 895
Best Known Classical bit-cost 120 179 261
Best Known Quantum bit-cost 105 158 230
Signature size with rANS 1542 2033 2518
Expected public key size 1120 1568 2336
Sum 2662 3601 4854
Signature size [DFPS22] 1903 2473 3461
Public Key size 800 1056 1760
Sum 2703 3529 5221
Signature size [CCD+23] 1463 2337 2908
Public Key size 992 1472 2080
Sum 2455 3809 4988

deviation is
√

2σ/α. The technique presented in [DKL+18] can be readily
adapted to the mod 2q setting. This comes at the cost of increasing the ver-
ification bound to γ = 1.01 · √nkσ +

√
nm(1 + α/4) to take into account the

inaccuracy of the commitment recovered by the verifier.
• The final signature is compressed using range Asymmetric Numeral System,

as explained in [ETWY22]. For simplicity, we assume that this gives expected
bitsizes equal to the entropy of the compressed vector.

For comparison, we include in Table 1 a reminder on estimated sizes of opti-
mized Lyubashevsky signatures from [DFPS22], in the hyperball setting, as well
as the experimental sizes of Haetae [CCD+23], which implements the bimodal
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hyperball. As far as we are aware of, these are the lowest signatures and key sizes
provided in the literature for Lyubashevsky’s signatures (when using the core-
SVP hardness methodology to estimate security). We note that the resulting
signature sizes are 20% to 30% smaller than those from [DFPS22]. The asymp-
totic gain of our signature is observable when comparing the signature sizes
with Haetae, as the tradeoff is first in their favor but ends up in our favor for
the higher security level, up to 16% of savings. However, the sum of the public
key and the signature sizes is somewhat similar across the three signatures. This
is due to the fact that in the non-bimodal setting, a practical optimization due
to [DKL+18] consists in truncating the low bits of the public key, at the cost of
increasing the verification bound. While such a technique is also implemented
in Haetae, its efficiency is relative in this setting, and we chose not to incorporate
it in G + G for the sake of simplicity.

4.3 Optimized NTRU Key Generation Algorithm

We can alternatively use the NTRU-based key generation algorithm described
in [DDLL13]. In our setting, it is possible to improve it, by relying on the afore-
mentioned technique based on the divisibility of 2 by (1 + xn/2). This leads to
the key generation algorithm presented in Fig. 5.

KeyGen(1λ) :

1: do (f, g) U({x ∈ R
2[‖x‖∞ ≤ η})

2: while ‖(ζf |2xn/2g + ζ)‖ ≥ S or f non-invertible mod q
3: h [ζg + 1]/f mod q
4: A (ζ∗(q − 1)h | ζ∗) mod 2q
5: s (f | ζg + 1)�

6: return vk = A and sk = (A, s)

Fig. 5. NTRU KeyGen for G+ G

The algorithm outputs keys A and (A, s) satisfying As = ζ∗q mod 2q as
it holds that (q − 1)hf = (q − 1)(ζg + 1) mod 2q since (q − 1) is even. This
implies that ζAs = 0 mod 2q, and the lattice that needs to be smoothed out
is ζsR where ζs� = (ζf |2xn/2g + ζ). We then propose two sets of parameters
in Table 2, for ring dimensions 512 and 1024. The former leads to only around
90 bits of security, but the latter allows to reach NIST security level III. While
the sum |vk| + |sig| is similar to those of the other schemes, we note that the
signature size is further decreased, compared to module G + G. The resulting
signature is 40% smaller than [DFPS22] and 55% smaller than Dilithium.
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Table 2. Parameter Sets for NTRU G+ G.

Target Security 90 180

n 512 1024
q 32257 45569
S 43.73 36.11
KeyGen acceptance rate 0.25 0.5
s 14.32 14.42
σ 626.49 520.75
B 21719.152 40218.387
η 2 1
α 256 2048
BKZ block-size b to break SIS 314 (238) 740 (622)
Best Known Classical bit-cost 91 (69) 216 (181)
Best Known Quantum bit-cost 80 (61) 190 (159)
BKZ block-size b to break LWE 305 616
Best Known Classical bit-cost 89 180
Best Known Quantum bit-cost 78 158
Signature size with rANS 974 1497
Expected public key size 992 2080
Sum 1966 3577
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A The Fiat-Shamir Transform

In this section, we recall the Fiat-Shamir transform, which allows to transform an
identification scheme into a digital signature. It removes interaction by sampling
the challenge as a hash function evaluation H(w, μ) with w being the prover’s
commitment and μ the signed message. The hash function is then modeled as a
random oracle in the analysis. The signature is the pair (w, z), which is verified
by checking validity of the transcript (w,H(w, μ), z).

As the challenge c being typically much shorter than w, it is desirable to
replace w by c in the signature. This is possible if the underlying identification
scheme is commitment-recoverable (see Definition 2). Verification simply starts
by recovering w ← Rec(vk, c, z). Our protocol satisfies this property, thus we
describe the signature obtained applying this version of the Fiat-Shamir trans-
form. See Fig. 6.

For the sake of completeness, we state the following lemma arguing correct-
ness of the signature scheme FS[ID,H], which immediately follows from the com-
pleteness and commitment-recoverability of the underlying identification scheme.
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KeyGen(1λ) :
1: (vk, sk) IGen(1λ)
2: return vk and sk

Sign(sk, μ) :
1: (w, st) P1(sk)
2: c H(w, μ)
3: z P2(sk, st, w, c)
4: return (c, z)

Verify(vk, (c, z), μ) :
1: w Rec(vk, c, z)
2: if c �= H(w, μ) then
3: return 0
4: end if
5: return V(vk, (w, c, z))

Fig. 6. Fiat-Shamir Signature FS[ID, H].

Lemma 8. Let ID = (IGen,P,V) denote an identification scheme. Further
assume that ID is ε-complete and commitment-recoverable. Then the signature
scheme FS[ID,H] described in Fig. 6 is ε-correct in the ROM.

Security of FS[ID,H] can be proven by successive claims. First, one can reduce
EU-CMA security of FS[ID,H] to its EU-NMA security assuming ID has large com-
mitment min-entropy and is honest-verifier zero-knowledge (see Definition 3).
This can be shown by relying on the following theorem.

Theorem 6 (Adapted from [GHHM21], Theorem 3). Let ID be an identi-
fication scheme which has α-min-entropy and satisfies ε-statistical HVZK. Let
H a hash function modeled as a random oracle. Then, for any (possibly quan-
tum) adversary A against the EU-CMA security of FS[ID,H] making at most QS

(classical) sign queries and at most QH (possibly quantum) hash queries, there
exists an adversary B against the EU-NMA security of FS[ID,H] such that:

AdvEU−CMA(A) ≤ AdvEU−NMA(B) + QSε + 3
QS

2
·
√

(QH + QS + 1) · 2−α .

Furthermore, if ID is (1 + ε)-divergence HVZK, the following bound applies:

AdvEU−CMA(A) ≤ (1 + ε)QSAdvEU−NMA(B) + 3QS/2 ·
√

(QH + QS + 1) · 2−α .

The result can be adapted to sEU-CMA security by adding QS2−α to the bounds.

It remains to prove EU-NMA-security to conclude the security analysis, which
can be argued via the following statement for lossy identification schemes (see
Definition 4).

Theorem 7 ([KLS18], Theorem 3.4). Let ID be a lossy identification scheme
satisfying εls-lossy soundness for some εls > 0. Let H a hash function modeled as
a random oracle. For any (possibly quantum) adversary A against the EU-NMA
security of FS[ID,H] making at most QH (possibly quantum) hash queries, there
exists a quantum adversary B against the lossiness of ID such that

AdvEU−NMA(A) ≤ Advlossiness(B) + 8(QH + 1)2 · εls .

Finally, we describe a reduction in the (classical) ROM which relies on weaker
properties compared to the above QROM reduction. Various folklore reductions
are known in this setting, and we consider a variant based on special soundness
(see Definition 5), which is first reduced to the soundness as recalled below.
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Definition 11 (Soundness). Let ID = (Igen,P,V) be an identification scheme.
It is sound if for any PPT adversary A, the quantity

Pr
[
V(vk, (w, c, z)) = 1 | (w, c, z) ← A(vk)

]

is negl(λ), where the probability is over the choice of vk and the coins of A.

We recall the Reset Lemma, which is a standard reduction between soundness
and special soundness.

Lemma 9 (Reset Lemma [BP02]). Let ID = (Igen,P,V) be an identification
scheme. Given any adversary A against the soundness of ID, there exists an
adversary B against the special soundness of ID such that

Advspecial−sound(B) ≥
(
Advsound(A) − 1

|C|
)2

.

While this result is folklore, we finally show that special soundness implies
EU-NMA security in the ROM.

Lemma 10. Let ID be an identification scheme and H a hash function mod-
eled as a random oracle. For any adversary A against the EU-NMA security of
FS[ID,H] making QH classical hash queries, there exists an adversary B against
the special soundness of ID such that:

AdvEU−NMA(A) ≤ QH ·
(√

Advspecial−sound(B) +
2
|C|

)
.

Proof. We first reduce the soundness of ID to the EU-NMA security of FS[ID,H].
First, if A outputs a forgery (μ∗, (c∗, z∗)) such that H(Rec(vk, c∗, z∗), μ∗) was
never queried, it has probability at most 1/|C| of outputting a valid forgery.

The reduction B′ guesses the hash query H(w∗, μ∗) made by A which is used
in A’s forgery. When this query is made, B′ answers it by running sending w∗

as commitments to its challenger. The latter replies with a challenge c∗ and B′

programs H(w∗, μ∗) as c∗. With probability 1/QH , B′’s guess is correct and the
adversary A halts with a forgery (μ∗, (c∗, z∗)) with Rec(vk, c∗, z∗) = w∗. We then
have

Advsound(B′) ≥ 1
QH

· AdvEU−NMA(A) − 1/|C| .

Finally, Lemma 9 gives an adversary B against the special soundness such that

Advspecial−sound(B) ≥
(
Advsound(B′) − 1

|C|
)2

,

which completes the proof. �
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B Related Work

In Fig. 7, we give a simplified version of the Eagle signature scheme described
in [YJW23] (with our notations from Sect. 4 and an extra parameter γ′ > 0).
Minor differences with the scheme from Fig. 4 include the facts that Eagle works
in the ring setting as opposed to the module setting, that a parameterizable
integer p is considered while we work with p = 2, and that the RLWE sample
from Eagle is computed modulo Q = pq, while we use MLWE samples com-
puted modulo q. The exact signing algorithm from [YJW23] is omitting some
elements of the final vector z to optimize compactness, but we do not consider
this optimization to better illustrate the relationship with G + G. Moreover, as
usual in hash-and-sign schemes, the message is padded using some salt, chosen
as a uniform 320-bit long bitstring.

KeyGen(1λ):
1: a0 (Rq)
2: (s1, s2) η × χη

3: s (1|s1|s2)� ∈ R3
2q

4: b a0s1 + s2 mod Q
5: A (q − b|a0|1)
6: return (vk, sk) = (A, s)

Sign(A, s, μ):

1: salt ({0, 1}320)
2: S = rot(s)
3: y

U
χ

U

DR3,σ2I3n−4s2SS�
4: u H ′(μ, salt)
5: u′ u − Ay mod Q
6: c �u′�q

7: k DR,s,−c/2

8: z y + Sc + pSk
9: return (salt, z)

Verify(A, μ, σ)
1: σ = (salt, z)
2: u H(μ, salt)
3: z′ u − Az
4: Accept if ‖z‖ ≤ γ

and ‖z′‖ ≤ γ′

Fig. 7. Simplified Eagle Signature Scheme.

We now explain how to decompose Eagle as an instance of G + G with a
specific hash function, as well as the differences that arise during verification due
to this hash function, following the steps of [CLMQ21]. The instance of the hash
function H that turns the signing algorithm of G + G into a simplified version
of Eagle is described in Steps 3, 4 and 5 of the signing algorithm from Fig. 7.
It proceeds as follows. On input w ∈ R, μ and salt, the function H computes a
target u = H ′(μ, salt) using another hash function H ′ and sets u′ = u − w. The
challenge is then �u′�q, i.e., a rounding of u′ to the qR lattice.

The verification algorithm differs substantially due to the fact that Verify
is aware of the inner workings of the hash function. It knows in particular
that Az = Ay + qc mod Q ≈ u. However, the challenge c is omitted from
the signature and instead of checking that H(Az − qc, μ, salt) = c, it checks
that u−Az is sufficiently short, i.e., has norm smaller than γ′. While this check
is less accurate than recomputing the hash value, it allows one to omit c in the
signature, hence reducing its size. Finally, the verification algorithm also checks
that z has norm ≤ γ, as in Fig. 4.
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Abstract. We present a general framework for polynomial-time lattice
Gaussian sampling. It revolves around a systematic study of the discrete
Gaussian measure and its samplers under extensions of lattices; we first
show that given lattices Λ′ ⊂ Λ we can sample efficiently in Λ if we know
how to do so in Λ′ and the quotient Λ/Λ′, regardless of the primitivity of
Λ′. As a direct application, we tackle the problem of domain extension
and restriction for sampling and propose a sampler tailored for lattice
filtrations, which can be seen as a broad generalization of the celebrated
Klein’s sampler. Then, we demonstrate how to sample using a change of
bases, or even switching the ambient space, even when the target lattice
is not represented as full-rank in the ambient space. We show how to
correct the induced distortion with the “convolution-like” technique of
Peikert (Crypto 2010) (which we encompass as a byproduct). Since our
framework aims at modularity and leverage the combinations of smaller
samplers to build new ones, we also propose ad-hoc samplers for the
so-called root lattices An,Dn,En as base cases, extending the state-of-
the-art for root lattice sampling, which was limited to Zn. We also show
how our framework blends with the so-called king construction and pro-
vides a sampler for the remarkable Leech and Barnes-Wall lattices.

As a by-product, we obtain novel, quasi-linear samplers for prime and
smooth conductor (as 2�3k) cyclotomic rings, achieving essentially opti-
mal Gaussian width. In a practice-oriented application, we showcase the
impact of our work on hash-and-sign signatures over ntru lattices. In
the best case, we can gain around 200 bytes (which corresponds to an
improvement greater than 20%) on the signature size. We also improve
the new gadget-based constructions (Yu, Jia, Wang, Crypto 2023) and
gain up to 110 bytes for the resulting signatures.

Lastly, we sprinkle our exposition with several new estimates for the
smoothing parameter of lattices, stemming from our algorithmic con-
structions and by novel methods based on series reversion.
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1 Introduction

For the last few decades, lattices have proved themselves to be a cornerstone of
modern cryptography, allowing the development of feature-rich schemes, includ-
ing digital signatures [9,15,29], identity-based encryption [18], functional encryp-
tion [2], (non-interactive) zero-knowledge proofs [27] and last but not least fully
homomorphic encryption [4,17]. A common denominator of many such schemes
revolves around the ability of sampling from the so-called discrete Gaussian dis-
tribution over a given lattice Λ. Given a center c in the ambient space ΛR and
a “width” s — which is essentially the standard deviation by analogy with the
normal distribution — the distribution DΛ,c,s2 assigns the vector v ∈ Λ the
probability proportional to the Gaussian function exp(−π‖v − c‖2/s2). Remark
that this distribution only depends on the lattice and not on the basis used to
represent it. In this sense it does not leak any information about a possible secret
basis: this “zero-knowledge” property accounts for its utility in cryptography.

For specific lattices such as Zn or lattices stemming from some trapdoor sam-
pling as in [23], ad-hoc approaches are commonly used. In comparison, to sample
in an a priori arbitrary lattice, two polynomial time samplers are well-known and
widely used in constructions and beyond: the so-called Klein sampler (or gpv
sampler) [18] and the Peikert sampler [25], both having different advantages and
drawbacks. The former is a sequential sampler: the algorithm performs adaptive
iterations of sampling in projected lines, where the choices made in each iteration
affect the values used in the next. It is rather costly and imposes to work with
the Gram-Schmidt orthogonalization of the input basis. The latter is a naturally
parallel sampler, reducing the problem of sampling in Λ to sample the coeffi-
cients of the desired sample on the input basis. This “change of basis” induces
a distortion, blurred by convolving with a sufficiently wide perturbation. It is
faster than Klein’s sampler at the price of slightly worse quality, in the sense
that the minimal sampleable width is larger. Note that these two algorithms
correspond to the randomization of two famous polynomial time oracles for the
(approximate) Closest Vector Problem from Babai [3]: the Klein sampler corre-
sponds to the nearest plane algorithm and the Peikert sampler to the rounding
algorithm. Fine-tuning such algorithms is one of the main tasks for designers of
signatures in the hash-then-sign framework of [10,18].

On Hash-and-sign Digital Signatures. Designing, selecting, and analyzing
quantum-resistant schemes is the main goal et Designing, selecting, and ana-
lyzing quantum-resistant schemes is the main goal of the ongoing NIST stan-
dardization effort for post-quantum cryptography. In July 2022, NIST eventually
announced four post-quantum algorithms to be standardized. For signatures, two
of the three selected algorithms are lattice-based, falcon [29] and dilithium
[9], epitomizing two known classes of lattice signatures: hash-and-sign and Fiat-
Shamir with aborts. Recently, Espitau et al. designed an alternative approach to
falcon, called mitaka [15]. As an attractive advantage, mitaka can be instan-
tiated over arbitrary cyclotomic fields, conveniently allowing it to reach all NIST
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security levels. mitaka relies on a so-called hybrid sampler [28], which acts as
Klein’s sampler at the level of the ntru module and calls the Peikert sampler to
sample within this ring. For power-of-two cyclotomics, this approach is sufficient,
as the sampling of the ring of integers amounts to sampling in a square lattice
Zn. However, for the other cyclotomic rings considered in [15], this induces a
non-negligible quality loss, thus a slight degradation in security. Recently, the
scheme Hawk [11] presented a new hash-and-sign signature tied to lattices, relying
on a more recent—yet natural— cryptographic assumption, the so-called lattice
isomorphism problem. This latter scheme raises the non-trivial question of the
possibility of sampling efficiently in lattices with remarkable packing properties,
such as the Leech or the Barnes-Walls lattices. Interestingly, the same question
was also independently triggered in the new design of lattice gadgets of [31] to
improve the efficiency and compactness of trapdoors. All in all, the quest for new
efficient samplers, especially for remarkable lattices, has interesting consequences
in the realm of cryptographic design.

Contributions. In this work, we aim at going beyond this Klein/Peikert
dichotomy for polynomial time sampling. We showcase a general framework
based on a systematic study of the discrete Gaussian distribution under exten-
sions: algebraic extensions through short exact sequences and metric extensions
through linear transformations. This framework allows us to build new samplers
over extensions or restrictions of domains in which we already know how to sam-
ple. Our abstract samplers correspond to effective versions of general bounds on
the smoothing parameter of lattices: this correspondence is a unifying thread in
all our exposition. To complete our modular framework, we also provide ad-hoc
samplers of essentially optimal widths for root lattices, to use them as funda-
mental blocks to instantiate more involved samplers. Optimality is deduced from
a new theoretical bound on the smoothing parameter obtained from the rela-
tion between the Gaussian function over a lattice and its theta series. When the
kissing number and minimum of the (dual) lattice are known, it gives a tighter
bound on the smoothing, unconditionally on the value of ε — unfortunately, it
is unlikely to get this information for an arbitrary lattice. As an application, we
obtain novel, optimal, and efficient samplers over cyclotomic rings of prime and
smooth conductors and optimized trapdoors in the spirit of [31]. The technical
details of our contributions are as follows.

Exploiting the Decomposition over Short Exact Sequences. Given a
lattice Λ and one of its sublattices Λ′, we can associate the short exact sequence
of Z-modules:

0 −→ Λ′ −→ Λ −→ Λ�Λ′ −→ 0.
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Note that in this sequence, the quotient Λ/Λ′ is not necessarily a lattice1 itself,
and as such, Λ cannot be identified as a lattice to Λ′ ⊕ Λ/Λ′. We show how
to deal with this extension of groups to extend samplers for Λ′ and Λ/Λ′ into a
sampler for Λ, for standard deviations above the smoothing parameters of the Λ′

component. In particular, we identify precisely the projection of the Gaussian
measure onto the quotient, recovering the known situation where Λ′ is either
full-rank or primitive. This construction translates into a simple bound on the
smoothing parameter, namely

η3ε(Λ) � max
(
ηε(Λ′), ηε

(
Λ�Λ′

))
,

where the notion of smoothing is generalized to accommodate non-lattice quo-
tients. Note that the choice of the sublattice is arbitrary here. This suffices, for
instance, to deal with the problem of domain extension and restriction of sam-
plers: given a sampler over Λ, how can one extend it to an overlattice or restrict
it to a sublattice?

A Filtered Sampler. A filtration of a lattice is an increasing sequence of lattices
0 ⊂ Λ1 ⊂ · · · ⊂ Λk = Λ. Iterating the previous construction gives us a generic
sampler for Λ. Namely, we have a first short exact sequence stemming from the
filtration:

0 −→ Λ1 −→ Λ −→ Λ�Λ1
−→ 0,

and by our sampler over sequences, we can efficiently sample in Λ if we know
how to sample in both Λ1 and Λ/Λ1. However, we can remark that quotienting
by Λ1 induces a filtration 0 ⊂ Λ2/Λ1 ⊂ · · · ⊂ Λk = Λ/Λ1. Hence, we can
recursively apply this technique and devise a sampler for Λ from samplers over
(Λi+1/Λi)i. This approach yields a natural generalization of Klein’s sampler (as
presented in [18]), which corresponds to the particular case where rk(Λi) = i for
all 1 � i � rk(Λ), and the successive quotients correspond to the Gram-Schmidt
orthogonalization. Expectedly, we obtain a bound on the smoothing parameter
of Λ in terms of the smoothing parameter of these quotients, generalizing that
of [18]:

ηε(Λ) � max
1�i�k

η ε
k+1

(Λi/Λi−1).

In a later section, we show how this abstract sampler and its designated bound
can lead to significant improvements over the Klein-Peikert dichotomy on a con-
crete example.

A Linear Sampler. Change of basis is a natural technique in linear algebra
allowing to re-express sets of linear equations in more congenial forms, by looking
at the coordinates of a linear space under a different basis. It is a deep princi-
ple undertaking numerous aspects of numerical algorithm, whether by making
incremental changes (like in Gaussian elimination or lattice reduction), or in one

1 Generally, the quotient is a product of the torsion part, which is a finite abelian
group and its free part, which corresponds to a lattice too. Even when the quotient
is torsion-free, Λ does not identify to Λ′ ⊕ Λ/Λ′ as lattices in general.
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take (e.g., computing the Discrete Fourier transform representation). Unsurpris-
ingly, we can apply it to discrete Gaussian sampling as well2. Hence, from a
high-level point of view, one can design a Gaussian sampler in a given lattice
Λ as long as one can sample discrete Gaussians in the lattice spanned by a
(fixed) congenial basis C, which can even live in a different space. This pro-
cess amounts to controlling the distortion on the Gaussian distribution induced
by the change-of-basis procedure, and to smooth it out with a carefully chosen
normal3 perturbation. This algorithm encompasses the sampler of Peikert [25],
which reduces sampling in a lattice Λ to sampling spherically in Zrk Λ — this
can be done coordinate-wise. This construction yields a natural bound on the
smoothing parameter, writing a basis B of Λ as the product TC:

ηε(Λ) � s1(T) · ηε(L(C))

for s1(T) being the largest singular value of T. Again, note that the choice of
the decomposition is arbitrary (as long as C is invertible). A generic sampler in
tensor lattices Λ1 ⊗ Λ2 follows almost immediately.

Sampling in Remarkable Lattices. The previous contributions aim at build-
ing a framework for efficient Gaussian sampling, by joining existing samplers
through extensions (namely module extension for the exact sequence sampler,
linear extension for the linear sampler and tensor extension for the tensor sam-
pler). It means that we need to be able to sample in some base cases to fully
instantiate these higher-order constructions. We thus introduce a set of ad-hoc
samplers for some of the so-called root lattices (An lattices, the face-centered
lattices Dn, the Gosset lattice E8) emerging in many contexts. They are, for
example, well-known for their outstanding geometric properties, e.g., enjoying
quasi-linear decoding [5,6], or their appearance in more mathematical topics
such as the classification of Lie algebras. In particular, our samplers rely on
their well-understood structures and exceptional isomorphisms between them,
coming from the latter topic, and we reach standard deviations quite close to the
smoothing of these lattices. Generally, we add another tribute to the deep con-
nexions of these remarkable lattices with coding theory, as we combine our alge-
braic framework with the king construction [8] to devise samplers in the Leech
and low-dimensional Barnes-Wall lattices. The technique allows as a byproduct
to construct samplers in parity-check-like lattices.

Cryptographic Impact. To showcase our framework in a cryptographic con-
text, we demonstrate how to instantiate various samplers over some structured
lattices. There are well-known identifications between certain ideals in prime
cyclotomic rings and Ap−1 lattices (or their duals), already subject to algorith-
mic works [13,20]. Cyclotomic rings of smooth conductors can also identify as
(direct sums of) prime cyclotomic rings. We exploit our ad-hoc samplers to

2 Of course, change of basis works very well for continuous Gaussians: it simply
amounts to matrix-vector multiplication.

3 What matters for proofs is that the perturbation distribution has good convolution
properties with Gaussian kernels.
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devise novel samplers in cyclotomic rings: our result combines quasi-linear effi-
ciency and optimal Gaussian width. To our knowledge, all previous approaches
reached worse Gaussian widths, and at best equivalent efficiency.

We also detail the implication for the design of hash-and-sign signatures,
where the ability to sample efficiently and precisely is crucial for the security
and bandwidth of the scheme. We compare our variations with the recently pro-
posed and state-of-the-art Falcon [29] and Mitaka [15] signatures. In particular,
we show how to design hash-and-sign signatures more tightly on smooth cyclo-
tomic fields, giving more security (around 20 bits in both classical and quantum
regimes) and slightly shorter signatures for free compared to [15] (although bit-
size is not the focus of this work). More interestingly, we show how to implement
them on prime cyclotomics, allowing a very tight choice of parameter selections.
At a high-level, our results are also satisfying in the sense that they not only
increase the security level for prime cyclotomics compared to [15], they also show
a more regular growth and behavior of the ratio security level over cyclotomic-
conductors compared to [15]. Then, we also give new instantiations of the recent
framework of [31] for compact gadget-based sampling with a target lattice con-
structed as a tensor of the root E8 and Zn. We again get slightly shorter signa-
tures for free (110 bytes shorter) for higher security, both in the classical and
quantum settings.

Organization of the Paper. After recalling some material about lattices and
Gaussian measures in Sect. 2, we start with the first, central piece of our frame-
work in Sect. 3: the sampling procedure over short exact sequences (Algorithm 1),
and its natural recursive extension, the filtered Sampler (Algorithm 2). In Sect. 5,
we present our linear Sampler ; because of space constraints, its use for tensor
sampling is only provided in the full version of this paper. Section 6 is devoted
to our samplers remarkable lattices. Last, in Sect. 7 and Sect. 8, we instantiate
many of our contributions into a hash-then-sign signature scheme with concrete
parameters and analysis.

2 Algebraic and Computational Background

General Notation. The bold capitals Z, Q, and R refer respectively to the
ring of integers, the field of rational and real numbers. Given a real number x,
the integral roundings floor, ceil and round to the nearest integer are denoted
respectively by �x	, 
x�, �x�. Let ln denote the natural logarithm. For a real-
valued function f and a countable set S, we write generically f(S) =

∑
x∈S f(x)

assuming that this sum is absolutely convergent. Vectors and matrices are under-
stood column-wise. For A,B two matrices, we write [A,B] for the concatenation
of the columns from A and B. The transpose of a matrix T is Tt and if T is
non singular, its pseudo-inverse is T� = (TtT)−1Tt.
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2.1 Euclidean Lattices

A (real) lattice Λ is a finitely generated free Z-module, endowed with a Euclidean
norm ‖.‖ on the real vector space ΛR := Λ ⊗Z R. By definition, there exists
a finite family (b1, . . . ,bn) ∈ Λn of linearly independent elements such that
Λ =

⊕n
i=1 biZ, and we write Λ = L(B), with the matrix B = [b1, . . . ,bn].

It is called a basis of Λ. Every basis has the same number of elements rk(Λ),
called the rank of the lattice. We let λ1(Λ) be the Euclidean norm of a shortest
non-zero vector in Λ. The volume is det Λ =

√
detBtB, for any basis B of Λ.

In this work, when dealing with lattices embedded in Rn, we only consider
the standard Euclidean norm, corresponding to the canonical inner product 〈, 〉,
but we stress that most of our algorithms are agnostic to the choice of the norm.
The dual of a lattice Λ is the lattice Λ∨ = {x ∈ ΛR | 〈x,v〉 ∈ Z,∀ v ∈ Λ}, and
we always endow it with the same norm as Λ. If Λ is a full-rank lattice of basis
B, then B−t is a basis of Λ∨; if it is not full rank, B(BtB)−1 is a basis of Λ∨.

Orthogonality. For a subspace V ⊂ ΛR, let V ⊥ = {y ∈ ΛR | 〈y,v〉 =
0, ∀ v ∈ V } be the orthogonal. Let πV ⊥ denote the orthogonal projection
onto V ⊥ equipped with the restriction of the norm to that space. If P is a
matrix representation of πV ⊥ , we have P2 = P and Pt = P. Given a basis
B = (b1, . . . ,bn) of a lattice Λ, we denote its Gram-Schmidt orthogonalization
by B∗ = (b∗

1, . . . ,b
∗
n), where b∗

i = π(b1,...,bi−1)⊥(bi).

Sublattices, Quotient Lattices. Let (Λ, ‖ · ‖) be a lattice, and let Λ′ be a
finitely generated submodule of Λ. The restriction of ‖ · ‖ to Λ′ endows it with a
lattice structure : (Λ′, ‖·‖) is called a sublattice of Λ. If any basis of Λ′ extends into
a basis of Λ, then Λ′ is called primitive. In this case, the quotient Λ/Λ′ is endowed
with a canonical lattice structure by defining: ‖v + Λ′‖Λ/Λ′ = infv′∈Λ′

R
‖v −

v′‖. Then, there is an isometry between (Λ/Λ′, ‖ · ‖Λ/Λ′) and (πΛ′⊥
R
(Λ), ‖ · ‖).

Effectively, this means we represent quotient lattices by computing the projection
of a given basis for Λ. We write Λ = Λ′ ⊥ Λ′′ to highlight that Λ is the orthogonal
direct sum of two lattices. In this case, πΛ′⊥

R
(Λ) = Λ′′ and we have an isometry

Λ ∼= Λ′ ⊕ Λ/Λ′.
Whether Λ′ is primitive or not, the quotient Λ/Λ′ always decomposes as a

product of its torsion part T (finite subgroup of torsion elements) and its torsion-
free part. Torsion elements in the quotient represent x ∈ Λ such that ax ∈ Λ′

for some a ∈ Z, that is, the set Λ ∩ Λ′
R. The torsion-free part is itself a lattice:

if Λ′ is the (primitive) lattice generated by Λ′ and a system of representative for
T, it identifies to Λ/Λ′, with the quotient norm. It is thus equivalent for Λ′ to be
primitive and for Λ/Λ′ to be torsion-free. When Λ′ has full-rank, Λ/Λ′ is just the
torsion group T. Usual solutions to perform the lift from a coset representative
to a lattice point use Babai’s rounding or Babai’s nearest plane algorithm.

Filtrations. A filtration of a lattice Λ is an increasing sequence of sublattices
{0} = Λ0 ⊂ Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λk = Λ where each Λi is a primitive sublattice of
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Λi+1. Let rk(Λi) = di, then 0 = d0 < d1 < d2 < · · · < dk = rk(Λ). A filtration is
called complete if di = i for all i: for example, any basis of Λ gives a complete
filtration. Filtrations are compatible with quotienting: a filtration (Λi)i of Λ
yields a filtration (Λi+j/Λj)i of Λ/Λj .

2.2 Discrete Gaussian Distributions

Let Σ be a positive definite matrix. We define ρΣ(x) = exp(−πxtΣ−1x) as
the Gaussian kernel of covariance Σ. Equivalently, we could call it the standard
Gaussian mass for the norm induced by Σ−1. In that case, one sees that a Gaus-
sian function is always isotropic, i.e., its value only depends on the designated
norm of its input. When Σ = s2In, the subscript Σ is shortened4 in s2 and s is
called the width.

Let now Λ ⊂ Rm of rank n � m. The discrete Gaussian distribution over Λ
with center c ∈ ΛR and covariance Σ ∈ Rm×m is defined by the density

DΛ,c,Σ(x) =
ρΣ(x − c)
ρΣ(Λ − c)

, ∀x ∈ Λ.

When c = 0, we omit the script c.

Smoothing Parameter. For a lattice Λ and real parameter ε > 0, the smooth-
ing parameter ηε(Λ) is the smallest s > 0 such that ρ 1

s2
(Λ∨) � 1 + ε. When the

Gaussian width s exceeds the smoothing parameter, all the lattice cosets have
roughly the same mass.

Lemma 1 ([25, Lemma 2.4]). Given a lattice Λ, ε ∈ (0, 1) and Σ � ηε(Λ)2In,
then, for any c ∈ ΛR, ρΣ(Λ + c) ∈ [ 1−ε

1+ε , 1] ρΣ(Λ).

The following result recalls that cosets’ mass has exponential decay from the
origin. A useful consequence is to express the Gaussian mass by means of a
sublattice and its corresponding projection (for completeness, the full version of
this paper will contain a proof).

Lemma 2. Let Λ ⊂ Rm be a lattice and x ∈ Rm. For Σ � 0, let P be the
orthogonal projection onto Λ⊥

R, where orthogonality is taken with respect to the
inner product xtΣ−1y. Then we have ρΣ(x+Λ) � ρΣ(P (x))·ρΣ(Λ). If moreover
Λ is primitive in Λ′, we have ρΣ(Λ′) � ρΣ(Λ)ρΣ(P (Λ′)). The equality case occurs
when Λ′ = Λ ⊥ P (Λ′).

On Cyclotomic Rings. In Sect. 7, we need some background on cyclotomic
rings and their geometry. Most of the used material is relatively standard. We
have put these recalls in the full version for completeness.

4 Most of the prior literature uses s or
√

Σ, that is, an analog of standard deviation
instead of the covariance.
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3 Algebraic Extensions and Sampling

3.1 Gaussian Measures over Short Sequences of Groups

For a lattice Λ, we want to study the behavior of the Gaussian measure D =
DΛ,c,Σ with regards to exact sequences of Z-modules5:

0 −→ Λ′ −→ Λ −→ Λ�Λ′ −→ 0. (1)

Exactness means that the kernel of each arrow is exactly the image of the arrow
preceding it. It implies that Λ′ identifies to a submodule of Λ and that the map
Λ → Λ/Λ′ is surjective. We do not assume that Λ,Λ′ have the same rank, nor
that we have an exact sequence of lattices, nor that it splits (which would mean
that Λ ∼= Λ′ × Λ/Λ′ as Z-modules).

Recall from Sect. 2 that Λ/Λ′ decomposes as the direct sum T ⊕ Λ′
f of its

torsion part T and its free part. The free part can be seen as Λ/Λ′, where Λ′ is
the lattice spanned by Λ′ and a set of representative of T. This denser lattice can
be understood as a “primitivation” of Λ′. Hence, Λ/Λ′ identifies6 to the lattice
π(Λ′

R)⊥(Λ). We detail an example in the full version of this manuscript.
D decomposes into two components measures, which can then be normalized

to probability distributions:

• the restriction over the sublattice Λ′, which identifies as D′ = ρ/ρ(Λ′).
• the pushforward π�D onto the quotient Λ/Λ′. By definition, for any witness

x of a Λ′-coset in Λ, we have π�D(x) = D(x + Λ′).

Understanding the latter is the focus of the next lemma. In the lemma below,
we distinguish the quotient map π : Λ → Λ/Λ′ from the orthogonal projection
π := π(Λ′

R)⊥ .

Lemma 3. Let Λ′ ⊂ Λ be lattices and T the torsion part of Λ/Λ′. If Σ � ηε(Λ′)
and D = DΛ,c,Σ, then the pushforward distribution proportional to π�D is at
total variational distance ε

1−ε of the distribution defined by |T|−1 · Dπ(Λ),π(c),Σ,
where |T| is the cardinality of T.

For the sake of notational clarity, we restrict to the case of centered distri-
butions but the proof readily adapts to the general case.

Proof. Our first goal is to describe the coset x + Λ′, and recall that we denoted
π the orthogonal projection from Λ to Λ/Λ′. Consider a section7 s : Λ/Λ′ → Λ,
5 We highlight that this is a short sequence of groups and not necessarily of lattices.
6 The important catch here is about which orthogonality we are considering: in our

proof, the orthogonality must be with respect to the norm induced by the covariance
matrix of the target Gaussian, that is, x �→ xtΣ−1x. This allows us to use that
x,y ∈ ΛR such that xtΣ−1y = 0, we have ρΣ(x + y) = ρΣ(x) · ρΣ(y).

7 Such a map always exists: indeed, as Λ′ is primitive, one can always find a sublattice
Λ0 such that Λ = Λ0 ⊕ Λ′ and the section can be defined by identifying the vectors
of a basis of Λ0 with their projections by π.
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that is, a linear map such that π ◦ s = Id. From its properties, we see that
x ∈ s(π(x)) + Λ′. Let now T = {t + Λ′}t be a system of representative of the
torsion points. Since Λ′ is the disjoint union of cosets t + Λ′, there is a unique
one such that x ∈ s(π(x))+ t+Λ′, and it follows that x+Λ′ = s(π(x))+ t+Λ′.
By definition and orthogonality, the pushforward of the discrete Gaussian under
π therefore acts as

D(x + Λ′) = ρ(s(π(x)) − π(x) + t + Λ′) · D(π(x)). (2)

Similarly, the total measure of the quotient Λ/Λ′ can be written

D
(
π−1

(Λ�Λ′
))

=
∑

(t,π(x))

ρ(s(π(x)) − π(x) + t + Λ′)D(π(x)). (3)

By assumption on the covariance parameter, we are above the smoothing of Λ′,
so all the Λ′-cosets have roughly the same Gaussian mass as Λ′. More precisely,
taking ratio between Equalities (2) and (3) and using Lemma 1, we get our claim:

π�D(x mod Λ′)
π�D(Λ/Λ′)

∈
[
1 − ε

1 + ε
,
1 + ε

1 − ε

]
· 1
|T| · ρ(π(x))

ρ(π(Λ))
. (4)

�

Lemma 3 satisfyingly recovers the extreme cases which are frequently encoun-
tered in the literature:

– If Λ′ is full-rank, we have |T| = [Λ : Λ′] and the projection sends all points to
0, so that π�D is statistically close to the uniform distribution over the finite
group of Λ′-cosets.

– If Λ′ is primitive, the quotient is torsion-free, π = π and we recover that π�D
is essentially the orthogonal projection of the discrete distribution, that is, a
discrete Gaussian distribution over π(Λ).

An interesting subcase happens when an orthogonal decomposition Λ = Λ′ ⊥ Λ′′

is known. We then have a short exact sequence 0 → Λ′ → Λ → Λ′′ → 0. But
now, the Gaussian measure splits perfectly, so that the pushforward is exactly
the projected distribution.

Lemma 4. Let Λ′, Λ′′ be two lattices, Λ = Λ′ ⊥ Λ′′, and π the orthogonal
projection onto Λ′

R
⊥. If D = DΛ,t,s2 , then we have π�D = DΛ′′,π(t),s2 .

Proof. The assumptions give π(Λ) = Λ′′. Decompose z ∈ Λ as z = z′ +π(z) and
similarly t = t′ + π(t). We use orthogonality twice: on the one hand, it gives
ρs2(π(z)−t+Λ′) = ρs2(π(z)−π(t))ρs2(Λ′ −t′). On the other hand, it also gives
ρs2(Λ − t) = ρs2(Λ′ − t′)ρs2(Λ′′ − π(t)). Taking ratios gives the result. �
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Smoothing Parameter and Short Sequences. The decomposition induced
by the quotient translates into a generic bound on the smoothing parameter:

Proposition 5 (Modularity of smoothing parameter). Let Λ be a lattice and
0 < ε <

√
17 − 4, then

η3ε(Λ) � min
Λ′⊂Λ

max
(
ηε(Λ′), ηε

(
Λ�Λ′

))
,

where the minimum ranges over all possible sublattices of Λ.

The proof is detailed in the full version. Note that the bound makes appear
Λ′ and not Λ′ itself in the quotient. The intuition behind this, maybe surprising,
detail stems from the fact that the pushforward measure is driven only by Λ′

and the torsion-free part of the quotient. Indeed, we can geometrically interpret
the smoothing parameter to be the minimal width to smooth out the lattice
structure i.e., the pushforward over ΛR/Λ is the uniform distribution. But then
remark that (Λ/Λ′)R = (Λ/Λ′)R as real spaces, making all the torsion elements
geometrically irrelevant w.r.t. the smoothing.

Towards a Gaussian Sampler. The bound of Proposition 5 can be turned
into a natural sampler built from given samplers over Λ/Λ′ and Λ′, or oracles
for them. First, sample in the quotient with the appropriate distribution, lift
the result to the full lattice, and sample around this point in the sublattice Λ′.
Remark that all x ∈ Λ write uniquely as x = x′ + π(x) with x′ ∈ Λ′ and
x′ = t + x′, since it also belongs to a unique coset t + Λ′ with t ∈ T. Above the
smoothing of Λ′, sampling according to the pushforward selects such a coset and
π(x) with essentially the correct distribution. Similarly, above the smoothing of
π(Λ) we cannot really distinguish in which coset of π(Λ) a Gaussian around π(x)
belongs.

All-in-all, this strategy leads to Algorithm 1, where we even allow sampling
approximatively in the sets Λ′ and Λ/Λ′—this will be proved useful to recursively
chain calls of this sampler, as we do in Sect. 4.2.

The proof relies on Lemma 3 and the examination of the samples. Two
smoothing arguments over Λ′ are used: once to apply Lemma 3, and once to
trade cosets for larger ε. The details are given in full version.

Theorem 6 (Correctness of the short exact sampler). When Σ � ηε(Λ′),
Algorithm 1 is correct. Moreover, let D be the distribution of its output. For ε < 1

2
, we have

sup
v∈Λ

∣∣∣∣
D(v)

DΛ,t,Σ(v)
− 1

∣∣∣∣ � 6(δ + ε).

In particular, D is within statistical distance 3(δ + ε) of DΛ,t,Σ.
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Algorithm 1: Short exact sequence sampler

Input:
– A sublattice Λ′ ⊂ Λ, a centre t
– an oracle O′ for DΛ′,∗,Σ

– an oracle Oq over Λ�Λ′, 1+δ
1−δ -close to the pushforward of DΛ,�,Σ

Output: v ∈ Λ following distribution statistically close to DΛ,t,Σ

1 if Λ = {0} then return 0
2 Compute π : ΛR → ΛR�Λ′

R
, the orthogonal projection onto Λ′⊥

R for

the norm induced by Σ−1

3 q ← Oq

(
Λ�Λ′, π(t), Σ

)
; uq ← Lift(q, Λ)

4 u′ ← O′(Λ′, (Id − π)(t − uq), Σ)
5 return uq + u′

4 Generic Applications of the Short-Sequence Sampler

We now present two generic applications of this abstract sampler: domain exten-
sions and restrictions, and a broad generalization of the so-called Klein/GPV
sampler [18]. The formers are simple, elementary but important illustrations
of the use of the pushforward distribution; the latter extends the toolbox for
Gaussian sampling in cryptography. In Sect. 6, we will present several concrete
samplers in remarkable lattices using these generic constructions, reaching closer
to the smoothing than the approaches used previously.

4.1 Domain Extension and Restriction

Extension to an Overlattice. Let Λ′ be a full-rank sublattice of Λ, so that
the quotient Λ/Λ′ is of torsion (i.e. the free part of this quotient is reduced to
{0}) and suppose that we have access to an oracle O for DΛ′,�,Σ for a parameter
Σ � ηε(Λ′). By Lemma 3, the pushforward π�DΛ,�,Σ is at distance at most ε

1−ε
of the uniform distribution over Λ/Λ′. Hence specializing Algorithm 1 with O′

and a uniform sampler for Oq yields the following:

Corollary 7 (Domain extension). Let ε > 0 and Λ be a lattice, Λ′ one of its
sublattices of finite index. For any oracle O′ realizing a discrete Gaussian sam-
pling in Λ′ at any center and covariance Σ � ηε(Λ′), there exists an algorithm
sampling at distance at most 6ε of DΛ,�,Σ using at most one oracle call to O′.

In a nutshell, the ability to sample in Λ′ and Λ/Λ′ enables to reconstruct
samples in Λ: we do a domain extension of the discrete Gaussian over Λ′ to the
overlattice Λ.
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Restriction to a Sublattice. Conversely, it is easy to sample in a sublattice Λ′

when we already know how to sample in Λ, and Λ′ has finite index [Λ : Λ′]: sample
in Λ and reject all samples not landing in Λ′. The number of tries is of course
driven by [Λ : Λ′], which can be proven when sampling above the smoothing
of Λ′. In fact, it makes it a specific case of the rejection sampling technique,
with trivial rejection probabilities. In the upcoming Sect. 6, we showcase some
practical examples with root lattices.

Proposition 8 (Domain restriction). Let ε > 0 and Λ be a lattice and Λ′ one
of its sublattices of finite index. For any oracle O realizing a discrete Gaussian
sampling in Λ with covariance Σ � ηε(Λ′), there exists a Gaussian sampler (for
the same covariance) in Λ′ using on expectation [Λ : Λ′] calls to O.

The proof is a routine computation stemming from Lemma 3 to compute the
probability of rejection. Details are given in the full version of this paper.

Remark 1. We point out the possible connection with the averaging recombina-
tion technique used in [1], where a domain restriction is performed, and samples
are then combined with a domain extension from 2Λ to Λ (using exponentially
many vectors).

4.2 A Filtration Sampler

We now show how our short exact sequence sampler naturally extends to filtra-
tions and allows to retrieve and generalize samplers appearing in cryptography,
such as those in [15,18,28]. For example, in the most natural case where one
would sample “coordinate-by-coordinate”, our algorithm recovers Klein/GPV
sampler. More generally it gives a family of new samplers for a given lattice,
depending on how one decides to sort and “cut in subspaces” its input basis,
offering larger freedom in the design of sampling algorithms8.

Smoothing Parameter Bound over a Filtration. We first highlight a new
smoothing parameter bound deduced from a given filtration {0} = Λ0 ⊂ Λ1 ⊂
· · · ⊂ Λk = Λ of a lattice Λ. It relies on repeatedly applying the splits of the
smoothing parameter over the short sequences (Proposition 5) stemming from
the filtration. Starting from the penultimate term Λk−1, we bound (ignoring here
the exact values of ε to ease the exposition) the smoothing parameter of Λ by
max(η(Λk−1), η(Λ/Λk−1)). Applying Proposition 5 to Λk−1, we have η(Λk−1) �
max (η(Λk−1/Λk−2), η(Λk−2)). We go down in the filtration inductively until we
reach Λ1. All in all, the smoothing parameter is dominated by the biggest term
appearing in the splitting.

8 In the same way that Klein/GPV sampler is a randomized version of Babai’s nearest
plane algorithm, our technique can be interpreted as a randomized version of the
nearest-colattice algorithm of Espitau and Kirchner [16].
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Lemma 9. Let k � 1 be an integer, Λ a lattice and ε � 2
k . We have

ηε(Λ) � min
(Λi)i

max
i

η ε
k+1

(
Λi�Λi−1

)
,

where the minimum is taken over all possible filtrations of length k of Λ.

The proof is provided in the full version of this work. The term k + 1 is
chosen to obtain a compact, readable statement with an identical smoothing
quality for each quotient lattice.9 The idea behind the above bound allows to
mildly relax the smoothness condition over lattice cosets: instead of the whole
lattice, it is only needed to smooth the “worst” successive quotient deduced from
the filtration for the cosets of the whole lattice to have essentially the same mass.

For example, it was shown10 in [18], and subsequently used at the core of
several practical constructions, that for any rank n lattice Λ,

ηε(Λ) � min
(b1,...,bn)
basis of Λ

max
1�i�n

η ε
n
(Zb∗

i ),

where the b∗
i ’s are the Gram-Schmidt vector of the corresponding basis. This

bound corresponds to restricting Lemma 9 to filtrations of length n stemming
from the bi’s as Λi = L(b1, . . . ,bi). Indeed, we have that for any 0 � i < n,
Λi+1/Λi is isometric to Zb∗

i (see also Sect. 2.1). While it could seems more
likely that such a fine-grained filtration would give in general better smoothing
bounds, we actually show that there are practical cryptographic cases where one
can improve the situation by carefully selecting a different and a priori coarser-
grained filtration.

The Filtered Sampler. Following our motto — smoothing bounds and sam-
pling are built on the same underlying principles — we can transform Lemma
9 into a Gaussian sampler. In essence, the process corresponds to k successive
calls of Algorithm 1, recursively progressing along the filtration.

Assume that we are given approximate oracles to sample discrete Gaussians
in the sequence of lattices (Λi+1/Λi)i, and a deterministic lift the first call con-
siders the short exact sequence

0 → Λ1 → Λ → Λ�Λ1
→ 0.

Algorithm 1 requires a pushforward oracle on Λ/Λ1, so since we do not have
a priori an explicit access to it, we instantiate it as a recursive call over the
quotient filtration {0} = Λ1�Λ1

⊂ Λ2�Λ1
⊂ · · · ⊂ Λ�Λ1

. Hence the callee now
deals with the sequence 0 → Λ2/Λ1 → Λ/Λ1 → Λ/Λ2 → 0. This is done until
we reach the trivial sequence. Then, the algorithm climbs its way back in the
recursion tree, providing samples in the lattices Λi+1/Λi.
9 What matters in the proof is that

∏
i(1 + εi) � 1 + ε, where εi is a given smoothing

quality for Λi/Λi−1 and ε is the target quality for Λ.
10 In its usual form for a fixed basis, the bound is ηε(Λ) � max1�i�n ‖b∗

i ‖ · ηε(Z
n).
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Algorithm 2: Filtered sampler

Input: A filtration {0} ⊂ Λ1 ⊂ · · · ⊂ Λk = Λ, a parameter

Σ > max0�i<k ηε

(
Λi+1�Λi

)
and a center t ∈ Λ ⊗ R.

Output: v ∈ Λ following distribution statistically close to DΛ,t,Σ

1 if Λ = {0} then return 0
2 Compute π : Λ → Λ�Λ1

3 z ← FilteredSampler
((

Λi�Λ1

)
i
, π(t), Σ

)

4 u ← Lift(z, V1)
5 u′ ← DΛ1,(Id−π)(t−u),Σ

6 return u + u′

Theorem 10. (Correctness of the filtered sampler). Algorithm 2 is cor-
rect. Moreover, let D be the distribution of its output. For any ε < 1/k2,, we
have

sup
v∈Λ

∣∣∣∣
D(v)

DΛ,t,Σ(v)
− 1

∣∣∣∣ � (2k + 1)ε.

In particular, D is within statistical distance (k + 1)ε of DΛ,t,Σ.

It suffices to proceed by induction along the filtration repeatedly calling Algo-
rithm 2. The detailed proof can be found in full version.

4.3 Recovering Some Known Samplers

Klein/GPV sampler. As we saw, this sampler corresponds to taking the full
filtration associated to a lattice basis (b1, . . . ,bn) giving a lower bound on the
width in maxi ηε (Λi+1/Λi) = maxi ηε (b∗

i Z) = ηε(Z) · maxi(‖b∗
i ‖).

Klein/GPV Sampler over a Ring. This sampler works at the ring level of a
module over some ring of integer OK in a number field K (for example on ntru
lattices which are rank two module over a cyclotomic ring). More precisely given
a module basis (m1, . . . ,md) over OK, we make use of the full filtration11

m1OK ⊂ m1OK ⊕ m2OK ⊂ · · · . Each recursive call thus consists in calling
the oracles over the quotients mi+1OK/miOK, which are scaling by an alge-
braic number of OK

∼= ZdegK. When instantiating this oracle with subsequently
described Algorithm 3 (or Peikert’s [25] for instance), it retrieves the so-called
hybrid sampler used in [15].

11 We make a slight abuse of notations here by silently identifying a submodule with the
corresponding sublattice of the lattice attached to the module. To be perfectly for-
mal, we shall understand the elements of the filtration as viewed under the canonical
embedding map, see also the full version.
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Fast Fourier Orthogonalization Sampler. Introduced in [12,29], this sam-
pler reaches the same quality as Klein’s sampler but run in quasi-linear time in
the dimension, by exploiting the structure of tower of subfields in power-of-two
cyclotomic fields. It is retrieved as the filtered sampler where the oracle over the
ring is the sampler itself, called recursively. More precisely given a basis m1,m2

of a module Λ over the ring of integers OK of the cyclotomic field of conductor
2k, we have the short exact sequence:

0 −→ m1OK −→ Λ −→ Λ�m1OK
−→ 0

where once again the submodule m1OK shall be understood as a sublattice
through the canonical embedding map. Now remark that an oracle call is made
on the modules of rank 1 m1OK and Λ/m1OK. However, these modules are
also modules of rank 2 over the cyclotomic field of conductor 2k−1. As such, for
each of them we can apply the same technique recursively, requiring samples in
modules of rank 2 over smaller and smaller fields, until we eventually reach Q,
where we know how to sample.

A Filtered Tensor Sampler. Let A be a lattice given with a complete fil-
tration {0} ⊂ A1 ⊂ . . . ⊂ A� ⊂ A and another lattice B. Suppose that
we have a gaussian sampler O in B. Then remark that the tensor filtration
{0} ⊂ A1 ⊗ B ⊂ ⊗ ⊂ A� ⊗ B ⊂ A ⊗ B is a filtration of A ⊗ B and that since
each quotient Ai+1/Ai is of dimension 1, the quotients (Ai+1 ⊗ B)/(Ai ⊗ B)
are actually isometrics to scalings of B — the scaling factor being exactly the
covolume of the line Ai+1 ⊗ /Ai. Hence, from the sampler O, we can sample
in A ⊗ B by the 
 calls generated when applying the Filtered Sampler to our
filtration.

5 The Linear Sampler

5.1 Smoothing Parameters and Linear Transformations

The algorithms presented in Sect. 3 sample without leaving the ambient space
of the lattice. However, in certain cases, it is of interest to transfer the prob-
lem to another space — where the local geometry eases the sampling process
— and transfer the result back to the original lattice. In a sense, as all lattices
can be seen as a transformation of the integer lattice Zn, and as most practical
Gaussian samplers rely on the ability to sample integral Gaussians, this obser-
vation is already implicit in previous works. As expected, such back and forth
between different spaces will generate bias because of the distortion incurred by
the underlying linear transformation. To enforce the correctness of the output
distribution, it must be corrected. For example, the filtered sampler of Sect. 4.2
iteratively corrects the transformation to the space attached to the filtration one
subspace at a time. A global approach to the problem consists in considering
any lattice as a linear transformation of another lattice, but not always Zn.
This gives the following bound on the smoothing parameter, possibly implicit in
previous works. We provide a proof in the full version of this paper.
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Lemma 11. Let Λ be a lattice of rank n in Rm, then ηε(Λ) � inf s1(T) ·
ηε(L(C)), where the infimum is taken over all pair (T,C) such that Λ = L(TC)
and C ∈ Rn is invertible.

5.2 Sampling by Linear Transformation

The global approach is an algorithmic formulation of the proposition of Peikert
[25, Theorem 3.1]. For the sake of simplicity, we will restrict ourselves to the
case of continuous perturbations in our presentation. As explained, on a high
level the transformation of a fixed lattice distorts the geometry in the initial
space and consequently any ellipsoid in that space. The bias can be corrected to
any target ellipsoidal shape by adding a large enough perturbation, and up to
rescaling.

Going formal, one can prove the correctness of the approach thanks to the
nice properties of Gaussian distributions, and the scaling factor appears implic-
itly as a condition of positive-definiteness involving the smoothing parameter of
the initial lattice.

Theorem 12. (Correctness of the linear sampler). Let r � ηε(Λ(C)).
If sn(Δ) > r2 · s1(T)2, then Algorithm 3 is correct. Moreover, let D be the
distribution of its output. For ε < 1/2, we have

sup
v∈Λ

∣∣∣∣
D(v)

DΛ,t,Δ(v)
− 1

∣∣∣∣ � 4ε.

In particular, D is within statistical distance 2ε of DΛ,t,Δ.

Algorithm 3: Linear sampler

Input:
– Two matrices T ∈ Rm×n,C ∈ Rn×n with m � n and C invertible such

that TC = B is a basis of a lattice Λ;
– a center t ∈ Λ ⊗ R;
– a parameter r � 0 and a positive definite matrix Δ ∈ Rm×m such that

Σ := (TtΔ−1T)−1 � r2In;

Output: y ∈ Λ with distribution statistically close to DΛ,t,Δ.

1 Σp ← Σ − r2I
2 p ← NΣp

3 x ← DL(C),T�t+p,r2 /* T� is the pseudo-inverse */
4 ; return y := Tx

Remark 2. This sampler also relies on a continuous Gaussian sampler, but fun-
damentally, the required property is that the product of the density functions
of the perturbation and the lattice sampler can be understood: this is the core
fact used to ensure the correctness of the output.
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The proof is very similar in spirit of [15,25], and amounts to a marginal
distribution calculation combined with the nice properties of Gaussian functions
with respect to multiplication (see e.g. [25, Fact 2.1]). It is therefore only in the
full version.

Many matrix decompositions can be exploited by the linear sampler, such as
SVD or QR decompositions. Due to space constraints, these illustrative examples
are presented in the full version of this work.

5.3 Application: Sampling in Tensor Lattices

A lattice L(A)⊗L(B) is generated by the matrix A⊗B which can be rewritten
as a matrix product involving A and B. Therefore Algorithm 3 instantiates very
well over such lattices. This gives (up to our knowledge) a novel and parallel12

way to sample in L(A)⊗L(B), and a corresponding smoothing parameter bound.
The details are deferred to the full version due to space constraints.

6 Sampling in Remarkable Lattices

This section collects various approaches to efficiently sample Gaussian in the
remarkable lattices An, Dn and E8 (i.e., root lattices) and the Barnes-Walls,
Leech, and Nebe lattices. On the one hand, some of them will appear to be
important building blocks for sampling cyclotomic integers, be incorporated in
cryptographic gadget constructions, and can be seen as base cases or elementary
functions to construct samplers on arbitrary lattices by combination (in the same
way Klein’s and Peikert’s samplers are built around one-dimensional samplers).
On the other hand, they are also a good way to illustrate practical use cases of
our generic samplers from the previous sections.

6.1 Sampling in Low Dimensional Root Lattices.

Our ad-hoc samplers for the root lattices rely on exceptional orthogonal decom-
positions involving such lattices, and their close relationship in general.

On Root Lattices. So-called root lattices are families of special lattices with
nice geometry deriving from root systems. They enjoy, for instance, good decod-
ing properties (see [5,6], or more recently and closely related to this work,
see [13,30]). Most of their fundamental quantities are well-understood, and gen-
eral exposition can be found in [22, Chapter 4] or [7]. We only recall here the
definitions of three types of root lattices (An,En and Dn), and highlight some
properties of the An family.

12 Indeed, similarly to the Klein sampler being inherently sequential and Peikert sam-
pler being parallelizable, our filtered tensor sampler of Sect. 4.3 requires to wait for
the result of each sample in the filtration, while this linear sampler allows performing
all operations in parallel.
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Definition 1 (Root lattices). For integer n > 0, the root lattices An,Dn,En

of rank n are respectively defined as

An = {v ∈ Zn+1 | v1 + · · ·+vn+1 = 0}, Dn = {v ∈ Zn | v1 + · · ·+vn ∈ 2Z},

En =
{
v ∈ Zn ∪

(
Z +

1
2

)n

| v1 + · · · + vn ∈ 2Z
}

.

Sampling in Roots. We will particularly focus on the An lattices. If (ei)i�n+1

denotes the canonical basis of Rn+1, they are generated by (ei − ei+1)1�i�n

and span the hyperplane 1⊥, where 1 = (1, . . . , 1). Their volume is
√

n + 1, and
λ1(An) =

√
2. Their dual is A∨

n = π1⊥(Zn+1), with λ1(A∨
n) =

√
n/(n + 1), and

An has index n + 1 in A∨
n . Noticeably, A2 identifies with the famous hexagonal

lattice. We start with samplers for the root lattices of small dimensions, as well
as the Dn family. They are based on the ability to juggle between restrictions
and extensions of lattices using Proposition 8 and Corollary 7, and exceptional
isometries and geometric relations between them [22, Chap. 4.6].

Theorem 13. We can sample efficiently and at a standard deviation right
above the smoothing parameter in the following root lattices: Dn for all n > 1,
A2,A3,A4, A5,A6,A8,E6,E7,E8.

Below, we only give the high-level ideas of the samplers used in Sect. 7. All
remaining proofs and details13 can be found in the full version.
Dn samplers: The Dn lattice can be described as the vectors of Zn which
coordinates in the canonical basis (ei)i�n sum to an even number, so that [Zn :
Dn] = 2. This congenial definition leads to a domain extension approach form
as in Proposition 8: a sample either belongs to Dn or either to its non-zero coset
(with almost equiprobability above ηε(Dn)).
E8 sampler: the E8 lattice is an unimodular lattice in R8 so in particular its
determinant is 1. We have the exact sequence 0 → D8 → E8 → Z�2Z → 0 by
the covering of cosets E8 = D8 ∪ (1/2, . . . , 1/2)+D8. Combining our Dn sampler
with Algorithm 1 this provide an algorithm to sample in E8: flip a coin to decide
the coset, sample a Gaussian in D8, output the sum. See the full version for more
details.
A2 sampler: We rely on the index 3 containment E8 ⊃ L1 ⊥ E6, where L1 is
isometric to A2 and the decomposition defines E6 (see also [7,22]). The sampler
combines Lemma 4 with Proposition 8: map the target center with the isometry
A2 � L1, sample in E8 around that center until the output belongs to L1 ⊥ E6

and project it onto L1. Still, we rely on a sampler in E8 that reaches standard
deviation at least ηε(D8), as seen from Lemma 3. The smoothing of L1 ⊥ E6

is at most that of A2 by Lemma 2, which turns out to be larger than ηε(D8):
we can sample exactly at the smoothing of A2. Although very simple, it is not
13 One can also sample in An = Zn+1 ∩ 1⊥, checking when the sum of coordinates

vanishes. This is clearly inefficient when n grows. In the next section, we propose a
far more efficient algorithm, when n � 9.
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efficiently using its randomness coins. We show in the full version of this paper
how to somewhat amortize this process.
A8 sampler: from [22, Theorem 4.6.7 and 4.6.12], A8 is isometric to a lattice of
index 3 in E8. Combining the E8 sampler and Proposition 8 in the natural way
gives the algorithm. See the full version for pseudo-code.

An Exact Calculation of the Smoothing Parameter. As we are dealing
with remarkable lattices, it is often possible to have a very accurate understand-
ing of their meaningful quantities. The smoothing parameter is no exception and
is the topic of this subsection. Our main ingredient here is the general identifi-
cation of the Gaussian mass with the theta series of a lattice:

ρ1/s2(Λ∨) = 1 + κ(Λ∨) · exp(−πs2)λ1(Λ
∨)2 + κ2 exp(−πs2)n2

2 + · · ·
= θΛ∨(exp(−πs2)), (5)

where we have sorted the vectors of Λ∨ by their increasing squared norm14, and
κ(Λ∨) is the kissing number of Λ∨. Let now q = exp(−πs2), then determining
the smoothing parameter of a lattice amounts to find q such that θΛ∨(q)−1 = ε.
This can always be done by series reversion: there exists a series S such that
S(θΛ∨(q) − 1) = q. Routine calculations then show

s =

√
1
π

ln
(

1
S(ε)

)
.

Note that this is an exact expression, and formulae from formal series theory
even give the coefficients of S. Of course, calculating the actual value for some
lattice Λ requires knowing those of θΛ∨ . Thankfully, for all exceptional lattices,
the first terms of the theta series are well-known (details are given in the full
version and the minima and kissing numbers of remarkable lattices are often
found in [7], among others).

Lemma 14. For any lattice Λ, we have the following estimate, valid for ε > 0:

ηε(Λ) =
1

λ1(Λ∨)
·
√

1
π

ln
(

κ(Λ∨)
ε

(
1 + o(1)

))
.

In particular, we have the following approximations:

– ηε(Zn) ≈
√

1
π ln(2n

ε ) and for n � 5, ηε(Dn) ≈
√

1
π (ln(2n

ε );

– ηε(An) ≈ 1
λ1(A∨

n) ·
√

1
π ln

( 2(n+1)
ε

) ≈
√

n+1
n · ηε(Zn);

– ηε(E8) ≈ 1√
2
·
√

1
π ln(240

ε ) and ηε(L) ≈ 1
2 ·

√
1
π ln(196560

ε ), where L is the Leech
lattice.

14 The parameters κ2 and n2 are placeholders for the number κ2 of vectors of norm n2,
the smallest possible norm in the lattice that is larger than λ1.
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The second result can be understood intuitively as follows: D∨
n is the disjoint

union of Zn and Zn + 1
21. It tells us that Dn and Zn have almost equivalent

smoothing, as the first term in the theta series of their duals is the same. Addi-
tionally, λ∞

1 (D∨
n) = 1

2 , so that the usual bound15 obtained from the shortest
vector of the dual in the 
∞ norm would give an overestimate by a factor ≈ 2.

6.2 Sampling in An Lattices.

We now study the Gaussian sampling problem for arbitrary An lattices. The
generic case is trickier, as there is no known direct isomorphisms or decom-
positions involving other exceptional lattices. A possible approach consists in
instantiating our framework of Sect. 4.2 and Sect. 5.2 using the base cases we
just constructed. As a point of comparison, we first briefly give the results given
by the generic use of standard Klein and Peikert samplers.

Trivial Instantiations: Peikert and Klein Samplers. Unrolling the Cho-
lesky algorithm on the Gram-matrix16 Gn of the standard basis (ei −ei+1)1�i�n

of An is reveals that the maximal value of its diagonal coefficients is achieved on
its first element, which value is

√
2. Hence, the Klein sampler allows performing

Gaussian sampling at standard deviation above
√

2ηε(Z). As Gn is a tridiagonal
Toeplitz matrix with pattern (−1, 2,−1), its eigenvalues are of the form 2 +
2 cos(kπ/(n + 1)) for 1 � k � n [19]. Consequently, the largest singular value of

this basis is (2 + 2 cos(π/(n + 1)))1/2 � 2
√

1 − π2

2n2 , a worse reachable standard
deviation. The other classic basis (e1 − ei)2�i�n+1 of An has a largest singular
value of

√
n + 1, which has an even worse geometry.

Constructing a Better Filtration. To showcase possible trade-offs using
Algorithm 2, we now describe different filtrations for An lattices. Our approach
here is to rely on samplers in larger exceptional lattices from the previous section
as subroutines. This new family of algorithms allows sampling very close to the
smoothing parameter of the A8. These improvements also stem from an addi-
tional ingredient: the filtrations we highlight are close to being block-orthogonal.
A practical benefit yielded by such filtrations is the more parallelizable nature
of the resulting processes. While the next result is straightforward, we highlight
it for the sake of reusability.

Proposition 15. Let n > k be integers and n = (k + 1)q + r the euclidean
division of n by (k + 1). Then An admits a filtration as 0 = Λ0 ⊂ Λ1 ⊂ Λ2 ⊂
15 From e.g. [24, Lemma 3.5], we have ηε(Λ) � λ∞

1 (Λ∨)−1 · ηε(Z
n) for all rank n

lattices. While out of the scope of the present paper, it is possible to give a bound
depending on λ1(Λ

∨) in the 
2-norm instead, without a
√

n loss as in [24, Lemma 3.5],
unconditionnally on ε contrary to [26, Lemma 2.6], but involving the kissing number
of the dual.

16 Due to space constraints, the Gram matrices of the standard bases for An and its
dual are moved to the full version for space savings.
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· · · ⊂ Λq ⊂ An, where for all 1 � i � q, Λi is isometric to an orthogonal direct
sum of i copies of Ak.

The proof amounts to identifying several copies of smaller Ak lattices, orthog-
onal to each other, in the standard basis of An, by appropriately permuting the
columns (for instance the first two vectors in the usual basis of A3 generate a
copy of A2) and packing the remaining vectors all together in the final part of
the filtration. All details are presented in the full version.

The remaining vectors have to be dealt with, but it turns out not to impact
what follows. This allows to sample over the An lattice using Algorithm 2. Let
us call Bn the basis corresponding to the filtration of Proposition 15. At the
deepest level of recursion, we sample in the lattice Λ/Λq, using for example
Klein sampler, or equivalently, Algorithm 2 with the filtration corresponding to
the projection of the last q + r columns of Bn orthogonally to V ⊥

q = Span(Λq)⊥.
Then, all subsequent samplings happen in (a copy of) Ak, and for example, when
k = 8, one calls the E8 sampler for these last q steps. For the sake of clarity, we
restrict ourselves to k = 8 and give an equivalent iterative algorithm. The result
is proved in the full version of this work.

Theorem 16. Let n > 8 be an integer and n = 9q + r the Euclidean division
of n by 9. Let t ∈ Rn and D be the distribution of the An sampler, for σ �
max{√9/8 · ηε(Z8), ηε(A8)}. Then for a small enough ε, the statistical distance
between D and DAn,t,σ2 is at most (q + 1)ε.

Algorithm 4: An sampler

Input: σ � max
{√

9
8ηε(Z8), ηε(A8)

}
, a center t ∈ SpanR(An), a

filtration (Λi)i of An in the form of Bn, as in Proposition 15.
Output: v following distribution statistically close to DAn,t,σ2

1 Compute ci = πV ⊥
q

(bi+kq) for 1 � i � q + r

2 tq+1 ← πV ⊥
q

(t)
3 xq+1 ← Algorithm 2({c1, . . . , cq+r}, σ, tq+1)
4 u ← Lift(xq+1, Vq)
5 t′ ← t − xq+1

6 Compute the orthogonal projections t′
j of t′ on Span(bjk+1, . . .bjk)

for 0 � j < q
7 x1, . . . ,xq ← E8 − sampler(σ, t′

1), . . . ,E8 − sampler(σ, t′
q) /∗ can

be done in parallel ∗/
8 return x1 + · · · + xq + xq+1
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6.3 The king Sampler

The Iterated Parity-Check Construction. In [8], a unifying construction is
introduced to generalize the parity-check lattices. Notably, this so-called king-
construction recovers some constructions of famous remarkable lattices, includ-
ing the Barnes-Walls, Leech and Nebe lattices. By leveraging a recursive com-
bination of the conventional parity-check construction, this technique provides
a convenient coset decomposition, which the authors turn into novel decoding
algorithms. In line with the philosophy that a Gaussian sampler serves as a ran-
domized decoding algorithm, we further demonstrate how our domain extension
techniques blend into the creation of new samplers for the king-based lattices.

The king construction starts from a double inclusion L ⊂ M ⊂ N of full-
rank lattices. Fixing coset representatives to identify the quotients A = N/M
and B = M/L, define the king construction Γ (L,A,B, k) as follows, starting
from its parity check sublattice is:

Γ (L,B, k)P =

{
(t1, . . . , tk)

∣∣∣ ti ∈ L + B,
∑

i

ti ∈ L

}
. (6)

and its definition as the coset decomposition:

Γ (L,A,B, k) =
⋃

m∈A

{
Γ (L,B, k)P + (m, . . . ,m)

}
(7)

Towards a Sampler.

Reduction to sublattice sampling. This decomposition then translates to a sam-
pler, by plugging the bricks described in Sect. 4.1: if we denote by Γ0 the quo-
tient of the king construction by its parity-check sublattice, the short sequence
0 → Γ (L,B, k)P → Γ (L,A,B, k) → Γ0 → 0 underlying the decomposition of
Equation (7) allows with the results of Sect. 3 to reduce the problem to sampling
in the parity-check Γ (L,B, k)P .

Sampling in parity check lattices. To leverage the extension results presented
in Sect. 3 once again, we will now focus on describing Mk/Γ (L,B, k)P in a
concise manner. By considering the map tr : (x1, . . . , xk) �→ ∑

i xi over B, we
can express this quotient as Bk/ ker(tr). The proof is a matter of elementary
commutative algebra and is provided in the full version of this work as it is not
directly relevant to the subsequent developments. Consequently, by utilizing the
short exact sampler (Algorithm 1), we can effectively reduce the task of sampling
within the parity check lattice Γ (L,B, k)P to two main steps: sampling a uniform
element in B/ ker(tr) and sampling an element in L. It is worth noting that
sampling within the aforementioned group is equivalent to sampling a uniform k-
tuple of elements with a zero-sum. This particular distribution can be accurately
simulated by independently and uniformly sampling the first k − 1 elements,
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followed by setting the final element to be the negation of the sum of these
previously sampled elements.

Algorithm 5: king sampler

Input:
– A chain of (full-rank) lattices L � M � N
– Sets of representants for A = N/L and B = M/L
– A sampler DL,·,Σ at covariance Σ > ηε(N).
– a center c ∈ Nk ⊗ R

Output: v following a distribution close to DΓ (L,A,B,k),c,Σ

1 α ← U(A)
2 m ← (α, . . . , α)
3 for i = 1 to k − 1 do ti ← U(B)
4 tk ← −∑k−1

i=1 ti
5 t ← (t1, . . . , tk)
6 u ← DLk,c−t−m,Σ

7 return (u + t + m)

Putting all together. By these two steps, we reduced the sampling in the king
construction to samples in the small sublattice L. The complete pseudo-code
is given in Algorithm 5 when expanding all steps of the short exact sequence
technique and using direct set of representants to avoid lifting:

The correctness of the king sampler can be derived from the proven correct-
ness of the short exact sampler (Theorem 6). It is important to note that in this
context, the selection of a suitable covariance Σ greater than the smoothing of
the first lattice in the chain is mandatory (L) However, an interesting observa-
tion is that if we possess a direct sampler for the parity check lattice Γ (L,B, k)P ,
we have the opportunity to optimize lines 3-4-5-6 by directly sampling from this
lattice, centered at the vector c − m. By employing this optimization, the con-
dition can be weakened, requiring only that Σ exceeds the smoothing of the
parity check lattice. This modification not only simplifies the algorithm but also
enhances its precision.

Recovering Remarkable Lattices Following [8] we have recursive descrip-
tions when k = 2, 3, with a slight abuse on notation where we allow the lattices
in the chain to be rotated or scaled. The corresponding decoding/sampling algo-
rithms are adapted mutatis mutendis17.

– Barnes-Walls: This family can be defined as BW2n = Γ (φ · BWn, B, 2) for
B = BWn/(1 + i)BWn and the bootstrap BW2 = Z[i] ∼= Z2, where φ repre-

17 We don’t describe the construction of the Nebe here as it will not be used in the
following practical applications. However, we point out that it is based also on 3-ing
construction upon the Leech lattice, and as such our framework readily applies.
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sents the multiplication by (1+ i) (which translates to a rotation and scaling,
when looking at the underlying Z-lattice.

– Leech: The celebrated Leech lattice can be constructed as a 3-construction
(also called Turyn construction) from the E8 root lattice. For this, we select
the chain 2E8 ⊆ Tθ ⊂ T where Tθ

∼= T ∼= E8, for a phase such that
√

2eiθ =
1
2 (1 + i

√
7) (see [8] for a complete description). Other variants of the same

approach exist.

7 Application I: Improved Samplers for Mitaka

mitaka [15] is a variant of falcon offering simpler implementations and flexible
parameters. It can be theoretically instantiated over arbitrary cyclotomic fields.
While concrete parameters and security estimates are provided, the preliminary
implementation of mitaka only covers the case of power-of-2 cyclotomics. The
instantiation over other cyclotomic rings Rm relies on how the Gaussian sam-
pling over Rm is performed. This is non-trivial as the canonical basis of these
rings of integers fails to be orthogonal when the conductor m is not a power-of-2.

In this section, we present two novel approaches relying on our ad-hoc,
explicit samplers for root lattices: one for cyclotomic rings with prime conductor,
one for smooth conductor m = 2�3k. We believe that the techniques introduced
in this section could find further use in designs, providing more flexible param-
eters, more efficient samplers, and tighter security.

7.1 Hybrid Sampling and Representation of Cyclotomic Numbers

mitaka is an NTRU-based instantiation of the gpv framework [18]. Its secret
key is a short basis b0 = (f, g)t,b1 = (F,G)t ∈ R2

m of the NTRU module
Mntru = (f, g)tRm ⊕ (F,G)tRm. The signing amounts to sampling a discrete
Gaussian in Mntru close to an arbitrary target (a hashed message), which is
accomplished by the hybrid sampler [12,28]. Let σsig be the standard deviation
of the sampled lattice Gaussian. For better sizes and security against forgery,
one wants to minimize σsig.

As seen in Sect. 4.3, the hybrid sampler leverages the filtration {0} ⊂
ψ(b0Rm) ⊂ ψ(Mntru), where ψ denotes the canonical embedding extended to
vectors. The calls to Algorithm 3 consider b0Rm and Mntru/b0Rm as linear
transformations18 of Rm. Under this identification, Lemma 9 and Lemma 11
show that the sampler of mitaka reaches standard deviation as

σsig � max
(
s1(ψ(b0)), s1(ψ(b∗

1))
) · α · ηε (ψ(Rm)) ,

where α > 1 encodes how close we are able to sample from the smoothing
parameter of the base ring Rm. For Algorithm 2 to reach the stated covariance,

18 In practice, this second call is encoded by the orthogonalization b∗
1 of b1 in the

cyclotomic field ; such details are not our focus here, we let the interested reader
refer to the full version of this paper for a complete presentation.
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it requires two elliptic samples in Rm. In [15], this is handled by Peikert’s sampler
in ψ(Rm), or equivalently, Algorithm 3 with C being the (canonical embedding
of) the power basis — equivalently, the Fourier domain of this basis. This choice
comes from the use of a well-chosen continuous perturbation, which has diagonal
covariance in this representation so that its square root can be computed in
quasi-linear time, avoiding costly Cholesky decompositions.

The next requirement of Algorithm 3 is a spherical, discrete sample in Rm.
For power-of-two cyclotomics, the canonical embedding ψ(Rm) is essentially a
scaling of Zm/2, and so α = 1. The situation is less favorable for more general
cyclotomic rings. For example in prime cyclotomic, sampling directly the coef-
ficients of x =

∑
j xjζ

j as spherical Gaussians means that ψ(x) has covariance

(proportional to) VpVp
t
, a matrix far from being diagonal. In other words, going

back and forth the canonical embedding distorts severely the resulting sample
in Mntru. Another approach is to sample directly in the Fourier domain; for
prime or smooth conductors, the current best approaches yield α =

√
p − 1 and

α =
√

2 losses, respectively [15].
Changing the construction of the basis of Mntru is not the topic of this paper.

We focus instead on decreasing the contribution of α. Our goal is to show that a
different representation of Rm can significantly reduce this parameter. The hero
of the story is the principal ideal19 〈1−ζp〉. Using Algorithm 2 over the filtration
induced by the so-called decoding basis [20] ζi

p − ζi+1
p of the ideal 〈1 − ζp〉, one

can achieve generally, α =
√

2, which is the length of the largest Gram-Schmidt
vector of this basis. We leverage this observation thanks to the next result.

Proposition 17 (Adapted from [30, Chap. 1]). Let p be a prime, ζp a primitive
p-th root of 1, and ψ the canonical embedding of Rp. There exists a linear map
φ : 〈1−ζp〉 −→ Ap−1 such that we have ‖ψ(x)‖2 = p‖φ(x)‖2, for all x ∈ 〈1−ζp〉.
The map φ is not the one described in [30], but they are very related; see the
full version for details. Recall that ψ can be computed using the Vandermonde
matrix Vp associated with the p-th primitive roots of 1. We have s1(Vp) =

√
p and

sp−1(Vp) = 1, where sp−1 is the smallest singular value. This implies 1
p‖x‖2 �

‖φ(x)‖2 � ‖x‖2 for all x ∈ 〈1 − ζp〉.

7.2 Sampling over Cyclotomic Fields of Conductor 2� · 3k

Here, we work in Rm = Z[ζm] with m = 2� · 3k and 
, k > 0, as suggested
in [15]. To our knowledge, very few works focus20 on such conductors. From
e.g. [20,30] or the full version, the tensor decomposition Rm = R2� ⊗ R3k leads
to an orthogonal decomposition (tied to the powerful basis [20]) Rm

∼= Z
�
2 ⊗

19 It is also known as (a scaling of) the co-different ideal.
20 falcon showcased an FFO-style sampler over cyclotomic rings of conductor 3 · 2�

in the round 1 of the NIST call. It was abandoned because of its high technicality.
Such rings are also the focus of the implementation in [21].
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( ⊕3k−1

i=1 R3

) ∼= ⊕m
6

i=1 R3. Alternatively, we have an orthogonal decomposition

〈1 − ζm/3
m 〉 =

m

2
R∨

m
∼=

m/6⊕
i=1

〈1 − ζ3〉. (8)

(see also [20, Cor. 2.18]). We can use our A2 sampler with this decomposition:
sampling in R3 is done by m/6 independent sampling in A2, by orthogonality.

Efficiency and Signature Quality From the A2 sampler algorithm, we obtain
samples in A2 of width at least ηε(D8), for some chosen ε.

We observe using the estimates of Lemma 14 that ηε(D8) � ηε(A2), so we
can sample each component in the decomposition (8) at the smoothing of A2.
Taking into account the entire filtration, the resulting sampler reaches standard
deviation starting

σ′ = η6ε/m(A2) ≈ ·
√

3
2

· η2ε/3(Z
m
3 ). (9)

The running time is linear in the conductor m. As we need large batches of
samples, the alternate approach21 of the A2 sampler that amortizes randomness
is a good choice here. While still a bit randomness-hungry, the resulting sampler
is completely parallelizable and also memory-efficient: we only need to store
a table for integer Gaussians of small width. Moreover, thanks to the small
Gaussian parameter, the constant-time implementation is easy and efficient.

Comparisons with Other Methods. On the one hand, the basis b0,b1 is
not changed between our methods and the previous ones. On the other hand,
previous approaches such as [15] could only sample representants of Rm to a
standard deviation of σ′ �

√
2 · ηε(Zm/3). This translates quantitatively into a

NIST security22 level-up for each 3-smooth conductors parameter sets proposed
in [15], as reported in Table 1.

Another generic method for low-dimensional lattices with a small width is
tabulated sampling. Concretely, one precomputes a CDT-like table for all short
vectors of A2 and then outputs the sample through table look-up. However, the
size of the table for DA2,σ′2 is much larger than the one for DZ,σ′2/3 in our algo-
rithm, which significantly lowers the speed of the constant-time implementation.

7.3 Sampling over Prime Cyclotomic Fields

The sampler results from a combination of Proposition 17 with our efficient
Algorithm 4 instantiated over Ap−1.
21 See the full version.
22 We use here the same security estimates as in [15], in the so-called Core-SVP model

for a fair comparison. We point out that the recent work of Ducas et al. on small
modulus SIS [14] doesn’t apply for these modulus choices.
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Table 1. Concrete values for forgery compared to Mitaka base sampler.

mitaka This work

Classical Quantum NIST Level Classical Quantum NIST Level

d = 648 117 103 I− 137 121 II

d = 768 147 129 II 170 150 III

d = 864 168 148 III 195 171 IV

d = 972 194 170 IV 224 197 V

Efficiency and Signature Quality. Both approaches are linear in p, with
Algorithm 4’s main cost coming from the sampling in A8, achieving a width
max(ηε(D8), ηε(A8)). Using the approximation of Lemma 14, we see that
ηε(D8) � ηε(A8): we can sample the components at the smoothing of A8. The
resulting standard deviation in Algorithm 4 is thus

σ′ = ηε/q(A8) ≈
√

9
8

· η2ε/9(Z8q) with q = �p/9	. (10)

The isochronous implementation for both approaches is easy and efficient,
as the involved algorithms only rely on an integer sampler of a fixed width and
simple rejection samplings. They are both highly parallelizable, thanks to the
filtration shown in Proposition 15; and memory-efficient, as the base sampling
has small width

√
9/8 · ηε(Z) and it does not need to store many intermediate

values due to the parallelism.

Comparisons with Other Methods. In [20, Sec. 6.3], the ideal 〈1 − ζp〉 and
the identification of prime-power cyclotomic rings were used to sample continu-
ous Gaussians, by mean of the so-called “decoding basis”, which is the Z-basis
of the ideal. From the map φ, we can directly identify the Gram matrix of Rp

as a scaling by p of that of A∨
p−1 to be the circulant matrix Gp of first line

(p− 1,−1, . . . ,−1). The largest element in the diagonal of the Cholesky of Gp is√
p − 1, which drives the quality of a Klein/GPV approach (as done in [15]). An

approach à la Peikert with Algorithm 3 is driven by the Vandermonde matrix
Vp, and we have s1(Vp) =

√
p. Considering now the decoding basis as a matrix

Ap with Gram matrix Gp (equivalently, using the map φ), we have identified
the meaningful quantities in Sect. 6.2. Comparisons between all approaches are
displayed in Table 2, showing that our filtration choice improves on the state-of-
the-art.

Practical Impact. The improvement over mitaka is significant, as seen
in Table 3. On the one hand, we can use finely tailored conductors to match
the requirements of the NIST level, which allows working in smaller dimensions.
But we can also use NTT-friendly moduli q that are smaller than the traditional
q = 12289 used for power-of-two cyclotomics, which also allows for reducing both
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Table 2. Comparisons with other samplers over prime cyclotomics.

Quality Running time

Peikert, canonical basis
√

p · ηε(Z
p−1) O(p2)

Klein, canonical basis
√

p − 1 · ηε(Z
p−1) O(p2)

Peikert, decoding basis ≈ 2
√

1 − π
2p2 · ηε(Z

p−1) O(p)

Klein, decoding basis
√

2 · ηε(Z
p−1) O(p)

Coefficient embedding ηε(Z
p−1) O(p)

Ours (φ) ηε/q(A8) ≈
√

9
8

· η2ε/9(Z
8q) O(p)

Table 3. Intermediate parameters and security levels for prime-Mitaka.

Conductor Modulus Quality Security

m : ϕ(m) q α (C/Q/NIST level)

mitaka 2304 : 768 18433 2.20 167/151/NIST-II

This work 683 : 682 1367 2.125 157/138/NIST-II

mitaka 2592 : 864 10369 2.25 192/174/NIST-III

This work 857 : 856 6857 2.215 207/182/NIST-III

mitaka 2916 : 972 17497 2.30 220/199/NIST-IV

This work 919 : 918 3677 2.247 223/196/NIST-IV

falcon 2048 : 1024 12289 1.17 285/258/NIST-V

mitaka 2048 : 1024 12289 2.33 233/211/NIST-V

This work 1009 : 1008 10091 2.30 250/219/NIST-V

the public key and signature sizes — however the improvement is mild, therefore
we focus on the security.

8 Application II: New Compact Lattice Gadgets

Lattice gadgets are an important ingredient to build efficient lattice trapdoors.
Very recently, Yu, Jia, and Wang developed a new gadget framework [31] and
proposed practical signature schemes based on it. In their scheme, the gadget
can be in principle any square matrix supporting efficient decoding and Gaussian
sampling. However, the concrete instantiations only use the simplest (scaled)
integer lattice Zn as the gadget. To design more efficient gadgets, one is not
only required to explore new lattice structures but also to develop specialized
decoding and/or sampling algorithms.

This section showcases a new practical construction based on the E8 lattice.
We have shown that the E8 lattice has an efficient sampler achieving the Gaussian
width ηε(E8) < ηε(Z8), which allows better size and security than the Zn-based
instantiation.
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8.1 The Yu-Jia-Wang Compact Gadget Framework

In a general gadget-based trapdoor scheme, the preimage sampling is con-
verted to the gadget sampling by using the trapdoor, following the idea of the
Micciancio-Peikert trapdoor [23]. In the Yu-Jia-Wang framework, the gadget is
a square matrix G ∈ Zn×n along with H ∈ Zn×n such that GH = qIn, and the
gadget sampling is implemented by the so-called semi-random sampler. Given
a target u, the semi-random sampler outputs a Gaussian preimage v such that
Gv = u − e mod q for a small error e. The sampler proceeds in two steps:

1. Deterministic decoding over L(G). The sampler first computes an error e
such that u − e ∈ L(G). Let u − e = Gc for some c ∈ Zn.

2. Gaussian sampling over L(H). The sampler then samples v ← DL(H)+c,r

with r � ηε(L(H)). It holds that Gv = u − e mod q.

Note that either shorter e or shorter v can be beneficial to the security. The con-
crete instantiations in [31] choose the simplest gadget (G,H) = (pIn, (q/p)In).
In this setting, ‖e‖ is around p

√
n/12 and ‖v‖ is around (q/p) · ηε(Zn).

8.2 Compact Gadget from the E8 Lattice

The E8 lattice has a good basis with well-structured inverse as follows

B =

⎛
⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 1/2
−1 1 1 0 0 0 0 1/2
0 0 1 1 0 0 0 1/2
0 0 0 1 1 0 0 1/2
0 0 0 0 1 1 0 1/2
0 0 0 0 0 1 1 1/2
0 0 0 0 0 0 1 1/2
0 0 0 0 0 0 0 1/2

⎞
⎟⎟⎟⎟⎠

B−1 =
1
2

·

⎛
⎜⎜⎜⎜⎝

1 −1 1 −1 1 −1 1 −1
1 1 −1 1 −1 1 −1 −1
0 0 2 −2 2 −2 2 −2
0 0 0 2 −2 2 −2 0
0 0 0 0 2 −2 2 −2
0 0 0 0 0 2 −2 0
0 0 0 0 0 0 2 −2
0 0 0 0 0 0 0 4

⎞
⎟⎟⎟⎟⎠

.

In our E8-based instantiation, the gadget (G,H) = (p · B−1 ⊗ In/8, (q/p) · B ⊗
In/8).

The lattice L(B−1) has an orthogonal basis

D =
1
2

·

⎛
⎜⎜⎝

1 −1
1 1

2 · I6

4

⎞
⎟⎟⎠

that offers fast decoding. The error size is around
√

n
8 ·

√
1
24 + 6

12 + 1
3 ≈ 0.33

√
n

slightly larger than
√

n/12 ≈ 0.29
√

n the one in the Z-based instantiation. The
sampling on L(H) is tighter than that in the Z-base gadget: by using the ad-hoc
sampler for E8, one can sample with a Gaussian width ηε(E8) ≈ 1√

2
· ηε(Z8)

(scaled by q/p). As shown in Table 4, the E8 gadget gains 56 (resp. 113) bytes
of the signature size and 3 (resp. 9) bits of security against forgery for Eagle
(the Ring-LWE-based scheme). The comparisons follow the suggested parame-
ters in [31] where the secret standard deviation is

√
1/2. We note that the pre-

sented parameters may not be optimal: there seems a few bits of gap between the
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Table 4. Parameters for the compact gadget-based signatures.

(p, q/p) Forgery security (C/Q) |Sig.| (bytes)

Z-based Eagle-512 (2000, 8) 83 / 75 1406

E8-based Eagle-512 (2000, 8) 86 / 78 1350

Z-based Eagle-1024 (2700, 12) 189 / 172 3052

E8-based Eagle-1024 (2700, 12) 198 / 179 2939

key recovery and the forgery security. Finding optimal parameters and closing
this gap could be interesting future work.
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Abstract. We introduce FESTA, an efficient isogeny-based public-key
encryption (PKE) protocol based on a constructive application of the
SIDH attacks.

At its core, FESTA is based on a novel trapdoor function, which uses
an improved version of the techniques proposed in the SIDH attacks to
develop a trapdoor mechanism. Using standard transformations, we con-
struct an efficient PKE that is IND-CCA secure in the QROM. Addition-
ally, using a different transformation, we obtain the first isogeny-based
PKE that is IND-CCA secure in the standard model.

Lastly, we propose a method to efficiently find parameters for FESTA,
and we develop a proof-of-concept implementation of the protocol. We
expect FESTA to offer practical performance that is competitive with
existing isogeny-based constructions.

Keywords: Isogeny-based Cryptography · Public-key Encryption ·
Trapdoor Function

1 Introduction

Over the last decade, isogeny-based cryptography has become one of the major
candidates to develop cryptographic protocols that are resistant against attacks
from quantum computers. Isogeny-based solutions often offer practical execution
times, and, despite being significantly slower than their lattice-based counter-
parts, they usually benefit from small bandwidth requirements.

The Supersingular Isogeny Diffie-Hellman (SIDH) protocol by De Feo, Jao,
and Plût [22] has been the most well-known and efficient encryption protocol
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based on isogenies. However, recent attacks [9,36,48] broke the security guar-
antees of the protocol. Fouotsa, Moriya, and Petit [26] proposed two counter-
measures to these attacks, but the result requires significantly larger parame-
ters which make the protocols impractically slow for most applications. Further
countermeasures have been suggested by Basso and Fouotsa [3]; these counter-
measures achieve better performance and smaller keys compared to [26].

The attacks on SIDH significantly altered the landscape of isogeny-based pro-
tocols: they similarly affected the security of other protocols that revealed torsion
point information, such as SÉTA [21]. Other isogeny-based encryption schemes,
such as CSIDH [10] and pSIDH [35], are unaffected; however, they are vulner-
able to a quantum subexponential attack [42] and a quantum polynomial-time
attack [12], respectively. This makes it hard to estimate the quantum security
of a given parameter set; nonetheless, according to the conservative estimates
in [42], CSIDH requires very large primes, which would increase the running
time of a single key exchange to several seconds [14].

In this work, we aim to fill the gap by proposing a novel PKE protocol that is
practical and efficient; we call it FESTA, for Fast Encryption from Supersingular
Torsion Attacks. We first develop a trapdoor function, where the SIDH attacks
are used to invert the one-way function. Then, we use the proposed trapdoor
function to build a IND-CCA secure PKE.

In the trapdoor formulation, the trapdoor key is an isogeny ϕA : E0 → EA

and a random special matrix A; the public parameters are the codomain EA,
together with the image of a large torsion basis (Pb, Qb) under ϕA. The image
points, before being revealed, are scaled by the matrix A, which protects the
isogeny ϕA from the SIDH attacks. The one-way function receives as input two
isogenies ϕ1 : E0 → E1, ϕ2 : EA → E2, and a random special matrix B.
Evaluating the function then consists in computing the images of the torsion
basis on E0 and EA under ϕ1 and ϕ2, respectively, and scaling them both with
the matrix B; see Fig. 1. The matrices A and B are special in the sense that they
commute; this is the case, for instance, for diagonal matrices. Commutativity
of the matrices is what enables the trapdoor inversion: applying the inverse
matrix A−1 to scale the points on E2 yields the correct images of the torsion
points on E1 under the isogeny ψ := ϕ2 ◦ϕA ◦ ϕ̂1. Hence, the SIDH attacks allow
the trapdoor holder to recover the function input ϕ1, ϕ2, and the matrix B, while
the attacks are infeasible to anyone who does not know the secret matrix A.

Related Work. FESTA can be considered a successor of SÉTA [21]: both
protocols constructively use torsion-point attacks to develop a trapdoor func-
tion, which is then the foundation of a IND-CCA PKE. Despite the similarities,
the two protocols rely on different techniques, and the efficiency of the SIDH
attacks [41], compared to the torsion-point attacks used by SÉTA [44], allows us
to obtain a practical encryption protocol.

In terms of techniques used, key generation and encryption in FESTA rely on
similar computations as those in SIDH, with the key difference that the revealed
torsion images are scaled to prevent the SIDH attacks. Unlike the scaling pro-
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E0 EA

E1 E2

Pb

Qb

RA

SA
= A

ϕA(Pb)
ϕA(Qb)

B
ϕ1(Pb)
ϕ1(Qb)

B
ϕ2(RA)
ϕ2(SA)

ϕA

ϕ1 ϕ2

ψ

Fig. 1. The FESTA trapdoor function. The parameter generation computes the
isogeny ϕA, while the trapdoor function evaluation consists of evaluating the isoge-
nies ϕ1 and ϕ2. The inversion algorithm recovers the isogeny ψ = ϕ2 ◦ ϕA ◦ ϕ̂1.

posed in [26], the two points are scaled by different values, which provides higher
security and allows us to use significantly smaller parameters. The decryption
algorithm in FESTA recovers two secret isogenies at once by adapting techniques
used for SIDH attacks: this is one of the first protocols to use this cryptanalytic
tool constructively. A different application of similar techniques has been pro-
posed in [19,24].

Contributions. In this work, we make the following contributions:

1. We propose the FESTA trapdoor function, which constructively uses the SIDH
attacks to invert a one-way function.

2. We assess the security of the proposed trapdoor functions. The security proofs
rely on novel security assumptions, for which we provide a comprehensive
discussion on potential classical and quantum attacks.

3. Relying on the new trapdoors, we apply the OAEP transform [25] to obtain
an efficient PKE that is IND-CCA secure in the QROM. We call this the
FESTA PKE, or just FESTA. We also derive the first isogeny-based PKE to
be IND-CCA secure in the standard model, using a generic transform by
Hohenberger, Koppula, and Waters [30].

4. We describe a novel technique to find parameters that lead to a fast compu-
tation of the SIDH attacks. In particular, we leverage scalar endomorphisms
to obtain an efficient SIDH attack in dimension two that recovers isogenies
between supersingular elliptic curves whose endomorphism ring is unknown.

5. Lastly, we implement the proposed FESTA PKE in SageMath: while this is a
proof of concept, it demonstrates the feasibility of our protocol. Given these
preliminary results, we expect that an optimised implementation of FESTA
can offer practical running times that are competitive with existing isogeny-
based constructions.

Organisation. In Sect. 2, we cover the necessary background of cryptographic
one-way functions and isogenies between abelian varieties. In Sect. 3, we intro-
duce the FESTA family of trapdoor functions, and its security is analysed in
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Sect. 4. Then, we build upon the proposed trapdoor functions to obtain a PKE
that is IND-CCA secure in the QROM model in Sect. 5. Section 6 gives a pre-
cise and concrete description of the FESTA PKE, which is supported by the
proof-of-concept implementation detailed in Sect. 7.

Notation. Throughout this paper, we denote the security parameter as λ, and
we say a function f(x) is negligible if, for all positive integers c, there exists
an integer N such that |f(x)| < x−c, for all x > N . We write negl(·) to say
a negligible function and Z>0 to represent the set of positive integers. Given
a t ∈ Z>0, we denote its square-free part by tsf . We also write x

$←− X to denote
that x is sampled uniformly at random among the elements of X .

We also define TorGen to be a deterministic algorithm that, given a supersin-
gular elliptic curve E and an integer n, outputs two generators of the n-torsion on
E, denoted by E[n]. Given four isogenies ϕi,j : Ei → Ej and two points Pi ∈ Ei,
for i = 1, 2 and j = 3, 4, evaluating the isogeny

(

ϕ1,3 ϕ2,3

ϕ1,4 ϕ2,4

)

: E1 × E2 → E3 × E4

at
(

P1 P2

)T amounts to
(

ϕ1,3 ϕ2,3

ϕ1,4 ϕ2,4

)(

P1

P2

)

=
(

ϕ1,3(P1) + ϕ2,3(P2)
ϕ1,4(P1) + ϕ2,4(P2)

)

.

In particular, we can view the action of scaling points P1, Q1 by a matrix A just
as above, by interpreting the matrix coefficients α, β, γ, δ to be scalar endomor-
phisms:

(

α β
γ δ

)(

P1

P2

)

=
(

[α]P1 + [β]P2

[γ]P1 + [δ]P2

)

.

2 Preliminaries

In this section, we summarise some background knowledge about public-key
encryption schemes and isogenies.

2.1 Cryptographic Preliminaries

For the sake of being self-contained, we briefly recall some cryptographic notions
we will use in the rest of the paper; we refer to [7] for background material.
The main ingredient in FESTA is the notion of a trapdoor function. Roughly
speaking, trapdoor functions can be seen as one-way functions with the property
of being easily invertible if one has access to additional secret information. While
definitions in the literature vary, throughout this paper we restrict ourselves
to injective trapdoor functions. Formally, trapdoor functions form a family of
functions indexed by the public parameters, but when the context allows it, we
may refer to a trapdoor function to denote the entire family for ease of notation.
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Definition 1 (Family of trapdoor functions). Let X and Y be two finite
sets. A family of trapdoor functions is a triple of algorithms (KeyGen, f, f−1)
such that:
– KeyGen(λ) $−→ (sk, pk) : KeyGen is a probabilistic key generation algorithm that

outputs a secret key sk and a public key pk for a given security parameter λ;
– f(pk, x) → y: f is a deterministic algorithm that, on input a public key pk

and x ∈ X , outputs y ∈ Y;
– f−1(sk, y) → x: f−1 is a deterministic algorithm that, on input the secret key

sk and y ∈ Y, outputs x ∈ X .

Trapdoor functions need to be correct, i.e. for all possible outputs (pk, sk) of
KeyGen and for all x ∈ X , f−1(sk, f(pk, x)) = x. Moreover, they should also be
one-way, which means that given a valid output y ∈ Y, computed using (sk, pk),
and the public key pk, any probabilistic polynomial-time adversary cannot com-
pute x ∈ X such that f(pk, x) = y with probability greater than negl(λ).

In this work, we rely on a stronger version of trapdoor functions: partial-
domain trapdoor function [25]. Informally, this means that not only recovering
the entire input is hard, but also the same holds if one tries to recover a part of
it.

Definition 2 (Quantum partial-domain one-way function). Let X0,X1

and Y be three finite sets. A function f : X0 × X1 → Y is a quantum partial-
domain one-way function if, for any polynomial-time quantum adversary A, the
following holds:

P
(

s′ = s
∣

∣

∣ s
$←− X0, t

$←− X1, s
′ ← A(f(s, t))

)

< negl(λ).

In Sect. 5.1, we show how to derive a Public-key Encryption (PKE) scheme
from a quantum partial-domain one-way function.

Definition 3 (Public-key Encryption). A public-key encryption scheme is
a triple of efficient algorithms (KeyGen,Enc,Dec) such that:

– KeyGen(λ) $−→ (sk, pk): KeyGen is a probabilistic key generation algorithm that
outputs a secret key sk and a public key pk for a given security parameter λ;

– Enc(pk,m) → ct: Enc is a probabilistic algorithm that, given a public key pk
and a message m, returns a ciphertext ct;

– Dec(sk, ct) → m: Dec is a deterministic algorithm that returns a message m
having a ciphertext ct and a secret key sk as input.

A public-key encryption scheme is correct if, for all possible outputs (sk, pk)
of KeyGen and for all messages m, Dec(sk,Enc(pk,m)) = m.

Mainly, there are two notions of indistinguishability security for PKEs: secu-
rity against a chosen plaintext attack (CPA), and security against a chosen
ciphertext attack (CCA). The FESTA PKE we will introduce in Sect. 5 verifies
the strongest notion of IND-CCA: roughly speaking, given two messages, any
probabilistic polynomial-time adversary cannot distinguish which message has
been encrypted even if they can ask to decrypt some ciphertexts different from
the challenge ciphertext at any point during the attack.
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2.2 Isogenies

Most of the existing isogeny-based cryptosystems rely on the computation of
isogenies between elliptic curves. For details on these, we refer the reader to
[20,49]. We recall here some results about isogenies between abelian varieties,
while keeping in mind our main application: recovering isogenies between elliptic
curves from isogenies between abelian varieties.

Implicitly, elliptic curves come equipped with an additional structure: the
principal polarisation. Principal polarisations can be seen as special isomor-
phisms between the curve itself and its Jacobian. Thus, the correct generalisation
of elliptic curves to higher dimension is principally polarised abelian varieties;
that is, abelian varieties endowed with a principal polarisation. An abelian vari-
ety of dimension two is called abelian surface. Up to isomorphisms over the
algebraic closure of their field of definition, principally polarised abelian surfaces
come into two flavors: either Jacobians of genus-2 hyperelliptic curves or prod-
ucts of two elliptic curves. This property allows us to compute certain polarised
isogenies between abelian surfaces efficiently; polarised isogenies are isogenies
that are compatible with the principal polarisations on the two abelian sur-
faces. We refer to [39] for more thorough background and to [36, Section 2] for
an introduction to principally polarised abelian surfaces from a cryptographic
perspective.

Products of supersingular elliptic curves are the main ingredient underlying
the recent attacks on SIDH. Given the description of some torsion under a secret
isogeny, it is possible to recover such an isogeny using the following result, which
is proved in [36, Theorem 1] and is a corollary of Kani’s criterion [32].

Theorem 4. Let E0, E1 and E2 be three elliptic curves defined over Fp such
that there exist two isogenies ϕN1 : E0 → E1 and ϕN2 : E0 → E2 of coprime
degrees deg(ϕN1) = N1 and deg(ϕN2) = N2. Then, the subgroup

〈([N2]ϕN1(P ), [N1]ϕN2(P )), ([N2]ϕN1(Q), [N1]ϕN2(Q))〉 ⊂ E1 × E2,

where 〈P,Q〉 = E0[N1 + N2], is the kernel of a (N1 + N2, N1 + N2)-polarised
isogeny Φ having product codomain. Furthermore, the matrix form of Φ is given
by

(

ϕ̂N1 −ϕ̂N2

gN2 ĝN1

)

,

where gNi
are Ni-isogenies such that ϕN2 ◦ ϕ̂N1 = gN1 ◦ gN2 .

In the context of the SIDH attacks, Kani’s criterion is used to learn
information about either Alice or Bob’s secret isogeny. In [9], whether the
(N1+N2, N1+N2)-isogeny splits into the product of supersingular elliptic curves
is used as an oracle to determine if a guess of a step along the secret isogeny
path was correct. In [36], the entire secret isogeny is recovered from Kani’s
criterion by noticing that up to isomorphism, the dual of the secret isogeny
−ϕ̂N2 can be recovered from one element of the matrix representation of the
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(N1 +N2, N1 +N2)-isogeny. In [48], this strategy is generalised to higher dimen-
sion to allow provable polynomial-time attacks in the general case.

In the high-level description of FESTA, we write TorAtk to denote a generic
attack that can be implemented with different techniques. In other words, given
the points P ′ = ψ(P ) and Q′ = ψ(Q), for some unknown d-isogeny ψ : E → E′,
points P,Q such that E[2b] = 〈P,Q〉 and b ∈ Z>0, TorAtk(E,P,Q,E′, P ′, Q′, d)
outputs a description of the isogeny ψ : E → E′. The concrete description of the
attack used for our tailored parameter set is introduced in Sect. 6.

As in the case of elliptic curves, isogenies between principally polarised
abelian surfaces can be computed as a chain of (
, 
)-isogenies, where 
 is prime.
There exist some algorithms to compute (
, 
)-isogenies, where 
 is an odd
prime (see, for instance, [16]). Some recent work has improved existing algo-
rithms for the case 
 = 3 [23]. However, for 
 = 2, a classical result of Riche-
lot provides an efficient algorithm to compute (2, 2)-polarised isogenies between
Jacobians of genus-2 hyperelliptic curves [47,50]. For this reason, we will restrict
ourselves to Ni-isogenies between elliptic curves such that N1+N2 = 2b, for some
b ∈ Z>0, when searching for parameter sets. This choice allows to implement our
protocol only with (2, 2)-isogenies in dimension two.

3 The FESTA Trapdoor Function

In this section, we introduce FESTA: a family of quantum-resistant trapdoor
functions. The function evaluation consists of computing two isogenies starting
from two curves, linked by a secret isogeny: the outputs of the function are then
the image curves, together with some scaled torsion images. Roughly speaking,
the one-wayness depends on scaling the torsion points, which makes the SIDH
attacks unapplicable. The secret trapdoor information is a matrix that undoes
the scaling action on the torsion points, which enables the inverter to apply the
SIDH attacks and extract the input.

More formally, let E0 be a supersingular elliptic curve defined over Fp2 , and
fix a basis 〈Pb, Qb〉 = E0[2b]. These values, together with the isogeny degrees,
form the parameters common to each function in the trapdoor family. The public
key of each trapdoor function is generated by computing a secret dA-isogeny from
E0 to EA and consist of the curve EA, together with the torsion images of Pb, Qb,
scaled by a matrix A of special form. We write Mb to denote the set of possible
matrices A, and we postpone a precise definition of it until after we introduce
the trapdoor inversion procedure.

The public keys are defined by the following set:

Apk :=

⎧

⎪

⎨

⎪

⎩

(EA, RA, SA)

∣

∣

∣

∣

∣

∣

∣

ϕA : E0 → EA, deg(ϕA) = dA,

A ∈ Mb,

(

RA

SA

)

= A
(

ϕA(Pb)
ϕA(Qb)

)

⎫

⎪

⎬

⎪

⎭

.

For each (EA, RA, SA) ∈ Apk, we highlight the dependence of the trapdoor
function f on the public key (EA, RA, SA) by using the notation f(EA,RA,SA).
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Evaluating the trapdoor function f(EA,RA,SA) consists of computing the d1-
isogeny ϕ1 : E0 → E1 and the d2-isogeny ϕ2 : EA → E2. The output of
the function is the curves E1, E2, together with the torsion images of Pb, Qb

under ϕ1 and the images of RA, SA under ϕ2, both scaled by the matrix B ∈ Mb.
These computations are summarised in Algorithm 1, and we denote its output
by (E1, R1, S1, E2, R2, S2).

Algorithm 1. f(EA,RA,SA)(〈K1〉, 〈K2〉,B)
Input: Two cyclic subgroups 〈K1〉 ⊂ E0[d1] and 〈K2〉 ⊂ EA[d2] of order d1 and d2,

respectively, and B ∈ Mb.
Output: (E1, R1, S1, E2, R2, S2).
1: Compute the d1-isogeny ϕ1 : E0 → E1 having kernel 〈K1〉.
2: Compute the d2-isogeny ϕ2 : EA → E2 having kernel 〈K2〉.
3: Acting with scalar multiplication compute

(

R1

S1

)

= B

(

ϕ1(Pb)
ϕ1(Qb)

) (

R2

S2

)

= B

(

ϕ2(RA)
ϕ2(SA)

)

.

4: return (E1, R1, S1, E2, R2, S2).

To invert the function, we would like to scale the torsion points R2, S2 on
E2 to undo the scaling-by-A transform that was applied during the public-key
generation. However, the public points on E2 have already been scaled by B; we
thus need that A and B commute. In practice, we require that the matrices are
diagonal:1 applying the matrices then becomes scaling the two torsion points by
two independent scalars.

Given diagonal matrices A,B, we can recover the images of the points R1, S1

on E1 under the composition isogeny ψ := ϕ2 ◦ ϕA ◦ ϕ̂1. Note that

d1

(

R2

S2

)

= B · A · B−1

(

ψ(R1)
ψ(S1)

)

= A
(

ψ(R1)
ψ(S1)

)

.

Hence, after scaling d1
(

R2 S2

)T by A−1, we can apply the torsion-point attacks
on E1 and E2 to recover the isogeny ψ, from which we can reconstruct the kernels
of ϕ1 and ϕ2, denoted 〈K1〉, 〈K2〉 respectively, along with the scaling matrix B.
In other words, we have that TorAtk(E1, R1, S1, E2, R

′
2, S

′
2, d1dAd2) = ψ, where

the points R′
2, S

′
2 are computed by scaling the points [d1]R2, [d1]S2 by the

matrix A−1. The procedure to invert f(EA,RA,SA) is summarised in Algorithm 2.
Note that our trapdoor can be inverted using any torsion-point attack that works
with a starting curve of unknown endomorphism ring. We detail the specifics of
the attack algorithm we use in Sect. 6.

1 This is not the only option: for instance, circulant matrices, i.e. those of the form
[ a b
b a ], form a commutative algebra. However, using such matrices does not seem to

have any major advantage over diagonal matrices.
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The torsion-point attacks can only recovery isogenies up to automorphisms,
and, in our setting, the automorphism groups of the curves E1 and E2 coin-
cides with 〈−id〉.2 Hence, we define Mb, the set from which the matrices A
and B are sampled, to be the commutative subset of invertible diagonal matri-
ces over (Z/2b

Z)× modulo 〈−I2〉, where I2 represents the 2 × 2 identity matrix.
The modulo 〈−I2〉 condition translates to picking a canonical choice in each
equivalence class. For instance, the canonical representative A of an equivalence
class can be the matrix A that verifies A1,1 < −A1,1, where the comparison
is over the integers. Throughout this paper, we always implicitly fix a canoni-
cal representative in any equivalence class; as such, we identify the equivalent
classes in Mb with their canonical representatives. We can extend the definition
to the more general case by Mn to denote the commutative subset of invertible
diagonal matrices over (Z/nZ)× modulo 〈−I2〉, for any smooth integer n.

Algorithm 2. f−1
(EA,RA,SA)(E1, R1, S1, E2, R2, S2)

Input: A tuple (E1, R1, S1, E2, R2, S2), the trapdoor (A ∈ Mb, ϕA : E0 → EA).
Output: (〈K1〉, 〈K2〉,B) such that f(EA,RA,SA)(〈K1〉, 〈K2〉,B) = (E1, R1, S1, E2, R2, S2).
1: Recover R′

2, S
′
2 by inverting A and acting with scalar multiplication:

(

R′
2

S′
2

)

= d1A
−1

(

R2

S2

)

.

2: Compute ψ = ϕ2 ◦ ϕA ◦ ϕ̂1 : E1 → E2 via TorAtk(E1, R1, S1, E2, R
′
2, S

′
2, d1dAd2).

3: Recover the kernel 〈K1〉 of the d1-isogeny ϕ1 : E0 → E1 from ψ using ϕA.
4: Recover the kernel 〈K2〉 of the d2-isogeny ϕ2 : EA → E2 from ψ using ϕA.
5: Compute B ∈ Mb such that

(

R1

S1

)

= B

(

ϕ1(Pb)
ϕ1(Qb)

)

.

6: return (〈K1〉, 〈K2〉,B).

Remark 5. As in SIDH, upon choosing a canonical basis 〈P,Q〉 of E[d], we can
restrict ourselves to isogenies whose kernels are cyclic subgroups of the form
〈P + [x]Q〉, without affecting the security of the protocol. This makes it possi-
ble to represent every isogeny with an element in Z/dZ. This representation is
injective if the automorphisms on the curve E are only ±id: to avoid such issues,
we choose the starting curve E0 to have j-invariant 	= 0, 1728.

Hence, the domain of f(EA,RA,SA) is Z/d1Z×Z/d2Z× Mb. Additionally, we
denote its codomain by S.

The trapdoor function we are proposing is correct, i.e. the inversion algorithm
produces the original function input. The isogeny ψ is uniquely determined by

2 Unless either j(E1) or j(E2) ∈ {0, 1728}, which happens with negligible probability.
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its action on the 2b torsion [37, Section 4]; in other words, there is only one
isogeny of degree d1dAd2 that maps R1 and S1 to R′

2 and S′
2. Hence, the function

TorAtk recovers the unique isogeny up to automorphisms. If all the automorphism
groups of the curves E involved in the protocol are trivial (i.e. Aut(E) = 〈−id〉),
which is the case for all curves with j-invariant 	∈ {0, 1728}, the kernels are
uniquely defined and the images of torsion points are defined up to inversions.
This is because the matrix B is a canonical representative of the equivalence class
modulo 〈−I2〉. Additionally, the matrix B is invertible, and thus the torsion-point
scaling is also an injection. Hence, the inversion algorithm produces the correct
output with overwhelming probability, which also implies that the function is
injective.

4 Security of the FESTA Trapdoor

In this section, we analyse the security of the FESTA trapdoor. We first introduce
a computational and a decisional variant of the problem that asks to either
compute an isogeny or distinguish whether an isogeny exists between two curves,
given the image of torsion points scaled by a matrix A ∈ Mb.3 These problems
can be seen as a generalisation of the classic isogeny problems [22] to the scaled-
torsion setting.

Problem 6 (Decisional isogeny with scaled-torsion (DIST) problem). Let E0 be
a supersingular elliptic curve, and P0, Q0 be two points spanning E0[n], for
some smooth order n. Fix a smooth degree d, coprime with n, and given an
elliptic curve E1 and two points P1, Q1, sampled with probability 1/2 from
either distribution:

– D0 = {E1, P1, Q1}, where E1 is the codomain of a d-isogeny ϕ : E0 → E1,
and the points P1, Q1 are given by (P1 Q1)T = A(ϕ(P0) ϕ(Q0))T , where the

matrix A $←− Mn,
– D1 = {E1, P1, Q1}, where E1 is a random supersingular elliptic curve with

the same order as E0, and (P1, Q1) is a random basis of E1[n],

distinguish from which distribution the values were sampled.

Problem 7 (Computational isogeny with scaled-torsion (CIST) problem). Let ϕ :
E0 → E1 be an isogeny of smooth degree d between supersingular elliptic curves
defined over Fp2 , and let n be a smooth integer coprime with d.

Given the curves E0 with a basis P0, Q0 of E0[n] and the curve E1 with a

basis A(ϕ(P0) ϕ(Q0))T , where A $←− Mn, compute the isogeny ϕ.

Problem 6 is the decisional variant of Problem 7, and as such it is at least
as hard as Problem 7. The converse is also partially true: given an oracle that
solves Problem 6 for any degree, it is possible to solve Problem 7 using the
search-to-decision reduction for classic isogeny problems [29].
3 The problem definitions can easily be extended to the case of circulant matrices.
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The CIST assumption guarantess the hardness of extracting the trapdoor
information from the public parameters of a FESTA trapdoor function. However,
the output of the FESTA one-way function produces two pairs of curves and
torsion points, scaled by the same matrix. The correlated scaling can potentially
make inverting the one-way function easier than solving Problem 7. Thus, to
guarantee the one-wayness of the FESTA function, we need to introduce the
following problem.

Problem 8 (Computational isogeny with double scaled-torsion (CIST 2 ) prob-
lem). Let E0 be a supersingular elliptic curve defined over Fp2 , and let E′

0 be a
random supersingular elliptic curves defined over the same field. Consider two
isogenies ϕ : E0 → E1 and ϕ′ : E′

0 → E′
1 of smooth degrees d and d′, respec-

tively. Let n be a smooth integer coprime with d and d′, and let A be a matrix
sampled as A $←− Mn.

Given the curves E0, E1, E
′
0, E

′
1, two bases P,Q of E0[n] and P ′, Q′ of E′

0[n],
and the points A(ϕ(P ) ϕ(Q))T and A(ϕ′(P ′) ϕ′(Q′))T , compute the isogenies ϕ
and ϕ′.

Since this problem provides additional information (two sets of torsion
images, scaled by the same matrix), the hardness of Problem 7 is implied by
the CIST 2 assumption, whereas the converse may not be true.

Having introduced the relevant computational assumptions, we can now
prove the one-wayness of the FESTA trapdoor function.

Theorem 9. The function f(EA,RA,SA) : Z/d1Z × Z/d2Z × Mb → S, defined
in Algorithm 1, is a one-way function, assuming the hardness of Problem 6 for
d = dA and n = 2b and of Problem 8 for d = d1, d′ = d2 and n = 2b.

Proof. In the definition of one-wayness (see Definition 1), the attacker A receives
the FESTA public parameters, including the dA-isogenous curves E0 and EA, and
the FESTA output comprising of the curves E0, E1 and the points P0, Q0, P1, Q1,
computed as in Algorithm 1, and produces the isogenies ϕ1, ϕ2 and the matrix B.

Through a hybrid argument, we can replace curve EA, which is the dA-
isogenous to E0, with a random starting curve. Any attacker that can distinguish
between the two cases can be used as a distinguisher for Problem 6. Now, any
attacker that can invert the FESTA trapdoor function when the curves E0 and
E1 are randomly generated can be used to solve Problem 8, since the input and
outputs are the same. 
�

Under the strong assumption that an attacker that can solve Problem 6 can
do so for any degree d, Problem 6 and 7 are equivalent, and the hardness of
Problem 7 is implied by that of Problem 8. In that case, Theorem 9 can thus be
simplified to rely only on the CIST2 assumption.

Hardness Analysis. We now discuss potential strategies that an attacker may
employ to solve the presented problems and introduce several arguments to
justify the presumed hardness of the corresponding computational assumptions.
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First, let us consider the torsion point attacks [9,36,48]: as argued in [48,
Section 6.4], given a d-isogeny ϕ, it is possible to recover ϕ if the image of the
n-torsion is available, provided n2 > 4d. While FESTA does reveal torsion point
images of sufficiently large order, these are scaled by a random invertible diagonal
matrix. An attacker may recover the determinant of such a matrix through
pairing computations since e([α]ϕ(P ), [β]ϕ(Q)) = e(P,Q)αβ deg ϕ and P,Q and
deg ϕ are known. This information can be used to remove one variable: given
P ′ = [α]ϕ(P ), Q′ = [β]ϕ(Q) and αβ, scaling Q′ by (αβ)−1 (mod n) yields
the point Q′′ = [1/α]ϕ(Q). Thus, P ′ and Q′′ are the images of P,Q scaled by a
random diagonal matrix of determinant one, where the scaling depends uniquely
on the value α. While this change reduces the number of variables, it does not
affect security because α is randomly sampled from an exponentially large set.
Due to this reduction, in the rest of the paper we can restrict the matrices to
those with unitary determinant without affecting the security of the protocol.

If the attacks on SIDH do not apply to FESTA, it is natural to wonder whether
the attacks could be extended to cover the case of scaled torsion points. This
seems unlikely, because the torsion information revealed by FESTA is significantly
less than that in SIDH, or even the variants of SIDH called M-SIDH and MD-
SIDH [26] that are believed to be secure—we compare FESTA to M-SIDH and
MD-SIDH at the end of this section.

Another attack strategy consists of guessing (or brute forcing) the scaling
value α. While the scaling values are sampled from an exponentially large set,
the attacker can also focus on recovering only part of α. Given the scaled points
P ′ = [α]ϕ(P ) and Q′ = [α−1]ϕ(Q), the attacker can scale them by a power of
two and obtain

2b−jP ′ = [α mod 2j ]ϕ([2b−j ]P ), 2b−jQ′ = [α−1 mod 2j ]ϕ([2b−j ]Q).

This means that it is possible to guess only α mod 2j if the images of points of
order 2j is enough to apply the SIDH attacks on the secret isogeny. However,
FESTA uses isogenies of degree 22λ, which implies this guessing attack requires
j = λ and has thus a computational cost of 2λ. Thus, as long as the isogenies have
degree at least 22λ, the best known attack against Problem 6 and 7 is a simple
meet-in-the-middle attack that ignores the additional torsion information.

Remark 10. Some isogeny protocols have been known to be vulnerable when the
starting curve has known endomorphism ring [4,6], when the known endomor-
phism ring contains small endomorphisms [26], or when the starting curve (and
potentially the underlying prime) is maliciously chosen [45]. In many of these
cases, a trusted setup is a necessary countermeasure [2]. This does not appear
to be the case in FESTA, where Problem 7 remains hard even when the starting
curve E0 is a special curve with known endomorphism ring, such as the case
j(E0) = 1728 or a close neighbour. Nonetheless, any potential future attack that
exploits unknown endomorphism ring can be avoided by generating E0 during
key generation and including its description in the public key.

Very recent analysis [11] has shown that it is possible to recover an isogeny
given its scaled action, i.e. efficiently solve Problem 7 when the attacker knows
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an endomorphism on E0 (or an endomorphism composed with the Frobenius
map from E0 to its Frobenius conjugate) that acts as scalar multiplication on
the starting basis P,Q. However, a random basis, such as that deterministically
generated from its curve, is subject to such an attack only with probability neg-
ligible in the security parameter. The parameters chosen in the implementation
described in Sect. 7 are thus not affected by this attack.

Up until now, we focused on the hardness of the CIST assumption. However,
the security of FESTA relies on the CIST2 assumption, which might be easier
to break. This is because the attacker has access to two CIST samples, where
the scaling matrix A is the same. This may be useful, for instance, because
an attacker that successfully recovers the isogeny in one of the CIST samples
can obtain the correct torsion images in the other sample by scaling by A−1,
recovered in the first sample. Applying the SIDH attacks then yields the sec-
ond isogeny in polynomial time. However, this approach relies on one CIST
instance being already broken. More generally, it seems that the correlated
scaling matrix does not reveal significantly more information: the correlation
between the instances is very tenuous, as the two samples have different start-
ing curves and use isogenies of different large degrees (usually, the two degrees
are coprime). Thus, it is unclear how an attacker may exploit the correlation to
devise a strategy to break either CIST instance.

If we consider quantum-enabled adversaries, the security profile of FESTA
remains mostly unchanged. Similarly to the classical case, it appears to be
hard for a quantum attacker to exploit the scaled torsion images. Thus, such
an attacker would be limited to attempting to solve the torsionless version of
the isogeny problem, i.e. recover the secret isogeny given only the end curves and
the isogeny degree. In this setting, we can rely on the quantum security analysis
of SIDH [31], which shows that sufficiently long isogenies are hard to recover
even with a quantum computer.

Comparison with Existing Protocols. In SIDH, and M-SIDH and MD-
SIDH [26], the parties reveal the scaled action [α]ϕ(P ), [α]ϕ(Q) of a secret
isogeny ϕ on a torsion basis P,Q (in SIDH, α = 1), but crucially the scaling value
is the same for both points. This information is sufficient to compute the images
of exponentially-many full-order subgroups: for any subgroup 〈[x]P + [y]Q〉, its
image under the secret isogeny is 〈[x]([α]ϕ(P )) + [y]([α]ϕ(Q))〉. This is not the
case in FESTA: since the torsion images are scaled by different values, only the
pushforward of two subgroups of full order is revealed: the pushforward of 〈P 〉
is 〈[α]ϕ(P )〉 and that of 〈Q〉 is 〈[1/α]ϕ(Q)〉. Hence, FESTA reveals significantly
less information about its secret isogenies than SIDH, M-SIDH, and MD-SIDH,
which makes an extension of the SIDH attacks to FESTA unlikely.

We can also compare FESTA to other isogeny-based protocols. In binSIDH
and terSIDH [3], the parties also reveal the images of two torsion points scaled
by different values, similarly to what happens in FESTA. Indeed, Problem 7 is
very similar to [3, Problem 5 (SSIP-A)]; however, the torsion points in binSIDH
and terSIDH have highly composite order. This means that the pushforward of
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exponentially many subgroups of full order is still available, although the number
is much smaller than if the points were scaled by the same value. Thus, FESTA
uses torsion points of prime power order, and thus also reveals less information
than binSIDH and terSIDH.

Lastly, if we consider CSIDH (in its many variants), we see that CSIDH
also implicitly reveals the images of some subgroups: the image of the subgroup
ker(π − 1) ∩ E0[
] under a secret isogeny from E0 to E1 is ker(π − 1) ∩ E1[
],
and the image of ker(π + 1) ∩ E0[
] is ker(π + 1) ∩ E1[
]. While this suggests
a relationship between the CSIDH assumption and the hardness of Problem 7,
the isogenies used in CSIDH are Fp-rational. This may be a small difference, but
it makes the two assumptions different enough that they cannot be compared.
For instance, consider the attack by Castryck and Vercauteren [11]: while it
applies to specially crafted instances of FESTA, the attack cannot be extended
to CSIDH.

5 The FESTA Public-Key Encryption Protocol

In this section, we show how the FESTA trapdoor function can be used to build
public-key encryption protocols with different security guarantees.

5.1 IND-CCA Encryption in the QROM

Given an injective partial-domain trapdoor function, Ebrahimi [25] showed it is
possible to obtain a IND-CCA PKE, secure in the Quantum Random Oracle
Model (QROM) by using the OAEP transform.

To use the OAEP transform in our construction, we first need to prove that
the FESTA function is indeed a partial-domain trapdoor function.

Theorem 11. The function f(EA,RA,SA) : Z/d1Z × (Z/d2Z × Mb) → S defined
in Algorithm 1 is a quantum partial one-way function, under the hardness of
Problem 7 and 8.

Proof. We show a stronger statement, i.e. that recovering any of three inputs
is as hard as full-domain inversion: given the isogeny ϕ1, the matrix B can be
obtained by computing the change-of-basis matrix between ϕ1(Pb), ϕ1(Qb) and
R1, S1. The remaining input, the isogeny ϕ2, can be computed as the output
of TorAtk(EA, RA, SA, E2, R

�
2, S

�
2 , d2), where the points R�

2, S
�
2 are obtained by

scaling the points R2, S2 by B−1. 
�
After applying the OAEP transform, we obtain the following PKE proto-

col: the prime p, the curve E0, the values d1, d2, dA, b, and a description of
the set Mb form the PKE parameters. We also rely on two random oracles,
G : Z/d2Z × Mb → Z/d1Z, and H : Z/d1Z → Z/d2Z × Mb. The KeyGen algo-
rithm is similar to that in the trapdoor function, and it produces the trapdoor
public parameters EA, RA, SA.
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To encrypt, we first evaluate G at a randomly sampled input (r,R), and
we use its output, combined with the message m, to determine the kernel of
the isogeny ϕ1. The isogeny ϕ2 and the matrix B, which are the remaining
part of the input for the trapdoor function, are deterministically derived from
the randomness (r,R) and the kernel of ϕ1 via H. The output of the trapdoor
function determines the ciphertext of the encryption algorithm.

During decryption, the trapdoor information is used to recover the isoge-
nies ϕ1, ϕ2 and the matrix B, from which the message can be extracted. These
procedures are formalised in Algorithms 3 and 4.

Note that, unlike the trapdoor definition used in [25], the input and output
spaces of our trapdoor function are not binary strings; thus, the xor operation
used in the transform presented in [25] would not produce correct results. We
replaced it with ring addition for the values representing kernel generators and
matrix multiplications for the scaling matrix, without affecting the security of
the transform.

Algorithm 3. FESTA.Enc(pk,m)
Input: The public key pk = (EA, RA, SA) and the message m to be encrypted.
Output: The ciphertext (E1, R1, S1, E2, R2, S2).

1: Sample r
$←− Z/d2Z and R

$←− Mb.
2: Write m′ = m || 0k mod d1 and compute s = m′ + G(r, R).
3: Write (x, X) = H(s) and compute t = x + r, T = XR.
4: Compute ct = f(EA,RA,SA)(s, t, T ). � Using Algorithm 1
5: return ct = (E1, R1, S1, E2, R2, S2).

Algorithm 4. FESTA.Dec(sk, ct)
Input: The secret key sk = (A, ϕA) and the ciphertext ct = (E1, R1, S1, E2, R2, S2).
Output: The decrypted message m or ⊥ on failure.
1: Compute (s, t, T ) = f−1

(EA,RA,SA)(sk, ct) . � Using Algorithm 2

2: Write (x, X) = H(s) and compute r = t − x, R = X−1T .
3: Compute m′ = s − G(r, R) and write m || mk = m′, where |mk| = k .
4: if mk = 0k then
5: return m.
6: else
7: return ⊥.

Remark 12. Most post-quantum encryption protocols attain IND-CCA security
using the Fujisaki-Okamoto transform [27], which requires re-evaluating the
encryption procedure during decryption. Besides the computational overhead,
the re-evaluation check has enabled a wide range of side-channel attacks [52].
These issues are entirely avoided by FESTA: decryption does not require to run
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the encryption algorithm, which reduces the latency of the decryption algorithm
and brings a significant advantage in the development of side-channel-resistant
implementations.

Partial-Input Extraction. The OAEP transform requires that the entire
input is computed in Line 1 of Algorithm 4. This is necessary to avoid triv-
ial CCA attacks: in the case of FESTA, if the matrix B is not recovered, an
attacker may scale all torsion points by the same diagonal matrix to obtain a
different but valid ciphertext. However, recovering all inputs limits our choice
of parameters (as we will show in Sect. 6, extracting both isogenies ϕ1 and ϕ2

requires d1, d2, and dA to be pairwise coprime) and reduces the efficiency of the
inversion algorithm.

In the Random Oracle Model, we can modify the trapdoor function with a
technique similar to the Fujisaki-Okamoto transform [28]. The new function f
receives as input only the kernel corresponding to ϕ1: the isogeny ϕ2 and the
matrix B are obtained deterministically from ϕ1 through a random oracle. The
inversion function also needs to be modified to extract the isogeny ϕ1 and B.
Then, from the knowledge of ker(ϕ1), we check that the kernel of ϕ2 is correct to
ensure that the output matches what an honest evaluator would have computed.
If we only need to recover ϕ1 during inversion, we would not require d2 to be
coprime with dA; this would translate in a prime p that is about λ bits shorter
than the prime currently proposed.

The parameters proposed in Sect. 7.3 and the implementation discussed in
Sect. 7 consider a full inversion and do not integrate this optimisation. This is to
keep FESTA simple and maintain a cleaner security proof. We leave a thorough
analysis of the benefits of this optimisation for future work.

5.2 IND-CCA Encryption in the Standard Model

While trapdoor functions from group actions are known in the literature [1],
FESTA is currently the only secure trapdoor function based on non-group-action
isogenies. Besides enabling efficient encryption, as described in the previous
section, this allows us to apply the techniques presented in [30] to obtain a
PKE protocol that is IND-CCA secure in the standard model. To the best of
our knowledge, this is the first PKE based on non-group-action isogenies to be
IND-CCA secure in the standard model.

The construction relies upon two building blocks: a randomness-recoverable
IND-CPA PKE and a tagged set commitment protocol. The first can be built
from an almost-all-keys injective trapdoor function. This requires that for nearly
all private/public key pairs, the trapdoor inversion function outputs precisely the
same input that the function was evaluated at for all inputs. This is generally not
the case in FESTA since for a large class of public keys, it may be possible that
a specific input produces an output curve with j-invariant in {0, 1728}. In that
case, the function may not be injective because the target curve has additional
automorphisms. However, in FESTA, whether the inversion is correct depends
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entirely on public information: hence, we can check whether an input may lead
to issues by evaluating the trapdoor function and checking the j-invariant of the
output. We can thus satisfy the almost-all-keys injective property by redefining
the function input to exclude the particular inputs that may be problematic.

The construction of tagged set commitment protocol requires, besides a trap-
door function, a strongly secure one-time signature. Such a signature can be
constructed from any one-way function [33]: we can thus use the FESTA func-
tion to construct all the elements needed to obtain an isogeny-based PKE that
is IND-CCA secure in the standard model.

6 Concrete Instantiation

In this section, we propose concrete parameter sets for FESTA. Such parameters
are specifically tailored to make the recovery of the di-isogenies as fast as possible
via Theorem 4.

6.1 Recovering an Isogeny from Torsion Point Images

We now describe how to invert the trapdoor functions proposed in Sect. 3. Let
ϕ1 : E0 → E1, ϕA : E0 → EA and ϕ2 : EA → E2 be three isogenies between
supersingular elliptic curves having odd degrees d1, dA and d2, respectively, such
that gcd(d1, dA) = gcd(d1, d2) = gcd(d2, dA) = 1. The isogeny ϕA is computed
as the composition of two isogenies ϕA,1 : E0 → ẼA and ϕA,2 : ẼA → EA of
coprime degrees dA,1 and dA,2, respectively. Graphically, we have

E0 ẼA EA

E1 E2

ϕA

ϕA,1 ϕA,2

ϕ1 ϕ2

Suppose now we have found m1,m2, b ∈ Z>0 such that

m2
1dA,1d1 + m2

2dA,2d2 = 2b, (1)

for some odd mi coprime to d1, d2 and dA. Specialising Theorem 4 to the case
where ϕN1 = [m1] ◦ ϕ1 ◦ ϕ̂A,1 and ϕN2 = [m2] ◦ ϕ2 ◦ ϕA,2, the isogeny Φ with
kernel

〈([m2dA,2d2]ϕ1(Pb), [d1m1]ϕ2◦ϕA(Pb)), ([m2dA,2d2]ϕ1(Qb), [d1m1]ϕ2◦ϕA(Qb))〉,
where the points Pb, Qb form a basis of E0[2b], has matrix form

Φ =
(

[m1] ◦ ϕA,1 ◦ ϕ̂1 −[m2] ◦ ϕ̂A,2 ◦ ϕ̂2

[m2] ◦ gd2dA,2 [m1] ◦ ĝdA,1d1

)

.



FESTA: Fast Encryption from Supersingular Torsion Attacks 115

Additionally, we have that ϕ2 ◦ϕA ◦ ϕ̂1 = gdA,1d1 ◦ gd2dA,2 , deg(gdA,1d1) = dA,1d1
and deg(gd2dA,2) = d2dA,2.

Given a security parameter λ, we define

paramsλ = (m1,m2, b, p, d1, dA,1, dA,2, d2, E0)

to be a parameter set, where E0 is a supersingular curve whose j-invariant 	=
0, 1728 and E0(Fp2)  Z/(p + 1)Z × Z/(p + 1)Z, the prime p is of the form
f2bd1 (dA,1dA,2)sf d2 − 1 for some small f > 0, and m2

1dA,1d1 + m2
2dA,2d2 = 2b.

On input paramsλ, we give a precise description of the trapdoor evalua-
tion algorithm (Algorithm 1) in Algorithm 5. The kernels, which are cyclic
subgroups 〈K1〉 ⊂ E0[d1] and 〈K2〉 ⊂ EA[d2], are chosen such that they are
generated by an element of the form P + [x]Q, for some basis (P,Q): thus, they
can respectively be represented by s1 ∈ [0, d1 − 1] and s2 ∈ [0, d2 − 1], given two
bases (Pd1 , Qd1) of E0[d1] and (PA

d2
, QA

d2
) of EA[d2].

Since d1 and d2 both divide p + 1, the d1-torsion of E0 and the d2-torsion
of EA are defined over Fp2 . This choice allows us to compute di-isogenies using
points that are Fp2 -rational, making the entire computation faster. As for the dA-
isogeny, only (dA)sf is included as a factor in p + 1 as we need not represent the
kernel of ϕA explicitly.

Algorithm 5. f(EA,RA,SA)(s1, s2,B)
Input: Two integers s1 ∈ [0, d1 − 1] and s2 ∈ [0, d2 − 1], and B ∈ Mb.
Output: (E1, R1, S1, E2, R2, S2).
1: Compute the bases (Pd1 , Qd1) ← TorGen(E0, d1) and (PA

d2 , QA
d2) ← TorGen(EA, d2).

2: Compute the d1-isogeny ϕ1 : E0 → E1 having kernel 〈Pd1 + [s1]Qd1〉.
3: Compute the d2-isogeny ϕ2 : EA → E2 having kernel 〈PA

d2 + [s2]Q
A
d2〉.

4: Acting with scalar multiplication compute

(

R1

S1

)

= B

(

ϕ1(Pb)
ϕ1(Qb)

) (

R2

S2

)

= B

(

ϕ2(RA)
ϕ2(SA)

)

.

5: return (E1, R1, S1, E2, R2, S2).

To invert f(EA,RA,SA), given the tuple (E1, R1, S1, E2, R2, S2), we compute
the points

(

R′
2

S′
2

)

= A−1

(

R2

S2

)

.

Thus, as we explained above, the isogeny Φ with kernel

〈([m2dA,2d2]R1, [d1m1]R′
2), ([m2dA,2d2]S1, [d1m1]S′

2)〉,
has matrix form

Φ =
(

[m1] ◦ ϕA,1 ◦ ϕ̂1 −[m2] ◦ ϕ̂A,2 ◦ ϕ̂2

[m2] ◦ gd2dA,2 [m1] ◦ ĝdA,1d1

)

.
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If F is the image curve of gd2dA,2 : E1 → F , then Φ maps E1 × E2 onto ẼA × F ,
up to polarised isomorphisms.

Let (P 1
d1

, Q1
d1

) ← TorGen(E1, d1) and (P 2
d2

, Q2
d2

) ← TorGen(E2, d2). Then, we
have
(

L
)

:= Φ

(

P 1
d1

+ R1

P 2
d2

)

=
(

[m1]ϕA,1 ◦ ϕ̂1(P 1
d1

+ R1) − [m2]ϕ̂A,2 ◦ ϕ̂2(P 2
d2

)
)

,

from which we can compute

[2bd2m1]ϕA,1 ◦ ϕ̂1(P 1
d1

) = [2bd2]L,

[2bd1m2]ϕ̂A,2 ◦ ϕ̂2(P 2
d2

) = −[2bd1]L,

[d1d2m1]ϕA,1 ◦ ϕ̂1(R1) = [d1d2]L.

Similarly, we evaluate Φ
(

Q1
d1

+S1 Q2
d2

)T
to obtain [2bd2m1]ϕA,1 ◦ ϕ̂1(Q1

d1
),

[2bd1m2]ϕ̂A,2 ◦ ϕ̂2(Q2
d2

) and [d1d2m1]ϕA,1 ◦ ϕ̂1(S1).
Using the knowledge of ϕA,i, we can extract the images ϕ̂1(P 1

d1
), ϕ̂1(Q1

d1
),

ϕ̂2(P 2
d2

) and ϕ̂2(Q2
d2

). With these, we compute s1 and s2 such that ker(ϕ1) =
〈Pd1 +[s1]Qd1〉 and ker(ϕ2) = 〈PA

d2
+[s2]QA

d2
〉. This is slightly more complicated

than the more common case when d1 is a prime power and can be done following
Algorithm 6.

Algorithm 6. ComputeCanonicalKernel(ϕ̂(P ′), ϕ̂(Q′), d)
Input: ϕ̂(P ′) and ϕ̂(Q′), where ϕ : E → E′ is a d-isogeny and 〈P ′, Q′〉 = E′[d].
Output: s ∈ [0, d − 1] such that ker(ϕ) = 〈P + [s]Q〉, where (P, Q) ← TorGen(E, d).4

1: Compute the canonical basis (P, Q) ← TorGen(E, d), and let d =
∏n

i=1 �eii .
2: Compute a1, b1 ∈ [0, d − 1] such that ϕ̂(P ′) = [a1]P + [b1]Q.
3: Compute a2, b2 ∈ [0, d − 1] such that ϕ̂(Q′) = [a2]P + [b2]Q.
4: for i = 1, . . . , n do
5: if a1 = 0 (mod �i) then
6: Impose t1 = 0 (mod �eii ) and t2 = a−1

2 (mod �eii ).
7: else
8: Impose t1 = a−1

1 (mod �eii ) and t2 = 0 (mod �eii ).

9: Lift t1 and t2 in Z/dZ, and define s ← t1b1 + t2b2.
10: return s.

Finally, we highlight that
(

ϕ̂1(R1)
ϕ̂1(S1)

)

= d1B
(

Pb

Qb

)

,

which implies we can recover the matrix B by solving a discrete logarithm prob-
lem, which is efficient as the order of our points is a power of two. To ensure
4 We highlight that we already know that ker(ϕ) can be expressed as 〈P + [s]Q〉, for

some s ∈ Z/dZ.
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that the inversion input was computed as the correct output of the FESTA trap-
door function, we check that B ∈ Mb: if not, the inversion algorithm fails and
returns ⊥. We summarise the inversion procedure in Algorithm 7.

Algorithm 7. f−1
(EA,RA,SA)(E1, R1, S1, E2, R2, S2)

Input: TDF output y := (E1, R1, S1, E2, R2, S2), and sk = (A, ϕA,1, ϕA,2).
Output: The TDF input x := (s1, s2,B) such that f(EA,RA,SA)(x) = y.

1: Compute

(

R′
2

S′
2

)

= A−1

(

R2

S2

)

.

2: Define Φ to be the isogeny with kernel

〈([m2dA,2d2]R1, [m1d1]R
′
2), ([m2dA,2d2]S1, [m1d1]S

′
2)〉.

3: if The codomain of Φ does not split then return ⊥.

4: Set (P 1
d1 , Q1

d1) ← TorGen(E1, d1) and (P 2
d2 , Q2

d2) ← TorGen(E2, d2).
5: Evaluate

(

L1

)

= Φ

(

P 1
d1 + R1

P 2
d2

)

and

(

L2

)

= Φ

(

Q1
d1 + S1

Q2
d2

)

.

6: Unpack L1 to obtain ϕA,1 ◦ ϕ̂1(P
1
d1), ϕA,1 ◦ ϕ̂1(R1) and ϕ̂A,2 ◦ ϕ̂2(P

2
d2).

7: Unpack L2 to obtain ϕA,1 ◦ ϕ̂1(Q
1
d1), ϕA,1 ◦ ϕ̂1(S1) and ϕ̂A,2 ◦ ϕ̂2(Q

2
d2).

8: Set s1 ← ComputeCanonicalKernel(ϕ̂1(P
1
d1), ϕ̂1(Q

1
d1), d1). � Via Algorithm 6

9: Set s2 ← ComputeCanonicalKernel(ϕ̂2(P
2
d2), ϕ̂2(Q

2
d2), d2). � Via Algorithm 6

10: Compute B ∈ Mb such that

(

ϕ̂1(R1)
ϕ̂1(S1)

)

= d1B

(

Pb

Qb

)

.

11: if B /∈ Mb then
12: return ⊥.
13: else
14: return (s1, s2,B).

Remark 13. To compute the images

ϕ̂1(P 1
d1

) = [dA,1]−1ϕ̂A,1

(

ϕA,1 ◦ ϕ̂1(P 1
d1

)
)

, and

ϕ̂1(Q1
d1

) = [dA,1]−1ϕ̂A,1

(

ϕA,1 ◦ ϕ̂1(Q1
d1

)
)

,

we need to evaluate the isogeny ϕ̂A,1 on points of order d1. We can avoid such
a computation by precomputing the image of the isogeny on a basis of ẼA[d1]
during KeyGen and expressing the points in terms of such a basis.

The same approach can be used to compute the points ϕ̂2(P 2
d2

) and ϕ̂2(Q2
d2

),
where we precompute the action of ϕA2 on a basis of ẼA[d2], and the points
ϕ̂1(R1) and ϕ̂1(S1) used to recover the matrix B.
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6.2 Computing Parameters

We propose a method to generate solutions of Eq. (1), i.e. finding parame-
ters that allow us to efficiently run the trapdoor inversion algorithm. Given
the security analysis of Sect. 4, we also have several additional requirements
on the solutions we can use. In particular, we want all the solution val-
ues, i.e. m1, d1,m2, d2, dA,1, dA,2, to be odd, so that the isogenies have degree
coprime with the torsion points order. Moreover, we require that isogeny
degrees d1, dA = dA,1dA,2 and d2 are pairwise coprime and sufficiently long,
i.e. log(d1), log(dA), log(d2) ≥ 2λ, to prevent meet-in-the-middle and torsion-
guessing attacks.

The number of solutions and the corresponding protocol efficiency crucially
depends on the smoothness of the degrees of the isogenies we are using. Let us
denote our smoothness bound as B. Let c be a positive integer such that the
number T := 2c − 1 is B-smooth. We start by finding primitive solutions, i.e.
solutions (x, y) ∈ Z × Z with gcd(x, y) = 1, for the equation

x2 + y2 T = 2b. (2)

We do so by ranging the value b within a reasonable interval, and finding solutions
of Eq. (2) via Cornacchia’s algorithm [15]. Given a primitive solution (x, y) for
some even b > 0, we have

y2 T = (2b/2 − x)(2b/2 + x).

Define T1 to be the B-smooth part of 2b/2 − x and T2 to be the B-smooth part
of 2b/2 + x. Then, there exist m1,m2 ∈ Z>0 such that m2

1T1 = 2b/2 − x and
m2

2T2 = 2b/2 + x. In particular, we have

m2
1T1 + m2

2T2 = 2b/2+1.

If T1T2 and Ti are sufficiently large to guarantee security (we need T1T2 > 26λ

and Ti > 22λ), we define di to be the smoothest factor of Ti such that di ∼ 22λ for
i = 1, 2. Additionally, we define dA,i to be the smoothest part of Ti/di such that
dA,1dA,2 > 22λ and multiply mi by

√

Ti/(didA,i), ensuring that the values d1,
dA,1, dA,2, d2, m1, m2 are pairwise coprime. We thus have found solutions of
Eq. (1) that guarantee our size requirements, i.e. a valid set of parameters.

To find parameter sets, we perform an exhaustive search ranging over differ-
ent values of b and c within a reasonable interval. Experimentally, this approach
is highly efficient, and it is easy to generate parameter sets for any security level.
Ideally, to have a small prime p, we look for small b’s satisfying the conditions
above. Allowing for a larger smoothness bound B, it is possible to find smaller b’s
and in turn smaller primes p. This comes with a potential slowdown in perfor-
mances. Different trade-offs between efficiency and bandwidth can be achieved:
if bandwidth is a more valuable asset, then one could allow larger smoothness
bound. Note that as well as reducing the size of the base field characteristic,
reducing the size of b shortens the length of the (2b, 2b)-isogeny, which in turn
speeds up the decryption algorithm.



FESTA: Fast Encryption from Supersingular Torsion Attacks 119

6.3 Further Optimisations

We designed FESTA and chose its parameters to obtain an optimal trade-off
between the performance of the three PKE algorithms (KeyGen,Enc,Dec), the
size of public keys and ciphertexts, the hardness of the security assumptions,
and the simplicity of the protocol. Many other options are possible: for instance,
increasing the smoothness bound for the solutions of Eq. (2) leads to smaller
primes (and thus smaller ciphertexts), at the cost of slower isogeny computations.

In this section, we discuss further optimisations that may lead to different
trade-offs or that require further work to investigate.

Using Larger (�, �)-Isogenies. In the search for parameters, we restrict our-
selves to torsion points of order a power of two. There is no fundamental reason
why torsion points of odd order cannot be used; however, the inversion func-
tion needs to compute (
, 
)-isogenies for any 
 dividing the order of the torsion
points. Currently, the formulae to compute (
, 
)-isogenies are most practical for

 = 2. However, future developments in the computation of isogenies between
principally polarised abelian surfaces may render new parameter sets feasible.

The method we propose to find parameters in Sect. 6.2 generalises to
any prime power. In other words, it appears that analysing the equation
x2 + y2T = 
b, when T is of the form T = 
c − 1 for increasing b ∈ Z>0,
leads to smooth solutions of m2

1d1dA,1 +m2
2d2dA,2 = 
b/2+1. However, the same

method does not appear to generalise for products of prime powers; for those
parameters, it may be necessary to develop new tools to efficiently find parameter
sets.

Higher-Dimensional Trapdoor Inversion. In [48, Section 6.4], Robert pro-
posed a method that relies on isogenies in dimension four (heuristically, eight
otherwise) to recover a d-isogeny from the map of the m-torsion under such
an isogeny for m2 > 4d. This method could be employed to obtain smaller
parameters. For instance, given a security parameter λ, we define e1, e2 and
e3 such that 
ei

i > 22λ for some distinct odd small prime 
i; then, we can use
isogenies ϕ1, ϕA and ϕ2 with degrees 
e1

1 , 
e2
2 and 
e3

3 , respectively. We can also
choose b such that 2b > 2

√


e1
1 
e2

2 
e3
3 . With such parameters, we obtain a sig-

nificantly smaller prime (roughly, p ≈ 27λ) since the isogeny ϕA does not need
to be rational. We expect a major improvement in the protocol bandwidth, as
well as the running times of key generation and encryption. This would come at
the cost of decryption efficiency, which would require the computation of higher
dimensional isogenies.

It is also possible to introduce even more extreme trade-offs: by using irra-
tional isogenies ϕ1 and ϕ2,5 one can achieve very small primes that further
improve the compactness of the protocol and the efficiency of the key generation

5 The isogenies ϕi are irrational in the sense that each prime-degree isogeny factor-
ing ϕi has kernel defined over Fp2 , but the kernel of ϕi is not necessarily defined
over Fp2 .
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and encryption procedures; however, this requires computing higher dimensional
isogenies several times, which slows down the decryption algorithm even more.

7 Implementation

We provide a proof-of-concept implementation of FESTA in SageMath [51] and
make it available at:

https://github.com/FESTA-PKE/FESTA-SageMath

We designed our implementation to be modular to facilitate translation into a
high-performance language. In particular, we aimed to explicitly implement the
algorithms for both the isogenies between elliptic curves and abelian varieties,
without relying on the generic Sagemath implementations. In what follows, we
explain some of the techniques we employed, and we propose concrete parame-
ters.

7.1 Montgomery Curve x-Only Isogenies

To compute isogenies between elliptic curves, we leverage the efficient x-only
formulae between Montgomery curves [17,46]. Additionally, we include

√
élu [5]

to evaluate isogenies of large prime degree and the formula using twisted Edwards
curves in [38] for the computation of the codomain curves. Working with the x-
only isogenies allows a significant improvement in performance, however, the y-
coordinates of image points must eventually be recovered in order to compute the
chain of (2, 2)-isogenies between elliptic products. We use the following method
to reconstruct the valid y-coordinates from the x-only point evaluation.

Let E : y2 = x3 + Ax2 + x and E′ : y2 = x3 + A′x2 + x be two elliptic curves
in Montgomery form connected by a d-isogeny ϕ : E → E′ and suppose we want
to evaluate the action of ϕ on P,Q generating the n-torsion, where n 	= d. Using
the x-only isogeny formulae, we compute x(ϕ(P )) and x(ϕ(Q)). Then, we lift the
x-coordinates onto the curve by computing yP and yQ, which we allow to be any
square root of x(ϕ(P ))3 + A′x(ϕ(P ))2 + x(ϕ(P )) and x(ϕ(Q))3 + A′x(ϕ(Q))2 +
x(ϕ(Q)). From this lifting, we effectively recover ϕ(P ) = ±(x(ϕ(P )), yP ) up to
an overall sign.

Although we cannot recover the correct sign for one point, we can recover a
relative sign such that we recover the tuple ±(ϕ(P ), ϕ(Q)). To do this, we use
the Weil pairing and compare

eE
n (P,Q)d ?= eE′

n

(

(x(ϕ(P )), yP ) , (x(ϕ(Q)), yQ)
)

.

If the equality holds, then the lifted points can be used as the image, otherwise
we flip a sign such that ϕ(Q) = (x(ϕ(Q)),−yQ). In this way, we evaluate the
action of either ϕ or −ϕ on the torsion basis. Given that we use canonical
representations of the scaling matrices in Mb, evaluating either of these isogenies
does not represent a problem for the trapdoor. Overall, this allows us to perform
two isogeny evaluations using x-only formula with the additional cost of two
square-roots and two Weil pairings.

https://github.com/FESTA-PKE/FESTA-SageMath


FESTA: Fast Encryption from Supersingular Torsion Attacks 121

7.2 Optimisations of the (2, 2)-Isogeny Chain

The most expensive step of decryption is the evaluation of the (2, 2)−isogeny
chain between elliptic products. Of this computation, the majority of the cost
is spent computing the isogenies via the Richelot correspondence between Jaco-
bians of genus-2 hyperelliptic curves. The computational cost, just as in the
elliptic case, is split between doubling to recover divisors of order two, and the
evaluation of the isogenies themselves.

One optimisation, which we can borrow from our experience with elliptic
curve isogenies, is to employ the optimal strategies introduced in [22] to minimise
the cost of long isogeny chains. The generalisation of this problem to higher
dimensional isogeny chains was recently studied in [13]. By measuring the relative
cost of divisor doubling and isogeny evaluations, we can compute an optimal
strategy using identical methods to the elliptic case.

Another performance improvement we made comes from deriving explicit
addition and doubling algorithms for divisors of Jacobians of genus-2 hyperellip-
tic curves using only base field operations. Previously in the literature, effort was
made to derive low cost genus-2 addition and doubling for the context of hyper-
elliptic Diffie-Hellman [8,18,34]. In this case, the hyperelliptic curve is fixed, and
isomorphisms can be used to minimise the number of non-zero coefficients of the
hyperelliptic curve model, effectively reducing the cost of divisor arithmetic.

For our implementation, the curve model of the codomain when computed via
the Richelot correspondence is some generic (non-monic) sextic polynomial and
the previously derived efficient formula are unsuitable for our doubling chains. To
recover efficient formula, we generalise the work of [18] by using similar methods
without restricting the hyperelliptic curve model to a friendly form. Ultimately,
what is required is to solve linear equations to express the arithmetic in the
polynomial ring Fq[X] as operations of the base field and pass as arguments to
the addition and doubling formula the coefficients of the curve equation as well
as the reduced Mumford coordinates.

Representing the cost of Fp2 inversion, multiplication and squaring as I,M
and S, we have derived affine addition at a cost of 25M + 4S + 1I and affine
doubling at a cost of 32M + 6S + 1I. Practically, we find that our formulae are
about four-times faster than the in-built SageMath divisor arithmetic and two-
times faster than the optimised formula used in the SageMath implementation
of the Castryck-Decru attack on SIDH [41]. We consider further improving these
formulae to be future work.

7.3 Parameters

Following the approach in Sect. 6.2, we generated parameter sets for FESTA. We
highlight that the proposed techniques allow for different trade-offs between the
smoothness of the isogeny degrees and the length b of the chain of (2, 2)-isogenies.
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For FESTA-128, we define the following parameter set:

b := 632,

d1 := (33 · 19 · 29 · 37 · 83 · 139 · 167 · 251 · 419 · 421 · 701 · 839 · 1009 ·
1259 · 3061 · 3779)2,

d2 := 7 · (52 · 7 · 11 · 13 · 17 · 41 · 43 · 71 · 89 · 127 · 211 · 281 · 503 · 631·
2309 · 2521 · 2647 · 2729)2,

dA,1 := (59 · 6299 · 6719 · 9181)2,

dA,2 := (3023 · 3359 · 4409 · 5039 · 19531 · 22679 · 41161)2,
m1 := 1492184945093476592520242083925044182103921,
m2 := 25617331336429939300166693069,

f := 107.

The values d1 and d2 are 212-smooth, while dA = dA,1dA,2 is 216-smooth. The
corresponding prime, defined as p = 2bd1(dA,1dA,2)sfd2f − 1, is 1292-bit long.
The public key and ciphertext sizes are, respectively, 561 and 1,122 bytes. The
same approach can be used to produce parameter sets for higher security levels.

To reduce the bandwidth of FESTA, we compress the torsion points by
expressing them in terms of linear coefficients of canonical bases, as proposed in
[40,43]. Unlike in SIDH, however, our protocol needs the exact torsion images.
This means the points cannot be scaled, and their compressed representation
requires four coefficients of size equal to their order. However, since an attacker
can always reconstruct the determinant of the scaling matrices, we can restrict
ourselves to unitary matrices in Mb. Then, given three of the four coefficients
representing the scaled points, it is possible to retrieve the fourth one via the
compatibility of the Weil pairing with isogenies. We remark the bandwidth of
FESTA is affected by the choice of parameters: future developments may lead to
smaller parameters, which would translate to significantly smaller public keys
and ciphertexts.

We benchmarked our proof-of-concept implementation on an Apple M1 PRO
CPU clocked at 3.2 GHz using a single performance core. Averaging 100 exe-
cutions, we obtained that KeyGen, Enc and Dec run in 4.47, 3.09 and 9.14 s,
respectively. The slowness of Dec compared to the other components is mainly
caused by the computation of (2, 2)-isogenies. Due to the lack of research on
optimizing such computations in the past, we expect future work to significantly
improve on this aspect, leading to a much faster decryption algorithm.

8 Conclusion

In this paper, we have introduced FESTA, an efficient isogeny-based public-key
encryption (PKE) protocol that constructively relies on an application of the
SIDH attacks. Preliminary experimental results show that our proof-of-concept
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implementation is competitive with optimised implementations of other isogeny-
based PKEs. We are also currently working on an optimised implementation of
FESTA, and we are looking forward to obtaining concrete running times.

The efficiency of the protocol is highly dependent on the smoothness bounds
and size of the parameter sets: in future work, we will investigate different
approaches to find more efficient parameters. In particular, our current choice of
parameters is limited by the requirement of ensuring a fast decryption: a more
optimised implementation of (2, 2)-isogenies will allow us to use smoother values.
An interesting project for future work is to compare the performance of isogenies
via the Richelot correspondence against those computed using theta functions.

Additionally, we chose a conservative approach when imposing the security
requirements: we believe a more detailed analysis of the cost of certain attacks
may lead to better parameter sets. Moreover, we highlight that FESTA can inher-
ently benefit from advancements in computations of higher dimensional isoge-
nies: new developments in those areas could lead to both smaller field charac-
teristics and faster encryption.

Lastly, we believe that the flexible design of FESTA and the new techniques
proposed in this work may lead to new mechanics that can be exploited to
develop new advanced protocols, such as digital signatures and oblivious pseu-
dorandom functions.
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Abstract. The recent devastating attacks on SIDH rely on the fact
that the protocol reveals the images ϕ(P ) and ϕ(Q) of the secret isogeny
ϕ : E0 → E on a basis {P, Q} of the N -torsion subgroup E0[N ] where
N2 > deg(ϕ). To thwart this attack, two recent proposals, M-SIDH and
FESTA, proceed by only revealing the images upto unknown scalars
λ1, λ2 ∈ Z

×
N , i.e. only λ1ϕ(P ) and λ2ϕ(Q) are revealed, where λ1 = λ2

for M-SIDH and λ1 = λ−1
2 for FESTA. Similar information is leaked in

CSIDH since ϕ maps the eigenspaces of Frobenius on E0 to the corre-
sponding eigenspaces on E.

In this paper, we introduce a new polynomial time attack that gen-
eralizes the well known “lollipop” attack and analyze how it applies to
M-SIDH, FESTA and CSIDH. We show that M-SIDH can be broken in
polynomial time whenever E0 or E is Fp-rational, even when the endo-
morphism rings of E0 and E are unknown. This can be generalized to
the case where the starting (or end) curve is not Fp-rational, but is con-
nected to its Frobenius conjugate by an isogeny of small degree.

For FESTA, where the curve E0 is already Fp-rational, we obtain a
polynomial time attack under the added requirement that at least one
of the basis points P, Q spans an eigenspace of Frobenius, of an endo-
morphism of low degree, or of a composition of both. We note that the
current implementation of FESTA does not choose such a basis. Since
it is always possible to construct an endomorphism, typically of large
degree, with either P, Q an eigenvector, we conclude that FESTA with
overstretched parameters is insecure.

Although the information leaked in CSIDH is very similar to FESTA,
we show that our attack does not reveal any new information about the
secret isogeny, i.e. we only learn that it is Fp-rational, which is a priori
knowledge.

Finally, we analyze if and how it would be possible to backdoor M-
SIDH and FESTA by choosing system parameters that look inconspic-
uous, but in fact reduce to the special cases above via a secret isogeny
chosen by the adversary.
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1 Introduction

The Supersingular Isogeny Diffie-Hellman (SIDH) protocol [16] and the corre-
sponding key encapsulation mechanism SIKE [1] were once considered to be the
pinnacle of isogeny-based cryptography, due to their efficiency and compactness.
A recent series of papers [4,19,21] resulted in a practical polynomial time attack,
exploiting the extra information about the secret isogeny given out by the SIDH-
/SIKE protocols. In particular, let ϕ : E0 → E be a secret isogeny of known
degree d, then SIDH/SIKE also reveals the images ϕ(P ) and ϕ(Q) of a basis
{P,Q} for E[N ] where N is a large power of a small prime with gcd(N, d) = 1.
Given these images, as long as N2 > d and d is known, the above attack allows to
recover the secret isogeny ϕ in polynomial time. Since the attack really requires
the exact knowledge of ϕ(P ) and ϕ(Q), it is natural to look for countermeasures
that do not reveal such information. However, building an actual functioning
SIDH-like protocol seems to be impossible without revealing at least some par-
tial information.

The first approach in this direction was devised by Fouotsa, Moriya and
Petit [15] resulting in two protocols: M-SIDH (Masked torsion points SIDH) and
MD-SIDH (Masked Degree SIDH). In M-SIDH the degree of the secret isogeny
is known, but the images of the torsion points are scaled by a random secret
integer λ ∈ Z

×
N , i.e. the protocol only reveals λϕ(P ) and λϕ(Q). In MD-SIDH,

not only the images of the points are scaled, but the degree of the secret isogeny
is also hidden. As shown by the authors in [15], the MD-SIDH problem reduces
to the M-SIDH problem, so in the remainder of the paper we will only deal with
M-SIDH. The reason why both scalars have to be the same is that the protocol
requires that the subgroup 〈αλϕ(P )+βλϕ(Q)〉 for random α, β ∈ Z

×
N is exactly

the same subgroup as 〈αϕ(P ) + βϕ(Q)〉.
By bilinearity and compatibility of the Weil pairing eN with isogenies, we

can in fact derive λ2 mod N via a single discrete logarithm (which is easy since
N is smooth):

eN (λϕ(P ), λϕ(Q)) = eN (P,Q)λ2d .

As such we can always reduce to the case where λ2 = 1 mod N , so for M-SIDH
to be s-bit secure we require at least 2s square roots of unity. This requires N
to have at least s small distinct prime factors, and as shown in [15] one really
requires 2s factors. Furthermore, since the NA used by Alice needs to be coprime
with the NB used by Bob, we end up with a prime p such that p + 1 is divisible
by at least 4s small distinct primes. In particular, even for 128-bit security, the
prime p is close to 6000 bits, which makes M-SIDH much slower than SIDH.
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The second such approach is called FESTA [3] by Basso, Maino and Pope.
Here the authors reveal λ1ϕ(P ) and λ2ϕ(Q) where λ1 can be different from λ2.1

However, as explained above, this blocks a straightforward adaptation of the
SIDH protocol. To circumvent this problem, the authors construct a trapdoor
one-way function, where knowledge of the secret λi allows to invert the one-way
function. Furthemore, using the same Weil paring trick as above we can derive
λ1λ2 mod N , so we can always reduce to the case where λ2 = λ−1

1 mod N .
Although CSIDH [6] does not explicitly reveal torsion point information,

there is an implicit leak: since the isogenies used in CSIDH are Fp-rational, we
have ϕ◦π0 = π ◦ϕ, where π0, π denote the Frobenius endomorphisms on E0 and
E. Since the characteristic polynomial of these Frobenius endomorphisms is given
by x2+p, we conclude that for N a power of an odd prime � with

(−p
�

)
= 1, they

will have two different eigenvalues modulo N , say μ1 �= μ2 mod N . Note that
using the Chinese Remainder Theorem we are not limited to N being powers
of a small prime, but we can deal with any odd N as long as for each prime
factor �i of N we have

(−p
�i

)
= 1. Now assume P ∈ E0[N ] is an eigenvector

with eigenvalue μ1, i.e. π0(P ) = μ1P , then applying ϕ to both sides and using
commutativity with Frobenius shows that π(ϕ(P )) = μ1ϕ(P ), so ϕ(P ) lies in
the μ1-eigenspace of π on E[N ]. Therefore if S ∈ E[N ] is an eigenvector of π on
E[N ] with eigenvalue μ1, we know there exists some λ1 such that S = λ1ϕ(P )
(and similarly for the other eigenspace). As such, at first glance, the CSIDH case
looks very similar to the FESTA case.

The main security argument for both M-SIDH and FESTA is that the poly-
nomial time attack on SIDH no longer applies since the exact images of the
torsion points are not revealed and thus it is impossible to recover ϕ : E0 → E.
Although this reasoning is correct when one focuses on the isogeny ϕ itself, it
does not rule out other polynomial time attacks when considering a different,
but related isogeny, in particular an isogeny that does not map from E0 to E.
The main idea underlying our attack (which is a generalization of the “lollipop
attack” from [15, Sects. 4.2–4.3]) is as follows: since we do not know the exact
images of the torsion points due to the presence of the λi, we will construct a
new isogeny ψ (related to ϕ) from E to some other curve E′ that is oblivious to
the unknown λi.

To illustrate this idea, assume we are attacking M-SIDH where E0 is Fp-
rational. Then consider the following diagram:

1 We note that the authors consider a slightly more general setting where

A ·
(

ϕ(P )
ϕ(Q)

)

is revealed, with A sampled from a commutative subgroup X ⊆ GL2(ZN ). How-
ever, as also stated by the authors, there seems little advantage over using diagonal
matrices.
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E0

E(p) E

ϕ(p)
ϕ

π

Here E(p) denotes the Frobenius conjugate of E, i.e. the curve obtained by
raising all coefficients of E to the p-th power, and π : E → E(p) the connecting
Frobenius isogeny. The isogeny ϕ(p) is the Frobenius conjugate of ϕ and satisfies
ϕ(p) ◦ π0 = π ◦ ϕ with π0 the Frobenius endomorphism on E0 (recall that E0 is
assumed to be Fp-rational).

Consider now the isogeny ψ = ϕ(p) ◦ ϕ̂ from E to E(p) of degree d2. Denote
with T = λϕ(P ) and S = λϕ(Q) the points revealed by the M-SIDH protocol,
then an easy calculation (see Lemma 3) shows that in this case

ψ

(
S
T

)
= d · M−1

π0
· π

(
S
T

)
, (1)

where Mπ0 is such that

π0

(
P
Q

)
= Mπ0

(
P
Q

)
,

i.e., it is the transpose of the matrix of π0 acting on E0[N ] with respect to the
basis {P,Q}. Since all quantities in Eq. (1) are known, we can compute the
exact images of S, T under ψ and thus the polynomial time attack on SIDH (see
Theorem 1) can be applied to recover ψ since in M-SIDH we have N > d and
thus N2 > deg(ψ) = d2. If ψ is cyclic, we can recover the kernel of ϕ̂ since in
this case ker(ϕ̂) = ker(ψ)[d]. Even if ψ is not fully cyclic, it typically remains
possible to derive almost all information about ϕ; see Sect. 3.2.

A similar attack applies to FESTA with the main difference being that (1)
is generalized to

ψ

(
S
T

)
= d · D · M−1

π0
· D−1 · π

(
S
T

)
, (2)

with D the diagonal matrix with λ1, λ2 as entries. Since now λ1 �= λ2 we are
faced with the problem that in general the matrix product D·M−1

π0
·D−1 does not

simplify to M−1
π0

unless Mπ0 itself is a diagonal matrix; or to put it differently,
P,Q need to be eigenvectors of π0.

Since the information revealed in CSIDH is similar to FESTA, we arrive at
the same Eq. (2) above, where P,Q are now indeed eigenvectors of Frobenius,
so we will be able to recover the isogeny ψ = ϕ(p) ◦ ϕ̂ (assuming we know the
degree d of ϕ which is required in (2) but also in the polynomial time attack on
SIDH). However, since ϕ is Fp-rational by construction, we have that ϕ(p) = ϕ
and we simply recover the isogeny ψ = ϕ ◦ ϕ̂ = [d], so the attack reveals no new
information.

Contributions
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– We formalize the above attack strategy resulting in a polynomial time attack
on the M-SIDH protocol when E0 is Fp-rational and similarly on the FESTA
protocol when E0 is Fp-rational, but with the added constraint that at least
one of P or Q is an eigenvector of π0. Of course, by focusing on ϕ̂ : E → E0

rather than on ϕ, the same conclusions apply in case E is Fp-rational.
– We generalize this attack (see Fig. 1 for a pictorial representation) to cases

where E0 is not Fp-rational and where we allow for different maps than Frobe-
nius. Furthermore, we also deal with the more general case of non-diagonal
matrices, where we are given

(
S
T

)
= A

(
ϕ(P )
ϕ(Q)

)

with A sampled from some public set X ⊆ GL2(ZN ). This generalized
attack encompasses known constructions such as the “lollipop endomor-
phism” from [14] and the corresponding polynomial time attacks on M-SIDH
from [15, Sects. 4.2–4.3]. Furthermore, we show that this generalized attack
results in many more weak bases for FESTA than just eigenspaces of Frobe-
nius (but still a negligible number, so the probability of hitting such bases
via random sampling is low) and that it also applies to FESTA with over-
stretched parameters, i.e. where the order N is artificially larger than what
is used in FESTA.

– We analyze the impact of our attack on CSIDH and conclude that there
is no impact, i.e. the only information we learn from the attack is a priori
knowledge.

– We discuss the possibilities for an attacker to backdoor systems such as M-
SIDH and FESTA by using a secret isogeny that reduces the system parame-
ters to the weak instances above and analyze if and how such a backdoor can
be detected.

2 Background

We assume some basic familiarity with elliptic curves and isogenies; for a self-
contained overview we refer the reader to the excellent notes of De Feo [12].

We briefly recall how the different protocols such as SIDH [16], M-SIDH [15],
FESTA [3] and CSIDH [6] reveal partial information about a secret isogeny
ϕ : E0 → E. We refer to the corresponding papers for the full protocols; here we
focus only on which partial information is revealed and how the degree of the
secret isogeny relates to the order of the points on which said partial information
is leaked.

These protocols work with supersingular elliptic curves over Fp, in the case of
CSIDH, or over Fp2 , for the other protocols. An elliptic curve E/Fq with q = pn

is called supersingular if its trace of Frobenius t = q + 1 − #E(Fq) satisfies p | t.
In the cryptographic setting, p is a large prime, so for a supersingular elliptic
curve E over Fp we have #E(Fp) = p + 1 since |t| ≤ 2

√
q, and consequently

#E(Fp2) = (p + 1)2. The protocols that work with supersingular curves E over
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Fp2 all start an isogeny walk from a curve over Fp and for such curves we thus
have #E(Fp2) = (p + 1)2 via Tate’s isogeny theorem. Furthermore, their group
structure is given by

E(Fp2) ∼= Zp+1 × Zp+1 .

To speed-up isogeny computations it is advantageous to work with curves
that have many small rational subgroups, and as such the primes used have a
specific form p = fN −1 where f is a small co-factor and N is a smooth number.
When N = �n

1 �m
2 for small primes �i we call p an SIDH-prime; when N =

∏
�ei
i

for many different small primes �i and small ei, we call p a CSIDH-prime.

2.1 SIDH

SIDH [16] is a Diffie-Hellman type key exchange where partial information is
revealed to allow the participants in the protocol to complete the following com-
mutatitive diagram:

E0, PA, QA, PB , QB EA = E/〈GA〉, ϕA(PB), ϕA(QB)

EB = E/〈GB〉, ϕB(PA), ϕB(QA) EAB
∼= EBA

∼= E0/〈GA, GB〉 .

ϕB

ϕA

ϕ′
B

ϕ′
A

Here, {PA, QA} (resp. {PB , QB}) are public torsion bases for E0[A] (resp.
E0[B]), GA (resp. GB) is a generator of a secret subgroup of E[A] (resp. E[B])
chosen by Alice (resp. Bob) and ϕ′

A = ϕB∗ϕA (resp. ϕ′
B = ϕA∗ϕB) is the

pushforward of ϕA under ϕB (resp. of ϕB under ϕA). In particular, we have
ker(ϕ′

B) = ϕA(ker(ϕB)), which is the reason why ϕA(PB) and ϕA(QB) are
revealed by Alice (and similarly for Bob).

The prime used is an SIDH prime typically of the form p = f2n3m −1 where
2n ≈ 3m, and the degrees of the secret isogenies are 2n and 3m respectively, so
A = 2n and B = 3m.

To attack SIDH, we can therefore either look at Alice’s key, i.e. a secret degree
A isogeny where we are given the images of a basis of the B-torsion or Bob’s
key, i.e. a secret degree B isogeny where we are given the images of a basis of
the A-torsion. As such, the degree of the secret isogeny and torsion point order
are (A,B) or (B,A) respectively.

Unfortunately, this extra information can be exploited to recover the secret
isogenies of both Alice and Bob in polynomial time [4,19,21] by application of
the following theorem.

Theorem 1 ([21, Sect.6.4]). Let ϕ : E0 → E be a secret degree d isogeny
(where d is known) and assume we are given the images of ϕ on a basis {P,Q}
of E0[N ], where N and d are assumed smooth and coprime, and N2 > 4d. Let Fq

be the smallest field over which E0[N ], E0[d] and ϕ are defined, then the kernel
of ϕ can be computed in a polynomial number of operations in Fq.
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Remark 2. The attack in fact runs as soon as N2 > d, but the output may be
ambiguous because ker(ϕ) may not be uniquely determined by how ϕ acts on
E0[N ]. E.g., if E0 has j-invariant 0 and ω ∈ End(E0) denotes an automorphism
such that ω2 + ω + 1 = 0, then the isogenies 1 ± ω : E0 → E0 both have degree
d = 3, have different kernels, yet they agree on E0[2]. The bound N2 > 4d
guarantees that ϕ and hence also ker(ϕ) is uniquely determined [17, Lemma 3.1].

2.2 M-SIDH

To make the above SIDH-diagram commute, it is sufficient for Bob to know the
subgroup ϕA(ker(ϕB)) and as such it is not necessary to know the exact image of
the chosen generator GB of ker(ϕB). In M-SIDH [15], SIDH is therefore adapted
by revealing λAϕA(PB), λAϕA(QB) for some secret λA ∈ Z

×
B chosen by Alice.

However, it is not sufficient to just make this simple change, since by the Weil
pairing trick mentioned in the introduction it is possible to recover λ2

A mod B,
which allows to reduce to the case λ2

A = 1 mod B. To prevent exhaustive search,
this requires to choose a B (similarly for A) such that there are at least 2s roots
of unity with s the security parameter. Using a divide and conquer approach [15],
it is even required for both A and B to have 2s different prime factors. As such
the primes used in M-SIDH are of CSIDH type p = 4f

∏4s
i=1 �i − 1 where the �i

are consecutive odd small primes and one lets

A =
2 s∏

i=1

�2i−1, B =
2 s∏

i=1

�2i .

Due to the large number of small primes required, the total size of p is much
larger than for SIDH, e.g. the suggested 128-bit parameter set has p of size 5911
bits. The degree of the secret isogeny and torsion point order are (A,B) or (B,A)
respectively.

2.3 FESTA

In FESTA [3] the approach is to construct a trapdoor one-way function from
the following (somewhat different) commutative diagram:

E0,

(
PB

QB

)
EA,

(
S
T

)
= A

(
ϕA(PB)
ϕA(QB)

)

E1,B
(

ϕ1(PB)
ϕ1(QB)

)
E2,B

(
ϕ2(S)
ϕ2(T )

)
.

ϕ1

ϕA

ϕ2

The system parameters contain the curve E0 together with a basis {PB , QB}
of E[B] where for efficiency reasons B = 2b. The public key of a user consists of



134 W. Castryck and F. Vercauteren

the curve EA and the tuple
(

S
T

)
= A

(
ϕA(PB)
ϕA(QB)

)

where A (part of the private key) is sampled from a commutative subgroup X ⊆
GL2(ZB). The input to the one-way function then consists of two isogenies ϕ1

and ϕ2 and a matrix B which is also sampled from X. The output of the one-way
function are the evaluations of the bases {PB , QB} under ϕ1 and {S, T} under
ϕ2 both multiplied by B. Using the trapdoor information A and Theorem 1, it
is possible to recover the isogeny ψ = ϕ2 ◦ ϕA ◦ ϕ̂1 from which ϕ1, ϕ2 and B
follow. The authors of FESTA propose to use for X the group of invertible 2× 2
diagonal matrices over ZB . In particular, A = diag(λ1, λ2), and by using the
same Weil pairing trick as before, one can reduce to the case λ2 = λ−1

1 mod B.
To make the protocol efficient, the authors suggest B = 2b, but also the

degrees of ϕA, ϕ1, ϕ2 are taken smooth and coprime. Furthermore, deg(ϕA) = v2

for a smooth v. This results in a CSIDH-type prime of the form p = f2bvd1d2−1.
For the 128-bit parameter set, the authors suggest b = 623, v has 137 bits, d1
has 257 bits and d2 has 260 bits, resulting in a prime of size 1292 bits.

Note that to attack FESTA we can consider two scenarios: either we try to
recover the private key ϕA (or equivalently A) or we try to invert the one way
function by recovering ϕ1, ϕ2,B. Both cases are instances of the same problem,
where only the degrees of the secret isogenies are slightly different. In particular,
in the first case we have to recover a secret degree v2 isogeny given 2b-torsion
information, where in the second, we need to recover a secret degree d1 or d2
isogeny, again given 2b-torsion information. Note that once B is derived, the
second isogeny follows immediately.

2.4 CSIDH

Unlike the previous protocols, CSIDH works with Fp-rational curves and Fp-
rational isogenies. More in detail, CSIDH works on the set of supersingular
elliptic curves over Fp whose ring of Fp-rational endomorphisms is isomorphic to
a fixed order O in the imaginary quadratic field Q(

√−p). It is possible to define
a group action of the ideal class group of O on this set as follows: let [a] ∈ Cl(O)
be an ideal class, represented by an ideal a ⊆ O of norm coprime to p. Then the
a-torsion subgroup on a curve E0 is defined as

E0[a] =
⋂

α∈a

ker(α),

which is finite of order N(a) = #(O/a). Thus there exists an elliptic curve E
and a separable isogeny ϕa : E0 → E with ker(ϕa) = E0[a], which is unique
up to post-composition with an isomorphism. The isomorphism class of E is
independent of the choice of the representing ideal a and we denote this isomor-
phism class with [a]E0. This approach can be extended to more general oriented
curves [11,20].
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To speed-up isogeny computations, p is chosen to be of CSIDH-type, in
particular, p = 4f

∏t
i=1 �i − 1 where the �i are small odd primes. To achieve

classical 128-bit security it is sufficient to take p of size 512 bits; however, for
post-quantum security p needs to be much larger, e.g. for 128-bit post-quantum
security p needs to be of size 4096 bits [9].

As we described in the introduction, CSIDH implicitly leaks a lot of infor-
mation. Indeed for any P ∈ E0[N ] that is an eigenvector of π0 with eigenvalue
μ ∈ ZN , we have that ϕ(P ) is also an eigenvector of π with eigenvalue μ. So as
long as the eigenspace in E0[N ] corresponding to μ is one-dimensional, we obtain
λϕ(P ). Note that this reasoning holds for any N for which there is a unique one-
dimensional eigenspace with eigenvalue μ, which will be the case as long as N is
odd and for each prime factor � | N we have

(−p
�

)
= 1 since the characteristic

polynomial of Frobenius is x2 + p. This shows we can take N arbitrary large,
and in particular, we are always in the overstretched case.

3 Generalized Lollipop Attacks

3.1 Strategy

We now detail and generalize the attack strategy from the introduction. Our
goal is to recover a secret cyclic isogeny ϕ : E0 → E of known degree d, when
given bases {P,Q} ⊆ E0[N ] and {S, T} ⊆ E[N ] such that

(
S
T

)
= A · ϕ

(
P
Q

)

for some secret matrix A sampled from a public set X ⊆ GL2(ZN ); here, and
always from now on, it is assumed that p � N . In M-SIDH the set X consists of
all invertible scalar matrices, while for the standard instantiation of FESTA it
consists of all invertible diagonal matrices. We make use of two auxiliary inputs:

– an isogeny σ0 : E0 → E′
0 (we denote its degree by s) whose push-forward

σ := ϕ∗σ0 : E → E′

under ϕ is known; equivalently, we know ϕ(ker(σ0)) as a subgroup scheme of
E,

– another isogeny ω : E0 → E′
0 having the same codomain, of small degree w,

as depicted in Fig. 1.
For simplicitly, we assume throughout that N, d, s, w are pairwise coprime

and that p � dw. It is allowed that p | s: indeed, an important special case is
where σ0 is the Frobenius isogeny.

Under suitable “compatibility” conditions, which are discussed in more detail
in Sect. 3.2 below, the attack returns an oracle for evaluating the degree-wd2

isogeny
ψ := ϕ′ ◦ ω ◦ ϕ̂ : E → E′
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E0 E0

E E

ϕ =σ0∗ϕ

σ0

ω
ϕ

σ=ϕ∗σ0

Fig. 1. Generalized attack diagram.

at any given point. Here ϕ′ denotes the push-forward isogeny σ0∗ϕ : E′
0 → E′,

i.e., the isogeny with kernel σ0(ker(ϕ)) normalized such that ϕ′ ◦ σ0 = σ ◦ ϕ. If
ψ is cyclic then this can be used to recover ker(ϕ). But even in the non-cyclic
case, this typically reveals non-trivial information about ϕ; see again Sect. 3.2
for a discussion. The key ingredient is the following lemma, which describes the
images of S and T under ψ.

Lemma 3. Using the above notation, assume that the matrix M such that

(σ̂0 ◦ ω)
(

P
Q

)
= M ·

(
P
Q

)

commutes with every element of X. Then we have

s · ψ

(
S
T

)
= d · M · σ

(
S
T

)
.

Proof. Since
(

S
T

)
= A · ϕ

(
P
Q

)
and ϕ̂ ◦ ϕ = [d] we have that

ϕ̂

(
S
T

)
= d · A ·

(
P
Q

)
.

Furthermore, we have ϕ′ ◦ σ0 = σ ◦ ϕ which implies that [s] ◦ ϕ′ = σ ◦ ϕ ◦ σ̂0 and
therefore

s · (ϕ′ ◦ ω ◦ ϕ̂)
(

S
T

)
= d · A · (σ ◦ ϕ ◦ σ̂0 ◦ ω)

(
P
Q

)
= d · A · M · (σ ◦ ϕ)

(
P
Q

)

We thus see that

s · ψ

(
S
T

)
= d · A · M · A−1 · σ

(
S
T

)
, (3)

and the lemma follows because M commutes with every matrix in X, in partic-
ular it commutes with A. �

One sees that, whenever the lemma applies, we obtain full knowledge of ψ(S)
and ψ(T ), because it is assumed that gcd(s,N) = 1. If we then assume that N
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is smooth and N2 > deg(ψ) = wd2, then an application of Theorem 1 yields the
desired oracle for evaluating ψ.

Our assumption on σ0, namely that we know its push-forward by the
unknown isogeny ϕ, is obviously very restrictive. Nevertheless, there are two
natural candidates for σ0, both of which lead to interesting instantiations of our
attack strategy:

1. the identity map id : E0 → E0, with push-forward the identity map on E,
2. the Frobenius isogeny

π0 : E0 → E
(p)
0 ,

whose push-forward is the Frobenius isogeny from E to E(p),

Other examples are obtained by composing one of the above examples with an
isogeny of small degree: then its push-forward can be guessed with a reasonable
success probability, which is good enough for our purposes.

Remark 4. If X consists of diagonal matrices,2 then there is another natural
family of isogenies whose push-forwards under ϕ are known. Indeed, isogenies of
the form E0 → E0/〈μP 〉 or E0 → E0/〈μQ〉 for some μ ∈ Z are pushed-forward to
E → E/〈μS〉 and E → E/〈μT 〉, respectively. If X is the set of scalar matrices,
as in the case in M-SIDH, then we can even take any isogeny σ0 : E0 → E′

0

with ker(σ0) ⊆ E0[N ]. However, in these cases s and N are never coprime and
Lemma 3 bears only partial information about ψ(S) and ψ(T ).

Likewise, for M to have a reasonable chance of commuting with every matrix
in X, the centralizer of X in GL2(ZN ) has to be sufficiently large, and this puts
severe restrictions on X. We discuss a few special cases:

1. if X = { scalar matrices } as is the case in M-SIDH, then the centralizer is all
of GL2(ZN ); in other words this condition is void,

2. if X = {diagonal matrices } as in standard FESTA, then X is its own cen-
tralizer. In this case the condition is equivalent to P,Q being eigenvectors of
σ̂0 ◦ ω acting on E0[N ],

3. if X = { circulant matrices }, as has also been proposed for use in FESTA [3,
Footnote 3], then again X is its own centralizer.

The latter two examples are instances of maximal commutative subgroups of
GL2(ZN ). Many further examples can be found in Appendix A, where we give
a partial classification of such subgroups.

Remark 5. In the case of diagonal matrices,3 the condition on M can be relaxed
at the expense of a stronger condition on N . Namely, if P is an eigenvector of
σ̂0 ◦ ω then it remains possible to determine ψ(S), even in cases where Q is not
an eigenvector. If N is smooth and N > wd2 then this still allows us to obtain
2 More generally, a variant of this remark applies whenever X is a so-called split Cartan
subgroup of GL2(ZN ); see Appendix A.

3 Here too, a variant of this remark applies if X is a split Cartan subgroup of GL2(ZN ).
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the desired evaluation oracle; e.g., if N is a smooth square4 then one can use a
reduction by De Feo et al. [13], the details of which can be found in [5, p. 22]. Of
course, the analogous remark applies if Q is an eigenvector, but P not necessarily
is.

3.2 Information Retrieved from the Attack

Let us sum up the requirements for the attack strategy from Sect. 3.1 to reveal
(at least partial) information about the secret isogeny ϕ:

– Firstly, the basis {P,Q}, the isogenies σ0, ω and the set X should be such that
the matrix M belongs to the centralizer of X in GL2(ZN ), so that Lemma 3
applies.

– Secondly, N should be smooth and larger than wd2, so that we can invoke
Theorem 1.

– Thirdly and most subtly, the isogeny ψ = ϕ′ ◦ω ◦ ϕ̂ should encode non-trivial
information about ϕ.

We discuss this third point in more detail. The ideal scenario is where ψ is cyclic,
in which case we simply recover ker(ϕ̂) as ker(ψ)[d]. A worst case scenario is
where σ̂0 ◦ ω ∈ Z. Indeed, if we assume that σ0 is cyclic then this implies that
ω = σ0 and therefore

ψ = ϕ′ ◦ ω ◦ ϕ̂ = ϕ′ ◦ σ0 ◦ ϕ̂ = σ ◦ ϕ ◦ ϕ̂ = σ ◦ [d],

leaving us clueless about ϕ (if σ0 is not cyclic then a similar conclusion applies).
Let us henceforth assume that σ̂0 ◦ ω is cyclic and make a more systematic

analysis. Let d′ | d be maximal such that

E[d′] ⊆ ker(ψ). (4)

Let P be a generator of the (as yet unknown) kernel of ϕ̂. Because (ker(ψ))[d] ∼=
Zd′ × Zd, we can compute d′P up to an invertible scalar by taking any order-d
point in ker(ψ) and scaling it by d′. This reveals a degree-d/d′ component of ϕ̂
emanating from E, and one’s task is to close the remaining gap of degree d′, as
illustrated in Fig. 2.

Equivalently, the goal is to find ker(ϕ)[d′]. Notice that the case ker(ψ) cyclic
corresponds to d′ = 1.

To proceed, observe that Eq. (4) is equivalent to

ω(ker(ϕ))[d′] = ker(ϕ′)[d′] = σ0(ker(ϕ))[d′],

which in turn can be rewritten as

(σ̂0 ◦ ω)(ker(ϕ))[d′] = ker(ϕ)[d′].
4 The general case, i.e. N need not be a square, was solved recently at the workshop

“Isogeny Graphs in Cryptography”, Banff (Canada) and Bristol (UK), 20–25 August
2023.
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ϕ : E0 E
degree d/d

... ?

remaining gap
of degree d

Fig. 2. Extracting ϕ from ψ.

Thus from (4) we learn that (ker(ϕ))[d′] is an invariant subspace of σ̂0 ◦ω acting
on E0[d′]. This strongly narrows down the options, and we proceed by guessing.
For example, if d = �e is a power of an odd prime �, then necessarily d′ = �e′

for
some 0 ≤ e′ ≤ e. Then

– if � splits in Z[σ̂0 ◦ ω] then possibly e′ > 0, in which case we are left with
exactly two options for (ker(ϕ))[d′], namely the two eigenspaces of σ̂0 ◦ ω
acting on E0[d′],

– if � is inert in Z[σ̂0 ◦ ω], then necessarily e′ = 0, i.e., d′ = 1.

Remark 6. In order to avoid too many technicalities, we have ignored the (excep-
tional) ramified case in our analysis: there we may be left with anything between
0 and �e + �e−1 options for (ker(ϕ))[d′]. For a similar reason, we have omitted
the case � = 2, where there are up to 4 options for (ker(ϕ))[d′] in the split case.

More generally, the number of options for (ker(ϕ))[d′] grows roughly as O(2r′
)

with r′ denoting the number of distinct prime factors of d′. So, in the worst case,
our strategy involves an exponential number of guesses (e.g. this is the main
bottleneck when applying it to CSIDH, we refer to Sect. 6 for a more elaborate
discussion). However, for fixed ϕ and varying σ̂0 ◦ ω, we typically expect r′ to
be very small. This is based on the following heuristic reasoning. Write

d = �e1
1 · · · �er

r , d′ = �
e′
1

1 · · · �e′
r

r (0 ≤ e′
i ≤ ei)

as products of distinct prime powers and assume for simplicity that all prime
factors �i are odd. Then r′ equals the number of indices i for which e′

i > 0, which
holds if and only if (kerϕ)[�i] happens to be an eigenspace of σ̂0 ◦ω. If �i splits in
Z[σ̂0 ◦ω] then there are two such eigenspaces and we estimate the probability for
this to happen by 2/(�i + 1). If �i is inert in Z[σ̂0 ◦ ω], then this cannot happen.
Altogether we arrive at an estimated probability of

1
2

· 2
�i + 1

+
1
2

· 0 =
1

�i + 1

that e′
i > 0. So the expected value of r′ is

r∑

i=1

1
�i + 1

≤
∑

primes
�≤d

1
�

= O(log log d), (5)
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where the last estimate follows e.g. from [23, Theorem 1.10].

Remark 7. A priori, the expected number of guesses is not given by 2r′
with

r′ the estimate from (5). Instead, an exact formula for the expected number of
guesses is:

∑

b∈{0,1}r

2#{ i |bi=1 }

⎛

⎜
⎝

r∏

i=1
bi=0

�i

�i + 1

⎞

⎟
⎠

⎛

⎜
⎝

r∏

i=1
bi=1

1
�i + 1

⎞

⎟
⎠ =

r∏

i=1

�i + 2
�i + 1

.

This can be estimated as
∏

primes
�≤d

� + 2
� + 1

≤
∏

primes
�≤d

�

� − 1
= O(log d)

by Mertens’ formula [23, Theorem 1.12].

3.3 Comparison to Lollipop Attack

If σ0 : E0 → E0 is just the identity map, then ω must be an endomorphism and

ψ = ϕ ◦ ω ◦ ϕ̂

is the corresponding “lollipop endomorphism” on E; this nomenclature was pop-
ularized by [14]. For X = { scalar matrices } we recover the attack on M-SIDH
as outlined in [15, Sects. 4.2–4.3]. Therefore, the strategy from Sect. 3.1 should
be viewed as a generalization of this lollipop attack to arbitrary sets X and
arbitrary instances of σ0.

Let us highlight the role of σ0. In theory, it would also be possible to just
apply the lollipop attack to the endomorphism

ω′ = σ̂0 ◦ ω ∈ End(E0).

But then we would need that N2 > swd2, rather than just N2 > wd2. So the
crucial observation is that components of ω′ whose push-forward under ϕ are
known (σ0 in this case) do not contribute to the degree of ψ and thereby lead
to an improvement on the lower bound on N .

Example 8. One clear instance where one can take σ0 = π0 is when the starting
curve E0 is defined over Fp. In this case π0 is an endomorphism and one can
simply take ω = id, so that

ψ = ϕ(p) ◦ ϕ̂.

Note that, when compared to the lollipop attack applied to ω = π0, the degree
of ψ drops from pd2 to d2. This corresponds to the attack strategy described in
the introduction. In turn, the insertion of an endomorphism ω is a special case
of the more general situation where E0 is not necessarily defined over Fp but is
connected to its Frobenius conjugate via a small-to-moderate degree isogeny ω:
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E
(p)
0 E0

π0

ω

Such curves were considered, for instance, in [10].

4 M-SIDH

In this section we apply our attack to M-SIDH, where we analyze the different
choices for σ0. Recall that S = λϕ(P ) and T = λϕ(Q) for a basis {P,Q} of E[N ]
with λ ∈ Z

×
N and d = deg(ϕ).

4.1 Case σ0 = id

Let ω be an endomorphism on E0 and set ψ = ϕ ◦ ω ◦ ϕ̂, then Lemma 3 implies

ψ

(
S
T

)
= d · M

(
S
T

)

with M the (transpose of the) matrix of ω acting on E0[N ] with respect to the
basis {P,Q}. Using our attack we obtain an oracle for evaluating ψ as soon
as N > d

√
w. If w is sufficiently small, then this condition is likely satisfied

for either Alice’s or Bob’s secret isogeny. Unless ω ≡ [λ] mod [N ] in End(E0) for
some λ ∈ Z, the oracle can then be used to extract non-trivial information about
ϕ. In general, one simply expects that ψ is a cyclic isogeny revealing all of ker(ϕ̂)
and hence ker(ϕ). Thus as soon as E0 comes equipped with a small non-scalar
endomorphism then one should consider M-SIDH broken. This is precisely the
attack described in [15, Sects. 4.2–4.3]. Similarly, by focusing on ϕ̂ : E → E0

rather than on ϕ : E0 → E, the same conclusion applies if E carries a small
non-scalar endomorphism.

Remark 9. If the endomorphism ring of E0 (resp. E) is known and we are in the
overstretched case where N/d � p1/3, then we can run the attack with a non-
scalar endomorphism ω on E0 (resp. on E) of degree about p2/3, which exists in
view of [18, Proposition B.5] and can be computed using lattice reduction.5

4.2 Case σ0 = π0

If the curve E0 is Fp-rational, we can take ω = id and consider ψ = ϕ(p) ◦ ϕ̂.
Since p � N by assumption, Lemma 3 implies

ψ

(
S
T

)
= (p−1d mod N) · M · π

(
S
T

)

5 A similar remark is made in [15, Sect. 4.3] but their claim that ω can be taken of
degree about p1/2 seems slightly overoptimistic.
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with π : E → E(p) the Frobenius isogeny and M the (transpose of the) matrix
of π̂0 acting on E0[N ] with respect to the basis {P,Q}. Note that

p−1M = M−1
π0

,

so this confirms Eq. (1). As above, we thus obtain an oracle for evaluating ψ
as soon as N > d; recall that in M-SIDH this condition is satisfied for either
Alice’s or Bob’s secret isogeny. In general, one expects that ψ is a cyclic isogeny
revealing all of ker(ϕ). Consequently, one should consider M-SIDH insecure as
soon as E0 is defined over Fp. Again, by focusing on ϕ̂ : E → E0 instead, the
same conclusion applies in case E is defined over Fp.

More general, we can consider the case where E0 is not Fp-rational, but such
that there exists a low degree isogeny ω : E0 → E

(p)
0 . The attack then results

in an oracle to evaluate ψ = ϕ(p) ◦ ω ◦ ϕ̂ as long as N > d
√

w. As such, if E0

is close to its Frobenius conjugate E
(p)
0 , i.e. w is small enough, then M-SIDH is

also insecure. Once again, we arrive at the same conclusion in case E and E(p)

are connected by a small-degree isogeny.

4.3 Backdoors

In this section we analyze how easy it would be for an attacker to backdoor
M-SIDH by generating rigged system parameters and whether these backdoors
can be detected or avoided altogether. The general idea is to generate system
parameters E0, PB , QB which are a short distance removed, i.e. via a somewhat
low degree isogeny ε, from one of the weak instances described above. Note that
due to the symmetry of M-SIDH, i.e. by looking at the dual, the domain and
co-domain are swapped, the same checks have to be performed for the co-domain
curve E.

In [15, Sect. 7.1] the authors analyzed the requirements on the starting curve
E0 for M-SIDH to be secure and concluded that any curve E0 without a small
endomorphism is sufficient. Since a random Fp-rational supersingular elliptic
curve will not admit small endomorphisms, but still succumbs to our attack,
this is clearly not sufficient. Furthermore, since the starting curve is part of the
system parameters, for efficiency reasons, it might be tempting to organize a
distributed random walk in the Fp-isogeny graph. As we have shown, this is a
bad idea.

Given a starting curve E0 which is generated by a third party (trusted or
not), detecting a possible backdoor amounts to verifying that E0 and E

(p)
0 are

not close in the Fp2 -isogeny graph. Let θ : E0 → E
(p)
0 be a connecting isogeny

of degree t, then the composition π̂0 ◦ θ is an endomorphism on E0 of degree
t · p. Unfortunately, we are not aware of an efficient test for the existence of
such endomorphism. The only (trivial) possibility seems to be to test whether
Φk(j(E0), j(E0)p) = 0 for all k = 1, . . . , U . The bound U depends on the differ-
ence between the degree of the isogenies ϕA (resp. ϕB) and the order of PB, QB

(resp. PA, QA). To illustrate, if we are trying to recover ϕA, then the isogeny
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ψ = ϕ
(p)
A ◦θ◦ϕA has degree A2t with A = deg(ϕA) and we thus require B2 > A2t

or equivalently, (B/A)2 > t. As such, we require to test at least up to

U ≥ max{A2

B2
,
B2

A2
} .

To make this test efficient, it is therefore beneficial to take A as close to B as
possible, which corresponds to the parameter selection in [15]. In particular, for
the largest M-SIDH parameter set, we need to test existence of isogenies up to
degree U < 823.

Finally, the authors suggest that the curve is generated using an MPC pro-
tocol as in [2], where a random supersingular curve is generated by n parties in a
round-robin manner, i.e. party i executes a secret isogeny walk from Ei−1 to Ei,
where party 1 starts from a known supersingular elliptic curve E0. Furthermore,
each party needs to prove that they really know a path from Ei−1 to Ei. The
question now becomes whether the last party can force the walk to go through a
curve E which is close to its Frobenius conjugate E(p). Since we assume at least
one honest party preceding the last one, it is clear that for party n the curve
En−1 is a random supersingular elliptic curve. According to [8, Lemma 6], the
number of (isomorphism classes of) supersingular elliptic curves such that E and
E(p) are connected by an isogeny of degree up to d is bounded by Õ(

√
d3p). The

probability of party n being able to force such a curve is therefore negligible.
In conclusion: using an MPC protocol as in [2] to execute an isogeny walk in

the full Fp2 -isogeny graph, will result in a non-backdoored curve with overwhelm-
ing probability. As an added measure, one can run the explicit test described
above.

5 FESTA

To apply our attack to FESTA, in view of Remark 5 we require at least one of
the basis points to be an eigenvector of σ̂0 ◦ ω where σ0 is either the identity
or Frobenius and ω is a small degree endomorphism. Recall that in FESTA the
torsion point order is given by B = 2b and our attack recovers ψ = σ0∗ϕ ◦ ω ◦ ϕ̂
as long as B > d

√
w, in case we know the images of a full basis, or B > d2w, in

case we only know the image of a single point.
In this section we analyze how many such ω and different eigenspaces can

exist for the curve E0 : y2 = x3 + 6x2 + x over Fp used in the FESTA imple-
mentation [3]. Since E0 is 2-isogenous to the elliptic curve E1 : y2 = x3 + x via
an isogeny θ with ker θ = 〈(0, 0)〉, and since the endomorphism ring of E1 is
well-known,6 we can compute the following Z-module basis of End(E0):

id,
π0 − [1]

2
, i − iπ0,

i + iπ0

4
,

6 See e.g. Sect. 6 for an explicit basis.
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where i =
√−1 and π0 the Frobenius endomorphism. Note that i itself is not

an endomorphism on E0, but is an endomorphism on E1. As such we obtain the
endomorphism 2i = θ̂ ◦ i ◦ θ on E0.

To simplify matters we will work with the subring generated by id, π0, 2i, 2iπ0,
which has index 16 in End(E0). Since deg(π0) = p and we require w = deg(ω) to
be of moderately small degree (note that in the overstretched case we can allow
for combinations with π0), we are thus limited to choosing ω of the form a + 2bi
which has degree a2 + 4b2.

To illustrate this for the 128-bit secure parameter set, we have B = 2632 and
d has 273 bits, which allows ω of degree up to 2718 assuming we know images
of a full basis and ω of degree up to 286 if we only know the image of a single
point.

5.1 Case σ0 = id

We have to analyze the eigenspaces of ω = α + 2βi with α, β ∈ Z. However it
is easy to see that if P is an eigenvector of such ω with eigenvalue μ, then if
gcd(β,B) = 1, P is also an eigenvector of 2i with eigenvalue (μ − α)/β mod B.
As such the different choices for ω do not result in distinct eigenspaces, and only
the eigenspaces of 2i are weak.

5.2 Case σ0 = π0

We have to analyze the eigenspaces of π̂0 ◦ω = π̂0 ◦ (α+2βi). Since π2
0 = [−p] on

E0, we have π̂0 = −π0, so it suffices to analyze the eigenspaces of π0 ◦ (α + 2βi).
Assume for now that B is odd (the case B = 2n is analyzed below). Let {U, V }

be a basis of eigenvectors of π0 on E0[B], i.e. π0(U) = U and π0(V ) = −V (here
we used p ≡ −1 mod B as in FESTA). Since π0 and 2i anti-commute, we can in
fact take V = 2i(U), which indeed satisfies π0(V ) = −V and has the same order
as U (here we use B odd). Note that we also have the equality 2i(V ) = −4U .

Assume that P ∈ E0[B] is an eigenvector of π0 ◦ (α + 2βi) of exact order B,
then using the basis {U, V } of E[B], we can express P = cU +dV with c, d ∈ ZB

and at least one of c, d is a unit in ZB . Assume without loss of generality that
this is c, then after rescaling by c−1 mod B, we can assume P is of the form
P = U + aV with a ∈ ZB . Note that by rescaling we are now counting different
eigenspaces instead of eigenvectors, in particular, each a gives rise to a whole
different eigenspace (and thus φ(B) different eigenvectors of exact order B, where
φ denotes the Euler-phi function). To deal with the case that P has order B′|B
with B′ < B, we can simply replace B by B′, U by (B/B′)U and V by (B/B′)V .

Assume that the eigenvalue corresponding to P is μ then using V = 2i(U)
and 2i(V ) = −4U we have

π0 ◦ (α + 2βi)(P ) = (α − 4aβ)U + (−aα − β)V = μ(U + aV ) .

This is equivalent with

4a2β − 2aα − β ≡ 0 mod B .
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For every choice of α and β we therefore get a quadratic equation for a with
discriminant Δ = 4α2 + 16β2.

Case B = �n with � an Odd Prime. Assume first that B = �n for an odd
prime �, then for β a unit in ZB , this equation will have two different solutions
for a exactly when

(
Δ
�

)
= 1 which are given by

a± =
α ±

√
α2 + 4β2

4β
=

(α/2β) ± √
(α/2β)2 + 1
2

mod B .

Note that the solutions for a result in two different eigenspaces, one correspond-
ing to a+ and one corresponding to a− and that the one fully determines the
other. In particular, the eigenspaces come in pairs corresponding to {a+, a−}.

Assume we now consider the attack where the images of a full basis are
required, then w is bounded by w = deg(ω) = α2+4β2 < (B/d)2. To estimate the
total number of pairs of weak eigenspaces, we therefore simply need to compute
the number of different values for a above where α, β vary inside the ellipse
x2 +4y2 = (B/d)2. Ignoring (small) constants, the number of such pairs is given
by (B/d)2. However, as shown above, the value of a is really determined by
α/2β mod B. As such we need to distinguish 2 cases: if d >

√
B, then up to

a small constant, the number of values for a really is (B/d)2, however, when
d <

√
B the number of values for a is simply B. This shows that the total

number of weak eigenspaces is, up to a small constant, given by

min{B2

d2
, B} .

Since the total number of eigenspaces is given by B2, we conclude that the
proportion of weak eigenspaces for FESTA in the full basis attack scenario is
O(min{ 1

d2 , 1
B }).

We can do a similar analysis for the case where we want to run the attack
with the image of only a single point, following Remark 5. The main difference is
now that the bound on w is changed to w = deg(ω) = α2 +4β2 < B/d2. Instead
of counting the number of pairs of eigenspaces, we now simply count the number
of eigenspaces. As before, we need to compute the number of different values
for a above where α, β vary inside the ellipse x2 + 4y2 = B/d2 (note the right
hand side is different from before). Up to a small constant, this number is given
by B/d2. Note that for d >

√
B there are no solutions, and otherwise there are

B/d2 (up to a small constant). Given that there are B different eigenspaces in
total, the proportion of weak eigenspaces for FESTA in the single image point
attack scenario is O(1/d2).

Case B = 2n with n > 3. The overall reasoning remains exactly the same, with
a few small changes. The first change is that since E[2] is already rational over
Fp in FESTA, we will only be able to select U of order B/2. Furthermore, by
construction V = 2i(U) only has order B′ = B/8 (note that the deg(2i) = 4,
so this is the worst that can happen). We thus consider the basis U ′ = 4U and
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V for E[B′]. Note that we now have the equality 2i(V ) = −U ′. Considering
eigenvectors of the form P = U ′ + aV ∈ E[B′] with eigenvalue μ, we get

π0 ◦ (α + 2βi)(P ) = (α − aβ)U ′ + (−aα − 4β)V = μ(U ′ + aV ) .

The quadratic equation for a thus also changes slightly, in that a now has to
satisfy:

a2β − 2aα − 4β = 0 mod B′ .

For β a unit, i.e. β �≡ 0 mod 2, it is easy to verify that the above equation
will have no solutions. For β ≡ 0 mod 2, we can set β′ = β/2 and obtain the
equivalent equation:

a2β′ − aα − 4β′ = 0 mod B′/2 .

It is easy to check that this equation will have 2 solutions modulo B′/2 whenever
β′ ≡ α mod 2 and no solutions otherwise.

The remainder of the analysis now remains exactly the same, since the differ-
ent solutions are fully determined by α/β, so up to a small constant, it suffices
to compute the number of such tuples inside the ellipses x2 + 4y2 = B′2/d2 and
x2 + 4y2 = B′/d2 exactly as before. As such, also for B = 2n, the proportion
of weak eigenspaces for FESTA is again O(min{ 1

d2 , 1
B }) in the full basis attack

scenario and O(1/d2) in the single image point attack scenario.

5.3 Backdoors

The general approach of introducing a backdoor into FESTA is similar to the M-
SIDH case in that an attacker generates system parameters E0, PB , QB which are
obtained as the image under a low degree isogeny ε of one of the weak instances
identified above. In particular, let Ew, Pw, Qw be a weak instance for FESTA,
then E0 = ε(Ew), PB = ε(Pw) and QB = ε(Qw). The attack then proceeds
to recover ε ◦ ϕ, which is possible as long as B2 > e2d2w with e = deg(ε).
Assuming that the weak basis is optimal, i.e. eigenvectors of Frobenius, we have
w = 1 and so the backdoor can tolerate isogenies ε up to degree B/d which in
FESTA is very large. If the endomorphism ring of E0 is known or given, then one
can proceed exactly as above to test whether the basis is weak; however, when
the endomorphism ring of E0 is unknown, then it is near impossible to verify
whether FESTA has been backdoored since the degree of ε can be so large.

A possible, easy solution however is the following: as shown above, the pro-
portion of weak bases for a given curve is on the order of O(1/d2) which is
very small. Therefore, given system parameters E0, PB , QB it suffices to pub-
licly rerandomize the basis, which with overwhelming probability will result in a
basis which no longer is weak. Another possible solution, as done in the FESTA
implementation, is to obtain PB , QB deterministically using a hash function to
the elliptic curve E0 such as described in [24]. The paranoid user can rerandomize
the basis themselves and include these as part of their public key.

Finally, we note that due to the symmetry of FESTA, i.e. by looking at the
dual, the domain and co-domain are swapped, the same checks/countermeasures
have to be performed for the co-domain curve E.
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5.4 Overstretched FESTA

It is natural to ask whether, given any two points P and Q, it is always possible
to construct an endomorphism ω such that P and Q become eigenvectors, and
what the expected degree of such ω would be. To analyze this, we consider what
can be expected for E0 a sufficiently general supersingular elliptic curve over Fp2

with known endomorphism ring and {P,Q} a sufficiently general basis of E0[B].
Using lattice reduction we can find a Z-basis

id, ω1, ω2, ω3 ∈ End(E0)

with deg(ωi) ≈ p2/3 for all i; see [18, Proposition B.5]. Writing Mi for the matrix
of ωi acting on E0[B] with respect to {P,Q}, we hope to find scalars λi ∈ Z

such that
λ1M1 + λ2M2 + λ3M3 (6)

is diagonal (and non-scalar). The proportion of diagonal matrices in Z
2×2
B is

1/B2, so we expect that we can take |λi| ≤ B2/3, and then w = deg(ω) =
deg(λ1ω1 + λ2ω2 + λ3ω3) is in O(p2/3B4/3). In conclusion, as soon as B � pd3,
we expect being able to find a degree-w endomorphism ω of which P and Q are
eigenvectors and such that B > d

√
w, as required for the attack. Note that the

condition B � pd3, implies that the B-torsion cannot be Fp2 -rational as done in
FESTA, so this attack really only concerns an overstretched case and does not
apply to FESTA itself.

6 CSIDH

We now discuss CSIDH in its known-degree variant (e.g., the dummy-free variant
from [7, Sect. 5] with m = 1). Concretely, our secret isogeny ϕ is a horizontal
isogeny of known degree d connecting two supersingular elliptic curves E0, E over
Fp. As discussed before, for bases {P,Q} ⊆ E0[N ], {S, T} ⊆ E[N ] consisting of
Frobenius eigenvectors we know that

(
S
T

)
= D · ϕ

(
P
Q

)

for some unknown diagonal matrix D ∈ GL2(ZN ), where N can be taken arbi-
trarily large. Note that the eigenvalues corresponding to P,Q are necessarily of
the form μ,−μ since the characteristic polynomial of Frobenius is x2 + p.

In order to apply our attack strategy, we wish to find σ0 ∈ {id, π0} and
ω ∈ End(E0) such that:

– the matrix M of σ̂0 ◦ ω acting on E0[N ] with respect to the basis {P,Q} is
diagonal,

– N2 > wd2, where w = deg(ω).
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We will show that for

E0 : y2 = x3 + x over Fp with p ≡ 3 mod 8 (7)

(as is the setting for the original CSIDH proposal [6]) these conditions imply

(σ̂0 ◦ ω)(ker(ϕ)) = ker(ϕ) (8)

so that, using the notation from Sect. 3.2, we are always in the case d′ = d. Con-
sequently, our attack strategy comes with O(2r) guesses, where r denotes the
number of distinct prime factors of d, and therefore does not offer any improve-
ment over existing attacks.

Our belief is that the same conclusions apply to any starting curve over any
finite prime field,7 but the discussion becomes more technical. The two features
of (7) that make life easier are:

– N is odd, because 2 does not split in Q(
√−p),

– the endomorphism ring of E0 is easy to handle; namely as a Z-module it is
generated by

[1],
i + π0

2
, π0,

[1] + iπ0

2

with i : (x, y) �→ (−x,
√−1y) such that i2 = [−1].

It suffices to concentrate on the case σ0 = id. Indeed, the matrix of an endo-
morphism ω with respect to {P,Q} is diagonal if and only if the matrix of
π̂0 ◦ ω = −π0 ◦ ω with respect to {P,Q} is diagonal. Similarly, the equality
from (8) holds for σ0 = π0 if and only if it holds for σ0 = id.

Then the main observation is that i swaps the eigenspaces 〈P 〉 and 〈Q〉.
Indeed, this follows from

π0(i(P )) = −i(π0(P )) = −μi(P ).

Consequently, the matrix of i with respect to {P,Q} is anti-diagonal. Likewise,
also the matrix of iπ0 with respect to {P,Q} is anti-diagonal. This means that
if we want the matrix of

ω = a1 + a2
i + π0

2
+ a3π0 + a4

1 + iπ0

2
= a1 +

a4

2
+

a2

2
i + (a3 +

a2

2
)π0 +

a4

2
iπ0

with respect to {P,Q} to be diagonal, then

a2i + a4iπ0 = (a2 − a4π0)i

should act as the zero map on 〈P,Q〉 = E0[N ]. By construction π0 has distinct
eigenvalues modulo every prime factor of N , so this can only happen if a2 ≡
a4 ≡ 0 mod N . If a2 = a4 = 0 then ω is a linear combination of 1 and π0, from

7 Or even more generally: to arbitrary orientations.
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which it readily follows that ω(ker(ϕ)) = ker(ϕ). On the other hand, as soon as
one of a2, a4 is non-zero, we find that

w ≥ deg(a2i + a4iπ0)
4

=
a2
2 + pa2

4

4
≥ N2/4

and therefore N2 ≤ wd2: a contradiction (here we have used that d > 1, which
can of course be assumed without loss of generality).

Remark 10. According to Remark 5, an alternative strategy is to look for ω ∈
End(E0) such that P is an eigenvector of σ̂0 ◦ ω, but Q not necessarily is; recall
that the bound N2 > wd2 strengthens to N > wd2 in this case. The analysis
is similar, except that now we run into the conclusion that (a2 − a4π0)i should
vanish on 〈P 〉, rather than on all of E0[N ]. Equivalently, this means that a2−a4π0

should vanish on 〈Q〉, or in other words that a2 + a4μ ≡ 0 mod N . As before,
we have

w ≥ a2
2 + pa2

4

4
where now we observe that the numerator of the right-hand side is divisible
by N because a2

2 + pa2
4 ≡ (μ2 + p)a2

4 ≡ 0 mod N . Here we have used that
μ2 +p ≡ 0 mod N because μ is an eigenvalue of Frobenius mod N . We conclude:
if a2 = a4 = 0 then ω ∈ Z[π0], else w ≥ N/4 and therefore N ≤ wd2.
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A Maximal Commutative Subgroups of GL2(ZN )

This appendix contains a partial classification of the maximal commutative sub-
groups of GL2(ZN ). The classification seems classical in case N is a prime num-
ber, but we could not find a reference that deals with the general case, where var-
ious subtleties arise, see for instance Example 12 below. Maximal commutative
subgroups of GL2(ZN ) are natural candidates for the set X from Sect. 3.1, and
they can also be used as substitutes for X = {diagonal matrices } in FESTA [3].
By the Chinese Remainder Theorem, it suffices to concentrate on the case N = �e

for some prime number �.

Free Maximal Commutative Subalgebras

We first study maximal commutative subalgebras A ⊆ M2(Z�e), by which we
mean that A equals its own centralizer, i.e., there is no matrix in M2(Z�e)\A that
commutes with every element of A. As an additive group, A must be isomorphic
to

Z�e1 ⊕ · · · ⊕ Z�er , 2 ≤ r ≤ 4

for certain exponents e = e1 ≥ . . . ≥ er, just because
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– it concerns a subgroup of M2(Z�e) ∼= (Z�e)4,
– it contains I2, which has additive order �e,
– it contains at least one non-scalar matrix.

The following useful lemma implies that if e2 = e, then necessarily r = 2 and as
a result A is free when viewed as a Z�e-module. We can indeed apply the lemma,
because it is easy to see that if a matrix M = (mij) is Z�e-linearly independent
of I2, then at least one of m12,m21,m11 − m22 is a unit.

Lemma 11. Let M = (mij) ∈ M2(Z�e) be such that {m12,m21,m11 − m22}
contains a unit. Then the centralizer

CM2(Z�e )(M) = { X ∈ M2(Z�e) | MX = XM } ,

when considered as a Z�e-module, is free of rank 2.

Proof. Through the use of one of the conjugations
(

0 1
1 0

)
·
(

m11 m12

m21 m22

)
·
(

0 1
1 0

)−1

=
(

m22 m21

m12 m11

)
,

(
1 0
1 1

)
·
(

m11 m12

m21 m22

)
·
(

1 0
1 1

)−1

=
(

m11 − m12 m12

m11 − m12 + m21 − m22 m12 + m22

)

we can reduce to the case where m21 is a unit. Expressing that a matrix X = (xij)
commutes with M leads to a system of equations

( −m21x12 + m12x21 −m12x11 + (m11 − m22)x12 + m12x22

m21x11 + (−m11 + m22)x21 − m21x22 m21x12 − m12x21

)

=

(
m11 m12

m21 m22

) (
x11 x12

x21 x22

)
−

(
x11 x12

x21 x22

) (
m11 m12

m21 m22

)
=

(
0 0
0 0

)

which can be checked to reduce to
{

x11 = (m22 − m11)x21/m21 + x22,
x12 = m12x21/m21.

From this the lemma follows. �

We call such a maximal commutative subalgebra free. Let us recall that this
is a maximal commutative subalgebra A ⊆ M2(Z�e) whose additive group is
isomorphic to

Z�e ⊕ Z�e ,

and that this is automatically satisfied as soon as A admits an additive subgroup
of this form.

Example 12. An example of a non-free maximal commutative subalgebra is the
algebra of matrices of the form

αI2 + β�M ∈ M2(Z�2)
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whose additive group structure is given by

Z�2 ⊕ Z� ⊕ Z� ⊕ Z�.

Observe that its number of elements �5 is larger than �2e = �4 in this case!

Note that freeness comes for free if e = 1, i.e., when working over the field
F�. In that case the following theorem is likely well-known.

Theorem 13. Up to conjugation, the free maximal commutative subalgebras of
M2(Z�e) are given by

Ac,d = {Mc,d(ax + b) | a, b ∈ Z�e }
with c, d ∈ Z�e . Here Mc,d(ax+ b) denotes the matrix of multiplication by ax+ b
in the ring

(Z�e)[x]
(x2 + cx + d)

with respect to the basis 1, x. Moreover, writing Δc,d = c2 − 4d, two such subal-
gebras are conjugate if and only if

Δc,d = u2Δc′,d′

for some u ∈ Z
×
�e .

Proof. It is easy to see that the algebras Ac,d are maximal commutative and
free. Indeed, it is immediate that they are commutative and that their additive
group structure is isomorphic to Z�e ⊕ Z�e (one can choose I2 = Mc,d(1) and
Mc,d(x) as generators). Maximality then follows from the foregoing discussion.

To prove that every free maximal commutative subalgebra A ⊆ M2(Z�e) is
conjugate to an algebra of the form Ac,d, it suffices to show:

Claim. Every matrix in M2(Z�e) is conjugate to a matrix

M ∈ Ac,d

for some c, d ∈ Z�e .

Indeed, recall that A is additively generated by I2 and some non-scalar matrix
M. By the claim, we can assume that M ∈ Ac,d for certain c, d. Every matrix
in Ac,d commutes with M and therefore it commutes with every matrix in A.
Hence it follows from the maximal commutativity of A that Ac,d ⊆ A. But since
Ac,d is maximal commutative, equality must hold.

To prove the claim, we argue that every matrix in M2(Z�e) is conjugate to a
matrix M = (mij) satisfying

ν�(m21) ≤ ν�(m12), ν�(m21) ≤ ν�(m22 − m11).

This follows from the conjugations that were used in the proof of Lemma 11.
Using a conjugation of the first kind we can ensure that ν�(m21) ≤ ν�(m12).
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Once this is established, a conjugation of the second kind ensures that ν�(m21) ≤
ν�(m22 − m11), as wanted. Consequently, there exist c, d such that

M =
(

m11 −m21d
m21 m11 − m21c

)
,

but this is nothing else than Mc,d(m21x + m11). Therefore M ∈ Ac,d.
Next, assume that two multiplication algebras Ac,d and Ac′,d′ are conjugates

of each other, i.e., Ac′,d′ = TAc,dT−1 for some T ∈ GL2(Z�e). Let M be any
matrix which along with I2 additively generates Ac,d; then necessarily M =
Mc,d(ax+ b) for some unit a. We also have that TMT−1 is a generator of Ac′,d′

along with I2, hence it is of the form Mc′,d′(a′x + b′) for some unit a′. Now it is
straightforward to check the identity

disc(charpol(Mc,d(ax + b))) = a2Δc,d,

but since M and TMT−1 have the same characteristic polynomial this also
equals a′2Δc′,d′ . We conclude that Δc,d = u2Δc′,d′ with u = a′/a.

Conversely, assume that Δc,d = u2Δc′,d′ for some unit u. One then checks
that

ϕ :
(Z�e)[x]

(x2 + cx + d)
→ (Z�e)[x]

(x2 + c′x + d′)
: x �→ ux +

uc′ − c

2

is an isomorphism of rings; this is also true for � = 2, where we note that our
assumption Δc,d = u2Δc′,d′ implies that uc′ − c has positive valuation, so that
division by 2 makes sense. Writing T for the matrix of ϕ with respect to the
bases {1, x} and {1, x}, it readily follows that

Mc′,d′(ϕ(ax + b)) = TMc,d(ax + b)T−1,

showing that the algebras Ac,d and Ac′,d′ are conjugates of each other. �

Extrapolating from the case e = 1, the following nomenclature is natural; see
also [22, Appendix A5]:

– The split Cartan case corresponds to Δc,d being a square unit. This case is
unique up to conjugation. Taking c = −1, d = 0, we see that Mc,d consists of
matrices of the form (

b 0
a a + b

)
,

where we note that
(

1 0
1 1

)
·
(

b 0
a a + b

)
·
(

1 0
1 1

)−1

=
(

b 0
0 a + b

)

so, up to conjugation, the split Cartan case corresponds to the subalgebra of
diagonal matrices.
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– The non-split Cartan cases correspond to Δc,d being a non-square unit. Usu-
ally this case is also unique up to conjugation: this is true as soon as � > 2
or b < 3; e.g. if � ≡ 3 mod 4 then we can realize it as the subalgebra of
anticirculant matrices (

b −a
a b

)
.

by taking c = 0 and d = 1. If � = 2 and b ≥ 3 then there are three non-split
Cartan cases, corresponding to whether Δc,d mod 8 is 3, 5, or 7.

– The ramified Cartan cases correspond to Δc,d being a non-unit. These can
be classified according to the valuation v = ν�(Δc,d) and the class of the unit

Δc,d/�v ∈ Z
∗
�e−v

Z
∗2
�e−v

,

for which there are
• 1 option if v = e — this is the totally ramified case, corresponding to

matrices of the form (
b 0
a b

)

(e.g., take c = d = 0), up to conjugation — or also if � = 2 and v = e− 1,
• 2 options if � > 2 and v < e or if � = 2 and v = e − 2,
• 4 options if � = 2 and v < e − 2.

Example 14. The subalgebra of circulant matrices
(

b a
a b

)
,

which have also been proposed for use in FESTA [3, Footnote 3], is precisely
A0,−1, with discriminant 4. If � > 2 then this is the split Cartan case, while if
� = 2 we are almost in the split Cartan case (we have v = 2 and Δ0,−1/22 = 1).

Subgroups

We now proceed to the study of maximal commutative subgroups of GL2(Z/�e
Z).

Of course, by a maximal commutative subgroup we mean a subgroup that is
equal to its own centralizer, but now considered inside GL2(Z/�e

Z). Note that
we have commutativity-preserving maps

A �→ A ∩ GL2(Z�e) ⊆ GL2(Z�e), G �→ 〈G〉Z�e ⊆ M2(Z�e)

between the set of subalgebras of M2(Z�e) and the set of subgroups of GL2(Z�e).
To see that A ∩ GL2(Z�e) is indeed a subgroup, it suffices to observe that if
M ∈ A is invertible, then also M−1 = (detM)−1(tr(M)I2 −M) ∈ A by Cayley–
Hamilton.

Lemma 15. Every maximal commutative subgroup of GL2(Z�e) is of the form
A ∩ GL2(Z�e) with A a maximal commutative subalgebra of M2(Z�e).
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Proof. Let G ⊆ GL2(Z�e) be a maximal commutative subgroup. Since 〈G〉Z�e is
commutative, we have that G is contained in a maximal commutative algebra
A. But then G ⊆ A ∩ GL2(Z�e) and by the maximality of G, equality holds. �

The converse to this statement is slightly more subtle. But here is a special
case where things work out:

Lemma 16. If � > 2 then for any free maximal commutative subalgebra A ⊆
M2(Z�e) we have that A ∩ GL2(Z�e) is a maximal commutative subgroup of
GL2(Z�e).

Proof. Recall that A is additively generated by I2 and another matrix M. We
claim that M can be chosen to be an invertible matrix. To this end, consider

det(M + xI2) mod � ∈ F�[x]. (9)

This polynomial has at most two roots, so since � > 2 we can find λ ∈ Z�e which
does not reduce to a root of (9) modulo �. If we then replace M with M + λI2
we find a generator that is invertible, as wanted.

Now the proof is easy. Let N ∈ GL2(Z�e) be a matrix that commutes with
every matrix in A ∩ GL2(Z�e). Then it commutes with M, and therefore it
commutes with every matrix in A. From the maximality of A it follows that
N ∈ A. �

In the foregoing lemma the condition � > 2 is necessary. Indeed, an easy
counterexample is the split Cartan subalgebra

A =
{(∗ 0

0 ∗
)}

,

which is generated by

I2 =
(

1 0
0 1

)
and M =

(
1 0
0 0

)
.

Note that none of the matrices μM + λI2 with μ odd is invertible. Therefore
A ∩ GL2(Z2e) is contained in the index-2 subalgebra 〈2M, I2〉. Every matrix in
this subalgebra commutes with the invertible matrix

(
1 2e−1

0 1

)

which is not contained in A. Therefore A ∩ GL2(Z�e) is not maximal commuta-
tive.

Remark 17. We end by remarking that with A ⊆ M2(Z�2Z) the non-free maxi-
mal commutative subalgebra from Example 12, the resulting commutative sub-
group A∩GL2(Z�2) still contains �4(�−1) matrices, which is strictly larger than
�4 as soon as � > 2. So this is still larger than what could be attained using free
maximal commutative subalgebras.
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Abstract. In this paper, we present NEV – a faster and smaller NTRU
Encryption using Vector decoding, which is provably IND-CPA secure in
the standard model under the decisional NTRU and RLWE assumptions
over the cyclotomic ring Rq = Zq[X]/(Xn + 1). Our main technique is
a novel and non-trivial way to integrate a previously known plaintext
encoding and decoding mechanism into the provably IND-CPA secure
NTRU variant by Stehlé and Steinfeld (Eurocrypt 2011). Unlike the orig-
inal NTRU encryption and its variants which encode the plaintext into
the least significant bits of the coefficients of a message polynomial, we
encode each plaintext bit into the most significant bits of multiple coef-
ficients of the message polynomial, so that we can use a vector of noised
coefficients to decode each plaintext bit in decryption, and significantly
reduce the size of q with a reasonably negligible decryption failure.

Concretely, we can use q = 769 to obtain public keys and ciphertexts
of 615 bytes with decryption failure ≤ 2−138 at NIST level 1 security,
and 1229 bytes with decryption failure ≤ 2−152 at NIST level 5 security.
By applying the Fujisaki-Okamoto transformation in a standard way, we
obtain an IND-CCA secure KEM from our basic PKE scheme. Compared
to NTRU and Kyber in the NIST Round 3 finalists at the same security
levels, our KEM is 33–48% more compact and 5.03–29.94X faster than
NTRU in the round-trip time of ephemeral key exchange, and is 21%
more compact and 1.42–1.74X faster than Kyber.

We also give an optimized encryption scheme NEV′ with better noise
tolerance (and slightly better efficiency) based on a variant of the RLWE
problem, called Subset-Sum Parity RLWE problem, which we show is
polynomially equivalent to the standard decisional RLWE problem (with
different parameters), and maybe of independent interest.

1 Introduction

The NTRU encryption proposed by Hoffstein, Pipher and Silverman [24] is one of
the first publicly known practical public key encryptions (PKEs) on lattices. The
security of NTRU encryption was originally stated as its own assumption, but
after more than 25 years of studies, there is no significant algorithmic progress
against it (except for overstretched parameters [17,29]). Now, it is more natural
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to view NTRU encryption as a cryptosystem based on two hardness assump-
tions [18,43]: the decisional NTRU assumption which roughly says that the quo-
tient h = g/f of two small polynomials g, f is pseudorandom, and the RLWE
assumption [32,44] which says that it is hard to recover e from (h, hr + e) when
h is uniformly random, and r, e are randomly chosen small polynomials. It is
worth to note that the first assumption can be removed for appropriately chosen
(but very inefficient) parameters [43].

In NIST post-quantum cryptography (PQC) standardization process [36],
NTRU was one of the four PKEs/KEMs in NIST Round 3 finalists [37], but it
was not selected for standardization by NIST in the end [38]. One main reason is
that it is neither the fastest nor the smallest among the lattice KEM finalists [38].
In particular, compared to Kyber which was selected as the NIST KEM standard,
NTRU has 8.3–18.6% larger public key and ciphertext sizes (see Table 1) and
8.21–45.34X slower key generation (see Table 2). Several recent efforts [18,20,33]
have been made to improve the performance of NTRU.

Lyubashevsky and Seiler [33] proposed a NTRU variant, called NTTRU, over
the specific cyclotomic ring Z7681[x]/(x768 − x384 + 1) that supports Number
Theory Transform (NTT), and obtained significant speedup over the original
NTRU that uses rings (e.g., Zq[x]/(xn −1)) do not support NTT. Later, Duman
et al. [18] extended the idea of [33] to other NTT-friendly rings of the same
form Zq[x]/(xn −xn/2 +1), and obtained comparable efficiency improvement for
flexible choices of parameters. Note that given an NTRU public key h = pg/f
for some plaintext modulus p, the message m in the original NTRU encryption
c = hr + m will be multiplied by the secret f in decryption. Thus, purposefully
choosing a “bad” m can significantly increase the decryption failure (by more
than 2100 times for standard parameter choices [18]), which might be utilized
by the adversary in a decryption failure attack to obtain information of f . To
resist this attack, the authors [18] also provide three transformations to detach
the decryption failure from the message. One of their main transformation called
NTRU-A (that is used in comparison with related works in [18, Table 3]) requires
a new assumption called RLWE2, which is closely related to the RLWE problem,
but the authors only provide heuristic arguments to the equivalence of RLWE2
and RLWE [18]. Despite of the efficiency improvement, the sizes of [18,33] are
still larger than that of Kyber at the same security levels (see Table 3).

Fouque et al. [20] proposed another NTRU variant, called BAT, with a GGH-
like encryption and decryption paradigm over the power of 2 cyclotomic ring
Zq[x]/(xn + 1), which requires a very complex trapdoor inversion algorithm.
Compared to other NTRU schemes, BAT has the smallest sizes (see Table 3).
But it has a very slow key generation, which is 266-2131X slower than Kyber,
and is even 7-104X slower than NTRU (see Tables 2 and 5). Moreover, BAT
needs a strong RLWR with binary secret assumption.

1.1 Our Results

We present a faster and smaller NTRU-like Encryption using Vector decoding,
called NEV-PKE, which is provably IND-CPA secure under the decisional NTRU
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and RLWE assumptions over the cyclotomic ring Rq = Zq[X]/(Xn + 1) in the
standard model, and thus can be directly used as a passively secure key exchange
without resorting to the (quantum) random oracle model. Our main technique
is a novel way to non-trivially integrate a previously known plaintext encoding
and decoding mechanism [4,41] into the provably secure NTRU variant [43],
which allows us to use a very small modulus q and obtain smaller public key and
ciphertext sizes with a reasonably negligible decryption failure (see Sect. 1.2).

Concretely, the small modulus q = 769 can be used to achieve a decryption
failure ≤ 2−138 for NIST level 1 security and ≤ 2−152 for NIST level 5 secu-
rity. With a compressed representation of Rq elements (see Sect. 6.5), we can
obtain public keys and ciphertexts of 615 and 1229 bytes respectively at the two
security levels, which is 33–48% more compact than NTRU, and is 21% more
compact than Kyber (see Table 1). By applying the Fujisaki-Okamoto transfor-
mation to NEV-PKE, we obtain an IND-CCA secure KEM called NEV-KEM. We
implement our schemes using reference C language and AVX2 instructions in
experiment. Due to the use of (partial) NTT multiplications and inversions in
Rq (see Sects. 6.1 and 6.2), our NEV-KEM is 5.03–29.94X faster than NTRU and
1.42–1.74X faster than Kyber in the round-trip time of ephemeral key exchange.

We also give an optimized NTRU encryption called NEV-PKE′ with better
noise tolerance based on a variant of the RLWE problem, called Subset-Sum
Parity RLWE (sspRLWE) problem, which can also be seen as a generalization of
the RLWE2 problem in [18]. We show that the sspRLWE problem is polynomially
equivalent to the decisional RLWE problem (with different parameters), which
partially solves the problem of proving the equivalence of RLWE2 and RLWE
in [18]. By assuming that the concrete hardness of sspRLWE is equal to RLWE
with the same parameters as for RLWE2 in [18], NEV-PKE′ can achieve a smaller
decryption failure and slightly better performance than NEV-PKE. Concretely,
we can use the same modulus q = 769 to achieve a decryption failure ≤ 2−200

at both NIST levels 1 and 5 security.
One nice feature which is worth to mention is that our schemes NEV-PKE and

NEV-PKE′ are more robust than NTRU to a decryption failure attack because
the plaintext has little contribution to the decryption noise in NEV-PKE, and the
plaintext in NEV-PKE′ will essentially be masked using a random secret share
algorithm (see Sect. 1.2 below). Similar to Newhope [4] that uses the power of 2
cyclotomic ring Zq[x]/(xn + 1), one possible limitation for our schemes is that
we cannot find a proper parameter set for NIST level 3 security, but since our
performance at NIST level 5 security is already comparable with existing schemes
at NIST level 3 security (see Tables 1 and 2), we believe this would not be a real
problem in practice.

1.2 Technical Overview

We begin by first recalling the original NTRU encryption. Formally, let n, q, p
be three positive integers, and p coprime to q. Let Rq = Zq/(xn −1). The public
key h and ciphertext c of NTRU has forms of:

h = pg/f, c = hr + m,
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where g, f, r are polynomials with small coefficients, m is the message polyno-
mial. The decryption is done by first computing u = fc = pgr + fm ∈ Rq,
and then computing m = f−1u ∈ Rp. The decryption requires the �∞ norm of
pgr + fm to be smaller than q−1

2 (i.e., ‖pgr + fm‖∞ < q−1
2 ), and f invertible in

both Rq and Rp for correctness, where p is typically equal to 3 for ternary mes-
sage polynomial m. To simplify the decryption, f is usually set to have the form
of f = pf ′+1 such that f−1 mod p = 1. In this case, we have u = pgr+pf ′m+m,
where the decryption noise pgr + pf ′m essentially has the same form to that of
RLWE-based encryptions (except that m in the term pf ′m is replaced with a
random error polynomial). There are two main reasons why NTRU has larger
public keys and ciphertexts sizes than its RLWE-based counterparts: 1) when
fixing all other parameters, the decryption noise with p = 3 in NTRU is 1.5X
larger than that of its RLWE counterparts where p = 2 is typically used; and 2)
the decryption failure for NTRU is more subtle because the term pf ′m in the
decryption noise usually has the same magnitude as pgr, which may be utilized
by the adversary in a decryption failure attack with a purposefully chosen “bad”
message m. This is why NTRU [11] submitted to NIST PQC standardization
sets its parameters to have no decryption failure.

Our basic idea is to use the plaintext encoding and decoding mechanism
in [4,41] to increase the noise tolerance of NTRU, which basically encodes each
plaintext bit into the most significant bit of multiple coefficients of the message
polynomial, so that a vector of noised coefficients can be used to decode each
plaintext bit in decryption. We note that this mechanism was, to the best of our
knowledge, not used in NTRU and its variants before, because it is not quite
compatible with the central features of NTRU: 1) m is required to be a random
polynomial for the security of the ciphertext c = hr+m (since m is directly used
as the RLWE error); and 2) fm is required to be small for decryption correctness.
We solve the above two technical issues by slightly modifying the key generation
and the plaintext encoding/decoding of the provably IND-CPA secure NTRU
variant [43] (whose security is independent from the message polynomial) with
a small polynomial v = (1 − xn/k), where n/k is the plaintext length and is
fixed to be 256 for our interest.1 Our construction crucially relies on the power
of 2 cyclotomic ring Rq = Zq[X]/(Xn + 1). In particular, v = (1 − xn/k) has a
nice inverse v−1 = q+1

2 (1 + xn/k + · · · + x(k−1)n/k) ∈ Rq, which will serve as our
plaintext encoding polynomial. The public key and ciphertext of our NEV-PKE
has forms of:

h = g/(vf ′ + 1), c = hr + e + v−1m,

where g, f ′, r, e are small polynomials, and m is the plaintext polynomial only
having non-zero binary coefficients in the first 256 coordinates. For decryption,
we first compute u = (vf ′ + 1)c = gr + vf ′e + f ′m + e + v−1m. Since v−1m ∈
Rq essentially copies k = n/256 times the first 256 coefficients of m to obtain
n coefficients, we can use k coefficients in u to decode each plaintext bit in
decryption (if ‖gr + vf ′e + f ′m + e‖∞ ≤ q−1

4 holds with high probability) as

1 We note that a 256-bit session key is sufficient for most real applications, and that
the NIST PQC standard Kyber also only supports a 256-bit plaintext [9].
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in [4,41]. The major reason that we can obtain a reasonably negligible decryption
failure with very small modulus is because: 1) the magnitude of the major noise
term vf ′e in our NEV-PKE is at least

√
2 times smaller than that of using p = 2, 3

or x + 2 in NTRU and its provable version [43]; 2) m has at most 256 non-zero
binary coefficients; and 3) the use of vector decoding will lower the decryption
failure (using a single coefficient) by roughly k times in the exponent.

We clarify that the slight modification of the public key in NEV-PKE will not
require a stronger NTRU assumption because 1) the use of a polynomial v = x+2
was recommended by the authors of NTRU as early as 2000 [25] (note that vf ′+1
is small if f ′ is small) and was investigated in [6,22,23,27,35,43]; 2) by replacing
v = (1−xn/k) with v = p we recover the provably IND-CPA secure NTRU in [43],
and the proof for the public key uniformity in [43, Theorem 3] mainly depends
on the properties of the distributions of g and f ′, which essentially applies to
any invertible v ∈ Rq (even without changing any other parameters); and 3) the
currently concrete security estimation also only cares about the distributions of
g and f ′, since v = (1 − xn/k) (or v = p) is invertible and publicly known which
can be somehow removed in lattice attacks (see Sect. 5.1).

One nice feature of our NEV-PKE is that the magnitude of f ′m is much
smaller than that of gr + vf ′e + e because m only has non-zero binary coeffi-
cients in the first 256 coordinates. This means that our NEV-PKE is more robust
than NTRU to a decryption failure attack with maliciously chosen bad messages
in generating ciphertexts. Experimentally, the best choice for the adversary to
obtain a failure decryption in NEV-PKE is to use a message polynomial with
all ones in the first 256 coordinates, which will only increase the decryption
failure by a factor of 221 and 214 for parameters NEV-512 and NEV-1024, respec-
tively (in contrast, NTRU has a factor more than 2100 for standard parameter
choices [18]), which means that the resulting decryption failure (i.e., 2−117 for
NEV-512 and 2−138 for NEV-1024) is still sufficiently small for a common restric-
tion of at most 264 decryption queries. We note that one can further remove this
dependence on m by using the generic transformation (say, NTRU-C) with a
small price of an extra 32 bytes in ciphertexts in [18].

An Optimization Based on the sspRLWE Assumption. Based on the observation
that in the application of using PKEs as KEMs, the session key is randomly
chosen and not necessarily known in advance, we also provide an optimized
construction NEV-PKE′ which essentially merges the sampling of the encryption
noise and the random session key in a single step: one can roughly think that the
encryption noise is a random secret share of a random session key. Specifically,
the public key and ciphertext of NEV-PKE′ has forms of

h = vg/(vf ′ + 1) = g/(f ′ + v−1), c = hr + e,

where g, f ′, r, e are randomly chosen small polynomials. Note that by setting
v = p, the above construction is essentially the same as the original NTRU
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encryption. For decryption, we first compute u = (f ′ + v−1)c = gr + f ′e + v−1e.
Let v̄ = 1 + xn/k + · · · + x(k−1)n/k, e0 = v̄e mod 2, and 2e1 = v̄e − e0, we have

v−1 =
q + 1

2
v̄, v−1e = e1+

q + 1
2

e0 ∈ Rq, and u = gr+f ′e+e1+
q + 1

2
e0 ∈ Rq.

Let m be a polynomial only having n/k = 256 non-zero coefficients that are equal
to the first 256 coefficients of e0. By the nice property of Rq = Zq[x]/(xn+1) and
the choice of v̄ (and v−1), it is easy to check that e0 is essentially a polynomial
which copies k = n/256 times the first 256 coefficients of m (and thus itself)
to obtain n coefficients. Hence, we can use the vector decoding technique [4,41]
again to recover m from u, and output m as the session key. Clearly, the decryp-
tion noise gr + f ′e + e1 in NEV-PKE′ is much smaller than that of NEV-PKE.

To obtain an IND-CCA secure KEM, we have to convert NEV-PKE′ into
a PKE where m (or equivalently v̄e mod 2) is determined before e. Since v̄e
essentially adds k coefficients (with ± signs) of e to a single coefficient, we can
easily achieve the goal of “inverting v̄e mod 2 to obtain e” by using binomial
noise distribution Bη. Take η = 1 and k = 2 as an example, we can “invert”
a plaintext bit b∗ ∈ {0, 1} to 2 samples from B1 as follows: randomly choose
b1, b2, b3 ← {0, 1}, set b0 = b∗ ⊕b1⊕b2⊕b3, and output e0 = b0−b1, e1 = b2−b3.
It is easy to check that e0 ± e1 mod 2 = b∗, and e0, e1 ∼ B1 if b∗ is random.

One problem is that we do not know how to directly prove the IND-CPA,
or even OW-CPA security of NEV-PKE′ under the RLWE assumption. For this,
we introduce a variant of the RLWE problem, called subset-sum parity RLWE
problem (sspRLWE), which basically says that it is hard to compute v̄e mod 2
given an RLWE tuple (h, hr + e) as input. We note that our sspRLWE can also
be seen as a generalization of the RLWE2 problem in [18], which essentially
asks to compute v̄e mod 2 for v̄ = 1 (or equivalently k = 1). At first glance,
one might think that sspRLWE is hard if its corresponding RLWE is hard.
Unfortunately, even in the special RLWE2 setting, the authors [18] only provide
heuristic arguments for its equivalence to RLWE.

In Sect. 4.3, we show that the sspRLWE problem with discrete Gaussian noise
distribution is polynomially equivalent to the DRLWE problem (with different
Gaussian parameters), which can be extended to the binomial distribution by
a standard argument using Rényi divergence [5]. Our proof is based on a very
simple observation: v̄(2e1 + e0) = v̄e0 mod 2, and one can naturally convert a
DRLWE instance (h, b = hr+e1) to an sspRLWE instance (h′ = 2h, b′ = 2b+e0)
(note that when both e1 and e0 follow discrete Gaussian distributions, so does
2e1 + e0 [39]). Then, if (h, b) is computationally indistinguishable from uniform,
the adversary can obtain no information about v̄e0 mod 2 from (h′, b′). Since
this proof also applies to v̄ = 1, we partially solve the problem of connecting
RLWE2 to RLWE (for sufficiently large parameters). We also provide two con-
crete theorems for basing sspRLWE with k = 1 (namely, RLWE2) and k = 2
on the RLWE problem with binomial noise distribution B1 and uniform binary
noise distribution, respectively. The two proofs are mainly based the fact that
e mod 2 = 0 ⇔ e = 0 for any variable e ∈ {−1, 0, 1}. Note that our parameter set
NEV′-512 exactly corresponds to the case of k = 2. We believe that those proofs
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provide a good confidence to make the reasonable assumption: the concrete hard-
ness of sspRLWE is equal to RLWE with the same parameters. For those who
is unsatisfying with this assumption, we recommend to use NEV-PKE, which is
provably IND-CPA secure under the standard NTRU and RLWE assumptions,
and only has slightly worse decryption failure and performance.

Table 1. Comparison between our NEV-KEMs, NTRU and Kyber in sizes

Schemes |pk| |sk| |C| Dec LWE NIST Improv.

(Bytes) (Bytes) (Bytes) Failure Estimator Security Ratio

Kyber-512 800 1632 768 2−178 140 Level 1 21.56%

NTRU-HPS2048677 930 1234 930 – 170 33.87%

NTRU-HRSS701 1138 1450 1138 – 158 45.96%

Our NEV-512 615 1294 615 2−138 141 –

Our NEV′-512 615 1294 615 2−200 145 –

Kyber-768 1184 2400 1088 2−164 201 Level 3 −8.19%†

NTRU-HPS4096821 1230 1590 1230 – 199 0.08%†

Kyber-1024 1568 3168 1568 2−174 270 Level 5 21.62%

NTRU-HPS40961229 1842 2366 1842 – 296 33.28%

NTRU-HRSS1373 2401 2983 2401 – 300 48.81%

Our NEV-1024 1229 2522 1229 2−152 281 –

Our NEV′-1024 1229 2522 1229 2−200 292 –

1.3 Comparison to the State of the Art

We give a detailed comparison between our KEMs, NTRU and Kyber in Tables 1
and 2. The column “LWE estimator” in Table 1 presents the concrete security
estimates obtained by using the LWE estimator script [1]. The columns “Improv.
Ratio” in Table 1 and “Speedup” in Table 2 are obtained by dividing the total
sizes/timings of the corresponding schemes in an ephemeral key exchange by
that of our NEV-KEM (i.e., NEV-512 and NEV-1024) at the same security levels,
except that we obtain the figures (marked with †) for Kyber768 and NTRU-
HPS4096821 at NIST level 3 security by dividing that of our KEMs at NIST
level 5 security (i.e., NEV-1024). One can see that our NEV-KEM using NEV-1024
has the same public key and ciphertext sizes as that of NTRU-HPS4096821, but
is still 4.10–11.05X faster: because our ring allows (partial) NTT. Compared
to Kyber768, our NEV-KEM using NEV-1024 has size 8.19% larger but is 1.2X
faster: because we do not have to expand a seed to a random matrix.

In Table 3, we compare our KEMs with three recent NTRU variants in sizes,
where the figures in the column “LWE estimator” for schemes based on RLWE2,
RLWR and sspRLWE problems are all obtained by using the assumption that
the concrete hardness of those problems are equal to their corresponding RLWE
problems with the same parameters. In Sect. 7, we will also compare the concrete
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Table 2. Comparison between our NEV-KEMs, NTRU and Kyber in efficiency

Schemes KeyGen Encap Decap KeyGen Encap Decap Speedup

(Ref) (Ref) (Ref) (AVX2) (AVX2) (AVX2) (Ref/AVX2)

Kyber-512 132 334 167 834 195 024 32 996 47 514 34 816 1.67/1.42X

NTRU-HPS2048677 4 957 166 220 554 293 126 320 234 82 991 62 907 18.46/5.74X

NTRU-HRSS701 5 469 959 125 559 309 743 287 524 54 270 66 801 19.92/5.03X

Our NEV-512 95 007 88 131 113 268 21 192 33 694 26 297 –

Our NEV′-512 89 154 83 978 110 463 20 620 30 787 23 841 –

Kyber-768 217 023 263 971 303 945 54 789 72 268 53 822 1.21/1.19X†

NTRU-HPS4096821 6 645 818 251 935 280 318 450 336 96 475 78 522 11.05/4.10X†

Kyber-1024 329 555 377 541 421 837 73 562 97 756 76 454 1.74/1.62X

NTRU-HPS40961229 14 944 617 484 755 654 931 – – – 24.76/-X

NTRU-HRSS1373 18 366 972 313 188 769 187 – – – 29.94/-X

Our NEV-1024 208 045 183 977 257 489 37 636 64 046 50 807 –

Our NEV′-1024 205 719 171 669 251 303 37 805 60 411 45 851 –

Table 3. Comparison between our NEV-KEMs and recent NTRU variants in Size

Schemes |pk| |C| Dec Hardness LWE

(Bytes) (Bytes) Failure Assumption Estimator

NTRU-A576
2593 [18] 864 864 2−150 NTRU + RLWE2

Rq = Zq[x]/(xn − xn/2 + 1)
154

NTRU-A648
2917 [18] 972 972 2−170 171

NTRU-A768
3457 [18] 1152 1152 2−202 200

NTRU-A864
3457 [18] 1296 1296 2−182 225

NTRU-A972
3889 [18] 1458 1458 2−206 252

NTRU-A1152
3457 [18] 1728 1728 2−140 305

NTRU-A1296
3889 [18] 1944 1944 2−158 341

NTTRU-768 [33] 1248 1248 2−1217 NTRU + RLWE
Rq = Zq[x]/(xn − xn/2 + 1)

170

BAT-512 [20] 521 473 2−146 NTRU + RLWR 144

BAT-1024 [20] 1230 1006 2−166 Rq = Zq[x]/(xn + 1) 273

Our NEV-512 615 615 2−138 NTRU + RLWE 141

Our NEV-1024 1229 1229 2−152 Rq = Zq[x]/(xn + 1) 281

Our NEV′-512 615 615 2−200 NTRU + sspRLWE 145

Our NEV′-1024 1229 1229 2−200 Rq = Zq[x]/(xn + 1) 292

performance of our schemes with BAT in Table 5 and NTTRU in Table 6 (we do
not have the source code of NTRU-A, but it was reported having comparable
performance with NTTRU [18, Table 3]). In summary, our KEMs have compara-
ble efficiency as NTRU-A, but have sizes at least 28% more compact. The sizes
of BAT are 19.19% (resp., 9.03%) smaller than our ΠKEM at NIST level 1 (resp.,
5) security (note that BAT uses a strong RLWR with binary secret assumption,
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which allows to compress the ciphertexts almost for free), but our NEV-KEM is
140-973X (resp., 334-2648X) faster than BAT.

Most recently, Micciancio and Schultz [34] provide a framework to capture
the encoding of the message and the compression/quantization of the ciphertext,
which aims at improving the ratio of the size of a plaintext to the size of a LWE-
based ciphertext. As a NTRU-like ciphertext only contains a single ring element
which will be multiplied by the secret key (namely, f) in decryption, one cannot
directly apply their framework to improve the encryption rate of our schemes.

2 Preliminaries

2.1 Notation

Let n be a power of 2, and q a prime. We denote by R the ring R = Z[X]/(Xn+1)
and by Rq the ring Rq = Zq[X]/(Xn + 1). The regular font letters (e.g., a, b)
represent elements in R or Rq (including elements in Z or Zq), and bold lower-
case letters (e.g., a, b) denote vectors of R or Z elements. For a positive integer
� ∈ Z, by [�] we denote the set {0, . . . , � − 1}. By r′ = r mod± q we denote the
unique element in the range [− q−1

2 , q−1
2 ] such that r′ = r mod q. For an element

w ∈ Zq, we write ‖w‖∞ to mean |w mod± q|. The �∞ and �2 norms of a ring
element w ∈ Rq is defined as that of its coefficient vector w ∈ Z

n
q .

By x ← D we denote sampling x according to a distribution D and by U(S)
we denote the uniform distribution over a finite set S. When we write that
sampling a polynomial g ← D from a distribution D over Z, we mean that
sampling each coefficient of g from D individually. We use logb to denote the
logarithm function in base b (e.g., 2 or natural constant e) and log to represent
loge. We say that a function f : N → [0, 1] is negligible, if for every positive c and
all sufficiently large κ it holds that f(κ) < 1/κc. We denote by negl : N → [0, 1]
an (unspecified) negligible function.

Binomial Distribution. The centered binomial distribution Bη with some pos-
itive η ∈ Z is defined as follows:

Bη =

{
η−1∑
i=0

(ai − bi) : (a0, . . . , aη−1, b0, . . . , bη−1) ← {0, 1}2η

}

Ternary Distribution. The ternary distribution Tσ with some positive real

σ ∈ (0, 1/2) denotes the distribution of sampling a variable x ∈ {−1, 0, 1} with
Pr[x = 1] = Pr[x = −1] = σ, and Pr[x = 0] = 1 − 2σ. By this notation, we have
T1/3 = U({−1, 0, 1}) is the uniform ternary distribution, and T1/4 = B1 is the
centered binomial distribution with η = 1.

Gaussian Distribution. The Gaussian function ρs,c(x) over R
m centered at

c ∈ R
m with parameter s > 0 is defined as ρs,c(x) = exp(−π‖x − c‖2/s2). For

lattice Λ ⊆ R
m, let ρs,c(Λ) =

∑
x∈Λ ρs,c(x), and define the discrete Gaussian

distribution over Λ as DΛ,s,c(y) = ρs,c(y)
ρs,c(Λ) , where y ∈ Λ. We omit the subscript

c in the above notations if c = 0.
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Lemma 1 ([7,30]). For any real s, t > 0, c ≥ 1, C = c · exp(1−c2

2 ) < 1, integer
m > 0, and any y ∈ R

m we have that Prx←DZm,s
[‖x‖∞ > t · s] ≤ 2e−πt2 .

Lemma 2 (Special case of [39, Theorem 3.1]). Let α, β, γ > 0 be reals such
that α ≥ ω(

√
log n), γ =

√
α2 + β2 and αβ/γ > 2 · ω(

√
log n). Consider the

following probabilistic experiment:

Choose x2 ← D2Zn,β, then choose x1 ← x2 + DZn,α.

Then, the marginal distribution of x1 is statistically close to DZn,γ .

2.2 Public-Key Encryption

A public-key encryption (PKE) ΠPKE with plaintext space M consists of three
PPT algorithms (KeyGen,Enc,Dec):

– KeyGen(1κ): given a security parameter κ as input, output a pair of public
and secret keys (pk, sk), denoted as (pk, sk) = KeyGen(1κ).

– Enc(pk,M ; r): given the public key pk, a plaintext M ∈ M and a randomness
r (which might be an empty string) as inputs, output a ciphertext C, denoted
as C = Enc(pk,M ; r) or C = Enc(pk,M) in brief.

– Dec(sk, C): given the secret key sk and a ciphertext C as inputs, output a
plaintext M ′ (which might be ⊥), denoted as M ′ = Dec(sk, C).

We say that a PKE scheme ΠPKE = (KeyGen,Enc,Dec) is δ-correct, if for
any M ∈ M, (pk, sk) = KeyGen(1κ) and C = Enc(pk,M), the probability that
Dec(sk, C) �= M is at most δ over the random coins used in KeyGen and Enc. For
our interest, we recall the OW-CPA and IND-CPA security for PKEs from [8],
which is modeled by games between a challenger C and an adversary A in Fig. 1.

Definition 1 (OW-CPA PKE). We say that a PKE scheme ΠPKE is OW-
CPA secure if for any PPT adversary A, its advantage

Advow-cpa
ΠPKE,A(κ) = Pr[M ′ = M∗]

in the OW-CPA security game in Fig. 1 is negligible in security parameter κ.

Definition 2 (IND-CPA PKE). We say that a PKE scheme ΠPKE is IND-
CPA secure if for any PPT adversary A = (A1,A2), its advantage

Advind-cpa
ΠPKE,A(κ) =

∣∣∣∣Pr[μ′ = μ∗] − 1
2

∣∣∣∣
in the IND-CPA security game in Fig. 1 is negligible in security parameter κ.
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Algorithm OW-CPA:

1 (pk, sk) = ΠPKE.KeyGen(1κ);
2 M∗ ;
3 C∗ = ΠPKE.Enc(pk, M∗);
4 M = A(pk, C∗);
5 return M = M∗;

Algorithm IND-CPA:

1 (pk, sk) = ΠPKE.KeyGen(1κ);
2 (M0, M1, st) = A1(pk);
3 μ

M
{0, 1};

4 C∗ = ΠPKE.Enc(pk, Mμ);
5 μ = A2(C∗, st);
6 return μ = μ∗;

Fig. 1. Games for OW-CPA and IND-CPA Security of PKEs

2.3 Key Encapsulation Mechanism

A key encapsulation mechanism (KEM) ΠKEM with session key space K consists
of three PPT algorithms (KeyGen,Encap,Decap):

– KeyGen(1κ): given a security parameter κ as input, output a pair of public
and secret keys (pk, sk), denoted as (pk, sk) = KeyGen(1κ).

– Encap(pk; r): given the public key pk, and a randomness r as inputs, output
a ciphertext C and a session key K ∈ K, denoted as (C,K) = Encap(pk; r),
or (C,K) = Encap(pk) in brief.

– Decap(sk, C): given a secret key sk and a ciphertext C as inputs, output a
key K ′ (which might be a failure symbol ⊥), denoted as K ′ = Decap(sk, C).

We say that a KEM scheme ΠKEM = (KeyGen,Encap,Decap) is δ-correct,
if for any (pk, sk) = KeyGen(1κ) and (C,K) = Encap(pk), the probability that
Decap(sk, C) �= K is at most δ over the random coins used in KeyGen and
Enc. We now recall the chosen-ciphertext security for KEMs from [12], which is
modeled by the game between a challenger C and an adversary A in Fig. 2.

Algorithm IND-CCA:

1 (pk, sk) = ΠKEM.KeyGen(1κ);
2 μ 0, 1};
3 (C∗, K∗

0 ) = ΠKEM.Encap(pk);
4 K∗

1

{

K;
5 μ = AODec(·)(pk, C∗, K∗

μ);
6 return μ = μ∗;

Oracle ODec(C):

1 if C = C∗ then
2 return ⊥;
3 end
4 K = Decap(sk, C);
5 return K;

Fig. 2. Game for IND-CCA Security of KEMs

Definition 3 (IND-CCA KEM). We say that a KEM scheme ΠKEM is IND-
CCA secure if for any PPT adversary A, its advantage

Advind-cca
ΠKEM,A(κ) =

∣∣∣∣Pr[μ′ = μ∗] − 1
2

∣∣∣∣
in the IND-CCA security game in Fig. 2 is negligible in security parameter κ.
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2.4 Hard Problems

Let n be a power of 2, and q a prime. Let Rq = Zq[x]/(xn +1). Let R∗
q denote all

invertible ring elements in Rq. Let χf , χg, χr, χe be four probability distributions
over R. Let v ∈ R∗

q be a publicly known small ring element.

The NTRU Assumption. The computational NTRU problem NTRUn,q,χf ,χg,v

asks an algorithm, given h = g/f ∈ Rq as input, to output f ′, where f ′ ← χf , g ←
χg and f = vf ′ + 1 ∈ R∗

q . The decisional NTRU problem DNTRUn,q,χf ,χg,v asks
an algorithm to distinguish the following two distributions:

{h = g/f | f ′ ← χf , g ← χg, and f = vf ′ + 1 ∈ R∗
q} and {u | u ← Rq}.

The computational (resp., decisional) NTRU assumption says that it is hard for
any PPT algorithms to solve NTRUn,q,χf ,χg,v (resp., DNTRUn,q,χf ,χg,v) with
non-negligible advantage over a random guess.

Remark 1. The above definition generalizes the common NTRU assumption with
v = p ∈ R∗

q for some integer p (e.g., p = 3 in [11,24,25,43]) with a publicly
known ring element v ∈ R∗

q . We note that this generalization is mild up to the
choices of the secret key distribution χf , because NTRUn,q,χf ,χg,v is essentially
equivalent to the standard NTRU problem NTRUn,q,χ′

f ,χg,p with χ′
f = p−1vχf

(or χf = pv−1χ′
f ). In fact, the polynomial v = x + 2 was recommended by

the authors of the original NTRU cryptosystem as early as 2000 [25], and was
investigated in [6,22,23,27,35,43].

Since its introduction [24], the NTRU problem has been studied more than
25 years, and there is no significant algorithmic progress. The decisional NTRU
(DNTRU) assumption over the cyclotomic ring R = Zq[x]/(xn+1), which is also
known as the decisional small polynomial ratio (DSPR) assumption, has been
extensively used and investigated in [10,16,19,31,40,43]. Notably, Stehlé and
Steinfeld [43] showed that the DNTRU assumption indeed holds unconditionally
if χf , χg are discrete Gaussian distributions of standard deviation σ = ω(n

√
q)

(We note that their proof mainly focuses on the special case v = 3, but it
essentially applies to any invertible v ∈ R∗

q). For small secret distributions, a
variant of the NTRU problem over Rq = Zq[x]/(xn + 1) is also shown to be at
least as hard as the worst-case approximate SVP problem on ideal lattices [40].

The RLWE Assumption. The computational RLWE problem RLWEn,q,χr,χe

asks an algorithm, given a polynomial number of samples from the distribution
{(a, b = ar + e) | a ← Rq, e ← χe} as inputs, to output the secret r ∈ Rq, where
r ← χr. The decisional RLWE problem DRLWEn,q,χr,χe

asks an algorithm, given
a polynomial number of samples to distinguish the following two distributions:

{(a, b = ar + e) | a ← Rq, e ← χe} and {(a, u) | a ← Rq, u ← Rq}.

The computational (resp., decisional) RLWE assumption says that it is hard
for any PPT algorithms to solve RLWEn,q,χr,χe

(resp., DRLWEn,q,χr,χe
) with

non-negligible advantage over a random guess.
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As an extension of the LWE problem [42], the RLWE problem was first
considered in [32,44], and was provably as hard as some hard lattice problems
such as the Shortest Vectors Problem (SVP) on ideal lattices.

The Subset-Sum Parity RLWE Assumption. We introduce a variant of the
RLWE problem which we call subset-sum parity RLWE (sspRLWE) problem.
Formally, the sspRLWE problem sspRLWEn,q,χr,χe,v asks an algorithm, given
an RLWE instance (a, b = ar + e) ∈ Rq as input, to output ve mod 2 ∈ R2

for some fixed ring element v ∈ R2. This name comes from the fact that for
R = Z[X]/(xn + 1), the i-th coefficient of ve mod 2 ∈ R2 is essentially equal
to the parity of the subset sum

∑
vj=1 e(i−j) mod n of the coefficient vector e =

(e0, . . . , en−1) of e ∈ Rq. The sspRLWE assumption says that it is hard for any
PPT algorithms to solve sspRLWEn,q,χr,χe,v with non-negligible advantage over
a random guess according to the distribution χ′ = vχe mod 2.

Remark 2. Our sspRLWE problem can be seen as a generalization of the RLWE2
problem [18] from a special choice of v = 1 to a general chosen v ∈ R2. On the
first hand, the sspRLWEn,q,χr,χe,v problem is not harder than the correspond-
ing RLWE problem RLWEn,q,χr,χe

. On the other hand, if the DRLWE problem
DRLWEn,q,χr,χe

is hard, it seems that a RLWE sample (a, b = ar+e) essentially
hides all the information about e, and that the best way for a PPT algorithm to
solve the sspRLWE problem is to make a random guess on ve mod 2 accord-
ing to the distribution χ′ = vχe mod 2. Moreover, the problem of reducing
DRLWEn,q,χr,χe

to sspRLWEn,q,χr,χe,v can be seen as the problem of solving
DRLWEn,q,χr,χe

with modular hints ve mod 2, and an efficient algorithm to
solve sspRLWEn,q,χr,χe,v may directly lead to a new and better algorithm to
solve RLWEn,q,χr,χe

according to the study in [13].
However, we cannot expect a general reduction that bases the hardness

of sspRLWEn,q,χr,χe,v on that of DRLWEn,q,χr,χe
for arbitrary choices of v

and noise distribution χe, because ve mod 2 may loose too much information
about e and may be of little help to solve DRLWEn,q,χr,χe

. Note that the
authors [18] only present heuristic arguments for the equivalence of RLWE and
sspRLWEn,q,χr,χe,v even for the special case v = 1. Moreover, it is easy to show
that DRLWEn,q,χr,χ′

e
for χ′

e = 2χe is equivalent to DRLWEn,q,χr,χe
, but we

always have vχ′
e = 0 mod 2 for the sspRLWEn,q,χr,χ′

e,v problem. For our pur-
pose, we are particularly interested in the sspRLWE problem sspRLWEn,q,χr,χe,v̄

satisfying the following two conditions:

– v̄ = 1 + xn/k + x2n/k + · · · + x(k−1)n/k ∈ R2 for integers n/k = 256;
– χe is the binomial distribution.

Looking ahead, we will use this kind of sspRLWE assumption to construct a
OW-CPA secure encryption NEV-PKE′ with better noise tolerance in Sect. 4.2,
and will show that for appropriate choices of parameters, the sspRLWE prob-
lem is at least as hard as the standard RLWE problem (with slightly different
parameters) in Sect. 4.3 (and thus partially solves the problem of reducing the
RLWE2 problem to the standard RLWE problem in [18]).
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3 NTRU Encryption Using Vector Decoding

In this section, we first give a provably secure IND-CPA PKE scheme called
NEV-PKE from the standard DNTRU and DRLWE assumptions, then we trans-
form it into a IND-CCA KEM called NEV-KEM using the generic Fujisaki-
Okamoto (FO) transformation [21]. We begin by describing our plaintext encod-
ing and decoding algorithms.

3.1 Plaintext Encoding and Decoding

Our way of encoding and decoding plaintext is inspired by the method for RLWE-
based encryption in [41], which essentially encodes a single plaintext bit into
multiple coefficients of a ring element, and is also used in Newhope [2,4] sub-
mitted to NIST PQC competition. We adapted this idea to the NTRU setting.
Formally, let n be a power of 2, and q be a prime. Let R = Z[x]/(xn + 1) and
Rq = Zq[x]/(xn + 1). Let M = {0, 1}� be the plaintext space. Let k be the
largest integer satisfying k|n and n/k ≥ �. Let v = (1 − xn/k) ∈ R∗

q be a ring
element, whose inverse is v−1 = q+1

2 (1+xn/k + · · ·+x(k−1)n/k) ∈ R∗
q . We define

the following two algorithms Pt2poly and Poly2Pt for encoding and decoding:

– Pt2poly(M) : given a plaintext M ∈ {0, 1}� as input, return a polynomial
m = M0 + M1x + · · · + M�−1x

�−1 ∈ Rq, where Mi ∈ {0, 1} is the i-th bit of
M , denoted as m = Pt2poly(M).

– Poly2Pt(w) : given a polynomial w = w0 + w1x + · · · + wn−1x
n−1 ∈ Rq as

input, first compute w̃i = wi − q+1
2 mod± q for all i ∈ [n]. Then, compute

tj =
∑

i=j mod n/k |w̃i| for all j ∈ [�]. Finally, set

Mj =
{

1, if tj < k·(q−1)
4 ;

0, otherwise,

and return the plaintext M = (M0, . . . , M�−1) ∈ {0, 1}�.

We have the following lemma for the above two algorithms.

Lemma 3. Let n, q, k, � ∈ Z and v ∈ R∗
q be defined as above. Then, for any

M ∈ {0, 1}�, m = Pt2poly(M) ∈ Rq and any polynomial e = e0 + e1x + · · · +
en−1x

n−1 ∈ Rq satisfying the following condition⎛
⎝ ∑

i=j mod n/k

∣∣ei mod± q
∣∣
⎞
⎠ <

k · (q − 1)
4

for i ∈ [n] and j ∈ [�] (1)

we always have Poly2Pt(v−1m + e) = M .
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Proof. Let m = Pt2poly(M) ∈ Rq. By the definition of Pt2poly(M), we have that
m only has non-zero binary coefficients at the first � ≤ n/k coordinates. Thus,
multiplying m with v−1 = q+1

2 (1 + xn/k + · · · + x(k−1)n/k) is essentially equal to
first multiply m by q+1

2 and then copy k − 1 times the first n/k coefficients as a
block to the next (k−1)n/k coordinates. In other words, for all u = v−1m ∈ Rq,
we always have ui = Mj

q+1
2 for all i = j mod n/k for i ∈ [n] and j ∈ [�], where

u = u0 + u1x + · · · + un−1x
n−1 and M = (M0, . . . , M�−1). Let w = u + e =

v−1m + e ∈ Rq, it suffices to show that Poly2Pt(w) will always correctly recover
each bit of M . Formally, let w = w0 + w1x + · · · + wn−1x

n−1, we continue the
proof by considering the value of each Mj ∈ {0, 1} for j ∈ [�]:

– Mj = 1: we have that wi = ui + ei = q+1
2 + ei for all i = j mod n/k, and that

w̃i = wi − q+1
2 = ei mod± q. This means that

tj =
∑

i=j mod n/k

|w̃i| =
∑

i=j mod n/k

|ei mod± q| <
k · (q − 1)

4
,

and that Poly2Pt(w) will output Mj = 1;
– Mj = 0: we have that wi = ei for all i = j mod n/k, and that w̃i = wi− q+1

2 =
ei− q+1

2 mod± q. Since we have either ei = |ei mod± q| or ei = q−|ei mod± q|,
it is easy to check that |w̃i| ≥ q−1

2 − |ei mod± q|. This means that

tj =
∑

i=j mod n/k

|w̃i| ≥
∑

i=j mod n/k

(
q − 1

2
− |ei mod± q|

)
>

k · (q − 1)
4

,

and that Poly2Pt(w) will output Mj = 0.

This completes the proof.

Remark 3. There is a tradeoff between the plaintext length � and the decoding
capacity. A smaller k (e.g., k = 1) allows to support longer plaintext length (as we
require � ≤ n/k) but has worse noise tolerance. In particular, if each coefficient
of e is chosen from a distribution such that the probability of |ei mod± q| < q−1

4
for all i ∈ [n] is 1 − p, then the probability that Poly2Pt(v−1m + e) = M is
roughly about 1 − pk. This is why we prefer to choose the largest integer k such
that n/k ≥ �. For the typical application of PKE in encrypting a session key
� = 128 or 256, one could fix k = n/� to obtain the best noise tolerance.

3.2 A Provably Secure IND-CPA NTRU Encryption

Let n, q, k, � ∈ Z and v ∈ R∗
q be defined as above. Let χf , χg, χr, χe be four

probability distributions over R. Our PKE scheme NEV-PKE consists of the
following three algorithms (KeyGen,Enc,Dec):

– NEV-PKE.KeyGen(κ): given the security parameter κ as input, randomly
choose f ′ ← χf and g ← χg such that f = vf ′ + 1 ∈ R∗

q is invertible. Then,
return the public and secret key pair (pk, sk) = (h = g/f, f) ∈ Rq × Rq.
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– NEV-PKE.Enc(pk,M): given the public key pk = h ∈ Rq and a plaintext
M ∈ {0, 1}� as inputs, randomly choose r ← χr, e ← χe, compute m =
Pt2poly(M) ∈ Rq and c = hr + e + v−1m. Return the ciphertext c ∈ Rq.

– NEV-PKE.Dec(sk, c): given the secret key sk = f = vf ′ + 1 ∈ R∗
q and a

ciphertext c ∈ Rq as inputs, compute w = fc, and M ′ = Poly2Pt(w). Finally,
return the message M ′ ∈ {0, 1}�.

Remark 4. Our above PKE scheme can be easily adapted to support other
choices of v ∈ R∗

q , e.g., v = 3, but it seems that v = (1 − xn/k) might be
the optimal one in reducing the decryption failure (see below).

Since we have the following decryption formula

w = fc = gr + (vf ′ + 1)(e + v−1m) = gr + vf ′e + f ′m + e︸ ︷︷ ︸
= ẽ

+v−1m = ẽ + v−1m.

the decryption is correct as long as we set the parameters such that ẽ satisfies the
condition (1) in Lemma 3. It is worth to note the following three nice properties
about our decryption formula, which are very important for our scheme to choose
practical (and small) parameters:

1. Multiplying v = (1−xn/k) will only increase the size of vf ′e from that of f ′e
in a very mild way when taking account of the distributions of f ′ and e: the
standard deviation of vf ′e is about

√
2 times larger than that of f ′e;

2. The size of f ′m is far smaller than that of gr and vf ′e because m only has
non-zero binary coefficients at the first � ≤ n/k coefficients.

3. The contribution of g, r to the size of ẽ is much less than that of (f ′, e), and
we can utilize this asymmetric property to obtain a better balance between
security and decryption failure as in [45].

In Sect. 5.2, we will choose concrete parameters such that the decryption failure
is negligibly small. For security, we have the following theorem.

Theorem 1. Let n, q ∈ Z, v ∈ R∗
q and distributions χf , χg, χr, χe be defined as

above. Then, under the DNTRUn,q,χf ,χg,v and DRLWEn,q,χr,χe
assumption, our

PKE scheme NEV-PKE is provably IND-CPA secure in the standard model.

Proof. We prove Theorem 1 by using a sequence of games G0 ∼ G2, where
G0 is the standard IND-CPA game, and G2 is a random one. The security is
established by showing that G0 and G2 are computationally indistinguishable
in the adversary’s view. Let A = (A1,A2) be an adversary which can break the
IND-CPA security of our PKE with advantage ε. Let Fi be the event that A
correctly guesses μ′ = μ∗ in game i ∈ {0, . . . , 2}. By definition, the adversary’s
advantage Advind-cpa

NEV-PKE,A(κ) in game i is exactly |Pr[Fi] − 1/2|.

Game G0. This game is the real IND-CPA security game defined in Fig. 1. For-
mally, the challenger C works as follows:
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KeyGen. randomly choose f ′ ← χf and g ← χg such that f = vf ′ + 1 ∈ R∗
q ,

compute h = g/f . Then, return the public key pk = h to the adversary A1,
and keep the secret key f private.

Challenge. Upon receiving two challenge plaintexts (M0,M1) ∈ {0, 1}�×{0, 1}�

from the adversary A1, first randomly choose μ∗ ← {0, 1}, r∗ ← χr, e
∗ ← χe,

compute m∗ = Pt2poly(Mμ∗) ∈ Rq and c∗ = hr∗ + e∗ + v−1m∗. Finally,
return the challenge ciphertext c∗ to A2.

Finalize. Upon receiving a guess μ′ ∈ {0, 1} from A2, return 1 if μ′ = μ∗,
otherwise return 0.

By definition, we have the following lemma.

Lemma 4. |Pr[F0] − 1/2| = ε.

Game G1. This game is similar to game G0 except that the challenger C changes
the KeyGen phase as follows:

KeyGen. randomly choose h ← Rq, and return the public key pk = h to the
adversary A1.

Lemma 5. Under the DNTRUn,q,χf ,χg
assumption, we have that Games G1

and G0 are computationally indistinguishable in the adversary’s view. Moreover,
|Pr[F1] − Pr[F0]| ≤ negl(κ).

Proof. This lemma directly follows from that the only difference between Games
G0 and G1 is that C replaces h = g/f in G0 with a random one h ← Rq in G1.

Game G2. This game is similar to game G1 except that the challenger C changes
the Challenge phase as follows:

Challenge. Upon receiving two challenge plaintexts (M0,M1) ∈ {0, 1}�×{0, 1}�

from the adversary A1, first randomly choose μ∗ ← {0, 1} and b ← Rq,
compute m∗ = Pt2poly(Mμ∗) ∈ Rq and c∗ = b + v−1m∗. Finally, return the
challenge ciphertext c∗ to A2.

Lemma 6. Under the DRLWEn,q,χr,χe
assumption, we have that Games G2

and G1 are computationally indistinguishable in the adversary’s view. Moreover,
|Pr[F2] − Pr[F1]| ≤ negl(κ).

Proof. This lemma follows from that the only difference between Games G1 and
G2 is that C replaces b = hr∗ + e∗ in G1 with a random one b ← Rq in G2.

Lemma 7. |Pr[F2] − 1
2 | ≤ negl(κ).

Proof. This lemma directly follows from that b in Game G2 is uniformly random,
and statistically hides the information of m∗ in c∗ = b + v−1m∗.

By Lemmas 4–7, we have that ε = |Pr[F0] − 1
2 | ≤ negl(κ). This completes

the proof of Theorem 1.
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3.3 An IND-CCA NTRU KEM from FO-Transformation

Let NEV-PKE = (KeyGen,Enc,Dec) be defined in the above subsection. Let
H1 : {0, 1}∗ → {0, 1}κ, H2 : {0, 1}�+κ → {0, 1}κ × {0, 1}κ and H3 : {0, 1}∗ →
{0, 1}κ be three hash functions, which will be modeled as random oracles in
the security proof. We now transform NEV-PKE into a IND-CCA secure KEM
NEV-KEM = (KeyGen,Encap,Decap) following the generic FO-transformation.

– NEV-KEM.KeyGen(κ): given the security parameter κ as input, compute
(pk′, sk′) = NEV-PKE.KeyGen(1κ) and randomly choose s ← {0, 1}κ. Then,
return the public key pk = pk′, and secret key sk = (sk′, pk,H1(pk), s).

– NEV-KEM.Encap(pk,M): given the public key pk as input, randomly choose
M ← {0, 1}�, and compute

(K̄, ρ) = H2(M,H1(pk)), c = NEV-PKE.Enc(pk,M ; ρ) and K = H3(K̄, c).

Then, return the ciphertext and session key pair (c,K).
– NEV-KEM.Decap(sk, c): given the secret key sk = (sk′, pk,H1(pk), s) and

a ciphertext c as inputs, compute M ′ = NEV-PKE.Dec(sk′, c), (K̄ ′, ρ′) =
H2(M ′,H1(pk)) and c′ = NEV-PKE.Enc(pk,M ′, ρ′). If c′ = c, return K =
H3(K̄ ′, c), otherwise, return K = H3(s, c).

Since NEV-KEM is obtained by a standard application of the FO transforma-
tion (with implicit rejection) to NEV-PKE, the correctness of NEV-KEM directly
follows from that of NEV-PKE. Moreover, we have the following security theorem
for NEV-KEM according to the studies in [15,18,26,28].

Theorem 2. Let n, q ∈ Z, v ∈ R∗
q and distributions χf , χg, χr, χe be defined as

in Theorem 1. Then, under the DNTRUn,q,χf ,χg,v and DRLWEn,q,χr,χe
assump-

tion, our KEM scheme NEV-KEM is provably IND-CCA secure in the (quantum)
random oracle model.

4 An Optimized NTRU Encryption from sspRLWE

Since in the typical application of using PKEs as KEMs, the session key is ran-
domly chosen and not necessarily known in advance, one might wonder if we can
somehow simplify the construction of NEV-PKE based on the assumption that
the plaintext is random. In this section, we give an optimized NTRU encryption
called NEV-PKE′, which essentially merges the sampling of the noise and the
plaintext in a single step: one can roughly think that the noise is the output of
a random secret share algorithm with a random plaintext as input.

4.1 Randomized Plaintext Encoding and Decoding

Let n be a power of 2, and q be a prime. Let R = Z[x]/(xn + 1) and Rq =
Zq[x]/(xn+1). Let M = {0, 1}n/k be the plaintext space. Let v = (1−xn/k) ∈ R∗

q

be a ring element, whose inverse is v−1 = q+1
2 (1 + xn/k + · · · + x(k−1)n/k) ∈ R∗

q .
Let Bη be the binomial distribution with parameter η ∈ Z. We define a pair of
encoding and decoding algorithm (Pt2noise,Noise2Pt) as follows:
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– Pt2noise(M,η) : given a plaintext M ∈ {0, 1}n/k and an integer η as inputs,
first randomly choose s ← {0, 1}2nη−n/k, and parse s = (s0, . . . , s2kη−2) as
(2kη−1) blocks of n/k bits (i.e., si ∈ {0, 1}n/k for all i ∈ [2kη−1]). Then, set
s2kη−1 = M⊕(⊕2kη−2

i=0 si) ∈ {0, 1}n/k, arrange the bit string (s0, . . . , s2kη−1) ∈
{0, 1}2nη as a bit array with 2η rows and n columns, and use the 2η bits
in the i-th column as the randomness to sample the i-th coefficient of a
polynomial m ∈ Rq from Bη, as depicted in Fig. 3. Finally, return m =
m0 + m1x + · · · + mn−1x

n−1 ∈ Rq, where

min/k+j =
η−1∑
t=0

(s2iη+t,j − s2iη+η+t,j) for i ∈ [k], j ∈ [n/k].

Fig. 3. The bit array for randomized encoding of a plaintext

– Noise2Pt(w) : given a ring element w ∈ Rq as input, compute and return
M = Poly2Pt(w).

We have the following lemma for the above two algorithms.

Lemma 8. Let n, q, k, η ∈ Z and v ∈ R∗
q be defined as above. If M is uniformly

chosen from {0, 1}n/k, then the coefficient distribution of m = Pt2noise(M,η)
is identical to the binomial distribution Bη. Moreover, if kη < q

2 , then for any
m = Pt2noise(M,η) and any polynomial e = e0 + e1x + · · · + en−1x

n−1 ∈ Rq

satisfying the following condition⎛
⎝ ∑

i=j mod n/k

∣∣ei mod± q
∣∣
⎞
⎠ <

k · (q − 1)
4

− k
kη + 1

2
for i ∈ [n] and j ∈ [n/k]

(2)
we always have Noise2Pt(v−1m + e) = M .

Proof. The first claim directly follows from the fact that (s0, . . . , s2kη−2) are
uniformly chosen from {0, 1}2nη−n/k, and given (s0, . . . , s2kη−2), s2kη−1 is also
uniformly distributed over {0, 1}n/k. Let m̄ = Pt2poly(M). By Lemma 3, it
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suffices to show that v−1m = v−1m̄ + e′ ∈ Rq for some ‖e′‖∞ ≤ kη+1
2 . Formally,

let v̄ = (1 + xn/k + · · · + x(k−1)n/k), and u = u0 + u1x + · · · + un−1x
n−1 = v̄m,

we have that uin/k+j =
∑

t≤i mtn/k+j −
∑k−1

t>i mtn/k+j for all i ∈ [k], j ∈ [n/k].
By the assumption that kη < q

2 , we have that uin/k+j ∈ [− q−1
2 , q−1

2 ] for all
i ∈ [k], j ∈ [n/k]. Moreover, using a routine calculation one can check that
uin/k+j =

∑k−1
t=0 mtn/k+j = Mj mod 2 for all i ∈ [k], j ∈ [n/k] by the definition

of m, and that there exists a polynomial e′ such that u = 2e′ + v̄m̄ and ‖e′‖∞ ≤
kη+1

2 by the definition of m̄. We immediately have v−1m = v−1m̄ + e′ using the
fact that v−1 = q+1

2 v̄. This completes the proof.

Remark 5. Since v−1m + e = v−1m̄ + e + e′, the condition (2) in Lemma 8 can
actually be relaxed to the following condition:⎛

⎝ ∑
i=j mod n/k

∣∣ei + e′
i mod± q

∣∣
⎞
⎠ <

k · (q − 1)
4

for i ∈ [n] and j ∈ [n/k]. (3)

4.2 A OW-CPA Secure NTRU Encryption from sspRLWE

Let n, q, k, η ∈ Z and v ∈ R∗
q be defined as above. Let χf , χg, χr be three

distributions over R. We now give our PKE scheme NEV-PKE′, which consists
of the following three algorithms (KeyGen,Enc,Dec):

– NEV-PKE′.KeyGen(κ): given the security parameter κ as inputs, randomly
choose f ′ ← χf and g ← χg such that f = f ′ + v−1 ∈ R∗

q is invertible. Then,
return the public key and secret key pair (pk, sk) = (h = g/f, f) ∈ Rq × Rq.

– NEV-PKE′.Enc(pk,M): given the public key pk = h ∈ Rq and a plaintext
M ∈ {0, 1}n/k as inputs, sample r ← χr and m ← Pt2noise(M,η) ∈ Rq.
Then, compute and return the ciphertext c = hr + m.

– NEV-PKE′.Dec(sk, C): given the secret key sk = f = f ′ + v−1 ∈ R∗
q and a

ciphertext c ∈ Rq as inputs, compute u = fc, and M ′ = Noise2Pt(u). Finally,
return the plaintext M ′ ∈ {0, 1}n/k.

Remark 6. Note that if one wants to use NEV-PKE′ as a passively secure KEM,
the encryption algorithm can be further simplified to directly sample a noise m
from the binomial distribution Bη, and then derive a pre-session key K̄ from the
first n/k coefficients of v̄m mod 2. By Lemma 8, this is actually equivalent to first
randomly choose a prekey K̄ ← {0, 1}n/k and then compute m = Pt2noise(K̄).
We prefer to describe it as a PKE scheme because it supports the generic FO
transformation in Sect. 3.3 to obtain an IND-CCA secure KEM.

Since we have the following decryption formula

w = fc = gr + (f ′ + v−1)m = gr + f ′m︸ ︷︷ ︸
= ẽ

+v−1m = ẽ + v−1m.

the decryption is correct as long as ẽ satisfies the condition (2) in Lemma 8.
We will choose concrete parameters such that the decryption failure is negligibly
small in Sect. 5.2. For security, we have the following theorem.
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Theorem 3. Let n, q, k, η ∈ Z and v = 1−xn/k, v̄ = (1+xn/k+· · ·+x(k−1)n/k) ∈
Rq be defined as above. Let χf , χg, χr be three probability distributions over
Rq. Then, under the DNTRUn,q,χf ,χg,v and sspRLWEn,q,χr,Bη,v̄ assumption,
the above PKE scheme NEV-PKE′ is provably OW-CPA secure in the standard
model.

This proof is very similar to that of Theorem 1, we omit the details. By applying
the same FO transformation in Sect. 3.3 to NEV-PKE′, we can obtain an IND-
CCA secure KEM NEV-KEM′ in the (quantum) random oracle model.

4.3 On the Hardness of the SspRLWE Problem

In this subsection, we provide more evidences on the hardness of the problem
sspRLWEn,q,χr,Bη,v̄ for binomial distribution Bη and v̄ = (1 + xn/k + · · · +
x(k−1)n/k) ∈ R2. Specifically, we will first show that for discrete Gaussian noise
distributions, the sspRLWEn,q,χr,DZn,γ ,v̄ problem is at least as hard as its stan-
dard decisional RLWE problem DRLWEn,q,χr,DZn,β

for sufficiently large param-
eters γ > β, which can be extended to binomial distributions (with sufficiently
large η) by a standard argument using Rényi divergence [5]. We will also prove
two theorems for special cases of sspRLWEn,q,χr,Bη,v̄, which apply to η that
is as small as 1. Formally, we have that following three theorems. A high-level
intuition of the proofs for the theorems is already given in Sect. 1.2.

Theorem 4. Let n, q, k, χr and v̄ be defined as above. Let α, β, γ be three pos-
itive reals satisfying α ≥ ω(

√
log n), γ =

√
α2 + 4β2, 2αβ/γ ≥

√
2 · ω(

√
log n)

and γ
√

n < q/2. Let DZn,β ,DZn,γ be two discrete Gaussian distributions with
parameter β and γ, respectively. If there is a PPT algorithm A solving the
sspRLWEn,q,χr,DZn,γ ,v̄ problem (with probability negligibly close to 1), then there
is another PPT algorithm B solving the DRLWEn,q,χr,DZn,β

problem.

Proof. It is sufficient to give the description of B. Formally, given a DRLWE
tuple (a, b) ∈ Rq × Rq as input, B first randomly chooses a polynomial e′ ∈ Rq

from the distribution DZn,α, and sets (a′, b′) = (2a, 2b + e′) ∈ Rq × Rq. Then,
it runs algorithm A with input (a′, b′), and obtains w ∈ R2 from A. Finally, B
returns 1 if w = v̄e′ mod 2, otherwise returns 0.

We now analyze the behavior of algorithm B. First, if (a, b = ar + e) is
a real DRLWEn,q,χr,DZn,β

tuple, then we have that the coefficients of e are
chosen from DZn,β , which means that the coefficient distribution of 2e fol-
lows the distribution of D2Zn,2β . By Lemma 2, we have that the distribution
of ê = 2e + e′ is statistically close to DZn,γ . Since γ

√
n < q/2, we have that

‖ê‖∞ < q/2 with probability negligibly close to 1 by Lemma 1, which means that
ê mod q = ê holds with probability negligibly close to 1. Thus, the distribution of
(a′ = 2a, b′ = 2ar+ê) ∈ Rq×Rq is statistically close to an sspRLWEn,q,χr,DZn,γ ,v̄

tuple. Using the fact that w = v̄ê = v̄e′ mod 2, we have that B will return 1 with
probability negligibly close to 1. Second, if (a, b) is randomly chosen from Rq×Rq,
we have that (a′ = 2a, b′ = 2b+e′) is also randomly distributed over Rq×Rq. This
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means that the probability for any A to output w ∈ R2 such that w = v̄e′ mod 2
is negligible in n/k by our choice of e′ ← DZn,α with α ≥ ω(

√
log n). In all, we

have shown that B is a valid distinguisher for DRLWEn,q,χr,DZn,β
problem. This

completes the proof.

Remark 7. As commonly seen in lattice-based cryptography, Theorem 4 does
not provide concrete guarantee for practical parameters with typically small η.
In the following, we show that for any η ≥ 1, the sspRLWEn,q,χr,Bη,v̄ problem
for k = 1 (resp., k = 2) is at least as hard as the standard RLWEn,q,χr,χe

problem with binomial distribution χe = B1 (resp., uniform binary distribution
χe = U(R2)), where the case k = 2 essentially corresponds to our concrete
parameter set NEV′-512.

Theorem 5. Let n, q, k, χr, η, v̄ be defined as above, and η < q
2 . If there is a

PPT algorithm A solving the sspRLWEn,q,χr,Bη,v̄ problem for k = 1 (with prob-
ability negligibly close to 1), then there is another PPT algorithm B solving the
RLWEn,q,χr,B1 problem.

Proof. We now give the description of B. Formally, given an RLWEn,q,χr,B1

instance (a, b = ar + e) as input, B first randomly chooses a polynomial e′ ∈ Rq

with coefficients sampling from the distribution Bη−1, and sets b′ = b + e′ ∈ Rq.
Since η ≤ q−1

2 , it is easy to check that the coefficients of ê = e+e′ mod q = e+e′

follows the distribution Bη, and that (a, b′ = ar + ê) is an sspRLWEn,q,χr,Bη,v̄

instance. Then, it runs algorithm A with input (a, b′), which is expected to return
v̄ê mod 2 in polynomial time. Next, B computes v̄ê + v̄e′ = v̄e mod 2. Note that
v̄ = 1 for k = 1. Let u = v̄e = e, where u = u0 + u1 + · · · + un−1x

n−1 and
e = e0 + e1x + · · · + en−1x

n−1. Since ei ∈ {−1, 0, 1}, we have that ui mod 2 = 0
if and only if ei = 0. Thus, B can expect to obtain n/2 equations on the n
variables consisting of the coefficients of the secret r from (a, b = ar + e). Let
d be the order of q modulo 2n, we have that xn + 1 modulo q factors into
n/d irreducible polynomials of the same degree d, the probability that a random
a ← Rq is invertible is (1− 1

qd )n/d ≥ 1/2. Thus, with probability greater than 1/2
we have that those obtained equations are linearly independent. By repeating
the above process using fresh RLWEn,q,χr,B1 instances at most a polynomial
number of times, B can collect n linearly independent equations to recover all
the n coefficients of r by using Gaussian elimination. In all, B can solve the
RLWEn,q,χr,B1 problem in polynomial time. This completes the proof.

Theorem 6. Let n, q, k, χr, η, v̄ be defined as above, and η < q
2 . If there is a

PPT algorithm A solving the sspRLWEn,q,χr,Bη,v̄ problem for k = 2 (with prob-
ability negligibly close to 1), then there is another PPT algorithm B solving the
RLWEn,q,χr,U(R2) problem.

Proof. In order to prove Theorem 6, it suffices to prove the following two claims:

Claim 1. sspRLWEn,q,χr,U(R2),v̄ ⇒ sspRLWEn,q,χr,Bη,v̄: If there is a PPT algo-
rithm A solving sspRLWEn,q,χr,Bη,v̄, then there is another PPT algorithm
Ā solving sspRLWEn,q,χr,U(R2),v̄.
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Claim 2. RLWEn,q,χr,U(R2) ⇒ sspRLWEn,q,χr,U(R2),v̄: If there is a PPT algo-
rithm Ā solving sspRLWEn,q,χr,U(R2),v̄, then there is another PPT algorithm
B solving RLWEn,q,χr,U(R2).

For Claim 1, we construct an algorithm Ā as follows. Formally, given an
sspRLWEn,q,χr,U(R2),v̄ instance (a, b = ar + e) ∈ Rq × Rq as input, Ā first
randomly chooses a polynomial e′ ∈ Rq with coefficients sampling from the
following distribution

B′
η =

{
η−1∑
i=0

(ai − bi) : (a0, . . . , aη−2, b0, . . . , bη−1) ← {0, 1}2η−1

}

in time O(nη) and computes (a, b′ = b+ e′) = as+(e+ e′) ∈ Rq. Since η ≤ q−1
2 ,

it is easy to check that the coefficients of ê = e + e′ mod q = e + e′ follows
the distribution Bη, and that (a, b′) is an sspRLWEn,q,χr,Bη,v̄ instance. Then,
it runs algorithm A with input (a, b′), which is expected to return v̄ê mod 2 in
polynomial time. Finally, it returns v̄ê+ v̄e′ = v̄e mod 2. This shows that Ā can
output v̄e mod 2 in polynomial time. This completes the proof of Claim 1.

We now define an algorithm B for Claim 2 as follows. Formally, given an
RLWEn,q,χr,U(R2) instance (a, b = as + e) as input, it first runs algorithm Ā
with input (a, b) , which is expected to return v̄e mod 2 in polynomial time.
Note that v̄ = 1 + x

n
2 for k = 2. Let u = v̄e, we have

uj =
{

ej − en
2 +j ∈ {−1, 0, 1}, if j ∈ [n

2 ]
ej + ej− n

2
∈ {0, 1, 2}, otherwise,

where u = u0 + u1 + · · · + un−1x
n−1 and e = e0 + e1x + · · · + en−1x

n−1 ∈ R2.
Thus, we have that uj mod 2 = 0 if and only if uj = 0 for all j ∈ [n

2 ] and that
uj mod 2 = 1 if and only if uj = 1 for all j ≥ n

2 . Thus, B can expect to obtain
n/2 equations on the n variables consisting of the coefficients of secret s from
(v̄a, v̄b = v̄as+v̄e). Let d be the order of q modulo 2n, we have that xn+1 modulo
q factors into n/d irreducible polynomials of the same degree d, the probability
that a random a ← Rq is invertible is (1 − 1

qd )n/d ≥ 1/2. Thus, with probability
greater than 1/2 we have that those obtained equations are linearly independent.
By repeating the above process using fresh RLWEn,q,χr,U(R2) instances a polyno-
mial number of times, B can collect n linearly independent equations to recover
all the n coefficients of s by using Gaussian elimination. In all, B can solve the
RLWEn,q,χr,U(R2) problem in polynomial time. This completes the proof.

5 Concrete Attacks and Parameters

As discussed in [18], the most efficient known attacks against the NTRU and
RLWE problems are lattice attacks. In this section, we mainly show how to
apply lattice attacks to our (variants of) NTRU and RLWE problems, and take
account of other relevant attacks by directly using the LWE estimator script [1]
to obtain the concrete security estimates for our recommended parameters.
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5.1 Lattice Attacks Against NTRU and (ssp)RLWE

In general, the lattice attacks against NTRU and RLWE problems work by
defining the same set

L⊥
c (h) = {(u,w) ∈ Rq = Z[x]/(xn + 1) : hu + w = c ∈ Rq}.

The NTRU problem correspond to the special case c = 0, and L⊥
0 (h) essentially

forms a lattice. To solve the decisional NTRU problem, namely, to distinguish
the quotient h = g/(vf ′ + 1) ∈ Rq, where f ′, g have small coefficients noticeably
less than

√
q/3, from a uniformly-random h ∈ Rq, an algorithm can try to find

a good approximation to the shortest vector in L⊥
0 (h) [18]. This is because the

vector (f = vf ′ + 1,−g) will be a short vector significantly less than
√

nq for
h = g/f (recall that v = 1−xn/k is small in our case), while a vector of �2-norm
less than Ω(

√
nq) is very unlikely to exist in L⊥

0 (h) for a random h ∈ Rq.
For RLWE problems, we have c �= 0 for (h, c = hr + e), and L⊥

c (h) is a shift
of the lattice L⊥

0 (h). Finding the shortest vector in it is known as the Bounded
Distance Decoding (BDD) problem, which in turn can be solved by finding the
short vector (e, r, 1) ∈ Z

2n+1 in an embedding lattice with dimension 2n+1 and
basis

B =

⎛
⎝ qIn Rot(h) c

0 In 0
0 0 1

⎞
⎠ ∈ Z

(2n+1)×(2n+1),

where Rot(h) ∈ Z
n
q ×Z

n
q is the anti-circular matrix corresponding ring multiplica-

tion in Rq, and c ∈ Z
n
q is the coefficient vector of c ∈ Rq in column form. For the

same secret and noise distributions, the complexity of attacking the NTRU and
RLWE problems are typically identical for modulus q = O(n). Since for RLWE
problems we can directly use the LWE estimator to obtain concrete security esti-
mates, it suffices to how to use the LWE estimator to obtain concrete security
estimates for our NTRU and sspRLWE problems.

On the DNTRUn,q,χf ,χg,v Problem with v = 1 − xn/k over Rq = Z[x]/(xn + 1).
First, as discussed in Sect. 2.4, for the setting that v = 1−xn/k ∈ Rq is invertible,
our NTRU problem DNTRUn,q,χf ,χg,v is essentially equivalent to the standard
NTRU problem (with v = 3) up to the choices of the secret key distribution.
Second, the �2-norm of vf ′ + 1 is only roughly about

√
2 times larger than that

of f ′, which is small as long as f ′ is chosen from a small distribution. Thus, one
can either solve the NTRU problem by taking f = vf ′ + 1 as whole just as in
the standard lattice attacks against the NTRU problem with secret distributions
(χ′

f = vχf , χg) in lattice L⊥
0 (h) for h = g/f , or solve the BDD problem on the

shifted lattice L⊥
h (−vh) by treating it as an RLWE instance (vh, h = −vhf ′ +g)

with secret distribution χf and noise distribution χg. We use the latter for
concrete estimates for our NTRU problems in the LWE estimator because the
norm of the short vector (g, f ′, 1) in the latter case (which is independent from
v) is smaller than that of (f = vf ′ + 1,−g) in the former case.
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Table 4. Practical Parameters Sets for Our KEM Schemes

Parameters (n, q) Key Dist Enc Dist Size Dec BKZ Sizes LWE Estimator

(χf , χg) (χr, χe) (PK, CT) Failure (SK, CT) (SK, CT)

NEV-512 (512, 769) (B1, B1) (B1, T1/6) (615,615) 2−138 (426, 413) (145, 141)

NEV′-512 (512, 769) (B1, B1) (B1, B1) (615,615) 2−200 (426, 426) (145, 145)

NEV-1024 (1024, 769) (B1, B1) (B1, T1/6) (1229,1229) 2−152 (953, 929) (292, 281)

NEV′-1024 (1024, 769) (B1, B1) (B1, B1) (1229,1229) 2−200 (953, 953) (292, 292)

On the sspRLWEn,q,χr,Bη,v Problem over Rq = Z[x]/(xn + 1). In Sect. 4.3, we
have shown that the sspRLWEn,q,χr,Bη,v problem is polynomially equivalent
to the standard RLWE problem (with different parameters). Although those
reductions are too loose to estimate concrete estimates on practical parameters,
we believe it is very reasonable to assume that the concrete hardness of the
sspRLWEn,q,χr,Bη,v problem with v = 1+xn/k+· · ·+x(k−1)n/k is the same as that
of RLWEn,q,χr,Bη

. Note that similar assumption for RLWE2 is also made in [18].
Thus, we estimate the concrete hardness of the sspRLWEn,q,χr,Bη,v problem by
treating it as a standard RLWE problem RLWEn,q,χr,Bη

in the LWE estimator.

5.2 Recommended Parameters

In Table 4, we present two parameter sets NEV-512 and NEV-1024 for NEV-PKE
and NEV-KEM, along with two parameter sets NEV′-512 and NEV′-1024 for
NEV-PKE′ and NEV-KEM′, aiming at NIST levels 1 and 5 security, respectively.
The fifth column gives the corresponding sizes of public key (PK) and ciphertext
(CT). The sixth column presents the decryption failure probability, which is com-
puted by using a python script adapted from the python script for Kyber [9].
Note that we make the same choice as Kyber [9] to set our decryption failure
probabilities < 2−128 with some margin so that it is infeasible to obtain a single
decryption failure using at most 264 decryption queries (see the directional failure
boosting attacks [14]). The seventh column gives the BKZ blocksizes needed to
break the security of the secret key (SK) and ciphertext (CT) for each parameter
set in the core-SVP model [3]. The last column presents concrete security esti-
mates obtained by running the LWE estimator [1]. As known schemes using the
power of 2 cyclotomic ring for both security and performance considerations such
as Newhope [3], we cannot find a proper parameter set for NIST level 3 security.
Fortunately, as shown in Tables 1 and 2, the performance of our schemes using the
parameter sets at NIST level 5 security is already comparable to that of known
schemes using parameter sets aiming at NIST level 3 security. For example, in the
application of ephemeral key exchanges, our NEV-KEM using the parameter set
NEV-1024 has the same size as that of NTRU4096821 and is 4.10–11.05X faster.
Compared to Kyber768, our NEV-KEM using NEV-1024 has size about 8.19%
larger but is 1.2X faster. Thus, we do not think this security gaps for our parame-
ter sets will be a real problem for practical use: one can simply use NEV-1024 (or
NEV′-1024) for applications requiring NIST level 3 security.
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6 Implementations

We made two implementations of our schemes: one uses the reference C lan-
guage, and the other is (partially) optimized by using AVX2 instructions. In
the following, we provide some implementation details that heavily affect the
performance of our schemes.

6.1 Partial NTT Multiplication

One costly arithmetic operation in our schemes is to do polynomial multiplication
in Rq. Since the use of small modulus q = 769, we cannot apply full NTT
multiplications in Rq = Z[x]/(xn+1) for both n = 512 and 1024. But because q−
1 mod 256 = 1, we can still speedup polynomial multiplications by first splitting
the polynomials in Rq to a set of sub-polynomials in R′

q = Zq[y]/(y128 + 1)
and then realize a single polynomial multiplication in Rq by using a number of
polynomial multiplications in R′

q = Zq[y]/(y128 + 1), which in turn can be done
efficiently using full NTT multiplications. Taking n = 512 as an example, by
letting y = x4 we can split any two polynomials a, b ∈ Rq = Z[x]/(x512 + 1) as
follows:

a(x) = a0(y) + xa1(y) + x2a2(y) + x3a3(y)
b(x) = b0(y) + xb1(y) + x2b2(y) + x3b3(y),

where all the ai’s and bi’s are polynomials in R′
q = Zq[y]/(y128 + 1). Since

multiplications between ai’s and bj ’s can be done using full NTT multiplications
in R′

q, we can realize the multiplication between a(x) and b(x) by roughly using
16 NTT multiplications in R′

q = Zq[y]/(y128 + 1) as follows:

a(x) · b(x) = (a0b0 + y(a1b3 + a2b2 + a3b1))
+x(a0b1 + a1b0 + y(a2b3 + a3b2))
+x2(a0b2 + a1b1 + a2b0 + ya3b3)
+x3(a0b3 + a1b2 + a2b1 + a3b0).

We can further save 6 NTT multiplications in R′
q by using the Karatsuba method

as observed in [46]. For example, to compute the term a1b3 + a3b1 in the first
row, we only need a single NTT multiplication by computing a1b3 + a3b1 =
(a1 + a3)(b1 + b3) − a1b1 − a3b3 given as inputs a1b1 and a3b3, which will be
computed in the third row.

To facilitate the above polynomial multiplications, we directly represent each
polynomial in Rq = Z[x]/(xn+1) by simply concatenating the coefficient vectors
of its split sub-polynomials, which are almost for free when all the coefficients are
identically chosen from the same distribution. Moreover, we will keep the split
sub-polynomials for the public key, secret key and ciphertext in their NTT forms
to save some forward and inverse NTT operations in R′

q = Zq[y]/(y128 + 1).

6.2 Partial NTT Inversion

The other costly arithmetic operation is to do polynomial inversion in Rq to
generate the public key. Note that if we can do full NTT multiplications in Rq,
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this operation can be simply done by using n inversions in Zq using the NTT
representation. Fortunately, we can still speedup this operation by making full
use of partial NTT multiplications given above as shown in [20]. Specifically,
given a polynomial f ∈ Rq = Zq[x]/(xn + 1), by letting z = x2 we can first
use Karatsuba with an even/odd split to obtain two sub-polynomials in R̂q =
Zq[z]/(zn/2 + 1):

f(x) = f0(z) + xf1(z).

Then, the inversion of f in Rq can be done using one polynomial multiplication
in Rq and one polynomial inversion in R̂q because

1
f(x)

=
f0(z) − xf1(z)

(f0(z) + xf1(z))(f0(z) − xf1(z))
=

f0(z) − xf1(z)
f2
0 (z) − zf2

1 (z)
.

By repeating this process, we can finally reduce the inversion of f to a few
polynomial multiplications in Rq and a single polynomial inversion in R′

q =
Zq[y]/(y128 + 1), which in turn can be done using 128 inversions in Zq. Since
q = 769 is very small, we can simply precompute the inversion table for all the
elements in Zq. This is main reason why the key generation algorithm is much
faster than NTRU (and some of its variants not using NTT).

6.3 Symmetric Primitives

In our default implementations, we use SHA3 and SHAKE256 as the hash func-
tion and the pseudorandom generator (PRG), respectively, which are the same
as that of NTRU and Kyber in the NIST PQC submissions. Since the arithmetic
operation of our KEMs is so fast that the use of SHA3 and SHAKE256 become
the main bottleneck of our schemes: we actually observe a 1.82–2.27X speedup in
experiment by replacing SHA3 and SHAKE256 with BLAKE2 and AES256CTR
in the AVX2 implementation. For a fair comparison, we will use the same hash
and PRG functions as that of BAT and NTTRU in the comparison with them
(see Tables 5 and 6): BLAKE2 is used as both the hash and PRG functions in
the open source code of BAT [20]; SHA3 and AES256CTR are used as the hash
and PRG functions respectively in the open source code of NTTRU [33].

6.4 Multi-target Countermeasure

In the description of our IND-CCA transform in Sect. 3.3, we follow the strategy
of Kyber to hash the public key into a prekey K̄ and the random coins ρ,
aiming at improving the security against multi-target attacks. We also hash
the prekey together with the ciphertext into the final session key to make sure
that our KEMs are contributory. The above two countermeasures are applied
in our default implementations and in efficiency comparison with NTRU and
Kyber (see Table 2). Since the performance of symmetric primitives is a major
bottleneck of our schemes, those countermeasures will significantly reduce the
performance: we observe a 2.25–2.54X speedup in experiment by removing the
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two countermeasures in the AVX2 implementation using SHA3 and SHAKE256
as the hash function and the pseudorandom generator (PRG), respectively. Since
both BAT [20] and NTTRU [33] do not apply those countermeasures, we turned
off the countermeasures in the comparison with them (see Tables 5 and 6).

6.5 Compressed Representation of Rq Elements

We apply the strategy of [20] to store an element in Rq in the compressed form.
In particular, we encode coefficients by groups of 5 in 48 bits: each coefficient is
split into a low 3 bits and a high 7 bits (value 0 to 96, inclusive); 5 “high bits”
are encoded using 33 bits in base 97. For n = 512 (resp., 1024), this will lead to
a reduction of 25 (resp., 51) bytes in storing a polynomial in Rq. The encoding
can be done very efficiently using about 300 (resp., 600) CPU cycles, but the
decoding is really costly, and will take about 1200 (resp., 2400) CPU cycles,
which is about 3.1X (resp., 1.6X) slower than a polynomial multiplication in the
same dimension. Thus, for applications that the few reduction in size is not very
crucial, we highly recommend to remove this encoding/decoding optimization,
and to obtain significantly speedup in efficiency especially when fast symmetric
primitives are used (see Table 6).

7 Benchmarks and Comparisons

We run the codes of our schemes and several related works on the same 64-
bit CentOS Linux 7.6 system (equipped with an Intel Core-i7 4790 3.6 GHz
CPU and 4 GB memory), and present the average number of CPU cycles (over
100000 times) for running the corresponding algorithms in Tables 2, 5 and 6. All
the codes are complied using the same optimization flags “-O3 -march=native
-mtune=native -fomit-frame-pointer”.

In Table 2, we give an efficiency comparison between our NEV-KEMs, NTRU
and Kyber. The timings for our KEMs are obtained using our default implemen-
tations. In particular, we use SHA3 and SHAKE256 as the hash and PRG func-
tions, which are the same as that in the code of Kyber and NTRU, submitted
to the NIST PQC standardizations. We also use the multi-target countermea-
sures to hash the public key to generate the prekey and the random coins, and
hash the ciphertext to generate the final session key. From Table 2, one can see
that our scheme NEV-KEM (which is based on NEV-PKE from the standard
NTRU and RLWE assumption) is 5.03–29.94X faster than NTRU (with key
generation being 13.56–88.28X faster, encapsulation being 1.42–2.63X faster,
and decapsulation being 2.39–2.99X faster) and 1.42–1.74X faster than Kyber,
in the round-trip time of ephemeral key exchange at the same security levels.
The efficiency improvement over Kyber is mainly because we do not have to
expand a random coins to a uniform matrix over Rq, which needs many calls to
the underlying symmetric primitives for rejection sampling. It is also worth to
note that our NEV-KEM using the parameter set NEV-1024 at NIST level 5 secu-
rity has the same public key and ciphertext size as that of NTRU-HPS4096821
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at NIST level 3 security, but is 4.10–11.05X faster (with key generation being
11.96–31.94X faster, encapsulation being 1.36–1.51X faster, and decapsulation
being 1.08–1.55X faster). The main reason that our KEMs is much faster than
NTRU is that we allow (partial) NTT multiplications and inversions in Rq.

Table 5. Comparison between our NEV-KEMs and BAT in efficiency (CPU Cycles)

Schemes KeyGen Encap Decap KeyGen Encap Decap Speedup

(Ref) (Ref) (Ref) (AVX2) (AVX2) (AVX2) (Ref/AVX2)

BAT-512 35 249k 55 930 297 472 33 305k 10 191 68 795 140.5/973.6X

NEV-512 79 465 69 244 104 760 8 202 12 661 13 424 –

NEV′-512 79 220 62 261 101 367 8 224 9 017 10 272 –

BAT-1024 182 931k 111 694 818 690 156 811k 20 387 144 357 334.7/2648.3X

NEV-1024 182 198 144 157 223 059 16 001 18 844 24 429 –

NEV′-1024 182 619 134 622 225 169 15 938 16 109 21 274 –

In Table 5, we give a comparison between our NEV-KEMs and BAT. The tim-
ings for our KEMs are obtained using BLAKE2 as the hash and PRG functions
without multi-target countermeasures, which are the same as that in the public
available code of BAT. The size of BAT is about 19.19% (resp., 9.03%) than
our ΠKEM at NIST level 1 (resp., 5) security (see Table 3), but our NEV-KEM is
about 140-973X (resp., 334-2648X) faster than BAT, with key generation being
443-4060X (resp., 1004-9800X) faster, and decapsulation being 2.84–5.12X(resp.,
3.67–5.90X) faster. Our encapsulation is slightly slower than that of BAT (espe-
cially in the reference implementation) mainly because BAT uses the strong
RLWR assumption with binary secret and only needs to generate a few random
bits in encapsulation. The efficiency improvement over BAT is mainly because we
do not use the heavy trapdoor inversion algorithm, which requires very complex
key generation and decryption operations.

Table 6. Comparison between our NEV schemes and NTTRU in efficiency (CPU
Cycles)

Schemes KeyGen Encap Decap KeyGen Encap Decap

(PKE) (PKE) (PKE) (KEM) (KEM) (KEM)

NEV-512 4 439 3 636 1 378 5 107 (4 881) 6 419 (5 289) 9 612 (6 675)

NEV′-512 4 453 3 112 1 399 5 201 (4 800) 6 167 (4 683) 9 382 (6 565)

NTTRU-768 8 199 2 976 2 675 9 640 6 586 8 603

NEV-1024 9 467 7 595 3 484 10 715 (9 891) 11 534 (9 841) 19 340 (12 955)

NEV′-1024 9 211 6 733 3 275 10 887 (10 195) 10 281 (8 864) 17 803 (11 531)



186 J. Zhang et al.

In Table 6, we give a comparison with NTTRU using the AVX2 instruc-
tions. The columns 2–4 present the timings for the corresponding OW/IND-
CPA PKEs, while columns 4–7 give the timings for the final IND-CCA KEMs.
The timings for our schemes are obtained using SHA3 and AES256CTR as the
hash and PRG functions without multi-target countermeasures, which are the
same as that in the public available code of NTTRU. The figures in the brackets
give the timings of our NEV-KEMs without using the compressed represen-
tation of Rq elements. We note that NTTRU only supports the parameter of
n = 768, q = 7681 in the cyclotomic ring Zq[x]/(xn − xn/2 + 1), aiming at NIST
level 3 security. A recent paper [18] presents more parameter sets (see NTRU-A
in Table 3) with reported comparable efficiency over the same ring as NTTRU,
but their implementation is not publicly available. From Tables 3 and 6, we can
expect that our schemes would have comparable computational efficiency with
NTTRU and NTRU-A, but is at least 28% more compact, at the same security
levels.
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constrained devices. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001.
LNCS, vol. 2162, pp. 262–272. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44709-1 22

7. Banaszczyk, W.: New bounds in some transference theorems in the geometry of
numbers. Math. Ann. 296, 625–635 (1993)
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40. Pellet-Mary, A., Stehlé, D.: On the hardness of the NTRU problem. In: Tibouchi,
M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13090, pp. 3–35. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-92062-3 1
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43. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 4
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Abstract. We revisit the problem of finding two consecutive B-smooth
integers by giving an optimised implementation of the Conrey-Holmstrom-
McLaughlin “smooth neighbors” algorithm. While this algorithm is not
guaranteed to return the complete set of B-smooth neighbors, in practice
it returns a very close approximation to the complete set but does so in
a tiny fraction of the time of its exhaustive counterparts. We exploit this
algorithm to find record-sized solutions to the pure twin smooth problem,
and subsequently to produce instances of cryptographic parameters whose
corresponding isogeny degrees are significantly smoother than prior works.
Our methods seem well-suited to finding parameters for the SQISign sig-
nature scheme, especially for instantiations looking to minimise the cost
of signature generation. We give a number of examples, among which are
the first parameter sets geared towards efficient SQISign instantiations at
NIST’s security levels III and V.

Keywords: Post-quantum cryptography · isogeny-based
cryptography · twin smooth integers · smooth neighbors · Pell
equation · SQISign

1 Introduction

In recent years the tantalising problem of finding two large, consecutive, smooth
integers has emerged in the context of instantiating efficient isogeny-based
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public key cryptosystems. Though the problem was initially motivated in the
context of key exchange [9], a wave of polynomial time attacks [6,22,23] has
completely broken the isogeny-based key exchange scheme SIDH [19], leaving
post-quantum signatures as the most compelling cryptographic application of
isogenies at present. In terms of practical potential, the leading isogeny-based
signature scheme is SQISign [16]; it boasts the smallest public keys and signa-
tures of all post-quantum signature schemes (by far!), at the price of a signing
algorithm that is orders of magnitude slower than its post-quantum counterparts.
Finding secure parameters for SQISign is related to the twin smooth problem
mentioned above1, with a large contributing factor to the overall efficiency of the
protocol being the smoothness bound, B, of the rational torsion used in isogeny
computations. This bound corresponds to the degree of the largest prime-degree
isogeny computed in the protocol, for which the fastest algorithm runs in Õ(

√
B)

field operations [4]. Part of the reason for SQISign’s performance drawback is
that the problem of finding parameters with small B is difficult: the fastest imple-
mentation to date targets security comparable to NIST Level I [27, §4.A] and
has B = 3923 [17]. Additionally, methods for finding efficient SQISign parame-
ters have to date not been able to obtain suitable primes reaching NIST Level
III and V security. In view of NIST’s recent call for additional general purpose
post-quantum signature schemes that are not based on structured lattices [28],
it is important to find methods of generating efficient isogeny-based signature
parameters beyond those that have been proposed thus far at NIST Level I.

The CHM Algorithm. In this work we introduce new ways of finding large
twin smooth instances based on the Conrey-Holmstrom-McLaughlin (CHM)
“Smooth neighbors” algorithm [8]. For a fixed smoothness bound B, the CHM
algorithm starts with the set of integers S = {1, 2, . . . , B − 1} representing the
smooth neighbors (1, 2), (2, 3), . . . , (B − 1, B), and recursively grows this set by
constructing new twin smooth integers from unordered pairs in S × S until a
full pass over all such pairs finds no new twins, at which point the algorithm
terminates. Although the CHM algorithm is not guaranteed to find the set of all
B-smooth twins, for moderate values of B it converges with the set S containing
almost all such twins. The crucial advantage is that, unlike the algorithm of
Lehmer [20] that exhaustively solves 2π(B) Pell equations to guarantee the full
set of B-smooth twins, the CHM algorithm terminates much more rapidly. For
example, in 2011 Luca and Najman [21] used Lehmer’s approach with B = 100 to
compute the full set of 13,374 twin smooths in 15 days (on a quad-core 2.66 GHz
processor) by solving 2π(B) = 225 Pell equations, the solutions of which can have
as many as 1010

6
decimal digits. The largest pair of 100-smooth twins they found

1 SQISign is instantiated over large primes p such that p2 − 1 is divisible by a large,
B-smooth factor. If, for example, we find B-smooth twins r and r + 1 whose sum is
a prime p = 2r + 1, then p2 − 1 is immediately B-smooth.
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were the 58-bit integers

166055401586083680 = 25 · 33 · 5 · 113 · 23 · 43 · 59 · 67 · 83 · 89, and

166055401586083681 = 72 · 1710 · 412.

In 2012, Conrey, Holmstrom and McLaughlin ran their algorithm on a similar
machine to find 13,333 (i.e. all but 41) of these twins in 20 min [8]. Subsequently,
they set B = 200 and found a list of 346,192 twin smooths in about 2 weeks, the
largest of which were the 79-bit integers

589864439608716991201560 = 23 · 33 · 5 · 72 · 112 · 17 · 31 · 592 · 83 · 1392

· 173 · 181, and

589864439608716991201561 = 132 · 1132 · 1272 · 1372 · 1512 · 1992.

Exhausting the full set of 200-smooth twins would have required solving 2π(200) =
246 Pell equations, which is pushing the limit of what is currently computation-
ally feasible. The largest run of Lehmer’s algorithm reported in the literature
used B = 113 [9, §5.3], which required solving 230 Pell equations and a signif-
icant parallelised computation that ran over several weeks. The largest set of
113-smooth twins found during that computation were the 75-bit integers

19316158377073923834000 = 24 · 36 · 53 · 7 · 232 · 29 · 47 · 59 · 61 · 73 · 97 · 103,

19316158377073923834001 = 132 · 312 · 372 · 434 · 714.

Remark 1. The above examples illustrate some important phenomena that are
worth pointing out before we move forward. Observe that, in the first and third
examples, the largest prime not exceeding B is not found in the factors of the
largest twins. The largest 89-smooth twins are the same as the largest 97-smooth
twins, and the largest 103-smooth twins are the same as the largest 113-smooth
twins. In other words, increasing B to include more primes necessarily increases
the size of the set of B-smooth twins, but it does not mean we will find any new,
larger twins. This trend highlights part of the difficulty we face in trying to find
optimally smooth parameters of cryptographic size: increasing the smoothness
bound B makes the size of the set of twins grow rapidly, but the growth of the
largest twins we find is typically painstakingly slow. The set of 100-smooth twins
has cardinality 13,374, with the largest pair being 58 bits; increasing B to 200
gives a set of cardinality (at least) 345,192, but the largest pair has only grown to
be 79 bits. In fact, most of this jump in the bitlength of the largest twins occurs
when increasing B = 97 (58 bits) to include two more primes with B = 103 (76
bits). Including the 19 additional primes up to 199 only increases the bitlength
of largest twins with B = 199 by 3 (79 bits), and this is indicative of what we
observe when B is increased even further.

Our Contributions. We give an optimised implementation of CHM that allows
us to run the algorithm for much larger values of B in order to find larger sized
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twins. For example, the original CHM paper reported that the full algorithm
with B = 200 terminated in approximately 2 weeks; our implementation did
the same computation in around 943 s on a laptop. Increasing the smoothness
bound to B = 547, our implementation converged with a set of 82,026,426 pairs
of B-smooth twins, the largest of which are the 122-bit pair (r, r + 1) with

r = 54 · 7 · 132 · 172 · 19 · 29 · 41 · 109 · 163 · 173 · 239 · 2412 · 271 · 283
· 499 · 509, and

r + 1 = 28 · 32 · 312 · 432 · 472 · 832 · 1032 · 3112 · 4792 · 5232. (1)

Although it remains infeasible to increase B to the point where the twins
found through CHM are large enough to be used out-of-the-box in isogeny-based
schemes (i.e. close to 2256), we are able to combine the larger twins found through
CHM with techniques from the literature in order to find much smoother sets of
SQISign parameters. In this case we are aided by the requirements for SQISign,
which permit us to relax the size of the smooth factor that divides p2 − 1. The
current state-of-the-art instantiation [17] uses primes p such that

�f · T | (p2 − 1),

where � is a small prime (typically � = 2), where f is as large as possible, and
where T ≈ p5/4 is both coprime to � and B-smooth. For example, the original
SQISign implementation [16] used a 256-bit prime p such that

p2 − 1 = 234 · T1879 · R,

where T1879 is an odd 334-bit integer2 whose largest prime factor is B = 1879,
and R is the rough factor; a 144-bit integer containing no prime factors less than
or equal to B. As another example, De Feo, Leroux and Wesolowski [17, §5]
instead use a 254-bit prime p with

p2 − 1 = 266 · T3923 · R,

where T3923 is an odd 334-bit integer whose largest prime factor is B = 3923,
and where all of R’s prime factors again exceed B.

During the search mentioned above that found the record 547-smooth twins
in (1), over 82 million other pairs of smaller sized twins were found. One such pair
was the 63-bit twins (r−1, r) with r = 8077251317941145600. Taking p = 2r4−1
gives a 253-bit prime p such that

p2 − 1 = 249 · T479 · R,

where T479 is an odd 328-bit integer that is 479-smooth. This represents a sig-
nificant improvement in smoothness over the T values obtained in [16] and [17].
Although the smoothness of T is not the only factor governing the efficiency of
2 The initial SQISign requirements [16] had T ≈ p3/2, but T1879 corresponds to the

new requirements.
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the scheme, our analysis in Sect. 6 suggests that the parameters found in this
paper are interesting alternatives to those currently found in SQISign implemen-
tations, giving instantiations with a significantly lower expected signing cost, but
with a modest increase in verification cost.

Just as we transformed a pair of 85-bit twins into a 255-bit prime by taking
p = 2r3 − 1, we combine the use of twins found with CHM and primes of the
form p = 2rn − 1 with n ≥ 3 to obtain several SQISign-friendly primes that
target higher security levels. For example, with some 64-bit twins (r, r + 1)
found through CHM, we give a 382-bit prime p = 2r6 − 1 such that p2 − 1 =
280 ·T10243 ·R, where T is an odd 495-bit integer that is 10243-smooth; this prime
would be suitable for SQISign signatures geared towards NIST Level III security.
As another example, with some 85-bit twins (r, r + 1), we give a 508-bit prime
p = 2r6 − 1 such that p2 − 1 = 286 · T150151 · R, where T is a 639-bit integer that
is 150151-smooth; this prime would be suitable for SQISign signatures targeting
NIST Level V security.

Our implementation of the CHM algorithm is written in C/C++ and is found
at

https://github.com/GiacomoBruno/TwinsmoothSearcher.

Remark 2. In a recent paper [15], it was shown that computing the constructive
Deuring correspondence, which is the heavy computation that SQISign needs
to perform as part of its signature generation algorithm, is feasible to compute
without choosing a specific characteristic p beforehand. However, the paper fur-
ther confirms (comparing [15, Figure 3] with [15, Table 2]) that the efficiency
of this computation depends heavily on the factorisation of p2 − 1 (or more
generally pk − 1 for small k). In a setting that allows to freely choose a fixed
characteristic p, for instance in the SQISign setting, it is clear that one should
choose p carefully for optimal performance.

Remark 3. Another recent work introduces SQISignHD [11], a variant of
SQISign in higher dimensions. Although the signature generation could be
significantly faster in SQISignHD, the verification algorithm requires comput-
ing 4-dimensional isogenies. Since the research of implementing practical 4-
dimensional isogenies has mainly only begun since the SIDH attacks, there is no
implementation of SQISignHD yet. While breakthroughs in this area of research
could change the picture of the field, it remains unclear whether the verification
algorithm can be implemented efficiently enough to consider SQISignHD for
practical applications, or to reach similar performance as SQISign verification.

Organisation. Sect. 2 reviews prior methods for generating large instances of
twin smooths. In Sect. 3, we recall the CHM algorithm and give a generalisation
of it that may be of independent interest. Section 4 details our implementation
of the CHM algorithm and presents a number of optimisations that allowed us
to run it for much larger values of B. In Sect. 5, we discuss the combination of
CHM with primes of the form p = 2xn − 1 to give estimates on the probabilities

https://github.com/GiacomoBruno/TwinsmoothSearcher
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of finding SQISign parameters at various security levels. Section 6 presents our
results, giving record-sized twin smooth instances and dozens of SQISign-friendly
primes that target NIST’s security levels I, III, and V.

2 Preliminaries and Prior Methods

We start by fixing some definitions and terminology.

Definition 1. A positive integer n is called B-smooth for some real number
B > 0 if all prime divisors of n are at most B. An integer n generates a B-
smooth value of a polynomial f(X) if f(n) is B-smooth. In this case we call
n a B-smooth value of f(X). We call two consecutive integers B-smooth twins
if their product is B-smooth. An integer n is called B-rough if all of its prime
factors exceed B.

We now review prior methods of searching for twin smooth integers by fol-
lowing the descriptions of the three algorithms reviewed in [10, §2] and including
the method introduced in [10] itself.

Solving Pell Equations. Fix B, let {2, 3, . . . , q} be the set of primes up to B
with cardinality π(B), and consider the B-smooth twins (r, r+1). Let x = 2r+1,
so that x − 1 and x + 1 are also B-smooth, and let D be the squarefree part of
their product (x − 1)(x + 1), i.e. x2 − 1 = Dy2 for some y ∈ Z. It follows that
Dy2 is B-smooth, which means that

D = 2α2 · 3α3 · · · · · qαq

with αi ∈ {0, 1} for i = 2, 3, . . . , q. For each of the 2π(B) squarefree possibilities
for D, Størmer [24] reverses the above argument and proposes to solve the 2π(B)

Pell equations
x2 − Dy2 = 1,

finding all of the solutions for which y is B-smooth, and in doing so finding the
complete set of B-smooth twins.

The largest pair of 2-smooth integers is (1, 2), the largest pair of 3-smooth
integers is (8, 9), and the largest pair of 5-smooth integers is (80, 81). Unfor-
tunately, solving 2π(B) Pell equations becomes infeasible before the size of the
twins we find is large enough (i.e. exceeds 2200) for our purposes. As we saw in
Sect. 1, [9] reports that with B = 113 the largest twins (r, r + 1) found upon
solving all 230 Pell equations have r = 19316158377073923834000 ≈ 275.

The Extended Euclidean Algorithm. The most näıve way of searching for
twin smooth integers is to compute B-smooth numbers r until either r − 1 or
r + 1 also turns out to be B-smooth. A much better method [9,16] is to instead
choose two coprime B-smooth numbers α and β that are both of size roughly
the square root of the target size of r and r + 1. On input of α and β, Euclid’s
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extended GCD algorithm outputs two integers (s, t) such that αs + βt = 1 with
|s| < |β/2| and |t| < |α/2|. We can then take {m,m + 1} = {|αs|, |βt|}, and the
probability of m and m + 1 being B-smooth is now the probability that s · t is
B-smooth. The reason this performs much better than the näıve method above
is that s · t with s ≈ t is much more likely to be B-smooth than a random integer
of similar size.

Searching with r = xn−1. A number of works [9,16,17] have found performant
parameters by searching for twins of the form (r, r + 1) = (xn − 1, xn), for
relatively small n ∈ Z. For example, suppose we are searching for b-bit twins
(r, r + 1) and we take n = 4 so that r = (x2 + 1)(x − 1)(x + 1). Instead of
searching for two b-bit numbers that are smooth, we are now searching for three
smooth (b/4)-bit numbers (i.e. x − 1, x, and x + 1) and one smooth (b/2)-bit
number, which increases the probability of success (see [10]).

Searching with PTE Solutions. The approach taken in [10] can be viewed
as an extension of the method above, where the important difference is that for
n > 2 the polynomial xn − 1 does not split in Z[x], and the presence of higher
degree terms (like the irreducible quadratic x2 + 1 above) significantly hampers
the probability that values of xn − 1 ∈ Z are smooth. Instead, the algorithm
in [10] takes (r, r + 1) = (f(x), g(x)), where f(x) and g(x) are both of degree n
and are comprised entirely of linear factors. This boosts the success probability
again, but one of the difficulties facing this method is that polynomials f(x) and
g(x) that differ by a constant and are completely split are difficult to construct for
n ≥ 4. Fortunately, instances of these polynomials existed in the literature prior
to [10], since they can be trivially constructed using solutions to the Prouhet-
Tarry-Escott (PTE) problem (see [10]).

3 The CHM Algorithm

In this section, we first recall the Conrey, Holmstrom, and McLaughlin (CHM)
algorithm [8], a remarkably simple algorithm that generates twin smooth inte-
gers (or smooth neighbors as they are called in [8]), i.e. smooth values of the
polynomial X(X +1). We then present a generalisation of this algorithm, which
generates smooth values of any monic quadratic polynomial. The algorithm gen-
eralises the CHM algorithm, as well as another algorithm in the literature by
Conrey and Holmstrom [7], which generates smooth values of the polynomial
X2 + 1. In the end, we are primarily interested in the CHM algorithm, but
present the generalised algorithm here, as it may be of independent interest.

3.1 Finding Smooth Twins with the CHM Algorithm

Conrey, Holmstrom, and McLaughlin [8] present the following algorithm for pro-
ducing many B-smooth values of X(X + 1). It starts with the initial set

S(0) = {1, 2, . . . , B − 1}
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of all integers less than B, representing the B-smooth twins (1, 2), (2, 3), . . . ,
(B−1, B). Next, it iteratively passes through all pairs of distinct r, s ∈ S(0), r < s
and computes

t

t′
=

r

r + 1
· s + 1

s
,

writing t
t′ in lowest terms. If t′ = t + 1, then clearly t also represents a twin

smooth pair. The next set S(1) is formed as the union of S(0) and the set of all
solutions t such that t′ = t + 1. Now the algorithm iterates through all pairs
of distinct r, s ∈ S(1) to form S(2) and so on. We call the process of obtaining
S(d) from S(d−1) the d-th CHM iteration. Once S(d) = S(d−1), the algorithm
terminates.

Example: We illustrate the algorithm for B = 5, i.e. with the goal to generate
5-smooth twin integers. The starting set is

S(0) = {1, 2, 3, 4}.

Going through all pairs (r, s) ∈ S(0) with r < s, we see that the only ones that
yield a new twin smooth pair (t, t + 1) via Eq. (2) with t not already in S(0) are
(2, 3), (2, 4) and (3, 4), namely,

2
2 + 1

· 3 + 1
3

=
8
9
,

2
2 + 1

· 4 + 1
4

=
5
6
, and

3
3 + 1

· 4 + 1
4

=
15
16

.

Hence, we add 5, 8 and 15 to get the next set as

S(1) = {1, 2, 3, 4, 5, 8, 15}.

The second and third CHM iterations give

S(2) = {1, 2, 3, 4, 5, 8, 9, 15, 24} and S(3) = {1, 2, 3, 4, 5, 8, 9, 15, 24, 80}.

The fourth iteration does not produce any new numbers, i.e. we have S(4) = S(3),
the algorithm terminates here and returns S(3). This is indeed the full set of twin
5-smooth integers as shown in [24], see also [20, Table 1A].

Remark 4. The CHM check that determines whether a pair (r, s) yields an inte-
ger solution t to the equation

t

t + 1
=

r

r + 1
· s + 1

s
(2)

can be rephrased by solving this equation for t, which yields

t =
r(s + 1)
s − r

. (3)

This shows that in order for (r, s) to yield a new pair, s − r must divide r(s + 1)
and in particular, must be B-smooth as well.
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3.2 Generalising the CHM Algorithm

We now present a generalisation of the CHM algorithm, which finds smooth
values of any monic quadratic polynomial f(X) = X2 + aX + b ∈ Z[X] ⊆ Q[X].
The algorithm works with elements in the Q-algebra A = Q[X]/〈f(X)〉. Let X̄
denote the residue class of X in A. The generalisation closely follows the idea
of the CHM algorithm and is based on the observation that for any r ∈ Q, we
have that

NA/Q(r − X̄) = f(r),

where NA/Q(α) denotes the algebraic norm of α ∈ A over Q. The algorithm now
starts with an initial set

S(0) = {r1 − X̄, . . . , rd − X̄},

where ri are smooth integer values of f(X) (Definition 1), which means that the
element ri − X̄ has smooth non-zero norm. Next, in the d-th iteration of the
algorithm, given any two α, β ∈ S(d−1), compute

α · β−1 · NA/Q(β) = r − sX̄

for integers r, s (notice that β is invertible, since it has non-zero norm). Now, if
s divides r, we obtain an integer t = r

s . It follows that

f(t) = NA/Q

(r

s
− X̄

)

= NA/Q(r − sX̄)s−2

= NA/Q(α · β−1 · NA/Q(β))s−2

= NA/Q(α)NA/Q(β)s−2.

Since both NA/Q(α) and NA/Q(β) are B-smooth and s is an integer, it follows
that t is a B-smooth value of f(X). The set S(d) is then formed as the union
of S(d−1) and the set of all such integral solutions. Finally, we terminate when
S(d) = S(d−1).

3.3 Equivalence with Previous Algorithms

We now show that the CHM algorithm, as well as another algorithm by Con-
rey and Holmstrom [7], are special cases of the generalised algorithm, for the
polynomials f(x) = X2 + X, and f(X) = X2 + 1 respectively.

Smooth values of X2 + X. To see that the CHM algorithm (see Sect. 3.1)
is indeed a special case of the generalised algorithm above, we show how the
generalised algorithm works for f(X) = X(X + 1) = X2 + X. Consider the
algebra A = Q[X]/〈X2 + X〉. This embeds into the matrix algebra M2×2(Q) via

ψ : r + sX̄ →
(

r 0
s r − s

)
.
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Instead of working with elements in A, we will work with elements in ψ(A) ⊆
M2×2(Q) since this simplifies the argument. In this case, for α ∈ A, we have

NA/Q(α) = det(ψ(α)).

The set corresponding to the initial set in the CHM algorithm is

S(0) = {(
1 0−1 2

)
,
(

2 0−1 3

)
, . . . ,

(
B−1 0
−1 B

)}.

All these elements clearly have B-smooth norm. The d-th CHM iteration pro-
ceeds as follows: For all

(
r 0−1 r+1

)
,
(

s 0−1 s+1

)
in S(d−1), we try

(
r 0
−1 r + 1

) (
s 0
−1 s+ 1

)−1

s(s+ 1) =

(
r 0
−1 r + 1

) ((
s+ 1 0
1 s

)
1

s(s+ 1)

)
s(s+ 1)

=

(
r(s+ 1) 0
−(s− r) (r + 1)s

)
.

Finally, we transform this matrix into the right form, i.e. into a matrix corre-
sponding to an element of the form τ = t − X̄, which means that ψ(τ) has a −1
in the lower left corner. So, we divide by s − r and end up with the matrix

(
r(s+1)

s−r 0
−1 (r+1)s

s−r

)
=

(
r(s+1)

s−r 0
−1 r(s+1)

s−r + 1

)
.

Now if r(s+1)
s−r is an integer, we add this matrix to the next set S(d+1).

As we have seen in Remark 4, this integer indeed corresponds to the solution
(3) of Eq. (2) and therefore, the generalised algorithm in the case f(X) = X2+X
is equivalent to the original CHM algorithm.

Smooth Values of X2 + 1. Conrey and Holmstrom later presented a method
to generate smooth values of X2 +1 [7]. Similar to the CHM algorithm, it starts
with an initial set S(0) of positive smooth values of X2 +1. Again, for d > 0 and
given r, s ∈ S(d−1), r < s, they compute

rs − 1
s + r

.

The next set S(d) is then again formed as the union of S(d−1) and the set of all
such values that are integers.

It is equally straightforward to verify that this algorithm is also a special
case of the generalised CHM algorithm described above in Sect.3.2. We could
again work with matrices in M2×2(Q), but here, we are actually working in the
number field K = Q[X]/〈X2 + 1〉, which is isomorphic to Q(i), where i2 = −1.
The product of the elements α = r − i and β = s − i is given as

αβ = (r − i)(s − i) = (rs − 1) − (r + s)i.
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Conrey and Holmstrom’s method then simply tries all such products αβ. How-
ever, a possibly better choice could be to use

αβ−1NK/Q(β) = αβ̄ = (r − i)(s + i) = (rs + 1) − (s − r)i

as described in our generalisation. This is due to the fact that the new denomi-
nator, s − r, is smaller and hence

rs + 1
s − r

is more likely to be an integer3 (assuming that the numerator follows a random,
uniform distribution). As a result, we can expect the algorithm to converge
faster.

Whichever option is chosen, one tries to divide by r + s resp. s − r, and if
the result is an element in Z[i], it is added to the next set S(d) of smooth values
of X2 + 1. Conrey and Holmstrom’s method is therefore another special case of
the generalised algorithm.

Remark 5. We note that neither the generalised CHM algorithm, nor any of
the previous special cases give any guarantees to what proportion of B-smooth
values of f(X) it finds. However, for the previous special case algorithms, certain
conjectural results have been stated, based on numerical evidence, which suggests
that the algorithm returns all but a small fraction of all smooth values of the
respective quadratic polynomials. We make no similar claims for the general case
algorithm.

4 Searching for Large Twin Smooth Instances: CHM
in Practice

Ideally, the CHM algorithm could be run as described in [8] with a large enough
smoothness bound B to find twin smooths of cryptographic sizes. However,
experiments suggest that this is not feasible in practice. We report on data
obtained from an implementation of the pure CHM algorithm in Sect. 4.1,
present several optimisations in Sect. 4.2 and details on our optimised imple-
mentation in Sect. 4.3.

4.1 Running CHM in Practice

In order to collect data and assess the feasibility of finding large enough twin
smooths, we implemented a somewhat optimised version of the pure CHM
algorithm. In particular, this implementation is parallelised, and avoids mul-
tiple checks of the same pairs of twin smooths (r, s). Furthermore, we iterate
3 Another alternative is to include both positive and negative values in the inital set
S(0). Observe that in this case, it does not matter whether one uses (rs+1)/(s− r)
or (rs − 1)/(s + r), as (rs + 1)/(s − r) = −(s(−r) + 1)/(s + (−r))).
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through smoothness bounds: We start with a small bound B1 and the initial
set S

(0)
1 = {1, . . . , B1 − 1}, and use the CHM algorithm to iteratively compute

sets S
(i)
1 until we reach some d1 such that S

(d1)
1 = S

(d1−1)
1 . In the next itera-

tion, we increase the smoothness bound to B2 > B1 and define the initial set
S
(0)
2 = S

(d1)
1 ∪ {B1, . . . , B2 − 1}. Again we compute CHM iterations until we

find d2 such that S
(d2)
2 = S

(d2−1)
2 , where we avoid checking pairs (r, s) that have

been processed in earlier iterations. Ideally, we could repeat this procedure until
we reach a smoothness bound Bi for which the CHM algorithm produces large
enough twin smooths for cryptographic purposes. However, our data suggests
that this is infeasible in practice due to both runtime and memory limitations.

In particular, we ran this approach up to the smoothness bound B = 547,
and extrapolating the results gives us rough estimations of the largest possible
pair and number of twin smooths per smoothness bound.

After the B = 547 iteration, the set of twin smooths contains 82,026,426
pairs, whose bitlength distribution roughly resembles a normal distribution cen-
tered around bitlength 58. The largest pair has a bitlength of 122 bits. An eval-
uation of the obtained set is shown in Fig. 1. Figure 1a shows the distribution of
bitsizes in the full set, while Fig. 1b shows that of the subset of all 199-smooth
twins obtained in this run. Figure 1c shows the bitsize of the largest q-smooth
twin pairs for each prime q between 3 and 547. And Figs. 1d and 1e show the
number of q-smooth twins for each such q.

Using the data of these experiments, we can attempt to estimate at which
smoothness bound B this approach can be expected to reach twin smooths of
cryptographic sizes, and how much memory is required to run iterations to reach
this B. The data indicates that the bound necessary for the largest twin smooth
pair obtained by running CHM with this bound to reach a bitlength of 256 lies
in the thousands, possibly larger than 5,000. Similarly, it shows how quickly the
number of B-smooth twins increases with B. Given that the effort for CHM
iterations grows quadratically with the set size, these estimates indicate that it
is not feasible to reach cryptographically sized smooth twins with the original
CHM algorithm.

4.2 Optimisations

One major issue with running the plain CHM algorithm for increasing smooth-
ness bound is the sheer size of data that needs to be dealt with. The sets S

(di)
i

grow very rapidly and the quadratic complexity of checking all possible pairs
(r, s) leads to a large runtime. The natural question that arises is whether CHM
can be restricted to checking only a certain subset of such pairs without losing
any or too many of the new smooth neighbors. Furthermore, if the purpose of
running the CHM algorithm is not to enumerate all twin smooth pairs for a
given smoothness bound but instead, to produce a certain number of pairs of a
given size or to obtain some of the largest pairs, it might even be permissible to
omit a fraction of pairs.
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(a) Distribution of bitsizes for the full
set of 547-twin smooth pairs.

(b) Distribution of bitsizes for the sub-
set of 199-twin smooth pairs.

(c) Bitsizes of the largest q-smooth twins for all primes q between 3 and 547.

(d) Number of q-smooth twins for all
primes q between 3 and 233.

(e) Number of q-smooth twins for all
primes q between 239 and 547.

Fig. 1. Evaluation of the set of 547-smooth twins obtained by running the original
CHM algorithm with smoothness bound B = 547. The bitsize of a pair (r, r + 1) is
�log r� + 1. Data for the number of q-smooth twins for all primes q up to 547 has been
split into two histograms of different scale.
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To find a sensible way to restrict to a smaller set, we next discuss which pairs
(r, s), r < s result in a given twin smooth pair (t, t + 1) via

r

r + 1
· s + 1

s
=

t

t + 1
. (4)

This is discussed in [8, §3], but we elaborate on it in a slightly different way here.
Let t > 0, let u be any divisor of t and v any divisor of t+1. Let h, x ∈ Z be given
by t = uh and t + 1 = vx (where u, v, h, x > 0). Therefore, v/u = h/x + 1/(ux).
If u < v then h > x and if u > v then h < x. We therefore fix u < v (otherwise
switch the roles of u, v and h, x). Since u < v, the pair

(r, s) = (t − u

v
(t + 1),

v

u
t − (t + 1) =

v

u
r) (5)

satisfies Equation (4) and it follows that

r = u(h − x), r + 1 = x(v − u), s = v(h − x), s + 1 = h(v − u). (6)

Therefore, s/r = v/u and (s+1)/(r+1) = h/x, u < v, h > x and 0 < r < s. This
also means that s = r+(v−u)(h−x), t = r+ux and that gcd(r(s+1), s(r+1)) =
s − r = (v − u)(h − x) (note that gcd(uh, vx) = gcd(t, t + 1) = 1).

Conversely, given (r, s) with r > 0 that satisfy Eq. 4, define u = r/ gcd(r, s)
and v = s/ gcd(r, s), then s > r, u < v and u | t, v | (t + 1). Hence we have the
correspondence between the set of pairs (r, s) with r < s that yield a new twin
pair (t, t + 1) via Eq. (4) and the set of pairs of divisors of t and t + 1 described
in [8, §3] as follows:

{(r, s) | r < s and r(s + 1)(t + 1) = s(r + 1)t}
←→ {(u, v) | u < v and u | t, v | (t + 1)}. (7)

However, this correspondence does not identify the pairs (r, s) corresponding to
twin smooths, i.e. given (u, v) there is no guarantee that any of r, r + 1, s, s + 1
are B-smooth. This is not discussed in [8, §3]. The next lemma fills this gap by
stating an explicit condition on the divisors u, v, h, x.

Lemma 1. Let t ∈ Z such that t(t + 1) is B-smooth. Let (u, v) be a pair of
divisors such that t = uh, t + 1 = vx and let (r, s) be defined as in Eq. (5).

Then r(r + 1)s(s + 1) is B-smooth if and only if (v − u)(h − x) = s − r is
B-smooth.

Proof. As divisors of t and t + 1, u and v as well as h and x are all B-smooth.
The statement follows from the Eqs. (6). �

Using Similar Sized Pairs. We next consider the following condition to
restrict the visited pairs (r, s) in CHM as a mechanism to reduce the set size
and runtime. Let k > 1 be a constant parameter. We then only check pairs (r, s)
if they satisfy

0 < r < s < kr. (8)



204 G. Bruno et al.

Assume that (r, s) results in a pair (t, t + 1) through satisfying Eq. (4). As
seen above, s

r = v
u for u | t, v | (t + 1), so we can use (u, v) to determine which

values k are useful. Since v
u < k, it follows s = v

u t − (t + 1) < (k − 1)t. If we are
only interested in obtaining a new t from a pair (r, s) such that s < t, we can
take k ≤ 2, overall resulting in 1 < k ≤ 2.

This k seems to be a good quantity to study as we can relate it to the factors
of v − u. Indeed, v − u = u( v

u − 1) = u( s
r − 1) and we have s < kr.

Definition 2. Let (r, r +1) and (s, s+1) be twin smooths with r < s and k ∈ R

with 1 < k ≤ 2. We call the pair (r, s) k-balanced if r < s < k · r.

We want to find a k such that a k-balanced pair (u, v) subject to the above
conditions will yield a balanced r, s such that r, r + 1, s, s + 1 are B-smooth, or
equivalently that v − u and h − x are.

Running the CHM algorithm only with 2-balanced pairs (r, s) then guaran-
tees that any t produced by Eq. 4 will be larger than the inputs r and s. Although
we sacrifice completeness of the set of twin B-smooths with this approach, we
can significantly reduce the runtime.

We can even push this approach further. Recall that we require gcd(r(s +
1), (r + 1)s) = s − r in order to generate a new pair of twin smooths (t, t + 1).
By Lemma 1, this can only hold if Δ = s − r is B-smooth. Hence, only checking
pairs (r, s) for which Δ is likely to be smooth increases the probability for a
successful CHM step. Heuristically, the smaller Δ is, the better the chances for
Δ to be smooth. Furthermore, if Δ contains small and only few prime factors,
the probability for the condition Δ = gcd(r(s + 1), (r + 1)s) is relatively high.
We can summarise this in the following heuristic.

Heuristic 1. Let k1, k2 ∈ R with 1 < k1 < k2 ≤ 2, and (r1, s1) resp. (r2, s2)
a k1- resp. k2-balanced pair of twin smooths. Then the probability for (r1, s1) to
generate new twin smooths via the CHM equation is larger than that for (r2, s2).

In order to save additional runtime, we can thus pick k closer to 1, and
only check the pairs (r, s) that are most likely to generate new twin smooths.
Therefore, we can still expect to find a significant portion of all twin B-smooths
for a given smoothness bound B. We expand on the choice of k and different
ways of implementing this approach in Sect. 4.3.

Thinning Out Between Iterations. Another approach to reduce both run-
time and memory requirement is to thin out the set of twin smooths between
iterations. In particular, once we finished all CHM steps for a certain smoothness
bound Bi, we can remove twins from the set S

(di)
i based on their likeliness to

produce new twin smooths before moving to the next iteration for Bi+1.
One possible condition for removing twins is to look at their smoothness

bounds. Let (r, r +1) be B1-smooth, (s, s+1) be B2-smooth (but not B-smooth
for any B < B2), and B1 � B2. Since (s, s + 1) contains (multiple) prime
factors larger than B1, they cannot be contained in (r, r + 1), which makes the



Cryptographic Smooth Neighbors 205

requirement gcd(r(s+1), (r+1)s) = s− r heuristically less likely to be satisfied.
However, in practice it turns out that the differences between the smoothness
bounds we are concerned with are not large enough for this heuristic to become
effective.

In our experiments, it turned out to be more successful to keep track of
how many new twin smooths each r produces. We can then fix some bound
m, and discard twins that produced less then m twins after a certain number
of iterations. Our experiments suggest that using this approach with carefully
chosen parameters yields a noticeable speedup, but fails completely at reduc-
ing the memory requirements, as we still need to keep track of the twins we
already found. Furthermore, in practice the approach of only using k-balanced
twins turned out to be superior, and hence we focus on this optimisation in the
following.

4.3 Implementation

We implemented the CHM algorithm with several of the aforementioned optimi-
sations in C++, exploiting the fact that it parallelises perfectly. Note that some
of our approaches require the set of twin smooths to be sorted with respect to
their size. Hence, an ordered data structure is used for storing the twins set. We
used the following techniques and optimisations.

CHM Step. For each pair (r, s) considered by the implementation, we have to
check if Eq. (4) holds. As mentioned in Sect. 4.2, this requires that gcd(r(s +
1), (r + 1)s) = s − r is satisfied. However, we can completely avoid the gcd
calculation by observing that we require r · (s+1) ≡ 0 mod (s− r). Only if this
is the case we perform a division to compute t, which represents the new pair
of twin smooths (t, t + 1). Therefore, we only perform one modular reduction
per considered pair (r, s), followed by one division if the CHM step is successful.
This is significantly cheaper than a näıve implementation of Equation (4) or a
gcd computation.

Data Structure. Initially the set of twins was organised in a standard C array,
that each time an iteration completed was reallocated to increase its size, and
reordered.

To avoid the overall inefficiency of this method we moved to use the C++
standard library std::set. This data structure is implemented with a Red Black
tree, guarantees O(log N) insertion and search, while keeping the elements always
ordered.

We then moved to use B+Trees [5], that have the same guarantees for inser-
tion, search, and ordering, but are more efficient in the memory usage. Because
the elements of a B+Tree are stored close to each other in memory it becomes
much faster to iterate through the set, an operation that is necessary for creating
the pairs used in each computation.
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Implemented Optimisations. As discussed in Sect. 4.2, we focus on the case
of k-balanced pairs (r, s), which satisfy r < s < k · r. Compared to the full CHM
algorithm, this leads to a smaller set of twin smooths, but allows for much faster
running times. We implemented the k-balanced approach in various different
flavours.

Global-k. In the simplest version - the global-k approach - we initially pick some
k with 1 < k ≤ 2, and restrict the CHM algorithm to only check k-balanced pairs
(r, s). The choice of k is a subtle manner: Picking k too close to 1 may lead to
too many missed twin smooths, such that we cannot produce any meaningful
results. On the other hand, picking k close to 2 may result in a relatively small
speedup, which does not allow for running CHM for large enough smoothness
bounds B. Unfortunately, there seems to be no theoretical handle on the optimal
choice of k, which means that it has to be determined experimentally. We note
that when picking an aggressive bound factor k ≈ 1, small numbers r in the set
of twins S may not have any suitable s ∈ S they can be checked with. Thus, we
pick a different bound, e.g. k = 2, for numbers below a certain bound, e.g. for
r ≤ 220.

Iterative-k. Instead of iterating through smoothness bounds Bi as described
in Sect. 4.1 and using the global-k approach, we can switch the roles of B
and k if we are interested in running CHM for a fixed smoothness bound B. We
define some initial value k0, a target value kmax, and a step size kstep > 0. In the
first iteration, we run CHM as in the global-k approach, using k0. The next
iteration then increases to k1 = k0+kstep, and we add the condition to not check
pairs (r, s) if they were already checked in previous iterations. We repeat this
iteration step several times until we reach kmax. Compared to the global-k app-
roach, this allows us to generate larger B-smooth twins faster, since we restrict
to the pairs (r, s) first that are most likely to generate new twins. However, the
additional checks if previous pairs have been processed in earlier iterations add
a significant runtime overhead. Thus, this method is more suitable for finding
well-suited choices of k, while actual CHM searches benefit from switching to
the global-k approach.

Constant-Range. In both the global-k and iterative-k approach, the checks
if a pair (r, s) is k-balanced, or has been processed in earlier iterations, consumes
a significant part of the overall runtime. Therefore, we can use constant ranges to
completely avoid these checks. Since we always keep the set of twins S sorted by
size, the numbers s closest to r (with s > r) are its neighbors in S. Thus, we can
sacrifice the exactness of the k-balanced approaches above, and instead fix a range
R and for each r check (r, s) with the R successors s of r in S. As shown below, this
method significantly outperforms the global-k approach due to the elimination
of all checks for k-balance. This is true even when R is large enough to check more
pairs than are considered in the global-k approach for a given k.
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Table 1. Performance results for different variants of our CHM implementation for
smoothness bound B = 300. Speedup factors refer to the full CHM variant.

Variant Parameter Runtime Speedup #twins #twins from largest 100

Full CHM - 4705 s 1 2300724 100

global-k k = 2.0 364 s 13 2289000 86

k = 1.5 226 s 21 2282741 82

k = 1.05 27 s 174 2206656 65

constant-range R = 10000 82 s 57 2273197 93

R = 5000 35 s 134 2247121 87

R = 1000 16 s 294 2074530 75

Variable-Range. Similar to the constant-range approach, we can adapt the
range R depending on the size of r. For instance, choosing r at the peak of the size
distribution will lead to many possible choices of s such that (r,s) are balanced.
Hence, we can choose a larger range R whenever more potential pairs exist,
while decreasing R otherwise. In practice, the performance of this method ranks
between global-k and constant-range by creating roughly the same pairs
that global-k creates without any of the overhead of the balance checks. If R is
chosen large enough such that the constant-range approach ends up generating
more pairs than global-k, then variable-range performs better. Realistically,
the size of the range R increases by (very) roughly 3% for each prime number
smaller than the smoothness bound B, and slows down the algorithm drastically
at higher smoothness, similarly to the k-based approaches.

Remark 6. Similar to the variable-range approach, we experimented with a
variant of the global-k approach, which adjusts k according to the size of
r to find suitable s for the CHM step. However, the constant-range and
variable-range approaches turned out to be superior in terms of performance,
and therefore we discarded this variable-k variant.

Performance Comparison. In order to compare the implications of the opti-
misations in practice, we ran different variants of the CHM implementation for
the fixed smoothness bound B = 300. All experiments ran on a machine con-
figured with 4 x Xeon E7-4870v2 15C 2.3 GHz, 3072 GB of RAM. The total
amount of parallel threads available was 120. As described above, the global-k
and constant-range approach significantly outperform their respective vari-
ants, hence we focus on different configurations of these two methods.

The results are summarised in Table 1. For both the global-k and the
constant-range approach we measured the results for conservative and more
aggressive instantiations, where smaller values of k and R are considered more
aggressive. It is evident that already for the conservative instantiations, we gain
significant performance speedup, while still finding almost the full set of twin
smooths, and most of the 100 largest 300-smooth twins. For the more aggressive
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instantiations, we miss more twins, yet still find a significant amount of large
twins.

As discussed above, the constant-range approach outperforms the
global-k approach in terms of runtime, due to the elimination of all checks
for k-balance of twins. Interestingly, while very aggressive instantiations of
constant-range miss more twin smooths, they find a larger share of the largest
100 twins than their global-k counterpart. Therefore, we conclude that for
larger smoothness bounds B, for which we cannot hope to complete the full
CHM algorithm, constant-range is the most promising approach for obtaining
larger twin smooths within feasible runtimes.

Remark 7. While all optimisations lose a small proportion of the largest twin
smooths, they are not necessarily lost permanently. In practice, when iterating
to larger smoothness bounds Bi, we often also find some Bj-smooth twins for
bounds Bj < Bi. Thus, the size of the set of 300-smooth twins usually increases
in the optimised variants when moving to larger B.

Remark 8. In the following sections, we will require twin smooths of a certain
(relatively small) bitlength. This can easily be incorporated into all implemented
variants by removing all twins above this bound after each iteration. This means
that we cut off the algorithm at this size, and do not attempt to obtain larger
twins, which significantly improves the runtime and memory requirements.

5 Fantastic p’s and Where to Find Them: Cryptographic
Primes of the Form p = 2rn − 1

This section focuses on finding primes suitable for isogeny-based cryptographic
applications. As discussed in the previous sections, the pure CHM method does
not allow for us to directly compute twins of at least 256 bits as required for
this aim. However, some cryptographic applications, for example the isogeny-
based signature scheme SQISign, do not need twins (r, r + 1) that are fully
smooth. Indeed, the current incarnation of SQISign requires a prime p that
satisfies 2fT | p2 − 1, where f is as large as possible, and T ≈ p5/4 is smooth
and odd [17]. This flexibility allows us to move away from solely using CHM
and, instead, to use CHM results as inputs to known methods for finding such
primes. At a high level, we will find fully smooth twins of a smaller bit-size via
CHM and boost them up using the polynomials pn(x) = 2xn − 1 (for carefully
chosen n). Hence, if r, r + 1 are fully smooth integers and n is not too large, we
can guarantee a large proportion of pn(r)2 − 1 to be smooth.

Notation. For a variable x, we will denote 2xn − 1 by pn(x), and the evaluated
polynomial pn(r) by p, emphasising that it is an integer.

General Method. In this section, we will give a more in-depth description of
the approach to obtaining cryptographic sized primes p, such that p2 − 1 has
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Table 2. Factorisation of pn(x)2 − 1 for n = 2, 3, 4, 5, 6, where pn(x) = 2xn − 1

n pn(x)2 − 1

2 4x2(x − 1)(x + 1)

3 4x3(x − 1)(x2 + x + 1)

4 4x4(x − 1)(x + 1)(x2 + 1)

5 4x5(x − 1)(x4 + x3 + x2 + x + 1)

6 4x6(x − 1)(x + 1)(x2 − x + 1)(x2 + x + 1)

log T ′ bits of B-smoothness, where T ′ = 2fT . We recall that for our SQISign
application, we have log p ∈ {256, 384, 512} for NIST Level I, III and V (respec-
tively), T ≈ p5/4 and f as large as possible. In the current implementation of
SQISign, f ≈ �log

(
p1/4

)� (i.e., T ′ ≈ p3/2), and therefore, we aim for this when
finding primes.

Fix a smoothness bound B and let pn(x) = 2xn − 1. We have pn(x)2 − 1 =
4xn(x − 1)f(x) for some polynomial f(x), as shown in Table 2.

We observe that for n even, both x + 1 and x − 1 appear in the factorisation
of pn(x)2 − 1. In this case, for twin smooths (r, r ± 1), evaluating pn(x) at r
guarantees that we have a smooth factor 4xn(x±1) in p2 −1. For n odd, we will
only have that x − 1 appears in the factorisation, and therefore only consider
twins (r, r − 1) to guarantee we have B-smooth factor 4xn(x − 1).

The first step is to use our implementation of the CHM algorithm, described
in Sects. 3 and 4, to obtain B-smooth twins (r, r ± 1) of bitsize approximately
(log p − 1)/n. We then obtain primes of suitable sizes via computing p = pn(r)
for all candidate r, as described above. By construction, p2 − 1 has guaranteed
n+1

n (log(p) − 1) + 2 bits of smoothness. We then require that the remaining
factors have at least

max

(
0,

3
2

log p −
(

n + 1
n

(log p − 1) + 2
) )

bits of B-smoothness. In Sect. 5.2, we will discuss the probability obtaining this
smoothness from the remaining factors.

5.1 Choosing n

For small n, we require CHM to find twin smooths of large bit size. For certain
bit sizes, running full CHM may be computationally out of reach, and therefore
we use a variant that may not find all twins. In this case, however, we have more
guaranteed smoothness in p2 − 1 and so it is more likely that the remaining
factors will have the required smoothness. For large n, we can obtain more twin
smooths from CHM (in some cases, we can even exhaustively search for all twin
smooths), however we have less guaranteed smoothness in p2 −1. Finding values
of n that balance these two factors will be the focus of this section.
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n = 2. Let (r, r ± 1) be twin smooth integers and let p = 2r2 − 1. In this case,
2r2(r ± 1) | T ′, meaning that log T ′ ≥ 3

2 log p, and we have all the required
smoothness. Write T ′ = 2fT = 2r2(r ± 1) where T is odd. If f < �log

(
p1/4

)�,
we have T > p5/4, and we do not have to rely on a large power of 2 dividing
r − 1. Otherwise, we turn to Sect. 5.2 to estimate the probability of r ∓ 1 having
enough small factors to make up for this difference.

Suppose we target primes with λ bits of classical security, i.e., we need a
prime of order p ≈ 22λ. For n = 2, this corresponds to finding twin smooths of
size ≈ 2λ− 1

2 , and so is only suitable for finding NIST Level I parameters due to
the limitations of the CHM method (see Sect. 4). One could instead use other
techniques for finding large enough twins for n = 2, such as the PTE sieve [10],
at the cost of significantly larger smoothness bounds. Alternatively, we can move
to higher n, which comes at the cost of loosing guaranteed smoothness. Another
challenge here is that, given the relatively large size of the twins, it appears
difficult to find enough twins for obtaining primes with a large power of two.

n = 3. Let (r, r − 1) be twin smooth integers and let p = 2r3 − 1. Here, we
can guarantee that the smooth factor T ′ of p2 − 1 is at least of size ≈ p4/3.
If f < �log2

(
p1/12

)�, we have T > p5/4. Otherwise, we require that there are
enough smooth factors in r2 + r + 1 to reach this requirement.

Here, for λ bits of classical security, we need to target twin smooth integers
of size ≈ 2

2λ−1
3 . In this case, the CHM method will (heuristically) allow us to

reach both NIST Level I and III parameters.

n = 4. Let (r, r ± 1) be twin smooth integers and p = 2r4 − 1. Here we can only
guarantee a factor of size ≈ p5/4 of p2 − 1 to be smooth. When accounting for
the power of two, we must hope for other smooth factors. As pn(x) − 1 splits
into (relatively) small degree factors, namely pn(x)−1 = 2(x−1)(x+1)(x2 +1),
the probability of having enough B-smooth factors is greater (than if there was,
for example, a cubic factor).

In contrast to the previous cases, this setting should be suitable for targeting
all necessary security parameters. However, for the NIST Level I setting, the
work by De Feo, Leroux and Wesolowski [17][§5.2] showed that the best one
could hope for here while maximising the power of two gives SQISign parameters
with a smoothness bound of ≈ 1800. While this is a better smoothness bound
than the NIST Level I prime with the best performance for SQISign, it does not
perform as well in practice. Indeed, most of the odd primes less than 1800 that
appear in p2−1 are relatively large, making isogeny computation relatively slow.
In the best performing prime, however, a large power of 3 divides p2 − 1, and
most of its other odd prime divisors are fairly small. We note that the authors
of [17] only searched for parameters that maximise the power of two, and hence
there could be some scope to find parameters that have slightly smaller powers
of two.
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Other n. For larger n, the amount of guaranteed smoothness decreases, and thus
the probability that the remaining factors have the required smoothness is small.
Indeed, we find that only n = 6 has the correct balance of requiring small twin
smooths while still having a reasonable probability of success. This is primarily
due to the factorisation of p6(x) − 1 = 2(x − 1)(x + 1)(x2 − x + 1)(x2 + x + 1),
having factors of degree at most 2, which improves the probability that we have
enough smooth factors. In contrast, n = 5 results in more guaranteed smoothness
than n = 6, but requires the quartic factor in p5(x) − 1 to provide the necessary
smoothness, which is relatively unlikely.

While one could use n = 6 to find NIST Level I parameters, this larger n
shines in its ability to give us both NIST Level III and V parameters.

5.2 Probability of Sufficient Smoothness

In this section, we determine the probability of obtaining cryptographic primes
with sufficient smoothness using the methods outlined above. We follow Banks
and Shparlinski [1] to determine the probability of p2−1 being sufficiently smooth
for some prime p. More precisely, given that the factor r(r±1) | p2 −1 is already
fully smooth, we want to calculate the probability of p2 − 1 having log T ′-bits of
B-smoothness.

First, we find the probability that the factor r(r ± 1) | p2 − 1 is fully smooth,
i.e., the probability of finding fully B-smooth twins (r, r ± 1). To do so, we use
the following counting function:

Ψ(X,B) = #{N ≤ X : N is B-smooth}.

For a large range of X and B, it is known that

Ψ(X,B) ∼ ρ(u)X,

where u = (log X)/(log B) and ρ is the Dickman function [12,14]. The Dick-
man function is implemented in most computational algebra packages, including
SageMath, which allows us to evaluate Ψ(X,B) for various X and B. In prac-
tice, we find B-smooth twins (r, r ± 1) using our implementation of the CHM
algorithm as described in 4.

Next, we calculate the probability of p2 − 1 having log T ′-bits of B-
smoothness. As p2 − 1 may only be partially smooth, we will use the following
counting function

Θ(X,B,D) = #{N ≤ X : D < largest B-smooth divisor of N}.

The value Θ(X,B,D) will give the number of positive integers N ≤ X for which
there exists a divisor d | N with d > D and such that d is B-smooth. This
function has been previously studied in the literature, for example [25,26]. For
X,B,D varying over a wide domain, Banks and Shparlinski [1, Theorem 1] derive
the first two terms of the asymptotic expansion of Θ(X,B,D). By implementing
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this expansion, we are able to estimate the value of Θ at various X,B,D in the
correct range.

As discussed in the section above, we restrict to n = 2, 3, 4, 6. Recall that
pn(x)2 − 1 = 4xn(x − 1)f(x), as given in Table 2 for each 2 ≤ n ≤ 6. Write
f(x) = f1(x) · · · fk(x), where each fi is irreducible of degree di = deg(fi) and
d = deg(f). To calculate the probabilities, we require that the probability of f(x)
having at least log2 D-bits of B-smoothness is the product of the probabilities of
each of its factors fi having at least log2 Di-bits of B-smoothness where log2 D =∑k

i=1 log2 Di. We can view this as an extension of [10, Heuristic 1]. Note that
the only constraint on how the smoothness is distributed between the factors
fi(x) is that the total bit size of B-smooth factors must equal log2 D. We could,
for example, sum over all the possible distributions of smoothness using the
inclusion-exclusion principle. However, in distributions where one of the factors
has a very small amount of smoothness, we fall out of the ranges allowed as input
into Θ determined by [1, Theorem 1]. Therefore, for simplicity, we will assume
that smoothness is distributed evenly between the remaining factors (weighted
by the degree), i.e., log2 Di = (di log2 D)/d. In reality, this only gives us a lower
bound for the probability, but this will suffice for our purposes. Obtaining a
more theoretical and accurate grasp on these probabilities is left as an avenue
for future research.

In Table 3, we give an overview of the relevant probabilities for NIST Level
I, III, and V parameters, calculated as described above. Our code for computing
these probabilities is available in the code package attached to this submission.
We observe that as n gets larger, the probability of finding B-smooth integers
of the appropriate bitsize increases. In contrast, for bigger n we are guaranteed
less smoothness in p2 − 1. As a result, given B-smooth twins, the probability
of finding a SQISign prime p decreases as n increases. For each NIST level,
we predict that the n that balance these two contrasting probabilities have a
higher chance of finding a p satisfying our requirements. As discussed in the
next section, this trend is reflected in practice.

6 Results and Comparisons

In this section we give the concrete results that were obtained from our exper-
iments with the CHM algorithm, and analyse the various twins in relation to
SQISign in accordance with the relevant bitsizes mentioned in Table 3.

6.1 Record Twin Smooth Computations

We ran the optimised full CHM algorithm with B = 547 and found a total of
82,026,426 pairs of B-smooth twins. Among these pairs, we found 2,649 addi-
tional 200-smooth twins that were not found by the original authors of the
algorithm [8]. This showcases the validity of Remark 5 that the algorithm does
not guarantee us to find all B-smooth twins. Furthermore, there is no guarantee
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Table 3. Assuming that (r, r ± 1) are twin smooth integers and p has log p bits,
calculates the probability of having a B-smooth divisor T ′ | p2 − 1 of size ≈ p3/2. More
details in text.

n log2(r) Probability of
B-smooth (r, r ± 1)

Probability of p2 − 1
log T ′-bits B-smooth
given (r, r ± 1) twin
smooth

Extra Smoothness
Needed

NIST-I B = 29

log p = 256
log T ′ = 384

2 ≈ 127.5 2−58.5 1 0

3 ≈ 85.0 2−32.1 2−8.4 42

4 ≈ 63.8 2−20.5 ≈ 2−12.7 63.3

6 ≈ 42.5 2−10.4 ≈ 2−16.8 84.5

NIST-III
B = 214

log p = 384
log T ′ = 576

2 ≈ 191.5 2−55.7 1 0

3 ≈ 127.7 2−30.5 2−8.2 63.3

4 ≈ 95.8 2−19.4 ≈ 2−12.4 95.3

6 ≈ 63.8 2−9.7 ≈ 2−16.2 127.2

NIST-V
B = 217

log p = 512
log T ′ = 768

2 ≈ 255.5 2−63.7 1 0

3 ≈ 170.3 2−35.2 2−9.6 84.7

4 ≈ 127.8 2−22.6 ≈ 2−14.5 127.3

6 ≈ 85.2 2−11.5 ≈ 2−19.2 169.8

that running CHM with B = 547 will produce all 200-smooth twins. As men-
tioned in the introduction, the only way to see how far away we are from the
exact number of 200-smooth twins is to solve all 246 Pell equations.

For the application mentioned in the previous section, we only need twins
of a certain bitsize. Within this set of twins, 9,218,648 pairs (r, r + 1) fall in
the range 260 < r < 264; 1,064,249 pairs fall in the range 281 < r < 285;
31,994 pairs fall in the range 292 < r < 296; and, only 1 pair falls in the range
2120 < r < 2128. This pair in the final interval is the largest pair found in this
run, with r = 4012031241848866526424165796047749375, and factorisations:

r = 54 · 7 · 132 · 172 · 19 · 29 · 41 · 109 · 163 · 173 · 239 · 2412 · 271 · 283
· 499 · 509, and

r + 1 = 28 · 32 · 312 · 432 · 472 · 832 · 1032 · 3112 · 4792 · 5232.

As we will see later, the number of 64-bit and 85-bit twins we found in this
run is enough to find attractive parameters for SQISign. The 96-bit twins will
give us parameters with the required smoothness, however we do not have enough
pairs to hope to find a prime p where p2 − 1 is divisible by a large power of two.

Table 3 shows that finding many twins of around 128 bits in size is likely to
be fruitful in the search for SQISign-friendly parameters, so we ran the algorithm
for B = 1300 using the constant-range optimisation with a range R = 5000,
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in order to specifically target twins (r, r +1) with r > 2115. In this run we found
1,091 such pairs - the largest of these pairs is the following 145-bit twin (r, r+1)
with r = 36132012096025817587153962195378848686084640, where

r = 25 · 5 · 7 · 112 · 13 · 23 · 53 · 71 · 109 · 127 · 131 · 193 · 251 · 283 · 307
· 359 · 367 · 461 · 613 · 653 · 1277, and

r + 1 = 32 · 292 · 312 · 432 · 592 · 612 · 732 · 792 · 892 · 1672 · 4012 · 4192.

Among the 1,091 twins CHM found, 184 pairs fall in the range 2120 < r < 2128,
which was sufficient to find some SQISign-friendly parameters (though not at all
NIST security levels).

In addition, we also ran CHM with B = 211 to obtain a large number of twin
smooth integers in the range 255 < r < 2100 (see Remark 8 in the setting where
we want to find twins in such an interval). This run was performed using the
constant-range optimisation with a range R = 2500, and produced 608,233,761
pairs of twins lying in this range. Compared with the B = 547 run, the yield
from this run gave ample twins with 292 < r < 296, which was sufficient to find
SQISign parameters with the desirable large power of two.

All of these searches were done using the machine specified in Sect. 4.3 - each
search took between 1 and 2 days to run.

6.2 Concrete Parameters for SQISign

We now turn to giving a list of SQISign-friendly primes that target NIST Level
I, III, and V. Recall from Sect. 1 that this means that we need to find primes p
with 2f · T | p2 − 1. We need the exponent f to be as large as possible and the
cofactor T ≈ p5/4 to be B-smooth, aiming to keep the ratio

√
B/f as small as

possible; this quantity is a rough cost metric for the performance of the signing
algorithm in SQISign [17, §5.1]. To complement this, the exponent f controls
the performance of the verification of SQISign; the larger this exponent is the
faster the verification is. We may run into circumstances where the signing cost
metric is minimised, but the power of two is not large enough or vice-versa. We
aim to balance these as much as possible, thus finding parameters that maximise
the power of two while minimising the signing cost metric. We refer to Sect. 6.3
for more details on the practicability of our parameters.

Though we need T ≈ p5/4, if this cofactor is too close to p5/4, then the
underlying heuristics within the generalised KLPT algorithm might fail and one
cannot guarantee a successful signature in SQISign [17, §3.2]. Thus, in practice
we need T ≈ p5/4+ε for some small ε (e.g., 0.02 < ε < 0.1).

We find parameters for NIST Level I, III and V by searching for 256, 384
and 512-bit primes, respectively. For those primes targeting the higher security
levels, these are the first credible SQISign-friendly primes. In what follows, we
look at each security level and analyse the most noteworthy primes found in
our searches. When stating the factorisations of p ± 1 for the mentioned primes,
the underlined factors are the smooth factors of T , while factors in violet are
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the rough factors which are not needed for SQISign. A full collection of our best
SQISign-friendly primes that were found using the CHM machinery is showcased
in Table 4.

Remark 9. We note that in all of the forthcoming searches, the post-processing of
the CHM twins to find the SQISign-friendly parameters can be made reasonably
efficient with straightforward techniques. In particular, the runtime is negligible
in comparison to running the CHM searches mentioned in Sect. 6.1 and can be
done using naive trial division.

NIST I Parameters. We targeted 256-bit primes using n = 2, 3 and 4. Given
that our CHM runs produced a lot more twins of smaller bit-size compared to
the 128-bit level, we expect to find more primes using n = 3, 4, which was indeed
the case. It is worth noting that some primes found with n = 2 gave rise to p2−1
being divisible by a relatively large power of two. However, in these cases, most
of the primes dividing p2 − 1 are relatively large and would therefore give rise
to slower isogeny computations during the SQISign protocol [17].

Through the experimentation with the 85-bit twins produced from CHM
with B = 547, we found the following 254-bit prime p = 2r3 − 1 with r =
20461449125500374748856320. All the specific criteria that we need for a SQISign
parameter set are met, while obtaining an attractively small signing cost metric√

B/f . For this prime, we have

p + 1 = 246 · 53 · 133 · 313 · 733 · 833 · 1033 · 1073 · 1373 · 2393 · 2713 · 5233, and

p − 1 = 2 · 33 · 7 · 112 · 172 · 19 · 101 · 127 · 149 · 157 · 167 · 173 · 199 · 229 · 337
· 457 · 479 · 141067 · 3428098456843 · 4840475945318614791658621.

While the associated cofactor T here exceeds p5/4, it does not exceed it by
much. As we mentioned earlier, it might therefore be prone to signing failures
and hence might not currently be suitable for SQISign. The next 255-bit prime
of mention, p = 2r3 − 1 with r = 26606682403634464748953600, is very similar
to the previous prime, however the cofactor T exceeds p5/4 by a larger margin,
so would be less prone to these failures. In this case we have

p + 1 = 240 · 56 · 113 · 473 · 676 · 1013 · 1133 · 1373 · 2773 · 3073 · 4213, and

p − 1 = 2 · 32 · 193 · 37 · 59 · 61 · 97 · 1812 · 197 · 223 · 271 · 281 · 311 · 397 · 547
· 1015234718965008560203 · 3143438922304814418457.

We additionally ran experiments with the 64-bit twins produced from CHM with
B = 547 and found a 253-bit prime p = 2r4 − 1 with r = 8077251317941145600,
where we have

p + 1 = 249 · 58 · 134 · 414 · 714 · 1134 · 1814 · 2234 · 4574, and

p − 1 = 2 · 32 · 75 · 17 · 31 · 53 · 61 · 73 · 83 · 127 · 149 · 233 · 293 · 313 · 347 · 397
· 467 · 479 · 991 · 1667 · 19813 · 211229 · 107155419089
· 295288804621
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Among all the primes that we found for NIST I security, this appears to be the
best. It has both a larger power of two compared to the primes mentioned above
found with n = 3 and a smaller smoothness bound, thus making the signing
cost metric attractively small. Additionally, the cofactor T is large enough to be
practical for SQISign without any failures. We note once again that this prime
would have been out of scope for the authors of [17] to find since they constrained
their search to only find primes for which the power of two is larger than the
one found here.

NIST III Parameters. We targeted 384-bit primes using n = 3, 4 and 6. The
challenge in all three of these scenarios is finding enough twins whose product is
divisible by a large power of two. With the limited yield of 128-bit twins, finding
such primes is not straightforward; the example with n = 3 in Table 4 is the
only such instance that we managed to find. The picture is somewhat similar
with the 96-bit twins: while we have more of them, the success probabilities
in Table 3 suggest that we need a lot more twins with a large power of two in
order to produce any SQISign-friendly instances. One exceptional prime that
was found in this search was the following 375-bit prime, p = 2r4 − 1 with
r = 12326212283367463507272925184. Here we have

p + 1 = 277 · 114 · 294 · 594 · 674 · 1494 · 3314 · 4434 · 5934 · 10914 · 13194, and
p − 1 = 2 · 3 · 5 · 13 · 17 · 31 · 37 · 53 · 83 · 109 · 131 · 241 · 269 · 277 · 283 · 353 · 419

· 499 · 661 · 877 · 1877 · 3709 · 9613 · 44017 · 55967 · 522673 · 3881351
· 4772069 · 13468517 · 689025829 · 30011417945673766253.

Of the NIST Level III primes listed in Table 4, the prime that shows the
most promise is the 382-bit prime p = 2r6 − 1 with r = 11896643388662145024.
Not only is the power of two particularly large but also the smoothness bound
of the cofactor T is quite small, reflected in its small signing cost metric (when
compared to other p where p2 − 1 is divisible by a large power of 2). We have
the factorisations

p + 1 = 279 · 36 · 2312 · 1076 · 1276 · 3076 · 4016 · 5476, and

p − 1 = 2 · 52 · 7 · 11 · 17 · 19 · 47 · 71 · 79 · 109 · 149 · 229 · 269 · 283 · 349 · 449
· 463 · 1019 · 1033 · 1657 · 2179 · 2293 · 4099 · 5119 · 10243 · 381343
· 19115518067 · 740881808972441233 · 83232143791482135163921.

NIST V Parameters. We targeted 512-bit primes using n = 4 and 6. Once
again, combining our CHM runs with n = 6 proved to be the best option for
finding SQISign parameters at this level. None of the twins found at the 128-bit
level combined with n = 4 to produce any SQISign friendly primes. From the set
of 85-bit twins found in the B = 547 CHM run, the 510-bit prime p = 2r6 − 1
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with r = 31929740427944870006521856 is particularly attractive. The power of
two here is the largest found from this run. Here we have

p + 1 = 291 · 196 · 616 · 896 · 1016 · 1396 · 1796 · 2236 · 2396 · 2516 · 2816, and

p − 1 = 2 · 32 · 5 · 7 · 13 · 23 · 29 · 31 · 41 · 53 · 109 · 149 · 157 · 181 · 269 · 317 · 331
· 463 · 557 · 727 · 10639 · 31123 · 78583 · 399739 · 545371 · 550657 · 4291141
· 32208313 · 47148917 · 69050951 · 39618707467 · 220678058317
· 107810984992771213 · 1779937809321608257.

The 85-bit twins found in the CHM run with B = 211 were used to try and
find NIST V parameters. The largest power of two that was found in this run
which is suitable for SQISign was f = 109. The prime with smallest signing cost
metric while having a relatively large power of two is the following 508-bit prime,
p = 2r6 − 1 where r = 26697973900446483680608256. Here we have

p + 1 = 285 · 1712 · 376 · 596 · 976 · 2336 · 31112 · 9116 · 12976, and

p − 1 = 2 · 32 · 5 · 7 · 112 · 232 · 29 · 127 · 163 · 173 · 191 · 193 · 211 · 277 · 347 · 617
· 661 · 761 · 1039 · 4637 · 5821 · 15649 · 19139 · 143443 · 150151 · 3813769
· 358244059 · 992456937347 · 353240481781965369823897507
· 8601020069514574401371658891403021.

6.3 Performance Estimates

We would ideally implement our primes using the SQISign code provided in [17]
to determine how well these parameters perform in practice. However, the current
implementation is specifically tailored towards the particular primes that are
being used, and is limited to NIST I parameter sizes. Including our NIST I
primes from Table 4 results in failures during key generation, which seem to
stem from using parameters with different powers of two. Thus, implementing
and benchmarking our parameters would require a major rework of the provided
code, which is out of the scope of this work.

NIST I. The state-of-the-art implementation of SQISign uses a 254-bit prime
that was found using the extended Euclidean algorithm (XGCD) [9,16] (see
Sect. 2). With this method, it is possible to, for example, force p ± 1 and p ∓ 1
to be divisible by a large power of 2 and 3 (respectively). Indeed, with this
approach, a smooth factor of size ≈ √

p comes for free in both p ± 1.
Concretely, the prime p3923 used in [17] has

p + 1 = 265 · 52 · 7 · 11 · 19 · 292 · 372 · 47 · 197 · 263 · 281 · 461 · 521 · 3923 · 62731
· 96362257 · 3924006112952623, and

p − 1 = 2 · 365 · 13 · 17 · 43 · 79 · 157 · 239 · 271 · 283 · 307 · 563 · 599 · 607 · 619
· 743 · 827 · 941 · 2357 · 10069.
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Table 4. A table of SQISign parameters p = pn(r) for twin-smooth integers (r, r ± 1)
found using CHM at each security level. The f is the power of two dividing (p2 − 1)/2
and B is the smoothness bound of the odd cofactor T ≈ p5/4. It also includes existing
primes in the literature including the state-of-the-art.

NIST security level p �log2(p)� f B
√
B/f logp(T )

p3923 [17] 254 65 3923 0.96 1.32

n r

NIST I 2 1211460311716772790566574529001
291776
2091023014142971802357816084152
713216

241 243 49 49 1091 887 0.67 0.61 1.28 1.28

3 3474272816789867297357824
10227318375788227199589376
21611736033260878876800000
20461449125500374748856320
26606682403634464748953600

246 251 254
254 255

43 31 31 46
40

547 383 421
523 547

0.54 0.63
0.66 0.50
0.58

1.29 1.31
1.28 1.26
1.28

4 1466873880764125184
8077251317941145600
12105439990105079808 [17]
13470906659953016832 [17]

243 253 255
256

49 49 61 61 701 479
1877 1487

0.54 0.45
0.71 0.63

1.28 1.30
1.31 1.30

NIST III 3 1374002035005713149550405343373
848576

362 37 1277 0.97 1.25

4 5139734876262390964070873088
12326212283367463507272925184
18080754980295452456023326720
27464400309146790228660255744

370 375 377
379

45 77 61 41 11789
55967
95569
13127

2.41 3.07
5.07 2.79

1.26 1.31
1.26 1.29

6 2628583629218279424
5417690118774595584
11896643388662145024

369 375 382 73 79 79 13219
58153
10243

1.58 3.05
1.28

1.27 1.27
1.30

12 5114946480 [13] 389 49 31327 3.61 1.30

NIST V 6 9469787780580604464332800
12233468605740686007808000
26697973900446483680608256
31929740427944870006521856
41340248200900819056793600

499 502 508
510 512

109 73 85
91 67

703981
376963
150151
550657
224911

7.70 8.41
4.56 8.15
7.08

1.25 1.28
1.26 1.25
1.28

The primes from Table 4 provide various alternatives for NIST I parameters,
and we can give simplified estimates for their performance in comparison to p3923.
As an example, we will consider p479, the 253-bit prime from Table 4 having
B = 479. With f = 49, it features a slightly smaller power of two compared
to p3923 with f = 65. This means that we would have to verify the signature
isogeny in 21 chunks of 249-isogenies, instead of 16 chunks of 265-isogenies for
p3923. Given that the computational bottleneck for this is the generation of the
respective kernel points per chunk, and ignoring the savings of computing 249-
isogenies instead of 265-isogenies and the relatively cheap recomputation of the
challenge isogeny, this results in an estimated slowdown of roughly 21/16 ≈ 1.31.
Thus, we expect a modest slowdown from a verification time of 6.7ms (see [17])
to roughly 8.8ms on a modern CPU.

However, we expect a significant speedup for signing: The computational
bottleneck during the signature generation is the repeated computation of T -
isogenies; one computes two T isogenies per chunk of 2f -isogenies in the verifica-
tion. Since the T -isogeny computation is dominated by its largest prime factor
B, and its cost can be estimated by

√
B, the ratio of the signing cost metrics√

B/f from Table 4 reflects the overall comparison. Given this metric, we expect
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a speedup factor of roughly 0.45/0.96 ≈ 0.47. For the running time, this would
mean an improvement from 424ms (see [17]) to roughly 199ms on a modern
CPU.

We can also consider a different cost-estimate, given by summing the cost
√

�i

for the five biggest (not necessarily distinct) prime factors �i | T , before dividing
by f . The advantage of considering more factors of T is that it constitutes a larger
portion of the time it takes to compute a T -isogeny, while the disadvantage is
that the cost

√
� becomes increasingly inaccurate for smaller prime factors �.

In this metric, the speedup is smaller, but is still significant. Specifically, we
expect a speedup factor of roughly 2.19/3.04 ≈ 0.72, which would result in an
improvement from 424ms to roughly 305ms.

In a nutshell, even though we can only give rough estimates for running
times, we expect our NIST I parameters to achieve much better signing times
due to the smaller smoothness bounds B, at the cost of a very modest slowdown
for verification due to slightly smaller values of f . In the light of the relatively
slow signing times in SQISign, this option seems worthwhile for applications that
require faster signing.

NIST III and V. As mentioned earlier, our work showcases the first credible
primes for SQISign at the NIST III and NIST V security level. A beneficial
feature about most of the primes found in Table 4 is that the majority of the
smooth factors are relatively small (e.g. B < 210). In comparison, we expect
the XGCD method to scale worse for larger security levels, i.e., requiring much
larger smoothness bounds. This is similar to the analysis in [10], which shows that
while the XGCD approach has reasonable smoothness probabilities for NIST I
parameters, other methods become superior for larger sizes.

We note that there are other 384 and 512-bit primes in the literature for
which p2 −1 is smooth [10,13]. None of the primes from [10] have a large enough
power of two for a suitable SQISign application. Some primes were found in
the context of the isogeny-based public-key encryption scheme Séta [13] that
could be suitable for SQISign. As part of their parameter setup, they required
finding ≈ 384-bit primes4. Of the 7 primes that they found, the 389-bit prime,
p = 2r12 − 1 with r = 5114946480 appears to be somewhat SQISign-friendly to
achieve NIST III security (see Table 4). However, in addition to its worse signing
metric, representations of Fp-values require an additional register in this case
compared to our primes of bitlengths slightly below 384. Thus, we can expect
implementations of Fp-arithmetic to perform significantly worse for this prime.

Remark 10. The requirement we impose on p2 − 1 being divisible by 2f · T is
to ensure that it fits within the current implementation of SQISign. At present,
the SQISign implementation has a fine-grained optimisation of their ideal to
isogeny algorithm to the setting with � = 2. In general, one could instead allow
p2 − 1 to be divisible by L · T , for a smooth number L with gcd(L, T ) = 1. This
could open new avenues to find SQISign-friendly primes, but would require a

4 That satisfy some mild conditions outside of just requiring p2 − 1 to be smooth.
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reconfiguration of the SQISign code. For example, using the prime found with
r = 2091023014142971802357816084152713216 from Table 4, we could use L =
249 · 34 · 5 | p2 − 1 and still have a large enough smooth factor T to exceed p5/4,
thereby further minimising the expected slowdown for verification.

Remark 11. The focus of this work has been on finding parameters for SQISign
but there are other isogeny-based cryptosystems that could benefit from such
quadratic twist-style primes. While traditional SIDH [19] is now broken, there
have been proposed countermeasures [2,3,18] that aim to thwart the attacks
from [6,22,23]. Currently, these countermeasures use SIDH-style primes, but
could potentially benefit from quadratic twist-style primes like those explored in
this work for SQISign. However, these countermeasure require primes of larger
sizes, so it is unclear if our CHM-based approach scales to these sizes, especially
when aiming to balance the size of the smooth cofactors of p + 1 and p − 1.
Nevertheless, our techniques might give a good starting point for future research
in this direction.
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Abstract. Group actions are becoming a viable option for post-
quantum cryptography assumptions. Indeed, in recent years some works
have shown how to construct primitives from assumptions based on isoge-
nies of elliptic curves, such as CSIDH, on tensors or on code equivalence
problems. This paper presents a bit commitment scheme, built on non-
transitive group actions, which is shown to be secure in the standard
model, under the decisional Group Action Inversion Problem. In partic-
ular, the commitment is computationally hiding and perfectly binding,
and is obtained from a novel and general framework that exploits the
properties of some orbit-invariant functions, together with group actions.
Previous constructions depend on an interaction between the sender and
the receiver in the commitment phase, which results in an interactive bit
commitment. We instead propose the first non-interactive bit commit-
ment based on group actions. Then we show that, when the sender is
honest, the constructed commitment enjoys an additional feature, i.e., it
is possible to tell whether two commitments were obtained from the same
input, without revealing the input. We define the security properties that
such a construction must satisfy, and we call this primitive linkable com-
mitment. Finally, as an example, an instantiation of the scheme using
tensors with coefficients in a finite field is provided. In this case, the
invariant function is the computation of the rank of a tensor, and the
cryptographic assumption is related to the Tensor Isomorphism problem.

Keywords: Cryptographic group actions · Non-transitive group
actions · Bit commitments · Linkable commitments · Tensors

1 Introduction

Group Actions in Cryptography. Recent developments in quantum comput-
ing make the advent of a quantum machine suitable for cryptanalysis purposes a
threat. Many cryptographic algorithms that are used nowadays can no longer be
considered secure against a quantum attacker. Primitives relying on the hard-
ness of the Discrete Logarithm or the Factorization problem are broken by the
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well known Shor’s algorithm [33]. This leads to the birth of the Post-Quantum
Cryptography, that aims to find and study protocols based on cryptographic
assumptions that appear to be resistant to attacks performed by quantum com-
puters. The most promising ones are based on lattices, multivariate polynomials,
hash functions, error correcting codes and isogenies of elliptic curves. However,
in order to increase the variety of probably secure assumptions, it is necessary
to find new problems with useful features to build new cryptographic protocols.
A recent line of study concerns equivalence problems and cryptographic group
actions. The most known reference is given by Couveignes in 2006 [11] and was
used in the setting of isogeny-based cryptography. Moreover, the explicit use
of group actions can be found in the 1991 article of Brassard and Young [8].
More recently, the framework has been studied by Grigoriev and Shpilrain, [15],
Alamati, De Feo, Montgomery and Patranabis [1] and Ji, Qiao, Feng and Yun
[20], introducing some formal cryptographic assumptions. There are many group
actions suitable for post-quantum cryptography, arising from different areas of
mathematics and computer science. Some examples can be the class group action
of CSIDH [9], the one induced by the general linear group on various objects
[20,30,35], the action acting on polynomials [26] or the ones concerning linear
codes [3,30]. In the last years, cryptographic group actions have been employed
to design many primitives such as sigma protocols and signature schemes (via
the GMW scheme for Graph Isomorphism [14]), ring and group signatures [4,5],
key exchanges [9] and updatable encryption schemes [22].

Commitment Schemes. A commitment scheme is a cryptographic protocol
between two parties, a sender and a receiver. The sender wants to commit to
a value b without revealing it to the other party. To do this, he binds b to a
commitment C that is sent to the receiver. In a second moment, the sender wants
to reveal b and the receiver must be able to verify that it was the committed
value behind C. A commitment must satisfy two security properties: it must
not reveal any information about the committed value (hiding property), and
the sender cannot reveal a different b′ �= b that opens to the same commitment
(binding property).

Commitment schemes are widely used, both as stand-alone protocols and as
atomic parts of more involved mechanisms. For example, they are used in Zero-
Knowledge proofs [23], digital auctions [25], signature schemes [21], multi-party
computation [13], e-voting [12] and confidential transactions [29]. In this work,
we will mainly focus on bit commitments, where the committed value b can be
1 or 0.

Related Works. Bit commitments schemes are a component of many crypto-
graphic algorithms. In 1991, Naor [24] showed how to obtain a bit commitment
protocol starting from a pseudorandom generator. Bit committments from group
actions are known in literature. In 1991 Brassard and Young [8] present an inter-
active scheme from certified and uncertified group actions. In 2019 Ji, Qiao, Song
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and Yun [20] present, among other construction, two interactive bit commitment
schemes relying on cryptographic assumptions on non-abelian group actions.

Finally, another famous commitment, which is however based on a pre-
quantum assumption, is the Pedersen commitment [27]. This scheme has an
interesting property: it can be shown that two commitments are created start-
ing from the same value, without opening the commitments [29].

Our Contribution. We present a bit commitment scheme that is non-
interactive, perfectly binding and computationally hiding in the standard model.
This scheme is based on a group action framework that makes use of certain
invariant functions. One of the innovative aspects of our proposal is that it con-
cerns non-transitive group actions, while known cryptographic applications use
transitive actions or they restrict to one orbit. The non-transitivity of the action
used in this paper is crucial and necessary; in fact, we need to be able to exhibit
two elements that are in two different orbits. Such elements are generated with
the aid of the new group action framework, in which we endow the group action
with a function that is constant inside the orbits. Given the group G acting on
the set X via the action �, an invariant function f : X → T , with T be a set,
has the following property

f(g � x) = f(x), ∀x ∈ X, g ∈ G.

The key point is that evaluating this function on a randomly chosen element
is hard, while, for a particular subset of elements that we call canonical ele-
ments, it is easy to compute. Also, the fact that the function is constant inside
the orbits guarantees that, if we consider two elements with distinct image, they
must live in (and generate under the action of G) distinct orbits. This obser-
vation is crucial to prove our commitment scheme is perfectly binding. We call
Group Action with Canonical Elements (GACE) a group action with the above
properties. Moreover, the existence of decision problems about whether an ele-
ment is randomly picked from a specific orbit or not enables us to prove that
our commitment scheme is computationally hiding.

The structure of our construction enables an additional property that is
shared with the Pedersen commitment. An honest sender generating two com-
mitments of the same value b can prove to the receiver that they are in fact
linked to the same message, without revealing it. We call this scheme a link-
able commitment and we formally define the security properties that enable the
adoption of such a primitive in cryptography. However, using some techniques
from ring signature schemes [5], we show how to extend this property to the case
of a possibly malicious sender in the Random Oracle Model.

This work is organized as follows: Sect. 2 recaps all the cryptographic tools
that will be used in the rest of the paper, while Sect. 3 introduces the frame-
work that we will use to design a non-interactive commitment scheme starting
from cryptographic group actions. In particular, we introduce the concept of
Group Action with Canonical Elements. Section 4 shows how to design a bit
commitment starting from canonical elements, and its security is proved under
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the decisional Group Action Inversion Problem assumption, while in Sect. 5 we
introduce the notion of linkable commitments and we show how our protocol is
indeed a linkable one. Section 6 shows an instantiation of the framework with
tensors, and finally, Sect. 7 concludes the work and gives some idea for further
research.

2 Preliminaries

In the course of this paper, with Pr[A] we denote the probability of the event
A. Let λ denote the security parameter, this means that the parameters of the
cryptographic schemes instantiated with security parameter λ are chosen in such
a way that the best known attack would break the scheme using at least 2λ

operations. A function μ(λ) is negligible in λ if for every positive integer c there
exists a λ0 such that for each λ > λ0 we get μ(λ) < 1

λc .
Finally, in the pseudocode “ ←$ ” denotes the random sampling, “←” is a

variable assignment and “=” is the equality check.

2.1 Group Actions

This section introduces group actions, along with the complexity assumptions
that must be made in order to use them in cryptographic protocols. Definitions
reported here are mostly taken from [1]. We point out that through this work
we do not need the action to be abelian, contrary to what is required in [11]
or [1]. All the following definitions and constructions are meaningful also in the
non-abelian case.

Definition 1. A group G is said to act on a set X if there is a map � : G×X →
X that satisfies the following properties:

– Identity: if e is the identity element of the group G, then e � x = x for every
x in X.

– Compatibility: given g and h in G and x in X, we have that (gh) � x =
g � (h � x).

In this case, we say that the triple (G,X, �) is a group action.

A group action (G,X, �) may satisfy some algebraic properties that lead to
the definition of classes of group actions, namely the action is transitive if for all
x1, x2 in X there exists an element g in G such that x1 = g � x2; moreover, the
action is said free when the following holds: g is the identity element of G if and
only if there is an x in X such that g � x = x. Finally, we say that the action is
regular if it is both free and transitive.

Note that, if the group action (G,X, �) is regular and the group G is finite,
then for every x in X the map g �→ g�x is a bijection and |G| = |X|. Furthermore,
if the group action is regular, then we can define the element δ(x, y) of G as the
unique element for which x = δ(x, y) � y. If the action is not transitive, instead,
then there exist x and y in X such that δ(x, y) does not exist.
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Alamati, De Feo, Montgomery and Patranabis also define the concept of
effective group action: a formal definition can be found in [1], here we just report
the key points.

Definition 2. A group action (G,X, �) is effective if:

– the group G is finite and there exists a probabilistic polynomial time (PPT)
algorithm for executing membership and equality testing, sampling, and for
computing the group operation and the inverse of an element;

– the set X is finite and there exist PPT algorithms for computing membership
testing and the unique representation of any element in X;

– there exists an efficient algorithm to compute g � x, for each g in G and x in
X.

Informally, a group action is said effective if it can be manipulated easily and it
can be computed in practical time. An example of non-effective group actions
is the set of polynomials in m variables of bounded degree n over a finite field,
with the symmetric group Sm, permuting the variables. It can be seen that the
unique representation is given by the algebraic normal form, but it cannot be
computed in polynomial time in n and m.

In the rest of this work, even when not explicitly written, we will consider
effective group actions.

2.2 Cryptographic Assumptions on Group Actions

The presented definition leads to efficient group actions, which can be used to
build cryptographic protocols. However, in order to use them in cryptography
we need to define some suitable computational assumptions. In [1], the authors
report some computational assumptions on group actions, for instance the fol-
lowing embraces the fact that, given two random elements x, y ∈ X in the same
orbit, then it must be intractable to compute δ(x, y).

Definition 3. Let λ be a parameter indexing G and X. Being DG and DX

two distributions over G and X respectively, then the group action (G,X, �) is
(DG,DX)-one-way if for all PPT adversaries A there is a negligible function
μ(λ) such that

Pr[A(x, g � x) � x = g � x] ≤ μ(λ),

where x is sampled according to DX and g according to DG.

In this paper, we assume that DG and DX are the uniform distributions over G
and X, and we refer to this assumption as One-way group action assumption.

Another assumption that can be used when working with group actions is
the Group Action Pseudo Randomness (GA-PR) problem, defined in [20]. It
can be seen as a generalisation of the Decisional Diffie-Hellman assumption. An
equivalent assumption can be found in [1], and a group action with this property
is called weakly pseudorandom. For example, in [20], the authors state that it
can be applied to the general linear group action on tensors. Let us now define
more formally the problem on which the GA-PR assumption is based.
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Definition 4. Let G be a group action family such that for a security parameter
λ, G(1λ) returns an effective group action (G,X, �) with log(|G|) = poly(λ) and
log(|X|) = poly(λ). Denote the triple as a public parameter pp = (G,X, �).

The group action pseudo random game (GA-PR) is given in Fig. 1. We define
the advantage of an adversary A of GA-PR as

Adv(A,GA-PR) =
∣
∣
∣
∣
Pr[A wins GA-PR(pp)] − 1

2

∣
∣
∣
∣
.

The GA-PR assumption states that for all PPT adversaries A there is a negligible
function μ(λ), with λ being the security parameter, such that

Adv(A,GA-PR) ≤ μ(λ),

GA-PR(pp)

Adversary A Challenger C
b $ {0, 1}, s $ X

if b = 1 then

g $ G, t g � s

if b = 0 then

s, t t $ X

Guess b′ b′ A wins if b = b′

Fig. 1. Group Action Pseudo Random game.

For the bit commitment scheme, we will refer to the GA-PR assumption
when the set X consists of only two orbits. We call this new assumption and the
relative game 2GA-PR.

We remark that the adversary of the GA-PR game must be able to distinguish
whether the challenger has picked the element t uniformly at random inside the
orbit of s or inside the set X. However, when t is picked inside X, it is still possible
that t is picked inside the orbit of s as well; therefore, even a computationally
unbounded adversary would not be able to win the game with probability 1.

In particular, if we consider the 2GA-PR game, and we suppose that the
two orbits have the same cardinality, the event that t is picked uniformly at
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random inside the set X and t results to be an element in the orbit of s is 1
4 .

Therefore, even an adversary with unbounded computational power, who can
distinguish whether t lives in the same orbit of s or not, cannot win the game
with probability greater than 3

4 .
The observation above motivates the introduction of an assumption which we

refer to as decisional Group Action Inversion Problem (dGA-IP). The dGA-IP
problem, also known as Isomorphism Problem [20], is the decisional variant of the
group action inversion problem presented in [34], applied to the case in which the
set X is given by only two orbits. If the restriction on the two orbits is removed,
a large number of similar problems can be found in literature [16,17,28].

Definition 5. The dGA-IP game is presented in Fig. 2, where pp is given by
the tuple (G,X, �, t0, t1), with t0 and t1 elements that lie in distinct orbits under
the action of G. We define the advantage of an adversary A of dGA-IP as

Adv(A, dGA-IP) =
∣
∣
∣
∣
Pr[A wins dGA-IP(pp)] − 1

2

∣
∣
∣
∣
.

The dGA-IP assumption states that for all PPT adversaries A there is a negli-
gible function μ(λ), with λ being the security parameter, such that

Adv(A, dGA-IP) ≤ μ(λ),

dGA-IP(pp)

Adversary A Challenger C
c, b ←$ {0, 1}, g, g′ ←$ G

s ← g � tc,

if b = 1 then

t ← g′ � s

if b = 0 then

t ← g′ � t1−c

s, t

Guess b′ b′ A wins if b = b′

Fig. 2. decisional Group Action Inversion Problem game.

This game, compared to 2GA-PR, reflects more clearly the fact that it is
hard to distinguish whether two elements in X live in the same orbit or not, and
an adversary with unbounded computational power would win this game with
probability 1.
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2.3 Commitment Schemes

A commitment scheme is a cryptographic scheme that allows one party to com-
mit to a value m by sending a commitment com, and then to reveal m by opening
the commitment at a later point in time.

Definition 6. A commitment scheme on a message space M is a triple of PPT
algorithms (PGen,Commit,Open) such that:

1. PGen(1λ) takes as input a security parameter λ in unary and returns public
parameters pp;

2. Commit(pp,m) takes as input the public parameters pp, a message m in M
and returns the commitment com and the opening material r;

3. Open(pp,m, com, r) takes as input the public parameters pp, the message m,
the commitment com and the opening material r and returns accept if com
is the commitment of m or reject otherwise.

In the rest of this work we omit the public parameters pp in the inputs of
Commit and Open.

To be suitable in cryptography, commitment schemes must satisfy the hiding
and binding properties. Hiding means that com reveals nothing about m and
binding means that it is not possible to create a commitment com that can be
opened in two different ways. These properties are formally defined.

Definition 7. Let ΠCom = (PGen,Commit,Open) be a commitment scheme and
let Hiding(ΠCom) be the hiding game represented in Fig. 3. We define the advan-
tage of an adversary A of Hiding(ΠCom) as

Adv(A,Hiding(ΠCom)) =
∣
∣
∣
∣
Pr[A wins Hiding(ΠCom)] − 1

2

∣
∣
∣
∣
.

A commitment scheme ΠCom is computationally hiding if for all PPT adversaries
A there is a negligible function μ(λ), with λ being the security parameter, such
that

Adv(A,Hiding(ΠCom)) ≤ μ(λ),

If, for every pair m0,m1, the commitments com0 and com1 have the same distri-
bution, where (comi, ri) = Commit(mi) for i = 0, 1, we say that the commitment
is perfectly hiding.

Note that, in the case of a bit commitment, the adversary does not send m0

and m1, and the bit chosen by the challenger is the committed bit in com.
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Hiding(ΠCom)

Adversary A Challenger C
pp pp PGen(1λ)

Choose m0, m1 ∈ {0, 1}n m0, m1 b $ {0, 1}

com com Commit(pp, mb)

Guess b′ b′ A wins if b′ = b

Fig. 3. Hiding game for commitment schemes.

Definition 8. A commitment scheme ΠCom = (PGen,Commit,Open) is com-
putationally binding if for all PPT adversaries A there is a negligible function
μ(λ), with λ being the security parameter, such that

Pr

⎡

⎢
⎣

pp ← PGen(1λ),
(com,m0, r0,m1, r1) ← A(pp)

∣
∣
∣
∣
∣
∣
∣

m0 �= m1,

Open(m0, com, r0) = accept,

Open(m1, com, r1) = accept

⎤

⎥
⎦ ≤ μ(λ).

If for every adversary A it holds that μ(λ) = 0, we say that the commitment
scheme is perfectly binding.

Commitment Schemes from Group Actions. Previous commitments were
known from cryptographic group actions. Brassard and Young [8] propose two
kind of bit commitments from what they call certified and uncertified group
actions. A certified group action is an action from the group G over the set X
such that checking that two elements are in the same orbit is an easy task. On the
contrary, the same verification could not be polynomial-time for an uncertified
group action. Since the problem of deciding whether two elements of X are in the
same orbit is assumed to be hard in this work, we will focus on the latter case.
Given a group action from G on X, the computationally binding and perfectly
hiding bit commitment presented in [8] is as follows.

– The receiver randomly generates x0 from X and g from G. Then sets x1 as
g � x0. He sends to the sender the pair (x0, x1) and a proof π that they are
in the same orbit.

– The sender wants to commit to the bit b. First, he checks that the proof π is
valid, then he picks h from G and sends com = h � xb to the receiver, keeping
secret h.
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– To open the committed bit b, the sender reveals b and h to the receiver, which
checks that com is equal to h � xb.

The first thing to notice is that this is an interactive bit commitment, since
the sender needs the receiver’s cooperation for the creation of the commitment.
Secondly, the communication cost is at least as big as the proof of the statement
that x0 and x1 are in the same orbit. This is an NP-statement (the witness is
given by g) and hence admits an interactive proof (even a non-interactive one,
using the Fiat-Shamir heuristic and the Random Oracle Model), but it can be
very large in communication.

In [20], Ji, Qiao, Song and Yun propose two bit commitment protocols. The
first is a slight generalization of the protocol from [8], using non-abelian group
actions. The obtained protocol has the same drawbacks noticed above: it is
interactive and has a large communication cost. The second proposal concerns
the use of the following pseudorandom function

f : X × G → X × X, (x, g) �→ (x, g � x)

and, after applying the Blum-Micali amplification [7], the authors build an inter-
active bit commitment scheme using the construction from [24]. In this construc-
tion it is needed that |X| ≥ |G|, and the obtained bit commitment is statistically
binding and computationally hiding.

3 Our Framework

The goal of this section is to design a non-interactive commitment scheme using
assumptions from cryptographic group actions. We will focus on non-abelian and
non-transitive actions. To develop such a commitment scheme, we first analyze
the issues arising from an initial construction, then we define a framework that
we use to circumvent these problems.

3.1 A First Attempt

Based on the non-transitivity of the group action (G,X, �), we can do a first
attempt in building a non-interactive bit commitment scheme. We give its
description using a trusted third party (TTP), and then we analyze how to
remove it.

Given the action (G,X, �), the TTP chooses and publishes two elements x0

and x1 of X lying in different orbits. The sender, to commit a bit b, generates
a random g in G and sets as the commitment of b the value com = g � xb. The
opening material is g. In other words, the sender picks a random element in the
orbit of xb. In the opening phase, given b, com and g, the receiver accepts if com
is equal to g � xb and rejects otherwise. Informally, the hiding property is given
by the fact that checking whether com is in the orbit of x0 or x1 is hard, while
the binding property follows from the impossibility of going from an orbit to
another via the action of G.

In the following we try to remove the TTP and analyze some possible sce-
narios.
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1. The sender generates and publishes x0 and x1. In this case we can
see that a malicious sender can generate x0 and x1 in the same orbit via
x1 = h � x0. He commits to g � x0 and, during the opening phase, he could
open to both 0 and 1 using g or gh−1. In this case, the binding property does
not hold.

2. The sender generates and publishes x0, x1 together with a proof π
that they are in different orbits. Given a proof π that x0 and x1 are not
in the same orbit, we obtain that the protocol is hiding and binding, under
the assumption that deciding whenever two elements share the orbit is hard.
In this scenario, the hard task is the generation of the proof π. In fact, the
language

L = {(y0, y1) ∈ X × X | y0 and y1 are in different orbits}
is in coNP. Unless we have a computationally unbounded prover [14] (and
this is not the case), it means that known techniques fails to generate a
short non-interactive proof for L which would enable the design of a non-
interactive commitment scheme. Since interactive bit commitments based on
group actions are known [8,20], we do not further study this case.

3. The receiver generates and publishes x0 and x1. We are again in the
case of interactive bit commitments, and we remand to the known schemes
based on group actions.

With such techniques, we have seen that there are some tricky aspects that are
hard to deal with. For example, we need to build a proof for a language in coNP,
and the absence of a witness (as we are used to, when we work in NP) is the
first obstacle. To overcome such difficulties, we introduce a general framework
on group actions that ease the design of the non-interactive bit commitment
sketched above. The trick is the definition of an invariant function that is con-
stant inside the orbits and hard to compute for a randomly chosen element.
However, we assume that there is a set of representative elements for which the
computation of such a function is easy. This avoids the need of a proof for the
above language L. These concepts will be formalized in the next subsection.

3.2 Group Actions with Canonical Elements

In this section, we introduce the concepts of invariant functions and canonical
elements, and we present the cryptographic assumptions linked to them.

Definition 9. Given a group action (G,X, �) and a function f : X → T , we
say that f is invariant under the action of G if f(g � x) = f(x) for every g in G
and every x in X. We say that f is fully invariant if f(x) = f(y) if and only if
there exists g in G such that y = g � x.

In the following, we can assume that f is surjective, restricting the set T to the
image f(X). To exploit the properties of invariant functions while keeping the
dGA-IP hard, we want the function f to be hard to compute on a large class of
elements of X. At the same time, we want to define particular elements of X on
which the computation of f is feasible.
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Definition 10. Let f : X → T be a surjective invariant function for the action
(G,X, �) and let T ′ ⊂ T . Suppose that there exists a polynomial-computable map

〈·〉 : T ′ → X, t �→ 〈t〉
such that the function f ◦ 〈·〉 is the identity on the subset T ′ of T . We call 〈·〉
the canonical representation of T ′ in X and 〈t〉 the canonical t-element (with
respect to f and 〈·〉). If T ′ = T , we say that 〈·〉 is complete. Moreover, we say
that (G,X, �, f, 〈·〉) is a Group Action with Canonical Element (GACE) if the
following hold:

1. if O(z) is the orbit of z in X, then for any PPT adversary A there is a
negligible function μ such that

Pr[A(x) = f(x)] ≤ 1
|T ′| + μ(|x|),

where x is sampled uniformly random from
⊔

t∈T ′ O(〈t〉);
2. there is a PPT algorithm that for any t in T ′ computes f(〈t〉).

In other words, the definition above says that, for every t in T ′, we have
f(〈t〉) = t and the function f is hard to compute in general, but is instead easy
to calculate on canonical elements. Moreover, the construction of such 〈t〉 is a
polynomial-time task.

In the following constructions, whenever a random element of X is needed,
we pick a random canonical element 〈t〉, a random g from G and compute g � 〈t〉.
In this way, instead of using the whole X, we always work with the union of the
orbits of the canonical elements. In other words, the set on which the group G
acts becomes

X ′ =
⊔

t∈T ′
O(〈t〉).

This implies that the GACE (G,X ′, �, f, 〈·〉) has a fully invariant function f and
the canonical representation 〈·〉 is complete. Given a fully invariant function f ,
the problem of determining whether two elements have the same image under f
is equivalent to deciding whether they lie in the same orbit (dGA-IP).

4 The Commitment Scheme

4.1 Bit Commitment Scheme from a GACE

The first application of our framework is a bit commitment scheme. Given a
Group Action with Canonical Elements, we design the commitment scheme
described in Fig. 4, following the attempts shown in Subsect. 3.1. The bit com-
mitment is proven secure under both the dGA-IP assumption that we have
introduced in this paper and the 2GA-PR assumption; the security proof under
the latter assumption can be found in Appendix A.

Theorem 1. The bit commitment scheme in Fig. 4 is perfectly binding.
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PGen 1λ

1 : choose ( )

2 : t0 $T

3 : t1 $T \ {t0}
4 : return ( , t0, t1)

Commit (b)

1 : g $G

2 : c g tb

3 : return (c, g)

Open (b, c, g)

1 : if g−1 c = tb

2 : return accept

3 : else return reject

Fig. 4. Bit commitment scheme from a GACE.

Proof. Without loss of generality, we can assume m0 = 0 and m1 = 1. Suppose
there exists an adversary A that on input pp = (G,X, �, f, 〈·〉, t0, t1) returns the
tuple com, r0, r1 such that

Open(0, com, r0) = Open(1, com, r1) = accept

with positive probability. This means that r0 � 〈t0〉 = com = r1 � 〈t1〉, and then
r−1
1 r0 � 〈t0〉 = 〈t1〉. Therefore, 〈t0〉 and 〈t1〉 are in the same orbit, but this is a

contradiction and such an adversary A cannot exist.

Theorem 2. The bit commitment scheme in Fig. 4 is computationally hiding
under the decisional Group Action Inversion Problem assumption.

Proof. The dGA-IP assumption states that every adversary of the dGA-IP game
has at most negligible advantage. We prove that the existence of an adversary
of the game Hiding(ΠCom) with advantage at least ε(λ), where ε(λ) is a non-
negligible function, implies the existence of an adversary A of the dGA-IP game
with advantage 2ε2(λ), which is non-negligible.

The proof is divided in 3 parts: firstly, we describe our adversary A of the
dGA-IP game. It will exploit two instances of an adversary of the Hiding(ΠCom)
game, therefore we must show that it correctly simulates the challenger of such
a game. Finally, we quantify a lower bound to the advantage of the adversary
A.

1. Reduction description.
The adversary A of the dGA-IP game (see Fig. 5) receives from the challenger
two set elements s and t, generated according to the dGA-IP game. A creates
two instances of the adversary of Hiding(ΠCom) game having non-negligible
advantage, namely A1 and A2. Then, the adversary A provides A1 with s
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and A2 with t separately. The two hiding commitment adversaries A1 and
A2 return respectively the bits b0 and b1 as outputs of their internal routine.
Finally, the dGA-IP adversary A returns to the challenger the bit b′ which is
set to 1 if b0 = b1, otherwise it is set to 0.

2. A correctly simulates the Hiding(ΠCom) challenger.
We show that A correctly simulates the challenger of the Hiding(ΠCom) game,
so that it is possible to quantify the probability of success of the adversaries
A1 and A2. The elements s and t which A uses as input to A1 and A2 are
generated as follows:

– s is a random element in the orbit generated by 〈tc〉, with c chosen uni-
formly at random in {0, 1};

– when b = 1, t is chosen uniformly at random in the same orbit of s (note
that g′ � s = g′g � 〈tc〉 is random as long as g′ ←$G), otherwise, if b = 0,
t is chosen at random in the orbit of 〈t1−c〉.

In particular, the orbit of s is chosen uniformly at random via the selection
of c; then, given c, the orbit of t is chosen uniformly at random via b. This
guarantees that A correctly simulates the challenger of the Hiding(ΠCom)
game, who must choose, in the first step, whether to create a commitment to
0 or to 1. Therefore, the adversaries A1,A2 win their games with probability
greater than 1

2 + ε(λ).
3. Measurement of A’s advantage.

Finally, we compute a lower bound to the probability of success of A that we
have described in the dGA-IP game.
We observe that the adversaries A1 and A2 do not interact, so the events that
they win their games can be considered independent as long as their inputs
are also independent.
It is possible to show that the selection of the inputs is independent, since the
selection process of s and t is performed picking at random the orbit O(s) of
s by sampling the bit c, and the orbit O(t) of t by sampling the bit b (actually
the bit that determines the orbit of t is interpreted according to the value of
s, but this is not relevant as long as the bit b is chosen at random).
Then, the canonical elements of the sampled orbits are randomized by sam-
pling two random group elements g, g′ ∈ G and computing the action of such
elements (or of the element g′g instead of g′, if b = 1, which is a random
element as long as g′ is random) on the canonical elements.
Given that the inputs to A1 and A2 are independent and that the two adver-
saries perform their operations regardless of the existence of each other, the
events that A1 wins its game and A2 wins its game are independent.
For the sake of brevity, we refer to the event that A1 wins or loses its game
as (A1 wins) or (A1 loses) and we do the same for A2 and A: the game
they are playing will be clear from the context.
Finally, we compute the lower bound of the probability of advantage of A.
To do that, we observe that A wins the game when b′ = b and this happens
either when both A1 and A2 win, or when they both lose.
In fact, when b = 0 then O(t) �= O(s); therefore, b0 �= b1 happens if and only
if both A1 and A2 win or when they both lose. The same holds when b = 1.



236 G. D’Alconzo et al.

Therefore,

Pr[A wins] =
Pr[(A1 wins ∧ A2 wins) ∨ (A1 loses ∧ A2 loses)] =
Pr[(A1 wins ∧ A2 wins)] + Pr[(A1 loses ∧ A2 loses)] =
Pr[(A1 wins)]Pr[(A2 wins)] + Pr[(A1 loses)]Pr[A2 loses)] ≥
(
1
2
+ ε(λ)

)2

+
(
1
2

− ε(λ)
)2

=
1
2
+ 2ε(λ)2.

Since ε(λ) is a non-negligible function, we have defined an adversary A of the
dGA-IP game that has a non-negligible advantage. This contradicts the dGA-
IP assumption, therefore the adversary of Hiding(ΠCom) with non-negligible
advantage does not exist and the commitment scheme ΠCom satisfies the hiding
property.

The two previous results can be summarized in the following corollary.

Corollary 1. The bit commitment scheme in Fig. 4 is secure under the deci-
sional Group Action Inversion Problem assumption.

We also have expanded the security analysis of the hiding property of the
commitment scheme under to the 2GA-PR assumption requiring that the two
orbits O0 and O1 used to instantiate the bit commitment have similar size, i.e.

|Pr[x ∈ O0] − Pr[x ∈ O1]| = ν(λ)

for a randomly chosen x in O0 ∪ O1 and a negligible function ν(λ).
We have proved the following theorem.

Theorem 3. If the bit commitment scheme in Fig. 4 is instantiated using two
orbits of similar size, it is secure under the 2GA-PR assumption.

Proof. The commitment scheme satisfies the property of perfect binding, as
shown in Theorem 1. The proof of the computationally hiding property can
be found in Appendix A.

Finally, Appendix B shows that Hiding(ΠCom) reduces to dGA-IP, also. This
allows us describe the relation between the dGA-IP and 2GA-PR assumptions.

Corollary 2. The 2GA-PR problem reduces to dGA-IP when it is instantiated
with two orbits of similar size.

We summarize the reductions between the hiding game of the commitment
scheme and the two assumptions in Fig. 6.
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Adversary A(pp) Challenger C(pp)

c, b $ {0, 1}, g, g′
$ G

s g � 〈tc〉,
if b = 1 then

t g′ � s

if b = 0 then

t g′ � 〈t1−c〉
Hiding(ΠCom) Adversaries

Guess b0

A1
pp, s

b0

s, t

Guess b1

A2
pp, t

b1

if b0 = b1 then

b′ 1

if b0 �= b1 then

b′ 0

b′

A wins if b = b′

Fig. 5. Reduction from dGA-IP(pp) to the hiding game for the bit commitment scheme.

5 Linkable Commitments

The proposed bit commitment has the following additional feature. Given two
commitments com0 and com1, if we suppose that the sender is honest, there is a
way to prove that their committed value is the same. Based on this notion, we
define the concept of linkable commitment. We require that the sender is honest
to be assured that the commitments lie either in the orbit of 〈t0〉 or 〈t1〉. To
the best of our knowledge, this property has not been formally defined before.
However it is well known that, for example, Pedersen commitments enjoy this
property which is used, among other things, in the Monero’s RingCT protocol
[29].

Definition 11. Let ΠCom = (PGen,Commit,Open) be a commitment scheme.
Let m0 and m1 be two messages and let (com0, r0) = Commit(m0) and
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dGA-IP
Th. 2

Th. 6

Th. 5

Hiding(ΠCom)

2GA-PR

Cor. 2

Fig. 6. Reductions between games and problems. “A → B” means that solving B
implies solving A. The reductions represented by a dashed line require the extra hypoth-
esis about the similarity of the orbits.

(com1, r1) = Commit(m1). We say that ΠCom is linkable if there exist the two
following PPT algorithms:

1. LinkMaterial(r0, r1), whose output is a value rL;
2. Link(com0, com1, rL), that returns 1 if m0 = m1 and 0 otherwise.

In order to be secure, a linkable bit commitment must satisfy some security
properties for these two additional algorithms Link and LinkMaterial as well.
First, we want that the linking material rL does not reveal any information
about the committed value. This means that an adversary that has access to two
commitments of m and the linking material rL does not learn anything about
m. We call this property linkable-hiding. Then, it must not be possible to link
two commitments that are obtained starting from two distinct values. A linkable
commitment with this property is said linkable-binding. Finally, we focus on how
the value rL can be generated. We want that, if a user (somehow) knows that
two commitments are linked without knowing their opening material, he can not
generate a proof of that (via the linking material). In other words, being m a
message, and being (com0, r0) = Commit(m) and (com1, r1) = Commit(m), no one
can generate a value rL such that Link(com0, com1, rL) = 1 without knowledge
of any information regarding the opening materials r0 and r1. This additional
property is called link secrecy.

We formalize these new properties in the following definition.

Definition 12. Let HidingLink(ΠCom) be the game described in Fig. 7. We
define the advantage of an adversary A of the game HidingLink(ΠCom) as

Adv(A,HidingLink(ΠCom)) =
∣
∣
∣
∣
Pr[A wins HidingLink(ΠCom)] − 1

2

∣
∣
∣
∣
.

Let λ be the security parameter. A linkable bit commitment
ΠCom = (PGen,Commit,Open, LinkMaterial, Link) is said

– computationally linkable-hiding if for all PPT adversaries A there is a negli-
gible function μ(λ) such that

Adv(A,HidingLink(ΠCom)) ≤ μ(λ);
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– computationally linkable-binding if for all PPT adversaries A there is a neg-
ligible function μ(λ) such that

Pr

[

pp ← PGen(1λ),
(m0, com0,m1, com1, rL) ← A(pp)

∣
∣
∣
∣
∣

m0 �= m1,

Link(com0, com1, rL) = 1

]

≤ μ(λ);

– computationally link secret if for all PPT adversaries A there is a negligible
function μ(λ) such that

Pr[A wins LinkSecrecy(ΠCom)] ≤ μ(λ),

where LinkSecrecy(ΠCom) is the linking secrecy game in Fig. 8.

In the above definitions, whenever μ(λ) = 0, we say that the property is perfect.

HidingLink(ΠCom)

Adversary A Challenger C
pp pp PGen(1λ)

Choose m0, m1 ∈ {0, 1}n m0, m1 b $ {0, 1}

(com0, r0) Commit(mb)

(com1, r1) Commit(mb)

com0, com1, rL rL LinkMaterial(r0, r1)

Guess b′ b′ A wins if b′ = b

Fig. 7. Linkable-hiding game.

5.1 Linkable Bit Commitment from GACE

Using the bit commitment shown in Subsect. 4.1, we can endow the scheme to
obtain a linkable bit commitment. This extension is natural, since the commit-
ments of a chosen message are in the orbit of that message, and showing that
they are linked reduces to exhibit a group element which sends one into the
other.

Theorem 4. The bit commitment scheme in Fig. 4 endowed with the algorithms
in Fig. 9 is a secure linkable bit commitment scheme under the One-Way Group
Action and dGA-IP assumptions.
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LinkSecrecy(ΠCom)

Adversary A Challenger C
pp PGen(1λ)

m $ M
(com0, r0) Commit(m)

pp, com0, com1 (com1, r1) Commit(m)

Choose rL
rL A wins if

Link(com0, com1, rL) = 1

Fig. 8. Link secrecy game.

LinkMaterial (m, r0, r1)

1 : return r0r
−1
1

Link(com0, com1, rL)

1 : if rL com1 = com0

2 : return 1

3 : else return 0

Fig. 9. Algorithm for linking commitment from a GACE.

Proof. We have already proven in Theorem 1 that the bit commitment in Fig. 4
is secure under the dGA-IP assumption. Now, we prove that the linkable com-
mitment scheme is secure, namely it is computationally linkable-hiding, perfectly
linkable-binding and computationally link secret.

– Linkable-hiding. We show that the Hiding game reduces to the HidingLink
game. The idea is to let the adversary of the Hiding(ΠCom) game to simulate
the HidingLink game challenger by creating a new random commitment (and
the linking material) to the same message of the commitment it has received
from its challenger. Now we explain it in greater detail.
Let A′ be an adversary that wins the cLink game with non-negligible advan-
tage ε(λ). We can define an adversary A for the Hiding game that wins with
a non-negligible advantage. Since we are in the binary case, the challenger
C picks a message b and sends to A the commitment com of b. Now A picks
a random element g in G and computes com′ = g � com, that is a valid and
randomly generated commitment to b. A queries to A′, the adversary of the
HidingLink game, the commitments com, com′ and the linking material g.
Note that A correctly simulates the challenger of the HidingLink game since
the bit b and com are chosen at random from C, com′ is chosen at random
from A and the linking material is valid.
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A′ returns a bit b′ which A sends to C as its guess. If A′ correctly guesses the
bit committed to in com and com′ then clearly also A wins its game. Therefore
the advantage of A is the same of the one of A′ and is non-negligible.
We can conclude that, since the commitment ΠCom is computationally hiding
under the dGA-IP assumption, it is also computationally linkable-hiding.

– Perfectly linkable-binding. Suppose that an adversary returns with pos-
itive probability a tuple (m0,m1, com0, com1, rL) such that m0 �= m1 and
Link(com0, com1, rL) = 1. By construction, there exist two elements g0 and g1
in G such that

com0 = g0 � 〈m0〉 and com1 = g1 � 〈m1〉
From Link(com0, com1, rL) = 1 we have that rL �com1 = com0, and hence com0
and com1 are in the same orbit. Since m0 = f(com0) = f(com1) = m1, where f
is the invariant function in the GACE, we have a contradiction. Hence, there
are no adversaries that can output such a tuple with positive probability.

– Computationally link secret. We show that, if a PPT adversary A, on
input com0 and com1, can find rL such that Link(com0, com1, rL) = 1, then
it contradicts the One-way group action assumption. Essentially, if com0 and
com1 are commitments to m0, then they are in the same orbit of 〈m0〉. Finding
an rL in G such that Link(com0, com1, rL) = 1 means finding an element of G
sending com1 to com0, and this is intractable by hypothesis.

Remark 1. Observe that, if an inadmissible value is committed, for instance an
element x that is not in the orbit of 〈t0〉 nor 〈t1〉, then the linkability continues
to work. In fact, two commitments of the above x can be linked. Therefore we
refer to the above scheme as a honest sender linkable commitment. To cover
even the case where the sender may commit to an inadmissible value, some
techniques from ring signature schemes can be used. Using the framework of
Beullens, Katsumata and Pintore [5], a proof of the legitimacy of the commitment
can be generated in the random oracle model. In the commit phase, the sender
generates (com, r) from Commit(b), then attaches to com a non-interactive proof
of the OR-relation

{(com, g) | com = g � 〈t0〉 or com = g � 〈t1〉}.
We refer to [5] for the details. However, this proof needs many repetitions to
achieve a reasonable security level, leading to a huge cost in communication.

6 An Instantiation with Tensors

6.1 3-Tensors and Group Actions

Let n be a positive integer and let V be the tensor space given by F
n
q ⊗F

n
q ⊗F

n
q .

Let {e1, . . . , en} be a base of Fn
q , hence an element M of V can be written as

M =
∑

i,j,k

M(i, j, k)ei ⊗ ej ⊗ ek, (1)
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where M(i, j, k) are elements in Fq. A rank one (or decomposable) tensor is an
element of the form a ⊗ b ⊗ c, where a, b, c are in F

n
q . Given a tensor M , its rank

is the minimal non-negative integer r such that there exist M1, . . . ,Mr rank one
tensors for which M =

∑r
i=1 Mi, and we write rk(M) = r. In general, computing

the rank of a tensor is an hard task [18,31,32].
A group action can be defined on the vector space V of tensors from the

group G = GL(n) × GL(n) × GL(n) as follows:

� : G × V → V,
⎛

⎝(A,B,C) ,
∑

i,j,k

M(i, j, k)ei ⊗ ej ⊗ ek

⎞

⎠ �→
∑

i,j,k

M(i, j, k)Aei ⊗ Bej ⊗ Cek.

It can be shown that this action does not change the rank of a tensor. However, if
it is extended to non-invertible matrices, this property does not hold: for example
the zero matrix sends every tensor into the zero tensor.

6.2 GACE and Bit Commitment from Tensors

Given the group action defined above, we want to build a Group Action with
Canonical Element. Since the computation of the rank is supposed to be hard,
we set T = N and

f : V → N, M �→ rk(M).

In order to define the function 〈·〉, we need to do some observations. From Eq.
(1), we see that the rank of a tensor is at most n3 and with a simple trick it
can be shown that it is at most n2. Actually, the maximal rank is strictly less
that this value. As showed in [19], the maximal rank attainable by a tensor in
V is between 1

3n2 and 3
4n2. Moreover, an open problem in this field is to exhibit

the explicit construction of a high-rank tensor. Even if there are some results
[2,6,36], we are not able to construct a tensor of any given rank. Luckily, there
is a set of integers for which we can easily exhibit tensors of a given rank. Let
T ′ = {1, . . . , n} and we can define the function

〈·〉 : T ′ → V,

r �→
r∑

i=1

ei ⊗ ei ⊗ ei.

We can see that f(〈r〉) = r for any r in T ′ = {1, . . . , n}, hence the tuple
(G,V, �, f, 〈·〉) is a GACE. In fact, computing the rank of a random tensor
of promised rank between 1 and n is hard, while recognize the rank of 〈r〉 is
easy.

The non-interactive bit commitment scheme we present is based on the gen-
eral one in Fig. 4. During the parameter generation phase, we choose n − 1 and
n as elements of T ′ encoding the bits 0 and 1, respectively.
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Concretely, given a security parameter λ, a prime power q, an integer n and
the tensor space V = F

n
q ⊗ F

n
q ⊗ F

n
q , the public parameters are

(G,V, �, f, 〈·〉, n − 1, n).

Let us analyze the assumptions on this particular group action. The dGA-IP
assumption for tensors is related to the Tensor Isomorphism problem [16,17],
which is complete for a large class of problems and it is conjectured hard even
for a quantum computer. The One-Way assumption on tensors is linked to the
computational version of the dGA-IP problem: given two tensors in the same
orbit, find the group element that links them. This problem is believed to be hard
and it is directly used in various cryptosystem [10,20], while other constructions
use polynomially equivalent problems [35]. When we consider just the orbits of
rank n and n − 1, these assumptions seem to remain intractable.

Summarizing, to commit to a bit b, the sender picks a random g in G and
obtains the commitment com equal to g � 〈n − 1〉 if b = 0 or g � 〈n〉 if b = 1.
The opening material is given by g. To open the commitment com, the sender
communicates to the receiver b and g and the latter checks that g−1 � com is
equal to 〈n − 1〉 or 〈n〉. There is one additional check to take care during the
opening phase: the receiver must verify the membership of g to G. In fact, if
g = (A,B,C) and A, B or C are non-invertible, then g can send a tensor of rank
n to a tensor of rank n − 1, breaking the binding property.

Analogously, a linkable bit commitment can be designed on tensors with the
constructions given in Subsection 5.1.

7 Conclusions

In this work, we have presented a framework based on group actions that makes
use of invariant functions and canonical elements, namely a Group Action with
Canonical Element (GACE). The considered invariant function must be hard
to compute on a large class of elements, but at the same time its computation
on the canonical elements must be feasible. Then, we showed how to design
a bit commitment based on this framework that is proven secure in the stan-
dard model. More in detail, breaking the hiding assumption of our commitment
scheme means breaking independently both 2GA-PR and dGA-IP. This leads to
the first non-interactive bit commitment relying on group actions.

One of the most interesting aspects of our construction is that it requires the
action to be non-transitive. This is somehow novel in the cryptographic group
action literature, where previous schemes rely on transitive action or they restrict
to a single orbit. Concretely, in our framework we need to exhibit two elements
that belong to two different orbits.

Moreover, we introduce the notion of linkable commitment and we prove that
our bit commitment can be easily extended to a linkable one. Finally, we show
an instantiation of our framework and commitment using tensors on finite fields.
In this case, the invariant function is the tensor rank, and the cryptographic
assumption is linked to the computational version of the dGA-IP problem.



244 G. D’Alconzo et al.

As a future work, a commitment based on more orbits or new cryptographic
schemes starting from a GACE could be investigated. At the same time, it would
be interesting to find other GACEs to concretely instantiate the framework.
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A 2GA-PR Reduces to Hiding(ΠCom)

The reduction used to prove the hiding property under the 2GA-PR assumption
is exactly the same given in the proof of Theorem 2, and the main difference
between the proof of the hiding property under the dGA-IP assumption and the
following is that the outcome of the adversaries of the Hiding(ΠCom) game A1

and A2 are not independent anymore, but are only conditionally independent
once the input values (s and t) are fixed.

In fact, in the 2GA-PR game Pr[O(s) = O(t)] = 3
4 which means that the

selection of the value of t, input to A2 depends on the selection of s, given in
input to A1.

Theorem 5. The bit commitment scheme in Fig. 4 instantiated with two orbits
of similar size is computationally hiding under the 2GA-PR assumption.

For simplicity, in the following proof we assume that the cardinality of the
two orbits is the same, that is, the probability of picking an element at random
inside any orbit is 1

2 . The proof can be easily generalized to the case where the
probability of falling into one orbit is negligibly greater than the probability of
falling into the other. In other words, the proof holds whenever there exists a
negligible function ν(λ) such that, given the two orbits O0 and O1,

|Pr[x ∈ O0] − Pr[x ∈ O1]| = ν(λ)

for a randomly chosen x in O0 ∪ O1. This assumption seems admissible and not
too strict for cryptographic purposes.

Proof. We must prove that the hiding property holds for ΠCom. We show that,
given an adversary of the Hiding(ΠCom) game with non-negligible advantage,
we can build an adversary of the 2GA-PR game with non-negligible advan-
tage (recall that the advantage of A is defined as Adv(A, 2GA-PR(pp)) =
Pr[A wins 2GA-PR(pp)] − 1

2 ).

1. Reduction description.
To define A, we use two independent instances of the same adversary A1,A2

of the hiding game as we did in the proof of Theorem 2; then, we perform the
same reduction, as it is presented in Fig. 10.
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Adversary A Challenger C
b $ {0, 1}, s $ X

if b = 1 then

g $ G, t g � s

if b = 0 then

t $ X

Guess b0

A1
s

b0

s, t

Guess b1

A2
t

b1

if b0 = b1 then

b′ 1

if b0 �= b1 then

b′ 0

b′

A wins if b = b′

Fig. 10. Reduction from 2GA-PR to the hiding game for the bit commitment scheme.

2. A correctly simulates the Hiding(ΠCom) challenger.
The adversary A correctly simulates the challenger of Hiding(ΠCom) with
respect to the adversaries A1 and A2 separately, in fact both s and t are
uniformly sampled from the set of commitment to 0 and 1. Therefore, A1

and A2 will output the right bit with advantage ε(λ).
3. Measurement of A’s advantage.

From now on, when we consider the orbits O(s) and O(t) of s and t respec-
tively, they will assume binary values according to the relation used in the bit
commitment scheme ΠCom: O(s) = 1 if s lives in the orbit of commitments to
1, and O(s) = 0 if s lives in the orbit of commitments to 0. The same holds
for O(t).

Before computing the lower bound of the advantage of the adversary A, we
state the following remark.

Remark 2. The outcomes of the games performed by A1 and A2 in the reduction
of Fig. 10 are not independent since the values given as inputs to them are
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dependent values (note that t is in the same orbit of s with probability 3
4 ).

However, it is still true that the outcomes of the adversaries A1 and A2 are
independent if conditioned to fixed input values.

For the sake of generality, we need to consider the case in which the advantage
of the adversaries A1 and A2 in playing Hiding(ΠCom) game is not uniformly
distributed on the possible outputs. That is, it is possible that

Pr[A1 wins | O(s) = 1] =
1
2
+ ε(λ) + Δ,

Pr[A1 wins | O(s) = 0] =
1
2
+ ε(λ) − Δ,

with Δ possibly a negative value. The same holds for Pr[A2 wins | O(t) = b],
with b ∈ {0, 1}.

Now, we can start with the computation of the lower bound of the advantage
of A in winning the 2GA-PR game.

The probability that A wins the 2GA-PR game can be computed as follows,
partitioning the event in three disjoint events:

Pr[A wins] = Pr[b′ = b] =

Pr

⎡

⎣(b = 0 ∧ O(s) �= O(t)) ∧ b′ = b
︸ ︷︷ ︸

Event A

⎤

⎦+

Pr

⎡

⎣(b = 0 ∧ O(s) = O(t)) ∧ b′ = b
︸ ︷︷ ︸

Event B

⎤

⎦+

Pr

[

b = 1 ∧ b′ = b
︸ ︷︷ ︸

Event C

]

.

We now separately quantify the three probabilities as follows. We recall that
according to the event we are considering, the event b = b′ can be translated in
terms of success of the adversaries A1 and A2

– Event A: when b = 0 and O(s) �= O(t), then b = b′ when both A1 and A2

win or when both of them lose. Therefore, it holds that

Pr[b = 0 ∧ O(s) �= O(t) ∧ b′ = b] =
Pr[b = 0 ∧ O(s) �= O(t) ∧ A1 wins ∧ A2 wins]+
Pr[b = 0 ∧ O(s) �= O(t) ∧ A1 loses ∧ A2 loses].

(2)

We can compute this probability by considering the general case
Pr[b = 0 ∧ O(s) �= O(t) ∧ A1 outcome ∧ A2 outcome] and then substituting
outcome with wins or loses accordingly with the formula above.
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It holds that

Pr[b = 0 ∧ O(s) �= O(t) ∧ A1 outcome ∧ A2 outcome] =
1∑

c=0

Pr[b = 0 ∧ O(s) = c ∧ O(t) = 1 − c ∧ A1 outcome ∧ A2 outcome] =

1∑

c=0

(

Pr[A1 outcome ∧ A2 outcome | b = 0 ∧ O(s) = c ∧ O(t) = 1 − c]·

· Pr[b = 0 ∧ O(s) = c ∧ O(t) = 1 − c]
)

.

Since the outcomes of A1 and A2 are independent once their input values are
fixed, we have that

Pr[A1 outcome ∧ A2 outcome | b = 0 ∧ O(s) = c ∧ O(t) = 1 − c] =
2∏

i=1

Pr[Ai outcome | b = 0 ∧ O(s) = c ∧ O(t) = 1 − c],

with c ∈ {0, 1}.
Since the outcome of A1 only depends on the value of O(s) and the outcome
of A2 depends only on O(t), then

Pr[A1 outcome ∧ A2 outcome | b = 0 ∧ O(s) = c ∧ O(t) = 1 − c] =
Pr[A1 outcome | O(s) = c]Pr[A2 outcome | O(t) = 1 − c]

Therefore, since Pr
[

b = 0 ∧ O(s) = b̄ ∧ O(t) = 1 − b̄
]

= 1
8 with b̄ ∈ {0, 1} then

Pr[b = 0 ∧ O(s) �= O(t) ∧ A1 outcome ∧ A2 outcome] =

1
8

(

Pr[A1 outcome | O(s) = 1] · Pr[A2 outcome | O(t) = 0]+

Pr[A1 outcome | O(s) = 0] · Pr[A2 outcome | O(t) = 1]
)

.

We can finally compute the initial probability given in Eq. (2), by substituting
outcome with wins and loses and obtaining

Pr[b = 0 ∧ O(s) �= O(t) ∧ b′ = b] =
1
8
+

1
2
ε2(λ) − 1

2
Δ2. (3)

– Event B: when b = 0 and O(s) = O(t), then b = b′ when either A1 wins and
A2 loses or when A1 loses and A2 wins. Therefore, it holds that

Pr[b = 0 ∧ O(s) = O(t) ∧ b′ = b] =
Pr[b = 0 ∧ O(s) = O(t) ∧ A1 wins ∧ A2 loses]+
Pr[b = 0 ∧ O(s) = O(t) ∧ A1 loses ∧ A2 wins].

(4)
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Since in this case the input of A1 and A2 are in the same orbit, then we can
state

Pr[b = 0 ∧ O(s) = O(t) ∧ b′ = b] =
2Pr[b = 0 ∧ O(s) = O(t) ∧ A1 wins ∧ A2 loses] =

2
1∑

c=0

Pr[b = 0 ∧ O(s) = c ∧ O(t) = c ∧ A1 wins ∧ A2 loses].

Using arguments similar to the ones used for Event A, that is the conditional
independence of the outcomes of the adversaries once the inputs are fixed, the
fact that the output of A1 (resp. A2) depends only on O(s) (resp. on O(t))
and finally that Pr[b = 0 ∧ O(s) = c ∧ O(t) = c] = 1

8 , for c ∈ {0, 1}, we can
write the Eq. (4) as follows

Pr[b = 0 ∧ O(s) = O(t) ∧ b′ = b] =
1
8

− 1
2
ε2(λ) − 1

2
Δ2. (5)

– Event C: when b = 1, O(s) = O(t), then b = b′ when both A1 and A2 win
or when both of them lose. Therefore, it holds that

Pr[b = 1 ∧ b′ = b] =
Pr[b = 1 ∧ A1 wins ∧ A2 wins]+
Pr[b = 1 ∧ A1 loses ∧ A2 loses].

(6)

As in the computation of the probability of Event A, we must compute
Pr[b = 1 ∧ A1 outcome ∧ A2 outcome]. Using similar arguments as before,
and noticing that Pr[b = 1 ∧ O(s) = c ∧ O(t) = c] = 1

4 with c ∈ {0, 1}, it can
be shown that

Pr[b = 1 ∧ A1 outcome ∧ A2 outcome] =

1
4

1∑

c=0

Pr[A1 outcome | O(s) = c]Pr[A2 outcome | O(t) = c]

Therefore, substituting outcome with loses and wins, and using the proba-
bilities of success of adversaries A1 and A2, from Eq. (6) we obtain

Pr[b = 1 ∧ b′ = b] =
1
4
+ ε2(λ) + Δ2. (7)

Combining the partial results derived analysing Event A, Event B and
Event C from Equations (3),(5) and (7) respectively, we obtain the final result

Pr[A wins] =
1
2
+ ε2(λ),

which proves that we have built an adversary for the 2GA-PR game which wins
with non-negligible advantage. Therefore, an adversary who wins the hiding
game with non-negligible advantage does not exist due to the 2GA-PR assump-
tion. This means that the binary commitment scheme we have described results
to be perfectly binding and computationally hiding.
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B Hiding(ΠCom) Reduces to dGA-IP

Theorem 6. The Hiding(ΠCom) game reduces to dGA-IP game.

Proof. We show how the existence of an adversary of dGA-IP problem with non-
negligible advantage allows the creation of an adversary of the Hiding(ΠCom)
game with non-negligible advantage.

1. Reduction description.
The adversary A of the Hiding(ΠCom) game (see Fig. 11) receives from the
challenger a commitment c to a randomly generated bit b. A generates a
commitment c′ to a random bit b′ and sends c, c′ to A′, the adversary to the
dGA-IP game with non-negligible advantage. A receives a response b0 from
A′ and returns to the Hiding(ΠCom) challenger the bit b′ if b0 = 1 (i.e. A′ has
guessed that c and c′ are in the same orbit), otherwise A returns 1 − b′.

2. A correctly simulates the dGA-IP challenger.
The adversary A receives a commitment to a random unknown bit b. There-
fore, in order to simulate the dGA-IP challenger, it generates a random bit b′

and a commitment to such bit. In this way, A generates couples of elements

Adversary A Challenger C
b $ {0, 1}, g $ G

c g � 〈tb〉
c

b′
$ {0, 1}

g′
$ G

c′ g′ � 〈tb′〉

Guess b0

A′ c,c’

b0

if b0 = 1 then

b̄ b′

if b0 = 0 then

b̄ 1 − b′

b̄

A wins if b = b̄

Fig. 11. Reduction from the hiding game for the bit commitment scheme to dGA-IP.
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in X that live in the same orbit with probability 1
2 as it does the dGA-IP

challenger.
3. Measurement of A’s advantage.

The adversary A wins exactly with the same probability of A′, since every
time A′ guesses the right answer to the dGA-IP game, A learns the orbit in
which the element c lies since it knows the orbit of c′. Therefore, if A′ wins the
dGA-IP game with non-negligible advantage, also A wins the Hiding(ΠCom)
game with non negligible advantage.
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Abstract. Recent code-based cryptosystems rely, among other things,
on the hardness of the decisional decoding problem. If the search ver-
sion is well understood, both from practical and theoretical standpoints,
the decision version has been less studied in the literature, and little
is known about its relationships with the search version, especially for
structured variants. On the other hand, in the world of Euclidean lat-
tices, the situation is rather different, and many reductions exist, both
for unstructured and structured versions of the underlying problems. For
the latter versions, a powerful tool called the OHCP framework (for Ora-
cle with Hidden Center Problem), which appears to be very general, has
been introduced by Peikert et al. (STOC 2017) and has proved to be
very useful as a black box inside reductions.

In this work, we revisit this technique and extract the very essence of
this framework, namely the Oracle Comparison Problem (OCP), to show
how to recover the support of the error, solving an Oracle with Hidden
Support Problem (OHSP), more suitable for code-based cryptography.
This yields a new worst-case to average-case search-to-decision reduc-
tion for the Decoding Problem, as well as a new average-case to average-
case reduction. We then turn to the structured versions and explain
why this is not as straightforward as for Euclidean lattices. If we fail to
give a search-to-decision reduction for structured codes, we believe that
our work opens the way towards new reductions for structured codes,
given that the OHCP framework proved to be so powerful in lattice-based
cryptography. Furthermore, we also believe that this technique could be
extended to codes endowed with other metrics, such as the rank metric,
for which no reduction is known.
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1 Introduction

Security Reductions in Post–quantum Cryptography. In the last two
decades, there has been a longstanding trend to develop reductions between
generic or even worst-case problems, in view to provide security guarantees
of some encryption schemes and digital signatures. The most significant part
of the known reductions concern lattice–based cryptography. In particular,
the worst-case to average-case reductions between various lattice problems
[28,29,32,33,35,37,39] provide a very convincing argument to assert that the
security of cryptographic primitives rest only on the worst-case hardness of well-
studied problems such as SVP or SIS. The recent conclusion of the third round of
NIST standardisation process testifies from this trust: among the four selected
schemes for standardisation, three of them are based on lattices.

In comparison, code–based cryptography appears to lag behind from the
point of view of security reductions, despite being very promising in terms of
simplicity of the designs, short length of ciphertexts, efficiency of encryption
and decryption; and even short key sizes, for instance with BIKE [2] and HQC
[4]. Indeed, in the last decades, a recurrent argument to claim the security of
code–based cryptosystems was the NP–completeness of the so-called Decoding
Problem [9]. This NP–completeness argument is only partially convincing since
it is well–known that some NP–hard problems turn out to be easy for a large den-
sity of instances. In short, cryptographers are much more interested by problems
which are hard on average, while NP–completeness only guarantees a worst-case
hardness.

The Decoding Problem. A random [n, k]−code is the row–space of a uni-
formly random matrix G ∈ F

k×n
2 (called a generator matrix of the code)1:

C = {mG | m ∈ F
k
2} ⊂ F

n
2 .

The (average-case) Decoding Problem can then be defined as follows:

Definition 1 ((Average-case) Search Decoding Problem). Given a ran-
dom code C, a vector y ∈ F

n
2 and a target distance t ∈ N, the goal is to find a

codeword (if exists) c ∈ C and an error vector e ∈ F
n
2 of Hamming weight |e| = t

such that y = c + e.

Alternatively, this problem can be seen as solving a linear system with a non
linear constraint given by the targetted Hamming weight. Indeed, a code C can
also be defined by a parity-check matrix, that is to say a matrix H ∈ F

(n−k)×n
2

such that
C = {x ∈ F

n
2 | xH� = 0}.

The above decoding problem is then equivalent to finding a word e ∈ F
n
2 of

Hamming weight t such that eH� = s for a given syndrome s def= yH� ∈ F
n−k
2 .

1 Note that such a code has a dimension less than k when G has not full rank but
this happens only with a negligible probability.
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Note that for solving the Decoding Problem, it is enough to recover the
positions i such that ei �= 0, i.e. the support of the error. This is even true
for larger fields Fq, at the cost of solving an additional linear system to recover
the exact coefficients. In other words, decoding is equivalent to recovering the
support of the error.

This computational problem has been studied for over sixty years [8,13,18,
24,31,34,41], and is widely considered to be hard to solve, even with the help
of a putative quantum computer. Moreover, it benefits from a search-to-decision
reduction, due to Fischer and Stern [25], which asserts the hardness of the fol-
lowing decisional version:

Definition 2 ((Average-case) Decision Decoding Problem). Given a ran-
dom code C defined by a uniformly random generator matrix G ∈ F

k×n
2 , a target

distance t ∈ N and a vector y ∈ F
n
2 , decide whether y is uniformly distributed

over F
n
2 , or of the form mG + e for some m ∈ F

k
2 and e ∈ F

n
2 of Hamming

weight |e| = t.

Such a reduction is very useful for cryptographic applications, since various
cryptosystems, such as Alekhnovich cryptosystem [5], rely on the hardness of
the decisional version. When the length n of the code is a priori unbounded, this
problem is also known as LPN (Learning Parity with Noise) in the literature.

If the hypothesis that the Decoding Problem is hard on average is widely
accepted by the community, we lack theoretical results to corroborate that, since
the literature on security reductions for codes remains very limited. The first
worst-case to average-case reduction for the Decoding Problem is due to Braker-
ski, Lyubashevsky, Vaikuntanathan and Wichs in the recent breakthrough work
[16] (and subsequently Yu and Zhang [42]). This limited number of reductions
is probably one of the reasons why NIST did not yet select any code–based sub-
mission. On the other hand, three of the four submissions selected to advance
to the fourth round are based on binary error correcting codes. Moreover, with
the recent attacks on SIDH [19,30,36], NIST announced its will to standardise
at least one code-based candidate, which increases the importance of theoretical
studies of the underlying assumptions.

Structured Variants. The plain Decoding Problem often leads to cryptosys-
tems with large key sizes. In order to improve on that, it has been proposed
to use codes with an additional structure, such as a large automorphism group
Aut(C). For example, quasi-cyclic codes, introduced in cryptography by Gaborit
in [26], are very appealing since they offer a very good efficiency, while keeping
the same security parameter as for truly random codes. Indeed, the best app-
roach for solving the Decoding Problem of such structured codes remains the
DOOM attack by Sendrier [38], which only allows a

√
�Aut(C) speed–up. Quasi–

cyclic codes are in particular used in BIKE [1] and HQC [3] which are two of
the three code–based proposals remaining in the fourth round of NIST compe-
tition. However, such structured codes are not restricted to encryption schemes.
In particular, Bombar, Couteau, Couvreur and Ducros [10] have recently used
the decision version of the Decoding Problem of random quasi-abelian codes,
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which generalise both random linear codes and quasi-cyclic codes, to build an
efficient pseudorandom correlations generator for the OLE correlation (Oblivi-
ous Linear Evaluation) over any field Fq with q > 2. This allows to design the
first efficient silent (i.e. which requires almost no communication in the prepro-
cessing phase) N -party secure computation protocols for computing arbitrary
arithmetic circuits over Fq for q > 2.

However, on the security reductions point of view, the situation is even worse
than that of the plain Decoding Problem; there is even no complete search-to-
decision reduction. The only known reduction for structured variants is the recent
work of Bombar, Couvreur and Debris-Alazard [11], via the introduction of the
new problem called Function Field Decoding Problem (FFDP), which yield a
search-to-decision reduction for some quasi-cyclic codes. This reduction has been
extended in [10] to slightly more general quasi-abelian codes, but the question
remains fully open for the codes and parameter sets used in NIST submissions
BIKE and HQC.

From Lattices to Codes. Motivated by this state-of-affairs, a recent trend
of research in code–based cryptography has been to take inspiration from the
literature on Euclidean lattices to provide new reductions for codes: [21] gives
a quantum reduction from the Decoding Problem to the problem of finding a
short codeword, in the way of [35,40]; the reduction of [11] is an average-case to
average-case search-to-decision reduction for structured variants of the Decoding
Problem, in the spirit of [29], replacing number fields used in the lattice setting
by function fields (somehow the analogue in positive characteristics). However,
their reduction only works when the irreducible modulus splits completely in
the underlying ring of integers, which is not the case with the parameter choice
of BIKE and HQC. In the latter situation, the problem remains fully open.
Our motivation with this work was to advance towards a general search-to-
decision reduction. In this context, one may wonder if all the tools used to design
reductions for lattices have been translated in the context of error correcting
codes.

The answer to this question is negative. Indeed, in the breakthrough paper
[32], Peikert, Regev and Stephens-Davidowitz introduced a powerful tool for
reductions called the OHCP framework (for Oracle with Hidden Center Prob-
lem). Until the aforementioned work, search-to-decision reductions for lattices
had arithmetic and algebraic limitations in the choice of the modulus and the
number field of the considered structured lattice problem: [29] required the mod-
ulus to split completely, and the chosen number field to be Galois. The arithmetic
hypothesis on the modulus was removed in [28] with the use of the modulus
switching technique. The work of [32] allows to completely get rid of such alge-
braic and arithmetic hypotheses, and Rosca, Stehlé and Wallet later used it in
[37] to design a complete search-to-decision reduction. This OHCP technique
proved itself extremely useful as a black box inside the latest reductions in the
context of structured lattice problems such as ring-LWE [32,37], polynomial-LWE
[37], module-LWE [14] or NTRU [33]. On the other hand, even if this technique
is considered to be very general, it has never been used outside of the lattice
world.
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Contributions. In this article, we revisit the OHCP framework from [32] and
adapt it to the coding theoretic setting (in Sect. 3). More precisely, we extract
the very essence of this technique which appears to be the OCP technique (for
Oracle Comparison Problem) ([32, Definition 4.1]) and was overlooked before as
a mere technical step. Building on top of OCP, we show how given an algorithm
solving the decisional Decoding Problem, it is possible to recover the support of
the error, and hence to decode, solving the computational Decoding Problem.
In other words, we show how to solve a problem which may be called OHSP for
Oracle with Hidden Support Problem, and which is more suitable for code-based
cryptography (see Fig. 1)2

OCP

OHCP OHSP

suitable for
lattice-based cryptography

suitable for
code-based cryptography

: [32]
: This work

Fig. 1. Relationships between OCP, OHCP and OHSP.

Combining this framework with a recent result of Debris-Alazard and Resch
[22] on smoothing bounds for codes which applies to any radial smoothing dis-
tribution (in particular, it applies to the Bernoulli noise, which was not captured
before), we derive a new reduction from the worst-case search Decoding Problem
to the average-case decision Decoding Problem, in the spirit of what has been
done in the lattice-based setting.

In Sect. 4, we discuss instantiations and parameters for which our reduction
holds for relevant parameters. It turns out that with this completely different
approach, we recover the same parameters and noise ratio than the worst-case to
average-case search-to-search reduction of Brakerski et al. [16]. In particular, we
reduce a worst-case search decoding problem whose hardness is superpolynomial,
to an average-case decisional problem, to get the following (informal) theorem.

2 Note that it is possible to give a formal definitions of all the problems we mention,
but instead, we choose to put forth the intuition (as well as rigourous proofs on
how to solve them), in order to avoid superfluous technicalities which would only
obfuscate the speech.
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Theorem (Informal). Let n, k, t ∈ N, D < 1/2 be such that

k

n
=

1
nD

and
t

n
=

log2(n)2

n1−D
·

Suppose that there exists an algorithm which distinguishes with polynomial
advantage between (A, sA + t) and (A,y) where A is a random binary k × n
matrix, y is a random binary vector, and t is a random binary vector of Ham-
ming weight n

2

(
1 − 1/nD(1+o(1))

)
.

Then there exists an algorithm which solves the worst-case decoding problem
for input codes of length n, dimension k and at decoding distance t3.

Note that since the search-to-decision reduction of [25] is very tight, it can
be composed with the reduction of [16] to yield a worst-to-average case search-
to-decision reduction with the same parameters.

Finally, in Sect. 5, we discuss our attempt to give a reduction in the structured
case, such as quasi-cyclic codes. In particular, we single out a difficulty that arises
with codes but was not present in the lattice world, due to the choice of the
error distribution. More precisely, in the lattice setting, the error distribution is
taken through the Minkowski embedding, which transforms an actual product of
polynomials (convolution) into a Shur product (coordinate-wise multiplication).
The error then affects each component independently. In the Hamming world,
this independence is not respected, and there seems to need a new idea to derive
the reduction. However, we believe that our OHSP technique can be seen as a first
step towards more general reductions for structured codes, in the same manner
that OHCP had a huge impact for reductions in lattice–based cryptography. We
also believe that this paves the way for reductions for other metrics used in
cryptography, such as the rank metric, for which no search-to-decision reduction
is known.

The diagram in Fig. 2 represents the relationships between problems in code–
based cryptography. The black arrows represent previously known reductions.

Outline of the Article. The present article is organized as follows: In Sect. 2
we recall the notations and some elementary notions. Then we start Sect. 3 by
giving formally our search-to-decision reduction in Theorem 1. It is followed by
a high-level description of how this theorem is obtained. In Subsects. 3.1 and 3.2
we prove formally Theorem1. In Sect. 4 we discuss instantiations of our search-
to-decision reduction, first as an average-to-average reduction and ultimately
as a worst-to-average reduction, in the context of the plain decoding problem.
In Sect. 5 we describe our failed attempt to apply our reduction template to
quasi-cyclic codes.

3 Input codes are supposed to be balanced as in the reduction of [16].
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Average Search
LPN

Worst-Case
Search

Decoding Problem

Average
Search

Decoding Problem

Average
Decision

Decoding Problem

[16]

[42]

[25] This paper:
OHSP technique

: Harder than

Fig. 2. Known reductions for the decoding problem used in code-based cryptography.

2 Preliminaries

Notation. When a and b are two integers, �a, b� denotes the set of integers
{a, a + 1, . . . , b}, and we denote by poly(n) any quantity which is an O (nα) for
some constant α. Vectors are in row notation and they will be written with bold
letters, such as e. Uppercase bold letters are used to denote matrices (such as
G). The canonical inner product

∑n
i=1 xiyi between two vectors x,y ∈ F

n
2 is

denoted by 〈x,y〉. The support Supp(x) of x is the positions of its non-zero
coordinates

Supp(x) def= {i ∈ �1, n� : xi �= 0}
and its Hamming weight |x| is the cardinality of its support

|x| def= �Supp(x).

The sphere in F
n
2 centered at 0 and of radius t (for the Hamming metric | · |)

will be denoted by Sn
t (or simply St when the ambient space is clear).

In this article, we wish to emphasize on which probability space the proba-
bilities or the expectations are taken. We will denote by a subscript the random
variable specifying the associated probability space over which the probabilities
or expectations are taken. For instance the probability PX(E) of the event E is
taken over the probability space Ω over which the random variable X is defined.

The statistical distance between two random variables X and Y taking their
values in a same finite space E is defined as

Δ(X,Y ) def=
1
2

∑

a∈E
|P (X = a) − P (Y = a)| . (1)
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The statistical distance between two random variables depends only on their
distributions. Recall that for any event E, we have |PX(E) − PY (E)| � Δ(X,Y ).
Therefore, computing probabilities over X or Y will differ by at most Δ(X,Y ).
The statistical distance enjoys many interesting properties. Among other things,
it cannot increase by applying a function f ,

Δ(f(X), f(Y )) � Δ(X,Y ) (data processing inequality). (2)

For the data processing inequality to hold, the function f may be randomized as
soon as its internal randomness is independent from X and Y . In particular, it
implies that the “success” probability of any algorithm A for inputs distributed
according to X or Y , can only differ by at most Δ(X,Y ). Furthermore, when
(X1, . . . , Xr) and (Y1, . . . , Yr) are two sequences of random variables such that
the Xi’s (respectively the Yi’s) are pairwise independent, then

Δ((X1, . . . , Xr), (Y1, . . . , Yr)) �
r∑

i=1

Δ(Xi, Yi). (3)

In the sequel, we denote by X ← D when X is a random variable following
distribution D. In addition when E is a finite set, we allow ourselves to denote
X ← E when X is uniformly distributed over E . A Bernoulli random variable
X ← Ber(ω) of parameter ω ∈ R+ is any binary random variable X ∈ F2 such
that

P (X = 1) =
1
2
(
1 − 2−ω

)
.

Remark 1. This notation may seem surprising. It is however more comfortable
to use in our setting. The rationale behind this choice is that in our reduction
we strongly need to “focus” in the neighbourhood of 1/2. This notation has also
the following advantage: a simple calculation shows that given two independent
random variables X ← Ber(ω1) and Y ← Ber(ω2), then X + Y ← Ber(ω1 + ω2).
This will be comfortable in the sequel.

Finally, X ← Ber(ω)⊗N means that X
def= (X1, . . . , XN ) where the Xi’s are

independent and identically distributed Bernoulli random variables of parameter
ω.

3 Search-to-Decision Reduction in the Oracle Comparison
Problem (OCP) Framework

Let us assume that we have a probabilistic algorithm A running in time T that
can distinguish noisy codewords at some Hamming distance and uniform random
vectors over the ambient space. Its inputs are A ∈ F

k×N
2 and y ∈ F

N
2 . The aim of

A is to output “1” if and only if y = sA+e for some s ∈ F
k
2 and the bits of e are

independent and identically distributed Bernoulli random variables of parameter
ω. Namely, y is a noisy codeword c + e where c ∈ C def=

{
mA : m ∈ F

k
2

}
and
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|e| ≈ N
2 (1 − 2−ω). Otherwise, A has to output “0”. In addition, to be relevant

in a cryptographic context, we suppose that A may give false answers. In that
case we are interested in its advantage ε(k,N, ω) which is defined as follows

ε(k,N, ω) def=
1
2

(PA,s,e (A (A, sA + e) = 1) − PA,y (A (A,y) = 1)) , (4)

where the random variables satisfy

(i) A ← F
k×N
2 , (ii) s ← F

k
2 , (iii) y ← F

N
2 and (iv) e ← Ber(ω)⊗N . (5)

We say that A distinguishes between distributions (A, sA + e) and (A,y) with
advantage ε(k,N, ω). It may happen that we omit the dependence in (k,N,w)
and simply write ε (that will be clear from the context). The following general
theorem shows that from any such putative “distinguishing” algorithm A, we
can build an algorithm solving a fixed decoding problem, namely recovering t
from (G,mG + t).

Theorem 1. Let N,n ∈ N and k ∈ �0,min(N,n)�. Let (G,mG + t) with G ∈
F

k×n
2 , m ∈ F

k
2 , and |t| = t ∈ �0, n�. Suppose that there exists an algorithm A

which distinguishes in time T distributions (A, sA+e) and (A,y) with advantage
ε(k,N, ω) where A, s, e, y satisfy (5) and ω ∈ R+ verifying

ω = Ω(1) and ω = O(n). (6)

Let ω0, α ∈ R+ be such that

t ω0 = ω and α
def
= max

(
1

ε(k,N, ω)
, N, n

)
. (7)

Then, there exists an algorithm which takes as input (G,mG + t) and which
outputs t in time T poly (α) with probability (over its internal randomness and
not the choice of G, m and t which are fixed) bigger than

1 − 2−Ω(n) − N poly(α)max
x�0

Δ
((

r(x)G�, 〈r(x), t〉) , (a, e(x))
)
, (8)

where a ← F
k
2 , r(x) ← Ber(2xω0)⊗n and e(x) ← Ber(2xω0t) with x � 0.

This theorem will follow from a sequence of lemmas. Before providing a
rigorous demonstration, let us give an informal sketch of the proof.

Remark 2. Similarly to [32], our algorithm rests on a distinguishing process
between two distinct oracles. Informally, by oracle we mean a black box that
we can query arbitrarily many times and whose outputs are independent ran-
dom elements following a given distribution. Formally, an oracle O(x) can be
modelised by a sequence (Xi)i∈N

of independent identically distributed random
variables whose distribution may depend from some parameter x.
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Step 1. (From distinguishing LPN samples to distinguishing noisy codewords).
We start from an algorithm A that distinguishes, with advantage ε,
between a noisy codeword c+e (by outputting 1) and a uniform y ∈ F

N
2

(by outputting 0) with c drawn uniformly at random from some random
binary [N, k]-code C, and e ← Ber(ω)⊗N . This algorithm can easily be
turned into an algorithm A′ distinguishing (with the same advantage ε)
oracles

O(ω) : (a, 〈a, s〉 + e) and O(∞) : (a, u) (9)

where s ∈ F
k
2 , e ← Ber(ω), a ← F

k
2 and u ← F2

4. Indeed, given one of
the above oracles O, in order to design A′, it is enough to perform N
queries (ai, bi) to O and gather them to generate the pair (A,b) where
the columns of A are the a�

i ’s and b = (b1, . . . , bN ). Then, we feed A
with the generated pair (A,b) to make our decision. Defining such an
algorithm A′ solving the above LPN-decisional problem with at most N
queries may seem at first sight tautological, but for our reduction it is
more convenient to emphasize this point.
This is why, for proving Theorem1, we will suppose that we directly
have an algorithm A′ distinguishing LPN-oracles O(ω) and O(∞) with
some advantage ε and querying at most N times the input oracle.

Step 2. (From a noisy codeword to LPN-samples). The starting point of the
reduction consists in noticing that, from any input of a decoding prob-
lem, we can build some LPN-oracle. Given

(
G,y def= mG + t

)
∈ F

k×n
2 × F

n
2 ,

we can design the following oracle O0. Sample r according to Ber(ω0)⊗n,
then compute rG� and

〈y, r〉 = 〈mG + t, r〉 = 〈m, rG�〉 + 〈t, r〉. (10)

The oracle O0 outputs LPN–like samples of the form:

O0 : (a′, 〈s,a′〉 + e′) where

⎧
⎪⎨

⎪⎩

s def= m

a′ def= rG�

e′ def= 〈t, r〉.
(11)

The random variable e′ follows a Bernoulli distribution of parame-
ter ω0 |t| = ω0t (see Lemma 1 further) which equals ω (under the
notation of Theorem 1, Eq. (7)). However, one can notice that our
above sample is not a valid LPN instance since a′ = rG� is a priori
not uniformly distributed and is correlated to e′. Nonetheless, thanks
to the data processing inequality (see Eq. (2)), replacing the sample
(rG�, 〈m, rG�〉+〈t, r〉) by a genuine LPN sample (a, 〈a,m〉+e) changes
the probabilities by at most the additive term

Δ
((
rG�, 〈r, t〉) , (a, e)

)
, where e ← Ber(ω) and is independent from a.

4 A sample from O(·) is called an LPN sample.
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Further, in Sect. 4, when we instantiate Theorem 1, parameters are cho-
sen so that this statistical distance is negligible. This is obtained by
carefully choosing ω0. In particular, we use smoothing bounds as given
in [16,20,22,23].
Now, one may wonder how we can use O0 with our algorithm A′ dis-
tinguishing between LPN-distributions to solve our underlying decoding
problem. It is the aim of the next step.

Step 3. (Applying the Oracle Comparison Problem OCP framework). For a for-
mal definition of OCP, the interested reader can refer to [32, Definition
4.1]. Intuitively, given access to two oracles O1 and O2 whose acceptance
probability are just a “shift” of one another, the goal of OCP is to tell
which one is in advance, and which one lags behind (see Fig. 3).
The first core idea of the reduction is to notice that in order to build
the oracle O0 of (11), we have computed 〈y, r〉 (see (10)), leading to
an LPN sample with parameter ω0|t| = ω (see Lemma 1 further). One
could have done the same thing but this time by computing 〈y+z, r〉 for
some fixed z ∈ F

n
2 instead. This has the following consequence: our new

oracle provides LPN-samples with Bernoulli noise of parameter ω0|t+z|.
Arguably this innocent looking fact is the key of our reduction, which
follows the approach of [32,37]. Let us define the oracle Ovi as O0, but
instead of outputting 〈y, r〉 it outputs 〈y+vi, r〉 where (vj)1�j�n is the
canonical basis of F

n
2 . Then we feed A′ with Ovi . By assumption, A′

distinguishes between an LPN oracle with noise Ber (ω) and a uniform
noise Ber(∞) with advantage ε. Therefore, the probability that A′ out-
puts 1 when fed with O0 is roughly 1/2 + ε. On the other hand, Ovi

defines an LPN oracle with Bernoulli parameter ω0 |t + vi|, where |t| = t
and |vi| = 1. Therefore, the noise is distributed either as Ber(ω0(t − 1))
or Ber(ω0(t + 1)) depending on whether ti = 1 or not, that is to say
on whether i belongs to the support of t or not. In other words, the
behaviour of Ovi depends on the hidden support of t. From then on,
one may prematurely conclude that the acceptance probability of A′

when fed with Ovi slightly differs from the one when fed with O0; a
behaviour that could be detected. Unfortunately the success probabil-
ity, 1/2 + ε, may be the same in all these cases. This brings us to the
second core idea of the reduction. Instead of defining O0 and Ovi by
sampling r according to Ber(ω0), we choose r ← Ber(2xω0) for x ∈ R+.
The LPN-noise now follows the following distributions

Ber(2xω0t) in O0 and

⎧
⎨

⎩

Ber (2xω0(t − 1)) if ti = 1

Ber (2xω0(t + 1)) if ti = 0
in Ovi . (12)

We can notice that by letting x → ∞, above distributions go to Ber(∞).
However, the fundamental remark is not here. By definition, our distin-
guishing algorithm A′ does not behave “in the same way” when is given
as input O(ω0t) or O(∞); fact which is quantified by its advantage ε.
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Therefore, if one feeds A′ with the oracle O0 (which outputs LPN sam-
ples with Bernoulli noise of parameter ω0t when x = 0), then playing on
x � 0 one can detect a difference in its probability to output 1. Let us
say that the change of behaviour happens at some x0, namely for a noise
Ber(2x0ω0t). Let us suppose that now we feed Ovi to A′. One can also
choose different values x and look at the probability that A′ outputs 1.
But, we know that this change of behaviour will happen when the noise
follows some Bernoulli distribution of parameter 2x0ω0t. Therefore, in
that case, we will observe a difference at some x′

0 � 0 when (according
to Eq. (12); see also Fig. 3)
⎧
⎪⎪⎨

⎪⎪⎩

2x′
0ω0(t − 1) = 2x0ω0t ⇐⇒ x′

0 = x0 + log
(

t
t−1

)
> x0 if ti = 1,

2x′
0ω0(t + 1) = 2x0ω0t ⇐⇒ x′

0 = x0 + log
(

t
t+1

)
< x0 if ti = 0.

Fig. 3. Illustration of Step 3 (in the case ti = 1).

It turns out that with classical statistical methods, we can now detect
this difference in the acceptance probability of A′. The idea is just to
estimate when A′ changes its behaviour given as input O0 and Ovi .
Depending whether ti = 1 or not, this change of behaviour will happen
for a smaller x with input O0, or a bigger x. This yields the claimed
reduction: we are able to decide whether ti = 1 or 0 for any i ∈ �1, n�,
i.e. we are able to recover the hidden support of the error, and hence to
solve the decoding problem. In other words, we turned a “distinguishing
decoding” algorithm into a “search decoding” algorithm.
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From now on, A denotes an algorithm running in time T and taking as input
an oracle O which can be queried at most N times and outputting vectors in
F

k
2 × F2. Furthermore, its advantage to distinguish between O(ω) and O(∞)

(defined in (9)) is given by

ε =
1
2

(
P (A (O(ω)) = 1) − P (A (O(∞)) = 1)

)
> 0. (13)

Remark 3. After possibly replacing A(O) by 1 − A(O), one can always suppose
the advantage to be positive.

3.1 Building LPN-Oracles from a Decoding Instance: Step 2

Our aim in this step is to study oracles Oz(x) and Oz
ideal(x) which are given in

Fig. 4, where z ∈ F
n
2 is a parameter, x ∈ R an input and y = mG + t. Notice

that (G,y) is known while (m, t) are unknown; preventing us from being able
to run Oz

ideal(x). However, as we will explain below, Oz
ideal(x) is an ideal version

of Oz(x) that we “only” use to analyse the success probability of the reduction.

Oracle Oz(x):
Input: x ∈ R

Sample: r Ber(2xω0)⊗n

Return: rG , y + z, r

Oracle Oz
ideal(x):

Input: x ∈ R

Sample r Ber(2xω0)⊗n

and a F
k
2

Return: (a, a,m + z+ t, r )

Fig. 4. Oracles Oz(x) and Oz
ideal(x)

Oracle Oz
ideal(x) is an ideal version of Oz(x). It follows from the fact that Oz

outputs LPN-like samples
(
rG�, 〈m, rG�〉 + 〈z + t, r〉) .

Notice that, contrary to Oz
ideal, oracle Oz does not provide genuine LPN samples

(that is the reason why we said LPN like) since rG� is not uniformly distributed
and is correlated to 〈z + t, r〉. However, in both oracles the noise term is the
same. In the following lemma (often called the piling-up lemma) we show how
it behaves.

Lemma 1. Let r ← Ber(α)⊗n, then for any z ∈ F
n
2 we have

〈z, r〉 ← Ber(|z|α).
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Proof. Let z
def= |z| and p

def= 1
2 (1 − 2−α). By definition of r ← Ber(α)⊗n we have

the following computation

Pr (〈z, r〉 = 1) =
∑

j odd

(
z

j

)
pj(1 − p)z−j

=
1
2

⎛

⎝
∑

j

(
z

j

)
pj(1 − p)z−j −

∑

j

(−1)j

(
z

j

)
pj(1 − p)z−j

⎞

⎠

=
1
2

(1 − (1 − 2p)z)

=
1
2
(
1 − 2−zα

)
,

which concludes the proof. �

3.2 Oracle Comparison Problem Technique: Step 3

Let us introduce the following function

p : x ∈ R �−→ P
(A(O0

ideal(x)) = 1
)

(14)

where we feed to A the ideal oracle. Recall that (vi)1�i�n denotes the canonical
basis of Fn

2 ; from Lemma 1, we notice that

p

(
x + log

|t + vi|
|t|

)
= P

(
A

(
O0

ideal

(
x + log

|t + vi|
|t|

))
= 1

)

= P (A (Ovi

ideal (x)) = 1) (15)

where the last equality follows from the fact that O0
ideal

(
x + log |t+vi|

|t| )
)

outputs
proper LPN samples with Bernoulli noise of parameter

2x+log
|t+vi|

|t| ω0|t| = 2xω0 |t + vi| .

In other words, the probability that A outputs 1 when fed with Ovi

ideal(x) is the
probability that A outputs 1 when fed with O0

ideal on x shifted by

log
( |t + vi|

|t|
)

=
{

log (1 − 1/t) if ti = 1
log (1 + 1/t) otherwise.

Let us stress that (15) would not hold if one had defined p in (14) by feeding
A with O0 instead of O0

ideal. Indeed, notice that outputs (a, b) of O0(x) are such
that both the distributions of b and a are functions of x. Hence, changing x in
the non–ideal oracle O0(x) might change the distribution of the first component
of the output and (15) would no longer hold. We crucially used that changing x
in O0

ideal(x) only modifies the noise term.
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As roughly described below Theorem 1, the core idea of the reduction is
to feed to A oracles O0

ideal(x) and Ovi

ideal(x) and then to draw the probability
to output 1 when x ranges over [0,+∞[. Practically, we compute statistical
estimates of this probability when x ranges over a discretisation of [0,Xmax], for
some Xmax. In the choice of Xmax and the discretisation step, a trade-off should
be made. On the one hand, for the empirical estimates to be close enough to
the actual probability function p of (14), the upper bound Xmax should be large
enough and the discretisation step should be small enough. On the other hand
for the statistical estimator to run in polynomial time, Xmax should not be too
large and the discretisation step should not be too small.

Then, using that A discriminates oracles O(ω0t) = O0
ideal(0) and O(∞) =

O0
ideal(∞), we will be able for both oracles to determine the first input x that

induces a change in the behaviour of A. We will compare both values and depend-
ing on which one is the biggest, we will decide if ti = 1, or not. The correction
of this procedure relies on (15) showing that one distribution is the shift of
the other one. However, one may note that we cannot run A (O0

ideal(x)
)

and
A (Ovi

ideal(x)) as m, t are unknown. We have instead access to A (O0(x)
)

and
A (Ovi(x)) for which we do not know if their probabilities to output 1 are a
shift of the other one. In order to be able to analyse our procedure, we will use
the following remark: the probability of success when given the real oracles only
differs by at most an additive term Δ

((
rG�, 〈r, t〉) , (a, e)

)
(multiplied by the

number of queries to the oracles) to the case where it is given the ideal oracles.
Therefore, as soon as we can estimate the aforementioned statistical distance, it
is enough to perform the analysis when given ideal oracles.

The following technical lemma (whose proof can be found in the extended
version [12] but is essentially the same as the one of [32, Lemma 4.2]) shows how
two oracles depending on a parameter x can be distinguished if the distribution
of one is the shift of the other one. This statement was initially used to solve the
Oracle Comparison Problem (OCP) problem introduced in [32, §4]. Think that
we will instantiate this lemma using oracles Os1(x) = A (O0

ideal(x)
)

with s1 = 0
and Os2(x) = A (Ovi

ideal(x)) with s2 = log
(
1 ± 1

t

)
.

Lemma 2. Let s1, s2 ∈ R and p : R → [0, 1]. We suppose that there exists α > 0
and p∞ ∈ [0, 1] such that p verifies the following assumptions

(i) p(s1) − p∞ � 1
α ;

(ii) ∀x ∈ R+, |p(x) − p∞| � α2− x
α ;

(iii) p is α-lipschitz.

Let Os1 and Os2 be two oracles that output 0 or 1 and such that

∀x ∈ R, P (Os1(x) = 1) = p(s1 + x) and P (Os2(x) = 1) = p(s2 + x).

We suppose that a call to one of the above oracle costs a time T . Furthermore,
s1 and s2 are such that

either (I) s1 � s2 or (II) s1 � s2 +
1
α

·
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Then, there exists an algorithm, running in time T poly (α), taking as inputs
(Os1 ,Os2), querying them poly(α) times and which can decide whether (I) or
(II) holds, with a success probability � 1 − e−α (over the outputs of the oracles
Osi

’s).

Equipped with this statement, we are almost ready to prove Theorem 1.
However, it still remains to verify that the function p given in (14) satisfies the
assumption of the lemma for some parameters α and p∞.

Lemma 3. We use the notation of Theorem 1. Let p be the function defined in
(14), and let

p∞
def
= P

(A (O0
ideal(∞)

)
= 1

)
(O0

ideal is defined in Figure 4). (16)

Then, we have

(i) p(0) − p∞ � 1
α ;

(ii) |p(x) − p∞| � α2− x
α ;

(iii) p is α-lipschitz;

for some α satisfying

α = C max
(

1
ε
,N, n

)
(17)

for some large enough constant C and where ε is the distinguishing advantage
of A given in Eq. (13).

Proof. Let us first prove (i). Following the discussion in Step 1, let O(ω) =
O0

ideal(0) and O(∞) = O0
ideal(∞) (defined in (9)). By definition of p,

p(0) − p∞ = P (A (O(ω)) = 1) − P (A (O(∞)) = 1)
= 2ε

� 1
α

,

where in the last line we used the assumption on α given in Eq. (17).
Let us prove (ii). Using the data processing inequality (2) together with (3),

for X ← Ber(2xω0t) and Y ← Ber(∞), we have

|p(x) − p(∞)| � N Δ (X,Y )

= N 2−2xω0t.

Notice now that

N2−2xω0t � α2− x
α ⇐⇒ log(N) − 2xω0t � −x

α
+ log(α),

and the last equality is verified for all x � 0 since, from (6), we know that
ω0t = ω = Ω(1) and α � CN for some large enough constant C. It proves item
(ii).
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We are now ready to finish the proof by proving item (iii). In the same
manner as before, for X ← Ber(2xω0t) and Y ← Ber(2yω0y) and for all x, y � 0,
we have

|p(x) − p(y)| � NΔ(X,Y )

= N
∣∣∣2−2xω0t − 2−2yω0t

∣∣∣

� Nω0t |x − y| ,

where the last inequality follows from the mean value theorem. Notice now that
Nω0t � α as Nω0t = Nω = O(Nn). It concludes the proof. �

We are now ready to prove Theorem 1.

Proof. The algorithm recovering t from mG + t simply runs for any i ∈ �1, n�
the procedure of Lemma 2 with oracles A(O0(x)) and A (Ovi(x)). However to
see why it works, let us make the analyse of the success probability as if the
following oracles were given

Os1(x) def= A (O0
ideal(x)

)
and Os2(x) def= A (Ovi

ideal(x)) .

with s1 = 0 and s2 chosen later. Notice that according to the definition of p
given in Eq. (14) we have

P (Os1(x) = 1) = p(s1 + x) and P (Os2(x) = 1) = p(s2 + x)

where s2 is such that (see Eq. (15))

s2 =
{

log
(
1 − 1

t

)
if ti = 1

log
(
1 + 1

t

)
otherwise.

Therefore, for t � 1, either

s2 > s1 = 0 if ti = 0

or,

s2 +
1
t

= log
(

1 − 1
t

)
+

1
t

� 0 = s1 if ti = 1.

Consequently, to apply Lemma 2 we need to have α � t. But the function p
has also to verify items (i), (ii) and (iii) of the lemma. According to Lemma 3,
all these assumptions are met if we choose α as a Θ

(
max

(
1
ε , N, n

))
(recall that

t � n). Notice that poly(α) = poly
(
max

(
1
ε , N, n

))
.

Running the procedure of Lemma2 for any i ∈ �1, n� will output the support
of t, namely {i ∈ �1, n�, ti �= 0} with probability

�
(
1 − e−α

)n =
(
1 − e−Ω(n)

)n

= 1 − 2−Ω(n).
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and in time Tpoly(α). However, we will run this procedure with oracles A(O0(x))
and A (Ovi(x)). But, according to Lemma 1, the statistical distance between
outputs of O0(x) and O0

ideal(x) is smaller than

Δ
( (

r(x)G�, 〈r(x), t〉) , (a, e(x))
)

where a ← F
k
2 , r(x) ← Ber(exω0)⊗n and e(x) ← Ber(exω0t). Furthermore we

have the same upper-bound between outputs of Ovi(x) and Ovi

ideal(x) except that
we have to replace t by t + vi and e(x) ← Ber(exω0(t ± 1)) as |vi| = 1. But in
both cases, the statistical distances are equal up to a factor (1 + 2−Ω(n)).

Therefore, by using the data processing inequality and Eq. (3), the procedure
will recover the support of t in the same time and with probability

� 1 − 2−Ω(n) − N ′ max
x�0

Δ
( (

r(x)G�, 〈r(x), t〉) , (a, e(x))
)

where N ′ is the number of queries that our procedure makes to oracles O0(x)
and Ovi(x). According to Lemma 2, the procedure makes poly(α) queries to its
input oracle which is here A(O0(x)) and A (Ovi(x)). But at the same time, A
makes N queries to its input oracles. Therefore N ′ = poly(α)N which concludes
the proof. �
Remark 4. This algorithm bares similarities with the OHCP framework intro-
duced in [32] to prove pseudorandomness of the ring-LWE distribution. However,
contrary to the lattice-based setting, in the case of codes we do not need to
introduce a random walk towards a center. Indeed, in the Hamming metric, the
support gathers all the needed information to recover the error. The situation is
even simpler in the case of the binary field F2, for there are only two situations:
either the error is 1 or 0. For a bigger finite field Fq, we would have to distinguish
between a 0 value or a non-zero error, letting us with q −1 choices for the actual
error value. However, the information “being in the support or not” is enough
to recover the error, even if that means solving a linear system. Note that this
remark also applies to the rank metric, which could be a good starting point to
design search-to-decision reductions for codes endowed with this metric.

4 Instantiations

4.1 Plain Decoding

In order to instantiate the above reduction, we need to carefully understand
how close our oracle Oz(x) is to output LPN-like samples, from genuine LPN
samples which are produced by Oz

ideal(x) (see Fig. 4). That is to say, we want to
understand when the additive term

Npoly(α) Δ
( (

r(x)G�, 〈r(x), t〉) , (a, e(x))
)

in Eq. (8) is negligible. Recall that |t| = t, r(x) ← Ber (exω0)
⊗n and e ←

Ber (exω0t)
⊗n. In other words, we want to understand for which parameters ω0, x
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the distribution of r(x) smoothes the dual of the code generated by G. We will
consider two situations: average-case to average-case and worst-case to average-
case reductions. It has to be noted that OCP-based reductions are fundamentally
worst-case to average-case. In particular, the average-case to average-case reduc-
tion yields essentially the same parameters as the worst-case to average-case. The
major difference is that the latter requires so-called smoothing bounds.

– Average-case to Average-case reduction: for cryptographic applications,
we need to assess the hardness of our problem on average. In this situation, the
matrix G is chosen uniformly at random in F

k×n
2 . This yields another search

to decision reduction for the plain decoding problem, completely different
than that of [25]. Furthermore this gives a sense of the best sorts of trade-off
between parameters that we can achieve with our reduction.
The main ingredient here will be the following lemma which is a variation
of [23, Lemma 3, §C.1], itself a particular case of the famous leftover hash
lemma (see [6]). A proof can be found in the extended version [12].

Lemma 4. Let E,F be finite sets. Let H = (hi)i∈I be a finite family of appli-
cations from E to F and T ⊆ E. Let t be drawn uniformly at random in T and
r ∈ E be a random variable distributed according to some distribution D. Let,

p
def
= Pt,r (〈r, t〉 = 1) (18)

where 〈·, ·〉 is a map from E × E → {0, 1}. Let η be the “collision bias” defined
by

Ph,t,r0,r1

(
h(r0) = h(r1), 〈t, r0〉 = 〈t, r1〉

)
� 1

�F
(p2 + (1 − p)2 + η) (19)

where h, t are uniformly drawn in H and T respectively and r0, r1 be independent
and distributed according to D.

Let Y be the random variable (u, e) where u is uniform over F and e ∈ {0, 1}
is a Bernoulli random variable of parameter p and u, e are independent. Let
Y (h, t) be the random variable (h(r), 〈r, t〉) when r is distributed according to D.
We have,

Eh,t (Δ(Y (h, t), Y )) � √
η.

In our case, the functions will be defined as h(r) = rG� where G ranges over a
family of matrices, typically double circulant matrices, or the full space of k × n
matrices; and 〈·, ·〉 will stand for the canonical inner product over F

n
2 .

– Worst-case to Average-case reduction: on a more theoretical perspec-
tive, one can wonder on the worst-case hardness of the decision decoding
problem. Such a result has been obtained for lattices, proving for instance
that different flavors of LWE are at least as hard as worst-case problems on
(different classes of) Euclidean lattices. The main ingredient here will be the
smoothing bounds of [16,20,22,42]. This is the first time that such a reduction
is derived from the OCP framework in the code–based setting.
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Average-Case to Average-Case Reduction. In this paragraph, we consider
the plain decoding problem. First, we prove the following lemma. It will yield
the noise allowed in the decision problem of the reduction.

Lemma 5. Let β, η ∈ (0, 1), k � n ∈ N, t ∈ �1, n� and ω0 ∈ R+ be such that

ω0 � − log2

(
1 − 2

1 + η

1 − β
h−1

(
k

n

))
(20)

with h−1 : [0, 1] → [0, 1
2 ] being the inverse of the binary entropy function h. Then,

for all x � 0,

EG,t

(

Δ
((

r(x)G�, 〈r(x), t〉) , (a, e(x))
))

= 2−Ω(n)

where a ← F
k
2 , r(x) ← Ber(exω0)⊗n, e(x) ← Ber(exω0t), G ← F

k×n
2 and

t ← Sn
t being the sphere of radius t around 0 in F

n
2 .

It is a corollary of Lemma 4 and [22, Proposition 6.7] recalled below, which
shows that the Bernoulli distribution inherits the smoothing properties of the
uniform distribution over a Hamming sphere.

Proposition 1 ([22, Proposition 6.7]). Let t ∈ F
n
2 , β > 0, ρ ∈ R+ and

p
def
= 1

2 (1 − 2−ρ). Let G ∈ F
k×n
2 be the generator matrix of an [n, k]-code. Then,

Δ
((

rG�, 〈r, t〉) , (a, e)
)

�
(1+β)np∑

r=(1−β)np

Δ
((

rrG�, 〈rr, t〉
)
, (a, er)

)
+ 2−Ω(n)

where r ← Ber (ρ)⊗n, a ← F
k
2 , e ← Ber (ρ|t|), rr ← Sr and the er’s are dis-

tributed as the 〈rr, t〉’s.
Remark 5. Note that Equation (20) is equivalent to

1
2
(
1 − 2−ω0

)
(1 − β) � (1 + η)h−1

(
k

n

)
. (21)

That is to say, require the least index in the sum in Proposition 1 to be above
the Gilbert-Varshamov bound. This is a necessary condition for the statistical
distances to be negligible.

We are now ready to prove Lemma 5. We will proceed in two steps: first we
show that it holds when r is instead uniformly distributed over the sphere of
radius n

2

(
1 − 2−exω0

)
(1 − β); we then apply Proposition 1.

Proof. To ease the reading, let us drop the dependency in x (the maximum of
the statistical distance is reached for x = 0; taking x � 0 can only decrease
this statistical distance as it increases the noise). Let r

def= n
2 (1 − 2−ω0) (1 − β)
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and r ← Sr. Our aim is to show that the result holds for this distribution. To
conclude the proof it will just remain to apply Proposition 1. By Lemma 4, it
suffices to compute the collision probability (where r0, r1 ← Sr, G ← F

k×n
2 and

t ← St)

Pr0,r1,G,t

(
r0G� = r1G�, 〈t, r0〉 = 〈t, r1〉

)

= Pr0,r1,G,t

(
(r0 − r1)G� = 0, 〈t, r0 − r1〉 = 0

)

=
∑

r�=0

PG

(
rG� = 0

)
Pt (〈t, r〉 = 0)Pr0,r1 (r0 − r1 = r) + Pr0,r1 (r0 = r1)

=
1
2k

∑

r�=0

Pt (〈t, r〉 = 0)Pr0,r1 (r0 − r1 = r) + Pr0,r1 (r0 = r1)

� 1
2k

(
Pt,r0,r1 (〈t, r0 − r1〉 = 0) + 2k

Pr0,r1 (r0 = r1)
)

=
1
2k

(

p2 + (1 − p)2 +
2k

(
n
r

)

)

where p
def= Pr,t (〈t, r〉 = 1) and we used in the inequality the law of total prob-

ability. By Lemma 4,

EG,t

(

Δ
((

rrG�, 〈rr, t〉
)
, (a, er)

))

�
√

2k

(
n
r

) ·

Recall that
(
n
r

)
= 2nh(r/n)(1+o(1)) where h denotes the binary entropy function.

By Eq. (21), r verifies (1 + η)h−1
(

k
n

)
� r

n � 1/2. Therefore, since h is a strictly
increasing function, the above upper-bound is a 2−Ω(n). This yields the claimed
result. �

Recall that in Theorem 1, the considered (search) decoding problem is fixed
once and for all. However, the above lemma tells us that on average, on the choice
of G and t, the considered statistical distance is negligible. We can actually prove
that it holds for almost all choices.

Lemma 6. Let k � n ∈ N, t ∈ �0, n�. For a matrix G ∈ F
k×n
2 and a vector

t ∈ F
n
2 of Hamming weight t, denote

X(G, t)
def
= Δ

((
r(x)G�, 〈r(x), t〉) , (a, e(x))

)
.

Let,
γ

def
= EGu,tu

(X(Gu, tu))

where Gu ← F
k×n
2 and tu ← St. Then,

�{(G, t) ∈ F
k×n
2 × St | X(G, t) � √

γ}
2kn

(
n
t

) � √
γ.
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Proof. Since Gu and tu are independent and uniformly distributed over their
respective domains, this proportion is nothing else than PGu,tu

(X(Gu, tu) �√
γ). By Markov inequality, we have

PGu,tu
(X(Gu, tu) � √

γ) � EGu,tu
(X(Gu, tu))√

γ
� √

γ,

which concludes the proof. �
We are now ready to instantiate our search-to-decision average-to-average

case reduction. However, in the same manner as discussed in [22, §6], parameters
have to be carefully chosen to ensure that the decision problem is not too hard
and its search counterpart into which we reduce is not too easy.

Notice that the noise of the decision decoding problem of the reduction is
distributed as Ber (ω0t) with ω0 given in Eq. (20). If one chooses k, n such that
k
n = Θ(1), one would obtain a noise distributed as Ber(ω0t) = Ber (Θ(t)). In
that case, it seems that we need to choose t as a O(log2(n)) to reach a noise rate
1/2(1−2−ω0t) = 1/2−1/poly(n) in the decision decoding problem. Otherwise, we
would reduce the decoding problem into a decision decoding problem with a noise
rate exponentially or sub-exponentially close to 1/2; an extremely hard problem
which is not very satisfactory. On the other hand, choosing t = O(log2(n)) is a
real disaster for the reduction: decoding a code of length n at distance O (log2(n))
can be done in polynomial time (using for instance Prange algorithm [34]). That
is, we would be reducing an easy worst-case search decoding problem to an
average-case decision decoding problem; which says nothing about the hardness
of the decision version. We therefore conclude that the only way to reach an
error rate 1/2(1 − 2−ω0t) = 1/2 − 1/poly(n) is to decrease as much as possible
ω0 given in Eq. (20). In particular, we are led to choose k/n = o(1), since in
that case ω0 = − log2(1 − o(1)) = o(1). More precisely, for these parameters ω0

verifies

ω0 = − log2

(
1 − Θ

(
h−1

(
k

n

)))
≈ 1

log2
(

n
k

)
k

n

where we used the expansion h−1(ε) ≈
ε→0

ε
log2(1/ε) . Therefore, to reach the noise

rate 1/2 − 1/poly(n) we need to choose parameters such that

k

n
= o(1) and ω0t =

1
log2

(
n
k

)
k

n
t = O (log2(n)) . (22)

Notice that necessarily in the above choice of parameters, we need t to be sublin-
ear in n, since otherwise k would be too small, allowing an exhaustive search to
decode in polynomial time. Fortunately, in that case the reduction is non-trivial.
The cost of Prange’s algorithm [34] (which is asymptotically the best known
decoding algorithm when the decoding distance t is sublinear in the length of
the input code) is given by

2Θ(t k
n ) = 2Θ(log2(n) log2(n/k)) = nΘ(log2(n/k))
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(see [17]) which is super-polynomial.
In what follows we focus our attention to a noise rate 1/2 − 1/poly(n) in the

decision problem, that is to say we propose parameters where the rate k/n of
the codes considered in the reduction verifies k/n = o(1).

Theorem 2. Let β, η ∈ (0, 1), C > 0 and n, k, t ∈ N be such that

k

n
= o(1) and

2
ln(2)

1 + η

1 − β

1
log2

(
n
k

)
k

n
t = C log2(n). (23)

Furthermore, let

ω0 = − log2

(
1 − 2

1 + η

1 − β
h−1

(
k

n

))
(24)

i.e.
1 − β

2
(
1 − 2−ω0

)
= (1 + η)h−1

(
k

n

)
.

Suppose that there exists an algorithm A, with advantage ε = 1
poly(n) , which

distinguishes in time T distributions (A, sA + e) and (A,y) with

A ← F
k×n
2 , s ← F

k
2 , y ← F

n
2 and e ← Ber (ω0t)

⊗n
.

Then, there exists an algorithm running in time Tpoly(n), which takes as inputs
G ∈ F

k×n
2 , mG + t where m ∈ F

k
2 , t ∈ Sn

t , and outputs t (or equivalently m)
with probability at least 1 − 2−Ω(n) over a uniform choice of G and t .

Remark 6. With the above parameter choice, we have

ω0t = C log2(n)(1 + o(1))

i.e. the error rate in the decision problem is

1
2
(1 − 2−ω0t) =

1
2

− 1
poly(n)

·

Proof. We use the notations of Theorem 1 and Lemma 6. Let G ← F
k×n
2 and

t ← St. Notice that, since k/n = o(1), the following computation holds

ω0t = − log2

(
1 − 2

1 + η

1 − β
h−1

(
k

n

))
t

=
2

ln(2)
1 + η

1 − β
h−1

(
k

n

)
t(1 + o(1))

=
2

ln(2)
1 + η

1 − β

1
log2

(
n
k

)
k

n
t (1 + o(1)),

where we used the expansion h−1(x) = x
log2(1/x) (1 + o(1)). Therefore, by Equa-

tion (23), we have
ω0t = C log2(n)(1 + o(1)).
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Let us consider now the algorithm B given by Theorem1 which is obtained from
an algorithm distinguishing distributions (A, sA+e) and (A,y) with advantage
ε = 1

poly(n) . It will output some t′ in time Tpoly(α) and with probability 1 −
2−Ω(n) − npoly(α)X(G, t). Notice that we do not have a max here because it
is reached when x = 0: the higher is the noise, the closer our distribution is

from the genuine LPN. Since α = max
(

1
ε
, n

)
= poly(n), then this probability

is 1 − 2−Ω(n) when X(G, t) = 2−Ω(n). But since ω0 is chosen as in Eq. (24), we
have EG,t (X(G, t)) = 2−Ω(n). Therefore, according to Lemma 6, the proportion
of (G, t) for which it happens is 1 − 2−Ω(n) (since ω0 was chosen such that γ =
EG,t (X(G, t)) = 2−Ω(n)). Moreover, the success probability of B is independent
from G and t. Therefore, the probability that B(G, t) outputs 1 will be greater
than (1 − 2−Ω(n))(1 − 2−Ω(n)) = 1 − 2−Ω(n), which concludes the proof. �
Remark 7. In Theorem 2, we instantiated Theorem 1 with N = n to get a deci-
sional version of the actual decoding problem. However, we are not really limited
by the length N of the input code in the decision decoding problem; we have
total liberty in the choice of N . Increasing N would only increase the running
time of the reduction. In other words, this reduction would also apply in the
context of LPN, where N is a priori unbounded.

Worst-Case to Average-Case Reduction. We will now deal with the worst-
case to average-case reduction. Recall that in Theorem 1, we need to set the
statistical distance between our produced samples and genuine LPN samples to
be negligible. For a worst-case hardness we need it to be negligible for any code,
i.e. for any matrix G. To this end we will use smoothing bounds as given in
[22, Proposition 7.6]. However, this bound is only stated when G is a generator
matrix of an [n, k]-code which is balanced (in the same manner than in [16]).

Definition 3 (Balanced code). An [n, k]-code is δ-balanced if its minimum
distance is at least δn and all the codewords have Hamming weight at most
(1 − δ)n. That is, for all x ∈ C \ {0},

δn � |x| � (1 − δ)n.

In the worst-case to average-case search-to-decision reduction we will restrict
“worst” instances to δ-balanced codes. Therefore, we will first need to fix an
[n, k]-code C which is δ-balanced. A natural choice for δ is given by the relative
Gilbert-Varshamov bound h−1

(
1 − k

n

)
which appears ubiquitously in the coding-

theoretic literature: amongst other contexts, it arises as the (expected) relative
minimum distance of a random code of dimension k and length n (see for instance
[7, §C]). However, for the same reasons as above with random codes, in order
to reach a noise rate 1/2 − 1/poly(n) in the decision problem, we will choose
parameters k, n so that k/n = o(1). Many other interesting sets of parameters for
the reduction can be proposed, for instance choosing k/n = Θ(1) and t/n = o(n)
leading to a noise rate in the decision decoding problem 1/2 − 2−o(n).

To reach a negligible statistical distance we will use the following proposition.
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Proposition 2 ([22, Proposition 7.6]). Let G ∈ F
k×n
2 be the generator matrix

of an [n, k]-code which is δ-balanced with 1/2 � δ � h−1
(
1 − k

n

)
� C for some

constant C > 0. Let t ∈ F
n
2 and suppose that |t|

n = o (1).
Let β, η > 0 and ρ ∈ R+ be such that

(1 − β)
1
2
(1 − 2−ρ) � (1 + η)h−1

(
2
k

n
+ D

|t|
n

)

for some large enough constant D. Then,

Δ
((

rG�, 〈r, t〉) , (a, e)
)

= 2−Ω(n)

where r ← Ber (ρ)⊗n, a ← F
k
2 and e ← Ber (ρ|t|).

This proposition allows to instantiate our reduction in the worst-to-average
case in the following theorem.

Theorem 3. Let β, η ∈ (0, 1), C > 0 and n, k, t ∈ N be such that

k

n
= o(1),

t

n
= o

(
k

n

)
and

4
ln(2)

1 + η

1 − β

1
log2

(
n
k

)
k

n
t = C log2(n). (25)

Furthermore, let (for some large enough constant D)

ω0 = − log2

(
1 − 2

1 + η

1 − β
h−1

(
2
k

n
+ D

t

n

))
(26)

i.e.
1 − β

2
(
1 − 2−ω0

)
= 2(1 + η)h−1

(
2
k

n
+ D

t

n

)
.

Suppose that there exists an algorithm A, with advantage ε = 1
poly(n) , which

distinguishes in time T distributions (A, sA + e) and (A,y) with

A ← F
k×n
2 , s ← F

k
2 , y ← F

n
2 and e ← Ber (ω0t)

⊗n

where ω0t = C log2(n)(1 + o(1)).

Then, there exists an algorithm running in time Tpoly(n), which takes as
inputs G ∈ F

k×n
2 a (fixed) generator matrix of a δ-balanced [n, k] code (with

δ � h−1
(
1 − k

n

)
= 1

2 −
√

k
n (1 + o(1))), a noisy codeword mG + t with t of

Hamming weight t, and outputs t (or equivalently m) with probability at least
1 − 2−Ω(n) (where the probability is not taken over the choice of m, G and t).

Proof. We use the notations of Theorem 1 and Proposition 2. Notice that, since
k/n = o(1) and t/n = o(k/n), we have the following computation

ω0t = − log2

(
1 − 2

1 + η

1 − β
h−1

(
2
k

n
+ D

t

n

))
t

=
4

ln(2)
1 + η

1 − β

1
log2

(
n
k

)
k

n
t (1 + o(1))
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where we used the expansion h−1(x) = x
log2(1/x) (1 + o(1)). Therefore, by Equa-

tion (25), we have
ω0t = C log2(n)(1 + o(1)),

i.e.
1
2
(
1 − 2−ω0t

)
=

1
2

(
1 − 1

nC(1+o(1))

)
.

Let,
Y (G, t) def= Δ

((
r(x)G�, 〈r(x), t〉) , (a, e(x))

)
.

Let us consider now the algorithm B given by Theorem1 which is obtained from
an algorithm distinguishing distributions (A, sA+e) and (A,y) with advantage
ε = 1

poly(n) . It will output some t′ in time Tpoly(α) and with probability 1 −
2−Ω(n) − npoly(α)Y (G, t). Notice that we do not have a max here because it
is reached when x = 0: the higher is the noise, the closer our distribution is

from the genuine LPN. Since α = max
(

1
ε
, n

)
= poly(n), then this probability

is 1 − 2−Ω(n) when Y (G, t) = 2−Ω(n). But since ω0 is chosen as in Eq. (26) we
have Y (G, t) = 2−Ω(n). Moreover, the success probability of B is independent
from G which concludes the proof. �

A Set of Parameters. One can apply Theorem 3 for instance with the following
set of parameters

k

n
=

1
nD

and
t

n
=

log2(n)2

n1−D

with D < 1/2. Theorem 3 shows that solving the decision-average decoding prob-
lem of codes with length n, dimension n1−D at distance 1/2 − O

(
1/nD ln(2)/4

)

is at least as hard as decoding a fixed δ-balanced code (with δ � h−1
(
1 − 1

nD

)
)

at distance nD log2(n)2. Note that, as noticed in [16, §1.1] or [42] and even [7]
(though not under the same terminology), most of the codes are δ-balanced, and
no generic decoding algorithm is known to take advantage of this property.

5 Failed Attempt: The Case of Structured Codes

In the manner of [32,37], it would be very tempting to apply our reduction in the
case of structured error correcting codes, such as quasi-cyclic codes. Such codes
are used in NIST submissions BIKE and HQC because they offer a very good
efficiency while keeping the same security parameter as truly random codes.

Quasi-cyclic codes are codes that have a generator matrix formed out by
multiple circulant blocks, i.e. of the form

⎛

⎜⎜⎜⎜
⎜
⎝

a0 an−1 . . . a1

a1 a0 . . . a2

a2 a1 . . . a3

...
...

. . .
...

an−1 an−2 . . . a0

⎞

⎟⎟⎟⎟
⎟
⎠

.
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In order to simplify the discourse, in the sequel we consider the situation of quasi-
cyclic codes formed out by a single row of circulant blocks. This generalizes easily
to multiple rows, which corresponds to what is sometimes called module-LPN in
the literature (see for instance [15]).

Very conveniently, quasi-cyclic codes benefit from a so-called polynomial rep-
resentation. Indeed, each vector of length n can be represented as an element of
F2[X]/(Xn − 1); such that the matrix-vector product is nothing but the usual
product of polynomials.

Consider a quasi-cyclic code generated by a matrix G of rate R, i.e. with
1/R circulant blocks. A noisy codeword y = mG+t where t is a regular error of
weight t (i.e. a concatenation of 1/R words of Hamming weight t, which is the
usual noise considered with quasi-cyclic codes) yields 1/R noisy polynomials of
the form ma + t′ ∈ F2[X]/(Xn − 1), using the polynomial representation.

Hence, we could change the inner product 〈·, ·〉 in Theorem 1 by the fol-
lowing inner product (with value in F2[X]/(Xn − 1)): if x = (x1, . . . ,x1/R) ∈
(F2[X]/(Xn − 1))1/R, define

〈x,y〉 def=
1/R∑

i=1

xiyi.

With this inner product in hand, given y = (ma1 + t′
1, . . . ,ma1/R + t′

1/R) ∈
(F2[X]/(Xn − 1))1/R, we can compute 〈y, r〉 where r = (r1, . . . , r1/R) and each
ri are distributed according to Ber(ω0), meaning in this context that all the n
coefficients of ri are distributed according to Ber(ω0). Then,

〈y, r〉 = m

⎛

⎝
1/R∑

i=1

airi

⎞

⎠ +
1/R∑

i=1

t′
irj

︸ ︷︷ ︸
LPN noise

(27)

We can then follow the same strategy than previously to prove a structured
analogue of Theorem 1. However we have to show that sampling elements as in
(27) is close to sample from the ring-LPN distribution instead of the plain LPN.
Lemma 4 can be adapted to this case and collisions can be easily computed;
therefore we are able to compute the noise from which the Bernoulli distribution
smoothes the distribution, which would actually be roughly the same as in the
unstructured case (this is actually a consequence of the fact that random quasi-
cyclic codes of use in cryptography have on average a minimum distance reaching
the Gilbert-Varshamov bound [27], so as genuine random codes). However there
is a strong caveat when one wants to estimate the noise in a sample given in
Eq. (27).

For the sake of simplicity, let us consider R = 1. Let t =
∑n−1

i=0 tiX
i ∈

F2[X]/(Xn − 1) with Hamming weight t, namely with t non-zero coefficients.
Now, sample r =

∑n−1
i=0 riX

i ∈ F2[X]/(Xn − 1) where (r0, . . . , rn−1) ←
Ber(ω0)⊗n. The noise in the built LPN-samples is given by the inner product
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between t and r, namely

tr =
n−1∑

k=0

∑

i+j≡k mod n

tirjX
k. (28)

Notice that each coefficient of tr is exactly the sum of t independent Ber(ω0)
random variables, therefore is a Bernoulli random variable of parameter tω0. It
may seem at first glance that we obtain the same analysis than in the plain
case, starting from a noisy codewords y = ma + t we build LPN like sample
with Bernoulli noise given by Ber(ω0t). There is a strong caveat here though:
the coefficients of the product in Eq. (28) are not independent, even though this
inner product would have the good Hamming weight on average. Therefore our
new noise does not follow the right distribution.

It turns out that this distribution is very difficult to analyze, and this fact
was already emphasized in the HQC submission to the NIST [4] when study-
ing the Decoding Failure Rate (DFR) of the scheme. In particular, the authors
replaced this weird distribution by an actual Bernoulli distribution and made
experimental results to support their modelization. Such a modelization is not
enough from a theoretical standpoint, and we cannot use it to build reductions.
In other words, in order to apply our reduction, we lack a random self reducibility
for structured codes, such as quasi-cyclic codes as the direct approach given in
Eq. (27) does not seem to work directly.

In the world of Euclidean lattices, this caveat is avoided since the error
distribution is taken through the Mikowski embedding. The noise would then
affect each coordinate independently. The reduction from [37, Section 4] benefits
from the fact that the Vandermonde matrix, which maps the so-called coefficient
embedding onto the Mikowski embedding, does not distort the noise too much.
In the case of codes, such a Fourier-based approach takes an exaggerated toll on
the noise distribution.

6 Conclusion

We gave the first reduction from the worst-case search decoding problem to
the average-case decision decoding problem by following the OCP framework
introduced in [32]. This reduction paradigm applied to lattices also permitted to
obtain many new reductions for structured variants. Therefore it is tantalizing
to try to apply such an approach in order to get worst-case to average-case
and search-to-decision reductions for structured codes such as quasi-cyclic codes
which are used for instance in BIKE and HQC, two of the three code-based
proposals remaining in the fourth round of NIST post-quantum competition.
However, as mentioned in Sect. 5, such an extension to structured codes is far
from being straightforward and represents a highly interesting challenge.
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Abstract. In this paper, we initiate the study of the Rank Decoding
(RD) problem and LRPC codes with blockwise structures in rank-based
cryptosystems. First, we introduce the blockwise errors (�-errors) where
each error consists of � blocks of coordinates with disjoint supports, and
define the blockwise RD (�-RD) problem as a natural generalization of
the RD problem whose solutions are �-errors (note that the standard
RD problem is actually a special �-RD problem with � = 1). We adapt
the typical attacks on the RD problem to the �-RD problem, and find
that the blockwise structures do not ease the problem too much: the �-
RD problem is still exponentially hard for appropriate choices of � > 1.
Second, we introduce blockwise LRPC (�-LRPC) codes as generalizations
of the standard LPRC codes whose parity-check matrices can be divided
into � sub-matrices with disjoint supports, i.e., the intersection of two
subspaces generated by the entries of any two sub-matrices is a null
space, and investigate the decoding algorithms for �-errors. We find that
the gain of using �-errors in decoding capacity outweighs the complexity
loss in solving the �-RD problem, which makes it possible to design more
efficient rank-based cryptosystems with flexible choices of parameters.
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submitted to the NIST PQC competition, namely, RQC and ROLLO,
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and �-LRPC codes. Concretely, for 128-bit security, our RQC has total
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1 Introduction

Since traditional cryptographic schemes based on number theoretic assumptions
are at risk from the possible attacks using quantum computers, the design of
post-quantum cryptosystems, such as code-based cryptosystems, has become the
consensus of industry and academia. Last year, three code-based cryptosystems
using the Hamming metric codes, namely, BIKE, Classic McEliece, and HQC,
had been selected to the fourth round of NIST post-quantum standardization
process for future standardization [35]. As a nice alternative to Hamming met-
ric code-based cryptography, code-based cryptography using the rank metric,
namely, rank-based cryptography, is more efficient in computational efficiency
and bandwidth, and deserves further research as encouraged by NIST [34].

Fqm-Linear Codes with Rank Metric and Rank Decoding Problem.
Codes used in rank-based cryptography are Fqm-linear codes with rank metric
over a degree m extension field Fqm of Fq. Let α = (α1, α2, . . . , αm) ∈ F

m
qm

be a basis of Fqm viewed as an m-dimensional vector space over Fq. Then, any
e = (e1, e1, . . . , en) ∈ F

n
qm has an associated matrix Mat(e) ∈ F

m×n
q such that

e = αMat(e). The rank weight ‖e‖R of e is defined as the rank of Mat(e). The
support Supp(e) of e is the Fq-linear subspace of Fqm spanned by the coordinates
of e. It follows from definition that ‖e‖R equals to the dimension of Supp(e).
The set of errors of length n and weight r is denoted by Sn

r . An Fqm-linear
code ([n, k]qm) with rank metric of length n and dimension k is a dimension k
subspace of Fn

qm , which can be represented by a generator matrix of size k × n
or a parity-check matrix of size (n − k) × n over Fqm .

Let G be the generator matrix of a random [n, k]qm -linear code, y ∈ F
n
qm ,

and r ∈ N. The Rank Decoding (RD) problem is to find x ∈ F
k
qm and e ∈ Sn

r

such that y = xG + e. Although the RD problem is not shown to be NP-hard,
it is very close to the Hamming metric decoding problem which is NP-hard [23],
and can be seen as a structured version of the MinRank problem which is also
NP-hard [17]. Moreover, after more than three decades of study, the best known
algorithms for solving the RD problem are all exponential. This makes the RD
problem a promising hard problem to construct secure cryptosystems.

Rank-Based Cryptography. The first rank-based cryptosystem, known as the
GPT cryptosystem [19], was based on Gabidulin codes [18] which have analogous
structures to Reed-Solomon codes. The GPT cryptosystem and its early variants
were broken by Overbeck attack [38], in the much same way as McEliece schemes
based on Reed-Solomon codes were attacked in [16,39]. The recent variant [28]
was analyzed with some insecure parameters region being found in [15,24]. As
these attacks [15,16,24,38,39] mainly expose the security flaws of the GPT cryp-
tosystem by exploiting the strong algebraic structure of Gabidulin codes, it is
still possible to construct secure and efficient rank-based cryptosystems.

A very significant step was using the Low Rank Parity Check (LRPC) codes
[4,20] and the Gabidulin codes to build cryptosystems [2,20,22,29,30], which
can be viewed as rank metric analogues of the MDPC cryptosystem [33], NTRU
[25], or Alekhnovich [1]. Four cryptosystems of this kind, namely, RQC [30],
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Lake, Locker [29], and Ouroboros-R [2], were submitted to the NIST PQC stan-
dardization process in 2017, with the latter three being merged into ROLLO in
the second round. The combinatorial attacks [5,21,37] were once considered to
be the most efficient attacks against the parameters region of RQC and ROLLO.
However, it turned out later that the improved dedicated algebraic attacks [7,9]
could greatly reduce the concrete security of RQC and ROLLO. This is the
main reason that RQC and ROLLO were not selected to the third round of the
NIST PQC standardization process. New parameter sets [2,29,30] for RQC and
ROLLO were proposed to provide adequate security against algebraic attacks.
As the new key and ciphertext sizes of RQC and ROLLO remain competitive,
NIST encourages further research on rank-based cryptography [34].

1.1 Our Contribution

We initiate the study of the RD problem and LRPC codes with blockwise struc-
tures to design secure and efficient rank-based cryptosystems. First, we introduce
the blockwise errors (�-errors) where each error consists of � blocks of coordi-
nates with disjoint supports, and define the blockwise RD (�-RD) problem as a
natural generalization of the RD problem whose solutions are �-errors. Notably,
the standard RD problem can be seen as a special �-RD problem with � = 1, or
equivalently the �-RD problem can be treated as a structured RD problem. Since
the attacks may benefit from the blockwise structure, the �-RD problem is inher-
ently not harder than the standard one. Fortunately, this structure does not ease
the problem too much: we only observe a reduction about � times in the expo-
nent to solve the �-RD problem by carefully examining the typical attacks for
the standard RD problem, implying that the �-RD problem is still exponentially
hard for appropriate choices of constant � > 1.

Second, we introduce the blockwise LRPC (�-LRPC) codes as generalizations
of the standard LPRC codes whose parity-check matrices can be divided into �
sub-matrices with disjoint supports, i.e., the intersection of two subspaces gen-
erated by the entries of any two sub-matrices is a null space, and investigate the
decoding algorithms for �-errors. We find that the decoding algorithm can also
benefit from the blockwise structure: the decoding capacity can be significantly
improved by a factor of �. In particular, a suitably defined [n, k]qm �-LRPC code
can actually decode an �-error with weight up to (n − k)/2, which achieves the
decoding capacity of rank codes of optimal distance. This makes it possible to
design more efficient rank-based cryptosystems with flexible choices of parame-
ters, by making a tradeoff between the hardness of the �-RD problem and the
decoding capacity of the �-LPRC codes.

Finally, we show that the two rank-based cryptosystems submitted to the
NIST PQC competition, namely, RQC and ROLLO, can be greatly improved
by using the ideal variants of the �-RD problem and �-LRPC codes. Concretely,
for 128-bit security, our RQC has total public key and ciphertext sizes of 2.5
KB, which is not only about 50% more compact than the original RQC, but also
smaller than the NIST Round 4 code-based submissions HQC, BIKE, and Classic
McEliece. A detailed comparison with related works is given in Subsect. 1.2.
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1.2 Technical Overview

Recall that the set of errors of length n and weight r is denoted by Sn
r . By

definition, all n coordinates of an error e ∈ Sn
r belong to the same support of

dimension r. In particular, let ε = (ε1, . . . , εr) ∈ F
r
qm be a basis of the support

Supp(e), then there is an r × n coefficient matrix C such that e = εC.

The Blockwise Errors (�-errors). Let n = (n1, . . . , n�) and r = (r1, . . . , r�)
be vectors of positive integers. We say that an error e ∈ Sn

r with n =
∑�

i=1 ni

and r =
∑�

i=1 ri is an �-error with parameters n and r if it can be divided
into � sub-vectors e = (e1,e2, . . . ,e�) such that 1) the sub-vector ei ∈ F

ni
qm has

weight ri for all i ∈ {1..�}; and 2) the supports of these sub-vectors are mutually
disjoint, namely, Supp(ei) ∩ Supp(ej) = {0} for all i �= j. Denote Sn

r as the set
of blockwise errors with parameters n and r. By definition, the set Sn

r is exactly
the set Sn

r of �-errors with � = 1. For � > 1, Sn
r is a proper subset of Sn

r . In
particular, for any e = (e1,e2, . . . ,e�) ∈ Sn

r , if we let εi = (εi1, εi2, . . . , εiri
) ∈

F
ri
qm be a basis of Supp(ei), then the coefficient matrix C of e w.r.t. the basis

ε = (ε1, ε2, . . . , ε�), i.e., e = εC, has a special block-diagonal form:

C =

⎛

⎜
⎜
⎜
⎝

C1 0 0 0
0 C2 0 0
...

...
. . .

...
0 0 0 C�

⎞

⎟
⎟
⎟
⎠

∈ F
r×n
q (1)

where ei = εiCi. As we will show later, the attacks can benefit from the block-
diagonal structure.

The Blockwise RD (�-RD) Problem. We define the �-RD problem as a
natural generalization of the RD problem whose solutions are �-errors. Recall
that the RD problem asks an algorithm given as inputs a generator matrix G of
random [n, k]qm -linear code C, a vector y ∈ F

n
qm , and an integer r ∈ N, outputs

x ∈ F
k
qm and e ∈ Sn

r such that y = xG + e. The RD problem can be solved by
finding a codeword e ∈ Sn

r in the [n, k + 1]qm extended code Cy = C + 〈y〉 of
C. Let Hy ∈ F

(n−k−1)×n
qm be the parity-check matrix of Cy . The problem can be

further reduced to find an e ∈ Sn
r such that eH�

y = εCH�
y = 0.

There are two main kinds of attacks for the RD problem, i.e., combinatorial
attacks [5,14,21,37] and algebraic attacks [7–9,21]. The basic idea of the com-
binatorial attacks [5,14,21,37] is to guess some unknown variables about the
equations y = xG + e or eH�

y = εCH�
y = 0 so that they can be directly

solved by using Gaussian eliminations (note that number of equations are much
less than that of the variables). The guess complexity is the main cost for the
combinatorial attacks. In contrast, the algebraic attacks [7–9,21] resort to estab-
lish sufficiently more equations using different algebraic properties such as the
annulator polynomial, so that the error e can be directly found by solving those
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equations. The complexity of the algebraic attacks is mainly determined by the
number of the unknown variables of those equations. By carefully investigat-
ing the typical attacks, we find that both combinatorial and algebraic attacks
can benefit from the blockwise structures, the basic reason is that the coefficient
matrix C for an �-error has a special block-diagonal form, which allows to greatly
reduce the number of the unknown variables. The take-away message is that the
best cost for solving the �-RD problem is roughly equal to the �-th square root
of the cost for solving the standard RD problem (with the same parameters).
This means that for appropriate choices of constant � > 1 such as � = 2 or 3 in
our applications, the �-RD problem is still exponentially hard.

The Blockwise LRPC (�-LRPC) Codes. Let H ∈ F
(n−k)×n
qm be the parity-

check matrix of an [n, k]qm LRPC code. The entries of H generate an Fq-linear
subspace F of dimension d (for simplicity, we call H a matrix of weight d and
support F ). Let e ∈ Sn

r be an error of support E and let s = He�. Let EF be
the product space of E and F , whose dimension is equal to rd with overwhelming
probability when rd is sufficiently smaller than m. The decoding algorithm works
by first recovering the product space EF using the support Supp(s) of s (which
requires the weight ‖s‖R is equal to the dimension of EF ), then recovering the
error support E from EF , and finally solving the linear equations s = He�

using E. The Decode Failure Rate (DFR) is about q‖s‖R−(n−k) = qrd−(n−k),
implying that an LPRC code of weight d can decode errors of weight up to n−k

d .
We define the blockwise LRPC (�-LRPC) codes as generalizations of the stan-

dard LPRC codes whose parity-check matrices can be divided by columns into �
sub-matrices with disjoint supports. Let n = (n1, . . . , n�) and d = (d1, . . . , d�) be
vectors of positive integers and k ∈ N. We say that an [n, k]qm LRPC code is an
�-LRPC code with parameters n =

∑�
i=1 ni and d =

∑�
i=1 di if its parity-check

matrix H ∈ F
(n−k)×n
qm can be divided into � sub-matrices H = (H1,H2, · · · ,H�)

such that 1) the sub-matrix Hi ∈ F
(n−k)×ni

qm has small weight di for all i ∈ {1..�};
and 2) the supports {Fi = Supp(Hi)} of these sub-matrices are mutually dis-
joint, namely, Fi ∩ Fj = {0} for all i �= j.

The decoding algorithm for �-LRPC codes works the same way as the one
for standard LRPC codes. For traditional errors, an �-LRPC code has the
same decoding capacity as a standard LRPC code. However, it is more pow-
erful when decoding �-errors. This is because for an �-error e ∈ Sn

r with sup-
ports (E1, E2, . . . , E�) and r = (r1, . . . , r�), the product space in consideration
becomes

∑�
i=1 EiFi, whose dimension is upper bounded by

∑�
i=1 ridi < rd,

where r =
∑�

i=1 ri. This means that the �-LRPC code can decode an �-error
with a much larger weight r. Formally, we have the following Theorem 1.1 (see
the proofs in Sect. 4).

Theorem 1.1. When d1 = d2 = · · · = d�, the �-LRPC code allows to decode
�-errors of weight up to r =

∑�
j=1 rj = n−k

d1
. By setting d1 = d2 = · · · = d�= 2,

it can decode �-errors of weight up to n−k
2 .
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Theorem 1.1 implies that when dealing with �-errors, the decoding capacity
for the �-LRPC codes is � times larger than that of the standard LRPC codes.
For example, fixing d = 4, r = 8, and the DFR of q32−n−k, an [n, k]qm LRPC
code can decode errors of weight 8, but an [n, k]qm 2-LRPC codes with parame-
ter d = (d1, d2) = (2, 2) can decode �-errors with parameter r = (r1, r2) = (8, 8)
of weight up to r = r1 + r2 = 16.

Applications. By making a tradeoff between the hardness of the �-RD problem
and the decoding capacity of the �-LRPC codes, it is possible to design more
efficient and secure rank-based cryptosystems with flexible choices of parameters.
In particular, the blockwise structures would lead to larger parameters to reserve
the security, but the gain in decoding capacity still allows us to design more
efficient cryptosystems. As an application, we show that both RQC and ROLLO
cryptosystems can be greatly improved by using the ideal variants of the �-
RD problem and �-LRPC codes. A brief comparison with related coded-based
cryptosystems at the same 128-bit security is summarized in Table 1, which
shows that our RQC is about 50% more compact than the original RQC, and
has smaller sizes than the three code-based cryptosystems using the Hamming
metric, namely, HQC, BIKE, and Classic McEliece.

Table 1. Comparisons of size and DFR for 128-bit security.

Schemes pks (bytes) cts (bytes) total (bytes) DFR

RQC Our 860 1704 2564 –

NIST [30] 1834 3652 5486 –

Lake (ROLLO-I) Our 511 511 1022 2−31

NIST [29] 696 696 1392 2−28

Locker (ROLLO-II) Our 1814 1942 3756 2−131

NIST [29] 1941 2089 4030 2−134

Ouroboros-R (ROLLO-III) Our 623 1166 1789 2−33

TIT 2022 [2] 736 1431 2167 2−28

HQC NIST [31] 2249 4497 6746 –

BIKE NIST [1] 1541 1573 3114 2−128

Classic McEliece NIST [10] 261120 96 261216 –

Ouroboros TIT 2022 [2] 1566 3100 4666 2−128

The public key size (pks), the ciphertext size (cts), total = pks+cts.

1.3 Other Related Works

The idea of using blockwise errors can be seen as an adaption of the LPN/LWE
problem in rank metric [11]. Our blockwise codes are also related to the sum-rank
metric codes [13], where the error is also divided into � blocks and the sum-rank
weight is defined as the sum of rank weight of each block. One main difference
is that we explicitly require the � blocks to have disjoint supports, which is very
crucial for our results in this paper.
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1.4 Organization

After some notations given in Sect. 2, we define the �-errors and analyze the
complexity of solving the �-RD problem in Sect. 3. Section 4 defines the �-LRPC
codes and analyzes decoding failure probability and error-correcting capability.
In Sect. 5, we apply the ideal �-RD problem and the ideal �-LRPC codes to
improve RQC and ROLLO. We conclude this paper in Sect. 6.

2 Notations

– We denote by N the set of positive integer numbers, q prime or prime power,
and Fqm an extension of degree m of the finite field Fq.

– Let α ∈ Fqm be a primitive element and α = (1, α, . . . , αm−1) be a basis of
Fqm viewed as an Fq vector space.

– Vectors (resp. matrices) are represented by lower-case (resp. upper-case) bold
letters. We say that an algorithm is a PPT algorithm if it is a probabilistic
polynomial-time algorithm.

– If X is a finite set, x
$← X (resp. x

seed←− X ) denotes that x is chosen uniformly
and randomly from the set X (resp. by a seed seed).

– For integers a ≤ b, let {a..b} denote all integers from a to b.
– The number of Fq-subspaces of dimension r of Fqm is given by the Gaussian

coefficient
[

m
r

]

q

=
∏r−1

i=0
qm−qi

qr−qi ≈ qr(m−r).

– The submatrix of a matrix M formed from the rows in I and columns in J is
denoted by MI,J . When I (resp. J) consists of all the rows (resp. columns),
we use the notation M∗,J (resp. MI,∗).

– |M |, |M |I,J , and |M |∗,J are the determinant of the matrix M , the submatrix
MI,J , and the submatrix M∗,J , respectively.

– GLη(Fq) is a general linear group and represents the set of all invertible
matrices of size η over Fq. The matrix Ir is the identity matrix of size r.

– The maximal minor cT of a matrix C of size r × n is the determinant of its
submatrix C∗,T whose column indexes T ⊂ {1..n} and #T = r.

– Cauchy-Binet formula that computes the determinant of the product of A ∈
F

r×n
qm and B ∈ F

n×r
qm is expressed as |AB| =

∑
T⊂{1..n},#T=r |A|∗,T |B|T,∗.

– The Gaussian elimination of a μ × ν matrix of rank ρ over an Fq has a
complexity of O(ρω−2μν) operations in Fq, where ω is the exponent of matrix
multiplication with 2 ≤ ω ≤ 3 and a practical value is 2.81 when more than
a few hundreds rows and columns.

– The complexities are estimated by operations in Fq if there is no ambiguity.
All logarithms are of base 2.

3 The �-RD Problem and Its Complexity

In this section, we first introduce the blockwise errors (�-errors) and the blockwise
RD (�-RD) problem in Subsect. 3.1. Then, to analyze the complexity of the �-RD
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problem, we refine a universal reduction from existing attacks on the RD problem
and analyze the support and coefficient matrices of the �-error in Subsect. 3.2.
Finally, we adapt the typical combinatorial and algebraic attacks to the �-RD
problem in Subsects. 3.3, 3.4 and 3.5, and find that the �-errors do not ease the
problem too much: the �-RD problem is still exponentially hard for appropriate
choices of � > 1.

3.1 The �-Errors and �-RD Problem

Let �, k ∈ N. Let n = (n1, . . . , n�) and r = (r1, . . . , r�) be vectors of positive
integers. Let n =

∑�
i=1 ni and r =

∑�
i=1 ri. We first define the disjointness of

multiple subspaces. We say that � Fq-subspaces {Vi}i∈{1..�} of Fqm are mutually
disjoint if ∀ i, j ∈ {1..�}, i �= j, Vi ∩ Vj = {0}.

Definition 3.1 (Blockwise Errors (�-errors)). Let ei ∈ F
ni
qm be a vector of

weight ri for i ∈ {1..�}. An error e = (e1,e2, . . . ,e�) ∈ F
n
qm is called an �-error

if the supports of � vectors ei’s are mutually disjoint.

Recall that n = (n1, . . . , n�) and r = (r1, . . . , r�) are two vectors of positive
integers. We denote the set of such �-errors by Sn

r . Let Ei be the support of
dimension ri of ei. Because all supports are mutually disjoint, the �-error e can
be viewed as the error of weight r and support E =

∑�
i=1 Ei.

We now define the �-RD problem. This problem is the Rank Decoding (RD)
problem finding the �-errors.

Definition 3.2 (Blockwise RD (�-RD) Problem). Let G be the generator
matrix of a random [n, k]qm-linear code C and y ∈ F

n
qm . The problem is to find

x ∈ F
k
qm and e ∈ Sn

r such that y = xG + e.

Like the dual version of the RD problem using the generator matrix is the
Rank Syndrome Decoding (RSD) problem [23] using the parity-check matrix,
the dual version of the �-RD problem is defined as the �-RSD problem.

Definition 3.3 (Blockwise RSD (�-RSD) Problem). Let H be the parity-
check matrix of a random [n, k]qm-linear code C and s ∈ F

n−k
qm . The problem is

to find e ∈ Sn
r such that s = He�.

Two variants are exactly the standard RD and RSD problems when � = 1. By
the duality, the hardness of two variants is equivalent. Intuitively, two variants
are also hard because they still find a small-weight error.

3.2 Reduction, Support and Coefficient Matrices

In this subsection, we first recall existing attacks on the RD problem, then adapt
the reduction refined from typical attacks to the �-RD problem, finally analyze
support and coefficient matrices of the �-error.
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Attacks on the RD Problem. There currently exist the combinatorial and
algebraic attacks [5,7–9,14,21,37] on the RD problem. Please see Appendix B
of full version [40] for detailed overviews of these attacks. The first combina-
torial attack [14] starts with the RSD problem and is significantly improved in
[37] and further refined in [5,21]. The combinatorial attacks [5,14,21] consist of
subtly guessing the support of error and solving a linear system. The attack [37]
transforms a quadratic multivariate system obtained from the RD problem into
a linear system by guessing the entries of support matrix and coefficient matrix.
Another way is the algebraic attack [21], where one solves a multivariate system
induced from the RD problem based on the annulator polynomial by lineariza-
tion and Gröbner basis. A breakthrough paper [7] shows that the Fqm -linearity
allows to devise a dedicated algebraic attack, i.e., the MaxMinors (MM) mod-
eling. Then the MM modeling is refined and improved in [9] where the authors
also introduced another algebraic modeling, the Support-Minors (SM) modeling.
The SM modeling later is combined with the MM modeling (i.e., the SM-F+

qm

modeling [8]). Both SM and MM modelings reduce the RD problem to solving
a linear system. The analysis in [8] shows that the cost of the SM-F+

qm modeling
is close to those of the combinatorial attack [5] and the MM modeling [9].

To measure the potential complexity loss and ensure the security of schemes,
we adapt typical combinatorial attacks [5,37] and algebraic attacks [9,21] to the
�-RD problem in Subsects. 3.3, 3.4 and 3.5. The reduction technique in attacks
[5,9,21,37] is still available to the �-RD problem. We refine the reduction in
Theorem 3.4.

Theorem 3.4. Solving the �-RD(q,m, n, k, r, �) problem defined by [n, k]qm lin-
ear code C (see Definition 3.2) can be reduced to finding a blockwise codeword
(i.e., an �-error) of weight r in the [n, k + 1]qm extended code of C.
Proof. Once obtaining word y, one adds y to code C and obtains an [n, k +1]qm

extended code Cy = C + 〈y〉 with a generator matrix
(

y
G

)

of size (k + 1) × n.

In this way, e =
(
1 −m

)
(

y
G

)

is exactly a codeword of weight r of Cy . Let

Gy = (Ik+1 R) ∈ F
(k+1)×n
qm be a systematic generator matrix of Cy and Hy =

(−R� In−k−1

) ∈ F
(n−k−1)×n
qm be a systematic parity-check matrix of Cy , where

R ∈ F
(k+1)×(n−k−1)
qm . Then solving the �-RD problem consists in finding an

u ∈ F
k+1
qm of weight ≤ r such that

uGy = e, (2)

or finding an �-error e of weight r such that

eH�
y = 0. (3)

�
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The support and coefficient matrices of the �-error are crucial tools to con-
struct the specific attack modelings by exploiting the reduction in Theorem 3.4.
The entries of two matrices determine the number of variables of algebraic equa-
tions in the attack modelings. We next analyze the forms of two matrices.

Support and Coefficient Matrices of the �-error. Let n = (n1, . . . , n�) and
r = (r1, . . . , r�) be vectors of positive integers. Let e = (e1,e2, . . . ,e�) ∈ Sn

r be
an �-error. If let εi = (εi1, εi2, . . . , εiri

) ∈ F
ri
qm be a basis of support of dimension

ri, then there exists a matrix Ci ∈ F
ri×ni
q of rank ri such that ei = εiCi, If one

expresses the basis εi as a matrix Si ∈ F
m×ri
q of rank ri under the basis α, then

ei = αSiCi. We have e = εC = αSC, where ε = (ε1, ε2, . . . , ε�) ∈ F
r
qm ,

S =
(
S1 S2 · · · S�

) ∈ F
m×r
q , C =

⎛

⎜
⎜
⎜
⎝

C1 0 0 0
0 C2 0 0
...

...
. . .

...
0 0 0 C�

⎞

⎟
⎟
⎟
⎠

∈ F
r×n
q . (4)

We call S and C respectively support matrix and coefficient matrix of e.

Remark 1. The main difference with the standard rank metric error is that the
form of the coefficient matrix C of the �-error is of block-diagonal form. For a
standard rank metric error e ∈ Sn

r , let ε = (ε1, ε2, . . . , εr) ∈ F
r
qm be a basis of

Supp(e), the there is a coefficient matrix C ∈ F
r×n
q of rank r such that e = εC.

Under the basis α, there is a support matrix S ∈ F
m×r
q of rank r such that

ε = αS. Then e = αSC.

Support and Coefficient Matrices with Less Entries. Because all multiples
λe for λ ∈ F

∗
qm are solutions of Eq. (3) due to ‖λe‖R = r, one can specify λ to

be the inverse of the first coordinate of e. Without loss of generality, let the first
coordinate of e be 1, then one can set the first column of C to (1 0 · · · 0)� and
the first column of S to (1 0 · · · 0)�. Then S and C can be further reduced to
two forms with less entries.

– S{1..r},∗ = Ir. By Gaussian elimination on column of S, there is a matrix

P ∈ GLr(q) such that SP =
(

Ir

0(m−r)×1 S′

)

and P −1C =
(

1
C ′

0(r−1)×1

)

where S′ ∈ F
(m−r)×(r−1)
q and C ′ ∈ F

r×(n−1)
q . Then

e = αSC = αSPP −1C = α

(
Ir

0(m−r)×1 S′

) (
1

C ′
0(r−1)×1

)

. (5)

Let s := SP and C := P −1C.
– Ci is of systematic form. By Gaussian elimination on row of C, there

is a matrix Qi ∈ GLri
(q) such that QiCi = (Iri

C ′
i) and SQ−1 =(

1
S′

0(m−1)×1

)

where C ′
i ∈ F

ri×(ni−ri)
q , S′ ∈ F

m×(r−1)
q , and Q =
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⎛

⎜
⎜
⎜
⎝

Q1 0 0 0
0 Q2 0 0
...

...
. . .

...
0 0 0 Q�

⎞

⎟
⎟
⎟
⎠

∈ GLr(q). Then

e = αSC = αSQ−1QC = α

(
1

S′
0(m−1)×1

)

⎛

⎜
⎜
⎜
⎝

Q1C1 0 0 0
0 Q2C2 0 0
...

...
. . .

...
0 0 0 Q�C�

⎞

⎟
⎟
⎟
⎠

.

(6)

Let S := SQ−1 and C := QC.

For solving the �-RD problem, most attacks aim to recover S and C by
solving the algebraic equations obtained from Eqs. (2)–(6). Equation (3) is used
to build the AGHT attacks (Subsect. 3.3). Equations (2), (5) and (6) are used to
build the OJ attack (Subsect. 3.3). Equations (3) and (6) are used to build the
algebraic attack, the MM modeling (Subsect. 3.5). The details of constructing
the algebraic equations can refer to the specific attacks in Subsects. 3.3, 3.4 and
3.5.

3.3 Combinatorial Attacks on the �-RD Problem

In this subsection, we use the AGHT attack [5] and the OJ attack [37] to analyze
the complexity of solving the �-RD problem.

AGHT Attack [5]. The idea is that the solver tries to guess a subspace that
contains the support of the �-error, then checks if the choice is correct. The cost
depends on how to successfully guess such a subspace.

– Guess randomly a t-dimensional subspace F that contains the support
Supp(e) of dimension r =

∑�
i=1 ri of the �-error e.

– Let (f1, f2, . . . , ft) ∈ F
t
qm be a basis of F . One expresses e under this basis

e = (e1, e2, . . . , en) = (f1, f2, . . . , ft)

⎛

⎜
⎜
⎜
⎝

e11 e12 · · · e1n

e21 e22 · · · e2n

...
... · · · ...

et1 et2 · · · etn

⎞

⎟
⎟
⎟
⎠

= (f1, f2, . . . , ft)

⎛

⎜
⎜
⎜
⎝

e1

e2

...
et

⎞

⎟
⎟
⎟
⎠

,
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where ei = (ei1, ei2, . . . , ein) ∈ F
n
q for i ∈ {1..t}. By Eq. (3): Hye� = 0, let

hj is the j-th row of Hy , we have

Hye� =

⎛

⎜
⎜
⎜
⎝

h1

h2

...
hn−k−1

⎞

⎟
⎟
⎟
⎠

(
e�
1 ,e�

2 , . . . ,e�
t

)

⎛

⎜
⎜
⎜
⎝

f1
f2
...
ft

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

h1f1 h1f2 · · · h1ft

h2f1 h2f2 · · · h2ft

...
... · · · ...

hn−k−1f1 hn−k−1f2 · · · hn−k−1ft

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

e�
1

e�
2
...

e�
t

⎞

⎟
⎟
⎟
⎠

= 0n−k−1. (7)

– Express Eq. (7) as a linear system over Fq and solve ei. By expressing hjfi

as a matrix Mat(hjfi) ∈ F
m×n
q under the basis α for j ∈ {1..n − k − 1} and

i ∈ {1..t}, a linear system over Fq with nt unknowns and m(n − k − 1) equa-
tions is obtained. The linear system has only one solution with overwhelming
probability if nt ≤ m(n − k − 1).

– The probability of F ⊃ E is estimated as
[t
r]q

[mr ]
q

≈ q−r(m−t). In this way, the

complexity is O
(
((n − k − 1)m)ωqr� (k+1)m

n �).
– Use Fqm-linearity to decrease the cost. Since, for any λ ∈ F

∗
qm , ‖λe‖R = r

and all multiples λe are solutions of Eq. (3): Hye� = 0, the complexity is
divided by about qm.

As a result, this attack has a complexity of O
(
((n − k − 1)m)ωqr� (k+1)m

n �−m
)
.

In [12], the authors adapted the AGHT attack to the RD problem finding
so-called non-homogeneous errors. Here, inspired by [12], the strategy guessing
the subspace F is that the solver randomly guesses a subspace Fi of dimension
ti that contains the support Ei = Supp(ei) of dimension ri of ei such that all
Fi’s are mutually disjoint, and sets F =

∑�
i=1 Fi. In this way, the dimension of

F is of
∑�

i=1 ti, and F must contain the support of the �-error e.
If one knows Fi, then each entry of ei can be expressed as an Fq-linear

combination of ti elements in a basis of Fi. This means that one can write ei

using niti unknowns in Fq. Doing the same for all ei’s, one obtains
∑�

i=1 niti
unknowns. Then one solves the linear system with

∑�
i=1 niti unknowns and

m(n−k −1) equations for single solution e as long as
∑�

i=1 niti ≤ m(n−k −1).
The most costly part of the attack consists in finding the Fi’s containing Ei for
i ∈ {1..�}. We estimate this probability in Lemma 3.5.

Lemma 3.5. Let E1, E2, . . . , E� be fixed Fq-subspaces of dimension respec-
tively r1, r2, ..., r� of Fqm . The probability that one successfully guesses
Fq-subspaces F1, F2, ..., F� dimension respectively t1, t2, . . . , t� of Fqm such
that all Fi’s are mutually disjoint and Ei ⊂ Fi is estimated as
O

(
q−mr+

∑�−1
i=1 r2

i +
∑�

j=2 rj

∑j−1
i=1 ri+t�r�

)
.
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We give the detailed proof for Lemma 3.5 in Appendix C.1 of full version [40].
Finally, one takes advantage of the Fqm -linearity to raise this probability: for any
λ ∈ F

∗
qm , ‖λe‖R = r and all multiples λe are solutions of Eq. (3): Hye� = 0,

hence the complexity is divided by about qm. The complexity of solving the
�-RD problem by the variant of AGHT attack is estimated as

O
(
(m(n − k − 1))ωqmr−∑�−1

i=1 r2
i −∑�

j=2 rj

∑j−1
i=1 ri−t�r�−m

)

where ti is chosen to maximize t�r� under the constraints
⎧
⎪⎨

⎪⎩

ri ≤ ti, for i ∈ {1..�};
∑�

i=1 ti ≤ m − 1;
∑�

i=1 niti ≤ m(n − k − 1).

OJ Attack. We now analyze the complexity of solving the �-RD problem by the
OJ attack [37]. Let e1 and e2 be the first k+1 and the last n−k−1 coordinates
of e. Let A1 and A2 be the first k + 1 columns and the last n − k − 1 columns
of C. Then e = (e1,e2) = ε(A1,A2) = (αSA1,αSA2). Equation (2) means

uGy = e ⇐⇒ (u uR) = (e1,e2) ⇐⇒ e1R = e2 ⇐⇒ αSA1R = αSA2. (8)

We first analyze the case of the 2-RD problem, then extend conclusions into
general cases. By Equation (8), for j ∈ {1..n − k − 1}, let rj and aj be the j-th
column of R and A2, respectively, then

αSA1rj = αSaj ⇐⇒ αS
(
A1 aj

)
(

rj

−1

)

= 0. (9)

Let
(

rj

−1

)

= Tjα
� where Tj ∈ F

(k+2)×m
q is the matrix expression of

(
rj

−1

)

under the basis α. Equation (9) can be written αS
(
A1 aj

)
Tjα

� = 0. This
means

S(A1 aj)Tj = 0m×m. (10)

The entries of S(A1 aj)Tj are quadratic polynomials. Then Eq. (10) gives a
quadratic multivariate system over Fq with m2 quadratic polynomials in the
entries of S and C.

The OJ attack uses the basis enumeration and the coordinates enumeration
to transform the quadratic multivariate system into a linear system. The former
guesses all entries of S and solves the linear system about the entries of (A1 aj)
to determine C. The latter guesses the entries of C and solves the linear system
about the entries of S to determine S.

When S and C are in the form of Eq. (5) and Eq. (6), the complexities are
presented in Theorem 3.6 and Theorem 3.7. We give their detailed proofs in
Appendix C.2 and Appendix C.3 of full version [40]. The ideas of proofs can be
easily extended to the �-RD problem.
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Theorem 3.6. If S and C are in the form of Eq. (5), the 2-RD problem can
be solved with complexity O (

(kr + r)ωq(m−r)(r−1)
)
by the basis enumeration.

Theorem 3.7. If k = n1, S and C are in the form of Eq. (6), the 2-RD problem
can be solved with complexity O (

(m(r − 1) + (n1 − r1))ωq(r1−1)(n1−r1)+r2
)
by

the coordinates enumeration.

Theorem 3.8. If k = n1, the complexity of solving the �-RD problem by the OJ
attack is estimated as
{

O(
(kr + r)ωq(m−r)(r−1)

)
, BasisEnumeration;

O (
(m(r − 1) + (n1 − r1))ωq(r1−1)(n1−r1)+γ

)
, CoordinatesEnumeration,

where γ = max
{
ri : i ∈ {2..�}} and r =

∑�
i=1 ri.

3.4 Algebraic Attack by Annulator Polynomial

This algebraic attack [21] differs from attacks aiming to recover S and C with
reductions described in Subsect. 3.2. It directly solves x from a multivariate
system obtained from the �-RD instance and the theory of q-polynomials [36],
more specifically annulator polynomials (see Appendix A of full version [40]).
The attack details are outlined in Appendix B.2 of full version [40].

For the �-RD problem finding the �-error e = (e1,e2, . . . ,e�) ∈ Sn
r , the solver

splits y as (y1,y2, . . . ,y�) and splits G as (G1,G2, . . . ,G�) by columns n. Then

(y1,y2, . . . ,y�) = x(G1,G2, . . . ,G�) + (e1,e2, . . . ,e�).

In this way, the �-RD problem is divided into � subproblems, for ν ∈ {1..�},
yν = xGν + eν , then one solves x from one of � subproblems.

Let x = (x1, x2, . . . , xk). For ν ∈ {1..�}, let yν = (y1, y2, . . . , ynν
), Gν =

(gij) i∈{1..k}
j∈{1..nν}

, and eν = (e1, e2, . . . , enν
). Since the entries of eν lie in the support

Supp(eν) of dimension rν , there exists a unique monic q-polynomials P (ν)(u) =
∑rν

δ=0 p
(ν)
δ uqδ

of q-degree rν such that for j ∈ {1..nν}

P (ν)

(

yj −
k∑

i=1

xigij

)

=
rν∑

δ=0

(

p
(ν)
δ yqδ

j −
k∑

i=1

p
(ν)
δ xqδ

i gqδ

ij

)

= P (ν) (ej) = 0. (11)

Equation (11) gives a multivariate system with nν polynomials and (rν + k)
variables p

(ν)
δ and xi. For solving the �-RD problem, one solves xi from this

multivariate system.
The linearization and Gröbner basis techniques are applied to solve xi. The

complexities are given in Theorem 3.9 and the detailed proof is presented in
Appendix C.4 of full version [40].
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Theorem 3.9. The complexity of solving the �-RD problem by annulator poly-
nomials is estimated as

⎧
⎪⎨

⎪⎩

O
(
min

{
(rνk)ωqrν� (k+1)(rν+1)−(nν+1)

rν
� : ν ∈ {1..�}

})
, Linearization;

O
(

min
{

nν

(rν+k+d(ν)
reg−1

d
(ν)
reg

)ω

: ν ∈ {1..�}
})

, Gröbner Basis.

where d
(ν)
reg is the degree of regularity of the semi-regular system.

3.5 Algebraic Attacks by the MaxMinors Modeling

The MaxMinors (MM) modeling [9] is a powerful algebraic attack for crypto-
graphic parameters and reduces the RD problem to solving a linear system.
Equation εCH�

y = 0n−k−1 (obtained from Eq. (3) and e = εC) implies that

CH�
y ∈ F

r×(n−k−1)
qm is not of row full rank because a non-zero vector s belongs

to its left kernel. Then all maximal minors |CH�
y |∗,J of CH�

y are equal to 0 for
J ⊂ {1..n−k−1} and #J = r. By the Cauchy-Binet formula, each |CH�

y |∗,J can
be viewed a non-zero linear combination about all maximal minors cT = |C|∗,T

for T ⊂ {1..n} and #T = r. One views non-zero cT as unknowns and solves
cT from a linear system with

(
n
r

)
unknowns and

(
n−k−1

r

)
equations. Finally, one

determines the entries of C from the cT by using the fact that it is in systematic
form. The MM modeling over Fqm is built

{
PJ = |CH�

y |∗,J : J ⊂ {1..n − k − 1},#J = r
}

, (MM-Fqm) (12)

Unknowns:
(
n
r

)
variables cT ∈ Fq for T ⊂ {1..n} and #T = r,

Equations:
(
n−k−1

r

)
linear equations PJ = 0 over Fqm in cT .

However, this system has many solutions due to
(
n−k−1

r

)
<

(
n
r

)
whereas one

wants more equations than unknowns for a unique solution. To obtain more
equations than unknowns, one unfolds the coefficients of PJ over Fq and obtains
the MM-Fq modeling
{
Pi,J = |CH�

y |∗,J : J ⊂ {1..n − k − 1},#J = r, i ∈ {1..m}} , (MM-Fq) (13)

Unknowns:
(
n
r

)
variables cT ∈ Fq for T ⊂ {1..n} and #T = r,

Equations: m
(
n−k−1

r

)
linear equations Pi,J = 0 over Fq in cT .

We first analyze the case of the 2-RD problem, then extend conclusions to
general cases. By Eq. (6), the matrix C is of form

C =
(

Ir1 C ′
1 0r1×n2

0r2×n1 Ir2 C ′
2

)

∈ F
r×n
q , (14)

where C = (cij) i∈{1..r}
j∈{1..n}

∈ F
r×n
q , C ′

1 ∈ F
r1×(n1−r1)
q , and C ′

2 ∈ F
r2×(n2−r2)
q . One

can easily check
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– |C|∗,({1..r1}\{i}∪{j})∪{n1+1..n1+r2} = (−1)r1−icij for i ∈ {1..r1} and j ∈ {r1 +
1..n1},

– |C|∗,{1..r1}∪({n1+1..n1+r2}\{i}∪{j}) = (−1)n1+r2−icij for i ∈ {n1 + 1..n1 + r2}
and j ∈ {n1 + r2 + 1..n},

– |C|∗,{1..r1}∪{n1+1..n1+r2} = 1.

Therefore, once all cT ’s are solved, one can determine the entries of the matrix
C. Lemma 3.10 bounds the number of equations and unknowns cT .

Lemma 3.10. Under block form of C in Eq. (14), the MM-Fq modeling
obtained from the 2-RD problem contains

(
n1
r1

)(
n2
r2

)
unknowns cT and at most

m
(
n−k−1

r

)
equations.

We give the detailed proof for Lemma 3.10 in Appendix C.5 of full ver-
sion [40].

Remark 2. Our analysis follows the idea of updated RQC [30], where authors
bounded the maximal number of equations. On the one hand, considering less
equations could lead to a higher complexity because in this case one is more likely
to solve an underdetermined system with more unknowns and would guess more
entries of C to transform the system into an overdetermined case (see hybrid
method in the proof of Theorem 3.11). This means that using the maximal num-
ber of equations would give a lower bound of complexity. Cryptographic param-
eters often lead to an underdetermined case. On the other hand, the number of
zero and dependent equations is negligible to the maximal number m

(
n−k−1

r

)

and their impact on complexity is very limited. A thorough analysis in [8,12]
supported this point and we also experimentally verified this when � = 2, 3.

Remark 3. The number of non-zero variables cT is easy to compute. When n
and r are divisible by �, by Stirling approximation, the loss of variables cT is

large due to
(
n/�
r/�

)� ≈ �
�
2

(
n

2πr(n−r)

) �−1
2 (

n
r

)
while comparing with the MM-Fq

modeling obtained from the standard RD problem. See Lemma C.1 in Appendix
C.6 of full version [40] for this proof.

Theorem 3.11. The complexity of solving the 2-RD problem by the MM-Fq

modeling is estimated as
⎧
⎪⎪⎨

⎪⎪⎩

O
(

m
(
n−p−k−1

r

) ((
n1
r1

)(
n2−p

r2

))ω−1
)

, m
(
n−k−1

r

) ≥ (
n1
r1

)(
n2
r2

) − 1;

O
(

qa1r1+a2r2m
(
n−k−1

r

) ((
n1−a1

r1

)(
n2−a2

r2

))ω−1
)

, m
(
n−k−1

r

)
<

(
n1
r1

)(
n2
r2

) − 1.

where p = max
{

i | m
(
n−i−k−1

r

) ≥ (
n1
r1

)(
n2−i

r2

) − 1
}

and (a1, a2) is an integer

pair such that m
(
n−k−1

r

) ≥ (
n1−a1

r1

)(
n2−a2

r2

) − 1 exactly holds.

We give a proof with full details for Theorem 3.11 in Appendix C.7 of full
version [40]. Theorem 3.11 can be extended to the case of the �-RD problem.
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Theorem 3.12. The complexity of solving the �-RD problem by the MM-Fq

modeling is estimated as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

O
(

m
(
n−p−k−1

r

)
(

(
n�−p

r�

) �−1∏

i=1

(
ni

ri

)
)ω−1

)

, m
(
n−k−1

r

) ≥
�∏

i=1

(
ni

ri

) − 1;

O
(

q
∑�

i=1 airim
(
n−k−1

r

)
(

�∏

i=1

(
ni−ai

ri

)
)ω−1

)

, m
(
n−k−1

r

)
<

�∏

i=1

(
ni

ri

) − 1.

where p = max
{

i
∣
∣
∣ m

(
n−i−k−1

r

) ≥ (
n�−i

r�

) �−1∏

i=1

(
ni

ri

) − 1
}

and (a1, a2, . . . , a�) is an

integers sequence such that m
(
n−k−1

r

) ≥
�∏

i=1

(
ni−ai

ri

) − 1 exactly holds.

3.6 Summary of Complexities for Solving the �-RD Problem

At the end of this section, we summarize the complexity gain of solving the �-RD
problem compared with the standard RD problem in Table 2. For the first three
attacks, we only compare the exponential terms.

Table 2. Complexity comparisons of solving the �-RD and RD problems.

Attacks RD(q, m, n, k, r) �-RD(q, m, n, k, r, �)

AGHT q
r

⌈
(k+1)m

n

⌉

−m
q

r

⌈
(k+1)m

n

⌉

−m

OJ q(m−r)(r−1)+2 q(r−1)(k+1) q(m−r)(r−1) q(r1−1)(k−r1)+γ

γ = max
{

ri : i ∈ {2..�}}

Annulator
Polynomial

q
r

⌈
(k+1)(r+1)−(n+1)

r

⌉

n
(r+k+dreg−1

dreg

)ω
min

⎧
⎪⎨

⎪⎩
q

rν

⌈
(k+1)(rν+1)−(nν+1)

rν

⌉

: ν ∈ {1..�}

⎫
⎪⎬

⎪⎭

min

⎧
⎪⎨

⎪⎩
nν

(rν+k+d
(ν)
reg−1

d
(ν)
reg

)
ω

: ν ∈ {1..�}

⎫
⎪⎬

⎪⎭

MM m
(

n−p−k−1
r

) ((
n−p

r

))ω−1

qarm
(

n−k−1
r

) ((
n−a

r

))ω−1
m

(
n−p−k−1

r

)
(

(
n�−p

r�

) �−1∏

i=1

(
ni
ri

)
)ω−1

q

∑�
i=1 airi m

(
n−k−1

r

)
(

�∏

i=1

(
ni−ai

ri

)
)ω−1

Remark 4. The complexity analysis shows that the gain of most attacks on the �-
RD problem benefits from the blockwise structure of �-errors. (1) the OJ and MM
attacks benefits from the block-diagonal form of coefficient matrix C because the
sparse C enables one to solve less variables (multivariable or linear) system; (2)
the AGHT attack is limited because its cost depends on how to successfully guess
a subspace that contains the support of the error; (3) the annulator polynomials
attack benefits from the fact that the �-errors allow to divide the �-RD problem
into � subproblems with the smaller parameters.

For the powerful MM-Fq modeling, in the “underdetermined” case, an inter-
esting result is that the complexity of solving the �-RD problem allows to divide
by a factor � that of solving the standard RD problem.
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Let �|n, �|r, n′ = n/�, and r′ = r/�. For both RD and �-RD instances,
when the parameters (m,n, k, r) satisfy respectively the “underdetermined” con-

ditions: m
(
n−k−1

r

)
<

(
n
r

) − 1 and m
(
n−k−1

r

)
<

(
n′

r′
)� − 1. The attacker chooses

appropriate a and (a1, a2, . . . , a�) such that

m

(
n − k − 1

r

)

≥
(

n − a

r

)

− 1 and m

(
n − k − 1

r

)

≥
�∏

i=1

(
n′ − ai

r′

)

− 1

exactly hold. This means
(
n−a

r

) ≈
�∏

i=1

(
n′−ai

r′
)
. From Lemma C.1 in Appendix

C.6 of full version [40], an appropriate choice is a1 = a2 = · · · = a� and ai = a/�.
At this point,

logq(TRD)
logq(T�-RD)

≈ ar
∑�

i airi

= � =⇒ T�-RD ≈ �
√

TRD,

where TRD and T�-RD are the complexity of solving the RD and �-RD problems,
respectively. This further shows that the speedup really benefits from the block-
diagonal form of C because having C sparse enables one to guess

∑�
i=1 airi

entries of C to convert the “underdetermined” system into an “overdetermined”
system, instead of ar entries in the standard RD problem.

We simulate the complexity of MM-Fq for RD, 2-RD, and 3-RD in Fig. 1.

– (a) The RD instances are estimated with (q,m, n, k) = (2, 200, 200, 100) and
various even values r = 2r′ (r′ ∈ {3..30}). The 2-RD instances are estimated
with (q,m, n, k, n1, n2) = (2, 200, 200, 100, 100, 100) and various values r1 =
r2 ∈ {3..30}.

– (b) The RD instances are estimated with (q,m, n, k) = (2, 100, 200, 100) and
various even values r ∈ {6..40}. The 2-RD instances are estimated with
(q,m, n, k, n1, n2) = (2, 100, 200, 100, 100, 100) and various values r1 = r2 ∈
{3..20}.

– (c) The RD instances are estimated with (q,m, n, k) = (2, 100, 300, 100) and
various values r = 3r′ (r′ ∈ {2..20}). The 3-RD instances are estimated
with (q,m, n, k, n1, n2, n3) = (2, 100, 300, 100, 100, 100, 100) and various val-
ues r1 = r2 = r3 ∈ {2..20}.

Our simulations become interesting as r increases. (a) and (b) in Fig. 1 show
that, when r is divided equally into (r1, r2), the exponential complexity allows
to divide by a factor 2 for r ≥ 10, i.e., T2-RD ≈ √

TRD. (c) in Fig. 1 shows that,
when r is divided equally into (r1, r2, r3), the exponential complexity allows to
divide by a factor 3 for r ≥ 12, i.e., T3-RD ≈ 3

√
TRD. The parameters sizes in (b)

and (c) are exactly the case of cryptography parameters in Sect. 5.

4 The �-LRPC Codes and Decoding Algorithm

In this section, we define the blockwise LRPC (�-LRPC) codes, give its decoding
algorithm, and analyze the decoding failure probability and the error-correcting
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Fig. 1. Complexity trend of RD, 2-RD, and 3-RD by MM-Fq.

capability. We find that the decoding algorithm can benefit from the blockwise
structure: the decoding capacity can be significantly improved by a factor of
�. For cryptography applications in Sect. 5, we finally give the �-Rank Support
Recover (�-RSR) algorithm which is used to recover the support of the �-error.

4.1 The �-LRPC Codes

An [n, k]qm LRPC code [4,20] is defined by a parity-check matrix H ∈ F
(n−k)×n
qm

with small weight. Our [n, k]qm �-LRPC code is defined by a parity-check matrix
consisting of � small-weight matrices of size (n − k) × ni.

Definition 4.1 (Blockwise LRPC (�-LRPC) Codes). Let �, k ∈ N, ni, di ∈
N for i ∈ {1..�}, and n =

∑�
i=1 ni. Let Hi ∈ F

(n−k)×ni

qm be a matrix of weight
di. Let the supports of � matrices Hi’s are mutually disjoint. An [n, k]qm �-
LRPC code of length n and dimension k is defined by a parity-check matrix
H = (H1 H2 · · · H�) ∈ F

(n−k)×n
qm .

Let n = (n1, n2, . . . , n�) and d = (d1, d2, . . . , d�) be vectors of positive inte-
gers. We denote the set of such parity-check matrices by Mn

d (k). Let Fi be
the support of dimension di of Hi. Because all supports are mutually disjoint,
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the matrix H can be viewed as the matrix of weight d =
∑�

i=1 di and support
F =

∑�
i=1 Fi.

We next consider decoding algorithms for two error distributions: the �-errors
and the standard rank metric errors. In this subsection, we analyze the case of
decoding the �-errors. The decoding algorithm is also applied to ROLLO in
Sect. 5. The latter is presented in Appendix D of full version [40], where we show
that for the standard errors, the �-LRPC code has the same decoding capacity
as the standard LRPC code.

4.2 Decoding �-Errors

Let r = (r1, . . . , r�) be a vector of positive integers. Consider an [n, k]qm �-
LRPC code C with generator matrix G ∈ F

k×n
qm and parity-check matrix H =

(H1 H2 · · · H�) ∈ Mn
d (k) of support (F1, F2, . . . , F�). Let y = mG + e be a

received word, where m ∈ F
k
qm and e = (e1,e2, . . . ,e�) ∈ Sn

r with the support
(E1, E2, . . . , E�). The syndrome s = Hy� = He� =

∑�
j=1 Hje

�
j .

The general idea of decoding �-error e uses the fact that the subspace
S = 〈s1, s2, . . . , sn−k〉Fq

generated by s enables one to recover the space
∑�

i=1 EiFi. Once obtaining
∑�

j=1 EjFj , one recovers E1, E2, . . . , E� and com-

putes the support E =
∑�

j=1 Ej of the error e. Finally, the coordinates of e are
computed by solving a linear system. The decoding algorithm is described in
Algorithm 1.

4.3 Correctness of the Decoding Algorithm

The correctness of Algorithm 1 depends on the recovery of correct Ej , which

requires dimS = dim
(∑�

j=1 EjFj

)
and dim

(⋂dj

i=1 Sji

)
= rj for j ∈ {1..�}. We

assume that these two conditions hold.
Step 1: the first step of the algorithm is obvious.
Step 2: we prove that Ej =

⋂dj

i=1 Sji for j ∈ {1..�}. Let (εj1, εj2, . . . , εjrj
) ∈

F
rj

qm be the basis of Ej . Since s = He� =
∑�

j=1 Hje
�
j , H ∈ Mn

d (k) is a matrix
of support (F1, F2, . . . , F�), and e ∈ Sn

r is an �-error of support (E1, E2, . . . , E�),
we have that the entries of Hje

�
j respectively lie in EjFj . Thus, S ⊂ ∑�

j=1 EjFj .

By assumption dimS = dim
(∑�

j=1 EjFj

)
, we have S =

∑�
j=1 EjFj . Further,

for any i ∈ {1..dj}, since fjiεjκ ∈ ∑�
j=1 EjFj for all κ ∈ {1..rj}, we have

εjκ ⊂ Sji = {f−1
ji x : x ∈ S} ⇒ Ej ⊂ Sji. Then, Ej ⊂ ⋂dj

i=1 Sji. By assumption

dim
(⋂dj

i=1 Sji

)
= rj , we have Ej =

⋂dj

i=1 Sji.
Step 3: one expresses e under the basis ε of E:

e = (e1, e2, . . . , en) = (ε1, ε2, . . . , εr)

⎛

⎜
⎜
⎜
⎝

e11 e12 · · · e1n

e21 e22 · · · e2n

...
... · · · ...

er1 er2 · · · ern

⎞

⎟
⎟
⎟
⎠

= (ε1, ε2, . . . , εr)

⎛

⎜
⎜
⎜
⎝

e1

e2

...
er

⎞

⎟
⎟
⎟
⎠

,
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Algorithm 1. Decoding �-errors for �-LRPC codes
Input: the vector y and the parity-check matrix H .
Output: the message m

1: Computing syndrome space:
– Compute the syndrome Hy� = He� =

∑�
i=1 Hie

�
i = s = (s1, s2, . . . , sn−k)�

and the syndrome space S = 〈s1, s2, . . . , sn−k〉Fq .
2: Recovering the support E of the error e:

– Compute Fj from H for j ∈ {1..�}
– Compute the basis (fj1, fj2, . . . , fjdj ) ∈ F

dj

qm of Fj for j ∈ {1..�}
– Compute Sji = f−1

ji S, where all generators of S are multiplied by f−1
ji for

j ∈ {1..�} and i ∈ {1..dj}
– Compute Ej =

⋂dj

i=1 Sji for j ∈ {1..�}
– Compute E =

∑�
j=1 Ej

3: Recovering the error e:
– Compute the basis ε = (ε1, ε2, . . . , εr) ∈ F

r
qm of E

– Write each entry ej of e as ej =
∑r

i=1 eijεj for j ∈ {1..n} in the basis ε
– Solve eij from the linear system He� = s.

4: Recovering m from mG = y − e.

where ei = (ei1, ei2, . . . , ein) for i ∈ {1..r}, and computes ei from Eq. (15):

He� =

⎛

⎜
⎜
⎜
⎝

h1

h2

...
hn−k

⎞

⎟
⎟
⎟
⎠

(e�
1 ,e�

2 , . . . ,e�
r )

⎛

⎜
⎜
⎜
⎝

ε1
ε2
...
εr

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

h1ε1 h1ε2 · · · h1εr

h2ε1 h2ε2 · · · h2εr

...
... · · · ...

hn−kε1 hn−kε2 · · · hn−kεr

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

e�
1

e�
2
...

e�
r

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

s1
s2
...

sn−k

⎞

⎟
⎟
⎟
⎠

, (15)

where hj is the j-th row of H.

There are two methods to solve Eq. (15):

1. Solve-Fqm : Obtaining a linear system with nr unknowns and m(n−k) equa-
tions over Fq by expressing hjεi and sj as a matrix Mat(hjεi) ∈ F

m×n
q and

column vector of length m, respectively, under the basis α. The system has
one solution with overwhelming probability if nr ≤ m(n − k);

2. Solve-EF : As
∑�

j=1 EjFj ⊂ EF , where F =
∑�

j=1 Fj , the entries of hjεi

and sj lie in EF . We then can express Equation (15) under the basis of EF
by expressing hjεi and sj as a matrix of rd × n and column vector of length
rd, respectively. Finally, we will obtain a linear system with nr unknowns and
rd(n − k) equations over Fq. The system has one solution with overwhelming
probability if nr ≤ rd(n − k), where d =

∑�
j=1 dj and r =

∑�
j=1 rj .
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Once all ei’s are obtained, one can recover e. We experimentally find that Solve-
Fqm is more efficient than Solve-EF on SageMath 9.0.

Step 4: the fourth step of the algorithm is obvious.

4.4 The Decoding Complexity

The most costly part is the intersection in Step 2 and solving linear systems
in Step 3. The intersection

⋂dj

i=1 Sji of spaces Sji of dimension μ =
∑�

j=1 rjdj

costs O
(
4μ2m

∑�
j=1 dj

)
operations in Fq for j ∈ {1..�}. By Solve-EF , express-

ing hjεi as a matrix of rd × n in the basis of EF consists in solving n linear
systems with rd unknowns and m equations. This costs (n − k)nrω+1dω oper-
ations in Fq. Expressing sj as a column vector of length rd in the basis of EF
consists in solving a linear system with rd unknowns and m equations. This
costs (n − k)(rd)ω operations in Fq. Solving the linear system He� = s with
nr unknowns and rd(n − k) equations costs about O((nr)ω) operations in Fq.
Thus, the complexity of the decoding algorithm is bounded by O((nr)ω).

4.5 Decoding Failure Probability

By the correctness assumption of Algorithm 1, two cases can make the algorithm
fail: (i) dimS < dim

(∑�
j=1 EjFj

)
; (ii) dim

(⋂dj

i=1 Sji

)
> rj for j ∈ {1..�}.

Propositions 4.2 and 4.3 estimate the probability of two cases.

Proposition 4.2. The probability of dimS < dim
(∑�

j=1 EjFj

)
is bounded by

q−(n−k−μ) where μ =
∑�

j=1 rjdj.

Proposition 4.3. The probability that there is j ∈ {1..�} such that

dim
(⋂dj

i=1 Sji

)
> rj is bounded by

∑�
j=1 qμ−rj

(
qμ−rj −1

qm−rj

)dj−1

where μ =
∑�

j=1 rjdj.

We give the detailed proofs for Propositions 4.2 and 4.3 in Appendices (C.8
and C.9) of full version [40]. Combining these two propositions, we deduce the
decoding failure probability of Algorithm 1 in Theorem 4.4.

Theorem 4.4. Under assumptions that Sji behaves as independent and ran-
dom subspaces containing Ej, the decoding failure probability of Algorithm 1 is

bounded by q−(n−k−μ) +
∑�

j=1 qμ−rj

(
qμ−rj −1

qm−rj

)dj−1

where μ =
∑�

j=1 rjdj.

The analysis shows that the failure probability can be made arbitrarily small.

4.6 Error Correction Capability

From the correctness of Algorithm 1, we have nr ≤ rd(n−k) ⇒ d ≥ n
n−k . Under

this condition, the decoding capacity is constrained by
∑�

j=1 rjdj ≤ n − k. The
following Theorem 4.5 is obvious.
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Theorem 4.5. When d1 = d2 = · · · = d�, the �-LRPC code allows to decode
�-errors of weight up to r =

∑�
j=1 rj = n−k

d1
. By setting d1 = d2 = · · · = d�= 2,

it can decode �-errors of weight up to n−k
2 .

Theorem 4.5 implies that the decoding algorithm can benefit from the block-
wise structure: the decoding capacity can be significantly improved by a factor
of �. An [n, k]qm LRPC code defined by a parity-check matrix of weight d can
decode the standard errors of weight up to r = n−k

d with a DFR of about
qrd−n−k. Let �|d, di = d/�, H ∈ Mn

d (k) be a parity-check matrix of an [n, k]qm

�-LRPC code. This �-LRPC code can decode �-errors in Sn
r of weight up to �r

with the same DFR, which comes from

�∑

j=1

rjdj =
d

�

�∑

j=1

rj ≤ n − k =⇒
�∑

j=1

rj ≤ �(n − k)
d

= �r.

For example, fixing d = 4, r = 8, and the DFR of q32−n−k, an [n, k]qm LRPC
code can decode errors of weight 8, but an [n, k]qm 2-LRPC codes with parameter
d = (d1, d2) = (2, 2) can decode �-errors with parameter r = (r1, r2) = (8, 8) of
weight up to r = r1 + r2 = 16.

For the accurate failure probability of decoding errors of maximal weight, it
is hard to estimate theoretical value and the value in Theorem 4.4 seems not
practical for q > 2. We give a simulation of the decoding algorithm for 2-LRPC
codes on SageMath 9.0. When � = 2 and d1 = d2 = 2, the 2-LRPC codes can
decode 2-errors of weight up to n−k

2 . The simulated result shows that the failure
probability is about 0.73 for q = 2. Figure 2 shows the decreasing trend of the
failure probability as q increases. For q = 2, the failure probability is bounded by
q−(n−k−∑2

j=1 rjdj) = 1. For q > 2, the upper bound of failure probability seems to
be q−(n−k+1−∑2

j=1 rjdj). The code parameters are (m,n, k, n1, n2, r1, r2, d1, d2) =
(43, 44, 22, 22, 22, 6, 5, 2, 2) for q = 2, 3, 5, 7, 11, 13, 17, 19.

4.7 The �-RSR Algorithm

For cryptography applications in Sect. 5, one just recovers the support of the
error. In this subsection, we give the �-Rank Support Recover (�-RSR) algorithm
(Algorithm 2), which is a shortened version of the decoding Algorithm 1 without
the computation of the error. The correctness follows Algorithm 1. The failure
probability follows Theorem 4.4. The cost is only the recovery of support and is
given in Subsect. 4.4.

5 Applications to Cryptography

In this section, we apply the ideal variants of the �-RD problem and the �-LRPC
codes to improve RQC [30] and ROLLO [29] kept in NIST PQC Round 2. Due to
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Fig. 2. Simulated failure probability of decoding 2-errors of weight n−k
2

for 2-LRPC
codes.

Algorithm 2. �-RSR Algorithm
Input: a parity-check matrix H = (H1 H2 · · · H�) ∈ Mn

d (k), a syndrome s ∈ F
n−k
qm ,

r = (r1, r2, . . . , r�).
Output: � spaces Ej of dimensions rj .

1: Compute the syndrome space S = 〈s1, s2, . . . , sn−k〉Fq .
2: Recovering the support Ej for j ∈ {1..�}:

– Compute Fj from Hj

– Compute the basis (fj1, fj2, . . . , fjdj ) of Fj

– Compute Sji = f−1
ji S, where all generators of S are multiplied by f−1

ji for
i ∈ {1..dj}

– Compute Ej =
⋂dj

i=1 Sji

space limitations, we present the ideal variants in Appendix E of full version [40]
and only list improved schemes and comparisons in this section.

RQC [30] and ROLLO [29] include Public Key Encryptions (PKE) and Key
Encapsulation Mechanisms (KEM). RQC is an IND-CCA2 KEM built from its
IND-CPA PKE construction based on the HHK transformation [26] and uses
the Gabidulin codes. We only consider the PKE version of RQC for simplicity.
ROLLO is the merge of the three cryptosystems Laker, Locker, and Ouroboros-
R which all share the same decryption algorithm for the LRPC codes. Laker
(ROLLO-I) and Ouroboros-R (ROLLO-III) are two IND-CPA KEM. Locker
(ROLLO-II) is an IND-CCA2 PKE scheme built from its IND-CPA PKE con-
struction based on the HHK transformation [26]. We only consider the IND-CPA
PKE version of Locker for simplicity.
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5.1 Improved RQC

In this subsection, we improve RQC [30] based on the 2-IRSD and 3-IRSD prob-
lems. Our RQC uses three types of codes: a Gabidulin code C [18] with gener-
ator matrix G ∈ F

k×n
qm which can correct up to �n−k

2 � errors by a deterministic
decoding algorithm C.Decode [6,27], a random [2n, n]qm -ideal code with parity-
check matrix (1 h), and a random [3n, n]qm -ideal code with parity-check matrix(
1 0 h
0 1 s

)

.

– RQC.KGen(λ): Taking 1λ as input, it randomly samples h $← F
n
qm and (x,y) $←

S(n,n)
(wx,wy), computes s = x + hy, and sets the public key pk = (h,s) and the

private key sk = (x,y).
– RQC.Enc(pk,m): Taking the public key pk = (s,h) and a message m ∈ F

k
qm as

input, it randomly samples (r1,r2,e)
$← S(n,n,n)

(wr1 ,wr2 ,we)
, computes u = r1+hr2

and v = mG+ sr2 + e, and returns the ciphertext c = (u,v).
– RQC.Dec(sk,c): Taking a private key sk = (x,y) and the ciphertext c as input,

it computes v uy and returns m .Decode (v uy).

Fig. 3. Description of our RQC PKE scheme.

Correctness. We have v − uy = mG + xr2 + e − r1y. The correctness of
our encryption scheme is based on the decoding capability of the Gabidulin
code C, i.e., the error term xr2 + e − r1y must fulfill: ‖xr2 + e − r1y‖R =
wxwr2 + wywr1 + we ≤ �n−k

2 �.
In the decryption step, one needs to decode an error of weight wxwr2 +

wywr1 + we . This weight increase is slow, which brings the gain of decoding
capacity and saves code parameters. Although the �-errors can also be used to
speed up the attacks for decoding problems, the performance in Table 3 shows
that the gain in the decoding method greatly outweighs the gain in the attacks,
and eventually allows scheme with small parameters.

Theorem 5.1. Under the decisional 2-IRSD and 3-IRSD problems, our RQC
PKE in Fig. 3 is IND-CPA secure.

Proof. The proof is similar to [30] with 2-IRSD and 3-IRSD instances. The two
instances are defined by

s =
(
1 h

)
(

x
y

)

,

(
u

v − mG

)

=
(
1 0 h
0 1 s

)
⎛

⎝
r1

r2

e

⎞

⎠ .

�
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5.2 Improved Lake (ROLLO-I)

In this subsection, we improve Lake based on the 2-IRSD problem and the 2-
ILRPC codes indistinguishability problem. Our Laker has three building blocks:
a random [2n, n]qm 2-ILRPC code with parity-check matrix (x y), the algorithm
2-RSR (see Algorithm 2), and a random [2n, n]qm -ideal code with parity-check
matrix (1 h).

– Lake.KGen(λ): Taking 1λ as input, it samples (x,y) $← S(n,n)
(d1,d2)

and computes
h = x−1y, then it sets the public key pk = h and the private key sk = (x,y).

– Lake.Encap(pk): Taking the public key h as input, it randomly chooses

(e1,e2)
$← S(n,n)

(r1,r2)
and computes c = e1 + he2, E1 = Supp(e1), E2 =

Supp(e2), E = E1 + E2, and K = Hash(E), and returns (c, K).
– Lake.Decap(sk,c): Taking (x,y) and c as input, it computes xc = xe1 +ye2,

executes (E1, E2) ← 2-RSR((x,y),xc, r1, r2), computes E = E1 + E2, and
returns K = Hash(E).

Fig. 4. Description of our Lake KEM scheme.

5.3 Improved Locker (ROLLO-II)

Locker (ROLLO-II [29]) is a PKE scheme and is obtained from ROLLO-I. In
this subsection, we improve ROLLO-II by the 2-IRSD problem. As our Lake, our
Locker has three building blocks: a random [2n, n]qm 2-ILRPC code with parity-
check matrix (x y), the algorithm 2-RSR (see Algorithm 2), and a random
[2n, n]qm -ideal code with parity-check matrix (1 h).

– Locker.KGen(λ): Taking 1λ as input, it samples (x,y) $← S(n,n)
(d1,d2)

and computes
h = x−1y, then it sets the public key pk = h and the private key sk = (x,y).

– Locker.Enc(pk, M): Taking the public key h and a message M as input, it

randomly chooses (e1,e2)
$← S(n,n)

(r1,r2)
, computes c = e1 +he2, E1 = Supp(e1),

E2 = Supp(e2), E = E1 + E2, and the ciphertext C = (c, M ⊕ Hash(E)) =
(c,c ), and returns C.

– Locker.Dec(sk, C): Taking the private key (x,y) and the ciphertext C as input,
it computes xc = xe1 + ye2, executes (E1, E2) ← 2-RSR((x,y),xc, r1, r2),
computes E = E1 + E2, and returns M = c Hash(E).

Fig. 5. Description of our Locker PKE scheme.

In Laker and Locker, the decapsulation and decryption steps obtain the sup-
port of (e1,e2) from xe1−ye2 of weight r1d1+r2d2. This weight increase implies
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that the parameters (r1, r2) and (d1, d2) can be increased a lot. Although the
2-errors and the 2-LRPC codes can also be used to speed up the attacks for
decoding problems, the performance in Tables 4, 5 and 7 shows that the gain in
the decoding method outweighs the gain in the attacks, and eventually allows
schemes with small parameters.

Theorem 5.2. Under the 2-ILRPC codes indistinguishability, and 2-IRSR
problems our Lake KEM in Fig. 4 and Locker PKE in Fig. 5 are IND-CPA secure
in the random oracle model.

Proof. The proofs are similar to [29] with the 2-ILRPC codes indistinguishability
and 2-IRSR instances. The two instances are defined by

0 =
(
1 h

)
(

y
−x

)

, c =
(
1 h

)
(

e1

e2

)

.

�

5.4 Improved Ouroboros-R (ROLLO-III)

In this subsection, we improve ROLLO-III based on the 2-IRSD and 3-IRSD
problems. Our Ouroboros-R has three building blocks: a 3-ILRPC code with
parity-check matrix (h0 h1 1), the algorithm 3-RSR (see Algorithm 2), a
[2n, n]qm -ideal code with parity-check matrix (1 f1), and a [3n, n]qm -ideal code

with parity-check matrix
(
1 0 f0

0 1 f1

)

.

– Ouroboros-R.KGen(λ): Taking 1λ as input, it samples f1
seed←− F

n
qm , and

(h0,h1)
$← S(n,n)

(d1,d2)
, then it computes f0 = h1 + f1h0 and sets the public

key pk = (f0, seed) and the private key sk = (h0,h1).
– Ouroboros-R.Encap(pk): Taking the public key (f0, seed) as input, it randomly

chooses (e0,e1,e)
$← S(n,n,n)

(r1,r2,r3)
, computes c0 = f0e1 + e, c1 = f1e1 + e0,

E1 = Supp(e1), E2 = Supp(e2), E = E1 + E2, and K = Hash(E), sets c =
(c0,c1), and returns (c, K).

– Ouroboros-R.Decap(sk,c): Taking (h0,h1) and c as input, it computes s = c0−
h0c1 = −h0e0+h1e1+e, executes (E1, E2) ← 3-RSR((h0,h1,1),s, r1, r2, r3),
computes E = E1 + E2, and returns K = Hash(E).

Fig. 6. Description of our Ouroboros-R KEM scheme.

In the decapsulation step, one obtains the support of (e0,e1) from h1e1 −
h0e0 + e of weight r1d1 + r2d2 + r3. This weight increasing implies that the
parameters (r1, r2, r3) and (d1, d2) can be increased a lot. Although the blockwise
errors and LRPC codes can also be used to speed up the attacks for decoding
problems, the performance in Tables 6 and 7 shows that the gain in the decoding
method outweighs the gain in the attacks, and eventually allows scheme with
small parameters.
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Theorem 5.3. Under the decisional 2-IRSD and 3-IRSD problems, our
Ouroboros-R KEM in Fig. 6 is IND-CPA secure in the random oracle model.

Proof. The proof is similar to [2] with the (decisional) 2-IRSD and 3-IRSD
instances. The two instances are defined by

f0 =
(
1 f1

)
(

h1

h0

)

,

(
c0
c1

)

=
(
1 0 f0

0 1 f1

)
⎛

⎝
e
e0

e1

⎞

⎠ .

�

5.5 Performance and Comparison

In this subsection, we compare performance of our RQC and ROLLO with orig-
inal versions.

In Tables 3, 4 and 5, parameters are chosen in two principles. First, the hard-
ness of decoding problems (the 2-IRSD and 3-IRSD problems) is ensured to reach
the target security level. The hardness is estimated by our complexity formulas.
Secondly, the error-correcting capacity of rank metric codes is ensured to sat-
isfy the decryption correctness condition. [n, k]qm Gabidulin codes used in RQC
require k < n ≤ m and correct errors of weight up to �(n−k)/2�; in the decryp-
tion step, the weight of the decoded errors must ≤ �(n − k)/2�. The �-LRPC
codes used in ROLLO must satisfy a reasonable DFR in Theorem 4.4. In Tables
3 and 6, “2n” (“3n”) represents the complexity of solving the 2-IRSD (3-IRSD)
instances in RQC and Ouroboros-R. In Tables 4 and 5, the structural attack is
estimated with parameters (m,n, k, r1, r2) =

(
m, 2n − �n

d �, n − �n
d �, d1.d2

)
; the

message attack is estimated with parameters (m,n, k, r1, r2) = (m, 2n, n, r1, r2).
From Tables (3, 4, 5 and 6), our parameters sizes are smaller than those of the

original ones due to the blockwise stricture, which brings a low complexity redun-
dancy, improved the public key/ciphertext sizes, and more efficient implementa-
tions. The improved performance benefits from that the gain of using �-errors and
�-LRPC codes in decoding capacity outweighs the complexity loss in solving the
�-RD problem. As an example, we provide concrete timings of implementations
for our ROLLO and original versions (Table 7). The benchmark is performed on
Intel(R) Core(TM) i5-7440HQ CPU@ 3.40 GHz with SageMath 9.0. The tests are
available online at https://github.com/YCSong232431/NH-ROLLO. Note that,
we do not compare with most recent works [12,32], where the authors constructed
a series of efficient PKE and KEM schemes without ideal structure by propos-
ing augmented Gabidulin codes and LRPC codes with multiple syndromes. Our
techniques are different from [12,32] and we only consider cryptosystems with
ideal structure and one syndrome.

https://github.com/YCSong232431/NH-ROLLO
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Table 3. Comparison of parameters and sizes for RQC.

Schemes m n k wx wy wr 1 wr 2 we
pks

(bytes)

cts

(bytes)

total

(KB)

Attack

(2n, 3n)
Security

Our RQC 83 79 7 4 4 4 4 4 860 1704 2.5 (2130, 2163) 128

Our RQC 127 113 3 5 5 5 5 5 1834 3652 5.3 (2258, 2214) 192

Our RQC 139 137 5 5 5 6 6 6 2421 4826 7.1 (2271, 2274) 256

Schemes m n k wx wy wr 1 wr 2 we
pks

(bytes)

cts

(bytes)

total

(KB)
Security

RQC (NIST [30]) 127 113 3 7 7 7 7 13 1834 3652 5.3 128

RQC (NIST [30]) 151 149 5 8 8 8 8 16 2853 5690 8.3 192

RQC (NIST [30]) 181 179 3 9 9 9 9 16 4090 8164 12.0 256

pks:
(⌈

mn
8

⌉
+ 40

)
bytes; cts:

(
2

⌈
mn
8

⌉
+ 64

)
bytes; total = pks + cts.

Table 4. Comparison of parameters and sizes for Lake (ROLLO-I).

Schemes m n r1 r2 d1 d2 DFR
pks/cts

(bytes)

Structural attack

y − xh = 0

Message attack

c = e1 + he2
Security

Our Lake 61 67 4 4 5 4 2−31 511 2160 2144 128

Our Lake 71 79 5 5 5 5 2−29 702 2225 2255 192

Our Lake 79 89 5 5 6 5 2−34 879 2281 2266 256

Schemes m n r d DFR pks/cts (bytes) Security

Lake (NIST [29]) 67 83 7 8 2−28 696 128

Lake (NIST [29]) 79 97 8 8 2−34 958 192

Lake (NIST [29]) 97 113 9 9 2−33 1371 256

pks:
⌈

mn
8

⌉
bytes. cts:

⌈
mn
8

⌉
bytes.

Table 5. Comparison of parameters and sizes for Locker (ROLLO-II).

Schemes m n r1r2d1d2 DFR
pks

(bytes)
cts

(bytes)

Structural
attack

y − xh = 0

Message
attack

c = e1 + he2

Security

Our Locker 89 163 4 4 4 4 2−131 1814 1942 2134 2139 128

Our Locker 97 179 4 5 5 5 2−134 2171 2299 2254 2231 192

Our Locker101181 5 5 5 5 2−131 2286 2414 2267 2357 256

Schemes m n rd DFR pks (bytes)cts (bytes)Security

Locker (NIST [29])83189782−134 1941 2089 128

Locker (NIST [29])97193882−130 2341 2469 192

Locker (NIST [29])97211892−136 2559 2687 256

pks:
⌈

mn
8

⌉
bytes; cts:

⌈
mn
8

⌉
+64 bytes. To obtain the IND-CCA2 security, another

hash is added to the ciphertext such that cts =
⌈

mn
8

⌉
+ 2 ∗ 64 bytes.
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Table 6. Comparison of parameters and sizes for Ouroboros-R (ROLLO-III).

Schemes m n r1 r2 r3 d1 d2 DFR
pks

(bytes)

cts

(bytes)

Attacks

(2n, 3n)
Security

Our Ouroboros-R 53 79 4 4 5 4 4 2−33 623 1166 (2147, 2175) 128

Our Ouroboros-R 89 101 6 6 6 4 5 2−33 1164 2248 (2196, 2266) 192

Our Ouroboros-R 97 109 6 6 7 5 5 2−42 1362 2644 (2275, 2308) 256

Schemes m n w wr δ DFR pks (bytes) cts (bytes) Security

Ouroboros-R (TIT [2]) 67 83 7 7 7 2−28 736 1431 128

Ouroboros-R (TIT [2]) 107 113 9 9 9 2−24 1552 3023 192

Ouroboros-R (TIT [2]) 149 151 11 11 11 2−20 2853 5625 256

pks:
(⌈

mn
8

⌉
+ 40

)
bytes and cts:

⌈
2mn
8

⌉
bytes. We update DFR of Ouroboros-R.

Table 7. Timings comparisons of our ROLLO and original ROLLO.

Schemes KGen (ms) Encap (ms) Decap (ms) Security

Our Lake 715 73 257 128

Our Lake 737 100 499 192

Our Lake 1020 118 553 256

Lake (NIST [29]) 995 109 391 128

Lake (NIST [29]) 1220 134 525 192

Lake (NIST [29]) 1390 181 838 256

Schemes KGen (ms) Enc (ms) Dec (ms) Security

Our Locker 2300 232 388 128

Our Locker 2940 280 614 192

Our Locker 3210 301 644 256

Locker (NIST [29]) 2760 258 446 128

Locker (NIST [29]) 3410 314 583 192

Locker (NIST [29]) 2780 333 715 256

Schemes KGen (ms) Encap (ms) Decap (ms) Security

Our Ouroboros-R 101 120 246 128

Our Ouroboros-R 206 247 633 192

Our Ouroboros-R 224 262 798 256

Ouroboros-R (TIT [2]) 130 153 368 128

Ouroboros-R (TIT [2]) 275 308 1040 192

Ouroboros-R (TIT [2]) 504 614 2560 256

6 Conclusion and Future Work

In this paper, we studied blockwise structures in rank-based cryptosystems and
introduced �-errors, �-RD problem, and �-LRPC codes. They are natural gener-
alizations of the standard errors, RD problem, and LRPC codes. We found that
(1) the blockwise structure does not ease the problem too much: the �-RD prob-



314 Y. Song et al.

lem is still exponentially hard for appropriate choices of � > 1; (2) the decoding
algorithm can benefit from the blockwise structure: the decoding capacity can
be significantly improved by a factor of �. Interestingly, the gain of the decoding
capacity outweighs the complexity loss in solving the �-RD problem, which allows
to improve RQC and ROLLO. For 128-bit security, our RQC has total public
key and ciphertext sizes of 2.5 KB, which is not only about 50% more compact
than the original RQC, but also smaller than the NIST Round 4 code-based
submissions HQC, BIKE, and Classic McEliece.

Recent works [3,12,32] proposed unstructured PKE and KEM without ideal
structure for more reliable security. We would in next work analyze the com-
plexity of blockwise rank support learning problem and apply the �-LRPC codes
with multiple syndromes to improve unstructured schemes.
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Abstract. The MPC in the Head (MPCitH) paradigm has recently led
to significant improvements for signatures in the code-based setting. In
this paper we consider some modifications to a recent twist of MPCitH,
called Hypercube-MPCitH, that in the code-based setting provides the
currently best known signature sizes. By compressing the Hypercube-
MPCitH five-round code-based identification scheme into three-rounds
we obtain two main benefits. On the one hand, it allows us to fur-
ther develop recent techniques to provide a tight security proof in the
quantum-accessible random oracle model (QROM), avoiding the catas-
trophic reduction losses incurred using generic QROM-results for Fiat-
Shamir. On the other hand, we can reduce the already low-cost online
part of the signature even further. In addition, we propose the use of
proof-of-work techniques that allow to reduce the signature size. On
the technical side, we develop generalizations of several QROM proof
techniques and introduce a variant of the recently proposed extractable
QROM.

Keywords: Post-quantum cryptography · code-based signatures ·
provable security · SDitH · MPCitH · QROM · QROM+ · Fiat-Shamir

1 Introduction

The advent of large scale quantum computers will render the security of virtually
all public-key cryptography that is deployed today obsolete [28]. While it is an
ongoing debate if and when such devices will be built (c.f., [18]) the potential
impact would be so catastrophic, that betting on this never happening is not an
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option. For that reason, NIST initiated a competition to select future crypto-
graphic standards for post-quantum secure signatures and key encapsulation, in
2016 [30]. In 2022, NIST selected one KEM (Kyber) and three digital signature
systems (Dilithium, Falcon, SPHINCS+) as the end of the third round of the
competition [29]. However, the competition is not over, yet. NIST is still about to
select another KEM, and there are good candidates from coding-theory [1,4,5].
The situation is worse for signatures. Dilithium [26] and Falcon [31] are both
based on lattice-assumptions, and SPHINCS+ [20] while solely relying on the
security of a cryptographic hash function, has significantly worse performance.
Just before the selection, the last remaining candidates from multivariate cryp-
tography were fatally attacked [7]. Consequently, there is a lack of signature
proposals that are not based on lattice-assumptions and have good overall per-
formance. For that reason, NIST started an “on-ramp” process for new signature
proposals.

A promising area for new signature proposals is code-based cryptography
which dates back to the work of McEliece [27]. Code-based cryptography grounds
the security of construction in the hardness of decoding problems, like the general
decoding problem or the syndrome decoding problem. Traditionally, code-based
cryptography is rather well-known for public key encryption schemes. Propos-
als for signature schemes have also been known for a long time [32] but have
never really been competitive. However, in recent years this area has received
new interest with several new schemes proposed, like WAVE [11], and, most
recently, Syndrome-Decoding in the Head (SDitH) [14]. SDitH is a new app-
roach to code-based signatures that applies the MPCitH approach [22] to the
Syndrome Decoding Problem to build an identification scheme (IDS). The lat-
ter is then turned into a signature scheme using the Fiat-Shamir heuristic [15].
MPCitH is a well known approach in post-quantum cryptography (PQC). Pic-
nic [33], one of the long-standing contenders in the NIST competition was built
on this approach. The SDitH authors manage to show that applying the MPCitH
concept to a coding theory problem enables one to achieve better performance
for the overall protocol. This performance has further been improved by a recent
work [2] that proposes what they call Hypercube-MPCitH, to amplify the sound-
ness of MPCitH in an efficient way, and apply it to the SDitH signature. We will
call the resulting scheme the Hypercube-SDitH scheme.

The works proposing SDitH and Hypercube-SDitH come with security proofs.
However, these security arguments only consider classical adversaries. This does
not give a formal post-quantum security guarantee, especially because they use
the Random Oracle Model (ROM) which is insufficient in that setting. An oracle
modeling a hash function, a public primitive, needs to permit quantum queries,
as an attacker can implement a hash function on a quantum computer. Hence
the Quantum-accessible Random Oracle Model (QROM) was introduced [8]. It
is now common practice to provide a QROM proof for post-quantum security.

Our contribution. In this work, we present a security proof for (a minor modi-
fication of) Hypercube-SDitH in the QROM. Our proof establishes the security
of previously used parameters against quantum attacks at NIST security level 1
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(the only parameter set considered for Hypercube-SDitH so far). For our proof
we revist the Hypercube-SDitH and SDitH constructions. They build a 5-round
IDS and turn this into a signature scheme. 5-round IDS are not that well under-
stood and results about, e.g., the Fiat-Shamir transform are often only given
for the canonical 3-round IDS. We notice that the IDS in both proposals can
actually be viewed as 3-round IDS in the (Q)ROM.

On the one hand, this changed view increases the conceptual complexity of
the scheme in two ways: i) The 3-round IDS needs to be constructed to readily
include any parallel repetitions of the 5-round IDS. ii) While the 5-round IDS
has statistical special soundness, the 3-round IDS only has computational special
soundness, requiring additional work to prove security. On the other hand, the
changed view has several benefits. First of all, it allows to use results for 3-round
IDS. In particular, a recent result about the security of commit & open IDS in
the QROM [12], which is only given for 3-round schemes, applies after a mild
generalization. Second, for Hypercube-SDitH it was noticed that a huge part of
the signing cost is caused by operations that do not depend on the message. This
enables an online-offline trade-off in the sense of [13], where precomputation can
be done during an offline phase to speed up signing during the online phase when
messages to be signed become available. That way, it becomes easier to deal with
traffic peaks. With our observation, the balance shifts even more further reducing
the online phase. Finally, this enables a more modular proof than in previous
approaches which hopefully makes the result more accessible.

Why is the reduction to three rounds possible? The previous proposals need
two challenge rounds (and thereby five rounds total): one for a polynomial zero
test that is used to probabilistically verify that the syndrome known by the
prover / signer has low weight, and one for MPCitH. However, the first challenge
is not necessary to achieve zero-knowledge. One indication for this is that the
proofs in [2,14] allow to extract a syndrome from two valid transcripts that agree
in the initial three messages but differ in the fourth (the second challenge). In our
analysis we proceed in two Fiat-Shamir steps. First, we make the polynomial zero
test non-interactive. This step is secure unless an adversary can solve a certain
random oracle search problem that we characterize in the ROM as well as in
the QROM. This step leads to the advertised 3-round IDS. More precisely we
prove a reduction from a family of computational special soundness properties of
the 3-round IDS to a family of QROM oracle search problems. The second step
constructs a digital signature. We thus analyse (some form of special) soundness
and honest-verifier zero knowledge (HVZK) of the three round IDS. Based on
these properties, we prove UF-CMA-security of the Signature scheme.

As mentioned, the QROM proof we obtain is clean and modular. We ana-
lyze HVZK in the multi-transcript setting, necessary when considering computa-
tional in place of statistical HVZK as is the case in Hypercube-SDitH. We prove
security of the now non-interactive polynomial test. For this, we apply recent
QROM lower bound methods from [10] based on Zhandry’s compressed oracle
technique [34]. We then prove a computational version of special-soundness in
the QROM. Next, we develop a generalization of the recent result of [12] to the
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case of computational special soundness, and apply them towards security for
Fiat-Shamir transformed IDS under no-message attacks. For this last step we
introduce the QROM+, a model similar to the extractable QROM as recently
defined in [19] (which maybe of independent interest), and develop an extension
of the techniques from [10] to the QROM+. The QROM+ serves as a proof tool:
it allows us to generalize a common, modular proof strategy, where intermediate
algorithms require to learn the preimages of certain queries to the QROM. To
eventually obtain a security bound that does not refer to the QROM+, we prove
an explicit bound for the adversarial advantage against computational special
soundness in the QROM+. Finally, we extend the result to security under chosen
message attacks using the adaptive reprogramming technique from [17].

Besides the change in point of view that allows for improved analysis includ-
ing a QROM proof, we also make some actual modifications to the scheme. We
note that we can optimize the computation cost without increasing the signa-
ture size. This is done in a counter-intuitive way: it turns out that by increasing
the communication cost of the IDS sending certain data in the clear instead of
just a commitment, we can reduce the signing cost. The considered data are the
communication transcripts and final outputs of the MPC parties which will all
be revealed eventually. We assume that this information was previously sent in
committed form to optimize communication cost of the IDS. However, as the
data is recomputable from the opening information provided in the last mes-
sage, it does not have to be included in this first message. As a side effect, this
simplifies the structure of the protocol and the security proof.

Finally, we present performance numbers of our proposed signature scheme.
The total signature times are comparable to the original Hypercube-SDitH, but
most of the computational cost is moved from online time to offline time. In
addition, we also show that it is possible to make use of a proof-of-work (PoW)
technique similar to the recently proposed SPHINCS+C in [24] to decrease sig-
nature sizes by minimally increasing signing and verification times.

Outline. We discuss the IDS in Sec. 2, including necessary background, and a
summary of the ideas behind SDitH, and Hypercube-SDitH. We analyze the
security of the IDS in Sec. 3. In Sec. 4, we discuss the signature scheme and its
security. Finally, in Sec. 5 we provide performance results and the PoW trick.

2 SDitH as a 3-Round Identification Scheme

In this section we present SDitH and the hypercube variant thereof as a 3-
round, public coin, commit & open identification scheme (IDS). We start with
background on the used cryptographic tools. Afterwards, we give an intuition of
the scheme, before we end with a detailed, modular description of the IDS.

2.1 Preliminaries

In the following we provide the definitions for a PRG, a TreePRG, commitments,
and identification schemes. At the end of the section we introduce the syndrome
decoding problem we use as hardness assumption.
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PRG. A pseudorandom generator (PRG) is an efficiently computable function
PRG : {0, 1}n → {0, 1}en where e is the expansion factor. Security of a PRG is
defined in terms of a real-or-random game. The advantage of a possibly quantum
adversary A is defined as

Advror
PRG (A) := |Pr[x ← {0, 1}en : 1 ← A(x)] − Pr[x ← {0, 1}n : 1 ← A(PRG(x))]| .

TreePRG. In this work we make use of a specific PRG called TreePRG, initially
proposed by Goldreich, Goldwasser, and Micali [16]. TreePRG makes use of a
standard PRG with expansion factor e = 2 and reaches e = 2λ building a binary
tree of height λ. The root of the tree is the input and the leaves are the outputs.
To build the tree, every inner node is fed to PRG to generate its two child nodes.
Let Outi denote the ith leaf / output block of TreePRG. We define as TP.extract
the function that given a seed x and an index i returns the sibling path for Outi,
i.e., the minimal set of inner nodes that allows to compute all Out values except
Outi. For our construction we require that Outi is pseudorandom even when given
the output of TP.extract(x, i). We define an even stronger notion as it is easily
achievable: For a possibly quantum adversary A we define the advantage against
TreePRG as

Advror
TreePRG (A) :=

∣
∣Pr[{xj}λ

j=0 ← ({0, 1}n)λ : 1 ← A({xj}λ
j=0)]

− Pr[x, y ← {0, 1}n : 1 ← A(TP.extract(x, i),Outi))]| .

A standard hybrid argument can be used to show that Advror
TreePRG (A) ≤ (λ −

1)Advror
PRG (B) where TIME(B) ≤ TIME(A)+(λ−1)TIME(PRG): One replaces the

outputs on the path to leaf i by random values, one by one. The beginning is the
real case (right probability above). Once all outputs on the pathare replaced,
we get the random case (left probability above). The computational distance
between any two consecutive hybrids is bounded by Advror

PRG (B) where B replaces
the outputs where the two hybrids differ by its input and then runs A.

Com. In this work we consider only hash-based commitments. Hence, we define
commitment scheme as an algorithm Com that given an input x and randomness
ρ ∈ {0, 1}r produces a commitment com = Com(x; ρ) ∈ {0, 1}c. We make the
randomness explicit as given (com, x, ρ) everybody can check that indeed com =
Com(x; ρ). We require two properties: binding and hiding.

We define the advantage of a possibly quantum adversary A against the
computational binding property of Com as

Advbind
Com (A) := Pr[((x1, ρ1), (x2, ρ2)) ← A : Com(x1; ρ1) = Com(x2; ρ2)].

We define the advantage of a possibly quantum adversary A against the
computational hiding property of Com as

Advhide
Com (A) :=

∣
∣Pr[((x1, x2) ← A; ρ ← {0, 1}k : 1 ← A(Com(x1; ρ)]

− Pr[((x1, x2) ← A; ρ ← {0, 1}k : 1 ← A(Com(x2; ρ)]
∣
∣ .
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2.1.1 Identification Schemes. In this work we are concerned with 3-round,
public coin, commit and open identification schemes which we will denote by
IDS. An IDS is an interactive protocol between a prover P and a verifier V. It
is defined by a tuple of algorithms (Keygen,Commit,Resp,Vrf) and a challenge
space C. Prior to any interaction, Keygen is run and outputs a key pair (pk, sk).
A protocol run starts with P running (st,w) ← Commit(sk). The commitment
message w is sent to V which samples a challenge c from the uniform distribution
over C and sends it to P. Upon receiving c, the prover P runs z ← Resp(st, c) and
sends z to V. The verifier accepts if Vrf(pk,w, c, z) = 1 and rejects otherwise.

The transcript of a run of the IDS is the tuple (w, c, z) of messages exchanged.
We are only interested in IDS that are correct, i.e., for any key pair output by
Keygen, we want that the execution of IDS between honest P and V always
accepts. A property that can be handy when turning IDS into signatures is
that of commitment-recoverable IDS. An IDS is commitment recoverable if there
exists an algorithm Rcvr, such that for any valid transcript (w, c, z), we have
Rcvr(c, z) = w.

We expect IDS to provide two security propertes which are defined below.

HVZK. The most commonly used version of honest-verifer zero-knowledge
(HVZK) is the statistical version. This version has the advantage that it trivially
also gives a bound for multiple transcripts. However, in our setting where we use
hash-based commitments the amount of commitment randomness required to
achieve statistical HVZK in place of computational HVZK is greater by a factor
2.5 as shown in [25]. This has a huge impact on signature size and so we aim only
at computational HVZK. As pointed out in [17], deriving a bound for HVZK of
multiple transcripts is not straight-forward when in the computational setting.
Hence, we directly prove multiple transcript, computational HVZK below. To
define this property, we first have to define an honest transcript generator Trans
and an HVZK simulator Sim. In our definitions we closely follow [17] as we later
use the HVZK property in a result of that work.

Definition 1 (HVZK simulator and honest transcript generator). An
HVZK simulator for IDS is an algorithm Sim that takes as input the public key
pk and outputs a transcript (w, c, z). An honest transcript generator for IDS is
an algorithm Trans that takes as input the secret key sk and outputs a transcript
(w, c, z) by means of an honest execution of IDS.

Based on this definition we can define computational t-HVZK of an IDS as
follows:

Definition 2 (Computational t-HVZK). We define the advantage of a pos-
sibly quantum adversary A against the computational t-HVZK of IDS with sim-
ulator Sim, making no more than t queries to its (transcript-)oracle as

Advt−HVZK
IDS,Sim (A) :=

∣
∣
∣Pr[(pk, sk) ← Keygen() : 1 ← ASim(pk)(pk)]

− Pr[(pk, sk) ← Keygen() : 1 ← ATrans(sk)(pk)]
∣
∣
∣ .
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Special Soundness. Also for special soundness (spS) we slightly deviate from the
common definition. The reason is again that statistical special soundness would
be too expensive in terms of signature size (requiring length preserving commit-
ments). Moreover, as we turn the five- into a three-round protocol it becomes
inherently impossible to achieve statistical special soundness: the polynomial test
can now be cheated by solving a search problem for the hash function. Bounding
the hardness of this search problem will be a large part of the spS-proof.

It turns out that we need an even more fine-grained notion of special sound-
ness as we are considering a τ -fold parallel-composition of some basic IDS’. Look-
ing ahead, in the case we are interested in, IDS is the parallel repetition of the
five-round identification scheme considered in [2], with the Fiat-Shamir trans-
form for proof systems applied to the first three rounds. As an abstraction of
this parallel composition, we say IDS has a splittable challenge if a challenge c
of IDS has form c = (c1, . . . , cτ ), where ci are challenges of IDS’. We let the dis-
tance between two IDS challenges Dist(c1, c2) as the number of IDS’ challenges on
which they disagree, i.e., the number of indices 1 ≤ i ≤ τ for which (c1)i �= (c2)i.

Definition 3 ((Query-bounded) distance-d special soundness for
IDSwith splittable challenge). We define the advantage of a possibly quan-
tum adversary A against the query bounded special soundness of a composed IDS
with respect to extractor Ext in the (quantum-accessible) random oracle model as
follows

Advd−spS
IDS,Ext (A) := Pr[(sk, pk) ← Keygen(); ((w1, c1, z1), (w2, c2, z2)) ← ARO(pk);

sk′ ← ExtRO((w1, c1, z1), (w2, c2, z2)) : Vrf(pk,wi, ci, zi) = 1
, i ∈ {1, 2} ∧ (w1 = w2) ∧ d = Dist(c1, c2) ∧ (sk′, pk) �∈ Keygen()],

where q is the maximum number of queries that A makes to RO and we consider
it understood that in this case all IDS algorithms may depend on RO.

Syndrome Decoding. The hardness assumption that we use in this work is that
of the Coset Weights variant of the Syndrome Decoding (SD) problem, shown
to be NP-complete [6].

Definition 4 (Coset Weights Syndrome Decoding problem). Sample a
uniformly random parity check matrix H ∈ F

(m−k)×m
SD , and binary vector x ∈

F
m
SD with wt(x) = ω. Let syndrome y = Hx. Then given only H,y, it is difficult

to find x′ ∈ F
m
SD such that Hx′ = y with wt(x′) ≤ ω.

Furthermore, for cryptographically relevant parameters, with overwhelming
likelihood there exists only one short preimage of weight ≤ ω, and that is the x
sampled initially.

2.2 SDitH and the Hypercube Approach

In the following we summarize the previous works that we build on. We first
briefly sketch the MPC in the Head (MPCitH) paradigm [22]. Then we discuss
the work syndrome decoding in the head [14], and finally a recent extension to
that work called the hypercube approach [2].
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MPCitH. The MPCitH approach is a technique to build a zero-knowledge proof
(ZKP) by simulating an MPC computation in the head and building on the
security properties of the MPC protocol. More precisely, MPCitH can be used
to prove knowledge of some x such that F (x) = ACCEPT for a function F that
outputs either ACCEPT or REJECT in zero-knowledge. Roughly, the protocol works
as follows. The input x is secret shared among all parties (we limit ourselves here
to additive secret sharing over a finite field) and the MPC protocol is used to
evaluate F on this shared x. For this the MPC protocol would exchange messages
between parties to implement multiplications of secret shared data while linear
operations can be done locally by every party on their shares. Finally, all parties
output their secret share of the result which can be summed up to get the result.

To turn this into a ZKP, in MPCitH the prover P first does the secret sharing
and then executes the MPC protocol for all parties to compute the communica-
tion transcript of in- and outgoing messages for each party, as well as the secret
share of the result. Then, P commits to the view of all parties which contains
the initial secret share, their random tape, and communication transcripts. The
commitments together with all secret shares of the result are sent to the verifier
V. In response, V sends a random number i between 1 and t. As last message,
P then sends the openings for the views of all parties but the ith. (We limit
ourselves to the case where all but one state are opened. In general, less than
t−1 parties might be opened.) For verification, V checks the views of all opened
parties, making sure that the communications agree with the initial state and
both together lead to the secret share of the result for this party.

Intuitively, zero-knowledge is obtained due to the privacy of the MPC pro-
tocol and one party not being opened. Soundness is obtained by the correctness
of the MPC protocol, and the observation that a P that does not know x can at
most compute t− 1 consistent views. Consequently, the view of one party has to
be inconsistent which is observed by V with probability 1 − t−1.

SDitH. In [14], an application of MPCitH to the syndrome decoding problem
is proposed. Intuitively, it is clear that we can use MPCitH to prove knowledge
of an x such that Hx = y setting F (x) := Hx − y and defining 0 to indicate
ACCEPT and any other value to indicate REJECT. The problem is that this does
not guarantee that wt(x) ≤ ω.

The crucial novelty in [14] is to overcome this problem by proposing a weight
check routine which we describe in detail later. Roughly, this routine computes
a polynomial S from x as well as some other polynomials Q,P, and F such that
S · Q − P · F = 0 iff wt(x) ≤ ω. This equation is then probabilistically checked
on a set of random points, chosen by the verifier (which makes their protocol
five-round). To avoid running two MPCitH instances, the authors link the two as
follows. They consider only H = (H′|I) given in standard form. This means, one
can split x = (xA|xB) such that y = H′xA +xB. Exploiting this, they store only
xA as secret and start the weight check routine by recomputing xB = y−H′xA,
and then deriving S from the recombined x = (xA|xB). Thereby, this extended
weight check also verifies that Hx = y.
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The final protocol is then obtained applying MPCitH to F being the extended
weight check function that starts with xA. The protocol deviates from the basic
MPCitH recipe as it obtains the random evaluation points from V. For this, P
generates the initial secret shares of xA, Q, and P (F is public and the secret
share of S is derived from the secret share of xA). It commits to all this and sends
it to V that responds with the random evaluation points (and some values nec-
essary for multiplication of shares). Then P can simulate the MPC computation
of F and the protocol from there on follows the standard MPCitH receipt.

A standard optimization. One way to reduce the size of the opening information
above is based on the properties of additive secret sharing. Namely, the initial
state of all parties consists of a secret sharing of the secret x and in case of SDitH
also of some secret sharings of further values (the polynomials Q, and P , as well
as values needed to do multiplication of shares). Generation of the secret shares
in additive secret sharing can be done by picking the first t−1 shares at random
and then computing the final share as the difference of the shared value and the
sum of the t − 1 shares. The first t − 1 shares can hence be replaced by short
random seeds which are expanded to the full shares using a PRG. These seeds
can be bitstrings of the length of the security parameter while the secret shares
in the above protocols are significantly longer. Given that we commonly send the
shares together with the commitment randomness as opening information, this
massively reduces communication cost as we now only have to send the seeds to
open parties 1 to t − 1. Only for party t we are unable to compress the opening
information. We call this the auxiliary state aux.

A further way of optimizing communication cost can be achieved using
TreePRG. Instead of sampling t − 1 random seeds for the initial secret shar-
ing, these seeds are generated using TreePRG. This allows to open all seeds with
log2(t − 1) values and if i �= t (using TP.extract) and with just a single value in
case i = t (in the former case we still have to send along the full auxiliary state
aux to open that one). This reduces the biggest part of the communication cost
from linear in the number of parties to logarithmic.

Hypercubes. In a recent work [2], an improvement to the SDitH protocol is pro-
posed that allows to boost soundness in a size efficient way. The protocols above
have soundness error 1/t. To achieve a negligible soundness error, we require
amplification. There are two common ways to get a soundness error of t−τ : First,
we can increase the number of parties to tτ causing an exponential increase in
runtime and communication cost but the number of aux states remains the same.
Second, we can run τ iterations of the protocol in parallel at the cost of a τ fold
increase in communication, especially, we get τ aux states, but also only a τ fold
increase in runtime (compared to the exponential increase).

The improvement proposed in [2] is the hypercube approach. The idea is to
generate an ND secret sharing of the initial state values, i.e., all the values that
are secret shared for the initial states of parties. This means we get a single
auxiliary state. Then, these shares are used to create D instances of the MPC
protocol with N parties each. For each of these D instances, they partition the
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ND shares into N subsets of D shares each and recombine the secret shares in
each subset by summing them up. This recombination results in N secret shares
of the shared values, i.e., the initial states of N parties necessary for the MPC
protocol. This is related to a hypercube as the partitioning is done by arranging
the original ND shares in a hypercube and for each of the D partitions we
recombine by projection onto one of the D dimensions. The protocol essentially
then runs the SDitH protocol for D instances with a few little differences. First,
P commits to all the ND initial shares independently instead of committing to
the shares of the parties in the actual MPC protocol. This is intuitively fine as P
thereby still commits to all the information. Second, V still only picks one index i
now between 1 and ND. Then P opens all secret shares of the original ND shares
except share i (which is possible because of the independent commitments). Due
to the properties of the partitioning and the secret sharing scheme, this means
that in each protocol instance, there is one party for which the initial state
remains unopened as one share is lacking for the partial recombination.

All in all, this approach allows us to achieve the best of both worlds: We get
the soundness error N−D at computational and communication cost of parallel
composition (D parallel repetitions of the N party protocol), while we get just
one auxiliary state as if we had increased the number of protocol parties to ND

(as pointed out in [2], there are more computational improvements possible when
looking at the details, like balancing the party preparation phase and the MPC
phase; for those we refer to [2]).

2.3 Polynomial Zero Test

In the identification schemes presented here, the prover P gives a zero knowl-
edge proof (ZKP) that he knows a solution x ∈ F

m
SD to the syndrome decoding

problem,i.e., such that Hx = y with wt(x) ≤ ω. In order to do this, P con-
structs four polynomials S,Q, P, F in Fpoly[X] which should satisfy the relation
S · Q = P · F , and the ZKP proceeds by checking the relation is true at various
points in a space Fpoints ⊇ Fpoly.

Let φ : FSD → Fpoly be the canonical embedding. Then S is computed by
interpolating over the coordinates of x. That is, S(fi) = φ(xi) where fi runs
over the first m elements of Fpoly, so deg(S) ≤ m − 1 as S is the interpolation
over the m coordinates of x. Next, Q is

∏

fi∈E(X − fi), where E is a set of
order ω which contains the nonzero coordinates of S. Thus, the nonzero points
of S are all roots of Q[X] which has degree ω. Polynomial F is public, and is
F [X] =

∏

[m](X−fi), meaning it has roots everywhere in the first m coordinates
of Fpoly. And finally, P is defined as S · Q/F , in order to ensure that both sides
of the relation have the same degree, which is ≤ m + ω − 1.

Checking the polynomial is not done by directly checking the polynomials,
but implicitly by checking that the polynomial relation is true at several points
r ∈ Fpoints. This is because if two polynomials are equal, then they will be equal
at every point at which they are evaluated, however if they are not equal, then
it becomes increasingly unlikely that they will be equal if we check them at an
increasing number t of randomly selected points, by the Schwarz-Zippel lemma
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[14]. When selecting points at which to evaluate the polynomials, we draw from
a larger domain Fpoints ⊇ Fpoly, in order to make it harder to find points at
random where non-equivalent polynomials coincide.

In summary, when evaluated on the first m coordinates of Fpoly, S has zeros
everywhere except the ω nonzero coordinates of x; Q has zeroes everywhere that
S does not by construction, F has zeroes everywhere, and P serves to make left
and right hand sides equal. Any party that knows a valid solution to the Coset
Weights SD problem can therefore build polynomials S,Q, P that satisfy this
relation. Note that a party who can solve the SD problem and finds x′ such that
wt(x′) < ω would also be able to construct a valid but different set of S,Q, P .

2.4 Protocol Formulation

SDitH and Hypercube-SDitH are presented as five round IDS. Here we give a
description as three-round IDS. The advantage of observing that they can be
turned into three-round IDS, is threefold. First, it reduces the number of inter-
actions between parties. Second, when turning it into a signature scheme using
the Fiat-Shamir transform, we can apply the tight QROM proof recently intro-
duced in [12] which only applies to three round IDS. Third, more of the com-
putation done during signature generation is independent of the message, thus
can be precomputed. Indeed, the required online computation consists merely of
computing a hash and assembling a message from the local state.

In the following we describe the protocol in terms of the different steps it
encompasses. For a full picture of the protocol see Algs. 1 and 2. We give our
description for τ = 1 and explain a detailed change to the standard parallel
compoisition for τ > 1 afterwards.

Parameters. Hypercube-SDitH has the following building blocks and parame-
ters. The seed length for the used PRG is n. We assume that PRG can produce
an arbitrary number of n byte output blocks and we truncate to the required
amount. Commitments take r bits of randomness and produce commitments of
length c. It uses a hypercube of dimension D and N parties per MPC computa-
tion. We use parallel composition of τ instances to reduce the soundness error.
Finally, the parameters of the syndrome decoding problem are m, k, and ω.

Key Generation. Prover P samples H′ $← F
(m−k)×k
SD and x $← F

m
SD,ω where F

m
SD,ω

is the set of all elements a ∈ F
m
SD with wt(a) = ω. It splits x = (xA|xB) with

xA ∈ F
m−k
SD,ω and sets sk = xA. Then it computes y = (H′|Im−k)x and sets

pk = (H′,y).

Generating leaf parties. The prover P first generates the polynomials S,Q, P as
explained above. Then it creates a secret sharing for each of them as follows. P
first picks a fresh random seed and generates shares for all ND leaf parties using
TreePRG to generate (statei, ρi) which are the leaf’s seed, and its commitment
randomness. From statei, the prover then derives the ith share of each of the
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Algorithm 1. 3-round Hypercube-SDitH – Part 1: P.Commit

Algorithm P.Commit:

Input: Secret key sk = xA ∈ F
m−k
SD .

Output: Commitment message w (For simplicity we keep st implicit).

Set-up:
1: Choose E ⊂ [m] such that |E| = w and the non-zero coordinates of x are in E.
2: Compute Q(X) =

∏
i∈E(X − γi) ∈ Fpoly(X).

3: Compute S(X) ∈ Fpoly(X) by interpolation over the coordinates of x.
4: Compute P (X) = S(X) · Q(X)/F (X) with F (X) ∈ Fpoly(X) s.t. F (X) =∏m

i=1(X − γi).
5: Sample a root seed: seed ← {0, 1}λ.
6: Expand root seed seed recursively using TreePRG to obtain ND leafs seed′

i which
are further expanded to (seedi, ρi) ← PRG(seed′

i), 0 ≤ i < ND

7: The index of a main party is (k, j) ∈ {0, . . . , D − 1} × {0, . . . , N − 1} and contains
all leaf parties i whose k-th coordinate is j when i is represented as radix N integer.

8: for each party (k, j) ∈ {0, . . . , D − 1} × {0, . . . , N − 1} do
9: Set [xA](k,j), [Q](k,j), [P ](k,j), [a](k,j), [b](k,j), and [c](k,j) to zero.

Expand leaf party seeds and commit:

10: for each leaf i ∈ {0, . . . , ND − 1} do
11: if i �= ND − 1 then
12: (�a�i, �b�i, �c�i, �xA�i, �Q�i, �P �i) ← PRG(seedi)
13: statei = seedi

14: else
15: �a�ND−1, �b�ND−1 ← PRG(seedND−1), �c�ND−1 = 〈a, b〉 − ∑

i�=ND−1�c�i

16: �xA�ND−1 = xA − ∑
i�=ND−1�xA�i

17: �Q�ND−1 = Q − ∑
i�=ND−1�Q�i, �P �ND−1 = P − ∑

i�=ND−1�P �i,
18: aux = (�xA�ND−1, �Q�ND−1, �P �ND−1, �c�ND−1), and stateND−1 =

seedND−1||aux

19: Leaf parties commit to their state comi = Com(statei, ρi).

20: Compute w1 = Hash(com0, . . . , comND−1).

Derive evaluation points and masks:
21: P derives t challenge points r ∈ Fpoints and masks ε ∈ Fpoints from commitment

hash: {r, ε}t−1
0 = PRG(w1).

Build main parties:
22: for Dimension k ∈ {0, . . . , D − 1} do
23: for Main party j ∈ {0, . . . , N − 1} do
24: Let (i1, . . . , iD) be the radix N representation of i.
25: Let S be the set of leaf parties with ik = j.
26: [xA](k,j) =

∑
i∈S�xA�i, [Q](k,j) =

∑
i∈S�Q�i, [P ](k,j) =

∑
i∈S�P �i

27: [a](k,j) =
∑

i∈S�a�i, [b](k,j) =
∑

i∈S�b�i, [c](k,j) =
∑

i∈S�c�i

Execute MPC protocol:
28: for Dimension k ∈ {0, . . . , D − 1} do
29: Execute MPC protocol between the main parties (k, 1), . . . , (k, N) to

compute communication and result shares {[α](k,j), [β](k,j), [v](k,j)}N−1
j=0 .

30: Set w2 =

{{
[α](k,j), [β](k,j), [v](k,j)

}N−1

j=0

}D−1

k=0

, and send w = (w1,w2) to V.
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Algorithm 2. 3-round Hypercube-SDitH – Part 2: V.Challenge, P.Resp, V.Vrf

Algorithm V.Challenge:
Input: Commitment message w.
Output: Challenge c.

1: V samples c
$← {0, . . . , ND − 1} and sends it to P.

Algorithm P.Resp:
Input: Commitment message w, challenge c (and internal state st that we left

implicit).
Output: Response z.
2: Run the local computations of the MPC protocol using the shares of leaf party c

to obtain its contribution to the overall communication (�α�c, �β�c).
3: P sets z = (TP.extract(seed, c), comc, (�α�c, �β�c), adds aux if c �= ND −1 and sends

it to V.

Algorithm V.Vrf:

Input: Public key pk = (H′,y) ∈ F
(m−k)×k
SD × F

(m−k)
SD , commitment message w, chal-

lenge c and response z.
Output: Decision (ACCEPT/REJECT).
4: for i ∈ ({0, . . . , ND − 1} \ c) do
5: Compute (statei, ρi) from z using TreePRG.
6: Compute com′

i = Com(statei, ρi).
7: Compute w′

1 = Hash(com′
0, . . . , comc, . . . com

′
ND−1).

8: for (k ∈ {0, . . . , D − 1}) do

9: Run verification of main parties [3] on inputs derived from {statei}ND−1
i�=c,i=0,

(�α�c, �β�c), and {r, ε}t−1
0 = PRG(w1) to get

{
[α′](k,j), [β

′](k,j), [v
′](k,j)

}N−1

j=0
.

10: if (w′
1,w

′
2) �= w where w′

2 =

{{
[α′](k,j), [β

′](k,j), [v
′](k,j)

}N−1

j=0

}D−1

k=0

then return

REJECT.
11: return ACCEPT.

polynomials �S�i, �P �i, �Q�i, as well as its share of the Beaver triple �a�i, �b�i, �c�i

using PRG to expand statei. For the auxiliary party (i = ND − 1), the secret
share is then computed such that the shares sum up to the right values. This
share is then appended to the auxiliary party’s statei. Then P commits to each
state: comi = Com(statei, ρi).

Building main parties. Next the prover builds the main parties for the MPC
computations. The prover runs D MPC computations. For this, [2] aggregates
the secret shares of the ND leaf parties into an N party protocol in D different
ways. This is done using D different partitions of the ND leaf parties.

The partitions are computed as follows. First the index i of a leave party is
turned into a vector of D values, the hypercube representation, taking its radix N
representation i = (i0, . . . , iD−1). The leaf parties that are summed up to form
the share of the j-th main party of the k-th MPC instance are those parties
for which ik = j. For K = 1, i.e., considering the first hypercube index, one
obtains an N party MPCitH protocol, where the first party is the aggregation
of all leave parties of the form (0, i1, . . . , iD−1), the second contains leaves of
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the form (1, i1, . . . , iD−1), and so on. This process is repeated for each of the D
dimensions of the hypercube, giving D independent N -party MPCitH protocols.

Evaluation points. The next step is generating the points for validating the
polynomial relation S · Q = P · F , the objective of which is for the prover to
demonstrate that the preimage x they know for the syndrome decoding prob-
lem y = Hx has low weight, i.e. wt(x) ≤ ω. To that end, points rj ∈ Fpoints

and masks εj for j = 0, . . . , t − 1 are sampled. Then for each j, S(rj), Q(rj),
P (rj), F (rj) are computed via MPC and the identity S(rj) ·Q(rj) = (P · F ) (rj)
is checked probabilistically via an MPC protocol using the mask εj .

In the five-round IDS of [2] and [14], the evaluation points and masks are
selected at random by the verifier as the first challenge. However in the three
round scheme we present here, the evaluation points are derived from the tran-
script of the previous steps that have occurred up to that point, i.e. they are
generated by expanding the hash of the commitments w1 using PRG.

MPC operations. At this stage P has all the information required to perform
the MPC operations - the inputs being the shared main party polynomials eval-
uated at the challenge points to give [s], [q], [pf ]. Beaver multiplication is then
performed to verify the triple s, q, pf by sacrificing the Beaver triple a, b, c. This
creates the communication shares [α], [β], [v]. In each of the D dimensions k ∈ D
the prover runs Γ on each set of main party inputs, resulting in communication
and output shares {[α](k,j), [β](k,j), [v](k,j)}N−1

j=0 . This is repeated for each of the
D dimensions of the hypercube, and all communications. Note that for honest
P, vk = 0 for all k ∈ {0, . . . , D − 1}. For more details on the MPC computation
see the full version [3].

Challenge. P sends the commitment hash w1 together with all the communica-

tion and main party sharings w2 =
{{

[α](k,j), [β](k,j), [v](k,j)

}N−1

j=0

}D−1

k=0

to V.

The MPCitH challenge is then randomly sampled by the verifier and returned
to the prover. This challenge is interpreted as an index c of one of the ND leaf
parties that does not need to be opened.

Response. P opens the views of all leaf parties except for c, by sending (statei, ρi).
This is done more efficiently using TP.extract(seed, c) to extract the sibling path
path for leaf c from TreePRG and sending this instead. The prover also sends the
initial commitment comc and communications (�α�c, �β�c) for the hidden (leaf)
party, and aux in case that c �= ND − 1. Note that the communication shares
would not have to be sent for the IDS as they are already part of w. However,
we send them as we want Hypercube-SDitH to be commitment-recoverable.

Verification. The verifier first recomputes the commitment hash w1 by comput-
ing commitments {com′

i}i�=c for each of the states of the ND −1 leaf parties that
have been revealed, and then combining with comc to compute w′

1. Next the ver-
ifier expands the commitment hash to get the evaluation points and masks, and
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compiles the polynomial shares for each of the main parties from the given state
information. Once this is done, they execute the MPCitH protocol on main par-
ties as in the original SDitH proposal [14] for each of the D dimensions k using
�α�c, �β�c. Here we exploit that by linearity of the calculations of [α] and [β] the
communications of the main party k, i′k that contains the unopened leaf party c
can be computed by assembling the respective leaf party shares, and that v = 0
when determine [v]k,ck

. The final main party communications and output shares
{[α]k,j , [β]k,j , [v]k,j}N−1

j=0 for each dimension k ∈ {0, . . . , D − 1} are then assem-
bled to obtain w′

2. This part also represents the commitment recovery algorithm
Rcvr for Hypercube-SDitH. The final output is the result of the comparison
(w′

1,w
′
2)

?= w.

Parallel composition ( Π). In the above, we did describe the routines performed
in the atomic three round IDS (τ = 1), which takes soundness error 	 1/ND. In
order to reach negligible soundness error of 2−n one can repeat the IDS many
times independently in parallel such that (1/ND)τ ≤ 2−n.

However, we note here that since the evaluation points are generated offline
by the prover, it is possible to make the polynomial test harder to cheat by
deriving the challenge points from a hash of the commitments com from all τ
parallel repetitions. Denote the τ -fold parallel IDS as Π. Then to generate the

challenge points/masking point pairs
{

{rj
i , ε

j
i}t−1

i=0

}τ−1

j=0
we take w1 = PRG ◦

Hash(com1, . . . , comτND−1), therefore the evaluation points for all τ repetitions
depend on the state commitments of all leaves in the entire τ -fold protocol Π.

3 Security of the 3-Round IDS

In this section we discuss the security of our IDS. We prove that the IDS is multi-
transcript honest-verifier zero-knowledge (HVZK) and has special-soundness. We
begin with HVZK proving the following theorem:

Theorem 1 (Honest-Verifier Zero Knowledge (HVZK)). The algorithm
SimΠ shown in Alg. 3 is an HVZK simulator for Π such that for any quantum
algorithm A in distinguishing TransΠ from SimΠ making at most qzk queries to
its oracle there exist algorithms B– distinguishing the outputs of TreePRG from
random – and C– breaking the hiding property of Com– which fulfill

Advhvzk
Π,Sim (A) :=

∣
∣Pr[1 ← ASimΠ ] − Pr[1 ← ATransΠ ]

∣
∣

≤ qzkτ(Advhide
Com (C) + Advror

TreePRG (B)),

where B and C run in time TIME(B) = TIME(C) = TIME(A) + TIME(Trans)
respectively.

On a high level, our proof follows a sequence of game hops, where we slowly
change the oracle given to the adversary. We start with Trans, i.e., the honest
execution of the protocol, in GAME0. First, we switch the order of operations
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Algorithm 3. HVZK simulator SimΠ (Simplified version [τ = 1])
Step 1: Sample challenge.

1: c ← {0, . . . , ND − 1}.
Step 2: generate ND leaf party states and witness shares.

2: Sample sibling path path ←$ {0, 1}n×log2 ND

for leaf c and {(seedc, ρc)} ←$ {0, 1}n.
3: for i′ �= do
4: Generate {(seedi, ρi)} via TreePRG(path) and PRG.
5: if i′ �= ND − 1 then
6: Set statei = seedi.
7: Expand seedi into witness shares.
8: else
9: To generate aux for the last leaf party, i′ = ND − 1, randomly draw

�xA�ND−1, �Q�ND−1, �P �ND−1, and �c�ND−1.
10: Set stateND−1 = (seedND−1‖aux).

Step 3: generate leaf party commitments
11: for i′ �= c do Compute comi′ = Hash(statei′ , ρi′)

12: Draw comc at random.
13: Compute commitment hash w1 = Hash(com0, . . . , comi∗, . . . , comND−1).

Step 4: compute evaluation points
14: {rl, εl}t

l=1 ← PRG(w1)
Step 5: generate party communications

15: Draw �α�c and �β�c uniformly at random from their respective domains.
16: for k ∈ {0, . . . , D − 1} do
17: Let the main party to which c belongs be (k, j∗)
18: for (k, j) �= (k, j∗) do
19: Compute communications [α]k,j∗ , [β]k,j∗ , [v]k,j∗ following Alg. 1

20: for (k, j∗) do
21: Compute party communication shares [α]k,j∗ , [β]k,j∗ , [v]k,j∗ by running Π

on the sum of the witnesses of the ND−1 − 1 revealed leaf parties in main party
(k, j∗), as described in Algorithm 1, then add on �α�c and �β�c

22: Set vc = − ∑
i′ �=c�v�.

Step 6: Output transcript ((w1,w2), c, z):
23: w2 = {{[α](k,j), [β](k,j), [v](k,j)}D−1

k=0 }N−1
j=0 , c = c

24: z = comc, {(statec, ρc) ∀ i �= c}.

and sample the challenges first. This defines GAME1. In GAME2, we replace
the seed seedc and the commitment pseudorandomness ρc for the commitments
that remain unopened by truly random bits. To be consistent with TreePRG, we
also sample a random sibling path path which we use to derive the values for the
opened commitments. This whole change is only detectable up to a τ -fold distin-
guishing advantage against TreePRG per oracle query. Next, we replace the state
of the unopened parties by truly random bits in GAME3. This is undetectable
up to a τ -fold advantage against the hiding property of the commitment scheme
per oracle query. Now, the distribution of the auxiliary state (of party ND − 1)
is independent of the sum of the other shares. Hence, in GAME4 we sample that
state uniformly at random. To preserve consistency of the communications, we
compute the communications of all opened parties using the original algorithm.
Then we compute the communication of the unopened parties to agree with
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these. Now we don’t need the secret key anymore and observe that the oracle in
GAME4 corresponds to Sim. The full proof can be found in the full version [3].

We now move on to prove soundness of Π. Maybe not surprisingly, this is
based on the binding property of the used commitment and the soundness of the
non-interactive polynomial test which we prove first.

Soundness of the Non-interactive Polynomial Test. Here, we prove a
query lower bound on the oracle search problem of finding inputs x, P and
Q that “cheat” on the polynomial test implemented as MPC computation in
Commit of Π (c.f., Algorithm 1). More generally, we will show concrete query
lower bounds for the family of search problems where the goal is to cheat � out
of τ parallel repetitions of the polynomial test, where the challenge points for
all repetitions are generated by hashing all commitments together.

We begin by finding a more abstract formulation that is a common general-
ization of all the mentioned problems of cheating (some of) the polynomial zero
tests. To that end, let P(P1, ..., Pnp

) be a predicate on polynomials Pi ∈ Pi ⊂
Fpoly[X], i = 1, ..., np . The domains Pi can be different for every polynomial and
can, e.g., reflect degree limitations (e.g. for polynomials P and Q in Π) or that a
polynomial has been obtained via interpolation (e.g. for polynomial S in Π). Let
T = (T1, . . . , Tnt

) be a list of test polynomials Ti ∈ R[X1, ...,Xnp
], i = 1, ..., nt

for R = Fpoly[X] such that P(P) = 0 =⇒ Ti(P) = 0 for all i, where
P = (P1, ..., Pnp

) ∈ P = P1 ×P2 × . . . ×Pnp
.1 In addition, let M be a random-

ized algorithm that takes as input a testing polynomial T , a tuple of polynomials
P, an evaluation point r and a random masking point ε ∈ E, with the purpose
that if T (P)(r) �= 0 then the probability that M outputs 0 is small. We define
the false-positive probability

pfpT,� = max
P:P(P)=1

⎛

⎜
⎝ Pr

r←F
nt
points

ε←Ent

[

|{i ∈ [nt]|M(Ti,P, r; εi) = 0}| ≥ �
]

⎞

⎟
⎠ , (1)

where the maximum is over P = (P1, ..., Pnp
) such that Pi ∈ Pi. In words,

this is the maximum probability for any set of polynomials that doesn’t fulfil
the predicate to pass a test where each testing polynomials Ti is evaluated at a
random point using M, and at least � of the results are 0.

In Round 1 of Π, P is secret shared. The secret shares of P are gener-
ated using a two stage PRG structure, first using TreePRG to generate seeds
seedi from a single root seed seed followed by PRG to expand the seedi into
secret shares, commitment randomness, and other objects irrelevant here). The
evaluation points and masks for the polynomial test are then derived from
the individual commitments to all seedi by hashing all these commitments
together. This complicates the analysis because this three-step process is not
exactly indistinguishable from a random oracle. We will not need the pseu-
dorandomness properties to give a query bound for our search problems. For
1 In our application, we only need Ti with coefficients in Fpoly ⊂ Fpoly[X].
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Algorithm 4. Abstract non-interactive polynomial zero test for secret-shared
polynomials T
Input: Secret-shared polynomials (statei, ρi)

nc
i=1, threshold 	

Output: Boolean value b ∈ {0, 1}.

state = (statei)
nc
i=1

P = R(state)
comi = Com(statei, ρi) for all i = 1, . . . , nc(
(ri,j)(i,j)∈[nt]×[t], (εi,j)(i,j)∈[nt]×[t]

)
= G((comi)

nc
i=1)

Perform zero checks:
count= 0
for i ∈ [nt] do

for j ∈ [t] do
if M (Ti,P, ri,j ; εi,j) = 0 then

count=count+1

b = 1
if count≥ 	 then b = 0

return b

this section it is sufficient to define two black box algorithms S, and R which
abstract away the generation of the secret shared values and their recombina-
tion as follows: S(P; seed) = (statei, ρi)

nc

i=1 and R(state) = P, where we set
state = (statei)nc

i=1. Let S be such that (statei, ρi) ∈ S for all i, T a tuple of
testing polynomials for a predicate P, t a non-negative integer and Com : S → C
and G : Cnc → F

2t·nt

points two hash functions modeling the commitment scheme and
the use of PRG for computing the challenge points and masks. We define the
abstract non-interactive polynomial zero test algorithm T in Algorithm 4.

We now model the hash functions Com and G as random oracles. The most
natural oracle search problem associated with the task of cheating the polynomial
test in Algorithm 4 would be to find inputs P and seed such that P(P) = 1, i.e.,
the predicate is not satisfied, yet P evaluates to zero at the challenge points, i.e.
running algorithm S followed by T (Algorithm 4) returns 0. Unfortunately, a
special soundness extractor for Π cannot solve this problem, as the root seed is
never revealed. A search problem that can be solved using a special soundness
extractor for the protocol in Algs. 1 and 2 is to find (statei, ρi)

nc

i=1 such that for
R(state) = P we have P(P) = 1 but executing Algorithm 4 directly results in
output b = 0. We are now ready to define our search problem.

Definition 5 (Non-interactive polynomial zero test cheating problem).
Let P,T, t be as above. An oracle algorithm ACom,G with access to random oracles
Com and G as above solves the non-interactive polynomial zero test cheating
problem CheatP,T,t,� if it outputs o = (statei, ρi)

nc

i=1 such that P(R(o)) = 1 but
TT,t(o, �) = 0.

We first give a query bound for the case where A has classical oracle access
only. In the following, for O ∈ {Com, G}, let DO be the list of pairs (x,O(x)) for
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queries x made by A to its oracle O. We overload the list symbols by writing

DO(x) =

{

y (x, y) ∈ DO

⊥ else.

Remark 1. We can now regard Com and G as domain-separated parts of the
same random oracle F . We assume that F has a sufficiently large output space
F and introduce truncation functions truncO such that Com = truncCom ◦ F |S
and G = truncG ◦ F |Cnc . We let D be the query list for F . The lists DO for
O ∈ {Com, G} are obtained as sublists of D with truncO applied to all outputs.
In the following, we try to keep the notation lean by omitting the truncation
functions.

Following [10] we call a predicate on query lists a database property. For
database properties P and Q, the classical transition capacity is defined as

[P → Q] = max
L:P (D)

s∈S∪Cnc

Pr
u←F

[Q(D ∪ (s, u))].

Here, D ∪ (s, u) denotes the query list D with the pair (s, u) added if D did not
contain a pair (s, y) yet. The proof strategy for the following theorems bears
some similarity to the proof of Lemma 4.1 in [12].

Theorem 2. Let ACom,G be an algorithm that makes qCom, and qG classical
queries to its oracles Com, and G, respectively and let q = qCom + qG. Then

Pr
o←ACom,G

[(P(R(o)) = 1) ∧ (T (o, �) = 0)] ≤ (q + nc + 1)max
(

pfpT,�, nc
qG

|C|

)

.

Proof. We denote by TD the variant of the zero test T where for O ∈ {Com, G},
any call to the oracle O is replaced by a call to DO. If any such call outputs ⊥, TD

outputs ⊥. Let ACom,G be an algorithm as in the theorem statement. We define
A′Com,G as follows. A′Com,G computes o ← ACom,G, makes queries comi = Com(oi)
and r = G(com1, . . . , comnc

), and outputs o. Now we have

Pr
o←ACom,G

[(P(R(o)) = 1) ∧ (T (o, �) = 0)] = Pr
o←A′Com,G

[(P(R(o)) = 1) ∧ (TD(o, �) = 0)]

≤ Pr
o←A′Com,G

[∃o′ : (P(R(o′)) = 1) ∧ (TD(o′, �) = 0)]. (2)

On an intuitive level the above inequality reflect the fact that the adversary A′

is guaranteed to perform the test T on its own output, so if the test checks out,
a combination of input-output pairs which certifies the existence of a successful
output can be found in the query list. The event in the last probability expression
defines the database property

Found(D) = (∃o′ : P(R(o′)) = 1 ∧ TD(o′) = 0).
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Now let Di be the list of queries after A′ has been run until its ith query (of any
kind). Clearly, Found(Di) =⇒ Found(D). We thus get

Pr[Found(D)] = Pr[Found(Dq̃)] =
q̃

∑

k=1

Pr[Found(Dk) ∧ ¬Found(Dk−1)]

≤
q̃

∑

k=1

[¬Found ∧ (|D| ≤ k − 1) → Found], (3)

where the right hand side represents the sum of transition probabilities, and

q̃ = q + nc + 1. (4)

It remains to bound the transition capacities in the sum. For this we now make
a case distinction. Setting P = ¬Found ∧ (|D| ≤ k − 1), we have

[P → Found] = max
D:P (D)

s∈S∪Cnc

Pr
u←F

[Found(D ∪ (s, u))]

= max
(

max
D:P (D)

s∈S

Pr
u←F

[Found(D ∪ (s, u))], max
D:P (D)
s∈Cnc

Pr
u←F

[Found(D ∪ (s, u))]
)

If ¬Found(D) and Found(D ∪ (s, u)) for some s ∈ S, then there exist i ∈ nc

and (oi′ , comi′) ∈ DCom for i′ �= i such that (com1, . . . , comi−1, u, comi+1,
. . . , comnc

) ∈ DG. Upper-bounding the first event by 1, we obtain the bound

max
D:P (D)

s∈S

Pr
u←F

[Found(D ∪ (s, u))] ≤ nc|DG||C|−1 ≤ ncqG|C|−1, (5)

as for each entry of DG there are nc targets for the output of Com to match.
If ¬Found(D) and Found(D ∪ (s, u)) for some s ∈ Cnc , then (oi, comi) ∈ DCom

for i ∈ [nc] such that s = (com1, . . . , comnc
), and T(R(o1, . . . , onc

))(G(x)) = 0.
Based on only the last condition, we get

max
D:P (D)
s∈Cnc

Pr
u←F

[Found(D ∪ (s, u))] ≤ pfpT,� (6)

Combining the last three equations we get

Pr[Found(L)] = q̃ max
(

pfpT,�, ncqG|C|−1
)

. (7)

Combining Equations (2), (3) and (7) yields the desired bound. ��

We now move on to bound the success probability of an algorithm trying to
solve CheatP,T,t given quantum access to the random oracle(s). This is neces-
sary to later prove the security of our digital signature scheme in the quantum-
accessible random oracle model (QROM).
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In [10], a generic method for proving such bounds is introduced that essen-
tially generalizes (a very general version of) the technique used in the proof of
Theorem 2 to the QROM. Their technique uses Zhandry’s compressed oracle
method [34], but their results are sufficiently versatile to allow us to prove our
desired bound without introducing compressed oracles.

In fact, we need to prove a bound in a slightly stronger model. As we will
use the technique of [12] to construct a special soundness adversary from an
adversary against the signature scheme, that special soundness adversary can
only work in a model where the quantum-accessible random oracle is instanti-
ated with the efficient oracle simulation via Zhandry’s compressed oracle, and
any adversary can proceed by i) making a number of queries to the oracle, ii)
obtain the measurement outcome of measuring the internal state of the oracle
simulation, and iii) computing the output. The measured internal state of the
oracle essentially contains a query transcript of the adversarial algorithm. A
classical adversary can just compile such a query transcript themselves, without
relying on augmented access to the random oracle. In the quantum setting, the
no-cloning principle prevents the adversary from recording a query transcript.
This can be an issue if the adversary has a black-box subroutine that makes
queries and relies knowledge of these queries. For solving an oracle search prob-
lem, however, the additional power of obtaining the measured query transcript
does not help. It is important to notice that we use this model as a proof tool and
don’t have to ascribe it any predictive power for real-world hash functions. We
call this model QROM+. In the full version [3], we prove the following lemma,
specializing and slightly improving a combination of results from [10].

Lemma 1 (A compressed oracle query bound lemma). Let F : X → Y be
a random oracle and let PF be a predicate on some set Z that can be computed
using at most qP classical queries to F . Let further AF be a QROM+ algorithm
making at most q quantum queries to F and outputing z ∈ Z. Then

√

Pr
z←AF

[P (z)] ≤
q+qP∑

k=1

max
x,D:

|D|≤k
¬Found(D)

√

10 Pr
u←Y

[FoundP(D[x �→ u])] (8)

where FoundP is the database property

FoundP = (∃z ∈ Z : PD(z)) (9)

and PD is the algorithm that computes P but makes queries to D instead of F ,
and if any query returns ⊥, PD ouptuts ‘false’.

We use this lemma to prove a quantum query complexity bound for
CheatP,T,t,�.

Theorem 3. Let ACom,G be a QROM+ algorithm that makes qCom and qG quan-
tum queries to its oracles Com and G, respectively, and let q̃ = qCom+qG+nc+1.
Then

Pr
o←ACom,G

[P(R(o)) = 1 ∧ T (o, �) = 0] ≤ 10 ·
{

q̃2pfpT,� if ncq̃ ≤ pfpT,�|C|
nc

q̃3

|C| else.
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Proof. We again view the two random oracles as being constructed from a single
one using domain separation and truncation, see Remark 1. Using the same
reasoning as for Equations (5) and (6), but without taking a maximal size of the
sub-database corresponding to G into account, we get for |D| ≤ k that

Pr
u←F

[FoundP(D[x �→ u])] ≤ max
(

pfpT,�, nck|C|−1
)

.

Suppose now first that ncq̃ ≤ pfpT,�|C|. Then we have nck|C|−1 ≤ ncq̃|C|−1 ≤
pfpT,� and thus max(pfpT,�, nck|C|−1) = pfpT,�. If on the other hand ncq̃ > pfpT,�|C|,
we have max(pfpT,�, nck|C|−1) ≤ max

(

pfpT,�, ncq̃|C|−1
)

= ncq̃|C|−1. Note that the
predicate checking whether A has solved CheatP,T,t makes nc+1 queries. Setting

η =

{

pfpT,� if ncq̃ ≤ pfpT,�|C|
nc

q̃
|C| else,

we apply Lemma 1 to obtain

√

Pr
o←ACom,G

[P(R(o)) = 1 ∧ T (o, �) = 0] ≤
q̃

∑

k=1

max
x,D:

|D|≤k
¬Found(D)

√

10 Pr
u←Y

[FoundP(D[x �→ u])]

≤
q̃

∑

k=1

√

10η = q̃
√

10η.

Squaring both sides of the inequality yields the desired bound. ��
We proceed to apply the above theorems to the particular polynomial zero

test that appears in Hypercube-SDitH. In this test, there are τ parallel repeti-
tions of the atomic test described in Section 2.3, and the evaluation points for all
of them are generated by hashing all commitments together. Each test involves
3 polynomials in addition to the public polynomial F , , i.e. we have np = 3τ +1.
Denoting the polynomials involved in the ith test by S(i), P (i), Q(i) and F , we
set Pi = S(i), Pτ+i = P (i) and P2τ+i = Q(i) for i = 1, . . . , τ , and P3τ+1 = F . We
define the corresponding domains. For i = 1, . . . , τ we set

Pi = {S ∈ Fpoly[X]|deg(S) ≤ m} , Pτ+i = Fpoly[X]
P2τ+i = {Q ∈ Fpoly[X]|Q(x) = xω + Q′(x) with deg(Q′) ≤ ω − 1} , and
P3τ+1 = {F}.

The predicate P is defined by

P(P) = ¬(∃i ∈ [τ ] : PiP2τ+i = Pτ+iP3τ+1) (10)

and Ti = PiP2τ+i − Pτ+iP3τ+1. The intuition behind this predicate is, that any
one out of the τ sets of four polynomials can be used to extract the secret key if
it fulfils the polynomial identity. Define

p = max
P:Ti(P) �=0

Pr
(r.ε)←F

2
points

[M(Ti,P, r; ε) = 0]. (11)
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A bound for this probability can be obtained as follows. The polynomial SQ−FP
is non-zero and has degree at most m + w − 1. Setting |Fpoints| = Δ, we get

Pr
r←Fpoints

[(SQ − FP )(r) = 0] ≤ m + ω − 1
Δ

.

If (SQ − FP )(r) �= 0, the product verification fails with probability 1
Δ . We get

p ≤ m + ω − 1
Δ

+
(

1 − m + ω − 1
Δ

)
1
Δ

=
m + ω

Δ
− m + ω − 1

Δ2
. (12)

The t evaluation points and t masks are sampled independently, so the false
positive probability for a single test with t points is just pt. The probability
that the t tests with random masks and evaluation points all fail for Ti, for all
i ∈ J ⊂ [τ ] with |J | = � is just pt�. Via a union bound, we obtain

pfpT,� ≤
(

τ

�

)

pt�.

Combining the discussion above, we get the following

Corollary 1. Let ACom,G be an adversary that makes qCom, and qG queries to
its oracles Com, and G, respectively, and let q̃ = qCom + qG + nc + 1, where
nc = τ · ND is the number of commitments. The probability that its output wins
CheatP,T,t,� in this case is bounded by

Pr
o←ACom,G

[P(R(o)) = 1 ∧ T (o, �) = 0] ≤ q̃ max
((

τ

�

)

pt�, τ · ND qG

2c

)

(ROM)

Pr
o←ACom,G

[P(R(o)) = 1 ∧ T (o, �) = 0] ≤ 10 ·
{

q̃2
(
τ
�

)

pt� if q̃ ≤
(
τ
�

)

pt�2c

τ · ND q̃3

2c else
(QROM+)

Distance-d Special Soundness in the QROM+. We now use Cor. 1 to prove

that the identification scheme in Algs. 1 and 2 has query-bounded distance-d
special soundness. The special soundness extractor ExtCom,G

d is straightforward:
Given two valid transcripts with the same w and challenges of distance d, for
all repetitions i where the challenges differ do the following: If the openings
are not consistent, abort. Here consistency means that all openings of the same
commitments agree. Otherwise, reconstruct x from the secret shares and check
if Hx = y and wt(x) ≤ ω. If not, move on to the next i, if yes, output x.

Theorem 4. Our identification scheme Π has query-bounded distance-d special
soundness. More precisely, let ACom,G be a distance-d special soundness adversary
making at most qCom and qG queries to its oracles Com and G, respectively, and
set q = qCom + qG and q̃ = q + τ · ND + 1. Then the bounds

Advd−spS
IDS,Ext (A) ≤

{

(τND + 1) q̃2

2c + q̃
(
τ
d

)

pt·d in the ROM
(10τND + 47) q̃3

2c + 10q̃2
(
τ
d

)

pt·d in the QROM+

hold, where c is the output length of Com.
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Proof. Given adversary A and extractor Extd, we construct adversaries B against
the binding property of the commitment scheme and C against CheatP,T,t,d as
follows. Let E be the event that the side-conditions for spS are fulfilled,

E = (Vrf(pk,wi, ci, zi) = 1, i ∈ {1, 2} ∧ (w1 = w2) ∧ d = Dist(c1, c2)).

The adversary B runs ((w1, c1, z1), (w2, c2, z2)) ← ACom,G(pk). If z1 and z2
are consistent, B outputs ⊥. Otherwise, B uses the inconsistency to break the
binding property: Let comi and (statei, ρi) �= (s̃tatei, ρ̃i) be a commitment and
two distinct openings for it that are present in ((w1, c1, z1), (w2, c2, z2)) causing
the inconsistency of z1 and z2. The two transcripts are valid, so the openings
must be as well. B outputs (statei, ρi), (s̃tatei, ρ̃i).

The adversary C runs ((w1, c1, z1), (w2, c2, z2)) ← ACom,G(pk). If A aborts, C

aborts. Otherwise, C outputs the set (statei, ρi)τ ·ND

i=1 = z1 ∪ z2.
Moreover, we observe that Extd successfully extracts a matching secret key

for pk whenever A outputs transcripts such that E holds, B fails (i.e., z1 and z2
are consistent), and C fails (implying that the polynomial test was cheated for
at most d − 1 challenges). The reason is that if B fails, we know that E will be
able to extract x such that Hx = y and the result of the polynomial zero test is
0, according to the correctness of the MPC protocol. If C fails, we additionally
have that the polynomial test cannot have been cheated for all d challenges and
therefore we can extract at least one x such that Hx = y and wt(x) ≤ w.

Putting things together, we now bound the success probability of A. Consider
the experiment where Extd, B and C use the same runs of A. The probabilities are
taken over (sk, pk) ← Keygen(); ((w1, c1, z1), (w2, c2, z2)) ← ACom,G(pk); sk′ ←
ExtCom,G((w1, c1, z1), (w2, c2, z2)) and abusing notation we define the event that
B or C succeed by B and C, respectively. We bound

Advd−spS
IDS,Ext (A) = Pr[E ∧ (sk′, pk) �∈ Keygen()]

≤Pr[E ∧ (A ∨ B)] ≤ Pr[A] + Pr[B],

where the inequality results from dropping the condition E and a union bound.
Considering that we implement Com using a random oracle and applying a stan-
dard bound for collision finding in the ROM, we obtain

Pr[B] ≤ q22−c , in the ROM.

The bound in Theorem 5.29 in [10], for k = 1, which generalizes to the QROM+
by Lemma 2 in the full version [3], yields

Pr[B] ≤ 47(q + 1)32−c , in the QROM+

after simplifying the constants. The adversary C plays the CheatP,T,t,d game.
According to Corollary 1, we thus have

Pr[C] ≤
{

q̃
((

τ
d

)

pt·d + τND qG
2c

)

in the ROM
10q̃2

(
τ
d

)

pt·d + 10τND q̃3

2c in the QROM+

Combining the inequalities with qG ≤ q + 1 ≤ q̃ yields the claimed bound. ��
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Sign(sk, m)

(w, st) ← Commit(sk)

c := RO(w, m)

z ← Resp(sk,w, c, st)

return σ := (w, z)

Vrfy(pk, m, σ = (w, z))

c = RO(w, m)

return Vrf(pk,w, c, z)

Fig. 1. Signing and verification algorithms of DSS = FS[IDS,RO].

4 The Signature Scheme

The main target of this paper is not the security of Π but that of the resulting
signature scheme that we obtain by applying the Fiat-Shamir transform to it.
This is what we focus on now. We first introduce the Fiat-Shamir transform and
recall previous results, then we present our results for the security of the signature
scheme. The definitions for signatures are available in the full version [3].

The Fiat-Shamir transform. Here we describe the standard Fiat-Shamir trans-
form. To an identification scheme IDS = (Keygen,Commit,Resp,Vrf) with com-
mitment space COM, and random oracle RO : COM×M → C for some message
space M, we associate FS[IDS,RO] := DSS := (Keygen,Sign,Vrfy) , where algo-
rithms Sign and Vrfy of DSS are defined in Fig. 1.

In [17] the following result was stated that relates the UF-NMA and UF-CMA
security of a Fiat-Shamir transformed IDS in the QROM, and the HVZK property
of the IDS. The bound makes use of what they call commitment entropy: γw :=
E maxw Pr[w], where the expectation is taken over (pk, sk) ← Keygen, and the
probability is taken over (w, st) ← Commit(sk).

Theorem 5. [17, Theorem 3] For any (quantum) UF-CMA adversary A issuing
at most qS (classical) queries to the signing oracle sign and at most qH quantum
queries to RO, there exists a UF-NMA adversary B and a qS-HVZK adversary C
such that

SuccUF-CMA
FS[IDS,RO] (A) ≤ SuccUF-NMA

FS[IDS,RO] (B) + AdvqS−HVZK
IDS (C)

+
3qS

2

√

(qH + qS + 1) · γw , (13)

and the running time of B and C is about that of A, where γw is the maximum
over the probability that w takes any given value. The bound given in Eq. (13) also
holds for the modified Fiat-Shamir transform that defines challenges by letting
c := RO(w,m, pk) instead of letting c := RO(w,m).

In our actual construction, for efficiency reasons, we use a variant called Fiat-
Shamir for commitment-recoverable IDS (see e.g., [23]), where the challenge c is
sent instead of the first message w (sometimes referred to as the commitment). As
defined in Sec. 2.1.1 a commitment-recoverable scheme like Π provides a function
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Rcvr that allows to recover the first message from the other two Rcvr(c, z) = w. In
Fiat-Shamir for commitment-recoverable IDS the verifier first recovers w using
Rcvr and then checks that indeed c = RO(w,m). From a security perspective
the two are equivalent as Rcvr allows to compute the values of a standard Fiat-
Shamir signature from one resulting from a commitment recoverable scheme.
The other direction, i.e., get c from w– RSP is not needed – is as simple as
c = RO(w,m).

In our implementation, we use a nonce per signature, which we call salt. The
nonce is included as a prefix in calls to all commitments, PRG operations, and
Hash functions, in order to domain separate between distinct signature queries.
This allows to minimize the impact of multi-target attacks. For the sake of
readability, we do not consider the nonce in our formal security arguments (and
therefore gain a loss in tightness) but we discuss the impact on practical security
when selecting parameters.

4.1 Signature Scheme Security

The security of the signature scheme FS[Π,RO] obtained by applying the Fiat-
Shamir transform to our three round IDS, can be argued in two steps as is
commonly done. First, we show that we can turn any UF-NMA adversary against
the scheme into an adversary against the special soundness of Π. This step
follows the recipe of [12]. Afterwards, we apply Thm. 5 to argue full UF-CMA
security. In [12], a tight online-extractability result is proven for the Fiat-Shamir
transform of sigma-protocols with commit-and-open structure, both for simple
random-oracle-based commitments and for tree commitments. The following is
a specialized variant of the tree commitment variant of the result for query-
bounded distance-d special soundness. We give a description of how the proof of
Theorem 5.2 in [12] implies the below variant in the full version [3].

Theorem 6 (Variant of Theorem 5.2 from [12]). Let ΠCom,G be a distance-
d special-sound commit-and-open identification scheme with φ-ary tree commit-
ment with nc leaves using a random oracle Com with output length c, splittable
challenge, challenge space Cτ and an additional random oracle G. Let further
A be a UF-NMA-adversary against FS[Π,RO] making qRO, qCom and qG queries
to RO, Com and G respectively. Then there exists a (qCom, qG)-query QROM+
adversary B against the query-bounded distance-d special soundness of ΠCom,G

with respect to the special soundness extractor Extd of Π such that

AdvUF-NMA
FS[IDS,RO] (A) ≤Pr[sk′ ← Extd ◦ B : (sk′, pk) ∈ Keygen()]

+ Advd−spS
IDS,Ext (B) + (22nc logφ nc + 60)q32−c + 20q2

1
|C|τ−d

,

where q = qCom + qRO. The runtime of B is bounded as TIME(B) ≤TIME(A) +
γ(q+qG)2)), where γ is polynomial in the input and output lengths of the random
oracles.
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As a corollary, we get a UF-NMA-security result for our signature scheme in
the QROM. We note that this corollary does not need to refer to the QROM+
anymore, as it combines a reduction to an adversary agains the query-bounded
distance-d special soundness in the QROM+ with an explicit bound on the
success probability of such an adversary.

Corollary 2. Let A be a UF-NMA-adversary against FS[Π,RO] that makes
qRO ≥ τ · ND + 1, qCom and qG quantum queries to RO, Com and G respec-
tively. Then for all d = 0, 1, . . . , τ we get

AdvUF-NMA
FS[IDS,RO] (A) ≤εSD + (32τND + 107)

q3

2c
+ 10 · q2

(
τ

d

)

pt·d + 20q2
1

ND·(τ−d)
.

Here, εSD is the maximal success probability that an adversary with runtime
TIME(A) + TIME(CompOr(q)) + TIME(Extd), where TIME(CompOr(q)) is the
runtime of a compressed oracle simulation for q queries, can solve syndrome
decoding. Also q = qCom + qRO + qG is the total number of random oracle queries
of A, c is the output length of Com, and the atomic polynomial zero test false-
positive probability p is defined and bounded in Equation (11) and Equation (12).

Note that the restriction on qRO is almost without loss of generality (τ ·ND+1,
qCom queries to RO can be made in time similar to, e.g., the signing time) and
is only needed to allow for a less cluttered bound expression.

Proof. Π uses a commitment that works by hashing each state with some ran-
domness, and then hashing all theses hashes together to produce a single collec-
tive commitment. This is a τ ·ND-ary tree commitment with τ ·ND leaves, so we
can apply Theorem 6 for these parameters. Plugging in the number of possible
split-challenges ND, we get

AdvUF-NMA
FS[IDS,RO] (A) ≤Pr[sk′ ← Extd ◦ B : (sk′, pk) ∈ Keygen()]

+ Advd−spS
IDS,Ext (B) + (22nc + 60)q32−c + 20q2N−D·(τ−d),

where c is the length of the commitments. Pr[sk′ ← Extd◦B : (sk′, pk) ∈ Keygen()]
is the success probability of Extd ◦B as a syndrome decoding algorithm and thus

Pr[sk′ ← Extd ◦ B : (sk′, pk) ∈ Keygen()] ≤ εSD.

Setting q̃ = qCom + qG + ND + 1, by Theorem 4, we have the bound

Advd−spS
IDS,Ext (B) ≤ (10τND+ 47)

q̃3

|C| + 10q̃2
(τ

d

)
pt·d ≤ (10τND+ 47)

q3

|C| + 10q2
(τ

d

)
pt·d

where the second inequality holds because q̃ ≤ q by assumption on qRO. Com-
bining the inequalities yields the desired bound. ��

Finally we obtain a bound for the UF-CMA security as follows:
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Corollary 3. Let A be a UF-CMA-adversary against FS[Π,RO] that makes
qRO ≥ τ · ND + 1, qPRG, qCom and qG quantum queries to RO, PRG, Com and G
respectively, and qS (classical) signing queries. Then for all d = 0, 1, . . . , τ ,

AdvUF-CMA
FS[IDS,RO] (A) ≤ εSD + (32τND + 107)q32−c + 10 · q2

(
τ

d

)

pt·d + 20q2
1

ND·(τ−d)

+ qSτ

(

16qCom2−r/2+ log(ND − 1)
(qPRG + qSτ)2

2n

)

+
3qS

2

√

qRO + qS + 1
2n

, (14)

Here εSD is the maximal success probability that an adversary that runs in time
TIME(A) + TIME(CompOr(q)) + TIME(Extd), where TIME(CompOr(q)) is the
runtime of a compressed oracle simulation for q queries, can solve syndrome
decoding. Moreover, q = qCom + qRO + qG is the total number of random oracle
queries of A, c is the output length of Com, and the atomic polynomial zero test
false-positive probability p is defined in Equation (11) and bounded in Equation
(12), n is the seed length of TreePRG, r is the length of commitment randomness.

Proof. This follows by applying Thm. 5 to Cor. 2. Moreover, we plug in the
HVZK bound from Thm. 1 and observe that γw, the entropy of the commitment
messages, in Π is n bits. Further we note that the reduction in the HVZK proof
makes up to τqS additional calls to TreePRG, and use the bound for the security
of TreePRG given in Sec. 2.1. We finally apply the QROM bound for hiding of
Com from [25] and note that for the security of PRG when modeled as QRO, a
standard search bound applies. The reason is that without seeing an input that
maps to a challenge, the adversary can do no better than guessing. ��

Discussion. Cor. 3 provides a tight bound for UF-CMA security in terms of
the hardness of syndrome decoding. The additive terms are all benign. The first
additive term is matched by a collision finding attack on the hash function used
for commitment [9], up to the constant preceding q32−c. The second and third
additive terms are similar to the ones appearing in the bounds in [2,14], and
are matched by a “divide-and-conquer” attack: An adversary can first search for
polynomials allowing them to cheat d out of τ polynomial zero tests, and then
search for a message to be signed that allows cheating the MPCitH proof of the
remaining τ − d repetitions. When p 	 (1/ND) the divide and conquer attack
is most powerful, with d = τ

2 . But when p � (1/ND) the attack complexity
tends towards (1/ND)τ , and parameters in section 5 are selected accordingly.
The 16qCom2r/2 term in the second line stems from the computational hiding
property of the commitments and is matched by a Grover search for the used
commitment randomness. The term in the last line is negligible compared to the
last term in the second line, which is matched by a Grover search attack on PRG.

Comparing the bound in Cor. 3 to the ROM bound proven in [2], we observe
that each term in Cor. 3 either has been neglected in [2] (e.g. the term corre-
sponding to the hiding security of RO-based committments), or leaves at most
the possibility for a quadratic speed-up due to Grover search, up to small muti-
plicative constants (e.g. the terms characterizing the security of the polynomial
identity test and MPCitH proof).



SDitH in the QROM 345

Algorithm 5. PoW - Proof-of-Work for challenge derivation
Input: Commitment-message hash hw ← H(w, m), number of iterations 2kiter .
1: dgst ← hw

2: for ctr ∈ {0, . . . , 2kiter − 1} do dgst ← H(dgst‖hw)

3: return dgst

5 Performance

The tweaks introduced to the original Hypercube-SDitH scheme not only make
possible a security proof in the QROM setting, they also have a positive impact
on the performance of the scheme. They allow to slightly reduce signature size
and to significantly reduce the online signing time.

Fast online signing. The original Hypercube-SDitH signature is based on a 5-
round IDS with two verifier challenges, the first challenge being between the eval-
uation points. When applying the Fiat-Shamir transform, the message is required
to compute the first challenge, so the online phase of the original Hypercube-
SDitH signature scheme (the part that requires presence of the message) includes
both the MPC computation and the MPC party opening. In the 3-round ver-
sion, the online phase of the signature corresponds just to one random oracle
call and the MPC party opening. In practice this can be as fast as one hash call,
plus arithmetic to compute �α�c, �β�c, plus building sibling paths required for
the openings. Reducing the online cost of a signature is amazing. However, some
applications may prefer smaller signatures at the cost of a slower online phase.
For this we introduce an online-time - signature-size trade-off which stretches
the challenge generation time in order to reduce the signature size.

Proof-of-Work. Our trade-off is inspired by the Proof-of-Work (PoW) technique
used in SPHINCS+C [24]. In our scheme, we exchange the counter based PoW,
with 2kiter times iterative hashing. To generate the challenge c, we first generate
the hash hw ← H(w,m). We then apply the PoW routine (Alg. 5) to increase
the cost of the hash computation, such that the final challenge is c ← PoW (hw).

The proof-of-work technique (PoW) does not change the applicability of the
security proof as it only replaces one hash function by a more costly one. How-
ever, the choice of parameters according to the PoW cannot be supported by our
security proof. Because of this, we only introduce the proof-of-work trick here as
an optimization. To be covered by the security proof, we would need our bound
to distinguish between queries made to the different functions that are modeled
as random oracles. This is not possible with our current proof as we are using
the technique from [12] in a black box manner where possible and [12] does not
distinguish between queries to different functions.

We note, that unlike the PoW counter-based solution of [24], there is no
variability in the runtime of our PoW algorithm. The downside, is that unlike
the counter-based solution, our iterative solution adds the same running time to
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the verifier. However, at the same time it reduces the running time as we are
able to reduce the number of parallel repetitions τ of Π ( c.f.,Table 1).

For concrete parameters, we increase the cost of the message-hash query by
2kiter , but can in turn reduce the requirement on D and τ to ≈ (1/ND)τ ≤
2−λ · 2kiter = 2−λ+kiter . As discussed below, we use N = 2. Choosing kiter = D
increases the attack complexity by a factor 2D, and each additional parallel rep-
etition increases the attack complexity by a factor ≈ ND = 2D. Thus selecting
kiter = D allows us to use τ ′ = τ −1 at the same security level. This means that
we need one less repetition of the protocol and can thereby reduce the overall
size of the signature. However, this is clearly not the only possible choice for
kiter. Reasonable values would be any multiple of D, as kiter = kD means that
we can run the protocol with τ ′ = τ − k parallel repetitions. Moreover, as D
and τ are integers, we might find cases where (1/ND)τ is slightly larger than
2−λ, forcing us to increase the parameters and signature size, also this could be
compensated for using the PoW. Thereby, we can increase our degree of freedom
in choosing parameters, possibly resulting in better-optimized variants.

Parameters. For our implementation we stick with the parameters from [14]
also used in [2]. Our security bound is (except for some small constants) the
same as in [2] up to the generic Grover search and quantum collision finding
bounds. These were already (heuristically) considered in the parameter selection
by the previous works. For security we target NIST security level I which refers to
128bit security against conventional attacks and 64 bit security against quantum
attacks. We use the Variant 3 parameters of the original SDitH scheme (also
used in the Hypercube scheme). These parameters use the syndrome decoding
problem in FSD = F28 with m = 256, k = 128, and w = 80. When looking at
the original Hypercube proposal, they fix N = 2 and define further parameters
applying different trade-offs between signature-size and speed (chosen to match
the equally named parameter sets proposed in [14]). We focus on the “Short”
(D = 8, τ = 17) and “Shorter” (D = 12, τ = 12) configurations from Hypercube-
SDitH since they offer the most interesting trade-offs in our opinion. We use these
parameters as baseline to demonstrate the impact of our results.

It remains to fix the values for the seed length n, the commitment random-
ness length r, and the commitment length c. For these values we use n = r = 128
bit and c = 256 bit. Taking a close look at the terms of the sum on the RHS
of Equation (14) shows that our choice for the values of n and r are ignoring
the qSτ log(ND − 1) and qSτ factors respectively. Examining the proof shows
that these factors are caused by the hybrid arguments which reflect multi-target
attacks. When modeling the PRG and the commitment as random oracles, these
attacks can be mitigated using domain separation (as for example demonstrated
in [21]). Hence, as mentioned previously, our implementation makes use of an
additional random 128 bit nonce, called salt, which is freshly chosen for each
signature. This nonce is used as a prefix to the inputs to the PRG, the com-
mitment, and the hash function. Thereby, it domain-separates these calls over
different signature calls, effectively removing the need of the factor qS in the
bound. This leaves as worst case the τ log(ND − 1) factor to be considered for
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the seed length. For our parameters, this accounts to a less then 8 bit loss in
security. Given that we count hash function calls as a single operation while
this takes more than 256 bit operations, we consider this compensated for. We
note that we did not consider this domain separation in our proof as it would
significantly hurt readability of the arguments at rather limited novelty given
that this kind of solution was discussed already in previous works.

Implementation Results. We base our implementation of the tweaked scheme
on top of the previous Hypercube-SDitH implementation from [2], using the
XKCP library (SHAKE) for all symmetric primitives (hashes, commitments, and
PRGs). Before making modifications, we thoroughly examined the Hypercube-
SDitH implementation regarding constant execution time and identified and
hardened several key routines that rely on signer-private information and could
leak information if done naively.

Next, we benchmarked the original 5-round Hypercube-SDitH scheme with
the updated implementation to obtain reference values. Then, we benchmarked
the 3-round version of this scheme (Ours - Vanilla), and the same scheme but
applying the PoW algorithm above (Ours - PoW) with parameter kiter = D.
For the benchmarks we used an optimized implementation that leverages AVX2
instructions to parallelize SHAKE and SHA3 calls. The experiments ran on an
Intel Xeon E-2378 with frequency fixed at 2.6 GHz and Turbo Boost disabled.
We prepared a test routine that runs keygen, sign, and verify on a fixed text
input. Finally, we run the test routine for 100 times sequentially on a single
CPU core and average the timing measurement results. The implementation is
available at https://github.com/sandbox-quantum/sdith-impl-release.

Table 1. Implementation benchmarks of Hypercube-SDitH vs our tweaked scheme for
NIST security level I. For the PoW, the parameter kiter = D is used.

Scheme Aim Signature Parameters Sign Time (in ms) Verify Time

Size (bytes) |Fpoints| t D τ Offline Online Total (in ms) Total

Hypercube-SDitH [2] Short 8464 224 5 8 17 3.83 0.68 4.51 4.16

Shorter 6760 224 5 12 12 44.44 0.60 45.04 42.02

Ours Vanilla Short 8464 224 5 8 17 4.45 0.049 4.50 4.17

Shorter 6760 224 5 12 12 44.98 0.080 45.06 42.02

Ours PoW Short 7968 224 5 8 16 4.20 0.14 4.34 4.00

Shorter 6204 224 5 12 11 41.06 1.49 42.55 39.75
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Abstract. The Linear Equivalence Problem (LEP) asks to find a linear
isometry between a given pair of linear codes; in the Hamming weight
this is known as a monomial map. LEP has been used in cryptography to
design the family of LESS signatures, which includes also some advanced
schemes, such as ring and identity-based signatures. All of these schemes
are obtained applying the Fiat-Shamir transformation to a Sigma pro-
tocol, in which the prover’s responses contain a description of how the
monomial map acts on all code coordinates; such a description consti-
tutes the vast majority of the signature size. In this paper, we propose a
new formulation of LEP, which we refer to as Information-Set (IS)-LEP.
Exploiting IS-LEP, it is enough for the prover to provide the descrip-
tion of the monomial action only on an information set, instead of all
the coordinates. Thanks to this new formulation, we are able to dras-
tically reduce signature sizes for all LESS signature schemes, without
any relevant computational overhead. We prove that IS-LEP and LEP
are completely equivalent (indeed, the same problem), which means that
improvement comes with no additional security assumption, either.

1 Introduction

The Code Equivalence Problem (CEP) is a traditional problem of coding the-
ory, which asks to determine whether two given linear codes are equivalent to
each other. For the canonical (and most studied) case of isometries in the Ham-
ming metric, the notion of equivalence is linked to the existence of a generalized
permutation (i.e. with non-unitary scaling factors), also known as monomial
transformation. In such a setting, the problem is normally referred to as the
Linear Equivalence Problem (LEP).

The computational version of LEP, which is of interest in cryptography, may
appear to be somewhat less secure than other problems from coding theory such
as the well-known Syndrome Decoding Problem (SDP); unlike SDP, in fact, LEP
is probably not NP-hard, since this would imply the collapse of the polynomial
hierarchy [PR97]. Nevertheless, perhaps surprisingly, the best known algorithms
for LEP (at least, for the regime of interest) utilize an SDP solver as a subroutine.
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Moreover, the application of an isometry to a linear code can be described as a
(non-commutative) group action with certain nice properties, which is exactly
the key for its use in cryptographic applications.

1.1 Related Works

The first cryptosystem built on LEP was presented in 2020 as LESS, acronym for
Linear Equivalence Signature Scheme [BMPS20]. The paper describes a simple 3-
pass Zero-Knowledge Identification (ZK-ID) protocol, following in the footsteps
of [GMW19], and then shows how this can be transformed into a full-fledged
signature scheme via Fiat-Shamir. It is worth noting that LESS is part of a col-
lection of schemes leveraging this framework, relying on tools from a wide vari-
ety of setting, including polynomials [Pat96], isogenies [FG19], lattices [DvW22],
matrix codes [CNP+23], trilinear forms [TDJ+22,DG22] etc.

In a follow-up work [BBPS21], the authors refine the scheme using some
familiar protocol-level techniques such as the use of multiple keys (to amplify
soundness) and fixed-weight challenge strings (to reduce signature length), as
seen for instance in [BKV19]; the work also features new parameters, adjusted
to withstand a novel LEP solver introduced by Beullens [Beu21]. In fact, a com-
prehensive study of solvers for LEP was subsequently put together in [BBPS23],
with the aim of presenting a clear picture of the best attack techniques, and a tool
for selecting secure parameters. The group action structure connected to LEP
proved to be appealing as a potential building block in many constructions, devel-
oped in ensuing works: some successfully, such as the ring and identity-based
signatures proposed in [BBN+22], some unsuccessfully (e.g. [ZZ21,PRS22]).

The essential structure of the LESS protocol is as follows. Starting from a
public code C , the prover generates their public key as C ′ “ μ(C ) where μ is a
linear isometry. Then, the protocol goes as in Fig. 1.

Fig. 1. Representation of the proof of knowledge structure in LESS

In each execution of the protocol, the prover samples an ephemeral map τ and
commits to C ∗ “ τ(C ). The verifier then asks to disclose one of the following two
maps: the one on the left between C and C ∗, or the one on the right between C ∗

and C ′. The honest prover is always able to provide both maps, i.e., can always
construct a graph like the one in Fig. 1. A cheating prover, instead, can only craft
one of the two maps at a given time and try to guess which one is going to be
asked; he cannot, however, reproduce the full graph, without knowing the secret
key (which requires to solve a LEP instance). This informal argument of witness
extractability intuitively leads to a soundness error of 1/2; to achieve λ bits of
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security, it is then necessary to utilize standard error amplification techniques
such as parallel repetitions.

Linear codes are customarily represented through their generator matrices,
whereas isometries consist of column transformations together with a change of
basis. This means that, in practice, C ′ is represented as Sμ(G), where G P F

kˆn
q

is a generator matrix for C and S is non-singular of size k. To check that two
codes are equal, one can compute a special generator matrix, say, the one in
systematic form, which can be naturally obtained with one Gaussian elimination.
This allows to greatly reduce the communication cost, because the prover can
commit to the hash of the systematic generator of C ∗: the verifier will recompute
such a matrix, hash it, and check consistence with the commitment. Without
this consideration, the LESS scheme would not be practical, since the size of
commitments would be gigantic.

Two meaningful improvements appeared in [BBPS21]. The first one consists
in allowing for more than two equivalent codes in the public key, which allows
to enrich the graph in Fig. 1 with some additional maps on the right. The corre-
sponding graph is reported in Fig. 2; in the figure, we are denoting τ ′

i “ τ ◦ μ´1
i

and are using s for the number of codes.

Fig. 2. The LESS-FM proof of knowledge with multiple keys

With this variant, the verifier will choose either the map on the left or one of the
s´1 maps on the right. It is easy to see that an adversary can reply correctly only
by guessing, in advance, which instance will be selected by the prover. This leads
to an amplified soundness error of 1

s and, consequently, only λ
log2(s)

repetitions
are required. With respect to the LESS scheme, this leads to an improvement
for what concerns both the signature size and the computational overhead on
the verifier’s side, since the number of parallel repetitions is reduced by a factor
log2(s). Obviously, the price to pay is a steep increase in public key size.
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The second optimization introduced in LESS-FM consists of using challenges
with a non-uniform distribution, so that the map on the left is the one queried
most frequently. This is because such a map, being entirely random, can be
represented compactly by the seed used to generate it. To preserve the soundness
error, which now behaves like a binomial coefficient, one needs to increase the
number of overall repetitions; however, the number of maps on the right which
are verified (which cannot be compressed with seeds) is much smaller. This yields
a significant reduction in signature size, which is further improved by utilizing
a seed tree [BKP20] to efficiently transmit the seeds.

1.2 Our Contributions

In this work, we describe a new technique which greatly improves the perfor-
mance of the scheme. Unlike the ones described in LESS-FM, which are some-
what standard techniques applicable to any Sigma protocol with the same struc-
ture, our improvement is specific to the LEP setting.

A New Method for Verification. In a nutshell, our technique consists of a com-
pact way to verify the maps of the graph in Fig. 2. The main idea is based on
the following key observation: if two linear codes are linearly equivalent, once
two information sets are mapped to each other, the remaining coordinates are
identical up to a linear isometry (i.e. a monomial), whose existence can be effi-
ciently checked. This means that the prover does not need to include the entire
map in his response, since a description of how the map acts on an information
set would be enough. This brings to a direct improvement in the signature size
of LESS signature schemes: instead of n log2(n) ` n log2(q ´ 1) bits, the binary
size for equivalences on the right is reduced to only k log2(n) ` k log2(q ´ 1)
bits. This reduces the size of responses by a factor equal to the code rate k/n:
since the codes employed in LESS have all rate « 1/2, we essentially halve the
communication cost (factoring out the cost of the small overhead due to seeds,
salts and other minor items).

A New Notion of Equivalence. Our improvement comes with several technical
caveats. The main concern is that we have to make sure that this novel way to
verify that two codes are indeed equivalent, does not introduce vulnerabilities.
To do this, we introduce a new notion of equivalence, which we call Information
Set (IS) - linear equivalence, to emphasize that the focus is on how the linear
map acts on an information set. We then show that the associated decisional
problem, which we call IS-LEP, is literally the same as LEP: any solver for IS-
LEP can in fact be used to solve LEP, and viceversa. Formally, what we prove
is something stronger, namely that any “YES” (resp. “NO”) instance for LEP
is also a “YES” (resp. “NO”) instance for IS-LEP: this implies that IS-LEP and
LEP are actually the same problem. The definition of IS-LEP is the focus of
Sect. 4.
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Application to Proofs of Knowledge. In Sect. 5 we deal with the practical problem
of embedding the verification of IS-LEP into proof-of-knowledge protocols as in
Figs. 1 and 2. Indeed, unlike the existing schemes, in this case the prover cannot
commit anymore to the systematic form of C ∗. The issue is that now the prover
provides only a truncated representation for the maps on the right: the verifier
computes a code which is identical to C ∗ only in k out of n coordinates, so its
systematic form will be different from the one of C ∗. To circumvent this issue,
we modify the verification procedure and require that, after the computation of
the systematic form, both the verifier and the prover execute an ad-hoc function
which is an invariant under truncated monomial maps. We show that these extra
steps have a cost which is much smaller than that of Gaussian elimination so
that, in practice, the overall computational cost is only slightly affected. We also
address the problem of communicating the information set which is used for
verification: with a proper way to represent the truncated map, this cost can be
entirely removed.

Practical Outlook. Finally, in Sect. 6 we present some new instances of LESS
signatures. These include new instances also for the ring signatures described
in [BBN+22]. These are formulated with additional constraints and guidelines
in mind, oriented at providing the best performance for the intended use case,
and desired security level. Indeed, after recalling the state-of-the-art attacks on
LEP, we propose a simple procedure to design secure LEP instances. This leads to
parameters that are slightly larger than those employed in [BBPS21,BBN+22]
but are more conservative. To be sure, this new procedure not only rules out
the best attacks, i.e. the ones based on finding low-weight codewords (which
is computationally equivalent to SDP), but also possible improvements to such
attacks. This provides a very high level of confidence on the new parameters:
new attacks, in order to significantly lower the security level, would need to be
radically different from those based on low-weight codeword finding.

As mentioned before, the sizes resulting from this process are nearly half of
those that would be obtained without our improvement. To be precise, we are
able to produce signature sizes that range between 5 and 8.5 KiB, for NIST’s
security category 1. We also propose parameters for categories 3 and 5, ranging
respectively between 14 and 18.5 KiB for the former, and 26 and 32.5 KiB for the
latter. In all cases except one, the sum of our public keys and signatures is below
100KiB. To complete the picture, we include also some implementation figures,
that we obtain by a reference implementation in ANSI C. While these numbers
are far from optimized, they are still useful to show that the scheme is practical:
indeed, the number of cycles is comparable with that obtained measuring the
reference code of e.g. SPHINCS+.

2 Notation and Background

In this section we establish the notation that we will use throughout the paper,
as well as recall basic concepts about linear codes.
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2.1 Notation

As usual, we use Fq to indicate the finite field with q elements and F
∗
q to indicate

its multiplicative group. Given a matrix A over Fq, we write ai to indicate its
i-th column. The general linear group formed by the non singular k ˆk matrices
over Fq is indicated as GLk. For an ordered set J , we write AJ to indicate
the matrix formed by the columns of A that are indexed by the elements in J ;
equivalent notation is adopted for vectors. The identity with size k is indicated
as Ik, while 0 denotes the null-matrix (its dimensions will always be clear from
the context). The standard matrix product between A and B is indicated as
AB, i.e., without any operator. In some cases, to avoid confusion with other
operations, we will make it explicit and write the product as A · B.

We denote by Sn the symmetric group on n elements, and consider its ele-
ments as permutations of n objects. We represent permutations in one-line nota-
tion, as n-tuples of the form π :“ (i1, i2, · · · , in), so that π(j) “ ij , i.e., π moves
the j-th element to position ij . For a vector a “ (a1, · · · , an), it holds that

π(a) “ (
aπ´1(1), · · · , aπ´1(n)

)
.

We denote by Mn the set of monomial transformations, that is, transformations
of the form μ :“ (π,v) with π P Sn and v P F

∗n
q , acting as follows

μ(a) “ π(a)

⎛

⎜
⎜
⎜
⎝

v1
v2

. . .
vn

⎞

⎟
⎟
⎟
⎠

“ (
v1aπ´1(1), · · · , vnaπ´1(n)

)
.

We naturally extend the action of monomials on matrices A, i.e., μ(A) indicates
the matrix resulting from the action of μ on the columns of A. For two mono-
mials μ, μ′ P Mn, we write μ ◦ μ′ to denote the monomial resulting from their
combination.

2.2 Linear Codes

A linear code C Ď F
n
q is a k-dimensional subspace of F

n
q . The quantity R “

k/n is called code rate, and any vector c P C is called codeword. A canonical
representation for a code is through a generator matrix, that is, a full-rank
matrix G P F

kˆn
q such that C “ {

uG | u P F
k
q

}
. Codes admit multiple generator

matrices: for any S P GLk, which can be seen as a change of basis, it holds that
SG and G generate the same code. The dual code C⊥ is the set of all vectors that
are orthogonal to codewords in C , that is, C⊥ “ {

v P F
n
q | cv� “ 0, ∀c P C

}
.

It is easy to see that C⊥ is a linear subspace of Fn
q with dimension r “ n ´ k

(which is normally called redundancy). The dual code is generated by a full-rank
matrix H P F

rˆn
q , which is called parity-check matrix and is such that GH� “ 0.

Obviously, for any S P GLr, H and SH are parity-check matrices for the same
code.
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For J Ď {1, · · · , n}, we write CJ :“ {cJ | c P C }. We say that a set J with
size k is an information set for a code C if, for any two distinct c, c′ P C , it
holds that cJ ‰ c′

J , which implies that CJ contains qk elements. Equivalently,
J is an information set if, for G being a generator matrix for C , it holds that
GJ is non singular. Normally, we say that a generator matrix G is in systematic
form if G “ (

Ik,V
)
, where Ik is the identity matrix of size k and V P F

kˆ(n´k)
q .

This matrix exists whenever J “ {1, · · · , k} is an information set: starting from
any generator matrix G, we obtain the one in systematic form as G´1

J G. Also,
the systematic matrix is an invariant under changes of basis: if G′ “ SG, then
its systematic form is G′´1

J G′ “ G´1
J S´1SG “ G´1

J G.
In principle, there is no guarantee that {1, · · · , k} is an information set. Thus,

sometimes one considers a slightly more general definition: given a matrix G, its
systematic form is G´1

J G, where J is the first (according to some lexicographic
ordering) subset of {1, · · · , n} of size k and such that GJ is non-singular. We
refer to this operation as Row Reduced Echelon Form (RREF) with respect to J .
To encompass the canonical definition of systematic matrix, we impose that the
lexicographically first set is {1, · · · , k}. It is easy to see that also this generalized
definition is invariant under changes of basis: to emphasize this property, we
will write SF(C ) to denote the function that, on input a linear code, returns its
systematic form.

Finally, we summarize here the traditional notion of equivalence between two
codes, in the Hamming metric. To do this, we first clarify that we indicate with
μ(C ) the linear code obtained by applying the monomial transformation μ to
all the codewords c P C .

Definition 1 (Linear Equivalence). We say that two codes C ,C ′ Ď F
n
q are

linearly equivalent, and write C „ C ′, if there exists a monomial transformation
μ P Mn such that C ′ “ μ(C ). That is, given generator matrices G,G′ P F

kˆn
q

for C and C ′, respectively, the two codes are linearly equivalent if G′ “ Sμ(G)
for some non-singular matrix S P GLk, or analogously, if SF(C ′) “ SF(μ(C )).

The above definition encompasses the weaker notion of permutation equiva-
lence, which is the particular case where the monomial μ is a permutation.

3 The Code Equivalence Problem

The code equivalence problem generically asks, on input two codes C and C ′, to
find a linear isometry mapping one code into the other. The problem is sometimes
distinguished into two versions, depending on the type of isometry that one
desires to identify. We present here only the more general one.

Problem 1 (Linear Equivalence Problem (LEP)). Given C ,C ′ Ď F
n
q with

dimension k, decide if C „ C ′, i.e., if there exists μ P Mn such that C ′ “ μ(C ).
Equivalently, given G,G′ P F

kˆn
q (generators for C and C ′, respectively), decide

whether there exist μ P Mn and S P GLk such that G′ “ Sμ(G).

The Permutation Equivalence Problem (PEP) is just a special case of LEP, since
any permutation is a monomial with scalar factors equal to 1.
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Avoiding Weak Instances. Given its importance in coding theory, LEP has been
studied for decades. As we have already mentioned, a well-known result states
that the NP-completeness of LEP would imply a collapse of the polynomial hier-
archy [PR97]. For PEP, there exist certain algorithms that can have a polynomial
running time [Sen00,BOS19]. Namely, these attacks take times in O

(
n3 ` q

˜k
)

and O
(
n2.3`˜k

)
, respectively, where k̃ is the dimension of the hull, that is, the

linear code C ∩ C⊥. For random codes, the size of the hull tends to a small
constant [Sen97], so that the above attacks become essentially polynomial in the
code length. To counter these attacks, it suffices to use codes with large enough
hull, or even self-orthogonal codes, that is, codes such that C Ď C⊥. In this
extreme case, in fact, the hull is equal to the code itself, so that k̃ “ k “ Rn,
and the attacks in [Sen00,BOS19] take exponential time.

For LEP, however, it is still safe to use random codes, provided that the
underlying finite field is sufficiently large. Indeed, there exists a polynomial time
map that takes any LEP instance into a PEP instance, so that any solver for
PEP can be used to solve LEP. However, when q ě 5, this reduction always ends
in a self-dual code [SS13]. This guarantees that the algorithms in [Sen00,BOS19]
have maximum, exponential running time.

Attacks Based on Low-Weight Codeword Finding. The other class of attacks
against PEP and LEP is characterized by the search for codewords with low
Hamming weight (or subcodes with small support) [Leo82,Beu21,BBPS23]. The
description of these attacks requires several technicalities which, due to lack of
space, we cannot report here. Yet, they all share the common principle of looking
at a small set of codewords (or subcodes) from which the action of μ can be
recovered. For instance, Leon’s algorithm [Leo82] requires to find, for each code,
all codewords with weight ď w, that is,

A “ {c P C | wt(c) ď w} , A′ “ {c′ P C ′ | wt(c′) ď w} .

This guarantees that μ(A) “ A′ and, when w ! n, we have |A| ! |C | “ qk:
roughly, since A and A′ contain a few codewords, reconstructing μ gets easy.
Modern algorithms relax the requirements of Leon and, instead, aim to find
a sufficiently large number of collisions. This idea has been first proposed in
[Beu21] and then refined in [BBPS23]. Here, by collision, we refer to a pair of
codewords c P C , c′ P C ′ such that μ(c) “ c′. When the Hamming weights of
c and c′ are sufficiently small, collisions can be determined efficiently. The gain
with respect to Leon’s algorithm depends on several technicalities but, as a rule
of thumb, it is enough to consider that this attack outperforms Leon’s only if q
is sufficiently large.

Note that the attack in [Beu21] actually uses two-dimensional subcodes
instead of codewords. However, as observed in [BBPS23], this attack can be
improved by first finding low-weight codewords and then using them to build
subcodes. This allows to improve upon the attack in [Beu21] since the compo-
nent codewords have a much smaller support size than the resulting subcode,
hence finding them is much easier.
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Conservative Design Criteria. In practice, once weak instances are excluded,
the best attacks against LEP are those based on low-weight codeword finding.
Fortunately, this is one of the oldest and most studied problems in coding theory
and we have a pretty consolidated picture about the cost of the best solvers,
which are Information-Set Decoding (ISD) algorithms. In particular, for non-
binary fields, the state-of-the-art is Peters’ ISD [Pet10]. In the following, we will
denote by CISD(q, n, k, w) the cost of finding a single codeword with weight w,
in a code defined over Fq, with length n and dimension k.

Looking at the attacks summarized above, we see that they all follow a general
model, where an attacker always pursues the following strategy: i) produce two
lists L1 and L2 with short codewords, ii) find collisions, i.e., pairs of elements in
L1 and L2 that are presumably mapped by μ, and iii) use collisions to reconstruct
the secret monomial. To obtain a conservative point of view on these attacks,
we make the following choices:

– we assume that the technique employed to find collisions has no cost;
– we assume that the attacker never finds fake collisions, i.e., never considers

(c, c′) as a collision even if c ‰ μ(c′). Note that fake collisions may make the
monomial reconstruction unfeasible or, at the very least, much more compli-
cated. In fact, the possibility of fake collisions is exactly the reason why the
attacks in [Beu21,BBPS23] focus only on short codewords and, most impor-
tantly, work only when the finite field is large enough;

– we assume that knowing one collision is enough to retrieve significant and
useful information about the secret monomial. Notice that all attacks, instead,
require to find a sufficiently large number of collisions. For instance, Leon’s
algorithm requires to determine all codewords with some bounded weight.
Analogously, the attacks in [Beu21,BBPS23] reconstruct exactly the secret
monomial only if a sufficiently large number of (not fake) collisions is available.
Yet, there may be ways to improve the monomial reconstruction phase (i.e.,
efficient techniques that require a smaller number of collisions), or to make
use of some partial information. To show why this a concrete possibility,
consider the case in which C contains only one minimum weight codeword c.
This gets mapped into c′ “ μ(c) P C ′. The pair (c, c′) already provides some
information about μ: for instance, if ci “ 0 and c′

j ‰ 0, we learn that μ does
not move i in position j.

Taking into account the above three conservative assumptions, we use the fol-
lowing criterion to select secure LEP instances.

Criterion 1. Let q, n, k denote, respectively, the finite field size, code length
and dimension. We consider only q ě 5 and random codes. We select n, k, q so
that, for any w P {1, · · · , n}, finding lists L1 Ď C and L2 Ď C ′ with weight-w
codewords and such that L2 ∩ μ(L1) is non empty (where {μ(c) | c P L1}), takes
time greater than 2λ.
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This translates into a very simple way to select parameters. Indeed, let L1 and
L2 have the same size �. Then, the cost to produce these lists is

f
(
�,N(w)

) · CISD(n, k, q, w)
N(w)

,

where f(�,N(w)) counts the number of ISD calls to find � distinct codewords.
The term N(w) accounts for the number of codewords with weight w: since codes
are random, this is well estimated as

N(w) “
(

n

w

)
(q ´ 1)wq´(n´k).

The cost of each ISD call is divided by N(w) to take into account existence of
multiple solutions.
We now observe that, on average, we have

|L2 ∩ μ(L1)| “ |L1| · |L2|
N(w)

“ �2

N(w)
.

Indeed, for each codeword in L2, there is only one good collision among the N(w)
codewords in C . Since we populate L1 with � random codewords, the probability
that such a codeword is indeed in L1 is �

N(w) . It follows that, in order to have at
least one collision in the expectation, it must hold that �2 ě N(w), which implies
� ě √

N(w). So, � ! N(w) and � calls to ISD return, with high probability, �
distinct codewords [Beu21]. Consequently, we have

f
(
�,N(w)

) « � “ √
N(w).

Consequently, Criterion 1 translates into the following criterion.

Criterion 2. We consider random codes defined over Fq with q ě 5, and choose
q, n, k so that, for any w, it holds that

1
√

N(w)
· CISD(n, k, q, w) > 2λ.

The above criterion emphasizes the fact that, when weak instances are avoided
and in light of existing attacks, solving LEP reduces to finding low-weight code-
words.

At the end of the day, as we will see in Sect. 6, the parameters we consider in
this paper are only slightly bigger than those previously proposed in [BBPS21].
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4 A New Formulation

In this section we show that LEP can be reformulated using a more convenient
notion of equivalence, which allows for a much more compact representation for
the solution to the equivalence problem. We introduce a new definition of equiv-
alence between codes, which we call Information Set (IS) - Linear Equivalence,
and then define the associated decisional problem, which we call IS-LEP. The
main difference between LEP and IS-LEP is in that, for the latter, one is inter-
ested only in how the linear map acts on an information set (i.e., on k positions
instead of n). We then show that IS-LEP is effectively the same as LEP, namely,
that any “YES” (resp., “NO”) instance of IS-LEP is also a “YES” (resp., “NO”)
instance for LEP.

4.1 Splitting Monomials with Respect to Information Sets

To begin, we introduce some additional notation, which will help improve the
readability of the next topics.

Definition 2. Let G “ (g1, · · · ,gn) P F
kˆn
q , μ “ (π,v) P Mn and G′ “

μ(G). For any J ′ “ {j′
1, · · · , j′

k} Ď {1, · · · , n}, we define J “ π´1(J ′) “{
π´1(j′) | j′ P J ′}. We define μ(J �→J ′) P Mk as the monomial transformation

such that μ(J �→J ′)(GJ ) “ G′
J ′ . Equivalently, we define μ(\J �→\J ′) P Mn´k as the

monomial transformation such that μ(\J �→\J ′)(G{1,··· ,n}\J) “ G′
{1,··· ,n}\J ′ .

Determining μ(J �→J ′) from the knowledge of μ “ (π,v) and J ′ is easy. Indeed,
let us express μ(J �→J ′) “ (

π(J �→J ′),v(J �→J ′)
)
. Then, it is enough to apply the

following rule: if the i-th column of G′
J ′ corresponds to the j-th column of GJ ,

multiplied by α, then we set π(J �→J ′)(j) “ i and v
(J �→J ′)
i “ α. With analogous

reasoning, one can compute μ(\J �→\J ′).
Splitting the action of a monomial with respect to a set J ′ is useful to under-

stand how the map acts inside and outside an information set. Indeed, it is easy
to verify that the following relation holds

G′ “ S · μ(G) “⇒
{
G′

J ′ “ S · μ(J �→J ′)(GJ ),
G′

{1,··· ,n}\J ′ “ S · μ(\J �→\J ′)(G{1,··· ,n}\J).
(1)

We will frequently make use of the above relations to describe how monomial
transformations act on specific sets of coordinates.

Example 1. Let us consider the example of n “ 8 and μ “ (π,v), with π “
(6, 5, 1, 3, 4, 7, 8, 2) and v “ (2, 3, 1, 5, 3, 4, 6, 1) over F7. We describe how μ can
be split, considering the set J ′ “ {2, 3, 6, 7}. We observe that the permutation
acts as follows (we are denoting a′ “ π(a)):
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a1

a′
1

a2

a′
2

a3

a′
3

a4

a′
4

a5

a′
5

a6

a′
6

a7

a′
7

a8

a′
8

We have J “ {1, 4, 6, 8}, π(J �→J ′) “ (3, 2, 4, 1) and π(\J �→\J ′) “ (3, 1, 2, 4). Con-
sidering also the action of v, we have that μ(a) is:

2a3 3a8 1a4 5a5 3a2 4a1 6a6 1a7

Hence, v(J �→J ′) “ (3, 1, 4, 6) and v(\J �→\J ′) “ (2, 5, 3, 1).

4.2 LEP with Information Sets

We are now ready to introduce the new notion of equivalence between codes
which, at a first glance, may seem rather different from the traditional notion
used to define LEP. Perhaps surprisingly, we are able to prove that the two
notions are exactly the same.

Definition 3 (Information Set (IS) - Linear Equivalence). We say that
two codes C ,C ′ Ď F

n
q are Information Set (IS) linearly equivalent, and write

C
∗„ C ′, if there exist monomial transformations μ̃ P Mn, ζ P Mn´k and an

information set J ′ for both C ′ and C̃ “ μ̃(C ) such that, for any codeword c̃ P C̃ ,
there exists a codeword in c′ P C ′ with

i) c̃J ′ “ c′
J ′ ;

ii) c̃{1,··· ,n}\J ′ “ ζ
(
c′

{1,··· ,n}\J ′
)
.

Equivalently, given generator matrices G̃,G′ P F
kˆn
q for C̃ and C ′, it must be

G̃´1
J ′ G̃{1,··· ,n}\J ′ “ ζ

(
G′´1

J ′ G′
{1,··· ,n}\J ′

)
.

In other words, the two systematic generator matrices (computed with respect to
the set J ′) have the non-systematic parts which are identical, up to a monomial
transformation.

We associate this new notion of equivalence with the following decisional
problem.

Problem 2 (Information Set-Linear Equivalence (IS-LEP)). Given two
linear codes C ,C ′, determine whether C

∗„ C ′.
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In the next theorem we prove the core result of this section: LEP is equivalent
to IS-LEP. Technically, we show that two codes are linearly equivalent if and
only if they are also IS-linearly equivalent: this implies that any “YES” (resp.
“NO”) instance (C ,C ′) for LEP is a “YES” (resp. “NO”) instance for IS-LEP,
and viceversa. Hence, IS-linear equivalence is merely a different formulation of
the traditional notion of linear equivalence.

Before showing the full proof, as a warm up, we provide a small example
which captures the essence of the relation between LEP and IS-LEP. Let C and
C ′ be two equivalent codes and assume that J ′ “ {1, · · · , k} is an information
set for C ′. First, note that any solution μ for LEP is also a solution for IS-LEP:
this corresponds to the special case of ζ in Definition 3 being the identity. Now,
let μ̃ be a solution for IS-LEP and C̃ “ μ̃(C ): since we are considering RREF
to the first k columns, we get

SF(C ′) “ (
Ik,A

)
, SF(C̃ ) “ (

Ik, ζ(A)
)
.

Then, C̃ „ C ′ are equivalent. But since C̃ „ C , by transitive property we get
that C „ C ′. The proof of the following theorem makes use of the above ideas,
but does not restrict to a particular choice for J ′; also, the proof is constructive,
i.e., it shows explicit relations between solutions for LEP and IS-LEP.

Theorem 1 (Equivalence between IS-LEP and LEP). For any pair of
linear codes C ,C ′ Ď F

n
q , it holds C „ C ′ ⇐⇒ C

∗„ C ′.

Proof. We first prove that C „ C ′ implies C ∗„ C ′. Let us consider two generator
matrices G,G′ P F

kˆn
q for two equivalent codes C and C ′. Consequently, it holds

G′ “ Sμ(G) for some non-singular S P F
kˆk
q and μ “ (π,v) P Mn. We now show

that C and C ′ are also IS-linearly equivalent. Let J ′ be an information set for
C ′, and J “ π´1(J ′) (recall Definition 2). Because of (1), we have

G′
J ′ “ Sμ(J �→J ′)(GJ ), G′

{1,··· ,n}\J ′ “ Sμ(\J �→\J ′)(G{1,··· ,n}\J).

Representing the action of monomials through matrices, we rewrite the above
relations as

G′
J ′ “ SGJM′, G′

{1,··· ,n}\J ′ “ SG{1,··· ,n}\JM′′,

with M′ P F
kˆk
q and M′′ P F

(n´k)ˆ(n´k)
q . Reducing G′ with respect to J ′, and

considering only the non-systematic part, we obtain the matrix

A “ G′´1
J ′ G′

{1,··· ,n}\J ′

“ (
SGJM′)´1

SG{1,··· ,n}\JM′′

“ M′´1G´1
J G{1,··· ,n}\JM′′.

Let μ̃ P Mn be an arbitrary monomial such that μ̃(J �→J ′) “ μ(J �→J ′) and,
generically, μ̃(\J �→\J ′) “ μ(\J �→\J ′) ◦ ζ, where ζ P Mn´k can be any mono-
mial transformation. Using again matrices to represent monomials, we associate
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μ̃(J �→J ′) “ μ(J �→J ′) with M′ and μ̃(\J �→\J ′) with M̃′′ which, in general, is differ-
ent from M′′. Let G̃ “ μ̃(G), and consider the non-systematic part of the matrix
we obtain by row reducing with respect to J ′. Taking again (1) into account, we
have

G̃´1
J ′ G̃{1,··· ,n}\J ′ “ (

GJM′)´1
G{1,··· ,n}\JM̃′′

“ M′´1G´1
J G{1,··· ,n}\J︸ ︷︷ ︸
AM′′´1

M̃′′

“ AM′′´1M̃′′ “ ζ(A)

with ζ P Mn´k being the monomial associated to M′′´1M̃′′. This proves that C
and C ′ are indeed IS-linearly equivalent.

We now show the other way around, i.e., that two codes that are IS-linearly
equivalent are also linearly equivalent. We consider again two generator matrices
G and G′ and assume we know an information set J ′ and monomials μ̃ P Mn,
ζ P Mn´k that satisfy the requirements for IS-linear equivalence. Let G̃ “ μ̃(G).
The non-systematic parts of G′ and G̃, when reducing with respect to J ′, are

A′ “ G′´1
J ′ G′

{1,··· ,n}\J ′ , Ã “ G̃´1
J ′ G̃{1,··· ,n}\J ′ .

By definition of IS-linear equivalence, we have that A′ and Ã are linearly equiv-
alent, i.e.,

Ã “ ζ(A′) “ A′Z “ G′´1
J ′ G′

{1,··· ,n}\J ′Z,

for some monomial ζ P Mn´k associated with the matrix Z P F
(n´k)ˆ(n´k)
q . Let

us again split the action of μ̃, using the information set J ′. We write μ̃ “ (π̃, ṽ),
set J “ π̃´1(J ′) and represent μ̃(J �→J ′) and μ̃(\J �→\J ′) through the monomial
matrices M̃′ P F

kˆk
q and M̃′′ P F

(n´k)ˆ(n´k)
q . We then have

G̃J ′ “ μ̃(J �→J ′)(GJ) “ GJM̃′,

G̃{1,··· ,n}\J ′ “ μ̃(\J �→\J ′)(G{1,··· ,n}\J) “ G{1,··· ,n}\JM̃′′.

Thus

Ã “ G̃´1
J ′ G̃{1,··· ,n}\J ′

“ (
GJM̃′)´1(

G{1,··· ,n}\JM̃′′).

Recalling that Ã “ A′Z “⇒ ÃZ´1 “ A′, we get

(
GJM̃′)´1

G{1,··· ,n}\J︸ ︷︷ ︸
˜A

M̃′′Z´1 “ G′´1
J ′ G′

{1,··· ,n}\J ′
︸ ︷︷ ︸

A′

,

from which
G{1,··· ,n}\JM̃′′Z´1 “ GJM̃′G′´1

J ′ G′
{1,··· ,n}\J ′ . (2)
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We are now finally ready to determine the S P GLk and μ P Mn that would
solve LEP on G and G′. Indeed, let μ such that μ(J �→J ′) corresponds to M̃′ and
μ(\J �→\J ′) corresponds to M̃′′Z´1, and S “ G′

J ′M̃′´1G´1
J . In the positions of

Sμ(G) which are indexed by J ′, we have

Sμ(J �→J ′)(GJ ) “ SGJM̃′

“ G′
J ′M̃′´1G´1

J GJM̃′ “ G′
J ′ ,

while in the positions which are not indexed by J ′,

Sμ(\J �→\J ′)(G) “ SG{1,··· ,n}\JM̃′′Z´1

“ G′
J ′M̃′´1G´1

J︸ ︷︷ ︸
S

GJM̃′G′´1
J ′ G′

{1,··· ,n}\J ′
︸ ︷︷ ︸

G{1,··· ,n}\J
˜M′′Z´1

(Using (2))

“ G′
{1,··· ,n}\J ′ .

��
We conclude this section by showing how, from the knowledge of a solution

for LEP, one can derive a solution to IS-LEP, which is more convenient in terms
of communication cost. This depends on how the action of a monomial can be
represented. To this end, we introduce the following functions, which we will use
to represent the action of μ̃.

Definition 4. Let μ “ (π,v) P Mn. For J ′ “ {j′
1, · · · , j′

k} Ď {1, · · · , n} with
size k, we define

Trunc(μ, J ′) “ (
π∗,v∗)

“
((

π´1(j′
1), π

´1(j′
2), · · · , π´1(j′

k)
)

,
(
vj′

1
, vj′

2
, · · · , vj′

k

))
.

Notice that π∗ is an ordered subset of {1, · · · , n} with size k, that is, π∗ “
(j∗

1 , · · · , j∗
k). Also, v∗ “ (v∗

1 , · · · , v∗
k) “ vJ ′ is represented as a length-k vector

over F
∗
q .

Definition 5. We define Apply
(
(π∗,v∗),G

)
as the function that outputs the

matrix U P F
kˆk
q such that, if the i-th entry of π∗ is j P {1, · · · , n}, has i-th

column ui “ v∗
i gj, where gj denotes the j-column of G.

Remark 1. The elements of π∗ and J “ π´1(J ′) are the same, but have a different
order. While J represents an information set (and, coherently with the notation
we are using, is a non-ordered set), π∗ is meant to describe how π acts on the
coordinates which are moved to J ′. Consequently, it is important that π∗ is seen
as an ordered set. Notice that π∗ describes the action of π only on k coordinates
(hence, the function is called Trunc, which stand for truncated).

Remark 2. If J ′ is the information set that has been used to compute (π∗,v∗)
using the monomial μ and J “ π´1(J ′), then U “ μ(J �→J ′)(G).
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We first observe that representing π∗ requires k log2(n) bits while v∗ takes
k log2(q ´ 1) bits. The implication on signatures based on LEP is easy to
see. In fact, all existing schemes communicate monomial transformations using
n log2(n)`n log2(q´1) bits, i.e., the action of the monomial is fully represented.
We are aiming at reducing this size thanks to the convenient representation we
have defined above. However, this requires some additional technical steps (e.g.
modifications in how commitments are computed). Thus, we postpone this dis-
cussion to the next section, and we conclude the current one by showing that
communicating Trunc(μ, J ′) is enough to verify a solution to IS-LEP, in a time
which is essentially not modified with respect to LEP.

Proposition 1. Let C and C ′ be two linearly equivalent codes, i.e., there exists
μ “ (π,v) P Mn such that C ′ “ μ(C ). Let G,G′ P F

kˆn
q be generator matrices

for such codes. To show that C and C ′ are IS-linearly equivalent, it is enough
to provide J ′ and Trunc(μ, J ′). Verifying the solution for IS-LEP takes a time
which is polynomial in n and, in practice, is the same as computing two RREFs.

Proof. Since the codes are linearly equivalent, there exists S P GLk such that
G′ “ Sμ(G). Let us indicate J “ π´1(J ′); notice that J is known because of π∗

(see Remark 1). Thanks to (1), we can write

G′
J ′ “ Sμ(J �→J ′)(GJ ),

G′
{1,··· ,n}\J ′ “ Sμ(\J �→\J ′)(G{1,··· ,n}\J).

Let U “ Apply
(
(π∗,v∗),G

)
, and notice that

U “ G{1,··· ,n}\π∗ “ G{1,··· ,n}\J .

Indeed, we consider that π∗ is identical to J , up to a reordering of the elements,
hence {1, · · · , n} \ {j∗

1 , · · · , j∗
k} “ {1, · · · , n} \ J . Let μ̃ P Mn be any monomial

such that Trunc(μ, J ′) “ Trunc(μ̃, J ′) and G̃ “ μ̃(G). We now compute the
RREFs of both G′ and G̃ with respect to J ′. The non-systematic parts of the
two matrices are, respectively,

A′ “ G′´1
J ′ G′

{1,··· ,n}\J ′

“ (
S · μ(J �→J ′)(GJ)

)´1 · S · μ(\J �→\J ′)(G{1,··· ,n}\J)

“ (
μ(J �→J ′)(GJ )

)´1 · μ(\J �→\J ′)(G{1,··· ,n}\J)

“ (
μ(J �→J ′)(GJ )

)´1 · G{1,··· ,n}\JZ,

and

Ã “ G̃´1
J ′ G̃{1,··· ,n}\J ′

“ (
μ(J �→J ′)(GJ )

)´1 · G{1,··· ,n}\J

“ A′ · Z´1,
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where Z is the matrix associated to μ(\J �→\J ′). To conclude verification, one
should acknowledge that indeed A′ and Ã are identical, up to a monomial trans-
formation. This can be easily verified. For instance, it is enough to consider scalar
multiples of the columns in A′ and search whether Ã contains an identical col-
umn. Namely, we start with i “ 1 (i.e., consider the first column a′

i “ a′
1): if,

in Ã, we find a column in position j P {1, · · · , n ´ k} and such that za′
1 “ ã′

j ,
then we know that ζ moves the first coordinate in position j, and scales it by z.
We then repeat the reasoning, considering i “ 2 and searching for the matching
column in the positions {1, · · · , n ´ k} \ {j}. Iterating this procedure, we have
that we successfully end the search (i.e., we find a match for all columns of A′) if
and only if there indeed exists such a monomial Z. The cost of this procedure is
O(n2), which is smaller than that of computing the RREFs, which is in O(n3).
��
In the next section, we show how IS-LEP can be employed to build ZK proofs.
We anticipate that, in such applications, we will not need to transmit J ′; fur-
thermore, we will use a different approach to determine if the non systematic
parts of two matrices are equal up to a monomial transformation (based on the
computation of an ad-hoc invariant).

Remark 3. Even though we stated LEP and IS-LEP as decisional problems,
they can be reformulated as search problems. The proofs of Theorem 1 and
Proposition 1 show, constructively, reductions in both ways, even for the search
versions.

Example 2. Let q “ 11, n “ 5 and k “ 2. Let C be the code generated by

G “
(

9 3 1 1 4
2 5 5 10 1

)
.

Let μ “ (π,v) with π “ (2, 1, 5, 3, 4) and v “ (5, 6, 8, 9, 3) and C ′ “ μ(C ). To

represent the code, we use the generator matrix G′ “ Sμ(G) with S “
(

0 4
4 10

)
,

so that

G′ “
(

1 4 1 3 5
2 6 7 3 8

)
.

Let J ′ “ {1, 4}, which is an information set for C ′ since G′
J ′ “

(
1 3
2 3

)
is non-

singular (its determinant is 8). We have Trunc(μ, J ′) “ (π∗,v∗) where π∗ “
{π´1(1), π´1(4)} “ {j∗

1 , j∗
2} “ {2, 5} and v∗ “ vJ ′ “ (v∗

1 , v
∗
2) “ (5, 9). We now

consider U “ Apply
(
(π∗,v∗),G

)
and have

U “ (
v∗
1gj∗

1
, v∗

2gj∗
2

) “ (
5g2 , 9g5

) “
(

5 ·
(

3
5

)
, 9 ·

(
4
1

))
“

(
4 3
3 9

)
.

Since {1, · · · , n} \ {j∗
1 , j∗

2} “ {1, 3, 4}, we have

G{1,··· ,n}\π∗ “ (g1,g3,g4) “
(

9 1 1
2 5 10

)
.
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We now compute the non-systematic part of G′, after RREF with respect to J ′,
and obtain

A′ “ G′´1
J ′ G′

{1,··· ,n}\J ′ “ (g′
1,g

′
4)

´1(g′
2,g

′
3,g

′
5)

“
(

1 3
2 3

)´1 (
4 1 5
6 7 8

)
“

(
2 6 3
8 2 8

)
.

Finally, we have

Ã “ U´1G{1,··· ,n}\π∗ “
(

4 3
3 9

)´1 (
9 1 1
2 5 10

)
“

(
4 1 9
5 10 3

)
.

Now, we observe that

a′
1 “ 6 · ã1, a′

2 “ 8 · ã3, ã3 “ 8 · a′
2.

This confirms that A′ and Ã are equal, up to a monomial transformation.

5 Compact Proofs of Equivalence from IS-LEP

Recall that, in a proof-of-knowledge constructed from LEP, the protocol goes as
follows (see Fig. 1):

– there are two equivalent (public) codes C and C′, with C′ “ σ(C) for some
(secret) map μ;

– the prover samples a random transformation τ P Mn and commits to C∗ “
τ(C); this is done by applying a function Commit(C∗) whose output is h P
{0; 1}2λ;

– the verifier either asks for the random map (i.e., a proof that C „ C∗) and
receives τ , or for the one involving the public code (i.e., a proof that C∗ „ C′)
and receives τ ′ “ τ ◦ μ´1;

– the verifier either checks that h “ Commit
(
τ(C)

)
, or that h “ Commit

(
τ ′(C′)

)
.

Note that we must necessarily assume that the commitment is obtained via a
hash function, since otherwise one would need to publish C∗, which requires at
least k(n ´ k) log2(q) bits (assuming a generator matrix in systematic form is
employed). Currently, the commitment function is implemented as

Commit “ Hash
(
SF(C)

)
: C 	→ {0, 1}2λ.

This works well since it satisfies two fundamental properties:

i) the systematic generator matrix is an invariant of the code;
ii) the commitment function is relatively easy to compute.
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The second property is obviously necessary to have a practical scheme, while
the first one is crucial to guarantee verification, when the verifier asks for the
equivalence on the right. Indeed, in this case he computes τ ′(G′), which generates
the same code as τ(G). However, the two generator matrices are not the same:
generically, it holds that τ(G′) “ S · τ ′(G) for some non-singular S P GLk.
Thanks to use of the systematic form, we get rid of this discrepancy.

To put it differently, the systematic form is used as an easy-to-compute rep-
resentative for a code1. As we have seen in the previous section, with the IS-LEP
formulation we can reduce significantly the communication cost. However, the
commitment function which is currently employed will not work anymore, since
the prover provides only a portion of τ ′. In this section we describe an efficient
solution to circumvent this issue. This requires to modify the commitment func-
tion and use a new invariant which, fortunately, can be computed with a cost
which is comparable with that of a RREF. This leads to a direct improvement in
all schemes based on LEP, for what concerns all relevant aspects: we reduce the
communication cost (in practice k « 0.5n so we almost halve it) and essentially
keep the computational cost unchanged. Also, we do not introduce a new secu-
rity assumption since, as we showed in the previous section, IS-LEP and LEP
are two different formulations of the very same problem.

5.1 A New Invariant for Codes

Let us recall the concept of lexicographic ordering for vectors and matrices over
a finite field.

Definition 6 (Lexicographic Ordering). We define a lexicographic ordering
over Fq “ {x1, x2, · · · , xq} as

x1

Lex
< x2

Lex
< · · · Lex

< xq.

For two vectors a,b, we write a
Lex
< b if there exists an i such that aj “ bj for all

j < i, and ai

Lex
< bi. Analogously, for two matrices A and B, we write A

Lex
< B

if there exists an i such that aj “ bj for all j < i and ai

Lex
< bi, where ai and

bi denote the i-th columns of A and B, respectively. We write A
Lexď B if either

A “ B or A
Lex
< B.

Using the notion of lexicographic ordering defined above, we can define a rep-
resentative for the orbit of a matrix, under the action of monomial transforma-
tions2.

1 There exist other invariants, but their computation is much harder. For instance,
the prover may commit to the hash of the weight enumerator function. However, its
computation requires O(qk) operations and is obviously unfeasible.

2 In the context of code linear equivalence, these concepts have been first used by
Beullens [Beu21].
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Definition 7 (First Lexicographic Matrix). Given A P F
mˆu
q , we denote

its orbit under the action of Mu as Mu(A) “ {τ(A) |τ P Mu }. Then, we define
MinLex(A) as the function that returns the first lexicographic matrix in the orbit,
that is

MinLex(A) “ A∗ ⇐⇒ A∗ Lexď Â, ∀Â P Mu(A).

Note that the above definitions hold for any arbitrary choice of lexicographic
ordering. However, since we are mostly interested in prime finite fields, from

now on we focus on the simplest and most natural ordering, that is 0
Lex
< 1

Lex
<

2
Lex
< · · · Lex

< q ´ 1. If A has m rows and u columns, computing MinLex takes in
the worst case O(um) operations over Fq: indeed, it is enough to first scale each
column so that the first non null element is 1 and then sort the columns so that
they are in ascending lexicographic ordering. An example is given in Fig. 3.

Fig. 3. Example of computation of MinLex, for a matrix with m “ 2 rows, u “ 4
columns, with values over F11.

We finally have all the necessary tools to define our proposed invariant func-
tion, which we call SF∗. Details about how the function operates are given in
Algorithm 1. Basically, it computes the systematic form and then computes
MinLex on the non systematic part. Since computing MinLex is much easier than
a RREF, computing SF∗ comes with a cost which is slightly larger than that of
SF. We observe that, in the wide majority of cases, the employed information set
is J∗ “ {1, · · · , k} (i.e., the one that is tested first). Indeed, the probability that
this set is valid can be estimated by considering the probability that a random
k ˆ k matrix over Fq is non-singular, that is

k´1∏

i“1

1 ´ q´i « 1 ´ 1
q
.

For instance, for q “ 127, this is approximately 0.992.
To conclude this section, we show that the function SF∗ possesses exactly the

invariance properties we need.

Proposition 2. Let G,G′ P F
kˆn
q be the generator matrices of two linearly

equivalent codes, i.e., G′ “ Sμ(G) for some S P GLk and μ P Mn. Let J∗,A∗ “
SF∗(G′). Let (π∗,v∗) “ Trunc(μ, J∗) and U “ Apply

(
(π∗,v∗),G

)
. Then, for

any μ and any S, it holds that

A∗ “ MinLex(U´1G{1,··· ,n}\π∗).
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Proof. Let J be the set of columns that get moved to J∗. Because of RREF, the
effect of S gets canceled. So, RREF with respect to J∗ yields

A′ “ U´1G′
{1,··· ,n}\J∗ “ U´1μ(J �→J∗)(G{1,··· ,n}\J),

which is identical (up to a monomial transformation) to

A′′ “ U´1G{1,··· ,n}\π∗ “ U´1G{1,··· ,n}\J .

This means that they are in the same orbit, i.e., A′ P Mn´k(A′′): computation
of MinLex returns the same matrix. ��

Algorithm 1: Function SF∗

Input: matrix G P F
kˆn
q

Output: set J∗ Ď {1, · · · , n}, matrix A∗ P F
kˆ(n´k)
q

1 Find the first J∗ Ď {1, · · · , n} of size k and such that Rank(GJ∗) “ k;
2 Set A “ G´1

J∗G{1,··· ,n}\J∗ ;// Non systematic part after RREF

3 Compute A∗ “ MinLex(A);// Compute first lexicographic matrix

4 Return J∗, A∗.

5.2 Proof-of-Knowledge with IS-LEP

We now describe how the proof-of-knowledge protocol used in the family of LESS
schemes [BMPS20,BBPS21,BBN+22] can be reformulated to take into account
IS-LEP. In Fig. 4 we have reported the description of one round of the LESS-FM
protocol, taking into account verification based on IS-LEP.

The protocol possesses all the properties that are required by a ZK proof of
knowledge. Completeness holds because of Proposition 2, while Zero-Knowledge
is guaranteed by the fact that (π∗,v∗) is a truncated representation of τ ′, which
is uniformly distributed over Mn. The only property which is not obvious is
special soundness; for this reason, we present a detailed analysis next.

Proposition 3. The protocol of Fig. 4 is 2-special sound.

Proof. Let us consider two accepting transcripts, associated with the same com-
mitment h and two different challenges b and b̃. We assume that both b and b̃
are different from 0 (the case where one of the challenges is 0 trivially follows
and is therefore omitted). We denote by (π∗,v∗) the response for challenge b,
and by (π̃∗, ṽ∗) the one for challenge b̃. We now show that, from the knowledge
of these two accepting transcripts, either a hash collision has been found, or a
monomial map from Cb to C

˜b can be computed in polynomial time.
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Fig. 4. One round of LESS-FM using IS-LEP

Let U “ Apply
(
(π∗,v∗, )Gb

)
and Ũ “ Apply

(
(π̃∗, ṽ∗),G

˜b

)
. Since both are

accepting transcripts, it follows that either a hash collision has been found, or

MinLex
(
U´1(G′

b){1,··· ,n}\π∗
︸ ︷︷ ︸

A

) “ MinLex
(
Ũ´1(G′

˜b
){1,··· ,n}\π̃∗

︸ ︷︷ ︸
˜A

)
.

This means that one knows two monomial transformations ζ, ζ̃ P Mn´k such
that ζ(A) “ ζ̃(Ã) “ A∗.

Remember that what Apply does is applying a monomial transformation that
modifies only the k coordinates which are included in π∗. In other words, starting
from Gb, one possesses the generator matrix for an equivalent code, in the form(
U,G′

b{1,··· ,n}\π∗
)
. Let us denote by σ P Mn the monomial such that σ(G′

b) “
(
U,G′

b{1,··· ,n}\π∗
)
. Doing RREF with respect to the first k positions, we find a

generator matrix for the same code, in the form
(
Ik,A

)
. If we now apply another

monomial transformation σ′ P Mn, acting as the identity in the first k positions
and as ζ in the last n ´ k positions, we end up with

(
Ik, ζ(A)

) “ (
Ik,A∗). This

means that Cb, the code generated by Gb, is equivalent to the one C ∗ generated
by

(
Ik,A∗): the equivalence between the two codes is given by σ′ ◦ σ.

The same chain of transformations can be applied to G′
˜b
, and would bring

us to the code generated by
(
Ik, ζ̃(Ã)

) “ (
Ik,A∗). To summarize all the trans-

formations we used, see Fig. 5.
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Fig. 5. Transformations from Cb and C
˜b to a common code C ∗

In the end, we found a code C ∗ which is equivalent to both Cb and C
˜b, and we

also know the transformations that map Cb into C ∗ and C
˜b into C ∗. Combining

such transformations, we are able to find a map between Cb and C
˜b. ��

For what concerns computational complexity, as in LESS-FM, the most time
consuming operation remains the systematic form computation.

6 New Instances for LESS Signatures

In this section, we report on the practical impact of our new techniques, in the
context of LESS, as well as schemes derived from it. To begin with, we recall
the parameters that were proposed in LESS-FM. Table 1, below, is an excerpt
from [BBPS21].

Table 1. Parameter sets for LESS-FM, for λ “ 128 classical bits of security.

Optimization Criterion Type Code Params Prot. Params pk (KiB) sig (KiB)

n k q t ω s

Min. pk size Mono 198 94 251 283 28 2 9.77 15.2

Min. sig size Perm 235 108 251 66 19 16 205.74 5.25

Min. pk + sig size Perm 230 115 127 233 31 2 11.57 10.39
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At this point, a few comments on these parameters are due. First, note that
two out of three parameter sets use permutation equivalence, namely those
which aim at minimizing the signature in some way. This make sense, since
a permutation can be described utilizing only n log2(n) bits, as opposed to the
n log2(n)`n log2(q´1) necessary for a monomial matrix; the latter term includes
in fact the cost of storing the non-zero scaling factors. However, in this work (as
well as subsequent ones) we will focus mainly on the monomial case. In fact,
using permutations requires additional care in the definition of the protocol.
For instance, as we have seen in Sect. 3, it makes the scheme vulnerable to cer-
tain types of algebraic attacks, so that it is not safe to use random codes. This
presents a challenge in practice, as generating self-orthogonal codes can be quite
expensive.

Secondly, as mentioned at the end of Sect. 3, we adopt a new, conservative
criterion for choosing parameters with respect to best attacks, which leads to
different choices for code lengths and dimensions. Furthermore, we include in
our thought process some considerations connected to implementation efficiency,
which were absent in the LESS-FM work: for instance, we restrict our attention
to the value q “ 127, which is optimal in this sense, and avoid parameters which
would yield excessive data sizes. With respect to the latter, we decide then to
remain within the psychological threshold of 100 kB.

Finally, as we transition from a mostly theoretical design, to one with a
practical outlook, we provide parameters for higher security levels. For this, we
follow NIST’s guidance and align with their proposed definitions for categories
1, 3 and 5. We report the new data in Table 2, with a slightly different layout.
Indeed, we no longer need to specify the type of equivalence considered, since this
is always monomial. Also, the optimization criterion is no longer purely aimed
at “minimizing” quantities. Instead, we use the nomenclature LESS-αβ which
recalls simultaneously the security level achieved (via the number α P {1, 3, 5}),
and the characteristics of the resulting choice (via the letter β). To be precise,
we use “b” for “balanced”, i.e. a set which yields similar sizes for public key and
signature; “s” for “short”, i.e. a set which sacrifices public-key size in favor of
signature; and “i”, only for category 1, for an “intermediate” set.

To illustrate the advantage of our technique, in Table 2 we have reported
signature sizes for both the scheme with, and without the new technique; to do
so, we have use the format x(y) where x is the optimized signature size, and y
the unoptimized one.

Next, we report some timings. We start with those obtained for an unopti-
mized reference implementation in ANSI C, which are to be considered purely in
the spirit of exemplification. The values are collected on an Intel Core i7-12700K,
on a P-core, clocked at 4.9 GHz. Clock cycle values collected via rtdscp, as aver-
ages of 100 primitive runs. The computer is endowed with 64 GiB of PC5-19200
DDR5 and is running Debian 11. The source was compiled with gcc 10.2.1-
20210110 (version packaged with the distribution), with -O3 -march=native
compilation options (Table 3).
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Table 2. New parameter sets for LESS, for different security categories.

NIST Cat. Parameter Set Code Params Prot. Params pk (KiB) sig (KiB)

n k q t ω s

1 LESS-1b 252 126 127 247 30 2 13.6 8.4 (15.3)

LESS-1i 244 20 4 40.8 5.8 (10.7)

LESS-1s 198 17 8 95.2 5.0 (9.2)

3 LESS-3b 400 200 127 759 33 2 34.2 16.8 (30.5)

LESS-3s 895 26 3 68.5 13.4 (24.2)

5 LESS-5b 548 274 127 1352 40 2 64.2 29.8 (53.8)

LESS-5s 907 37 3 128.5 26.6 (48.8)

Table 3. Timings for the reference implementation of LESS.

NIST Cat. Parameter Set KeyGen (Mcycles) Sign (Mcycles) Verify (Mcycles)

1 LESS-1b 3.4 878.7 890.8

LESS-1i 9.8 876.6 883.6

LESS-1s 23.0 703.6 714.7

3 LESS-3b 9.3 7224.1 7315.8

LESS-3s 18.3 8527.4 8608.6

5 LESS-5b 24.4 33787.7 34014.0

LESS-5s 48.0 22621.5 22703.3

To provide a hint at the improved performance that we can obtain by leverag-
ing more advanced tools, we report below the results of an additional implemen-
tation. Since, as explained above, the RREF computation is by far the most
expensive operation, this implementation is realized by amending the ANSI
C reference code with Gaussian Elimination code implemented using AVX2 C
intrinsics. The test system was a Dell OptiPlex XE4, a mid-range 2022 desktop
system with Intel Core i7-12700 CPU running at 2.1 GHz. The test programs
were executed on a single CPU thread with frequency scaling disabled. The sys-
tem has 64GB of physical RAM and was running Ubuntu 22.04.2 LTS Linux
operating system, and the C test code was compiled with gcc 11.3.0 packaged
in that operating system. Compilation and optimization flags were \verb|-Wall
-Wextra -Ofast -march=native|.

To complete our showcase, we report below the data obtained while applying
our technique to the LESS-based ring signature scheme (Table 4).

Table 5 is an excerpt from [BBN+22], with some caveats. First, note that
the parameter s is missing, as the optimization involving multiple codes was
not used; instead, we have a new parameter r corresponding to the size of the
ring of users. Secondly, all the instances presented in [BBN+22] were based on
permutation equivalence (and thus the “Type” column is omitted). In this case,
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Table 4. Timings for the additional implementation of LESS.

NIST Cat. Parameter Set KeyGen (Mcycles) Sign (Mcycles) Verify (Mcycles)

1 LESS-1b 0.9 263.6 271.4

LESS-1i 2.3 254.3 263.4

LESS-1s 5.1 206.6 213.4

3 LESS-3b 2.8 2446.9 2521.4

LESS-3s 5.2 2984.3 3075.1

5 LESS-5b 6.4 10212.6 10458.8

LESS-5s 11.7 6763.2 7016.5

Table 5. Parameter sets for ring signatures based on LESS, for λ “ 128 classical bits
of security.

Parameter Set Code Params Prot. Params pk (kB) sig (kB)

n k q t ω r

I 230 115 127 233 31 23 11.6 8.6 (10.8)

II 26 11.6 (13.8)

III 212 17.5 (19.7)

IV 221 26.5 (28.7)

rather than presenting entirely new parameters based on (IS-)LEP, we simply
calculate the sizes that we would obtain applying our technique to PEP, i.e.
replacing n log2(n) bits with k log2(n) bits whenever a permutation needs to be
transmitted. We use the same x(y) format as above, where now the unoptimized
value y corresponds to the sizes appearing in [BBN+22].

Note that, compared to the reduction obtained for LESS, in the case of ring
signature the improvement is considerably less relevant. This is mainly because
a large part of the signature size, in such a scheme, is comprised of the cost
of transmitting a Merkle proof, which is proportional to the (logarithm) of the
number of users in the ring. It is worth considering, however, that this is exactly
the feature that makes the scheme appealing in the first place, and so we are
satisfied with our improvement being less impactful in this case.
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