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Abstract. A functional commitment allows a user to commit to an
input x ∈ {0, 1}� and later open up the commitment to a value y = f(x)
with respect to some function f . In this work, we focus on schemes
that support fast verification. Specifically, after a preprocessing step that
depends only on f , the verification time as well as the size of the com-
mitment and opening should be sublinear in the input length �, We also
consider the dual setting where the user commits to the function f and
later, opens up the commitment at an input x.

In this work, we develop two (non-interactive) functional commit-
ments that support fast verification. The first construction supports
openings to constant-degree polynomials and has a shorter CRS for a
broad range of settings compared to previous constructions. Our second
construction is a dual functional commitment for arbitrary bounded-
depth Boolean circuits that supports fast verification with security from
falsifiable assumptions. Both schemes are lattice-based and avoid non-
black-box use of cryptographic primitives or lattice sampling algorithms.
Security of both constructions rely on the �-succinct short integer solu-
tions (SIS) assumption, a falsifiable q-type generalization of the SIS
assumption (Preprint 2023).

In addition, we study the challenges of extending lattice-based func-
tional commitments to extractable functional commitments, a notion
that is equivalent to succinct non-interactive arguments (when consider-
ing openings to quadratic relations). We describe a general methodology
that heuristically breaks the extractability of our construction and pro-
vides evidence for the implausibility of the knowledge k-R-ISIS assump-
tion of Albrecht et al. (CRYPTO 2022) that was used in several con-
structions of lattice-based succinct arguments. If we additionally assume
hardness of the standard inhomogeneous SIS assumption, we obtain a
direct attack on a variant of the extractable linear functional commit-
ment of Albrecht et al.

1 Introduction

In a functional commitment scheme [IKO07,BC12,LRY16], a user can com-
mit to a vector x and at a later point in time, provide a short opening to
a value y = f(x) with respect to an (arbitrary) function f . We also con-
sider a dual notion where a user commits to the function f and opens to
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an evaluation at a point x [BNO21,dCP23]. The efficiency requirement on a
functional commitment is both the commitment and the openings are short
(i.e., have size that is sublinear or polylogarithmic in the length of x and the
size of the function f). The security requirement is that an adversary can-
not open up a commitment σ to two distinct values y0 �= y1 with respect
to any function f (or in the dual formulation, with respect to an input
x). In this work, we focus exclusively on non-interactive functional commit-
ments [LRY16,LP20,PPS21,BNO21,ACL+22,BCFL22,dCP23,WW23] in the
standard model (with a common reference string). Functional commitments gen-
eralize notions like vector commitments [LY10,CF13] and polynomial commit-
ments [KZG10,PSTY13] and have found numerous applications to cryptography,
most notably, to efficient constructions of succinct non-interactive arguments
(SNARGs).

Functional Commitments with Fast Verification. Our focus in this work is on
lattice-based functional commitments for general functions. We are specifically
interested in constructions that support fast verification in the preprocessing
model. In this setting, we allow for an initial preprocessing stage that can depend
only on the function f (which operates on inputs of length �) and outputs a short
verification key vkf . Given the preprocessed verification key vkf , we then require
that the verifier running time (and by extension, the size of the commitment and
opening) to be sublinear in the input length �. We can define a similar property
in the dual setting where we preprocess the input x instead of the function f .
Note that having succinct commitments and openings alone does not imply fast
verification. For instance, the verification time in [WW23] is linear in the size
of the function f even though the size of the commitment and the opening only
depend on the depth of f .

In applications where the function of interest is known in advance, prepro-
cessing can significantly reduce verification costs. This is common in settings
like delegation and outsourcing computation. Specifically, for the closely-related
problem of succinct arguments, working in the “preprocessing” model yields the
most succinct constructions [GGPR13,BCI+13,PHGR13,Gro16].

Lattice-Based Functional Commitments. Functional commitments from lattice-
based assumptions have received extensive study in the last few years. Several
works [PPS21,ACL+22,BCFL22,WW23] gave constructions of functional com-
mitments for broad classes of functions from lattice-based assumptions with a
structured CRS. De Castro and Peikert [dCP23] gave a dual functional com-
mitment for all circuits from the standard short integer solutions (SIS) prob-
lem in the uniform random string model. The authors of [KLVW23] consider a
closely-related problem of delegation for RAM programs; their techniques can
be adapted to obtain a functional commitments scheme for Boolean circuits
from the learning with errors (LWE) assumption in the random string model;
see Sect. 1.3 for more details. Their construction relies on non-black-box use of
cryptographic hash functions (as well as lattice sampling algorithms). Our focus
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in this work is on constructions that only make black-box use of cryptographic
algorithms.

If we restrict our attention to lattice-based functional commitments that only
make black-box use of cryptography, the existing constructions with fast verifi-
cation either support constant-degree polynomials [ACL+22] or bounded-width
Boolean circuits [BCFL22]. In the dual setting, we do not have any constructions
with fast verification. We refer to Table 1 for a summary of the current state of
the art.

Table 1. Summary of succinct lattice-based functional commitments. For each scheme,
we report the class of functions they support, the size of the common reference string
crs, the size of the commitment σ, and the size of an opening π as a function of
the function f and the input length �. We assume functions with a single output.
For simplicity, we suppress poly(λ, d, log �) terms throughout the comparison (where d
refers to either the degree of the polynomial or the depth of the circuit). The first set of
constructions (above the solid purple line) are standard functional commitments where
one commits to an input x and opens to a function f while the second set (below the
solid purple line) are dual functional commitments where one commits to a function
f and opens to an input x. We say that a scheme supports “fast verification” (FV) if
after an input-independent preprocessing step, the verification time is sublinear in � and
that it is “black-box” (BB) if it only makes black-box use of cryptographic algorithms.
Note that BASISstruct implies �-succinct SIS [Wee23]. In all constructions, the running
time of the commitment algorithm is linear in the input length.

Scheme Functions |crs| |σ| |π| FV BB Assumption

[KLVW23]∗ Boolean circuits 1 1 1 ✓ ✗ LWE

[BCFL22] width-w, depth-d circuits† w5 1 1 ✓ ✓ twin-k-M -ISIS
[WW23] linear functions �2 1 1 ✓ ✓ BASISstruct

[WW23] depth-d Boolean circuits �2 1 1 ✗ ✓ BASISstruct

[ACL+22] degree-d polynomials† �2d 1 1 ✓ ✓ k-R-ISIS
[BCFL22] degree-d polynomials§ �5d 1 1 ✓ ✓ twin-k-M -ISIS
Cons. 3.2 degree-d polynomials§ �d+1 1 1 ✓ ✓ O(�d)-succinct SIS

[KLVW23]∗ Boolean circuits 1 1 1 ✓ ✗ LWE

[dCP23] depth-d Boolean circuits � 1 � ✗‡ ✓ SIS

Cons. 3.10 depth-d Boolean circuits �2 1 1 ✓ ✓ �-succinct SIS
∗ While [KLVW23] construct delegation for RAM programs, their construction can be
adapted to obtain a functional commitments for all Boolean circuits. We provide more
details in Sect. 1.3.
§ Only supports commitments and openings to small values.
† The width of the circuit w is always at least the input length �. In the case of an
arbitrary dense polynomial of degree d (e.g., a polynomial with �d distinct monomials),
then the width of the circuit computing it is �d.
‡ The [dCP23] construction supports fast verification for certain special cases (e.g.,
vector commitments and polynomial commitments).
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1.1 Our Contributions

In this work, we give two constructions of functional commitments that sup-
port fast verification. Security of both construction rely on the �-succinct SIS
assumption, a falsifiable “q-type” generalization of the SIS assumption intro-
duced by [Wee23]. Notably, this is a weaker assumption than the more structured
BASISstruct assumption from [WW23]. Our first construction supports constant-
degree polynomials and the second is the first dual functional commitment for
(bounded-depth) Boolean circuits with fast verification and only making black-
box use of cryptography. We provide a more detailed comparison to previous
constructions in Table 1 and summarize the main results here.

Functional Commitment for Constant-Degree Polynomials. Our first construc-
tion (Construction 3.2) is a functional commitment for constant-degree polyno-
mials where the size of the CRS scales with �d+1 · poly(λ, d, log �), where d is the
degree of the polynomial, λ is the security parameter, and � is the input length.

For the particular case of opening to quadratic polynomials (an important
special case for delegating computations due to the NP-hardness of deciding
satisfiability of a system of quadratic functions), our construction has a CRS
size of �3. Previous approaches required a CRS that scale with �4 [ACL+22]
or �5 [BCFL22]. More broadly, when considering openings to polynomials of
constant degree d, we achieve a factor of 2 reduction in the exponent for the
CRS size compared to [ACL+22]. Namely, the [ACL+22] construction has a
CRS of size �2d · poly(λ, d, log �), so our construction reduces the exponent from
2d to d + 1. The [BCFL22] scheme has a smaller CRS for the case of sparse
polynomials (e.g., when the width w of the circuit computing the polynomial f
is roughly the input length w ≈ �). Conversely, for dense polynomials with ≈ �d

monomials, and which corresponds to a circuit of width �d, the size of the CRS
is significantly worse for their scheme. While the CRS size of our construction is
worse than that of [WW23], the latter does not support fast verification (except
in the case of linear functions).

On the assumption front, the security of Construction 3.2 follows from the
L-succinct SIS assumption (with L = O(�d)), a falsifiable “q-type” generalization
of the SIS assumption introduced by [Wee23]. This is a weaker assumption than
the BASISstruct assumption used in [WW23] (i.e., is implied by the BASISstruct
assumption), and less structured generalizations of SIS compared to the k-R-
ISIS and twin-k-M -ISIS assumptions used in [ACL+22,BCFL22]. We refer to
Sect. 1.2 and Sect. 3 for an overview of the assumption and construction.

Dual Functional Commitment for Boolean Circuits. Our second construction is
a dual functional commitment for arbitrary (bounded-depth) Boolean circuits
(Construction 3.10). This is the first dual functional commitment scheme based
on falsifiable assumptions that supports succinct openings and verification and
which does not make non-black-box use of cryptography. Previously, [dCP23]
constructed a dual functional commitment from the standard SIS assumption
with short commitments but long openings and thus, slow verification. Specif-
ically, in their scheme, the size of the opening and the running time of the
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verification algorithm scaled linearly with the input size �. In our construction,
the size of the opening is polylogarithmic in the input length, as is verification
(after an initial preprocessing step). On the flip side, the [dCP23] construction
has a transparent CRS whose size scales linearly with � while our construction
has a structured CRS whose size scales quadratically with �. The structured CRS
is used to “compress” the openings (see Sect. 1.2 and Construction 3.10). Security
of our construction also relies on the falsifiable �-succinct SIS assumption.

Extractable Commitments and Cryptanalysis. The authors of [ACL+22] showed
that if the binding property on a functional commitment for quadratic func-
tions was replaced by a stronger extractability property, then it can be used to
obtain a succinct non-interactive argument for NP. A functional commitment is
extractable if for any efficient adversary that outputs a commitment σ and an
opening π to the value y with respect to a function f , there exists an extractor
that outputs an input x such that f(x) = y. Extractable functional commitments
for quadratic functions can be used to obtain a succinct non-interactive argu-
ment (SNARG) for NP (using the fact that satisfiability of quadratic systems
is NP-complete). In this work, we describe a general methodology for cryptana-
lyzing existing approaches for constructing extractable functional commitments.
Notably, we show heuristically that our functional commitment for constant-
degree polynomials is unlikely to satisfy extractability. We then describe a sim-
ilar attack on an adaptation of the [ACL+22] functional commitment for linear
functions. Here, we show that assuming (non-uniform) hardness of the stan-
dard inhomogeneous SIS problem, the variant of [ACL+22] we consider is not
extractable. Alone the way, we also give an oblivious sampling algorithm on
a matrix version of the k-R-ISIS knowledge assumption from [ACL+22]. We
provide an overview in Sect. 1.2 and the details in Sect. 4.

1.2 Technical Overview

In this section, we provide a high-level overview of our approach for constructing
functional commitments with fast verification in the preprocessing model as
well as the challenges in extending these constructions to satisfy the stronger
extractability notion needed to construct preprocessing succinct non-interactive
arguments.

Notation. We start with some basic notation. For a matrix A ∈ Z
n×m
q and

a target vector t ∈ Z
n
q , we write A−1(t) to denote a random variable x ∈

Z
m
q whose entries are distributed according to a discrete Gaussian distribution

conditioned on Ax = t. We can efficiently sample from A−1(t) given a trapdoor
for the matrix A. We write In to denote the identity matrix of dimension n.
We let G ∈ Z

n×m
q denote the standard gadget matrix (i.e., G = In ⊗ gT, where

gT = [1, 2, . . . , 2�log q�]) [MP12], and G−1(·) : Zn
q → Z

m
q denote the usual binary-

decomposition operator.
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The �-Succinct SIS Assumption. Our constructions rely on the �-succinct short
integer solutions (SIS) assumption [Wee23]. For a matrix A r← Z

n×m
q , the stan-

dard SIS problem [Ajt96] is to find a short non-zero solution x ∈ Z
m
q such that

Ax = 0. The �-succinct SIS assumption states that SIS is hard with respect
to A even given a trapdoor for [I� ⊗ A | W] where W r← Z

�n×m
q is a random

narrow matrix. Note that if W ∈ Z
�n×�m
q is wide, then hardness of �-succinct

SIS can be reduced to the hardness of SIS using lattice trapdoor extension tech-
niques [Wee23].

The �-succinct SIS assumption is a weaker assumption that the structured
BASISstruct assumption used in [WW23] for constructing functional commit-
ments; notably, the BASISstruct assumption from [WW23] is an instance of the
�-succinct SIS assumption with a structured W. While �-succinct SIS is a new
and non-standard assumption, it is a falsifiable assumption, and can be viewed
as a “q-type” analog of the SIS assumption. We note that it is also implied by
the “evasive LWE” assumption [Wee22,Tsa22], which is an assumption that has
been used successfully in several other recent works [WWW22,VWW22].

1.2.1 A Functional Commitment Scheme for Quadratic Polynomials
Here, we describe our approach for constructing a functional commitment for
constant-degree polynomials on �-dimensional inputs. Specifically, the committer
should be able to commit to an input x ∈ Z

�
q and then subsequently open up

the commitment to f(x) where f is a constant-degree polynomial. For simplicity
of exposition, we will focus on the case of quadratic polynomials, and defer the
generalization to higher-degree polynomials to Sect. 3.

The Wee-Wu Scheme. We start with a quick recap of the functional commitment
for circuits from [WW23] based on the BASISstruct assumption (c.f., [WW23,
Remark 4.13]), adapted to the �-succinct SIS assumption.1 As we explain below,
although the [WW23] construction shares a similar verification relation as our
construction, it does not appear to support fast verification. To describe the
construction, we first parse the matrix W ∈ Z

�n×m
q from the �-succinct SIS

assumption as the vertical concatenation of matrices W(1), . . . ,W(�) ∈ Z
n×m
q .

A commitment to a (short) input vector x ∈ Z
�
q consists of a short matrix

C ∈ Z
m×m along with short matrices Vi satisfying the following relation:

W(i)C = xiG − AVi

Then, for all i, j ∈ [�],

(W(i)C) · G−1(W(j)C) = xiW(j)C − AViG−1(W(j)C)

= xixj · G − A · (xiVj +ViG−1(W(j)C)
︸ ︷︷ ︸

Ṽij

)

1 In the full version of this paper, we provide the formal description and analysis of
[WW23] using the �-succinct SIS assumption.
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Observe that Ṽi,j = xiVj + ViC is small since xi, Vi, Vj , and C are all
small. We now view Ṽij as the opening for C to the quadratic relation xixj .
Furthermore, this extends readily to circuits following [BGG+14,GVW15b]. For
the specific case of a general quadratic polynomial f(x) =

∑

i,j∈[�] γijxixj , the
left-hand side of the verification relation becomes

∑

i,j∈[�]

γij(W(i)C) · G−1(W(j)C).

We do not know how to decompose this computation into a slow preprocessing
phase that is independent of C, followed by a fast computation on C. The anal-
ogous expression in the functional commitment scheme of [ACL+22] is given
by

∑

i,j∈[�] γijw
(i)c · w(j)c where w(i), w(j), c are ring elements. Since ring mul-

tiplication is commutative (unlike matrix multiplication), this can be rewritten
as (

∑

γi,j∈[�]w
(i)w(j)) · c2. By precomputing the quantity (

∑

γi,j∈[�]w
(i)w(j)),

which is independent of the commitment, the [ACL+22] construction supports
fast verification in the preprocessing model.

Our Approach. To construct a functional commitment scheme that supports
fast verification (with preprocessing), we introduce additional structure. For the
case of quadratic functions, we rely on the (� + �2)-succinct SIS assumption;
contrast this with the [WW23] construction described above which relied on the
smaller �-succinct SIS assumption. We parse the matrix W ∈ Z

(�+�2)n×m
q from

the assumption as

W =

[
W1

W2

]
where W1 =

⎡
⎢⎢⎣
W

(1)
1

...
W

(�)
1

⎤
⎥⎥⎦ ∈ Z

n�×m
q and W2 =

⎡
⎢⎢⎣
W

(1,1)
2

...
W

(�,�)
1

⎤
⎥⎥⎦ ∈ Z

n�2×m
q ,

where W(i)
1 ,W(i,j)

2 ∈ Z
n×m
q . A commitment to a (short) input vector x ∈ Z

�
q

consists of a short matrix C ∈ Z
m×m along with short matrices Vi,Vij ∈ Z

m×m
q

satisfying the following relation:

W(i)
1 C = xiG − AVi (1.1)

W(i,j)
2 C = xiW

(j)
1 − AVij (1.2)

Then, for all i, j ∈ [�],

W(i,j)
2 C2 = xiW

(j)
1 C − AVijC

= xixj · G − A · (xiVj +VijC
︸ ︷︷ ︸

Ṽij

)

Observe that Ṽi,j = xiVj +VijC is small since x, Vj , Vij , and C are all small.
We now take Ṽij to be the opening for C to the quadratic relation xixj . More
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generally, an opening for a general quadratic polynomial f(x) =
∑

i,j∈[�] γijxixj

to the value y = f(x) is a short matrix Ṽ where
⎛

⎝

∑

i,j∈[�]

γijW
(i,j)
2

⎞

⎠

︸ ︷︷ ︸

Wf

·C2 = y · G − A · Ṽ. (1.3)

Our Scheme. To complete the description, we publish the following components
in the CRS:

[

Topen

Tcom

]

←
[

I� ⊗ A W1

I�2 ⊗ A W2

]−1 ([

I� ⊗ G
I� ⊗ W1

])

, (1.4)

where Topen ∈ Z
(�+�2)m×m�
q and Tcom ∈ Z

m×m�
q . Note that the CRS has size

O(�3), improving upon the O(�4)-sized CRS in [ACL+22].
To commit to a short x ∈ Z

�
q, the committer computes C ← Tcom(x ⊗ Im).

By construction this means that

W1C = W1Tcom(x ⊗ Im) = (I� ⊗ G)(x ⊗ Im) − (I� ⊗ A)Topen(x ⊗ Im)
= x ⊗ G − (I� ⊗ A)Topen(x ⊗ Im)

W2C = W2Tcom(x ⊗ Im) = (I� ⊗ W1)(x ⊗ Im) − (I�2 ⊗ A)Topen(x ⊗ Im)
= x ⊗ W1 − (I�2 ⊗ A)Topen(x ⊗ Im).

Observe that taking Vi and Vij to be the blocks of Topen(x ⊗ Im), we satisfy
Eqs. (1.1) and (1.2). To argue binding from the (�2+�)-succinct SIS assumption,
observe that Topen and Tcom can be sampled using the trapdoor provided by the
(�2 + �)-succinct SIS assumption. Suppose now that an adversary outputs two
possible openings Ṽ0, Ṽ1 to values y0, y1 ∈ Zq with respect to the same quadratic
function f . From Eq. (1.3), this means that

WfC2 = y0G − AṼ0 = y1G − AṼ1,

or equivalently, that A(Ṽ1 − Ṽ0) = (y1 − y0)G. When y1 �= y0 and q is prime
(so that y1 − y0 is invertible), this yields a gadget trapdoor [MP12] for A, which
the reduction can use to sample a short non-zero SIS solution from A−1(0). We
provide the full details (and extension to higher-degree polynomials) in Sect. 3.

Fast Verification with Preprocessing. It is easy to see that the above construc-
tion supports fast verification given preprocessing. For instance, consider the
verification relation in Eq. (1.3). If the function f is known in advance, we can
precompute the matrix Wf =

∑

i,j∈[�] γijW
(i,j)
2 . If we do so, then the verifica-

tion relation simply checks WfC2 = f(x) ·G−AṼ, which can be computed in
time that depends only polylogarithmically on �.
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Extending to Multiple Outputs. Using a similar technique as [WW23], we can also
extend our construction above to functions with multiple outputs. To illustrate,
suppose we have a commitment C and a collection of T openings Ṽ1, . . . , ṼT to
values y1, . . . , yT and with respect to functions f1, . . . , fT . Then, for all i ∈ [T ],
we have from Eq. (1.3) that Wfi

C2 = yiG − AṼ1. To support openings to
multiple outputs, we publish random vectors u1, . . . ,uT

r← Z
n
q in the CRS, and

define the “multi-output” verification relation to be
∑

i∈[T ]

Wfi
C2G−1(ui)

?=
∑

i∈[T ]

yiui −
∑

i∈[T ]

AṼiG−1(ui).

The new opening is now
∑

i∈[T ] ṼiG−1(ui) which remains short. Moreover, the
multi-output scheme still supports preprocessing. This is because the left-hand-
side of the verification relation is still a linear function in C2 and can be pre-
processed; formally, this is done by “vectorizing” the verification relation (see
Remark 3.6). In this case, the verification time with preprocessing is independent
of the input length �, but still dependent on the output dimension T (this is any-
how necessary since the verification algorithm needs to read the opened values).
In the setting where the target values y1, . . . , yT are also known in advance, we
can also precompute the target value

∑

i∈[T ] yiui. When both the functions and
the outputs are preprocessed, the running time of the verification algorithm is
polylogarithmic in both the input length � and the output dimension T . Finally,
security of the multi-output version still reduces to (�2 + �)-succinct SIS. We
provide the full details in Sect. 3.1. Taken together, we obtain a functional com-
mitment for constant-degree polynomials of degree d where the size of the CRS is
�d+1 ·poly(λ, d, log �, log T ) and the proof/opening sizes are poly(λ, d, log �, log T ).
Compared to [ACL+22], our construction achieves a shorter CRS (reducing from
�2d to �d+1) and relies on a less-structured assumption.

Generalizing to Module Lattices. Our functional commitment scheme described
here generalizes directly to module lattices and ideal lattices. Security in turn
relies on the hardness of �-succinct over module lattices (as opposed to integer
lattices). We describe the generalization in the full version of this paper. For
a security parameter λ and using module lattices (along with a z-ary gadget
matrix), we obtain a functional commitment scheme for constant-degree polyno-
mials where the commitment and the opening for an input of length � (and single
output) is Õ(λ log �); this relies on 2Ω̃(λ) hardness of O(�d)-succinct module SIS.
This matches the commitment size and the opening size of the functional com-
mitment from [ACL+22] which relies on ideal lattices. As noted above, compared
to [ACL+22], our construction reduces the CRS size from �2d ·poly(λ, d, log �) to
�d+1 · poly(λ, d, log �).

1.2.2 A Dual Functional Commitment for Boolean Circuits
Next, we turn our attention to the dual setting where the user commits to a func-
tion f and opens to an input x. This is the setting studied in [BNO21,dCP23].
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While a functional commitment that supports general functions (e.g., [WW23,
BCFL22]) can be used to obtain a dual functional commitment for general func-
tions through the use of universal circuits, the generic transformation necessar-
ily both imposes an a priori bound on the size (or description length) of the
function. Here, we opt for a more direct construction that avoids the need for
universal circuits. Our approach is essentially a hybrid of the dual functional
commitment for bounded-depth Boolean circuits from [dCP23] (which has short
commitments but openings whose size scales with the input length) and the suc-
cinct ABE scheme from [Wee23]. We show how to combine these techniques to
obtain a dual functional commitment for bounded-depth Boolean circuits with
short commitments and openings. As before, our starting point is the �-succinct
SIS assumption, where we are given a trapdoor T satisfying

[I� ⊗ A | W] · T = I� ⊗ G. (1.5)

We again parse the trapdoor T as T =
[

Topen

Tcom

]

where Topen ∈ Z
�m×�m
q and

Tcom ∈ Z
m×�m
q . If we multiply both sides of Eq. (1.5) by (xT ⊗ In) and use the

fact that (xT ⊗ In)(I� ⊗ A) = (1 ⊗ A)(xT ⊗ Im) = A(xT ⊗ Im), we have that

[A(xT ⊗ Im) | (xT ⊗ In)W] ·
[

Topen

Tcom

]

= xT ⊗ G.

Take any matrix W0 ∈ Z
n×m
q . Then, we can write

[A | W0 + (xT ⊗ In)W] ·
[−(xT ⊗ Im)Topen

−Tcom

]

= −W0Tcom − xT ⊗ G. (1.6)

Let us define B := −W0Tcom ∈ Z
n×�m
q . The CRS will contain the elements

(A,W,Tcom,Topen,W0,B). Now, Eq. (1.6) essentially says we can “recode” the
matrix [A | W0 +(xT ⊗ In)W] to B−xT ⊗G. Following [dCP23], we now define
the commitment to a function f : {0, 1}� → {0, 1} as the matrix Bf obtained
by homomorphically evaluating f on B using the lattice-based homomorphic
evaluation machinery from [GSW13,BGG+14].2 To recall, for every matrix B ∈
Z

n×�m
q , every function f : {0, 1}� → {0, 1}, and every input x ∈ {0, 1}�, there

exist a matrix Bf ∈ Z
n×m
q that depends only on B and f , and a short matrix

HB,f,x ∈ Z
�m×m
q such that

(B − xT ⊗ G) · HB,f,x = Bf − f(x) · G ∈ Z
n×m
q .

To open at a point x ∈ {0, 1}� to the value z = f(x), the committer then
computes

V =
[−(x ⊗ Im)Topen

−Tcom

]

· HB,f,x ∈ Z
2 m×m
q .

2 In the syntax of [Wee23], the ABE ciphertext is essentially sT[A | W0+(x⊗In)W]+
error and the secret key is a short Gaussian pre-image of [A | Bf ] where Bf is derived
from B via homomorphic evaluation [GSW13,BGG+14] of f on B.
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Observe that the size of the opening is essentially independent of the input
length �.3 In [dCP23], the opening is the full matrix HB,f,x. Here, the trapdoor
T from the �-succinct SIS assumption allows us to “compress” the opening. The
verification relation is then

Bf − zG ?= [A | W0 + (x ⊗ In)W]V. (1.7)

From Eq. (1.6), we see that

[A | W0 + (xT ⊗ In)W]V = [A | W0 + (xT ⊗ In)W]

[−(xT ⊗ Im)Topen

−Tcom

]
· HB,f,x

= (−W0Tcom − xT ⊗ G) · HB,f,x

= (B − xT ⊗ G) · HB,f,x

= Bf − f(x) · G.

This yields a dual functional commitment for all (bounded-depth) Boolean
circuits on �-length inputs where the size of the commitment and the opening
are both poly(λ, d1/ε, log �), where d is the bound on the depth of the function.
The CRS in our construction has size �2 · poly(λ, d1/ε, log �). We note that this
construction also supports preprocessing; namely, if the input x is known in
advance, we can precompute the matrix [A | W0 + (x ⊗ In)W] in Eq. (1.7).
Security reduces to the �-succinct SIS with a sub-exponential noise bound 2Õ(nε),
where ε > 0 is a constant and n is the lattice dimension. We refer to Sect. 3.2
for the full construction and analysis.

1.2.3 Knowledge Assumptions, Extractable Functional Commit-
ments, and Cryptanalysis
The authors of [ACL+22] showed that if we strengthen the binding property on
a functional commitment for quadratic functions to an extractability property,
then it can be used to obtain a succinct non-interactive argument for NP. More
specifically, in an extractable functional commitment, the binding property is
replaced by a stronger extractability requirement which says that for any efficient
adversary that outputs a commitment σ and an opening π to the value y with
respect to a function f , there exists an extractor that outputs an input x such
that f(x) = y. Extractable functional commitments for quadratic functions can
be used to obtain a succinct non-interactive argument (SNARG) for NP (using
the fact that satisfiability of quadratic systems is NP-complete).

In Sect. 4, we highlight some of the difficulties in constructing extractable
functional commitments from lattices, and more generally, the challenges of for-
mulating lattice-based knowledge assumptions. The difficulties stem from the
following fundamental phenomenon about lattices, which has no analog in the
pairing world: given sufficiently many independent short vectors in the kernel of
a lattice A, we can recover a trapdoor for A and efficiently sample short pre-
images for any coset of A. (The pairing analogue would be recovering a trapdoor
3 Technically, there is a polylogarithmic dependence on � since log q scales with
poly(log �).
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that allows computing discrete logs). In our attacks, we invoke this basic fact
for a carefully crafted matrix A derived from the verification equation of the
functional commitment scheme.

Attack on Knowledge k-R-ISIS. As a warm-up, we describe a candidate attack
on a matrix variant of the knowledge k-R-ISIS assumption from [ACL+22].4
Here, the adversary is given

A r← Z
t×m
q , D r← Z

t×n
q , ∀i ∈ [�] : ti

r← Z
n
q , zi ← A−1(Dti)

where � 	 m + n and t ≥ n + 1. The goal of the adversary is to sample c ∈ Z
t
q

along with a low-norm v ∈ Z
m so that

Av = Dc.

One way to do this is to sample small integers xi, and then compute v =
∑

i∈[�] xizi and c =
∑

i∈[�] xiti. The knowledge assumption basically asserts
that this is the only way to sample (c,v). In particular, if an adversary samples
a random low-norm v, then Av will lie outside the column span of D with high
probability.

Our candidate attack uses Babai’s rounding algorithm to sample small frac-
tional xi’s such that v =

∑

i∈[�] xizi ∈ Z
m and c =

∑

i∈[�] xiti ∈ Z
t
q and satisfies

Av = Dc. It is a candidate attack in the sense that we do not know how to rule
out an extractor that outputs the same distribution for v, c using small integer
xi’s. The attack is fairly simple (in hindsight): we first construct a basis for the
lattice B = [A | DG] as follows:

[A | DG] ·
[

z1 · · · z�

−G−1(t1) · · · −G−1(t�)

]

︸ ︷︷ ︸

T

= 0 mod q.

Since the zi’s are independent Gaussians and the ti’s are uniformly random,
we (heuristically) assume that T ∈ Z

(m+n)×� is full rank over the reals.5 Now,
an adversary can start with an arbitrary (non-zero) solution y ∈ Z

m+n where
By = 0 mod q, solves for the unique z ∈ Q

m+n where Tz = y ∈ Q
m+n, and

then outputs the integer vector y∗ = y−T·�z�. By construction By∗ = 0 mod q
and moreover, ‖y∗‖ ≤ ‖T(z − �z�)‖, which is small. From y∗, we can compute
v, c as desired.

Attacks on Extractable Functional Commitments. Using a similar methodology,
we obtain heuristic attacks on the extractability of our functional commitment
for constant-degree polynomials described above as well as on a version of the
[ACL+22] functional commitment for the particular case of linear functions. We
note that [ACL+22] define their commitment over module and ideal lattices, so
4 After communicating the attack to the authors of [ACL+22], Albrecht implemented

and confirmed the attack [Alb23].
5 Note that T does not (and cannot) have full rank over Zq.
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when describing our attack, we consider a specific translation of their scheme to
the integer case. Our methodology for analyzing the extractability of functional
commitments follows the general blueprint:

1. We start by writing down the key verification relation. In all lattice-based
functional commitment constructions [ACL+22,WW23,dCP23,BCFL22],
the verification relation consists of checking that the opening is a short solu-
tion to a linear system. We re-express the verification relation as finding a
short non-zero vector in the kernel of some related lattice.

2. Using the components published in the CRS, we derive a basis for this related
lattice. We now use the basis to jointly sample a (possibly short) commitment
and a (short) opening that satisfies the main verification relation.

Importantly, the commitment and the opening are sampled without explicit
knowledge of a specific input. We can apply this strategy both to our functional
commitment for constant-degree polynomials as well as to an integer variant of
the [ACL+22] construction:

– In the case of our functional commitment for quadratic functions, we can use
the above procedure to sample a commitment and a set of valid openings
that correspond to an unsatisfiable constraint system. For instance, we show
that the attacker can efficiently come up with a commitment C together with
valid openings asserting that x2

1 = 0 and x1x2 = 1.
– When applied to our integer-variant of the [ACL+22] functional commitment

for linear functions, we can use this strategy to efficiently sample a commit-
ment together with an opening for an arbitrary linear function to an arbitrary
vector y. In other words, for any (short) matrix M, we can construct an effi-
cient algorithm that samples a commitment C and an opening V to any
target vector y under the linear function x �→ Mx. Note that this sampler
does not need an explicit x to sample (C,V). If the commitment scheme
is extractable, then there would exist an extractor that can output a short
x such that Mx = y. But this is precisely solving the inhomogeneous SIS
problem (with respect to a short matrix M; hardness of inhomogeneous SIS
with low-norm matrices follows from the standard setting with uniform M via
the mapping M �→ G−1(M)). Thus, our attacks demonstrates that assuming
(non-uniform) hardness of the standard inhomogeneous SIS assumption, the
variant of [ACL+22] defined over the integers does not satisfy extractability
(i.e., the existence of an efficient extractor for our adversarial strategy implies
a non-uniform polynomial-time algorithm for inhomogeneous SIS). Note that
due to the way we construct the basis for the related lattice, our approach
can be used to (heuristically) break inhomogeneous SIS, but not necessarily
SIS. We refer to Sect. 4.1 for more details.

We describe our methodology and attack algorithms in Sect. 4. We stress that
our oblivious sampling attacks only apply to extractability of lattice-based func-
tional commitments; all of the aforementioned schemes still plausibly satisfy the
standard notion of binding security for functional commitments. We hope that
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our techniques will encourage further cryptanalysis of lattice-based knowledge
assumptions (and also of the new falsifiable assumptions such as �-succinct SIS)
that underlie succinct commitments and arguments from lattices.

1.3 Related Work

Interactive functional commitments were first introduced in [IKO07] (for linear
functions) and extended to general functions in [BC12] for realizing (interactive)
succinct arguments without relying on traditional probabilistically-checkable
proofs. In the interactive setting, we can also obtain a functional commit-
ment from any collision-resistant hash function via Kilian’s interactive suc-
cinct argument [Kil92]. This can be made non-interactive in the random ora-
cle model [Mic00] through the Fiat-Shamir heuristic. Functional commitments
are also generically implied by succinct non-interactive arguments (SNARKs),
but constructions of SNARKs either rely on strong non-falsifiable assump-
tions [GW11] or rely on idealized models (e.g., the random oracle model or the
generic group model). Our focus in this work is on non-interactive functional
commitments in the plain model from falsifiable assumptions.

There have also been numerous constructions of functional commitments
(and its specialization to vector and polynomial commitments) from stan-
dard pairing-based assumptions [LY10,KZG10,CF13,LRY16,LM19,TAB+20,
GRWZ20,BCFL22] as well as assumptions over groups of unknown order such
as RSA groups or class groups [CF13,LM19,CFG+20,AR20,TXN20]. We refer
to [Nit21] for a survey of recent constructions. Our focus in this work is on
functional commitments from lattice assumptions (similar to [PPS21,ACL+22,
BCFL22,dCP23,WW23]). The work of [GVW15b] construct non-succinct func-
tional commitments for arbitrary functions and fast verification from SIS; non-
succinct functional commitments are often referred to as homomorphic commit-
ments.

RAM Delegation. A RAM delegation scheme [KP16,BHK17,KPY19,CJJ21,
KVZ21,KLVW23] allows a prover to compute a short digest of an input x and
later on, convince the verifier that M(x) = y for an arbitrary RAM program M
with a proof whose size scales with poly(λ, log |x|, log T ), where T is the running
time of the RAM computation. A RAM delegation scheme can be used to obtain
a functional commitment for circuits by having the digest be over the pair (x,C),
where x is the input and C is the circuit, and taking M to be the RAM program
that evaluates C gate-by-gate. There is a slight syntactic mismatch here because
in a functional commitment scheme, the user should be able to commit to the
input x (resp., in the dual case, the circuit C) separately, and later on, open the
commitment to the circuit C (resp., at the input x). However, if the underly-
ing digest-computation algorithm has the property that the digest for the pair
(x,C) can be derived from independent digests for x and C separately, then it is
possible to obtain a functional commitment scheme for circuits. In recent RAM
delegation schemes [CJJ21,KVZ21,KLVW23], the digest is just a Merkle hash
of the inputs [Mer87], which satisfies this requirement.
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Taken together, the RAM delegation schemes from [CJJ21,KVZ21] yields a
functional commitments from circuits that satisfy the weaker notion of target
binding security (where binding is only required to hold for honestly-generated
commitments). The construction of Kalai et al. [KLVW23] yields a functional
commitment for general circuits satisfies the standard notion of evaluation bind-
ing for functional commitments.6 This yields a functional commitment scheme
for all circuits from the plain LWE assumption; notably, this scheme has a trans-
parent setup and poly(λ, log |x|, log |C|) common reference string, commitment,
and opening. The main limitation of the RAM delegation approaches is their
heavy non-black-box use of cryptography. Namely, the constructions require the
circuit description of cryptographic hash functions and lattice sampling algo-
rithms. In this work, we focus on constructions that only make black-box use of
cryptographic algorithms (and lattice sampling algorithms).

Relation to [Wee23]. The �-succinct SIS assumption we rely on in this work
was recently introduced by [Wee23], who showed how to use it (specifically, its
extension to �-succinct LWE) to construct succinct attribute-based encryption,
reusable garbled circuits, and laconic functional encryption. The main technical
result there is an attribute-based encryption scheme that achieves ciphertext
overhead and key size poly(λ, d) (independent of both the attribute length and
circuit size) for circuits of depth d under the �-succinct LWE assumption. These
aforementioned applications exploit the fact that the trapdoor [I� ⊗ A | W]
can be used to “compress” the homomorphic evaluation matrix HB,f,x, which is
also the approach we take for compressing our openings in our dual functional
commitment scheme.

We refer to [Wee23] for more discussion on the �-succinct SIS and LWE
assumptions, including reductions basing these assumptions on the evasive LWE
assumption [Wee22,Tsa22]. In particular, �-succinct SIS is implied by both the
BASISstruct assumption from [WW23] (the latter is in turn implied by matrix
variants of k-R-ISIS, as shown in [WW23, §6]) and the evasive LWE assumption
(plus LWE). That is, �-succinct SIS constitutes the “weakest” of recent non-
standard lattice assumptions used in functional commitments as well as other
advanced lattice-based cryptosystems.

Concurrent Work. Concurrent to this work, [FLV23,CLM23] gave new construc-
tions of lattice-based SNARKs with a linear-size CRS based on the knowledge
k-R-ISIS assumption from [ACL+22]. The construction of [FLV23] leverage the
k-R-ISIS assumption to construct a polynomial commitment with a linear-size
CRS; in conjunction with the knowledge variant of the k-R-ISIS assumption,
they obtain a lattice-based preprocessing SNARK for NP with a linear-size CRS
and quasilinear prover complexity. The work of [CLM23] introduces the vanish-
ing SIS problem and uses it to construct functional commitments for quadratic
functions (and correspondingly, a preprocessing SNARK for NP). They provide
6 The difference in target binding vs. evaluation binding is due to the soundness prop-

erties of the underlying RAM delegation scheme. We refer to [KLVW23, Remark 6.1]
for more discussion on the different security definitions for RAM delegation.
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two ways to instantiate their SNARK: in the plain model under the knowl-
edge variant of the k-R-ISIS assumption, or in the random oracle model under
the new, but falsifiable vanishing SIS assumption. The results we show in this
work provide strong evidence against the plausibility of the knowledge k-R-ISIS
assumption. It is an interesting question to study whether our approach can be
used to directly break soundness of these new SNARK candidates.

2 Preliminaries

We write λ to denote the security parameter. For a positive integer n ∈ N, we
write [n] to denote the set {1, . . . , n}. For a positive integer q ∈ N, we write
Zq to denote the integers modulo q. We use bold uppercase letters to denote
matrices (e.g., A,B) and bold lowercase letters to denote vectors (e.g., u, v).
We use non-boldface letters to refer to their components: v = (v1, . . . , vn). We
write I� to denote the �-by-� identity matrix.

We write poly(λ) to denote a fixed function that is O(λc) for some c ∈ N

and negl(λ) to denote a function that is o(λ−c) for all c ∈ N. For functions
f = f(λ), g = g(λ), we write g ≥ O(f) to denote that there exists a fixed
function f ′(λ) = O(f) such that g(λ) > f ′(λ) for all λ ∈ N. We say an event
occurs with overwhelming probability if its complement occurs with negligible
probability. An algorithm is efficient if it runs in probabilistic polynomial time in
its input length. We say that two families of distributions D1 = {D1,λ}λ∈N and
D2 = {D2,λ}λ∈N are computationally indistinguishable if no efficient algorithm
can distinguish them with non-negligible probability, and we denote this by
writing D1

c≈ D2. We say that D1 and D2 are statistically indistinguishable if
the statistical distance Δ(D1,D2) is bounded by a negligible function negl(λ).

Tensor Products. For matrices A ∈ Z
n×m
q and B ∈ Z

k×�
q , we write A ⊗ B to

denote the tensor (Kronecker) product of A and B. For a positive integer i ∈ N,
we write A⊗i to denote tensoring A with itself i times. For matrices A,B,C,D
where the products AC and BD are well-defined, the tensor product satisfies
the following mixed-product property:

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD). (2.1)

The following is a useful consequence of the mixed-product property. For a vector
x and a matrix A,

(x ⊗ I)A = (x ⊗ I)(1 ⊗ A) = x ⊗ A. (2.2)

Vectorization. For a matrix A ∈ Z
n×m
q , we write vec(A) to denote its vector-

ization (i.e., the vector formed by vertically stacking the columns of A from
leftmost to rightmost). We will use the following useful identity: for matrices
A,B,C where the product ABC is well-defined, then

vec(ABC) = (CT ⊗ A) · vec(B).
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Lattice Preliminaries. Throughout this work, we let χ denote a Gaussian width
parameter. We review some preliminaries on lattice-based cryptography in the
full version of this paper.

2.1 Functional Commitments

In this section, we recall the formal definition of a (succinct) functional commit-
ment. Our definition is adapted from that of [WW23].

Definition 2.1 (Succinct Functional Commitment [WW23, Defini-
tion 4.1]). Let λ be a security parameter. Let F = {Fλ}λ∈N be a family of
efficiently-computable functions f : X � → YT with domain X � and range YT ;
here � = �(λ) and T = T (λ) denote the input dimension and the output dimen-
sion, respectively. A succinct functional commitment for F is a tuple of efficient
algorithms ΠFC = (Setup,Commit,Eval,Verify) with the following properties:

– Setup(1λ) → crs: On input the security parameter λ, the setup algorithm
outputs a common reference string crs.

– Commit(crs,x) → (σ, st): On input the common reference string crs and an
input x ∈ X �, the commitment algorithm outputs a commitment σ and a state
st.

– Eval(st, f) → πf : On input a commitment state st and a function f ∈ F , the
evaluation algorithm outputs an opening πf .

– Verify(crs, σ, f,y, π) → {0, 1}: On input the common reference string crs, a
commitment σ, a function f ∈ F , a value y ∈ YT , and an opening π, the
verification algorithm outputs a bit b ∈ {0, 1}.

We now define several correctness and security properties on the functional com-
mitment scheme:

– Correctness: For all security parameters λ, all functions f ∈ F , and all
inputs x ∈ X �,

Pr

⎡

⎣Verify
(

crs, σ, f, f(x), πf

)

= 1 :
crs ← Setup(1λ);

(σ, st) ← Commit(crs,x);
πf ← Eval(st, f)

⎤

⎦ = 1 − negl(λ).

– Succinctness: There exists a universal polynomial poly(·) such that for all
λ ∈ N, |σ| = poly(λ, log �) and |πf | = poly(λ, log �, T ) in the correctness
definition.

– Binding: We say ΠFC satisfies statistical (resp., computational) binding if
for all adversaries A (resp., efficient adversaries A),

Pr [Verify(crs, σ, f, y0, π0) = 1 = Verify(crs, σ, f, y1, π1)] = negl(λ),

where crs ← Setup(1λ, 1�, 1d) and (σ, f, (y0, π0), (y1, π1)) ← A(1λ, 1�, 1d, crs).



218 H. Wee and D. J. Wu

Functional Commitments with Preprocessing. In many constructions of func-
tional commitments, verifying an opening with respect to a function f requires
time that scales with the running time of f and the size of the opening often
scales with the output dimension T . In settings where the function f and the
target y are known in advance (e.g., f could encode a list of predicates and the
output y could be the all-ones vector, indicating that every predicate should be
satisfied by the committed input)), it is sometimes possible to decompose the
verification algorithm into a “slow” offline step that takes as input the function
f and the target output y and outputs a verification key vkf,y. Importantly,
vkf,y is independent of the commitment and the opening. Then, there is a fast
online verification algorithm that uses the preprocessed verification key to vali-
date the commitment and opening in time that is sublinear in the size of f and
the number of outputs T .

In Remark 3.3, we note that it is also possible to preprocess the verification
key when only the function f is known in advance. In this case, the online verifi-
cation algorithm will need to run in time that grows with the output dimension T
(since the verifier necessarily has to read the output in this case). Several recent
schemes support fast verification with preprocessing [ACL+22,dCP23,BCFL22].
We define this below:

Definition 2.2 (Functional Commitment with Full Preprocessing). Let
λ be a security parameter. Let F = {Fλ}λ∈N be a family of efficiently-computable
functions f : X � → YT where each function f can be computed by a Boolean
circuit of size at most s = s(λ). Let ΠFC = (Setup,Commit,Eval,Verify) be
a succinct functional commitment for F . We say that F supports preprocess-
ing if the verification algorithm can be decomposed into two efficient algorithms
(Preprocess,OnlineVerify) with the following syntax:

– Preprocess(crs, f,y) → vkf,y: On input the common reference string crs, a
function f ∈ F , and an output y ∈ YT , the preprocess algorithm outputs a
verification key vkf,y.

– OnlineVerify(vk, σ, π) → {0, 1}: On input a verification key vk, a commitment
σ, and an opening π, the online verification algorithm outputs a bit b ∈ {0, 1}.

We require that

Verify(crs, σ, f,y, π) := OnlineVerify(Preprocess(crs, f,y), σ, π).

In addition, we require the additional succinctness property:

– Fast Online Verification: There exists a universal polynomial poly(·) such
that for all λ ∈ N, for crs ← Setup(1λ), all functions f ∈ F , and all outputs
y ∈ YT , the verification key vkf,y output by Preprocess(crs, f,y) satisfies
|vkf,y| = poly(λ, log s, log T ), and moreover, the running time of OnlineVerify
is poly(λ, log s, log T ).

Remark 2.3 (Function-Only Preprocessing). We can also consider functional
commitments with a weaker function-only preprocessing where the preprocessing
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algorithm Preprocess only takes the crs and the function f as input (but not
the output y) and outputs a preprocessed function key vkf . Then, the online
verification algorithm OnlineVerify takes the verification key vkf , the output y ∈
YT , the commitment σ, and the opening π as input. In this case, we require that
the size of the verification key vkf = poly(λ, log s), and the verification time to
be poly(λ, log s, T ). Notably, the online verification algorithm can now depend
on the output dimension T (and this is required since the verification algorithm
must read the output).

3 Functional Commitments with Fast Verification

In this section, we show how to construct a functional commitment for constant-
degree polynomials that support fast verification. Security of our construction
relies on the �-succinct short integer solutions problem from [Wee23], which we
recall below:

Assumption 3.1 (�-Succinct SIS [Wee23]). Let λ be a security parameter
and n = n(λ),m = m(λ), q = q(λ), χ = χ(λ), and β = β(λ) be lattice parame-
ters. We say that the �-succinct SIS assumption with parameters (n,m, q, χ, β)
holds if for all efficient adversaries A,

Pr

⎡

⎣Ax = 0 and 0 < ‖x‖ ≤ β :
A r← Z

n×m
q ,W r← Z

n�×m
q ,

R ← [I� ⊗ A | W]−1
χ (Gn�)

x ← A(1λ,A,W,R)

⎤

⎦ = negl(λ).

As suggested in [Wee23], we consider parameter settings for (n,m, q, β) where
SISn,m,q,β hold and where χ = poly(λ,m, �).

Construction 3.2 (Functional Commitment for Constant-Degree
Polynomials). Let λ be a security parameter and n = n(λ), m = m(λ),
q = q(λ), χ = χ(λ) be lattice parameters. Let � = �(λ) be an input length
parameter, dmax = O(1) be a constant degree bound, Bin = Bin(λ) be a bound
on the magnitude of the inputs, and Bout = Bout(λ) be a bound on the magnitude
of the outputs. Let L =

∑

i∈[dmax] �
i and B = B(λ) be a verification bound. Let

Fλ be the set of functions f : [−Bin, Bin]� → [−Bout, Bout] where f can be com-
puted by a homogeneous polynomial7 with Bin-bounded coefficients and degree
at most dmax. We associate a function f ∈ Fλ with a vector f ∈ [−Bin, Bin]�

d

for
some d ≤ dmax and define f(x) := f Tx⊗d. We construct a functional commitment
ΠFC = (Setup,Commit,Eval,Verify) for F = {Fλ}λ∈N as follows:

– Setup(1λ): On input the security parameter λ, the setup algorithm samples
(A,R) ← TrapGen(1n, q,m) and W r← Z

Ln×m
q . Next, define the target matrix

7 A functional commitment scheme for homogeneous polynomials implies one for non-
homogeneous polynomial by padding the input with a constant-value 1. See also
Remark 3.4.
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P =

⎡

⎢

⎢

⎢

⎣

I� ⊗ G
I� ⊗ W1

...
I� ⊗ Wdmax−1

⎤

⎥

⎥

⎥

⎦

∈ Z
Ln×�m
q where W =

⎡

⎢

⎣

W1

...
Wdmax

⎤

⎥

⎦ ∈ Z
Ln×m
q , (3.1)

where Wi ∈ Z
�in×m
q . Then, compute T ← SamplePre([IL ⊗ A | W], IL ⊗

R,P, χ) ∈ Z
(Lm+m)×�m
q . Parse T =

[

Topen

Tcom

]

where Topen ∈ Z
Lm×�m
q

and Tcom ∈ Z
m×�m
q . Output the common reference string crs = (A,W,

Tcom,Topen).
– Commit(crs,x): On input the common reference string crs = (A,W,Tcom,
Topen) and an input x ∈ [−Bin, Bin]�, the commit algorithm outputs the com-
mitment σ = C = Tcom(x ⊗ Im) ∈ Z

m×m
q and the state st = x.

– Eval(crs, st, f): On input the common reference string crs = (A,W,Tcom,

Topen), the state st = x, and a function f = f ∈ Z
�d

q (for some d ≤ dmax)
with Bin-bounded coefficients, the evaluation algorithm first computes V =
Topen(x ⊗ Im). It then parses

V =

⎡

⎢

⎣

V1

...
Vdmax

⎤

⎥

⎦ ∈ Z
Lm×m
q (3.2)

where Vi ∈ Z
�im×m
q . Let V′

1 ← V1 and for i ∈ [d], let V′
i ← (x ⊗

I�i−1m)V′
i−1 + ViCi−1 ∈ Z

�im×m
q . Equivalently, in expanded form, we can

write

V
′
i = ViC

i−1
+ (x ⊗ I�i−1m)Vi−1C + (x

⊗2 ⊗ I�i−2m)Vi−2C
2

+ · · · + (x
⊗i−1 ⊗ I�m)V1

=
∑

j∈[i]

(x
⊗i−j ⊗ I�jm)VjC

j−1

Output the opening πf = Vf = (f T ⊗ Im)V′
d ∈ Z

m×m
q .

– Verify(crs, σ, f, y, π): On input crs = (A,W,Tcom,Topen), the commitment
σ = C ∈ Z

m×m
q , the output y ∈ [−Bout, Bout], a function f = f ∈ Z

�d

q (for
some d ≤ dmax) with Bin-bounded coefficients, and the proof π = V ∈ Z

m×m
q ,

the verification algorithm first parses W into W1, . . . ,Wdmax as in Eq. (3.1)
and outputs 1 if

‖V‖ ≤ B and (f T ⊗ Im)WdCd = y · G − AV. (3.3)

Remark 3.3 (Supporting Preprocessing). Similar to previous (non-succinct)
homomorphic commitments [GVW15b] and succinct functional commit-
ments [ACL+22,dCP23,BCFL22], our functional commitment Construction 3.2
supports fast verification in the preprocessing model. Note that since the out-
put dimension is 1, we do not distinguish between function-only preprocessing
(Remark 2.3) and full preprocessing (Definition 2.2). We define the preprocessing
and online verification algorithms as follows:
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– Preprocess(crs, f): On input crs = (A,W,Tcom,Topen) and the function f =
f ∈ Z

�d

q for some d ≤ dmax, the preprocess algorithm outputs vkf = Fd =
(f T ⊗ Im)Wd ∈ Z

n×m
q .

– OnlineVerify(vk, σ, y, π): On input the verification key vk = Fd, the com-
mitment σ = C ∈ Z

m×m
q , the value y ∈ [−Bout, Bout], and the opening

π = V ∈ Z
m×m
q , the online verification algorithm outputs 1 if

‖V‖ ≤ B and Fd · Cd = y · G − AV.

By construction, |Fd| = nm log q and similarly, the online verification algorithm
runs in time poly(n,m, dmax, log q). We can set the parameters for Construction
3.2, so n,m, log q scale polylogarithmically with the input dimension �.

Remark 3.4 (Supporting Non-homogeneous Polynomials). It is straightforward
to extend a functional commitment for homogeneous polynomials (i.e., polyno-
mials where every monomial has the same degree) to a functional commitment
for inhomogeneous polynomials. Specifically, to support openings to inhomo-
geneous polynomials over inputs of dimension �, we instantiate a scheme that
supports homogeneous polynomials over inputs of dimension �+1. Then to com-
mit to an input x ∈ Z

�
q, the committer commits to the extended vector x′ = [ 1

x ].
Now, every inhomogeneous polynomial f : Z�

q → Zq of degree at most d can
be described by a homogeneous polynomial f ′ : Z�+1

q → Zq of degree d where
f ′(x′) = f(x). Now, to open to an inhomogeneous polynomial f , the committer
instead open to f ′.

Correctness and Security Analysis. We provide the correctness and security anal-
ysis of Construction 3.2 in the full version of this paper.

3.1 Opening to Multiple Outputs

In this section, we describe how to extend Construction 3.2 to obtain a functional
commitment scheme that supports succinct openings to multiple outputs (i.e.,
the size of the opening scales sub-linearly with the number of functions we open
to). Our approach follows the approach from [WW23] for aggregating openings.

Construction 3.5 (Multi-output Functional Commitment for
Constant-Degree Polynomials). Let λ be a security parameter. Let n,m, q,
χ, �, dmax, Bin, Bout, B be the same parameters as in Construction 3.2. Let T =
T (λ) be a bound on the number of outputs. Let F = {Fλ}λ∈N be the set of func-
tions f : [−Bin, Bin]� → [−Bout, Bout]T , where each function f can be described by
a vector of homogeneous polynomials (f1, . . . , fT ) with Bin-bounded coefficients
and of the same degree d ≤ dmax:8

f(x) :=
(

f T

1x
⊗d, . . . , f T

Tx
⊗d

)

.

8 Our construction also supports the setting where f1, . . . , fT have different degrees
d1, . . . , dT ≤ dmax. For simplicity of exposition, we just describe the case where they
have equal degree d ≤ dmax.
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We construct a functional commitment ΠFC = (Setup,Commit,Eval,Verify) for
F = {Fλ}λ∈N as follows:

– Setup(1λ): Sample A ∈ Z
n×m
q , W ∈ Z

Ln×m
q , Topen ∈ Z

Lm×�m
q , and Tcom ∈

Z
m×�m
q using the same procedure as Setup in Construction 3.2. Sample D r←

Z
n×T
q , and output the common reference string crs = (A,W,Tcom,Topen,D).

– Commit(crs,x): Same as in Construction 3.2.
– Eval(crs, st, f): On input crs = (A,W,Tcom,Topen,D), the state st = x, and

a function f = (f1, . . . , fT ) where each fi ∈ Z
�d

q is Bin-bounded and d ≤ dmax,
the evaluation algorithm first computes an opening Vfi ∈ Z

m×m
q for fi using

the same procedure as in Construction 3.2. Then, it outputs the opening
πf = vf where

vf =
∑

i∈[T ]

VfiG
−1(di) ∈ Z

m
q ,

and di ∈ Z
n
q denotes the ith column of D.

– Verify(crs, σ, f,y, π): On input crs = (A,W,Tcom,Topen,D), the commitment
σ = C ∈ Z

m×m
q , the function f = (f1, . . . , fT ) where each fi ∈ Z

�d

q is Bin-
bounded and d ≤ dmax, the output y ∈ [−Bout, Bout]T , and the proof π = v ∈
Z

m
q , the verification algorithm parses W as in Eq. (3.1) and outputs 1 if

‖v‖ ≤ B and
∑

i∈[T ]

(f T

i ⊗ Im)WdCdG−1(di) = Dy − Av, (3.4)

where di ∈ Z
n
q is the ith column of D.

Remark 3.6 (Supporting Preprocessing). Like Construction 3.2, Construction
3.5 supports full preprocessing (Definition 2.2) and function-only preprocessing
(Remark 2.3). Here, we describe the approach for full preprocessing.

– Preprocess(crs, f,y): On input crs = (A,W,Tcom,Topen,D), the function f =
(f1, . . . , fT ) where each fi ∈ Z

�d

q is Bin-bounded and d ≤ dmax, and the output
y ∈ [−Bout, Bout]T , the preprocessing algorithm computes

F =
∑

i∈[T ]

(
(

G−1(di)
)T ⊗ (f T

i ⊗ Im)Wd

)

∈ Z
n×m2

q (3.5)

y∗ = Dy ∈ Z
n
q , (3.6)

and outputs the verification key vkf,y = (F,y∗).
– OnlineVerify(vk, σ, π): On input the verification key vk = (F,y∗), the commit-

ment σ = C ∈ Z
m×m
q , and the opening π = v ∈ Z

m
q , the online verification

algorithm outputs 1 if

‖v‖ ≤ B and F · vec(Cd) = y∗ − Av.
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To show that this is correct, we apply vectorization to the main verification
relation in Eq. (3.4):

vec

⎛
⎝ ∑

i∈[T ]

(fT
i ⊗ Im)WdC

dG−1(di)

⎞
⎠ =

∑
i∈[T ]

((
G−1(di)

)T ⊗ (fT
i ⊗ Im)Wd

)

︸ ︷︷ ︸
F

vec(Cd).

Then, the main verification relation in Eq. (3.4) becomes

F · vec(Cd) = Dy − Av = y∗ − Av,

and correctness reduces to that of Construction 3.5. By construction, |vkf,y| =
(nm2 + n) log q and the running time of OnlineVerify is poly(n,m, dmax, log q).
As we show below, we can instantiate our scheme so that n,m, log q =
poly(λ, log �, log T ), and so the construction satisfies the required efficiency prop-
erties. Finally, the above analysis also applies to function-only preprocessing:
namely, the preprocessed function key for a function f = (f1, . . . , fT ) is the
matrix F from Eq. (3.5). In this case, the running time of verification becomes
poly(n,m, log q, T ).

Correctness and Security Analysis. We provide the correctness and security anal-
ysis as well as the parameter instantiation in the full version of this paper. We
summarize the results in the following corollary:

Corollary 3.7 (Succinct Functional Commitment for Constant-Degree
Polynomials). Let λ be a security parameter, and let F = {Fλ}λ∈N be a fam-
ily of functions f : [−Bin, Bin]� → [−Bout, Bout]T on inputs of length � = �(λ)
and magnitude Bin = poly(λ), and outputs of length T = T (λ) and magnitude
Bout = poly(λ), and where each function f can be described by a vector of T
homogeneous polynomials with Bin-bounded coefficients and degree d ≤ dmax =
O(1). Then, under the L-succinct SIS assumption (with L = O(�dmax)) and a
polynomial norm bound, there exists a succinct functional commitment for F .
The commitment and opening have size poly(λ, dmax, log �, log T ) and the CRS
has size �dmax+1 · poly(λ, dmax, log �, log T ). The functional commitment supports
full preprocessing (Definition 2.2) and function-only preprocessing (Remark 2.3).
With full preprocessing, the running time of the online verification algorithm is
poly(λ, dmax, log �, log T ).

Remark 3.8 (Shorter Commitment and Openings). We can reduce the commit-
ment size to O(n2 log q) and the opening size to O(n log q) in the above con-
struction by using a gadget matrix with a larger decomposition base (specifi-
cally, instead of considering a binary decomposition, we consider a z-ary gadget
matrix where z = q1/c for a large constant c ∈ N). This coincides with the
approach taken in [ACL+22]. In addition, we can further reduce the size of the
commitment by using module lattices instead of integer lattices. We provide the
details on extending to modules and using a z-ary gadget decomposition in the
full version of this paper.
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3.2 A Dual Construction for Committing to Functions

In this section, we construct a functional commitment that supports committing
to a function f : {0, 1}� → {0, 1} and then opening the commitment at a partic-
ular input x ∈ {0, 1}�. This is a dual notion of Definition 2.1, where the Commit
algorithm takes as input the function f and the Eval algorithm takes as input
an input vector x. We often refer to this variant of functional commitment as a
“dual functional commitment.”

Here, we consider a construction for general Boolean functions f on inputs
of length � = �(λ) and computable by Boolean circuits with bounded depth
d = d(λ). Similar to [dCP23,WW23], we allow the length of the commitment
and the openings to scale with poly(λ, d, log �). We can view our construction as a
hybrid of the dual functional commitment from [dCP23] and the attribute-based
encryption (ABE) scheme from [Wee23].

Like the construction of [dCP23], our functional commitment scheme satisfies
a weaker notion of binding called “selective-input security” where the adversary
is required to first commit to the point x ∈ {0, 1}� to which it will construct
an opening. The adversary has to commit to this input before seeing the public
parameters. The security reduction will then program x into the public param-
eters itself. This limitation to a selective notion of security is common to many
related lattice-based primitives such as attribute-based encryption [GVW13,
BGG+14,GVW15a,Wee23] and constrained PRFs [BV15,BTVW17]. We now
give the formal definition of selective-input binding and then show how to use the
�-succinct SIS assumption to construct a succinct dual functional commitment
for Boolean circuits with succinct commitments, openings, and fast verification
(in the preprocessing model).

Definition 3.9 (Selective-Input Binding Security). Let λ be a security
parameter, and let F = {Fλ}λ∈N be a family of efficiently-computable functions
f : X � → Y. Let ΠFC = (Setup,Commit,Eval,Verify) be a (dual) functional com-
mitment scheme for F . We now define the selective-input binding game between
an adversary A and a challenger:

1. At the beginning of the game, the adversary chooses an input x ∈ X � and
sends x to the challenger.

2. The challenger samples crs ← Setup(1λ) and gives crs to A.
3. The adversary outputs a commitment σ, values y0, y1 ∈ Y, and openings

π0, π1.
4. The output of the experiment is b = 1 if y0 �= y1 and Verify(crs, σ,x, y0, π0) =

1 = Verify(crs, σ,x, y1, π1). Otherwise, the output of the experiment is b = 0.

The functional commitment scheme satisfies computational selective-input bind-
ing if for all efficient adversaries A, Pr[b = 1] = negl(λ) in the above security
game.

Construction 3.10 (Dual Functional Commitment for Boolean Cir-
cuits). Let λ be a security parameter and n = n(λ), m = m(λ), q = q(λ), and
χ = χ(λ) be lattice parameters. Let � = �(λ) be an input length parameter, and
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B = B(λ) be a bound. Let Fλ be a collection of functions f : {0, 1}� → {0, 1}
that can be computed by a Boolean circuit of depth at most d = d(λ). We
construct a dual functional commitment ΠFC = (Setup,Commit,Eval,Verify) for
F = {Fλ}λ∈N as follows:

– Setup(1λ): On input the security parameter λ, the setup algorithm samples
(A,R) ← TrapGen(1n, q,m) and W r← Z

�n×m
q . Sample T ← SamplePre([I� ⊗

A | W], I� ⊗ R,Gn�, χ) ∈ Z
(�m+m)×�m
q . Parse T =

[

Topen

Tcom

]

where Topen ∈
Z

�m×�m
q and Tcom ∈ Z

m×�m
q . Finally, it samples W0

r← Z
n×m
q , computes

B = −W0Tcom ∈ Z
n×�m
q and outputs the common reference string crs =

(A,W,Tcom,Topen,W0,B).
– Commit(crs, f): On input crs = (A,W,Tcom,Topen,W0,B) and a function

f : {0, 1}� → {0, 1}, the commit algorithm computes Bf ← EvalF(B, f) and
outputs the commitment σ = Bf ∈ Z

n×m
q along with the state st = f .

– Eval(crs, st,x): On input crs = (A,W,Tcom,Topen,W0,B), the state st = f ,
and the input x ∈ {0, 1}�, the evaluation algorithm computes HB,f,x ←
EvalFX(B, f,x) ∈ Z

�m×m
q and outputs

π = V =
[−(xT ⊗ Im)Topen

−Tcom

]

· HB,f,x ∈ Z
2m×m
q . (3.7)

– Verify(crs, σ,x, y, π): On input crs = (A,W,Tcom,Topen,W0,B), a commit-
ment σ = Bf ∈ Z

n×m
q , an input x ∈ {0, 1}�, an output y ∈ {0, 1}, and an

opening π = V ∈ Z
2m×m
q , the verification algorithm outputs 1 if

‖V‖ ≤ B and Bf − yG = [A | W0 + (xT ⊗ In)W]V. (3.8)

Remark 3.11 (Supporting Preprocessing). Similar to Constructions 3.2 and 3.5,
Construction 3.10 also supports fast verification in the preprocessing model. Note
that in the dual setting, we preprocess with respect to an input x rather than a
function f .

– Preprocess(crs,x): On input crs = (A,W,Tcom,Topen,W0,B) and the input
x ∈ {0, 1}�, the preprocess algorithm outputs vkx = Fx = [A | W0 + (xT ⊗
In)W] ∈ Z

n×2m
q .

– OnlineVerify(vk, σ, y, π): On input the verification key vk = Fx ∈ Z
n×2m
q ,

the commitment σ = Bf ∈ Z
n×2m
q , a value y ∈ {0, 1}, and an opening

π = V ∈ Z
2m×m
q , the online verification algorithm outputs 1 if

‖V‖ ≤ B and Bf − yG = FxV.

Correctness and Security Analysis. We provide the correctness, security analysis,
and parameter instantiation for Construction 3.10 in the full version of this
paper. We summarize the instantiation in the following corollary:

Corollary 3.12 (Dual Functional Commitment for Bounded-Depth
Boolean Circuits). Let λ be a security parameter and let F = {Fλ}λ∈N be
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a family of functions f : {0, 1}� → {0, 1} on inputs of length � = �(λ) and which
can be computed by Boolean circuits of depth at most d = d(λ). Under the �-
succinct SIS assumption with a sub-exponential norm bound β = 2Õ(nε) for some
constant ε > 0 and lattice dimension n = n(λ), there exists a dual functional
commitment for F . The functional commitment satisfies computational selective-
input binding and supports preprocessing for fast verification (Definition 2.2).
The size of the commitment and the opening have size poly(λ, d1/ε, log �) and the
CRS has size �2 · poly(λ, d1/ε, log �).

4 Cryptanalysis of Extractable Commitments

In this section, we describe some of the challenges in constructing extractable
lattice-based functional commitments. In the full version of this paper, we
show that Construction 3.2 is not an extractable functional commitment for
quadratic functions. In this section, we show that assuming inhomogeneous SIS,
the [ACL+22] approach does not yield an extractable functional commitment for
linear functions. The attacks we develop work by using the components in the
CRS to derive a basis for a lattice defined by the scheme’s verification relation.
We then use the basis to obliviously sample a solution that satisfies the schemes’
verification relation without knowledge of a corresponding input. In one case,
this can be used to sample a valid opening to an unsatisfiable set of quadratic
constraints, while in the other case (Sect. 4.1), we can embed a SIS instance that
the extractor must solve in order to output a valid input. We start with the
definition of a extractable functional commitment.

Definition 4.1 (Extractability). Let λ be a security parameter. We say that a
functional commitment ΠFC = (Setup,Commit,Eval,Verify) for a function family
F = {Fλ}λ∈N is extractable if for all efficient adversaries A, there exists an
efficient extractor E such that

Pr
[

Verify(crs, σ, f, y, π) = 1 and
f(x) �= y

:
crs ← Setup(1λ)

(

(σ, f, y, π),x
) ← (A‖E)(1λ, crs)

]

= negl(λ).

Here, we write (A‖E)(·) to denote invoking algorithm A and the extractor E on
the same input and randomness. The output of A is (σ, f, y, π) and the output
of E is x.

4.1 Analyzing the [ACL+22] Knowledge Assumption

In this section, we analyze one version of the k-ISIS and knowledge k-ISIS family
of assumptions from [ACL+22]. While the original assumptions from [ACL+22]
were defined over polynomial rings (and module/ideal lattices), we consider the
analogous assumptions over the integers. Since ring multiplication is commuta-
tive whereas matrix multiplication is not, there are multiple (and similar) ways
to translate the [ACL+22] family of assumptions to the integers. We describe
one adaptation here, where we “sparsify by left multiplication.” We refer to this
adaptation as the MatrixACLMT construction.
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Assumption 4.2 (MatrixACLMT k-ISIS Assumption for Linear Func-
tions). Let λ be a security parameter and let (n,m, q, χ, �, β) be lattice parame-
ters. The MatrixACLMT k-SIS assumption says that for every efficient adversary
A, there exists a negligible function negl(·) such that

Pr

⎡

⎢

⎢

⎣

Ax = αu mod q
and

0 < |α|, ‖x‖ ≤ β
:

A r← Z
n×m
q , u r← Z

n
q ,

∀i ∈ [�] : Wi
r← Z

n×n
q , ti ← W−1

i u,
∀i �= j : zi,j ← A−1

χ (Witj),
(α,x) ← A(

1λ,A,u, {Wi}i∈[�], {zi,j}i	=j

)

⎤

⎥

⎥

⎦
= negl(λ).

Assumption 4.3 (MatrixACLMT Knowledge Assumption). Let λ be a
security parameter and let (n,m, q, χ, t, �, α, β) be lattice parameters where
qn−t = negl(λ) and m ≥ O(t log q). The MatrixACLMT knowledge assumption
says that for every efficient adversary A, there exists an efficient extractor E
such that Pr[b = 1] = negl(λ), where b ∈ {0, 1} is the output of the following
experiment:

Pr

⎡

⎢⎣
Av = Dc mod q and ‖v‖ ≤ β and
(‖x‖ ≥ α or c �= ∑

i∈[�] xiti mod q)
:

A r← Z
t×m
q , D r← Z

t×n
q ,

∀i ∈ [�] : ti
r← Z

n
q , zi ← A−1

χ (Dti)(
(c, v), x

) ← (A‖E)
(
1λ, A, D, {(ti, zi)}i∈[�]

)

⎤

⎥⎦ = negl(λ),

where ((c,v),x) ← (A‖E)(1λ,A,D, {(ti, zi)}i∈[�]) denotes that A and E are
invoked on the same input and randomness, and (c,v) is the output of A while
x is the output of E .

The MatrixACLMT knowledge assumption essentially says that any efficient
adversarial strategy that produces a short v ∈ Z

m
q where Av ∈ Z

t
q lies in

the image of D (i.e., Av = Dc) can be explained as taking a short linear
combination of the given preimages z1, . . . , z�. Indeed, if c =

∑

i∈[�] xiti, then

A
(
∑

i∈[�] xizi

)

= D
(
∑

i∈[�] xtti

)

= Dc. The requirement qn−t = negl(λ) is
necessary to prevent the basic oblivious sampling attack where the adversary
samples a random short vector v ∈ Z

m
q and solves for a c ∈ Z

n
q satisfying

Av = Dc. Since the image of A has qt elements and the image of D has qn

elements, all but a negligible fraction of the elements in the image of A are
contained in the image of D.

A Heuristic Oblivious Sampling Algorithm for Assumption 4.3. We start by
describing an adversary for Assumption 4.3 that obliviously samples a short
vector v ∈ Z

m
q such that Av is in the image of D. While this by itself does not

necessarily falsify Assumption 4.3, we will subsequently show that Assumptions
4.2 and 4.3 cannot simultaneously hold for a broad range of parameter settings
(i.e., at least one of Assumption 4.2 or Assumption 4.3 is false).

Algorithm 4.4 (Candidate Oblivious Sampler for MatrixACLMT). Sup-
pose � 	 m + n in Assumption 4.3. Our heuristic oblivious sampling algorithm
A for Assumption 4.3 works as follows:
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1. Let A r← Z
t×m
q , D r← Z

t×n
q , ti

r← Z
n
q and zi ← A−1

χ (Dti) be the challenge
from Assumption 4.3. By construction,

[A | DG] ·
[

z1 · · · z�

−G−1(t1) · · · −G−1(t�)

]

︸ ︷︷ ︸

T̄

= 0 mod q.

Since ti and zi are sampled independently and assuming that � 	 m + n is
sufficiently large (e.g., setting � = 2(m + n) should suffice), we can heuris-
tically assume that T̄ ∈ Z

(m+n)×� is full rank over the reals.9 Thus, we can
use T̄ to derive an Ajtai-trapdoor T for the matrix B = [A | DG] (e.g., by
taking a subset of m+ n columns of T̄ that are linearly independent over the
reals).

2. Using T, the algorithm samples a short [ vc ] where B · [ vc ] = 0. The com-
mitment is then Gc and the opening is v. For instance, the algorithm might
implement Babai’s rounding algorithm. Specifically, it starts with an arbi-
trary (non-zero) solution y ∈ Z

m+n where By = 0 mod q, solves for the
unique z ∈ Q

m+n where Tz = y ∈ Q
m+n and then outputs x = y − T · �z�.

By construction Bx = 0 mod q and moreover ‖x‖ ≤ ‖T(z − �z�)‖, which is
small.

The basic question is whether the solution x derived by rounding off a long
solution as in Algorithm 4.4 (or sampled through some alternative trapdoor
sampling algorithm) can always be explained by a short linear combination of
the basis vectors T. In the following, we show that assuming (non-uniform)
hardness of inhomogeneous SIS and the matrix-ACLMT assumption for linear
functions (Assumption 4.2), then no such extractor exists. One implication of
this is that this particular adaptation of [ACL+22] to the integers is not an
extractable functional commitment for linear functions.

Attacking the Matrix-ACLMT Commitment for Linear Functions. We now show
how we can apply the approach in Algorithm 4.4 to break extractability for
the linear functional commitment from [ACL+22] (when instantiated over the
integers). We start by recalling their construction (over the integers):

Construction 4.5 (Functional Commitment for Linear Functions). Let
λ be a security parameter and n,m,m′, q, t, B, χ be lattice parameters. Let � =
�(λ) be the input length. For a matrix M ∈ Z

k×�
q , let fM : Zk×�

q → Z
k
q be the

linear function x �→ Mx. Let Fλ = {fM | M ∈ {0, 1}k×�}. We construct a
functional commitment ΠFC = (Setup,Commit,Eval,Verify) for F = {Fλ}λ∈N as
follows:

– Setup(1λ, 1�): Sample matrices (A,RA) ← TrapGen(1λ, n,m),
W1, . . . ,W�

r← Z
n×n
q , u ← Z

n
q , and let ti ← W−1

i u ∈ Z
n
q for each i ∈ [�]. For

9 Note that T̄ does not (and cannot) have full rank over Zq.
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each i �= j, sample zi,j ← SamplePre(A,RA,Witj , χ). Let ̂W ∈ Z
�n×n
q to be

the vertical stacking of the matrices W1, . . . ,W�:

̂W =

⎡

⎢

⎣

W1

...
W�

⎤

⎥

⎦ ∈ Z
�n×n
q .

Next, sample (B,RB) ← TrapGen(1λ, t,m′) and a matrix D r← Z
t×n
q . Sample

z′
i ← SamplePre(B,RB,Dti, χ) for each i ∈ [�]. Output the common reference

string crs =
(

A,B,D,u, {Wi}i∈[�], {zi,j}i	=j , {z′
i}i∈[�]

)

.
– Commit(crs,x): On input crs =

(

A,B,D,u, {Wi}i∈[�], {zi,j}i	=j , {z′
i}i∈[�]

)

and an input vector x ∈ Z
�
q, the commit algorithm outputs the commitment

c =
∑

i∈[�] xiti ∈ Z
n
q and the state st = x.

– Eval(crs, st, fM): On input crs =
(

A,B,D,u, {Wi}i∈[�], {zi,j}i	=j , {z′
i}i∈[�]

)

, a
commitment state st = x, and a function fM for some matrix M ∈ Z

k×�
q , the

evaluation algorithm computes v̂i ← ∑

j 	=i xjzi,j for each i ∈ [�] and defines
v̂ ∈ Z

�m
q and ẑ ∈ Z

�m′
q as follows:

v̂ =

⎡

⎢

⎣

v̂1

...
v̂�

⎤

⎥

⎦ ∈ Z
�m
q and ẑ =

⎡

⎢

⎣

z′
1
...
z′

�

⎤

⎥

⎦ .

It outputs the opening

v =
[

(M ⊗ Im)v̂
(xT ⊗ Im′)z′

i

]

∈ Z
km+m′
q .

– Verify(crs, σ, fM, y, π): On input crs =
(

A,B,D,u, {Wi}i∈[�], {zi,j}i	=j ,

{z′
i}i∈[�]

)

, a commitment σ = c ∈ Z
n
q , a function fM : Zk×�

q → Z
k
q where

M ∈ Z
k×�
q , a value y ∈ Z

k
q , and an opening π = v ∈ Z

(km+m′)×m
q , the

verification algorithm outputs 1 if

‖v‖ ≤ B and
[

Ik ⊗ A 0
0 B

]

· v =
[

(M ⊗ In)̂W
D

]

· c −
[

y ⊗ u
0

]

. (4.1)

Correctness. Correctness follows by the same argument as in [ACL+22], adapted
to operate over the integers. We give a sketch here and refer to [ACL+22] for more
details. Let crs =

(

A,B,D,u, {Wi}i∈[�], {zi,j}i	=j , {z′
i}i∈[�]

)

be a CRS sampled
via the Setup algorithm. Suppose c =

∑

i∈[�] xiti is a commitment to a short
input x ∈ Z

�
q. Suppose v is an opening to a function fM where M ∈ Z

k×�
q is a

matrix with small entries. By construction, if the entries of M and x are short,
then so is v. Consider now the main verification relation. First, for each i ∈ [�],

Wic =
∑

j∈[�]

xjWitj = xiu+
∑

j 	=i

xjAzi,j = xiu+Av̂i.
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Equivalently, this means ̂Wc = x ⊗ u + (I� ⊗ A)v̂. Consider now the main
verification relation:

(M ⊗ In)̂Wc = (M ⊗ In)(x ⊗ u) + (M ⊗ In)(I� ⊗ A)v̂
= (Mx ⊗ u) + (Ik ⊗ A)(M ⊗ Im)v̂

Dc =
∑

i∈[�]

xiDti = B ·
⎛

⎝

∑

i∈[�]

xiz′
i

⎞

⎠ = B · (xT ⊗ Im′)ẑ.

For a sufficiently-large bound B, the verification relations hold and correctness
follows.

Extractability. By an analogous argument as in [ACL+22], we can show that
under Assumptions 4.2 and 4.3 (with suitable parameter instantiations), if an
efficient adversary can produce a commitment σ = c along with a valid opening
π = v to a short value y ∈ Z

t
q with respect to a linear function fM with short

M ∈ Z
k×�
q , then there exists an efficient extractor that outputs a short x ∈ Z

�
q

where Mx = y. We give a sketch of the general approach here and refer to
[ACL+22] for a formal argument:

– Suppose there exists an efficient adversary A is able to come up with a com-
mitment c ∈ Z

n
q and a short opening v = [ v1

v2 ] that satisfies Eq. (4.1). This
means that Bv2 = Dc. By Assumption 4.3, there exists an efficient extractor
E that outputs a short x ∈ Z

�
q such that c =

∑

i∈[�] xiti.
– If the extracted x satisfies Mx = y, then the extractor is successful. Consider

the case where Mx �= y. If this happens with non-negligible probability, we
can construct an adversary B that uses the extractor E to break Assumption
4.2:
1. Algorithm B receives

(

A,u, {Wi}i∈[�], {zi,j}i	=j

)

from the challenger for
Assumption 4.2.

2. It samples (B,RB) ← TrapGen(1λ, t,m′), D r← Z
t×n
q , and z′

i ←
SamplePre(B,RB,Dti, χ) for each i ∈ [�] as in the real scheme. The
reduction algorithm constructs the common reference string crs =
(

A,B,D,u, {Wi}i∈[�], {zi,j}i	=j , {z′
i}i∈[�]

)

and gives crs to A.
3. After A outputs a commitment c and opening v = [ v1

v2 ], algorithm B
runs the extractor E on the same input as A to obtain a short input
x ∈ Z

�
q. Suppose Mx = y′ �= y. Then algorithm A computes an opening

v′ =
[

v′
1

v′
2

]

by computing Eval(crs,x, fM). By correctness, v′ is short and
moreover satisfies the following verification relation from Eq. (4.1):

(Ik ⊗ A)v′
1 = (M ⊗ In)̂Wc − Mx ⊗ u (4.2)

Since v is also a valid opening, we have that

(Ik ⊗ A)(v1 − v′
1) = (y′ − y) ⊗ u.
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Since y − y′ �= 0, there is at least one non-zero “block” where A(v1,i −
v′

1,i) = (y′
i − yi)u and y′

i �= yi. Since y,y′ are both short, this yields a
valid solution to Assumption 4.2.

An Attack on Construction 4.5. To conclude, we describe a (heuristic) attack
that breaks extractability of Construction 4.5. Our approach takes the following
template:

1. Given the CRS for the functional commitment scheme, we construct an effi-
cient adversary A that can obliviously sample an opening to an arbitrary
vector y ∈ Z

k
q with respect to a function fM where M = [Ml | 0k×�1 ] and

Ml ∈ Z
k×�2
q is short.

2. Extractability of the functional commitment now says that there exists an
efficient extractor that outputs a short x ∈ Z

�1+�2
q such that Mx = y.

3. Since the oblivious sampler is agnostic to the choice of Ml (as long as it is
short), we can embed an (inhomogeneous) SIS instance into Ml. In this case,
an extractor for algorithm A is able to solve inhomogeneous SIS with respect
to M, and by extension, Ml.

We defer the details to the the full version of this paper. Taken together, our
analysis shows that under the inhomogeneous SIS assumption, either Assump-
tion 4.2 or Assumption 4.3 must be false, and correspondingly, the functional
commitment scheme in Construction 4.5 is not extractable.

Acknowledgments. We thank Martin Albrecht for helpful discussions about the
cryptanalysis of the k-R-ISIS assumption and Daniel Wichs for helpful insights on func-
tional commitments and RAM delegation. David J. Wu is supported in part by NSF
CNS-2151131, CNS-2140975, CNS-2318701, a Microsoft Research Faculty Fellowship,
and a Google Research Scholar award.

References

ACL+22. Albrecht, M.R., Cini, V., Lai, R.W.F., Malavolta, G., Thyagarajan, S.A.:
Lattice-based SNARKs: publicly verifiable, preprocessing, and recursively
composable. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS,
vol. 13508, pp. 102–132. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-15979-4_4

Ajt96. Ajtai, M.. Generating hard instances of lattice problems (extended
abstract). In: STOC (1996)

Alb23. Albrecht, M.: Knowledge K-M-ISIS is false (2023). https://gist.github.com/
malb/7c8b86520c675560be62eda98dab2a6f

AR20. Agrawal, S., Raghuraman, S.: KVaC: key-value commitments for
blockchains and beyond. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020.
LNCS, vol. 12493, pp. 839–869. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64840-4_28

BC12. Bitansky, N., Chiesa, A.: Succinct arguments from multi-prover interactive
proofs and their efficiency benefits. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 255–272. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5_16

https://doi.org/10.1007/978-3-031-15979-4_4
https://doi.org/10.1007/978-3-031-15979-4_4
https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f
https://gist.github.com/malb/7c8b86520c675560be62eda98dab2a6f
https://doi.org/10.1007/978-3-030-64840-4_28
https://doi.org/10.1007/978-3-030-64840-4_28
https://doi.org/10.1007/978-3-642-32009-5_16


232 H. Wee and D. J. Wu

BCFL22. Balbás, D., Catalano, D., Fiore, D., Lai, R.W.F.: Functional commitments
for circuits from falsifiable assumptions. IACR Cryptol. ePrint Arch. (2022)

BCI+13. Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-
interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36594-2_18

BGG+14. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit
ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5_30

BHK17. Brakerski, Z., Holmgren, J., Kalai, Y.T.: Non-interactive delegation and
batch NP verification from standard computational assumptions. In: STOC
(2017)

BNO21. Boneh, D., Nguyen, W., Ozdemir, A.: How to commit to private functions.
In: IACR Cryptol. ePrint Arch, Efficient Functional Commitments (2021)

BTVW17. Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private con-
strained PRFs (and more) from LWE. In: Kalai, Y., Reyzin, L. (eds.) TCC
2017. LNCS, vol. 10677, pp. 264–302. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70500-2_10

BV15. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs
from standard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46497-7_1

CF13. Catalano, D., Fiore, D.: Vector commitments and their applications. In:
Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–
72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-
7_5

CFG+20. Campanelli, M., Fiore, D., Greco, N., Kolonelos, D., Nizzardo, L.: Incre-
mentally aggregatable vector commitments and applications to verifiable
decentralized storage. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020.
LNCS, vol. 12492, pp. 3–35. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-64834-3_1

CJJ21. Choudhuri, A.R., Jain, A., Jin, Z.: SNARGs for P from LWE. In: FOCS
(2021)

CLM23. Cini, V., Lai, R.W.F., Malavolta, G.: Lattice-based succinct arguments from
vanishing polynomials: (extended abstract). In: Handschuh, H., Lysyan-
skaya, A. (eds.) CRYPTO 2023. LNCS, vol. 14082, pp. 72–105. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-38545-2_3

dCP23. de Castro, L., Peikert, C.: Functional commitments for all functions, with
transparent setup and from SIS. In: Hazay, C., Stam, M. (eds.) EURO-
CRYPT 2023. LNCS, vol. 14006, pp. 287–320. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-30620-4_10

FLV23. Fisch, B., Liu, Z., Vesely, P.: Orbweaver: succinct linear functional commit-
ments from lattices. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO
2023. LNCS, vol. 14082, pp. 106–131. Springer, Cham (2023). https://doi.
org/10.1007/978-3-031-38545-2_4

GGPR13. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs
and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38348-9_37

https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-030-64834-3_1
https://doi.org/10.1007/978-3-030-64834-3_1
https://doi.org/10.1007/978-3-031-38545-2_3
https://doi.org/10.1007/978-3-031-30620-4_10
https://doi.org/10.1007/978-3-031-38545-2_4
https://doi.org/10.1007/978-3-031-38545-2_4
https://doi.org/10.1007/978-3-642-38348-9_37


Lattice-Based Functional Commitments: Fast Verification and Cryptanalysis 233

Gro16. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fis-
chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5_11

GRWZ20. Gorbunov, S., Reyzin, L., Wee, H., Zhang, Z.: Aggregating proofs for mul-
tiple vector commitments. In: ACM CCS, Pointproofs (2020)

GSW13. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. CRYPTO 2013. LNCS,
vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4_5

GVW13. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for
circuits. In: STOC (2013)

GVW15a. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for cir-
cuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48000-7_25

GVW15b. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic
signatures from standard lattices. In: STOC (2015)

GW11. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In: STOC (2011)

IKO07. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short
PCPs. In: CCC (2007)

Kil92. Kilian, J.: A note on efficient zero-knowledge proofs and arguments
(extended abstract). In: STOC (1992)

KLVW23. Kalai, Y., Lombardi, A., Vaikuntanathan, V., Wichs, D.: Boosting batch
arguments and RAM delegation. In: STOC (2023)

KP16. Kalai, Y., Paneth, O.: Delegating RAM computations. In: Hirt, M., Smith,
A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 91–118. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53644-5_4

KPY19. Kalai, Y.T., Paneth, O., Yang, L.: How to delegate computations publicly.
In: STOC (2019)

KVZ21. Kalai, Y.T., Vaikuntanathan, V., Zhang, R.Y.: Somewhere statistical
soundness, post-quantum security, and SNARGs. In: Nissim, K., Waters, B.
(eds.) TCC 2021. LNCS, vol. 13042, pp. 330–368. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-90459-3_12

KZG10. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to
polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-17373-8_11

LM19. Lai, R.W.F., Malavolta, G.: Subvector commitments with application to
succinct arguments. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019.
LNCS, vol. 11692, pp. 530–560. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-26948-7_19

LP20. Lipmaa, H., Pavlyk, K.: Succinct functional commitment for a large class
of arithmetic circuits. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020.
LNCS, vol. 12493, pp. 686–716. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-64840-4_23

LRY16. Libert, B., Ramanna, S.C., Yung, M.: From polynomial commitments to
pairing-based accumulators from simple assumptions. In: ICALP, Func-
tional Commitment Schemes (2016)

https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-53644-5_4
https://doi.org/10.1007/978-3-030-90459-3_12
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-030-64840-4_23
https://doi.org/10.1007/978-3-030-64840-4_23


234 H. Wee and D. J. Wu

LY10. Libert, B., Yung, M.: Concise mercurial vector commitments and indepen-
dent zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 499–517. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11799-2_30

Mer87. Merkle, R.C.: A digital signature based on a conventional encryption func-
tion. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378.
Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2_32

Mic00. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–
1298 (2000)

MP12. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29011-4_41

Nit21. Nitulescu, A.: SoK: Vector Commitments (2021). https://www.di.ens.fr/
~nitulesc/files/vc-sok.pdf

PHGR13. Parno, B., Howell, J., Gentry, C., Raykova, M: Nearly practical verifiable
computation. In: IEEE Symposium on Security and Privacy, Pinocchio
(2013)

PPS21. Peikert, C., Pepin, Z., Sharp, C.: Vector and functional commitments from
lattices. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044,
pp. 480–511. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
90456-2_16

PSTY13. Papamanthou, C., Shi, E., Tamassia, R., Yi, K.: Streaming authenticated
data structures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 353–370. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38348-9_22

TAB+20. Tomescu, A., et al.: Aggregatable subvector commitments for stateless cryp-
tocurrencies. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol.
12238, pp. 45–64. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-57990-6_3

Tsa22. Tsabary, R.: Candidate witness encryption from lattice techniques. In:
Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13507, pp. 535–
559. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15802-
5_19

TXN20. Tomescu, A., Xia, Y., Newman, Z.: Authenticated dictionaries with cross-
incremental proof (dis)aggregation. IACR Cryptol. ePrint Arch. (2020)

VWW22. Vaikuntanathan, V., Wee, H., Wichs, D.: Witness encryption and null-
IO from evasive LWE. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022.
LNCS, vol. 13791, pp. 195–221. Springer, Cham (2022). https://doi.org/
10.1007/978-3-031-22963-3_7

Wee22. Wee, H.: Optimal broadcast encryption and CP-ABE from evasive lattice
assumptions. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT
2022. LNCS, vol. 13276, pp. 217–241. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-07085-3_8

Wee23. Wee, H.: Circuit ABE with small ciphertexts and keys from lattices (2023).
Manuscript

https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://www.di.ens.fr/~nitulesc/files/vc-sok.pdf
https://www.di.ens.fr/~nitulesc/files/vc-sok.pdf
https://doi.org/10.1007/978-3-030-90456-2_16
https://doi.org/10.1007/978-3-030-90456-2_16
https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/978-3-030-57990-6_3
https://doi.org/10.1007/978-3-030-57990-6_3
https://doi.org/10.1007/978-3-031-15802-5_19
https://doi.org/10.1007/978-3-031-15802-5_19
https://doi.org/10.1007/978-3-031-22963-3_7
https://doi.org/10.1007/978-3-031-22963-3_7
https://doi.org/10.1007/978-3-031-07085-3_8
https://doi.org/10.1007/978-3-031-07085-3_8


Lattice-Based Functional Commitments: Fast Verification and Cryptanalysis 235

WW23. Wee, H., Wu, D.J.: Succinct vector, polynomial, and functional commit-
ments from lattices. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023.
LNCS, vol. 14006, pp. 385–416. Springer, Cham (2023). https://doi.org/
10.1007/978-3-031-30620-4_13

WWW22. Waters, B., Wee, H., Wu, D.J.: Multi-authority ABE from lattices without
random oracles. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022, vol.
13747, pp. 651–679. Springer, Cham (2022). https://doi.org/10.1007/978-
3-031-22318-1_23

https://doi.org/10.1007/978-3-031-30620-4_13
https://doi.org/10.1007/978-3-031-30620-4_13
https://doi.org/10.1007/978-3-031-22318-1_23
https://doi.org/10.1007/978-3-031-22318-1_23

	Lattice-Based Functional Commitments: Fast Verification and Cryptanalysis
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminaries
	2.1 Functional Commitments

	3 Functional Commitments with Fast Verification
	3.1 Opening to Multiple Outputs
	3.2 A Dual Construction for Committing to Functions

	4 Cryptanalysis of Extractable Commitments
	4.1 Analyzing the ch7ACLMT22 Knowledge Assumption

	References


