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Abstract. Registered encryption (Garg et al., TCC’18) is an emerging
paradigm that tackles the key-escrow problem associated with identity-
based encryption by replacing the private-key generator with a much
weaker entity known as the key curator. The key curator holds no secret
information, and is responsible to: (i) update the master public key when-
ever a new user registers its own public key to the system; (ii) provide
helper decryption keys to the users already registered in the system, in
order to still enable them to decrypt after new users join the system. For
practical purposes, tasks (i) and (ii) need to be efficient, in the sense that
the size of the public parameters, of the master public key, and of the
helper decryption keys, as well as the running times for key generation
and user registration, and the number of updates, must be small.

In this paper, we generalize the notion of registered encryption to the
setting of functional encryption (FE).

As our main contribution, we show an efficient construction of regis-
tered FE for the special case of (attribute hiding) inner-product predi-
cates, built over asymmetric bilinear groups of prime order. Our scheme
supports a large attribute universe and is proven secure in the bilinear
generic group model. We also implement our scheme and experimen-
tally demonstrate the efficiency requirements of the registered settings.
Our second contribution is a feasibility result where we build registered
FE for P/poly based on indistinguishability obfuscation and somewhere
statistically binding hash functions.
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1 Introduction

Functional encryption (FE) [18,51,53] enriches standard public-key encryption
with fine-grained access control over encrypted data. This added feature is
made possible by having a so-called master secret key msk that can be used
(by an authority) to generate decryption keys skf associated with functions f ,
in such a way that decrypting any ciphertext c, corresponding to a plaintext
m, reveals f(m) and nothing more. Recent years have seen a flourish of works
exploring FE constructions in various settings and from different assumptions
[1–3,5,6,8,9,17,19,20,27,28,32–34,36,37,43–45,48,52,56], and its applications
to building powerful cryptographic tools such as reusable garbled circuits [36],
adaptive garbling [40], multi-party non-interactive key exchange [31], univer-
sal samplers [31], verifiable random functions [15,38], and indistinguishability
obfuscation (iO) [7,16] (which, in turn, implies a plethora of other cryptographic
primitives [52]).

An important limitation of FE is the well-known key escrow problem: the
authority holding the master secret key (sometimes referred to as the private
key generator – PKG) can generate secret keys for any function, allowing it to
arbitrarily decrypt messages intended for specific recipients. This requires a fully
trusted PKG which severely restricts the applicability of FE in many scenarios.

Registered Encryption. A recent line of research proposes to tackle the
key-escrow problem in the much simpler case of identity-based encryption1

(IBE) [54]. This led to the notion of registered IBE (RIBE) [29]2, where the
main idea is to replace the PKG with a much weaker entity called the key cura-
tor (KC), whose role is to register the public keys of the users (without possessing
any secret key). In particular, in a RIBE scheme there is an initial setup phase
in which a common reference string (CRS) is sampled. The CRS is given to the
KC which publishes an (initially empty) master public key. Each user now can
also use the CRS and sample its own public and secret key, and can register its
identity and the chosen public key to the KC; the KC is required to generate
a new master public key, which includes the newly registered public keys, and
which will permit encrypting messages to any of the registered users. Moreover,
since the master public key is updated over time, the KC is responsible for pro-
viding any decrypting party with a so-called helper decryption key, i.e., auxiliary
information connecting its public key with the updated master public key.

Recently, the notion of RIBE has been extended to the setting of attribute-
based encryption (ABE) [41], where one can encrypt messages with respect to
policies, and where decryptors can recover the message if their attributes satisfy
the policy embedded in the ciphertext. However, their registered ABE (RABE)

1 IBE can be seen as a special case of FE for equality predicates fy such that fy(x, m) =
m if and only if y = x (and ⊥ otherwise). Here, x and y have the role of the parties’
identities (which do not need to be secret), and m is the encrypted message.

2 The original paper define the primitive as registration based encryption. However,
we choose to call it as registered IBE, in line with the more recent work in [41].
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schemes [41] are required to hide only messages in the ciphertext. In particular,
they do not hide the policies embedded in the ciphertexts, since they are required
in the clear for decryption to work. This restricts using RABE in scenarios where
hiding the policy is also important.

More generally, the current state of affairs leaves open the question of building
registered FE (RFE), where any user can sample its own key pair (pk, sk) as
before, along with fixing a function of its choice (say f , from a class of functions),
and register (pk, f) with the KC. In such a setting, one can then encrypt messages
m that the registered user can decrypt with sk and a helper secret key to learn
only f(m). Overall, this would achieve the analogous functionality to that of the
celebrated notion of FE, without suffering from the key escrow issue. The focus
of our work is to make progress on this problem.

1.1 Our Contributions

We initiate the study of RFE in this paper by providing two constructions – one
for a special class of FE, and another for the general class of all functions.

In particular, as our first contribution, we provide the first RFE scheme
for the class of inner-product predicates (a.k.a. (attribute hiding) inner-product
predicate encryption), i.e., a registered IPE (RIPE) from asymmetric bilinear
maps on prime-order groups. More concretely, our scheme supports the function
class F = {fx(·, ·)}x∈Zn+

q
defined as:

fx(m,y) =

{
m if 〈x,y〉 = 0
⊥ otherwise

(1)

where x and y are n-size vectors over Zn+

q = Z
n
q \{0n}, and q is a prime. Below we

summarize our result informally in Theorem 1 and also later in Table 1 (Sect. 3)
when we discuss related works to compare it with existing registered encryption
schemes.

Theorem 1 (Informal). Let λ be a security parameter, n be the length of
supported vectors, and L be a bound on the maximum number of users. There
is a (black-box) construction of RIPE supporting a large universe and up to L
users in the generic bilinear group model, satisfying the following properties:

– The CRS is of size n · L2 · poly(λ, log L).
– The master public key and each helper decryption key is of size n ·

poly(λ, log L).
– Key-generation and registration runs in time L · poly(λ, log L) and n · L2 ·

poly(λ, log L), respectively.
– Each registered user receives at most O(log L) updates from the KC over the

entire lifetime of the system.

Moreover, both encryption and decryption runs in time n · poly(λ, log L).
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Our scheme is proven secure in the bilinear generic group model [12,14]. We
emphasize that our scheme supports attribute-hiding and a large universe unlike
[41]. In particular, our scheme satisfies the strong notion of two-sided security3

[26,46], where no information on the attribute vector y is revealed (besides the
orthogonality test) even if decryption succeeds, akin to what [46] achieved.4

Somewhat interestingly, our proof strategy and construction template are
substantially different from the typical inner-product predicate encryption
schemes in the literature (e.g., [46]). Roughly speaking, traditional proof strate-
gies work by “programming” the function output (for the challenge ciphertext)
in the key given by the adversary, and then arguing that this new key is indistin-
guishable from the original distribution. In the registered setting, the adversary
can sample its own key, so the reduction has no control over it and cannot modify
its distribution. Hence, we see RIPE as the main technical contribution of this
work.

We also implemented our scheme and describe the results in Sect. 7. The
benchmarks are achieved with a set of L = 100 to L = 1000 users with attribute
vectors of length varying between n = 10 and n = 100. Our results demonstrate
concrete, practical efficiency of our scheme beyond the realms of only feasibility.
Further, following the generic and non-cryptographic transformations described
in [46, Section 5], our RIPE scheme can also support constant-degree polynomial
evaluations, disjunctions, conjunctions, and evaluating CNF and DNF formulas.

As our second contribution, we build RFE for all circuits from indistinguisha-
bility obfuscation (iO). This is a feasibility result extending the iO-based RABE
schemes in [41] to the setting of RFE. In more detail, we achieve the following:

Theorem 2 (Informal). Let λ be the security parameter. Assuming somewhere
statistically binding hash functions [42,50] and iO [13], there is a (non black-box)
construction of RFE supporting arbitrary functions and an arbitrary number of
users, satisfying the following properties:

– The CRS, master public key, and each helper decryption key is of size poly(λ).
– Key-generation and registration runs in time poly(λ) and L · poly(λ), respec-

tively, where L stands for the current number of registered users.
– Each registered user receives at most O(log L) updates from the KC over the

entire lifetime of the system, where L is as defined in the previous item.

Moreover, both encryption and decryption runs in time poly(λ). Further, the
above scheme achieves the same efficiency as that of iO-based RABE from [41].

3 Two-sided security in PE allows an adversary to obtain secret keys for predicates
that can decrypt a challenge ciphertext, provided the challenge message pair consists
of the same message.

4 Generic compilers from any ABE for LSSS (or equivalently, monotone span pro-
grams) to (hierarchical) IPE are known (e.g., [11]). However, such compilers do not
ensure attribute-privacy which we crucially require from our (registered) IPE scheme.
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2 Technical Overview

In the following, we first describe the notion of registered FE and its properties of
interest. Next, we provide a brief overview of the techniques behind our schemes.

RFE Definition. We discuss the notion of RFE at a high level. Fundamen-
tally, RFE allows users to generate their own keys (associated to functions of
their choice) without the need of a trusted authority, which is replaced with
a KC that does not hold any secret. The KC is simply responsible of manag-
ing a data structure containing the public keys (plus the corresponding func-
tions) of registered users. Roughly, the RFE syntax goes as follows: For some
security parameter λ and a function class F , the algorithm Setup(1n, |F|) ini-
tializes the system to output a common reference string crs.5 Given crs, the
KC initializes a state α = ⊥ (i.e., the data structure) and the master pub-
lic key mpk = ⊥. A user can now register its own (pk, f) pair as follows: it
samples (pk, sk) ←$ KGen(crs, α) and submits a registration request (pk, f) to
the KC, where f ∈ F is a function it wishes to associate with pk. The KC
updates its state as α = α′ and mpk = mpk′ where (mpk′, α′) are output by the
deterministic registration algorithm RegPK(crs, α, pk, f). Intuitively, a cipher-
text c ←$ Enc(mpk,m) computed with mpk can be later decrypted by the users
registered before or during mpk was generated. The registered user uses sk to
decrypt c. However, mpk is updated periodically (after each registration) – so the
user issues an update request to the KC that, in turn, deterministically returns
a helper secret key hsk = Update(crs, α, pk). The hsk provides necessary infor-
mation to make a (previously registered) user’s secret key sk valid with respect
to a new mpk. With hsk, the user can decrypt to learn f(m) = Dec(sk, hsk, c).
For optimal efficiency, an RFE system with L registered users should satisfy the
following properties:

(1) Compact parameters: The sizes of crs,mpk, hsk must be small, e.g.,
poly(λ, log L).

(2) Efficiency: This measures key-generation and registration runtimes, and the
number of updates as described below.
(a) Each execution of KGen and RegPK should run in time poly(λ, log L).
(b) Each registered user receives at most O(log L) number of new updates

(i.e., new hsks) over the lifetime of the system.

RFE can support an unbounded or a bounded number of users. In particu-
lar, for the unbounded case, the setup is independent of the number of users. (In
this case, the parameter L in efficiency conditions refer to the current number of
registered users.) For the bounded case, the setup depends on a bound L (fixed a-
priori). Security of RFE is analogous to that of RIBE [29] and RABE [41]. In par-
ticular, an adversary A corrupting a subset of k registered users (i.e., A knows the
5 Although the common reference string is generated by a trusted setup, the important

difference is that there is no long-term secret that needs to be stored throughout
the lifetime of the system. Furthermore, in some cases, the setup algorithm could be
“transparent”, and therefore computable using just a hash function.
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set {(ski, (pki, fi))}i∈[k]) cannot distinguish Enc(mpk,m0) from Enc(mpk,m1), as
long as fi(m0) = fi(m1),∀i ∈ [k]. This should hold even if A registers malformed
public keys. We refer to the full version [25] for more details.

Slotted RFE. Following Hohenberger et al. [41], we first define and use slotted
RFE as a stepping stone towards building full-fledged RFE. Differently to RFE,
there is only a single update (referred to as aggregation) in slotted RFE, where
users are assigned to “slots” and the master public key is only computed once all
slots are filled. In more detail, initialization and key generation work as before,
except now that the Setup (resp. KGen) takes as an extra input the maximum
number of slots/keys L that can be aggregated (resp. a user index i ∈ [L]).
The KC takes all L pairs {(pki, fi)}i∈[L] together, aggregrates (i.e. updates) it
to compute a short mpk and L helper secret keys {hski}i∈[L] for each user.
Encryption and decryption again works as before.

Akin to RFE, slotted RFE security requires that, for an aggregated mpk
w.r.t. to all L slots, Enc(mpk,m0) and Enc(mpk,m1) are computationally indis-
tinguishable, so long as fj(m0) = fj(m1) for all corrupted slots j ∈ [L]. We refer
to the full version [25] for more details.

Hohenberger et al.[41] lifted slotted RABE to a standard RABE via a generic
compiler, and the same holds for slotted RFE (with minor syntactic changes).
Loosely speaking, they use a “powers-of-two” approach, where users are assigned
to different slotted schemes with increasing capacities, and they are moved for-
ward as new users join the system. The same idea yields a fully-fledged RFE
that supports O(log L) number of updates and incurs a multiplicative O(log L)
overhead on the size of crs,mpk, hsk, and the key-generation and encryption run-
times compared to that of the underlying slotted RFE scheme. The registration
runtime is dominated by O(tAggr + L · thsk), where tAggr and thsk are the aggrega-
tion runtime and the helper decryption key size of the slotted RFE respectively.
For completeness, we present the transformation in our full version [25].

2.1 (Bounded Users) Slotted RIPE from Pairings

We begin with an overview of our scheme for inner-product predicates. This is
a special case of FE, where vectors x ∈ Z

n+

q (= Z
n
q \ {0n}) denote functions fx

(associated to keys), and messages consist of a tuple (y,m). The function fx can
be recast as:

fx(y,m) =

{
m if 〈x,y〉 = 0
⊥ otherwise

where we denote the length of vectors by n = n(λ), and assume the attribute
space to be U = Z

n+

q (i.e., domain of vectors). Our scheme follows the blueprint
of [41]. However, unlike [41], that reveals the policy in clear, achieving attribute-
hiding security in this setting of predicate encryption requires us to introduce
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crucial modifications, which we highlight after the overview of our scheme below.
Furthermore, the security analysis is completely different.

Single-Slot Scheme. We begin by discussing a simplified scheme with L = 1
(i.e., there is a single slot). Below is a description of each algorithm in the scheme.

– Generating the CRS: We first describe the CRS generation. The CRS can
be split into three different parts, a general part, a slot-specific part, and a
key-specific part. We will describe how each part is generated individually.

• General part: First, we generate an asymmetric pairing group of prime
order q, denoted as G = (G1,G2,GT, q, g1, g2, e). Then, we sample
α, β, γ ←$ Zq and set h = gβ

1 , Z = e(g1, g2)α. (We will need γ for the
multi-slot scheme, which we describe later.)

• Slot-specific part: We associate each slot with a set of group elements, for
this case we sample t ←$ Zq and set A = gt

2 and B = gα
2 Aβ = gα+βt

2 .
• Key-specific part: We also associate a group element to each component

of the key vector, plus the secret key. To do this, for each w ∈ [n + 1], we
sample uw ← Zq and set Uw = guw

1 .
In the end, we set the CRS to be:

crs =
(G, Z, h,A,B, {Uw}w∈[n+1]

)
.

– Generating keys: To compute a new pair of public/secret keys, we sample
a non-zero secret key sk ←$ Zq and set pk = U−sk

n+1. Note that we are concep-
tually treating the secret key as one more element of the predicate vector.
This is an important structural difference with respect to [41].

– Key Aggregation: Since we only have one slot, given pk and crs, and a
predicate vector (or key) x = (x1, . . . , xn), we set the master public key as:

mpk =

(
G, h, Z, {Uw}w∈[n+1], pk ·

n∏
w=1

U−xw
w

)
.

– Encryption: To encrypt a message m ∈ GT with respect to a non-zero
attribute vector y = (y1, . . . , yn) ∈ Z

n+

q , and the master public key mpk, we
create a ciphertext that has two components, a message-embedding compo-
nent, and a key-slot-embedding component.

• Message embedding: We sample s ←$ Z
∗
q , and set C1 = m · Zs, C2 = gs

1.
• Key-slot embedding: First, we sample r, z ←$ Zq \ {0}. Then, we set

C3,w = hyw·r+s · U−z
w (∀w ∈ [n]), C3,n+1 = hs · U−z

n+1, and

C3,n+2 = hs · pk−z
n∏

w=1

Uz·xw
w .

The final ciphertext will be (C1, C2, {C3,w}w∈[n+1]).
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– Decryption: Before describing the actual decryption, let us check the intu-
ition behind each element of the ciphertext. The first component C1 = m ·Zs

is just a masking of the message with a random power of Z from the CRS.
Consider B from crs, and the ciphertext components C1 and C2, and observe:

C1

e(C2, B)
=

m · e (g1, g2)
α·s

e (g1, g2)
α·s · e (g1, g2)

sβt
=

m

e (hs, A)
.

Thus, to recover the message, it suffices to recompute e(hs, A). Note that hs

is already present in some form in the C3,∗ components. We can partition
C3,∗ terms into three different groups, and see how hs appears in each one:

1. For all w ∈ [n], we have C3,w = hs · hyw·r · U−z
w . In this case, there are extra

terms yw · r as well as Uw present in the ciphertext. However, since x and
y are orthogonal (otherwise decryption fails), we can eliminate these extra
terms by raising each C3,w to the power of xw for w ∈ [n] and compute their
product. Thus, we will have:

n∏
w=1

Cxw
3,w =

n∏
w=1

hxw·s · hxw·yw·r ·
n∏

w=1

U−z·xw
w

= hs·∑n
w=1 xw · hr·∑n

w=1 xw·yw︸ ︷︷ ︸
=1

·
n∏

w=1

U−z·xw
w .

Therefore, we are left with two terms hs·∑n
w=1 xw and

∏n
w=1 U−z·xw

w .
2. For w = n+1, we have C3,n+1 = hs ·U−z

n+1, where the term hs is masked with
U−z

n+1.
3. For w = n + 2, we have C3,n+2 = hs · pk−z∏n

w=1 Uz·xw
w = hs · Uz·sk

n+1 ·∏n
w=1 Uz·xw

w .
Multiplying together the remaining components we obtain:

C3,n+2 · Csk
3,n+1 ·

n∏
w=1

Cxw
3,w = hs · hs·sk · hs·∑n

w=1 xw = hs·(1+sk+
∑n

w=1 xw).

The decryptor can now raise hs·(1+sk+
∑n

w=1 xw) to the power of (1 + sk +∑n
w=1 xw)−1 to get hs. Once hs is obtained, it can be paired with A, available

from crs, to decrypt the message.

Multi-slot Scheme. To gain an intuition on how our scheme handles multiple
slots, we describe a toy example where L = 2, i.e., we are in the two-slot setting.
Notice that one trivial generalization is to individually generate public keys as
before, and concatenate them into the master public key. However, this approach
will not work, since we want the master public key size to be independent of the
number of slots. Instead, we expand the slot-specific components in the CRS to
A1, B1 (for slot 1) and A2, B2 (for slot 2), which are generated in the same way as
A,B in the one-slot setting, but using independent random elements t1, t2 ←$ Zq
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in generating A1, A2. We will also need to link the slots to the keys, so that we
can use the slot in the key-generation algorithm. For this, instead of generating
only one set of {Uw}w∈[n], we generate them with respect to both slots

{Uw,1 = g
uw,1
1 }w∈[n+1] and {Uw,2 = g

uw,2
1 }w∈[n+1]

where the elements {uw,i}i∈{1,2} are chosen independently and uniformly at
random. Accordingly, in the key generation we can set

pk1 = U−sk1
n+1,1 and pk2 = U−sk2

n+1,1

and we aggregate the keys as

{Ûw = Uw,1 · Uw,2}w∈[n+1] and Ûn+2 = pk1 · pk2 ·
n∏

w=1

U
−xw,1
w,1

n∏
w=1

U
−xw,2
w,2

where x1 and x2 are the chosen keys. One can encrypt using the new Û values
instead of U , however, once we try to decrypt and expand the corresponding
equations, we realize that many terms will not cancel out as before. For example,
if a message is encrypted for slot 1, during decryption we will have,

∏
w∈[n]

C
xw,1
3,w =

∏
w∈[n]

h(yw·r+s)·xw,1 ·
n∏

w=1

U
−z·xw,1
w,1 ·

n∏
w=1

U
−z·xw,1
w,2

Csk1
3,n+1 = hs·sk1 · U−z·sk1

n+1,1 · U−z·sk1
n+1,2

C3,n+2 = hs · Uz·sk1
n+1,1 · Uz·sk2

n+1,2 ·
n∏

w=1

U
z·xw,1
w,1

n∏
w=1

U
z·xw,2
w,2

where the terms in blue can be canceled out using a similar multiplication trick
as before. However, the terms U−z·sk1

n+1,2 , Uz·sk2
n+1,2,

∏
w∈[n] U

−z·xw,1
w,2 and

∏n
w=1 U

z·xw,2
w,2

cannot be canceled as they do not appear anywhere else, and further we assume
the decryptor only knows sk1, but not sk2. We can circumvent this issue by
introducing some “cross-terms” into the CRS, and use them in the aggregation
to compute helper secret keys that enables the decryptor (holding sk1 and x1)
to cancel such terms. We create these terms such that they include both slot-
specific and key-specific parts. Intuitively, they bind each slot to other slots and
keys together. For slots i, j ∈ [2] where i �= j and key indices w ∈ [n + 1], we
define these terms as:

Wi,j,w = A
uj,w

i .

We add {Wi,j,w}i�=j∈[2],w∈[n+1] to the CRS as:

crs =
(

G, Z, h, {Ai, Bi}i∈[2] ,
{

{Uw,i} , {Wi,j,w}i�=j

}
i,j∈[2],w∈[n+1]

)
.

In addition, we will let the user publish {W ski
j,i,n+1}i∈{1,2},j �=i in their respective

public keys, to enable the other users to cancel out the desired cross terms, and
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publish in the ciphertext an additional element C4 = gz
1 , to be paired with the

W ’s in order to compute the correct terms.
The above scheme is correct but unfortunately insecure. At a high level, the

problem is that the adversary can pair C4 with wrong elements and generate
unintended relations between z and other components, in the exponent. To pre-
vent this, instead of putting gz

1 directly in the ciphertext, we introduce an extra
component Γ = gγ

1 , γ ←$ Zq in the CRS, and set C4 = Γz. The only other modi-
fication that we must apply is the generation of the CRS itself, where for slots
i, j ∈ {1, 2} with i �= j, and key indices w ∈ [n + 1], we define:

Wi,j,w = A
uj,w/γ
i .

This forces a (possibly malicious) decryptor to pair C4 only with the elements
Wi,j,w and remove the additional cross-terms described above. The rest of the
construction remains the same. See Sect. 6 for more details.

Proof Sketch. We prove the above slotted RIPE scheme secure in the generic
bilinear group model (GGM). Recall that in the GGM, the adversary is supplied
with handles to the corresponding group elements from the scheme. Further,
it can also learn handles to arbitrary linear combinations of existing and new
elements (in the same group Gt, t ∈ {1, 2,T}) via the group oracles it is provided
with. Additionally, since we are in the bilinear setting, the adversary also gets
access to the pairing oracle that allows it to learn handles referring to the product
of any two terms from the source groups G1 and G2. However, the only crucial
information it can actually learn in this whole interaction is via the zero-tests
that work again only in GT.

Our formal multi-slot RIPE scheme in Sect. 6 introduces several variables
with different combinations of indices. To argue indistinguishability in a conve-
nient way between subsequent hybrids in the proof, we first switch from the GGM
to the symbolic group model (SGM) via the Schwarz-Zippel lemma. In particu-
lar, the SGM allows us to represent all the terms, that the adversary can learn
in the security game, as multivariate polynomials (in respective groups) from a
ring of variables. The heart of the proof relies on arguing properties of the coef-
ficients of these polynomials that correspond to successful zero-tests, which aids
in proving indistinguishability directly. In particular, these claims set in while
proving attribute hiding by switching the challenge attribute from y0 to y1 in
the ciphertext elements C3,w ∀w ∈ [n + 2], and helps in arguing the following:

1. Coefficients of such polynomials formed by pairing terms C3,w ∈ G1 with any
element in G2, except Ai, i ∈ [2], must be all zero.

2. Such a coefficient vector must be orthogonal to yb for b ∈ {0, 1}, and in
particular, either be a constant multiple of the vector x̃i = (xi, ski), i ∈ [2] or
be all zero.

The claim in Item 1 follows from observing that the monomials formed sym-
bolically (in the exponent) when pairing C3,w with anything in G2 (except A1
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or A2) are all linearly independent and do not cancel out. Item 2 follows from
two observations. The first one is that the randomness r (appearing as an inde-
pendent symbolic term, but only in the components C3,w’s) can only cancel
out in zero-tests when the coefficients are orthogonal to yb. The second one
follows additionally from linear independence of some specific symbolic terms
and observing further that the vector of first n + 1 coefficients can be expressed
as a constant multiple of x̃i. Overall, these claims ensure that the only non-
trivial adversarial queries can be for vectors lying in the span of both registered
and valid predicates. The rest of the proof follows from the admissibility of the
adversary, and by reusing these claims. We refer to Theorem 6 for more details.

Comparison with the Slotted RABE of [41]. Our slotted RIPE scheme
from prime-order pairings (in Sect. 6) shares some similarities at a high level with
the slotted RABE from composite-order pairings by Hohenberger et al.[41]. For
instance, the message-embedding mechanism in both schemes are same, which is
by masking the message with the randomness in the term e (hs, Ai). (This is also
a standard technique in many other pairing-based schemes.) The use of “slot”-
based framework to embed users’ keys is also similar, but only at the level of a
blueprint. In particular, that is where the similarity ends. More specifically, the
way slots and attributes are “glued” together in our scheme is fundamentally dif-
ferent: in [41], the ciphertext has two specific components, an attribute-specific
component and a slot-specific one, where one party can decrypt a message if it
manages to succeed to decrypt the slot-specific component and the attribute-
specific component simultaneously. But in our scheme, the slot and attribute
elements are entwined in the same ciphertext component. In essence, we con-
ceptually treat the secret key as “one more dimension” in the predicate vector,
whereas the scheme in [41] uses a separate machinery that takes care of the key
component. Further, unlike [41] which reveals the policy in the ciphertext, we
carefully ensure attribute hiding by multiplying a randomizer r ∈ Z

+
q to the

attribute y. As a result, we achieve totally different functionalities and stronger
security notions. Finally, our scheme supports vectors from Z

n+

q where q is a λ-bit
prime and n denotes supported the vector length. As stated in [41, Section 7.2],
this enables our scheme to support a large attribute universe in contrast to the
pairing-based RABE in [41], that only supports a small attribute universe.

2.2 (Unbounded Users) Slotted RFE from iO

As a feasibility result, we show (slotted) RFE for all circuits based on indistin-
guishability obfuscation (iO) [13] and (succinct) somewhere statistically binding
hash functions (SSB) [42,50]. In particular, we generalize the techniques from
Hohenberger et al. [41] to get a slotted RFE from iO (which can be lifted to RFE
with the powers-of-two trick). Below is a brief overview of this slotted RFE.

The CRS is set as the SSB hash key hk, and users’ keys are generated
through a PRG PRG and a seed s (i.e., (pk, sk) = (PRG(s), s)). To aggregate
((pki, fi))i∈[L], the KC computes a Merkle tree hash h = Hash(hk, ((pki, fi))i∈[L])
and sets mpk = (hk, h). The helper secret key hski (of the i-th slot) is essen-
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tially the SSB opening πi for the i-th (hashed) block (pki, fi). A cipher-
text c (encrypting m) is simply the obfuscation C̃ of a circuit Ch,m that, on
input (i, pki, fi, πi, ski), returns fi(m) if the following two conditions are sat-
isfied: πi is a valid opening for the i-th block (pki, fi) and (pki, ski) is a valid
key-pair. Decryption works using ski and hski = πi to evaluate C̃ on input
(i, pki, fi, πi, ski). The scheme supports the function class P/poly. Compactness
of parameters is evident from SSB succinctness. Due to a poly-logarithmic over-
head from the powers-of-two trick, the final RFE can support an arbitrary num-
ber of users by setting L = 2λ. The registration runtime remains linear in the
current/effective number of registered users at the time of registration. We pro-
vide more details in our full version [25].

2.3 On Function Privacy in (Slotted) RFE

By definition, RFE allows users to sample their own keys and functions. Thus, the
notion of function-privacy, that is typically considered in the setting of (secret-
key) FE [21,55], does not make much sense from this perspective. However, one
can still define function-privacy w.r.t. any other registered or unregistered party.
In more detail, in the case of RFE, a user choosing its own keys and functions
may want to hide its function from any party including the KC. Capturing this
requires a mild change in the RFE syntax, where the function can be input to
the KGen algorithm instead of RegPK and also require that the generated user
key-pair is tied to this function. The KC gets access of only the users’ public

Table 1. Comparing known registered encryption schemes in terms of efficiency and
assumptions. We only consider worst-case time complexity. For schemes supporting an
unbounded (resp. bounded) number of users, L denotes the current number of regis-
tered (resp. the maximum number of supported) users. We omit λ to simplify the table,
e.g. for k ∈ N, O(k) and poly(log k) respectively denote k·poly(λ) and poly(λ, log k) etc.
U (from [41]) denotes the attribute space supported by the corresponding scheme. F
denotes the function space supported by our schemes (each function f ∈ F of our RIPE

is an n-length vector from Z
n+

q ). Above, BB is an abbreviation for “black-box”.

Reference Type CRS size
Keygen
runtime

Registration

key runtime
Master

public key size

Helper

dec. key size # Updates
Unbounded

users BB Assumptions

[29] IBE O(1) O(1) poly(log L) poly(log L) poly(log L) O(log L) ✓ ✗ iO + SSB

[29] IBE O(1) O(1) O(L) poly(log L) poly(log L) O(log L) ✓ ✗ CDH/LWE

[30] Anon. IBE O(1) O(1) poly(log L) poly(log L) poly(log L) O(log L) ✓ ✗ CDH/LWE

[39] IBE O(1) O(1) poly(log L) poly(log L) poly(log L) O(log L) ✓ ✗ CDH/LWE

[23] IBE O(1) O(1) poly(log L) O(
√

L) poly(log L) O(log L) ✓ ✗ CDH/LWE

[35]
IBE

O(1)-size ciphertexts
O(

√
L) O(

√
L) O(

√
L) O(

√
L) O(

√
L) O(

√
L) ✗ ✓

Pairings of

Prime Order

[35]
IBE

O(log L)-size ciphertexts
O(

√
L) O(

√
L) O(

√
L log L) O(

√
L log L) O(log L) O(log L) ✗ ✓

Pairings of

Prime Order

[24] IBE poly(log L) poly(log L) O(L) poly(log L) poly(log L) O(log L) ✓ ✓ LWE

[41]

ABE

small attribute space U
LSSS policies

L2 · poly(|U|, log L) L · poly(|U|, log L) L · poly(|U|, log L) |U| · poly(log L) |U| · poly(log L) O(log L) ✗ ✓
Pairings of

Composite Order

[41]

ABE

large attribute space U
arbitrary policies

O(1) O(1) O(L) O(1) O(1) O(log L) ✓ ✗ iO + SSB

Ours §6
Inner-Product PE

large function space F
n-size vectors

n · L2 · poly(log L) L · poly(log L) n · L2 · poly(log L) n · poly(log L) n · poly(log L) O(log L) ✗ ✓

Pairings of

Prime Order

+ GGM

Ours [25]

FE

large function space F
arbitrary functions

O(1) O(1) O(L) O(1) O(1) O(log L) ✓ ✗ iO + SSB



110 D. Francati et al.

keys to aggregate and generate mpk, hsk.6 The security definition would need to
change accordingly. In particular, it would now additionally require each public
key to computationally hide the function tied to it.

All our schemes can be modified to satisfy this syntax. For example, our slot-
ted RIPE from pairings can be easily adapted to this notion since the extended
key x̃i = (xi, ski, 1) is embedded in the public-key pki for slot i ∈ [2] as
pki =

∏n+1
w=1 U

−x̃w,i

w,i . This holds similarly for the cross-terms as well. Using a
NIZK, the users can prove that they always choose a non-zero vector as its pred-
icate. It is also easy to verify the same for our slotted RFE from iO. However,
for simplicity, we avoid formalizing this in our definitions and schemes. Both our
formal constructions from Sect. 6 and the one based on iO are thus in the stan-
dard registered setting (i.e., without function-privacy). Building more efficient
function-private RFE for specific functions is left as a future work.

3 Related Work

The first paper [29] defined and built RIBE from iO and SSB hashes; this was
later improved by Garg et al. [30] building RIBE (with the same level of effi-
ciency) from standard assumptions (e.g., from CDH/LWE) even for anonymous
IBE. Subsequent work on RIBE focused on adding verifiability [39], proving
lower bounds on the number of decryption updates [49], improving on practical
efficiency of the garbled circuit construction [23], providing effcient black-box
construction from pairings with O(

√
L) mpk [35]. More recently, Döttling et

al. [24] obtain a lattice-based RIBE with the sizes of crs,mpk, hsk as well as key
generation runtime growing as poly(log L), with a O(L) registration runtime and
O(log L) number of updates. Very recently, [41] extended RIBE to the setting
of ABE. They built a (black-box) registered ABE (RABE) scheme supporting
a bounded number of users and linear secret sharing schemes as access policies
from assumptions on composite-order pairing groups. However, their (pairing-
based) scheme, the size of CRS and runtime of aggregate and keygen depend
linearly on the size of attribute space |U|. The dependence on |U| allows their
scheme to only support a small attribute space (e.g., |U| ∈ poly(n)). Notably, our
(paring-based) RIPE does not suffer from this limitation since our parameters
depend only on the vector length n = n(λ) (see Table 1); so we can support a
exponential size function class F .

In [39], the authors further introduced an RABE extension to more gen-
eral access structures. Specifically, they proposed a universal definition of
registration-based encryption in which the algorithms take as an additional input
the description of an FE scheme (although no construction was presented). Such
algorithms compile the standard algorithmic behavior of the FE scheme into
6 In such a setting (rogue) users can try to register arbitrary functions of their choice

which would allow them to learn arbitrary information about encrypted messages. To
prevent this, one can restrict the function class at setup meaningfully (e.g., excluding
trivial functions like identity). Any user wanting to register its public key would then
need to prove the validity of its chosen function w.r.t. this class of functions.
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a (verifiable) registration-based one. However, our tailored notion for the func-
tional encryption setting is more natural and follows directly from the RABE
definition.

Finally, we also mention a related work on dynamic decentralized FE [22]
(DDFE), where there is no trusted authority and users sample their own keys.
DDFE, as a notion, posits other general (and albeit unrelated) requirements like
(conditional) aggregation of labelled data which comes from different users using
seperate FE instances. However, a crucial difference from the registered setting,
is that in DDFE there is no requirement on the master public key size, which
can be as large as the number of registered users. This is a major challenge (and
arguably the defining feature) of all registered settings. Chotard et al.[22] also
built IP-DDFE, that outputs the inner-product value 〈x,y〉, while our scheme is
for the more challenging orthogonality-test predicate (with two-sided security).

Open Problems. We view our work as an initial first step in the world of regis-
tered FE, however many open problems remain. For example, a natural question
is if registered FE can be obtained generically from any compact, polynomially-
hard FE. Another interesting direction is to design schemes for specialized func-
tion classes from weaker assumptions. Finally, a technical open problem is to
prove our pairing-based RIPE scheme (or some modification thereof) secure in
the standard model.

4 Organization

We organize the rest of the paper as follows. The formal definitions of both
RFE and slotted RFE extend the same for the RABE setting from [41] in a
straighforward way. Hence, we provide the RFE definitions in our full version
[25]. Our main focus in this paper is on building (slotted) registered IPE. Thus,
we first define slotted RIPE formally in Sect. 5.1 and extend it to slotted RFE
for the case of general functions in our full version [25]. Our slotted RIPE scheme
from bilinear pairings is provided in Sect. 6. We demonstrate our implementa-
tion results of the above slotted RIPE scheme in Sect. 7. Our slotted RFE for
general functions and unbounded users, built on iO (plus an SSB hash and a
PRG), generalizes a construction from [41] and is presented in [25]. Further, the
transformation from slotted RFE to RFE extending the generic compiler from
[41] is again provided in our full version [25].

5 Preliminaries

Notations. We write [n] = {1, 2, . . . , n} and [0, n] = {0}∪ [n]. Capital bold-face
letters (such as X) are used to denote random variables, small bold-face letters
(such as x) to denote vectors, small letters (such as x) to denote concrete values,
calligraphic letters (such as X ) to denote sets, serif letters (such as A) to denote
algorithms. All of our algorithms are modeled as (possibly interactive) Turing
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machines. For a string x ∈ {0, 1}∗, we let |x| be its length; if X is a set or a list,
|X | represents the cardinality of X . When x is chosen uniformly in X , we write
x ←$ X . If A is an algorithm, we write y ←$ A(x) to denote a run of A on input
x and output y; if A is randomized, y is a random variable and A(x; r) denotes a
run of A on input x and (uniform) randomness r. An algorithm A is probabilistic
polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the
computation of A(x; r) terminates in a polynomial number of steps (in the input
size). We write C(x) = y to denote the evaluation of the circuit C on input x

and output y. For any integer k ∈ N, we denote Z
k+

q = Z
k
q \ {0k} as the set of

all non-zero k-size vectors over Zq, and Z
+
q = Zq \ {0}.

Negligible Functions. Throughout the paper, we denote the security param-
eter by λ ∈ N and we implicitly assume that every algorithm takes λ as input.
A function ν(λ) is called negligible in λ ∈ N if it vanishes faster than the inverse
of any polynomial in λ, i.e. ν(λ) ∈ O(1/p(λ)) for all positive polynomials p(λ).

5.1 Slotted Registered Inner-Product Encryption

We now present the slotted RIPE definitions below. Let n = n(λ) be a polyno-
mial in λ and q be a prime. A slotted RIPE with message space M and attribute
space U is composed of the following polynomial-time algorithms:

Setup(1λ, 1n, 1L) : On input the security parameter 1n, the vector length n, and
the number of slots L, the randomized setup algorithm outputs a common
reference string crs.

KGen(crs, i) : On input the common reference string crs and a slot index i ∈ [L],
the randomized key-generation algorithm outputs a public key pki and a
secret key ski.

IsValid(crs, i, pki): On input the common reference string crs, a slot index i ∈ [L],
and a public key pki, the deterministic key validation algorithm outputs a
decision bit b ∈ {0, 1}.

Aggr(crs, ((pki,xi))i∈[L]) : On input the common reference string crs and a L
pairs (pk1,x1), . . . , (pkL,xL) each composed of a public key pki and its cor-
responding (non-zero) vector xi ∈ U , the deterministic aggregation algo-
rithm outputs the master public key mpk and a L helper decryption keys
hsk1, . . . , hskL.

Enc(mpk,y,m): On input the master public key mpk, a (non-zero) attribute
vector y ∈ U , and a message m ∈ M, the randomized encryption algorithm
outputs a ciphertext c.

Dec(sk, hsk, c): On input a secret key sk, an helper decryption key hsk, and a
ciphertext c, the deterministic decryption algorithm outputs a message m ∈
M ∪ {⊥}.

Completeness, Correctness, and Efficiency. Completeness of slotted RIPE
says that honestly generated public keys for a slot index i ∈ [L] are valid with
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respect to the same slot i, i.e., IsValid(crs, i, pki) = 1. Similarly, correctness
says that honest ciphertexts correctly decrypt (to functions of the plaintext)
under honestly generated and aggregated keys. For compactness and efficiency,
we extend the requirements of RFE to the slotted RIPE setting. The formal
definitions are provided in our full version [25]. Below we define the security of
slotted RIPE formally.

Definition 1 (Security of slotted RIPE). Let ΠsRIPE = (Setup,KGen,
IsValid,Aggr,Enc,Dec) be a slotted RIPE scheme with message space M and
attribute space U . For any adversary A, define the following security game
GamesRIPEΠsRIPE,A(λ, b) with respect to a bit b ∈ {0, 1} between A and a challenger.

• Setup phase: Upon getting an attribute length n and a slot count L from
the adversary A, the challenger samples crs ←$ Setup(1λ, 1n, 1L) and gives crs
to A. The challenger also initializes a counter ctr = 0, a dictionary D, and a
set of slot indices CL = ∅ to account for corrupted slots.

• Pre-challenge query phase: A can issue the following queries.
– Key-generation query: A specifies a slot index i ∈ [L]. As a response,

the challenger increments ctr = ctr+1, samples (pkctr, skctr) ←$ KGen(crs,
i), updates the dictionary as D[ctr] = (i, pkctr, skctr) and replies with
(ctr, pkctr) to A.

– Corruption query: A specifies an index c ∈ [ctr]. In response, the chal-
lenger looks up the tuple D[c] = (i′, pk′, sk′) and replies with sk′ to A.

• Challenge phase: For each i ∈ [L], A specifies a tuple (ci,xi, pk
∗
i ) where:

– either ci ∈ [ctr] that refers to a challenger-generated key from before which
it associates with a non-zero predicate xi ∈ U : in this case, the challenger
looks up D[ci] = (i′, pk′, sk′) and halts if i �= i′. Else, the challenger sets
pk∗

i = pk′. Further, if A issued a corrupt query before on ci, the challenger
adds i to CL.

– or ci = ⊥ that refers to a self-generated (and corrupt) secret key for an
arbitrary non-zero predicate xi ∈ U : in this case, the challenger aborts if
IsValid(crs, i, pk∗

i ) = 0. Else if pk∗
i is valid, it adds the index i to CL.

Additionally, A sends a chal-
lenge pair (y0,m0), (y1,m1) ∈ U × M. In response, the challenger computes(
mpk, (hski)i∈[L]

)
= Aggr

(
crs, (pk∗

i ,xi)i∈[L]

)
and c∗ ←$ Enc(mpk,yb,mb), and

replies with c∗ to A.
• Output phase: A returns a bit b′ ∈ {0, 1} which is also the output of the

experiment.

A is called admissible if the challenge pair (y0,m0), (y1,m1) satisfy the follow-
ing:

– ∀xi ∈ U with i ∈ CL, it holds that:

either 〈xi,y0〉 = 〈xi,y1〉 = 0 or both〈xi,y0〉, 〈xi,y1〉 �= 0, and

– if ∃xi ∈ U with i ∈ CL such that 〈xi,y0〉 = 〈xi,y1〉 = 0, then m0 = m1.
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We say that ΠsRIPE is secure if for all polynomials n = n(λ), L = L(λ) and for
all PPT and admissible A in the above security hybrid, there exists a negligible
function negl(·) such that for all λ ∈ N,∣∣∣Pr[GamesRIPEΠsRIPE,A(λ, 0) = 1] − Pr[GamesRIPEΠsRIPE,A(λ, 1) = 1]

∣∣∣ = negl(λ).

Remark 1. We argue in our full version [25] that for general RFE, security with-
out post-challenge queries imply security with post-challenge queries in the slot-
ted setting as well. This is because Aggr is deterministic and does not require
any secret. Hence, an adversary can simulate the post-challenge queries itself.

6 Slotted Registered IPE from Prime-Order Pairings

Bilinear Groups. Our slotted RIPE is based on asymmetric bilinear groups.
We use cyclic groups of prime order q with an asymmetric bilinear map endowed
on them. We assume a PPT algorithm GroupGen that takes a security parameter
λ as input and outputs G = (G1,G2,GT, q, g1, g2, e), where G1,G2,GT are cyclic
groups of prime order q, g1 (resp. g2) is random generator in G1 (resp. G2) and
e : G1 × G2 → GT is a non-degenerate bilinear map.

We assume the message space M = GT for our scheme. Our slotted RIPE
supports an a-priori fixed number of slots L = L(λ), i.e., the scheme supports a
bounded number of slots. Below, we describe our formal scheme.

Construction 1. The slotted RIPE scheme ΠsRIPE = (Setup,KGen, IsValid,
Aggr,Enc,Dec) with message space M = GT and attribute space U = Z

n+

q is
as follows:

Setup(1λ, 1n, 1L): On input the security parameter λ, the attribute size n and
the number of slots L, compute G = (G1,G2,GT, q, g1, g2, e) ←$ GroupGen(1λ)
and generate the common reference string as follows.
1. Sample α, β, γ ←$ Z

+
q and set h = gβ

1 , Z = e(g1, g2)α,Γ = gγ
1 , n′ = n + 1.

2. For each index i ∈ [0, L], do the following:
1. for each w ∈ [n′], sample uw,i ←$ Zq and set Uw,i = g

uw,i

1 .
2. for a slot index i > 0, sample ti ←$ Zq and set Ai = gti

2 , Bi = gα
2 ·Aβ

i .
3. for a slot index i > 0, ∀w ∈ [n′], j ∈ [0, L] \ {i}, set Wi,j,w = A

uw,j/γ
i .

3. Sample x̃0 = (x̃1,0, . . . , x̃n,0, r̃0) ←$ Z
n′+
q . Set sk0 = x̃0 and

T0 =

(
n∏

w=1

U
−x̃w,0
w,0

)
·U−r̃0

n′,0 , W̃i,0 =

(
n∏

w=1

W
x̃w,0
i,0,w

)
·W r̃0

i,0,n′ , ∀i ∈ [L].

Also, set pk0 =
(

T0,
{

W̃i,0

}
i∈[L]

)
.

Finally, output the common reference string

crs = (G, Z, h, Γ, {Ai, Bi}i∈[L] , {{Uw,i}i∈[0,L] , {Wi,j,w}i∈[L],j∈[0,L]\{i}}w∈[n′], pk0)
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KGen(crs, i): On input the common reference string crs and a slot index i ∈ [L],
do the following.
1. Parse the common reference string

crs =
(
G, Z, h,Γ, {Ai, Bi}i∈[L] ,{

{Uw,i}i∈[0,L] , {Wi,j,w}i∈[L],j∈[0,L]\{i}
}

w∈[n′]
, pk0

)
.

2. Sample r̃i ←$ Z
+
q and pick elements Un′,i and {Wj,i,n′}j∈[L]\{i} from crs.

3. Compute Ti = U−r̃i

n′,i and W̃j,i = W r̃i

j,i,n′ ,∀j ∈ [L] \ {i}.
4. Output pki =

(
Ti, {W̃j,i}j∈[L]\{i}

)
and ski = r̃i.

IsValid(crs, i, pki): On input the common reference string crs, a slot index i ∈ [L]
and a purported public key pki =

(
Ti, {W̃j,i}j∈[L]\{i}

)
, the key-validation

algorithm first affirms that each of the components in pki is a valid group ele-

ment, namely:
(

Ti

?∈ G1 \ {1G1} ∧ W̃j,i

?∈ G2 \ {1G2}, ∀j ∈ [L] \ {i}
)

where 1Gt denotes the identity in Gt for t ∈ [2]. If the checks pass, it picks
the elements Un′,i and {Wj,i,n′}j∈[L]\{i} from crs and checks further that

e
(
T−1

i ,Wj,i,n′
) ?= e

(
Un′,i, W̃j,i

)
,∀j ∈ [L] \ {i}.

If all checks pass, it outputs 1. Else, it outputs 0.
Aggr(crs, ((pki,xi))i∈[L]): On input the common reference string crs and a set

of L public keys pki =
(
Ti, {W̃j,i}j∈[L]\{i}

)
together with vectors xi =

(x1,i, . . . , xn,i) ∈ Z
n+

q (representing predicates fxi
), compute the following.

1. Parse the common reference string

crs =
(
G, Z, h,Γ, {Ai, Bi}i∈[L] ,{

{Uw,i}i∈[0,L] , {Wi,j,w}i∈[L],j∈[0,L]\{i}
}

w∈[n′]
, pk0

)
.

2. Fuse the predicate vector xi into pki by updating each of its components
as

Ti =

(
n∏

w=1

U
−xw,i

w,i

)
· Ti , W̃j,i =

(
n∏

w=1

W
xw,i

j,i,w

)
· W̃j,i,∀j ∈ [L] \ {i}

and set pki =
(

Ti,
{

W̃j,i

}
j∈[L]\{i}

)
. Further, parse pk0 as follows:

pk0 =
(

T0,
{

W̃j,0

}
j∈[0,L]\{0}

)
.

3. For each w ∈ [n′], compute Ûw =
∏

i∈[0,L] Uw,i and Ûn′+1 =
∏

i∈[0,L] Ti.
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4. Compute the cross-terms as follows. For each slot index i ∈ [L]:
(a) for each w ∈ [n′], compute Ŵw,i =

∏
j∈[0,L]\{i} Wi,j,w.

(b) compute Ŵn′+1,i =
(∏

j∈[0,L]\{i} W̃i,j

)−1

.
5. Output the master public key and the slot-specific helper secret keys as

mpk =
(

G, h, Z,Γ,
{

Ûw

}
w∈[n′+1]

)
, and

hski =
(

G, i,xi, Ai, Bi,
{

Ŵw,i

}
w∈[n′+1]

)
,∀i ∈ [L].

Enc(mpk,y,m): On input the master public key mpk, a vector y = (y1, . . . , yn) ∈
Z

n+

q (as an attribute) and a message m ∈ GT, the ciphertext is computed as:

1. Parse mpk =
(

G, h, Z,Γ,
{

Ûw

}
w∈[n′+1]

)
.

2. Set ỹ = (y, 0, 0) ∈ Z
n′+1
q and sample s, r, z ←$ Z

+
q . Also, parse ỹ =

(ỹ1, . . . , ỹn′+1).
3. Message embedding: set C1 = m · Zs and C2 = gs

1.
4. Attribute and Slot embedding: for each w ∈ [n′ + 1], set C3,w = hỹw·r+s ·

Û−z
w . Set C4 = Γz.

5. Output the ciphertext c =
(
C1, C2, {C3,w}w∈[n′+1], C4

)
.

Dec(sk, hsk, c): Parse the input secret key sk, helper secret key hsk and ciphertext
c as sk = r̃i, and

hsk =
(

G, i,xi, Ai, Bi,
{

Ŵw,i

}
w∈[n′+1]

)
, c =

(
C1, C2, {C3,w}w∈[n′+1], C4

)
,

for some i ∈ [L]. Let x̃i = (x̃1,i, . . . , x̃n′+1,i) = (xi, r̃i, 1) ∈ Z
n′+1
q ,Xi =∑n′+1

w=1 x̃w,i ∈ Zq. Compute and output the following:

C1

e(C2, Bi)
·
⎡
⎣n′+1∏

w=1

{
e
(
C

x̃w,i

3,w , Ai

)
· e
(
C4, Ŵ

x̃w,i

w,i

)}⎤⎦
X−1

i

.

Remark: In the setup algorithm in our scheme, we introduce a dummy slot
“0” and pre-register an honestly generated dummy key pk0. This slot does not
impact the security definition in any way because the associated secret key sk0

is thrown away once the one-time setup is executed. This modification is done
only for a simpler analysis of the security proof in the GGM.

Theorem 3 (Completeness of Construction 1). The slotted RIPE scheme
ΠsRIPE with message space M = GT and attribute space U = Z

n+

q from Con-
struction 1 is complete.

Theorem 4 (Compactness and Efficiency of Construction 1). The slotted
RIPE scheme ΠsRIPE with message space M = GT and attribute space U = Z

n+

q

from Construction 1 satisfies the following properties:



Registered (Inner-Product) Functional Encryption 117

– |crs| = n · L2 · poly(λ), |mpk| = n · poly(λ), |hsk| = (n · poly(λ) + O(log L))
– Runtime(KGen) = O(L) · poly(λ), Runtime(IsValid) = L · poly(λ)
– Runtime(Aggr) = n · L2 · poly(λ)

We refer to the full version [25] for the proofs of Theorems 4 and 3.

Theorem 5 (Perfect Correctness of Construction 1). The slotted RIPE
scheme ΠsRIPE with message space M = GT and attribute space U = Z

n+

q

from Construction 1 is perfectly correct.

Proof. Fix some λ, attribute size n = n(λ), a slot count L = L(λ) and an index
i ∈ [L]. Let crs ←$ Setup(1λ, 1n, 1L) and (pki, ski) ←$ KGen(crs, i) be defined as
in the scheme from Construction 1. Take any set of public keys

{
pkj

}
j∈[L]\{i},

where IsValid(crs, j, pkj) = 1. Therefore, we have

pkj =
(

Tj ,
{

W̃�,j

}
�∈[L]\{j}

)
,∀j ∈ [L] \ {i} , skj = r̃j for some r̃j ∈ Z

+
q .

For each j ∈ [L], let xj ∈ Z
n+

q be the predicate vector associated to pkj and
let x̃j = (xj , r̃j , 1). Further, let mpk and hski be as computed by Aggr(crs,
((pkj ,xj))j∈[L]). Now, note that in the Dec algorithm, the computation associ-
ated to the message components yield

C1

e(C2, Bi)
=

m · Zs

e
(
gs
1, g

α
2 · Aβ

i

) =
m · e (g1, g2)

α·s

e (g1, g2)
α·s · e (g1, g2)

sβti
=

m

e (g1, g2)
sβti

(2)

Now observe that for any vector xi ∈ Z
n+

q for some i ∈ [L] and an attribute
y ∈ Z

n+

q with 〈xi,y〉 = 0, it also holds that 〈x̃i, ỹ〉 = 〈xi,y〉 + 〈r̃i, 0〉 + 1 · 0 = 0.
For brevity, we set up the notations gT = e (g1, g2) and the discrete logarithm
as DL(K) = k, where K = gk

t for any k ∈ Zq (i.e., irrespective of any group
type t ∈ {1, 2,T}) for the rest of the proof. To ensure correctness with the rest
of decryption above, it is thus enough to show that

n′+1∏
w=1

{
e
(
C

x̃w,i

3,w , Ai

)
· e
(
C4, Ŵ

x̃w,i

w,i

)}
= gsβtiXi

T (3)

so that Dec yields the message m ∈ GT. We will analyze individual pairing
products in the above form separately. Before that we note a few things about
the public keys after they are fused with the predicate vectors during Aggr. For
any i ∈ [L], j ∈ [0, L], we have
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Tj =

⎛
⎝ ∏

w∈[n]

U
−xw,j

w,j

⎞
⎠ · U

−r̃j

n′,j =
∏

w∈[n′]

g
−uw,j x̃w,j

1 = g
− ∑

w∈[n′] uw,j x̃w,j

1

=⇒ DL(Tj) = −
∑

w∈[n′]

uw,j x̃w,j ,

W̃i,j =

⎛
⎝ ∏

w∈[n]

W
xw,j

i,j,w

⎞
⎠ · W

r̃j

i,j,n′ =
∏

w∈[n′]

(
A

uw,j/γ
i

)x̃w,j

= A
1
γ ·∑w∈[n′] uw,j x̃w,j

i = A
−DL(Tj)/γ
i ,

where we redefined x̃n′,0 = r̃0. Further, for any w ∈ [n′] and i ∈ [L], we have:

Ŵ
x̃w,i

w,i =
∏

j∈[0,L]\{i}
W

x̃w,i

i,j,w =
∏

j∈[0,L]\{i}

(
A

uw,j/γ

i

)x̃w,i = A
(x̃w,i·

∑
j∈[0,L]\{i} uw,j)/γ

i

(4)

Defining the first pairing product as θ1 =
∏n′+1

w=1 e
(
C

x̃w,i

3,w , Ai

)
, we have:

θ1 =
n′+1∏
w=1

e

((
hỹw·r+s · Û−z

w

)x̃w,i

, Ai

)

=
n′+1∏
w=1

{
e
(
hr·x̃w,iỹw , Ai

)
· e
(
hs·x̃w,i , Ai

)
· e
(
Û−zx̃w,i

w , Ai

)}

= e
(
hr·∑n′+1

w=1 x̃w,iỹw , Ai

)
· e

(
g

sβ
∑n′+1

w=1 x̃w,i

1 , Ai

)
·

n′+1∏
w=1

e
(
Û−zx̃w,i

w , Ai

)

= e
(
h0, Ai

) · e
(
gsβXi

1 , gti
2

)
·

n′+1∏
w=1

e
(
Û−zx̃w,i

w , Ai

)
= gsβtiXi

T · θ11 · θ12,

where θ11 =
n′∏

w=1

e
(
Û−zx̃w,i

w , Ai

)
and θ12 = e

(
Û−z

n′+1, Ai

)
(recall x̃n′+1,i = 1)

θ11 =
∏

w∈[n′]

e

(
L∏

j=0

U
−zx̃w,i

w,j , Ai

)
=

∏

w∈[n′]

e

((
g

∑L
j=0 uw,j

1

)−zx̃w,i

, gti
2

)

=
∏

w∈[n′]

g
−ztix̃w,i

∑L
j=0 uw,j

T =
∏

w∈[n′]

g
zti(−x̃w,iuw,i)
T ·

∏

w∈[n′]

g
−ztix̃w,i

∑
j∈[0,L]\{i} uw,j

T



Registered (Inner-Product) Functional Encryption 119

⇒ θ11 = g
ztiDL(Ti)
T · ζ1, where ζ1 =

∏

w∈[n′]

g
−ztix̃w,i

∑
j∈[0,L]\{i} uw,j

T and

θ12 = e
(
Û−z

n′+1, Ai

)
=e

(
L∏

j=0

T −1
j , Az

i

)
=

L∏

j=0

e
(
T −1

j , Az
i

)
=

L∏

j=0

e

⎛

⎝
n′∏

w=1

U
x̃w,j

w,j , Az
i

⎞

⎠

=
L∏

j=0

e
(
g

∑
w∈[n′] uw,j x̃w,j

1 , Az
i

)
=

L∏

j=0

e

(
g

−DL(Tj)
1 , gzti

2

)
=

L∏

j=0

g
−ztiDL(Tj)
T

= g
−ztiDL(Ti)
T · ζ2, where ζ2 = g

−zti
∑

j∈[0,L]\{i} DL(Tj)
T .

We have θ1 = gsβtiXi
T · (����

g
ztiDL(Ti)
T · ζ1

) ·
(
�����
g

−ztiDL(Ti)
T · ζ2

)
⇒ θ1 = gsβtiXi

T · ζ1 · ζ2

Defining the second pairing product as θ2 =
∏n′+1

w=1 e
(
C4, Ŵ

x̃w,i

w,i

)
, we have:

θ2 =

{
∏

w∈[n′]

e
(
gzγ
1 , Ŵ

x̃w,i

w,i

) }
· e

(
gzγ
1 , Ŵn′+1,i

)
(recall x̃n′+1,i = 1 and C4 = Γz = gzγ)

=

{
∏

w∈[n′]

e

(
gzγ
1 , A

(x̃w,i·∑j∈[0,L]\{i} uw,j)/γ

i

) }
· e

⎛

⎝gzγ
1 ,

⎛

⎝
∏

j∈[0,L]\{i}
W̃i,j

⎞

⎠
−1⎞

⎠

=
∏

w∈[n′]

e

(
gzγ
1 , g

(tix̃w,i·∑j∈[0,L]\{i} uw,j)/γ

2

) }
·

∏

j∈[0,L]\{i}
e

(
gzγ
1 ,

(
A

−DL(Tj)/γ

i

)−1
)

=
∏

w∈[n′]

g
ztix̃w,i·∑j∈[0,L]\{i} uw,j

T ·
∏

j∈[0,L]\{i}
e

(
gzγ
1 , g

tiDL(Tj)/γ

2

)

= ζ−1
1 ·

∏

j∈[0,L]\{i}
g

ztiDL(Tj)
T = ζ−1

1 · g
zti

∑
j∈[0,L]\{i} DL(Tj)

T = ζ−1
1 · ζ−1

2

This completes the proof since

n′+1∏
w=1

{
e
(
C

x̃w,i

3,w , Ai

)
·e
(
C4, Ŵ

x̃w,i

w,i

)}
=θ1 · θ2 = gsβtiXi

T · ζ1 · ζ2 · ζ−1
1 · ζ−1

2 =gsβtiXi

T .

Theorem 6 (Security of Construction 1). The slotted RIPE scheme ΠsRIPE

with message space M = GT and attribute space U = Z
n+

q from Construction 1
is secure in the GGM.

Below, we show that our slotted RIPE scheme ΠsRIPE (Construction 1) is secure
in the generic group model. We start with some notations and definitions for
generic and symbolic group models.
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Generic Bilinear Group Model. Our definitions for generic bilinear group
model is adapted from [4,12]. Let G = (G1,G2,GT, q, g1, g2, e) be a bilinear group
setting, L1,L2,LT be lists of group elements in G1,G2, and GT respectively. Let
D be a distribution over L1,L2,LT. The generic group model for a bilinear
group setting G and a distribution D is described in Fig. 1. In this model, the
challenger first initializes the lists L1,L2,LT by sampling the group elements
according to D, and the adversary receives handles for the elements in the lists.
For t ∈ {1, 2,T}, Lt[h] denotes the h-th element in the list Lt. The handle to this
element is simply the pair (t, h). An adversary A running in the generic bilinear
group model can apply group operations and the bilinear map e to the elements
in the lists. To do this, A has to call the appropriate oracle specifying handles
for the input elements. A also gets access to the internal state variables of the
challenger via handles, and we assume that the equality queries are “free”, in
the sense that they do not count when measuring the computational complexity
A. For t ∈ {1, 2,T}, the challenger computes the result of a query, say δ ∈ Gt,
and stores it in the corresponding list as Lt[pos] = δ where pos is its next empty
position in Lt, and returns to A its (newly created) handle (t, pos). Handles are
not unique (i.e., the same group element may appear more than once in a list
under different handles). As in [4], the equality test oracle in [12] is replaced with
the zero-test oracle ZtT(·) that, on input a handle (t, h), returns 1 if Lt[h] = 0
and 0 otherwise only for the case t = T.

Fig. 1. GGM for bilinear group setting G = (G1,G2,GT, q, g1, g2, e) and distribution D.

Symbolic Group Model. The symbolic group model (SGM) for a bilin-
ear group setting G and a distribution D gives to the adversary the same
interface as the corresponding generic group model (GGM), except that inter-
nally the challenger stores lists of elements from the ring Zq[x1, . . . , xk]
instead of lists of group elements, where {xk}k∈N are indeterminates. The
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Addt(·, ·),Negt(·),Mape(·, ·),ZtT(·) oracles respectively compute addition, nega-
tion, multiplication, and zero tests in the ring. For our proof, we will work
in the ring Zq[x1, . . . , xk, 1/xi] for some i ∈ [k]. Note that any element f ∈
Zq[x1, . . . , xk, 1/xi] can be represented as

f(x1, . . . , xn) =
∑
c∈Zk

ηc

k∏
i=1

xci
i with c = (c1, . . . , ck) ∈ Z

k

using {ηc ∈ Zq}c∈Zk , where ηc = 0 for all but finite c ∈ Z
k. Note that this

expression is unique. We now begin our proof for Theorem 6 below.

Proof. At a high level, we show a sequence of hybrids each of which is a game
between a challenger and a PPT adversary A. In the first (resp., last) hybrid,
the challenger encrypts a pair (yb,mb) corresponding to bit b = 0 (resp., b = 1).
The intermediate hybrids ensure that the distributions in any pair of subsequent
hybrids from the first to the last one are statistically indistinguishable.

Since the proof is in the GGM, w.l.o.g. the challenger simulates all the generic
bilinear group oracle queries for A. In particular, the challenger stores the actual
computed elements in the list Lt based on its group type t ∈ {1, 2,T}. The
handle to an actual element stored in any of these lists are just a tuple (t, pos)
specifying the group type t and its position in the table Lt. Since our scheme
contains several variables, we will refrain from explicitly specifying the handles
to the actual elements for convenience. Further, when we move to the SGM, we
will denote any literal variable v as v and composite terms like v1v2 (resp., v1

v2
) as

v1v2 (resp., v1
v2

) to represent an individual monomial in a (possibly multivariate)
polynomial. For variables denoted with Greek alphabets, say α, β, γ, we represent
their corresponding formal variables as α, β, γ. We also define Zq-span(S) as the
set of Zq-linear combinations of all elements in any set S. Assume A issues an
arbitrary polynomial number Qzt(λ) of queries to its ZtT oracle in each hybrid.

H1(λ) : This is the real scheme corresponding to bit b = 0 in the GGM. In more
detail, the hybrid goes as follows.

• Setup phase: A sends an attribute length n = n(λ) and slot count
L = L(λ) to the challenger, upon which it first initializes ctr = 0, a
dictionary D, and the set CL = ∅ to account for corrupted slots. Next,
it computes G = (G1,G2,GT, q, g1, g2, e) ←$ GroupGen(1λ) and initializes
three tables as Lt[1] = gt,∀t ∈ {1, 2,T}. The challenger prepares a tuple(
G1,G2,GT, q, {(t, 1)}t∈{1,2,T}

)
, where (t, 1) represents the handle to gt,∀t ∈

{1, 2,T}. To allow A to compute the group operations including the bilinear
map e, the challenger also simulates all the oracles Addt,Negt,Mape,ZtT with
implicit access to the lists {Lt}t∈{1,2,T}. It then computes the crs components
as follows:

1. Set n′ = n + 1. Compute h = gβ
1 ,Γ = gγ

1 ∈ G1 and Z = e(g1, g2)α ∈ GT as
in the real Setup algorithm. Update L1 with the elements β, γ and LT with
α respectively.
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2. For each slot index i ∈ [0, L], do the following:
(a) ∀w ∈ [n′], compute Uw,i = g

uw,i

1 ∈ G1 as in the real scheme and update
L1 with uw,i.

(b) ∀i > 0, compute Ai = gti
2 , Bi = gα+β·ti

2 ∈ G2 as in the real scheme and
update L2 with ti, (α + β · ti) in order.

(c) ∀i > 0, w ∈ [n′] and for each j ∈ [0, L] \ {i}, compute Wi,j,w = g
ti·uj,w

γ

2 ∈
G2 as in the real scheme and update L2 with ti·uj,w

γ .

3. For x̃0 = (x̃1,0, . . . , x̃n′,0) ←$ Z
n′+
q , set pk0 =

(
T0,
{

W̃i,0

}
i∈[L]

)
as in the real

scheme. Define u′
0 =

∑n′

w=1 uw,0 · x̃w,0 = −DL(T0) so that

T0 = g
u′
0

1 ∈ G1 , W̃i,0 = g
ti·u′

0
γ

2 ∈ G2,∀i ∈ [L].

Update L1 with u′
0 and L2 with

{
ti·u′

0
γ

}
i∈[L]

in order.

4. Set

crs =
(
G, Z, h,Γ, {Ai, Bi}i∈[L] ,{

{Uw,i}i∈[0,L] , {Wi,j,w}i∈[L],j∈[0,L]\{i}
}

w∈[n′]
, pk0

)
.

5. Return to A a tuple crs′ that includes
(
G1,G2,GT, q, {(t, 1)}t∈{1,2,T}

)
along

with the handles to all elements in the same order as they are arranged in
the crs above.

• Pre-challenge query phase: A can issue key generation queries or corrup-
tion queries in this phase.

1. Consider the key-generation queries first. Upon getting a slot index i ∈ [L],
the challenger updates ctr = ctr + 1, sets xctr

i = xi and does the following:

(a) Sample r̃ctri ←$ Z
+
q and compute pkctri =

(
T ctr

i ,
{

W̃ ctr
j,i

}
j∈[L]\{i}

)
as in

KGen.
(b) Note that the element T ctr

i ∈ G1 from pkctri has the following structure:

T ctr
i = g

−r̃ctr
i un′,i

1 , where skctri = r̃ctri is the secret key.

Even given the handle to un′,i, A cannot compute a handle for DL(T ctr
i ) =

−r̃ctri un′,i on its own. Hence, the challenger updates L1 with DL(T ctr
i ).

(c) Further, each term in
{

W̃ ctr
j,i ∈ G2

}
j∈[L]\{i}

has the following structure:

W̃ ctr
j,i = W

r̃ctr
i

j,i,n′ = g

tju
n′,i
γ ·r̃ctr

i

2

For reasons similar to Item (b) above, the challenger updates L2 with
each element individually from the set

{
r̃ctri · tjun′,i

γ

}
j∈[L]\{i}.
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(d) Define pkctr = pkctri , skctr = skctri and pk′
ctr as a sequence of handles to all

elements in the same order as they are arranged in pkctr.
(e) Return the tuple (ctr, pk′

ctr) to A and update D[ctr] = (i, pkctr, skctr).
2. When A sends c ∈ [ctr] issuing a corruption query, the challenger returns sk′

to A where D[c] = (i′, pk′, sk′).

• Challenge phase: In this phase, A specifies the following challenge informa-
tion:

{(ci,xi, pk
∗
i )}i∈[L] and ((y0,m0), (y1,m1)) ∈ (Zn+

q × GT)2.

Preprocessing the challenge information. For each i ∈ [L], the challenger checks
that xi �= 0n and does the following:

1. If ci ∈ [ctr], it checks D[ci] = (i′, pk′, sk′). If i �= i′, it halts. Else, it sets
pk∗

i = pk′. Further, if A issued a corruption query for ci before, it updates
CL = CL ∪ {i}.

2. If ci = ⊥, pk∗
i represents a corrupt secret key generated by A itself. Hence, it

parses pk∗
i and halts if IsValid(crs, i, pk∗

i ) = 0.7 Else, it updates CL = CL ∪{i}.

Computing key aggregation. The challenger then computes

(
mpk, (hski)i∈[L]

)
= Aggr

(
crs, ((pk∗

i ,xi))i∈[L]

)
, where

mpk = (G, g, h, Z, Γ, {Ûw}w′∈[n′+1]), and {hski = (G, i, Ai, Bi, {Ŵw,i}w∈[n′+1])}i∈[L].

Computing the challenge ciphertext. The challenger now uses mpk and
the pair (y0,m0), and generates c∗ ←$ Enc(mpk,y0,m0) where c∗ =(
C1, C2, {C3,w}w∈[n′+1], C4

)
.

1. Note that C1 = m0 · e(g1, g2)αs ∈ GT and C2 = gs
1 ∈ G1. Accordingly, the

challenger updates LT with αs and L1 with s respectively.
2. With ỹ0 = (y0, 0, 0) = (y0

1 , . . . , y0
n, 0, 0), note that the elements {C3,w ∈

G1}w∈[n′+1] have the following structure:

for all w ∈ [n], C3,w = hy0
w·r+s · Û−z

w = g
rβy0

w+sβ−z·uw

1

for w = n′, C3,n′ = g
rβ·0+sβ−z·u′

n
1 = g

sβ−z·un′
1

for w = n′ + 1, C3,n′+1 = grβ·0+sβ
1 · Û−z

n′+1 = gsβ
1 ·

L∏
i=0

T−z
i

= gsβ
1 ·

L∏
i=0

g
z

∑n′
w=1 x̃w,i·uw,i

1

7 By Definition 1, A is supposed to send well-formed keys that passes the IsValid(crs, ·, ·)
test. Hence, from now on we do not mention it any more, but assume the challenger
checks it implicitly.
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= gsβ
1 ·

L∏
i=0

g
z·u′

i
1 = g

sβ+z·u′
0−z

∑L
i=1 DL(Ti)

1

whereuw =
L∑

i=0

uw,i ,and un′ =
L∑

i=0

un′,i.

Accordingly, the challenger updates L1 with the elements {rβy0
w + sβ − z ·

uw}w∈[n], (sβ − z · un′), and
[
sβ + z · u′

0 − z ·∑L
i=1 DL(Ti)

]
in order.

3. Since C4 = gγz
1 ∈ G1, it updates L1 with zγ.

Group oracle queries. Since Aggr is deterministic, A is able to compute(
mpk, (hski)i∈[L]

)
on its own. In the GGM, A is able to compute handles for

the elements in mpk and {hski}i∈[L]. To this end, it queries the appropriate
group oracles to generate such handles as follows:

1. A only needs to compute the handles for {Ûw}w∈[n′+1] to complete its infor-
mation about mpk. Note that ∀w ∈ [n′], Ûw =

∏L
i=0 Uw,i = guw

1 , where
uw =

∑L
i=0 uw,i. Hence, ∀w ∈ [n′], A invokes the Add1 oracle L times itera-

tively on the handles in L1 for {uw,i}i∈[0,L] and gets a handle for uw. Further,
to get a handle for Ûn′+1 =

∏L
i=0 Ti, it has to first a get a handle for each Ti

that is fused with the predicate xi. Note the structure of each Ti after Step
(2) in Aggr:

Ti = g
∑n′

w=1 −x̃w,i·uw,i

1 = g
∑n

w=1(−xw,i·uw,i)
1 × g

(−r̃i·un′,i)
1 ∈ G1.

Given a handle for the second multiplicand, it is easy to note that the first
one is publicly computable using Neg1 and Add1 oracles. Once A obtains the
handles for {Ti}i∈[L], it can call Add1 oracle on these handles to get the same
for Ûn′+1.

2. A only needs to compute the handles for {Ŵw,i}w∈[n′+1] to get complete
information about hski for each i ∈ [L]. Note that ∀w ∈ [n′], Ŵw,i =∏

j∈[0,L]\{i} Wi,j,w = g
ti·(uw−uw,i)/γ
2 , since (uw − uw,i) =

∑
j∈[0,L]\{i} uw,j .

It is again easy to see that a handle for such an element can be com-
puted by calling the Add2 oracle L − 1 times iteratively on the handles in
L2 for

{ ti·uw,j

γ

}
j∈[0,L]\{i}. Further, note that to get a handle for Ŵn′+1,i =∏

j∈[0,L]\{i} W̃−1
i,j , it has to first a get a handle for each W̃j,i that is fused with

the predicate xi. Note the structure of each W̃j,i after Step (2) in Aggr:

W̃j,i =

(
n∏

w=1

W
x̃w,i

i,j,w

)
· W r̃i

i,j,n′ = g
∑n

w=1
tjuw,i

γ ·xw,i

2 × g

(
tju

n′,i
γ ·r̃i

)

2 ∈ G2.

Again, given a handle for the second multiplicand, the same can be computed
publicly for the entire product using handles for {Wi,j,w}. Once A obtains the
handles to each element in {W̃j,i}j∈[L]\{i}, it can call Add2 oracle on these
handles to get the same for Ŵn+1,i.
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3. Finally, it defines mpk′ and each hsk′
i as sequences of handles to all elements

(except i,xi) in the same order as arranged in mpk and each hski,∀i ∈ [L].

• Output phase: A outputs a bit b′ ∈ {0, 1}.

For ease of presentation, in Table 2 we show all unit and composite terms gen-
erated in the scheme itself, and stored in the respective lists.

Table 2. The above table shows all terms from the scheme for which handles are stored
in the respective lists Lt, ∀t ∈ {1, 2,T}. Assume A issues some arbitrary polynomial
number, Qk, of key queries in the pre-challenge query phase (some of which may be
corrupted). The table lists all the terms for each of these keys {pkc}c∈[Qk] received by
A in the second row. Hence, these terms are also indexed with superscripts for the key
query count c ∈ [Qk] (along with the slot index, say i ∈ [L], for which A asked the key).
The terms corresponding to mpk and hski are not shown in the table, since the handles
for these are publicly computable by A using the group oracles. Note that such terms
correspond to keys for all the registered L slots (possibly all of which may be corrupted
or even adversarially generated). Hence, the individual variables in each of those terms
in mpk and hski are independent of the counter variable c ∈ [Qk] respectively. In c,
observe that we also have (DL(m) + αs) in LT, where DL(m) ∈ Zq is w.r.t. gT.

L1 L2 LT

crs

g1 , β , γ

u′
0 =

n′∑

w=1

uw,0x̃w,0,

{

uw,i

}

i∈[0,L],w∈[n′]

g2 ,
{

ti , α + βti

}

i∈[L]

tiu
′
0

γ
,

{
tiuw,j

γ

}

i∈[L]
j∈[0,L]\{i}

w∈[n′]

gT

α

{pkc}
c∈[Qk]

{
−r̃c

i un′,i

}

c∈[Qk](
for {T c

i }c∈[Qk]

)

{
r̃c

i · tjun′,i

γ

}

j∈[L]\{i}
c∈[Qk](

for
{

W̃ c
j,i

}

j∈[L]\{i},c∈[Qk]

) –

c

s (for C2) ,

zγ (for C4) ,

rβy0
w + sβ − zuw

(for C3,w, ∀w ∈ [n]),

sβ − zun′ (for C3,n′) ,

where un′ =

L∑

i=0

un′,i

sβ − zDL(T ) (for C3,n′+1) ,

where DL(T ) =
L∑

i=0

DL(Ti)

– DL(m) + αs
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H2(λ) : In this hybrid, we switch to the SGM partially. Namely, the interac-
tion between challenger and A remains exactly as it was in H1(λ), but now
the challenger stores formal variables for all the terms from Table 2 in the
respective lists Lt,∀t ∈ {1, 2,T}. Thus, all the handles A receives refer to
multivariate polynomials from the following ring:

ζ =Zq

[
α, β, γ, u′

0, {uw,i}i∈[L],w∈[n′], {r̃ci}i∈[L],c∈[Qk]
,

{ti}i∈[L],
1
γ
, s, r, z, {yw}w∈[n′+1]

]
.

Concretely, A gets handles to formal polynomials from Lt for each t ∈ {1, 2,T},
where:

1. LT = {1, α,DL(m) + αs}.
2. L1 = Lcrs

1 ∪ Lkey
1 ∪ Lc

1, where
(a) Lcrs

1 =
(
1, β, γ, u′

0, {uw,i}i∈[0,L],w∈[n′]
)
,

(b) Lkey
1 =

(
{−r̃ciun′,i}c∈[Qk]

)
for some i ∈ [L], and

(c) Lc
1 =

(
s, zg,

{
rbyw + sb − z

∑L
i=0 uw,i

}
w∈[n]

, sb − zun′ , sb − zDL(T)
)

.

3. L2 = Lcrs
2 ∪ Lkey

2 , where

(a) Lcrs
2 =

(
1, {ti, a + bti}i∈[L],

tiu
′
0

g
,
{

tiuw,j
g

}
i∈[L],j∈[0,L]\{i},w∈[n′]

)
, and

(b) Lkey
2 =

({
r̃citjun′,i

g

}
j∈[L]\{i},c∈[Qk]

)
for some i ∈ [L].

However, when A issues any zero-test query via ZtT oracle, the challenger replaces
the formal variables with their corresponding elements from Zq. In this case, if
the variable is not assigned a value in Zq, it samples the corresponding value
from the same distribution as it did in H1(λ). However, once a value is assigned
to a variable, it is fixed throughout the rest of H2(λ). We show in [25] that
H1(λ) ≡ H2(λ).

Given the tuple P = (L1,L2,LT), we define C(LT) = LT ∪ {V1 · V2 | ∀V1 ∈
L1, V2 ∈ L2}. Basically, it is the set of all monomials from ζ with variables in
GT that A can compute querying Mape on the handles it received for elements
in L1,L2. We estimate the size of C(LT) as follows. Note that we have |C(LT)| =
|LT| + |L1| · |L2| where |LT| = 3,

|L1| = |Lcrs
1 | +

∣∣∣Lkey
1

∣∣∣+ |Lc
1|

≤ {(L + 1)n′ + 4} + LQk + (n + 4) = L(n + Qk + 1) + 2n + 9, and

|L2| = |Lcrs
2 | +

∣∣∣Lkey
2

∣∣∣
≤ {2 + 2L + n′L2} + {L(L − 1)Qk} = L2(n + Qk + 1) − L(Qk − 2) + 2.
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There are several variables in ζ and several terms in L1,L2. Hence, for brevity,
we do not state all the elements of C(LT) explicitly with all possible cross com-
binations of the monomials from L1,L2. However, it is easy to see by inspection
that the maximal total degree of each term in C(LT) is d = 7 corresponding to
the term

[
rbyw · r̃citjun′,i

g

]
for any w ∈ [n′], i ∈ [L], j ∈ [0, L] \ {i}, c ∈ [Qk]. We

also note that any handle submitted by A to the ZtT oracle during its interaction
refers to a polynomial f ∈ ζ as

f
(
α, β, γ, u′

0, {uw,i}i∈[L],w∈[n′], {r̃ci}i∈[L],c∈[Qk]
,

{ti}i∈[L],
1
γ
, s, r, z, {yw}w∈[n′+1]

)
=

∑
θ∈C(LT)

ηΘΘ,

where the coefficients {ηΘ ∈ Zq}Θ∈C(LT) can be computed efficiently. Further,
since all the monomials in C(LT) are distinct, the coefficients ηΘ are unique.

H3(λ) : In this hybrid, all queries to ZtT oracle are answered using formal vari-
ables. Namely, for any ZtT query on a handle to a polynomial f ∈ ζ, the
challenger returns 1 if:

f
(
α, β, γ, u′

0, {uw,i}i∈[L],w∈[n′], {r̃ci}i∈[L],c∈[Qk]
,

{ti}i∈[L],
1
γ
, s, r, z, {yw}w∈[n′+1]

)
= 0.

We show in [25] that H2(λ) ≈ H3(λ).

H4(λ) : In this hybrid, the challenge ciphertext computes an encryption of m0

with respect to y1. That is, everything remains as it is in H3(λ) except that
the challenger generates

c∗ = (C1, C2, {C3,w}w∈[n′+1], C4) ←$ Enc(mpk,y1,m0).

Arguing indistinguishability between H3(λ) and H4(λ) is the crux of this
proof. We provide this analysis in our full version [25]. From here on, the chal-
lenger moves to H6(λ) directly if m0 = m1. Else if m0 �= m1, it still moves to
H6(λ), but via the next hybrids.

H5,1(λ) : In this hybrid, Zs ∈ GT is replaced with U ←$ GT.
H5,2(λ) : In this hybrid, the challenge ciphertext encrypts m1 instead of m0.
H5,3(λ) : In this hybrid, U is changed to the honestly computed Zs again.
H6(λ) : In this hybrid, the challenger moves to GGM from the symbolic setting

of SGM. This is the real scheme corresponding to bit b = 1 in the GGM.

Hybrid Indistinguishability. Due to space constraints, we defer all the formal
proofs for the indistinguishability of hybrids in our full version [25].
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Final pairing-based RIPE scheme. By combining the slotted RIPE scheme
of Construction 1 and the (“powers-of-two”) transformation provided in our full
version [25] , we obtain a secure registered IPE with an extra O(log L) factor in
all its compactness and efficiency measures.

7 Implementation and Benchmarks

We developed a Python prototype8 of our sRIPE scheme from Sect. 6 with the
BLS12-381 elliptic curve for pairings, which we implemented via the petrelic
Python wrapper [47] around RELIC [10]. This configuration allows each element
in G1,G2,GT to be represented using 49, 97 and 384 bytes respectively. We
obtained the benchmarks below on a personal computer with an Intel Core i7-
10700 3.8GHz CPU and 128GB of RAM running Ubuntu 22.04.1 LTS with kernel
5.15.0-58-generic. Exponentiations in G1 (resp., G2) and each pairing took 0.13
(resp., 0.18) milliseconds and 0.68 milliseconds on average on our machine.

Benchmarks. We provide benchmarks in Fig. 2, showing the sizes of mpk and
the |crs| as well as the execution times of setup, aggregate, encrypt and decrypt
in relation to parameters L and n. For encryption and decryption, we executed

Fig. 2. Benchmarks for L ∈ {100, 200, · · · , 1000} and n ∈ {10, 20, · · · , 100}
8 https://anonymous.4open.science/r/slotted-ripe-DD12/.

https://anonymous.4open.science/r/slotted-ripe-DD12/
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the algorithms 100 times for each pair (L, n), and then computed the average
runtime. The setup and aggregate were run once for each unique pair of (L, n).
We did not plot the sizes of the ciphertexts, but these can be determined deter-
ministically based on n as |c| = 580 + 49n bytes. The size of the helper secret
key for each user is |hsk| = 340+97n bytes. Note that the setup and aggregation
time grows acutely with L and n. Improving the efficiency of our sRIPE scheme
is left as a future work.
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