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Preface

The 29th Annual International Conference on the Theory and Application of Cryptology
and Information Security (Asiacrypt 2023) was held in Guangzhou, China, onDecember
4–8, 2023.The conference covered all technical aspects of cryptology, andwas sponsored
by the International Association for Cryptologic Research (IACR).

We received an Asiacrypt record of 376 paper submissions from all over the world,
and the Program Committee (PC) selected 106 papers for publication in the proceedings
of the conference. Due to this large number of papers, the Asiacrypt 2023 program had
3 tracks.

The two program chairs were supported by the great help and excellent advice of six
area chairs, selected to cover themain topic areas of the conference. The area chairs were
Kai-Min Chung for Information-Theoretic and Complexity-Theoretic Cryptography,
Tanja Lange for Efficient and Secure Implementations, Shengli Liu for Public-Key
Cryptography Algorithms and Protocols, Khoa Nguyen for Multi-Party Computation
and Zero-Knowledge, Duong Hieu Phan for Public-Key Primitives with Advanced
Functionalities, and Yu Sasaki for Symmetric-Key Cryptology. Each of the area chairs
helped to lead discussions together with the PC members assigned as paper discussion
lead. Area chairs also helped to decide on the submissions that should be accepted from
their respective areas. We are very grateful for the invaluable contribution provided by
the area chairs.

To review and evaluate the submissions, while keeping the load per PC member
manageable, we selected a record size PC consisting of 105 leading experts from all
over the world, in all six topic areas of cryptology. The two program chairs were not
allowed to submit a paper, and PC members were limited to submit one single-author
paper, or at most two co-authored papers, or at most three co-authored papers all with
students. Each non-PC submission was reviewed by at least three reviewers consisting of
either PC members or their external sub-reviewers, while each PC member submission
received at least four reviews. The strong conflict of interest rules imposed by IACR
ensure that papers are not handled by PC members with a close working relationship
with the authors. There were approximately 420 external reviewers, whose input was
critical to the selection of papers. Submissions were anonymous and their length was
limited to 30 pages excluding the bibliography and supplementary materials.

The review process was conducted using double-blind peer review. The conference
operated a two-round review system with a rebuttal phase. After the reviews and first
round discussions the PC selected 244 submissions to proceed to the second round and
the authors were then invited to participate in an interactive rebuttal phase with the
reviewers to clarify questions and concerns. The remaining 131 papers were rejected,
including one desk reject. The second round involved extensive discussions by the PC
members. After several weeks of additional discussions, the committee selected the final
106 papers to appear in these proceedings.
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The eight volumes of the conference proceedings contain the revised versions of the
106 papers that were selected. The final revised versions of papers were not reviewed
again and the authors are responsible for their contents.

The PC nominated and voted for two papers to receive the Best Paper Awards,
and one paper to receive the Best Early Career Paper Award. The Best Paper Awards
went to Thomas Espitau, Alexandre Wallet and Yang Yu for their paper “On Gaussian
Sampling, Smoothing Parameter and Application to Signatures”, and to Kaijie Jiang,
Anyu Wang, Hengyi Luo, Guoxiao Liu, Yang Yu, and Xiaoyun Wang for their paper
“Exploiting the Symmetry of Zn: Randomization and the Automorphism Problem”. The
Best Early Career Paper Award went to Maxime Plancon for the paper “Exploiting
Algebraic Structure in Probing Security”. The authors of those three papers were invited
to submit extended versions of their papers to the Journal of Cryptology. In addition,
the program of Asiacrypt 2023 also included two invited plenary talks, also nominated
and voted by the PC: one talk was given by Mehdi Tibouchi and the other by Xiaoyun
Wang. The conference also featured a rump session chaired by Kang Yang and Yu Yu
which contained short presentations on the latest research results of the field.

Numerous people contributed to the success of Asiacrypt 2023. We would like to
thank all the authors, including those whose submissions were not accepted, for submit-
ting their research results to the conference. We are very grateful to the area chairs, PC
members and external reviewers for contributing their knowledge and expertise, and for
the tremendous amount of work that was done with reading papers and contributing to
the discussions. We are greatly indebted to Jian Weng and Fangguo Zhang, the General
Chairs, for their efforts in organizing the event and to KevinMcCurley and KayMcKelly
for their help with the website and review system. We thank the Asiacrypt 2023 advi-
sory committee members Bart Preneel, Huaxiong Wang, Kai-Min Chung, Yu Sasaki,
Dongdai Lin, Shweta Agrawal and Michel Abdalla for their valuable suggestions. We
are also grateful for the helpful advice and organization material provided to us by the
Eurocrypt 2023 PC co-chairs Carmit Hazay and Martijn Stam and Crypto 2023 PC co-
chairs Helena Handschuh and Anna Lysyanskaya. We also thank the team at Springer
for handling the publication of these conference proceedings.

December 2023 Jian Guo
Ron Steinfeld
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Improved Fully Adaptive Decentralized
MA-ABE for NC1 from MDDH

Jie Chen1 , Qiaohan Chu1(B) , Ying Gao2,3 , Jianting Ning4 ,
and Luping Wang5

1 Shanghai Key Laboratory of Trustworthy Computing, Software Engineering
Institute, East China Normal University, Shanghai, China

52205902004@stu.ecnu.edu.cn
2 School of Cyber Science and Technology, Beihang University, Beijing, China

3 Zhongguancun Laboratory, Beijing, China
4 College of Computer and Cyberspace Security, Fujian Normal University, Fuzhou,

China
5 School of Electronic and Information Engineering, Suzhou University of Science

and Technology, Suzhou, China

Abstract. We improve the first and the only existing prime-order
fully adaptively secure decentralized Multi-Authority Attribute-Based
Encryption (MA-ABE) scheme for NC1 in Datta-Komargodski-Waters
[Eurocrypt ’23]. Compared with Datta-Komargodski-Waters, our decen-
tralized MA-ABE scheme extra enjoys shorter parameters and meanwhile
supports many-use of attribute. Shorter parameters is always the goal
for Attribute-Based Encryption (ABE), and many-use of attribute is a
native property of decentralized MA-ABE for NC1. Our scheme relies on
the Matrix Decision Diffie-Hellman (MDDH) assumption and is in the
random oracle model, as Datta-Komargodski-Waters.

Keywords: Attribute-Based Encryption · Decentralized · Fully
Adaptive Security

1 Introduction

Attribute-Based Encryption (ABE) [22,36] is a public key encryption primi-
tive that supports fine-grained access control for encrypted data. Concretely,
ABE allows the encryptor to embed some attribute vector or policy into the
ciphertext, and only the user who holds a secret key associated with a sat-
isfied policy or satisfied attribute vector can decrypt the ciphertext success-
fully. Since the introduction of ABE, there have been plenty of works focus-
ing on ABE, about security, efficiency, expressiveness and more [1,3,6,9,10,19–
21,23,25–27,30,31,33,38,40,41].

Decentralized Multi-authority ABE. Traditional ABE requires a central
authority that is in charge of generating and storing the master secret key. With
c© International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14442, pp. 3–32, 2023.
https://doi.org/10.1007/978-981-99-8733-7_1
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the master secret key, this central authority can generate any secret key and
thus decrypt all the ciphertexts. Therefore, if this central authority is malicious,
the security of the ABE system is destroyed. To mitigate such a trust reliance
on the central authority, the notion of Multi-Authority Attribute-Based Encryp-
tion (MA-ABE) has been introduced and studied. There have been some earlier
works about MA-ABE [7,8,29,32], however, these earlier works are limited in
either functionality or security. Later, Lewko and Waters [28] proposed the first
truly decentralized MA-ABE scheme for NC1 (it is well known that NC1 can be
realized by (monotone) Linear Secret Sharing Scheme (LSSS) [4,28,33], below,
we use the policy NC1 and LSSS interchangeably) in composite-order groups
under the Subgroup Decision (SD) assumptions achieving adaptive security. In
decentralized MA-ABE, anyone can become an authority, and each authority
controls a set of attributes. Each authority generates the public keys and the
master secret keys associated with the attributes he controls, and issues the
corresponding secret keys to the users. Since the encryption algorithm takes as
input the public keys, which are generated by different authorities, each author-
ity cannot generate valid secret keys associated with the attributes that are
not controlled by him, thus the central trust is distributed. The decryption of
decentralized MA-ABE requires a user to collect the secret keys associated with
the attributes that satisfy the policy embedded in the ciphertext, from a set of
authorities. In decentralized MA-ABE, no global coordination is needed, except
the creation of an initial set of common reference parameters, i.e., the global
parameters.

Fully Adaptive Security. For the security of decentralized MA-ABE, it is required
that for a challenge ciphertext, it is collusion-resistant against an arbitrary num-
ber of unauthorized secret keys, which corresponds to an arbitrary number of
unauthoried secret key queries in the security game (below, we regard secret key
queries as an arbitrary number of unauthorized secret key queries, by default),
and is against corruptions of some authorities, which corresponds to some cor-
ruption queries in the security game. Before Datta, Komargodski, and Waters
[15], the best security level of decentralized MA-ABE is against static corrup-
tion queries of some authorities (which means the corruption queries of some
authorities should be made at the beginning, even before seeing any secret key),
and adaptive ciphertext and secret key queries (which means the ciphertext and
secret key queries can be made at any time). Recently, Datta, Komargodski,
and Waters [15] proposed the first fully adaptively secure decentralized MA-
ABE schemes, which are against not only adaptive ciphertext and secret key
queries, but also adaptive corruption queries of some authorities (which means
the corruption queries of some authorities can be made at any time).

A Sequence of Works. Subsequent to Lewko and Waters’s work [28], a number
of decentralized MA-ABE constructions have been proposed. Rouselakis and
Waters [35] proposed a decentralized MA-ABE scheme for NC1 that improves
the efficiency, but under the non-standard q-type assumption and achieving only
static security. Okamoto and Takashima [34] proposed a decentralized MA-ABE
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scheme for NC1 in prime-order groups under the Decision Linear (DLin) assump-
tion [5] and achieving adaptive security. Ambrona and Gay [2] proposed decen-
tralized MA-ABE schemes for NC1 either achieving adaptive security in the
generic group model (GGM), or achieving selective security under the Sym-
metric External Diffie-Hellman (SXDH) assumption. Datta, Komargodski, and
Waters [12] proposed the first decentralized MA-ABE scheme under the Learn-
ing With Errors (LWE) assumption, but supporting a non-trivial DNF access
policy and achieving only static security. Datta, Komargodski, and Waters [13]
also proposed the first decentralized MA-ABE scheme for NC1 under the stan-
dard computational or decisional bilinear Diffie-Hellman (C/DBDH) assump-
tions, but achieving only static security. Waters, Wee, and Wu [39] proposed
a decentralized MA-ABE scheme for DNF without random oracles, under the
recently-introduced evasive LWE assumption [37,42], but achieving only static
security. Recently, Datta, Komargodski, and Waters [15] proposed the first decen-
tralized MA-ABE schemes for NC1 achieving fully adaptive security, under the
SD assumptions and MDDH assumption.

Many-Use of Attribute. Traditionally, pairing-based ABE for LSSS usually
confronts the one-use of attribute limitation, which means that the mapping
ρ of LSSS is restricted to be injective. This is because in the security analy-
sis, we usually need the property that the master secret key Wρ(x) is random.
However, it is expected that the attribute can be used for many times, since
many-use of attribute is closer to the real world in the sense that attributes
are usually reused. One rescue for one-use limitation is using a simple encoding
technique [26,28], but this will incur the ciphertext size growing with the pol-
icy size. Rouselakis and Waters [35] proposed a decentralized MA-ABE scheme
for LSSS allowing many-use of attribute without sacrificing the ciphertext size.
In [35], they use the random oracle to overcome the one-use limitation. Later,
Kowalczyk and Wee [24] proposed ABE schemes for LSSS that allow many-use
of attribute without sacrficing the ciphertext size. In [24], they mainly rely on a
single-queried adaptively secure ABE for LSSS (which is called Core 1-ABE in
[24]) to achieve many-use of attribute. Ambrona and Gay [2] also constructed
decentralized MA-ABE schemes for LSSS without the one-use limitation. In [2],
the one-use limitation is overcome by the underlying Identity-Based Functional
Encryption scheme for inner products.

1.1 Results

We improve the first and the only existing fully adaptively secure decentralized
MA-ABE scheme in prime-order groups of [15]. Concretely, our construction is
almost in the same style as the construction of [15], except that

– we prove that our construction allows many-use of attribute without sacrific-
ing the ciphertext size;
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– in our construction, the dimension of the ciphertext matrix is of 2k + 1 and
the dimension of secret key matrix is of 3k, while in the construction of [15],
both the ciphertext matrix and the secret key matrix are of 3k-dimension,
where k is the parameter of the MDDH assumption.

Our construction relies on the MDDH assumption and is in the random oracle
model, as [15].

We present detailed comparisons in Table 1 and Table 2.

Table 1. A comparison of current decentralized MA-ABE schemes for NC1

Scheme Assumption Security Bounded Policy Size? Many-Use?

AG21 [2] GGM Adaptive No Yes
AG21 [2] SXDH Selective No Yes
LW11 [28] SD Adaptive No No
OT20 [34] DLin Adaptive No No
RW15 [35] q-type Static No Yes
DKW21b [13] C/DBDH Static Yes No
DKW23 [15] SD Fully Adaptive No No
DKW23 [15] MDDH Fully Adaptive No No
Ours MDDH Fully Adaptive No Yes
- Adaptive security means the corruption queries are made at the beginning, but
the ciphertext and secret key queries can be made adaptively; Selective security
means the ciphertext and corruption queries are made before the secret key queries,
while the secret key queries can be made adaptively; Static security means the
ciphertext, secret key and corruption queries are made before the public key of
any attribute authority is published; Fully adaptive security means the ciphertext,
secret key and corruption queries can all be made adaptively.
- For “Bounded Policy Size?”, “No” denotes that the corresponding scheme is not
required to declare the maximal size of policy during the system setup, and “Yes”
denotes that the corresponding scheme is required to declare the maximal size of
policy during the system setup.
- For “Many-Use?”, “No” denotes that the corresponding scheme does not allow
many-use of attribute without parameter size expansion, and “Yes” denotes that
the corresponding scheme allows many-use of attribute without parameter size
expansion.
- All the schemes in the Table are in the random oracle model.

1.2 Technical Overview

Before we proceed to the details of our technical overview, we first provide a
summary in Fig. 1 to make our approaches clear.
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Table 2. A comparison of fully adaptively secure decentralized MA-ABE in prime-
order groups

Scheme |PKu| |MSKu| |CT| |skGID,u| Many-Use?

DKW23 [15] 6k2|G1| 18k2|Zp| 12k�|G1| 6k|G2| No
Ours 6k2|G1| (12k2 + 6k)|Zp| (10k� + 2�)|G1| (4k + 2)|G2| Yes
- We omit C and the access policy (M, ρ) in CT.
- k denotes the parameter of the MDDH assumption, and � denotes the number of
the rows of M in access policy (M, ρ).
- We assume that each authority controls a single attribute, thus the subscripts of
PK,MSK and skGID are all u.

Fig. 1. Summary of our approaches. The dashed line shows an attempt, which is
described in the pointed box. The cross shows that we failed in the attempt, and
the check mark shows that we succeeded in the attempt. For the format like “(2k + 1,
CT, 3k, SK)”, 2k + 1 describes the matrix size of the ciphertext and 3k describes the
matrix size of the secret key. We highlight our contributions in green (Color figure
online).

Recap of Datta-Komargodski-Waters Composite-Order Decentralized
MA-ABE. We start with recapping the security proofs of the composite-order
decentralized MA-ABE construction in [15], which is shown in Table 3.

Observe that throughout the hybrids, three subgroups are involved, thus, for
the prime-order construction, it should involve three subspaces. For CT and h,
it needs the SD assumptions of “g1 to g13”, and “g1 to g12”, which are both based
on the first subgroup g1. For H(GID), it needs the SD assumptions of “g123 to
g1”, “g1 to g12”, “g12 to g1”, which are based on the first subgroup g1, and “g12
to g123”, which is implicitly based on the second subgroup g2, and “g13 to g123”,
“g123 to g13”, which are implicitly based on the third subgroup g3. Note that
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Table 3. Hybrid sequence for the composite-order decentralized MA-ABE in [15]

Hybrid CT H(GID) h Justification

0 g1 g123 g1 –
1 g1 g1, g123 �→ g1 g1 SD

2 g13, g1 �→ g13 g1 g1 SD

3 g13 g1 g1 Statistical
4 g123, g1 �→ g12 g1 g1 SD

5:j:1 g123 g12, g1 �→ g12 g1 SD

5:j:2 g123 g12 g1 Statistical
5:j:3 g123 g123, g12 �→ g123 g1 SD

5:j:4 g123 g123 g1 Statistical
5:(j+1) g123 g13, g12 �→ g1 g1 SD

6 g123 g13 g12, g1 �→ g12 SD

7 g123 g13 g12 Statistical
8 g123 g123, g13 �→ g123 g12 SD

9 g123 g123 g12 Identical
10 g123 g13, g123 �→ g13 g12 SD

11 g123 g13 g12 Statistical
12 g123 g13 g12 Statistical
- We use gi to simply denote the elements in the i-th subgroup, for which
i belongs to the power set of {1, 2, 3}.
- The box describes which kind of Subgroup Decision assumption is used.

for CT, the “based on” subgroup consists of only g1, and for H(GID) and h, the
(implicitly) “based on” subgroups consist of g1, g2 and g3. The analysis of the
“based on” subgroups is prepared for the later “horter matrix” part. Roughly
speaking, the subspace corresponding to the “based on” subgroup must be of
k-dimension, where k is the parameter of the MDDH assumption.

Straight-Forward Transformation from Composite-Order to Prime-
Order. We transform the above composite-order construction into prime-order
construction by using the framework of [10] in a straight-forward way. Let’s recall
the framework of [10]. In the framework, there is a correspondence as follows:

for CT, gi �→ [Ai]1, gsi
i �→ [siA�

i ]1,

for H(GID) and h, gj �→ [Bj ]2, g
rj

j �→ [Bjrj ]2,

where i, j ∈ {1, 2, 3}, Ai ∈ Z
�′

A×�i
p , si ←R Z

1×�i
p , Bj ∈ Z

�′
B×�j

p , rj ←R Z
�j×1
p , and

�′
A =

∑
i �i, �

′
B =

∑
j �j .

Naturally, as in [17,18], we would like to set �i = �j = k, for all i, j ∈ {1, 2, 3},
where k is the parameter of the MDDH assumption, and below we default k to
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this meaning. Then, the �′
A and �′

B are equal to 3k, which is the same as in the
prime-order decentralized MA-ABE construction of [15].

Equipped with Many-Use of Attribute. To equip the above prime-order
construction with many-use of attribute, we roughly leverage the technique
in Kowalczyk and Wee’s work [24]. Roughly speaking, their technique can be
regarded as replacing statistical indistinguishability with computational indis-
tinguishability. Recall that in [24], Kowalczyk and Wee first defined a single-
queried ABE, called Core 1-ABE, which demonstrates the indistinguishability
between the random secrets μ0 and μ1 of LSSS. Then they programmed the
Core 1-ABE into a centralized ABE scheme, and changed the secret in the cen-
tral ABE scheme into a random value. Note that in their work, the Core 1-ABE
is applied into a centralized ABE, while we hope to apply it into a decentralized
ABE. Fortunately, in a similar way, we can successfully program the Core 1-ABE
to change the secrets in our construction. Following the technique in [24] directly,
we need to set the �′

A in our construction as 3k. This is because the Core 1-ABE
is based on a MDDH-based CPA-secure symmetric encryption, when changing a
secret, we need a k-dimensional space to assist to program it. Since throughout
the proofs, two kinds of secrets need to be changed, thus, intuitively, we need a
2k-dimensional space. That is, the number of the columns of A2 and A3 (i.e., the
�2 and �3 of “A”) should be set as k, thus, plus the number of the columns of A1

(i.e., the �1 of “A”), which is k, we have �′
A = 3k. Note that this exactly matches

the �′
A we have set in the last section. That is, from the aspect of many-use of

attribute, the �′
A is 3k, and from the aspect of straight-forward transformation

in the last section, the �′
A is also 3k.

Smaller Ciphertext Matrix. Inspired by Chen, Gong, and Wee’s work [11],
we would like to explore whether we can improve 3k to a smaller dimension, like
k + 2. Recall that for ciphertext, the “based on” subgroup consists of only g1,
therefore, when transforming composite-order into prime-order, it is sufficient to
set A1 ∈ Z

(k+2)×k
p and A2,A3 ∈ Z

(k+2)×1
p , rather than set A1,A2,A3 ∈ Z

3k×k
p ,

if we don’t consider many-use of attribute.

Challenge: Many-Use of Attribute and Smaller Ciphertext Matrix
Simultaneously. To program the Core 1-ABE, we require the �2, �3 of “A”
to be k. While, for smaller ciphertext matrix, we expect the �2, �3 of “A” to be
1. This seems to tell us that many-use of attribute cannot coexist with smaller
ciphertext matrix.

An Attempt. Our observation is that in fact, we only need one “k” matrix to
help us to program the Core 1-ABE. That is, the “two kinds of secrets” can share
one k-dimensional space. Then, can we use A1 to help us to program the Core
1-ABE and finally achieve (k+2)-dimensional ciphertext matrix? The answer is
negative. The essential point is that the simulator can only query a proportion
of the secret keys of the CPA-secure symmetric encryption, thus the simulator
cannot simulate all the public keys of the decentralized MA-ABE construction.
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Final Solution. The fact that gaining “k” from A1 cannot work suggests that
we have to use another shared “k” matrix, so that we can preserve the pub-
lic keys unchanged (by the orthogonality). However, to successfully program
the Core 1-ABE, we need this another “k” matrix not to be orthogonal to the
matrices that have existed in the ciphertext. Fortunately, when we set A3 as
the another “k” matrix, we can successfully program the Core 1-ABE in all
the related proofs (while, if we set A2 as the another “k” matrix, we can-
not successfully program the Core 1-ABE in some proofs). Then by setting
A1,A3 ∈ Z

(2k+1)×k
p ,A2 ∈ Z

(2k+1)×1
p , we finally achieve (2k + 1)-dimensional

ciphertext matrix and meanwhile achieve many-use of attribute.
To better demonstrate our construction, we provide a summary of the hybrid

sequence of our construction in Table 4.

Table 4. Hybrid sequence for our prime-order decentralized MA-ABE

Hybrid CT H(GID) h Justification

0 A1 B1,B2,B3 B1 -

1 A1 B1, B1 MDDH

B1,B2,B3 �→ B1

2 A1,A3, B1 B1 MDDH

A1 �→ A1,A3

3 A1,A3 B1 B1 Core 1-ABE

4 A1,A2,A3, B1 B1 MDDH

A1 �→ A1,A2

5:j:1 A1,A2,A3 B1,B2, B1 MDDH

B1 �→ B1,B2

5:j:2 A1,A2,A3 B1,B2 B1 Core 1-ABE

5:j:3 A1,A2,A3 B1,B2,B3, B1 MDDH

B2 �→ B2,B3

5:j:4 A1,A2,A3 B1,B2,B3 B1 Core 1-ABE

5:(j+1) A1,A2,A3 B1,B3, B1 MDDH

B1,B2 �→ B1

6 A1,A2,A3 B1,B3 B1,B2, MDDH

B1 �→ B1,B2

7 A1,A2,A3 B1,B3 B1,B2 Core 1-ABE

8 A1,A2,A3 B1,B2,B3, B1,B2 MDDH

B3 �→ B2,B3

9 A1,A2,A3 B1,B2,B3 B1,B2 Identical

10 A1,A2,A3 B1,B3, B1,B2 MDDH

B2,B3 �→ B3

11 A1,A2,A3 B1,B3 B1,B2 Core 1-ABE

12 A1,A2,A3 B1,B3 B1,B2 Statistical

- We use A1 ∈ Z
(2k+1)×k
p ,A2 ∈ Z

(2k+1)×1
p ,A3 ∈ Z

(2k+1)×k
p and B1,B2,B3 ∈

Z
3k×k
p to denote the subspaces in CT and the subspaces in H(GID), h, respec-

tively.
- The box describes the transition of the subspaces.



Improved Fully Adaptive Decentralized MA-ABE for NC1 from MDDH 11

2 Preliminaries

2.1 Notations

We use ←R to denote random sampling, and use ‖ to denote concatenation of
matrices. For an integer N , we use [N ] to denote the set {1, ..., N}. We use ≡ to
denote two distributions being identically indistinguishable. For a matrix A, we
use span(A) to denote the column span of A and use basis(A) to denote a basis
of span(A). We use I to denote an identity matrix of proper size, and use 0 to
denote a zero matrix of proper size.

2.2 Prime-Order Bilinear Groups

A prime-order group generator G takes as input the security parameter λ in unary
notation and outputs a description G = (p,G1, G2, GT , e), where p is a prime,
G1, G2, GT are cyclic groups of order p, and e : G1 ×G2 → GT is an asymmetric
non-degenerated bilinear mapping. Let [1]1 = g1 ∈ G1, [1]2 = g2 ∈ G2 and
[1]T = gT = e(g1, g2) ∈ GT be the respective generators. For any a, b ∈ Zp, we
have e(ga

1 , gb
2) = e(g1, g2)ab = gab

T = [ab]T . We define [M]1 = gM1 , [M]2 = gM2
and [M]T = gMT , where M is a matrix over Zp, and exponentiation is carried out
component-wise. We also define e([A]1, [B]2) = [AB]T , where A,B are matrices
over Zp.

2.3 Basis Structure

Fix parameters �1, �2, �3 ≥ 1. Sample

A1 ←R Z
�′×�1
p ,A2 ←R Z

�′×�2
p ,A3 ←R Z

�′×�3
p ,

where �′ := �1 + �2 + �3. Let (A‖
1‖A‖

2‖A‖
3)

� denote the inverse of (A1‖A2‖A3),
so that A�

i A
‖
i = I (known as non-degeneracy) and A�

i A
‖
j = 0 if i 	= j (known

as orthogonality), as depicted in Fig. 2.

Fig. 2. Basis relations. Solid lines mean orthogonal, dashed lines mean non-degeneracy.
Similar relations hold in composite-order groups.

By symmetry, we can permute the indexes for A1,A2,A3.
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2.4 Assumptions

Matrix Decision Diffie-Hellman Assumption. Let k, l , d ∈ N. The Matrix
Decision Diffie-Hellman (MDDH) assumption [16] says that for all p.p.t adver-
saries A, the following advantage function is negligible in λ:

Adv
MDDHd

k,l

A (λ) := |Pr[A(G, [M]1, [MS]1) = 1] − Pr[A(G, [M]1, [U]1) = 1]|,
where G = (p,G1, G2, GT , e) ← G(1λ),M ←R Z

l×k
p ,S ←R Z

k×d
p , and U ←R

Z
l×d
p .

MDDH assumption also holds similarly in G2.

Lemma 1 (MDDH�1→�1+�2 =⇒SDG1
A1 �→A1,A2

). Under the MDDH�1,�1+�2

assumption in G1, there exists an efficient sampler outputting random ([A1]1,
[A2]1, [A3]1) (as described in Sect. 2.3) along with base basis(A‖

1), basis(A
‖
3),

basis(A‖
1,A

‖
2) (of arbitrary choice) such that the following advantage function

is negligible in λ.

Adv
SDG1

A1 �→A1,A2
A (λ) := |Pr[A(D, [T0]1) = 1] − Pr[A(D, [T1]1) = 1]|,

where

D := ([A1]1, [A2]1, [A3]1, basis(A
‖
1), basis(A

‖
3), basis(A

‖
1,A

‖
2)),

T0 ←R span(A1), T1 ←R span(A1,A2).

Remark 1. Lemma 1 is similarly stated in [10,11,17,18], and similar lemma also
holds in G2.

2.5 Decentralized Multi-authority Attribute-Based Encryption
for LSSS

Syntax. We assume that each authority controls a single attribute. A decen-
tralized Multi-Authority Attribute-Based Encryption scheme for Linear Secret
Sharing Scheme consists of five efficient algorithms:

– GlobalSetup(1λ) → GP: The global setup algorithm takes as input the security
parameter λ in unary notation, and outputs the global parameters GP for the
system.

– AuthSetup(GP, u ∈ AU) → (PKu,MSKu): The authority setup algorithm
takes as input the global parameters GP and an attribute u ∈ AU , where
AU is the universe of attributes, and outputs the public key PKu of u as well
as the master secret key MSKu of u.

– Enc(GP,msg, (M, ρ), {PKu′}u′∈ρ([�])) → CT: The encryption algorithm takes
as input the global parameters GP, a message msg ∈ M, where M is the
message space, an LSSS access policy (M, ρ) in which ρ maps each row of
M to an attribute in AU , and the public keys set {PKu′}u′∈ρ([�]) for all the
attributes in the range of ρ on the constraint of [�]. Then output a ciphertext
CT.
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– KeyGen(GP,GID,MSKu) → skGID,u: The key generation algorithm takes as
input the global parameters GP, a user’s global identifier GID ∈ GID, where
GID is the universe of global identifiers, and a master secret key of attribute
u ∈ AU . Then output a secret key of GID and u.

– Dec(GP,CT, {skGID,u′′}u′′∈U ) → msg′/ ⊥: The decryption algorithm takes as
input the global parameters GP, a ciphertext CT and a collection of secret
keys {skGID,u′′}u′′∈U of the user ID-attribute pairs {(GID, u′′)} possessed by
a user with global identifier GID, and u′′ ∈ U ⊆ AU , where U is a subset of
AU . Then output a message msg′, or ⊥.

Correctness. A decentralized MA-ABE scheme for LSSS is correct, if for all
λ ∈ N, msg ∈ M, GID ∈ GID, LSSS access policy (M, ρ), and U ⊆ AU containing
attributes that satisfy the LSSS access structure, we have

Pr

⎡

⎢
⎢
⎢
⎢
⎣

msg′ = msg

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

GP ← GlobalSetup(1λ);
∀u ∈ AU ,PKu,MSKu ← AuthSetup(GP, u);
CT ← Enc(GP,msg, (M, ρ), {PKu′}u′∈ρ([�]));
∀u′′ ∈ U , skGID,u′′ ← KeyGen(GP,GID,MSKu′′);
msg′ = Dec(GP,CT, {skGID,u′′}u′′∈U );

⎤

⎥
⎥
⎥
⎥
⎦
= 1.

Fully Adaptive Security. For a stateful adversary A, define the advantage
function AdvMA-ABE

A (λ) :=

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b′ = b

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

GP ← GlobalSetup(1λ);
∀u ∈ AU ,PKu,MSKu ← AuthSetup(GP, u);
((M, ρ),msg0,msg1) ←
AAuthSetup(GP,·),KeyGen(GP,·,MSKu)(GP, {PKu}u∈AU );
b ←R {0, 1};
CTb ← Enc(GP,msgb, (M, ρ), {PKu′}u′∈ρ([�]));
b′ ← AAuthSetup(GP,·),KeyGen(GP,·,MSKu)(GP, {PKu}u∈AU ,CTb);

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1
2
,

where AuthSetup(GP, ·) denotes that A can make authority setup queries and
authority master key queries adaptively, and KeyGen(GP, ·,MSKu) denotes that
A can make secret key queries adaptively, with the restriction that all the infor-
mation that A gets from the queries cannot make A decrypt the challenge cipher-
text CTb successfully by following a legitimate decryption process. A decentral-
ized MA-ABE scheme is fully adaptively secure, if for all p.p.t adversaries A, the
advantage AdvMA-ABE

A (λ) is a negligible function in λ.

Many-Use of Attribute. If the mapping ρ in the LSSS access policy (M, ρ)
is not restricted to be an injective mapping, then we say the attributes in AU
can be used for many times, i.e., many-use of attribute.
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Core 1-ABE. Core 1-ABE is defined in [24]. For a stateful adversary A, define
the advantage function Adv1-ABE

A (λ) :=

Pr

⎡

⎢
⎢
⎢
⎢
⎣

b′ = b

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

wi ← CPA.Setup(1λ);
(μ0, μ1) ← AOX(·),OE(·,·);
b ←R {0, 1};
ctb ← OF ((f, μb));
b′ ← AOX(·),OE(·,·)(ctb);

⎤

⎥
⎥
⎥
⎥
⎦

− 1
2
,

where OF ((f, μb)) = ct := {sk′
f = {μj}ρ′(j)=0 ∪ {CPA.Enc(wρ′(j), μj)}ρ′(j) 	=0},

({μj}, ρ′) ← share(f, μb), and OX(x) := (ct′x = {wi}xi=1), and OE(i,m) :=
CPA.Enc(wi,m), with the restriction that (i) only one query is made to each
OF (·) and OX(·), and (ii) the queries f and x to OF (·),OX(·) respectively,
satisfy f(x) = 0.

The CPA-secure symmetric encryption scheme in [24] is constructed as fol-
lows:

– CPA.Setup(1λ): Run G ← G(1λ). Sample w ←R Z
1×k
p . Output sk = w.

– CPA.Enc(sk, [M ]2): Sample r ←R Z
k×1
p . Output (ct1, ct2) = ([M +wr]2, [r]2).

– CPA.Dec(sk, (ct1, ct2)): Output ct1 · (sk · ct2)−1.

The correctness follows that ct1 · (sk · ct2)−1 = [M +wr − wr]2 = [M ]2.

In [24], Adv1-ABE
A (λ) is proved to be a negligible function in λ under the

MDDH assumption.

3 Decentralized MA-ABE in Prime-Order Groups

We assume that each authority controls a single attribute. The hash function H
is modeled as a random oracle in the security analysis.

3.1 Construction

– GlobalSetup(1λ): Take as input the security parameter λ in unary notation.
Run G = (p,G1, G2, GT , e) ← G(1λ). We use a strong seeded randomness
extractor Ext : GT × S → M, where M ⊂ {0, 1}∗ is the message space and
S ⊂ {0, 1}∗ is the seed space. Sample seed ←R S,A1 ←R Z

(2k+1)×k
p ,B1 ←R

Z
3k×k
p , r ←R Z

k×1
p . We also use a hash function H : {0, 1}∗ → G3k×1

2 , which
maps global identifier GID ∈ GID ⊂ {0, 1}∗ to elements in G3k×1

2 , where GID
is the universe of global identifiers. Concretely, for a GID ∈ GID, H(GID) =
[hGID]2, where hGID ←R Z

3k×1
p . Output GP = (G, [A1]1, h = [B1r]2, seed).

– AuthSetup(GP, u ∈ AU): Take as input GP and an attribute u ∈ AU , where
AU is the universe of attributes. Sample WA,u,WB,u ←R Z

(2k+1)×3k
p . Output

PKu = ([PA,u]1 = [A�
1 WA,u]1, [PB,u]1 = [A�

1 WB,u]1),
MSKu = (WA,u,WB,u).
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– Enc(GP,msg, (M ∈ Z
�×d
p , ρ : [�] → AU), {PKu′}u′∈ρ([�])): Take as input GP,

the message msg, an LSSS access structure (M ∈ Z
�×d
p , ρ : [�] → AU), and

the public keys {PKu′}u′∈ρ([�]) used for encryption. Sample

K ←R Z
1×3k
p ,K′

A ←R Z
(d−1)×3k
p ,K′

B ←R Z
(d−1)×3k
p ,

sA,x, sB,x ←R Z
1×k
p .

Output CT = ((M, ρ), C, {C1,A,x, C1,B,x, C2,A,x, C2,B,x}x∈[�]), where

C = msg ⊕ Ext(e([K]1, h), seed),

C1,A,x = [sA,xA�
1 ]1,

C1,B,x = [sB,xA�
1 ]1,

C2,A,x = [sA,xA�
1 WA,ρ(x) +Mx

(
K
K′

A

)

]1,

C2,B,x = [sB,xA�
1 WB,ρ(x) +Mx

(−K
K′

B

)

]1,

and Mx denotes the x-th row of M.
– KeyGen(GP,H,GID ∈ GID,MSKu): Take as input GP,H,GID ∈ GID,MSKu.

Output skGID,u = (KGID,A,u,KGID,B,u), where

KGID,A,u = [WA,uhGID +WA,uB1r]2,
KGID,B,u = [WB,uhGID]2.

– Dec(GP,H,CT,GID, {skGID,u′′}u′′∈ρ(I)): Compute {ωx ∈ Zp}x∈I, such that∑
x∈I ωx · Mx = (1, 0, ..., 0). Then compute

DA,x = e(C2,A,x,H(GID) · h) · e(C1,A,x,KGID,A,ρ(x))−1,

DB,x = e(C2,B,x,H(GID)) · e(C1,B,x,KGID,B,ρ(x))−1.

And compute

D =
∏

x∈I

(DA,x · DB,x)ωx .

Output

C ⊕ Ext(D, seed).
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Correctness. We have

DA,x =e(C2,A,x,H(GID) · h) · e(C1,A,x,KGID,A,ρ(x))−1

=e([sA,xA�
1 WA,ρ(x) +Mx

(
K
K′

A

)

]1, [hGID +B1r]2)·

e([sA,xA�
1 ]1, [WA,ρ(x)hGID +WA,ρ(x)B1r]2)−1

=[sA,xA�
1 WA,ρ(x)hGID + sA,xA�

1 WA,ρ(x)B1r+Mx

(
K
K′

A

)

hGID+

Mx

(
K
K′

A

)

B1r − sA,xA�
1 WA,ρ(x)hGID − sA,xA�

1 WA,ρ(x)B1r]T

=[Mx

(
K
K′

A

)

hGID +Mx

(
K
K′

A

)

B1r]T ,

and

DB,x =e(C2,B,x,H(GID)) · e(C1,B,x,KGID,B,ρ(x))−1

=e([sB,xA�
1 WB,ρ(x) +Mx

(−K
K′

B

)

]1, [hGID]2)·

e([sB,xA�
1 ]1, [WB,ρ(x)hGID]2)−1

=[sB,xA�
1 WB,ρ(x)hGID +Mx

(−K
K′

B

)

hGID − sB,xA�
1 WB,ρ(x)hGID]T

=[Mx

(−K
K′

B

)

hGID]T .

Then if
∑

x∈I ωx · Mx = (1, 0, ..., 0), we have

D =
∏

x∈I

(DA,x · DB,x)ωx

=
∏

x∈I

[ωxMx

(
K
K′

A

)

hGID + ωxMx

(
K
K′

A

)

B1r+ ωxMx

(−K
K′

B

)

hGID]T

=[KB1r]T
=e([K]1, [B1r]2)
=e([K]1, h).

3.2 Security Analysis

Theorem 1. The above decentralized MA-ABE scheme for NC1 is fully adap-
tively secure and allows many-use of attribute, under the MDDH assumption in
the random oracle model. Moreover, we have
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AdvMA-ABE
A (λ) ≤Adv

MDDHq
G2,k,3k

B1 (λ) + Adv
SDG1

A1 �→A1,A3
B2 (λ) + Adv

SDG1
A1 �→A1,A2

B3 (λ)

+ (2q + 1) · AdvSD
G2
B1 �→B1,B2

B4 (λ) + q · AdvSD
G2
B2 �→B2,B3

B5 (λ)

+ 2 · AdvSD
G2
B3 �→B2,B3

B6 (λ) + (4q + 4) · Adv1-ABE
B7 (λ) + negl(λ),

where q is the total number of global identifiers GID that the simulator generates
the H oracle outputs for, B1 is a p.p.t adversary for the MDDHq

k,3k assumption in
G2, B2 is a p.p.t adversary for the SDA1 �→A1,A3 assumption in G1, B3 is a p.p.t
adversary for the SDA1 �→A1,A2 assumption in G1, B4 is a p.p.t adversary for
the SDB1 �→B1,B2 assumption in G2, B5 is a p.p.t adversary for the SDB2 �→B2,B3

assumption in G2, B6 is a p.p.t adversary for the SDB3 �→B2,B3 assumption in
G2, B7 is a p.p.t adversary for the Core 1-ABE, which is based on the MDDH
assumption and with polynomial security loss, and negl(λ) is a negligible function
in λ incurred by a statistical indistinguishability from Ext.

Hybrids. Before we proceed to the details of security analysis, we clarify some
notations and explain some complicated points.

Notations. In the security analysis, we set

A1 ←R Z
(2k+1)×k
p ,A2 ←R Z

(2k+1)×1
p ,A3 ←R Z

(2k+1)×k
p ,

A‖
1 ←R Z

(2k+1)×k
p ,A‖

2 ←R Z
(2k+1)×1
p ,A‖

3 ←R Z
(2k+1)×k
p ,

B1,B2,B3 ←R Z
3k×k
p ,

B‖
1,B

‖
2,B

‖
3 ←R Z

3k×k
p ,

which satisfy the basis structure in Sect. 2.3, respectively.
Let Y denote the subset of rows of the challenge access matrix M labeled

by the authorities for which A supplies the authority public keys {PKu′ =
([PA,u′ ]1, [PB,u′ ]1)}. Let Ȳ = [�]\Y .

Below, we use Reconstruct({sharei}) to denote the secret from the reconstruc-
tion of shares {sharei}.

Sampling of Secrets. This statement is similarly stated in Lemma 4.3 of [14].
Recall that we require the information A gain from the corruption and secret
key queries cannot help A decrypt the challenge ciphertext CTb successfully
following a legitimate decryption process. For the form of the secret K, this
means that there must exist a vector u ∈ Z

d
p such that u is orthogonal to all the

rows of M labeled by corrupted authorities, but is not orthogonal to (1, 0, ..., 0),
i.e., the first entry of u is non-zero, and the truly secret values of K are attached
to u. Concretely, consider a basis U of Z

d
p involving the vector u, set
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v
′(1)
A =v̂A

(1) + a1u,

...

v
′(3k)
A =v̂A

(3k) + a3ku,

where for each i ∈ [3k], v̂A
(i) is in the span of U\{u}, and ai ←R Zp is the truly

secret value of K. Set

(
K
K′

A

)

=

⎛

⎜
⎜
⎝

v
′(1)
A
...

v
′(3k)
A

⎞

⎟
⎟
⎠

�

.

Then we have K = (v̂A
(1)
1 , ..., v̂A

(3k)
1 ) + (a1u1, ..., a3ku1) ∈ Z

1×3k
p .

Similarly, we can set

v
′(1)
B =v̂B

(1) − a1u,

...

v
′(3k)
B =v̂B

(3k) − a3ku,

and set

(−K
K′

B

)

=

⎛

⎜
⎜
⎝

v
′(1)
B
...

v
′(3k)
B

⎞

⎟
⎟
⎠

�

,

where

v̂B
(1)
1 = − v̂A

(1)
1 ,

...

v̂B
(3k)
1 = − v̂A

(3k)
1 ,

and for each i ∈ [3k], v̂B
(i) is in the span of U\{u}.

For simplicity, below, we just write K ←R Z
1×3k
p ,K′

A,K′
B ←R Z

(d−1)×3k
p to

implicitly mean that K,K′
A,K′

B satisfy the above conditions.

– Hybrid0: This is as the real hybrid.
– Hybrid1: This is the same as Hybrid0, except that we replace H(GID) = [hGID]2

with [B1rGID]2, where rGID ←R Z
k×1
p . Thus, skGID,u becomes

KGID,A,u = [WA,u B1rGID +WA,uB1r]2,KGID,B,u = [WB,u B1rGID ]2.
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– Hybrid2: This is the same as Hybrid1, except that for x ∈ Ȳ , we replace the
challenge CT generated by the simulator with

C1,A,x = [ s(13)A,x (A1‖A3)� ]1, C1,B,x = [ s(13)B,x (A1‖A3)� ]1,

C2,A,x = [ s(13)A,x (A1‖A3)� WA,ρ(x) +Mx

(
K
K′

A

)

]1,

C2,B,x = [ s(13)B,x (A1‖A3)� WB,ρ(x) +Mx

(−K
K′

B

)

]1,

where s(13)A,x , s(13)B,x ←R Z
1×2k
p .

– Hybrid3: This is the same as Hybrid2, except that for x ∈ Ȳ , we replace the
challenge CT generated by the simulator with

C1,A,x = [s(13)A,x (A1‖A3)�]1, C1,B,x = [s(13)B,x (A1‖A3)�]1,

C2,A,x = [s(13)A,x (A1‖A3)�WA,ρ(x) +Mx

(
K
K′

A

)

+ σ′
A,xN

′
AB

‖�
3 ]1,

C2,B,x = [s(13)B,x (A1‖A3)�WB,ρ(x) +Mx

(−K
K′

B

)

+ σ′
B,xN

′
BB‖�

3 ]1,

where

N′
A,N′

B ←R Z
1×k
p ,

σ′
A,x = Mx

(
σ′

A

k(3)
A

)

, σ′
A ←R Zp,k

(3)
A ←R Z

(d−1)×1
p ,

σ′
B,x = Mx

(
σ′

B

k(3)
B

)

, σ′
B ←R Zp,k

(3)
B ←R Z

(d−1)×1
p .

– Hybrid4: This is the same as Hybrid3, except that for x ∈ Ȳ , we replace the
challenge CT generated by the simulator with

C1,A,x = [ s(123)A,x (A1‖A2‖A3)� ]1, C1,B,x = [ s(123)B,x (A1‖A2‖A3)� ]1,

C2,A,x = [ s(123)A,x (A1‖A2‖A3)� WA,ρ(x) +Mx

(
K
K′

A

)

+ σ′
A,xN

′
AB

‖�
3 ]1,

C2,B,x = [ s(123)B,x (A1‖A2‖A3)� WB,ρ(x) +Mx

(−K
K′

B

)

+ σ′
B,xN

′
BB‖�

3 ]1,

where s(123)A,x , s(123)B,x ←R Z
1×(2k+1)
p .

– Hybrid5:j(j ∈ [q]): In this hybrid, for t ≤ j, H(GIDt) = [(B1‖B3)r
(13)
GIDt

]2, where
r(13)GIDt

←R Z
2k×1
p ; for t > j, H(GIDt) = [B1rGIDt

]2, where rGIDt
←R Z

k×1
p . And

Hybrid5:0 is Hybrid4.
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– Hybrid5:j:1(j ∈ [q]): This is the same as Hybrid5:(j−1), except that for the j-
th global identifier GIDj , we replace H(GIDj) = [B1rGIDj

]2 with H(GIDj) =
[(B1‖B2)r

(12)
GIDj

]2, where r(12)GIDj
←R Z

2k×1
p . Thus, skGIDj ,u becomes

KGIDj ,A,u = [WA,u (B1‖B2)r
(12)
GIDj

+WA,uB1r]2,

KGIDj ,B,u = [WB,u (B1‖B2)r
(12)
GIDj

]2.

– Hybrid5:j:2(j ∈ [q]): This is the same as Hybrid5:j:1, except that for x ∈ Ȳ , we
replace the challenge CT generated by the simulator with

C1,A,x = [s(123)A,x (A1‖A2‖A3)�]1, C1,B,x = [s(123)B,x (A1‖A2‖A3)�]1,

C2,A,x = [s(123)A,x (A1‖A2‖A3)�WA,ρ(x) +Mx

(
K
K′

A

)

+

σ′′
A,xN

′′
AB

‖�
2 + σ′

A,xN
′
AB

‖�
3 ]1,

C2,B,x = [s(123)B,x (A1‖A2‖A3)�WB,ρ(x) +Mx

(−K
K′

B

)

+

σ′′
B,xN

′′
BB‖�

2 + σ′
B,xN

′
BB‖�

3 ]1,

where

N′′
A,N′′

B ←R Z
1×k
p ,

σ′′
A,x = Mx

(
σ′′

A

k(2)
A

)

, σ′′
A ←R Zp,k

(2)
A ←R Z

(d−1)×1
p ,

σ′′
B,x = Mx

(
σ′′

B

k(2)
B

)

, σ′′
B ←R Zp,k

(2)
B ←R Z

(d−1)×1
p .

– Hybrid5:j:3(j ∈ [q]): This is the same as Hybrid5:j:2, except that for the j-th
global identifier GIDj , we replace H(GIDj) = [(B1‖B2)r

(12)
GIDj

]2 with H(GIDj) =

[(B1‖B2‖B3)r
(123)
GIDj

]2, where r(123)GIDj
←R Z

3k×1
p . Thus, skGIDj ,u becomes

KGIDj ,A,u = [WA,u (B1‖B2‖B3)r
(123)
GIDj

+WA,uB1r]2,

KGIDj ,B,u = [WB,u (B1‖B2‖B3)r
(123)
GIDj

]2.
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– Hybrid5:j:4(j ∈ [q]): This is the same as Hybrid5:j:3, except that for x ∈ Ȳ , we
replace the challenge CT generated by the simulator back with

C1,A,x = [s(123)A,x (A1‖A2‖A3)�]1, C1,B,x = [s(123)B,x (A1‖A2‖A3)�]1,

C2,A,x = [s(123)A,x (A1‖A2‖A3)�WA,ρ(x) +Mx

(
K
K′

A

)

+

�������
σ′′

A,xN
′′
AB

‖�
2 +σ′

A,xN
′
AB

‖�
3 ]1,

C2,B,x = [s(123)B,x (A1‖A2‖A3)�WB,ρ(x) +Mx

(−K
K′

B

)

+

�������
σ′′

B,xN
′′
BB‖�

2 +σ′
B,xN

′
BB‖�

3 ]1.

– Hybrid5:(j+1)(j ∈ [q]): This is the same as Hybrid5:j:4, except that for the
j-th global identifier GIDj , we replace H(GIDj) = [(B1‖B2‖B3)r

(123)
GIDj

]2 with

H(GIDj) = [(B1‖B3)r
(13)
GIDj

]2, where r(13)GIDj
←R Z

2k×1
p . Thus, skGIDj ,u becomes

KGIDj ,A,u = [WA,u (B1‖B3)r
(13)
GIDj

+WA,uB1r]2,

KGIDj ,B,u = [WB,u (B1‖B3)r
(13)
GIDj

]2.

– Hybrid6: This is the same as Hybrid5:(q+1), except that we replace h = [B1r]2 in
GP with h = [(B1‖B2)r(12)]2, where r(12) ←R Z

2k×1
p . Then C in the challenge

CT generated by the simulator becomes

C = msgb ⊕ Ext(e([K]1, [ (B1‖B2)r(12) ]2), seed).

And skGID,u becomes

KGID,A,u = [WA,u(B1‖B3)r
(13)
GID +WA,u (B1‖B2)r(12) ]2,

KGID,B,u = [WB,u(B1‖B3)r
(13)
GID ]2.

– Hybrid7: This is the same as Hybrid6, except that for x ∈ Ȳ , we replace the
challenge CT generated by the simulator with

C1,A,x = [s(123)A,x (A1‖A2‖A3)�]1, C1,B,x = [s(123)B,x (A1‖A2‖A3)�]1,

C2,A,x = [s(123)A,x (A1‖A2‖A3)�WA,ρ(x) +Mx

(
K
K′

A

)

+ σ′
A,xN

′
AB

‖�
3 ]1,

C2,B,x = [s(123)B,x (A1‖A2‖A3)�WB,ρ(x) +Mx

(−K
K′

B

)

+ σ′′
B,xN

′′
BB‖�

2 +

σ′
B,xN

′
BB‖�

3 ]1,



22 J. Chen et al.

where

N′′
B ←R Z

1×k
p , σ′′

B,x = Mx

(
σ′′

B

k(2)
B

)

, σ′′
B ←R Zp,k

(2)
B ←R Z

(d−1)×1
p .

– Hybrid8: This is the same as Hybrid7, except that we replace H(GID) =
[(B1‖B3)r

(13)
GID ]2 with H(GID) = [(B1‖B2‖B3)r

(123)
GID ]2, where r(123)GID ←R Z

3k×1
p .

Thus, skGID,u becomes

KGID,A,u = [WA,u (B1‖B2‖B3)r
(123)
GID +WA,u(B1‖B2)r(12)]2,

KGID,B,u = [WB,u (B1‖B2‖B3)r
(123)
GID ]2.

– Hybrid9: This is the same as Hybrid8, except that we replace H(GID) =
[(B1‖B2‖B3)r

(123)
GID ]2 with H(GID) ≡ H(GID)/h = [(B1‖B2‖B3)r

(123)
GID −

(B1‖B2)r(12)]2, where h = [(B1‖B2)r(12)]2. Thus, skGID,u becomes

KGID,A,u = [WA,u (B1‖B2‖B3)r
(123)
GID ]2,

KGID,B,u = [WB,u (B1‖B2‖B3)r
(123)
GID − WB,u (B1‖B2)r(12) ]2.

– Hybrid10: This is the same as Hybrid9, except that we replace H(GID) =
[(B1‖B2‖B3)r

(123)
GID − (B1‖B2)r(12)]2 with H(GID) = [(B1‖B3)r

(13)
GID −

(B1‖B2)r(12)]2, where r(13)GID ←R Z
2k×1. Thus, skGID,u becomes

KGID,A,u = [WA,u (B1‖B3)r
(13)
GID ]2,

KGID,B,u = [WB,u (B1‖B3)r
(13)
GID − WB,u(B1‖B2)r(12)]2.

– Hybrid11: This is the same as Hybrid10, except that for x ∈ Ȳ , we replace the
challenge CT generated by the simulator back with

C1,A,x = [s(123)A,x (A1‖A2‖A3)�]1, C1,B,x = [s(123)B,x (A1‖A2‖A3)�]1,

C2,A,x = [s(123)A,x (A1‖A2‖A3)�WA,ρ(x) +Mx

(
K
K′

A

)

+ σ′′
A,xN

′′
AB

‖�
2 +

σ′
A,xN

′
AB

‖�
3 ]1,

C2,B,x = [s(123)B,x (A1‖A2‖A3)�WB,ρ(x) +Mx

(−K
K′

B

)

+ σ′′
B,xN

′′
BB‖�

2 +

σ′
B,xN

′
BB‖�

3 ]1,

where

σ′′
A,x = Mx

(
σ′′

A

k(2)
A

)

, σ′′
A ←R Zp,k

(2)
A ←R Z

(d−1)×1
p .

– Hybrid12: This is the same as Hybrid11, except that we replace msgb with
msgR ←R M.
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Proofs.

Lemma 2. We have |AdvHybrid0A (λ)−Adv
Hybrid1
A (λ)| ≤ Adv

MDDHq
G2,k,3k

B1
(λ), where

B1 is the adversary for the MDDHq
k,3k assumption in G2.

Proof. This proof is a conventional use of the MDDH assumption, we leave the
proof in the full version.

Lemma 3. We have |AdvHybrid1A (λ) − Adv
Hybrid2
A (λ)| ≤ Adv

SDG1
A1 �→A1,A3

B2
(λ), where

B2 is the adversary for the SDA1 �→A1,A3 assumption in G1.

Proof. Since this proof is similar to the proof of Lemma 6, we leave this proof
in the full version.

Lemma 4. We have |AdvHybrid2A (λ)−Adv
Hybrid3
A (λ)| ≤ 2 ·Adv1-ABE

B3
(λ), where B3

is the adversary for the Core 1-ABE.

Proof. Since this proof is similar to the proof of Lemma 7, and the proof of
Lemma 7 is more illustrative for the use of Core 1-ABE, thus we leave this proof
in the full version.

Lemma 5. We have |AdvHybrid3A (λ) − Adv
Hybrid4
A (λ)| ≤ Adv

SDG1
A1 �→A1,A2

B4
(λ), where

B4 is the adversary for the SDA1 �→A1,A2 assumption in G1.

Proof. Since this proof is similar to the proof of Lemma 6, we leave the proof in
the full version.

Lemma 6. We have |AdvHybrid5:(j−1)

A (λ)−Adv
Hybrid5:j:1
A (λ)| ≤ Adv

SDG2
B1 �→B1,B2

B5
(λ),

where B5 is the adversary for the SDB1 �→B1,B2 assumption in G2.

Proof. Suppose there exists a simulator B5. B5 receives

(G, [B1]2, [B2]2, [B3]2, basis(B
‖
1), basis(B

‖
1,B

‖
2), basis(B

‖
3)), and [T ]2.

B5 uses a strong seeded randomness extractor Ext : GT × S → M, and a hash
function H : {0, 1}∗ → G3k×1

2 , which is modeled as a random oracle. Then B5

proceeds as follows:

Generating the Global Public Parameters: Sample seed ←R S, r ←R Z
k×1
p .

Output

GP = (G, [A1]1, h = [B1r]2, seed).

Generating Authority Public-Master Keys: For a valid Authority Setup
query of u ∈ AU , B5 samples WA,u,WB,u ←R Z

(2k+1)×3k
p . B5 sets

PKu = ([A�
1 WA,u]1, [A�

1 WB,u]1),
MSKu = (WA,u,WB,u).



24 J. Chen et al.

B5 sends PKu to A, and stores (PKu,MSKu). Whenever A requests MSKu at a
later time, B5 provides it to A.

Generating the H Oracle Outputs: Whenever A queries the random oracle
H for some GID ∈ GID, B5 proceeds as follows: For t ≤ j − 1, B5 sets H(GIDt) =
[(B1‖B3)r

(13)
GIDt

]2, where r(13)GIDt
←R Z

2k×1
p ; For t = j, B5 sets H(GIDt) = [T ]2; For

t ≥ j +1, B5 sets H(GIDt) = [B1r
(1)
GIDt

]2, where r(1)GIDt
←R Z

k×1
p . It stores H(GIDt)

so that it can respond consistently if H(GIDt) is queried again.

Generating Secret Keys: For a valid Secret Key query of (GIDt, u) ∈
GID×AU , B5 runs the real KeyGen to generate skGIDt,u with H(GIDt), h = [B1r]2
and MSKu = (WA,u,WB,u). If H(GIDt) has not been generated before, then gen-
erate it following the above procedure.

Generating the Challenge Ciphertext: At some point, A queries the
challenge (msg0,msg1,M, ρ), and also submits the public keys {PKu′ =
([PA,u′ ]1, [PB,u′ ]1)} for a subset UA of attribute authorities appearing in the
LSSS access structure (M, ρ). If UA passes the validation test, B5 flips a random
coin b ←R {0, 1} and generates CT as follows:

Let Y denote the subset of rows of the challenge access matrix M labeled
by the authorities for which A supplies the authority public keys {PKu′ =
([PA,u′ ]1, [PB,u′ ]1)}. Let Ȳ = [�]\Y . B5 samples K ←R Z

1×3k
p ,K′

A ←R

Z
(d−1)×3k
p ,K′

B ←R Z
(d−1)×3k
p , s(1)A,x, s(1)B,x ←R Z

1×k
p , s(23)A,x , s(23)B,x ←R Z

1×(k+1)
p , and

N′
A,N′

B ←R Z
1×k
p , σ′

A ←R Zp,k
(3)
A ←R Z

(d−1)×1
p , σ′

B ←R Zp,k
(3)
B ←R Z

(d−1)×1
p .

Set

s(123)A,x = (s(1)A,x‖s(23)A,x ), s
(123)
B,x = (s(1)B,x‖s(23)B,x ),

σ′
A,x = Mx

(
σ′

A

k(3)
A

)

, σ′
B,x = Mx

(
σ′

B

k(3)
B

)

.

B5 sets C = msgb ⊕ Ext(e([K]1, h), seed).
For each x ∈ Y , B5 forms C1,A,x, C1,B,x, C2,A,x, C2,B,x as:

C1,A,x = [s(1)A,xA
�
1 ]1, C1,B,x = [s(1)B,xA

�
1 ]1,

C2,A,x = [s(1)A,xPA,ρ(x) +Mx

(
K
K′

A

)

]1, C2,B,x = [s(1)B,xPB,ρ(x) +Mx

(−K
K′

B

)

]1.

For each x ∈ Ȳ , B5 forms C1,A,x, C1,B,x, C2,A,x, C2,B,x as:

C1,A,x =[s(123)A,x (A1‖A2‖A3)�]1, C1,B,x = [s(123)B,x (A1‖A2‖A3)�]1,

C2,A,x =[s(123)A,x (A1‖A2‖A3)�WA,ρ(x) +Mx

(
K
K′

A

)

+ σ′
A,xN

′
Abasis(B

‖
3)

�]1,

C2,B,x =[s(123)B,x (A1‖A2‖A3)�WB,ρ(x) +Mx

(−K
K′

B

)

+ σ′
B,xN

′
Bbasis(B‖

3)
�]1.
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B5 sends CT = (C, {C1,A,x, C1,B,x, C2,A,x, C2,B,x}x∈[�]) to A.

Guess: A eventually outputs a guess bit b′ ∈ {0, 1}. B5 outputs 1 if b = b′ and
0 otherwise.

Observe that if T = B1r
(1)
GIDj

, where r(1)GIDj
←R Z

k×1
p , the distribu-

tions are exactly as in Hybrid5:(j−1); if T = (B1‖B2)r
(12)
GIDj

, where r(12)�GIDj
=

(r(1)�GIDj
‖r(2)�GIDj

), r(2)GIDj
←R Z

k×1
p , the distributions are exactly as in Hybrid5:j:1.

Then if A can distinguish Hybrid5:(j−1) and Hybrid5:j:1, B5 can use A to break
the SDB1 �→B1,B2 assumption in G2. Thus, we obtain a contradiction.

Lemma 7. We have |AdvHybrid5:j:1A (λ)−Adv
Hybrid5:j:2
A (λ)| ≤ 2·Adv1-ABE

B6
(λ), where

B6 is the adversary for the Core 1-ABE.

Proof. Suppose there exists a simulator B6. B6 challenges

(μ0,A = μ0, μ1,A) and (−μ0,B = −μ0,−μ1,B),

respectively, to the underlying Core 1-ABE, where μ0, μ1,A, μ1,B ←R Zp, and
queries OF (((M, ρ), μβ,A)),OX,A({u}),OF (((M, ρ),−μβ,B)),OX,B({u}), which
are defined in Sect. 2.5. Then B6 receives

{[μβ,A,x + ηA,ρ(x)s
(3)
A,x]1, [s

(3)
A,x]1}, {ηA,u},

and

{[−μβ,B,x + ηB,ρ(x)s
(3)
B,x]1, [s

(3)
B,x]1}, {ηB,u},

respectively.

B6 samples N′′
A,N′′

B ←R Z
1×k
p , and for Mx

(
K
K′

A

)

, sets

K = K̃+ μβ,AN′′
AB

‖�
2 ,

for Mx

(−K
K′

B

)

, sets

K = K̃+ μβ,BN′′
BB‖�

2 ,

where K̃ ←R Z
1×3k
p . Then set

WA,u = W̃A,u +A‖
3ηA,uN′′

AB
‖�
2 ,WB,u = W̃B,u +A‖

3ηB,uN′′
BB‖�

2 ,

where W̃A,u,W̃B,u ←R Z
(2k+1)×3k
p , and ηA,u, ηB,u ∈ Z

k×1
p are from the answers

of OX,A({u}),OX,B({u}), respectively.
Observe that, when we change WA,u,WB,u and K, only PKu, skGIDt,u and

CT are changed.



26 J. Chen et al.

For PKu, we have

A�
1 WA,u ≡A�

1 (W̃A,u +A‖
3ηA,uN′′

AB
‖�
2 ) = A�

1 W̃A,u,

and

A�
1 WB,u ≡A�

1 (W̃B,u +A‖
3ηB,uN′′

BB‖�
2 ) = A�

1 W̃B,u.

Thus, PKu remains unchanged.
For skGIDt,u, we have
when t ≤ j − 1,

WA,u((B1‖B3)r
(13)
GIDt

+B1r) ≡(W̃A,u +A‖
3ηA,uN′′

AB
‖�
2 )((B1‖B3)r

(13)
GIDt

+B1r)

=W̃A,u((B1‖B3)r
(13)
GIDt

+B1r),

and

WB,u(B1‖B3)r
(13)
GIDt

≡(W̃B,u +A‖
3ηB,uN′′

BB‖�
2 )(B1‖B3)r

(13)
GIDt

=W̃B,u(B1‖B3)r
(13)
GIDt

,

where r(13)GIDt
←R Z

2k×1
p ;

when t = j,

WA,u((B1‖B2)r
(12)
GIDt

+B1r) ≡(W̃A,u +A‖
3ηA,uN′′

AB
‖�
2 )((B1‖B2)r

(12)
GIDt

+B1r)

=W̃A,u((B1‖B2)r
(12)
GIDt

+B1r) +A‖
3ηA,uN′′

Ar
(2)
GIDt

,

and

WB,u(B1‖B2)r
(12)
GIDt

≡(W̃B,u +A‖
3ηB,uN′′

BB‖�
2 )(B1‖B2)r

(12)
GIDt

=W̃B,u(B1‖B2)r
(12)
GIDt

+A‖
3ηB,uN′′

Br(2)GIDt
,

where r(1)GIDt
, r(2)GIDt

←R Z
k×1
p ,r(12)�GIDt

= (r(1)�GIDt
‖r(2)�GIDt

), and ηA,u, ηB,u are from the
answers of OX,A({u}),OX,B({u});

when t ≥ j + 1,

WA,u(B1r
(1)
GIDt

+B1r) ≡(W̃A,u +A‖
3ηA,uA�

2 N
′′
AB

‖�
2 )(B1r

(1)
GIDt

+B1r)

=W̃A,u(B1r
(1)
GIDt

+B1r),

and

WB,uB1r
(1)
GIDt

≡(W̃B,u +A‖
3ηB,uN′′

BB‖�
2 )B1r

(1)
GIDt

=W̃B,uB1r
(1)
GIDt

,

where r(1)GIDt
←R Z

k×1
p .
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For the challenge CT, observe that only the components of x ∈ Ȳ are changed.
Then for each x ∈ Ȳ , C1,A,x, C1,B,x, C2,A,x, C2,B,x are formed as

C1,A,x =[s(123)A,x (A1‖A2‖A3)�]1, C1,B,x = [s(123)B,x (A1‖A2‖A3)�]1,

C2,A,x =[s(123)A,x (A1‖A2‖A3)�WA,ρ(x) + σ′
A,xN

′
AB

‖�
3 +Mx

(
K
K′

A

)

]1

≡[s(123)A,x (A1‖A2‖A3)�W̃A,ρ(x) + s(123)A,x (A1‖A2‖A3)�A
‖
3ηA,ρ(x)N′′

AB
‖�
2 +

σ′
A,xN

′
AB

‖�
3 +Mx

(
K
K′

A

)

]1

=[s(123)A,x (A1‖A2‖A3)�W̃A,ρ(x) + s(3)A,xA
�
3 A

‖
3ηA,ρ(x)N′′

AB
‖�
2 + σ′

A,xN
′
AB

‖�
3 +

Mx

(
K
K′

A

)

]1

=[s(123)A,x (A1‖A2‖A3)�W̃A,ρ(x) + s(3)A,xηA,ρ(x)N′′
AB

‖�
2 +

σ′
A,xN

′
AB

‖�
3 +Mx

(
K
K′

A

)

]1

≡[s(12)A,x (A1‖A2)�W̃A,ρ(x) + σ′
A,xN

′
AB

‖�
3 +

Mx

(
K̃
K′

A

)

+ s(3)A,xA
�
3 W̃A,ρ(x) + (μβ,A,x + s(3)A,xηA,ρ(x))N′′

AB
‖�
2

︸ ︷︷ ︸

Mx

⎛
⎝ K
K′

A

⎞
⎠+s

(3)
A,xA

�
3 WA,ρ(x)

]1,

C2,B,x =[s(123)B,x (A1‖A2‖A3)�WB,ρ(x) + σ′
B,xN

′
BB‖�

3 +Mx

(−K
K′

B

)

]1

≡[s(123)B,x (A1‖A2‖A3)�W̃B,ρ(x) + s(123)B,x (A1‖A2‖A3)�A
‖
3ηB,ρ(x)N′′

BB‖�
2 +

σ′
B,xN

′
BB‖�

3 +Mx

(−K
K′

B

)

]1

=[s(123)B,x (A1‖A2‖A3)�W̃B,ρ(x) + s(3)B,xA
�
3 A

‖
3ηB,ρ(x)N′′

BB‖�
2 +

σ′
B,xN

′
BB‖�

3 +Mx

(−K
K′

B

)

]1

=[s(123)B,x (A1‖A2‖A3)�W̃B,ρ(x) + s(3)B,xηB,ρ(x)N′′
BB‖�

2 + σ′
B,xN

′
BB‖�

3 +

Mx

(−K
K′

B

)

]1

≡[s(12)B,x (A1‖A2)�W̃B,ρ(x) + σ′
B,xN

′
BB‖�

3 +

Mx

(
−K̃
K′

B

)

+ s(3)B,xA
�
3 W̃B,ρ(x) + (−μβ,B,x + s(3)B,xηB,ρ(x))N′′

BB‖�
2

︸ ︷︷ ︸

Mx

⎛
⎝−K
K′

B

⎞
⎠+s

(3)
B,xA

�
3 WB,ρ(x)

]1
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where N′
A,N′

B ←R Z
1×k
p , s(1)A,x, s(1)B,x ←R Z

1×k
p , s(2)A,x, s(2)B,x ←R Zp, and

s(123)A,x = (s(1)A,x‖s(2)A,x‖s(3)A,x), s
(123)
B,x = (s(1)B,x‖s(2)B,x‖s(3)B,x), s

(12)
A,x = (s(1)A,x‖s(2)A,x), s

(12)
B,x =

(s(1)B,x‖s(2)B,x), and ([μβ,A,x + s(3)A,xηA,ρ(x)]1, [s
(3)
A,x]1), ([−μβ,B,x + s(3)B,xηB,ρ(x)]1,

[s(3)B,x]1) are from the answers of OF (((M, ρ), μβ,A)),OF (((M, ρ),−μβ,B)),
respectively.

Observe that if μβ,A = μ0,A and μβ,B = μ0,B , the distributions are as
in Hybrid5:j:1; if μβ,A = μ1,A and μβ,B = μ1,B , the distributions are as in
Hybrid5:j:2, which implicitly sets σ′′

A = Reconstruct({σ′′
A,x}) = μ1,A − μ0,A, and

σ′′
B = Reconstruct({σ′′

B,x}) = μ1,B − μ0,B .
We can conclude that Hybrid5:j:1 and Hybrid5:j:2 are indistinguishable under

the Core 1-ABE.

Lemma 8. We have |AdvHybrid5:j:2A (λ) − Adv
Hybrid5:j:3
A (λ)| ≤ Adv

SDG2
B2 �→B2,B3

B7
(λ),

where B7 is the adversary for the SDB2 �→B2,B3 assumption in G2.

Proof. Since this proof is similar to the proof of Lemma 6, we leave the proof in
the full version.

Lemma 9. We have |AdvHybrid5:j:3A (λ)−Adv
Hybrid5:j:4
A (λ)| ≤ 2·Adv1-ABE

B8
(λ), where

B8 is the adversary for the Core 1-ABE.

Proof. Since this proof is similar to the proof of Lemma 7, we leave the proof in
the full version.

Lemma 10.
We have |AdvHybrid5:j:4A (λ) − Adv

Hybrid5:(j+1)

A (λ)| ≤ Adv
SDG2

B1 �→B1,B2
B9

(λ), where B9

is the adversary for the SDB1 �→B1,B2 assumption in G2.

Proof. Since this proof is similar to the proof of Lemma 6, we leave the proof in
the full version.

Lemma 11. We have |AdvHybrid5:(q+1)

A (λ) − Adv
Hybrid6
A (λ)| ≤ Adv

SDG2
B1 �→B1,B2

B10
(λ),

where B10 is the adversary for the SDB1 �→B1,B2 assumption in G2.

Proof. Since this proof is similar to the proof of Lemma 6, we leave the proof in
the full version.

Lemma 12. We have |AdvHybrid6A (λ) − Adv
Hybrid7
A (λ)| ≤ Adv1-ABE

B11
(λ), where B11

is the adversary for the Core 1-ABE.

Proof. Since this proof is similar to the proof of Lemma 7, we leave the proof in
the full version.

Lemma 13. We have |AdvHybrid7A (λ)−Adv
Hybrid8
A (λ)| ≤ Adv

SDG2
B3 �→B2,B3

B12
(λ), where

B12 is the adversary for the SDB3 �→B2,B3 assumption in G2.

Proof. Since this proof is similar to the proof of Lemma 6, we leave the proof in
the full version.
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Lemma 14. We have |AdvHybrid8A (λ) − Adv
Hybrid9
A (λ)| = 0.

Proof. By simply setting H(GID) ≡ H(GID)/h for the queried GID ∈ GID of H,
where h is the component in GP, we can easily conclude that Hybrid8 and Hybrid9
are identically distributed.

Lemma 15. We have |AdvHybrid9A (λ) − Adv
Hybrid10
A (λ)| ≤ Adv

SDG2
B3 �→B2,B3

B13
(λ),

where B13 is the adversary for the SDB3 �→B2,B3 assumption in G2.

Proof. Since this proof is similar to the proof of Lemma 6, we leave the proof in
the full version.

Lemma 16. We have |AdvHybrid10A (λ)−Adv
Hybrid11
A (λ)| ≤ Adv1-ABE

B14
(λ), where B14

is the adversary for the Core 1-ABE.

Proof. Since this proof is similar to the proof of Lemma 7, we leave the proof in
the full version.

Lemma 17. We have |AdvHybrid11A (λ) − Adv
Hybrid12
A (λ)| ≤ negl(λ).

Proof. Since the symmetric key e([K]1, [(B1‖B2)r(12)]2) is masked by the ran-
domness from the second subspace, we can replace msgb with msgR ←R M with
a negligible difference by the statistical indistinguishability from Ext, if Ext is
parameterized correctly.
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Abstract. Joint computation on encrypted data is becoming increas-
ingly crucial with the rise of cloud computing. In recent years, the devel-
opment of multi-client functional encryption (MCFE) has made it pos-
sible to perform joint computation on private inputs, without any inter-
action. Well-settled solutions for linear functions have become efficient
and secure, but there is still a shortcoming: if one user inputs incor-
rect data, the output of the function might become meaningless for all
other users (while still useful for the malicious user). To address this
issue, the concept of verifiable functional encryption was introduced by
Badrinarayanan et al. at Asiacrypt ’16 (BGJS). However, their solution
was impractical because of strong statistical requirements. More recently,
Bell et al. introduced a related concept for secure aggregation, with their
ACORN solution, but it requires multiple rounds of interactions between
users. In this paper,

– we first propose a computational definition of verifiability for MCFE.
Our notion covers the computational version of BGJS and extends it
to handle any valid inputs defined by predicates. The BGJS notion
corresponds to the particular case of a fixed predicate in our setting;

– we then introduce a new technique called Combine-then-Descend,
which relies on the class group. It allows us to construct One-time
Decentralized Sum (ODSUM) on verifiable private inputs. ODSUM
is the building block for our final protocol of a verifiable decentral-
ized MCFE for inner-product, where the inputs are within a range.
Our approach notably enables the efficient identification of malicious
users, thereby addressing an unsolved problem in ACORN.

Keywords: Verifiability · Decentralized · Functional Encryption ·
Inner Product

1 Introduction

Multi-client Functional Encryption. Functional Encryption (FE) [8] is
a paradigm designed to overcome the all-or-nothing limitation of traditional
encryption, allowing the sender to control access to their encrypted data in a
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more fine-grained manner through functional decryption keys. This paradigm
enables the preservation of user’s privacy in cloud computing services, where
clouds can learn nothing beyond the delegated function evaluated on user’s pri-
vate data. FE with a single user appears to be quite restrictive in practice,
as the number of useful functions may be small. In this case, the Public Key
Encryption (PKE) can be transformed into FE by encrypting the evaluations
of various functions using specific keys. However, this approach is not feasible
for multi-user settings, even if a fixed function only is considered. To address
this, Multi-Input Functional Encryption (MIFE) and Multi-Client Functional
Encryption (MCFE) were thus introduced [20,21], allowing multiple clients to
encrypt their individual data independently and contribute encrypted inputs to
a joint function, with the help of possibly a trusted authority who runs the
setup procedure and generates functional decryption keys. Among the classes of
functions for MIFE/MCFE, the inner product is an expressive class that allows
computing weighted averages and sums over encrypted data, making it especially
useful for statistical analysis.

Chotard et al. [14] first introduced the notion of decentralized MCFE
(DMCFE) in which there is no requirement for a trusted authority, and each
client can have a complete control over their encrypted individual data and
over the generation of functional decryption keys. The authors also provided a
DMCFE scheme for inner product that is secure in random oracle model and in
which all clients only need to run an MPC protocol once during the setup. As
follow-up works, new constructions of DMCFE for inner product that improve
the security model such as by allowing incomplete ciphertext queries [2], by
removing the random oracle [1,22], or by allowing dynamic join of new users
[15] have been introduced. In particular, the MPC protocol in [14] was removed
by a decentralized sum protocol in [15], making the DMCFE for inner product
completely non-interactive and eliminating the need for pairings in the groups.
In this paper, we focus on the decentralized MCFE.
Importance of Verifiability in MCFE. Historically, the security of an
encryption scheme has focused on the confidentiality of the message being
encrypted. The (multi-client) functional encryption is not an exception, with
its indistinguishability security ensuring that given two encrypted values and
decryption keys for functions that evaluate the same at these two values, then
it is computationally hard to distinguish between the ciphertexts of these two
values. However, Badrinarayanan et al. [5] showed that the security of compu-
tation for an honest-but-curious receiver is necessary: a malicious sender could
provide a false ciphertext and false functional decryption keys, so that the value
encrypted within the ciphertext can vary when computed with these different
functions through an honest decryption process. An analogous notion for the
receiver in the multi-input setting is also provided.

In this work, we address a practical concern when using (decentralized) multi-
client FE for inner product in real-world applications. The DMCFE for inner-
product protocol can be run by thousands of senders, but they may not be
all honest. If we assume that a small percentage of them are malicious, trying
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to bias the function evaluations by sending random data, or even fake data,
and contributing dishonest functional key shares. To minimize the impact of
these malicious clients, we propose a verification scheme for ciphertexts and one
for functional decryption key shares, so that once all are valid, the decryption
result is guaranteed to not be significantly biased. Furthermore, our concrete
DMCFE scheme allows practically-efficient identification of malicious senders.
Beyond the inner products, we define a verifiable DMCFE, which consequently
provides input validation for the receiver as in [6]. Compared to their scheme, our
verifiable MCFE scheme works on a larger class of functions than the sum, and
does not require interaction between senders and receiver during the verification
process.
Verifiable DMCFE for Inner Product. Verifiability for DMCFE in the gen-
eral case is very difficult, because a small modification of the input can cause
a significant difference in the output (e.g. inverse functions). We can formalize
the validity condition as a predicate, depending on each application. However,
for linear functions with small coefficients and small inputs (which are the most
useful in practice, like average functions for example), a change in the input
does not result in a major change in the output, unless there is a significant
modification to an input. When the number of users is large enough, the inputs
are bounded (which are often considered in Inner-Product Functional Encryp-
tion) then if an input is changed but still remains within a reasonable range,
the output function will be quite close to the exact value. Additionally, most of
the IP-DMCFE schemes need a final discrete logarithm computation to get the
result, which requires it to be small enough, and so the inputs should also be in
a reasonable range. For these reasons, we target DMCFE for inner product, and
verifiability checks that the inputs stay within a specific range. Such a range ver-
ification will be our predicate in the general framework (for both the encrypted
inputs and the functions in the keys).
A Real-Life Example. We consider Aggregating Household Energy Consump-
tion as a practical motivation. For optimization purpose, an energy supplier may
want to aggregate the units of energy (kilowatt-hours or kWh) consumed by its
customers during some specific periods of the day. However, the energy consump-
tion of each customer is a private information, as it may include, for example,
the time they get up in the morning, leave their house, return home and which
electronic devices they use. Still, they may be willing to help the supplier with
their data to improve its service. To protect user’s privacy, the customers are
recommended to use a decentralized multi-client functional encryption to send
their data in an encrypted form. However, nothing guarantees that the electricity
supplier receives a correct aggregate of the metered energy consumption or at
least an approximation of this value. In fact, some customers may provide mal-
formed ciphertexts and malformed functional key shares to bias the joint-input
function. Therefore, if we can enforce each client to correctly encrypt a value in
some valid range and to generate a correct functional key share, the noise from
the input made by a small number of malicious clients can be mitigated when
the aggregate value is computed among a large number of clients.
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The fact that this scenario has not been captured in prior work of (decen-
tralized) MCFE is historically reasonable: in single-input FE, there is only one
encryptor. When this encryptor wants to bias the result computed by the func-
tional decryptor, he can encrypt an invalid input, such as values out of the
use domain or singular points of the function. Since this FE is single-input, a
receiver can trivially identify the invalidity of the input by looking at the result
of the function. Therefore, the standard security notion of single-input FE only
considers the confidentiality of the individual input, which is later inherited by
DMCFE. On the other hand, a receiver in DMCFE, can only learn the joint
function evaluated on the joint inputs, then it seems not trivial to efficiently
identify invalid individual inputs of the malicious clients out of the valid ones.
We stress that using functional encryption schemes for modular inner product
over Zp where p can be any prime [4] to reduce the inner-product value space
would not solve this problem. An adversary can always inject an arbitrary value
to make the computation over Zp become uniformly random over the space.
Therefore, guaranteeing that each encrypted input is within a specified range
will cause overhead costs but plays an important step in tackling this issue.

Our Contributions for verifiable DMCFE can be listed as:

– Concept: We introduce the definition of verifiable DMCFE with the ability
to identify malicious senders. The verifiability guarantees that the decryption
process, given as input a vector of ciphertexts and functional key shares that
passed public verification schemes, always outputs the delegated functions
evaluated on a vector of inputs satisfying specific predicates. If any verification
fails, verifiability guarantees that malicious senders will be identified.

– Technique: We develop a technique called Combine-then-Descend. This tech-
nique enables senders to combine their verifiable private inputs in exponents
in a decentralized manner. Subsequently, the final result is descended to
obtain the sum in scalars, which can be used within a pairing-based pro-
tocol. Private inputs are put in exponent to facilitate efficient verification
using Σ-protocols. We exploit the particular setting of class group in which
the final result falls in a subgroup where the discrete logarithm problem is
easy. Then, we construct the One-time Decentralized Sum (ODSUM) scheme
in class groups, which serves as the building block for subsequent construc-
tions.

– Construction: We present a concrete construction of range-verifiable
DMCFE for inner product. We show a technique of extending from one-
time security to multiple-time security for the ODSUM scheme that preserves
the efficiency of the proof of correct encoding. The resulting DMCFE scheme
then has verifiability with overhead costs depending only on the range proof
for the ciphertext. Notably, our approach efficiently addresses the problem
of identifying an unbounded number of malicious senders, which remained
unsolved in secure aggregation protocols like ACORN.
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1.1 Technical Overview

Combine-then-Descend Technique. We construct a new decentralized sum
scheme (DSUM) in a DDH group that has an easy DL subgroup (class group,
[12]). Our DSUM scheme will not compute the pair-wise shared masks for private
input by using a pseudo-random function (PRF) as in [15]. The reason is that
using a general non-interactive zero-knowledge argument (NIZK) to prove the
correct computation of a PRF on input an exchanged key can be very expensive.
Instead, each private input will be encoded as a power of the generator f of the
easy DL subgroup and masked directly by pair-wise exchanged keys in the bigger
group as follows

Ci = fxi ·
⎛
⎝∏

i<j

Tj ·
∏
i>j

T−1
j

⎞
⎠

ti

.

Here, Ci is the ciphertext of a sender Si that encrypts xi under a secret key
ti and each (Tj)ti is a Diffie-Hellman exchanged key with a public key Tj of
another sender Sj . Given public parameters (f, (Tj)j �=i), then proving that Ci

is encrypted correctly with the witness (xi, ti) can be done efficiently by using
a Σ-protocol in an unknown-order group [11,19]. After verifying that all cipher-
texts are valid, a receiver can combine them into f

∑
i xi =

∏
i Ci, then efficiently

descend the sum
∑

i xi from the power of f . Unlike in the standard DDH group,
there is no restriction on the size of the sum to be descended when this DSUM
scheme is instantiated in a class group. Therefore, with only a constant over-
head for proving time and proof size, this DSUM scheme allows senders to jointly
compute the sum of private random shares of other cryptographic protocols and
to efficiently identify the senders who gave malformed ciphertexts. However, to
decentralize an MCFE scheme for inner product as in [14], this DSUM scheme
is not yet enough since for each setup of pair-wise key exchanges, the scheme
only supports one-time encryption (ODSUM). We then show an extension from
one-time secure DSUM to multiple-time secure DSUM by leveraging the encryp-
tion with labels of inner-product MCFE scheme in [14] itself so that the correct
encryption of the resulting DSUM scheme can still be efficiently proved and
verified by a Σ-protocol.
Range-Verifiable DMCFE for Inner Product. To mitigate the effect of malicious
inputs on the inner-product evaluation, each sender is restricted to encrypt values
within a data range, which is relatively small compared to the possible range
of the plaintexts. We design a decentralized MCFE scheme where anybody can
verify the correctness of each encryption and each functional key share. Our work
will not focus on the proof schemes, but on the design of encryption scheme such
that the relations for proofs of correct generation are simplified.

We use the following building blocks: the MCFE scheme for inner prod-
uct from [14], a Σ-protocol, a range proof on Pedersen commitments, and the
ODSUM scheme that we presented above.

To recall, a ciphertext in the MCFE scheme [14] is computed in the form
of a Pedersen commitment with message xi and an opening sMCFE,i, namely
[ci] = [u�

� ]·sMCFE,i+[xi] where [u�] ∈ G
2 is the output of a random oracle taking
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a label � as input, and sMCFE,i is a private encryption key that is chosen uniformly
from Z

2
p, and xi ∈ Zp is the value to encrypt. For an inner-product function y, the

functional decryption key is computed as dky = (dk :=
∑

i sMCFE,i · yi,y). This
scheme can be transformed into a decentralized MCFE by letting each sender
use DSUM to encrypt his share of functional key sMCFE,i · yi, so that dky will be
revealed as the sum of all senders’ shares.

For the ciphertext verification (and also for the key share verification), a com-
mitment of private key sMCFE,i needs to be produced as ([u�

�MCFE,b
] · sMCFE,i)b∈[2]

where [u�MCFE,b
] ∈ G

2 is the output of a random oracle taking an initialization
label �MCFE,b as input, and published since the key generation process. The rela-
tion for a proof of correct encryption now states that a ciphertext is correct if it
encrypts a value within a data range under the committed private key. A proof
scheme for this relation is a combination of a Pedersen-commitment range proof
and a Σ-protocol in the standard DDH group.

For the key share verification, on one hand we want a DSUM scheme that
supports multi-label encryption as in [15], that is, only ciphertexts generated
under the same label can be combined to decrypt the sum of encrypted inputs.
If an adversary mixes and matches ciphertexts of different labels, he receives
nothing. On the other hand, the relation for a proof of correct encryption has
to be simple so that it can be proved by a Σ-protocol. An MCFE for inner
product (so for the sum) has the former property, while an ODSUM has the
latter. Therefore, we leverage both these schemes to achieve a label-supporting
LDSUM with efficient proofs of correctness: in the key generation process, each
sender publishes an ODSUM encryption of his private MCFE key sLDSUM,i ∈ Zp

as his public key, then each input xi is encrypted by the MCFE scheme under
a label � and a private key sLDSUM,i. To decrypt the sum

∑
i xi, a receiver first

collects all senders’ public keys to reveal dk1 =
∑

i sLDSUM,i ∈ Zp, which is
exactly the MCFE functional decryption key for vector 1 = (1, ..., 1) (the sum).
Using dk1, he can continue to decrypt the sum of xi that is encrypted by the
MCFE scheme. An important point is that the order of the easy-DL subgroup
in the class group can be instantiated to be equal to the prime order p of the
standard DDH group. Therefore, both the encryption-key space of LDSUM and
the plaintext space of ODSUM are Zp.

A final point to note is that when using the LDSUM scheme to encrypt MCFE
key shares sMCFE,i · yi, the functional key dk in dky = (dk :=

∑
i sMCFE,i · yi,y)

may not be revealed as a scalar. The reason is that LDSUM is technically a
particular instantiation of the MCFE scheme for inner product in [14], which can
only decrypt when the inner product is small enough by computing a discrete
logarithm. Therefore, we will use a pairing group to solve this issue.

1.2 Related Work and Comparisons

Formalization. Our definition of verifiable decentralized MCFE is a generalized
computational version of the verifiability for MIFE in [5]. The first additional
point is that the verifiability in our definition implies the validation of encrypted
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inputs with respect to a class of predicates. Moreover, the decentralized multi-
client setting is a more general context: there is no central functional key author-
ity, and each sender generates ciphertexts and functional key shares indepen-
dently. While this setting is not considered in [5], our verifiability guarantees
that any malicious sender, who gave malformed ciphertexts and functional key
shares to make a global public verification with those of other honest senders fail,
will be identified. On the other hand, if we restrict the functionality to be the sum
of encrypted inputs, then we can obtain an analogous input validation for secure
aggregation (ACORN protocols) as in [6]. Our protocol and ACORN protocols
[6] have been independently developed using completely different approaches,
which we consider below.

Solutions for Efficient Malicious Sender Identification. For all protocols that
allow multiple senders to compute a joint function on their private inputs, Mali-
cious Sender Identification is a desirable feature, but it is not obvious to obtain
within a practical efficiency. An example is that both our DMCFE scheme and
the ACORN protocols in [6] need a decentralized sum to allow senders to gener-
ate ciphertexts that encrypt the decryption key shares of the bigger protocol in
a decentralized manner. We both had the same problem in achieving the input
validation: it could be very costly to use a general NIZK to prove and verify the
correct encryption of the initial underlying decentralized sum.

To overcome this issue, the authors in [6] proposed two protocols: ACORN-
detect and ACORN-robust. The first allows validating the aggregated (decryp-
tion) key, which is combined from all key shares of senders. Each key share is
committed by a Pedersen commitment, and the combined key is compared with
the aggregation of committed key shares thanks to the homomorphic property of
the commitment. Besides requiring an interactive Σ-protocol between the server
and each sender, a major drawback is that now a sender can send a malicious
key share to make the combined key broken without being identified. The second
protocol ACORN-robust can identify malicious senders and remove their inputs
based on the help of neighbour honest senders, but allows at most 1

3 number of
senders to be malicious and at least 6 rounds of interaction between each sender
and the server (more rounds of interaction may happen with a decreasing proba-
bility). In our verifiable inner-product DMCFE scheme, we gain the efficiency by
constructing and then adapting a new decentralized sum that is efficient to verify.
The result covers all and even better advantages of the two previous ACORN
protocols: our DMCFE scheme has malicious sender identification, requires no
round of interaction between each sender and a receiver, allows an unbounded
number of malicious senders, and eventually allows a larger class of functionality
(inner product over sum). Notably, in our verifiable DMCFE scheme, the con-
stant time (group exponentiations) and the constant size (group elements) for
proving each key share can even be more efficient than those for each ciphertext,
which are dominated by a range proof as in ACORN.
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2 Preliminaries

2.1 Groups and Assumptions

Prime Order Group. Let GGen be a prime-order group generator, a proba-
bilistic polynomial time (PPT) algorithm that on input the security parameter
1λ returns a description G = (G, p, P ) of an additive cyclic group G of order p
for a 2λ-bit prime p, whose generator is P . For a ∈ Zp, define [a] = aP ∈ G as
the implicit representation of a in G.

From a random element [a] ∈ G, it is computationally hard to compute the
value a (the discrete logarithm problem). Given [a], [b] ∈ G and a scalar x ∈ Zp,
one can efficiently compute [ax] ∈ G and [a + b] = [a] + [b] ∈ G.

Definition 1 (Decisional Diffie-Hellman Assumption). The Decisional

Diffie-Hellman Assumption states that, in a prime-order group G $←− GGen(1λ),
no PPT adversary can distinguish between the two following distributions with
non-negligible advantage:

{([a], [r], [ar])|a, r
$←− Zp} and {([a], [r], [s])|a, r, s

$←− Zp}.

Equivalently, this assumption states it is hard to distinguish, knowing [a], a ran-
dom element from the span of [a] for a = (1, a), from a random element in G

2:
[a] · r = [ar] = ([r], [ar]) ≈ ([r], [s]).

Pairing Group. Let PGGen be a pairing group generator, a PPT algorithm that
on input the security parameter 1λ returns a description PG = (G1, G2, GT , p,
P1, P2, e) of asymmetric pairing groups where G1, G2, GT are additive cyclic
groups of order p for a 2λ-bit prime p, P1 and P2 are generators of G1 and G2,
respectively, and e : G1×G2 −→ GT is an efficiently computable (non-degenerate)
bilinear group elements. For s ∈ {1, 2, T} and a ∈ Zp, define [a]s = aPs ∈ Gs

as the implicit representation of a in Gs. Given [a]1, [b]2, one can efficiently
compute [ab]T using the pairing e.

Definition 2 (Symmetric eXternal Diffie-Hellman Assumption). The
Symmetric eXternal Diffie-Hellman (SXDH) Assumption states that, in a pairing

group PG $←− PGen(1λ), the DDH assumption holds in both G1 and G2.

Class Group. We recall the notion of a DDH group with an easy DL sub-
group (first introduced in [12]), which can be instantiated from class groups
of imaginary quadratic fields and also recall the corresponding computational
assumptions.

Definition 3 (Generator for a DDH group with an easy DL subgroup
[10,11]). Let GenClassGroup be a pair of algorithms (Gen,Solve). The Gen algo-
rithm is a group generator which takes as inputs a security parameter λ and
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a prime p and outputs a tuple (p, s̃, ĝ, f, ĝp, Ĝ, F, Ĝp). The set (Ĝ, ·) is a cyclic
group of odd order ps where s is an integer, p is a μ-bit prime, and gcd(p, s) = 1.
The algorithm Gen only outputs an upper bound s̃ of s. The set Ĝp = {xp, x ∈ Ĝ}
is the subgroup of order s of Ĝ, and F is the subgroup of order p of Ĝ, so that
Ĝ = F × Ĝp. The algorithm Gen outputs f , ĝp and ĝ = f.ĝp which are respective
generators of F, Ĝp and Ĝ. Moreover, the DL problem is easy in F , which means
that the Solve algorithm is a deterministic polynomial time algorithm that solves
the discrete logarithm problem in F .

An important feature of the GenClassGroup is that we can choose the same
prime order as in the standard DDH (including pairing groups) for the easy DL
subgroup. A concrete instantiation of such a group can be found in [10].

Let gp be a random power of ĝp, Gp be a subgroup generated by gp, and G
be a subgroup generated by g := gpf . The following assumption is called Hard
subgroup membership assumption, which states that it is hard to distinguish
random elements of Gp in G.

Definition 4 (HSM assumption [11]). Let GenClassGroup = (Gen,Solve) be
a generator for DDH groups with an easy DL subgroup. Let (s̃, f, ĝp, Ĝ, F ) be
an output of Gen, gp be a random power of ĝp, and g := gpf . We denote by
D (resp. Dp) a distribution over the integers s.t. the distribution {gx, x ←↩ D}
(resp. {ĝx

p , x ←↩ Dp}) is at distance less than 2−λ from the uniform distribution
in 〈g〉 (resp. in 〈ĝp〉) . Let A be an adversary for the HSM problem, its advantage
is defined as:

AdvHSMA (λ) :=

∣∣∣∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎢⎢⎢⎣

(s̃, f, ĝp, F, Ĝp) ←− Gen(1λ, p), t ←− Dp, gp = ĝt
p,

x ←↩ D, x′ ←↩ Dp, b
$←− {0, 1},

Z0 ←− gx, Z1 ←− gx′
p ,

b′ ←− A(p, s̃, f, ĝp, gp, F, Ĝp, Zb,Solve(·))

: b = b′

⎤
⎥⎥⎥⎥⎥⎦

− 1
2

∣∣∣∣∣∣∣∣∣∣∣

The HSM problem is said to be hard in G if for all probabilistic polynomial
time attacker A, AdvHSMA (λ) is negligible.

From [10,13], one can set S := 2λ−2 · s̃, and instantiate Dp as the uniform
distribution on {0, ..., S} and D as the uniform distribution on {0, ..., pS}. We
also put the Low order assumption and the Strong root assumption in the full
version [23], which is used to prove the soundness of our Σ-protocol over the
class group.

2.2 Non-interactive Zero-Knowledge Proofs

Zero-Knowledge Proofs. Let R be a polynomial-time decidable relation. We
call w a witness for a statement u if R(u;w) = 1. A language L associated
with R is defined as L = {u|∃w : R(u;w) = 1}. A zero-knowledge proof for
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L consists of a pair of algorithms (P,V) where P convinces V that a common
input u ∈ L without revealing information about a witness w. If u /∈ L, P has
a negligible chance of convincing V to accept that u ∈ L. In a zero-knowledge
proof of knowledge, P additionally proves that it owns a witness w as input such
that R(u;w) = 1. In this work, we focus on the non-interactive proofs where P
sends only one message π to V. On the input π, some public parameters and
its own inputs, V decides to accept or not. A formal definition, from [3,7,18], is
given below.

Definition 5 (Non-interactive Zero-knowledge Argument). A NIZK
argument for a language L defined by an NP relation R consists of a triple
of PPT algorithms (SetUp,Prove,Verify):

– SetUp(λ): Takes as input a security parameter λ, and outputs a common
reference string (CRS) σ. The CRS is implicit input to other algorithms;

– Prove(u,w): Takes as input a statement u and a witness w, and outputs an
argument π.

– Verify(u, π): Takes as input a statement u and an argument π, outputs either
1 accepting the argument or 0 rejecting it.

Sometimes in this paper we will call π a proof. The algorithms satisfy the fol-
lowing properties.

1. Completeness. For all u,w such that R(u;w) = 1,

Pr

[
σ ←− SetUp(λ),
π ←− Prove(u,w)

: Verify(u, π) = 1

]
= 1.

2. Computational Soundness. For all PPT adversaries A, there is a negligible
function μ(λ) such that

Pr

[
σ ←− SetUp(λ),
(u, π) ←− A(σ)

: Verify(u, π) = 1 ∧ u /∈ L

]
≤ μ(λ).

3. Zero-Knowledge. There exists a PPT simulator (S1,S2) such that for all PPT
adversaries (A1,A2), there is a negligible function μ(λ) such that

∣∣∣∣∣ Pr

⎡
⎢⎣

σ ←− SetUp(λ),
(u,w, st) ←− A1(σ)
π ←− Prove(u,w)

:
A2(σ, π, st) = 1
∧ R(u;w) = 1

⎤
⎥⎦

− Pr

⎡
⎢⎣

(σ, τ) ←− S1(λ),
(u,w, st) ←− A1(σ)
π ←− S2(σ, u, τ)

:
A2(σ, π, st) = 1
∧ R(u;w) = 1

⎤
⎥⎦

∣∣∣∣∣ ≤ μ(λ).

where τ is a trapdoor for σ and st is an internal state.

We defer the definitions and notations for non-interactive zero-knowledge
arguments of knowledge and range proof in the full version [23].
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2.3 Decentralized Sum

The decentralized sum (DSUM) [15] is a primitive that allows several parties
of a group to commit to values, so that only the sum of their values can be
revealed when all parties of the group have sent the shares. Another important
feature of DSUM is that there is no trusted party: each party totally controls the
generation of its secret key. The definition of this primitive was first introduced
as a particular case of the general Dynamic Decentralized Functional Encryption
in [15]. For the use in this work, we focus on a more relaxed security: given all
senders’ shares, a receiver cannot learn any information about individual inputs
beyond their sum.

Definition 6 (Decentralized Sum). A decentralized sum over an Abelian
group M and a set of n senders consists of four algorithms:

– SetUp(λ): Takes as input the security parameter λ, and outputs the public
parameters pp. The public parameters are implicit arguments to all the other
algorithms;

– KeyGen(): This is a protocol between the senders (Si)i∈[n] that eventually each
generates its own secret key ski. The protocol also outputs a public key pk,
which can be an implicit argument;

– Encrypt(ski,mi): Takes as input a secret key ski and a message mi. Parses
mi = (xi, �) where xi ∈ M and � can be considered as an encryption label.
Outputs the ciphertext ct�,i;

– Decrypt(ε, (ct�,i)i∈[n]): Takes as input an empty key ε (no private decryption
key is required) and an n-vector ciphertext (ct�,i)i∈[n] under the same label �.
Returns

∑
i∈[n] xi ∈ M or ⊥.

Correctness. Given pp ← SetUp(λ), ((ski)i∈[n], pk) ← KeyGen(), and cti,� ←
Encrypt(ski,mi) where mi = (xi, �) for all i ∈ [n], then the probability that
Decrypt(ε, (ct�,i)i∈[n]) =

∑
i∈[n] xi is equal to 1.

Definition 7 (IND-Security Game for DSUM). Let us consider a DSUM
scheme over a message space M and a set of n senders. No adversary A should
be able to win the following security game with a non-negligible probability against
a challenger C:

– Initialization: the challenger C runs the setup algorithm pp ← SetUp(λ) and

the key generation ((ski)i∈[n], pk) ← KeyGen() and chooses a random bit b
$←−

{0, 1}. It sends (pp, pk) to the adversary A.
– Encryption queries QEncrypt(i, x0, x1, �): A has unlimited and adaptive access

to a Left-or-Right encryption oracle, and receives the ciphertext ct�,i generated
by Encrypt(ski, (xi, �)). Any further query for the same pair (�, i) will later be
ignored.

– Corruption queries QCorrupt(i): A can make an unlimited number of adaptive
corruption queries on input index i, to get the secret key ski of any sender i
of its choice.
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– Finalize: A provides its guess b′ on the bit b, and this procedure outputs the
result β of the security game, according to the analysis given below.

The output β of the game depends on some conditions, where CS is the set of cor-
rupted senders (the set of indexes i input to QCorrupt during the whole game), and
HS is the set of honest (non-corrupted) senders. We set the output to β ←− b′, unless

one of the three cases below is true, in which case we set β
$←− {0, 1}:

1. some QEncrypt(i, x0
i , x

1
i , �)-query has been asked for an index i ∈ CS with

x0
i �= x1

i ;
2. for some label �, an encryption-query QEncrypt(i, x0

i , x
1
i , �) has been asked for

some i ∈ HS, but encryption-queries QEncrypt(j, x0
j , x

1
j , �) have not all been

asked for all j ∈ HS;
3. for some label �, there exists a pair of vectors (x0 = (x0

i )i,x
1 = (x1

i )i) such
that

∑
i x0

i �= ∑
i x1

i , when
– x0

i = x1
i , for all i ∈ CS;

– QEncrypt(i, x0
i , x

1
i , �)-queries have been asked for all i ∈ HS.

We say this DSUM is IND-secure if for any adversary A,

AdvindDSUM(A) = |P [β = 1|b = 1] − P [β = 1|b = 0]|
is negligible.

Weaker Notions. For some weaker variants of indistinguishability, some queries
can only be sent before the initialization phase:

– Selective Security (sel − IND): the encryption queries (QEncrypt) are sent
before the initialization;

– Static Security (sta − IND): the corruption queries (QCorrupt) are sent before
the initialization.

3 ODSUM from Combine-then-Descend Technique

3.1 Motivation

In a high level overview, we want to develop a concrete DSUM scheme such that
no adversary playing on behalf of some senders can make the decryption with
other honest senders’ encryptions fail, for example by behaving maliciously in
the KeyGen process or sending maliciously generated encryptions.

A straight approach is letting each sender use a general NIZK to prove the
correctness of his encryptions and send the proofs with them. However, this app-
roach may bring a heavy computational overhead for the encryption time. For
example, given a simplified instantiation (without the All-or-Nothing Encapsu-
lation layer) of DSUM scheme from the construction in [15], to encrypt a message
xi ∈ Zp under a label � ∈ {0, 1}∗, a sender Si computes a ciphertext

c�,i = xi +
∑
i<j

PRF((Tj)ti , �) −
∑
i>j

PRF((Tj)ti , �) ∈ Zp.
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where PRF is a pseudorandom function, and each (Tj)ti is a pair-wise exchanged
key in a DDH group G with a public key Tj and a secret key ti. The complex part
to be implemented for NIZK is the computation of the pseudorandom function
on input a pair-wise exchanged key and an encryption label.

Our expected DSUM scheme will remove the use of PRF in the above man-
ner. Instead, the input is encoded as a power of a (sub)-group generator f and
is directly masked by group multiplications with the pair-wise exchanged keys.
This helps greatly simplify the relation of correct encryption so that each cipher-
text can be proved and verified by using a Σ-protocol only. As the computational
cost and communication cost of such a Σ-protocol are constant, then the over-
head is asymptotically optimal. After combining all valid encryptions by mul-
tiplying them together, the pair-wise masks vanish, and we want the receiver
to efficiently descend the sum from the exponent of f . We refer to this tech-
nique as the combine-then-descend technique. The DDH groups with an easy
DL subgroup [12], which are instantiated in class groups of imaginary quadratic
fields, is an extremely suitable environment to construct our DSUM scheme with
those desired properties. Moreover, unlike the composite modulus for plaintext
in Paillier encryption, we can choose a prime for the order of f before creating a
class group, which makes the sum computed by the DSUM scheme automatically
compatible with other applications in pairing groups.

3.2 Class Group-Based One-Time Decentralized Sum (ODSUM)

We construct a DSUM scheme from the combine-then-descend technique:

– SetUp(λ): It generates a DDH group with an easy DL subgroup
(s̃, f, ĝp, Ĝ, F ) ←− GenClassGroup(1λ, p). It samples a t ←↩ Dp and sets
gp = ĝt

p
1. The public parameters are pp = (s̃, f, ĝp, gp, Ĝ, F, p), which is an

implicit input to other algorithms.
– KeyGen(): Each sender generates a secret key ski = ti ←↩ Dp and publishes

Ti = gti
p . The public key is defined as pk = (Ti)i∈[n].

– Encrypt(xi, pk, ski): The encryption is supposed to be done one time for one
message in the protocol, so there is no label. It generates a ciphertext

Ci = fxi ·
⎛
⎝∏

i<j

Tj ·
∏
i>j

T−1
j

⎞
⎠

ti

.

– Decrypt(ε, (Ci)i∈[n]) : No decryption key is required (empty key ε). It com-
putes M =

∏
i∈[n] Ci and outputs α ←− Solve(M) ∈ Zp or ⊥.

1 This step can be done in a decentralized manner, with up to nSetUp − 1 malicious
parties out of nSetUp as in the interactive setup for the CL scheme in [11].
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Correctness. Given pp ←− SetUp(λ), ((ski)i, pk) ←− KeyGen(), and the ciphertexts
Ci ←− Encrypt(xi, pk, ski) for i ∈ [n], we have

M =
∏

i∈[n]

Ci =
∏

i∈[n]

⎛
⎝fxi ·

⎛
⎝∏

i<j

Tj ·
∏
i>j

T−1
j

⎞
⎠

ti
⎞
⎠

= f
∑

i∈[n] xi ·
∏

i∈[n]

g
∑

i<j tjti−
∑

i>j tjti

p = f
∑

i∈[n] xi ,

and Solve(M) =
∑

i∈[n] xi.
An important advantage of this scheme is that a proof of correct encryption

can be generated by using a Σ-protocol in an unknown-order group [19], which
has a soundness based on the Strong Root Assumption and the γ-Low Order
Assumption in class groups [11]. Moreover, thanks to the easy DL subgroup
generated by f , there is no restriction on the size of the sum to be aggregated. If
the above scheme is in a standard DDH group, a range proof for each encrypted
input is required and thus the computational overhead and the proof size can
not be constant anymore.

On the other hand, we call the above scheme as one-time decentralized
sum (ODSUM), as it only supports one-time secure encryption. Therefore, each
sender is supposed to encrypt a message once only. Without this restriction,
an adversary can mix and match between (possibly) multiple ciphertexts of the
same sender with other senders’ ciphertexts in decryption to extract informa-
tion related to the mixed-and-matched encrypted inputs. Later, we will provide
a technique to extend from one-time security to multiple-time security and show
that the extended DSUM scheme is applicable to be used in verifiable decentral-
ized MCFE for inner product.

One-time Security Model. The DSUM scheme described in Sect. 3.2 is one-time
secure, therefore the security model is as defined in Definition 7, except for the
encryption oracle:

– Encryption queries QEncrypt(i, x0, x1): A has unlimited and adaptive access
to a Left-or-Right encryption oracle, and receives the ciphertext cti generated
by Encrypt(ski, xi) (no label �). Any further query for the same sender i will
later be ignored.

Theorem 1. The One-time Decentralized Sum scheme described in Sect. 3.2 is
IND-secure under the HSM assumption, as in the one-time security model above.
More precisely, we have

AdvindODSUM(t, qE) ≤ 2n(n − 1)2 · (AdvHSM(t) + 2−2λ)

where

– AdvindODSUM(t, qE) is the best advantage of any PPT adversary running in time
t with qE encryption queries against the IND-security game of the ODSUM
scheme;
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– AdvHSM(t) is best advantage of any PPT adversary running in time t to dis-
tinguish a HSM instance.

– qE ≤ n according to the security model of ODSUM.

Proof. We may note that to have a non-negligible advantage of winning the
game, the adversary has to let at least two clients be non-corrupted (honest)
such that each of them has two different messages (x0, x1) for encryption queries.
We call such clients as explicitly honest clients. Indeed,

– if there is no explicitly honest client: unless the game output β is randomized
by the finalizing condition 1 in Definition 7, the adversary has only access to
the QEncrypt for any client index i of the same message xb

i = x0
i = x1

i , which
implies that the adversary has no information about b;

– if there is only one explicitly honest client: we denote by (i, x0
i , x

1
i ) with x0

i �=
x1

i be the only query of two different messages to QEncrypt, then the game
output β is randomized by the finalizing condition 3 in Definition 7.

From above, we consider all PPT adversaries that let at least two clients
be explicitly honest. We proceed by using a hybrid argument. Let A be a PPT
adversary running in time t. For any game G, we write AdvG the advantage of
A in the game G. Note that G0 is the security game defined in the one-time
security model, whereas AdvG1 = 0, since the adversary’s view in G1 does not

depend on the random bit b
$←− {0, 1}.

Game G∗
0: this game is as G0, except the challenger guesses the number of

explicitly honest clients. The challenger samples κ
$←− [2, n]. If eventually the

number of explicitly honest clients is not κ, the game output is β
$←− {0, 1}.

We have that AdvG∗
0

= AdvG0
n−1 . For all t ∈ [2, κ], we define the following games.

Game G∗
0,t: this game is as G∗

0, except that for the first explicitly honest client
id1 ∈ [n], QEncrypt(id1, x0

id1
, x1

id1
) uses

Cid1 = f
xb
id1

−∑
j∈{2,t} uj ·

∏
id1<j

(Tj)tid1 ·
∏
id1>j

(Tj)−tid1 ,

where uj
$←− Zp for all j ∈ [t]. For the ρ’th explicitly honest client idρ with

1 < ρ ≤ t, QEncrypt(idρ, x
0
idρ

, x1
idρ

) uses

Cidρ
= f

xb
idρ

+uρ ·
∏
idρ<j

(Tj)tidρ ·
∏
idρ>j

(Tj)−tidρ

The changes from G∗
0 are highlighted in gray. From G∗

0 to G∗
0,2, we construct

a sub-transition with a similar strategy as in the IND-security proof for the
CL encryption scheme [13]:

– Game G0
sub: this game is as G∗

0, except that the challenger guesses the
second explicitly honest client, denoted by id2. If the guess is incorrect,
the challenger aborts and returns a random bit. This incurs a security
loss of n.
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– Game G1
sub: this game is as G0

sub except that the challenger creates
secret keys (ti)i∈[n] from a distribution D instead of Dp, so that (ti)i∈[n]

are close to be uniform over the order of G (the subgroup generated
by gpf). For the pairwise-shared mask Kid2,i := (Tid2)

ti = (Ti)tid2 with
i �= id2 that appears in the encryption queries for id2 and i respectively,
the challenger will now compute Kid2,i = (Tid2)

ti . These two modifications
does not change the adversary’s view, so the simulation remains perfect.

– Game G2
sub: by guessing as in G0

sub, the challenger creates Tid2 = fug
tid2
p

with u
$←− Zp and tid2 ←↩ Dp. In other words, Tid2 is close to be uniform

over G. It computes Kid2,i with i �= id2 as in the previous game, so we
have

Kid2,id1 = (Tid2)
tid1 = futid1 g

tid2 tid1
p .

The gap between G0
sub and G2

sub is
∣∣∣AdvG0

sub
− AdvG2

sub

∣∣∣ ≤ AdvHSM(t).

As p is a 2λ-bit prime, the probability that u = 0 mod p is a negligi-
ble 2−2λ. On the other hand, tid1 is close to be uniform over the order
nG = psp of G with gcd(p, sp) = 1. Therefore the value (tid1 mod p)
appearing in the exponent of f and the value (tid1 mod sp) appearing
in the exponent of gp are independent (more details in Lemma 1, [10]).
Unless u = 0 mod p, the value (utid1 mod p) is then uniformly random
over modulus p, even when an unbounded adversary can extract (tid1
mod sp) from Tid1 and (Ki,id1)i�=id1 .

– Game G3
sub: this game is as G2

sub, except that Kid2,id1 is computed as

Kid2,id1 = fμ2+utid1 g
tid2 tid1
p = fμ2(Tid2)

tid1

where μ2
$←− Zp. Unless u = 0 mod p, the distributions {utid1 mod p :

tid1
$←− Zp} in G2

sub and {μ2 + utid1 : μ2
$←− Zp, tid1

$←− Zp} in G3
sub are the

same, so we have
∣∣∣AdvG2

sub
− AdvG3

sub

∣∣∣ ≤ 2−2λ.

By switching Tid2 = fug
tid2
p back to Tid2 = g

tid2
p and lifting the requirement

that the challenger has to guess id2, we obtain the game G∗
0,2. Formally, we

have ∣∣∣AdvG∗
0

− AdvG∗
0,2

∣∣∣ ≤ 2n · (AdvHSM(t) + 2−2λ).

The transition from G∗
0,t−1 to G∗

0,t for t ∈ [3, κ] is similar: the challenger
has to guesses the t-th explicitly honest client. If the guess is unsuccessful,
the challenger aborts and returns a random bit. As before, this incurs a
security loss of n. We then use a similar game-based sub-transition as above.
Eventually, we obtain

∣∣∣AdvG∗
0

− AdvG∗
0,κ

∣∣∣ ≤ 2(n − 1)n · (AdvHSM(t) + 2−2λ).
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Game G∗
1,κ: For all i ∈ [n], we put Δi = x0

i − xb
i . This game is as G∗

0,κ except
that ut is replaced by ut + Δidt

for all t ∈ [2, κ]. As ut is sampled uniformly,
then the transition from G∗

0,t to G∗
1,t remains perfect.

On the other hand, by the condition (b) in the security game, we know that∑
t∈[κ] x

0
idt

=
∑

t∈[κ] x
1
idt

, this implies that x0
id1

= xb
id1

− ∑
j∈{2,t} Δidt

. There-
fore, we have

fxb
id1

−∑
j∈[2,κ](uj+Δidt ) = fx0

id1
−∑

j∈[2,κ] uj

and
f

xb
idρ

+(uρ+Δidρ ) = f
x0
idρ

+uρ

for 1 < ρ ≤ κ. In other words, this game is as G∗
0,κ except that xb

idρ
is replaced

by x0
idρ

for all ρ ∈ [κ]. We transition gradually from G∗
1,κ to G∗

1 as a switch
back from G∗

0,κ to G∗
0 when xb

idρ
is replaced by x0

idρ
for all ρ ∈ [κ]. Hence,

all the answers to encryption queries in G∗
1 are encryptions of x0, which is

independent of b. In the game G1, we finally lift the requirement that the
challenger has to guess the number of explicitly honest clients κ.
In conclusion, we have

AdvG0 ≤ 2n(n − 1)2 · (AdvHSM(t) + 2−2λ).

4 Verifiable Decentralized MCFE

We denote by F a class of n-ary functions from Mn to X . We also denote by
Pm ⊂ {0, 1}∗ a class of polynomially-time-decidable predicates for message to
encrypt and by Pf ⊂ {0, 1}∗ a class of polynomially-time-decidable predicates
for function in a functional decryption key.

Definition 8 (Verifiable Decentralized Multi-client Functional
Encryption). A verifiable decentralized multi-client functional encryption on
M over (F ,Pm,Pf), and a set of n senders (Si)i consists of eight algorithms :

– SetUp(λ): Takes as input the security parameter λ. Outputs the public param-
eters pp. Those parameters are implicit arguments to all the other algorithms.

– KeyGen(): This is a protocol between the senders (Si)i that eventually each
generates its own secret key ski, its private encryption key eki. The protocol
also outputs a verification key for ciphertexts vkCT, a verification key for
functional keys vkDK, a public key pk. Similar to pp, pk can be an implicit
argument.

– Encrypt(eki, xi, �,P
m
i ): Takes as input an encryption key eki, a value xi to

encrypt, a label � and a predicate Pm
i ∈ Pm. Outputs the ciphertext C�,i.

– DKeyGenShare(ski, �f ,Pf): Takes as input a user secret key ski, a function
label �f for f ∈ F , and a predicate Pf ∈ Pf. Outputs a functional decryption
key share dkf,i.

– VerifyDK((dkf,i)i∈[n], vkDK,Pf): Takes as input functional decryption key
shares (dkf,i)i∈[n], a verification key vkDK and a predicate Pf ∈ Pf. Outputs
1 for accepting or 0 with a set of malicious senders MSdk �= ∅ for rejecting.
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– VerifyCT(C�, vkCT, (Pm
i )i∈[n]): Takes as input an n-vector ciphertext C� =

(C�,i)i∈[n], a verification key vkCT, and message predicates (Pm
i )i∈[n] ∈ (Pm)n.

Outputs 1 for accepting or 0 with a set of malicious senders MSct �= ∅ for
rejecting.

– DKeyComb((dkf,i)i∈[n], �f ): Takes as input the functional decryption key
shares (dkf,i)i∈[n], a function label �f , and outputs the functional decryption
key dkf .

– Decrypt(dkf ,C�): Takes as input a functional decryption key dkf , an n-vector
ciphertext C� := (C�,i)i∈[n]. Outputs f(x) or ⊥.

Correctness. Given any set of message predicates (Pm
i )i∈[n] ∈ (Pm)n and any

function predicate Pf ∈ Pf: for all functions f ∈ F such that Pf(f) = 1, and all
sets of values (x1, ..., xn) ∈ Mn such that Pm

i (xi) = 1 for all i ∈ [n], and
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pp ←− SetUp(λ)(
(ski, eki)i∈[n], vkCT, vkDK, pk

) ←− KeyGen()
C�,i ←− Encrypt(eki, xi, �,P

m
i )∀i ∈ [n]

dkf,i ←− DKeyGenShare(ski, �f ,Pf)∀i ∈ [n]

then
⎧⎪⎨
⎪⎩

VerifyDK((dkf,i)i∈[n], vkDK,Pf) = 1
VerifyCT(C�, vkCT, (Pm

i )i∈[n]) = 1
Decrypt(dkf ,C�) = f(x1, ..., xn)

with probability 1.

Verifiability with Malicious Sender Identification. For all PPT adversaries A,
the advantage AdvverifVDMCFE(A) in the following game is negligible in λ.

– Initialization: Challenger initializes by choosing classes of predicates Pm,Pf

and running pp ←− SetUp(λ). It sends (pp,Pm,Pf) to A.
– Key generation queries QKeyGen(): For only one time in the game, A can

play on behalf of corrupted senders and call other non-corrupted senders to
join a key generation protocol and together compute (vkCT, vkDK, pk).

– Corruption queries QCorrupt(i): A can make an unlimited number of adaptive
corruption queries on input an index i, to play on behalf of sender Si in
the protocol. If i was queried after QKeyGen, then A additionally receives
(ski, eki, vkCT, vkDK) and cannot play on behalf of Si in the key generation
process anymore.

– Encryption queries QEncrypt(i, �,Pm
i ): A has unlimited and adaptive access

to call an honest (non-corrupted) sender Si to provide a correct encryption
C�,i = Encrypt(eki, xi, �,P

m
i ) for some xi such that Pm

i (xi) = 1. A can only
choose any message predicate Pm

i ∈ Pm, otherwise the query is ignored.
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– Functional key share queries QDKeyGen(i, f,Pf): A has unlimited and adap-
tive access to call an honest (non-corrupted) sender Si to provide a correct
functional key share dkf,i = DKeyGenShare(ski, f,Pf). A can only choose any
message predicate Pf ∈ Pf and then a function f such that Pf(f) = 1, other-
wise the query is ignored.

– Finalize: let MSA be the set of corrupted senders, then A has to output ver-
ification keys (vkCT, vkDK) and public key pk from QKeyGen(), message pred-
icates (Pm

i )i∈[n] ∈ (Pm)n, a function predicate Pf ∈ Pf, a label �, malicious
ciphertexts (C�,i)i∈MSA , and malicious functional key shares (dkfj ,i)j,i∈MSA
for a polynomially number of functions fj such that Pf(fj) = 1. The
ciphertexts of honest senders (C�,i)i/∈MSA and their functional key shares
(dkfj ,i)j,i/∈MSA are automatically completed by using the oracles QEncrypt
and QDKeyGen.

– A wins the game if one of the following cases happens:
• If VerifyCT(C�, vkCT, (Pm

i )i∈[n]) = 1 and, for all function queries fj,
VerifyDK((dkfj ,i)i∈[n], vkDK,Pf) = 1: there does not exist a tuple of mes-
sages (xi)i∈[n] such that, for all i ∈ [n], Pm

i (xi) = 1, and

Decrypt(dkfj
,C�) = fj(x1, ..., xn)

with dkfj
= DKeyComb((dkfj ,i)i∈[n], fj) for all functions fj.

• If VerifyCT(C�, vkCT, (Pm
i )i∈[n]) = 0 or VerifyDK((dkfj ,i)i∈[n], vkDK,Pf) =

0 for some fj: the union MS = MSct ∪MSdk contains an honest sender
Si, in other words i ∈ MS but i /∈ MSA.

In our definition of verifiable decentralized MCFE, each functional key share
dkf,i is assumed to contain the description of its corresponding function f , and
then a receiver can easily detect if Pf(f) �= 1 in VerifyDK and reject the key
share. Therefore, the condition that Pf(fj) = 1 in the finalization phase of the
verifiability game makes sense. The first winning condition is determined sta-
tistically: the validity of ciphertext verification and functional key verification
guarantees that an adversary could not produce (maliciously generated) cipher-
texts (C�,i)i∈[n],i∈MSA and functional key shares (dkfj ,i)i∈MSA , such that there
exists no tuple of inputs (x1, .., xn) that satisfy all message predicates and are
consistent in the decryption to fj(x1, ..., xn) for all fj . The second winning case
guarantees that if any verification fails, then there is a negligible chance that an
honest sender is accused.

Our definition of verifiability for decentralized MCFE, in particular the first
winning condition, is partially inspired by the definition of verifiability for MIFE
in [5]. The intuition of verifiability in [5] guarantees that no matter how the setup
is done, for (possibly maliciously generated) every n-vector ciphertext C that is
valid to a publicly known verification, there must exist an n-vector plaintext x
such that for (possibly maliciously generated) every functional decryption key
dkf = (dk, f) that is valid to another publicly known verification, the decryp-
tion algorithm on input (C, dkf ) must output f(x). By introducing predicates
for messages to encrypt and a predicate for function to generate a functional
decryption key, our definition additionally validates the content of messages
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within ciphertexts and the content of functions within functional decryption
keys. Furthermore, we formalize the property of malicious sender identification
in a general context where multiple independent clients join the protocol.

To be more detailed, using our syntax for the verifiability game, the definition
of verifiable MIFE in [5] differs in the following points:

– Functional encryption. Multi-input setting is considered instead of multi-
client setting, i.e. in MIFE, there is no restriction that only ciphertexts under
the same label � can decrypt.

– Message and function predicates. In verifiable MIFE, it is fixed from the
initialization that Pm

i (x) = 1 iff x ∈ M for all i ∈ [n] and Pf(f) = 1 iff f ∈ F .
– Malicious Sender Identification: In verifiable MIFE, each ciphertext is

verified separately, and the functional decryption keys dkf to be verified are
given by a central key authority.

– Adversary assumption. In verifiable MIFE, the verifiability game is defined
for any adversary that has unlimited computing power and this adversary is
allowed to choose pp. The advantage of such adversary in the game is 0
(verifiability with no trusted party and perfect soundness).

Our verifiability requires computational soundness and the adversary is not
allowed to create all the setup parameters (pp must be chosen by the chal-
lenger). This relaxation might help us to obtain verifiable MCFE schemes with
practical efficiency and it might be reasonable in practice to have minimal public
parameters that only consist of computational assumptions and random oracle.

If we restrict the functionality of verifiable decentralized MCFE to be the sum
of encrypted inputs, then we can obtain a protocol with the same feature as the
validation for secure aggregation with input validation in [6]. In their ACORN
protocols, each encrypted input is guaranteed to satisfy pre-defined predicates.

Indistinguishability Security. In addition to verifiability, privacy is still an essen-
tial security goal: it is derived from the indistinguishability security notion of
decentralized MCFE [14] as follows.

Definition 9 (IND-Security Game for Verifiable DMCFE). Let us consider
a Verifiable DMCFE scheme over a set of n senders, a class function predicates
Pf, and a class of message predicates Pm. No adversary A should be able to win
the following security game with a non-negligible probability against a challenger
C:

– Initialization: the challenger C runs the setup algorithm pp ←− SetUp(λ) and
the key generation

(
(ski, eki)i∈[n], vkCT, vkDK, pk

) ←− KeyGen() and chooses a

random bit b
$←− {0, 1}. It sends (vkCT, vkDK, pk) to the adversary A.

– Encryption queries QEncrypt(i, x0, x1, �,Pm
i ): A has unlimited and adaptive

access to a Left-or-Right encryption oracle. If Pm
i ∈ Pm and Pm

i (x
0
i ) = Pm

i (x
1
i ) =

1, then A receives the ciphertext C�,i generated by Encrypt(eki, x
b
i , �,P

m
i ). Oth-

erwise, the query is ignored. We note that any further query for the same pair
(�, i) will later be ignored.
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– Functional decryption key queries QDKeyGen(i, f,Pf): A has unlimited and
adaptive access to the senders running DKeyGenShare(ski, �f ,Pf) algorithm
for any input function f of its choice. If Pf ∈ Pf and Pf(f) = 1, it is given
back the functional decryption key share dkf,i. Otherwise, the query is ignored.

– Corruption queries QCorrupt(i): A can make an unlimited number of adaptive
corruption queries on input index i, to get the secret and encryption keys
(ski, eki) of any sender i of its choice.

– Finalize: A provides its guess b′ on the bit b, and this procedure outputs the
result β of the security game, according to the analysis given below.

The output β of the game depends on some conditions, where CS is the set
of corrupted senders (the set of indexes i input to QCorrupt during the whole
game), and HS is the set of honest (non-corrupted) senders. We set the output
to β ←− b′, unless one of the three cases below is true, in which case we set
β

$←− {0, 1}:

1. some QEncrypt(i, x0
i , x

1
i , �)-query has been asked for an index i ∈ CS with

x0
i �= x1

i ;
2. for some label �, an encryption-query QEncrypt(i, x0

i , x
1
i , �) has been asked for

some i ∈ HS, but encryption-queries QEncrypt(j, x0
j , x

1
j , �) have not all been

asked for all j ∈ HS;
3. for some label � and for some function f asked to QDKeyGen, there exists a

pair of vectors (x0 = (x0
i )i,x

1 = (x1
i )i) such that f(x0) �= f(x1), when

– x0
i = x1

i , for all i ∈ CS;
– QEncrypt(i, x0

i , x
1
i , �)-queries have been asked for all i ∈ HS.

We say this verifiable DMCFE is IND-secure with respect to Pf and Pm if for
any adversary A,

AdvindVDMCFE(A) = |P [β = 1|b = 1] − P [β = 1|b = 0]|

is negligible.

In this work, we also use the following weaker notion:

– Static Security (sta − IND): the corruption queries (QCorrupt) are sent before
the initialization, while encryption queries can be sent adaptively during the
game.

5 A Range-Verifiable DMCFE for Inner Product

5.1 Ciphertext Verification

For each encryption label �, the ciphertext of the MCFE scheme in [14] is
[ci] = [u�

� ] · si + [xi] where [u�] ∈ G
2 is the output of a random oracle tak-

ing label � as input, and si is a private encryption key that is chosen uniformly
from Z

2
p, and xi ∈ Zp is the value to encrypt. The ciphertext is in the form
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of a Pedersen commitment, where xi is the committed value and si is a two-
dimensional opening. There is a number of efficient range proof schemes [9,16,17]
for the committed value in the Pedersen commitment:

Rrange([c], l, r; s, x) = 1 ←→ [c] = [u�] · s + [x] ∧ x ∈ [l, r]

The functional key for an inner product with y in the MCFE scheme is
dky = (dk :=

∑n
i=1 yi · si ∈ Z

2
p,y). To avoid encryption under a false encryp-

tion key that is not consistent with the share siyi (and vice versa), our scheme
will require each sender to publish a commitment of his private encryption key
as comek = ([u�

�MCFE,b
] · si)b∈[2] ∈ G

2 during the key generation process, where
([u�

�MCFE,b
])b∈[2] are generated by a random oracle taking initialization labels

(�MCFE,b)b∈[2] as input. This commitment is perfectly binding, which later makes
proofs for ciphertexts and functional keys become proofs of membership. By
using the soundness of these proofs, we can avoid a large security loss from mul-
tiple rewinding-based extractions [24,25] when proving the verifiability of our
inner-product decentralized MCFE scheme.

Now each sender is required to provide a proof for the relation REncrypt:

REncrypt([c], comek, l, r; s, x) = 1 ←→
⎧⎨
⎩

[c] = [u�] · s + [x]
∧ x ∈ [l, r]
∧ comek = ([u�

�MCFE,b
] · s)b∈[2]

The above relation defines a non-trivial language LEncrypt � G
3 for ([c], comek).

On the other hand, a Σ-protocol, denoted by NIZKkey, can be used to prove the
relation Rkey:

Rkey([c], comek; s, x) = 1 ←→
{

[c] = [u�] · s + [x]
∧ comek = ([u�

�MCFE,b
] · s)b∈[2]

One can combine a Σ-protocol and a range proof scheme to obtain a NIZK for
the relation REncrypt. The details are provided by Lemma 1 in the full version
[23].

5.2 Functional Key Share Verification

The MCFE scheme in [14] can be transformed into a decentralized MCFE by
allowing each sender to use a DSUM scheme [15] to encrypt his share of func-
tional key sMCFE,i·yi, so that dky will be revealed as the sum of all senders’ shares.
A requirement is that the DSUM scheme must support multi-label encryption,
that is, only ciphertexts under the same label can be combined to decrypt the
sum of encrypted inputs. For the context of decentralized MCFE, by controlling
the (inner-product function) label in the decryption, an adversary cannot mixes
shares of different functional keys of a sender and matches them with other
senders’ in the DSUM decryption to obtain valid functional keys of non-agreed
functions. As shown in Sect. 3.2, the ODSUM scheme does not have this prop-
erty, since we removed the pseudo-random function in the encryption to obtain
efficiency for the proof of correct encryption.
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From ODSUM to Label-Supporting DSUM. To solve the problem that ODSUM
does not support multi-label encryption, we leverage again the inner-product
MCFE scheme in [14] that has this property. We first give an intuitive construc-
tion for a DSUM scheme that both supports multi-label encryption and preserves
the efficiency for the proof of correct encryption. We call this scheme LDSUM to
differentiate with ODSUM and other DSUM schemes.

– Key Generation: Each client i generates its own secret key skMCFE,i for the
MCFE scheme. He joins the key generation of ODSUM with other senders
to obtain a secret key skODSUM,i and public key ODSUM.pk in a decentral-
ized manner. His secret key is now (skMCFE,i, skODSUM,i). He uses ODSUM to
encrypt skMCFE,i under the keys (skODSUM,i,ODSUM.pk). The resulting cipher-
text, denoted by pki, is public.

– Encryption: Each sender Si uses the MCFE scheme to encrypt his message
xi under the key skMCFE,i and a label �. The resulting ciphertext is denoted
by ci,�.

– Decryption: The receiver first collects all pki and uses ODSUM to decrypt
dk. Then he collects all MCFE ciphertexts ci,� under the same label and uses
the MCFE scheme to decrypt

∑
i xi with the key dk.

The correctness of the above scheme comes from the fact that an MCFE func-
tional key for sum, which is presented by vector 1 = (1, ..., 1), is the sum
of all senders’ MCFE secret keys. We have dk = ODSUM.Decrypt((pki)i) =∑

i skMCFE,i. Therefore, the correctness is implied by the correctness of ODSUM
and MCFE.

A formal description of the LDSUM scheme is given as follows.

– SetUp(λ):

1. It generates a prime-order group G := (G, p, P ) $←− GGen(1λ), and H a
full-domain hash function onto G

2.
2. It generates the setup of One-time Decentralized Sum

ODSUM.SetUp(λ) = (s̃, f, ĝp, gp, Ĝ, F, p) (a class group).
3. The public parameters pp consist of ((G,H), (s̃, f, ĝp, gp, Ĝ, F, p)) and are

implicit arguments to all other algorithms.
– KeyGen():

1. Each sender generates si
$←− Z

2
p for all i ∈ [n].

2. Each sender joins ODSUM.KeyGen() and obtains two instances (ti,b, Ti,b,
ODSUM.pkb)b∈[2].

3. Each sender computes and publishes a global key share for the sum:

dki = (ODSUM.Encrypt(si,b,ODSUM.pkb, ti,b))b∈[2] ∈ G2

4. For each sender, the secret key is ski = (si, ti := (ti,1, ti,2)). The public
key is pk = ((ODSUM.pkb)b∈[2], (dki)i∈[n]).

– Encrypt(ski, xi, �):
1. It parses ski = (si, ti).
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2. It computes [u�] = H(�), and computes [c�,i] = [u�
� si + xi] ∈ G.

3. The ciphertext is C�,i := (�, [c�,i]).
– Decrypt(C�, pk):

1. It parses C� := (C�,i)i∈[n] and pk = ((ODSUM.pkb)b∈[2], (dki)i∈[n]).
2. It recovers the (public) decryption key for the sum:

dk1 ←− (ODSUM.Decrypt((dki,b)i∈[n]))b∈[2] ∈ Z
2
p.

3. Decryption for the sum: from C�,i = (�, [c�,i]), it computes

[α] =
∑

i

[ci] − [u�
� ] · dk1,

and eventually solves the discrete logarithm to extract and return α. For
efficient decryption, we require α to be small enough.

A formal proof of correctness and a security analysis of the above scheme are
provided in the full version [23]. It is also more convenient to leave the relation for
proof of correct generation and the corresponding Σ-protocol in the description
of the verifiable inner-product DMCFE scheme.

5.3 Description of Range-Verifiable Inner-Product DMCFE Scheme

Let n be the number of senders. The message predicate Pm(x) = 1 ←→ x ∈
[0, 2m −1] and the function predicate Pf(y) = 1 ←→ yi ∈ [0, 2m −1] for all i ∈ [n]
are parameterized by a polynomially bounded m.

– SetUp(λ):
1. It generates a pairing group PG := (G1, G2, GT , p) $←− PGGen(1λ), and

Hb a full-domain hash function onto G
2
b for b ∈ [2].

2. It generates initialization labels (�DMCFE,b)b∈[2] := ({0, 1}∗)2.
3. It generates the setup of LDSUM in G2:

LDSUM.pp = LDSUM.SetUp(λ, G2).
4. The public parameters pp consist of (PG, (Hb)b∈[2], LDSUM.pp, �DMCFE)

and are implicit arguments to all other algorithms.
– KeyGen():

1. Each sender joins LDSUM.KeyGen() to obtain (LDSUM.ski, LDSUM.pk).

2. Each sender generates sDMCFE,i
$←− Z

2
p and commits sDMCFE,i as

comDMCFE,i = ([v�
DMCFE,b · sDMCFE,i]1)b∈[2];

where [vDMCFE,b]1 = H1(�DMCFE,b) for b ∈ [2].
3. For each sender, the encryption key is eki = sDMCFE,i and the secret key

is ski = (sDMCFE,i, LDSUM.ski).
4. The verification key for ciphertexts is vkCT = (comDMCFE,i)i∈[n], while for

functional keys it is vkDK = (LDSUM.pk, (comDMCFE,i)i∈[n]).
5. The public key is pk = LDSUM.pk.
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– Encrypt(eki, xi, �,m):
1. It parses eki = sDMCFE,i and computes [c�,i]1 = [u�

� sDMCFE,i + xi]1 where
[u�]1 = H1(�).

2. It re-computes comDMCFE,i and a proof πEncrypt,i for the relation REncrypt

on input (�, [c�,i]1, comDMCFE,i,m;xi, eki).
3. It outputs the ciphertext C�,i = (�, [c�,i]1, πEncrypt,i).

– DKeyGenShare(ski, �y ,m, pk):
1. It parses ski = (sDMCFE,i, LDSUM.ski), �y = (�y ,b)b∈[2] and pk =

LDSUM.pk.
2. It computes dki = (LDSUM.Encrypt(LDSUM.ski, sDMCFE,i,b · yi, �y ,b))b∈[2].
3. It re-computes comDMCFE,i and a proof πDKeyGenShare,i for the relation

RDKeyGenShare on input (LDSUM.pk, comDMCFE,i, dki, �y ; ski).
4. It outputs the functional key share dki,y = (dki, �y , πDKeyGenShare,i).

– VerifyCT((C�,i)i∈[n], vkCT,m):
1. It parses C�,i = (�, [c�,i]1, πEncrypt,i) for i ∈ [n], and vkCT =

(comDMCFE,i)i∈[n].
2. For i ∈ [n]: it verifies the proof πEncrypt,i for the relation REncrypt on input

(�, [c�,i]1, comDMCFE,i,m).
3. It outputs 1 for accepting if πEncrypt,i is valid for all i ∈ [n], otherwise

outputs 0 with the set MS = {i : πEncrypt,i is not valid} for rejecting.
– VerifyDK((dki,y )i∈[n], vkDK):

1. It parses the keys dki,y = (dki, �y , πDKeyGenShare,i) and vkDK = (LDSUM.pk,
(comDMCFE,i)i∈[n]).

2. From the function label �y , it verifies that yi ∈ [0, 2m − 1] for i ∈ [n]. It
stops and outputs 0 if y is not valid.

3. For i ∈ [n]: it verifies πDKeyGenShare,i for the relation RDKeyGenShare on input
(LDSUM.pk, comDMCFE,i, dki, �y ).

4. It outputs 1 for accepting if πDKeyGenShare,i is valid for all i ∈ [n], otherwise
outputs 0 with the set MS = {i : πDKeyGenShare,i is not valid} for rejecting.

– DKeyComb((dki,y )i∈[n], �y , pk):
1. It parses the keys dki,y = (dki, �y , πDKeyGenShare,i) and pk = LDSUM.pk.
2. It outputs [dky ]2 = (LDSUM.Decrypt((dki,b)i∈[n], �y ,b, LDSUM.pk))b∈[2] ∈

G
2
2. In the LDSUM decryption, it is hard to obtain dky ∈ Z

2
p from [dky ]2,

since dky is random over Z
2
p. Therefore, we stop the LDSUM decryption

once obtaining [dky ]2.
– Decrypt(C�, [dky ]2): It gets [α]T =

∑
i∈[n] e([c�,i]1, [yi]2)−e([u�]�1 , [dky ]2), and

eventually solves the discrete logarithm in basis [1]T to return α.

The relation REncrypt that guarantees a correct encryption of a valid input xi

under a committed encryption key sDMCFE,i is defined as in Sect. 5.1. We can
use NIZKEncrypt that is constructed as in Sect. 5.1 to prove this relation. Since
the LDSUM scheme uses the ODSUM as a sub-protocol (see Sect. 5.2) in its key
generation, we express all the terms LDSUM.pk, LDSUM.ski explicitly as follows

– LDSUM.pk = ((TODSUM,i)i∈[n], (dkLDSUM,i)i∈[n]) ∈ G2×n × Gn;
– LDSUM.ski = (sLDSUM,i, tODSUM,i) ∈ Z

2
p × Z

2.
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The relation RDKeyGenShare is defined in Fig. 1 and proved by NIZKDKeyGenShare in
Fig. 2. A remark is that the key sLDSUM,i is verified to be consistent in between
dkLDSUM,i (in class group) and dki (in pairing group), so we need a Σ-protocol
that proves the DL equality between these two groups.

Fig. 1. The relation defines the correct generation of each functional key share

The above scheme is compatible with the definition of verifiable DMCFE in
Sect. 4 by the following theorem.

Theorem 2. The decentralized MCFE for inner product scheme described in
Sect. 5.3 has correctness and verifiability for range predicates in the random ora-
cle, as in Definition 8. More precisely,

AdvverifDMCFE(t, qC , qF ) ≤ qC · max{AdvsndNIZKEncrypt
(t), qF · AdvsndNIZKDKeyGenShare

(t)}
where

– AdvverifDMCFE(t, qc, qF ) is the best advantage of any PPT adversary running in
time t against the verifiability game in Definition 8 with qC corruption queries
and qF functions for the finalization phase;

– AdvsndNIZKEncrypt
(t) is the best advantage of any PPT adversary running in time

t against the soundness of NIZKEncrypt.
– AdvsndNIZKDKeyGenShare

(t) is the best advantage of any PPT adversary running in
time t against the soundness of NIZKDKeyGenShare.

Proof. We start with the correctness and then with the range-verifiability.

Correctness. Given a range predicate for input and for inner product function
[0, 2m − 1], a vector y such that yi ∈ [0, 2m − 1], an n-vector plaintext x such
that xi ∈ [0, 2m − 1]. We consider the following case

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pp ←− SetUp(λ)(
(ski, eki)i∈[n], vkCT, vkDK, pk

) ←− KeyGen()
C�,i ←− Encrypt(eki, xi, �,m)∀i ∈ [n]
dki,y ←− DKeyGenShare(ski, �y ,m)∀i ∈ [n]
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Fig. 2. Note that S = 2λ−2 · s̃ and Dp is a uniform distribution over {0, ..., S}. We let
ρODSUM,i be uniform in [0, 2λpS] to obtain statistical zero-knowledge as in [19].
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Parse C�,i = (�, [c�,i]1, πEncrypt,i) and dki,y = (dki, �y , πDKeyGenShare,i), by the
completeness of NIZKEncrypt and NIZKDKeyGenShare respectively, we have that all
πEncrypt,i and πDKeyGenShare,i are respectively valid. Therefore,

VerifyCT((C�,i)i∈[n], vkCT,m) = VerifyDK((dki,y )i∈[n], vkDK) = 1.

For the decryption, we parse dki,y = (dki, �y , πDKeyGenShare,i) and pk =
LDSUM.pk. By the correctness of LDSUM (Sect. 5.2) and the fact that LDSUM
stops and outputs [dky ,b]2 before computing the discrete logarithm, we have

[dky ]2 = (LDSUM.Decrypt((dki,b)i∈[n], �y ,b, LDSUM.pk))b∈[2]

= ([
∑
i∈[n]

sDMCFE,i,b · yi]2)b∈[2].

Then we have [α]T equal to
∑
i∈[n]

e([c�,i]1, [yi]2) − e([u�]�1 , [dky ]2)

=
∑
i∈[n]

[
(u�

� sDMCFE,i + xi) · yi

]
T

−
⎡
⎣u�

� · (
∑
i∈[n]

sDMCFE,i · yi)

⎤
⎦

T

=

⎡
⎣∑

i∈[n]

xi · yi

⎤
⎦

T

As the inner product
∑

i∈[n] xi · yi is small, computing α can be done efficiently.

Verifiability. We suppose that there exists a PPT adversary A that can win the
verifiability game in Definition 8 with a non-negligible probability. Without loss
of generality, the range predicate for input and inner product function can be
fixed to be [0, 2m − 1].

Except using a trivial attack, A cannot win the game by making other honest
senders accused of sending invalid ciphertexts or invalid functional key shares
(the second winning condition). Indeed, to accuse an honest sender Si, A has
to broadcast some malicious share that makes the proof of correct generation
for Si’s ciphertext or for Si’s functional key share invalid. By the design of
the scheme, the only broadcast elements among senders and the receiver are
the ODSUM public keys (TODSUM,j)j∈[n] (included in LDSUM.pk), which are
not used in the relation REncrypt. For the relation RDKeyGenShare, the condition
involving (TODSUM,j)j∈[n],j �=i is the generation of dkLDSUM,i, which only requires
(TODSUM,j)j∈[n],j �=i to be group elements in class group Ĝ. Therefore, sending an
incorrect group-encoding TODSUM,j can make the generation and then the proof
fail. However, this is a trivial attack and can be excluded, as each TODSUM,j

can be efficiently verified to be in group by the public (and by the verifier in
Fig. 2 also) and the public will already know it is the corrupted sender Sj who
broadcast a malicious share.

We now consider A that wins the game by winning the first condition. We
let (vkCT, vkDK, pk, �, (C�,i)i∈MSA , (dkyj ,i)j,i∈MSA) be the transcript that makes
A win the game. In this case we have

VerifyCT((C�,i)i∈[n], vkCT,m) = VerifyDK((dki,y )i∈[n], vkDK) = 1.
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Suppose that the transcript output by A satisfies the relations RDKeyGenShare

and REncrypt.

– From RDKeyGenShare, (vkCT, vkDK, pk) is generated from KeyGen with secret keys
ski = (sDMCFE,i, (sLDSUM,i, tODSUM,i)) and encryption keys eki = sDMCFE,i. For
each i ∈ [n] and each inner product function yj , dkyj ,i is generated from
DKeyGenShare on input (ski, �y , pk).

– From REncrypt, C�,i is generated from Encrypt on input a message xi ∈ [0, 2m−
1] and an encryption key s′

DMCFE,i for each i ∈ [n].

We model the hash function H1 as a random oracle onto G
2. Then comDMCFE,i

is perfectly binding. From above, we have sDMCFE,i = s′
DMCFE,i. By the proved

correctness of the scheme, the decryption process with input C� = (C�,i)i∈[n] and
[dky ]2 = DKeyComb((dkyj ,i)i∈[n], �y , pk) will output the inner product 〈x,yj〉
for all vectors yj . This contradicts the first winning condition, so A must break
either the soundness of NIZKEncrypt or the soundness of NIZKDKeyGenShare with the
same probability of winning the game.

If A wins the game by breaking the soundness NIZKEncrypt with a non-
negligible probability, an adversary B against the soundness of NIZKEncrypt can
be constructed as follows: B plays as a challenger in the game with A, after A
finalized the game, B guesses an index i from the corrupted set MSA and out-
puts the instance (�, [c�,i]1, comDMCFE,i, π

i
Encrypt,m) from A’s transcript. Given

qC corrupted senders, in the case A wins the game, the probability that B
breaks the soundness of NIZKEncrypt is 1

qC
. Similarly for NIZKDKeyGenShare, given

qF inner-product functions yj to be finalized, B outputs one in n ·qF instances of
((TODSUM,i)i∈[n], dkLDSUM,i, comDMCFE,i, dki,yj) from A, which incurs a security
loss of qC · qF . To finalize, we have

AdvverifDMCFE(A, t, qC , qF ) ≤ qC · max{AdvsndNIZKEncrypt
(t), qF · AdvsndNIZKDKeyGenShare

(t)}.

As AdvsndNIZKEncrypt
(t) and AdvsndNIZKDKeyGenShare

(t) are negligible, and qC and qF are
polynomially bounded, the proof is complete.

5.4 Indistinguishability Security

Theorem 3. The Range-Verifiable DMCFE for Inner Product scheme described
in Sect. 5.3 is sta − IND-secure under the SXDH and HSM assumptions, as in
Definition 9.

The proof is provided in the full version [23].

5.5 Efficiency Analysis

We assume that NIZKEncrypt is instantiated with the Σ-protocol NIZKkey and the
Bulletproof for range [9] (for the relation Rrange in Sect. 5.1). As far as we know,
Bulletproof offers better efficiency for batch verification than other transparent-
setup non-interactive range proof schemes. Since the scalar operation in Zp is
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cheap compared to the group exponentiation, we do not detail them here. Let
n be the number of senders and m be a binary upper bound of a input range
[0, 2m − 1].

– Proving time: NIZKEncrypt costs about 12m+17 exponentiations with O(m)
scalar operations, while NIZKDKeyGenShare costs 16 exponentiations with O(1)
scalar operations.

– Proof size: each πEncrypt,i has the size of 2 log2�m� + 7 group elements and
10 scalars, while each πDKeyGenShare has the size of 8 group elements and 6
scalars.

– Verifying time: NIZKEncrypt costs about a single multi-exponentiation of size
2m + 2 log2�m� + 19 with O(m) scalar operations for each ciphertext, while
NIZKDKeyGenShare costs 24 exponentiations for each key share.

For a practical parameter, one can have n = 210 and m ≤ 16. Then the
costs for functional key share are even more efficient than those for ciphertext.
Compared to the DMCFE in [14], the overhead costs from verifiability for each
sender and each receiver asymptotically depend only on m (range proof costs).
Therefore, the approach of verifying each functional key share, which has the
advantage of identifying up to all n malicious senders in a non-interactive man-
ner, is no more prohibitively expensive in our scheme.

On the other hand, this approach is avoided in [6] for the ACORN-robust
protocol since each key share for sum can not be verified efficiently. Their alter-
native approach requires the help of checking from log(n) neighboring senders,
which incurs more interaction during verification and overhead costs additionally
depending on log(n) (besides range proof costs) for each sender. Their approach
also assumes that at most 1/3 number of senders misbehave.

6 Discussions

6.1 Batch Verification

In our inner-product DMCFE scheme in Sect. 5.3, if a receiver wants to verify
that the combined functional decryption key dky is generated correctly with
respect to a vector y, there is a more efficient way than verifying each sender’s
functional key share. The receiver can directly check the following equalities

e(
n∑

i=1

comDMCFE,i,b · yi, [1]2) = e([v�
DMCFE,b]1, [dkb]2)

for b ∈ [2]. When dky is correct, the above equalities are equivalent to

⎡
⎣∑

i∈[n]

(v�
DMCFE,b · sDMCFE,i) · yi

⎤
⎦

T

=

⎡
⎣v�

DMCFE,b · (
∑
i∈[n]

sDMCFE,i · yi)

⎤
⎦

T
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for b ∈ [2]. If any equality does not hold, then dky is maliciously generated. This
verification has perfect soundness under the condition that (vDMCFE,b)b∈[2] ∈
Z
2×2
p are linearly independent. The verification time is 2n exponentiations and

6 pairings compared to 24n exponentiations for verifying each of n key shares.
In a hybrid use, a receiver can first use this quick verification to see if dky is
correct. If it is not the case, he can continue to verify each key share to identify
malicious senders.

Similarly, for batch verification of n independent ciphertexts under the same
label for a range [0, 2m − 1], NIZKEncrypt when instantiated with Bulletproof
costs about 3 multi-exponentiations of size 3+2n, a multi-exponentiation of size
2m + 3 + n(2 log2�m� + 5), and O(n · m) scalar operations.

6.2 Privacy Improvement with AoNE

The All-or-Nothing Encapsulation AoNE in [15] is an encryption which guar-
antees that a receiver can reveal either all encrypted messages under the same
label of senders by collecting all their ciphertexts, or nothing. By adding a AoNE
encryption layer on DSUM or DMCFE ciphertexts, the leakage from incomplete
ciphertexts can be ruled out. Due to space constraints, we put an heuristic of
applying AoNE to the verifiable DMCFE scheme while still preserving the effi-
ciency of malicious sender identification in the full version [23].

6.3 Perspectives

Natural questions from our work include improving the static security of the
verifiable DMCFE scheme for inner product and allowing dynamic join of new
users as in [15]. Furthermore, obtaining practical overhead costs from verifiability
for function-hiding DMCFE schemes is an interesting direction.
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Abstract. This paper presents the first generic black-box construction
of registered attribute-based encryption (Reg-ABE) via predicate encod-
ing [TCC’14]. The generic scheme is based on k-Lin assumption in the
prime-order bilinear group and implies the following concrete schemes
that improve existing results:

– the first Reg-ABE scheme for span program in the prime-order
group; prior work uses composite-order group;

– the first Reg-ABE scheme for zero inner-product predicate from k-
Lin assumption; prior work relies on generic group model (GGM);

– the first Reg-ABE scheme for arithmetic branching program (ABP)
which has not been achieved previously.

Technically, we follow the blueprint of Hohenberger et al. [EURO-
CRYPT’23] but start from the prime-order dual-system ABE by Chen
et al. [EUROCRYPT’15], which transforms a predicate encoding into
an ABE. The proof follows the dual-system method in the context of
Reg-ABE: we conceptually consider helper keys as secret keys; further-
more, malicious public keys are handled via pairing-based quasi-adaptive
non-interactive zero-knowledge argument by Kiltz and Wee [EURO-
CRYPT’15].

Keywords: Attribute-based encryption · Black-box construction ·
Dual-system method · Key escrow problem · Prime-order bilinear group

1 Introduction

Registered attribute-based encryption (Reg-ABE) [23] is an emerging primitive
that extends attribute-based encryption (ABE) [21,33] to avoid key escrow issue.
Conceptually, this is an extension of registration-based encryption (RBE) [13].
A Reg-ABE for predicate P : X × Y → {0, 1} is established by publishing a
common reference string crs. A user can generate his/her own key pair (pk, sk)
locally and register (pk, y) for some y ∈ Y into the system. The registration is
carried out by the curator in a public and deterministic manner, and will produce
a master public key mpk for encryption as traditional ABE. The user can decrypt
a ciphertext for x ∈ X using his/her sk when P (x, y) = 1 along with so-called
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helper key hsk obtained from the curator during registration phase. Furthermore,
each registration might trigger an update to all users’ helper keys.

Existing Reg-ABE can be classified into two classes: (1) Early work [6,13,
14,20] uses non-black-box technique based on garbling scheme [4,37] or indistin-
guishable obfuscation (iO) [11,25]; while (2) recent work [7,9,16,23] uses black-
box technique based on concrete assumptions in bilinear group or integral lattice.

This work explores a systematic way to build pairing-based Reg-ABE in a
black-box fashion: we want to cover a large set of functionalities in a unified
framework. All prior work [9,16,23] focused on a single specific predicate. See
Fig. 1 for more details.

1.1 Results

In this work, we propose a generic Reg-ABE scheme via predicate encod-
ing [5,36]. It works with prime-order bilinear group and the security is based
on the well-known k-Lin assumption for k ≥ 1. Given our knowledge of existing
predicate encoding [5,36], this implies:

– the first Reg-ABE scheme for span program in the prime-order group; this
improves the result of [23] which supports the same predicate in composite-
order groups;

– the first Reg-ABE scheme for zero inner-product predicate from standard
assumption (k-Lin); this partially resolved the open problem posted in [9]:
the RIPE in [9] relies on generic group model (GGM) but achieves attribute-
hiding; note that, even without attribute-hiding, the RIPE [9] does not seem
to get rid of GGM;

– the first Reg-ABE scheme for arithmetic branching program (ABP) that goes
beyond span program.

See Fig. 1 for more details. We also highlight more implications thanks to the
result in [2] and more subsequent work on predicate encodings: we are able to
come up with different variants of all Reg-ABE schemes mentioned above, such
as dual of policy (i.e., “key-policy vs ciphertext-policy” transformation) and
composition of policies (i.e., disjunction, conjunction and negation of predicates).

Strategy. We follow the blueprint by [23] and focus on a weaker primitive called
slotted Reg-ABE. A slotted Reg-ABE scheme for L ∈ N slots (L-slot Reg-ABE
for short) is similar to the standard Reg-ABE except that the curator is replaced
by an aggregator who simply collects all L public keys and generate mpk and
hsk’s once for all. Here, the aggregator is stateless while the curator is stateful
which allows us to register the L public keys in a one-by-one fashion. By this,
we do not worry about update operations for now which can be handled by so-
called “powers-of-two” approach by [23]. In particular, [23] shows that one can
use the approach to generically transform any slotted Reg-ABE to a (full-fledged)
Reg-ABE while preserving basic features such as predicates, assumptions, etc.
In this work, we give a pairing-based slotted Reg-ABE via predicate encodings



68 Z. Zhu et al.

Fig. 1. Summary of black-box construction of pairing-based Reg-ABE. In the column
assumption, “composite” and “prime” indicate composite- and prime-order bilinear
groups respectively; “static” means a specific set of static assumptions, “GGM” stands
for generic group model; for k-Lin assumption, we allow k ≥ 1. We use � to highlight
the advantage of our scheme over prior ones supporting the same predicate.
† [9] also achieves attribute-hiding while ours in the full paper does not; we note that,
without considering attribute-hiding, their scheme does not seem to be provably secure
under standard assumption.

from k-Lin assumption. We provide a detailed technical overview of our slotted
Reg-ABE scheme in the next two subsections.

Remarks. Before we proceed, we remark that our Reg-ABE inherits several
restrictions from [23], compared with prior RBE [6,7,13,14,20]. We highlight
two of them:

– Our Reg-ABE only accommodates bounded number of users, the size of crs
depends on the number of users. Note that, almost all known RBE schemes
supporting unbounded number of users [6,13,14,20] require non-black-box
techniques; the only exception is the recent LWE-based scheme by Döttling
et al. [7].

– Our Reg-ABE requires an explicit verification of public key before registra-
tion, only those “valid” public keys can be registered to the system, see
Sect. 2.2. This is introduced by [23] to handle malicious public keys, see
Sect. 1.3, paragraph Handle Malicious pk; however, this is not needed in
prior RBE schemes.

It is an interesting open problem to explore whether these restrictions or relax-
ations are necessary to support expressive predicates. See Sect. 1.4 for more
discussions and open problems.

1.2 Overview of Slotted ABE

In this overview, we explain our construction of slotted Reg-ABE from predicate
encodings. A L-slotted Reg-ABE for P : X × Y → {0, 1} is governed by a
crs; given (pk1, y1), . . . , (pkL, yL) and crs, an aggregator can generate a master
public key mpk for encryption. For correctness, we require that one can use ski,
the corresponding secret key of pki, to decrypt when P (x, yi) = 1 where x is
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associated with the ciphertext. For security, when ski is leaked, we require that
P (x, yi) = 0; when ski is secret, it is allowed to have P (x, yi) = 1; here we neglect
the case where pki is malicious for now and handle this case later on.

Starting Point: Predicate Encoding and Dual-System ABE. Let lower-
case boldface denote row vectors and upper-case boldface denote matrices. We
first review the notion of predicate encoding and dual-system ABE [5,36] with
the notation in [1,2]. A predicate P : X×Y → {0, 1} has an (n, nc, nk)-predicate
encoding (PE) if: For all x ∈ X, y ∈ Y , one can efficiently and deterministically
find

Cx ∈ Z
n×nc
p , Ky ∈ Z

n×nk
p , ay ∈ Z

1×nk
p , dx,y ∈ Z

nc+nk
p

that forms Mx,y =
(

ay 0nc

Ky Cx

)
such that

– when P (x, y) = 1, we have Mx,yd�
x,y = e�

1 ;
– when P (x, y) = 0, we have {x, y, α, (α‖w)Mx,y} ≈s {x, y, α, (0‖w)Mx,y}

where w ← Z
n
p .

In the literature, they are called α-reconstruction and α-privacy which are used
to ensure correctness and security of ABE, respectively. (For the reader who is
familiar with the notations in [5], Cx,Ky,ay correspond to sE, rE, kE, and dx,y

corresponds to sD, rD.) Let G be a finite cyclic group with generator g and denote
[x] = gx, we will start from the following one-key ABE scheme:

mpk : [w, α]; (1)
ctx : [s, swCx], [sα] · m;
sky : αay + wKy.

Decryption relies on the following equation:

(s · (αay + wKy)‖swCx)d�
x,y = (sα‖sw)Mx,yd�

x,y = (sα‖sw)e�
1 = sα (2)

where the second equation uses the α-reconstruction of PE; security follows
from the α-privacy of PE. The actual proof needs a composite-order group with
subgroup decision assumption; we omit the details.

Zero-Slot Scheme. The left-hand side of Eq. (2) immediately inspires the fol-
lowing (oversimplified) Reg-ABE scheme where we can embed y to mpk so that
an encryption under x reveals m if and only P (x, y) = 1. We call this zero-slot
scheme since there is no user to register at all.

crs : [w, α]; (3)
mpky : [αay + wKy,w, α];
ctx : [sαay + swKy, swCx], [sα] · m.
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Observe that the structure of ctx is quite similar to the left-hand side of (2);
conceptually, we embed the decryption procedure (not just the functional key sky

in scheme (1)) into mpk. Decryption uses the same equation as in scheme (1),
i.e., Eq. (2). The security follows from the α-privacy as well as DDH assumption.
In particular, the proof works in two steps: DDH assumption allows us to change
the ciphertext ctx to

[α̃ay + w̃Ky, w̃Cx], [α̃] · m
where α̃, w̃ are uniform and independent of α,w; then privacy applies w.r.t. α̃
and w̃. The proof is quite simple due to the fact that we actually work in the
one-key setting.

From Zero to One. We proceed to modify the zero-slot scheme to allow user
registration. As [23], the user will generate an ElGamal key pair: pk = [u] and
sk = u where u is uniformly sampled by the user himself/herself. To register this
user, we simply replace α with α + u in mpky and ctx. This means that, in ctx,
we actually encrypt [sα] by ElGamal encryption under pk; the user who holds
sk = u can recover the ciphertext in zero-slot scheme (3). In more details, the
one-slot scheme is

crs : [w, α]; (4)
pk, sk : [u], u;

mpkpk,y : [(α + u)ay + wKy,w, α];
ctx : [s, s(α + u)ay + swKy, swCx], [sα] · m.

Here we add [s] for correctness. Clearly, one can publicly and deterministically
compute mpkpk,y from crs, pk and y; this is an important feature for Reg-ABE.
For security, we consider two cases:

– when u is leaked, we require that P (x, y) = 0, the security reduced to that
for zero-slot scheme (3);

– when u is secret, we allow that P (x, y) = 1, the security relies on the fact that
[sα] is hidden by [su] which is basically the security of ElGamal encryption.

A caveat is that we should also allow pk to be maliciously generated by the
adversary; this is a stronger attack than the first case and cannot be captured
by the current scheme; we will defer the solution to the end of this overview.
Before we proceed, we mention that an alternative way to implement our strategy
is to embed [u] as follows:

mpkpk,y : [αay + wKy,w, α + u];
ctx : [s, sαay + swKy, swCx], [s(α + u)] · m.

They are basically equivalent. We will work with (4) that makes the follow-up
discussion simpler.
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From One to Many: Observation. We follow the strategy of [9,23] to build
L-slot scheme based on one-slot scheme that allows us to register (pk1, y1),
. . . , (pkL, yL) for a priori known L ∈ N: we generate L parallel one-slot schemes,
register (pkj , yj) to j-th instance of one-slot scheme (or slot j for short) and
“add” the corresponding mpkpkj ,yj

and ciphertext in a “component-wise” way.
In particular, the scheme is as follows:

crs : [wj , αj ],∀j; (5)
pki : [ui];
ski : ui;

mpk : [
∑

j((αj + uj)ayj
+ wjKyj

),
∑

j wj ,
∑

j αj ];
ctx : [s, s

∑
j((αj + uj)ayj

+ wjKyj
), s

∑
j wjCx], [s

∑
j αj ] · m;

where j ranges over 1, . . . , L and those terms with subscript j correspond to slot
j. We encounter the same issue as in [23]: even with ski = ui and P (x, yi) = 1 for
some i, we still cannot decrypt successfully as before due to the “add” operation
and the solution is to issue an extra helper key hski for each slot i ∈ [L]. Omitting
the term with message m and fixing i ∈ [L], the ciphertext is the “sum” of two
parts:

[s, s((αi + ui)ayi
+ wiKyi

), swiCx], // local part;
[s, s

∑
j �=i((αj + uj)ayj

+ wjKyj
), s

∑
j �=i wjCx], // mixed part.

The local part corresponds to one-slot scheme for slot i and can be handled via
ski as before, i.e., scheme (4); the mixed part involves terms from all other slots.
The helper key hski is designed to remove the mixed part.

From One to Many: Helper Keys via Pairing. A naive solution is to set

hski :
∑

j �=i((αj + uj)ayj
+ wjKyj

),
∑

j �=i wj .

This definitely works but may suffer from “mix-and-match” attack. As an exam-
ple, for L = 3, we have:

hsk2 − hsk1 + hsk3 = 2((α1 + u1)ay1 + w1Ky1 ,w1)

this allows user in slot 1 to recover α1 since u1 is known to this user and
hsk1, hsk2, hsk3 should be public. Therefore, the scheme is entirely broken. We fix
the issue using the idea of achieving collusion resistance in ABE: we introduce
different random coins into different hski which avoids the above attack; this
requires bilinear group. Let G1 = 〈g1〉,G2 = 〈g2〉 be finite cyclic source groups
of bilinear maps e and GT be the target group. Write [x]1 = gx

1 , [x]2 = gx
2 . We

embed mpk,ctx in G1 and set hski over G2 with random coin ri:

hski : [ri, ri

∑
j �=i((αj + uj)ayj

+ wjKyj
), ri

∑
j �=i wj ]2.
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This is analogous to the secret key in ABE and helps to recover the local part of
ctx in the same form as before but over GT with random coin sri instead of s:

[sri((αi + ui)ayi
+ wiKyi

), sriwiCx]T

Then, decryption of one-slot scheme gives [sriαi]T when P (x, yi) = 1. However,
one cannot use this to carry message m: since αi and ri are fresh for each i ∈ [L],
we have to include terms [sr1α1]T · m, . . . , [srLαL]T · m in ctx for correctness,
this further requires us to publish [r1α1]T , . . . , [rLαL]T in mpk, i.e., we have
|mpk| = O(L), which is disallowed in Reg-ABE. A common trick in the context
of ABE is sufficient to fix this: we will include term [sα]T · m in ctx as usual
and connect αi and α via term [riαi + α]2 in hski. By this, we do not make any
change to ct and user in slot i can compute

e([s]1, [riαi + α]2) = [sriαi]T · [sα]T

which recovers m given [sriαi]T we computed before and [sα]T · m in ctx.

Summary. Putting all these together and writing αj as vj , we have the following
scheme:

crs = [α]T , [vj ,wj ]1, ∀j; (6)
[ri, rivj , riwj , rivi + α]2, ∀i �= j;

pki = [ui]1, [uirj ]2, ∀j �= i;
ski = ui;

mpk = [
∑

j((vj + uj)ayj
+ wjKyj

),
∑

j wj ]1, [α]T ;
hski = [ri, ri

∑
j �=i((vj + uj)ayj

+ wjKyj
), ri

∑
j �=i wj , rivi + α]2;

ctx = [s, s
∑

j((vj + uj)ayj
+ wjKyj

), s
∑

j wjCx]1, [sα]T · m.

Here crs is constructed so that one can use it to generate mpk and hsk1, . . . , hskL

in a public way. To prove the security, we will need to embed (6) into composite-
order group. We decide not to dive into details in the composite-order group and
focus on prime-order scheme where we will handle malicious public key. Before
that, we quickly mention the connect to broadcast encryption (BE) by Gentry
and Waters [15]: neglecting all terms involving w1, u1, . . . ,wL, uL, the first row
of crs is the master public key of BE, the second row of crs gives the secret keys
for users 1, . . . , L and ctx is the BE ciphertext for set [L]. In another words,
by introducing term [riαi + α]2 in hski and crs in the previous paragraph, we
actually employ Gentry-Waters BE [15] to reduce the size of ctx and mpk from
O(L) to O(1). Two recent results formally clarify the connection, see Sect. 1.4,
paragraph Concurrent Work.

1.3 Final Slotted Reg-ABE in Prime-Order Group

Our final scheme is based on the prime-order version of scheme (6). We first
explain how to get this prime-order scheme and then reach the final slotted
Reg-ABE scheme with an additional concern on malicious public keys.
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Prime-Order Scheme. Applying the “composite-order-to-prime-order” trans-
formation in [5], we can get our scheme in the prime-order group. In more
details, discarding all subscripts i and j, we do the following substitution with
A ∈ Z

k×(k+1)
p and B ∈ Z

(k+1)×k
p :

α ∈ ZN , v ∈ ZN , w ∈ Z
n
N �→ k ∈ Z

k+1
p , V ∈ Z

(k+1)×(k+1)
p , W ∈ Z

(k+1)×(k+1)n
p ;

and

[s]1 ∈ G1, [r]2 ∈ G2, [α]2 ∈ G2 �→ [sA]1 ∈ G
1×(k+1)
1 , [Br�]2 ∈ G

k+1
2 , [k]2 ∈ G

k+1
2

[α]T ∈ GT , [sα]T ∈ GT �→ [Ak�]T ∈ G
k
T , [sAk�]T ∈ GT

[v]1 ∈ G1, [w]1 ∈ G
n
1 �→ [AV]1 ∈ G

k×(k+1)
1 , [AW]1 ∈ G

k×(k+1)n
1

[sv]1 ∈ G1, [sw]1 ∈ G
n
1 �→ [sAV]1 ∈ G

1×(k+1)
1 , [sAW]1 ∈ G

1×(k+1)n
1

[rv]2 ∈ G2, [rw]2 ∈ G
n
2 �→ [VBr�]2 ∈ G

k+1
2 , [W(In ⊗ Br�)]2 ∈ G

(k+1)×n
2

Note that u ∈ ZN is translated to U ∈ Z
(k+1)×(k+1)
p as v ∈ ZN and each entry

in w is actually treated as v too1. The proof is analogous to the dual-system
proof for ABE [5,35,36]:

1. we switch [sA]1 to a random vector [c]1 over G1;
2. for j = 1, . . . , L, we switch [Br�

j ]2 to a random vector [d�
j ]2 over G2 and

make use of the entropy in Uj ,Vj ,Wj to argue the “partial” secrecy of k in
term VjBr�

j + k�.

Recall that we use the idea of collusion resistance to build hsk1, . . . , hskL. There-
fore, in the proof, we conceptually view hsk1, . . . , hskL as secret keys in ABE
and exactly follow the dual-system method. Of course, the actual proof makes
changes in crs instead of hsk1, . . . , hskL since aggregation is public and the adver-
sary with crs along with a series of public keys can compute them by itself, see
Sect. 2 for formal definition.

Handle Malicious pk. We finally mention a subtlety in the proof. Recall that,
in Sect. 1.2, we neglect the case where pk is malicious. In this case, the first step
mentioned in the proof overview can not go through since the simulator does not
know sk = U. In particular, the simulator takes [A, t]1 as input where t = sA
or t = c and need to simulate the term [sAU]1 (or [cU]1) appeared in the
challenge ciphertext where [AU]1 is the public key registered by the adversary;

1 Let w = (w1, . . . , wn). With the same substitution wi ∈ ZN �→ Wi ∈ Z
(k+1)×(k+1)
p

and
[swi]1 �→ [sAWi]1, [rwi]2 �→ [WiBr�]2,

we have

[sw]1 = [sw1‖ . . . ‖swn]1 = [sAW1‖ · · · ‖sAWn]1 = [sA(W1‖ · · · ‖Wn)]1

[rw]2 = [rw1‖ . . . ‖rwn]2 = [W1Br�‖ · · · ‖WnBr�]2 = [(W1‖ · · · ‖Wn)(In ⊗ Br�)]2

where we obtain W = (W1‖ · · · ‖Wn) ∈ Z
(k+1)×(k+1)n
p .
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clearly, this is infeasible without U. Our solution is to allow the simulator to
“program” [sA]1 (or [c]1) into crs so that the user is forced to compute [sAU]1
(or [cU]1) for us when the user submitted pk. In particular, we make two changes
to the prime-order scheme.

1. We introduce an extra term [R]1 where R ← Z
(k+2)×(k+1)
p to crs; user’s public

key also includes an extra term [RU]1. In the reduction, we program

R = R̃
(

t
Ik+1

)
, R̃ ← Z

(k+2)×(k+2)
p

In both cases, R̃ ensures that R is random. Receiving pk = [T = AU,Q =
RU]1, we use [e1R̃−1Q]1 = [tU]1 to simulate the ciphertext, which is either
[sAU]1 or [cU]1 as required.

2. Since the adversary can give an inconsistent pk where T = AU and Q = RU′

with U �= U′. We additionally ask for a proof π showing
(
T
Q

)
∈ span

(
A
R

)

This ensures U = U′. One can generate the proof via any non-interactive
zero-knowledge proof/argument (NIZK) for sufficiently large language such
as Groth-Sahai Proof [22]. In this work, we choose to employ quasi-adaptive
NIZK (QA-NIZK) for linear space from pairing [26] due to the fact that [A]1
and [R]1 (i.e., the language) are determined at a quite early stage. We mention
that we need a stronger unbounded simulation soundness [19,31] where the
adversary is given A and R “in the clear”; we leave more details to Sect. 2.4.

However, the additional term [Q]1 leaks almost all information of U, which is
crucial for the security when the user is honest. To fix the issue, we employ a
wider A and R along with a higher U so that given AU,RU, we still have left-
over entropy in cU for the security; see Sect. 3.4 for more details. We finally note
that our method is indeed inspired by the idea of [23] in the composite-order
group, however, this is not derived from theirs via a composite-order-to-prime-
order transformation.

1.4 Discussions

On Hohenberger et al.’s Reg-ABE [23]. The recent work [23] showed a
registered CP-ABE for span program and mentioned that “... if we ignore the
slot-specific ciphertext component, then the structure of the ciphertexts in our
scheme coincides with those in the ciphertext policy ABE scheme of Lewko et
al. [30].” But the connection with predicate encoding is not as straightforward
as stated. For S ⊆ [n], let us define x = (x1, . . . , xn) ∈ {0, 1}n where xi = 1 for
i ∈ S and xi = 0 for i /∈ S. [23] uses the following unusual structure to encode
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S in mpk and ct (Note that we are not showing mpk and ct accurately, there are
some minor differences.):

mpk : {(1 − xi)wi}i∈[n] and ct : {αi + (1 − xi)wisi, si}i∈[n]

where w = (w1, . . . , wn) is the public parameter and αi are secret sharings of
a secret value according to the policy that associated with ct. The key point is
the fact that term αi + (1 − xi)wisi in ct encodes both the policy (via αi’s) and
set (i.e., xi); this is not the case in predicate encodings where we encode them
separately (due to the syntax of standard ABE). However, a simple calculation
shows that

αi + (1 − xi)wisi = (αi + wisi) − (xiwisi), ∀i ∈ [n] (7)

namely we can easily “unpack” ct as

ct′ : si, {αi + wisi}i∈[n], {xiwisi}i∈[n]

where the two terms encode policy (via αi) and set separately; in fact, they
are exactly the encoding for CP-ABE presented in [5, Appendix A.5] and equa-
tion (7) is actually the first step of decryption. This clarifies the connection
between ours and [23]; this also suggests a possibility of optimizing the effi-
ciency. Roughly, this requires some kind of pre-processing property for predicate
encoding and we leave this as a future work.

Towards (Weak) Attribute-Hiding. As we have mentioned in Sect. 1.1, the
RIPE proposed in [9] achieves attribute-hiding which roughly means that x
associated with the ciphertext is also hidden from the adversary. Given the notion
of attribute-hiding predicate encoding formulated in [5], it is expected that our
scheme can also support weak attribute-hiding (as the dual-system ABE via
predicate encoding in [5]). However, we argue that this is not straight-forward
as expected: in order to remove the mixed part from the ciphertext using helper
key, the decryption procedure needs to know x to get Cx, see scheme (6) and
Sect. 3.1; therefore, even with attribute-hiding predicate encoding, our Reg-ABE
does not achieve (weak) attribute-hiding. It is still open to get (weak) attribute-
hiding under standard assumption such as k-Lin; note that the Reg-IPE by [9]
indeed achieves attribute-hiding but in the generic group model.

More Expressive Reg-ABE from Pair Encoding. Pair Encoding proposed
by Attrapadung [3] is a more powerful tool to build ABE; for instance, this allows
us to support multi-use of attribute and uniform computation such as DFA.
However, our scheme can not work with pair encoding in a straight-forward way.
We provide a quick discussion: Compared with the predicate encoding whose
security is information-theoretical, the security of pair encoding (especially, for
those predicates we just mentioned) is defined computationally when encodings
w.r.t. ciphertext and key (analogous to Cx and Ky) are encoded over G1 and G2,
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respectively. However, in the context of our Reg-ABE scheme, we encode both of
them over G1 and thus all existing pair encodings with computational security
should be revised. We leave this as a future work to adapt the notion of pair
encoding and build Reg-ABE from this. Furthermore, we point out that the use
of pair encoding may introduce strong assumptions such as q-type assumption.
To obtain those functionalities and properties we mentioned at the beginning
under standard assumptions, more work will be needed to adapt specialized
solutions for ABE such as [17,18,29,32] to the context of Reg-ABE.

Concurrent Work. As an independent work, Freitag et al. [10] proposed a
Reg-ABE scheme for arbitrary circuit families from witness encryption (WE) [12]
and newly proposed function-binding hash function. Given the WE in [34], the
scheme can be based on (evasive) LWE. In contract to our work and the pairing-
based construction in [23], this construction is more like iO-based Reg-ABE
in [23]: it enjoys transparent setup, supports unbounded number of users. How-
ever, it only achieves a weaker notion of selective-policy security without cor-
ruption in the standard model; the restriction on corruption can be removed in
the random oracle model. Furthermore, this work also pointed out that Reg-
ABE implies flexible/distributed broadcast encryption. Applying this observa-
tion, we mention that our Reg-ABE scheme implies the recent distributed broad-
cast encryption based on k-Lin assumption [28]; their another construction based
on DBHE assumption [28] does not seem to be relevant to our Reg-ABE scheme.

Organization. Our paper is organized as follows: We review some background
knowledge in Sect. 2. Section 3 presents our slotted Reg-ABE via predicate encod-
ing, this readily implies full-fledged Reg-ABE. We show the first slotted Reg-ABE
for ABP in Sect. 4 and more concrete instantiations in the full paper.

2 Preliminaries

Notations. For a finite set S, we use s ← S to denote the procedure of sampling
s from S uniformly. For an ordered list or array L, we use |L| to denote its size
(i.e., the number of entries in the list) and use L[i] to refer to its i-th entry.
When i > |L| or i < 1, we define L[i] = ⊥; when we append x to L, we
set L[|L| + 1] = x. We use � as wildcard. Let ≈s (resp. ≈c) stand for two
distributions being statistically (resp. computationally) indistinguishable. We
use lower-case boldface to denote row vectors (e.g., a) and upper-case boldface
to denote matrices (e.g. M). We let e1 = (1, 0, . . . , 0) of proper dimension (which
is clear from the context) and use “‖” to denote vector or matrix concatenation
(e.g. (A‖B)).
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Kronecker Product. Let F be a field. The Kronecker Product for matrices
A = (ai,j) ∈ F

�×m and B ∈ F
n×p is

A ⊗ B = (ai,jB) =

⎛
⎜⎝

a1,1B · · · a1,mB
...

...
a�,1B . . . a�,mB

⎞
⎟⎠ ∈ F

�n×mp. (8)

For matrices A,B,C,D of proper sizes, we have (A⊗B)(C⊗D) = AC⊗BD.

2.1 Prime-Order Bilinear Groups

Assume an efficient algorithm G that takes as input a security parameter 1λ

and outputs G := (p,G1,G2,GT , e). Here G1, G2 and GT are cyclic groups of
prime order p, e : G1 × G2 → GT is a non-degenerate bilinear map, and all
group operations and bilinear map are efficient. Let G1 = 〈g1〉, G2 = 〈g2〉 and
gT = e(g1, g2), we employ implicit representation of group elements: for a matrix
M = (mij) over Zp, define [M]s = gMs = (gmij

s ) for all s ∈ {1, 2, T}; given
[A]1, [B]2, we write e([A]1, [B]2) = [AB]T . We review matrix Diffie-Hellman
(MDDH) assumption [8]; it is shown that it is implied by k-Lin [8].

Assumption 1 ((k, �, d)-MDDH over Gs, s ∈ {1, 2}). Let k, �, d ∈ N with
k < �. We say that the (k, �, d)-MDDH assumption holds in Gs if for all PPT
adversaries A, the following advantage function is negligible in λ.

AdvMDDH
A,s,k,�,d(λ) =

∣∣Pr[A(G, [M]s, [SM]s) = 1] − Pr[A(G, [M]s, [U]s) = 1]
∣∣

where G := (p,G1,G2,GT , e) ← G(1λ), M ← Z
k×�
p , S ← Z

d×k
p and U ← Z

d×�
p .

2.2 Slotted Registered Attribute-Based Encryption

We review the notion of slotted registered attribute-based encryption (Reg-ABE)
adapted from [23]. The formal definition of Reg-ABE can be found in the full
paper along with a brief overview of “slotted Reg-ABE =⇒ Reg-ABE”.

Algorithms. A slotted registered attribute-based encryption (Reg-ABE) for
predicate P : X × Y → {0, 1} consists of six efficient algorithms:

– Setup(1λ, P, 1L) → crs: It takes as input the security parameter 1λ, description
of predicate P and the upper bound 1L of the number of slots, outputs a
common reference string crs.

– Gen(crs, i) → (pki, ski): It takes as input crs and slot number i ∈ [L], outputs
key pair (pki, ski).

– Ver(crs, i, pki) → 0/1: It takes as input crs, i, pki and outputs a bit indicating
whether pki is valid.

– Agg(crs, (pki, yi)i∈[L]) → (mpk, (hskj)j∈[L]): It takes as input crs and a series
of pki with yi ∈ Y for all i ∈ [L], outputs master public key mpk and a series
of helper keys hskj for all j ∈ [L]. This algorithm is deterministic.
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– Enc(mpk, x,m) → ct: It takes as input mpk, x ∈ X and message m, outputs a
ciphertext ct.

– Dec(sk, hsk, ct) → m/⊥: It takes as input sk, hsk, ct and outputs m or a special
symbol ⊥.

For Setup, input P has different meanings for different predicates: for span pro-
gram, it indicates the number of attributes, see Sect. 4 and the full paper; for
inner-product predicates, it indicates the dimension of vectors, see the full paper.
We also note that we use two different indices i and j for pki and hskj , respec-
tively; both of them range from 1 to L but this convention will simplify the
exposition.

Completeness. For all λ,L ∈ N, all P , and all i ∈ [L], we have

Pr
[
Ver(crs, i, pki) = 1

∣∣crs ← Setup(1λ, P, 1L); (pki, ski) ← Gen(crs, i)
]

= 1.

Correctness. For all λ,L ∈ N, all P , all i∗ ∈ [L], all crs ← Setup(1λ, P, 1L),
all (pki∗ , ski∗) ← Gen(crs, i∗), all {pki}i∈[L]\{i∗} such that Ver(crs, i, pki) = 1, all
x ∈ X and y1, . . . , yL ∈ Y such that P (x, yi∗) = 1, and all m, we have

Pr
[
Dec(ski∗ , hski∗ , ct) = m

∣∣∣∣ (mpk, (hskj)j∈[L]) ← Agg(crs, (pki, yi)i∈[L]);
ct ← Enc(mpk, x,m)

]
= 1.

Compactness. For all λ,L ∈ N, all P , and all i ∈ [L], we have

|mpk| = poly(λ, P, log L) and |hski| = poly(λ, P, log L).

Security. For all stateful adversary A, the advantage

Pr

⎡
⎢⎢⎣b = b′

∣∣∣∣∣∣∣∣

L ← A(1λ); crs ← Setup(1λ, P, 1L)
(pk∗

i , y
∗
i )i∈[L], x

∗,m∗
0,m

∗
1 ← AOGen(·),OCor(·)(crs)

(mpk, (hskj)j∈[L]) ← Agg(crs, (pk∗
i , y

∗
i )i∈[L])

b ← {0, 1}, ct∗ ← Enc(mpk, x∗,m∗
b); b′ ← A(ct∗)

⎤
⎥⎥⎦− 1

2

is negligible in λ, where the oracles work as follows with initial setting C = ∅
and Di = ∅ for all i ∈ [L]:

– OGen(i): run (pk, sk) ← Gen(crs, i), set Di[pk] = sk and return pk.
– OCor(i, pk): return Di[pk] and update C = C ∪ {(i, pk)}.

and, for all i ∈ [L], we require that

Di[pk∗
i ] = ⊥ =⇒ Ver(crs, i, pk∗

i ) = 1,
(i, pk∗

i ) ∈ C ∨ Di[pk∗
i ] = ⊥ =⇒ P (x∗, y∗

i ) = 0.

We use AdvsReg-ABE
A (λ) to denote the advantage function. Note that [23] showed

that there is no need to give mpk and hsk1, . . . , hskL to A explicitly and to
consider post-challenge queries.
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2.3 Predicate Encodings

We review the notion of predicate encoding [5,36]; for simplicity, we use the
formulation in [1,2]. A predicate P : X × Y → {0, 1} has a (n, nc, nk)-predicate
encoding if: For all x ∈ X, y ∈ Y , there exist

Cx ∈ Z
n×nc
p , Ky ∈ Z

n×nk
p , ay ∈ Z

1×nk
p , dx,y ∈ Z

1×(nk+nc)
p

such that, letting

Mx,y =
(
ay 0nc

Ky Cx

)
∈ Z

(1+n)×(nk+nc)
p

we have

– correctness: for x ∈ X and y ∈ Y such that P (x, y) = 1:

Mx,yd�
x,y = e�

1 ;

– security: for x ∈ X and y ∈ Y such that P (x, y) = 0 and for all α ∈ Zp:

{x, y, α, (α‖w)Mx,y} ≈s {x, y, α, (0‖w)Mx,y}, w ← Z
n
p .

Also, we require that (1) given P , one can efficiently determine n, nc, nk; (2)
given x, one can efficiently compute Cx; (3) given y, one can efficiently compute
Ky and ay; (4) given both x and y, one can efficiently compute dx,y.

2.4 Quasi-Adaptive Non-interactive Zero-Knowledge Argument

We review the notion of quasi-adaptive non-interactive zero-knowledge argument
(QA-NIZK) tailored for linear space over group [26,27]. In this paper, we require
a stronger unbounded simulation soundness in [19,31].

Algorithms. A Quasi-adaptive Non-interactive Zero-knowledge Argument
(QA-NIZK) for linear space over bilinear group G [26,27] consists of four efficient
algorithms:

– LGen(1λ, 1n, 1m, 1�, [M]1) → (crs, td): It takes as input the security parameter
1λ, language parameter 1n, 1m, 1�, and a matrix [M]1 ← G

n×m
1 defining a

linear space, outputs common reference string crs and trapdoor td.
– LPrv(crs, [Y]1,X) → π: It takes as input crs, a matrix [Y]1 ∈ G

n×�
1 with

witness X ∈ Z
m×�
p , outputs a proof π.

– LVer(crs, [Y]1, π) → 0/1: It takes as input crs, [Y]1 and π, outputs a bit
indicating the validity of π.

– LSim(crs, td, [Y]1) → π̃: It takes as input crs, td, [Y]1, outputs a simulated
proof π̃.
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Perfect Completeness. For all λ, M, and all X,Y such that Y = MX:

Pr
[
LVer(crs, [Y]1, π) = 1

∣∣∣∣ (crs, td) ← LGen(1λ, 1n, 1m, 1�, [M]1);
π ← LPrv(crs, [Y]1,X)

]
= 1.

Perfect Zero-Knowledge. For all λ, M, (crs, td) ← LGen(1λ, 1n, 1m, 1�, [M]1),
and all X,Y such that Y = MX:

LPrv(crs, [Y]1,X) ≡ LSim(crs, td, [Y]1).

Stronger Unbounded Simulation Soundness. For all adversary A, the
advantage

Pr

⎡
⎣ ([Y∗]1, pk∗) /∈ Q ∧
Y∗ /∈ span(M) ∧
LVer(crs, [Y∗]1, π∗) = 1

∣∣∣∣∣∣
M ← Z

n×m
p

(crs, td) ← LGen(1λ, 1n, 1m, 1�, [M]1)
([Y∗]1, π∗) ← ALSim(crs,td,·)(1λ, crs,M)

⎤
⎦

is negligible in λ, where Q records all queries to LSim(crs, td, ·) along with
responses. We use AdvUSS

A,n,m,�(λ) to denote the advantage function. Note that
our definition is stronger in the sense that the adversary is given M instead of
[M]1, this allows us to manipulate M in reduction (see the proof in full paper
and [19,31] for more discussions).

Scheme from Pairings. Due to the simplicity and efficiency, we choose to
use QA-NIZK in [27] for the case � = 1. It is direct to verify that this scheme
achieves stronger unbounded simulation soundness (defined above) under MDDH
assumption; see the full paper. For general � > 1, we simply employ � parallel
fresh instances.

3 Our Slotted Registered ABE

This section presents our slotted Reg-ABE via predicate encoding from k-Lin
assumption. By the generic transformation in [23], this yields a Reg-ABE scheme
via predicate encoding under the k-Lin assumption, see more details in the full
paper. We provide a concrete slotted Reg-ABE for arithmetic branching program
in Sect. 4, and more concrete instances in the full paper.

3.1 Scheme

Assuming a QA-NIZK Π = (LGen, LPrv, LVer, LSim) for linear space over bilinear
groups, our slotted Reg-ABE scheme for predicates that have predicate encoding
works as follows in the prime-order bilinear group:
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– Setup(1λ, P, 1L) : Run G := (p,G1,G2,GT , e) ← G(1λ). Sample

A ← Z
k×(2k+1)
p , B ← Z

(k+1)×k
p , k ← Z

1×(2k+1)
p .

Compute parameter (n, nc, nk) from P , see Sect. 2.3. For all i ∈ [L], sample

Vi ← Z
(2k+1)×(k+1)
p , Wi ← Z

(2k+1)×(k+1)n
p , Ri ← Z

(2k+2)×(2k+1)
p , ri ← Z

1×k
p .

For all i ∈ [L], write Ai =
(
A
Ri

)
∈ Z

(3k+2)×(2k+1)
p and run

(crsi, tdi) ← LGen(1λ,G1, [Ai]1).

Output

crs =

⎛
⎜⎝

[A]1, [Ak�]T ,
{
crsi, [Ri,AVi,AWi]1

}
i∈[L]{

[Br�
j ,VjBr�

j + k�]2
}

j∈[L]{
[ViBr�

j ,Wi(In ⊗ Br�
j )]2

}
j∈[L],i∈[L]\{j}

⎞
⎟⎠ .

We note that we employ i as the index for V’s and W’s while j is the index
for r’s; both of them range from 1 to L. One exception is the terms with k,
which is conceptually ViBr�

j with i = j. This is different from our notation
in Sect. 1.2. Note that we do not use td1, . . . , tdL in the actual scheme.

– Gen(crs, i) : Sample Ui ← Z
(2k+1)×(k+1)
p . Define Mi =

(
Ti

Qi

)
=
(
AUi

RiUi

)
=

AiUi ∈ Z
(3k+2)×(k+1)
p and run

πi ← LPrv(crsi, [Mi]1,Ui).

Fetch [Ri]1 and {[Br�
j ]2}j∈[L]\{i} from crs and output

pki =
(
[AUi︸︷︷︸

Ti

,RiUi︸ ︷︷ ︸
Qi

]1, {[UiBr�
j︸ ︷︷ ︸

h�
i,j

]2}j∈[L]\{i}, πi

)
and ski = Ui.

– Ver(crs, i, pki) : Parse pki =
(
[Ti,Qi]1, {[h�

i,j ]2}j∈[L]\{i}, πi

)
. Write Mi =(

Ti

Qi

)
and check

LVer(crsi, [Mi]1, πi)
?= 1.

For each j ∈ [L] \ {i}, check

e([A]1, [h�
i,j ]2)

?= e([Ti]1, [Br�
j ]2).

If all these checks pass, output 1; otherwise, output 0.
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– Agg(crs, (pki, yi)i∈[L]): For all i ∈ [L], compute Kyi
from yi, and parse pki =(

[Ti,Qi]1, {[h�
i,j ]2}j∈[L]\{i}, πi

)
. Output:

mpk =

(
[A]1,

[ ∑
i∈[L]

((AVi + Ti)(ayi
⊗ Ik+1) + AWi(Kyi

⊗ Ik+1))

]

1

,

[ ∑
i∈[L]

AWi

]

1

, [Ak�]T

)

and for all j ∈ [L]

hskj =

(
[Br�

j︸︷︷︸
k�
0

]2, [VjBr�
j + k�

︸ ︷︷ ︸
k�
1

]2,

[ ∑
i∈[L]\{j}

((ViBr�
j + h�

i,j)ayi
+ Wi(In ⊗ Br�

j )Kyi
)

︸ ︷︷ ︸
K2

]

2

,

[ ∑
i∈[L]\{j}

Wi(In ⊗ Br�
j )

︸ ︷︷ ︸
K3

]

2

)
.

– Enc(mpk, x,m): Sample s ← Z
1×k
p and compute Cx. Output:

ctx =

(
[ sA︸︷︷︸

c0

]1,

[ ∑
i∈[L]

((sAVi + sTi)(ayi
⊗ Ik+1) + sAWi(Kyi

⊗ Ik+1))

︸ ︷︷ ︸
c1

]

1

,

[ ∑
i∈[L]

sAWi(Cx ⊗ Ik+1)

︸ ︷︷ ︸
c2

]

1

, [sAk�]T · m︸ ︷︷ ︸
C

)
.

– Dec(ski∗ , hski∗ , ctx): Parse

ski∗ = Ui∗ , hski∗ = [k�
0 ,k�

1 ,K2,K3]2, ctx = ([c0, c1, c2]1, C).

Compute Cx from x and recover

[z1]T = e([c1‖c2]1, [Ink+nc
⊗ k�

0 ]2), [z2]T = e([c0]1, [K2‖K3Cx]2),
[z3]T = e([c0Ui∗ ]1, [k�

0 ]2), [z4]T = e([c0]1, [k�
1 ]2).

Compute dx,yi∗ from x and yi∗ and output

z = [(z1 − z2)d�
x,yi∗ − z3 − z4]T · C.
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Completeness. For all λ,L ∈ N, all P , all i ∈ [L], all crs ← Setup(1λ, P, 1L)
and (pki, ski) ← Gen(crs, i), we have

pki =
(
[Ti,Qi]1, {[Hi,j ]2}j∈[L]\{i}, πi

)
=

(
[AUi,RiUi]1, {[UiBr�

j ]2}j∈[L]\{i}, πi

)

for some Ui ← Z
(2k+1)×(k+1)
p and πi ← LPrv(crsi, [AiUi]1,Ui), where

(crsi, tdi) ← LGen(1λ,G1, [Ai]1) and Ai =
(
A
Ri

)
with A ← Z

k×(2k+1)
p ,

Ri ← Z
(2k+2)×(2k+1)
p . Then

– Write Mi =
(
Ti

Qi

)
=

(
AUi

RiUi

)
, we have LVer(crsi, [Mi]1, πi) = 1 by the

perfect completeness of Π (see Sect. 2.4) and the fact that Mi = AiUi;
– For each j ∈ [L] \ {i}, we have e([A]1, [UiBr�

j ]2) = e([AUi]1, [Br�
j ]2) by the

definition of bilinear map e (see Sect. 2.1) and the fact that A · UiBr�
j =

AUi · Br�
j .

This ensures that Ver(crs, i, pki) = 1 by the specification of Ver and readily
proves the completeness.

Correctness. For all λ,L ∈ N, all P , all i∗ ∈ [L], all crs ← Setup(1λ, P, 1L), all
(pki∗ , ski∗) ← Gen(crs, i∗), all {pki}i∈[L]\{i∗} such that Ver(crs, i, pki) = 1, for all
y1, . . . , yL ∈ Y and x ∈ X with P (x, yi∗) = 1 and all m, we have:

ski∗ = Ui∗ ,

ctx =

(
[ sA︸︷︷︸

c0

]1,

[ ∑
i∈[L]

((sAVi + sTi)(ayi
⊗ Ik+1) + sAWi(Kyi

⊗ Ik+1))

︸ ︷︷ ︸
c1

]

1

,

[ ∑
i∈[L]

sAWi(Cx ⊗ Ik+1)

︸ ︷︷ ︸
c2

]

1

, [sAk�]T · m︸ ︷︷ ︸
C

)

hski∗ =

(
[Br�

i∗︸︷︷︸
k�
0

]2, [Vi∗Br�
i∗ + k�︸ ︷︷ ︸

k�
1

]2,

[ ∑
i∈[L]\{i∗}

((ViBr�
i∗ + h�

i,i∗)ayi
+ Wi(In ⊗ Br�

i∗)Kyi
)

︸ ︷︷ ︸
K2

]

2

,

[ ∑
i∈[L]\{i∗}

Wi(In ⊗ Br�
i∗)

︸ ︷︷ ︸
K3

]

2

)
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where

Ah�
i,i∗ = TiBr�

i∗ ∀i ∈ [L] \ {i∗} and AUi∗ = Ti∗ . (9)

Note that here we actually consider hskj for j = i∗ and ski for i = i∗ and all
above equalities are ensured by Ver and Gen. Then, as in Sect. 2.3, let

Mx,yi
=
(
ayi

0nc

Kyi
Cx

)
, ∀i ∈ [L],

we have

z1 =
∑
i∈[L]

(sAVi + sTi‖sAWi)(Mx,yi
⊗ Ik+1)(Ink+nc

⊗ Br�
i∗)

=
∑
i∈[L]

(sAVi + sTi‖sAWi)(I1+n ⊗ Br�
i∗)Mx,yi

(10)

=
∑
i∈[L]

(sAViBr�
i∗ + sTiBr�

i∗‖sAWi(In ⊗ Br�
i∗))Mx,yi

z2 =
∑

i∈[L]\{i∗}
(sAViBr�

i∗ + sAh�
i,i∗‖sAWi(In ⊗ Br�

i∗))Mx,yi

z3 = sAUi∗Br�
i∗

z4 = sAVi∗Br�
i∗ + sAk�

and then

z = [(z1 − z2)d�
x,yi∗ − z3 − z4]T · [sAk�]T · m

= [(sAVi∗Br�
i∗ + sTi∗Br�

i∗‖sAWi∗(In ⊗ Br�
i∗))Mx,yi∗d�

x,yi∗

−sAUi∗Br�
i∗ − (sAVi∗Br�

i∗ + sAk�)]T · [sAk�]T · m (11)
= [(sAVi∗Br�

i∗ + sTi∗Br�
i∗)

−sAUi∗Br�
i∗ + sAk� − (sAVi∗Br�

i∗ + sAk�)]T · m (12)
= m (13)

Here, equality (10) follows from the property of tensor product: (M⊗I)(I⊗a�) =
M⊗ a� = (I⊗ a�)M for matrices of proper size; equality (11) follows from the
fact that Ah�

i,i∗ = TiBr�
i∗ for all i ∈ [L] \ {i∗} (see equality (9)); equality (12)

follows from the correctness of predicate encoding; equality (13) follows from the
fact that Ti∗ = AUi∗ (see equality (9)). This proves the correctness.

Compactness. Assume P has (n, nc, nk)-predicate encoding, our slotted Reg-
ABE has the following properties:

|mpk| = (nk + n) · poly(λ) and |hskj | = (nk + n) · poly(λ)

We also have

|crs| = L2 · n · poly(λ) and |ct| = (nk + nc) · poly(λ).



Reg-ABE via Predicate Encodings 85

Here crs1, . . . , crsL contribute L·poly(λ) according to the efficiency of the pairing-
based QA-NIZK scheme by Kiltz and Wee [27] and the fact that the size of
language description is poly(λ).

Security. We have the following theorem. Given pairing-based QA-NIZK in [27],
our slotted Reg-ABE scheme uses prime-order bilinear group and the security
can be reduced to MDDH assumption.

Theorem 1. Assume Π = (LGen, LPrv, LVer, LSim) is a QA-NIZK with perfect
completeness, perfect zero-knowledge and stronger unbounded simulation sound-
ness for linear space defined in Sect. 2.4, our slotted Reg-ABE scheme achieves
the security defined in Sect. 2.2 under MDDH assumption.

3.2 Proof

We prove the following technical lemma; this immediately proves Theorem 1.

Lemma 1. For all adversaries A, there exist adversaries B1 and B2 such that:

AdvsReg-ABE
A (λ) ≤ L · AdvUSS

B1
(λ) + (2L + 2L · Q + 1) · AdvMDDH

B2
+ negl(λ)

where L is the number of slots, Q is the maximum number of queries on a slot
made by A and Time(B1),Time(B2) ≈ Time(A).

Game Sequence. Let L be the number slots chosen by the adversary, crs be the
common reference string, x∗ be the challenge “attribute”, (m∗

0,m
∗
1) be challenge

message pair, (pk∗
i , y

∗
i )i∈[L] be challenge public keys and challenge “policy” to

be registered and ct∗ be the challenge ciphertext. For all i ∈ [L], define Di =
{pki : Di[pki] = ski �= ⊥} which records responses to OGen(i) and Ci = {pki :
(i, pki) ∈ C} which records public keys in Di that have been sent to OCor(i, ·).
Recall that, we require that, for each i ∈ [L],

pk∗
i /∈ Di =⇒ Ver(crs, i, pk∗

i ) = 1,
pk∗

i ∈ Ci ∨ pk∗
i /∈ Di =⇒ P (x∗, y∗

i ) = 0.

Note that pki serves as a general entry in Di while pk∗
i is the specific challenge

public for slot i; there can be more than one assignment for pki since the adver-
sary can invoke OGen(i) for many times. We prove the Lemma 1 via dual-system
method using the following game sequence.

– G0: Real game. Recall that we have
• crs is in the form:

crs =

⎛

⎜
⎝

[A]1, [Ak�]T ,
{
crsi, [Ri,AVi,AWi]1

}
i∈[L]{

[Br�
j ,VjBr�

j + k�]2
}

j∈[L]{
[ViBr�

j ,Wi(In ⊗ Br�
j )]2

}
j∈[L],i∈[L]\{j}

⎞

⎟
⎠

where crsi ∈ LGen(1λ,G1, [Ai]1) and Ai =
(
A
Ri

)
.
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• For each i ∈ [L], each pki ∈ Di is in the form:

pki =
(
[AUi,RiUi]1, {[UiBr�

j ]2}j∈[L]\{i}, πi

)

where πi ← LPrv(crsi, [Mi]1,Ui) and Mi =
(
AUi

RiUi

)
; note that Ui is the

corresponding secret key ski.
• For all i ∈ [L], pk∗

i is in the form:

pk∗
i = ([T∗

i ,Q
∗
i ]1, {[h∗

i,j
�]2}j∈[L]\{i}, π∗

i )

such that Ver(crs, i, pk∗
i ) = 1 which means LVer

(
crsi,

[
T∗

i

Q∗
i

]
1

, π∗
i

)
= 1

and Ah∗
i,j

� = T∗
iBr�

j for each j ∈ [L] \ {i}.
• ct∗ for x∗ and (m∗

0,m
∗
1) is in the form:

ct∗ =

(
[ sA︸︷︷︸
c∗
0

]1,

[ ∑
i∈[L]

((sAVi + sT∗
i )(ay∗

i
⊗ Ik+1) + sAWi(Ky∗

i
⊗ Ik+1))

︸ ︷︷ ︸
c∗
1

]
1

,

[ ∑
i∈[L]

sAWi(Cx∗ ⊗ Ik+1)

︸ ︷︷ ︸
c∗
2

]
1

, [sAk�]T · m∗
b︸ ︷︷ ︸

C∗

)

where b ← {0, 1} is the secret bit.
– G1: Identical to G0 except that, for all i ∈ [L] and all pki ∈ Di, we replace πi

in pki with

π̃i ← LSim (crsi, tdi, [Mi]1) where Mi =
(
AUi

RiUi

)
.

We have G1 ≡ G0. This follows from the perfect zero-knowledge of Π. See the
full paper for more details.

– G2: Identical to G1 except that we sample s ← Z
1×k
p along with A and replace

all Ri in crs with

R̂i = R̃i

(
sA

I2k+1

)
, R̃i ← Z

(2k+2)×(2k+2)
p

We have G2 ≈s G1. This follows from the fact that both Ri (in G1) and R̂i

(in G2) are truly random since matrix
(

sA
I2k+1

)
is full rank. See the full paper

for more details.
– G3: Identical to G2 except that we replace sT∗

i with e1R̃−1
i Q∗

i in c∗
1; namely,

we have

c∗
1 =

∑
i∈[L]

((sAVi + e1R̃−1
i Q∗

i )(ay∗
i

⊗ Ik+1) + sAWi(Ky∗
i

⊗ Ik+1)).
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We have G3 ≈c G2. This follows from stronger unbounded simulation sound-
ness of Π along with the fact that LVer(crsi, [M∗

i ], π
∗
i ) = 1 for all i ∈ [L] where

M∗
i =

(
T∗

i

Q∗
i

)
. Assume pk∗

i∗ /∈ Di∗ , i.e., pk∗
i∗ is malicious. In the reduction, we

guess i∗ ← [L] and obtain A, R̂i∗ , crsi∗ as input; we simulate honestly as in
G3 except that for all pki∗ ∈ Di∗ , we make an oracle query [Mi∗ ]1 and get
π̃i∗ in it; we finally output ([M∗

i∗ ]1, π∗
i∗) in pk∗

i∗ /∈ Di∗ . Observe that once
it happens that e1R̃−1

i∗ Q∗
i∗ �= sT∗

i∗ , we must have M∗
i∗ /∈ span(Ai∗). When

pk∗
i∗ ∈ Di∗ , we always have G3 ≡ G2. See the full paper for more details.

– G4: Identical to G3 except that we replace all sA with c ← Z
1×(2k+1)
p ; in

particular, we generate all R̂i as follows:

R̂i = R̃i

(
c

I2k+1

)
, R̃i ← Z

(2k+2)×(2k+2)
p

and generate the challenge ciphertext as follows:

ct∗ =

(
[ c︸︷︷︸
c∗
0

]1,

[ ∑
i∈[L]

(( c Vi + e1R̃
−1
i Q∗

i )(ay∗
i

⊗ Ik+1) + c Wi(Ky∗
i

⊗ Ik+1))

︸ ︷︷ ︸
c∗
1

]
1

,

[ ∑
i∈[L]

c Wi(Cx∗ ⊗ Ik+1)

︸ ︷︷ ︸
c∗
2

]
1

, [ c k�]T · m∗
b︸ ︷︷ ︸

C∗

)
.

We have G4 ≈c G3. This follows from MDDH assumption which ensures
that ([A]1, [sA]1) ≈c ([A]1, [c]1) when A ← Z

k×(2k+1)
p , s ← Z

1×k
p and c ←

Z
1×(2k+1)
p . This is analogous to the transition from normal ciphertext to semi-

functional ciphertext in the dual-system method [35]. See the full paper for
more details.

– G5,�, (� ∈ [0, L]): Identical to G4 except we change [VjBr�
j + k�]2 for all

j ∈ [�] as follows:

[VjBr�
j + k� + c⊥α ]2

where c⊥ ∈ Z
2k+1
p such that cc⊥ = 1 and Ac⊥ = 0 and α ← Zp. We have

that
• G5,0 = G4; the two games are exactly identical, since [0] = ∅;
• G5,� ≈c G5,�−1 for all � ∈ [L]; this is analogous to the transition from nor-

mal keys to semi-functional keys one-by-one in the dual-system method.
However, the situation is much more complicated in the context of Reg-
ABE, we will describe the sub-sequence of games for this step later in
Sect. 3.3.

– G6: Identical to G5,L except that we replace term C∗ in ct∗ as C∗ ← GT .
We have G6 ≡ G5,L. This follows from the following statistical argument:

(

crs︷ ︸︸ ︷
Ak�,k� + c⊥α,

C∗ in ct∗︷︸︸︷
ck� ) ≡ (Ak�,k�, ck� − α)
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when k ← Z
1×(2k+1)
p and the fact that [α]T only appears in C∗. We can prove

the statement via change of variable k� �→ k� − c⊥α. See the full paper for
more details.

Observe that, in G6, the challenge ciphertext ct∗ is independent of b and the
adversary’s advantage is exactly 0.

3.3 From G5,�−1 to G5,�

We prove G5,�−1 ≈c G5,� which completes our proof of Lemma 1. For this, we
need the following sub-sequence of games for each � ∈ [L]:

– G5,�−1,0: Identical to G5,�−1. We recall crs and pki ∈ Di in the following form,
where we highlight r�-related terms using dashed boxes which will be changed
in this sub-sequence.

crs =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[A]1, [Ak�]T ,
{
crsi, [R̂i,AVi,AWi]1

}
i∈[L]{

[Br�
j ,VjBr�

j + k� + c⊥α]2
}

j∈[�−1]
,

[Br�
� ,V�Br�

� + k�]2 ,{
[Br�

j ,VjBr�
j + k�]2

}
j∈[L]\[�]{

[ViBr�
j ,Wi(In ⊗ Br�

j )]2
}

j∈[L]\{�},i∈[L]\{j},{
[ViBr�

� ,Wi(In ⊗ Br�
� )]2

}
i∈[L]\{�}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

pki =

{(
[AUi, R̂iUi]1, {[UiBr�

j ]2}j∈[L]\{i,�}, [UiBr�
� ]2 , π̃i

)
if i �= �(

[AU�, R̂�U�]1, {[U�Br�
j ]2}j∈[L]\{�}, π̃�

)
if i = �

Clearly, we have G5,�−1,0 = G5,�−1; all changes are conceptual.
– G5,�−1,1: Identical to G5,�−1,0 except that we replace all Br�

� with d�
� ← Z

k+1
p

in crs; in particular, we change the dashed boxed term as follows:

[ d�
� ,V� d�

� + k�]2,
{
[Vi d�

� ,Wi(In ⊗ d�
� )]2, [Ui d�

� ]2
}

i∈[L]\{�}

We have G5,�−1,1 ≈c G5,�−1,0. This follows from MDDH assumption w.r.t.
[B]2 which ensures that ([B]2, [Br�

� ]2) ≈c ([B]2, [d�
� ]2) when B ← Z

(k+1)×k
p ,

r� ← Z
1×k
p , d� ← Z

1×(k+1)
p . See the full paper for more details.

– G5,�−1,2: Identical to G5,�−1,1 except that we change the dashed boxed terms
as follows:

[d�
� ,V�d�

� + k� + c⊥α ]2,
{
[Vid�

� ,Wi(In ⊗ d�
� )]2, [Uid�

� ]2
}

i∈[L]\{�}

We have G5,�−1,2 ≈c G5,�−1,1. We provide an overview of the proof in Sect. 3.4.
– G5,�−1,3: Identical to G5,�−1,2 except that we replace all d�

� with Br�
� where

r�
� ← Z

k
p in crs; in particular, we generate crs as follow:

[ Br�
� ,V� Br�

� +k� +c⊥α]2,
{
[Vi Br�

� ,Wi(In ⊗ Br�
� )]2, [Ui Br�

� ]2
}

i∈[L]\{�}
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We have G5,�−1,3 ≈c G5,�−1,2. Analogous to G5,�−1,1 ≈c G5,�−1,0, it follows
from MDDH assumption w.r.t. [B]2 which ensures that ([B]2, [Br�

� ]2) ≈c

([B]2, [d�
� ]2) when B ← Z

(k+1)×k
p , r� ← Z

1×k
p , d� ← Z

1×(k+1)
p . See the full

paper for more details.

Observe that, we have G5,�−1,3 = G5,� and this proves G5,�−1 ≈c G5,�.

3.4 From G5,�−1,1 to G5,�−1,2

We review G5,�−1,1 and G5,�−1,2 in the following form. Here we use solid boxes
to indicate the difference between two games and use dashed boxes to highlight
those terms that are relevant to our proof.

crs =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[A]1, [Ak�]T ,
{
crsi, [R̂i,AVi,AWi]1

}
i∈[L]{

[Br�
j ,VjBr�

j + k� + c⊥α]2
}

j∈[�−1]
,

[d�
� ,V�d�

� + k� + c⊥α ]2 ,{
[Br�

j ,VjBr�
j + k�]2

}
j∈[L]\[�];{

[ViBr�
j ,Wi(In ⊗ Br�

j )]2
}

j∈[L]\{�},i∈[L]\{j},{
[Vid�

� ,Wi(In ⊗ d�
� )]2

}
i∈[L]\{�}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

pki =

{(
[AUi, R̂iUi]1, {[UiBr�

j ]2}j∈[L]\{i,�}, [Uid�
� ]2 , π̃i

)
if i �= �(

[AU�, R̂�U�]1, {[U�Br�
j ]2}j∈[L]\{�}, π̃�

)
if i = �

c∗
1 = (cV� + e1R̃−1

� Q∗
� )(ay∗

�
⊗ Ik+1) + cW�(Ky∗

�
⊗ Ik+1)

+
∑

i∈[L]\{�}
((cVi + e1R̃−1

i Q∗
i )(ay∗

i
⊗ Ik+1) + cWi(Ky∗

i
⊗ Ik+1))

c∗
2 = cW�(Cx∗ ⊗ Ik+1) +

∑
i∈[L]\{�}

cWi(Cx∗ ⊗ Ik+1)

we define c⊥ ∈ Z
2k+1
p and d⊥ ∈ Z

1×(k+1)
p such that Ac⊥ = 0, cc⊥ = 1,

d⊥B = 0 and d⊥d� = 1. We will proof G5,�−1,2 ≈c G5,�−1,1 by considering two
cases: (1) pk∗

� is honest; (2) pk∗
� is corrupted or maliciously generated by the

adversary.

Useful Lemma. Before we proceed, we prepare the following lemma.

Lemma 2. For all B ← Z
(k+1)×k
p and d⊥ ← Z

1×(k+1)
p such that d⊥B = 0. For

any adversary A, there exist an adversary B2 such that∣∣ Pr[A(M, [R]1,B,d⊥,MU, [RU]1, UB) = 1]−
Pr[A(M, [R]1,B,d⊥,MU, [RU + u�d⊥ ]1, UB) = 1]

∣∣
≤ 2 · AdvMDDH

B2
+ negl(λ)
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where M ← Z
(k+1)×(2k+1)
p , R ← Z

(2k+2)×(2k+1)
p , U ← Z

(2k+1)×(k+1)
p and u ←

Z
1×(2k+2)
p .

Before proving the lemma, we give some intuition by investigating a simplified
version without B and d:

M, [R]1,MU, [RU]1 ≈c M, [R]1,MU, [Û]1

where M,R,U are defined as before and Û ← Z
(2k+2)×(k+1)
p . If we encode M

and MU over G1, this is simply MDDH assumption and there is nothing special.
The main point here is that we give out M directly to the adversary. This allows
it to get the kernel space of M which is crucial for its future application. Looking
ahead, we will set M =

(
A
c

)
and want to know/simulate c⊥. However, this hurts

the indistinguishability; the adversary can recover U and check whether the last
term is truly random. At this point the shape of M saves us. Note that M is a
wide matrix rather than a square one. The main idea behind the proof is that
given M,MU, there is still some entropy left inside [RU]1 so that we can argue
its pseudorandomness even given [R]1 as MDDH. A detailed proof of the lemma
is as follows.

Proof. We prove the lemma with the following argument:

M, [R]1, B,d⊥, MU, [RU]1, UB

≈c M, [ R̃D ]1, B,d⊥, MU, [ R̃D U]1, UB // MDDH

≈s M, [R̃D]1, B,d⊥, MU, [R̃DU + R̃ũ�d⊥ ]1, UB // change of variable

≈c M, [ R ]1, B,d⊥, MU, [ R U + u� d⊥]1, UB // MDDH

where R̃ ← Z
(2k+2)×k
p , D ← Z

k×(2k+1)
p and ũ ← Z

1×k
p . We justify each step as

follows: The first ≈c follows from MDDH assumption w.r.t. [R̃]1 which ensures
that [R]1 ≈c [R̃D]1. The second ≈s follows from change of variable

U �→ U + D⊥ũ�d⊥

where ũ ← Z
1×k
p and D⊥ ∈ Z

(2k+1)×k
p such that DD⊥ = I and MD⊥ = 0; this

uses the fact that
(
M
D

)
has full rank w.h.p. The third ≈c follows from MDDH

assumption w.r.t. [R̃]1 which ensures that [R̃, R̃(D‖ũ�)]1 ≈c [R̃, (R‖u�)]1. This
readily proves the lemma. ��

Honest Case. In this case, we have pk∗
� = ([T∗

� ,Q
∗
� ]1, {[h∗

�,j
�]2}j∈[L]\{�}, π∗

� ) ∈
D� \C�. Namely, we know U∗

� (such that T∗
� = AU∗

� and Q∗
� = R̂�U∗

� ) and U∗
� is

hidden from the adversary. We can write the dashboxed terms in c∗
1 as follows:

(cV� + cU∗
� )(ay∗

�
⊗ Ik+1) + cW�(Ky∗

�
⊗ Ik+1)
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and replace R̂� in crs with a random R� as in G1. We prove G5,�−1,2 ≈c G5,�−1,1

in this case using the following argument for all b ∈ {0, 1}:

A, c⊥,B, [R�]1,d�
� ,AV�,V�B,V�d�

� + bc⊥α //crs, pk�

c, cV� + cU∗
� ; AU∗

� , [R�U∗
� ]1,U

∗
�B //ct∗, pk∗

�

≈c A, c⊥,B, [R�]1,d�
� ,AV�,V�B,V�d�

� + bc⊥α

c, cV� + cU∗
� ; AU∗

� , [R�U∗
� + û�d⊥ ]1,U∗

�B

≈s A, c⊥,B, [R�]1,d�
� ,AV�,V�B,V�d�

� + c⊥v� + bc⊥α

c, cV� + cU∗
� + v�d⊥ + u�d⊥ ; AU∗

� , [R�U∗
� + R�c⊥u�d⊥ + û�d⊥]1,U∗

�B

≈s A, c⊥,B, [R�]1,d�
� ,AV�,V�B,V�d�

� + c⊥v� +���bc⊥α

c, cV� + cU∗
� + v�d⊥ + u�d⊥; AU∗

� , [R�U∗
� + R�c⊥u�d⊥ + û�d⊥]1,U∗

�B

where û ← Z
1×(2k+2)
p and v�, u� ← Zp. We justify each step as below: The

first ≈c uses Lemma 2 with M =
(
A
c

)
, R = R�, U = U∗

� and u = û; in the

reduction, we sample V�, α and c⊥. The second ≈s uses change of variables

V� �→ V� + c⊥v�d⊥ and U∗
� �→ U∗

� + c⊥u�d⊥.

The last ≈s is straight-forward with the observation that û� hides R�c⊥u�. See
the full paper for more details.

Corrupted and Malicious Case. In this case, we have pk∗
� = ([T∗

� ,Q
∗
� ]1,

{[h∗
�,j

�]2}j∈[L]\{�}, π∗
� ) ∈ C� ∪ D�. It is required that P (x∗, y∗

� ) = 0. We prove
G5,�−1,2 ≈s G5,�−1,1 in this case using the following argument for all b ∈ {0, 1}:

A, c⊥,B,d�
� ,AV�,V�B,AW�,W�(In ⊗ B),V�d�

� + bc⊥α //crs
c, cV�(ay∗

�
⊗ Ik+1) + cW�(Ky∗

�
⊗ Ik+1), //ct∗0, ct

∗
1

cW�(Cx∗ ⊗ Ik+1) //ct∗2
≈s A, c⊥,B,d�

� ,AV�,V�B,AW�,W�(In ⊗ B),V�d�
� + c⊥v� + bc⊥α

c, cV�(ay∗
�

⊗ Ik+1) + cW�(Ky∗
�

⊗ Ik+1) + v�ay∗
�

⊗ d⊥ + w�Ky∗
�

⊗ d⊥ ,

cW�(Cx∗ ⊗ Ik+1) + w�Cx∗ ⊗ d⊥

≈s A, c⊥,B,d�
� ,AV�,V�B,AW�,W�(In ⊗ B),V�d�

� + c⊥v� + bc⊥α

c, cV�(ay∗
�

⊗ Ik+1) + cW�(Ky∗
�

⊗ Ik+1) +������
v�ay∗

�
⊗ d⊥ + w�Ky∗

�
⊗ d⊥,

cW�(Cx∗ ⊗ Ik+1) + w�Cx∗ ⊗ d⊥

≈s A, c⊥,B,d�
� ,AV�,V�B,AW�,W�(In ⊗ B),V�d�

� + c⊥v� +���bc⊥α

c, cV�(ay∗
�

⊗ Ik+1) + cW�(Ky∗
�

⊗ Ik+1) + w�Ky∗
�

⊗ d⊥,

cW�(Cx∗ ⊗ Ik+1) + w�Cx∗ ⊗ d⊥

where v� ← Zp and w� ← Z
n
p . We justify each step as follows: The first ≈s uses

the change of variables:

V� �→ V� + c⊥v�d⊥ and W� �→ W� + c⊥(w� ⊗ d⊥)
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The second ≈s uses the fact that P (x∗, y∗
� ) = 0 and the security of predicate

encoding defined in Sect. 2.3. The last ≈s is straight-forward. See the full paper
for more details.

4 Concrete Slotted Reg-ABE

This section presents our concrete slotted Reg-ABE for arithmetic branching pro-
grams (ABP), derived from the generic scheme in Sect. 3. We use the predicate
encoding of arithmetic span programs (ASP) [5, Appendix A] which captures
ABP [24]. As mentioned before, we employ the pairing-based QA-NIZK scheme
by Kiltz and Wee, see the full paper. Our concrete slotted Reg-ABE for span
program and zero inner-product predicate and slotted RBE are deferred to the
full paper.

Preliminaries. An Arithmetic Span Program [24], denoted by V , is defined by
(Y,Z) ∈ Z

m×�
p × Z

m×�
p where

V (x) = 1 ⇐⇒ x ∈ Z
1×m
p satisfies V ⇐⇒ ∃ ω ∈ Z

1×m
p s.t. e1 = ω(diag(x) · Y + Z).

Here we use notation: diag(x) :=

⎛
⎜⎝

x1

. . .
xm

⎞
⎟⎠ ∈ Z

m×m
p for x = (x1, . . . , xm)

and note that diag(x) = diag(x)�. We review the predicate encoding for ASP
predicate (ciphertext-policy variant):

P (V,x) = 1 ⇐⇒ V (x) = 1

as follows [5, Appendix A.6]: let n = 2m + �, nc = 2m and nk = m + 1, define

CY,Z =

⎛
⎝ Im 0m×m

0m×m Im

Y� Z�

⎞
⎠ , Kx =

⎛
⎝0�

m diag(x)
0�

m Im

e�
1 0�×m

⎞
⎠ ,

ax = (1‖0m), dx,Y,Z = (1‖ω‖ − ω · diag(x)‖ − ω)

where 0m is a row zero vector of size m. Note that we work with read-once ASP
as in [5].

Scheme. Our concrete slotted Registered CP-ABE for read-once ASP from
SXDH (1-Lin) assumption works as follows:

– Setup(1λ, P, 1L) : Run G := (p,G1,G2,GT , e) ← G(1λ). Sample

a ← Z
1×3
p , b� ← Z

2
p, k ← Z

1×3
p .

For all i ∈ [L], sample

Vi ← Z
3×2
p , Wi ← Z

3×2(2m+�)
p , Ri ← Z

4×3
p , ri ← Zp.
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For all i ∈ [L], write Ai =
(

a
Ri

)
and sample

a′
i ← Z

1×2
p , b′�

i ← Z
2
p, K′

i ← Z
5×2
p , K′

i,0,K
′
i,1 ← Z

2×2
p

and compute

Pi = A�
i K

′
i, pi,0 = a′

iK
′
i,0, pi,1 = a′

iK
′
i,1;

c′�
i = K′

ib
′�
i , c′�

i,0 = K′
i,0b

′�
i , c′�

i,1 = K′
i,1b

′�
i .

For all i ∈ [L], set

crsi = ([a′
i,Pi,pi,0,pi,1]1, [b′�

i , c′�
i , c′�

i,0, c
′�
i,1]2) tdi = K′

i.

Output

crs =

⎛
⎜⎝

[a]1, [ak�]T ,
{
crsi, [Ri,aVi,aWi]1

}
i∈[L]{

[b�rj ,Vjb�rj + k�]2
}

j∈[L]{
[Vib�rj ,Wi(I2m+� ⊗ b�rj)]2

}
j∈[L],i∈[L]\{j}

⎞
⎟⎠ .

– Gen(crs, i) : Sample Ui ← Z
3×2
p . Define Mi =

(
ti

Qi

)
=
(

aUi

RiUi

)
, sample s�

i ←
Z
2
p, and compute

πi = [U�
i Pi + s�

i (pi,0 + pi,1)︸ ︷︷ ︸
πi,0

, s�
i a

′
i︸︷︷︸

πi,1

]1

Fetch [Ri]1 and {[b�rj ]2}j∈[L]\{i} from crs and output

pki =
(
[aUi︸︷︷︸

ti

,RiUi︸ ︷︷ ︸
Qi

]1, {[Uib�rj︸ ︷︷ ︸
h�

i,j

]2}j∈[L]\{i}, πi

)
and ski = Ui.

– Ver(crs, i, pki) : Parse pki =
(
[ti,Qi]1, {[h�

i,j ]2}j∈[L]\{i}, πi

)
and fetch [b�

i , c′�
i ,

c′�
i,0, c

′�
i,1]2 from crsi in crs. Write Mi =

(
ti

Qi

)
and parse πi = [πi,0, πi,1]1, check

e([πi,0]1, [b′�
i ]2)

?= e([M�
i ]1, [c′�

i ]2) · e([πi,1]1, [c′�
i,0 + c′�

i,1]2)

For each j ∈ [L] \ {i}, check

e([a]1, [h�
i,j ]2)

?= e([ti]1, [b�rj ]2).

If all these checks pass, output 1; otherwise, output 0.
– Agg(crs, (pki,xi)i∈[L]): For all i ∈ [L], parse

pki =
(
[ti,Qi]1, {[h�

i,j ]2}j∈[L]\{i}, πi

)
.
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Output:

mpk =

(
[a]1,

[ ∑
i∈[L]

(
(aVi + ti)((1‖0m) ⊗ I2) + aWi

( ⎛
⎝0m diag(xi)

0m Im

e�
1 0�×m

⎞
⎠ ⊗ I2

))]
1

,

[ ∑
i∈[L]

aWi

]
1

, [ak
�
]T

)

and for all j ∈ [L]

hskj =

(
[b

�
rj︸ ︷︷ ︸

k�
0

]2, [Vjb
�

rj + k
�︸ ︷︷ ︸

k�
1

]2,

[ ∑
i∈[L]\{j}

⎛
⎝(Vib

�
rj + h

�
i,j)(1‖0m) + Wi(I2m+� ⊗ b

�
rj)

⎛
⎝0m diag(xi)

0m Im

e�
1 0�×m

⎞
⎠

⎞
⎠

︸ ︷︷ ︸
K2

]
2

,

[ ∑
i∈[L]\{j}

Wi(I2m+� ⊗ b
�

rj)

︸ ︷︷ ︸
K3

]
2

)
.

– Enc(mpk, (Y,Z),m): Sample s ← Zp. Output:

ctY,Z =

(
[ sa︸︷︷︸

c0

]1,

[ ∑
i∈[L]

(
(saVi + sti)((1‖0m) ⊗ I2) + saWi

( ⎛
⎝0m diag(xi)

0m Im

e�
1 0�×m

⎞
⎠ ⊗ I2

))
︸ ︷︷ ︸

c1

]
1

,

[ ∑
i∈[L]

saWi

( ⎛
⎝ Im 0m×m

0m×m Im

Y� Z�

⎞
⎠ ⊗ I2

)
︸ ︷︷ ︸

c2

]
1

, [sak
�
]T · m︸ ︷︷ ︸

C

)
.

– Dec(ski∗ , hski∗ , ctY,Z): Parse

ski∗ = Ui∗ , hski∗ = [k�
0 ,k�

1 ,K2,K3]2, ctx = ([c0, c1, c2]1, C).

recover
[z1]T = e([c1‖c2]1, [I3m+1 ⊗ k�

0 ]2),

[z2]T = e

(
[c0]1,

[
K2‖K3

⎛
⎝ Im 0m×m

0m×m Im

Y� Z�

⎞
⎠
]

2

)
,

[z3]T = e([c0Ui∗ ]1, [k�
0 ]2),

[z4]T = e([c0]1, [k�
1 ]2).

Compute ω such that e1 = ω(diag(xi∗) · Y + Z), output

m′ = [(z1 − z2) · (1‖ω‖ − ω · diag(xi∗)‖ − ω)� − z3 − z4]T · C.
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supports a large attribute universe and is proven secure in the bilinear
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1 Introduction

Functional encryption (FE) [18,51,53] enriches standard public-key encryption
with fine-grained access control over encrypted data. This added feature is
made possible by having a so-called master secret key msk that can be used
(by an authority) to generate decryption keys skf associated with functions f ,
in such a way that decrypting any ciphertext c, corresponding to a plaintext
m, reveals f(m) and nothing more. Recent years have seen a flourish of works
exploring FE constructions in various settings and from different assumptions
[1–3,5,6,8,9,17,19,20,27,28,32–34,36,37,43–45,48,52,56], and its applications
to building powerful cryptographic tools such as reusable garbled circuits [36],
adaptive garbling [40], multi-party non-interactive key exchange [31], univer-
sal samplers [31], verifiable random functions [15,38], and indistinguishability
obfuscation (iO) [7,16] (which, in turn, implies a plethora of other cryptographic
primitives [52]).

An important limitation of FE is the well-known key escrow problem: the
authority holding the master secret key (sometimes referred to as the private
key generator – PKG) can generate secret keys for any function, allowing it to
arbitrarily decrypt messages intended for specific recipients. This requires a fully
trusted PKG which severely restricts the applicability of FE in many scenarios.

Registered Encryption. A recent line of research proposes to tackle the
key-escrow problem in the much simpler case of identity-based encryption1

(IBE) [54]. This led to the notion of registered IBE (RIBE) [29]2, where the
main idea is to replace the PKG with a much weaker entity called the key cura-
tor (KC), whose role is to register the public keys of the users (without possessing
any secret key). In particular, in a RIBE scheme there is an initial setup phase
in which a common reference string (CRS) is sampled. The CRS is given to the
KC which publishes an (initially empty) master public key. Each user now can
also use the CRS and sample its own public and secret key, and can register its
identity and the chosen public key to the KC; the KC is required to generate
a new master public key, which includes the newly registered public keys, and
which will permit encrypting messages to any of the registered users. Moreover,
since the master public key is updated over time, the KC is responsible for pro-
viding any decrypting party with a so-called helper decryption key, i.e., auxiliary
information connecting its public key with the updated master public key.

Recently, the notion of RIBE has been extended to the setting of attribute-
based encryption (ABE) [41], where one can encrypt messages with respect to
policies, and where decryptors can recover the message if their attributes satisfy
the policy embedded in the ciphertext. However, their registered ABE (RABE)

1 IBE can be seen as a special case of FE for equality predicates fy such that fy(x, m) =
m if and only if y = x (and ⊥ otherwise). Here, x and y have the role of the parties’
identities (which do not need to be secret), and m is the encrypted message.

2 The original paper define the primitive as registration based encryption. However,
we choose to call it as registered IBE, in line with the more recent work in [41].
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schemes [41] are required to hide only messages in the ciphertext. In particular,
they do not hide the policies embedded in the ciphertexts, since they are required
in the clear for decryption to work. This restricts using RABE in scenarios where
hiding the policy is also important.

More generally, the current state of affairs leaves open the question of building
registered FE (RFE), where any user can sample its own key pair (pk, sk) as
before, along with fixing a function of its choice (say f , from a class of functions),
and register (pk, f) with the KC. In such a setting, one can then encrypt messages
m that the registered user can decrypt with sk and a helper secret key to learn
only f(m). Overall, this would achieve the analogous functionality to that of the
celebrated notion of FE, without suffering from the key escrow issue. The focus
of our work is to make progress on this problem.

1.1 Our Contributions

We initiate the study of RFE in this paper by providing two constructions – one
for a special class of FE, and another for the general class of all functions.

In particular, as our first contribution, we provide the first RFE scheme
for the class of inner-product predicates (a.k.a. (attribute hiding) inner-product
predicate encryption), i.e., a registered IPE (RIPE) from asymmetric bilinear
maps on prime-order groups. More concretely, our scheme supports the function
class F = {fx(·, ·)}x∈Zn+

q
defined as:

fx(m,y) =

{
m if 〈x,y〉 = 0
⊥ otherwise

(1)

where x and y are n-size vectors over Zn+

q = Z
n
q \{0n}, and q is a prime. Below we

summarize our result informally in Theorem 1 and also later in Table 1 (Sect. 3)
when we discuss related works to compare it with existing registered encryption
schemes.

Theorem 1 (Informal). Let λ be a security parameter, n be the length of
supported vectors, and L be a bound on the maximum number of users. There
is a (black-box) construction of RIPE supporting a large universe and up to L
users in the generic bilinear group model, satisfying the following properties:

– The CRS is of size n · L2 · poly(λ, log L).
– The master public key and each helper decryption key is of size n ·

poly(λ, log L).
– Key-generation and registration runs in time L · poly(λ, log L) and n · L2 ·

poly(λ, log L), respectively.
– Each registered user receives at most O(log L) updates from the KC over the

entire lifetime of the system.

Moreover, both encryption and decryption runs in time n · poly(λ, log L).
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Our scheme is proven secure in the bilinear generic group model [12,14]. We
emphasize that our scheme supports attribute-hiding and a large universe unlike
[41]. In particular, our scheme satisfies the strong notion of two-sided security3

[26,46], where no information on the attribute vector y is revealed (besides the
orthogonality test) even if decryption succeeds, akin to what [46] achieved.4

Somewhat interestingly, our proof strategy and construction template are
substantially different from the typical inner-product predicate encryption
schemes in the literature (e.g., [46]). Roughly speaking, traditional proof strate-
gies work by “programming” the function output (for the challenge ciphertext)
in the key given by the adversary, and then arguing that this new key is indistin-
guishable from the original distribution. In the registered setting, the adversary
can sample its own key, so the reduction has no control over it and cannot modify
its distribution. Hence, we see RIPE as the main technical contribution of this
work.

We also implemented our scheme and describe the results in Sect. 7. The
benchmarks are achieved with a set of L = 100 to L = 1000 users with attribute
vectors of length varying between n = 10 and n = 100. Our results demonstrate
concrete, practical efficiency of our scheme beyond the realms of only feasibility.
Further, following the generic and non-cryptographic transformations described
in [46, Section 5], our RIPE scheme can also support constant-degree polynomial
evaluations, disjunctions, conjunctions, and evaluating CNF and DNF formulas.

As our second contribution, we build RFE for all circuits from indistinguisha-
bility obfuscation (iO). This is a feasibility result extending the iO-based RABE
schemes in [41] to the setting of RFE. In more detail, we achieve the following:

Theorem 2 (Informal). Let λ be the security parameter. Assuming somewhere
statistically binding hash functions [42,50] and iO [13], there is a (non black-box)
construction of RFE supporting arbitrary functions and an arbitrary number of
users, satisfying the following properties:

– The CRS, master public key, and each helper decryption key is of size poly(λ).
– Key-generation and registration runs in time poly(λ) and L · poly(λ), respec-

tively, where L stands for the current number of registered users.
– Each registered user receives at most O(log L) updates from the KC over the

entire lifetime of the system, where L is as defined in the previous item.

Moreover, both encryption and decryption runs in time poly(λ). Further, the
above scheme achieves the same efficiency as that of iO-based RABE from [41].

3 Two-sided security in PE allows an adversary to obtain secret keys for predicates
that can decrypt a challenge ciphertext, provided the challenge message pair consists
of the same message.

4 Generic compilers from any ABE for LSSS (or equivalently, monotone span pro-
grams) to (hierarchical) IPE are known (e.g., [11]). However, such compilers do not
ensure attribute-privacy which we crucially require from our (registered) IPE scheme.
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2 Technical Overview

In the following, we first describe the notion of registered FE and its properties of
interest. Next, we provide a brief overview of the techniques behind our schemes.

RFE Definition. We discuss the notion of RFE at a high level. Fundamen-
tally, RFE allows users to generate their own keys (associated to functions of
their choice) without the need of a trusted authority, which is replaced with
a KC that does not hold any secret. The KC is simply responsible of manag-
ing a data structure containing the public keys (plus the corresponding func-
tions) of registered users. Roughly, the RFE syntax goes as follows: For some
security parameter λ and a function class F , the algorithm Setup(1n, |F|) ini-
tializes the system to output a common reference string crs.5 Given crs, the
KC initializes a state α = ⊥ (i.e., the data structure) and the master pub-
lic key mpk = ⊥. A user can now register its own (pk, f) pair as follows: it
samples (pk, sk) ←$ KGen(crs, α) and submits a registration request (pk, f) to
the KC, where f ∈ F is a function it wishes to associate with pk. The KC
updates its state as α = α′ and mpk = mpk′ where (mpk′, α′) are output by the
deterministic registration algorithm RegPK(crs, α, pk, f). Intuitively, a cipher-
text c ←$ Enc(mpk,m) computed with mpk can be later decrypted by the users
registered before or during mpk was generated. The registered user uses sk to
decrypt c. However, mpk is updated periodically (after each registration) – so the
user issues an update request to the KC that, in turn, deterministically returns
a helper secret key hsk = Update(crs, α, pk). The hsk provides necessary infor-
mation to make a (previously registered) user’s secret key sk valid with respect
to a new mpk. With hsk, the user can decrypt to learn f(m) = Dec(sk, hsk, c).
For optimal efficiency, an RFE system with L registered users should satisfy the
following properties:

(1) Compact parameters: The sizes of crs,mpk, hsk must be small, e.g.,
poly(λ, log L).

(2) Efficiency: This measures key-generation and registration runtimes, and the
number of updates as described below.
(a) Each execution of KGen and RegPK should run in time poly(λ, log L).
(b) Each registered user receives at most O(log L) number of new updates

(i.e., new hsks) over the lifetime of the system.

RFE can support an unbounded or a bounded number of users. In particu-
lar, for the unbounded case, the setup is independent of the number of users. (In
this case, the parameter L in efficiency conditions refer to the current number of
registered users.) For the bounded case, the setup depends on a bound L (fixed a-
priori). Security of RFE is analogous to that of RIBE [29] and RABE [41]. In par-
ticular, an adversary A corrupting a subset of k registered users (i.e., A knows the
5 Although the common reference string is generated by a trusted setup, the important

difference is that there is no long-term secret that needs to be stored throughout
the lifetime of the system. Furthermore, in some cases, the setup algorithm could be
“transparent”, and therefore computable using just a hash function.
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set {(ski, (pki, fi))}i∈[k]) cannot distinguish Enc(mpk,m0) from Enc(mpk,m1), as
long as fi(m0) = fi(m1),∀i ∈ [k]. This should hold even if A registers malformed
public keys. We refer to the full version [25] for more details.

Slotted RFE. Following Hohenberger et al. [41], we first define and use slotted
RFE as a stepping stone towards building full-fledged RFE. Differently to RFE,
there is only a single update (referred to as aggregation) in slotted RFE, where
users are assigned to “slots” and the master public key is only computed once all
slots are filled. In more detail, initialization and key generation work as before,
except now that the Setup (resp. KGen) takes as an extra input the maximum
number of slots/keys L that can be aggregated (resp. a user index i ∈ [L]).
The KC takes all L pairs {(pki, fi)}i∈[L] together, aggregrates (i.e. updates) it
to compute a short mpk and L helper secret keys {hski}i∈[L] for each user.
Encryption and decryption again works as before.

Akin to RFE, slotted RFE security requires that, for an aggregated mpk
w.r.t. to all L slots, Enc(mpk,m0) and Enc(mpk,m1) are computationally indis-
tinguishable, so long as fj(m0) = fj(m1) for all corrupted slots j ∈ [L]. We refer
to the full version [25] for more details.

Hohenberger et al.[41] lifted slotted RABE to a standard RABE via a generic
compiler, and the same holds for slotted RFE (with minor syntactic changes).
Loosely speaking, they use a “powers-of-two” approach, where users are assigned
to different slotted schemes with increasing capacities, and they are moved for-
ward as new users join the system. The same idea yields a fully-fledged RFE
that supports O(log L) number of updates and incurs a multiplicative O(log L)
overhead on the size of crs,mpk, hsk, and the key-generation and encryption run-
times compared to that of the underlying slotted RFE scheme. The registration
runtime is dominated by O(tAggr + L · thsk), where tAggr and thsk are the aggrega-
tion runtime and the helper decryption key size of the slotted RFE respectively.
For completeness, we present the transformation in our full version [25].

2.1 (Bounded Users) Slotted RIPE from Pairings

We begin with an overview of our scheme for inner-product predicates. This is
a special case of FE, where vectors x ∈ Z

n+

q (= Z
n
q \ {0n}) denote functions fx

(associated to keys), and messages consist of a tuple (y,m). The function fx can
be recast as:

fx(y,m) =

{
m if 〈x,y〉 = 0
⊥ otherwise

where we denote the length of vectors by n = n(λ), and assume the attribute
space to be U = Z

n+

q (i.e., domain of vectors). Our scheme follows the blueprint
of [41]. However, unlike [41], that reveals the policy in clear, achieving attribute-
hiding security in this setting of predicate encryption requires us to introduce
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crucial modifications, which we highlight after the overview of our scheme below.
Furthermore, the security analysis is completely different.

Single-Slot Scheme. We begin by discussing a simplified scheme with L = 1
(i.e., there is a single slot). Below is a description of each algorithm in the scheme.

– Generating the CRS: We first describe the CRS generation. The CRS can
be split into three different parts, a general part, a slot-specific part, and a
key-specific part. We will describe how each part is generated individually.

• General part: First, we generate an asymmetric pairing group of prime
order q, denoted as G = (G1,G2,GT, q, g1, g2, e). Then, we sample
α, β, γ ←$ Zq and set h = gβ

1 , Z = e(g1, g2)α. (We will need γ for the
multi-slot scheme, which we describe later.)

• Slot-specific part: We associate each slot with a set of group elements, for
this case we sample t ←$ Zq and set A = gt

2 and B = gα
2 Aβ = gα+βt

2 .
• Key-specific part: We also associate a group element to each component

of the key vector, plus the secret key. To do this, for each w ∈ [n + 1], we
sample uw ← Zq and set Uw = guw

1 .
In the end, we set the CRS to be:

crs =
(G, Z, h,A,B, {Uw}w∈[n+1]

)
.

– Generating keys: To compute a new pair of public/secret keys, we sample
a non-zero secret key sk ←$ Zq and set pk = U−sk

n+1. Note that we are concep-
tually treating the secret key as one more element of the predicate vector.
This is an important structural difference with respect to [41].

– Key Aggregation: Since we only have one slot, given pk and crs, and a
predicate vector (or key) x = (x1, . . . , xn), we set the master public key as:

mpk =

(
G, h, Z, {Uw}w∈[n+1], pk ·

n∏
w=1

U−xw
w

)
.

– Encryption: To encrypt a message m ∈ GT with respect to a non-zero
attribute vector y = (y1, . . . , yn) ∈ Z

n+

q , and the master public key mpk, we
create a ciphertext that has two components, a message-embedding compo-
nent, and a key-slot-embedding component.

• Message embedding: We sample s ←$ Z
∗
q , and set C1 = m · Zs, C2 = gs

1.
• Key-slot embedding: First, we sample r, z ←$ Zq \ {0}. Then, we set

C3,w = hyw·r+s · U−z
w (∀w ∈ [n]), C3,n+1 = hs · U−z

n+1, and

C3,n+2 = hs · pk−z
n∏

w=1

Uz·xw
w .

The final ciphertext will be (C1, C2, {C3,w}w∈[n+1]).



Registered (Inner-Product) Functional Encryption 105

– Decryption: Before describing the actual decryption, let us check the intu-
ition behind each element of the ciphertext. The first component C1 = m ·Zs

is just a masking of the message with a random power of Z from the CRS.
Consider B from crs, and the ciphertext components C1 and C2, and observe:

C1

e(C2, B)
=

m · e (g1, g2)
α·s

e (g1, g2)
α·s · e (g1, g2)

sβt
=

m

e (hs, A)
.

Thus, to recover the message, it suffices to recompute e(hs, A). Note that hs

is already present in some form in the C3,∗ components. We can partition
C3,∗ terms into three different groups, and see how hs appears in each one:

1. For all w ∈ [n], we have C3,w = hs · hyw·r · U−z
w . In this case, there are extra

terms yw · r as well as Uw present in the ciphertext. However, since x and
y are orthogonal (otherwise decryption fails), we can eliminate these extra
terms by raising each C3,w to the power of xw for w ∈ [n] and compute their
product. Thus, we will have:

n∏
w=1

Cxw
3,w =

n∏
w=1

hxw·s · hxw·yw·r ·
n∏

w=1

U−z·xw
w

= hs·∑n
w=1 xw · hr·∑n

w=1 xw·yw︸ ︷︷ ︸
=1

·
n∏

w=1

U−z·xw
w .

Therefore, we are left with two terms hs·∑n
w=1 xw and

∏n
w=1 U−z·xw

w .
2. For w = n+1, we have C3,n+1 = hs ·U−z

n+1, where the term hs is masked with
U−z

n+1.
3. For w = n + 2, we have C3,n+2 = hs · pk−z∏n

w=1 Uz·xw
w = hs · Uz·sk

n+1 ·∏n
w=1 Uz·xw

w .
Multiplying together the remaining components we obtain:

C3,n+2 · Csk
3,n+1 ·

n∏
w=1

Cxw
3,w = hs · hs·sk · hs·∑n

w=1 xw = hs·(1+sk+
∑n

w=1 xw).

The decryptor can now raise hs·(1+sk+
∑n

w=1 xw) to the power of (1 + sk +∑n
w=1 xw)−1 to get hs. Once hs is obtained, it can be paired with A, available

from crs, to decrypt the message.

Multi-slot Scheme. To gain an intuition on how our scheme handles multiple
slots, we describe a toy example where L = 2, i.e., we are in the two-slot setting.
Notice that one trivial generalization is to individually generate public keys as
before, and concatenate them into the master public key. However, this approach
will not work, since we want the master public key size to be independent of the
number of slots. Instead, we expand the slot-specific components in the CRS to
A1, B1 (for slot 1) and A2, B2 (for slot 2), which are generated in the same way as
A,B in the one-slot setting, but using independent random elements t1, t2 ←$ Zq
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in generating A1, A2. We will also need to link the slots to the keys, so that we
can use the slot in the key-generation algorithm. For this, instead of generating
only one set of {Uw}w∈[n], we generate them with respect to both slots

{Uw,1 = g
uw,1
1 }w∈[n+1] and {Uw,2 = g

uw,2
1 }w∈[n+1]

where the elements {uw,i}i∈{1,2} are chosen independently and uniformly at
random. Accordingly, in the key generation we can set

pk1 = U−sk1
n+1,1 and pk2 = U−sk2

n+1,1

and we aggregate the keys as

{Ûw = Uw,1 · Uw,2}w∈[n+1] and Ûn+2 = pk1 · pk2 ·
n∏

w=1

U
−xw,1
w,1

n∏
w=1

U
−xw,2
w,2

where x1 and x2 are the chosen keys. One can encrypt using the new Û values
instead of U , however, once we try to decrypt and expand the corresponding
equations, we realize that many terms will not cancel out as before. For example,
if a message is encrypted for slot 1, during decryption we will have,

∏
w∈[n]

C
xw,1
3,w =

∏
w∈[n]

h(yw·r+s)·xw,1 ·
n∏

w=1

U
−z·xw,1
w,1 ·

n∏
w=1

U
−z·xw,1
w,2

Csk1
3,n+1 = hs·sk1 · U−z·sk1

n+1,1 · U−z·sk1
n+1,2

C3,n+2 = hs · Uz·sk1
n+1,1 · Uz·sk2

n+1,2 ·
n∏

w=1

U
z·xw,1
w,1

n∏
w=1

U
z·xw,2
w,2

where the terms in blue can be canceled out using a similar multiplication trick
as before. However, the terms U−z·sk1

n+1,2 , Uz·sk2
n+1,2,

∏
w∈[n] U

−z·xw,1
w,2 and

∏n
w=1 U

z·xw,2
w,2

cannot be canceled as they do not appear anywhere else, and further we assume
the decryptor only knows sk1, but not sk2. We can circumvent this issue by
introducing some “cross-terms” into the CRS, and use them in the aggregation
to compute helper secret keys that enables the decryptor (holding sk1 and x1)
to cancel such terms. We create these terms such that they include both slot-
specific and key-specific parts. Intuitively, they bind each slot to other slots and
keys together. For slots i, j ∈ [2] where i �= j and key indices w ∈ [n + 1], we
define these terms as:

Wi,j,w = A
uj,w

i .

We add {Wi,j,w}i�=j∈[2],w∈[n+1] to the CRS as:

crs =
(

G, Z, h, {Ai, Bi}i∈[2] ,
{

{Uw,i} , {Wi,j,w}i�=j

}
i,j∈[2],w∈[n+1]

)
.

In addition, we will let the user publish {W ski
j,i,n+1}i∈{1,2},j �=i in their respective

public keys, to enable the other users to cancel out the desired cross terms, and
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publish in the ciphertext an additional element C4 = gz
1 , to be paired with the

W ’s in order to compute the correct terms.
The above scheme is correct but unfortunately insecure. At a high level, the

problem is that the adversary can pair C4 with wrong elements and generate
unintended relations between z and other components, in the exponent. To pre-
vent this, instead of putting gz

1 directly in the ciphertext, we introduce an extra
component Γ = gγ

1 , γ ←$ Zq in the CRS, and set C4 = Γz. The only other modi-
fication that we must apply is the generation of the CRS itself, where for slots
i, j ∈ {1, 2} with i �= j, and key indices w ∈ [n + 1], we define:

Wi,j,w = A
uj,w/γ
i .

This forces a (possibly malicious) decryptor to pair C4 only with the elements
Wi,j,w and remove the additional cross-terms described above. The rest of the
construction remains the same. See Sect. 6 for more details.

Proof Sketch. We prove the above slotted RIPE scheme secure in the generic
bilinear group model (GGM). Recall that in the GGM, the adversary is supplied
with handles to the corresponding group elements from the scheme. Further,
it can also learn handles to arbitrary linear combinations of existing and new
elements (in the same group Gt, t ∈ {1, 2,T}) via the group oracles it is provided
with. Additionally, since we are in the bilinear setting, the adversary also gets
access to the pairing oracle that allows it to learn handles referring to the product
of any two terms from the source groups G1 and G2. However, the only crucial
information it can actually learn in this whole interaction is via the zero-tests
that work again only in GT.

Our formal multi-slot RIPE scheme in Sect. 6 introduces several variables
with different combinations of indices. To argue indistinguishability in a conve-
nient way between subsequent hybrids in the proof, we first switch from the GGM
to the symbolic group model (SGM) via the Schwarz-Zippel lemma. In particu-
lar, the SGM allows us to represent all the terms, that the adversary can learn
in the security game, as multivariate polynomials (in respective groups) from a
ring of variables. The heart of the proof relies on arguing properties of the coef-
ficients of these polynomials that correspond to successful zero-tests, which aids
in proving indistinguishability directly. In particular, these claims set in while
proving attribute hiding by switching the challenge attribute from y0 to y1 in
the ciphertext elements C3,w ∀w ∈ [n + 2], and helps in arguing the following:

1. Coefficients of such polynomials formed by pairing terms C3,w ∈ G1 with any
element in G2, except Ai, i ∈ [2], must be all zero.

2. Such a coefficient vector must be orthogonal to yb for b ∈ {0, 1}, and in
particular, either be a constant multiple of the vector x̃i = (xi, ski), i ∈ [2] or
be all zero.

The claim in Item 1 follows from observing that the monomials formed sym-
bolically (in the exponent) when pairing C3,w with anything in G2 (except A1
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or A2) are all linearly independent and do not cancel out. Item 2 follows from
two observations. The first one is that the randomness r (appearing as an inde-
pendent symbolic term, but only in the components C3,w’s) can only cancel
out in zero-tests when the coefficients are orthogonal to yb. The second one
follows additionally from linear independence of some specific symbolic terms
and observing further that the vector of first n + 1 coefficients can be expressed
as a constant multiple of x̃i. Overall, these claims ensure that the only non-
trivial adversarial queries can be for vectors lying in the span of both registered
and valid predicates. The rest of the proof follows from the admissibility of the
adversary, and by reusing these claims. We refer to Theorem 6 for more details.

Comparison with the Slotted RABE of [41]. Our slotted RIPE scheme
from prime-order pairings (in Sect. 6) shares some similarities at a high level with
the slotted RABE from composite-order pairings by Hohenberger et al.[41]. For
instance, the message-embedding mechanism in both schemes are same, which is
by masking the message with the randomness in the term e (hs, Ai). (This is also
a standard technique in many other pairing-based schemes.) The use of “slot”-
based framework to embed users’ keys is also similar, but only at the level of a
blueprint. In particular, that is where the similarity ends. More specifically, the
way slots and attributes are “glued” together in our scheme is fundamentally dif-
ferent: in [41], the ciphertext has two specific components, an attribute-specific
component and a slot-specific one, where one party can decrypt a message if it
manages to succeed to decrypt the slot-specific component and the attribute-
specific component simultaneously. But in our scheme, the slot and attribute
elements are entwined in the same ciphertext component. In essence, we con-
ceptually treat the secret key as “one more dimension” in the predicate vector,
whereas the scheme in [41] uses a separate machinery that takes care of the key
component. Further, unlike [41] which reveals the policy in the ciphertext, we
carefully ensure attribute hiding by multiplying a randomizer r ∈ Z

+
q to the

attribute y. As a result, we achieve totally different functionalities and stronger
security notions. Finally, our scheme supports vectors from Z

n+

q where q is a λ-bit
prime and n denotes supported the vector length. As stated in [41, Section 7.2],
this enables our scheme to support a large attribute universe in contrast to the
pairing-based RABE in [41], that only supports a small attribute universe.

2.2 (Unbounded Users) Slotted RFE from iO

As a feasibility result, we show (slotted) RFE for all circuits based on indistin-
guishability obfuscation (iO) [13] and (succinct) somewhere statistically binding
hash functions (SSB) [42,50]. In particular, we generalize the techniques from
Hohenberger et al. [41] to get a slotted RFE from iO (which can be lifted to RFE
with the powers-of-two trick). Below is a brief overview of this slotted RFE.

The CRS is set as the SSB hash key hk, and users’ keys are generated
through a PRG PRG and a seed s (i.e., (pk, sk) = (PRG(s), s)). To aggregate
((pki, fi))i∈[L], the KC computes a Merkle tree hash h = Hash(hk, ((pki, fi))i∈[L])
and sets mpk = (hk, h). The helper secret key hski (of the i-th slot) is essen-
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tially the SSB opening πi for the i-th (hashed) block (pki, fi). A cipher-
text c (encrypting m) is simply the obfuscation C̃ of a circuit Ch,m that, on
input (i, pki, fi, πi, ski), returns fi(m) if the following two conditions are sat-
isfied: πi is a valid opening for the i-th block (pki, fi) and (pki, ski) is a valid
key-pair. Decryption works using ski and hski = πi to evaluate C̃ on input
(i, pki, fi, πi, ski). The scheme supports the function class P/poly. Compactness
of parameters is evident from SSB succinctness. Due to a poly-logarithmic over-
head from the powers-of-two trick, the final RFE can support an arbitrary num-
ber of users by setting L = 2λ. The registration runtime remains linear in the
current/effective number of registered users at the time of registration. We pro-
vide more details in our full version [25].

2.3 On Function Privacy in (Slotted) RFE

By definition, RFE allows users to sample their own keys and functions. Thus, the
notion of function-privacy, that is typically considered in the setting of (secret-
key) FE [21,55], does not make much sense from this perspective. However, one
can still define function-privacy w.r.t. any other registered or unregistered party.
In more detail, in the case of RFE, a user choosing its own keys and functions
may want to hide its function from any party including the KC. Capturing this
requires a mild change in the RFE syntax, where the function can be input to
the KGen algorithm instead of RegPK and also require that the generated user
key-pair is tied to this function. The KC gets access of only the users’ public

Table 1. Comparing known registered encryption schemes in terms of efficiency and
assumptions. We only consider worst-case time complexity. For schemes supporting an
unbounded (resp. bounded) number of users, L denotes the current number of regis-
tered (resp. the maximum number of supported) users. We omit λ to simplify the table,
e.g. for k ∈ N, O(k) and poly(log k) respectively denote k·poly(λ) and poly(λ, log k) etc.
U (from [41]) denotes the attribute space supported by the corresponding scheme. F
denotes the function space supported by our schemes (each function f ∈ F of our RIPE

is an n-length vector from Z
n+

q ). Above, BB is an abbreviation for “black-box”.

Reference Type CRS size
Keygen
runtime

Registration

key runtime
Master

public key size

Helper

dec. key size # Updates
Unbounded

users BB Assumptions

[29] IBE O(1) O(1) poly(log L) poly(log L) poly(log L) O(log L) ✓ ✗ iO + SSB

[29] IBE O(1) O(1) O(L) poly(log L) poly(log L) O(log L) ✓ ✗ CDH/LWE

[30] Anon. IBE O(1) O(1) poly(log L) poly(log L) poly(log L) O(log L) ✓ ✗ CDH/LWE

[39] IBE O(1) O(1) poly(log L) poly(log L) poly(log L) O(log L) ✓ ✗ CDH/LWE

[23] IBE O(1) O(1) poly(log L) O(
√

L) poly(log L) O(log L) ✓ ✗ CDH/LWE

[35]
IBE

O(1)-size ciphertexts
O(

√
L) O(

√
L) O(

√
L) O(

√
L) O(

√
L) O(

√
L) ✗ ✓

Pairings of

Prime Order

[35]
IBE

O(log L)-size ciphertexts
O(

√
L) O(

√
L) O(

√
L log L) O(

√
L log L) O(log L) O(log L) ✗ ✓

Pairings of

Prime Order

[24] IBE poly(log L) poly(log L) O(L) poly(log L) poly(log L) O(log L) ✓ ✓ LWE

[41]

ABE

small attribute space U
LSSS policies

L2 · poly(|U|, log L) L · poly(|U|, log L) L · poly(|U|, log L) |U| · poly(log L) |U| · poly(log L) O(log L) ✗ ✓
Pairings of

Composite Order

[41]

ABE

large attribute space U
arbitrary policies

O(1) O(1) O(L) O(1) O(1) O(log L) ✓ ✗ iO + SSB

Ours §6
Inner-Product PE

large function space F
n-size vectors

n · L2 · poly(log L) L · poly(log L) n · L2 · poly(log L) n · poly(log L) n · poly(log L) O(log L) ✗ ✓

Pairings of

Prime Order

+ GGM

Ours [25]

FE

large function space F
arbitrary functions

O(1) O(1) O(L) O(1) O(1) O(log L) ✓ ✗ iO + SSB
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keys to aggregate and generate mpk, hsk.6 The security definition would need to
change accordingly. In particular, it would now additionally require each public
key to computationally hide the function tied to it.

All our schemes can be modified to satisfy this syntax. For example, our slot-
ted RIPE from pairings can be easily adapted to this notion since the extended
key x̃i = (xi, ski, 1) is embedded in the public-key pki for slot i ∈ [2] as
pki =

∏n+1
w=1 U

−x̃w,i

w,i . This holds similarly for the cross-terms as well. Using a
NIZK, the users can prove that they always choose a non-zero vector as its pred-
icate. It is also easy to verify the same for our slotted RFE from iO. However,
for simplicity, we avoid formalizing this in our definitions and schemes. Both our
formal constructions from Sect. 6 and the one based on iO are thus in the stan-
dard registered setting (i.e., without function-privacy). Building more efficient
function-private RFE for specific functions is left as a future work.

3 Related Work

The first paper [29] defined and built RIBE from iO and SSB hashes; this was
later improved by Garg et al. [30] building RIBE (with the same level of effi-
ciency) from standard assumptions (e.g., from CDH/LWE) even for anonymous
IBE. Subsequent work on RIBE focused on adding verifiability [39], proving
lower bounds on the number of decryption updates [49], improving on practical
efficiency of the garbled circuit construction [23], providing effcient black-box
construction from pairings with O(

√
L) mpk [35]. More recently, Döttling et

al. [24] obtain a lattice-based RIBE with the sizes of crs,mpk, hsk as well as key
generation runtime growing as poly(log L), with a O(L) registration runtime and
O(log L) number of updates. Very recently, [41] extended RIBE to the setting
of ABE. They built a (black-box) registered ABE (RABE) scheme supporting
a bounded number of users and linear secret sharing schemes as access policies
from assumptions on composite-order pairing groups. However, their (pairing-
based) scheme, the size of CRS and runtime of aggregate and keygen depend
linearly on the size of attribute space |U|. The dependence on |U| allows their
scheme to only support a small attribute space (e.g., |U| ∈ poly(n)). Notably, our
(paring-based) RIPE does not suffer from this limitation since our parameters
depend only on the vector length n = n(λ) (see Table 1); so we can support a
exponential size function class F .

In [39], the authors further introduced an RABE extension to more gen-
eral access structures. Specifically, they proposed a universal definition of
registration-based encryption in which the algorithms take as an additional input
the description of an FE scheme (although no construction was presented). Such
algorithms compile the standard algorithmic behavior of the FE scheme into
6 In such a setting (rogue) users can try to register arbitrary functions of their choice

which would allow them to learn arbitrary information about encrypted messages. To
prevent this, one can restrict the function class at setup meaningfully (e.g., excluding
trivial functions like identity). Any user wanting to register its public key would then
need to prove the validity of its chosen function w.r.t. this class of functions.
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a (verifiable) registration-based one. However, our tailored notion for the func-
tional encryption setting is more natural and follows directly from the RABE
definition.

Finally, we also mention a related work on dynamic decentralized FE [22]
(DDFE), where there is no trusted authority and users sample their own keys.
DDFE, as a notion, posits other general (and albeit unrelated) requirements like
(conditional) aggregation of labelled data which comes from different users using
seperate FE instances. However, a crucial difference from the registered setting,
is that in DDFE there is no requirement on the master public key size, which
can be as large as the number of registered users. This is a major challenge (and
arguably the defining feature) of all registered settings. Chotard et al.[22] also
built IP-DDFE, that outputs the inner-product value 〈x,y〉, while our scheme is
for the more challenging orthogonality-test predicate (with two-sided security).

Open Problems. We view our work as an initial first step in the world of regis-
tered FE, however many open problems remain. For example, a natural question
is if registered FE can be obtained generically from any compact, polynomially-
hard FE. Another interesting direction is to design schemes for specialized func-
tion classes from weaker assumptions. Finally, a technical open problem is to
prove our pairing-based RIPE scheme (or some modification thereof) secure in
the standard model.

4 Organization

We organize the rest of the paper as follows. The formal definitions of both
RFE and slotted RFE extend the same for the RABE setting from [41] in a
straighforward way. Hence, we provide the RFE definitions in our full version
[25]. Our main focus in this paper is on building (slotted) registered IPE. Thus,
we first define slotted RIPE formally in Sect. 5.1 and extend it to slotted RFE
for the case of general functions in our full version [25]. Our slotted RIPE scheme
from bilinear pairings is provided in Sect. 6. We demonstrate our implementa-
tion results of the above slotted RIPE scheme in Sect. 7. Our slotted RFE for
general functions and unbounded users, built on iO (plus an SSB hash and a
PRG), generalizes a construction from [41] and is presented in [25]. Further, the
transformation from slotted RFE to RFE extending the generic compiler from
[41] is again provided in our full version [25].

5 Preliminaries

Notations. We write [n] = {1, 2, . . . , n} and [0, n] = {0}∪ [n]. Capital bold-face
letters (such as X) are used to denote random variables, small bold-face letters
(such as x) to denote vectors, small letters (such as x) to denote concrete values,
calligraphic letters (such as X ) to denote sets, serif letters (such as A) to denote
algorithms. All of our algorithms are modeled as (possibly interactive) Turing
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machines. For a string x ∈ {0, 1}∗, we let |x| be its length; if X is a set or a list,
|X | represents the cardinality of X . When x is chosen uniformly in X , we write
x ←$ X . If A is an algorithm, we write y ←$ A(x) to denote a run of A on input
x and output y; if A is randomized, y is a random variable and A(x; r) denotes a
run of A on input x and (uniform) randomness r. An algorithm A is probabilistic
polynomial-time (PPT) if A is randomized and for any input x, r ∈ {0, 1}∗ the
computation of A(x; r) terminates in a polynomial number of steps (in the input
size). We write C(x) = y to denote the evaluation of the circuit C on input x

and output y. For any integer k ∈ N, we denote Z
k+

q = Z
k
q \ {0k} as the set of

all non-zero k-size vectors over Zq, and Z
+
q = Zq \ {0}.

Negligible Functions. Throughout the paper, we denote the security param-
eter by λ ∈ N and we implicitly assume that every algorithm takes λ as input.
A function ν(λ) is called negligible in λ ∈ N if it vanishes faster than the inverse
of any polynomial in λ, i.e. ν(λ) ∈ O(1/p(λ)) for all positive polynomials p(λ).

5.1 Slotted Registered Inner-Product Encryption

We now present the slotted RIPE definitions below. Let n = n(λ) be a polyno-
mial in λ and q be a prime. A slotted RIPE with message space M and attribute
space U is composed of the following polynomial-time algorithms:

Setup(1λ, 1n, 1L) : On input the security parameter 1n, the vector length n, and
the number of slots L, the randomized setup algorithm outputs a common
reference string crs.

KGen(crs, i) : On input the common reference string crs and a slot index i ∈ [L],
the randomized key-generation algorithm outputs a public key pki and a
secret key ski.

IsValid(crs, i, pki): On input the common reference string crs, a slot index i ∈ [L],
and a public key pki, the deterministic key validation algorithm outputs a
decision bit b ∈ {0, 1}.

Aggr(crs, ((pki,xi))i∈[L]) : On input the common reference string crs and a L
pairs (pk1,x1), . . . , (pkL,xL) each composed of a public key pki and its cor-
responding (non-zero) vector xi ∈ U , the deterministic aggregation algo-
rithm outputs the master public key mpk and a L helper decryption keys
hsk1, . . . , hskL.

Enc(mpk,y,m): On input the master public key mpk, a (non-zero) attribute
vector y ∈ U , and a message m ∈ M, the randomized encryption algorithm
outputs a ciphertext c.

Dec(sk, hsk, c): On input a secret key sk, an helper decryption key hsk, and a
ciphertext c, the deterministic decryption algorithm outputs a message m ∈
M ∪ {⊥}.

Completeness, Correctness, and Efficiency. Completeness of slotted RIPE
says that honestly generated public keys for a slot index i ∈ [L] are valid with
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respect to the same slot i, i.e., IsValid(crs, i, pki) = 1. Similarly, correctness
says that honest ciphertexts correctly decrypt (to functions of the plaintext)
under honestly generated and aggregated keys. For compactness and efficiency,
we extend the requirements of RFE to the slotted RIPE setting. The formal
definitions are provided in our full version [25]. Below we define the security of
slotted RIPE formally.

Definition 1 (Security of slotted RIPE). Let ΠsRIPE = (Setup,KGen,
IsValid,Aggr,Enc,Dec) be a slotted RIPE scheme with message space M and
attribute space U . For any adversary A, define the following security game
GamesRIPEΠsRIPE,A(λ, b) with respect to a bit b ∈ {0, 1} between A and a challenger.

• Setup phase: Upon getting an attribute length n and a slot count L from
the adversary A, the challenger samples crs ←$ Setup(1λ, 1n, 1L) and gives crs
to A. The challenger also initializes a counter ctr = 0, a dictionary D, and a
set of slot indices CL = ∅ to account for corrupted slots.

• Pre-challenge query phase: A can issue the following queries.
– Key-generation query: A specifies a slot index i ∈ [L]. As a response,

the challenger increments ctr = ctr+1, samples (pkctr, skctr) ←$ KGen(crs,
i), updates the dictionary as D[ctr] = (i, pkctr, skctr) and replies with
(ctr, pkctr) to A.

– Corruption query: A specifies an index c ∈ [ctr]. In response, the chal-
lenger looks up the tuple D[c] = (i′, pk′, sk′) and replies with sk′ to A.

• Challenge phase: For each i ∈ [L], A specifies a tuple (ci,xi, pk
∗
i ) where:

– either ci ∈ [ctr] that refers to a challenger-generated key from before which
it associates with a non-zero predicate xi ∈ U : in this case, the challenger
looks up D[ci] = (i′, pk′, sk′) and halts if i �= i′. Else, the challenger sets
pk∗

i = pk′. Further, if A issued a corrupt query before on ci, the challenger
adds i to CL.

– or ci = ⊥ that refers to a self-generated (and corrupt) secret key for an
arbitrary non-zero predicate xi ∈ U : in this case, the challenger aborts if
IsValid(crs, i, pk∗

i ) = 0. Else if pk∗
i is valid, it adds the index i to CL.

Additionally, A sends a chal-
lenge pair (y0,m0), (y1,m1) ∈ U × M. In response, the challenger computes(
mpk, (hski)i∈[L]

)
= Aggr

(
crs, (pk∗

i ,xi)i∈[L]

)
and c∗ ←$ Enc(mpk,yb,mb), and

replies with c∗ to A.
• Output phase: A returns a bit b′ ∈ {0, 1} which is also the output of the

experiment.

A is called admissible if the challenge pair (y0,m0), (y1,m1) satisfy the follow-
ing:

– ∀xi ∈ U with i ∈ CL, it holds that:

either 〈xi,y0〉 = 〈xi,y1〉 = 0 or both〈xi,y0〉, 〈xi,y1〉 �= 0, and

– if ∃xi ∈ U with i ∈ CL such that 〈xi,y0〉 = 〈xi,y1〉 = 0, then m0 = m1.
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We say that ΠsRIPE is secure if for all polynomials n = n(λ), L = L(λ) and for
all PPT and admissible A in the above security hybrid, there exists a negligible
function negl(·) such that for all λ ∈ N,∣∣∣Pr[GamesRIPEΠsRIPE,A(λ, 0) = 1] − Pr[GamesRIPEΠsRIPE,A(λ, 1) = 1]

∣∣∣ = negl(λ).

Remark 1. We argue in our full version [25] that for general RFE, security with-
out post-challenge queries imply security with post-challenge queries in the slot-
ted setting as well. This is because Aggr is deterministic and does not require
any secret. Hence, an adversary can simulate the post-challenge queries itself.

6 Slotted Registered IPE from Prime-Order Pairings

Bilinear Groups. Our slotted RIPE is based on asymmetric bilinear groups.
We use cyclic groups of prime order q with an asymmetric bilinear map endowed
on them. We assume a PPT algorithm GroupGen that takes a security parameter
λ as input and outputs G = (G1,G2,GT, q, g1, g2, e), where G1,G2,GT are cyclic
groups of prime order q, g1 (resp. g2) is random generator in G1 (resp. G2) and
e : G1 × G2 → GT is a non-degenerate bilinear map.

We assume the message space M = GT for our scheme. Our slotted RIPE
supports an a-priori fixed number of slots L = L(λ), i.e., the scheme supports a
bounded number of slots. Below, we describe our formal scheme.

Construction 1. The slotted RIPE scheme ΠsRIPE = (Setup,KGen, IsValid,
Aggr,Enc,Dec) with message space M = GT and attribute space U = Z

n+

q is
as follows:

Setup(1λ, 1n, 1L): On input the security parameter λ, the attribute size n and
the number of slots L, compute G = (G1,G2,GT, q, g1, g2, e) ←$ GroupGen(1λ)
and generate the common reference string as follows.
1. Sample α, β, γ ←$ Z

+
q and set h = gβ

1 , Z = e(g1, g2)α,Γ = gγ
1 , n′ = n + 1.

2. For each index i ∈ [0, L], do the following:
1. for each w ∈ [n′], sample uw,i ←$ Zq and set Uw,i = g

uw,i

1 .
2. for a slot index i > 0, sample ti ←$ Zq and set Ai = gti

2 , Bi = gα
2 ·Aβ

i .
3. for a slot index i > 0, ∀w ∈ [n′], j ∈ [0, L] \ {i}, set Wi,j,w = A

uw,j/γ
i .

3. Sample x̃0 = (x̃1,0, . . . , x̃n,0, r̃0) ←$ Z
n′+
q . Set sk0 = x̃0 and

T0 =

(
n∏

w=1

U
−x̃w,0
w,0

)
·U−r̃0

n′,0 , W̃i,0 =

(
n∏

w=1

W
x̃w,0
i,0,w

)
·W r̃0

i,0,n′ , ∀i ∈ [L].

Also, set pk0 =
(

T0,
{

W̃i,0

}
i∈[L]

)
.

Finally, output the common reference string

crs = (G, Z, h, Γ, {Ai, Bi}i∈[L] , {{Uw,i}i∈[0,L] , {Wi,j,w}i∈[L],j∈[0,L]\{i}}w∈[n′], pk0)



Registered (Inner-Product) Functional Encryption 115

KGen(crs, i): On input the common reference string crs and a slot index i ∈ [L],
do the following.
1. Parse the common reference string

crs =
(
G, Z, h,Γ, {Ai, Bi}i∈[L] ,{

{Uw,i}i∈[0,L] , {Wi,j,w}i∈[L],j∈[0,L]\{i}
}

w∈[n′]
, pk0

)
.

2. Sample r̃i ←$ Z
+
q and pick elements Un′,i and {Wj,i,n′}j∈[L]\{i} from crs.

3. Compute Ti = U−r̃i

n′,i and W̃j,i = W r̃i

j,i,n′ ,∀j ∈ [L] \ {i}.
4. Output pki =

(
Ti, {W̃j,i}j∈[L]\{i}

)
and ski = r̃i.

IsValid(crs, i, pki): On input the common reference string crs, a slot index i ∈ [L]
and a purported public key pki =

(
Ti, {W̃j,i}j∈[L]\{i}

)
, the key-validation

algorithm first affirms that each of the components in pki is a valid group ele-

ment, namely:
(

Ti

?∈ G1 \ {1G1} ∧ W̃j,i

?∈ G2 \ {1G2}, ∀j ∈ [L] \ {i}
)

where 1Gt denotes the identity in Gt for t ∈ [2]. If the checks pass, it picks
the elements Un′,i and {Wj,i,n′}j∈[L]\{i} from crs and checks further that

e
(
T−1

i ,Wj,i,n′
) ?= e

(
Un′,i, W̃j,i

)
,∀j ∈ [L] \ {i}.

If all checks pass, it outputs 1. Else, it outputs 0.
Aggr(crs, ((pki,xi))i∈[L]): On input the common reference string crs and a set

of L public keys pki =
(
Ti, {W̃j,i}j∈[L]\{i}

)
together with vectors xi =

(x1,i, . . . , xn,i) ∈ Z
n+

q (representing predicates fxi
), compute the following.

1. Parse the common reference string

crs =
(
G, Z, h,Γ, {Ai, Bi}i∈[L] ,{

{Uw,i}i∈[0,L] , {Wi,j,w}i∈[L],j∈[0,L]\{i}
}

w∈[n′]
, pk0

)
.

2. Fuse the predicate vector xi into pki by updating each of its components
as

Ti =

(
n∏

w=1

U
−xw,i

w,i

)
· Ti , W̃j,i =

(
n∏

w=1

W
xw,i

j,i,w

)
· W̃j,i,∀j ∈ [L] \ {i}

and set pki =
(

Ti,
{

W̃j,i

}
j∈[L]\{i}

)
. Further, parse pk0 as follows:

pk0 =
(

T0,
{

W̃j,0

}
j∈[0,L]\{0}

)
.

3. For each w ∈ [n′], compute Ûw =
∏

i∈[0,L] Uw,i and Ûn′+1 =
∏

i∈[0,L] Ti.
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4. Compute the cross-terms as follows. For each slot index i ∈ [L]:
(a) for each w ∈ [n′], compute Ŵw,i =

∏
j∈[0,L]\{i} Wi,j,w.

(b) compute Ŵn′+1,i =
(∏

j∈[0,L]\{i} W̃i,j

)−1

.
5. Output the master public key and the slot-specific helper secret keys as

mpk =
(

G, h, Z,Γ,
{

Ûw

}
w∈[n′+1]

)
, and

hski =
(

G, i,xi, Ai, Bi,
{

Ŵw,i

}
w∈[n′+1]

)
,∀i ∈ [L].

Enc(mpk,y,m): On input the master public key mpk, a vector y = (y1, . . . , yn) ∈
Z

n+

q (as an attribute) and a message m ∈ GT, the ciphertext is computed as:

1. Parse mpk =
(

G, h, Z,Γ,
{

Ûw

}
w∈[n′+1]

)
.

2. Set ỹ = (y, 0, 0) ∈ Z
n′+1
q and sample s, r, z ←$ Z

+
q . Also, parse ỹ =

(ỹ1, . . . , ỹn′+1).
3. Message embedding: set C1 = m · Zs and C2 = gs

1.
4. Attribute and Slot embedding: for each w ∈ [n′ + 1], set C3,w = hỹw·r+s ·

Û−z
w . Set C4 = Γz.

5. Output the ciphertext c =
(
C1, C2, {C3,w}w∈[n′+1], C4

)
.

Dec(sk, hsk, c): Parse the input secret key sk, helper secret key hsk and ciphertext
c as sk = r̃i, and

hsk =
(

G, i,xi, Ai, Bi,
{

Ŵw,i

}
w∈[n′+1]

)
, c =

(
C1, C2, {C3,w}w∈[n′+1], C4

)
,

for some i ∈ [L]. Let x̃i = (x̃1,i, . . . , x̃n′+1,i) = (xi, r̃i, 1) ∈ Z
n′+1
q ,Xi =∑n′+1

w=1 x̃w,i ∈ Zq. Compute and output the following:

C1

e(C2, Bi)
·
⎡
⎣n′+1∏

w=1

{
e
(
C

x̃w,i

3,w , Ai

)
· e
(
C4, Ŵ

x̃w,i

w,i

)}⎤⎦
X−1

i

.

Remark: In the setup algorithm in our scheme, we introduce a dummy slot
“0” and pre-register an honestly generated dummy key pk0. This slot does not
impact the security definition in any way because the associated secret key sk0

is thrown away once the one-time setup is executed. This modification is done
only for a simpler analysis of the security proof in the GGM.

Theorem 3 (Completeness of Construction 1). The slotted RIPE scheme
ΠsRIPE with message space M = GT and attribute space U = Z

n+

q from Con-
struction 1 is complete.

Theorem 4 (Compactness and Efficiency of Construction 1). The slotted
RIPE scheme ΠsRIPE with message space M = GT and attribute space U = Z

n+

q

from Construction 1 satisfies the following properties:
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– |crs| = n · L2 · poly(λ), |mpk| = n · poly(λ), |hsk| = (n · poly(λ) + O(log L))
– Runtime(KGen) = O(L) · poly(λ), Runtime(IsValid) = L · poly(λ)
– Runtime(Aggr) = n · L2 · poly(λ)

We refer to the full version [25] for the proofs of Theorems 4 and 3.

Theorem 5 (Perfect Correctness of Construction 1). The slotted RIPE
scheme ΠsRIPE with message space M = GT and attribute space U = Z

n+

q

from Construction 1 is perfectly correct.

Proof. Fix some λ, attribute size n = n(λ), a slot count L = L(λ) and an index
i ∈ [L]. Let crs ←$ Setup(1λ, 1n, 1L) and (pki, ski) ←$ KGen(crs, i) be defined as
in the scheme from Construction 1. Take any set of public keys

{
pkj

}
j∈[L]\{i},

where IsValid(crs, j, pkj) = 1. Therefore, we have

pkj =
(

Tj ,
{

W̃�,j

}
�∈[L]\{j}

)
,∀j ∈ [L] \ {i} , skj = r̃j for some r̃j ∈ Z

+
q .

For each j ∈ [L], let xj ∈ Z
n+

q be the predicate vector associated to pkj and
let x̃j = (xj , r̃j , 1). Further, let mpk and hski be as computed by Aggr(crs,
((pkj ,xj))j∈[L]). Now, note that in the Dec algorithm, the computation associ-
ated to the message components yield

C1

e(C2, Bi)
=

m · Zs

e
(
gs
1, g

α
2 · Aβ

i

) =
m · e (g1, g2)

α·s

e (g1, g2)
α·s · e (g1, g2)

sβti
=

m

e (g1, g2)
sβti

(2)

Now observe that for any vector xi ∈ Z
n+

q for some i ∈ [L] and an attribute
y ∈ Z

n+

q with 〈xi,y〉 = 0, it also holds that 〈x̃i, ỹ〉 = 〈xi,y〉 + 〈r̃i, 0〉 + 1 · 0 = 0.
For brevity, we set up the notations gT = e (g1, g2) and the discrete logarithm
as DL(K) = k, where K = gk

t for any k ∈ Zq (i.e., irrespective of any group
type t ∈ {1, 2,T}) for the rest of the proof. To ensure correctness with the rest
of decryption above, it is thus enough to show that

n′+1∏
w=1

{
e
(
C

x̃w,i

3,w , Ai

)
· e
(
C4, Ŵ

x̃w,i

w,i

)}
= gsβtiXi

T (3)

so that Dec yields the message m ∈ GT. We will analyze individual pairing
products in the above form separately. Before that we note a few things about
the public keys after they are fused with the predicate vectors during Aggr. For
any i ∈ [L], j ∈ [0, L], we have
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Tj =

⎛
⎝ ∏

w∈[n]

U
−xw,j

w,j

⎞
⎠ · U

−r̃j

n′,j =
∏

w∈[n′]

g
−uw,j x̃w,j

1 = g
− ∑

w∈[n′] uw,j x̃w,j

1

=⇒ DL(Tj) = −
∑

w∈[n′]

uw,j x̃w,j ,

W̃i,j =

⎛
⎝ ∏

w∈[n]

W
xw,j

i,j,w

⎞
⎠ · W

r̃j

i,j,n′ =
∏

w∈[n′]

(
A

uw,j/γ
i

)x̃w,j

= A
1
γ ·∑w∈[n′] uw,j x̃w,j

i = A
−DL(Tj)/γ
i ,

where we redefined x̃n′,0 = r̃0. Further, for any w ∈ [n′] and i ∈ [L], we have:

Ŵ
x̃w,i

w,i =
∏

j∈[0,L]\{i}
W

x̃w,i

i,j,w =
∏

j∈[0,L]\{i}

(
A

uw,j/γ

i

)x̃w,i = A
(x̃w,i·

∑
j∈[0,L]\{i} uw,j)/γ

i

(4)

Defining the first pairing product as θ1 =
∏n′+1

w=1 e
(
C

x̃w,i

3,w , Ai

)
, we have:

θ1 =
n′+1∏
w=1

e

((
hỹw·r+s · Û−z

w

)x̃w,i

, Ai

)

=
n′+1∏
w=1

{
e
(
hr·x̃w,iỹw , Ai

)
· e
(
hs·x̃w,i , Ai

)
· e
(
Û−zx̃w,i

w , Ai

)}

= e
(
hr·∑n′+1

w=1 x̃w,iỹw , Ai

)
· e

(
g

sβ
∑n′+1

w=1 x̃w,i

1 , Ai

)
·

n′+1∏
w=1

e
(
Û−zx̃w,i

w , Ai

)

= e
(
h0, Ai

) · e
(
gsβXi

1 , gti
2

)
·

n′+1∏
w=1

e
(
Û−zx̃w,i

w , Ai

)
= gsβtiXi

T · θ11 · θ12,

where θ11 =
n′∏

w=1

e
(
Û−zx̃w,i

w , Ai

)
and θ12 = e

(
Û−z

n′+1, Ai

)
(recall x̃n′+1,i = 1)

θ11 =
∏

w∈[n′]

e

(
L∏

j=0

U
−zx̃w,i

w,j , Ai

)
=

∏

w∈[n′]

e

((
g

∑L
j=0 uw,j

1

)−zx̃w,i

, gti
2

)

=
∏

w∈[n′]

g
−ztix̃w,i

∑L
j=0 uw,j

T =
∏

w∈[n′]

g
zti(−x̃w,iuw,i)
T ·

∏

w∈[n′]

g
−ztix̃w,i

∑
j∈[0,L]\{i} uw,j

T
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⇒ θ11 = g
ztiDL(Ti)
T · ζ1, where ζ1 =

∏

w∈[n′]

g
−ztix̃w,i

∑
j∈[0,L]\{i} uw,j

T and

θ12 = e
(
Û−z

n′+1, Ai

)
=e

(
L∏

j=0

T −1
j , Az

i

)
=

L∏

j=0

e
(
T −1

j , Az
i

)
=

L∏

j=0

e

⎛

⎝
n′∏

w=1

U
x̃w,j

w,j , Az
i

⎞

⎠

=
L∏

j=0

e
(
g

∑
w∈[n′] uw,j x̃w,j

1 , Az
i

)
=

L∏

j=0

e

(
g

−DL(Tj)
1 , gzti

2

)
=

L∏

j=0

g
−ztiDL(Tj)
T

= g
−ztiDL(Ti)
T · ζ2, where ζ2 = g

−zti
∑

j∈[0,L]\{i} DL(Tj)
T .

We have θ1 = gsβtiXi
T · (����

g
ztiDL(Ti)
T · ζ1

) ·
(
�����
g

−ztiDL(Ti)
T · ζ2

)
⇒ θ1 = gsβtiXi

T · ζ1 · ζ2

Defining the second pairing product as θ2 =
∏n′+1

w=1 e
(
C4, Ŵ

x̃w,i

w,i

)
, we have:

θ2 =

{
∏

w∈[n′]

e
(
gzγ
1 , Ŵ

x̃w,i

w,i

) }
· e

(
gzγ
1 , Ŵn′+1,i

)
(recall x̃n′+1,i = 1 and C4 = Γz = gzγ)

=

{
∏

w∈[n′]

e

(
gzγ
1 , A

(x̃w,i·∑j∈[0,L]\{i} uw,j)/γ

i

) }
· e

⎛

⎝gzγ
1 ,

⎛

⎝
∏

j∈[0,L]\{i}
W̃i,j

⎞

⎠
−1⎞

⎠

=
∏

w∈[n′]

e

(
gzγ
1 , g

(tix̃w,i·∑j∈[0,L]\{i} uw,j)/γ

2

) }
·

∏

j∈[0,L]\{i}
e

(
gzγ
1 ,

(
A

−DL(Tj)/γ

i

)−1
)

=
∏

w∈[n′]

g
ztix̃w,i·∑j∈[0,L]\{i} uw,j

T ·
∏

j∈[0,L]\{i}
e

(
gzγ
1 , g

tiDL(Tj)/γ

2

)

= ζ−1
1 ·

∏

j∈[0,L]\{i}
g

ztiDL(Tj)
T = ζ−1

1 · g
zti

∑
j∈[0,L]\{i} DL(Tj)

T = ζ−1
1 · ζ−1

2

This completes the proof since

n′+1∏
w=1

{
e
(
C

x̃w,i

3,w , Ai

)
·e
(
C4, Ŵ

x̃w,i

w,i

)}
=θ1 · θ2 = gsβtiXi

T · ζ1 · ζ2 · ζ−1
1 · ζ−1

2 =gsβtiXi

T .

Theorem 6 (Security of Construction 1). The slotted RIPE scheme ΠsRIPE

with message space M = GT and attribute space U = Z
n+

q from Construction 1
is secure in the GGM.

Below, we show that our slotted RIPE scheme ΠsRIPE (Construction 1) is secure
in the generic group model. We start with some notations and definitions for
generic and symbolic group models.
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Generic Bilinear Group Model. Our definitions for generic bilinear group
model is adapted from [4,12]. Let G = (G1,G2,GT, q, g1, g2, e) be a bilinear group
setting, L1,L2,LT be lists of group elements in G1,G2, and GT respectively. Let
D be a distribution over L1,L2,LT. The generic group model for a bilinear
group setting G and a distribution D is described in Fig. 1. In this model, the
challenger first initializes the lists L1,L2,LT by sampling the group elements
according to D, and the adversary receives handles for the elements in the lists.
For t ∈ {1, 2,T}, Lt[h] denotes the h-th element in the list Lt. The handle to this
element is simply the pair (t, h). An adversary A running in the generic bilinear
group model can apply group operations and the bilinear map e to the elements
in the lists. To do this, A has to call the appropriate oracle specifying handles
for the input elements. A also gets access to the internal state variables of the
challenger via handles, and we assume that the equality queries are “free”, in
the sense that they do not count when measuring the computational complexity
A. For t ∈ {1, 2,T}, the challenger computes the result of a query, say δ ∈ Gt,
and stores it in the corresponding list as Lt[pos] = δ where pos is its next empty
position in Lt, and returns to A its (newly created) handle (t, pos). Handles are
not unique (i.e., the same group element may appear more than once in a list
under different handles). As in [4], the equality test oracle in [12] is replaced with
the zero-test oracle ZtT(·) that, on input a handle (t, h), returns 1 if Lt[h] = 0
and 0 otherwise only for the case t = T.

Fig. 1. GGM for bilinear group setting G = (G1,G2,GT, q, g1, g2, e) and distribution D.

Symbolic Group Model. The symbolic group model (SGM) for a bilin-
ear group setting G and a distribution D gives to the adversary the same
interface as the corresponding generic group model (GGM), except that inter-
nally the challenger stores lists of elements from the ring Zq[x1, . . . , xk]
instead of lists of group elements, where {xk}k∈N are indeterminates. The
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Addt(·, ·),Negt(·),Mape(·, ·),ZtT(·) oracles respectively compute addition, nega-
tion, multiplication, and zero tests in the ring. For our proof, we will work
in the ring Zq[x1, . . . , xk, 1/xi] for some i ∈ [k]. Note that any element f ∈
Zq[x1, . . . , xk, 1/xi] can be represented as

f(x1, . . . , xn) =
∑
c∈Zk

ηc

k∏
i=1

xci
i with c = (c1, . . . , ck) ∈ Z

k

using {ηc ∈ Zq}c∈Zk , where ηc = 0 for all but finite c ∈ Z
k. Note that this

expression is unique. We now begin our proof for Theorem 6 below.

Proof. At a high level, we show a sequence of hybrids each of which is a game
between a challenger and a PPT adversary A. In the first (resp., last) hybrid,
the challenger encrypts a pair (yb,mb) corresponding to bit b = 0 (resp., b = 1).
The intermediate hybrids ensure that the distributions in any pair of subsequent
hybrids from the first to the last one are statistically indistinguishable.

Since the proof is in the GGM, w.l.o.g. the challenger simulates all the generic
bilinear group oracle queries for A. In particular, the challenger stores the actual
computed elements in the list Lt based on its group type t ∈ {1, 2,T}. The
handle to an actual element stored in any of these lists are just a tuple (t, pos)
specifying the group type t and its position in the table Lt. Since our scheme
contains several variables, we will refrain from explicitly specifying the handles
to the actual elements for convenience. Further, when we move to the SGM, we
will denote any literal variable v as v and composite terms like v1v2 (resp., v1

v2
) as

v1v2 (resp., v1
v2

) to represent an individual monomial in a (possibly multivariate)
polynomial. For variables denoted with Greek alphabets, say α, β, γ, we represent
their corresponding formal variables as α, β, γ. We also define Zq-span(S) as the
set of Zq-linear combinations of all elements in any set S. Assume A issues an
arbitrary polynomial number Qzt(λ) of queries to its ZtT oracle in each hybrid.

H1(λ) : This is the real scheme corresponding to bit b = 0 in the GGM. In more
detail, the hybrid goes as follows.

• Setup phase: A sends an attribute length n = n(λ) and slot count
L = L(λ) to the challenger, upon which it first initializes ctr = 0, a
dictionary D, and the set CL = ∅ to account for corrupted slots. Next,
it computes G = (G1,G2,GT, q, g1, g2, e) ←$ GroupGen(1λ) and initializes
three tables as Lt[1] = gt,∀t ∈ {1, 2,T}. The challenger prepares a tuple(
G1,G2,GT, q, {(t, 1)}t∈{1,2,T}

)
, where (t, 1) represents the handle to gt,∀t ∈

{1, 2,T}. To allow A to compute the group operations including the bilinear
map e, the challenger also simulates all the oracles Addt,Negt,Mape,ZtT with
implicit access to the lists {Lt}t∈{1,2,T}. It then computes the crs components
as follows:

1. Set n′ = n + 1. Compute h = gβ
1 ,Γ = gγ

1 ∈ G1 and Z = e(g1, g2)α ∈ GT as
in the real Setup algorithm. Update L1 with the elements β, γ and LT with
α respectively.
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2. For each slot index i ∈ [0, L], do the following:
(a) ∀w ∈ [n′], compute Uw,i = g

uw,i

1 ∈ G1 as in the real scheme and update
L1 with uw,i.

(b) ∀i > 0, compute Ai = gti
2 , Bi = gα+β·ti

2 ∈ G2 as in the real scheme and
update L2 with ti, (α + β · ti) in order.

(c) ∀i > 0, w ∈ [n′] and for each j ∈ [0, L] \ {i}, compute Wi,j,w = g
ti·uj,w

γ

2 ∈
G2 as in the real scheme and update L2 with ti·uj,w

γ .

3. For x̃0 = (x̃1,0, . . . , x̃n′,0) ←$ Z
n′+
q , set pk0 =

(
T0,
{

W̃i,0

}
i∈[L]

)
as in the real

scheme. Define u′
0 =

∑n′

w=1 uw,0 · x̃w,0 = −DL(T0) so that

T0 = g
u′
0

1 ∈ G1 , W̃i,0 = g
ti·u′

0
γ

2 ∈ G2,∀i ∈ [L].

Update L1 with u′
0 and L2 with

{
ti·u′

0
γ

}
i∈[L]

in order.

4. Set

crs =
(
G, Z, h,Γ, {Ai, Bi}i∈[L] ,{

{Uw,i}i∈[0,L] , {Wi,j,w}i∈[L],j∈[0,L]\{i}
}

w∈[n′]
, pk0

)
.

5. Return to A a tuple crs′ that includes
(
G1,G2,GT, q, {(t, 1)}t∈{1,2,T}

)
along

with the handles to all elements in the same order as they are arranged in
the crs above.

• Pre-challenge query phase: A can issue key generation queries or corrup-
tion queries in this phase.

1. Consider the key-generation queries first. Upon getting a slot index i ∈ [L],
the challenger updates ctr = ctr + 1, sets xctr

i = xi and does the following:

(a) Sample r̃ctri ←$ Z
+
q and compute pkctri =

(
T ctr

i ,
{

W̃ ctr
j,i

}
j∈[L]\{i}

)
as in

KGen.
(b) Note that the element T ctr

i ∈ G1 from pkctri has the following structure:

T ctr
i = g

−r̃ctr
i un′,i

1 , where skctri = r̃ctri is the secret key.

Even given the handle to un′,i, A cannot compute a handle for DL(T ctr
i ) =

−r̃ctri un′,i on its own. Hence, the challenger updates L1 with DL(T ctr
i ).

(c) Further, each term in
{

W̃ ctr
j,i ∈ G2

}
j∈[L]\{i}

has the following structure:

W̃ ctr
j,i = W

r̃ctr
i

j,i,n′ = g

tju
n′,i
γ ·r̃ctr

i

2

For reasons similar to Item (b) above, the challenger updates L2 with
each element individually from the set

{
r̃ctri · tjun′,i

γ

}
j∈[L]\{i}.
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(d) Define pkctr = pkctri , skctr = skctri and pk′
ctr as a sequence of handles to all

elements in the same order as they are arranged in pkctr.
(e) Return the tuple (ctr, pk′

ctr) to A and update D[ctr] = (i, pkctr, skctr).
2. When A sends c ∈ [ctr] issuing a corruption query, the challenger returns sk′

to A where D[c] = (i′, pk′, sk′).

• Challenge phase: In this phase, A specifies the following challenge informa-
tion:

{(ci,xi, pk
∗
i )}i∈[L] and ((y0,m0), (y1,m1)) ∈ (Zn+

q × GT)2.

Preprocessing the challenge information. For each i ∈ [L], the challenger checks
that xi �= 0n and does the following:

1. If ci ∈ [ctr], it checks D[ci] = (i′, pk′, sk′). If i �= i′, it halts. Else, it sets
pk∗

i = pk′. Further, if A issued a corruption query for ci before, it updates
CL = CL ∪ {i}.

2. If ci = ⊥, pk∗
i represents a corrupt secret key generated by A itself. Hence, it

parses pk∗
i and halts if IsValid(crs, i, pk∗

i ) = 0.7 Else, it updates CL = CL ∪{i}.

Computing key aggregation. The challenger then computes

(
mpk, (hski)i∈[L]

)
= Aggr

(
crs, ((pk∗

i ,xi))i∈[L]

)
, where

mpk = (G, g, h, Z, Γ, {Ûw}w′∈[n′+1]), and {hski = (G, i, Ai, Bi, {Ŵw,i}w∈[n′+1])}i∈[L].

Computing the challenge ciphertext. The challenger now uses mpk and
the pair (y0,m0), and generates c∗ ←$ Enc(mpk,y0,m0) where c∗ =(
C1, C2, {C3,w}w∈[n′+1], C4

)
.

1. Note that C1 = m0 · e(g1, g2)αs ∈ GT and C2 = gs
1 ∈ G1. Accordingly, the

challenger updates LT with αs and L1 with s respectively.
2. With ỹ0 = (y0, 0, 0) = (y0

1 , . . . , y0
n, 0, 0), note that the elements {C3,w ∈

G1}w∈[n′+1] have the following structure:

for all w ∈ [n], C3,w = hy0
w·r+s · Û−z

w = g
rβy0

w+sβ−z·uw

1

for w = n′, C3,n′ = g
rβ·0+sβ−z·u′

n
1 = g

sβ−z·un′
1

for w = n′ + 1, C3,n′+1 = grβ·0+sβ
1 · Û−z

n′+1 = gsβ
1 ·

L∏
i=0

T−z
i

= gsβ
1 ·

L∏
i=0

g
z

∑n′
w=1 x̃w,i·uw,i

1

7 By Definition 1, A is supposed to send well-formed keys that passes the IsValid(crs, ·, ·)
test. Hence, from now on we do not mention it any more, but assume the challenger
checks it implicitly.
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= gsβ
1 ·

L∏
i=0

g
z·u′

i
1 = g

sβ+z·u′
0−z

∑L
i=1 DL(Ti)

1

whereuw =
L∑

i=0

uw,i ,and un′ =
L∑

i=0

un′,i.

Accordingly, the challenger updates L1 with the elements {rβy0
w + sβ − z ·

uw}w∈[n], (sβ − z · un′), and
[
sβ + z · u′

0 − z ·∑L
i=1 DL(Ti)

]
in order.

3. Since C4 = gγz
1 ∈ G1, it updates L1 with zγ.

Group oracle queries. Since Aggr is deterministic, A is able to compute(
mpk, (hski)i∈[L]

)
on its own. In the GGM, A is able to compute handles for

the elements in mpk and {hski}i∈[L]. To this end, it queries the appropriate
group oracles to generate such handles as follows:

1. A only needs to compute the handles for {Ûw}w∈[n′+1] to complete its infor-
mation about mpk. Note that ∀w ∈ [n′], Ûw =

∏L
i=0 Uw,i = guw

1 , where
uw =

∑L
i=0 uw,i. Hence, ∀w ∈ [n′], A invokes the Add1 oracle L times itera-

tively on the handles in L1 for {uw,i}i∈[0,L] and gets a handle for uw. Further,
to get a handle for Ûn′+1 =

∏L
i=0 Ti, it has to first a get a handle for each Ti

that is fused with the predicate xi. Note the structure of each Ti after Step
(2) in Aggr:

Ti = g
∑n′

w=1 −x̃w,i·uw,i

1 = g
∑n

w=1(−xw,i·uw,i)
1 × g

(−r̃i·un′,i)
1 ∈ G1.

Given a handle for the second multiplicand, it is easy to note that the first
one is publicly computable using Neg1 and Add1 oracles. Once A obtains the
handles for {Ti}i∈[L], it can call Add1 oracle on these handles to get the same
for Ûn′+1.

2. A only needs to compute the handles for {Ŵw,i}w∈[n′+1] to get complete
information about hski for each i ∈ [L]. Note that ∀w ∈ [n′], Ŵw,i =∏

j∈[0,L]\{i} Wi,j,w = g
ti·(uw−uw,i)/γ
2 , since (uw − uw,i) =

∑
j∈[0,L]\{i} uw,j .

It is again easy to see that a handle for such an element can be com-
puted by calling the Add2 oracle L − 1 times iteratively on the handles in
L2 for

{ ti·uw,j

γ

}
j∈[0,L]\{i}. Further, note that to get a handle for Ŵn′+1,i =∏

j∈[0,L]\{i} W̃−1
i,j , it has to first a get a handle for each W̃j,i that is fused with

the predicate xi. Note the structure of each W̃j,i after Step (2) in Aggr:

W̃j,i =

(
n∏

w=1

W
x̃w,i

i,j,w

)
· W r̃i

i,j,n′ = g
∑n

w=1
tjuw,i

γ ·xw,i

2 × g

(
tju

n′,i
γ ·r̃i

)

2 ∈ G2.

Again, given a handle for the second multiplicand, the same can be computed
publicly for the entire product using handles for {Wi,j,w}. Once A obtains the
handles to each element in {W̃j,i}j∈[L]\{i}, it can call Add2 oracle on these
handles to get the same for Ŵn+1,i.
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3. Finally, it defines mpk′ and each hsk′
i as sequences of handles to all elements

(except i,xi) in the same order as arranged in mpk and each hski,∀i ∈ [L].

• Output phase: A outputs a bit b′ ∈ {0, 1}.

For ease of presentation, in Table 2 we show all unit and composite terms gen-
erated in the scheme itself, and stored in the respective lists.

Table 2. The above table shows all terms from the scheme for which handles are stored
in the respective lists Lt, ∀t ∈ {1, 2,T}. Assume A issues some arbitrary polynomial
number, Qk, of key queries in the pre-challenge query phase (some of which may be
corrupted). The table lists all the terms for each of these keys {pkc}c∈[Qk] received by
A in the second row. Hence, these terms are also indexed with superscripts for the key
query count c ∈ [Qk] (along with the slot index, say i ∈ [L], for which A asked the key).
The terms corresponding to mpk and hski are not shown in the table, since the handles
for these are publicly computable by A using the group oracles. Note that such terms
correspond to keys for all the registered L slots (possibly all of which may be corrupted
or even adversarially generated). Hence, the individual variables in each of those terms
in mpk and hski are independent of the counter variable c ∈ [Qk] respectively. In c,
observe that we also have (DL(m) + αs) in LT, where DL(m) ∈ Zq is w.r.t. gT.

L1 L2 LT

crs

g1 , β , γ

u′
0 =

n′∑

w=1

uw,0x̃w,0,

{

uw,i

}

i∈[0,L],w∈[n′]

g2 ,
{

ti , α + βti

}

i∈[L]

tiu
′
0

γ
,

{
tiuw,j

γ

}

i∈[L]
j∈[0,L]\{i}

w∈[n′]

gT

α

{pkc}
c∈[Qk]

{
−r̃c

i un′,i

}

c∈[Qk](
for {T c

i }c∈[Qk]

)

{
r̃c

i · tjun′,i

γ

}

j∈[L]\{i}
c∈[Qk](

for
{

W̃ c
j,i

}

j∈[L]\{i},c∈[Qk]

) –

c

s (for C2) ,

zγ (for C4) ,

rβy0
w + sβ − zuw

(for C3,w, ∀w ∈ [n]),

sβ − zun′ (for C3,n′) ,

where un′ =

L∑

i=0

un′,i

sβ − zDL(T ) (for C3,n′+1) ,

where DL(T ) =
L∑

i=0

DL(Ti)

– DL(m) + αs
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H2(λ) : In this hybrid, we switch to the SGM partially. Namely, the interac-
tion between challenger and A remains exactly as it was in H1(λ), but now
the challenger stores formal variables for all the terms from Table 2 in the
respective lists Lt,∀t ∈ {1, 2,T}. Thus, all the handles A receives refer to
multivariate polynomials from the following ring:

ζ =Zq

[
α, β, γ, u′

0, {uw,i}i∈[L],w∈[n′], {r̃ci}i∈[L],c∈[Qk]
,

{ti}i∈[L],
1
γ
, s, r, z, {yw}w∈[n′+1]

]
.

Concretely, A gets handles to formal polynomials from Lt for each t ∈ {1, 2,T},
where:

1. LT = {1, α,DL(m) + αs}.
2. L1 = Lcrs

1 ∪ Lkey
1 ∪ Lc

1, where
(a) Lcrs

1 =
(
1, β, γ, u′

0, {uw,i}i∈[0,L],w∈[n′]
)
,

(b) Lkey
1 =

(
{−r̃ciun′,i}c∈[Qk]

)
for some i ∈ [L], and

(c) Lc
1 =

(
s, zg,

{
rbyw + sb − z

∑L
i=0 uw,i

}
w∈[n]

, sb − zun′ , sb − zDL(T)
)

.

3. L2 = Lcrs
2 ∪ Lkey

2 , where

(a) Lcrs
2 =

(
1, {ti, a + bti}i∈[L],

tiu
′
0

g
,
{

tiuw,j
g

}
i∈[L],j∈[0,L]\{i},w∈[n′]

)
, and

(b) Lkey
2 =

({
r̃citjun′,i

g

}
j∈[L]\{i},c∈[Qk]

)
for some i ∈ [L].

However, when A issues any zero-test query via ZtT oracle, the challenger replaces
the formal variables with their corresponding elements from Zq. In this case, if
the variable is not assigned a value in Zq, it samples the corresponding value
from the same distribution as it did in H1(λ). However, once a value is assigned
to a variable, it is fixed throughout the rest of H2(λ). We show in [25] that
H1(λ) ≡ H2(λ).

Given the tuple P = (L1,L2,LT), we define C(LT) = LT ∪ {V1 · V2 | ∀V1 ∈
L1, V2 ∈ L2}. Basically, it is the set of all monomials from ζ with variables in
GT that A can compute querying Mape on the handles it received for elements
in L1,L2. We estimate the size of C(LT) as follows. Note that we have |C(LT)| =
|LT| + |L1| · |L2| where |LT| = 3,

|L1| = |Lcrs
1 | +

∣∣∣Lkey
1

∣∣∣+ |Lc
1|

≤ {(L + 1)n′ + 4} + LQk + (n + 4) = L(n + Qk + 1) + 2n + 9, and

|L2| = |Lcrs
2 | +

∣∣∣Lkey
2

∣∣∣
≤ {2 + 2L + n′L2} + {L(L − 1)Qk} = L2(n + Qk + 1) − L(Qk − 2) + 2.
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There are several variables in ζ and several terms in L1,L2. Hence, for brevity,
we do not state all the elements of C(LT) explicitly with all possible cross com-
binations of the monomials from L1,L2. However, it is easy to see by inspection
that the maximal total degree of each term in C(LT) is d = 7 corresponding to
the term

[
rbyw · r̃citjun′,i

g

]
for any w ∈ [n′], i ∈ [L], j ∈ [0, L] \ {i}, c ∈ [Qk]. We

also note that any handle submitted by A to the ZtT oracle during its interaction
refers to a polynomial f ∈ ζ as

f
(
α, β, γ, u′

0, {uw,i}i∈[L],w∈[n′], {r̃ci}i∈[L],c∈[Qk]
,

{ti}i∈[L],
1
γ
, s, r, z, {yw}w∈[n′+1]

)
=

∑
θ∈C(LT)

ηΘΘ,

where the coefficients {ηΘ ∈ Zq}Θ∈C(LT) can be computed efficiently. Further,
since all the monomials in C(LT) are distinct, the coefficients ηΘ are unique.

H3(λ) : In this hybrid, all queries to ZtT oracle are answered using formal vari-
ables. Namely, for any ZtT query on a handle to a polynomial f ∈ ζ, the
challenger returns 1 if:

f
(
α, β, γ, u′

0, {uw,i}i∈[L],w∈[n′], {r̃ci}i∈[L],c∈[Qk]
,

{ti}i∈[L],
1
γ
, s, r, z, {yw}w∈[n′+1]

)
= 0.

We show in [25] that H2(λ) ≈ H3(λ).

H4(λ) : In this hybrid, the challenge ciphertext computes an encryption of m0

with respect to y1. That is, everything remains as it is in H3(λ) except that
the challenger generates

c∗ = (C1, C2, {C3,w}w∈[n′+1], C4) ←$ Enc(mpk,y1,m0).

Arguing indistinguishability between H3(λ) and H4(λ) is the crux of this
proof. We provide this analysis in our full version [25]. From here on, the chal-
lenger moves to H6(λ) directly if m0 = m1. Else if m0 �= m1, it still moves to
H6(λ), but via the next hybrids.

H5,1(λ) : In this hybrid, Zs ∈ GT is replaced with U ←$ GT.
H5,2(λ) : In this hybrid, the challenge ciphertext encrypts m1 instead of m0.
H5,3(λ) : In this hybrid, U is changed to the honestly computed Zs again.
H6(λ) : In this hybrid, the challenger moves to GGM from the symbolic setting

of SGM. This is the real scheme corresponding to bit b = 1 in the GGM.

Hybrid Indistinguishability. Due to space constraints, we defer all the formal
proofs for the indistinguishability of hybrids in our full version [25].
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Final pairing-based RIPE scheme. By combining the slotted RIPE scheme
of Construction 1 and the (“powers-of-two”) transformation provided in our full
version [25] , we obtain a secure registered IPE with an extra O(log L) factor in
all its compactness and efficiency measures.

7 Implementation and Benchmarks

We developed a Python prototype8 of our sRIPE scheme from Sect. 6 with the
BLS12-381 elliptic curve for pairings, which we implemented via the petrelic
Python wrapper [47] around RELIC [10]. This configuration allows each element
in G1,G2,GT to be represented using 49, 97 and 384 bytes respectively. We
obtained the benchmarks below on a personal computer with an Intel Core i7-
10700 3.8GHz CPU and 128GB of RAM running Ubuntu 22.04.1 LTS with kernel
5.15.0-58-generic. Exponentiations in G1 (resp., G2) and each pairing took 0.13
(resp., 0.18) milliseconds and 0.68 milliseconds on average on our machine.

Benchmarks. We provide benchmarks in Fig. 2, showing the sizes of mpk and
the |crs| as well as the execution times of setup, aggregate, encrypt and decrypt
in relation to parameters L and n. For encryption and decryption, we executed

Fig. 2. Benchmarks for L ∈ {100, 200, · · · , 1000} and n ∈ {10, 20, · · · , 100}
8 https://anonymous.4open.science/r/slotted-ripe-DD12/.

https://anonymous.4open.science/r/slotted-ripe-DD12/
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the algorithms 100 times for each pair (L, n), and then computed the average
runtime. The setup and aggregate were run once for each unique pair of (L, n).
We did not plot the sizes of the ciphertexts, but these can be determined deter-
ministically based on n as |c| = 580 + 49n bytes. The size of the helper secret
key for each user is |hsk| = 340+97n bytes. Note that the setup and aggregation
time grows acutely with L and n. Improving the efficiency of our sRIPE scheme
is left as a future work.
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10. Aranha, D.F., Gouvêa, C.P.L., Markmann, T., Wahby, R.S., Liao, K.: RELIC is an
Efficient LIbrary for Cryptography (2020). https://github.com/relic-toolkit/relic

11. Attrapadung, N., Hanaoka, G., Yamada, S.: Conversions among several classes of
predicate encryption and applications to ABE with various compactness tradeoffs.
In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 575–601.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6 24

12. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption
for quadratic functions with applications to predicate encryption. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 67–98. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63688-7 3

13. Barak, B., et al.: On the (im) possibility of obfuscating programs. J. ACM (JACM)
59(2), 1–48 (2012)

14. Barthe, G., Fagerholm, E., Fiore, D., Mitchell, J.C., Scedrov, A., Schmidt, B.:
Automated analysis of cryptographic assumptions in generic group models. J.
Cryptol. 32(2), 324–360 (2019)

15. Bitansky, N.: Verifiable random functions from non-interactive witness-
indistinguishable proofs. J. Cryptol. 33(2), 459–493 (2020)

16. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: Guruswami, V. (ed.) 56th FOCS, pp. 171–190. IEEE Computer
Society Press (2015)

17. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

18. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16
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Abstract. Decentralized Multi-Client Functional Encryption (DMCFE)
is a multi-user extension of Functional Encryption (FE) without rely-
ing on a trusted third party. However, a fundamental requirement for
DMCFE is that the decryptor must collect the partial functional keys
and the ciphertexts from all clients. If one client does not generate the
partial functional key or the ciphertext, the decryptor cannot obtain
any useful information. We found that this strong requirement limits
the application of DMCFE in scenarios such as statistical analysis and
machine learning.

In this paper, we first introduce a new primitive named Robust Decen-
tralized Multi-Client Functional Encryption (RDMCFE), a notion gener-
alized from DMCFE that aims to tolerate the problem of negative clients
leading to nothing for the decryptor, where negative clients represent
participants that are unable or unwilling to compute the partial func-
tional key or the ciphertext. Conversely, a client is said to be a positive
one if it is able and willing to compute both the partial functional key and
the ciphertext. In RDMCFE scheme, the positive client set S is known
by each positive client such that the generated partial functional keys
help to eliminate the influence of negative clients, and the decryptor can
learn the function value corresponding to the sensitive data of all positive
clients when the cardinality of the set S is not less than a given thresh-
old. We present such constructions for functionalities corresponding to
the evaluation of inner products.
1. We provide a basic RDMCFE construction through the technique of

double-masking structure, which is inspired by the work of Bonawitz
et al. (CCS 2017). The storage and communication overheads of the
construction are small and independent of the length of the vector.
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However, in the basic construction, for the security guarantee, one
set of secret keys can be used to generate partial functional keys for
only one function.

2. We show how to design the enhanced construction so that partial
functional keys for different functions can be generated with the
same set of secret keys, at the cost of increasing storage and com-
munication overheads. Specifically, in the enhanced RDMCFE con-
struction, we protect the mask through a single-input FE scheme and
a threshold secret sharing scheme having the additively homomor-
phic property.

Keywords: Functional Encryption · Decentralization · Inner
Product · Robustness

1 Introduction

As an innovative paradigm of encryption, Functional Encryption (FE) [22],
allows users to perform computations on data while ensuring data confiden-
tiality. Specifically, when the FE scheme supports the function family F , given
a ciphertext Enc(x) and a functional key skf for a function f ∈ F , the user
can solely acquire the value f(x) while nothing else about x. Nowadays, FE is no
longer just a useful tool for plenty of theoretical applications [11,12]. The growing
practicality of FE schemes has sparked a surge in demand for their application
across diverse contexts, including but not limited to machine learning [35,38].

Multi-Client Functional Encryption (MCFE) [28] is the multi-user version of
FE. Specifically, in the setting of MCFE, an authority generates (msk, {eki}i∈[n]),
where msk is the master secret key, which is used to compute the functional key
skf . The authority distributes the encryption key eki to each client and sends skf

to the decryptor. The client with the encryption key eki generates the ciphertext
Enc(xi) from the sensitive data xi. Given the functional key skf and the cipher-
texts Enc(x1), . . . ,Enc(xn), the decryptor can only learn the value f(x1, . . . , xn)
while nothing else about {xi}i∈[n]. MCFE has many practical applications involv-
ing multiple data sources, where the decryption result is a joint function on the
sensitive data coming from different parties [25,33].

Decentralized Multi-Client Functional Encryption (DMCFE) [25] represents a
distributed adaptation of MCFE, eliminating the need for the trusted third party.
In DMCFE, all clients interactively generate the encryption keys {eki}i∈[n] and
the secret keys {ski}i∈[n]. For the function f , the client with the secret key ski

generates the partial functional key ski,f . The user with n partial functional
keys {ski,f}i∈[n] computes the functional key skf to decrypt the ciphertexts
Enc(x1), . . . ,Enc(xn). That is, the functional key is no longer generated inde-
pendently by the master secret key msk, but by n secret keys {ski}i∈[n] in a
decentralized manner.

Compared to MCFE, DMCFE can better protect the confidentiality of each
client’s data, since the authority having the master secret key can recover the
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data of any encryptor [37]. However, a fundamental requirement of DMCFE is
that the decryptor must collect the partial functional keys and the ciphertexts
from all clients. If a client does not generate the partial functional key or the
ciphertext, the decryptor cannot obtain any useful information. We found that
this strong requirement limits the application of DMCFE in scenarios such as
statistical analysis and machine learning. For example, the work [35] uses the
DMCFE scheme to measure the traffic density at each underground station, aim-
ing to detect congestion and predict potential increases in traffic density. Using
the DMCFE scheme, each client locally encrypts its location data, which is the
value 0 or 1 (1 indicates that the client has visited the station), and provides
a partial functional key corresponding to the vector y of 1s (the vector length
is equal to the number of clients). Then, the central server collects the partial
functional keys and the ciphertexts from all clients and combines all partial
functional keys to generate the functional key. The central server decrypts and
learns the number of clients traveling through that station, i.e., the value 〈x,y〉,
where the vector x indicates which clients have traveled through that station.
However, if a client is unable or unwilling to generate the partial functional key
or the ciphertext due to hardware or personal reasons, which we call the neg-
ative client, the central server cannot obtain the traffic density. Conversely, a
client is said to be a positive one if it is able and willing to generate both the
partial functional key and the ciphertext. We expect that even if the central
server receives only the partial functional keys and the ciphertexts from positive
clients instead of all clients, it can still obtain a traffic density with an error,
which indicates the number of positive clients traveling through that station.
Furthermore, in order to detect the congestion of that station as realistically as
possible, we require that the number of positive clients is not less than a given
threshold. Thus, an interesting question arises naturally:

Can decentralized multi-client functional encryption still work even when
some clients do not generate partial functional keys for the function or encrypt
their sensitive data?

1.1 Our Contributions

This paper gives an affirmative answer to this interesting question. We introduce
a new primitive named Robust Decentralized Multi-Client Functional Encryp-
tion (RDMCFE), which generalizes the notion of DMCFE. In RDMCFE, all
clients interactively generate the encryption keys {eki}i∈[n] and the secret keys
{ski}i∈[n]. For the function f , the positive client with the secret key ski, who
knows the positive client set S, generates the partial functional key ski,f , which
helps to eliminate the influence of negative clients. When the cardinality of the
set S is not less than a given threshold, the decryptor having the partial func-
tional keys from all the positive clients can evaluate the ciphertexts from all the
positive clients.

To present Inner Product RDMCFE (IP-RDMCFE) construction, we first
define two key properties on Inner Product MCFE having special key generation
(Special IP-MCFE), called robust correctness and robust security, which are the
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extensions to traditional correctness and traditional indistinguishability-based
security. Then, we provide two IP-RDMCFE constructions. The first is a basic
construction, in which one set of secret keys can generate the partial functional
keys for only one function. To achieve the reusability of the secret keys, we design
the enhanced construction at the cost of increasing storage and communication
overheads.

1.2 Related Work

All known FE schemes can be roughly grouped into two categories. One is con-
structions that support general functionalities [19,21,28,31], which often depend
on highly strong cryptographic primitives, including multi-linear maps [29] or
indistinguishability obfuscation [30]. Neither of these primitives is currently
instantiable under extensively studied cryptographic assumptions or with effi-
cient building blocks. The other is constructions for specific functionalities,
including linear evaluations [1,2,6,8,13,14,17,24,25] and quadratic functions
[9,10,15,18,27,32,39], which is more important in practice.
Inner Product Functional Encryption. Inner product, a special case of function-
ality, has garnered increased attention due to its widespread use in descriptive
statistics and polynomials, e.g., calculating the weighted average of all com-
ponents of many vectors. Abdalla et al. [1] first constructed an Inner Product
Functional Encryption (IP-FE) scheme. The scheme can be instantiated under
some standard assumptions, such as Learning With Errors (LWE) assumption or
Decisional Diffie-Hellman (DDH) assumption. However, the scheme is limited to
achieving selective security. Later on, Agrawal et al. [14] considered the adaptive
security of IP-FE scheme, and presented IP-FE schemes under the assumptions
of LWE, DDH, and Decisional Composite Residuosity (DCR) respectively.
Multi-input and Multi-client Functional Encryption for Inner Product. Abdalla
et al. [8] first considered the multi-user setting of IP-FE. Building upon the first
IP-FE scheme [1], Multi-Input Functional Encryption (MIFE) scheme specifically
designed for inner product computations in the bilinear groups of prime order.
They proved that the scheme has adaptive security under the k-linear assump-
tion within the standard model. As a generalization of MIFE, Chotard et al. [25]
designed the first Inner Product MCFE (IP-MCFE) scheme by replacing the pub-
lic random number with the hash function. Further research on IP-MCFE has
focused on enhancing security [2,3] or implementing more fine-grained access
control [36].
Decentralized Functional Encryption for Inner Product. Fan et al. [26] introduced
the concept of distributed public key FE, wherein the key generation algorithm
does not output a single functional key, but n shares of the functional key. One
uses each share of the functional key to decrypt the ciphertext Enc(m) and
obtains {si}i∈[n], which can reconstruct the function value f(m). However, this
primitive still needs a trusted third party to set the system and compute the
functional keys, and it does not consider the multi-user setting. Chotard et al.
[25] completely excluded the trusted third party and proposed the concept of
DMCFE. They designed an Inner Product DMCFE (IP-DMCFE) scheme under
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the assumption of Symmetric eXternal Diffie-Hellman (SXDH). Libert et al. [33]
presented an IP-DMCFE scheme under LWE assumption, which is secure in the
standard model. However, it is still subject to the same security restriction as
[25]. Abdalla et al. [3] designed two compilers. The first compiler can convert
any Special IP-MCFE into IP-DMCFE. The second compiler is used to enhance
the security of the IP-DMCFE scheme and is modified in the work [2] to be
compatible with new construction.
Dynamic Decentralized Functional Encryption for Inner Product. Agrawal et al.
[5] defined the concept of Ad Hoc MIFE, in which clients can dynamically join
the system, and functional keys are generated by each client in a decentralized
manner without interaction. In addition, they give not only the feasibility results
for general functions but also the practical structure for inner product. Chotard
et al. [23] introduce the concept of Dynamic Decentralized Functional Encryp-
tion (DDFE), in which clients can also join the system dynamically and do not
need to interact with the trusted third party. In the random oracle model, they
constructed an inner product DDFE scheme under the standard assumption in
prime order groups. Compared to Ad Hoc MIFE, DDFE is more general due to its
key generation algorithm, which does not necessitate a predetermined group of
clients. However, these two primitives only consider the dynamic entry of users,
and do not consider the dynamic exit of users and the issue of robustness for
negative clients.

1.3 Organization

The subsequent sections of this paper are structured in the following manner.
First, we give high-level overviews and intuitions of our results in Sect. 2, and
introduce the necessary preliminaries in Sect. 3. Then, we formalize the syntax
and security notion of RDMCFE in Sect. 4, define the robust correctness and
robust security for Special IP-MCFE and construct two IP-RDMCFE constructions
in Sect. 5. Finally, we wrap up this paper in Sect. 6.

2 Technical Overview

In this section, we present high-level overviews of our methods and techniques.
We first analyse how existing work constructs IP-DMCFE scheme from Special
IP-MCFE, and then describe how a new property can be introduced on the Special
IP-MCFE to construct the desired IP-RDMCFE scheme.

IP-MCFE allows the user to decrypt the value
∑

i∈[n]〈xi,yi〉 from cipher-
texts Enc(x1), · · · ,Enc(xn) through the functional key sky corresponding to
y = (y1, · · · ,yn). As a special case of IP-MCFE, the master secret key of Spe-
cial IP-MCFE [3] can be divided into individual keys, i.e., msk = {eki}i∈[n]. In
addition, the functional key of Special IP-MCFE is generated by performing local
function calculations and the sum of inner-products on yi and eki, denoted by
sky = ({s(eki,yi)}i∈[n],

∑
i∈[n]〈u(eki),yi〉). Here, s(·, ·) and u(·) are two publicly

accessible functions.
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Intuitively, IP-DMCFE can be constructed from Special IP-MCFE by letting
the client i generate the partial functional key dki,y = (s(eki,yi), 〈u(eki),yi〉)
using his/her key eki. However, this solution is not secure because the par-
tial functional keys for different functions can be combined in any way, i.e., it
suffers the mix-and-match attack. In the IP-DMCFE scheme [3], which is con-
structed from Special IP-MCFE, noise vectors {vi}i∈[n] satisfying

∑
i∈[n] vi = 0

are applied to address the security issue. More precisely, each client has the
secret key ski = (eki,vi) and the corresponding partial functional key is gen-
erated as dki,y = (s(eki,yi), 〈u(eki),yi〉 + 〈vi,y〉). The functional key sky =
({s(eki,yi)}i∈[n],

∑
i∈[n]〈u(eki),yi〉) of Special IP-MCFE is generated from n par-

tial functional keys through the algorithm KeyComb, because
∑

i∈[n]〈vi,y〉 =
〈∑i∈[n] vi,y〉 = 0.

Our IP-RDMCFE constructions are also constructed from Special IP-DMCFE
but in a different way. There are two steps deployed in our constructions.

– First, without considering the security against mix-and-match attack, we
found that the definition of Special IP-MCFE naturally implies a property
called robust correctness. In this property, if we let the client i generate
the partial functional key dki,y = (s(eki,yi), 〈u(eki),yi〉) using his/her key
eki, then any subset clients S of [n] can generate the functional key sk′

y =
({s(eki,yi)}i∈S ,

∑
i∈S〈u(eki),yi〉) to evaluate their ciphertexts {Enc(xi)}i∈S

and obtain
∑

i∈S〈xi,yi〉, which is the goal of IP-RDMCFE when |S| ≥ t.
– Second, we found that the mix-and-match attack exists due to the fact that

each client in S generates 〈u(eki),yi〉 independently for the decryptor to
aggregate into

∑
i∈S〈u(eki),yi〉 as part of the functional key sk′

y. To solve this
security issue, the decryptor cannot receive each individual 〈u(eki),yi〉 but the
aggregated

∑
i∈S〈u(eki),yi〉 only. Unfortunately, we cannot directly borrow

the idea in [3] by using the noise vectors {vi}i∈[n] satisfying
∑

i∈[n] vi = 0
because it is only suitable for S = [n]. To realize the secure IP-RDMCFE, we
introduce two new methods such that any subset clients S (|S| ≥ t) of [n]
can independently compute dki,y for the decryptor who is not allowed to get
each individual 〈u(eki),yi〉 but only their aggregation

∑
i∈S〈u(eki),yi〉.

In the following two subsections, we introduce two different methods for the
secure generation of partial functional key dki,y.

2.1 The Basic IP-RDMCFE Construction

In the basic IP-RDMCFE construction, the secure generation of the partial func-
tional key dki,y is achieved by the first method, which is inspired by the work
[20]. We protect 〈u(eki),yi〉 through the technique of double-masking structure,
since one mask will be revealed in Dec while the other mask can still provide
protection. Specifically, the positive client i computes

mki = 〈u(eki),yi〉 +
∑

j∈[n],i>j

vi,j −
∑

j∈[n],i<j

vi,j + ri,
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where vi,j is generated with the private key ski and public key pkj through
underlying Non-Interactive Key Exchange (NIKE) scheme, and the mask ri is
selected randomly in Setup. The positive clients show the decryptor the shares
of masks ri of all positive clients, such that masks ri of all positive clients can be
eliminated. In addition, the positive clients show the decryptor the shares of ski

of all negative clients, such that the decryptor can compute {vi,j}j∈[n] through
the NIKE scheme and obtain the masks wi of all negative clients, where

wi =
∑

j∈[n],i>j

vi,j −
∑

j∈[n],i<j

vi,j .

Specifically, each client i shares the private key ski and the mask ri with all
clients through underlying t-out-of-n secret sharing scheme, such that the secret
key of client i is ski = (eki, {skj,i}j∈[n], ri, {rj,i}j∈[n], {vi,j}j∈[n]), where eki is the
part of master secret key of underlying Special IP-MCFE, skj,i is the i-th share
of skj from the client j, and rj,i is the i-th share of rj from the client j. The par-
tial functional key of client i is dki,y = (s(eki,yi),mki, {skj,i}j∈[n]\S , {rj,i}j∈S),
where {skj,i}j∈[n]\S is the i-th shares of skj of all negative clients, {rj,i}j∈S is
the i-th shares of masks rj of all positive clients. As long as the decryptor gets
at least t partial functional keys dki,y, he/she can not only reconstruct {rj}j∈S ,
but also reconstruct {skj}j∈[n]\S to compute {vi,j}i∈[n]\S,j∈[n] and {wi}i∈[n]\S .
Essentially, ∑

i∈S

〈u(eki),yi〉 =
∑

i∈S

mki −
∑

i∈S

ri −
∑

i∈S

wi.

Since
∑

i∈[n] wi = 0, the decryptor only obtains
∑

i∈S〈u(eki),yi〉 by computing

∑

i∈S

〈u(eki),yi〉 =
∑

i∈S

mki −
∑

i∈S

ri +
∑

i∈[n]\S

wi.

The above construction still suffers the mix-and-match attack because mki is
only related to yi of vector y independently. To solve this security issue, inspired
by the transformation from Special IP-MCFE to IP-DMCFE scheme [3], we replace
vi,j with PRG(vi,j) to compute inner product, i.e.,

mki = 〈u(eki),yi〉 +
∑

j∈[n],i>j

〈PRG(vi,j),y〉 −
∑

j∈[n],i<j

〈PRG(vi,j),y〉 + ri,

where PRG(·) is a pseudo-random generator that outputs a vector on the input
vi,j .

The basic IP-RDMCFE construction is risky if the secret keys {ski}i∈[n] were
used to generate the partial functional keys for different functions. Specifically,
in an instantiation of the basic construction, when the decryptor gets the partial
functional keys of one function, he/she can learn either the mask ri or the private
key ski, which is part of the secret key. If the partial functional keys for a new
function were generated by the same set of secret keys, the above double-masking
structure would be degraded to a single-masking structure, which would threaten



Robust Decentralized Multi-client Functional Encryption 141

the security of the construction. Therefore, in the basic construction, one set of
secret keys can only be used for one function and cannot be reused for other
functions, i.e., the basic construction is not reusable.

2.2 The Reusable IP-RDMCFE Construction

In the reusable IP-RDMCFE construction, the secure generation of the partial
functional key dki,y is achieved by the second method. This solution includes
the following two steps.

– First, to achieve the reusability of the mask, we let the decryptor not receive
each individual mask ri but the aggregated mask

∑
i∈S ri only, which can

be achieved through underlying t-out-of-n secret sharing scheme having addi-
tively homomorphic property. More precisely, using at least t values

∑
j∈S rj,i,

where rj,i is the i-th share of rj , the decryptor can reconstruct the sum∑
j∈S rj . Since the decryptor cannot reconstruct each individual mask in

Dec, the single-masking structure is sufficient, i.e.,

mki = 〈u(eki),yi〉 + 〈ri,y〉,

where the mask was extended the form of vector to compute the inner product
to resist the mix-and-match attack. To generate the partial functional key
dki,y, the secret key of client i contains eki, ri and {rj,i}j∈[n], where rj,i is
the i-th share of rj in vector form.

– Second, the sum
∑

i∈S ri should not be obtained by the decryptor in plain-
text form, because it is possible to learn individual masks by collecting sums
for different sets S. To solve this issue, an IP-FE scheme was used to encrypt∑

j∈S rj,i as cti and generate the functional key ski,y for the vector y such
that the decryptor learns 〈∑j∈S rj,i,y〉 only. Then we set the partial func-
tional key of client i as dki,y = (s(eki,yi),mki, ski,y, cti). As long as the
decryptor gets at least t partial functional keys dki,y, he/she can reconstruct
〈∑j∈S rj ,y〉 from {〈∑j∈S rj,i,y〉}i∈S through underlying t-out-of-n secret
sharing scheme having additively homomorphic property. Then, the decryptor
only obtains

∑
i∈S〈u(eki),yi〉 by subtracting 〈∑j∈S rj ,y〉 from

∑
i∈S mki.

In addition, when presenting reusable IP-RDMCFE construction, we must
prohibit the partial functional keys of different functions from decrypting the
same set of ciphertexts due to the decryptor can learn the sensitive data by
choosing functions painstakingly. To be specific, given ciphertexts Enc(x1), · · · ,
Enc(xn), if S = [n], the decryptor learns

∑
i∈[n]〈xi,y

1
i 〉 with the partial func-

tional key for y1 = (y1
1, · · · ,y1

n), and
∑

i∈[n]〈xi,y
2
i 〉 with the partial functional

key for y2 = (y2
1, · · · ,y2

n), respectively. If y1 + (1, 0, . . . , 0) = y2, the decryp-
tor can learn x1,1 by subtracting

∑
i∈[n]〈xi,y

1
i 〉 from

∑
i∈[n]〈xi,y

2
i 〉. To solve

this issue, we replace the underlying Special IP-MCFE with the Inner Product
Identity-based MCFE having special key generation (Special IP-ID-MCFE), which
is proposed by Mera et al. [34]. In Special IP-ID-MCFE, the functional key is also
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associated with a label, and the decryption is valid only when the functional key
and ciphertexts correspond to the same label.

Compared to the basic construction, where each client in Setup needs to
send a share of ski and a share of ri to n − 1 clients, each client in the reusable
construction needs to send a share of ri to n − 1 clients, which contains mn
values. Thus, the basic construction exhibits a small communication overhead
that remains independent of the vector length m, while the reusable construction
incurs a larger communication overhead. Similarly, the storage overhead of the
reusable construction is also greater than that of the basic construction. There-
fore, the reusable construction achieved the reusability of secret keys at the
cost of increasing storage and communication overheads. A reader could now
concerned about the additional overhead of the reusable construction. However,
although each client must send its share to other clients in the setup phase, this
phase is executed only once and the share can be reused, which is similar to the
amortized model [7]. Moreover, the client grouping strategy [16] may be helpful
for reducing the communication and storage overheads of a single client.

3 Preliminaries

Notations. We represent the set {1, · · · , n} with [n], and denote the size of a
set S with |S|. Given a set S′ (S′ ⊆ S), we use S\S′ to represent the set formed
by elements that are present in set S but not in set S′. In this paper, all vectors
are treated as column vectors. We represent the vector of mn zeros as 0, and
denote by xi the i-th element of the vector x. Let (y1, · · · ,yn) indicates the
vertical concatenation of vectors y1, · · · ,yn.

3.1 Basic Tools

Definition 1 (Threshold Secret Sharing). A t-out-of-n threshold secret
sharing scheme SS = (Setup,Share,Recon) is comprised of the following three
algorithms.

– Setup(1λ): Given the security parameter λ, the algorithm produces the public
parameters pp. We assume that the remaining algorithms implicitly input pp.

– Share(s, t, S): Given a secret s, a set S (|S| = n), and a threshold t (t ≤ n),
the algorithm produces a set of shares {si}i∈S.

– Recon({si}i∈S′ , t): Given the threshold t and the shares corresponding to a
subset S′ (S′ ⊆ S), the algorithm produces s′.

Correctness. This scheme SS is correct if for any t, n ∈ N (1 ≤ t ≤ n), any set
S (|S| = n), and any subset S′ (S′ ⊆ S, |S′| ≥ t), we have

Pr [Recon({si}i∈S′ , t) = s] = 1,

where the probability is evaluated with respect to pp ← Setup(1λ), and {si}i∈S ←
Share(s, t, S).
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IND Security. The security is defined through the following experiment
INDSS

b (1λ,A) between a challenger and an adversary A.

1. The challenger generates pp ← Setup(1λ) and sends pp to the adversary A.
2. A sends (s0, s1) to the challenger. Then, the challenger runs {sb

i}i∈S ←
Share(sb, t, S) and sends {sb

i}i∈S′′ to A, where S′′ ⊆ S and |S′′| < t.
3. A generates a bit b′. The challenger takes b′ as the result of the experiment.

The scheme SS is indistinguishability-based (IND) secure if the advantage

AdvIND
SS,A(λ) =

∣
∣
∣Pr[INDSS

0 (1λ,A) = 1] − Pr[INDSS
1 (1λ,A) = 1]

∣
∣
∣

is negligible for every adversary A.

Definition 2 (Additively Homomorphic Threshold Secret Sharing). A
t-out-of-n threshold secret sharing scheme SS = (Setup,Share,Recon) has the
additively homomorphic property if for any t, n ∈ N (1 ≤ t ≤ n), any m ∈ N,
any set S (|S| = n), and any subset S′ (S′ ⊆ S, |S′| ≥ t), we have

Pr

⎡

⎣Recon({
∑

j∈[m]

sj,i}i∈S′ , t) =
∑

j∈[m]

sj

⎤

⎦ = 1,

where the probability is evaluated with respect to pp ← Setup(1λ), and
{sj,i}i∈S ← Share(sj , t, S) for j ∈ [m].

Definition 3 (Non-Interactive Key Exchange). A non-interactive key
exchange scheme NIKE = (Setup,Gen, Agree) for shared key space K is com-
prised of the following three algorithms.

– Setup(1λ): Given the security parameter λ, the algorithm produces the public
parameters pp.

– Gen(pp): Given the public parameters pp, this algorithm produces the private
key ski and the corresponding public key pki.

– Agree(ski, pkj): Given the private key ski and the public key pkj, this algo-
rithm produces the shared key ki,j ∈ K.

Correctness. This scheme NIKE is correct if for any λ, we have

Pr[Agree(ski, pkj) = Agree(skj , pki)] = 1,

where the probability is evaluated with respect to pp ← Setup(1λ), (ski, pki) ←
Gen(pp), and (skj , pkj) ← Gen(pp).

IND Security. Consider the following experiment INDNIKE
b (1λ,A) between a

challenger and an adversary A:

1. The challenger generates pp ← Setup(1λ) and sends pp to the adversary A.
The set S was sent to the challenger by A. For i ∈ S, the challenger generates
(ski, pki) ← Gen(pp) and sends {pki}i∈S to A.
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2. A sends i′, j′ ∈ S (i′ 	= j′) to the challenger. When b = 0, the challenger runs
ki′,j′ ← Agree(ski′ , pkj′) and sends ki′,j′ to A. When b = 1, the challenger
samples a uniformly random ki′,j′ from K and sends it to the adversary A.

3. A outputs a bit b′. The challenger outputs b′ as the final result of the experi-
ment.

The scheme NIKE is IND secure if the advantage

AdvIND
NIKE,A(λ) =

∣
∣
∣Pr[INDNIKE

0 (1λ,A) = 1] − Pr[INDNIKE
1 (1λ,A) = 1]

∣
∣
∣

is negligible for every adversary A.

3.2 Multi-client Functional Encryption

We recall the standard syntax of IP-MCFE [25] and an additional property known
as special key generation [3], and its identity-based version [34].

Definition 4 (Inner Product Multi-client Functional Encryption [25]).
Let Fm

L,n be an inner product function family, L be a set of labels, and function
fy ∈ Fm

L,n is defined as fy : (Zm
L )n → ZL, where y = (y1, · · · ,yn) (yi ∈ Z

m
L ).

An IP-MCFE scheme for Fm
L,n is comprised of the following four algorithms.

– Setup(1λ,Fm
L,n): Given the security parameter λ and a description of Fm

L,n, the
algorithm produces the public parameters pp, the master secret key msk, and
n encryption keys eki. We assume that the remaining algorithms implicitly
input the public parameters pp.

– KeyGen(msk,y): Given the master secret key msk and a vector y ∈ Z
nm
L , the

algorithm produces a functional key sky.
– Enc(eki,xi, l): Given the encryption key eki, a message vector xi ∈ Z

m
L , and

a label l ∈ L, the algorithm produces the ciphertext Cti,l.
– Dec(sky, l, Ct1,l, · · · , Ctn,l): Given the functional key sky, the label l and n

ciphertexts, the algorithm produces a value z ∈ ZL.

Correctness. This IP-MCFE scheme is correct if for any n,m ∈ N, fy ∈ Fm
L,n,

l ∈ L, we have

Pr

⎡

⎣Dec(sky, l, Ct1,l, · · · , Ctn,l) =
∑

i∈[n]

〈xi,yi〉
⎤

⎦ = 1,

where the probability is evaluated with respect to (pp,msk, {eki}i∈[n]) ←
Setup(1λ,Fm

L,n), sky ← KeyGen(msk,y), and Cti,l ← Enc(eki,xi, l) for i ∈ [n].

Remark 1. In the above definition, if n = 1 and the label is not considered,
and the algorithm Enc does not input the encryption key but the master public
key mpk, which is the output of the algorithm Setup, then it corresponds to the
(single-input) IP-FE.
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Definition 5 (sta-IND Security of IP-MCFE [25]). For any IP-MCFE scheme
for Fm

L,n, every adversary A, and every security parameter λ ∈ N, for b ∈ {0, 1},
consider the following experiments:

Experiment INDIP-MCFE
b (1λ, A):

(pp, msk, {eki}i∈[n]) ← Setup(1λ, Fm
L,n)

α ← AQCor(·),QKeyGen(·),QEnc(·,·,·,·)(pp)
Output: α

where the corruption oracle QCor(·) outputs eki on input i, the key generation
oracle QKeyGen(·) outputs KeyGen(msk,y) on input y, the encryption oracle
QEnc(·, ·, ·, ·) outputs Enc(eki,x

b
i , l) on input (i,x0

i ,x
1
i , l). We denote by Qi,l the

number of queries to QEnc(·, ·, ·, ·) on the slot i under the label l, by CS the set
of corrupted parties, which are queried to QCor(·), by HS = [n]\CS the set of
honest parties. In addition, the queries of A must meet the following conditions.

1. For i ∈ CS, the queries QEnc(i,x0
i ,x

1
i , l) must satisfy x0

i = x1
i .

2. For every label l ∈ L, every query QKeyGen(y) and query QEnc(i,x0
i ,x

1
i , l)

for i ∈ [n], we require that
∑

i∈[n]〈x0
i ,yi〉 =

∑
i∈[n]〈x1

i ,yi〉.
3. After the adversary A queries QEnc(·, ·, ·, ·) or QKeyGen(·), he/she cannot

query QCor(·).
4. For any slot i ∈ [n], any label l ∈ L, we require Qi,l ∈ {0, 1}. In addition, if

there is Qi,l = 1, then Qj,l = 1 for j ∈ [n].

An IP-MCFE for Fm
L,n has the IND security under static (sta) corruption if the

advantage

Advsta-IND
IP-MCFE,A(λ) =

∣
∣
∣Pr[INDIP-MCFE

0 (1λ,A) = 1] − Pr[INDIP-MCFE
1 (1λ,A) = 1]

∣
∣
∣

is negligible for every adversary A.

Definition 6 (Special IP-MCFE [3]). An IP-MCFE scheme for Fm
L,n and L has

the special key generation property modulo L (L depends on the public parameters
pp) if:

1. The master secret key msk exhibits the following form: msk = {eki}i∈[n] and
eki = (i, si,ui), where si ∈ {0, 1}∗ and ui ←R Z

m
L .

2. For i ∈ [n], Cti,l = e(si,xi + h(l) · ui), where e(·, ·) and h(·) are two public
functions.

3. KeyGen(msk,y) generates sky = ({si,y}i∈[n], dky), where dky =∑
i∈[n]〈ui,yi〉 and si,y is a function of si, yi and pp.

4. In Dec(sky, l, Ct1,l, · · · , Ctn,l), {si,y}i∈[n] were used to gener-
ate

∑
i∈[n]〈zi,yi〉, and h(l) · dky was subtracted from

∑
i∈[n]〈zi,yi〉, where

zi = xi + h(l) · ui.

Abdalla et al. [3] have shown that existing IP-MCFE schemes from [4,25] all
have the property of special key generation.
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Definition 7 (Identity-based Multi-client Functional Encryption for
Inner Product [34]). The definition of an identity-based IP-MCFE (IP-ID-
MCFE) scheme bears resemblance to that of IP-MCFE (Definition 4), except that
the algorithms KeyGen and Dec are now defined as:

– KeyGen(msk,y, l): Given the master secret key msk, a vector y ∈ Z
nm
L and

a label (identity) l ∈ L, the algorithm produces a functional key sky,l.
– Dec(l, sky,l, Ct1,l, · · · , Ctn,l): Given the label l ∈ L, the functional key sky,l

and n ciphertexts, the algorithm produces a value z ∈ ZL.

Definition 8 (sta-IND Security of IP-ID-MCFE [34]). The sta-IND security
notion of an IP-ID-MCFE scheme bears resemblance to that of IP-MCFE (Defini-
tion 5), except that the oracle QKeyGen is now defined as:
QKeyGen(·, ·): Inputs (y, l) and outputs KeyGen(msk,y, l).

4 Robust Decentralized Multi-client Functional
Encryption

This section is dedicated to providing a definition of RDMCFE and presenting
its security model in the indistinguishability-based setting.

Recall that DMCFE supports the function family, in which every function
has n inputs. In DMCFE, the Setup phase is decentralized among n clients that
encrypt the sensitive data and generate the partial functional keys, and a com-
bining algorithm combines n partial functional keys into the functional key. If
a client is negative, the combining algorithm fails to output the functional key
and the user fails to decrypt the ciphertexts.

Compared to DMCFE, RDMCFE supports a more flexible function fam-
ily, in which every function is still meaningful when some inputs are default.
For example, suppose the function f sums the squares of all inputs, i.e.,
f(x1, x2, x3) = x2

1 + x2
2 + x2

3. If the third client does not generate the cipher-
text of x3, the decryptor can still obtain the sum of the squares of the inputs
x1 and x2, i.e., f(x1, x2, x0) = x2

1 + x2
2 + x2

0, where x0 is a default value and
is defined here as 0. The motivation for introducing RDMCFE ensures that the
function still makes sense when some inputs are default.

4.1 Syntax of RDMCFE

In RDMCFE, a client is said to be a positive one if it is able and willing to compute
both the partial functional key and ciphertext, otherwise it is a negative one. A
RDMCFE scheme involving n clients, allows the existence of up to n− t negative
clients, and can evaluate the function value associated with the sensitive data of
positive clients.

Definition 9 (Robust Decentralized Multi-client Functional Encryp-
tion). Let F = {Fn}n∈N be an ensemble, where Fn represents a collection of
n-ary functions, L be a set of labels, and t be a threshold. A function f ∈ Fn
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is defined as f : X1 × · · · × Xn → Y, where Xi (i ∈ [n]) contains a pre-defined
default value x0. A RDMCFE scheme for F , the label set L and the threshold t
is comprised of a setup protocol and three algorithms:

– Setup(1λ,Fn, t): This is the setup protocol between n clients. Given a security
parameter λ, a description of Fn ∈ F and the threshold t (t ≤ n), the protocol
eventually generates the public parameters pp, each client’s own secret keys ski

and encryption keys eki. We assume that the remaining algorithms implicitly
input the public parameters pp.

– Enc(eki, xi, l): Given the encryption key eki, the message xi ∈ Xi, and the
label l ∈ L, the algorithm produces the index i and the ciphertext Cti,l.

– PFunKG(ski, f, l, S): Given the secret key ski, the function f ∈ Fn, the label
l ∈ L, and the positive client set S ⊆ [n], the algorithm produces the index i
and the partial functional key dki,l.

– Dec(l, {Cti,l}i∈S , {dki,l}i∈S): Given the label l ∈ L, |S| ciphertexts, |S| partial
functional keys, the algorithm produces a value z ∈ Y.

Correctness. This RDMCFE scheme is correct, if for any t, n ∈ N, t ≤ n, f ∈
Fn, l ∈ L, S ⊆ [n], |S| ≥ t, when (pp, {ski}i∈[n], {eki}i∈[n]) ← Setup(1λ,Fn, t),
(i,Cti,l) ← Enc(eki, xi, l) for i ∈ S, and (i, dki,l) ← PFunKG(ski, f, l, S) for
i ∈ S, we have

Pr
[
Dec(l, {Cti,l}i∈S , {dki,l}i∈S) = f(x′

1, · · · , x′
n)

]
= 1,

where for i ∈ [n], if i ∈ S, x′
i = xi, otherwise x′

i = x0, and the probability is
evaluated with respect to Setup, Enc and PFunKG.

The definition of RDMCFE is similar to that of DMCFE [25], but as noted
there are the following differences:

1. We set Xi (i ∈ [n]) to contain a pre-defined default value x0 to unify the
expression of the function value in the robust setting with that in the non-
robust setting.

2. In Setup, we additionally input the threshold t, which limits the difference
between the function values in the robust and non-robust setting.

3. In PFunKG, we additionally input the positive client set S to declare the state
of each client so that the partial functional key dki,l helps to eliminate the
influence of negative clients.

4. The decryption algorithm Dec implicitly contains the combining algorithm of
DMCFE that combines partial functional keys into a functional key, and the
algorithm Dec only inputs |S| (instead of n) ciphertexts and partial functional
keys.

Remark 2. If the algorithm PFunKG does not input the label l, the Definition
9 corresponds to the unlabeled version of RDMCFE.

Remark 3. The definition of RDMCFE implies that of DMCFE, and the latter
is a special case of the former. When t = n and S = [n], the unlabeled version
of RDMCFE is just DMCFE.
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4.2 Security Definition of RDMCFE

Recall that the IND security of DMCFE roughly states that in the presence of
the key generation oracle, the corruption oracle and the encryption oracle, where
the key generation oracle outputs the partial functional keys of n slots, no PPT
adversary can distinguish ciphertexts of x0

i and x1
i for i ∈ [n]. Then the security

notion of RDMCFE, also known as IND security, should intuitively guarantee that
when an adversary is provided with the partial functional keys of the slots in a
subset of its choice, the adversary cannot distinguish ciphertexts of x0

i and x1
i

for i ∈ [n]. The security notion is formally captured and demonstrated through
the following indistinguishability experiment.

Definition 10 (IND Security of RDMCFE). For every RDMCFE scheme for
F , L and t, every adversary A, and every security parameter λ ∈ N, for xx ∈
{one,many}, b ∈ {0, 1}, consider the following experiments:

Experiment xx-INDRDMCFE
b (1λ, A):

(pp, {ski}i∈[n], {eki}i∈[n]) ← Setup(1λ, Fn, t)

α ← AQCor(·),QEnc(·,·,·,·),QKeyGen(·,·,·)(pp)
Output: α

The oracles used in the experiment are defined as follows.

Corruption oracle QCor(·): On input i, it generates (ski, eki). We represent
the set of corrupted clients as CS, which are queried to QCor(·), and the set
of honest clients as HS = [n]\CS.

Encryption oracle QEnc(·, ·, ·, ·): On input (i, x0
i , x

1
i , l) (x

0
i , x

1
i 	= x0), it outputs

Enc(eki, x
b
i , l).

Key generation oracle QKeyGen(·, ·, ·): On input (f, l, S), it computes (i, dki,l)
← PFunKG(ski, f, l, S) for i ∈ S and outputs {(i, dki,l)}i∈S. We represent the
number of queries of the form QKeyGen(·, ·, ·) as Qy.

In addition, the queries of A must meet the following conditions:

1. The number of corrupted clients is less than the threshold t, i.e., |CS| < t.
2. For any i ∈ [n], the query QEnc(i, x0

i , x
1
i , l) has been asked.

3. For i ∈ CS, the queries QEnc(i, x0
i , x

1
i , l) must satisfy x0

i = x1
i .

4. For every label l ∈ L, every query QKeyGen(f, l, S) and query QEnc(i, x0
i , x

1
i , l)

for i ∈ [n], we require that f(x′0
1, · · · , x′0

n) = f(x′1
1, · · · , x′1

n), where for i ∈ [n],
b ∈ {0, 1}, if i ∈ S, x′b

i = xb
i , otherwise x′b

i = x0.
5. After the adversary A queries QKeyGen(·, ·, ·) or QEnc(·, ·, ·, ·), he/she cannot

query QCor(·).
6. When xx = one, Qy = 1. When xx = many, Qy > 1.

A RDMCFE for Fn is xx-IND-secure if the advantage

Advxx-IND
RDMCFE,A(λ) =

∣
∣
∣Pr[xx-INDRDMCFE

0 (1λ,A) = 1] − Pr[xx-INDRDMCFE
1 (1λ,A) = 1]

∣
∣
∣

is negligible for every adversary A.
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The security notion of RDMCFE is similar to the one defined for DMCFE,
but there are the following differences:

1. For robustness, we require that the oracle QKeyGen(·, ·, ·) has an additional
input S and only outputs {(i, dki,l)}i∈S rather than {(i, dki,l)}i∈[n].

2. Since the threshold t captures the minimum number of positive clients that
RDMCFE required, in order to protect the keys of the honest clients, we limit
the number of corrupt clients to less than t.

3. Since the adversary can learn f(x′b
1, · · · , x′b

n), we set the security restriction
as f(x′0

1, · · · , x′0
n) = f(x′1

1, · · · , x′1
n). Otherwise, the adversary can win the

security experiment trivially.
4. We present two IND security definitions for RDMCFE, including one-IND secu-

rity and many-IND security. In the former, a set of secret keys can generate
the partial functional keys for only one function, i.e., the secret keys are not
reusable. In the latter, a set of secret keys can generate the partial functional
keys for multiple functions, i.e., the secret keys are reusable.

The above IND security model considers the general case, where there are both
corrupted clients and honest clients in negative clients, as well as in positive
clients. However, recall that the motivation for robustness is to prevent negative
clients from crashing the DMCFE system. In this sense, negative clients can be
viewed as weakened attackers. Moreover, for a negative client, the system cannot
determine whether it is corrupted or not. To resist potential attackers, the system
may tend to consider the worst case that it has been corrupted. Therefore, we
also consider a special case where all negative clients are corrupted, and present
a weaker variant of IND security.

Definition 11 (Constant IND (con-IND) Security of RDMCFE). The def-
inition is the same as Definition 10, except that the set S has to be chosen before
hand by the adversary A and the queries {QEnc(i, x0

i , x
1
i , l)}i∈[n]\S must satisfy

{x0
i = x1

i }i∈[n]\S.

Clearly, this weaker security notion considers all negative clients as corrupted
ones, which cannot guarantee the privacy of all negative clients. However, this
weaker security still makes sense in some applications of the proposed notion,
RDMCFE. For example, in the scenario of electronic voting, each voter should
provide eligible proof to show that the encrypted vote is correct, e.g., encrypting
0 means vote for Alice, and 1 for Bob. The final voting result can be obtained
by aggregating those encrypted bits (using the RDMCFE scheme). In this case,
a voter that maliciously encrypts a value out of {0, 1} (e.g., 2) will destroy the
final voting result. In this scenario, positive voters are those who always provide
correct proof. Negative voters are those who fail to provide correct proof, due
to being corrupted or going offline. Then, in order to make the final voting
result effective, those negative voters, regardless of whether they are corrupted
or offline, must be excluded when counting the final result. In other words, we
only consider those positive voters, and do not care about those negative ones,
including their privacy, since their presence disrupts the usability of the voting
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system. Moreover, in such scenarios where the privacy of negative clients does not
need to be considered, the use of the weak security model may bring efficiency
gains, which may be of independent interest.

5 The RDMCFE Constructions for Inner Product

To present the IP-RDMCFE construction, we first define two new and key prop-
erties for the underlying Special IP-MCFE, namely the robust correctness and
the robust security. We then present two IP-RDMCFE constructions. The first
is a basic construction, in which the secret keys can generate the partial func-
tional keys for only one function. To achieve the reusability of the secret keys,
an enhanced construction was designed.

5.1 New Properties of Special IP-MCFE

Definition 12 (Robust Correctness of Special IP-MCFE). The Special IP-
MCFE for Fm

L,n and L is robust correct if for every fy ∈ Fm
L,n, l ∈ L, S ⊆ [n],

we have

Pr

[

Dec(sk′
y, l, {Cti,l}i∈S) =

∑

i∈S

〈xi,yi〉
]

= 1,

where sk′
y = ({si,y}i∈S ,

∑
i∈S〈ui,yi〉) and the probability is evaluated with

respect to (pp,msk, {eki}i∈[n]) ← Setup(1λ,Fm
L,n), sk′

y ← KeyGen({eki}i∈S ,
{yi}i∈S), and Cti,l ← Enc(eki,xi, l) for i ∈ S.

Lemma 1. If the scheme is a Special IP-MCFE for Fm
L,n and L, then it has the

robust correctness.

Proof. Given a Special IP-MCFE scheme for Fm
L,n and L, when (pp,msk,

{eki}i∈[n]) ← Setup(1λ,Fm
L,n), Cti,l := e(si,xi + h(l) · ui) ← Enc(eki,xi, l)

for i ∈ [n], sky := ({si,y}i∈[n], dky) ← KeyGen(msk, {yi}i∈[n]), where dky =∑
i∈[n]〈ui,yi〉, there are Dec(sky, {Cti,l}i∈[n]) =

∑
i∈[n]〈xi,yi〉. Specifically, in

Dec, {si,y}i∈[n] were used to generate
∑

i∈[n]〈zi,yi〉, and h(l)·dky was subtracted
from

∑
i∈[n]〈zi,yi〉, where zi = xi + h(l) · ui.

Assuming that the scheme does not have robust correctness. For any subsets
S1, S2 ⊆ [n] (S1 ∩ S2 = ∅ and S1 ∪ S2 = [n]), there exists K ∈ ZL (K 	= 0) such
that

Dec(sk1
y, {Cti,l}i∈S1) =

∑

i∈S1

〈xi,yi〉 + K, (1)

Dec(sk2
y, {Cti,l}i∈S1) =

∑

i∈S2

〈xi,yi〉 − K, (2)

where sk1
y = ({si,y}i∈S1 , dk1

y), sk2
y = ({si,y}i∈S2 , dk2

y) and dk1
y =

∑
i∈S1

〈ui,yi〉,
dk2

y =
∑

i∈S2
〈ui,yi〉. According to the Eqs. (1) and (2), we have

dk1
y −

∑

i∈S1

〈ui,yi〉 = − 1
h(l)

K,
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dk2
y −

∑

i∈S2

〈ui,yi〉 =
1

h(l)
K.

Since dk1
y =

∑
i∈S1

〈ui,yi〉 and dk2
y =

∑
i∈S2

〈ui,yi〉, we have K = 0, which
contradicts K 	= 0. Therefore, the scheme has robust correctness. �

Definition 13 (Robust Security of Special IP-MCFE). For every Special
IP-MCFE for Fm

L,n and L , every adversary A, every security parameter λ ∈ N,
and every set S ⊆ [n], for b ∈ {0, 1}, consider the following experiments:

Experiment ROBIP-MCFE
b (1λ, A):

(pp, msk, {eki}i∈[n]) ← Setup(1λ, Fm
L,n)

α ← AQCor(·),QEnc(·,·,·,·),QKeyGen(·)(pp)
Output: α

where QCor(·) and QEnc(·, ·, ·, ·) are the same as in Definition 5,
QKeyGen(·) outputs ({si,y}i∈S ,

∑
i∈S〈ui,yi〉) ← KeyGen({eki}i∈S , {yi}i∈S) on

input {yi}i∈S. The queries of A must meet the following conditions.

1. For i ∈ CS, the queries QEnc(i,x0
i ,x

1
i , l) must satisfy x0

i = x1
i .

2. For any label l ∈ L, any query QKeyGen({yi}i∈S) and query QEnc(i,x0
i ,x

1
i , l)

for i ∈ S, we require that
∑

i∈S〈x0
i ,yi〉 =

∑
i∈S〈x1

i ,yi〉.
3. After the adversary A queries QKeyGen(·) or QEnc(·, ·, ·, ·), he/she cannot

query QCor(·).
4. For any slot i ∈ S and any label l ∈ L, we require Qi,l ∈ {0, 1}. In addition,

if there is Qi,l = 1, then Qj,l = 1 for j ∈ S.

A Special IP-MCFE for Fm
L,n and L is robust secure if the advantage

AdvROB
IP-MCFE,A(λ) =

∣
∣
∣Pr[ROBIP-MCFE

0 (1λ,A) = 1] − Pr[ROBIP-MCFE
1 (1λ,A) = 1]

∣
∣
∣

is negligible for every adversary A.

Lemma 2. If the Special IP-MCFE has sta-IND security, it also has robust secu-
rity. Namely, for every adversary A who can break the robust security of Special
IP-MCFE, there is an adversary B who can break the sta-IND security of Special
IP-MCFE such that

AdvROB
IP-MCFE,A(λ) ≤ Advsta-IND

IP-MCFE,B(λ).

Proof. (Sketch) In the sta-IND security model, the adversary B can send the
queries to the challenger C, who sets up the Special IP-MCFE system. At the
same time, in the robust security model, the adversary B is simulated as another
challenger to respond to the queries from the adversary A. That is, B interacts
with C as the adversary, while B interacts with A as the challenger. Specifically,
we show how the adversary B responds to the queries from the adversary A with
the help of the challenger C.
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– Corruption Queries: the adversary B receives the set CS from the adversary A
and sends CS to the challenger C to obtain {eki}i∈CS , where eki = (i, si,ui).
The adversary B then returns {eki}i∈CS to the adversary A.

– Key Generation Queries: after receiving the query {yi}i∈S from the adver-
sary A, the adversary B sets yi = (0, 0, · · · , 0) for i ∈ [n]\S, and sends
{yi}i∈[n] to the challenger C to obtain sky = ({si,y}i∈[n], dky), where dky =∑

i∈[n]〈ui,yi〉. Since yi = (0, 0, · · · , 0) for i ∈ [n]\S, there is

dky =
∑

i∈S

〈ui,yi〉 +
∑

i∈[n]\S

〈ui,yi〉 =
∑

i∈S

〈ui,yi〉 + 0,

so the adversary B returns sk′
y = ({si,y}i∈S , dky) to the adversary A.

– Encryption Queries: the adversary B receives {(i,x0
i ,x

1
i , l)}i∈[n] from the

adversary A, where x0
i = x1

i for i ∈ CS and
∑

i∈S〈x0
i ,yi〉 =

∑
i∈S〈x1

i ,yi〉.
Then, the adversary B sends {(i,x0

i ,x
1
i , l)}i∈[n] to the challenger C. For

b ∈ {0, 1}, since yi = (0, 0, · · · , 0) for i ∈ [n]\S, we also have
∑

i∈[n]

〈xb
i ,yi〉 =

∑

i∈S

〈xb
i ,yi〉 + 0.

Since
∑

i∈S〈x0
i ,yi〉 =

∑
i∈S〈x1

i ,yi〉, we have
∑

i∈[n]〈x0
i ,yi〉 =

∑
i∈[n]〈x1

i ,yi〉,
so the challenger C returns {Cti,l}i∈[n] to the adversary B, where Cti,l ←
Enc(eki,x

b
i , l). Finally, B returns {Cti,l}i∈[n] to the adversary A.

Therefore, if the adversary A succeeds against the robust security of Special
IP-MCFE, then the adversary B breaks the sta-IND security of the scheme. �

5.2 The Basic IP-RDMCFE Construction

We rely on a t-out-of-n secret sharing scheme SS = (SS.Setup,SS.Share,
SS.Recon), a non-interactive key exchange scheme NIKE = (NIKE.Setup,
NIKE.Gen,NIKE.Agree) and a Special IP-MCFE scheme MCFE = (MCFE.Setup,
MCFE.KeyGen,MCFE.Enc, MCFE.Dec) for the class Fm

L,n. We require a pseudo-
random generator PRG that inputs a uniformly random seed, and whose output
space is Zmn

L . The basic IP-RDMCFE construction for the class Fm
L,n is as follows:

Setup(1λ,Fm
L,n, t) : Given the security parameter λ, the description of Fm

L,n and
the threshold t, do the following:

– Generate (pp1,msk, {meki}i∈[n]) ← MCFE.Setup(1λ,Fm
L,n), where msk =

{meki}i∈[n], meki = (si,ui), si ∈ {0, 1}∗ and ui ∈ Z
m
L .

– Generate pp2 ← NIKE.Setup(1λ) and pp3 ← SS.Setup(1λ).
– Each client i ∈ [n] does the following:

1. Generates (ski, pki) ← NIKE.Gen(pp2) and {ski,j}j∈[n] ← SS.Share
(ski, t, [n]).

2. Samples ri ← ZL and generates {ri,j}j∈[n] ← SS.Share(ri, t, [n]).
3. For j ∈ [n]\{i}, sends pki, ski,j and ri,j to the client j.
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4. For j ∈ [n]\{i}, generates vi,j ← NIKE.Agree(ski, pkj).
– Output (pp, {ski}i∈[n], {eki}i∈[n]), where pp := (pp1, pp2, pp3, {pki}i∈[n]),

eki := meki and ski := (meki, {skj,i}j∈[n], ri, {rj,i}j∈[n], {vi,j}j∈[n]).
Enc(eki,xi, l) : Given the encryption key eki, the vector xi ∈ Z

m
L and the label

l, do the following:
– Generate Cti,l ← MCFE.Enc(meki,xi, l).
– Output (i,Cti,l).

PFunKG(ski,y, S) : Given the secret key ski, the vector y ∈ Z
mn
L and the positive

client set S, do the following:
– Generate (si,y, dki) ← MCFE.KeyGen(meki, {yi}i∈S), where dki =

〈ui,yi〉 and si,y is a function of si, yi and pp1.
– For j ∈ [n]\{i}, compute pi,j = Δi,jPRG(vi,j), where Δi,j = 1 when

i > j, and Δi,j = −1 when i < j.
– Compute mki = dki +

∑
j∈[n]〈pi,j ,y〉 + ri, where pi,i = 0.

– Output (i, dki,y), where dki,y := (si,y,mki, {skj,i}j∈[n]\S , {rj,i}j∈S).
Dec(l, {Cti,l}i∈S , {dki,y}i∈S) : Given the label l ∈ L, |S| ciphertexts {Cti,l}i∈S

corresponding to the same label l and |S| keys {dki,y}i∈S under the same
vector y, do the following:

– If |S| < t, abort.
– For j ∈ S, reconstruct rj ← SS.Recon({rj,i}i∈S , t).
– For j ∈ [n]\S, reconstruct skj ← SS.Recon({skj,i}i∈S , t).
– For j ∈ [n]\S, i ∈ [n], compute vj,i ← NIKE.Agree(skj , pki).
– Compute dky =

∑
i∈S mki−

∑
j∈S rj+

∑
j∈[n]\S,i∈[n]〈pj,i,y〉, where pj,i =

Δj,iPRG(vj,i) for j 	= i, and pj,i = 0 for j = i.
– Define sky := ({si,y}i∈S , dky), output

∑
i∈S〈xi,yi〉 ← MCFE.Dec(sky, l,

{Cti,l}i∈S).

Correctness. When |S| ≥ t, we have the fact that

dky =
∑

i∈S

mki −
∑

j∈S

rj +
∑

j∈[n]\S,i∈[n]

〈pj,i,y〉

=
∑

i∈S

〈ui,yi〉 +
∑

i∈S,j∈[n]

〈pi,j ,y〉 +
∑

j∈[n]\S,i∈[n]

〈pj,i,y〉

=
∑

i∈S

〈ui,yi〉 +
∑

j,i∈[n]

〈pj,i,y〉

=
∑

i∈S

〈ui,yi〉 +
∑

j,i∈[n],j �=i

(Δj,i〈PRG(vj,i),y〉)

=
∑

i∈S

〈ui,yi〉 +
∑

j,i∈[n],j>i

[(Δj,i + Δi,j)〈PRG(vj,i),y〉]

=
∑

i∈S

〈ui,yi〉.

Since (si,y, dki) ← MCFE.KeyGen(meki, {yi}i∈S) and Cti,l ← MCFE.Enc(meki,
xi, l) for i ∈ S, and dky =

∑
i∈S〈ui,yi〉, we have MCFE.Dec(({si,y}i∈S ,
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dky), l, {Cti,l}i∈S) =
∑

i∈S〈xi,yi〉 according to the robust correctness of the
scheme MCFE. Then, the correctness of the above construction can be derived
directly from the robust correctness of the scheme MCFE.

Theorem 1. If MCFE = (MCFE.Setup,MCFE.KeyGen,MCFE.Enc,MCFE.Dec)
be a Special IP-MCFE scheme with sta-IND security, SS = (SS.Setup,SS.Share,
SS.Recon) be an IND secure t-out-of-n secret sharing scheme, NIKE =
(NIKE.Setup, NIKE.Gen,NIKE.Agree) be an IND secure non-interactive key
exchange scheme, PRG be a secure pseudorandom generator, then the basic IP-
RDMCFE construction described above is one-IND secure. More precisely,

Advone-IND
RDMCFE(A) ≤Advsta-IND

MCFE,B4
(λ) + 2h2 ·

(
AdvIND

NIKE,B2
(λ) + AdvPRG,B3(λ)

)

+ 4h1 · AdvIND
SS,B1

(λ) + 2 · negl(λ),

where h1 = |S ∩ HS| (0 ≤ h1 ≤ n), h2 = h1(h1−1)
2 .

Proof. We define U∗ := S ∩ HS and h1 := |U∗|. The proof progresses through
the following sequence of games.

Game G0: is the real game corresponding to b = 0.
Game G1: is the same as the previous game, with the exception that we replace

all shares of ri generated by clients i ∈ U∗ and given to the corrupted clients
with shares of 0 (using a different sharing of 0 for every i ∈ U∗).

Game G2: is the same as the previous game, with the exception that we replace
all shares of ski generated by clients i ∈ U∗ and given to the corrupted clients
with shares of 0 (using a different sharing of 0 for every i ∈ U∗).

Game G3: is the same as the previous game, with the exception that, for i, j ∈
U∗, we replace vi,j = vj,i ← NIKE.Agree(ski, pkj) with a uniformly random
number.

Game G4: is the same as the previous game, with the exception that, for i, j ∈
U∗, we replace pi,j = Δi,jPRG(vi,j) with pi,j = Δi,jri,j , where ri,j is a fresh
random vector (of the appropriate size).

Game G5: is the same as the previous game, with the exception that, for i ∈ U∗,
we replace

mki = 〈ui,yi〉 +
∑

j∈[n]

〈pi,j ,y〉 + ri

= 〈ui,yi〉 +
∑

j∈U∗
〈pi,j ,y〉 +

∑

j∈[n]\U∗
〈pi,j ,y〉 + ri

with
mki = 〈wi,yi〉 +

∑

j∈[n]\U∗
〈pi,j ,y〉 + ri,

where {wi}i∈U∗ are uniformly random, subject to
∑

i∈U∗〈wi,yi〉 = dky −∑
i∈S∩CS〈ui,yi〉.
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Game G6: is the same as the previous game, with the exception that for i ∈ [n],
we replace Cti,l = Enc(eki,x

0
i , l) with Cti,l = Enc(eki,x

1
i , l).

Game G7: is the real game corresponding to b = 1.

Lemma 3. For every adversary A, there is an adversary B0 against the IND
security of the t-out-of-n secret sharing scheme SS = (SS.Setup,SS.Share,
SS.Recon) such that

∣
∣Adv0A(λ) − Adv1A(λ)

∣
∣ ≤ h1 · AdvIND

SS,B0
(λ).

Proof. We can see that the difference between game G0 and game G1 lies only in
the shares of ri generated by clients i ∈ U∗ and given to the corrupted clients. We
denote the set U∗ := {i1, · · · , ih1} in ascending order. The proof of this lemma
employs a series of intermediate games G0,0, G0,1, · · · , G0,h1 . In the game G0,μ

(μ ∈ {0, 1, · · · , h1}),

– for i ∈ [n], (ski, pki) ← NIKE.Gen(pp2), {ski,j}j∈[n] ← SS.Share(ski, t, [n]);
– for i ∈ [n], ri ← ZL, {ri,j}j∈[n] ← SS.Share(ri, t, [n]), vi,j ←

NIKE.Agree(ski, pkj) for j ∈ [n]\{i};
– for i ∈ U∗, i ≤ iμ, {r′

i,j}j∈[n] ← SS.Share(0, t, [n]);
– for i ∈ HS, ski := (meki, {skj,i}j∈[n], ri, {rj,i}j∈[n], {vi,j}j∈[n]);
– for i ∈ CS, ski := (meki, {skj,i}j∈[n], ri, {rj,i}j∈[n]\U∗ , {r′

j,i}j∈U∗,j≤iµ ,
{rj,i}j∈U∗,j>iµ , {vi,j}j∈[n]).

Note that game G0,0 is identical to game G0, and game G0,h1 is identical to
game G1.

We can see that the difference between game G0,μ−1 and game G0,μ lies
only in the shares of riµ generated by the client iμ and given to the corrupted
clients, which is either {riµ,j}j∈CS or {r′

iµ,j}j∈CS . Suppose that the adversary
B0,μ−1 attacks the IND security of SS. Note that, in game G0,μ−1 and game
G0,μ, the adversary B0,μ−1 does not receive any additional shares of riµ for the
client iμ, because iμ ∈ S and the honest clients do not reveal shares of riµ . Thus,
the adversary B0,μ−1 knows only |CS| < t shares of riµ . Therefore, relying on

the IND security of SS, we have
∣
∣
∣Adv

0,μ−1
A (λ) − Adv0,μ

A (λ)
∣
∣
∣ ≤ AdvIND

SS,B0,µ−1
(λ)

for μ ∈ [h1]. To sum up, we have that there is an adversary B0 such that∣
∣Adv0A(λ) − Adv1A(λ)

∣
∣ ≤ h1 · AdvIND

SS,B0
(λ). �

Lemma 4. For every adversary A, there is an adversary B1 against the IND
security of t-out-of-n secret sharing scheme SS = (SS.Setup,SS.Share,SS.Recon)
such that ∣

∣Adv1A(λ) − Adv2A(λ)
∣
∣ ≤ h1 · AdvIND

SS,B1
(λ).

Proof. We can see that the difference between game G1 and game G2 lies only
in the shares of ski generated by clients i ∈ U∗ and given to the corrupted
clients. We denote the set U∗ := {i1, · · · , ih1} in ascending order. The proof of
this lemma employs a series of intermediate games G1,0, G1,1, · · · , G1,h1 . In the
Game G1,μ (μ ∈ {0, 1, · · · , h1}),
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– for i ∈ [n], (ski, pki) ← NIKE.Gen(pp2), {ski,j}j∈[n] ← SS.Share(ski, t, [n]);
– for i ∈ [n], ri ← ZL, {ri,j}j∈[n] ← SS.Share(ri, t, [n]), vi,j ←
NIKE.Agree(ski, pkj) for j ∈ [n]\{i};

– for i ∈ U∗, {r′
i,j}j∈[n] ← SS.Share(0, t, [n]);

– for i ∈ U∗, i ≤ iμ, {sk′
i,j}j∈[n] ← SS.Share(0, t, [n]);

– for i ∈ HS, ski := (meki, {skj,i}j∈[n], ri, {rj,i}j∈[n], {vi,j}j∈[n]);
– for i ∈ CS, ski := (meki, {skj,i}j∈[n]\U∗ , {sk′

j,i}j∈U∗,j≤iµ , {skj,i}j∈U∗,j>iµ , ri,
{rj,i}j∈[n]\U∗ , {r′

j,i}j∈U∗ , {vi,j}j∈[n]).

Note that game G1,0 is identical to game G1, and game G1,h1 is identical to
game G2.

We can see that the difference between game G1,μ−1 and game G1,μ lies only
in the shares of skiµ generated by the client iμ and given to the corrupted clients,
which is either {skiµ,j}j∈CS or {sk′

iµ,j}j∈CS . Suppose that the adversary B1,μ−1

attacks the IND security of SS. Note that, in game G1,μ−1 and game G1,μ, the
adversary B1,μ−1 does not receive any additional shares of skjµ for the client
jμ, because iμ ∈ S and the honest clients do not reveal shares of skiµ . Thus,
the adversary B1,μ−1 knows only |CS| < t shares of skiµ . Therefore, relying on

the IND security of SS, we have
∣
∣
∣Adv

1,μ−1
A (λ) − Adv1,μ

A (λ)
∣
∣
∣ ≤ AdvIND

SS,B1,µ−1
(λ)

for μ ∈ [h1]. To sum up, we have that there is an adversary B1 such that∣
∣Adv1A(λ) − Adv2A(λ)

∣
∣ ≤ h1 · AdvIND

SS,B1
(λ). �

Lemma 5. For every adversary A, there is an adversary B2 against the IND
security of non-interactive key exchange scheme NIKE = (NIKE.Setup,NIKE.Gen,
NIKE.Agree) such that

∣
∣Adv2A(λ) − Adv3A(λ)

∣
∣ ≤ h1(h1 − 1)

2
· AdvIND

NIKE,B2
(λ).

Proof. We can see that the difference between game G2 and game G3 lies only in
the generation of {vi,j}i,j∈U∗ . In the former experiment, Game G2, for i, j ∈ U∗,
vi,j = vj,i ← NIKE.Agree(ski, pkj). While in the latter experiment, Game G3,
for i, j ∈ U∗, vi,j = vj,i is a uniformly random number. We denote the set
U ′ := {j1, · · · , jh2}, where h2 = h1(h1−1)

2 , for μ ∈ [h2], jμ = (i, j) = (j, i)
(i, j ∈ U∗, i 	= j). The proof of this lemma employs a series of intermediate
games, which contains h2 games. Among them, the difference between two adja-
cent games lies only in the generation of vi,j , which is either vi,j = vj,i ←
NIKE.Agree(ski, pkj) or a uniformly random number. Note that game G2,0 is
identical to game G2, and game G2,h2 is identical to game G3. Relying on the IND
security of NIKE, we have that for μ ∈ [h2], there is an adversary B2,μ−1 such that∣
∣
∣Adv

2,μ−1
A (λ) − Adv2,μ

A (λ)
∣
∣
∣ ≤ AdvIND

NIKE,B2,µ−1
(λ). To sum up, we have that there

is an adversary B2 such that
∣
∣Adv2A(λ) − Adv3A(λ)

∣
∣ ≤ h1(h1−1)

2 ·AdvIND
NIKE,B2

(λ). �
Lemma 6. For every adversary A, there is an adversary B3 against the security
of the pseudorandom generator PRG such that

∣
∣Adv3A(λ) − Adv4A(λ)

∣
∣ ≤ h1(h1 − 1)

2
· AdvPRG,B3(λ).
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Proof. We can see that the difference between game G3 and game G4 lies only
in the generation of {pi,j}i,j∈U∗ . In the former experiment, Game G3, for i, j ∈
U∗, pi,j = Δi,jPRG(vi,j). While in the latter experiment, Game G4, for i, j ∈
U∗, pi,j = Δi,jri,j , where ri,j is a fresh random vector (of the appropriate
size). We also denote the set U ′ := {j1, · · · , jh2}, where h2 = h1(h1−1)

2 , for
μ ∈ [h2], jμ = (i, j) (i, j ∈ U∗, i 	= j). The proof of this lemma employs a series
of intermediate games, which contains h2 games. Among them, the difference
between two adjacent games lies only in the generation of pi,j , which is either
Δi,jPRG(vi,j) or Δi,jri,j . Note that game G3,0 is identical to game G3, and game
G3,h2 is identical to game G4. Relying on the security of PRG, we have that for
μ ∈ [h2], there is an adversary B3,μ−1 such that

∣
∣
∣Adv

3,μ−1
A (λ) − Adv3,μ

A (λ)
∣
∣
∣ ≤

AdvPRG,B3,µ−1(λ). To sum up, we have that there is an adversary B3 such that
∣
∣Adv3A(λ) − Adv4A(λ)

∣
∣ ≤ h1(h1−1)

2 · AdvPRG,B3(λ). �

Lemma 7. For any adversary A and any security parameter λ, we have that
∣
∣Adv4A(λ) − Adv5A(λ)

∣
∣ ≤ negl(λ).

Proof. We can see that the difference between game G4 and game G5 lies only
in the generation of {mki}i∈U∗ . In the former experiment, Game G4, for i ∈ U∗,

mki = 〈ui,yi〉 +
∑

j∈U∗
〈pi,j ,y〉 +

∑

j∈[n]\U∗
〈pi,j ,y〉 + ri.

While in the latter experiment, Game G5, for i ∈ U∗,

mki = 〈wi,yi〉 +
∑

j∈[n]\U∗
〈pi,j ,y〉 + ri,

where {wi}i∈U∗ are uniformly random, subject to
∑

i∈U∗
〈wi,yi〉 = dky −

∑

i∈S∩CS
〈ui,yi〉.

Since

{{pi,j ← Z
m
L , pi,j + pj,i = 0}i<j : {〈ui,yi〉 +

∑

j∈U∗
〈pi,j ,y〉}i∈U∗},

{{wi ← Z
m
L }i∈U∗ s.t.

∑

i∈U∗
〈wi,yi〉 =

∑

i∈U∗
〈ui,yi〉 : {wi}i∈U∗}

are identical distributions, we have
∣
∣Adv4A(λ) − Adv5A(λ)

∣
∣ ≤ negl(λ). �

Lemma 8. For every adversary A, there is an adversary B4 against the sta-IND
security of the scheme MCFE such that

∣
∣Adv5A(λ) − Adv6A(λ)

∣
∣ ≤ Advsta-IND

MCFE,B4
(λ).
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Proof. Since the Lemma 2, the scheme MCFE = (MCFE.Setup,MCFE.KeyGen,
MCFE.Enc,MCFE.Dec) has the robust security. Suppose that the adversary A
possesses a non-negligible advantage in distinguishing between game G5 and
game G6. Then, we construct an adversary B′

4 that attacks the robust security
of MCFE. To generate the partial functional keys for y, the adversary B′

4 sends
y to the challenger of MCFE, receives the functional key sky = ({si,y}i∈S , dky),
and generates {mki}i∈S as follows:

mki =

⎧
⎪⎨

⎪⎩

〈ui,yi〉 +
∑

j∈[n]〈pi,j ,y〉 + ri, i ∈ S ∩ CS
〈wi,yi〉 +

∑
j∈[n]\U∗〈pi,j ,y〉 + ri, i ∈ U∗, i 	= i∗

〈wi∗ ,yi∗〉 + ∑
j∈[n]\U∗〈pi∗,j ,y〉 + ri∗ , i = i∗ ∈ U∗

,

where wi is a random vector, i∗ is the last honest client in the set S and
〈wi∗ ,yi∗〉 = dky − ∑

i∈S∩CS〈ui,yi〉 − ∑
i∈U∗,i �=i∗〈wi,yi〉. Then, for i ∈ [n],

the adversary B′
4 sends (x0

i ,x
1
i ) to the challenger of MCFE, and receives Cti,l ←

MCFE.Enc(meki,x
b
i , l). If b = 0, then B′

4 is simulating the game G5. If b = 1,
then B′

4 is simulating the game G6. Thus, we have
∣
∣Adv5A(λ) − Adv6A(λ)

∣
∣ ≤ AdvROB

MCFE,B′
4
(λ).

According to Lemma 2, there is
∣
∣Adv5A(λ) − Adv6A(λ)

∣
∣ ≤ Advsta-IND

MCFE,B4
(λ). �

The hybrid game of G6 to G7 is just the reverse of G0 to G5, so we have that

∣
∣Adv6A(λ) − Adv7A(λ)

∣
∣ ≤h2 ·

(
AdvIND

NIKE,B2
(λ) + AdvPRG,B3(λ)

)

+ 2h1 · AdvIND
SS,B1

(λ) + negl(λ).

5.3 The Reusable IP-RDMCFE Construction

The reusable IP-RDMCFE construction rely on a t-out-of-n secret sharing
scheme SS = (SS.Setup,SS.Share,SS.Recon) having the additively homomor-
phic property, a Special IP-ID-MCFE scheme ID-MCFE = (ID-MCFE.Setup,
ID-MCFE.KeyGen, ID-MCFE.Enc, ID-MCFE.Dec) for the class Fm

L,n and an IP-
FE scheme FE = (FE.Setup, FE.KeyGen,FE.Enc,FE.Dec) for the class Fmn

L . The
reusable IP-RDMCFE construction for the class Fm

L,n is as follows:

Setup(1λ,Fm
L,n, t) : Given the security parameter λ, the description of Fm

L,n and
the threshold t, do the following:

– Generate (pp1,msk, {meki}i∈[n]) ← ID-MCFE.Setup(1λ,Fm
L,n), where

msk = {meki}i∈[n], meki = (si,ui), si ∈ {0, 1}∗ and ui ∈ Z
m
L .

– Generate pp2 ← SS.Setup(1λ).
– Each client i ∈ [n] does the following:

1. Generates (pki, uki) ← FE.Setup(1λ,Fmn
L ).
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2. Samples ri ← Z
mn
L and generates {ri,j}j∈[n] ← SS.Share(ri, t, [n])1.

3. For j ∈ [n]\{i}, sends ri,j to the client j.
– Output (pp, {ski}i∈[n], {eki}i∈[n]), where pp := (pp1, pp2, {pki}i∈[n]),

eki := meki and ski := (meki, uki, ri, {rj,i}j∈[n]).
Enc(eki,xi, l) : Given the encryption key eki, the vector xi ∈ Z

m
L and the label

l, do the following:
– Generate Cti,l ← ID-MCFE.Enc(meki,xi, l).
– Output (i,Cti,l).

PFunKG(ski,y, l, S) : Given the secret key ski, the vector y ∈ Z
mn
L , the label l

and the positive client set S, do the following:
– Generate ski,y ← FE.KeyGen(uki,y) and (si,l, dki) ← ID-MCFE.KeyGen
(meki, {yi}i∈S , l), where dki = 〈ui,yi〉 and si,l is a function of si, yi, l
and pp1.

– Compute mki = dki + 〈ri,y〉, gi =
∑

j∈S rj,i and cti ← FE.Enc(pki, gi).
– Output (i, dki,l), where dki,l := (mki, si,l, ski,y, cti).

Dec(l, {Cti,l}i∈S , {dki,l}i∈S) : Given the label l ∈ L, |S| ciphertexts {Cti,l}i∈S

and |S| keys {dki,l}i∈S , do the following:
– If |S| < t, abort.
– For i ∈ S, generate pi ← FE.Dec(cti, ski,y).
– Reconstruct p ← SS.Recon({pi}i∈S , t) and compute dky =

∑
i∈S mki − p.

– Outputs
∑

i∈S〈xi,yi〉 ← ID-MCFE.Dec(sky, l, {Cti,l}i∈S), where sky =
({si,l}i∈S , dky).

Correctness. For i ∈ S, we have pi = 〈gi,y〉 following from the correctness of
the scheme FE. Since gi =

∑
j∈S rj,i, when |S| ≥ t, we have p =

∑
j∈S〈rj ,y〉 due

to the correctness and the additively homomorphic property of the scheme SS.
Thus, we have dky =

∑
i∈S〈ui,yi〉, and the correctness of the above construction

can be derived directly from the robust correctness of the scheme ID-MCFE.

Theorem 2. If ID-MCFE = (ID-MCFE.Setup, ID-MCFE.KeyGen, ID-MCFE.Enc,
ID-MCFE.Dec) be a Special IP-ID-MCFE scheme with sta-IND security,
SS = (SS.Setup, SS.Share,SS.Recon) be an IND secure t-out-of-n secret
sharing scheme having the additively homomorphic property, FE =
(FE.Setup,FE.KeyGen,FE.Enc, FE.Dec) be an IND secure IP-FE scheme, then the
proposed construction above is many-IND secure. More precisely,

Advmany-IND
RDMCFE (A) ≤ 2mnh1 · AdvIND

SS,B1
(λ) + 2h1 · AdvIND

FE,B2
(λ) + Advsta-IND

ID-MCFE,B3
(λ),

where h1 = |S ∩ HS| (0 ≤ h1 ≤ n).

Proof. We define U∗ := S ∩ HS and h1 := |U∗|. The proof progresses through
the following sequence of games.

Game G0: is the real game corresponding to b = 0.
1 This form implies that under the same threshold t and the set [n], the algorithm
SS.Share(·, t, [n]) is run m times, where each time inputting a component of the
vector ri, and m shares with the same subscript are combined into a vector ri,j .
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Game G1: is the same as the previous game, with the exception that we
replace all shares {ri,j}j∈CS of ri generated by clients i ∈ U∗ and given
to the corrupted clients with shares {r′

i,j}j∈CS of 0, where {r′
i,j}j∈[n] ←

SS.Share(0, t, [n]) (using a different sharing of 0 for every i ∈ U∗).
Game G2: is the same as the previous game except that for k ∈ Qy,

i ∈ U∗, the challenger calculates ctk,i ← FE.Enc(pki, gk,i) with gk,i =∑
j∈U∗ rk,j,i +

∑
j∈S∩CS r′

j,i, where {rk,j,i}j∈U∗ are uniformly sampled such
that ri ← SS.Recon({rk,i,j}j∈U∗ , {r′

i,j}j∈S∩CS , t) and
∑

j∈U∗〈rk,j,i,yk〉 =∑
j∈U∗〈rj,i,yk〉.

Game G3: is the same as the previous game except that for i ∈ [n], we replace
Cti,l = Enc(eki,x

0
i , l) with Cti,l = Enc(eki,x

1
i , l).

Game G4: is the real game corresponding to b = 1.

Lemma 9. For every adversary A, there is an adversary B1 against the IND
security of the t-out-of-n secret sharing scheme SS = (SS.Setup,SS.Share,
SS.Recon) such that

∣
∣Adv0A(λ) − Adv1A(λ)

∣
∣ ≤ mnh1 · AdvIND

SS,B1
(λ).

Proof. This proof is similar to that of Lemma 3. �

Lemma 10. For every adversary A, there is an adversary B2 against the IND
security of the scheme FE such that

∣
∣Adv1A(λ) − Adv2A(λ)

∣
∣ ≤ h1 · AdvIND

FE,B2
(λ).

Proof. We can see that the difference between game G1 and game G2 lies only
in the generation of {ctk,i}k∈Qy,i∈U∗ . In the former experiment, Game G1, for
k ∈ Qy, i ∈ U∗, it is

ctk,i ← FE.Enc(pki,
∑

j∈U∗
rj,i +

∑

j∈S∩CS
r′

j,i).

While in the latter experiment, Game G2, for k ∈ Qy, i ∈ U∗, it is

ctk,i ← FE.Enc(pki,
∑

j∈U∗
rk,j,i +

∑

j∈S∩CS
r′

j,i),

where {rk,j,i}j∈U∗ are uniformly random under the constraints

ri ← SS.Recon({rk,i,j}j∈U∗ , {r′
i,j}j∈S∩CS , t),

and
∑

j∈U∗〈rk,j,i,yk〉 = ∑
j∈U∗〈rj,i,yk〉.

We denote the set U∗ := {i1, · · · , ih1} in ascending order. We prove the
indistinguishability of game G1 and game G2 with a sequence of games: G1,0,
G1,1, · · · , G1,h1 . For μ ∈ [h1], G1,μ is the same as G1,μ−1 except that for k ∈ Qy,

ctk,iµ ← FE.Enc(pkiµ ,
∑

j∈U∗
rj,iµ +

∑

j∈S∩CS
r′

j,iµ)
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is substituted with

ctk,iµ ← FE.Enc(pkiµ ,
∑

j∈U∗
rk,j,iµ +

∑

j∈S∩CS
r′

j,iµ).

We can see that the game G1,0 is the same as the game G1, and the game G1,h1

is the same as the game G2. If the adversary A can distinguish between the game
G1 and game G2, and the adversary Aμ can distinguish between the game G1,μ

and game G1,μ−1, we have
∣
∣Adv1A(λ) − Adv2A(λ)

∣
∣ ≤ h1 ·

∣
∣
∣Adv

μ−1
Aµ

(λ) − Advμ
Aµ

(λ)
∣
∣
∣ .

If the adversary Aμ can distinguish between the game G1,μ and game G1,μ−1,
we construct an adversary B2,μ that attack the IND security of FE. For k ∈
Qy, to generate the partial functional keys for yk, the adversary B2,μ computes
(sk,i,l, dkk,i) ← ID-MCFE.KeyGen(meki, {yk,i}i∈S , l) and mkk,i = dkk,i+〈ri,yk〉
for i ∈ S, and generates {skk,i}i∈S as follows:

– For i = iμ, the adversary B2,μ sends yk to the challenger of FE and gets
skk,iµ ← FE.KeyGen(ukiµ ,yk).

– For i(	= iμ) ∈ [n], the adversary B2,μ computes skk,i ← FE.KeyGen(uki,yk).

Then the adversary B2,μ generates {ctk,i}i∈S\{iµ} as follows:

– For i ∈ S ∩ CS and i(> iμ) ∈ U∗, the adversary B2,μ computes gk,i =∑
j∈U∗ rj,i +

∑
j∈S∩CS r′

j,i and ctk,i ← FE.Enc(pki, gk,i).
– For i(< iμ) ∈ U∗, the adversary B2,μ computes gk,i =

∑
j∈U∗ rk,j,i +∑

j∈S∩CS r′
j,i and ctk,i ← FE.Enc(pki, gk,i).

In addition, the adversary B2,μ computes g0
k,iµ

=
∑

j∈U∗ rj,iµ +
∑

j∈S∩CS r′
j,iµ

and g1
k,iµ

=
∑

j∈U∗ rk,j,iµ +
∑

j∈S∩CS r′
j,iµ

, sends (g0
k,iµ

, g1
k,iµ

) to the challenger
of FE, and receives ctk,iµ ← FE.Enc(pkiµ , gb

k,iµ
).

Since
∑

j∈U∗〈rk,j,iµ ,yk〉 =
∑

j∈U∗〈rj,iµ ,yk〉, we have 〈g0
k,iµ

,yk〉 =
〈g1

k,iµ
,yk〉. When b = 0, the adversary B2,μ simulates the game G1,μ−1. When

b = 1, the adversary B2,μ simulates the game G1,μ. Thus, we have
∣
∣
∣Adv

μ−1
Aµ

(λ) − Advμ
Aµ

(λ)
∣
∣
∣ ≤ AdvIND

FE,B2,µ
(λ).

To sum up, we have that there is an adversary B2 such that
∣
∣Adv1A(λ) − Adv2A(λ)

∣
∣

≤ h1 · AdvIND
FE,B2

(λ). �
Lemma 11. For every adversary A, there is an adversary B3 against the sta-
IND security of the scheme ID-MCFE such that

∣
∣Adv2A(λ) − Adv3A(λ)

∣
∣ ≤ Advsta-IND

ID-MCFE,B3
(λ).

Proof. This proof is similar to that of Lemma 8. �
The hybrid game of G3 to G4 is just the reverse of G0 to G2, so we have that

∣
∣Adv3A(λ) − Adv4A(λ)

∣
∣ ≤ mnh1 · AdvIND

SS,B1
(λ) + h1 · AdvIND

FE,B2
(λ).
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6 Conclusion

In this paper, we first introduced a new cryptographic primitive named RDM-
CFE, which allows the decryptor to evaluate the ciphertexts of a subset of clients.
Then, we defined the robust correctness and robust security for Special IP-MCFE.
Besides, we proposed two IP-RDMCFE constructions, where the basic construc-
tion is not reusable but exhibits small storage and communication overheads
that remain independent of the vector length, while the enhanced construction
achieves the reusability of secret keys at the cost of increasing storage and com-
munication overheads.
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Abstract. Registration-Based Encryption (RBE) [Garg et al. TCC’18]
is a public-key encryption mechanism in which users generate their own
public and secret keys, and register their public keys with a central
authority called the key curator. Similarly to Identity-Based Encryption
(IBE), in RBE users can encrypt by only knowing the public parameters
and the public identity of the recipient. Unlike IBE, though, RBE does
not suffer the key escrow problem—one of the main obstacles of IBE’s
adoption in practice—since the key curator holds no secret.

In this work, we put forward a new methodology to construct RBE
schemes that support large users identities (i.e., arbitrary strings). Our
main result is the first efficient pairing-based RBE for large identities.
Prior to our work, the most efficient RBE is that of [Glaeser et al. ePrint’
22] which only supports small identities. The only known RBE schemes
with large identities are realized either through expensive non-black-
box techniques (ciphertexts of 3.6 TB for 1000 users), via a specialized
lattice-based construction [Döttling et al. Eurocrypt’23] (ciphertexts of
2.4 GB), or through the more complex notion of Registered Attribute-
Based Encryption [Hohenberger et al. Eurocrypt’23]. By unlocking the
use of pairings for RBE with large identity space, we enable a further
improvement of three orders of magnitude, as our ciphertexts for a sys-
tem with 1000 users are 1.7 MB.

The core technique of our approach is a novel use of cuckoo hash-
ing in cryptography that can be of independent interest. We give two
main applications. The first one is the aforementioned RBE methodol-
ogy, where we use cuckoo hashing to compile an RBE with small iden-
tities into one for large identities. The second one is a way to convert
any vector commitment scheme into a key-value map commitment. For
instance, this leads to the first algebraic pairing-based key-value map
commitments.
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1 Introduction

Registration-Based Encryption (RBE), introduced by Garg et al. [34], is a pub-
lic key encryption mechanism in which users generate their own public and
secret keys, and register their public keys with a central authority called the
Key Curator (KC). The responsibility of the KC is to maintain the system’s
public parameters updated every time a new user joins. In RBE, Alice can send
an encrypted message to Bob by only knowing the public parameters and Bob’s
identity. On the other hand, in order to decrypt, Bob uses his secret key and
a small piece of information, the opening, that can be retrieved from the KC.
An RBE scheme should have compact public parameters, and its algorithms for
encryption and decryption should be sublinear in the number of registered users.
In terms of security, RBE guarantees that messages encrypted under an identity
id stay confidential (in a usual semantic security fashion) as long as id is an
honest user or id did not register in the system.

Registration-based encryption can be seen as an hybrid between traditional
Public-Key Encryption (PKE) [21,56] and Identity-Based Encryption (IBE) [57].
The most appealing feature of RBE is to remove the need of trusted parties,
which is a common issue, for different reasons, in PKE and IBE. In IBE, a trusted
authority is responsible to generate users’ secret keys and thus can decrypt any
message in the system, a problem known as key escrow. In traditional PKE, one
needs a trusted authority, the PKI, in order to certify ownership of public keys;
PKIs are however complex to implement and manage. In contrast, while an RBE
system still involves an authority, the key curator, the main benefit is that the
KC does not hold any secret and its behavior is completely transparent, to the
point that it can be replicated (and thus audited) by any user in the system.
Therefore, RBE can be a promising alternative to realize public key encryption
with simple, safe, and transparent key management.

The approaches used to construct the first proposals of RBE [34,35] rely
either on indistinguishability obfuscation or the garbled circuit tree technique
of [17]. In spite of their power, these techniques are prohibitively expensive.
For instance, based on estimations from [18] an RBE based on garbled circuits
with a thousand users would have ciphertexts of 3.6 TB (which [18] can reduce by
approximately 45%). As observed in [38], this high cost is (partially) due to their
non-black-box use of cryptographic schemes—an approach that is notoriously
expensive.

Two very recent works [24,38] have filled this gap by proposing efficient,
black-box constructions of RBE that are based on bilinear pairings and lattices
respectively. On the good side, the schemes of [24,38] achieve feasible efficiency—
both report implementations confirming encryption and decryption time in the
order of milliseconds, public parameters in the order of a few MBs. On the other
hand, this efficiency profile comes at the price of some limitations. The work
of Glaeser et al. [38] achieves their efficiency by limiting the identity space to
the set of polynomial-size integers {1, . . . , n}. Although this identity space fits
a few application scenarios (e.g., if identities are phone numbers), it rules out
many more. In practice, the desiderata is to support identities that can be arbi-
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trary strings (e.g., email addresses, arbitrary usernames). The work of Döttling
et al. [24] manages to solve this issue. They propose an RBE construction for
arbitrary identities based on the LWE problem. Nevertheless, their ciphertext
size is still far from desirable in practice: for n registered users their ciphertexts
consist of ≈ 2λ log n LWE ciphertexts (concretely, 2.4 GB for a system with 1024
registered users).

Finally, another recent work, by Hohenberger et al. [40], introduces the notion
of Registered Attribute-Based Encryption (R-ABE) and gives black-box con-
structions from composite-order bilinear groups. One can generically transform
an R-ABE to an RBE scheme with unbounded identities. Unfortunately, the
construction of of [40] inherits the complexity of the enhanced functionality of
ABE, therefore the resulting RBE with unbounded identities would be overly
complicated and concretely inefficient.

1.1 Our Contributions

In this work, we continue the line of research on constructing efficient and black-
box registration-based encryption.

Pairing-based RBE. Our main result is the first RBE scheme for unbounded
identity spaces that is black-box and based on prime-order bilinear groups. The
interest of an RBE from pairings is twofold. First, we show how to support
large identities using an algebraic structure that is substantially more limited
than lattices. Second, pairings lend themselves to efficient implementations and
in fact our scheme achieves much shorter ciphertexts than the state-of-the-art
RBE for large identities from [24]. Concretely, a ciphertext of our RBE is 1.67MB
for 1024 users and identity space {0, 1}2λ. In other words, by unlocking the use
of pairings for RBE with large identities we show yet another three-orders-of-
magnitude improvement in this research line.

We should highlight that, as mentioned above, an RBE from pairings can
also be constructed using the R-ABE scheme of [40]. However, it would be over
composite order bilinear groups, where the order has an unknown factorization,
making it less efficient and cumbersome for implementations.

We provide a comparison of our schemes with the state-of-the-art black-
box constructions in Table 1. A thorough analysis of the table can be found
in Sect. 5.1.

Novel construction methodology for RBE. To achieve this milestone,
our technical contribution is a novel methodology to construct black-box RBE
schemes that can accommodate exponentially large identity spaces, i.e., id ∈
{0, 1}∗. Prior to our work, this was a challenging problem solved either through
the use of non-black-box techniques [34,35], via a specialized construction based
on LWE [24] or going through the heavier notion of R-ABE. Our approach
instead consists of a generic compiler that yields several RBE instantiations
based on a variety of assumptions, in the random oracle model.

The core technique of our approach is a novel use of cuckoo hashing [51] in
cryptography that can be of independent interest. Cuckoo hashing is a powerful
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Table 1. Comparison of the schemes resulting from different instantiations of our
compiler. n is the maximum number of users to be registered. Parings (P) indicates
prime order groups and Pairings (C) composite order groups respectively. |ct| in the
pairing construction is measured in group elements and in the Lattice constructions
LWE ciphertexts.

Setting ID Compactness |ct| #updates |pp| + |crs|
[40] Pairings (C) {0, 1}∗ Adaptive O(λ log n) log n O(λn2/3 log n)

[38] Pairings (P) [1, n] Adaptive 4 log n log n O(
√

n log n)

Ours P1 Pairings (P) {0, 1}∗ Adaptive 6λ log n log n O(
√

λn log n)

Ours P2 Pairings (P) {0, 1}∗ Selective 12 log n log n O(
√

n log n)

[24] Lattices {0, 1}∗ Adaptive (2λ + 1) log n log n O(log n)

Ours L Lattices {0, 1}∗ Selective 4 log2 n log n O(log n)

(probabilistic) technique to store elements from a large universe X into a small
table T so that one can later access them in constant-time. Concretely, the latter
means that for an element x the cuckoo hash returns k = O(1) possible loca-
tions of T where to find x; the cuckoo hashing algorithms take care of resolving
collisions by reallocating elements in T whenever a collision occurs.

In this work, we present a compiler that takes an RBE scheme for a
polynomial-size identity space ID = {1, . . . , n} and boosts it to become an RBE
for large identity space ID = {0, 1}∗. We start with the idea of using cuckoo
hashing to map identities in ID to polynomial-size integers in ID so that user
id becomes user H(id) in the underlying RBE. Unsurprisingly, this simple idea
does not work straightforwardly. The main obstacle is that the cuckoo hashing
algorithms “move” elements around different locations during the lifetime of the
system. This implies that a user id assigned to location j = H(id) might decrypt
ciphertexts that were previously generated for another user id∗ that was assigned
to the same location j in the past. In our compiler, we resolve these “collisions”
thanks to a novel combination of the RBE with Witness Encryption for Vector
Commitments (WE for VC), and a secret sharing scheme. A Vector Commitment
(VC) scheme [15,48] allows one to compute a short commitment to a vector v
and later locally open at a specific position j. A WE for VC is a special-purpose
witness encryption [33] thanks to which a party can encrypt a message m w.r.t.
a commitment C, position j, and value y, and m can be decrypted by anyone
holding a valid opening of C at the correct value y = vj . Interestingly, we show
how to construct this class of WE based on well established assumptions over
pairings (DHE [8]) and lattices (LWE [55]). We refer to our technical overview
(Sect. 2) for more details.

Additional contributions. To confirm the power of our cuckoo hashing tech-
nique, we show additional results that we discuss hereafter.

New lattice-based RBE. Through our RBE compiler, we also obtain new
RBE schemes based on LWE. We do this by instantiating the RBE of [24] with a
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small identity space and then boosting it to large identities through our compiler.
This instantiation though does not improve over the large-identity instantiation
of [24]; this is due to the fact that we need a robust1 cuckoo hash [62] that
produces k = λ indices for every element and blows our ciphertexts by a factor λ.
Interestingly, though, we need the robustness property of cuckoo hashing only to
ensure that the public parameters stay polylogarithmic in the worst case. Based
on this observation, we can also use a (non-robust) cuckoo hashing where k = 2
and obtain an LWE-based RBE that has shorter ciphertexts than [24] (ours has
of 4 log2 n LWE encryptions, as opposed to 2λ log n). Our RBE scheme is correct
and secure, but achieves compact parameters only against selective adversaries.
We refer to Sect. 4.4 for more details on this compactness model.

Application to key-value map commitments and accumulators. Based
on the cuckoo hashing idea described above, we present a construction that
compiles any vector commitment into a key-value map commitment (KVC) [1,7]
for arbitrary-size keys. In a nutshell, a KVC is a generalization of VCs in which
one commits to a collection of key-value pairs (ki, vi), i.e., VCs are a special
case where keys are integers in {1, . . . , n}. Thus the interesting problem is to
realize KVCs with large keys, e.g., k ∈ {0, 1}∗. Existing schemes are based on
hidden-order groups [1,7], Merkle trees or, very recently, lattices [14].2 In Sect. 6,
we present a generic and black-box construction of (updatable) KVC obtained
by combining any (updatable) VC and cuckoo hashing. Through this generic
construction, we obtain new efficient KVCs; notably, the first updatable KVCs
for large keys based on pairings.

Finally, we observe that KVCs (for large keys) imply accumulators (for large
universe). By putting this observation together with our VC-to-KVC compiler,
we obtain a way to convert VCs into accumulators. This connection was previ-
ously shown by Catalano and Fiore in [15] but only for small universe. Our results
thus bridge this gap. Furthermore, we close the circle in showing the equivalence
of VCs and universal accumulators, since the reversed implication (i.e., building
VCs from universal accumulators) has been recently shown by Boneh, Bunz and
Fisch [7]. An outstanding implication is that our result yields the first accumu-
lator for large universe based on the CDH problem in bilinear groups. Prior to
our work, this result could only be achieved by using non-black-box techniques
(e.g., a Merkle tree with a CDH-based VC).

Cuckoo hashing applications. Cuckoo Hashing has been used extensively in
many contexts in cryptography, mainly to boost efficiency in oblivious two-party
computations (e.g. in [2,52–54]). However, in most of these contexts, due to the
oblivious security model, the adversary does not have direct access to the cuckoo
hash functions. Only recently, a new work has discussed cuckoo hashing in this
perspective [62].

1 Informally, a CH is robust if its correctness error is negligible for adversarially chosen
inputs; standard correctness holds only for inputs chosen before public parameters.

2 One can also use polynomial commitments, e.g., [42], in combination with interpo-
lation but to the best of our knowledge this KVC is not updatable.
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In our work, we propose new cryptographic applications where cuckoo hashes
can be publicly computed. In a way, our results show how vector commitment
techniques can mitigate the shortcomings of publicly computable cuckoo hashing,
as combining them with vector commitments enable their use while keeping
constructions succinct and efficient. We believe that this approach can serve as
inspiration for future applications.

1.2 Related Work

Registered Encryption Primitives. As we mentioned, the first works on
registration-based encryption (with large identities) were non-black box: [34]
introduced the notion, [35] showed a construction with more efficient registration
computational complexity, [39] introduced the notion of verifiability for RBE and
[18] improved the efficiency of the previous works by replacing the Merkle tree
with a form of PATRICIA trie. Lately, there has been an increasing interest
in generalizing RBE to registered fine-grained encryption such as Registered
Attribute-Based Encryption [40] and Registered Functional Encryption [19,29].

Cuckoo Hashing in Cryptography. Cuckoo hashing has been used in Cryp-
tography in oblivious access primitives such as Oblivious RAM [53], Private Set
Intersection [54], Private Information Retrieval [2], and Searchable Encryption
[52]. Recently, Yeo gave a formal treatment from a cryptographic perspective [62],
again with the objective of discussing applications to PIR. To the best of our
knowledge, our work is the first that uses cuckoo hashing in the context of fine-
grained encryption and commitment schemes.

Key-Value Map Commitments and Accumulators. The notion Key-Value
Map Commitments was introduced by Boneh et al. [7] where they also presented
a construction from Groups of Unknown order. Different KVC constructions from
Groups of Unknown order exist [1,12]. KVCs can also be realized by Merkle
Trees. Recently deCastro and Peikert [14] showed a construction from Lattices.

Accumulators were introduced by Benaloh and de Mare [5]. Constructions for
large universe exist from RSA groups [4,10], Groups of Unknown Order [7,49],
q-type assumptions in bilinear groups [50], and Merkle trees. The recent work of
de Castro and Peikert [14] also implies an accumulator from lattices.

Lite-WE Flavors. Witness Encryption for Merkle trees implicitly appears in
[17,22,34], using non-black box techniques (Garbling). Witness Encryption fla-
vors for special purpose relation, with the objective to have a more efficient
instantiation, have also been introduced in prior works [6,11,13,23]

2 Technical Overview

We give here an informal overview of the techniques that we introduce in this
work to obtain our Registration-Based Encryption (RBE) and Key-Value Map
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Commitments (KVC) results. To put some context, we recall first Vector Com-
mitments [15,48] a fundamental primitive for both RBE and KVC.

Vector Commitments. A Vector Commitment (VC) is a cryptographic prim-
itive with which one can commit to a vector of elements in such a way that, at a
later point, one can selectively open any position of the vector. Importantly, the
commitments and the openings should be succinct (sublinear or polylogarithmic)
in the size of the vector. The simplest form of VCs are Merkle trees.

We guide the reader through an example, the Libert-Yung VC [48], that we
will also use in this work. It works over pairings, using a common reference string
(CRS) crs = (gα, . . . , gαn

, gαn+2
, . . . , gα2n

) and we denote gi = gαi

. Committing
to a vector x = (x1, . . . , xn) happens as C =

∏
i∈[n] g

xi
i . To open the position

i (to value xi) we compute Λi =
∏

j �=i(gn+1−i+j)xj . For the verification of the
opening we check if e(C, gn+1−i) = e(Λi, g) · e(gxi

i , gn+1−i). The VC is position
binding under the n-Diffie-Hellman Exponent assumption [8], a well-established
q-type (falsifiable) assumption. Observe that C,Λ are just a single group element
each, and the verification time is independent of the size of the vector.

2.1 Registration-Based Encryption with Unbounded Identity Space

Prior Black-Box RBE Constructions. To date, the only RBE constructions
that are black-box (i.e., they do not encode cryptographic operations in the cir-
cuit of another cryptographic primitive such as a Garbled Circuit) are the ones
of Glaeser et al. [38] (henceforth GMKMR) and Döttling et al. [24] (henceforth
DKLLMR). The former works over pairings and the latter over lattices. For the
sake of this overview we are only concerned with the former RBE. Furthermore,
to simplify the exposition we omit efficiency tricks that retain the efficiency prop-
erties (compactness, number of updates) of RBE. We discuss them extensively
in the main body of our work.

The GKMR RBE. The GKMR RBE [38] roughly works as follows. It uses
[48] as an underlying vector commitment in order to commit (in a compressing
way) to the public keys of all the users.

In more detail, the user i samples a secret key ski randomly and sends pki =
gski

i to the Key Curator (KC). Then the KC compresses the public keys of all
users by computing C =

∏
i∈[n] pki =

∏
i∈[n] g

ski
i , and sets the public parameters

as pp ← C. In essence, C is a vector commitment to the vector of the secret keys
sk = (sk1, . . . , skn) of all registered user.

GKMR introduced a simple technique to encrypt a message m ∈ GT

to the user i by only having C and, crucially, without having pki: Recall-
ing that e(C, gn+1−i) = e(Λi, g) · e(gski

i , gn+1−i), one defines the cipher-
text as (ct1, ct2, ct3) = (gr, e(C, gn+1−i)r, e(gi, gn+1−i)r · m) . Observe that

e(C, gn+1−i)r = e(Λi, g)r · e(gi, gn+1−i)r·ski , and thus
(
ct2 · e(Λi, ct1)−1

)sk−1
i =

ct3/m. Hence, the user i, knowing ski and additionally Λi, can decrypt as

m∗ = ct3/
(
ct2 · e(Λi, ct1)−1

)sk−1
i .
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In RBE terms, Λi represents the update information of user i that should
be periodically fetched from the KC (whenever it is changed). The final note is
that naively computing Λi =

∏
j �=i(gn+1−i+j)skj would need knowledge of sk to

be computed. However, each user j can compute the cross-terms (gn+1−i+j)skj

for each i �= j previously registered, and send them to the KC to enable the KC
to compute the Λi’s. We summarize the GKMR RBE below:

crs = {g, gα, . . . , gαN

, gαN+2
, . . . , g2N}; pki = gski

i ;

pp = C := gsk11 gsk22 . . . gskN

N ; ui = Λi :=
∏

j �=i

(gN+1−i+j)skj ;

ct =
(
gr, e(C, gN+1−i)r, e(gi, g

N+1−i)r · m
)
; m∗ = ct3/

(
ct2 · e(Λi, ct1)−1

)sk−1
i .

The Limitation of Bounded Identities. In the scheme above, i plays the
role of the user’s identity. It is apparent from the construction that i should lie
in [1, n] and since the CRS is linear in n, n must be polynomially bounded, and
so must be the RBE identity space. This limitation is acknowledged in [38] and
is the main drawback of the, otherwise highly efficient, scheme.

In the following we describe our technique to overcome this limitation.

Our Approach: Cuckoo Hashing. One may be tempted to use a hash function
to map larger identities to [1, n]. However, naively this cannot work because of
collisions: since [1, n] is polynomial-size collisions are inevitable.

Our idea is to use Cuckoo Hashing (CH) [51] for the mapping {0, 1}∗ → [1, n].
Cuckoo Hashing is a powerful (probabilistic) technique to store elements from
a large universe X in a small table T in constant time so that one can later
efficiently access them, in constant time. Hence it is an inherent method to deal
with collisions in a small space.

To put some context, we describe a simple version of Cuckoo Hashing with
a stash [44]. For this, we have 2 hash functions h1, h2, a table T of size 4n
and a (unordered) set S, called the ‘stash’. To insert a new element x, one first
computes x(1) = h1(x) and if T [x(1)] = empty then stores x in T [x(1)]. Otherwise,
if T [x(1)] = y then x ‘evicts’ y; namely, x is stored in T [x(1)] and y is inserted
in T [y(2)] (assume for this example that y was previously ‘sent’ to T [x(1)] using
h1). Subsequently, if T [y(2)] is occupied by z then y ‘evicts’ z, and z gets sent to
the location specified by the alternative hash function. Observe that one always
begin with h1 for a new element and when the element is evicted always uses
the next hash function (and if the last is reached, then the first one again). This
procedure continues until either an empty position is found or M attempts have
been made. If the latter event occurs, then the last element that was evicted gets
stored in the stash S. It can be shown that for random hash functions h1, h2,
if M = O(λ log n) then the size of the stash is in O(log n) with overwhelming
probability [3].

There are many variants of the above mechanism: Cuckoo Hashing with k > 2
hash functions [27] or having tables where every position/bucket has capacity
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� > 1 [20]. We refer to [61] for an insightful systematization of knowledge and [62]
for an overview from a cryptographic perspective.

In our work, we formally define a Cuckoo Hashing scheme in a cryptographic
manner in Sect. 3.2, closely following the definitions of [62]. For the rest, we
mostly treat Cuckoo Hashing as a black-box, assuming that it uses k hash func-
tions with buckets of size � = 1.

Cuckoo Hashing in RBE. Now let’s see how one would use Cuckoo Hashing
in the above RBE scheme in order to map large identities id ∈ {0, 1}∗ to small
representatives in [1, n]. From now on, we denote id(η) = hη(id) for short.

A user id who wishes to register in the system, computes id(1) = h1(id), . . . ,
id(k) = hk(id), samples k different secret keys sk(1), . . . , sk(k) and sends the cor-
responding public keys gsk

(1)

id(1)
, . . . , gsk

(k)

id(k) to the KC. Then the KC inserts id in
the system by Cuckoo Hashing it (KC keeps the table T of currently hashed
identities). Assuming that id is eventually stored in T at position id(η), KC has
pkid(η) . To give an example, a potential instance of such a system could be:

C = g
sk

(2)
b

1 · 1· g
sk(1)a
3 · g

sk(3)e
4 · g

sk(1)c
5 · 1· 1· g

sk
(2)
d

8
(
sk = ( sk

(2)
b , 0, sk(1)a , sk(3)e , sk(1)c , 0, 0, sk

(2)
d )

)

T = ( b, 0, a, e, c, 0, 0, d)
1 2 3 4 5 6 7 8

where n = 8, a, b, c, d, e are identities and h2(b) = 1, h1(a) = 3, h3(e) =
4, h1(c) = 5, h2(d) = 8 (recall, sk is not known explicitly to the KC; and to
highlight this is written with brackets in the examples).

Until now, we have resolved the collisions in a pragmatic way: thanks to
cuckoo hashing, no collisions of identities are stored in the public parameters.
This is however not clear from the Encryptor’s perspective. The Encryptor wish-
ing to encrypt for id does not have T and thus does not know in which position
among id(1), . . . , id(k) the identity is placed. Hence, she does not know which
position to encrypt for, and could compromise security by encrypting for a posi-
tion occupied by another identity id′, in which case id′ would read the message
intended for id.

The Missing Piece: Witness Encryption for Vector Commitments. To
solve the issue explained above, our approach is to use another Vector Commit-
ment, D, this time to commit to the actual table T of identities rather than the
secret keys. The above example is modified as follows:

C = g
sk

(2)
b

1 · 1· g
sk(1)a
3 · g

sk(3)e
4 · g

sk(1)c
5 · 1· 1· g

sk
(2)
d

8
(
sk = ( sk

(2)
b , 0, sk(1)a , sk(3)e , sk(1)c , 0, 0, sk

(2)
d )

)

D = gb
1· 1· ga

3 · ge
4· gc

5· 1· 1· gd
8

T = ( b, 0, a, e, c, 0, 0, d)
1 2 3 4 5 6 7 8
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For such a configuration of the system, the wish is a cryptographic primitive
that allows encrypting, when having in hands only D and the target id, and that
should work as follows: If T [id(η)] = id is in the committed vector, then anyone
having the corresponding opening Ψid(η) can decrypt. Otherwise, if T [id(η)] �= id
then the ciphertext is computationally indistinguishable for everyone.3

This mechanism is reminiscent of Witness Encryption (WE) [33], but only
for a specific NP language and a slightly different notion of security. We for-
malize such a primitive and call it Witness Encryption for Vector Commitments
(VCWE, see Sect. 4.1). Using a VCWE, the encryptor can:

1. Secret share the message m into two shares m1,m2

2. Encrypt m1 for the position id(1) using the above RBE for small identities.
3. Encrypt m2 with the VCWE for commitment D, position id(1), value id.

and repeat this for every possible position of id in the table, i.e. id(2), . . . , id(k).
To argue the security of this idea, we note that:

– If T [id(η)] = id, then everybody can decrypt the second part of ciphertext (for
security, we consider that T and thus Ψid(η) are public) and obtain m2. On
the other hand, T [id(η)] = id means that the ‘correct’ user is registered in
that position, hence only id can obtain the first share m1.

– If T [id(η)] �= id then nobody can decrypt the second part of the ciphertext and
obtain m2. This follows from the security of VCWE.

VCWE Constructions. Witness Encryption for all NP is notoriously hard to
achieve in efficient ways with currently known constructions from multilinear
maps [33,36], indistinguishability obfuscation [32,41] or, recently, non-standard
non-falsifiable lattice assumptions [58,59].

Nevertheless, it turns out that for the specific relation above, there are sur-
prisingly simple and efficient black-box solutions. Therefore, the VCWE cipher-
text imposes a minimal overhead to the size of the overall ciphertext. In Sect. 5,
we provide two simple VCWE schemes, over Pairings and Lattices respectively.

Final RBE Scheme. In conclusion the Cuckoo Hashing technique in combina-
tion with the VCWE allow us to have a secure RBE with unbounded identities.

Dealing with the Stash. Finally, if the CH scheme has a stash S, then we
demand that this stash is small (polylogarithmic or sublinear). This is because
we store S = {(pk1, id1), . . . , (pks, ids)} in the public parameters, and anyone
who wants to encrypt w.r.t an idi in the stash can do it, using a regular Public
Key Encryption scheme. As we discuss in Sect. 3.2 there are CH schemes that
have |S| = log n or even |S| = 0 even in the worst case.

3 We note that if T [id(η)] �= id then from position-binding of the VC no PPT party
can compute a Ψ that verifies for id in position id(η).
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2.2 Generalization and Other Implications

General Compiler. It is not difficult to see that the procedure described above,
to enlarge the identity space, in a semi-generic way through the GKMR RBE, can
be generalized. That is, we give a generic compiler that boosts any RBE scheme
with small identity to one with large identity space, using Cuckoo Hashing, and
Witness Encryption for Vector Commitments.

Lattice-Based RBE with Shorter Ciphertexts. Our general compiler
applies naturally to Lattice-Based RBE schemes. As previously mentioned, the
DKLLMR RBE scheme [24] already allows for unbounded identities.

In spite of this, their ciphertext size is logarithmic in the size of the identity
space: |ct| = log(|ID|) log n LWE ciphertexts. This stems from the fact that
their construction works with a (sparse) Merkle tree with one leaf per element of
ID, thus |ID| leaves, and then the ciphertext is roughly one LWE ciphertext per
level of the tree. For a virtually unbounded identity space we need ID = {0, 1}2λ

(so that we can use a collision resistant hash function H : {0, 1}∗ → {0, 1}2λ),
meaning |ct| = 2λ log n. This means that there is a Merkle tree with 22λ leaves,
while only n = poly(λ) are going to be occupied.

Our idea is the following: Say that we want to support n = poly(λ) users,
then we could start from a DKLLMR RBE with exactly n leaves (i.e. bounded
identities), thus |ct| = log2 n. Then we could apply our compiler to boost it to
a full-fledged RBE with unbounded identities. Our hope is that, after applying
our compiler, we could obtain an RBE with smaller ciphertexts than DKLLMR
instantiated for ID = {0, 1}2λ.

Our general compiler yields about 2k|ct|-sized ciphertexts (assuming that
VCWE has roughly the same size as RBE which turns out to be the case, see the
full version [26]). If we desire our RBE to have adversarial compactness then for
technical reason related to CH (see the full version [26])we need to fix k = λ. This
unfortunately does not let us achieve an improvement. However, if one relaxes
compactness to hold only against selective adversaries, meaning adversaries who
need to choose the set of identities they wish to register before seeing the Cuckoo
hash functions, one can set k = 2 and obtain a significant improvement: |ct| ≈
4 log2 in constant to 2λ log n (initial DKLLMR), which concretely saves an λ

2 log n
factor from the ciphertext. We defer the discussion and the formal definition of
this selective notion to the full version [26].

2.3 Key-Value Map Commitments and Accumulators

Finally, we informally describe how we can use our cuckoo hashing technique
in the context of vector commitments, specifically to transform any VC scheme
into a key-value map commitment for keys from a large space.

Assuming one needs to commit to a key-value map consisting of n key-value
pairs (ki, vi) for i = 1 to n, one can “cuckoo hash” all the keys so as to obtain
a table T , a vector, that stores all the keys at certain positions. Then, one can
compute a vector commitment CT to T and another vector commitment CV to
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a vector V built in such a way that V [j] stores a value v if the key k associated
to v is stored in T [j]. Namely, each pair (ki, vi) is stored in T and V at the
same position j. By correctness of cuckoo hashing, for every k such an index j
exists. In order to open the commitment (CT , CV ) to a key k one can use cuckoo
hashing to find the set of h candidate indices (j1, . . . , jh) where k is (potentially)
stored and open CT at those positions, to find the index j∗ such that T [j∗] = k.
One then also opens CV to position j∗ and its value v. The verifier then would
run similarly: for a key-value (k, v), she runs the cuckoo hashing to find out
(j1, . . . , jh) associated to k, verify the openings of CT to (T [j1], . . . ,T [jh]), and
the opening of CV to v in the position j∗ such that T [j∗] = k. For security it
is essential that all (j1, . . . , jh of (CT , CV ) are opened so that the fact that k is
stored in exactly one position can be verified.

In Sect. 6 we give more details on other technicalities of this construction,
such as how to: deal with elements in the stash, prove that a key is not com-
mitted, reduce key-binding to the position binding of the VC. Notably, this
transformation is black-box, i.e., it works by only invoking the algorithms of the
underlying VC. This stands in contrast to, e.g., Verkle tree approaches [16,45].

3 Preliminaries

Notation. An integer λ ∈ N will denote the security parameter, poly(λ) and
negl(λ) polynomial and negligible functions respectively. Vectors are written in
bold font (e.g. v), and given vectors v1, . . . ,vm, cat((v1, . . . ,vm)) will be the
vector of concatenated vectors v1‖ . . . ‖vm. For any positive integer n ∈ Z we
denote by [n] the set of integers {1, . . . , n} and, more generally, by [A,B] the
set {A, . . . , B} for any A,B ∈ Z, A ≤ B. x

$← X will mean that x is being
uniformly sampled from a finite set X. Throughout this work “PPT” stands for
Probabilistic Polynomial-Time.

3.1 Public Key Encryption

Public-Key Encryption (PKE) allows all users aware of some public information
to encrypt messages that only some users aware of secret information will be able
to decrypt to access these messages. It has extensively been used and developed
in cryptography during the last fifty years. In short, a PKE scheme PKE consists
of three algorithms:

• PKE.KeyGen(1λ): this algorithm outputs a public key pk and a secret key sk
to use in the scheme with security on λ bits;

• PKE.Enc(pk,m): the encryption algorithm outputs a ciphertext C encrypting
the message m using the public key pk;

• PKE.Dec(sk, C): this algorithm returns the message m encrypted in the
ciphertext C using the secret key sk.
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3.2 Cuckoo Hashing

Cuckoo Hashing (CH) [51] is a technique to store a set of m elements from a
large universe X into a linear-size data structure that allows efficient memory
accesses. In our work we abstract away the properties of a family of cuckoo
hashing constructions that can be used in our RBE and KVC constructions.
We do this by defining the notion of Cuckoo Hashing schemes. Our definition
is a variant of the one recently offered by Yeo [62]; in our definition, we use
deterministic Insert algorithms.

In a nutshell, a cuckoo hashing scheme inserts n elements x1, . . . , xn ∈ X in
a vector T so that each element xi can be found exactly once in T , or in a stash
set S. The efficient memory access comes from the fact that for a given x one can
efficiently compute the k indices i1, . . . , ik such that x ∈ {T [i1], . . . ,T [ik]} ∪ S.
The idea of cuckoo hashing constructions is to sample k random hash func-
tions H1, . . . , Hk : X → [n] and use them to allocate x in one of the k indices
H1(x), . . . , Hk(x). Each construction uses a specific algorithm to search the index
allocated to x, requiring to move existing elements whenever a position is going
to be allocated to another element. The most efficient algorithms are local search
allocation [43] and random walks [28,30,31,60,62].

We define a Cuckoo Hashing scheme with the following algorithms:

Definition 1 (Cuckoo Hashing Schemes Algorithms). A Cuckoo Hashing
scheme CH = (Setup, Insert, Lookup) consists of the following algorithms:

• Setup(1λ,X , n) → (pp,T , S) : is a probabilistic algorithm that on input the
security parameter, the space of input values X and a bound n on the number
of insertions, outputs public parameters pp, k ≥ 2, an empty vector T with N
entries (with N a multiple of k), along with an empty stash set S, (denoting
s ≥ 0 its size, at this point, s = 0);

• Insert(pp,T , S, x1, . . . , xm) → (T ′, S′) : is a deterministic algorithm that on
input vector T where each non-empty component contains an element in X ∈
pp, inserts each x1, . . . , xm ∈ X in the vector exactly once and returns the
updated vector with moved elements, T ′, S′.

• Lookup(pp, x) → (i1, . . . , ik) : is a deterministic algorithm that on input public
parameters pp and x ∈ X , returns (i1, . . . , ik), the candidate indices where x
could be stored.

Remark 1. Our Cuckoo Hashing schemes are, overall, probabilistic with the
probability taken over the choice of pp. Once pp is fixed, everything is deter-
ministic; Insert and Lookup, that take pp as input, are deterministic algorithms.

Our definition above differs from the one in [62] in the following aspects. First,
we consider dynamic cuckoo hashing schemes in which one can keep inserting
elements, while [62] considers the static case in which the set is hashed all at
once. Second, in our notion each entry of T can store a single element, whereas
[62] considers the more general case where it can store � ≥ 1 elements, which
occurs in some constructions.
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We define correctness of cuckoo hashing by looking at the probability that
either the insertion algorithm fails or, if it does not fail, an inserted element is
not stored in the appropriate indices returned by Lookup. To model this notion
we give two definitions. The first one is the “classical” correctness definition of
cuckoo hashing that takes this probability over any choice of inputs but for a
random and independent sampling of the hash functions. Intuitively this models
the scenario where an adversary for correctness does not have explicit access to
the hash functions, but can still choose any input set.

Definition 2 (Correctness). A cuckoo hashing scheme CH is ε-correct if for
any n, any set of m ≤ n items x1, . . . , xm ∈ X such that xi �= xj for all i �= j
and any � ∈ [m]:

Pr

⎡

⎣
T ′ = ⊥

∨ (T ′ �= ⊥ ∧
x� /∈ {T ′[i1], . . . ,T ′[ik]} ∪ S′)

:
(pp,T , S) ← Setup(1λ,X , n)

(T ′, S′) ← Insert(pp,T , S, x1, . . . , xm)
(i1, . . . , ik) ← Lookup(pp, x�)

⎤

⎦ ≤ ε

and one simply says that CH is correct if it is ε-correct with ε = negl(λ).

Robust Cuckoo Hashing. The second definition (introduced by Yeo [62])
instead considers the case of inputs that are chosen by a PPT adversary after
having seen the hash functions. This models the scenario where an adversary
has explicit access to the hash functions before choosing the set of elements.

Definition 3 (Robustness). A cuckoo hashing scheme CH is ε-robust if for
any n, any PPT adversary A:

Pr

⎡

⎢
⎢
⎢
⎢
⎣

T ′ = ⊥
∨ (T ′ �= ⊥ ∧

x� /∈ {T ′[i1], . . . ,T ′[ik]} ∪ S′)
:

(pp,T , S) ← Setup(1λ,X , n)
{x1, . . . , xm, �} ← A(pp)

xi �= xj∀i �= j ∈ [m]
(T ′, S′) ← Insert(pp,T , S, x1, . . . , xm)

(i1, . . . , ik) ← Lookup(pp, x�)

⎤

⎥
⎥
⎥
⎥
⎦

≤ ε

Efficiency Parameters of Cuckoo Hashing. For our applications, the fol-
lowing parameters will dictate the efficiency of a cuckoo hashing scheme: k, the
number of possible indices (and of hash functions); N , the size of the table T ;
s, the size of the stash S; d, the number of changes in the table (i.e., number of
evictions) after a single insertion. While in most constructions, the parameters
k and N are fixed at Setup time, in some cuckoo hashing schemes the values of s
and d may depend on the randomness and the choice of inputs. As in the case of
correctness vs. robustness, we define s and d in the average case (i.e., for any set
of inputs and for random and independent execution of Setup) or in the worst
case (i..e, for adversarial choice of inputs after seeing pp).

Existing Cuckoo Hashing Schemes. The following theorem encompasses a
few existing cuckoo hashing schemes.



180 D. Fiore et al.

Theorem 1. For a security parameter λ and an upper bound n, there exist the
following cuckoo hashing schemes:

– CH2 where k = 2, N = 2kn, that achieves negl(λ)-correctness, and average
case s = log n, d = O(1) [44].

– CH
(rob)
2 where k = 2, N = 2kn, that achieves negl(λ)-robustness, and worst

case s = n, d = O(1) [44,62] in the Random Oracle Model.
– CH

(rob)
λ where k = λ, N = 2λn, that achieves negl(λ)-robustness, and worst

case s = 0, d = λ [62] in the Random Oracle Model.

3.3 Vector Commitments

Vector commitment (VC) schemes [15,48] allow a party to compute a com-
mitment to a vector v and later to locally open a specific position vi. A VC
guarantees that it is hard to open a commitment to two distinct values at the
same position – what is called “position binding” – and should have short (i.e.,
polylogarithmic in |v|) commitments and openings. Formally:

Definition 4 (Vector Commitment [15]). A Vector Commitment (VC)
scheme VC = (Setup, Com, Open, Ver) consists of the following algorithms:

• Setup(1λ, n) → crs : on input the security parameter λ and an integer n
expressing the length of the vectors to be committed, returns the common
reference string crs.

• Com(crs,v) → (C, aux) : on input a common reference string crs and a vector
v, returns a commitment C.

• Open(crs, aux, i) → Λ : on input an auxiliary information as produced by Com
and a position i ∈ [n], returns an opening proof Λ.

• Ver(crs, C, Λ, i, v) → b : on input a commitment C, returns a bit b ∈ {0; 1} to
check whether Λ is a valid opening of C to v at position i.

Correctness. VC is perfectly correct if for any vector v:

Pr
[

Ver(crs, C,Open(crs, aux, i), i, vi)) = 1 : crs
$← Setup(1λ, n)

(C, aux) ← Com(crs,v)

]

= 1

Position Binding. VC satisfies position binding if for any PPT A

Pr

⎡

⎣
Ver(crs, C, Λ, i, v)) = 1

∧Ver(crs, C, Λ, i, v′)) = 1
∧ v �= v′

: crs
$← Setup(1λ, n)

(C, i, v, Λ, v′, Λ′) ← A(crs)

⎤

⎦ = negl(λ)

Succinctness. VC is succinct if for any crs
$← Setup(1λ, n), any vector v, any

(C, aux) ← Com(crs,v), any i ∈ [n] and Λ ← Open(crs, aux, i), the bitsize of C
and Λ is polylogarithmic in n, i.e., is bounded by a fixed polynomial p(λ, log n).
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In this work we use the notion of updatable vector commitments [15], which
informally provides the functionality that, given a commitment C and opening
Λ corresponding to a vector v, one can update them into values C ′ and Λ′

corresponding to a vector v′. Notably, this update should be efficient, i.e., in
time proportional to the number of different positions in v and v′, and thus
faster than recomputing them from scratch. More formally:

Definition 5 (Updatable VCs [15]). A vector commitment scheme VC is
updatable if there are two algorithms (ComUpdate,ProofUpdate) such that:

• ComUpdate(crs, C, i, v, v′) → C ′ : on input a commitment C, a position i and
two values v, v′, outputs an updated commitment C ′.

• ProofUpdate(crs, Λ, i, v, v′) → Λ′ : on input an opening proof Λ (for some
position j), a position i and two values v, v′, returns an updated opening Λ′.

Correctness. An updatable VC is perfectly correct if for honestly generated
crs

$← Setup(1λ, n), any vector v, initial commitment (C, aux) ← Com(crs,v),
position i ∈ [n], Λ ← Open(crs, aux, i), and any sequence of valid updates {(ik,
vik

, v′
ik

)}k∈[m] that result into a vector v∗, commitment C∗ and opening Λ∗,
Ver(crs, C∗, Λ∗, i, v∗

i )) = 1 holds with probability 1.

Efficiency. An updatable VC is efficient if its algorithms ComUpdate and Proof
Update run in polylogarithmic time given polylogarithmic inputs.

3.4 Registration-Based Encryption

We recall the original definition of Registration-Based Encryption [34] with the
modification of [38] that allows for a structured common reference string crs and
a bound n on the number of users that can be registered. In case a crs is not
involved or the scheme allows for an unbounded number of registered users we
consider crs = ∅ and N = ∞ respectively.

For completeness we recall how an RBE system evolves: At the beginning
a one-time setup algorithm generates the common reference string. Then there
are two types of parties: the Key Curator (KC) and the users, each represented
by an identity id from a pre-specified identity space ID. The KC is completely
transparent (and deterministic) and her role is solely to ease the computational
burden of each user. Each user, upon entering the system generates their own
public-secret key-pair (pk, sk) and registers their public key with the Key Cura-
tor, who computes the updated public parameters pp after the new registration.
Anyone can encrypt a message m ∈ M for an identity id by having access to the
crs and the current pp (without knowing the corresponding pk of id). Finally the
identity can decrypt the ciphertext ct using their secret key sk and an update
information u that is computed by the KC and given to the user.4

We further enhance the RBE definition with the functionality of deletion of
users from the system. We call an RBE that supports this functionality an RBE
with deletions. Below is the formal definition.
4 The update information does not have to be secret and is only computed by KC and

not by the user for efficiency.
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Definition 6 (Registration-Based Encryption (RBE) with deletions ).
A registration-based encryption scheme with identity space ID and message

space space M consists of six/ seven PPT algorithms (Setup, Gen, Reg, Del,
Enc, Upd, Dec) working as follows.

• Setup(1λ, N) → crs : On input the security parameter λ and a positive inte-
ger N indicating the maximum number of users that can be registered, the
randomized setup algorithm samples a common reference string crs.

• Gen(crs, id) → (pk, sk) : On input the common reference string crs and an
identity id, the randomized algorithm key generation algorithm outputs a pair
of public and secret keys (pk, sk).

• Reg[aux](crs, pp, id, pk) → pp′ : On input the common reference string crs, the
current public parameters pp, an identity id ∈ ID, and a public key pk, the
deterministic registration algorithm outputs the new public parameters pp′. The
Reg algorithm has read and write oracle access to the auxiliary information aux
which is updated into aux′ during registration. (The system is initialized with
public parameters pp and auxiliary information aux set to ⊥.)

• Del[aux](crs, pp, id) → pp′ : On input the common reference string crs, the
current public parameters pp, and an identity id ∈ ID the deterministic
registration algorithm outputs the new public parameters pp′ or ⊥ if id was
not registered before. The Del algorithm has read and write oracle access to
the auxiliary information aux which is updated into aux′ during the process.

• Enc(crs, pp, id,m) → ct : On input the common reference string crs, the cur-
rent public parameters pp, a recipient identity id ∈ ID and a message m ∈ M,
the randomized encryption algorithm outputs a ciphertext ct.

• Upd[aux](pp, id) → u : On input the current public parameters pp and a regis-
tered identity id, the deterministic update algorithm outputs an update infor-
mation u that can help id to decrypt its messages. It has read only oracle
access to aux.

• Dec(sk, u, ct) → m : On input the secret sk, the (current) update information u
and a ciphertext ct, the deterministic decryption algorithm outputs a message
m ∈ {0, 1}∗ or in {⊥,GetUpd}. The symbol ⊥ indicates a syntax error while
GetUpd indicates that more recent update information might be needed for
decryption.

Below is the formal definition of completeness and the efficiency requirements
of RBE as described in [34] with two modifications: (1) we additionally take
into account deletions, (2) and define a computational version, i.e. with a PPT
adversary instead of an unbounded one.

Definition 7 (Completeness, compactness, and efficiency of RBE).
For any interactive PPT adversary A, consider the following game CompA(λ)
between an adversary A and a challenger C.

1. Initialization. C sets pp ← ⊥, aux ← ⊥, u ← ⊥, D ← ∅, id∗ ← ⊥, t ← 0,
N̂ ← 0, M̂ ← 0 and crs ← Setup(1λ, N), and sends the sampled crs to A.
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2. Until A continues, proceed as follows. At every iteration, A chooses exactly
one of the actions below to be performed.
(a) Registering new (non-target) identity. If |D| = N skip this step. A

sends some id /∈ D and pk in the support of the Gen(crs) algorithm, to C. C
registers (id, pk) by letting pp ← Reg[aux](crs, pp, id, pk) and D ← D∪{id},
N̂ ← N̂ + 1.

(b) Deleting existing (non-target) identity. A sends some id ∈ D to
C. C un-registers id by letting pp ← Del[aux](crs, pp, id) and D ← D\{id},
M̂ ← M̂ + 1.

(c) Registering the target identity. If id∗ �= ⊥ or |D| = N , skip this
step. Otherwise, A sends some id∗ /∈ D to C. C then samples (pk∗, sk∗) ←
Gen(crs, id∗), updates pp ← Reg[aux](crs, pp, id∗, pk∗) and D ← D ∪ {id∗},
N̂ ← N̂ + 1, and sends pk∗ to A.

(d) Deleting the target identity. If id∗ /∈ D, skip this step. Otherwise,
C updates pp ← Del[aux](crs, pp, id∗) and D ← D \ {id∗}, M̂ ← M̂ + 1.

(e) Encrypting for the target identity. If id∗ = ⊥, skip this step. Oth-
erwise, C sets t ← t + 1. A sends some mt ∈ M to C who sends back a
corresponding ciphertext ctt ← Enc(crs, pp, id∗,mt) to A.

(f) Decryption by target identity. A sends a j ∈ [t] to C. C then lets
m′

j = Dec(sk∗, u, ctj). If m′
j = GetUpd, then C obtains the update u∗ =

Upd[aux](pp, id∗) and then lets m′
j = Dec(sk∗, u∗, ctj).

3. The adversary A wins the game if there is some j ∈ [t] for which m′
j �= mj.

Let Q ∈ poly(λ) be an upper bound on the number of queries issued by A. Let Dq

be the set of identities after the q-th query. We require the following properties
to hold for any PPT adversary A.

Completeness. Pr[A wins CompA(λ)] = negl(λ).
Compactness of public parameters and updates. For all queries q ∈ [Q],

let ppq be the public parameters after the q-th query. Then |ppq| is sublinear
in |Dq|. Moreover, for all id ∈ D, the size of the corresponding update |uq| is
also sublinear in |Dq|.

Efficiency of the number of updates. The total number of invocations of
Upd for identity id∗ in Step 2(f) of the game CompA(λ) is sublinear in N̂ .

Remark 2 (Efficiency of Registration and Updates). The initial work of Garg et
al. [34] considers a fourth stringent efficiency requirement, that the running times
of Reg, Del and Upd should be polylog(N). Constructions using iO [34] and gar-
bled circuits [35] satisfy this, however to date there is no black-box construction
with this property. Additionally our concrete compilers do not (asymptotically)
affect the running times of Reg, Del and Upd. Therefore, to avoid overwhelming
the reader we do not consider this property.

For the security of RBE, the adversary can control all users except for a target
identity id∗ of their choice. Then we demand ciphertext indistinguishability for
encrypted messages under this id∗. Below is the formal security definition taken
almost verbatim from [34], where we additionally consider deletions.
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Definition 8 (Security of RBE). For any interactive PPT adversary A,
consider the following game SecA(λ) between A and a challenger C.

1. Initialization. C sets pp = ⊥, aux = ⊥, D = ∅, id∗ = ⊥, crs ← Setup(1λ)
and sends the sampled crs to A.

2. Until A continues (which is at most poly(λ) steps), proceed as follows. At
every iteration, A chooses exactly one of the actions below to be performed.
(a) Registering new (non-target) identity. A sends some id /∈ D and

pk to C. C registers (id, pk) by letting pp ← Reg[aux](crs, pp, id, pk) and
D ← D ∪ {id}.

(b) Deleting an existing (non-target) identity. A sends some id ∈ D
to C. C un-registers id by letting pp ← Del[aux](crs, pp, id) and D ←
D \ {id}.

(c) Registering the target identity. If id∗ �= ⊥, skip this step. Otherwise,
A sends an id∗ /∈ D to C. C then samples (pk∗, sk∗) ← Gen(crs, id∗),
updates pp ← Reg[aux](crs, pp, id∗, pk∗), D ← D ∪ {id∗}, and sends pk∗ to
A.

(d) Deleting the target identity. If id∗ = ⊥, skip this step. Otherwise,
C updates pp ← Del[aux](crs, pp, id∗) and D ← D \ {id∗}, id∗ ← ⊥.

3. Encrypting for the target identity. A sends some id /∈ D \{id∗} and two
messages (m0,m1) and C generates ct ← Enc(crs, pp, id,mb), where b ← {0, 1}
is a random bit, and sends ct to A.

4. The adversary A outputs a bit b′ and wins the game if b = b′.

We call an RBE scheme secure if there exists a negligible function negl(λ) such
that for all PPT adversaries A it holds that Pr[Awins SecA(λ)] ≤ 1

2 + negl(λ).

Remark 3 (RBE with deletions–constructions). Although the notion of deletions
has not been previously formally in the context of RBE, all known RBE con-
structions [24,34,35,38,39] can be enhanced in a straightforward way with this
functionality.

Laconic Encryption. Döttling et al. [24] introduced the notion of Laconic
Encryption which is essentially the same as RBE but dropping the ’Efficiency of
the number of updates’ requirement. They additionally showed a generic trans-
formation from any Laconic Encryption scheme to an RBE scheme with Effi-
cient updates, generalizing the transformations of Garg et al. [34] and Glaeser
et al. [38]. The same transformation was presented in the context of Registered
Attribute-Based Encryption by Hohenberger et al. [40].

We summarize the transformation in the following theorem, slightly extend-
ing it to include deletions.
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Theorem 2 ([24]). Assume any Laconic Encryption scheme LE with deletions,
with worst-case:

Compactness: |pp|, |u| = o(N), Ciphertext size: |ct|,

then there exists an RBE scheme (without deletions) with worst-case:

Compactness: |pp| log(N̂), |u|, Ciphertext size: |ct| log(N̂),

Number of updates: log(N̂).

For conciseness in the rest of this work we will consider Laconic Encryption,
and then apply the above Theorem 2 to achieve a fully efficient RBE.

4 RBE with Unbounded Identity Space from CH

Here we show our compiler that boosts any RBE scheme with small identity
space to an RBE with large identity space. On the core of compiler are Cuckoo
Hashing and the notion of Witness Encryption for Vector Commitments that
we define next (Sect. 4.1). For the intuition of the transformation we refer to the
technical overview of Sect. 2.

4.1 Witness Encryption for Vector Commitments

As mentioned in Sect. 2, a building block of our RBE construction is a specialized
witness encryption scheme. We call this primitive VCWE and intuitively it works
as follows. One encrypts a message m with respect to a statement consisting of
a commitment C, a position i and a value v, and decryption is achieved by using
a valid opening that shows that v is indeed the value at position i in the vector
committed in C. We notice that VCWE can be seen as a special case of the
notion of ‘WE for functional commitments’ recently proposed by Campanelli,
Fiore and Khoshakhlagh [13].

Although VCWE has a witness encryption flavor, its semantic security notion
is weaker than standard WE. Notably, in WE semantic security for false state-
ments should hold statistically, whereas in VCWE is computational. Also, we
define semantic security in such a way that the experiment is falsifiable and can
check whether a statement is true or false. For details, see the definition provided
hereafter.

Definition 9 (Witness Encryption for Vector Commitments). Let VC =
(Setup,Com,Open,Ver) be a vector commitment scheme. A witness encryp-
tion scheme with respect to VC, VCWE for short, consist of PPT algorithms
(Enc,Dec):

• Enc(crs, C, i, v,m) → ct : on input a vector commitment common reference
string crs, a commitment C, a position i, a value v and a message m outputs
a witness-encryption of m under the statement (C, i, v).
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• Dec(crs, Λ, ct) → m∗ : on input a vector commitment common reference string
crs, a witness Λ and a ciphertext m outputs a decryption message m∗.

Furthermore, VCWE should satisfy the following properties:

Correctness. For any security parameter λ ∈ N, any N = poly(λ), any v =
(v1, . . . , vN ) in the domain of VC, i ∈ [N ], m ∈ M, crs ← VC.Setup(1λ, N),
C ← VC.Com(crs,v), and Λ ← Open(crs, C,v, i):

Pr[Dec(crs, Λ, ct) = m : ct ← Enc(crs, C, i, v,m)] = 1

Semantic Security. For any security parameter λ ∈ N, N = poly(λ) and any
PPT adversary A:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b′ = b :

crs ←$Setup(1λ, N),
(v, i, v,m0,m1, st) ← A(crs),
C ← Com(crs,v), b ←$ {0, 1},
if v[i] = v then ct ← ⊥
else ct ← Enc(crs, C, i, v,mb),
b′ ← A(st, ct)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= negl(λ)

4.2 RBE with Unbounded Identity Space

Assume any RBE scheme with deletions, R̃BE = (Setup,Gen,Reg,Enc,Upd,=
Dec) that supports bounded identities, i.e. log(|ID|) < 2λ. We show a trans-
formation that boosts it to an RBE scheme that supports unbounded identities
ID = {0, 1}2λ.5

For presentational convenience we show the compiler for Laconic Encryption,
that is from L̃E with |ID| < 2λ to LE with ID = {0, 1}2λ. Recall from Sect. 3.4 L̃E

is essentially R̃BE without the efficiency on the number of updates requirement.
Then we make use of Theorem 2 with which we can obtain an RBE with a
logarithmic number of updates.

From now on we will be using small n as an upper bound on the number of
RBE users and capital N > n as the resulting number of entries of the Cuckoo
Hashing table (see Sect. 3.2).

Building Blocks. For our compiler we need the following primitives:

1. A Cuckoo Hashing scheme CH = (Setup, Insert, Lookup).
2. A Witness Encryption scheme VCWE = (Enc,Dec) w.r.t. a Vector Commit-

ment scheme VC = (Setup,Com, Open,Ver).
3. A Public Key Encryption scheme PKE = (KeyGen,Enc,Dec).
4. A Secret Sharing scheme Sh = (Share,Rec).

5 We consider the identity space {0, 1}2λ virtually unbounded since one can always
use a collision-resistant hash function H : {0, 1}∗ → {0, 1}2λ to support unbounded
identities.
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We note that RBE trivially implies a PKE by registering a single user. Further-
more, any RBE scheme implies a (weakly position binding) VC scheme. For the
secret sharing scheme, if the message space of the RBE is a group then there
exist simple information-theoretic constructions. Therefore, in essence we only
assume a Cuckoo Hashing and a Witness Encryption scheme for the underlying
Vector Commitment. However, one may desire to instantiate the primitives with
different constructions therefore we explicitly mention them distinctly.

Construction. We denote the initial LE scheme as L̃E. Throughout the
description of our construction below, for every identity id we use the notation
id(η) for η’th coordinate of Lookup(pp, id), i.e. by defintion (id(1), . . . , id(k)) =
Lookup(pp, id).

Our compiler yields a Laconic Encryption scheme RBE that works as follows:

• Setup(1λ, n) → crs : Sets: chpp ← CH.Setup(1λ, n), c̃rs ← L̃E.Setup(1λ, n),
vccrs ← VC.Setup(1λ, N), and returns: crs = (c̃rs, chpp, vccrs).

• Gen(crs, id) → (pk, sk) :

1. (pk(η), sk(η)) ← L̃E.Gen(c̃rs, id(η)) for each η ∈ [k],
2. (pk(k+1), sk(k+1)) ← KeyGen(1λ).

pk =
(
(pk(η))η∈[k], pk

(k+1)
)

, sk =
(
(sk(η))η∈[k], sk

(k+1)
)

• Reg[aux](crs, pp, id, pk) → pp′ :
Auxiliary information. The auxiliary information of the Key Curator con-

sists of aux := (ãux, I), where I := (id1, . . . , idN ) is the vector of the (pre-
viously) registered identities in the corresponding positions (if no identity
is registered in position j then idj = 0).

Public Parameters. The public parameters of the system consist of pp :=
(p̃p,D, S), where D is the current vector commitment to the identities
I := (id1, . . . , idN ) and S = {(idN+1, pkN+1), . . . , (idN+s, pkN+s)} is the
set of identities that are stored in the stash.

Insert id. Runs (I ′, S′) ← CH.Insert(chpp, I, S, id) and if CH.Insert failed
outputs ⊥. Otherwise for every identity īd that was moved, i.e. its position

in (I ′, S′) and (I, S) differs, re-registers it as īd(η
†) (η∗ indicates the hash

function with which id was placed before, in I, and η† the one after, in
I ′). For every īd that was moved:

1. I[īd(η
∗)] ← 0,

2. p̃p ← L̃E.Del[ãux](c̃rs, p̃p, īd(η
(∗))

, p̄k).
Then for every īd that was moved to I ′ (including id that was freshly
inserted):

3. I[īd(η
†)] ← īd,

4. p̃p ← L̃E.Reg[ãux](c̃rs, p̃p, īd(η
(†))

, p̄k).
For every īd that was moved to the stash:



188 D. Fiore et al.

5. S ← S ∪ {(īd, p̄k)}.
Finally, it computes:
6. D = VC.Com(vccrs, I).6

Output: pp′ = (p̃p,D, S).
• Enc(crs, pp, id,m) → ct : searches the stash S and then, depending on whether

(id, ·) ∈ S, proceeds as follows:
Identity in the table. If (id, ·) /∈ S then for each η ∈ [k]:

1. (m(η)
1 ,m

(η)
2 ) ← Sh.Share(m),

2. ct
(η)
1 ← L̃E.Enc(c̃rs, p̃p, id(η),m(η)

1 ),
3. ct

(η)
2 ← VCWE.Enc(crs,D, id(η), id,m

(η)
2 ).

The final ciphertext is: ct =
(
(ct(1)1 , ct

(1)
2 ), . . . , (ct(k)1 , ct

(k)
2 )

)
.

Identity in the stash. If (id, pk) ∈ S for some pk then:
ct = PKE.Enc(pk(k+1),m).

• Upd[aux](pp, id) → u : finds the η∗ ∈ [k] such that I[id(η
∗)] = id. If such η∗

does not exist outputs u = Stash. Otherwise it computes:
1. ũ ← L̃E.Upd[ãux](p̃p, id(η

∗)),
2. Ψid(η∗) ← VC.Open(vccrs, I, id(η

∗))
and outputs: u = (ũ, Ψid(η∗) , η∗).

• Dec(sk, u, ct) → m or GetUpd :
Identity in the table. If the ciphertext is an LE ciphertext:

1. m∗
1 ← L̃E.Dec(sk(η

∗), ũ, ct
(η∗)
1 ),

2. m∗
2 ← VCWE.Dec(vccrs, Ψ, ct

(η∗)
2 ).

Output: m∗ = Sh.Rec(m∗
1,m

∗
2).

Identity in the Stash. If ct is a PKE ciphertext then,
it outputs: m∗ = PKE.Dec(sk(k+1), ct).

4.3 Completeness, Security and Efficiency

Completeness. Directly follows from completeness of L̃E and correctness of VC,
VCWE and Sh, as long as id is always either in the table or in the stash thoughtout
the lifetime of the system. That is, we desire that Insert(I, S, id) never outputs
⊥ for any id during the registration algorithm, even if the adversary chooses the
identities that register. This is guaranteed by the negl(λ)-robustness property of
Cuckoo Hashing (see Sect. 3.2).

Theorem 3 (Completeness). If CH is a negl(λ)-robust Cuckoo Hashing
scheme, VC, VCWE, PKE, Sh are correct and L̃E is a complete Laconic Encryp-
tion with deletions then the LE scheme presented above is complete against any
PPT adversary.

6 In case the VC is updatable, the updated D can computed efficiently without having
to recompute it from scratch. For simplicity we do not make this explicit in the
construction.
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Security. The security of our LE follows by the security of the underlying
building blocks. If the target identity turns out to be in the stash, then the
ciphertext is simply a PKE one, and therefore we rely on the security of PKE.

If not, then the ciphertext has k components, one for each possible position of
id∗, i.e. the first is w.r.t. position id(1), the second w.r.t position id(2), etc. Each
component consists of a VCWE ciphertext and a L̃E ciphertext. For the positions
i ∈ [k] such that eventually id∗ is in fact not registered we can rely on the fact
that I[i] �= id∗ which allows to argue that the VCWE gives us indistinguishability
for one of the two components. On the other hand, for the position(s) i ∈ [k]
such that id∗ is registered one can use id∗(i) as a target for the L̃E security, which
gives indistinguishability.

In both cases one component is indistinguishable for the adversary, therefore
one of the two shares of the secret sharing is “hidden” from the adversary. Thus
the privacy of the secret sharing scheme gives us security. Below is the formal
security theorem, whose proof is in the full version [26].

Theorem 4 (Security). If L̃E is secure, VCWE w.r.t VC is (VCWE) semanti-
cally secure, PKE is (PKE) semantically secure and Sh is (2, 2) private then the
LE scheme presented above is a secure LE scheme.

Efficiency. Regarding efficiency, inspecting the scheme gives:

|crs| = |c̃rs| + |chpp| + |vccrs|; |pp| = |p̃p| + |D| + |S|;
|u| = |ũ| + |Ψ | + log(k); |ct| = k(|c̃t| + |ctVCWE|).

Theorem 5 (Efficiency). If CH is a negl(λ)-robust Cuckoo Hashing scheme
with s = o(N) in the worst case, VC is a succinct VC with sublinear CRS and
for any PPT adversary of CompA(λ) L̃E has:

Compactness: |c̃rs|, |p̃p|, |ũ| Ciphertext size: |c̃t|
then the LE scheme presented above has (in the worst-case):

Compactness: |crs| = |c̃rs| + |chpp| + |vccrs|, |pp| = |p̃p| + |D| + |S|,
|u| = |ũ| + |Ψ | + log(k);

Ciphertext size: k(|c̃t| + |ctVCWE|).
As discussed in Sect. 3.2 and Theorem 1 there exist a CH with k = λ and

s = 0. Furthermore if |c̃rs| ≥ |vccrs|, |p̃p| ≥ |D|, |ũ| ≥ |Ψ | and |ct| ≥ ctVCWE (as
one will see in Sect. 5 there are VCs with corresponding VCWE that satisfy these
conditions for the known L̃E constructions) then |crs| = O(|c̃rs|), |pp| = O(|p̃p|),
|u| = O(|ũ|)7 and |ct| = O(λ|c̃t|). This means that the only (asymptotic) over-
head of our compiler for LE is on the ciphertext size. We elaborate more on the
efficiency of concrete RBE constructions resulting from our compiler in Sect. 5.
7 The log k = log λ factor is in bits, while the rest are in cryptographic elements (e.g.

Group elements or Lattice matrices) therefore log λ bits correspond to one element.
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Regarding the sublinear CRS requirement above, although pairing-based VC
typically have linear-sized CRS, there is a well known trick [8] that trades sublin-
ear (square-root) CRS to square-root commitments, resulting to overall sublinear
parameters |crs| + |D|.

The final step is to show a tranformation from LE to an RBE with polylog(λ)
number of u-updates for each user in the worst case. But this comes directly
from Theorem 2.

Corollary 1. If CH is a negl(λ)-robust Cuckoo Hashing scheme with s = o(N)
in the worst case, VC is a succinct VC with sublinear CRS and for any PPT
adversary of CompA(λ) R̃BE is compact then RBE is compact and efficient on
the number of updates.

4.4 A More Efficient Compiler with Selective Compactness

As argued previously, assuming that there are efficient instantiations of VC and
VCWE, the above compiler adds a minimal efficiency overhead. However, the
ciphertext size becomes k times larger, where k is the parameter from CH (num-
ber of hash functions). [62] showed that a negl(λ)-robust Cuckoo Hashing requires
either k = λ hash functions, or s = n stash size. We recall that the size of the
stash impacts our public parameters as |pp| = |p̃p| + |D| + |S|.

This leads us to the following relaxation: Let CH2 be the cuckoo hashing
scheme from Theorem 1 that has k = 2 and an unbounded stash. Theorem
1 indicates that CH2 achieves s = log n if the adversary chooses the identities
independently of the hash functions’ representation (correctness), or s = n in the
worst case (robustness). Therefore, when using CH2, the resulting RBE scheme
is secure, complete, has smaller ciphertexts and log n number of updates (in the
worst case). However, it is compact only assuming a selective adversary that
chooses the identities independently of chpp.

A way of interpreting selective compactness is saying that public parameters
are compact (in the worst case) as long as an adversary is not actively trying to
blow them up. [62] presented an attack that requires heavy (but still polynomial)
computations to expand the size of the stash, when having oracle access to the
hash functions. Hence, though this is possible, the adversary should still dedicate
substantial computational resources to blow up the size of the stash (and thus
of the parameters). In our view, selective compactness is less weak than selective
security (or a notion of selective completeness, where a similar attack could
compromise the correct functioning of the system) in view of the fact that there
is no clear motive for an adversary to expand the public parameters of the system
just to make it inefficient (security and completeness are still computationally
impossible to break). We leave as an interesting open problem the investigation
of practical ways to mitigate this kind of DoS attacks.

Below we formally define Selective Compactness, similar to compactness but
with an adversary who chooses the identities to be registered before seeing chpp.
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Definition 10 (Selective Compactness). An RBE scheme has selective com-
pactness, if in the following SelCompactnessA(λ) game: |ppq| is sublinear in |Dq|
and for all id ∈ D, |uq| is also sublinear in |Dq|.

SelCompactnessA(λ)

1. pp ← ⊥; aux ← ⊥; u ← ⊥; D ← ∅; id∗ ← ⊥; t ← 0; N̂ ← 0;

(c̃rs, chpp, vccrs) ← Setup(1λ)

2. for i = 1 to Q do one of the following:

(a) (id, pk) ← A(1λ);

if |D| < n ∧ id /∈ D ∧ (pk, ·) ∈ Gen(crs, id) then

pp ← Reg[aux](crs, pp, id, pk); D ← D ∪ {id}; N̂ ← N̂ + 1

(b) if |D| < n ∧ id∗ = ⊥ then

id∗ ← A(1λ); (pk∗, sk∗) ← Gen(crs, id∗);

pp ← Reg[aux](crs, pp, id∗, pk∗); D ← D ∪ {id∗}; N̂ ← N̂ + 1

(c) if id∗ �= ⊥ then

mt ← A(crs, pp, aux, pk∗); t ← t + 1;

ctt ← Enc(crs, id∗)

(d) j ← A(crs, pp, aux, pk∗)

if j ∈ [t] then

mj ← Dec(sk∗, u, ctj)

if m′
j = GetUpd then

u∗ ← Upd[aux](pp, id∗); mj ← Dec(sk∗, u∗, ctj)

For all queries q ∈ [Q], ppq are the public parameters after the q-th query and
uq the corresponding update information of id.

Theorem 6 (RBE with selective compactness). There exists a CH scheme
such that the resulting RBE scheme of the compiler, RBE, is secure, complete
and has:

• Selective Compactness: |crs| = |c̃rs| + |chpp| + |vccrs|, |pp| = (|p̃p| + |D| +
log n) log n, |u| = |ũ| + |Ψ | + 1,

• Number of Updates: log n
• Ciphertext size: 2

(|c̃t| + |ctVCWE|
)
log n

The proof of this theorem is straightforward, adapting the construction of
Sect. 4.2 with CH2. The main difference with Theorem 5 is that in CH2 the
number of hash function is k = 2, affecting the ciphertext-size directly.

5 Concrete RBE Schemes

In this section, we discuss two RBE constructions that result from instantiating
the compiler of the previous section. The first RBE is from Pairings assuming
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the hardness of the (decisional) Bilinear Diffie-Hellman Exponent (DBDHE)
problem, while the second RBE is from Lattices assuming the hardness the
Learning with Errors problem.

To obtain these instantiations, we use that based on DBDHE (resp. LWE),
there exist black-box: RBE schemes with small ID space [38] (resp. [24]8), and
VC schemes [48] (resp. [47]). Additionally, there are PKE schemes from DDH [25]
and LWE [37,55]. Therefore, to complete the building blocks of our compiler,
in this section we construct two Witness Encryption for Vector Commitments
from the respective assumptions. Due to space limitations we present them in
the full version [26]. For completeness, and since the resulting RBE scheme over
pairings comprises our central result, we also present explicitly our final pairing-
based RBE construction in the full version [26].

5.1 Efficiency and Comparison

Putting everything together, we compare the efficiency of the schemes obtained
via our compiler, considering both our Robust and Efficient transformation
(see Sect. 4.4), with the existing black-box RBE schemes. We summarize the
comparison in Table 1 of the introduction Sect. 1.1.

In conclusion, our central RBE scheme from pairings with unbounded identity
space and adaptive Compactness has the same efficiency properties as the one
from [38], except for a 1.5λ overhead in ciphertext size. On the other hand, if we
apply our efficient compiler we get only a 3× overhead in ciphertext size, albeit
at the cost of having selective compactness.

For the Lattice-based construction, compared to [24]’s, if one applies the
selective compactness compiler, one gets a ciphertext that is (2λ + 1)/4 log n
smaller. For example, for 1billion users this yields an ≈ 2× improvement, while
for moderate size number of 100, 000 users the improvement is ≈ 4×.

As for the construction from the [40] R-ABE, the differences are both quan-
titative and qualitative. First, the common reference string in [40] is quadratic
therefore applying the tradeoff of between |crs| and |pp| [18,38] the best one can
get is |crs| + |pp| = O(λn2/3 log n) while in our case is

√
n log n. Second, and

more importantly, the R-ABE scheme of [40] uses bilinear groups of composite
order where the factorization of the order should be unknown. Quantitatively,
given the state of affairs in composite order bilinear groups, this leads to severe
inefficiency both in running times of the algorithms and group elements’ size.
Qualitatively the group should be generated by a trusted third party, who after-
wards erases the factors of the order of the group.9

8 In [24] ID can be arbitrarily large. We make use of the scheme with small identities
to argue that compiling it to a large ID with our transformation instead can benefit
efficiency.

9 In theory, this is integrated in the trusted setup of the CRS generation. In practice,
though, this type of CRS is highly undesirable, since no efficient MPC ceremony to
generate it is currently known, in contrast to the ’powers-of-tau’ CRS.
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6 Key-Value Map Commitments from Cuckoo Hashing
and Vector Commitments

Given a key space K and a value space V, a key-value map M ⊆ K × V is a
collection of pairs (k, v) ∈ K × V. Key-value map commitments (KVC) [1,7] are
a cryptographic primitive that allows one to commit to a key-value map M in
such a way that one can later open the commitment at a specific key, i.e., prove
that (k, v) is in the committed map M, and do so in a key-binding way. Namely,
it is not possible to open the commitment at two distinct values v �= v′ for the
same key k. KVCs are a generalization of vector commitments [15]: while in VCs
the key space is the set of integers {1, . . . , n}, in a KVC the key space is usually
a set of exponential size.

In this section, we present a construction of KVCs based on a combination
of vector commitments and cuckoo hashing. The resulting KVC needs to fix
at setup time a bound on the cardinality of the key-value map, but otherwise
supports a key space and a value space of arbitrary sizes.

6.1 Definition of Key-Value Map Commitments

Given a key-value map M, we write (k, ε) ∈ M to denote that M does not
contain the key k.

Definition 11 (Key-Value Map Commitment). A Key-Value Map Com-
mitment KVM = (Setup,Com,Open,Ver) consists of the following algorithms:

• Setup(1λ, n,K,V) → crs: on input the security parameter λ, an upper bound
n on the cardinality of the key-value maps to be committed, a key-space K,
and a value-space V, the setup algorithm returns the common reference string
crs.

• Com(crs,M) → (C, aux) : on input a key-value map M = {(k1, v1), . . . ,
(km, vm)} ⊂ K × V, computes a commitment C and auxiliary information
aux.

• Open(crs, aux, k) → Λ: on input auxiliary information aux as produced by
Com, and a key k ∈ K, the opening algorithm returns an opening Λ.

• Ver(crs, C, Λ, (k, v)) → b : accepts ( i.e., outputs b ← 1) if Λ is a valid opening
of the commitment C to the key k ∈ K and value v ∈ V ∪ {ε}, else rejects
( i.e., outputs b ← 0).

Intuitively, a KVC scheme should be correct in the sense that, for honest
execution of the algorithms, an opening to a (k, v) ∈ M should correctly verify
for a commitment to M. While usual definitions for VCs consider perfect cor-
rectness, our work aims at also capturing constructions that have a negligible
probability of failing correctness. To capture this, we introduce a strong notion
called robust correctness, which essentially means that the expected correctness
condition holds with overwhelming probability even for key-value maps that are
adversarially chosen after seeing the public parameters. We note that such defi-
nition is strictly stronger than a ‘classical’ correctness definition that measures
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the probability over any choice of input but over the random and independent
choice of the public parameters.

Definition 12 (Robust Correctness). KVM is robust if for any PPT A the
following probability is overwhelming in λ:

Pr

⎡

⎢
⎢
⎣Ver(crs, C,Open(crs, aux, k), (k, v)) = 1 :

crs ←$Setup(1λ, n,K,V)
(M, k, v) ← A(crs)

|M| ≤ n, (k, v) ∈ K × V ∪ {ε}
(C, aux) ← Com(crs,M)

⎤

⎥
⎥
⎦

Definition 13 (Key-binding). KVM is key-value binding if for any PPT A:

Pr

⎡

⎣
Ver(crs, C, Λ, (k, v)) = 1

∧Ver(crs, C, Λ, (k, v′)) = 1
∧ v �= v′

: crs ←$Setup(1λ, n,K,V)
(C, k, v, Λ, v′, Λ′) ← A(crs)

⎤

⎦ = negl(λ)

Below we define an efficiency notion for KVCs, which aim to rule out “unin-
teresting” constructions, e.g., schemes where either commitments or openings
have size linear in the size of the map or the key space. More formally,

Definition 14 (Efficient KVC). A key-value map commitment KVM as
defined above is efficient if for any crs ←$Setup(1λ, n,K,V), any key-value map
M ⊂ K×V, any (C, aux) ← Com(crs,M), any k ∈ K and Λ ← Open(crs, aux, k),
the bitsize of C and Λ is polylogarithmic in n, i.e., it is bounded by a fixed poly-
nomial p(λ, log n).

We give definitions for updatable Key-Value Map Commitments in the full
version [26], along with the corresponding robust correctness and efficiency
notions.

6.2 KVM Construction from Cuckoo Hashing and Vector
Commitments

We present a construction of a KVC for keys of arbitrary size. Our scheme is
obtained by combining a Cuckoo Hashing scheme CH and a Vector Vommitment
one VC. We refer to Sect. 2 for an intuitive description.

• Setup(1λ, n,K,V) → crs: runs (ppCH, T̂ , Ŝ) ← CH.Setup(1λ, n), and generates
crsVC ← VC.Setup(1λ, N), then returns crs ← (crsVC, ppCH).

• Com(crs,M) → (C, aux): on input a key-value map M = {(ki, vi)}m
i=1:

1. if there exists i, j ∈ [m], i �= j such that ki = kj , it aborts;
2. (T , S) ← CH.Insert(ppCH, T̂ , Ŝ, k1, . . . , km); if T = ⊥ it aborts, else sets

T ′ ← cat(T );
3. (CT , auxT ) ← VC.Com(crsVC,T ′);
4. For j = 1 to m, let indj ∈ [N ] be the index such that T ′[indj ] = kj . If

indj exists, it sets V [indj ] ← vj , otherwise, if kj ∈ S, adds (kj , vj) to S∗.
5. (CV , auxV ) ← VC.Com(crsVC,V )
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It return C = (CT , CV , S∗) and aux = (auxT , auxV , S∗,T ′, S,M).
• Open(crs, aux, k) → Λ:

1. (ind1, . . . , indk) ← CH.Lookup(ppCH, k);
2. if k /∈ {T [ind1], . . . ,T [indk]} ∪ S aborts;
3. for j = 1 to k: Λj ← VC.Open(crsCH, auxT , indj).
4. Let ind∗ ∈ [N ] be the index such that T [ind∗] = k. If ind∗ exists, it

computes Λ∗ ← VC.Open(crsCH, auxV , ind∗), else sets Λ∗ = ⊥.
Return Λ = (Λ1,T [ind1], . . . , Λk,T [indk], Λ∗).

• Ver(crs, C, Λ, (k, v)) → b: parses C = (CT , CV , S∗) and Λ = (Λ1, t1, . . . ,
Λk, tk, Λ∗) and proceeds as follows:
1. (ind1, . . . , indk) ← CH.Lookup(ppCH, k);
2. for j = 1 to k: bj ← VC.Ver(crsCH, CT , Λj , indj , tj); if

∧k
j=1 bj = 0 outputs

0, else continues;
3. if k /∈ {t1, . . . , tk}, outputs 1 if and S∗ is valid (i.e., it does not contain

any repeated key and no entry (k, ε) and (k, v) ∈ S∗, else outputs 0.
4. Otherwise, let j∗ be the first index such that k = tj∗ : it computes b∗ ←

VC.Ver(crsCH, CV , Λ∗, indj∗ , v), and returns b∗.

Correctness and Succinctness. One can see by inspection that the proposed
KVC scheme is robust (with overwhelming probability) under the assumption
that VC is perfectly correct and that the cuckoo hashing scheme CH is robust.
Succinctness of our KVC scheme is also easy to see by inspection, under the
assumption that VC is succinct and that we use an instantiation of CH that
satisfies k = O(log n).

Theorem 7 (Key binding). If VC is position binding, then KVM is a key-
binding KVC.

Proof. Assume by contradiction that there exists a PPT adversary A that breaks
the position binding of our KVC scheme. Then we show how to build a reduction
B that breaks the position binding of VC. B takes as input crsVC, generates the
CH public parameters and runs A on input crs ← (crsVC, ppCH).

Assume that A returns a tuple (C, k, v, Λ, ṽ, Λ̃) that breaks key binding with
non-negligible probability. Let

Λ = (Λ1, t1, . . . , Λk, tk, Λ∗), Λ̃ = (Λ̃1, t̃1, . . . , Λ̃k, t̃k, Λ̃∗)

By the winning condition of key binding we have that v �= ṽ and that both
opening proofs are accepted by the Ver algorithm. In particular, since Ver is
invoked on the same key k, the first step of verification computes the same
indices ind1, . . . , indk in the verification of both Λ and Λ̃.

First, notice that it must be the case that ∀j ∈ [k], tj = t̃j . Oth-
erwise, one can immediately break the VC position binding with the tuple
(CT , indj , Λj , tj , Λ̃j , t̃j).

Second, if k /∈ {t1, . . . , tk} then by construction of Ver (step 3), A cannot
break position binding.

Finally, let j∗ be the index such that k = tj∗ . Then one can break the VC
position binding with the tuple (CV , indj∗ , Λ∗, v, Λ̃∗, ṽ). ��

In the full version [26] we show that this KVC is updatable.
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6.3 Key-Value Map Instantiations

We can instantiate the generic construction of the previous section with the CH
scheme CHλ from Theorem 1 (which is robust in the random oracle model) and
any of the existing vector commitment schemes. If the VC has constant-size
openings, say O(λ), then the resulting KVC constructions have openings of size
O(λ2). The most interesting implication of this KVC instantiation is that we
obtain the first KVCs for unbounded key space based on pairings in a black-box
manner. More in detail, we can obtain a variety of updatable KVCs according to
which updatable VC we start from, e.g., we can use [15] to obtain a KVC based
on CDH, [48] for one based on q-DHE. Prior to this work, an updatable KVC
under these assumptions could only be obtained by instantiating the Merkle
tree scheme with one of [15,48] VCs. However, Merkle trees with algebraic VCs
need to make a non-black-box use of the underlying groups in order to map
commitments back to the message space. In contrast, all our KVCs are black-
box, if so are the underlying VC (as it is the case for virtually all existing
schemes).

6.4 Accumulators from Vector Commitments with Cuckoo Hashing

It is easy to see that a KVC for a key space K immediately implies a universal
accumulator [4,46] for universe K. The idea is simple: to accumulate k1, . . . , kn

one commits to the key-value map {(k1, 1), . . . , (kn, 1)}; a membership proof for
k is an opening to (k, 1), and a non-membership proof is a KVC opening to
(k, ε). The security of this construction (i.e., undeniability [49] – the hardness of
finding a membership and a non-membership proof for the same element) follows
straightforwardly from key binding. Furthermore, if the KVC is updatable, the
accumulator is updatable (aka dynamic, in accumulators lingo).

From this, we obtain new accumulators for large universe enjoying properties
not known in prior work. For instance, we obtain the first dynamic accumulators
for a large universe that are based on pairings in a black-box manner. To the best
of our knowledge, prior black-box pairing-based accumulators either support a
small universe [9,15], or are not dynamic [42,50]. Notably, using the CDH-based
VC of [15] we obtain the first universal accumulator for a large universe that is
dynamic, based on the CDH problem over bilinear groups, and black-box.
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Abstract. A functional commitment allows a user to commit to an
input x ∈ {0, 1}� and later open up the commitment to a value y = f(x)
with respect to some function f . In this work, we focus on schemes
that support fast verification. Specifically, after a preprocessing step that
depends only on f , the verification time as well as the size of the com-
mitment and opening should be sublinear in the input length �, We also
consider the dual setting where the user commits to the function f and
later, opens up the commitment at an input x.

In this work, we develop two (non-interactive) functional commit-
ments that support fast verification. The first construction supports
openings to constant-degree polynomials and has a shorter CRS for a
broad range of settings compared to previous constructions. Our second
construction is a dual functional commitment for arbitrary bounded-
depth Boolean circuits that supports fast verification with security from
falsifiable assumptions. Both schemes are lattice-based and avoid non-
black-box use of cryptographic primitives or lattice sampling algorithms.
Security of both constructions rely on the �-succinct short integer solu-
tions (SIS) assumption, a falsifiable q-type generalization of the SIS
assumption (Preprint 2023).

In addition, we study the challenges of extending lattice-based func-
tional commitments to extractable functional commitments, a notion
that is equivalent to succinct non-interactive arguments (when consider-
ing openings to quadratic relations). We describe a general methodology
that heuristically breaks the extractability of our construction and pro-
vides evidence for the implausibility of the knowledge k-R-ISIS assump-
tion of Albrecht et al. (CRYPTO 2022) that was used in several con-
structions of lattice-based succinct arguments. If we additionally assume
hardness of the standard inhomogeneous SIS assumption, we obtain a
direct attack on a variant of the extractable linear functional commit-
ment of Albrecht et al.

1 Introduction

In a functional commitment scheme [IKO07,BC12,LRY16], a user can com-
mit to a vector x and at a later point in time, provide a short opening to
a value y = f(x) with respect to an (arbitrary) function f . We also con-
sider a dual notion where a user commits to the function f and opens to
c© International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14442, pp. 201–235, 2023.
https://doi.org/10.1007/978-981-99-8733-7_7
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an evaluation at a point x [BNO21,dCP23]. The efficiency requirement on a
functional commitment is both the commitment and the openings are short
(i.e., have size that is sublinear or polylogarithmic in the length of x and the
size of the function f). The security requirement is that an adversary can-
not open up a commitment σ to two distinct values y0 �= y1 with respect
to any function f (or in the dual formulation, with respect to an input
x). In this work, we focus exclusively on non-interactive functional commit-
ments [LRY16,LP20,PPS21,BNO21,ACL+22,BCFL22,dCP23,WW23] in the
standard model (with a common reference string). Functional commitments gen-
eralize notions like vector commitments [LY10,CF13] and polynomial commit-
ments [KZG10,PSTY13] and have found numerous applications to cryptography,
most notably, to efficient constructions of succinct non-interactive arguments
(SNARGs).

Functional Commitments with Fast Verification. Our focus in this work is on
lattice-based functional commitments for general functions. We are specifically
interested in constructions that support fast verification in the preprocessing
model. In this setting, we allow for an initial preprocessing stage that can depend
only on the function f (which operates on inputs of length �) and outputs a short
verification key vkf . Given the preprocessed verification key vkf , we then require
that the verifier running time (and by extension, the size of the commitment and
opening) to be sublinear in the input length �. We can define a similar property
in the dual setting where we preprocess the input x instead of the function f .
Note that having succinct commitments and openings alone does not imply fast
verification. For instance, the verification time in [WW23] is linear in the size
of the function f even though the size of the commitment and the opening only
depend on the depth of f .

In applications where the function of interest is known in advance, prepro-
cessing can significantly reduce verification costs. This is common in settings
like delegation and outsourcing computation. Specifically, for the closely-related
problem of succinct arguments, working in the “preprocessing” model yields the
most succinct constructions [GGPR13,BCI+13,PHGR13,Gro16].

Lattice-Based Functional Commitments. Functional commitments from lattice-
based assumptions have received extensive study in the last few years. Several
works [PPS21,ACL+22,BCFL22,WW23] gave constructions of functional com-
mitments for broad classes of functions from lattice-based assumptions with a
structured CRS. De Castro and Peikert [dCP23] gave a dual functional com-
mitment for all circuits from the standard short integer solutions (SIS) prob-
lem in the uniform random string model. The authors of [KLVW23] consider a
closely-related problem of delegation for RAM programs; their techniques can
be adapted to obtain a functional commitments scheme for Boolean circuits
from the learning with errors (LWE) assumption in the random string model;
see Sect. 1.3 for more details. Their construction relies on non-black-box use of
cryptographic hash functions (as well as lattice sampling algorithms). Our focus
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in this work is on constructions that only make black-box use of cryptographic
algorithms.

If we restrict our attention to lattice-based functional commitments that only
make black-box use of cryptography, the existing constructions with fast verifi-
cation either support constant-degree polynomials [ACL+22] or bounded-width
Boolean circuits [BCFL22]. In the dual setting, we do not have any constructions
with fast verification. We refer to Table 1 for a summary of the current state of
the art.

Table 1. Summary of succinct lattice-based functional commitments. For each scheme,
we report the class of functions they support, the size of the common reference string
crs, the size of the commitment σ, and the size of an opening π as a function of
the function f and the input length �. We assume functions with a single output.
For simplicity, we suppress poly(λ, d, log �) terms throughout the comparison (where d
refers to either the degree of the polynomial or the depth of the circuit). The first set of
constructions (above the solid purple line) are standard functional commitments where
one commits to an input x and opens to a function f while the second set (below the
solid purple line) are dual functional commitments where one commits to a function
f and opens to an input x. We say that a scheme supports “fast verification” (FV) if
after an input-independent preprocessing step, the verification time is sublinear in � and
that it is “black-box” (BB) if it only makes black-box use of cryptographic algorithms.
Note that BASISstruct implies �-succinct SIS [Wee23]. In all constructions, the running
time of the commitment algorithm is linear in the input length.

Scheme Functions |crs| |σ| |π| FV BB Assumption

[KLVW23]∗ Boolean circuits 1 1 1 ✓ ✗ LWE

[BCFL22] width-w, depth-d circuits† w5 1 1 ✓ ✓ twin-k-M -ISIS
[WW23] linear functions �2 1 1 ✓ ✓ BASISstruct

[WW23] depth-d Boolean circuits �2 1 1 ✗ ✓ BASISstruct

[ACL+22] degree-d polynomials† �2d 1 1 ✓ ✓ k-R-ISIS
[BCFL22] degree-d polynomials§ �5d 1 1 ✓ ✓ twin-k-M -ISIS
Cons. 3.2 degree-d polynomials§ �d+1 1 1 ✓ ✓ O(�d)-succinct SIS

[KLVW23]∗ Boolean circuits 1 1 1 ✓ ✗ LWE

[dCP23] depth-d Boolean circuits � 1 � ✗‡ ✓ SIS

Cons. 3.10 depth-d Boolean circuits �2 1 1 ✓ ✓ �-succinct SIS
∗ While [KLVW23] construct delegation for RAM programs, their construction can be
adapted to obtain a functional commitments for all Boolean circuits. We provide more
details in Sect. 1.3.
§ Only supports commitments and openings to small values.
† The width of the circuit w is always at least the input length �. In the case of an
arbitrary dense polynomial of degree d (e.g., a polynomial with �d distinct monomials),
then the width of the circuit computing it is �d.
‡ The [dCP23] construction supports fast verification for certain special cases (e.g.,
vector commitments and polynomial commitments).
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1.1 Our Contributions

In this work, we give two constructions of functional commitments that sup-
port fast verification. Security of both construction rely on the �-succinct SIS
assumption, a falsifiable “q-type” generalization of the SIS assumption intro-
duced by [Wee23]. Notably, this is a weaker assumption than the more structured
BASISstruct assumption from [WW23]. Our first construction supports constant-
degree polynomials and the second is the first dual functional commitment for
(bounded-depth) Boolean circuits with fast verification and only making black-
box use of cryptography. We provide a more detailed comparison to previous
constructions in Table 1 and summarize the main results here.

Functional Commitment for Constant-Degree Polynomials. Our first construc-
tion (Construction 3.2) is a functional commitment for constant-degree polyno-
mials where the size of the CRS scales with �d+1 · poly(λ, d, log �), where d is the
degree of the polynomial, λ is the security parameter, and � is the input length.

For the particular case of opening to quadratic polynomials (an important
special case for delegating computations due to the NP-hardness of deciding
satisfiability of a system of quadratic functions), our construction has a CRS
size of �3. Previous approaches required a CRS that scale with �4 [ACL+22]
or �5 [BCFL22]. More broadly, when considering openings to polynomials of
constant degree d, we achieve a factor of 2 reduction in the exponent for the
CRS size compared to [ACL+22]. Namely, the [ACL+22] construction has a
CRS of size �2d · poly(λ, d, log �), so our construction reduces the exponent from
2d to d + 1. The [BCFL22] scheme has a smaller CRS for the case of sparse
polynomials (e.g., when the width w of the circuit computing the polynomial f
is roughly the input length w ≈ �). Conversely, for dense polynomials with ≈ �d

monomials, and which corresponds to a circuit of width �d, the size of the CRS
is significantly worse for their scheme. While the CRS size of our construction is
worse than that of [WW23], the latter does not support fast verification (except
in the case of linear functions).

On the assumption front, the security of Construction 3.2 follows from the
L-succinct SIS assumption (with L = O(�d)), a falsifiable “q-type” generalization
of the SIS assumption introduced by [Wee23]. This is a weaker assumption than
the BASISstruct assumption used in [WW23] (i.e., is implied by the BASISstruct
assumption), and less structured generalizations of SIS compared to the k-R-
ISIS and twin-k-M -ISIS assumptions used in [ACL+22,BCFL22]. We refer to
Sect. 1.2 and Sect. 3 for an overview of the assumption and construction.

Dual Functional Commitment for Boolean Circuits. Our second construction is
a dual functional commitment for arbitrary (bounded-depth) Boolean circuits
(Construction 3.10). This is the first dual functional commitment scheme based
on falsifiable assumptions that supports succinct openings and verification and
which does not make non-black-box use of cryptography. Previously, [dCP23]
constructed a dual functional commitment from the standard SIS assumption
with short commitments but long openings and thus, slow verification. Specif-
ically, in their scheme, the size of the opening and the running time of the
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verification algorithm scaled linearly with the input size �. In our construction,
the size of the opening is polylogarithmic in the input length, as is verification
(after an initial preprocessing step). On the flip side, the [dCP23] construction
has a transparent CRS whose size scales linearly with � while our construction
has a structured CRS whose size scales quadratically with �. The structured CRS
is used to “compress” the openings (see Sect. 1.2 and Construction 3.10). Security
of our construction also relies on the falsifiable �-succinct SIS assumption.

Extractable Commitments and Cryptanalysis. The authors of [ACL+22] showed
that if the binding property on a functional commitment for quadratic func-
tions was replaced by a stronger extractability property, then it can be used to
obtain a succinct non-interactive argument for NP. A functional commitment is
extractable if for any efficient adversary that outputs a commitment σ and an
opening π to the value y with respect to a function f , there exists an extractor
that outputs an input x such that f(x) = y. Extractable functional commitments
for quadratic functions can be used to obtain a succinct non-interactive argu-
ment (SNARG) for NP (using the fact that satisfiability of quadratic systems
is NP-complete). In this work, we describe a general methodology for cryptana-
lyzing existing approaches for constructing extractable functional commitments.
Notably, we show heuristically that our functional commitment for constant-
degree polynomials is unlikely to satisfy extractability. We then describe a sim-
ilar attack on an adaptation of the [ACL+22] functional commitment for linear
functions. Here, we show that assuming (non-uniform) hardness of the stan-
dard inhomogeneous SIS problem, the variant of [ACL+22] we consider is not
extractable. Alone the way, we also give an oblivious sampling algorithm on
a matrix version of the k-R-ISIS knowledge assumption from [ACL+22]. We
provide an overview in Sect. 1.2 and the details in Sect. 4.

1.2 Technical Overview

In this section, we provide a high-level overview of our approach for constructing
functional commitments with fast verification in the preprocessing model as
well as the challenges in extending these constructions to satisfy the stronger
extractability notion needed to construct preprocessing succinct non-interactive
arguments.

Notation. We start with some basic notation. For a matrix A ∈ Z
n×m
q and

a target vector t ∈ Z
n
q , we write A−1(t) to denote a random variable x ∈

Z
m
q whose entries are distributed according to a discrete Gaussian distribution

conditioned on Ax = t. We can efficiently sample from A−1(t) given a trapdoor
for the matrix A. We write In to denote the identity matrix of dimension n.
We let G ∈ Z

n×m
q denote the standard gadget matrix (i.e., G = In ⊗ gT, where

gT = [1, 2, . . . , 2�log q�]) [MP12], and G−1(·) : Zn
q → Z

m
q denote the usual binary-

decomposition operator.
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The �-Succinct SIS Assumption. Our constructions rely on the �-succinct short
integer solutions (SIS) assumption [Wee23]. For a matrix A r← Z

n×m
q , the stan-

dard SIS problem [Ajt96] is to find a short non-zero solution x ∈ Z
m
q such that

Ax = 0. The �-succinct SIS assumption states that SIS is hard with respect
to A even given a trapdoor for [I� ⊗ A | W] where W r← Z

�n×m
q is a random

narrow matrix. Note that if W ∈ Z
�n×�m
q is wide, then hardness of �-succinct

SIS can be reduced to the hardness of SIS using lattice trapdoor extension tech-
niques [Wee23].

The �-succinct SIS assumption is a weaker assumption that the structured
BASISstruct assumption used in [WW23] for constructing functional commit-
ments; notably, the BASISstruct assumption from [WW23] is an instance of the
�-succinct SIS assumption with a structured W. While �-succinct SIS is a new
and non-standard assumption, it is a falsifiable assumption, and can be viewed
as a “q-type” analog of the SIS assumption. We note that it is also implied by
the “evasive LWE” assumption [Wee22,Tsa22], which is an assumption that has
been used successfully in several other recent works [WWW22,VWW22].

1.2.1 A Functional Commitment Scheme for Quadratic Polynomials
Here, we describe our approach for constructing a functional commitment for
constant-degree polynomials on �-dimensional inputs. Specifically, the committer
should be able to commit to an input x ∈ Z

�
q and then subsequently open up

the commitment to f(x) where f is a constant-degree polynomial. For simplicity
of exposition, we will focus on the case of quadratic polynomials, and defer the
generalization to higher-degree polynomials to Sect. 3.

The Wee-Wu Scheme. We start with a quick recap of the functional commitment
for circuits from [WW23] based on the BASISstruct assumption (c.f., [WW23,
Remark 4.13]), adapted to the �-succinct SIS assumption.1 As we explain below,
although the [WW23] construction shares a similar verification relation as our
construction, it does not appear to support fast verification. To describe the
construction, we first parse the matrix W ∈ Z

�n×m
q from the �-succinct SIS

assumption as the vertical concatenation of matrices W(1), . . . ,W(�) ∈ Z
n×m
q .

A commitment to a (short) input vector x ∈ Z
�
q consists of a short matrix

C ∈ Z
m×m along with short matrices Vi satisfying the following relation:

W(i)C = xiG − AVi

Then, for all i, j ∈ [�],

(W(i)C) · G−1(W(j)C) = xiW(j)C − AViG−1(W(j)C)

= xixj · G − A · (xiVj +ViG−1(W(j)C)
︸ ︷︷ ︸

Ṽij

)

1 In the full version of this paper, we provide the formal description and analysis of
[WW23] using the �-succinct SIS assumption.
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Observe that Ṽi,j = xiVj + ViC is small since xi, Vi, Vj , and C are all
small. We now view Ṽij as the opening for C to the quadratic relation xixj .
Furthermore, this extends readily to circuits following [BGG+14,GVW15b]. For
the specific case of a general quadratic polynomial f(x) =

∑

i,j∈[�] γijxixj , the
left-hand side of the verification relation becomes

∑

i,j∈[�]

γij(W(i)C) · G−1(W(j)C).

We do not know how to decompose this computation into a slow preprocessing
phase that is independent of C, followed by a fast computation on C. The anal-
ogous expression in the functional commitment scheme of [ACL+22] is given
by

∑

i,j∈[�] γijw
(i)c · w(j)c where w(i), w(j), c are ring elements. Since ring mul-

tiplication is commutative (unlike matrix multiplication), this can be rewritten
as (

∑

γi,j∈[�]w
(i)w(j)) · c2. By precomputing the quantity (

∑

γi,j∈[�]w
(i)w(j)),

which is independent of the commitment, the [ACL+22] construction supports
fast verification in the preprocessing model.

Our Approach. To construct a functional commitment scheme that supports
fast verification (with preprocessing), we introduce additional structure. For the
case of quadratic functions, we rely on the (� + �2)-succinct SIS assumption;
contrast this with the [WW23] construction described above which relied on the
smaller �-succinct SIS assumption. We parse the matrix W ∈ Z

(�+�2)n×m
q from

the assumption as

W =

[
W1

W2

]
where W1 =

⎡
⎢⎢⎣
W

(1)
1

...
W

(�)
1

⎤
⎥⎥⎦ ∈ Z

n�×m
q and W2 =

⎡
⎢⎢⎣
W

(1,1)
2

...
W

(�,�)
1

⎤
⎥⎥⎦ ∈ Z

n�2×m
q ,

where W(i)
1 ,W(i,j)

2 ∈ Z
n×m
q . A commitment to a (short) input vector x ∈ Z

�
q

consists of a short matrix C ∈ Z
m×m along with short matrices Vi,Vij ∈ Z

m×m
q

satisfying the following relation:

W(i)
1 C = xiG − AVi (1.1)

W(i,j)
2 C = xiW

(j)
1 − AVij (1.2)

Then, for all i, j ∈ [�],

W(i,j)
2 C2 = xiW

(j)
1 C − AVijC

= xixj · G − A · (xiVj +VijC
︸ ︷︷ ︸

Ṽij

)

Observe that Ṽi,j = xiVj +VijC is small since x, Vj , Vij , and C are all small.
We now take Ṽij to be the opening for C to the quadratic relation xixj . More



208 H. Wee and D. J. Wu

generally, an opening for a general quadratic polynomial f(x) =
∑

i,j∈[�] γijxixj

to the value y = f(x) is a short matrix Ṽ where
⎛

⎝

∑

i,j∈[�]

γijW
(i,j)
2

⎞

⎠

︸ ︷︷ ︸

Wf

·C2 = y · G − A · Ṽ. (1.3)

Our Scheme. To complete the description, we publish the following components
in the CRS:

[

Topen

Tcom

]

←
[

I� ⊗ A W1

I�2 ⊗ A W2

]−1 ([

I� ⊗ G
I� ⊗ W1

])

, (1.4)

where Topen ∈ Z
(�+�2)m×m�
q and Tcom ∈ Z

m×m�
q . Note that the CRS has size

O(�3), improving upon the O(�4)-sized CRS in [ACL+22].
To commit to a short x ∈ Z

�
q, the committer computes C ← Tcom(x ⊗ Im).

By construction this means that

W1C = W1Tcom(x ⊗ Im) = (I� ⊗ G)(x ⊗ Im) − (I� ⊗ A)Topen(x ⊗ Im)
= x ⊗ G − (I� ⊗ A)Topen(x ⊗ Im)

W2C = W2Tcom(x ⊗ Im) = (I� ⊗ W1)(x ⊗ Im) − (I�2 ⊗ A)Topen(x ⊗ Im)
= x ⊗ W1 − (I�2 ⊗ A)Topen(x ⊗ Im).

Observe that taking Vi and Vij to be the blocks of Topen(x ⊗ Im), we satisfy
Eqs. (1.1) and (1.2). To argue binding from the (�2+�)-succinct SIS assumption,
observe that Topen and Tcom can be sampled using the trapdoor provided by the
(�2 + �)-succinct SIS assumption. Suppose now that an adversary outputs two
possible openings Ṽ0, Ṽ1 to values y0, y1 ∈ Zq with respect to the same quadratic
function f . From Eq. (1.3), this means that

WfC2 = y0G − AṼ0 = y1G − AṼ1,

or equivalently, that A(Ṽ1 − Ṽ0) = (y1 − y0)G. When y1 �= y0 and q is prime
(so that y1 − y0 is invertible), this yields a gadget trapdoor [MP12] for A, which
the reduction can use to sample a short non-zero SIS solution from A−1(0). We
provide the full details (and extension to higher-degree polynomials) in Sect. 3.

Fast Verification with Preprocessing. It is easy to see that the above construc-
tion supports fast verification given preprocessing. For instance, consider the
verification relation in Eq. (1.3). If the function f is known in advance, we can
precompute the matrix Wf =

∑

i,j∈[�] γijW
(i,j)
2 . If we do so, then the verifica-

tion relation simply checks WfC2 = f(x) ·G−AṼ, which can be computed in
time that depends only polylogarithmically on �.
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Extending to Multiple Outputs. Using a similar technique as [WW23], we can also
extend our construction above to functions with multiple outputs. To illustrate,
suppose we have a commitment C and a collection of T openings Ṽ1, . . . , ṼT to
values y1, . . . , yT and with respect to functions f1, . . . , fT . Then, for all i ∈ [T ],
we have from Eq. (1.3) that Wfi

C2 = yiG − AṼ1. To support openings to
multiple outputs, we publish random vectors u1, . . . ,uT

r← Z
n
q in the CRS, and

define the “multi-output” verification relation to be
∑

i∈[T ]

Wfi
C2G−1(ui)

?=
∑

i∈[T ]

yiui −
∑

i∈[T ]

AṼiG−1(ui).

The new opening is now
∑

i∈[T ] ṼiG−1(ui) which remains short. Moreover, the
multi-output scheme still supports preprocessing. This is because the left-hand-
side of the verification relation is still a linear function in C2 and can be pre-
processed; formally, this is done by “vectorizing” the verification relation (see
Remark 3.6). In this case, the verification time with preprocessing is independent
of the input length �, but still dependent on the output dimension T (this is any-
how necessary since the verification algorithm needs to read the opened values).
In the setting where the target values y1, . . . , yT are also known in advance, we
can also precompute the target value

∑

i∈[T ] yiui. When both the functions and
the outputs are preprocessed, the running time of the verification algorithm is
polylogarithmic in both the input length � and the output dimension T . Finally,
security of the multi-output version still reduces to (�2 + �)-succinct SIS. We
provide the full details in Sect. 3.1. Taken together, we obtain a functional com-
mitment for constant-degree polynomials of degree d where the size of the CRS is
�d+1 ·poly(λ, d, log �, log T ) and the proof/opening sizes are poly(λ, d, log �, log T ).
Compared to [ACL+22], our construction achieves a shorter CRS (reducing from
�2d to �d+1) and relies on a less-structured assumption.

Generalizing to Module Lattices. Our functional commitment scheme described
here generalizes directly to module lattices and ideal lattices. Security in turn
relies on the hardness of �-succinct over module lattices (as opposed to integer
lattices). We describe the generalization in the full version of this paper. For
a security parameter λ and using module lattices (along with a z-ary gadget
matrix), we obtain a functional commitment scheme for constant-degree polyno-
mials where the commitment and the opening for an input of length � (and single
output) is Õ(λ log �); this relies on 2Ω̃(λ) hardness of O(�d)-succinct module SIS.
This matches the commitment size and the opening size of the functional com-
mitment from [ACL+22] which relies on ideal lattices. As noted above, compared
to [ACL+22], our construction reduces the CRS size from �2d ·poly(λ, d, log �) to
�d+1 · poly(λ, d, log �).

1.2.2 A Dual Functional Commitment for Boolean Circuits
Next, we turn our attention to the dual setting where the user commits to a func-
tion f and opens to an input x. This is the setting studied in [BNO21,dCP23].
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While a functional commitment that supports general functions (e.g., [WW23,
BCFL22]) can be used to obtain a dual functional commitment for general func-
tions through the use of universal circuits, the generic transformation necessar-
ily both imposes an a priori bound on the size (or description length) of the
function. Here, we opt for a more direct construction that avoids the need for
universal circuits. Our approach is essentially a hybrid of the dual functional
commitment for bounded-depth Boolean circuits from [dCP23] (which has short
commitments but openings whose size scales with the input length) and the suc-
cinct ABE scheme from [Wee23]. We show how to combine these techniques to
obtain a dual functional commitment for bounded-depth Boolean circuits with
short commitments and openings. As before, our starting point is the �-succinct
SIS assumption, where we are given a trapdoor T satisfying

[I� ⊗ A | W] · T = I� ⊗ G. (1.5)

We again parse the trapdoor T as T =
[

Topen

Tcom

]

where Topen ∈ Z
�m×�m
q and

Tcom ∈ Z
m×�m
q . If we multiply both sides of Eq. (1.5) by (xT ⊗ In) and use the

fact that (xT ⊗ In)(I� ⊗ A) = (1 ⊗ A)(xT ⊗ Im) = A(xT ⊗ Im), we have that

[A(xT ⊗ Im) | (xT ⊗ In)W] ·
[

Topen

Tcom

]

= xT ⊗ G.

Take any matrix W0 ∈ Z
n×m
q . Then, we can write

[A | W0 + (xT ⊗ In)W] ·
[−(xT ⊗ Im)Topen

−Tcom

]

= −W0Tcom − xT ⊗ G. (1.6)

Let us define B := −W0Tcom ∈ Z
n×�m
q . The CRS will contain the elements

(A,W,Tcom,Topen,W0,B). Now, Eq. (1.6) essentially says we can “recode” the
matrix [A | W0 +(xT ⊗ In)W] to B−xT ⊗G. Following [dCP23], we now define
the commitment to a function f : {0, 1}� → {0, 1} as the matrix Bf obtained
by homomorphically evaluating f on B using the lattice-based homomorphic
evaluation machinery from [GSW13,BGG+14].2 To recall, for every matrix B ∈
Z

n×�m
q , every function f : {0, 1}� → {0, 1}, and every input x ∈ {0, 1}�, there

exist a matrix Bf ∈ Z
n×m
q that depends only on B and f , and a short matrix

HB,f,x ∈ Z
�m×m
q such that

(B − xT ⊗ G) · HB,f,x = Bf − f(x) · G ∈ Z
n×m
q .

To open at a point x ∈ {0, 1}� to the value z = f(x), the committer then
computes

V =
[−(x ⊗ Im)Topen

−Tcom

]

· HB,f,x ∈ Z
2 m×m
q .

2 In the syntax of [Wee23], the ABE ciphertext is essentially sT[A | W0+(x⊗In)W]+
error and the secret key is a short Gaussian pre-image of [A | Bf ] where Bf is derived
from B via homomorphic evaluation [GSW13,BGG+14] of f on B.
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Observe that the size of the opening is essentially independent of the input
length �.3 In [dCP23], the opening is the full matrix HB,f,x. Here, the trapdoor
T from the �-succinct SIS assumption allows us to “compress” the opening. The
verification relation is then

Bf − zG ?= [A | W0 + (x ⊗ In)W]V. (1.7)

From Eq. (1.6), we see that

[A | W0 + (xT ⊗ In)W]V = [A | W0 + (xT ⊗ In)W]

[−(xT ⊗ Im)Topen

−Tcom

]
· HB,f,x

= (−W0Tcom − xT ⊗ G) · HB,f,x

= (B − xT ⊗ G) · HB,f,x

= Bf − f(x) · G.

This yields a dual functional commitment for all (bounded-depth) Boolean
circuits on �-length inputs where the size of the commitment and the opening
are both poly(λ, d1/ε, log �), where d is the bound on the depth of the function.
The CRS in our construction has size �2 · poly(λ, d1/ε, log �). We note that this
construction also supports preprocessing; namely, if the input x is known in
advance, we can precompute the matrix [A | W0 + (x ⊗ In)W] in Eq. (1.7).
Security reduces to the �-succinct SIS with a sub-exponential noise bound 2Õ(nε),
where ε > 0 is a constant and n is the lattice dimension. We refer to Sect. 3.2
for the full construction and analysis.

1.2.3 Knowledge Assumptions, Extractable Functional Commit-
ments, and Cryptanalysis
The authors of [ACL+22] showed that if we strengthen the binding property on
a functional commitment for quadratic functions to an extractability property,
then it can be used to obtain a succinct non-interactive argument for NP. More
specifically, in an extractable functional commitment, the binding property is
replaced by a stronger extractability requirement which says that for any efficient
adversary that outputs a commitment σ and an opening π to the value y with
respect to a function f , there exists an extractor that outputs an input x such
that f(x) = y. Extractable functional commitments for quadratic functions can
be used to obtain a succinct non-interactive argument (SNARG) for NP (using
the fact that satisfiability of quadratic systems is NP-complete).

In Sect. 4, we highlight some of the difficulties in constructing extractable
functional commitments from lattices, and more generally, the challenges of for-
mulating lattice-based knowledge assumptions. The difficulties stem from the
following fundamental phenomenon about lattices, which has no analog in the
pairing world: given sufficiently many independent short vectors in the kernel of
a lattice A, we can recover a trapdoor for A and efficiently sample short pre-
images for any coset of A. (The pairing analogue would be recovering a trapdoor
3 Technically, there is a polylogarithmic dependence on � since log q scales with
poly(log �).
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that allows computing discrete logs). In our attacks, we invoke this basic fact
for a carefully crafted matrix A derived from the verification equation of the
functional commitment scheme.

Attack on Knowledge k-R-ISIS. As a warm-up, we describe a candidate attack
on a matrix variant of the knowledge k-R-ISIS assumption from [ACL+22].4
Here, the adversary is given

A r← Z
t×m
q , D r← Z

t×n
q , ∀i ∈ [�] : ti

r← Z
n
q , zi ← A−1(Dti)

where � 	 m + n and t ≥ n + 1. The goal of the adversary is to sample c ∈ Z
t
q

along with a low-norm v ∈ Z
m so that

Av = Dc.

One way to do this is to sample small integers xi, and then compute v =
∑

i∈[�] xizi and c =
∑

i∈[�] xiti. The knowledge assumption basically asserts
that this is the only way to sample (c,v). In particular, if an adversary samples
a random low-norm v, then Av will lie outside the column span of D with high
probability.

Our candidate attack uses Babai’s rounding algorithm to sample small frac-
tional xi’s such that v =

∑

i∈[�] xizi ∈ Z
m and c =

∑

i∈[�] xiti ∈ Z
t
q and satisfies

Av = Dc. It is a candidate attack in the sense that we do not know how to rule
out an extractor that outputs the same distribution for v, c using small integer
xi’s. The attack is fairly simple (in hindsight): we first construct a basis for the
lattice B = [A | DG] as follows:

[A | DG] ·
[

z1 · · · z�

−G−1(t1) · · · −G−1(t�)

]

︸ ︷︷ ︸

T

= 0 mod q.

Since the zi’s are independent Gaussians and the ti’s are uniformly random,
we (heuristically) assume that T ∈ Z

(m+n)×� is full rank over the reals.5 Now,
an adversary can start with an arbitrary (non-zero) solution y ∈ Z

m+n where
By = 0 mod q, solves for the unique z ∈ Q

m+n where Tz = y ∈ Q
m+n, and

then outputs the integer vector y∗ = y−T·�z�. By construction By∗ = 0 mod q
and moreover, ‖y∗‖ ≤ ‖T(z − �z�)‖, which is small. From y∗, we can compute
v, c as desired.

Attacks on Extractable Functional Commitments. Using a similar methodology,
we obtain heuristic attacks on the extractability of our functional commitment
for constant-degree polynomials described above as well as on a version of the
[ACL+22] functional commitment for the particular case of linear functions. We
note that [ACL+22] define their commitment over module and ideal lattices, so
4 After communicating the attack to the authors of [ACL+22], Albrecht implemented

and confirmed the attack [Alb23].
5 Note that T does not (and cannot) have full rank over Zq.
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when describing our attack, we consider a specific translation of their scheme to
the integer case. Our methodology for analyzing the extractability of functional
commitments follows the general blueprint:

1. We start by writing down the key verification relation. In all lattice-based
functional commitment constructions [ACL+22,WW23,dCP23,BCFL22],
the verification relation consists of checking that the opening is a short solu-
tion to a linear system. We re-express the verification relation as finding a
short non-zero vector in the kernel of some related lattice.

2. Using the components published in the CRS, we derive a basis for this related
lattice. We now use the basis to jointly sample a (possibly short) commitment
and a (short) opening that satisfies the main verification relation.

Importantly, the commitment and the opening are sampled without explicit
knowledge of a specific input. We can apply this strategy both to our functional
commitment for constant-degree polynomials as well as to an integer variant of
the [ACL+22] construction:

– In the case of our functional commitment for quadratic functions, we can use
the above procedure to sample a commitment and a set of valid openings
that correspond to an unsatisfiable constraint system. For instance, we show
that the attacker can efficiently come up with a commitment C together with
valid openings asserting that x2

1 = 0 and x1x2 = 1.
– When applied to our integer-variant of the [ACL+22] functional commitment

for linear functions, we can use this strategy to efficiently sample a commit-
ment together with an opening for an arbitrary linear function to an arbitrary
vector y. In other words, for any (short) matrix M, we can construct an effi-
cient algorithm that samples a commitment C and an opening V to any
target vector y under the linear function x �→ Mx. Note that this sampler
does not need an explicit x to sample (C,V). If the commitment scheme
is extractable, then there would exist an extractor that can output a short
x such that Mx = y. But this is precisely solving the inhomogeneous SIS
problem (with respect to a short matrix M; hardness of inhomogeneous SIS
with low-norm matrices follows from the standard setting with uniform M via
the mapping M �→ G−1(M)). Thus, our attacks demonstrates that assuming
(non-uniform) hardness of the standard inhomogeneous SIS assumption, the
variant of [ACL+22] defined over the integers does not satisfy extractability
(i.e., the existence of an efficient extractor for our adversarial strategy implies
a non-uniform polynomial-time algorithm for inhomogeneous SIS). Note that
due to the way we construct the basis for the related lattice, our approach
can be used to (heuristically) break inhomogeneous SIS, but not necessarily
SIS. We refer to Sect. 4.1 for more details.

We describe our methodology and attack algorithms in Sect. 4. We stress that
our oblivious sampling attacks only apply to extractability of lattice-based func-
tional commitments; all of the aforementioned schemes still plausibly satisfy the
standard notion of binding security for functional commitments. We hope that
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our techniques will encourage further cryptanalysis of lattice-based knowledge
assumptions (and also of the new falsifiable assumptions such as �-succinct SIS)
that underlie succinct commitments and arguments from lattices.

1.3 Related Work

Interactive functional commitments were first introduced in [IKO07] (for linear
functions) and extended to general functions in [BC12] for realizing (interactive)
succinct arguments without relying on traditional probabilistically-checkable
proofs. In the interactive setting, we can also obtain a functional commit-
ment from any collision-resistant hash function via Kilian’s interactive suc-
cinct argument [Kil92]. This can be made non-interactive in the random ora-
cle model [Mic00] through the Fiat-Shamir heuristic. Functional commitments
are also generically implied by succinct non-interactive arguments (SNARKs),
but constructions of SNARKs either rely on strong non-falsifiable assump-
tions [GW11] or rely on idealized models (e.g., the random oracle model or the
generic group model). Our focus in this work is on non-interactive functional
commitments in the plain model from falsifiable assumptions.

There have also been numerous constructions of functional commitments
(and its specialization to vector and polynomial commitments) from stan-
dard pairing-based assumptions [LY10,KZG10,CF13,LRY16,LM19,TAB+20,
GRWZ20,BCFL22] as well as assumptions over groups of unknown order such
as RSA groups or class groups [CF13,LM19,CFG+20,AR20,TXN20]. We refer
to [Nit21] for a survey of recent constructions. Our focus in this work is on
functional commitments from lattice assumptions (similar to [PPS21,ACL+22,
BCFL22,dCP23,WW23]). The work of [GVW15b] construct non-succinct func-
tional commitments for arbitrary functions and fast verification from SIS; non-
succinct functional commitments are often referred to as homomorphic commit-
ments.

RAM Delegation. A RAM delegation scheme [KP16,BHK17,KPY19,CJJ21,
KVZ21,KLVW23] allows a prover to compute a short digest of an input x and
later on, convince the verifier that M(x) = y for an arbitrary RAM program M
with a proof whose size scales with poly(λ, log |x|, log T ), where T is the running
time of the RAM computation. A RAM delegation scheme can be used to obtain
a functional commitment for circuits by having the digest be over the pair (x,C),
where x is the input and C is the circuit, and taking M to be the RAM program
that evaluates C gate-by-gate. There is a slight syntactic mismatch here because
in a functional commitment scheme, the user should be able to commit to the
input x (resp., in the dual case, the circuit C) separately, and later on, open the
commitment to the circuit C (resp., at the input x). However, if the underly-
ing digest-computation algorithm has the property that the digest for the pair
(x,C) can be derived from independent digests for x and C separately, then it is
possible to obtain a functional commitment scheme for circuits. In recent RAM
delegation schemes [CJJ21,KVZ21,KLVW23], the digest is just a Merkle hash
of the inputs [Mer87], which satisfies this requirement.



Lattice-Based Functional Commitments: Fast Verification and Cryptanalysis 215

Taken together, the RAM delegation schemes from [CJJ21,KVZ21] yields a
functional commitments from circuits that satisfy the weaker notion of target
binding security (where binding is only required to hold for honestly-generated
commitments). The construction of Kalai et al. [KLVW23] yields a functional
commitment for general circuits satisfies the standard notion of evaluation bind-
ing for functional commitments.6 This yields a functional commitment scheme
for all circuits from the plain LWE assumption; notably, this scheme has a trans-
parent setup and poly(λ, log |x|, log |C|) common reference string, commitment,
and opening. The main limitation of the RAM delegation approaches is their
heavy non-black-box use of cryptography. Namely, the constructions require the
circuit description of cryptographic hash functions and lattice sampling algo-
rithms. In this work, we focus on constructions that only make black-box use of
cryptographic algorithms (and lattice sampling algorithms).

Relation to [Wee23]. The �-succinct SIS assumption we rely on in this work
was recently introduced by [Wee23], who showed how to use it (specifically, its
extension to �-succinct LWE) to construct succinct attribute-based encryption,
reusable garbled circuits, and laconic functional encryption. The main technical
result there is an attribute-based encryption scheme that achieves ciphertext
overhead and key size poly(λ, d) (independent of both the attribute length and
circuit size) for circuits of depth d under the �-succinct LWE assumption. These
aforementioned applications exploit the fact that the trapdoor [I� ⊗ A | W]
can be used to “compress” the homomorphic evaluation matrix HB,f,x, which is
also the approach we take for compressing our openings in our dual functional
commitment scheme.

We refer to [Wee23] for more discussion on the �-succinct SIS and LWE
assumptions, including reductions basing these assumptions on the evasive LWE
assumption [Wee22,Tsa22]. In particular, �-succinct SIS is implied by both the
BASISstruct assumption from [WW23] (the latter is in turn implied by matrix
variants of k-R-ISIS, as shown in [WW23, §6]) and the evasive LWE assumption
(plus LWE). That is, �-succinct SIS constitutes the “weakest” of recent non-
standard lattice assumptions used in functional commitments as well as other
advanced lattice-based cryptosystems.

Concurrent Work. Concurrent to this work, [FLV23,CLM23] gave new construc-
tions of lattice-based SNARKs with a linear-size CRS based on the knowledge
k-R-ISIS assumption from [ACL+22]. The construction of [FLV23] leverage the
k-R-ISIS assumption to construct a polynomial commitment with a linear-size
CRS; in conjunction with the knowledge variant of the k-R-ISIS assumption,
they obtain a lattice-based preprocessing SNARK for NP with a linear-size CRS
and quasilinear prover complexity. The work of [CLM23] introduces the vanish-
ing SIS problem and uses it to construct functional commitments for quadratic
functions (and correspondingly, a preprocessing SNARK for NP). They provide
6 The difference in target binding vs. evaluation binding is due to the soundness prop-

erties of the underlying RAM delegation scheme. We refer to [KLVW23, Remark 6.1]
for more discussion on the different security definitions for RAM delegation.
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two ways to instantiate their SNARK: in the plain model under the knowl-
edge variant of the k-R-ISIS assumption, or in the random oracle model under
the new, but falsifiable vanishing SIS assumption. The results we show in this
work provide strong evidence against the plausibility of the knowledge k-R-ISIS
assumption. It is an interesting question to study whether our approach can be
used to directly break soundness of these new SNARK candidates.

2 Preliminaries

We write λ to denote the security parameter. For a positive integer n ∈ N, we
write [n] to denote the set {1, . . . , n}. For a positive integer q ∈ N, we write
Zq to denote the integers modulo q. We use bold uppercase letters to denote
matrices (e.g., A,B) and bold lowercase letters to denote vectors (e.g., u, v).
We use non-boldface letters to refer to their components: v = (v1, . . . , vn). We
write I� to denote the �-by-� identity matrix.

We write poly(λ) to denote a fixed function that is O(λc) for some c ∈ N

and negl(λ) to denote a function that is o(λ−c) for all c ∈ N. For functions
f = f(λ), g = g(λ), we write g ≥ O(f) to denote that there exists a fixed
function f ′(λ) = O(f) such that g(λ) > f ′(λ) for all λ ∈ N. We say an event
occurs with overwhelming probability if its complement occurs with negligible
probability. An algorithm is efficient if it runs in probabilistic polynomial time in
its input length. We say that two families of distributions D1 = {D1,λ}λ∈N and
D2 = {D2,λ}λ∈N are computationally indistinguishable if no efficient algorithm
can distinguish them with non-negligible probability, and we denote this by
writing D1

c≈ D2. We say that D1 and D2 are statistically indistinguishable if
the statistical distance Δ(D1,D2) is bounded by a negligible function negl(λ).

Tensor Products. For matrices A ∈ Z
n×m
q and B ∈ Z

k×�
q , we write A ⊗ B to

denote the tensor (Kronecker) product of A and B. For a positive integer i ∈ N,
we write A⊗i to denote tensoring A with itself i times. For matrices A,B,C,D
where the products AC and BD are well-defined, the tensor product satisfies
the following mixed-product property:

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD). (2.1)

The following is a useful consequence of the mixed-product property. For a vector
x and a matrix A,

(x ⊗ I)A = (x ⊗ I)(1 ⊗ A) = x ⊗ A. (2.2)

Vectorization. For a matrix A ∈ Z
n×m
q , we write vec(A) to denote its vector-

ization (i.e., the vector formed by vertically stacking the columns of A from
leftmost to rightmost). We will use the following useful identity: for matrices
A,B,C where the product ABC is well-defined, then

vec(ABC) = (CT ⊗ A) · vec(B).
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Lattice Preliminaries. Throughout this work, we let χ denote a Gaussian width
parameter. We review some preliminaries on lattice-based cryptography in the
full version of this paper.

2.1 Functional Commitments

In this section, we recall the formal definition of a (succinct) functional commit-
ment. Our definition is adapted from that of [WW23].

Definition 2.1 (Succinct Functional Commitment [WW23, Defini-
tion 4.1]). Let λ be a security parameter. Let F = {Fλ}λ∈N be a family of
efficiently-computable functions f : X � → YT with domain X � and range YT ;
here � = �(λ) and T = T (λ) denote the input dimension and the output dimen-
sion, respectively. A succinct functional commitment for F is a tuple of efficient
algorithms ΠFC = (Setup,Commit,Eval,Verify) with the following properties:

– Setup(1λ) → crs: On input the security parameter λ, the setup algorithm
outputs a common reference string crs.

– Commit(crs,x) → (σ, st): On input the common reference string crs and an
input x ∈ X �, the commitment algorithm outputs a commitment σ and a state
st.

– Eval(st, f) → πf : On input a commitment state st and a function f ∈ F , the
evaluation algorithm outputs an opening πf .

– Verify(crs, σ, f,y, π) → {0, 1}: On input the common reference string crs, a
commitment σ, a function f ∈ F , a value y ∈ YT , and an opening π, the
verification algorithm outputs a bit b ∈ {0, 1}.

We now define several correctness and security properties on the functional com-
mitment scheme:

– Correctness: For all security parameters λ, all functions f ∈ F , and all
inputs x ∈ X �,

Pr

⎡

⎣Verify
(

crs, σ, f, f(x), πf

)

= 1 :
crs ← Setup(1λ);

(σ, st) ← Commit(crs,x);
πf ← Eval(st, f)

⎤

⎦ = 1 − negl(λ).

– Succinctness: There exists a universal polynomial poly(·) such that for all
λ ∈ N, |σ| = poly(λ, log �) and |πf | = poly(λ, log �, T ) in the correctness
definition.

– Binding: We say ΠFC satisfies statistical (resp., computational) binding if
for all adversaries A (resp., efficient adversaries A),

Pr [Verify(crs, σ, f, y0, π0) = 1 = Verify(crs, σ, f, y1, π1)] = negl(λ),

where crs ← Setup(1λ, 1�, 1d) and (σ, f, (y0, π0), (y1, π1)) ← A(1λ, 1�, 1d, crs).
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Functional Commitments with Preprocessing. In many constructions of func-
tional commitments, verifying an opening with respect to a function f requires
time that scales with the running time of f and the size of the opening often
scales with the output dimension T . In settings where the function f and the
target y are known in advance (e.g., f could encode a list of predicates and the
output y could be the all-ones vector, indicating that every predicate should be
satisfied by the committed input)), it is sometimes possible to decompose the
verification algorithm into a “slow” offline step that takes as input the function
f and the target output y and outputs a verification key vkf,y. Importantly,
vkf,y is independent of the commitment and the opening. Then, there is a fast
online verification algorithm that uses the preprocessed verification key to vali-
date the commitment and opening in time that is sublinear in the size of f and
the number of outputs T .

In Remark 3.3, we note that it is also possible to preprocess the verification
key when only the function f is known in advance. In this case, the online verifi-
cation algorithm will need to run in time that grows with the output dimension T
(since the verifier necessarily has to read the output in this case). Several recent
schemes support fast verification with preprocessing [ACL+22,dCP23,BCFL22].
We define this below:

Definition 2.2 (Functional Commitment with Full Preprocessing). Let
λ be a security parameter. Let F = {Fλ}λ∈N be a family of efficiently-computable
functions f : X � → YT where each function f can be computed by a Boolean
circuit of size at most s = s(λ). Let ΠFC = (Setup,Commit,Eval,Verify) be
a succinct functional commitment for F . We say that F supports preprocess-
ing if the verification algorithm can be decomposed into two efficient algorithms
(Preprocess,OnlineVerify) with the following syntax:

– Preprocess(crs, f,y) → vkf,y: On input the common reference string crs, a
function f ∈ F , and an output y ∈ YT , the preprocess algorithm outputs a
verification key vkf,y.

– OnlineVerify(vk, σ, π) → {0, 1}: On input a verification key vk, a commitment
σ, and an opening π, the online verification algorithm outputs a bit b ∈ {0, 1}.

We require that

Verify(crs, σ, f,y, π) := OnlineVerify(Preprocess(crs, f,y), σ, π).

In addition, we require the additional succinctness property:

– Fast Online Verification: There exists a universal polynomial poly(·) such
that for all λ ∈ N, for crs ← Setup(1λ), all functions f ∈ F , and all outputs
y ∈ YT , the verification key vkf,y output by Preprocess(crs, f,y) satisfies
|vkf,y| = poly(λ, log s, log T ), and moreover, the running time of OnlineVerify
is poly(λ, log s, log T ).

Remark 2.3 (Function-Only Preprocessing). We can also consider functional
commitments with a weaker function-only preprocessing where the preprocessing
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algorithm Preprocess only takes the crs and the function f as input (but not
the output y) and outputs a preprocessed function key vkf . Then, the online
verification algorithm OnlineVerify takes the verification key vkf , the output y ∈
YT , the commitment σ, and the opening π as input. In this case, we require that
the size of the verification key vkf = poly(λ, log s), and the verification time to
be poly(λ, log s, T ). Notably, the online verification algorithm can now depend
on the output dimension T (and this is required since the verification algorithm
must read the output).

3 Functional Commitments with Fast Verification

In this section, we show how to construct a functional commitment for constant-
degree polynomials that support fast verification. Security of our construction
relies on the �-succinct short integer solutions problem from [Wee23], which we
recall below:

Assumption 3.1 (�-Succinct SIS [Wee23]). Let λ be a security parameter
and n = n(λ),m = m(λ), q = q(λ), χ = χ(λ), and β = β(λ) be lattice parame-
ters. We say that the �-succinct SIS assumption with parameters (n,m, q, χ, β)
holds if for all efficient adversaries A,

Pr

⎡

⎣Ax = 0 and 0 < ‖x‖ ≤ β :
A r← Z

n×m
q ,W r← Z

n�×m
q ,

R ← [I� ⊗ A | W]−1
χ (Gn�)

x ← A(1λ,A,W,R)

⎤

⎦ = negl(λ).

As suggested in [Wee23], we consider parameter settings for (n,m, q, β) where
SISn,m,q,β hold and where χ = poly(λ,m, �).

Construction 3.2 (Functional Commitment for Constant-Degree
Polynomials). Let λ be a security parameter and n = n(λ), m = m(λ),
q = q(λ), χ = χ(λ) be lattice parameters. Let � = �(λ) be an input length
parameter, dmax = O(1) be a constant degree bound, Bin = Bin(λ) be a bound
on the magnitude of the inputs, and Bout = Bout(λ) be a bound on the magnitude
of the outputs. Let L =

∑

i∈[dmax] �
i and B = B(λ) be a verification bound. Let

Fλ be the set of functions f : [−Bin, Bin]� → [−Bout, Bout] where f can be com-
puted by a homogeneous polynomial7 with Bin-bounded coefficients and degree
at most dmax. We associate a function f ∈ Fλ with a vector f ∈ [−Bin, Bin]�

d

for
some d ≤ dmax and define f(x) := f Tx⊗d. We construct a functional commitment
ΠFC = (Setup,Commit,Eval,Verify) for F = {Fλ}λ∈N as follows:

– Setup(1λ): On input the security parameter λ, the setup algorithm samples
(A,R) ← TrapGen(1n, q,m) and W r← Z

Ln×m
q . Next, define the target matrix

7 A functional commitment scheme for homogeneous polynomials implies one for non-
homogeneous polynomial by padding the input with a constant-value 1. See also
Remark 3.4.
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P =

⎡

⎢

⎢

⎢

⎣

I� ⊗ G
I� ⊗ W1

...
I� ⊗ Wdmax−1

⎤

⎥

⎥

⎥

⎦

∈ Z
Ln×�m
q where W =

⎡

⎢

⎣

W1

...
Wdmax

⎤

⎥

⎦ ∈ Z
Ln×m
q , (3.1)

where Wi ∈ Z
�in×m
q . Then, compute T ← SamplePre([IL ⊗ A | W], IL ⊗

R,P, χ) ∈ Z
(Lm+m)×�m
q . Parse T =

[

Topen

Tcom

]

where Topen ∈ Z
Lm×�m
q

and Tcom ∈ Z
m×�m
q . Output the common reference string crs = (A,W,

Tcom,Topen).
– Commit(crs,x): On input the common reference string crs = (A,W,Tcom,
Topen) and an input x ∈ [−Bin, Bin]�, the commit algorithm outputs the com-
mitment σ = C = Tcom(x ⊗ Im) ∈ Z

m×m
q and the state st = x.

– Eval(crs, st, f): On input the common reference string crs = (A,W,Tcom,

Topen), the state st = x, and a function f = f ∈ Z
�d

q (for some d ≤ dmax)
with Bin-bounded coefficients, the evaluation algorithm first computes V =
Topen(x ⊗ Im). It then parses

V =

⎡

⎢

⎣

V1

...
Vdmax

⎤

⎥

⎦ ∈ Z
Lm×m
q (3.2)

where Vi ∈ Z
�im×m
q . Let V′

1 ← V1 and for i ∈ [d], let V′
i ← (x ⊗

I�i−1m)V′
i−1 + ViCi−1 ∈ Z

�im×m
q . Equivalently, in expanded form, we can

write

V
′
i = ViC

i−1
+ (x ⊗ I�i−1m)Vi−1C + (x

⊗2 ⊗ I�i−2m)Vi−2C
2

+ · · · + (x
⊗i−1 ⊗ I�m)V1

=
∑

j∈[i]

(x
⊗i−j ⊗ I�jm)VjC

j−1

Output the opening πf = Vf = (f T ⊗ Im)V′
d ∈ Z

m×m
q .

– Verify(crs, σ, f, y, π): On input crs = (A,W,Tcom,Topen), the commitment
σ = C ∈ Z

m×m
q , the output y ∈ [−Bout, Bout], a function f = f ∈ Z

�d

q (for
some d ≤ dmax) with Bin-bounded coefficients, and the proof π = V ∈ Z

m×m
q ,

the verification algorithm first parses W into W1, . . . ,Wdmax as in Eq. (3.1)
and outputs 1 if

‖V‖ ≤ B and (f T ⊗ Im)WdCd = y · G − AV. (3.3)

Remark 3.3 (Supporting Preprocessing). Similar to previous (non-succinct)
homomorphic commitments [GVW15b] and succinct functional commit-
ments [ACL+22,dCP23,BCFL22], our functional commitment Construction 3.2
supports fast verification in the preprocessing model. Note that since the out-
put dimension is 1, we do not distinguish between function-only preprocessing
(Remark 2.3) and full preprocessing (Definition 2.2). We define the preprocessing
and online verification algorithms as follows:
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– Preprocess(crs, f): On input crs = (A,W,Tcom,Topen) and the function f =
f ∈ Z

�d

q for some d ≤ dmax, the preprocess algorithm outputs vkf = Fd =
(f T ⊗ Im)Wd ∈ Z

n×m
q .

– OnlineVerify(vk, σ, y, π): On input the verification key vk = Fd, the com-
mitment σ = C ∈ Z

m×m
q , the value y ∈ [−Bout, Bout], and the opening

π = V ∈ Z
m×m
q , the online verification algorithm outputs 1 if

‖V‖ ≤ B and Fd · Cd = y · G − AV.

By construction, |Fd| = nm log q and similarly, the online verification algorithm
runs in time poly(n,m, dmax, log q). We can set the parameters for Construction
3.2, so n,m, log q scale polylogarithmically with the input dimension �.

Remark 3.4 (Supporting Non-homogeneous Polynomials). It is straightforward
to extend a functional commitment for homogeneous polynomials (i.e., polyno-
mials where every monomial has the same degree) to a functional commitment
for inhomogeneous polynomials. Specifically, to support openings to inhomo-
geneous polynomials over inputs of dimension �, we instantiate a scheme that
supports homogeneous polynomials over inputs of dimension �+1. Then to com-
mit to an input x ∈ Z

�
q, the committer commits to the extended vector x′ = [ 1

x ].
Now, every inhomogeneous polynomial f : Z�

q → Zq of degree at most d can
be described by a homogeneous polynomial f ′ : Z�+1

q → Zq of degree d where
f ′(x′) = f(x). Now, to open to an inhomogeneous polynomial f , the committer
instead open to f ′.

Correctness and Security Analysis. We provide the correctness and security anal-
ysis of Construction 3.2 in the full version of this paper.

3.1 Opening to Multiple Outputs

In this section, we describe how to extend Construction 3.2 to obtain a functional
commitment scheme that supports succinct openings to multiple outputs (i.e.,
the size of the opening scales sub-linearly with the number of functions we open
to). Our approach follows the approach from [WW23] for aggregating openings.

Construction 3.5 (Multi-output Functional Commitment for
Constant-Degree Polynomials). Let λ be a security parameter. Let n,m, q,
χ, �, dmax, Bin, Bout, B be the same parameters as in Construction 3.2. Let T =
T (λ) be a bound on the number of outputs. Let F = {Fλ}λ∈N be the set of func-
tions f : [−Bin, Bin]� → [−Bout, Bout]T , where each function f can be described by
a vector of homogeneous polynomials (f1, . . . , fT ) with Bin-bounded coefficients
and of the same degree d ≤ dmax:8

f(x) :=
(

f T

1x
⊗d, . . . , f T

Tx
⊗d

)

.

8 Our construction also supports the setting where f1, . . . , fT have different degrees
d1, . . . , dT ≤ dmax. For simplicity of exposition, we just describe the case where they
have equal degree d ≤ dmax.



222 H. Wee and D. J. Wu

We construct a functional commitment ΠFC = (Setup,Commit,Eval,Verify) for
F = {Fλ}λ∈N as follows:

– Setup(1λ): Sample A ∈ Z
n×m
q , W ∈ Z

Ln×m
q , Topen ∈ Z

Lm×�m
q , and Tcom ∈

Z
m×�m
q using the same procedure as Setup in Construction 3.2. Sample D r←

Z
n×T
q , and output the common reference string crs = (A,W,Tcom,Topen,D).

– Commit(crs,x): Same as in Construction 3.2.
– Eval(crs, st, f): On input crs = (A,W,Tcom,Topen,D), the state st = x, and

a function f = (f1, . . . , fT ) where each fi ∈ Z
�d

q is Bin-bounded and d ≤ dmax,
the evaluation algorithm first computes an opening Vfi ∈ Z

m×m
q for fi using

the same procedure as in Construction 3.2. Then, it outputs the opening
πf = vf where

vf =
∑

i∈[T ]

VfiG
−1(di) ∈ Z

m
q ,

and di ∈ Z
n
q denotes the ith column of D.

– Verify(crs, σ, f,y, π): On input crs = (A,W,Tcom,Topen,D), the commitment
σ = C ∈ Z

m×m
q , the function f = (f1, . . . , fT ) where each fi ∈ Z

�d

q is Bin-
bounded and d ≤ dmax, the output y ∈ [−Bout, Bout]T , and the proof π = v ∈
Z

m
q , the verification algorithm parses W as in Eq. (3.1) and outputs 1 if

‖v‖ ≤ B and
∑

i∈[T ]

(f T

i ⊗ Im)WdCdG−1(di) = Dy − Av, (3.4)

where di ∈ Z
n
q is the ith column of D.

Remark 3.6 (Supporting Preprocessing). Like Construction 3.2, Construction
3.5 supports full preprocessing (Definition 2.2) and function-only preprocessing
(Remark 2.3). Here, we describe the approach for full preprocessing.

– Preprocess(crs, f,y): On input crs = (A,W,Tcom,Topen,D), the function f =
(f1, . . . , fT ) where each fi ∈ Z

�d

q is Bin-bounded and d ≤ dmax, and the output
y ∈ [−Bout, Bout]T , the preprocessing algorithm computes

F =
∑

i∈[T ]

(
(

G−1(di)
)T ⊗ (f T

i ⊗ Im)Wd

)

∈ Z
n×m2

q (3.5)

y∗ = Dy ∈ Z
n
q , (3.6)

and outputs the verification key vkf,y = (F,y∗).
– OnlineVerify(vk, σ, π): On input the verification key vk = (F,y∗), the commit-

ment σ = C ∈ Z
m×m
q , and the opening π = v ∈ Z

m
q , the online verification

algorithm outputs 1 if

‖v‖ ≤ B and F · vec(Cd) = y∗ − Av.
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To show that this is correct, we apply vectorization to the main verification
relation in Eq. (3.4):

vec

⎛
⎝ ∑

i∈[T ]

(fT
i ⊗ Im)WdC

dG−1(di)

⎞
⎠ =

∑
i∈[T ]

((
G−1(di)

)T ⊗ (fT
i ⊗ Im)Wd

)

︸ ︷︷ ︸
F

vec(Cd).

Then, the main verification relation in Eq. (3.4) becomes

F · vec(Cd) = Dy − Av = y∗ − Av,

and correctness reduces to that of Construction 3.5. By construction, |vkf,y| =
(nm2 + n) log q and the running time of OnlineVerify is poly(n,m, dmax, log q).
As we show below, we can instantiate our scheme so that n,m, log q =
poly(λ, log �, log T ), and so the construction satisfies the required efficiency prop-
erties. Finally, the above analysis also applies to function-only preprocessing:
namely, the preprocessed function key for a function f = (f1, . . . , fT ) is the
matrix F from Eq. (3.5). In this case, the running time of verification becomes
poly(n,m, log q, T ).

Correctness and Security Analysis. We provide the correctness and security anal-
ysis as well as the parameter instantiation in the full version of this paper. We
summarize the results in the following corollary:

Corollary 3.7 (Succinct Functional Commitment for Constant-Degree
Polynomials). Let λ be a security parameter, and let F = {Fλ}λ∈N be a fam-
ily of functions f : [−Bin, Bin]� → [−Bout, Bout]T on inputs of length � = �(λ)
and magnitude Bin = poly(λ), and outputs of length T = T (λ) and magnitude
Bout = poly(λ), and where each function f can be described by a vector of T
homogeneous polynomials with Bin-bounded coefficients and degree d ≤ dmax =
O(1). Then, under the L-succinct SIS assumption (with L = O(�dmax)) and a
polynomial norm bound, there exists a succinct functional commitment for F .
The commitment and opening have size poly(λ, dmax, log �, log T ) and the CRS
has size �dmax+1 · poly(λ, dmax, log �, log T ). The functional commitment supports
full preprocessing (Definition 2.2) and function-only preprocessing (Remark 2.3).
With full preprocessing, the running time of the online verification algorithm is
poly(λ, dmax, log �, log T ).

Remark 3.8 (Shorter Commitment and Openings). We can reduce the commit-
ment size to O(n2 log q) and the opening size to O(n log q) in the above con-
struction by using a gadget matrix with a larger decomposition base (specifi-
cally, instead of considering a binary decomposition, we consider a z-ary gadget
matrix where z = q1/c for a large constant c ∈ N). This coincides with the
approach taken in [ACL+22]. In addition, we can further reduce the size of the
commitment by using module lattices instead of integer lattices. We provide the
details on extending to modules and using a z-ary gadget decomposition in the
full version of this paper.
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3.2 A Dual Construction for Committing to Functions

In this section, we construct a functional commitment that supports committing
to a function f : {0, 1}� → {0, 1} and then opening the commitment at a partic-
ular input x ∈ {0, 1}�. This is a dual notion of Definition 2.1, where the Commit
algorithm takes as input the function f and the Eval algorithm takes as input
an input vector x. We often refer to this variant of functional commitment as a
“dual functional commitment.”

Here, we consider a construction for general Boolean functions f on inputs
of length � = �(λ) and computable by Boolean circuits with bounded depth
d = d(λ). Similar to [dCP23,WW23], we allow the length of the commitment
and the openings to scale with poly(λ, d, log �). We can view our construction as a
hybrid of the dual functional commitment from [dCP23] and the attribute-based
encryption (ABE) scheme from [Wee23].

Like the construction of [dCP23], our functional commitment scheme satisfies
a weaker notion of binding called “selective-input security” where the adversary
is required to first commit to the point x ∈ {0, 1}� to which it will construct
an opening. The adversary has to commit to this input before seeing the public
parameters. The security reduction will then program x into the public param-
eters itself. This limitation to a selective notion of security is common to many
related lattice-based primitives such as attribute-based encryption [GVW13,
BGG+14,GVW15a,Wee23] and constrained PRFs [BV15,BTVW17]. We now
give the formal definition of selective-input binding and then show how to use the
�-succinct SIS assumption to construct a succinct dual functional commitment
for Boolean circuits with succinct commitments, openings, and fast verification
(in the preprocessing model).

Definition 3.9 (Selective-Input Binding Security). Let λ be a security
parameter, and let F = {Fλ}λ∈N be a family of efficiently-computable functions
f : X � → Y. Let ΠFC = (Setup,Commit,Eval,Verify) be a (dual) functional com-
mitment scheme for F . We now define the selective-input binding game between
an adversary A and a challenger:

1. At the beginning of the game, the adversary chooses an input x ∈ X � and
sends x to the challenger.

2. The challenger samples crs ← Setup(1λ) and gives crs to A.
3. The adversary outputs a commitment σ, values y0, y1 ∈ Y, and openings

π0, π1.
4. The output of the experiment is b = 1 if y0 �= y1 and Verify(crs, σ,x, y0, π0) =

1 = Verify(crs, σ,x, y1, π1). Otherwise, the output of the experiment is b = 0.

The functional commitment scheme satisfies computational selective-input bind-
ing if for all efficient adversaries A, Pr[b = 1] = negl(λ) in the above security
game.

Construction 3.10 (Dual Functional Commitment for Boolean Cir-
cuits). Let λ be a security parameter and n = n(λ), m = m(λ), q = q(λ), and
χ = χ(λ) be lattice parameters. Let � = �(λ) be an input length parameter, and
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B = B(λ) be a bound. Let Fλ be a collection of functions f : {0, 1}� → {0, 1}
that can be computed by a Boolean circuit of depth at most d = d(λ). We
construct a dual functional commitment ΠFC = (Setup,Commit,Eval,Verify) for
F = {Fλ}λ∈N as follows:

– Setup(1λ): On input the security parameter λ, the setup algorithm samples
(A,R) ← TrapGen(1n, q,m) and W r← Z

�n×m
q . Sample T ← SamplePre([I� ⊗

A | W], I� ⊗ R,Gn�, χ) ∈ Z
(�m+m)×�m
q . Parse T =

[

Topen

Tcom

]

where Topen ∈
Z

�m×�m
q and Tcom ∈ Z

m×�m
q . Finally, it samples W0

r← Z
n×m
q , computes

B = −W0Tcom ∈ Z
n×�m
q and outputs the common reference string crs =

(A,W,Tcom,Topen,W0,B).
– Commit(crs, f): On input crs = (A,W,Tcom,Topen,W0,B) and a function

f : {0, 1}� → {0, 1}, the commit algorithm computes Bf ← EvalF(B, f) and
outputs the commitment σ = Bf ∈ Z

n×m
q along with the state st = f .

– Eval(crs, st,x): On input crs = (A,W,Tcom,Topen,W0,B), the state st = f ,
and the input x ∈ {0, 1}�, the evaluation algorithm computes HB,f,x ←
EvalFX(B, f,x) ∈ Z

�m×m
q and outputs

π = V =
[−(xT ⊗ Im)Topen

−Tcom

]

· HB,f,x ∈ Z
2m×m
q . (3.7)

– Verify(crs, σ,x, y, π): On input crs = (A,W,Tcom,Topen,W0,B), a commit-
ment σ = Bf ∈ Z

n×m
q , an input x ∈ {0, 1}�, an output y ∈ {0, 1}, and an

opening π = V ∈ Z
2m×m
q , the verification algorithm outputs 1 if

‖V‖ ≤ B and Bf − yG = [A | W0 + (xT ⊗ In)W]V. (3.8)

Remark 3.11 (Supporting Preprocessing). Similar to Constructions 3.2 and 3.5,
Construction 3.10 also supports fast verification in the preprocessing model. Note
that in the dual setting, we preprocess with respect to an input x rather than a
function f .

– Preprocess(crs,x): On input crs = (A,W,Tcom,Topen,W0,B) and the input
x ∈ {0, 1}�, the preprocess algorithm outputs vkx = Fx = [A | W0 + (xT ⊗
In)W] ∈ Z

n×2m
q .

– OnlineVerify(vk, σ, y, π): On input the verification key vk = Fx ∈ Z
n×2m
q ,

the commitment σ = Bf ∈ Z
n×2m
q , a value y ∈ {0, 1}, and an opening

π = V ∈ Z
2m×m
q , the online verification algorithm outputs 1 if

‖V‖ ≤ B and Bf − yG = FxV.

Correctness and Security Analysis. We provide the correctness, security analysis,
and parameter instantiation for Construction 3.10 in the full version of this
paper. We summarize the instantiation in the following corollary:

Corollary 3.12 (Dual Functional Commitment for Bounded-Depth
Boolean Circuits). Let λ be a security parameter and let F = {Fλ}λ∈N be
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a family of functions f : {0, 1}� → {0, 1} on inputs of length � = �(λ) and which
can be computed by Boolean circuits of depth at most d = d(λ). Under the �-
succinct SIS assumption with a sub-exponential norm bound β = 2Õ(nε) for some
constant ε > 0 and lattice dimension n = n(λ), there exists a dual functional
commitment for F . The functional commitment satisfies computational selective-
input binding and supports preprocessing for fast verification (Definition 2.2).
The size of the commitment and the opening have size poly(λ, d1/ε, log �) and the
CRS has size �2 · poly(λ, d1/ε, log �).

4 Cryptanalysis of Extractable Commitments

In this section, we describe some of the challenges in constructing extractable
lattice-based functional commitments. In the full version of this paper, we
show that Construction 3.2 is not an extractable functional commitment for
quadratic functions. In this section, we show that assuming inhomogeneous SIS,
the [ACL+22] approach does not yield an extractable functional commitment for
linear functions. The attacks we develop work by using the components in the
CRS to derive a basis for a lattice defined by the scheme’s verification relation.
We then use the basis to obliviously sample a solution that satisfies the schemes’
verification relation without knowledge of a corresponding input. In one case,
this can be used to sample a valid opening to an unsatisfiable set of quadratic
constraints, while in the other case (Sect. 4.1), we can embed a SIS instance that
the extractor must solve in order to output a valid input. We start with the
definition of a extractable functional commitment.

Definition 4.1 (Extractability). Let λ be a security parameter. We say that a
functional commitment ΠFC = (Setup,Commit,Eval,Verify) for a function family
F = {Fλ}λ∈N is extractable if for all efficient adversaries A, there exists an
efficient extractor E such that

Pr
[

Verify(crs, σ, f, y, π) = 1 and
f(x) �= y

:
crs ← Setup(1λ)

(

(σ, f, y, π),x
) ← (A‖E)(1λ, crs)

]

= negl(λ).

Here, we write (A‖E)(·) to denote invoking algorithm A and the extractor E on
the same input and randomness. The output of A is (σ, f, y, π) and the output
of E is x.

4.1 Analyzing the [ACL+22] Knowledge Assumption

In this section, we analyze one version of the k-ISIS and knowledge k-ISIS family
of assumptions from [ACL+22]. While the original assumptions from [ACL+22]
were defined over polynomial rings (and module/ideal lattices), we consider the
analogous assumptions over the integers. Since ring multiplication is commuta-
tive whereas matrix multiplication is not, there are multiple (and similar) ways
to translate the [ACL+22] family of assumptions to the integers. We describe
one adaptation here, where we “sparsify by left multiplication.” We refer to this
adaptation as the MatrixACLMT construction.
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Assumption 4.2 (MatrixACLMT k-ISIS Assumption for Linear Func-
tions). Let λ be a security parameter and let (n,m, q, χ, �, β) be lattice parame-
ters. The MatrixACLMT k-SIS assumption says that for every efficient adversary
A, there exists a negligible function negl(·) such that

Pr

⎡

⎢

⎢

⎣

Ax = αu mod q
and

0 < |α|, ‖x‖ ≤ β
:

A r← Z
n×m
q , u r← Z

n
q ,

∀i ∈ [�] : Wi
r← Z

n×n
q , ti ← W−1

i u,
∀i �= j : zi,j ← A−1

χ (Witj),
(α,x) ← A(

1λ,A,u, {Wi}i∈[�], {zi,j}i	=j

)

⎤

⎥

⎥

⎦
= negl(λ).

Assumption 4.3 (MatrixACLMT Knowledge Assumption). Let λ be a
security parameter and let (n,m, q, χ, t, �, α, β) be lattice parameters where
qn−t = negl(λ) and m ≥ O(t log q). The MatrixACLMT knowledge assumption
says that for every efficient adversary A, there exists an efficient extractor E
such that Pr[b = 1] = negl(λ), where b ∈ {0, 1} is the output of the following
experiment:

Pr

⎡

⎢⎣
Av = Dc mod q and ‖v‖ ≤ β and
(‖x‖ ≥ α or c �= ∑

i∈[�] xiti mod q)
:

A r← Z
t×m
q , D r← Z

t×n
q ,

∀i ∈ [�] : ti
r← Z

n
q , zi ← A−1

χ (Dti)(
(c, v), x

) ← (A‖E)
(
1λ, A, D, {(ti, zi)}i∈[�]

)

⎤

⎥⎦ = negl(λ),

where ((c,v),x) ← (A‖E)(1λ,A,D, {(ti, zi)}i∈[�]) denotes that A and E are
invoked on the same input and randomness, and (c,v) is the output of A while
x is the output of E .

The MatrixACLMT knowledge assumption essentially says that any efficient
adversarial strategy that produces a short v ∈ Z

m
q where Av ∈ Z

t
q lies in

the image of D (i.e., Av = Dc) can be explained as taking a short linear
combination of the given preimages z1, . . . , z�. Indeed, if c =

∑

i∈[�] xiti, then

A
(
∑

i∈[�] xizi

)

= D
(
∑

i∈[�] xtti

)

= Dc. The requirement qn−t = negl(λ) is
necessary to prevent the basic oblivious sampling attack where the adversary
samples a random short vector v ∈ Z

m
q and solves for a c ∈ Z

n
q satisfying

Av = Dc. Since the image of A has qt elements and the image of D has qn

elements, all but a negligible fraction of the elements in the image of A are
contained in the image of D.

A Heuristic Oblivious Sampling Algorithm for Assumption 4.3. We start by
describing an adversary for Assumption 4.3 that obliviously samples a short
vector v ∈ Z

m
q such that Av is in the image of D. While this by itself does not

necessarily falsify Assumption 4.3, we will subsequently show that Assumptions
4.2 and 4.3 cannot simultaneously hold for a broad range of parameter settings
(i.e., at least one of Assumption 4.2 or Assumption 4.3 is false).

Algorithm 4.4 (Candidate Oblivious Sampler for MatrixACLMT). Sup-
pose � 	 m + n in Assumption 4.3. Our heuristic oblivious sampling algorithm
A for Assumption 4.3 works as follows:
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1. Let A r← Z
t×m
q , D r← Z

t×n
q , ti

r← Z
n
q and zi ← A−1

χ (Dti) be the challenge
from Assumption 4.3. By construction,

[A | DG] ·
[

z1 · · · z�

−G−1(t1) · · · −G−1(t�)

]

︸ ︷︷ ︸

T̄

= 0 mod q.

Since ti and zi are sampled independently and assuming that � 	 m + n is
sufficiently large (e.g., setting � = 2(m + n) should suffice), we can heuris-
tically assume that T̄ ∈ Z

(m+n)×� is full rank over the reals.9 Thus, we can
use T̄ to derive an Ajtai-trapdoor T for the matrix B = [A | DG] (e.g., by
taking a subset of m+ n columns of T̄ that are linearly independent over the
reals).

2. Using T, the algorithm samples a short [ vc ] where B · [ vc ] = 0. The com-
mitment is then Gc and the opening is v. For instance, the algorithm might
implement Babai’s rounding algorithm. Specifically, it starts with an arbi-
trary (non-zero) solution y ∈ Z

m+n where By = 0 mod q, solves for the
unique z ∈ Q

m+n where Tz = y ∈ Q
m+n and then outputs x = y − T · �z�.

By construction Bx = 0 mod q and moreover ‖x‖ ≤ ‖T(z − �z�)‖, which is
small.

The basic question is whether the solution x derived by rounding off a long
solution as in Algorithm 4.4 (or sampled through some alternative trapdoor
sampling algorithm) can always be explained by a short linear combination of
the basis vectors T. In the following, we show that assuming (non-uniform)
hardness of inhomogeneous SIS and the matrix-ACLMT assumption for linear
functions (Assumption 4.2), then no such extractor exists. One implication of
this is that this particular adaptation of [ACL+22] to the integers is not an
extractable functional commitment for linear functions.

Attacking the Matrix-ACLMT Commitment for Linear Functions. We now show
how we can apply the approach in Algorithm 4.4 to break extractability for
the linear functional commitment from [ACL+22] (when instantiated over the
integers). We start by recalling their construction (over the integers):

Construction 4.5 (Functional Commitment for Linear Functions). Let
λ be a security parameter and n,m,m′, q, t, B, χ be lattice parameters. Let � =
�(λ) be the input length. For a matrix M ∈ Z

k×�
q , let fM : Zk×�

q → Z
k
q be the

linear function x �→ Mx. Let Fλ = {fM | M ∈ {0, 1}k×�}. We construct a
functional commitment ΠFC = (Setup,Commit,Eval,Verify) for F = {Fλ}λ∈N as
follows:

– Setup(1λ, 1�): Sample matrices (A,RA) ← TrapGen(1λ, n,m),
W1, . . . ,W�

r← Z
n×n
q , u ← Z

n
q , and let ti ← W−1

i u ∈ Z
n
q for each i ∈ [�]. For

9 Note that T̄ does not (and cannot) have full rank over Zq.
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each i �= j, sample zi,j ← SamplePre(A,RA,Witj , χ). Let ̂W ∈ Z
�n×n
q to be

the vertical stacking of the matrices W1, . . . ,W�:

̂W =

⎡

⎢

⎣

W1

...
W�

⎤

⎥

⎦ ∈ Z
�n×n
q .

Next, sample (B,RB) ← TrapGen(1λ, t,m′) and a matrix D r← Z
t×n
q . Sample

z′
i ← SamplePre(B,RB,Dti, χ) for each i ∈ [�]. Output the common reference

string crs =
(

A,B,D,u, {Wi}i∈[�], {zi,j}i	=j , {z′
i}i∈[�]

)

.
– Commit(crs,x): On input crs =

(

A,B,D,u, {Wi}i∈[�], {zi,j}i	=j , {z′
i}i∈[�]

)

and an input vector x ∈ Z
�
q, the commit algorithm outputs the commitment

c =
∑

i∈[�] xiti ∈ Z
n
q and the state st = x.

– Eval(crs, st, fM): On input crs =
(

A,B,D,u, {Wi}i∈[�], {zi,j}i	=j , {z′
i}i∈[�]

)

, a
commitment state st = x, and a function fM for some matrix M ∈ Z

k×�
q , the

evaluation algorithm computes v̂i ← ∑

j 	=i xjzi,j for each i ∈ [�] and defines
v̂ ∈ Z

�m
q and ẑ ∈ Z

�m′
q as follows:

v̂ =

⎡

⎢

⎣

v̂1

...
v̂�

⎤

⎥

⎦ ∈ Z
�m
q and ẑ =

⎡

⎢

⎣

z′
1
...
z′

�

⎤

⎥

⎦ .

It outputs the opening

v =
[

(M ⊗ Im)v̂
(xT ⊗ Im′)z′

i

]

∈ Z
km+m′
q .

– Verify(crs, σ, fM, y, π): On input crs =
(

A,B,D,u, {Wi}i∈[�], {zi,j}i	=j ,

{z′
i}i∈[�]

)

, a commitment σ = c ∈ Z
n
q , a function fM : Zk×�

q → Z
k
q where

M ∈ Z
k×�
q , a value y ∈ Z

k
q , and an opening π = v ∈ Z

(km+m′)×m
q , the

verification algorithm outputs 1 if

‖v‖ ≤ B and
[

Ik ⊗ A 0
0 B

]

· v =
[

(M ⊗ In)̂W
D

]

· c −
[

y ⊗ u
0

]

. (4.1)

Correctness. Correctness follows by the same argument as in [ACL+22], adapted
to operate over the integers. We give a sketch here and refer to [ACL+22] for more
details. Let crs =

(

A,B,D,u, {Wi}i∈[�], {zi,j}i	=j , {z′
i}i∈[�]

)

be a CRS sampled
via the Setup algorithm. Suppose c =

∑

i∈[�] xiti is a commitment to a short
input x ∈ Z

�
q. Suppose v is an opening to a function fM where M ∈ Z

k×�
q is a

matrix with small entries. By construction, if the entries of M and x are short,
then so is v. Consider now the main verification relation. First, for each i ∈ [�],

Wic =
∑

j∈[�]

xjWitj = xiu+
∑

j 	=i

xjAzi,j = xiu+Av̂i.
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Equivalently, this means ̂Wc = x ⊗ u + (I� ⊗ A)v̂. Consider now the main
verification relation:

(M ⊗ In)̂Wc = (M ⊗ In)(x ⊗ u) + (M ⊗ In)(I� ⊗ A)v̂
= (Mx ⊗ u) + (Ik ⊗ A)(M ⊗ Im)v̂

Dc =
∑

i∈[�]

xiDti = B ·
⎛

⎝

∑

i∈[�]

xiz′
i

⎞

⎠ = B · (xT ⊗ Im′)ẑ.

For a sufficiently-large bound B, the verification relations hold and correctness
follows.

Extractability. By an analogous argument as in [ACL+22], we can show that
under Assumptions 4.2 and 4.3 (with suitable parameter instantiations), if an
efficient adversary can produce a commitment σ = c along with a valid opening
π = v to a short value y ∈ Z

t
q with respect to a linear function fM with short

M ∈ Z
k×�
q , then there exists an efficient extractor that outputs a short x ∈ Z

�
q

where Mx = y. We give a sketch of the general approach here and refer to
[ACL+22] for a formal argument:

– Suppose there exists an efficient adversary A is able to come up with a com-
mitment c ∈ Z

n
q and a short opening v = [ v1

v2 ] that satisfies Eq. (4.1). This
means that Bv2 = Dc. By Assumption 4.3, there exists an efficient extractor
E that outputs a short x ∈ Z

�
q such that c =

∑

i∈[�] xiti.
– If the extracted x satisfies Mx = y, then the extractor is successful. Consider

the case where Mx �= y. If this happens with non-negligible probability, we
can construct an adversary B that uses the extractor E to break Assumption
4.2:
1. Algorithm B receives

(

A,u, {Wi}i∈[�], {zi,j}i	=j

)

from the challenger for
Assumption 4.2.

2. It samples (B,RB) ← TrapGen(1λ, t,m′), D r← Z
t×n
q , and z′

i ←
SamplePre(B,RB,Dti, χ) for each i ∈ [�] as in the real scheme. The
reduction algorithm constructs the common reference string crs =
(

A,B,D,u, {Wi}i∈[�], {zi,j}i	=j , {z′
i}i∈[�]

)

and gives crs to A.
3. After A outputs a commitment c and opening v = [ v1

v2 ], algorithm B
runs the extractor E on the same input as A to obtain a short input
x ∈ Z

�
q. Suppose Mx = y′ �= y. Then algorithm A computes an opening

v′ =
[

v′
1

v′
2

]

by computing Eval(crs,x, fM). By correctness, v′ is short and
moreover satisfies the following verification relation from Eq. (4.1):

(Ik ⊗ A)v′
1 = (M ⊗ In)̂Wc − Mx ⊗ u (4.2)

Since v is also a valid opening, we have that

(Ik ⊗ A)(v1 − v′
1) = (y′ − y) ⊗ u.
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Since y − y′ �= 0, there is at least one non-zero “block” where A(v1,i −
v′

1,i) = (y′
i − yi)u and y′

i �= yi. Since y,y′ are both short, this yields a
valid solution to Assumption 4.2.

An Attack on Construction 4.5. To conclude, we describe a (heuristic) attack
that breaks extractability of Construction 4.5. Our approach takes the following
template:

1. Given the CRS for the functional commitment scheme, we construct an effi-
cient adversary A that can obliviously sample an opening to an arbitrary
vector y ∈ Z

k
q with respect to a function fM where M = [Ml | 0k×�1 ] and

Ml ∈ Z
k×�2
q is short.

2. Extractability of the functional commitment now says that there exists an
efficient extractor that outputs a short x ∈ Z

�1+�2
q such that Mx = y.

3. Since the oblivious sampler is agnostic to the choice of Ml (as long as it is
short), we can embed an (inhomogeneous) SIS instance into Ml. In this case,
an extractor for algorithm A is able to solve inhomogeneous SIS with respect
to M, and by extension, Ml.

We defer the details to the the full version of this paper. Taken together, our
analysis shows that under the inhomogeneous SIS assumption, either Assump-
tion 4.2 or Assumption 4.3 must be false, and correspondingly, the functional
commitment scheme in Construction 4.5 is not extractable.
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Abstract. In this paper, we consider to generalize NIZK by empower-
ing a prover to share a witness in a fine-grained manner with verifiers.
Roughly, the prover is able to authorize a verifier to obtain extra infor-
mation of witness, i.e., besides verifying the truth of the statement, the
verifier can additionally obtain certain function of the witness from the
accepting proof using a secret functional key provided by the prover.

To fulfill these requirements, we introduce a new primitive called non-
interactive zero-knowledge functional proofs (fNIZKs), and formalize its
security notions. We provide a generic construction of fNIZK for any
NP relation R, which enables the prover to share any function of the
witness with a verifier. For a widely-used relation about set member-
ship proof (implying range proof), we construct a concrete and efficient
fNIZK, through new building blocks (set membership encryption and
dual inner-product encryption), which might be of independent interest.

Keywords: non-interactive zero knowledge proof · set membership
proof · range proof · inner-product encryption

1 Introduction

The zero-knowledge (ZK) proof system [19] is an interactive protocol in which
a prover convinces a verifier of the truth of a statement without disclosing any
additional information. A non-interactive zero-knowledge (NIZK) proof [1] is a
type of ZK proof without any interactions with a verifier. NIZKs have found
numerous applications in cryptography, including but not limited to secure pub-
lic key encryption resilient against chosen-ciphertext attacks [27], group/ring
signatures [7,9], anonymous credentials [7], multi-party computations [18], and
some applications in blockchain such as privacy preserving coins (e.g., Zcash
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[28]), zero knowledge virtual machine (e.g., zkEVM [32]) and blockchain-based
e-voting [21].

In this paper, our objective is to generalize the concept of NIZK by enabling
the prover to share a witness in a fine-grained manner with verifiers. Specifically,
the prover is granted the ability to authorize a verifier to access additional infor-
mation of the witness. This means that, in addition to verifying the truth of the
statement, the verifier can also gain insights into certain functions of the witness
using a secret key provided by the prover. To address these requirements, we
propose a new type of NIZKs called non-interactive zero-knowledge functional
proofs (fNIZKs).
Our Contributions. We initiate the study of fNIZK. The specific contributions
are outlined as follows:

1. We present a formal definition and security notions of non-interactive zero-
knowledge functional proof (fNIZK).

2. We provide a generic construction of fNIZK for any NP relation R, which
enables the prover to share any function of the witness with a verifier.

3. For a widely-used relation about set membership proof (implying range
proof), we construct a concrete and efficient fNIZK, called set membership
functional proof (fSMP).

Primitive of fNIZK. A fNIZK scheme consists of seven algorithms: Setup, Prove,
Verify, UKGen, FKGen, CheckKey and Extract. Roughly, (Setup,Prove,Verify) are
similar to those of NIZK, except that Prove and Verify also input the prover’s
public key, which is generated by UKGen. The prover invokes FKGen to generate a
secret key for some function (secret functional key) and distribute it to a verifier.
With this key, the verifier can call Extract to extract the function of the witness
from an accepting proof. The validity of the secret functional key can be checked
via CheckKey.

If there is no restrictions on the extracting capability of keys, then a verifier
with a secret functional key can learn a function of the witnesses in all accepting
proofs generated by the prover. To address the above issue, we introduce labels
in some of the above algorithms.

Concretely, in fNIZK, the FKGen algorithm, whose input includes a label τf,
the secret key sk of the prover, and a function f , generates a secret functional
key skf,τf . Similarly, the Prove algorithm, whose input includes a label τp, the
public key pk, and a statement-witness pair (x,w), to generate a proof π. The
extraction algorithm Extract can output f(w) from π, only if P(τp, τf) = 1 for
some predicate P.

The security properties of fNIZK contains completeness, functional knowl-
edge, adaptive soundness and zero knowledge. Soundness is similar to that of
NIZK. Other properties are listed below.

1. Completeness of fNIZK has three requirements. Firstly, any proof π generated
by Prove should be verified successfully by Verify. Secondly, any normally
generated secret functional key skf,τf for (f, τf) should pass the verification
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of CheckKey. Thirdly, for normally generated proof π (associated with τp) and
normally generated secret functional key skf,τf (for (f, τf)), if P(τp, τf) = 1,
Extract should extract f(w) from π.

2. The functional knowledge property requires that, in general, if the verifier
accepts a proof π associated with a label τp (here π does not have to be
normally generated), then he/she can be convinced that a function of some
witness can be extracted from the proof (with the help of the secret functional
key associated with label τf satisfying P(τp, τf) = 1).

3. The zero knowledge requires that except for the fact of the truth of the
statement and the functions (authorized by the prover) of witness, the verifier
cannot obtain any other information about the witness from an accepting
proof.

Generic Construction of fNIZK. Based on NIZKs and functional encryption
(FE) [2,25], we provide a generic construction of fNIZK for any NP relation
R, which enables the prover to share any function (from a function family F) of
the witness with a verifier.

When generating a proof for a valid statement-witness pair (x,w), Prove
firstly encrypts the witness using the underlying FE scheme, then utilizes the
NIZK to prove that “(x,w) ∈ R and the well-formedness of the ciphertext”, and
finally outputs a proof including the ciphertext and the NIZK proof. Extract can
be implemented by calling the decryption of FE. We require that the underlying
FE supports function family ̂F, where a function ̂f belongs to ̂F, if and only if
there exists (f ∈ F, τf) satisfying

̂f(w, τp) =
{

f(w) if P(τp, τf) = 1
⊥ if P(τp, τf) = 0

The secret functional key generated by FKGen also contains a NIZK proof,
which enables the verifier to check the validity of the secret functional key, via
CheckKey.

The security properties of this fNIZK construction are derived from the prop-
erties of the FE scheme and the NIZK schemes.
Concrete and Efficient Construction of fSMP. Set membership proof (SMP) [5]
enables a prover to convince a verifier that a digitally committed value belongs
to a specified public set. A special case of SMP is range proof [4,5,13], where
the public set is an integer range. SMPs are widely utilized as building blocks in
various cryptographic schemes such as anonymous credentials [7,30], Zcash [28],
and e-cash [6].

Due to the extensive application value of SMPs, we provide a concrete and
efficient fNIZK for relation about set membership proof, called set membership
functional proof (fSMP).

In our fSMP, Prove outputs a proof associated with label τp to demonstrate
that the committed value w ∈ Φ where Φ is a public set, and a verifier with a
secret functional key for (ΦS , τf) can additionally check whether w ∈ ΦS or not
(where ΦS ⊂ Φ) from the proof, when P(τp, τf) = 1.
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To construct a fSMP, we propose a new primitive, called set membership
encryption (SME), which is a variant of public-key encryption, including Setup,
KGen, Enc and Query. Roughly, Enc takes a set Φ, a message w ∈ Φ and a label
τp as input to generate a ciphertext c. The query algorithm Query takes as input
c and a secret functional key for (ΦS ⊂ Φ, τf) generated by KGen, and outputs a
bit. We require that when P(τp, τf) = 1, Query outputs 1 if and only if w ∈ ΦS .
We say that a SME supports Sigma protocols, if there exists a Sigma protocol
to prove the well-formedness of a SME ciphertext. Then we show a generic
framework of constructing fSMP from a SME and a commitment scheme that
both support Sigma protocols1.

With the help of a new building block called dual inner-product encryption
(dual IPE), we present a generic construction of SME. Dual IPE is a special
two-level hierarchical IPE (2-HIPE) [20,23,24] without delegation capability. In
terms of attribute-hiding, our dual IPE requires the first-level vector to be fully
attribute-hiding, without requiring the second-level vector to be hidden.

We provide an efficient instantiation of dual IPE, utilizing the techniques in
IPE [10,12,31], based on the k-LIN assumption.

When plugging the dual IPE instantiation (k = 1) into the generic con-
struction of SME from dual IPE, we can obtain a concrete and efficient SME
supporting Sigma protocols. Further, incorporating Pedersen commitment [26],
we achieve a concrete and efficient fSMP.

Finally, we improve the size of the proof of fSMP. Note that fSMP con-
tains a NIZK proof, which derives from the Sigma protocols about the SME
and Pedersen commitment. We utilize the self-stacking technique [17] to achieve
logarithmic size of the NIZK proof, i.e., O((log l1) · poly(λ)) = O(log l1), where
l1 = |Φ| and λ is the security parameter.

Applications of fNIZK. In the following, we present examples that illustrate
the promising applications of fNIZK.

A scenario where fNIZK can work effectively is in supervision2, such as anti-
money laundering. Typically, individuals generate zero knowledge proofs for their
regular activities, such as transferring privacy-preserving cryptocurrencies. In
certain cases, the authority may authorize a specific department or institution
for supervision purposes. For instance, the authority is able to issue a secret
functional key that is only applicable to proofs generated during specific periods
(facilitated by labels). Consequently, the department or institution can obtain
the specified information from the proofs using the authorized key. This enables
them to determine whether a user has violated the rules within certain periods,
while ensuring that other information about the witnesses in the proofs remains
undisclosed.

1 A commitment scheme supports Sigma protocols, if there exists a Sigma protocol to
prove the well-formedness of a commitment.

2 In this scenario, the authority generates a public key and a secret key, and all users
utilize the public key to generate or verify proofs. The secret functional keys are
generated by the authority, using the secret key.
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In blockchain-based auction systems, before participation in auctions, users
lock a certain amount of coins by transferring them to the auction platform,
accompanied by a NIZK proof that verifies the validity of the coins in a zero-
knowledge manner. However, when users intend to participate in specific auc-
tions, the auction platform needs to verify if the amount of coins meets the
minimum deposit requirement. Without the use of fNIZK, in order to maintain
the privacy of the exact amount of coins, users would need to generate NIZK
proofs for auctions with different minimum deposit requirements. By employing
fNIZK, users only need to generate the proof once when transferring coins to
the platform. Subsequently, they can generate secret keys associated with range
functions (e.g., greater than the minimum deposit requirement) for the auction
organizer, each time they wish to join particular auctions. The auction organizer
can extract the function about the amount to verify if the user meets the require-
ments for participation, while keeping other information about the amount of
coins private.

Another application example is anonymous attribute-based credential [7].
Users who obtain credentials for specific attribute sets are required to show
different proofs to different verifiers (e.g., service providers) in order to demon-
strate possession of a valid credential that satisfies the access policies set by
the service providers. We point out that fNIZK offers an alternative approach
for constructing anonymous attribute-based credential systems. Firstly, taking
all the attributes and the credentials as witness, the user can utilize fNIZK to
generate a proof to demonstrate the well-formedness of a valid credential for
a specific attribute set without disclosing any attributes. Then, when the user
needs to show proofs for different service providers, he/she can simply send
different secret keys for different functions associated with the access policies
to different service providers, instead of generating multiple NIZK proofs. This
approach could reduce computational overhead.

Roadmap. The remaining sections of this paper are structured as follows:
Sect. 2 provides a review of the preliminaries. In Sect. 3, we present the for-
mal definitions of syntax and security notions pertaining to fNIZK. A generic
construction of fNIZK is presented in Sect. 4. Furthermore, we delve into the
specific case of the set membership proof and introduce the construction of set
membership functional proof (fSMP) in Sect. 5.

2 Preliminaries

Notations. Throughout this paper, let λ denote the security parameter. For any
k ∈ N, let [k] := {1, 2, · · · , k}. For a finite set S, we denote by |S| the number
of elements in S, and denote by a ← S the process of uniformly sampling a
from S. For a distribution X, we denote by a ← X the process of sampling a
from X. For any probabilistic polynomial-time (PPT) algorithm Alg, let RSAlg

be the randomness space of Alg. We write Alg(x; r) for the process of Alg on
input x with inner randomness r ∈ RSAlg, and use y ← Alg(x) to denote the
process of running Alg on input x with r ← RSAlg, and assigning y the result.
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We write negl(λ) to denote a negligible function in λ and write poly(λ) to denote
a polynomial.

For a polynomial-time relation R ⊂ X × W, where X is the statement space
and W is the witness space, we say that w is a witness for x if (x,w) ∈ R. We
denote the language associated with R as LR = {x | ∃w : (x,w) ∈ R}.

Bold lower-case letters denote vectors, e.g., a = (a1, . . . , an) is a n-dimension
vector, and usually the number of dimensions can be inferred from the context.
Let 〈a,b〉 =

∑

i∈[n] ai ·bi denotes the inner product between two vectors a and b.
Bold upper-case letters denote matrices, e.g., B ∈ Z

n1×n2
p is an n1 × n2 matrix.

We use In to denote the n × n identity matrix. For simplicity, we sometimes
write I to denote the identity matrix when n is given in the text.

IPE. We recall the definition of inner-product encryption (IPE).

Definition 1. (Inner-product encryption). An inner-product encryption
(IPE) scheme for a message space M consists of four algorithms IPE = (Setup,
KGen,Enc,Dec).

• Setup(1λ, l) → (pk,msk): On input the security parameter 1λ and the dimen-
sion l of the vector space, the setup algorithm outputs a public key pk and a
master secret key msk.

• KGen(msk,x) → skx: On input msk and a vector x, the key generation algo-
rithm outputs a secret key skx for x.

• Enc(pk,y,m) → cy: On input pk, a vector y and a message m ∈ M, the
encryption algorithm outputs a ciphertext cy for y.

• Dec(cy, skx) → m: On input a ciphertext cy for y and a secret key skx for x
as input, the decryption algorithm outputs a m.

Correctness requires that for all m ∈ M and all vectors x,y satisfying
〈x,y〉 = 0, it holds that:

Pr
[

(pk,msk) ← Setup(1λ, l)
skx ← KGen(msk,x) : Dec(Enc(pk,y,m), skx) = m

]

= 1.

We recall adaptive security and fully attribute-hiding property for IPE [24].

Definition 2. (Adaptive security and fully attribute-hiding property
for IPE). An IPE scheme IPE = (Setup,KGen,Enc,Dec) for message space
M and dimension l is adaptively secure and fully attribute-hiding, if for any
PPT adversary A, the advantage Adva-ah

IPE,A(λ) := |Pr[Expa-ahIPE,A(λ) = 1] − 1
2 | is

negligible, where Expa-ahIPE,A(λ) is defined in Fig. 1.

Due to space limitations, please refer the other preliminaries to the full ver-
sion of this paper, including the definitions of NIZK and Sigma protocols (includ-
ing the stackable Sigma protocols), the definition of functional encryption and
the definition of commitment.
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Fig. 1. Game for defining adaptive security and fully attribute-hiding property for IPE

3 Non-interactive Zero-Knowledge Functional Proof

In this section, we introduce a primitive called non-interactive zero-knowledge
functional proof (fNIZK), and formalize its security notions. Generally speaking,
fNIZK offers the functionalities of NIZK, while also enabling a verifier with a
specific secret key, provided by the prover, to extract specific information about
the witness from the accepting proof.

Definition 3. (fNIZK). Let LR be an NP language associated with an NP
relation R. Let F be a function family, and T be the label space. Let P : T × (T ∪
{∗}) → {0, 1} be a predicate function satisfying P(τ, ∗) = 1 for all τ ∈ T . A non-
interactive zero-knowledge functional proof (fNIZK proof) for LR, F, T and P
consists of a tuple of seven efficient algorithms fNIZK = (Setup,UKGen,FKGen,
CheckKey,Prove,Verify,Extract).

• Setup(1λ) → crs: On input the security parameter λ, the setup algorithm
outputs a common reference string crs.

• UKGen(crs) → (pk, sk): On input a common reference string crs, the user key
generation algorithm outputs a public key pk and a secret key sk.

• FKGen(crs, pk, sk, f, τf) → skf,τf : On input a common reference string crs, a
user key pair (pk, sk), a function f ∈ F and a label τf ∈ T ∪ {∗}, the secret
functional key generation algorithm outputs a secret functional key skf,τf . We
assume that skf,τf implicitly includes the information of f and τf.
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• CheckKey(crs, pk, f, τf, skf,τf) → b: On input a common reference string crs,
a public key pk, a function f ∈ F and a label τf ∈ T ∪ {∗} and a secret
functional key skf,τf , the checking algorithm outputs a bit b ∈ {0, 1}.

• Prove(crs, pk, τp, x, w) → π: On input a common reference string crs, a public
key pk, a label τp ∈ T , a statement x and a witness w, the proving algorithm
outputs a proof π. We assume that there exists an efficient algorithm Extτ
such that τp ← Extτ (π).

• Verify(crs, pk, x, π) → b: On input the common reference string crs, a public
key pk, a statement x and a proof π, the verification algorithm outputs a bit
b ∈ {0, 1}.

• Extract(crs, x, π, skf,τf) → y: On input a common reference string crs, a state-
ment x, a proof π and a secret functional key skf,τf (for f and τf), the extrac-
tion algorithm outputs y.

Moreover, fNIZK should satisfy the following properties:

1. Completeness. For any (x,w) ∈ R, any f ∈ F, any τp ∈ T and any τf ∈
T ∪ {∗},

Pr

[
crs ← Setup(1λ), (pk, sk) ← UKGen(crs)
π ← Prove(crs, pk, τp, x, w)

: Verify(crs, pk, x, π) = 1

]
≥ 1 − negl(λ),

Pr

[
crs ← Setup(1λ), (pk, sk) ← UKGen(crs)
skf,τf ← FKGen(crs, pk, sk, f, τf)

: CheckKey(crs, pk, f, τf, skf,τf ) = 1

]

≥ 1 − negl(λ),

Pr

⎡
⎢⎢⎣
crs ← Setup(1λ)
(pk, sk) ← UKGen(crs)
skf,τf ← FKGen(crs, pk, sk, f, τf)
π ← Prove(crs, pk, τp, x, w)

: Extract(crs, x, π, skf,τf ) = f(w)

∣∣∣∣∣P(τp, τf) = 1

⎤
⎥⎥⎦

≥ 1 − negl(λ).

2. Functional knowledge. For any PPT adversary A,

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

crs ← Setup(1λ), (pk, sk) ← UKGen(crs)
(π, x, f, τf, skf,τf ) ← A(crs, pk, sk)

s.t. (x ∈ LR) ∧ (f ∈ F) ∧ τf ∈ (T ∪ {∗})
∧ (Verify(crs, pk, x, π) = 1)
∧ (CheckKey(crs, pk, f, τf, skf,τf ) = 1)
∧ (P(Extτ (π), τf) = 1)

y ← Extract(crs, x, π, skf,τf )

:
∃ w ∈ W, s.t.
((x, w) ∈ R)
∧(y = f(w))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ 1 − negl(λ).

3. Adaptive soundness. For any computationally unbounded adversary A,

Pr
[

crs ← Setup(1λ)
(pk, x, π) ← A(crs) :

x �∈ LR
∧ Verify(crs, pk, x, π) = 1

]

≤ negl(λ).

4. Zero knowledge. For any PPT adversary A = (A1,A2,A3), there exists a
simulator Sim = (Sim1,Sim2) such that

∣

∣ Pr[ExpRealzkfNIZK,A,n(λ) = 1] − Pr[ExpIdealzkfNIZK,A,Sim,n(λ) = 1]
∣

∣ ≤ negl(λ)
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where ExpRealzkfNIZK,A,n(λ) and ExpIdealzkfNIZK,A,Sim,n(λ) are defined in Fig. 2,
and n = poly(λ).

Fig. 2. Games for defining zero knowledge property for fNIZK

Here, we offer some explanations and discussions regarding the above defini-
tion.

1. Completeness of fNIZK has three requirements. Firstly, any normally gen-
erated proof π (i.e., π is generated by algorithm Prove) can be verified suc-
cessfully via algorithm Verify with overwhelming probability. Secondly, for
normally generated secret functional key skf,τf for (f, τf), the checking algo-
rithm CheckKey(crs, pk, f, τf, skf,τf) returns 1 with overwhelming probability.
Thirdly, for normally generated proof π (associated with τp) and normally
generated secret functional key skf,τf (for (f, τf)), if P(τp, τf) = 1, Extract
will extract f(w) with overwhelming probability.

2. The functional knowledge property requires that, in general, if the verifier
accepts a proof π, then he/she can be convinced that a function of some wit-
ness can be extracted from the proof (with the help of a secret key for the
function). Note that this property requires that the secret key should pass
the verification of CheckKey, and P(τp, τf) = 1 (τp is the label associated with
the proof and τf is the label associated with the secret functional key). Com-
pared with the third requirement of completeness (which focuses on normally
generated proofs), the functional knowledge property focuses on maliciously
generated proofs which can successfully go through the verification process of
Verify.

3. The security notion of zero knowledge for fNIZK is formalized in the multi-
user setting, and requires that except for the fact (x,w) ∈ R and the functions
about w (i.e., f ′(w) for all (i∗, f ′, τ ′

f) ∈ Q when P(τp, τ ′
f) = 1), the verifier
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cannot obtain any other information about w from the proof π. Further expla-
nations regarding the details are provided below. In both ExpRealzkfNIZK,A,n(λ)
and ExpIdealzkfNIZK,A,Sim,n(λ),
(a) A is allowed to make secret key generation queries to the oracle OFKGen

adaptively. In particular, we require that for each query (i′, f ′, τ ′
f) ∈

[n] × F × (T ∪ {∗}) raised by A3 (note that in this case, W =
{i∗, τp, w, w′} �= ∅), A3 will receive ski′,f ′,τ ′

f
as a response if and only

if (i′ �= i∗) ∨ (P(τp, τ ′
f) = 0) ∨ (f ′(w) = f ′(w′)). Because if it receives

ski′,f ′,τ ′
f

for (i′ = i∗) ∧ (P(τp, τ ′
f) = 1) ∧ (f ′(w) �= f ′(w′)), it can trivially

distinguish the two games.
(b) For the challenge tuple (i∗, τp, x, w,w′) output by A2, we require that (i)

i∗ /∈ Ucor, (ii) (x,w) ∈ R, and (iii) for all (i∗, f ′, τ ′
f) ∈ Q, it holds that if

P(τp, τ ′
f) = 1, then f ′(w) = f ′(w′), where Q denotes all the tuples that

have been queried to the oracle OFKGen by A2. We stress that w′ is not
required to be a witness for statement x. The “witness” w′, specified by
A2, is used to provide the information (that the simulator Sim is allowed
to know) about w to Sim.

We note that the zero knowledge property of fNIZK implies the traditional
zero knowledge property. Actually, we have the conclusion that every fNIZK
scheme trivially offers a NIZK scheme.

Specifically, for a fNIZK scheme fNIZK = (Setup,UKGen,FKGen,CheckKey,
Prove,Verify,Extract), consider a non-interactive proof scheme Π = (Π.Setup,
Π.Prove, Π.Verify) as in Fig. 3.

Fig. 3. NIZK Π deduced by fNIZK

We have the following theorem. Due to space limitations, its proof is given
in the full version of this paper.

Theorem 1. If fNIZK is a fNIZK scheme for an NP language LR, a function
family F, a label space T and a predicate function P, then Π is a NIZK scheme
for LR.

Remark 1. In the definition of zero knowledge for fNIZK, we only consider the
single-theorem version. It can be further strengthened to the multi-theorem ver-
sion, which allows the adversary to generate multiple challenge tuples (i∗, τp, x, w,
w′). But these tuples should also satisfy (i∗ /∈ Ucor)∧((x,w) ∈ R)∧(∀(i∗, f ′, τ ′

f) ∈
Q satisfying P(τp, τ ′

f) = 1, f ′(w) = f ′(w′)), and meanwhile any secret func-
tional key generation query (i′, f ′, τ ′

f) raised by the adversary should satisfy
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f ′(w) = f ′(w′) or P(τp, τ ′
f) = 0 for all challenge tuples (i∗, τp, x, w,w′) (other-

wise, the adversary will receive ⊥ as a response for this query).

4 Generic Construction of fNIZK

In this section, we present a method for constructing a fNIZK proof using a func-
tional encryption (FE) scheme and NIZK schemes. The main idea is straight-
forward: given a valid pair of statement and witness (x,w) ∈ R, we encrypt the
witness using the functional encryption scheme. Verifiers can then obtain some
functions of the witness by decrypting the ciphertext with the corresponding
secret keys. In addition to proving the relation about (x,w) ∈ R, we also need
to demonstrate that the ciphertext is well-formed.

We begin by introducing the generic construction, followed by an analysis of
its security properties.
Generic Construction. Let LR be an NP language associated with an NP
relation R ⊂ X × W. Let F be a function family. Let T be the label space, and
P : T × (T ∪ {∗}) → {0, 1} be a predicate function satisfying P(τ, ∗) = 1 for all
τ ∈ T .

We define a function family ̂F as follows: a function ̂f (with domain W × T )
belongs to ̂F, if and only if there exists (f, τf) ∈ F × (T ∪ {∗}) satisfying

̂f(w, τp) =
{

f(w) if P(τp, τf) = 1
⊥ if P(τp, τf) = 0

For simplicity, for each pair (f, τf) ∈ F× (T ∪{∗}), we denote the corresponding
function in ̂F as ̂ff,τf . We require that there is an efficient algorithm, which takes
(f, τf) ∈ F × (T ∪ {∗}) as input and outputs the corresponding ̂ff,τf .

Let FE = (FE.Setup,FE.KGen,FE.Enc,FE.Dec) be a functional encryption
scheme for ̂F on message space M = W × T .

Consider the following two NP relations

Rct = {((τp, x, mpk, c), (w, renc)) : (x, w) ∈ R ∧ FE.Enc(mpk, (w, τp); renc) = c},

Rk = {((mpk, ̂ff,τf , sk ̂ff,τf
), (msk, rkg)) : FE.KGen(mpk, msk, ̂ff,τf ; rkg) = sk

̂ff,τf
},

where (x,w) is a statement-witness pair, τp (resp., τf) is a label in T (resp.,
T ∪{∗}), mpk and msk is the master key pair of FE, c is a ciphertext, and renc and
rkg are the corresponding randomness. As stated in [15], we can construct NIZKs
for any NP language. Therefore, we can construct two NIZK schemes, NIZKRct =
(NIZKRct .Setup,NIZKRct .Prove,NIZKRct .Verify) and NIZKRk = (NIZKRk .Setup,
NIZKRk .Prove,NIZKRk .Verify), for LRct and LRk , respectively.

We present the generic construction of fNIZK proof fNIZK = (Setup,UKGen,
FKGen,CheckKey,Prove,Verify,Extract) for LR, F, T and P from FE, NIZKRct

and NIZKRk , as shown in Fig. 4.
Note that for π ← Prove(crs, pk, τp, x, w) in Fig. 4, τp is directly packed into

π, so an efficient Extτ can be trivially constructed.
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Fig. 4. Construction of fNIZK from FE, NIZKRct and NIZKRk

Remark 2. We stress that the above generic scheme fNIZK is built for any NP
language LR, any function family F (as long as there is FE for ̂F), and any
predicate function P : T ×(T ∪{∗}) → {0, 1} satisfying P(τ, ∗) = 1 for all τ ∈ T .

Security Analysis. Now, we show that the above fNIZK satisfies completeness,
functional knowledge property, adaptive soundness, and zero knowledge.
Completeness. Completeness of fNIZK is trivially guaranteed by correctness of
the underlying FE and completeness of the underlying NIZKRct and NIZKRk .
Functional Knowledge. For any PPT adversary A, for crs ← Setup(1λ),
(pk, sk) ← UKGen(crs), (π, x, f, τf, skf,τf) ← A(crs, pk, sk) satisfying (x ∈
LR) ∧ (f ∈ F) ∧ (τf ∈ T ∪ {∗}) ∧ (Verify(crs, pk, x, π) = 1) ∧
(CheckKey(crs, pk, f, τf, skf,τf) = 1) ∧ (P(Extτ (π), τf) = 1), and for y ←
Extract(crs, x, π, skf,τf), we analyze the probability that there is w satisfying
((x,w) ∈ R) ∧ (y = f(w)).

First of all, note that Verify(crs, pk, x, π) = 1 implies that NIZKRct .Verify(crs,
(τp, x, pk, c),ΠRct) = 1. By the adaptive soundness of NIZKRct , with overwhelm-
ing probability, there are w ∈ W and renc ∈ RSFE.Enc such that (x,w) ∈ R and
c = FE.Enc(mpk, (w, τp); renc), where τp = Extτ (π).

Parse skf,τf = (sk
̂ff,τf

,ΠRk). Note that CheckKey(crs, pk, f, τf, skf,τf) = 1

implies that NIZKRk .Verify(crsRk , (pk, ̂ff,τf , sk ̂ff,τf
),ΠRk) = 1. By the adaptive

soundness of NIZKRk , with overwhelming probability, sk
̂ff,τf

can be explained

as generated for ̂ff,τf with FE.KGen. Since P(τp = Extτ (π), τf) = 1, we
have ̂ff,τf(w, τp) = f(w). Recall that the algorithm Extract returns y ←
FE.Dec(c, sk

̂ff,τf
), so y = ̂ff,τf(w, τp) = f(w).

Hence, the above fNIZK satisfies the functional knowledge property.
Adaptive Soundness. For any computationally unbounded adversary A, let μ(λ)
denote the probability that A outputs pk, x �∈ LR and π∗ = (τp,Π∗

Rct
, c) such

that π∗ is an accepting proof, i.e.,
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μ(λ) = Pr

⎡

⎣

crs ← Setup(1λ)
(pk, x, π∗) ← A(crs)

where π∗ = (τp,Π∗
Rct

, c)
: x �∈ LR

∧ Verify(crs, pk, x, π∗) = 1

⎤

⎦ .

Now, we construct an adversary A′, attacking the adaptive soundness of the
underlying NIZK NIZKRct , from A as follows.

Upon receiving the common reference string crsRct , A′ firstly generates
crsRk ← NIZKRk .Setup(1

λ), and then sends crs = (crsRct , crsRk) to A.
Receiving (pk, x, π∗ = (τp,Π∗

Rct
, c)) from A, A′ returns a pair

((τp, x, pk, c),Π∗
Rct

) as its final output.
That is the construction of A′. Next, we analyze its success probability. We

have the following equations.

Pr

⎡
⎣ crsRct ← NIZKRct .Setup(1

λ)
(x∗, Π∗

Rct
) ← A′(crsRct )

where x∗ = (τp, x, pk, c)

: x∗ 	∈ LRct

∧ NIZKRct .Verify(crsRct , x
∗, Π∗

Rct
) = 1

⎤
⎦

= Pr

⎡
⎣ crsRct ← NIZKRct .Setup(1

λ)
(pk, x, π∗) ← A′(crsRct )

where π∗ = (τp, Π∗
Rct

, c)
: (τp, x, pk, c) 	∈ LRct

∧ NIZKRct .Verify(crsRct , (τp, x, pk, c), Π∗
Rct

) = 1

⎤
⎦

≥ Pr

⎡
⎣ crsRct ← NIZKRct .Setup(1

λ)
(pk, x, π∗) ← A′(crsRct )

where π∗ = (τp, Π∗
Rct

, c)
: x 	∈ LR

∧ NIZKRct .Verify(crsRct , (τp, x, pk, c), Π∗
Rct

) = 1

⎤
⎦

= Pr

⎡
⎢⎢⎣
crsRct ← NIZKRct .Setup(1

λ)
crsRk ← NIZKRk .Setup(1λ)
(pk, x, π∗) ← A(crsRct , crsRk )

where π∗ = (τp, Π∗
Rct

, c)

: x 	∈ LR
∧ NIZKRct .Verify(crsRct , (τp, x, pk, c), Π∗

Rct
) = 1

⎤
⎥⎥⎦

= Pr

⎡
⎣ crs ← Setup(1λ)
(pk, x, π∗) ← A(crs)

where π∗ = (τp, Π∗
Rct

, c)
: x 	∈ LR

∧ Verify(crs, pk, x, π∗) = 1

⎤
⎦

= μ(λ).

The adaptive soundness of NIZKRct guarantees that A′’s success probability
is negligible, so we derive that μ(λ) ≤ negl(λ), concluding the proof of adaptive
soundness.

Remark 3. In fact, for any NP language, we can always construct a NIZK in the
hidden-bits model [15], which also satisfies adaptive soundness. Therefore, we
can always construct NIZKRct satisfying adaptive soundness.

Zero Knowledge. For zero knowledge of fNIZK, we have the following theorem.
Due to space limitations, the proof of this theorem is given in the full version of
this paper.

Theorem 2. If FE is IND secure, NIZKRct is single-theorem zero knowledge,
and NIZKRk is multi-theorem zero knowledge, then fNIZK is zero knowledge.
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5 Set Membership Functional Proof

Set membership proofs (SMPs) [5] are widely utilized as building blocks in vari-
ous cryptographic schemes such as anonymous credentials [7,30], Zcash [28], and
e-cash [6]. Following the definition of [5], the relation about set membership is

Rsm = {((com, Φ), (w, rcom)) : com = Com(pp,w; rcom) ∧ w ∈ Φ},

where pp is the public parameter of the commitment scheme in the relation, com
is the commitment to the message w, rcom denotes the internal randomness,
and Φ represents a set. Essentially, given a commitment com, the prover must
demonstrate knowledge of the message w corresponding to that commitment, as
well as prove that w is an element of the set Φ.

Due to the extensive application value of SMPs, in this section, we provide
a concrete and efficient fNIZK for relation about set membership proof. We
consider a specific function family as follows: given a public set Φ, each function
f within this family corresponds to a subset ΦSf

of Φ, and f(w) indicates whether
w belongs to ΦSf

or not. We call fNIZK for Rsm and the above function family,
set membership functional proof (fSMP).

In fSMP, Prove outputs a proof associated with label τp to demonstrate that
the committed value w ∈ Φ, and a verifier with a secret functional key for
(ΦSf

, τf) can additionally check whether w ∈ ΦSf
or not from the proof, when

P(τp, τf) = 1.
To construct a fSMP, we introduce a new primitive, called set membership

encryption (SME), and show a generic framework of constructing fSMP from a
SME and a commitment scheme that both support Sigma protocols in Sect. 5.1.
Subsequently, we propose another primitive called dual inner-produce encryption
(dual IPE) and illustrate the construction of SME from dual IPE in Sect. 5.2.
In Sect. 5.3, we provide an efficient instantiation of dual IPE, utilizing the tech-
niques in IPE [10,12,31], based on the k-LIN assumption. We plug the dual
IPE instantiation (k = 1) into the generic construction of SME from dual IPE,
obtaining a concrete and efficient SME supporting Sigma protocols, in Sect. 5.4.
Lastly, we improve the efficiency of fSMP obtained from the concrete SME
and Pedersen commitment [26], by utilizing the self-stacking technique [17], in
Sect. 5.5.

5.1 fSMP from SME

Here, we firstly introduce set membership encryption (SME) and its security
notion, and then show a generic construction of set membership functional proof
(fSMP) from SME.

Set Membership Encryption. Let W be the message space. We use SW,l to
denote the set of all the sets of size l = poly(λ) in W, i.e., SW,l := {Φ ⊂ W | |Φ| =
l}. For a set Φ ∈ SW,l, without loss of generality, we write that Φ = {w1, · · · , wl}.
For a set S ⊂ [l], let ΦS := {wj | j ∈ S}.

For each set S ⊂ [l], we define a set membership function funcΦS
: ΦS → {0, 1}

as follows: funcΦS
(w) = 1 if and only if w ∈ ΦS .
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Definition 4. (Set membership encryption). Let T be a label space. Let
P : T × (T ∪ {∗}) → {0, 1} be a predicate function satisfying P(τ, ∗) = 1 for
all τ ∈ T . A set membership encryption (SME) scheme SME (with set of size
l = poly(λ)) for message set W, label space T and predicate P contains five
algorithms SME = (Setup,KGen,CheckKey,Enc,Query).

• Setup(1λ) → (pk, sk): On input the security parameter 1λ, the setup algorithm
outputs a public key pk and a secret key sk.

• KGen(pk, sk, S, τf) → skS,τf : On input a key pair (pk, sk), a set S ⊂ [l] and a
label τf ∈ T ∪ {∗}, the key generation algorithm outputs a key skS,τf .

• CheckKey(pk, S, τf, skS,τf) → b: On input a public key pk, a set S ⊂ [l] and a
label τf ∈ T ∪ {∗} and a secret key skS,τf , the checking algorithm outputs a
bit b ∈ {0, 1}.

• Enc(pk, Φ, τp, w) → c: On input a public key pk, a set Φ ⊂ W satisfying
|Φ| = l, a label τp ∈ T , and a message w ∈ Φ, the encryption algorithm
outputs a ciphertext c. We assume that there exists an efficient algorithm
Extτ such that τp ← Extτ (c).

• Query(c, skS,τf) → y: On input a ciphertext c and a secret key skS,τf , the
query algorithm outputs a bit y ∈ {0, 1}.

Correctness requires that for any Φ ⊂ W satisfying |Φ| = l, any w ∈ Φ, any
S ⊂ [l], any τp ∈ T and any τf ∈ T ∪ {∗} satisfying P(τp, τf) = 1,

Pr

⎡

⎣

(pk, msk) ← Setup(1λ)
skS,τf ← KGen(pk, sk, S, τf)
c ← Enc(pk, Φ, τp, w), y ← Query(c, skS,τf)

: y = 1

⎤

⎦ =

{

1 if w ∈ ΦS

negl(λ) otherwise

Pr

[

(pk, sk) ← Setup(1λ)
skS,τf ← KGen(pk, sk, S, τf)

: CheckKey(pk, S, τf, skS,τf) = 1

]

≥ 1 − negl(λ).

We say that a SME scheme SME supports Sigma protocols, if there exists an
efficient Sigma protocol for the following relation:

Rc = {((τp, c, pk, Φ), (w, renc)) : c = Enc(pk, Φ, τp, w; renc)}.

We now define IND security for SME.

Definition 5. (IND security for SME). A SME scheme SME =
(Setup,KGen, CheckKey,Enc,Query) (of size l = poly(λ)) for message set W,
label space T and predicate P is IND secure, if for any PPT adversary A,
the advantage Advind

SME,A(λ) := |Pr[ExpindSME,A(λ) = 1] − 1
2 | is negligible, where

ExpindSME,A(λ) is defined in Fig. 5.

fSMP from SME. Now, we construct a fSMP scheme for the following rela-
tion:

Rsm := {((com, Φ), (w, rcom)) : com = Com(pp,w; rcom) ∧ w ∈ Φ}. (1)
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Fig. 5. Game for defining IND security for SME

We require that the commitment scheme in Eq. (1) also supports Sigma pro-
tocols. In other words, there exists an efficient Sigma protocol to prove com =
Com(pp,w; rcom) with statement com and witness (w, rcom). One example that
satisfies our requirements is Pedersen commitment [26], which we can prove by
Okamoto’s Sigma protocol [22].

Let T be the label space. Let P : T × (T ∪ {∗}) → {0, 1} be a predicate
function satisfying P(τ, ∗) = 1 for all τ ∈ T . Let SME = (SME.Setup,SME.KGen,
SME.CheckKey,SME.Enc,SME.Query) be a SME scheme (with set of size l) for
message set W, label space T and predicate P supporting Sigma protocols. Let
Commit = (Commit.Setup,Commit.Com,Commit.Dec) be a commitment scheme
supporting Sigma protocols.

Since both SME and Commit support Sigma protocols, a Sigma protocol for
relation

˜Rsm = {((τp, com, c, pk, Φ),(w, rcom, renc)) : com = Commit.Com(pp,w; rcom)
∧ c = SME.Enc(pk, Φ, τp, w; renc)}

can be constructed by the composition of Sigma protocols [3]. So a NIZK scheme
NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) (with adaptive soundness) can
be obtained by applying the Fiat-Shamir transform [16] to the composite Sigma
protocol.

We define the function family F as follows3. Each function f ∈ F indicates
a set Sf ⊂ [l], such that for any x = (com, Φ = {w1, · · · , wl}) and any wx =
(w, rcom),

f(w) =

⎧

⎨

⎩

1 if w ∈ ΦSf

0 if w ∈ Φ \ ΦSf

⊥ otherwise

We require that there is an efficient algorithm, which takes a f ∈ F as input and
outputs the corresponding Sf ⊂ [l]. Note that for all (x,wx = (w, rcom)) ∈ Rsm,
we have f(w) = funcΦSf

(w) ∈ {0, 1}.

3 For each x ∈ LRsm , its witness is in the form of (w, rcom). In fSMP, we are only
interested in functions of w (rather than rcom). So we define F as family of functions
whose domain is W (rather than W × RSCommit.Com).
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We present a fSMP scheme fSMP = (Setup,UKGen,FKGen,CheckKey,Prove,
Verify,Extract) for LRsm , F, T and P as shown in Fig. 6.

Note that for π ← Prove(crs, pk, τp, x, w) in Fig. 6, τp is directly packed into
π, so an efficient Extτ can be trivially constructed.

Fig. 6. Construction of fSMP from SME

Security Analysis. Now, we show that the fSMP satisfies completeness, func-
tional knowledge property, adaptive soundness, and zero knowledge.
Completeness. The completeness of fSMP is trivially guaranteed by the com-
pleteness of the underlying NIZK and the correctness of the underlying SME.
Functional knowledge. For any x ∈ LRsm and any f ∈ F, let Wx := {w |
∃ rcom s.t. (x, (w, rcom)) ∈ Rsm} and Rgef(Wx) := {f(w) | w ∈ Wx}.

For any PPT adversary A, for crs ← Setup(1λ), (pk, sk) ← UKGen(crs), and
(π, x, f, τf, skf,τf) ← A(crs, pk, sk) satisfying (x ∈ LRsm) ∧ (f ∈ F) ∧ (τf ∈
T ∪ {∗}) ∧ (Verify(crs, pk, x, π) = 1) ∧ (CheckKey(crs, pk, f, τf, skf,τf) = 1) ∧
(P(τp, τf) = 1) where τp ← Extτ (π), we analyze the probability Pr[Extract(crs, x,
π, skf,τf) /∈ Rgef(Wx)] as follows.

First of all, the fact x ∈ LRsm implies that parsing x = (com, Φ), there must
be some wx = (w, rcom) satisfying com = Commit.Com(pp,w; rcom) and w ∈ Φ.
In other words, Wx �= ∅.

Recall that f ∈ F indicates a set Sf ⊂ [l], such that f(w) = 1 if w ∈ ΦSf
,

and f(w) = 0 if w ∈ Φ \ ΦSf
.

Parse crs = (crsnizk, pp) and π = (τp, π ˜Rsm
, c). Let evt1 denote the event that

c = SME.Enc(pk, Φ, τp, w; renc) for some w ∈ Wx and some renc, and evt2 denote
the event that c �= SME.Enc(pk, Φ, τp, w; renc) for all w ∈ Wx and all renc. So

Pr[Extract(crs, x, π, skf,τf) /∈ Rgef(Wx)]
= Pr[(Extract(crs, x, π, skf,τf) /∈ Rgef(Wx)) ∧ evt1]
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+ Pr[(Extract(crs, x, π, skf,τf) /∈ Rgef(Wx)) ∧ evt2]
≤ Pr[Extract(crs, x, π, skf,τf) /∈ Rgef(Wx) | evt1] + Pr[evt2].

We note that Extract(crs, x, π, skf,τf) = SME.Query(c, skf,τf). So if evt1 occurs
(i.e., c = SME.Enc(pk, Φ, τp, w; renc) for some w ∈ Wx and some renc), the cor-
rectness of SME guarantees that Extract(crs, x, π, skf,τf) = f(w) with overwhelm-
ing probability. So Pr[Extract(crs, x, π, skf,τf) �= f(w) | evt1] is negligible.

If evt2 occurs (i.e., c �= SME.Enc(pk, Φ, τp, w; renc) for all w ∈ Wx and all
renc), then (τp, com, c, pk, Φ) /∈ L

˜Rsm
, where L

˜Rsm
is denoted as the the NP

language for the relation ˜Rsm. Note that Verify(crs, x, π) = 1 implies that
NIZK.Verify(crsnizk, (τp, com, c, pk, Φ), π

˜Rsm
) = 1. The adaptive soundness of

NIZK for ˜Rsm guarantees that

Pr[((τp, com, c, pk, Φ) /∈ L
˜Rsm

) ∧ (NIZK.Verify(crsnizk, (τp, com, c, pk, Φ), π
˜Rsm

) = 1)]

is negligible. So Pr[evt2] is also negligible.
Thus, Pr[Extract(crs, x, π, skf,τf) /∈ Rgef(Wx)] is negligible, concluding the

proof of functional knowledge.
Adaptive Soundness. The adaptive soundness of fSMP is guaranteed by the adap-
tive soundness of the underlying NIZK.

More specifically, assume that there is a computationally unbounded adver-
sary A, which takes crs as input and outputs (pk, x, π) satisfying x /∈ LRsm and
Verify(crs, pk, x, π) = 1. Parse x = (com, Φ) and π = (τp, π ˜Rsm

, c).
Note that Verify(crs, pk, x, π) = 1 guarantees that NIZK.Verify(crsnizk, (τp,

com, c, pk, Φ), π
˜Rsm

) = 1.
On the other hand, x /∈ LRsm implies that there is no w ∈ Φ satisfying

com = Com(pp,w; ·). As a result, for all w ∈ Φ, (τp, com,SME.Enc(pk, Φ, τp, w),
pk, Φ) /∈ L

˜Rsm
. In other words, for the (τp, com, pk, Φ) contained in (x, π), and for

all ciphertext c′, we have (τp, com, c′, pk, Φ) /∈ L
˜Rsm

. Hence, for the c contained in
π, we derive that (τp, com, c, pk, Φ) /∈ L

˜Rsm
. According to the adaptive soundness

of NIZK, this occurs with only negligible probability.
Hence, fSMP is adaptively sound.

Zero knowledge. For zero knowledge of fSMP, we have the following theorem.
Due to space limitations, the proof of this theorem is given in the full version of
this paper.

Theorem 3. If the underlying SME is IND secure and supports Sigma protocols,
then fSMP is zero knowledge.

5.2 SME from Dual IPE

In this part, we introduce a primitive called dual inner-product encryption (dual
IPE) and leverage it to build a SME scheme.
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Dual IPE. For vectors (x1,x2), (y1,y2) ∈ (Zp)l1 × (Zp)l2 , we define a function
DuIP : (Zp)l1 × (Zp)l2 × (Zp)l1 × (Zp)l2 → {0, 1} as follows:

DuIP((x1,x2), (y1,y2)) =
{

0 if 〈x1,y1〉 = 〈x2,y2〉 = 0
1 otherwise

Definition 6. (Dual IPE). A dual inner-product encryption (dual IPE)
scheme DIPE for a message space M and vector space (Zp)l1 × (Zp)l2 consists
of five algorithms DIPE = (Setup,KGen,CheckKey, Enc,Dec).

• Setup(1λ, (l1, l2)) → (pk,msk): On input the security parameter 1λ and the
dimension (l1, l2), the setup algorithm outputs a public key pk and a master
secret key msk.

• KGen(msk,x = (x1,x2)) → skx: On input a master secret key msk and two
vectors (x1,x2) ∈ (Zp)l1 × (Zp)l2 , the key generation algorithm outputs a
secret key skx for these vectors.

• CheckKey(pk,x = (x1,x2), skx) → b: On input a public key pk, two vectors
(x1,x2) and a secret key skx, the checking algorithm outputs a bit b.

• Enc(pk,y = (y1,y2),m) → cy: On input pk, vectors (y1,y2) ∈ (Zp)l1 ×(Zp)l2

and a message m ∈ M, the encryption algorithm outputs a ciphertext cy for
(y1,y2).

• Dec(cy, skx) → m: On input a ciphertext cy and a secret key skx as input,
the decryption algorithm outputs a message m.

Correctness requires that for all m ∈ M and all vectors (x1,x2) and (y1,y2)
satisfying DuIP((x1,x2), (y1,y2)) = 0, it holds that:

Pr

[

(pk, msk) ← Setup(1λ, (l1, l2))
skx ← KGen(msk, (x1,x2))

: Dec(Enc(pk, (y1,y2), m), skx) = m

]

= 1,

Pr

[

(pk, msk) ← Setup(1λ, (l1, l2))
skx ← KGen(msk, (x1,x2))

: CheckKey(pk, (x1,x2), skx) = 1

]

≥ 1 − negl(λ).

We now define adaptive security for dual IPE.

Definition 7. (Adaptive security). A dual IPE scheme DIPE =
(Setup,KGen,CheckKey,Enc,Dec) for message space M and vector space (Zp)l1×
(Zp)l2 is adaptively secure, if for any PPT adversary A, the advantage
Advas

DIPE,A(λ) := |Pr[ExpasDIPE,A(λ) = 1] − 1
2 | is negligible, where ExpasDIPE,A(λ)

is defined in Fig. 7.

The adaptive security implies payload-hiding and partial attribute-hiding.
More exactly, our dual IPE requires the first-level vector (i.e., y(β)

1 ) to be fully
attribute-hiding, without requiring the second-level vector (i.e., y2) to be hidden.
A concrete adaptively secure dual IPE scheme will be presented in Sec. 5.3.
Encoding Algorithms. Before we show how to construct SME from dual IPE,
we firstly present two encoding algorithms, as shown in the following:
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Fig. 7. Game for defining adaptive security for dual IPE

1. EncodeW(Φ,w): Taking Φ = {w1, . . . , wl} and w ∈ W as input, it outputs a
vector I in {0, 1}l as follows:

∀j ∈ [l] : Ij =
{

1 if w = wj

0 otherwise

For example, supposing w = wj′ for some j′ ∈ [l], I can be represented as
follows:

I = 0 · · · 0 1 0 · · · 0
1 j′ l

It is clear that I depends on w. Thus, we also write I(w) for simplicity to
denote the vector output by EncodeW(Φ,w).

2. EncodeS(l, S): Taking a value l and a set S ⊂ [l] as input, it outputs a vector
I∗ in {0, 1}l as follows:

∀j ∈ [l] : I∗
j =

{

0 if j ∈ S
1 otherwise

For example, supposing S = {3, 5, l} ⊂ [l], I∗ can be represented as follows:

I∗ = 1 1 0 1 0 1 · · · 1 0
1 3 5 l
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It is clear that given l, I∗ depends on S. Thus, we also write I∗(S) for sim-
plicity to denote the vector output by EncodeS(l, S) when l is given in the
text.

SME from Dual IPE. Let I = {0, 1}l1 denote a vector space with alpha-
bet {0, 1} and length l1. Let T = (Zp)l2 denote the label space with alphabet
{0, . . . , p − 1} and length l2. Let Pip : T × (T ∪ {∗}) → {0, 1} be a predicate
function satisfying that for any τ ∈ T and τ ′ ∈ T ∪ {∗},

Pip(τ, τ ′) =
{

1 if (τ ′ = ∗) ∨ ((τ ′ �= ∗) ∧ (〈τ, τ ′〉 = 0))
0 otherwise

From the perspective of inner product, the symbol ∗ can be regarded as
vector 0l2 . In this case, Pip can be rephrased as

Pip(τ, τ ′) =
{

1 if 〈τ, τ ′〉 = 0
0 otherwise

Let DIPE = (DIPE.Setup,DIPE.KGen,DIPE.CheckKey,DIPE.Enc,DIPE.Dec)
be an adaptively secure dual IPE scheme for vector space I × T and message
space MDIPE, as presented in Sect. 5.3. Let mdum be an arbitrary public default
message in MDIPE.

Our SME scheme SME = (Setup,KGen,CheckKey,Enc,Query) (with set of
size l1) for message set W, label space T and predicate Pip is described in Fig. 8.

Fig. 8. Construction of SME from DIPE (mdum is an arbitrary public default message
in MDIPE)

Security Analysis. Here, we show that the above SME constructed from dual
IPE DIPE, is correct and IND secure.
Correctness. For any Φ ⊂ W satisfying |Φ| = l, any w ∈ Φ and any S ⊂ [l],
any τf ∈ T ∪ {∗} and any τp ∈ T satisfying Pip(τp, τf) = 1 (i.e., 〈τp, τf〉 = 0),
for (pk, sk) ← Setup(1λ), skS,τf ← KGen(pk, sk, S, τf), c ← Enc(pk, Φ, τp, w) and
y ← Query(c, skS,τf), it holds that
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– If w ∈ ΦS , then 〈I∗(S), I(w)〉 = 0. So DIPE.Dec(c, skS,τf) = mdum, which
suggests that y = 1.

– If w �∈ ΦS , then 〈I∗(S), I(w)〉 �= 0. The adaptive security of DIPE guarantee
that DIPE.Dec(c, skS,τf) �= mdum with overwhelming probability. Hence, the
probability that y = 1 is negligible.

For (pk, sk) ← Setup(1λ) and skS,τf ← KGen(pk, sk, S, τf), we have
that CheckKey(pk, S, τf, skS,τf) = DIPE.CheckKey(pk, (I∗(S), τf), skS,τf), since
CheckKey invokes DIPE.CheckKey to check the keys. By the correctness
of DIPE, we know that DIPE.CheckKey(pk, (I∗(S), τf), skS,τf) = 1, when
skS,τf ← DIPE.KGen(pk, (I∗(S), τf)). Note that the key generation KGen
calls DIPE.KGen(pk, (I∗(S), τf)) to generate skS,τf . Thus, CheckKey(pk, S,
τf, skS,τf) = DIPE.CheckKey(pk, (I∗(S), τf), skS,τf) = 1.

In all, the SME above is correct.
IND Security. The IND security of SME is guaranteed by the adaptive security
of the underlying dual IPE DIPE. Formally, we have the following theorem. Due
to space limitations, its proof will be given in the full version of this paper.

Theorem 4. If the underlying DIPE is adaptively secure, then SME is IND
secure.

5.3 A Concrete Construction of Dual IPE

Starting from the IPE schemes proposed in [10,12,31], we provide a concrete
construction of adaptively secure dual IPE. In this subsection, we first give some
notations, assumptions and facts. Then, we provide a private-key dual IPE,
and upgrade it to public-key dual IPE employing the “private-key to public-
key” compiler in [31]. Unless otherwise specified, the term “dual IPE” refers to
public-key dual IPE.
Notations. A group generator G takes as input the security parameter λ and
outputs group description G = (p,G1,G2,GT , e), where p is a prime of Θ(λ)
bits, G1, G2 and GT are cyclic groups of order p, and e : G1 × G2 → GT is a
nondegenerate bilinear map. We require that group operations in G1, G2 and GT

as well the bilinear map e are computable in deterministic polynomial time with
respect to λ. Let g1 ∈ G1, g2 ∈ G2 and gT = e(g1, g2) ∈ GT be the respective
generators. We employ the implicit representation of group elements: for a matrix
M over Zp, we define [M]1 = gM1 ,[M]2 = gM2 ,[M]T = gMT , where exponentiations
are carried out component-wise. For [A]1 and [B]2, we let e([A]1, [B]2) = [AB]T .
For any matrix B ∈ Z

n×m
p , we define an operator � as follows: α� [B]∗ = [αB]∗,

where the star ∗ belongs to {1, 2, T} and α could be a constant in Zp, a row vector
in Z

n
p or a matrix in Z

n′×n
p . GLk(Zp) denotes the general linear group of degree

k over Zp. Let A be a � × k matrix over Zp, where � ≥ k. We use spanc(A) to
denote the column span of A. By spanr(A

�), we are indicating the row span
of A�. If A is a basis of spanc(A), we use basis(A) to denote another basis of
spanc(A) via A · R, where R ← GLk(Zp). Given an invertible matrix B, we use
B∗ to denote its dual satisfying B�B∗ = I.
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Assumptions. We review the matrix Diffie-Hellman (MDDH) assumption on
G1 [14]. The MDDHk,� assumption on G2 can be defined analogously.

Definition 8. (MDDHk,� assumption). Let � > k ≥ 1. We say that the
MDDHk,� assumption holds with respect to G if for all PPT adversaries A, the
following advantage function is negligible in λ.

AdvMDDHk,�

A (λ) := |Pr[A(G, [M]1, [Ms]1) = 1] − Pr[A(G, [M]1, [u]1) = 1]|

where G ← G(1λ), M ← Z
�×k
p , s ← Z

k
p and u ← Z

�
p.

Let �1, �2, �3 > 1 and � := �1+�2+�3. We use basis B1 ← Z
�×�1
p , B2 ← Z

�×�2
p ,

B3 ← Z
�×�3
p , and its dual basis (B∗

1,B
∗
2,B

∗
3) such that B�

i B∗
i = I (known as

non-degeneracy) and B�
i B∗

j = 0 if i �= j (known as orthogonality). We review the
SDG2

B1 �→B1,B2
assumption as follows. By symmetry, one may permute the indices

for subspaces.

Definition 9. (SDG2
B1 �→B1,B2

assumption). We say that the SDG2
B1 �→B1,B2

assumption holds if for all PPT adversaries A, the following advantage func-
tion is negligible in λ.

Adv
SD

G2
B1 �→B1,B2

A (λ) := |Pr[A(G,D, [t0]1) = 1] − Pr[A(G,D, [t1]1) = 1]|

where D := ([B1]2, [B2]2, [B3]2, basis(B∗
1,B

∗
2), basis(B

∗
3)), t0 ← spanc(B1), t1 ←

spanc(B1,B2).

It is known that k-LIN ⇒ MDDHk,� [14] and MDDH�,�1+�2 ⇒ SDG2
B1 �→B1,B2

[11].
Facts. With basis (B1,B2,B3), we can uniquely decompose w ∈ Z

1×�
p as w =

Σβ∈[3]w(β) where w(β) ∈ spanr(B
∗
β

�). Define w(β1β2) = w(β1)+w(β2) for β1, β2 ∈
[3]. We have the following two facts:

1. For β ∈ [3], it holds that wBβ = w(β)Bβ ;
2. For all β∗ ∈ [3], it holds that {w(β∗), {w(β)}β 	=β∗} ≡ {w∗, {w(β)}β 	=β∗} when

w ← Z
1×�
p and w∗ ← spanr(B

∗
β∗

�).

Construction of Private-Key Dual IPE. In a private-key dual IPE, the
Setup algorithm does not output pk; the CheckKey algorithm is not needed;
and the Enc algorithm takes msk instead of pk as input. The adaptive security
can be defined similar to Definition 7 except that the adversary A only gets the
challenge ciphertext c and has access to KGen. Next, we give a concrete construc-
tion of private-key dual IPE skDIPE = (Setup,KGen,Enc,Dec), and the details
are shown in Fig. 9.
Correctness. For all vectors (x1,x2) and (y1,y2) satisfying
DuIP((x1,x2), (y1,y2)) = 0, we have

((x1,1 · C1,1 + · · · + x1,l1 · C1,l1 + x2,1 · C2,1 + · · · + x2,l2 · C2,l2) � K1) · K−1
0
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Fig. 9. The algorithms of private-key dual IPE scheme skDIPE

=[(x1,1 · (y1,1u1 + w1,1) + · · · + x1,l1 · (y1,l1u1 + w1,l1)

+ x2,1 · (y2,1u2 + w2,1) + · · · + x2,l2 · (y2,l2u2 + w2,l2))B1r]2

· [α + (x1,1 · w1,1 + . . . + x1,l1 · w1,l1 + x2,1 · w2,1 + . . . + x2,l2 · w2,l2)B1r]
−1
2

=[〈x1,y1〉 · u1B1r + 〈x2,y2〉 · u2B1r]2

· [(x1,1 · w1,1 + . . . + x1,l1 · w1,l1 + x2,1 · w2,1 + . . . + x2,l2 · w2,l2)B1r]2

· [α]−1
2 · [(x1,1 · w1,1 + . . . + x1,l1 · w1,l1 + x2,1 · w2,1 + . . . + x2,l2 · w2,l2)B1r]

−1
2

=[α]−1
2

where the last equality follows from the fact that 〈x1,y1〉 = 0 and 〈x2,y2〉 = 0.
This proves the correctness.
Security. We have the following theorem for the private-key dual IPE scheme.
Due to space limitations, the proof is given in the full version of this paper.

Theorem 5. Under the k-LIN assumption, the private-key dual IPE scheme
described in Fig. 9 is adaptively secure.

Construction of public-key dual IPE. We give a concrete construction of
public-key dual IPE pkDIPE = (Setup,KGen,CheckKey,Enc,Dec), and the details
are shown in Fig. 10.
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Fig. 10. The algorithms of public-key dual IPE scheme pkDIPE

Correctness. For all m ∈ M and all vectors (x1,x2) and (y1,y2) satisfying
DuIP((x1,x2), (y1,y2)) = 0, it holds that:

e( (x1,1 � C1,1) · · · (x1,l1 � C1,l1 ) · (x2,1 � C2,1) · · · (x2,l2 � C2,l2 ), K1 ) · e(C0, K0)
−1

=e( [x1,1 · s�
A

�
(y1,1 · U1 + W1,1)]1 · · · [x1,l1 · s�

A
�
(y1,l1 · U1 + W1,l1 )]1

· [x2,1 · s�
A

�
(y2,1 · U2 + W2,1)]1 · · · [x2,l2 · s�

A
�
(y2,l2 · U2 + W2,l2 )]1, [B1r]2 )

· e( [s
�
A

�
]1, [k + (x1,1 · W1,1 + · · · + x1,l1 · W1,l1 + x2,1 · W2,1 + · · · + x2,l2 · W2,l2 )B1r]2 )

−1

=[〈x1, y1〉 · s�
A

�
U1B1r + 〈x2, y2〉 · s�

A
�
U2B1r]T · [s�

A
�
k]

−1
T

· [s�
A

�
(x1,1 · W1,1 + · · · + x1,l1 · W1,l1 + x2,1 · W2,1 + · · · + x2,l2 · W2,l2 )B1r]T

· [s�
A

�
(x1,1 · W1,1 + · · · + x1,l1 · W1,l1 + x2,1 · W2,1 + · · · + x2,l2 · W2,l2 )B1r]

−1
T

=[s
�
A

�
k]

−1
T

The above equation holds because of 〈x1,y1〉 = 0 and 〈x2,y2〉 = 0. Thus,
the decryption algorithm Dec outputs a correct message, m′ = [s�A�k]T · m ·
[s�A�k]−1

T = m. In addition, it also holds that

e((x1,1 
 [A
�
W1,1]1) · · · (x1,l1 
 [A

�
W1,l1 ]1)

· (x2,1 
 [A
�
W2,1]1) · · · (x2,l2 
 [A

�
W2,l2 ]1), K1) · e([A

�
]1, K0)

−1 · [A�
k]T

=e([x1,1 · A�
W1,1]1 · · · [x1,l1 · A�

W1,l1 ]1 · [x2,1 · A�
W2,1]1 · · · [x2,l2 · A�

W2,l2 ]1, [B1r]2)

· e([A
�
]1, [k + (x1,1 · W1,1 + · · · + x1,l1 · W1,l1 + x2,1 · W2,1 + · · · + x2,l2 · W2,l2 )B1r]2)

−1
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· [A�
k]T

=e([x1,1 · A�
W1,1]1 · · · [x1,l1 · A�

W1,l1 ]1 · [x2,1 · A�
W2,1]1 · · · [x2,l2 · A�

W2,l2 ]1, [B1r]2)

· e([A
�
]1, [(x1,1 · W1,1 + · · · + x1,l1 · W1,l1 + x2,1 · W2,1 + · · · + x2,l2 · W2,l2 )B1r]2)

−1

· e([A
�
]1, [k]2)

−1 · [A�
k]T

=[(x1,1 · A�
W1,1 + · · · + x1,l1 · A�

W1,l1 + x2,1 · A�
W2,1 + · · · + x2,l2 · A�

W2,l2 )B1r]T

· [(x1,1 · A�
W1,1 + · · · + x1,l1 · A�

W1,l1 + x2,1 · A�
W2,1 + · · · + x2,l2 · A�

W2,l2 )B1r]
−1
T

· [A�
k]

−1
T · [A�

k]T

=[0]T .

Thus, the checking algorithm CheckKey outputs 1.
In all, the dual IPE constructed in Fig. 10 is correct.

Security. We have the following theorem for the public-key dual IPE scheme.
Due to space limitations, the proof is given in the full version of this paper.

Theorem 6. Under the k-LIN assumption and the adaptive secuity of the
private-key dual IPE scheme described in Fig. 9, the public-key dual IPE scheme
described in Fig. 10 is adaptively secure.

5.4 A SME Supporting Sigma Protocol

In Sect. 5.2, we show how to construct a SME from a dual IPE. Thus, leveraging
the concrete dual IPE in Sect. 5.3, we can obtain a concrete SME. Note that the
dual IPE DIPE constructed in Sect. 5.3 is based on the k-LIN assumption (here
we pick k = 1, i.e., based on the SXDH assumption [12]). In the following, we
show that the concrete SME supports Sigma protocols.

We firstly show the main idea of how to transfer the relation Rc when the
underlying SME scheme is constructed from the dual IPE in Sect. 5.3. After
that, we give the details of the Sigma protocol.
Main Idea. Recall that the relation of the property of supporting Sigma pro-
tocols is as follows:

Rc = {((τp, c, pk, Φ), (w, renc)) : c = SME.Enc(pk, Φ, τp, w; renc)}.

As shown in Fig. 8, we can know that SME.Enc mainly invokes the encryption
algorithm of dual IPE (i.e., DIPE.Enc). Note that when w �∈ Φ, SME.Enc would
output ⊥. Thus, directly proving that c is the output by the encryption of DIPE
is not enough, since it is also required to guarantee w ∈ Φ.

A simple idea is to adopt the “OR” technique, such that we can prove that
there exists a w in Φ and the ciphertext c for a default message mdum is generated
with a predicate corresponding to w.

Then, what remains is to prove that the ciphertext is well-formed when given
a w ∈ Φ. As introduced in the aforementioned section, the witness w is trans-
ferred to I(w). With respect to the algorithm EncodeW, we can know that I(w)
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only contains a one and other positions are labelled by zeros. Therefore, when
adopting DIPE to construct SME, roughly Rc can be transferred as follows:

RDIPE
c ={((τp, c, pk, Φ), renc) : ∨w∈Φ( ( c = DIPE.Enc(pk, (I(w), τp),mdum; renc),

where I(w) has a one and other positions are zeros )}.

Details of the Sigma Protocol. Plugging with the concrete algorithms of
DIPE, we can transfer the relation RDIPE

c into the following relation R′.

R′
= {((τp, c, pk,mdum,Φ), s) : � |Φ| = l1

(∨i∈[l1] ( (C0 = [s
�
A

�
]1) ∧ (C = [s

�
A

�
k]T · mdum)

∧ (C1,1 = [s
�
A

�
W1,1]1) ∧ . . . � I(w)1 = 0 . . .

∧ (C1,i−1 = [s
�
A

�
W1,i−1]1) � I(w)i−1 = 0

∧ (C1,i = [s
�
A

�
(U1 + W1,i)]1) � I(w)i = 1

∧ (C1,i+1 = [s
�
A

�
W1,i+1]1) ∧ . . . � I(w)i+1 = 0 . . .

∧ (C1,l1 = [s
�
A

�
W1,l1 ]1) � I(w)l1 = 0

∧ (∧ι∈[l2](C2,ι = [s
�
A

�
((τp)ιU2 + W2,ι)]1)) ) )} � τp

Then, for each clause, we show that we can construct a Sigma protocol. We
denote the jth clause in the relation R′ as R′

j , as shown in the following.

R′
j = {((τp, c, pk,mdum, j), s) :

(C0 = [s�A�]1) ∧ (C = [s�A�k]T · mdum)

∧ (C1,1 = [s�A�W1,1]1) ∧ . . . � I(w)1 = 0 . . .

∧ (C1,j−1 = [s�A�W1,j−1]1) � I(w)j−1 = 0

∧ (C1,j = [s�A�(U1 + W1,j)]1) � I(w)j = 1

∧ (C1,j+1 = [s�A�W1,j+1]1) ∧ . . . � I(w)j+1 = 0 . . .

∧ (C1,l1 = [s�A�W1,l1 ]1) � I(w)l1 = 0

∧ (∧ι∈[l2](C2,ι = [s�A�((τp)ιU2 + W2,ι)]1)) } � τp

We present our Sigma protocol ΣR′
clause = (P,V) in Fig. 11 for the relation

R′
j , which essentially is an extension of the Chaum-Pedersen protocol [8].
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Fig. 11. Algorithms of ΣR′
clause = (P, V)

Due to space limitations, the security analysis of ΣR′
clause is placed in full

version of this paper. Recall that we set k = 1 for the underlying dual IPE
(i.e., based on the SXDH assumption), the communication overhead is listed as
follows: 1) the commitment a output by P1 contains 3(l1 + l2) + 2 elements in
G1 and 1 element in GT ; 2) the challenge c selected by V2 contains 1 element in
Zp; 3) the response z generated by P2 contains 1 element in Zp.

Therefore, the scheme SME constructed above supports Sigma protocols.

5.5 A More Efficient fSMP

Now we discuss a concrete construction for fSMP. More exactly, we adopt Peder-
sen commitment [26] (for simplicity, the commitment scheme runs over the group
Gcom with prime order p, and g and h are two generators of group Gcom where
logg h is unknown) and the SME scheme introduced in Sect. 5.2 (constructed
with a concrete dual IPE introduced in Sect. 5.3).

Firstly, we show that we can construct a Sigma protocol for the internal
relation ˜Rsm (see in the following). It implies a NIZK for ˜Rsm by applying
the Fiat-Shamir transform. The size of NIZK proof would be O(l1 · poly(λ)),
where l1 is the size of the set Φ and λ is the security parameter. After that,
we discuss how to improve the size of proof for relation ˜Rsm. Applying self-
stacking technique [17], we will show that the size of proof can be logarithmic,
i.e., O((log l1) · poly(λ)) = O(log l1).
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A Sigma Protocol for ˜Rsm. Recall that the relation ˜Rsm is as follows:

˜Rsm = {((τp, com, c, pk, Φ),(w, rcom, renc)) : com = Commit.Com(pp,w; rcom)
∧ c = SME.Enc(pk, Φ, (w, τp); renc)}.

Following the transformation discussed in Sect. 5.4, the relation ˜Rsm can be
transferred into the following relation R′′.

R′′
= {((g, h, τp, com, c, pk,mdum, Φ), (rcom, s)) :

(∨i∈[l1] ( (com = g
Φih

rcom ) � Φi is the i
th

element in Φ

∧ (C0 = [s
�
A

�
]1) ∧ (C = [s

�
A

�
k]T · mdum)

∧ (C1,1 = [s
�
A

�
W1,1]1) ∧ . . . � I(w)1 = 0 . . .

∧ (C1,i−1 = [s
�
A

�
W1,i−1]1) � I(w)i−1 = 0

∧ (C1,i = [s
�
A

�
(U1 + W1,i)]1) � I(w)i = 1

∧ (C1,i+1 = [s
�
A

�
W1,i+1]1) ∧ . . . � I(w)i+1 = 0 . . .

∧ (C1,l1 = [s
�
A

�
W1,l1 ]1) � I(w)l1 = 0

∧ (∧ι∈[l2](C2,ι = [s
�
A

�
((τp)ιU2 + W2,ι)]1)) ) )} � τp

It is clear that we can prove R′′ by the composite Sigma protocol. More
exactly, we can construct a Sigma protocol for R′′ through the following method:

1. Firstly, for each clause R′′
j (j ∈ [l1]) in R′′, we can construct a Sigma protocol

ΣR′′
clause by adopting the “AND” technique to composite Schnorr’s Sigma pro-

tocol for the discrete logarithm of the commitment (i.e., knowing the discrete
logarithm of (com/gΦi) with base h is rcom) and the Sigma protocol ΣR′

clause

for the SME.
2. Secondly, we can obtain a composite Sigma protocol for relation R′′ by adopt-

ing the “OR” technique to composite the Sigma protocols for all clause.

We present a Sigma protocol ΣR′′
clause in Fig. 12 for a clause R′′

j (see below).

R′′
j = {((g, h, τp, com, c, pk,mdum, Φj , j), (rcom, s)) :

(com = g
Φj h

rcom ) � Φj is the j
th

element in Φ

∧ (C0 = [s
�
A

�
]1) ∧ (C = [s

�
A

�
k]T · mdum)

∧ (C1,1 = [s
�
A

�
W1,1]1) ∧ . . . � I(w)1 = 0 . . .

∧ (C1,j−1 = [s
�
A

�
W1,j−1]1) � I(w)j−1 = 0

∧ (C1,j = [s
�
A

�
(U1 + W1,j)]1) � I(w)j = 1

∧ (C1,j+1 = [s
�
A

�
W1,j+1]1) ∧ . . . � I(w)j+1 = 0 . . .

∧ (C1,l1 = [s
�
A

�
W1,l1 ]1) � I(w)l1 = 0

∧ (∧ι∈[l2](C2,ι = [s
�
A

�
((τp)ιU2 + W2,ι)]1)) } � τp
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Fig. 12. Algorithms of ΣR′′
clause = (P, V)

Since the Sigma protocol ΣR′′
clause for R′′

j is obtained by compositing Schnorr’s
Sigma protocol and ΣR′

clause for relation R′
j (as shown in Sect. 5.4) using an

“AND” combination, the security of ΣR′′
clause is well guaranteed. Here we omit the

discussions on its security.
Recall that we set k = 1 for the underlying dual IPE (i.e., based on the SXDH

assumption), so the communication overhead of ΣR′′
clause would be 1 element in

Gcom, 3(l1 + l2)+2 elements in G1, 1 element in GT and 3 elements in Zp. Thus,
it can be inferred that using the conventional composition method, the total
communication overhead would be O(l1(l1 + l2)) (since there are l1 clauses). By
applying the Fiat-Shamir transform to the composited Sigma protocol4, we can
obtain a NIZK for ˜Rsm and the proof size would be 3l1 elements in Zp, where
2l1 elements are the responses (i.e., all z’s for all clauses) and l1 elements are the
challenges for all clauses.
Proofs with Shorter Size. In [17], Goel et al. present a general framework for
composing stackable Sigma protocols for disjunctions in which communication
depends on the size of the largest clause. Notably, they also demonstrate the

4 Note that the Sigma protocol ΣR′′
clause supports that the verifier can recover the com-

mitment via the responses and the challenge, so we can save the proof size by only
sending the responds to the verifier as the proof.
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stackability of several classic Sigma protocols, including Schnorr’s Sigma protocol
[29] and the Chaum-Pedersen protocol [8].

We will show that the Sigma protocol ΣR′′
clause is stackable. Then, according

to the theorem of self stacking (see in [17]), we can achieve a compiled Sigma
protocol by utilizing the self-stacking technique [17] and we can know that its
communication complexity is linearly proportional to the largest communica-
tion cost among these clauses. Note that in R′′, we can run ΣR′′

clause for every
clause, so every clause has the same communication cost. Thus, the communi-
cation complexity of the compiled Sigma protocol is linearly proportional to the
communication overhead of ΣR′′

clause.
We have the following theorem. Due to space limitations, the proof for

Theorem 7 is provided in the full version of this paper.

Theorem 7. The Sigma protocol ΣR′′
clause in Fig. 12 is a stackable Sigma protocol.

Communication Complexity. Here, we follow the analysis in [17]. Let CC(Σ) be
the communication complexity of ΣR′′

clause for the relation R′′
j and Σl1 denote

the compiled Sigma protocol for R′′. Let |Size(VCommit)| be the size of the 1-
out-of-l binding vector commitment scheme (please refer its definition to [17]),
which is independent of CC(Σ) and only depends on the security parameter λ.
We have CC(Σl1) = CC(Σ) + 2(log l1)(|Size(VCommit)|) = O(CC(Σ) + (log l1) ·
poly(λ)). Thus, when applying the Fiat-Shamir transform, the proof size would
be O((log l1) · poly(λ)) = O(log l1).
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Abstract. Zero-knowledge elementary databases (ZK-EDBs) enable a
prover to commit a database D of key-value (x, v) pairs and later pro-
vide a convincing answer to the query “send me the value D(x) associated
with x” without revealing any extra knowledge (including the size of D).
After its introduction, several works extended it to allow more expres-
sive queries, but the expressiveness achieved so far is still limited: only a
relatively simple queries–range queries over the keys and values– can be
handled by known constructions.

In this paper we introduce a new notion called zero knowledge func-
tional elementary databases (ZK-FEDBs), which allows the most gen-
eral functional queries. Roughly speaking, for any Boolean circuit f ,
ZK-FEDBs allows the ZK-EDB prover to provide convincing answers
to the queries of the form “send me all records (x, v) in D satisfying
f(x, v) = 1,” without revealing any extra knowledge (including the size
of D). We present a construction of ZK-FEDBs in the random oracle
model and generic group model, whose proof size is only linear in the
length of record and the size of query circuit, and is independent of the
size of input database D.

Our technical contribution is two-fold. Firstly, we introduce a new
variant of zero-knowledge sets (ZKS) which supports combined opera-
tions on sets, and present a concrete construction that is based on groups
with unknown order. Secondly, we develop a transformation that trans-
forms the query of Boolean circuit into a query of combined operations
on related sets, which may be of independent interest.

1 Introduction

Zero-knowledge sets (ZKS) are a valuable primitive introduced by Micali et al.
[31], which enable a prover to commit a finite set S and later prove the member-
ship or non-membership of any element without revealing any extra knowledge
(including the size of the set). An Elementary Database (EDB) D is a partial
function mapping a (sub)set of keys into values (i.e., a set of key-value pairs (x, v)
such that no two pairs have equivalent keys but different values). As described
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in [31], the concept of ZKS can be extended to the one called zero-knowledge
elementary databases (ZK-EDBs), which allows the prover to commit an EDB
D and later prove that “x belongs to the support of D and D(x) = v” or that “x
does not belong to the support of D” without revealing any knowledge beyond
that. A number of ZK-EDB constructions have since emerged such as updatable
ZK-EDBs [29], independent ZK-EDBs [22] and efficient ZK-EDBs [11,28], but,
most constructions follow the paradigm of Chase et al. [13], which relies on a
Merkle tree and mercurial commitment and is not suitable to support richer
queries.

Libert et al. [27] recently introduced zero-knowledge expressive elementary
databases (ZK-EEDBs) that support the following richer queries: a) range query
[ax, bx], to which prover responds with all records (x, v) ∈ D whose key x lies
within [ax, bx]; b) range query [av, bv], to which prover responds with all records
(x, v) ∈ D whose value v is within the range [av, bv], and c) natural combination
of range query [ax, bx] × [av, bv]. These techniques can be further exploited to
support several other interesting queries such as k-nearest neighbours and k-
minimum/maximum.

Despite the advancements made thus far, the expressivity of the known ZK-
EDBs constructions is still very limited. For example, known constructions can-
not even handle the simple query “send me all records (x, v) ∈ D where the last
bit of value v is zero", let alone the general Boolean circuit f query that requests
to return all records (x, v) ∈ D satisfying f(x, v) = 1.

Besides the theoretical value in ZK-EDB, enabling general function queries
will have many practical applications. For instance, append-only ZK-EDBs are
recently used to construct Key Transparency (KT) systems [12,15], which main-
tain an auditable directory of the pairs of user’s ID and their public keys while
securely answer the queries for public key associated with certain ID in a consis-
tent manner, even when the service provider is untrusted. ZK-EDBs with more
expressive queries can improve the functionality of the KT system, allowing
clients to more flexibly query public keys. Specifically, users can add labels or
other short information to their IDs, such as a CV of a job hunter. Clients can
then send queries to the service provider to obtain all public keys associated with
IDs that meet their requirements, e.g., an HR can query the service provider to
get all job hunters’ public keys whose CVs satisfy certain requirement.

1.1 Our Contribution

In this paper, we introduce a new concept called zero-knowledge functional
elementary databases (ZK-FEDBs), which allows the most general function
queries. Specifically, ZK-FEDBs enable one to commit an elementary database
D of key-value pairs (x, v) ∈ {0, 1}� × {0, 1}� and then, for any Boolean cir-
cuit f : {0, 1}2� → {0, 1}, convincingly answer the query “Send me all records
(x, v) ∈ D satisfying f(x, v) = 1”, without revealing any extra knowledge (includ-
ing the size of D).

We present a construction of ZK-FEDBs based on groups of unknown orders,
and prove its security in the random oracle model and generic group model.
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Its proof size is only linear in the length of record and the size of circuit f ,
independent of the size of input database D. Prior to our approach, the most
expressive queries achievable were limited to range queries over keys and values,
as demonstrated by Libert et al. [27].

Our technical contribution is two-fold (explained in detail below). Firstly, we
introduce a new variant of zero-knowledge sets (ZKS) which supports combined
operations on sets, and present a concrete construction that is based on groups
with unknown order. Secondly, we develop a transformation that transforms the
query of Boolean circuit into a query of combined operations on related sets,
which may be of independent interest.

1.2 Technique Overview

A naive attempt to construct ZK-FEDBs is to use zero-knowledge succinct non-
interactive arguments of knowledge (zk-SNARKs). Specifically, one can use a
SNARK-friendly hash function alone or, like most existing ZK-EDBs, use a
Merkle tree to create a commitment for the database, and then use zk-SNARKs
to generate proofs for queries. However, almost all zk-SNARKs expose the length
of the witness. And for the commitment methods mentioned above, the wit-
ness must include all records in database to ensure the correctness of function
queries. Therefore, this attempt would fail due to the potential revelation of the
database size. The same issue will also arise when using other general-purpose
zero-knowledge protocols.
RSA Accumulator as ZKS and Its Limitations. Our start point is RSA
accumulator, which is close to ZKS except that it offers no privacy. Let Hprime

be a hash function mapping an element in set S into a prime. RSA accumulator
computes gΠi∈[m]pi to commit set S = {xi}i∈[m], where pi = Hprime(xi).

Now we consider the three basic set operations, i.e., intersection, union and
set-difference, on accumulators. It is a widely used approach to reduce set oper-
ation relations to several simpler set relations [23,35,46]. Taking intersection as
an example. Note that, I = S0 ∩ S1 if and only if there exists J0 := S0\I and
J1 := S1\I such that (J0, J1) belongs to disjoint relation {(J0, J1)|J0 ∩ J1 = ∅},
and both (S0, I, J0) and (S1, I, J1) belong to union among disjoint relation
{(U, J0, J1)| U = J0 ∪ J1 ∧ J0 ∩ J1 = ∅}.

Thus, given three RSA accumulators CI ,CS0 ,CS1 to sets I, S0, S1, proving
I = S0 ∩ S1 is equivalent to prove the following statements: there exist accumu-
lators CJ0 ,CJ1 to sets J0 and J1 such that a) the committed sets (J0, J1) belongs
to disjoint relation, and b) the committed sets (S0, I, J0) and (S1, I, J1) belong
to union among disjoint relation. It is easy to verify that these two items a) and
b) are equivalent to the following two conditions respectively:

a′) (CJ0 ,CJ1) belongs to co-prime relations {(C1,C2)|∃a, b ∈ Z s.t. gcd(a, b) =
1 ∧ (C1,C2) = (ga, gb)}.

b′) Both (CI ,CJ0) and (CI ,CJ1) belong to co-prime relations, and both (CS0 ,CI ,
CJ0) and (CS0 ,CI ,CJ1) are DDH tuples.
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All of them can be proved easily relying on Boneh’s PoKE (Proof of knowledge
of exponent) protocol and its variants [4]. The other two basic set-operation
relations on accumulators, can also be proved in a similar manners.

As in [41,42], one can achieve privacy and obtain a ZKS scheme by using
randomness r in computing the commitment grΠi∈[m]pi to S. However, the intro-
duction of randomness would invalidate the proof of basic set-operation relations
on commitments. Specifically, for this ZKS, the disjoint relations and the union
among disjoint sets relations on committed sets can no longer be equivalent to
co-prime relations and DDH relations over RSA groups.

Zero-Knowledge Sets with Set-Operation Queries. Our key observation
is that the randomness r in above ZKS scheme can be chosen from small and
bounded range of [0, B]. This leads to that, for sets S0, S1, U satisfying S0∩S1 =
∅, S0 ∪ S1 = U and their commitments CS0 ,CS1 ,CU , we have:

a′′) The greatest common divisor of the exponents of commitments CS0 ,CS1 is
small. We call such a tuple (CS0 ,CS1) as a pseudo-coprime exponent tuple.

b′′) The commitment tuple (CS0 ,CS1 ,CU ) is close to a DDH tuple. We call such
a tuple (CS0 ,CS1 ,CU ) as a pseudo-DDH tuple.

We present a series of NIZK protocols to prove the above pseudo-relations.
Though these NIZK protocols achieve somewhat weaker soundness, they are
sufficient for our applications.

We further consider more general combined operations on sets, and regard it
as a “circuit” with gates “intersection”, “union” and “set-difference” in a natural
way. To construct a ZKS supporting combined operations on sets (i.e., a ZKS
that allows prover to convincingly answer the query “send me all records in
Q(S1, · · · , Sm)” for any “circuit” Q and committed sets {Si}i∈[m]), the prover can
use above NIZK proofs to demonstrate that each gate/set-operation is performed
honestly.

From Boolean Circuit Queries to Set-Operation. A crucial step toward our
construction of ZK-FEDBs is a transformation that transform a query of Boolean
circuit f over a set S (requesting Soutput := {x|x ∈ S∧f(x) = 1}) into a query of
combined operations Q on related sets Sb

i = {x|x ∈ S ∧ the i-th bit of “x” is b}
(requesting Soutput := Q({Sb

i })).
This transformation proceeds as follows. Let the number of input wires of

f be n. We first associate each input wire i of f with two subsets {Sb
i }b∈{0,1}

of S, which are defined as above. Sequentially, for each gate in f , we associate
its output wire i (i > n) with two subsets {Sb

i }b∈{0,1}, which are defined in the
following way:

– For an AND gate with two input wires a, b and an output wire c, the two sets
associated with wire c are set to be S0

c = S0
a ∪ S0

b and S1
c = S1

a ∩ S1
b .

– For an OR gate with two input wires a, b and an output wire c, the two sets
associated with wire c are set to be S0

c = S0
a ∩ S0

b and S1
c = S1

a ∪ S1
b .

– For a NOT gate with an input wire a and an output wire b, the two sets
associated with wire c are set to be S0

b = S1
a and S1

b = S0
b .
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In the ending, the second set S1
� associated with the output wire � of f is

now a result of a circuit Q of combined operations on the sets {Sb
i } associated

with the input wires, i.e., S1
� = Q({Sb

i }).
One can check that the above resulting set S1

� is exactly the set Soutput :=
{x|x ∈ S ∧ f(x) = 1}. A crucial observation here is that, for each x belonging
to S and each wire i, x ∈ Sb

i if and only if the value of i-th wire of f(x) is b.
Therefore Sb

� is the set of x that makes the output wire of f equaling to b, which
means that S1

� = {x|x ∈ S ∧ f(x) = 1}.
A simple example of transforming f(x) = x̄1 ∧ x̄2 ∨ (¬x̄3) (where x =

x̄1‖x̄2‖x̄3 ∈ {0, 1}3) is shown in Fig. 1.

Fig. 1. .

Finally, we construct ZK-FEDBs using ZKS with set-operation queries and
standard ZK-EDBs. Roughly, we use the former to ensure the correctness of
function queries and the latter to ensure the correctness of associated values.
Furthermore, we construct a constant-size ZK-EDB in conjunction with standard
batch techniques, and achieve a ZK-FEDB with a proof size that is only linear
in the length of the record and the size of the circuit f , and is independent of
the size of the input database D.

1.3 Related Work

Since the notion of ZK-EDB was first introduced by Micali et al. [31], numerous
works concentrating on the performance, security, and functionality of ZK-EDB
have been developed.

In [13], Chase et al. introduced the notion of mercurial commitments and
presented a widely used paradigm to construct a ZK-EDB. Mercurial commit-
ments (and thus ZK-EDBs) can be constructed through one-way functions [9],
and efficient mercurial commitments (and thus efficient ZK-EDBs) can be con-
structed through DL, Factoring, RSA or LWE assumption [9,27,47]. The notion
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of q-mercurial commitments were introduced and developed in [10,11,28] to fur-
ther compress the (non-)membership proof size of ZK-EDBs. Li et al. [26] intro-
duced concise mercurial subvector commitments and achieved batch verifiable
ZK-EDBs.

There are also several works focusing on developing the security definition
of ZK-EDBs, such as independent ZK-EDBs [22] and secure database com-
mitments [14]. Prabhakaran and Xue [36] put forward statistically hiding set
and present its construction from RSA accumulators. Following [36,41,42] con-
structed a constant-size ZKS.

Another research point of ZK-EDBs is how to extend its functionality. Ostro-
vsky et al. [34] explored generating consistency proofs for queries on a commit-
ted database and present a concrete construction for range queries over the keys.
Liskov [29] presented updatable ZK-EDBs in the random oracle model. Ghosh
et al. [24] introduced zero-knowledge lists, which allow one to commit a list and
later answer order queries in a convincing manner. Libert et al. [27] recently
introduced ZK-EEDBs that support richer queries, e.g., range queries over the
keys and values.

Accumulators (e.g. [3,6,7,18,33]) are an extremely well-studied cryptogra-
phy primitive related to ZKS. Accumulators allow representing a set using an
accumulation value and later providing (non-)membership proofs; however, hid-
ing and zero-knowledge properties are not necessary for accumulators. Although
Ghosh et al. [23] and Zhang et al. [46] proposed the constructions of zero-
knowledge accumulators supporting set operations, their schemes only consider
collision-freeness security, where the adversary cannot cheat in a proof for an
honestly generated accumulation value. In contrast, ZKS prevent the adversary
from cheating in a proof even for a maliciously generated commitment. Agrawal
and Raghuraman [1] proposed a commitment scheme for databases of key-value
pairs. Their scheme does not provide privacy.

Authenticated data structures (ADS) (e.g., [32,35,38]) also allow a trusted
database owner to commit its database, and an untrusted server can answer the
queries on behalf of trusted database owners to any clients knowing the com-
mitment. However, as a three-party scheme in which the committer (database
owner) is always trusted, ADS is incomparable to ZK-EDB.

Key Transparency (KT) systems (e.g. [25,30,39,40]) allow service providers
to maintain an auditable directory of their users’ public keys, producing proofs
that all participants have a consistent view of those keys, and allowing each user
to check updates to their own keys. Recently, Chase et al. [12] show how to
construct privacy-preserving KT systems from append only ZKS and Chen et
al. [15] develop it and achieve post compromise security.

Recently, there are several works [19,21,43,44] of lookup arguments studying
how to efficiently prove subset relation and achieving constant proof size. Lookup
arguments can be zero-knowledge and can be used alongside zk-SNARKs to
prove that “all records in Doutput satisfy the query function f and Doutput ⊂ D”
without revealing any extra knowledge. However, constructing ZK-FEDBs from
lookup arguments and zk-SNARKs is considerably more challenging. The reason
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is that, to achieve ZK-FEDBs, one must also prove that any record in D\Doutput

does not satisfy the query function f . Utilizing zk-SNARKs in this context would
leak the size of the remaining database D\Doutput as we discussed in Technique
Overview, and therefore leak the size of D.

1.4 Organization

Preliminaries are described in Sect. 2. In Sect. 3, we introduce several new build-
ing blocks. In Sect. 4 we introduce and construct ZKS with set-operation queries.
In Sect. 5 we show how to transform a Boolean circuit and introduce the notion
of ZK-FEDBs, while also providing a concrete construction. Due to space con-
straints, the construction of constant-size standard ZK-EDBs and several secu-
rity proofs are deferred to the full version of this paper [45].

2 Preliminaries

In this paper, we denote by λ the security parameter, by [m] the set {1, 2, · · · ,m}
and by [m1,m2] the set {m1 + 1,m1 + 2, · · · ,m2}. A non-negative function
f : N → R is negligible if f(λ) = λ−w(1). We use the standard abbreviation PPT
to denote probabilistic polynomial time.

An elementary database D is a set of key-value pairs (x, v) ∈ {0, 1}� ×{0, 1}�

such that if (x, v) ∈ D and (x, v′) ∈ D, then v = v′. Here � is a public polynomial
in λ. We denote by Sup(D) the support of D, i.e., the set of x ∈ {0, 1}� for which
∃v such that (x, v) ∈ D. We denote such unique v as D(x), and if x /∈ Sup(D), we
then also write D(x) =⊥. For consistency, for any set S of elements x ∈ {0, 1}�,
we write S(x) = 1 if x ∈ S and write S(x) =⊥ if x /∈ S.

2.1 Zero-Knowledge Elementary Databases and Sets

ZKS allow one to commit a set S and later prove the (non-)membership of any
elements without revealing any extra knowledge (including the size of the set).
The notion of ZKS can be extended to ZK-EDBs, which allow one to commit
an elementary database D. Due to that ZKS can be seen as a special case of
ZK-EDBs, where D(x) = 1 if x ∈ Sup(D), we skip the definition of ZKS here.
Following [22,27,31], we present the following formal definition of ZK-EDBs:

Definition 1 (Zero-Knowledge Elementary Database). A zero-knowledge
elementary database consists of four algorithms (Setup, Com, Prove, Verify):

• δ ← Setup(1λ): On input the security parameter 1λ, Setup outputs a random
string (or a structured reference string) δ as the CRS.

• (com, τ) ← Com(δ,D): On input the CRS δ and an elementary database D,
Com outputs a commitment of database com and an opening information τ .

• π ← Prove(δ, com, τ, x, v): On input the CRS δ, the pairing of the commitment
and opening information (com, τ), and a key x and its associated value v (i.e.,
(x, v) ∈ D or x /∈ Sup(D), v =⊥), Prove outputs a proof π of v = D(x)
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• 0/1 ← Verify(δ, com, x, v, π): On input the CRS δ, commitment com, key-
value pair (x, v) and proof π, Verify either outputs 1 (denoting accept) or 0
(denoting reject).

It satisfies the following three properties:

• Completeness: For any elementary database D and any x,

Pr

[
Verify(δ, com, x,D(x), π) = 1

∣∣∣∣∣ δ ← Setup(1λ); (com, τ) ← Com(δ,D);
π ← Prove(δ, com, τ, x,D(x))

]
= 1

• Soundness: For any PPT adversary A, there exists a negligible function
negl(·) such that:

Pr

⎡
⎢⎣

v �= v′ ∧
Verify(δ, com, x, v, π) = 1∧
Verify(δ, com, x, v′, π′) = 1

∣∣∣∣∣ δ ← Setup(1λ);
(com, x, v, v′, π, π′) ← A(δ)

⎤
⎥⎦ ≤ negl(λ)

• Zero-Knowledge: There exists a simulator Sim such that for any PPT
adversary A, the absolute value of the difference

Pr

[
AOP (δ, stateA, com) = 1

∣∣∣∣∣ δ ← Setup(1λ), (D, stateA) ← A(δ),
(com, τ) ← Com(δ,D)

]

− Pr

[
AOS (δ, stateA, com) = 1

∣∣∣∣∣ (δ, stateδ) ← Sim(1λ), (D, stateA) ← A(δ),
(com, stateS) ← Sim(δ, stateδ)

]

is negligible in λ, where OP and OS are defined as follows:
OP : On input a string x, OP outputs π←Prove(δ, com, τ, x,D(x)).
OS: On input a string x, OS outputs π←Sim(stateS , x,D(x)).

2.2 Groups of Unknown-Order and Assumptions

In this paper, the schemes are constructed on groups of unknown order, for
which the order is difficult to compute for the committer. Groups of unknown
order are a useful tool in the construction of polynomial commitments, integer
commitments, and accumulators, among other aspects.

The strong RSA assumption is a useful assumption for groups of unknown
orders. We introduce it in the following.

Assumption 1 (Strong RSA Assumption) [1,2]. The strong RSA assumption
states that an efficient adversary cannot compute �-th roots for a given random
group element, where � is an odd prime chosen by the adversary. Specifically, it
holds for GGen if for any probabilistic polynomial time adversary A,

Pr

[
u� = g and � is an odd prime

∣∣∣∣∣G ← GGen(λ), g
$←G,

(u, �) ∈ G × N ← A(G, g)

]
≤ negl(λ).
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Generic Group Model. In this paper, we use the generic group model for
groups of unknown order as defined by Damgård and Koprowski [17], and as used
in [4]. Portions of the definition of the generic group model are taken verbatim
from [4].

In the generic group model, the group is parameterized by two public integers
A and B, and the group order is sampled uniformly from [A,B]. The group G

is defined by a random injective function σ : Z|G| → {0, 1}l for some l, where
2l � |G|. The group elements are σ(0), · · · , σ(|G|). A generic group algorithm A
is a probabilistic algorithm. Let L be a list that is initialized with the encodings
given to A as input. A can query two generic group oracles. The first oracle O1

samples a random r ∈ Z|G| and returns σ(r), which is appended to the list of
encodings L. The second oracle O2(i, j,±) takes two indices i, j ∈ [p], where p
is the size of L, as well as a sign bit, and returns σ(i ± j), which is appended to
L. Note that herein A is not given the order of G.

As shown in [17], the strong RSA assumption holds in the generic group
model.
Zero-Knowledge Protocol for Bounded Discrete-Log. The classical
Schnorr Σ-protocol can be used to prove the discrete-log relation when the
exponent is small (i.e., RboundedDL = {(u,w, T ;x)|ux = w ∧ |x| ≤ T}). It
only provides a weak soundness that, a proof for (u,w, T ) can convince verifier
that (u,w, T ) belongs to a relaxed relation R∗

boundedDL = {(u,w, T ;x, t)|ux =
wt ∧ |x| ≤ 22λT, |t| ≤ 2λ}, which is sufficient for our goal. Following [8,16,20],
the construction is as follows (Fig. 2).

Fig. 2. Protocol ZKboundedDL [8,20]

Lemma 1. Protocol ZKboundedDL is an honest-verifier statistically zero-
knowledge protocol for RboundedDL, achieving a weak knowledge soundness
defined as follows: There exists an extractor such that for any polynomial p and
any prover P∗ convincing verifier of statement (u,w, T ) with probability p−1,
the extractor can extract (x′, t) within an expected polynomial time such that
|x′| ≤ 22λT, |t| ≤ 2λ and ux′

= wt.
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Note that the honest-verifier statistically zero-knowledge property of the
above lemma directly follows [16]. And the weak knowledge soundness can be
easily proved by rewinding.

Furthermore, above zero-knowledge protocol can be easily extend to multidi-
mensional discrete-log relation with small exponents (i.e., R = {({ui}i∈[n],w, T ;
{xi}i∈[n])|Πi∈[n]u

xi
i = w∧∀i ∈ [n], |xi| ≤ T}), resulting in a similar weak knowl-

edge soundness.
Proof of Knowledge of Exponent (PoKE). Recently, Boneh et al. [4] intro-
duced a way to present an argument of knowledge protocol for the following
relation.

RPoKE := {(u,w ∈ G;x ∈ Z)|w = ux ∈ Z}
Let P be the prover and V be the verifier. Let Primes(λ) denote the set of odd
prime numbers in [0, 2λ]. Their protocol is as follows (Fig. 3):

Fig. 3. PoKE protocol [4]

Theorem 1 ( [4] Theorem 3). Protocol PoKE is an argument of knowledge
for the relation RPoKE in the generic group model.

Our constructions will use above PoKE protocol as a subroutine, and that’s
why our results rely on the generic group model. In practice, there are two
common methods used to instantiate groups of unknown order.
RSA Group: The multiplicative group Z

∗
n of integers modulo a product n = pq

of large primes p and q. Any efficient algorithm that calculates the order can
be transformed into an efficient algorithm factoring n. In addition, we need to
point out that it is difficult to generate the RSA group in a publicly verifiable
way without exposing the order. Therefore, we need a trusted party to generate
the group.
Class Group: The class group of an imaginary quadratic order with discrimi-
nant Δ where −Δ is a prime and Δ ≡ 1 mod 4. As an important property, one
can choose a security class group Cl(Δ) by choosing the “good” discriminant Δ
randomly without a trusted party. For more details, one can refer to Buchmann
and Hamdy’s survey [5] and Straka’s accessible blog post [37] for more details.
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At the end of this section, we provide several simple lemmas used for our
construction.

Lemma 2. For any positive integers a, A, and B satisfying B > A, we have:

Dist({x
$←Za}, {x mod a|x $←[A,B]}) ≤ a

B − A

where Dist indicates the statistical distance between distributions.

Lemma 3. For any integers s1, s2 and positive integers a, A, B satisfying B >
A, gcd(s1, s2) = 1, we have:

Dist({x
$←Za}, {xs1 + ys2 mod a|x, y

$←[A,B]}) ≤ 3a
B − A

where Dist indicates the statistical distance between distributions.

Lemma 4. For any multiplicative group G and group elements g, h ∈ G, if there
exists coprime integers a, p satisfying ga = hp, then one can easily compute h′

satisfying g = h′p from a, p, g and h.

The proofs of the above three lemmas are shown in the full version of this paper
[45].

3 New Building Blocks

This section introduces several building blocks that we use in our construction. It
comprises of two parts. In the first part, we present a new variant of Boneh et al.’s
zero-knowledge protocol for multidimensional discrete-log relation and lightly
modify the standard ZKS scheme [36,41,42]. In the second part, we construct
two new zero-knowledge protocols for pseudo-coprime exponent relation and
pseudo-DDH relation over the groups of unknown orders.

3.1 Zero-Knowledge Protocol for Multidimensional Discrete-Log
and Standard ZKS Scheme

In [4], Boneh et al. combined the classical Schnorr Σ-protocol and the batched
PoKE protocol to present a zero-knowledge argument of knowledge protocol
(called Protocol ZKPoKRep) for the relation RmultiDL = {({ui}i∈[n],w; {xi}i∈[n])
|Πi∈[n]u

xi
i = w}. Their protocol satisfies soundness only when {ui}i∈[n] is a base

specified in the CRS. However, our constructions require the prover to generate
such a set {ui}i∈[n].

Therefore, we construct a new variant of Boneh et al.’s protocol. We call
it Protocol ZKmultiDL. Compared to the origin protocol, the prover in our new
protocol uses n PoKE protocols to prove the relation zwc = Πi∈[n]u

si
i . Here,

we require the prover to send usi
i additionally, which doesn’t affect the proof of

statistical honest verifier zero-knowledge. This allows the extractor to extract
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si even when {ui}i∈[n] is generated by the prover. As a result, we obtain a
zero-knowledge protocol for RmultiDL where {ui}i∈[n] can be generated by the
prover. However, this benefit comes at a price: This protocol only satisfies a
weak knowledge soundness that a valid proof can convince the verifier that the
statement belongs to a relaxed relation R∗

multiDL = {({ui}i∈[n],w; {xi}i∈[n], t)|
Πi∈[n]u

xi
i = wt, |t| ≤ 2λ}. The concrete construction is shown in Fig. 4.

Fig. 4. Protocol ZKmultiDL [4]

Lemma 5. In the generic group model, Protocol ZKmultiDL is an honest-verifier
statistically zero-knowledge protocol for RmultiDL, achieving a weak knowledge
soundness defined as follows: There exists an extractor such that for any prover
P∗ convincing the verifier of statement ({ui}i∈[n],w) with inverse-polynomial
probability, the extractor can extract ({x′

i}i∈[n], t) within an expected polynomial

time such that |t| ≤ 2λ and Πi∈[n]u
x′

i
i = wt.

proof sketch. The honest-verifier statistically zero-knowledge property can be
proved in the same manner as [4] and the weak knowledge soundness follows
Lemma 1 (the extension version for multidimensional DL) and the argument of
knowledge property of PoKE (used for extracting si) directly.

A complete proof is shown in the full version of this paper [45].
In the remainder of this paper, we only use the protocol ZKmultiDL for the

cases when n = 1 or 2. For convenience, we shall refer to these protocols as ZKDL

and ZK2DL. Additionally, we denote their non-interactive versions obtained via
the Fiat-Shamir heuristic as NIZKDL and NIZK2DL.
Standard Zero-Knowledge Sets. Here we introduce the construction of stan-
dard ZKS in [36,41,42], but with some modifications. Instead of using RSA
groups, we now use general groups of unknown orders. Furthermore, we use
ZKDL and ZK2DL as sub-routine zero-knowledge protocol.

Let Hprime be a hash function that upon inputting a string out-
puts a large prime. And let RDL = {(u,w;x)|ux = w}, R2DL =
{(u1, u2,w;x1, x2)|u1x1u2

x2 = w}. The modified construction is shown below.
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Fig. 5. Protocol ZKS

Theorem 2. The protocol constructed in Fig. 5 is a ZKS scheme in the generic
group model and random oracle model.

The proof follows from [36,41,42]. We present a detailed proof in the full version
of this paper [45].

Remark 1. One can use the batch technique put forward in [4] to batch the
(non-)membership proofs. For example, to prove that x′

1, · · · , x′
t ∈ S, the prover

hashes them into primes p′
1, · · · p′

t by Hprime and then generates the proof
π ← NIZKDL(gΠi∈[t]p

′
i ,C; rΠi∈[m]pi/Πi∈[t]p

′
i). To prove that x′

1, · · · , x′
t /∈ S, the

prover hashes them into primes p′
1, · · · p′

t by Hprime and finds a, b ∈ Z such that
aΠi∈[t]p

′
i + brΠi∈[m]pi = 1, and then outputs π ← NIZK2DL(gΠi∈[t]p

′
i ,C, g; a, b).

3.2 Zero-Knowledge Protocols for Pseudo-Coprime Exponent
Relation and Pseudo-DDH Relation

As shown in the technique overview subsection, due to the introduction of ran-
domness in ZKS commitment, the basic set-operation relations on committed
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set can only be reduced to pseudo-coprime exponent relation and pseudo-DDH
relation over group elements. Here pseudo-coprime exponent relation means that
the greatest common divisor of the exponents of two group elements are small
and pseudo-DDH relation means that a group element triple is close to a DDH
tuple.

In this subsection, we construct two new zero-knowledge protocols for these
two relations. Similar to Schnorr Σ-protocol, both protocols only provide a weak
knowledge soundness, which are sufficient for our construction of ZKS with set-
operation query.
Zero-Knowledge Protocol for Pseudo-coprime Exponents Relation. Let
u, v be ZKS commitments to sets X,Y respectively, i.e., u = gruΠx∈XHprime(x),
v = grvΠx∈Y Hprime(x). If X∩Y = ∅, it yields that the exponents of u, v are almost
coprime. We call such a tuple (u, v) as a pseudo-coprime exponents tuple and
denote the pseudo-coprime exponents relation as follows:

Rcoprime =

{
(u, v, T ; a1, a2)

∣∣∣∣∣ gcd(a1, a2) ≤ T ∧
u = ga1 , v = ga2

}

We provide a zero-knowledge protocol for Rcoprime in Fig. 6. This protocol
only satisfies a weak soundness that, a valid proof can convince the verifier that
the statement belongs to a relaxed relation R∗

coprime = {(u, v, T ; t1, t2, c)|c ≤
24λBT ∧ ut1vt2 = gc}.

Fig. 6. Protocol ZKcoprime

Lemma 6. In the generic group model, ZKcoprime is an honest-verifier statis-
tically zero-knowledge protocol for Rcoprime, achieving a weak knowledge sound-
ness defined as follows: There exists an extractor such that for any prover P ∗ con-
vincing the verifier with inverse-polynomial probability over statement (u, v, T ),
the extractor can extract t1, t2, c ∈ Z within an expected polynomial time such
that |c| ≤ 24λBT and ut1vt2 = gc.

Proof. Completeness is obvious.
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Weak knowledge soundness follows from the weak knowledge sound-
ness of ZKboundedDL and ZK2DL. Specifically, the weak knowledge soundness of
ZKboundedDL allows us to extract x, t ∈ Z satisfying that |x| ≤ 23λBT, |r′| ≤ 2λ

and Qr′
= gx. And the weak knowledge soundness of ZK2DL enables the extrac-

tion of t′1, t
′
2, r

′′ ∈ Z such that |r′′| ≤ 2λ and Qr′′
= ut′

1vt′
2 . With this, we obtain

ur′t′
1vr′t′

2 = gr′′x. By setting t1 = r′t′1, t2 = r′t′2, c = r′′x, we obtain ut1vt2 = gc

and |c| ≤ 24λBT .
The simulator Sim of the honest-verifier statistically zero-knowledge

property can be constructed as follows: Sim samples r1, r2
$←[2λB], sets Q =

ur1vr2 , and then simulates the remaining zero-knowledge protocol to conclude
the simulation.

Due to that both ZKboundedDL and ZK2DL are honest-verifier statistically
zero-knowledge, we only need to prove that the distributions of (u, v,Q) gener-
ated by the simulator and the honest prover are statistically indistinguishable.
In other words, we need to show the following: For any fixed u = ga1 , v = ga2 ,
the statistical distance of the distributions {gr gcd(a1,a2)|r $←[2λB]} and {ur1vr2 =

gr1a1+r2a2 |r1, r2 $←[2λB]} is exponentially small.
Let b be the order of ggcd(a1,a2), i.e., b = Ord(ggcd(a1,a2)) ≤ B. From Lemma2,

{r mod b|r $←[2λB]} is exponentially close to the uniform distribution over Zb.
Therefore the distribution {gr gcd(a1,a2)|r $←[2λB]} is exponential close to the dis-
tribution {(ggcd(a1,a2))r|r $←Zb}. From Lemma3, {r1 · a1

gcd(a1,a2)
+ r2 · a2

gcd(a1,a2)

mod b|r1, r2 $←[2λB]} is exponentially close to the uniform distribution over Zb.
Therefore, we have that the distribution {gr1a1+r2a2 |r1, r2 $←[2λB]}, which equals
{(ggcd(a1,a2))r1· a1

gcd(a1,a2)+r2· a2
gcd(a1,a2) mod b|r1, r2 $←[2λB]}, is also exponentially

close to the distribution {(ggcd(a1,a2))r|r $←Zb}. This concludes the lemma. ��
Zero-Knowledge Protocol for Pseudo-DDH Relation. Let u, v,w be ZKS
commitments to sets A,B,C, i.e., u = gruΠx∈AHprime(x), v = grvΠx∈BHprime(x),
w = grwΠx∈CHprime(x). If C = A ∪ B and A ∩ B = ∅, it yields that the tuple
(u, v,w) is close to a DDH tuple. We call such a tuple (u, v,w) as a pseudo-DDH
tuple and denote the pseudo-DDH relation as follows:

Rpseudo−DDH =

⎧⎪⎨
⎪⎩(u, v,w, T ;x, y, a1, a2, a3)

∣∣∣∣∣∣∣
|a1|, |a2|, |a3| ≤ T ∧
gcd(xy,Π

2λ|G|
i=1 i) = 1 ∧

u = ga1x, v = ga2y,w = ga3xy

⎫⎪⎬
⎪⎭ .

In above relation, we require that the integers x and y are products of large
primes (the second condition), which is necessary for our distance analysis in
the proof of zero-knowledge property. We provide a zero-knowledge protocol
for Rpseudo−DDH in Fig. 7, which partially relies on Boneh et al.’s protocol.
This protocol only satisfies a weak soundness that, a valid proof can convince
the verifier that the statement belongs to a relaxed relation R∗

pseudo−DDH =
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{(u, v,w, T ;x, y, {ai, ci}i∈[3])| |a1|, |a2|, |a3| ≤ 24λBT, |c1|, |c2| ≤ 26λB2, |c3| ≤
28λB3 ∧ uc1 = ga1x, vc2 = ga2y,wc3 = ga3xy}.

Fig. 7. Protocol ZKpseudo−DDH

Lemma 7. In the generic group model, ZKpseudo−DDH is an honest-verifier
statistically zero-knowledge protocol for Rpseudo−DDH , achieving a weak knowl-
edge soundness defined as follows: There exists an extractor such that for any
prover P∗ convincing the verifier with inverse-polynomial probability over state-
ment (u, v,w, T ), the extractor can extract x, y, a1, a2, a3, c1, c2, c3 ∈ Z such that
|a1|, |a2|, |a3| ≤ 24λBT |c1|, |c2| ≤ 26λB2, |c3| ≤ 28λB3, and uc1 = ga1x, vc2 =
ga2y,wc3 = ga3xy.

Proof. Completeness is obvious.
Weak knowledge soundness can be prove through the weak knowledge

soundness of ZKboundedDL and the knowledge extractor of PoKE. It is worth
noting that steps 2 through 4 in our protocol are the same as in Boneh et
al.’s PoDDH protocol [4], which roughly consists of two PoKE protocols. We can
use the knowledge extractor provided in [4] to extract x, y satisfying u′ = gx,
v′ = gy and w′ = gxy. Meanwhile, the weak knowledge soundness of ZKboundedDL

allows us to extract au, cu, a′
u, c′

u from the first two ZKboundedDL protocols such
that |cu|, |c′

u| ≤ 2λ, |au| ≤ 25λB2, |a′
u| ≤ 23λBT and uau = u′′cu , u′a′

u = u′′c′
u .

Hence, we have uauc′
u = ga′

ucux. By setting c1 = auc′
u, a1 = a′

ucu, we obtain
|c1| ≤ 26λB2, |a1| ≤ 24λBT and uc1 = ga1x. Using the same strategy, we can
extract c2, c3, a2, a3, thus meeting our goal.
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The simulator Sim of honest-verifier statistically zero-knowledge prop-
erty can be constructed as follows: Initially, Sim samples r1, r2

$←[22λB] and sets
u′ = gr1 , v′ = gr2 ,w′ = gr1r2 . In step 3, Sim finds the quotient q1, q2 ∈ Z and
residue t1, t2 such that r1 = q1l1+t1 and r2 = q2l2+t2, and then applies the same
action as an honest prover. Subsequently, Sim samples ru, rv, rw

$←[2λB], sets
u′′ = ur1ru , v′′ = vr2rv ,w′′ = wr1r2rw , and simulates the ZKboundedDL protocols
to conclude the simulation.

Due to the honest-verifier statistically zero-knowledge of ZKboundedDL, we
only need to prove that for any fixed statement (u, v,w, T ) and challenges l1, l2
(note that l1, l2 ≤ 2λ), the distributions of (u′, v′,w′,Q1,Q

′
1,Q2, t1, t2, u′′, v′′,w′′)

generated by the simulator and the honest prover are exponentially close. We
denote these two distributions by Dsim and DP respectively. Thus, for any fixed
statement (u, v,w, T ) and challenges l1, l2, we have the following:

Dsim = {(gr1 , gr2 , gr1r2 , g�r1/l1�, (gr2)�r1/l1�, g�r2/l2�, r1 mod l1,

r2 mod l2, ur1ru , vr2rv ,wr1r2rw)|r1, r2 $←[22λB], ru, rv, rw
$←[2λB]}

DP = {(gr1x, gr2y, gr1r2xy, g�r1x/l1�, (gr2y)�r1x/l1�, g�r2y/l2�, r1x mod l1,

r2y mod l2, ur1ru , vr2rv ,wr1r2rw)|r1, r2 $←[22λB], ru, rv, rw
$←[2λB]}

Denote f(r1, r2, ru, rv, rw) := (gr1 , gr2 , gr1r2 , g�r1/l1�, (gr2)�r1/l1�, g�r2/l2�, r1
mod l1, r2 mod l2, ur1ru , vr2rv ,wr1r2rw). As a key observation,
f(r1, r2, ru, rv, rw) = f(r1 mod l1|G|, r2 mod l2|G|, ru mod |G|, rv mod |G|, rw

mod |G|). We thus have that Dsim = {f(r1 mod l1|G|, r2 mod l2|G|, ru

mod |G|, rv mod |G|, rw mod |G|)| r1, r2
$←[22λB], ru, rv, rw

$←[2λB]}. Let x′

(resp. y′) be the element in Z|G| satisfying xx′ ≡ 1 mod |G| (resp. yy′ ≡
1 mod |G|). This is possible due to gcd(xy, |G|) = 1. Then, we obtain
that DP = {f(r1x mod l1|G|, r2y mod l1|G|, rux′ mod |G|, rvy′ mod |G|, rwx′y′

mod |G|)|r1, r2 $←[22λB], ru, rv, rw
$←[2λB]}. From Lemma2 and the fact that

gcd(x, l1|G|) = 1, gcd(y, l2|G|) = 1, we have that both of the distribu-
tions Dsim and DP are exponentially close to the distribution {f(r1, r2, ru, rv,
rw)|r1 $←Zl1|G|, r2

$←Zl2|G|, ru, rv, rw
$←Z|G|}, which concludes the proof. ��

Note that both of the protocols provided in this subsection are constant-
round public-coin protocols. One can use the Fiat-Shamir heuristic to obtain the
non-interactive version of these zero-knowledge protocols. These non-interactive
protocols satisfy zero-knowledge property and the same weak knowledge sound-
ness property in the random oracle model. We denote these two non-interactive
protocols as NIZKcoprime and NIZKpseudo−DDH .

4 Zero-Knowledge Set with Set-Operation Queries

In this section, we introduce the notion of ZKS with set-operation queries, which
is the key ingredient for achieving our end goal of ZK-FEDBs. Moreover, we pro-
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vide a concrete construction of ZKS with set-operation queries based on groups
of unknown orders.

4.1 Definition

Informally, ZKS with set-operation queries allow one to commit to several sets
{Si}i∈[m], and then convincingly answer a) the (non-)membership queries and
b) for any combined operation Q represented as a “circuit” of unions, intersec-
tions and set-differences, the queries in the form as “send me all records x in
Q(S1, · · · , Sm),” without revealing any extra knowledge. The formal definition
of ZKS with set-operation queries is as follows:

Definition 2 (ZKS with Set-Operation Queries). A ZKS with set-
operation queries consists of six algorithms, (Setup, Com, Prove,Verify,SO.Prove,
SO.Verify), where Setup, Com, Prove,Verify are in the same form as a standard
ZKS and

• π ← SO.Prove(δ, c̃om, τ̃ ,Q, Soutput): On input the CRS δ, the list of set com-
mitments and the associated opening information c̃om = (com1, · · · , comm),
τ̃ = (τ1, · · · , τm) where (comi, τi) ∈ Com(δ, Si), a combined operation
Q, and the output set Soutput, SO.Prove outputs a proof π of Soutput =
Q(S1, · · · , Sm).

• 0/1 ← SO.Verify(δ, c̃om,Q, Soutput, π): On input the CRS δ, the list of com-
mitments c̃om, the combined operation Q, the output Soutput, and the proof
π, SO.Verify either outputs 1 (denoting accept) or 0 (denoting reject).

and satisfies the following properties:

• Completeness: Completeness consists of two parts,
a) For any set S and any x,

Pr

[
Verify(δ, com, x, S(x), π)=1

∣∣∣∣∣ δ←Setup(1λ); (com, τ)←Com(δ, S);
π ← Prove(δ, com, τ, x, S(x))

]
=1

b) For any sets {Si}i∈[m] and any combined operation Q which takes m sets
as input and outputs one set, let Soutput = Q(S1, · · · , Sm), and thus

Pr

⎡
⎢⎣ SO.Verify(δ, c̃om,Q,

Soutput, π) = 1

∣∣∣∣∣∣∣
δ ← Setup(1λ);

∀i ∈ [m], (comi, τi) ← Com(δ, Si);
π←SO.Prove(δ, c̃om, τ̃ ,Q, Soutput)

⎤
⎥⎦=1

where c̃om = (com1, · · · , comm) and τ̃ = (τ1, · · · , τm).
• Function Binding: For any PPT adversary A, the probability that A wins

the following game is negligible:
1. The challenger generates a CRS δ by running Setup(1λ) and gives δ to

the adversary A.
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2. The adversary A outputs a set of commitments {comi}i∈[m] and the fol-
lowing tuples:
(a) A series of

(non-)membership query-proof tuples {(com′
j , xj , vj , πj)}j∈[n1], where

com′
j ∈ {comi}i∈[m] (supposing that com′

j = comtj
).

(b) A series of set-operation query-proof tuples {(c̃omj ,Qj , S
′
j , π

′
j)}j∈[n2],

where c̃omj is a list of commitments contained in {comi}i∈[m] (sup-
posing that c̃omj = (comtj1 , comtj2 , · · · )).

3. The adversary A wins the game if the following hold:
(a) For each j ∈ [n1], Verify(com′

j , xj , vj , πj) = 1
(b) For each j ∈ [n2], SO.Verify(c̃omj ,Qj , S

′
j , π

′
j) = 1.

(c) There do not exist sets {Si}i∈[m] satisfying Stj
(xj) = vj for each j ∈

[n1] and Qj(S̃j) = S′
j for each j ∈ [n2], where S̃j = (Stj1 , Stj2 , · · · ).

• Zero-Knowledge: There exists a simulator Sim such that for any PPT
adversary A, the absolute value of the difference

Pr

⎡
⎢⎣AOP (δ, stA, {comi}i∈[m])=1

∣∣∣∣∣∣∣
δ ← Setup(1λ),

({Si}i∈[m], stA) ← A(δ),
for i ∈ [m], (comi, τi)←Com(δ, Si)

⎤
⎥⎦

− Pr

⎡
⎢⎣AOS (δ, stA, {comi}i∈[m])=1

∣∣∣∣∣∣∣
(δ, stδ) ← Sim(1λ),

({Si}i∈[m], stA) ← A(δ),
({comi}i∈[m], stS)←Sim(δ,m, stδ)

⎤
⎥⎦

is negligible in λ, where OP and OS are defined as follows:
OP : On input (comi, x) for some

i ∈ [m], OP outputs π ← Prove(δ, comi, τi, x, Si(x)). On input (c̃om,Q)
where c̃om = (comt1 , · · · , comtn

) for some t1, · · · , tn ∈ [m], OP outputs
π ← SO.Prove(δ, c̃om, τ̃ ,Q,Q(St1 , · · · , Stn

)) where τ̃ = (τt1 , · · · , τtn
). In

other cases, OP outputs ⊥.
OS: On input (comi, x) for some

i ∈ [m], OS outputs π ← Sim(δ, com, stS , x, Si(x)). On input (c̃om,Q)
where c̃om = (comt1 , · · · , comtn

) for some t1, · · · , tn ∈ [m], OS outputs
π ← Sim(δ, c̃om, stS ,Q,Q(St1 , · · · , Stn

)). In other cases, OS outputs ⊥.

4.2 Construction of ZKS with Set-Operation Queries

This subsection describes our construction of a ZKS scheme with set-operation
queries. Our construction builds on the standard ZKS described in Sect. 3.1.
The Setup,Commit,Prove,Verify algorithms remain the same as Fig. 5, and we
only show how to construct SO.Prove and SO.Verify algorithms.
Combined Operations. In this paper, we denote a combined operation Q
by a “circuit” of intersection “∩”, union “∪”, and set-difference “\”. Firstly, we
demonstrate how to prove a basic set operation (namely the intersection, union
or set-difference) on committed sets.
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Algorithm for Intersection. Here we present a non-interactive protocol to
prove that a commitment CI commits to the intersection of two sets committed
in CS1 and CS2 . Our protocol satisfies a special-purpose knowledge soundness,
which roughly ensures the following:

– If one can generate a membership proof showing that x belongs to the set
committed in CI , then the extractor can generate membership proofs showing
that x belongs to the sets committed in CS1 and CS2 .

– If one can generate a non-membership proof showing that x does not belong to
the set committed in CI , then the extractor can generate a non-membership
proof showing that x does not belong to either the set committed in CS1 or
the set committed in CS2

Follow the fact that, for any S1 and S2, proving I = S1 ∩ S2 only
requires to show that I is a subset of S1 and S2, and J1 = S1\I, J2 = S2\I
are disjointed. We construct the zero-knowledge protocol Intersection-NIZK
shown in Fig. 8. For any set S = {x1, · · · , xm}, we denote by Hprime(S) =
{Hprime(x1), · · · ,Hprime(xm)}.

Fig. 8. Protocol Intersection-NIZK

Lemma 8. Intersection-NIZK is a zero-knowledge protocol, achieving a spe-
cial purpose knowledge soundness defined as follows: There exists an extractor
E = (E1, E2) such that for any prover P∗ convincing the verifier with inverse-
polynomial probability over input (δ,CS1 ,CS2 ,CI), EP∗

1 can extract w in expected
polynomial time such that the following holds:
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1. On input w, ga ∈ G and prime p ∈ Z satisfying p ≥ 28λB3 and CI = gp
a,

E2(w, (ga, p)) can output gb and gc such that CS1 = gp
b and CS2 = gp

c .
2. On input w and a, b, p ∈ Z such that prime p ≥ 28λB3 and Ca

I · gbp = g,
E2(w, (a, b, p)) can output a′, b′ ∈ Z such that Ca′

S1
· gb′p = g or Ca′

S2
· gb′p = g.

Proof. Completeness directly follows the structure of ZKS commitment, there-
fore we skip it here.

The simulator of the zero-knowledge property only needs to generate
CJ1 = gr1 and CJ2 = gr2 by sampling r1, r2

$←[2λB], and generate π1, π2, π3 using
the simulator of NIZKpseudo−DDH and NIZKcoprime. Then the zero-knowledge
property follows from the fact that the distributions of CJ1 ,CJ2 generated by the
simulator are statistically indistinguishable from those generated by an honest
prover and the zero-knowledge property of NIZKpseudo−DDH and NIZKcoprime.

The proof of the special purpose knowledge soundness is as follows.
From the weak knowledge soundness of NIZKpseudo−DDH , E1 can extract

w1 = (x, y, a1, a2, a3, c1, c2, c3) such that |a1|, |a2|, |a3| ≤ 25λB2, |c1|, |c2| ≤
26λB2, |c3| ≤ 28λB3, and Cc1

I = ga1x,Cc2
J1

= ga2y,Cc3
S1

= ga3xy; and w2 =
(x′, y′, a′

1, a
′
2, a

′
3, c

′
1, c

′
2, c

′
3) such that |a′

1|, |a′
2|, |a′

3| ≤ 25λB2, |c′
1|, |c′

2| ≤ 26λB2,
|c′

3| ≤ 28λB3, and Cc′
1

I = ga′
1x′

,Cc′
2

J2
= ga′

2y′
,Cc′

3
S2

= ga′
3x′y′

. From the weak
knowledge soundness of NIZKcoprime, E1 can extract w3 = (t1, t2, c) such that
|c| ≤ 25λB2 and Ct1

J1
Ct2

J2
= gc. Here, E1 outputs w = (CJ1 ,CJ2 , w1, w2, w3).

Nextly, we show how E2 works to conclude the proof:

1. On input w, ga ∈ G and prime p ∈ Z satisfying p ≥ 28λB3 and CI = gp
a, E2

firstly parses w as (CJ1 ,CJ2 , w1, w2, w3) and parses w1 as (x, y, a1, a2, a3, c1,
c2, c3). Since Cc1

I = ga1x, it follows that gc1p
a = ga1x. We claim that p|a1x,

otherwise, from Lemma4, an attacker could easily find a p-root of g and break
the strong RSA assumption. Since p is a prime larger than a1, it follows that
p|x and Cc3

S1
= ga3xy = (ga3xpy)p where xp = x/p ∈ Z. As gcd(p, c3) = 1, from

Lemma 4, E2 can easily compute gb from (c3, ga3xy/p) such that CS1 = gp
b .

Using the same strategy, E2 can also compute gc such that CS2 = gp
c .

2. On input w and a, b, p ∈ Z satisfying that p is a prime larger than 28λB3 and
Ca

I · gbp = g, E2 firstly parses w as (CJ1 ,CJ2 , w1, w2, w3) and further parses
w1 as (x, y, a1, a2, a3, c1, c2, c3). We claim that gcd(p, x) = 1, since it is known
that Ca

I ·gbp = g and Cc1
I = ga1x; otherwise, an attacker could easily break the

strong RSA assumption. If gcd(p, y) = 1 (or equivalently, gcd(p, a3xy) = 1),
E2 can easily find integers α, β satisfying αp+βa3xy = 1, and output a′ = βc3
and b′ = α such that Ca′

S1
· gb′p = Cβc3

S1
gαp = gβa3xygαp = g. Similarly, parsing

w2 = (x′, y′, a′
1, a

′
2, a

′
3, c

′
1, c

′
2, c

′
3), if gcd(p, y′) = 1, E2 can also compute a′, b′ ∈

Z such that Ca′
S2

· gb′p = g. The construction of E2 concludes by claiming that
at least one of the gcd(p, y) = 1, gcd(p, y′) = 1 must happen. Otherwise, an
attacker could easily break the strong RSA assumption as follows: Since p
is a large prime and gcd(p, y) �= 1, gcd(p, y′) �= 1, it follows that p|y, p|y′.
Then, from Lemma 4 and the fact Cc2

J1
= ga2y,Cc′

2
J2

= ga′
2y′

, it can compute
h1, h2 such that CJ1 = hp

1 and CJ2 = hp
2. Subsequently, from Lemma 4 and the
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fact Ct1
J1

Ct2
J2

= gc where w3 = (t1, t2, c), it can compute h such that hp = g,
breaking the strong RSA assumption. ��

Algorithm for Union. Herein we present a non-interactive protocol to prove
that a commitment CU commits to the union of two sets committed in CS1

and CS2 . Our protocol satisfies a special-purpose knowledge soundness, which
roughly ensures the following:

– If one can generate a membership proof showing that x belongs to the set
committed in CU , the extractor can generate a membership proof showing
that x belongs to the set committed in either CS1 or CS2 .

– If one can generate a non-membership proof showing that x does not belong
to the set committed in CI , then the extractor can generate non-membership
proofs showing that x does not belong to the sets committed in CS1 and CS2 .

We construct the zero-knowledge protocol Union-NIZK in Fig. 9.

Fig. 9. Protocol Union-NIZK

Lemma 9. Union-NIZK is a zero-knowledge protocol, achieving a special purpose
knowledge soundness defined as follows: There exists an extractor E = (E1, E2)
such that for any prover P∗ convincing the verifier with inverse-polynomial prob-
ability over input (δ,CS1 ,CS2 ,CI), EP∗

1 can extract w within an expected time
such that the following hold:

1. On input w and ga ∈ Z and prime p satisfying p ≥ 28λB3 and CU = gp
a,

E2(w, (ga, p)) can output gb such that CS1 = gp
b or CS2 = gp

b .
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2. On input w and a, b, p ∈ Z such that prime p ≥ 28λB3 and Ca
U · gbp =

g, E2(w, (a, b, p)) can output a′, b′, a′′, b′′ ∈ Z such that Ca′
S1

· gb′p = g and
Ca′′

S2
· gb′′p = g.

The proof of this lemma is similar to Lemma 8. We defer it to the full version of
this paper [45].

Algorithm for Set-Difference. We present a non-interactive protocol to prove
that the difference D between two sets S1, S2 committed in CS1 and CS2 (i.e., D =
S1\S2) is committed in CD. Our protocol satisfies a special-purpose knowledge
soundness, which roughly ensures the following:

– If one can generate a membership proof showing that x belongs to the set
committed in CD, the extractor can generate a membership proof showing
that x belongs to the set committed in CS1 and a non-membership proof
showing that x doesn’t belong to the set committed in CS2 .

– If one can generate a non-membership proof showing that x does not belong to
the set committed in CD, the extractor can generate a non-membership proof
showing that x does not belong to the set committed in CS1 or a membership
proof showing that x belongs to the set committed in CS2 .

We construct the zero-knowledge protocol Difference-NIZK in Fig. 10.

Fig. 10. Protocol Difference-NIZK

Lemma 10. Difference-NIZK is a zero-knowledge protocol, achieving a spe-
cial purpose knowledge soundness defined as follows: There exists a extractor
E = (E1, E2) such that for any prover P∗ convincing the verifier with inverse-
polynomial probability over input (δ,CS1 ,CS2 ,CD), EP∗

1 can extract w such that
the following holds:
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1. On input w, ga ∈ G and prime p ∈ Z such that p ≥ 28λB3 and CD = gp
a,

E2(w, (ga, p)) can output gb and a, b such that CS1 = gp
b and Ca

S2
gpb = g.

2. On input w and a, b, p ∈ Z such that prime p ≥ 28λB3 and Ca
D · gbp = g,

E2(w, (a, b, p)) can output ga or a′, b′ such that CS2 = gp
a or Ca′

S1
· gb′p = g.

The proof of this lemma is similar to Lemma 8, and we defer it to the full version
of this paper [45].
Algorithm for Combined Operations. Using above algorithms, we now con-
struct the SO.Prove and SO.Verify algorithms to conclude the construction of
ZKS with set-operation queries. Remind that a combined operation Q is a cir-
cuit comprised of gates and wires. Each gate corresponds to an intersection,
union, or set difference operation. Just like in Boolean circuits, when given a
string as input, each wire in Boolean circuit has a deterministic bit in {0, 1}.
Each wire in the set-operation circuit corresponds to a deterministic set when
provided with a specific input.

Therefore, to prove that a combined operation Q on (committed) sets is
performed honestly, we only need to show that each gate in Q is performed
honestly, i.e., for each gate corresponding a basic set operation, the (committed)
set corresponding to the output wire is the result of applying this set operation
to the (committed) sets corresponding to the input wires.

Without loss of generality, assume that the gates of Q are numbered based
on their execution order. That is to say, the input wires of the gate i are either
the output wire of some gate j < i or an input wire of Q, and the output wire
of the last gate is also the output wire of Q. The protocol is shown in Fig. 11:

Theorem 3. The algorithms (Setup, Com, Prove,Verify) in Fig. 5 together with
the algorithms (SO.Prove,SO.Verify) in Fig. 11 consist a ZKS with set-operation
queries in the generic group model and random oracle model.

Proof. Completeness is oblivious.
To prove the function binding property, we will show the existence of a

extractor E satisfying that, for any PPT adversary A generating a series of valid
query-proof tuples with a noticeable probability, E can either extract a series
of sets satisfying all queries or break the strong RSA assumption. Here, E is
constructed as follows.

1. First, E invokes A to obtain m commitments, C1, · · · ,Cm. Then, E initializes
2m+1 sets, labeled as S0, S1, S

′
1, · · · , Sm, S′

m. Here, S0 is used to record all the
elements x appearing in the query-proof queries generated by A (including
the elements in the output set of a set-operation query). In addition, for
any i ∈ [m], Si is the sets of elements that, believed by E, are contained in
the set committed in Ci; S′

i is the sets of elements that, believed by E, are
not contained in the set committed in Ci. Here, E invokes A to obtain the
query-proof tuples and adds all appearing elements to S0.

2. For each membership proof proving that x belongs to the set committed in Ci,
E adds x to Si, and extracts and records the tuple (x, gx, p,Ci) from the proof
such that gp

x = Ci and p = Hprime(x). (The extraction of the tuple is trivial).
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Fig. 11. Protocol for Verifiable Combined Operations

We call such a tuple as membership tuple. For each non-membership proof
proving that x does not belong to the set committed in Ci, E adds x to S′

i, and
extracts and records (x, a, b, p,Ci) such that Ca

i gpb = g and p = Hprime(x).
We call such a tuple as non-membership tuple. Furthermore, for each set-
operation query-proof tuple, E uses the extractors E1 of Intersection-NIZK,
Union-NIZK and Difference-NIZK to extract the corresponding w.

3. For each element x ∈ S0, E applies the following. For each set-operation
query-proof tuple, if x belongs to the output set Soutput whose commitment
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is C′
l, E can obtain a membership tuple (x, gx, p,C′

l) from proof. On the other
hand, if x does not belong to the output set, then E can obtain a non-
membership tuple (x, a, b, p,C′

l). According to the special purpose knowledge
soundness of Intersection-NIZK, Union-NIZK, and Difference-NIZK, for each
gate, when given a (non-)membership tuple associated to the output wires
(we call a (non-)membership tuple associated to a wire if the commitment
in this tuple is the one committing to the set corresponding to this wire),
one can extract one or two (non-)membership tuples associated to the input
wires. E can hence recursively obtain a series of tuples associated to input
wires of the combined operation. As a result, for each obtained tuple of the
form (x, g′, p,Ci), E adds x to Si, and for each obtained tuple of the form
(x, a, b, p,Ci), E adds x to S′

i.
4. If there are no contradictions (that is, there are no elements x and i ∈ [m] such

that x ∈ Si ∧ x ∈ S′
i), then E outputs S1, · · · , Sm. Otherwise, it means that

there exists (x, gx, p,Ci) and (x, a, b, p,Ci) such that gp
x = Ci and Ca

i gpb = g,
breaking the strong RSA Assumption.

Now we only need to show that the sets S1, · · · , Sm outputted by E satisfy
all queries. From step 2, we can see that these sets already satisfy the (non-
)membership queries. As for set-operation queries, we need to show that: For
each set-operation query-proof (Ct1 , · · · ,Ctk

,Q, Soutput, π), Q(St1 , · · · , Stk
) =

Soutput.
Let l be the number of the gates of Q, parse π as (C′

1, · · · ,C′
l, π1, · · · , πl, τ

′
l ).

Run Q(St1 , · · · , Stk
) to obtain the sets S′

1, · · · , S′
l corresponding to the output

wires of the gates in Q (thus, S′
l = Q(St1 , · · · , Stk

)). Denote by (S′′
1 , · · · , S′′

k+l) =
(St1 , · · · , Stk

, S′
1, · · · , S′

l) and (C′′
1 , · · · ,C′′

k+l) = (Ct1 , · · · ,Ctk
,C′

1, · · · ,C′
l).

Remind that E will extract lots of tuples associated to the wires in Q in step 3.
Here, we recursively prove the following statements are true for each i ∈ [k+ l]:

For each x ∈ S0, if E used to extract a tuple of the form (x, g′, p,C′′
i ) in step

3, then x ∈ S′′
i ; And if E used to extract a tuple of the form (x, a, b, p,C′′

i ) in
step 3, then x /∈ S′′

i .
Firstly, from the definition of S1, · · · , Sm, above statements are true for

i ∈ [k]. Suppose above statements are true for i ∈ [k + t − 1]. Then for gate
t with sets S′′

j1
, S′′

j2
(j1, j2 ≤ k + t − 1) corresponding to the input wires, if the

gate corresponding to “interactive” and (x, ga, p,C′′
k+t) (resp. (x, a, b, p,C′′

k+t)) is
extracted, then from the knowledge soundness of Intersection-NIZK, (x, gb, p,C′′

j1)
and (x, gc, p,C′′

j2) (resp. (x, a′, b′,C′′
j1) or (x, a′, b′,C′′

j2)) are extracted by E. Since
j1, j2 ≤ k + t − 1, it follows that x ∈ S′′

j1
, x ∈ S′′

j2
(resp. x /∈ S′′

j1
or x /∈ S′′

j2
),

and therefore x ∈ S′′
k+t = S′′

j1
∩ S′′

j2
(resp. x /∈ S′′

k+t = S′′
j1

∩ S′′
j2

). The case
that gate t corresponds to “union” or “set-difference” can be proved similarly.
Therefore above statement is also true for i = k + t. Recursively, the above
statements are true for each i ∈ [k + l]. Note that S′′

k+l is the output set.
Remind that if x ∈ Soutput (resp. x /∈ Soutput), E will extract (x, g′, p,C′′

l+k)
(resp. (x, a, b, p,C′′

l+k)), which means that x ∈ S′′
k+l (resp. x /∈ S′′

m+l). Therefore
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we have Q(St1 , · · · , Stk
) = S′

l = S′′
k+l = Soutput, which concludes the proof of

function binding.
For the zero-knowledge property, due to that the distribution of the ZKS

commitment is statistically indistinguishable from {gr|r ← [2λB]}, the simulator
can sample element from {gr|r ← [2λB]} as the commitments and then use the
simulators of Intersection-NIZK, Union-NIZK and Difference-NIZK to conclude the
simulations.

Remark 2. One can use the randomness r′
l applied in the commitment C′

l to
replace the opening information τ ′

l , which is also sufficient to check whether C′
l

is a commitment to Soutput. Therefore the proof size of a set-operation query is
only linear in the size of combined operation Q and the length of elements in S.

5 Zero-Knowledge Functional Elementary Databases

This section consists of three parts. Firstly, we describe the definition of ZK-
FEDBs. Secondly, we show how to transform a Boolean circuit query into a
set-operation query on related sets. Finally we show how to construct a ZK-
FEDBs from standard ZE-EDBs and ZKS with set-operation queries.

5.1 Definition of Zero-Knowledge Functional Elementary Databases

Informally, a ZK-FEDB allows one to commit an elementary database D of key-
value pairs (x, v) and then, for any Boolean circuit f , convincingly answer the
queries in the form of “send me all records (x, v) in D satisfying f(x, v) = 1”. Here
we write the output database as D(f) (i.e., D(f) = {(x, v) ∈ D|f(x, v) = 1})
and regard the membership queries (supported by the standard ZK-EDB) as a
type of special function query.

Definition 3 (Zero-Knowledge Functional Elementary Databases). A
Zero-Knowledge Functional Elementary Database consists of four algorithms
(Setup, Com, Prove, Verify),

• δ ← Setup(1λ): On input a security parameter 1λ, Setup outputs a random
string (or a structured reference string) δ as the CRS.

• (com, τ) ← Com(δ,D): On input a CRS δ and an elementary database D,
Com outputs a commitment of database com and opening information τ .

• π ← Prove(δ, com, τ, f,Doutput): On input the CRS δ, the database commit-
ment and the associated opening information (com, τ), a Boolean circuit f ,
and the target output Doutput, Prove outputs a proof π for Doutput = D(f).

• 0/1 ← Verify(δ, com, f,Doutput, π): On input the CRS δ, the commitment
com, the boolean circuit f , the target output Doutput and the proof π, Verify
accepts or rejects.

It satisfies the following three properties:
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• Completeness: For any elementary database D and any Boolean circuit f ,

Pr

[
Verify(δ, com, f,D(f), π) = 1

∣∣∣∣∣ δ ← Setup(1λ); (com, τ) ← Com(δ,D);
π ← Prove(δ, com, τ, f,D(f))

]
= 1

• Function binding: For any PPT adversary A, the probability that A wins
in the following game is negligible:
1. The challenger generates a CRS δ by running Setup(1λ) and gives δ to

adversary A.
2. The adversary A outputs a commitment com and a series of function

query-proof tuples {(fi,Di, πi)}i∈[n].
3. The adversary A wins the game if the following hold: a) For each i ∈ [n],

Verify(δ, com, fi,Di, πi) = 1 and b) there does not exist a database D
satisfying D(fi) = Di for each i ∈ [n].

• Zero-Knowledge: There exists a simulator Sim such that for any PPT
adversary A, the absolute value of the difference

Pr

[
AOP (δ, stA, com) = 1

∣∣∣∣∣ δ ← Setup(1λ), (D, stA) ← A(δ),
(com, τ) ← Com(δ,D)

]
−

Pr

[
AOS (δ, stA, com) = 1

∣∣∣∣∣ (δ, stδ) ← Sim(1λ), (D, stA) ← A(δ),
(com, stS) ← Sim(δ, stδ)

]

is negligible in λ. where OP and OS are defined as follows:
OP : On input a Boolean circuit f , OP outputs π←Prove(δ, com, τ, f,D(f)).
OS: On input a Boolean circuit f , OS outputs π←Sim(stS , f,D(f)).

5.2 Circuit Transformation

In this subsection, we show how to transform a Boolean circuit query into a
set-operation query.

Roughly, we construct a deterministic algorithm that on input a Boolean
circuit f output a combined operation Q (a ‘circuit’ of unions, intersections and
set-differences) such that, for any database D, the set of keys belonging to the
output database of querying Boolean circuit f , (i.e., {x|∃v, (x, v) ∈ D∧f(x, v) =
1}) equals to the output of combined operation Q on the corresponding related
sets {Sb

i }b∈[0,1],i∈[n], which are defined as follows:

Sb
i = {x ∈ Sup(D)| the i-th bit of “x||v” is b}.

The construction of above deterministic algorithm is as follows.
Algorithm Q ← Tran(f): On input the boolean circuit f : {0, 1}n → {0, 1},
Tran(f) outputs Q, a combined operation having an input of 2n sets (S0

1 , S1
1 ,

· · · , S0
n, S1

n), and outputs a set S′. Here, Q is constructed as follows:
Tran first associates the i-th input wires of f with the two sets (S0

i , S1
i ).

Supposing that f contains l gates (n1, · · · , nl), without loss of generality, we
require the input wires of ni to be either the input wires of f or the output wires
of gates (n1, · · · , ni−1), and the output of gate nl is also the output of f . Then
for i from 1 to l, we have the following:
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1. If gate ni is “AND” gate, and the sets associated with the two input wires are
(S0

input1, S1
input1), (S

0
input2, S

1
input2), then denote the sets associated with the

output wire as (S1
input1 ∩ S1

input2, S
0
input1 ∪ S0

input2).
2. If gate ni is “OR” gate, and the sets associated with the two input wires are

(S0
input1, S1

input1), (S
0
input2, S

1
input2), then denote the sets associated with the

output wire as (S1
input1 ∪ S1

input2, S
0
input1 ∩ S0

input2).
3. If gate ni is “NOT” gate, and the sets associated with the two input wires

are (S0
input, S

1
input), then denote the sets associated with the output wire as

(S1
input, S

0
input).

Supposing that (S0, S1) are the sets associated with the output wire of gate nl,
Q outputs S1.

Denote by Sup the algorithm that on input a key-value database D =
{(x1, v1), · · · , (xm, vm)}, outputs the set of keys belonging to D, i.e., Sup(D) =
{x1, · · · , xm}. We then have the following:

Lemma 11. Tran is a deterministic algorithm satisfying that for any Boolean
circuit f and any key-value databases D,

Q(S0
1 , S1

1 , · · · , S0
n, S1

n) = Sup(D(f))

where Sb
i = {x ∈ Sup(D)| the i-th bit of “x||v” is b}, Q = Tran(f) and D(f) =

{(x, v) ∈ D|f(x, v) = 1}.
proof sketch. Suppose S0

i , S1
i are the sets associated to the i-th wire

defined as in Tran (remind that for input wire i ∈ [2n], Sb
i = {x ∈

Sup(D)| the i-th bit of “x||v” is b}), then one can conclude the correct-
ness of above lemma by recursively checking that for each wire i in f ,
Sb

i = {x|∃v s.t. (x, v) ∈ D ∧ the value of the i-th wire of f(x, v) is b},
which means that Q(S0

1 , S1
1 , · · · , S0

n, S1
n) = {x|∃v s.t. (x, v) ∈ D ∧

the value of the output wire of f(x, v) is 1} = Sup(D(f)).

5.3 Construction

In this section, we present a construction of the ZK-FEDB from a standard
ZK-EDB (SetupD,ComD,ProveD,VerifyD) and a ZKS with set-operation queries
(SetupS ,ComS ,ProveS ,VerifyS ,SO.ProveS ,SO.VerifyS).

The construction of ZK-FEDBs is shown in Fig. 12.

Theorem 4. The scheme shown in Fig. 12 is a zero-knowledge functional ele-
mentary database scheme.

Proof. The completeness follows from Lemma 11 directly.
To prove the function binding property, we will show that, supposing there

exists a PPT adversary A that on input a random CRS δ, outputs a com-
mitment C and a series of valid query-proof tuples {fi,Di, πfi

}i∈[t] such that
Verify(δ, C, fi,Di, πfi

) = 1 with noticeable property. Then D = ∪i∈[t]Di is a
database satisfying D(fi) = Di.



298 X. Zhang and Y. Deng

Fig. 12. ZK-FEDB

First, we claim that D is indeed a database (that is, for each x ∈ Sup(D),
there is at most one value v satisfying (x, v) ∈ D), otherwise, one can break the
soundness of the ZK-EDB scheme (SetupD,ComD,ProveD,VerifyD).

Second, we claim that for each i ∈ [t], D(fi) = Di. Denote by Sb
i = {x ∈

Sup(D)| the i-th bit of x||v is b}. From the function binding of ZKS with set-
operation queries, we know that there exists sets S′b

i satisfying the first and
third checks of the verifier in each proof, which means the following:

1. Qi(S′0
1 , S′1

1 , · · · , S′0
n , S′1

n ) = Sup(Di) where Qi = Tran(fi).
2. For each i ∈ [2l] and x ∈ Sup(D), x ∈ S

′bx,i

i and x /∈ S
′1−bx,i

i where bx,i is the
i-th bit of x||D(x).

From the second property above, we have Sb
i = S′b

i ∩ Sup(D). Now, from the
first property, we have that Qi(S0

1 , S1
1 , · · · , S0

2l, S
1
2l) = Qi(S′0

1 ∩ Sup(D), S′1
1 ∩

Sup(D), · · · , S′0
2l ∩Sup(D), S′1

2l ∩Sup(D)) = Di∩Sup(D) = Di. From Lemma11,
we have D(fi) = Di, which concludes the proof.
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The zero-knowledge property directly follows the zero-knowledge property
of ZK-EDB and ZKS with set-operation queries. ��
Performance. As shown in Remark 1, our ZKS scheme supports standard batch
technique. In the full version of this paper [45], we additionally present a con-
struction of ZK-EDB, which achieves constant-size batched proofs. When uti-
lizing this ZK-EDB and our ZKS, and using the standard batch technique, the
performance of our ZK-FEDB is as follows (Table 1):

Table 1. Performance of our ZK-FEDB

Prover’s work Verifier’s work Communication

Commit O(�|D|)EXT + O(|D|)h N/A O(�)G

Query O(�|D|+ |D||f |)EXT
+O(|D|+ � + |f |)h

O(� + |f |)EXT
+O(|Doutput|+ � + |f |)h O(� + |f |)G

where � is the bit length of record, |D| and |Doutput| denote the size of committed
database and output database respectly, |f | is the size of query function (for
example, a search query can be expressed as a circuit of l AND gates, while a
range query can be expressed as a circuit containing no more than 2� AND/OR
gates), G represents a group element, h denotes hashing to a prime and EXT is
a λ-bit exponentiation.

Furthermore, by utilizing Boneh et al.’s PoE protocol to reduce the veri-
fier’s computation cost, the proof size is approximately (28�+ 122|f |)G and the
verify cost is approximately (24� + 131|f |)EXT + (3� + 43|f | + |Doutput|)h. We
hope our work will stimulate more research in this field and bring more efficient
constructions of ZK-FEDB.
Applications. Our construction of the ZK-FEDB can be used to construct a
Key Transparency system via [12]’s paradigm. It is easy to see that our construc-
tion also satisfies the append-only property. The resulting Key Transparency
system achieves enhanced functionality, which enables clients to query public
keys in a more flexible manner.
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able suggestions. We are supported by the National Natural Science Foundation of
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Abstract. Developing end-to-end encrypted instant messaging solu-
tions for group conversations is an ongoing challenge that has garnered
significant attention from practitioners and the cryptographic commu-
nity alike. Notably, industry-leading messaging apps such as WhatsApp
and Signal Messenger have adopted the Sender Keys protocol, where
each group member shares their own symmetric encryption key with
others Despite its widespread adoption, Sender Keys has never been for-
mally modelled in the cryptographic literature, raising the following nat-
ural question:

What can be proven about the security of the Sender Keys protocol,
and how can we practically mitigate its shortcomings?

In addressing this question, we first introduce a novel security model
to suit protocols like Sender Keys, deviating from conventional group
key agreement-based abstractions. Our framework allows for a natural
integration of two-party messaging within group messaging sessions that
may be of independent interest. Leveraging this framework, we conduct
the first formal analysis of the Sender Keys protocol, and prove it satisfies
a weak notion of security. Towards improving security, we propose a series
of efficient modifications to Sender Keys without imposing significant
performance overhead. We combine these refinements into a new protocol
that we call Sender Keys+, which may be of interest both in theory and
practice.

1 Introduction

Messaging applications like WhatsApp, Facebook Messenger, Signal, and Tele-
gram have witnessed remarkable global adoption, serving as essential communi-
cation tools for billions of users. All of these applications rely, to a varying degree,
on cryptography to provide diverse forms of authenticity and secrecy. Among
end-to-end encrypted messaging services (this excludes, among others, Tele-
gram and Facebook Messenger by default), numerous cryptographic solutions
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have emerged, each with its own merits. Notably, for two-party messaging, Sig-
nal’s Double Ratchet Protocol [41] stands out as the dominant choice in practice.
In the context of group messaging, Signal [43]1 and later WhatsApp [48] have
adopted the so-called Sender Keys protocol [40], which has enjoyed widespread
adoption for numerous years. Besides these, other popular solutions such as
Matrix [2] and Session [37] implement variants of this protocol. In Sender Keys,
messages are encrypted using a user-specific symmetric key (which is then hashed
forward) and then authenticated with a signature. Additionally, parties rely on
secure two-party channels (instantiated in practice with the Double Ratchet)
to share key material between them. Looking ahead, two-party channels will be
central to determine the security attained by any instantiation of Sender Keys.

A baseline for secure group messaging has been recently established by the
IETF Messaging Layer Security (MLS) [16] standard, a joint effort between
academia and industry2. The protocol provides sub-linear complexity for group
operations (adding/removing members and updating key material). Academic
works have also explored so-called continuous group key agreement (CGKA) [7–
9,18,39], although these are only a component of a fully-fledged group messaging
protocol. So far, in terms of complete messaging protocols, only the modular
construction from [8] building on CGKA (which includes MLS), DCGKA [47] in
the decentralised setting and very recently Matrix [2] have been formalised to
date.

Despite being the most complete and well-studied protocol to-date in the
literature, MLS (and CGKAs in general) still present some drawbacks. While
some exhibit sub-linear performance in specific executions (and this class of exe-
cutions is not well-characterised in the literature), their performance can degrade
to linear in general, which is unavoidable at least when using off-the-shelf cryp-
tographic primitives [19]. Moreover, they tend to be complex, increasing their
attack surface and making them more susceptible to design and implementation
bugs. Finally, given the standardisation of MLS only occurred recently, MLS is
yet to be widely deployed.

Hence, Sender Keys and similar approaches to group messaging remain an
essential and practical alternative with different security / performance trade-
offs. Firstly, Sender Keys stands out for its relative simplicity, which reduces its
potential attack surface, making the protocol less susceptible to vulnerabilities
in both its design and implementation. Secondly, Sender Keys offers good per-
formance in small to moderate-sized groups, as demonstrated by its successful
adoption for groups of up to 1024 parties in WhatsApp and Signal [43,48]. While
the main group operations (adding and removing users) respectively have O(n)
and O

(
n2

)
total communication complexity for groups of size n, concrete effi-

1 Contrary to the folklore understanding that the Signal Messenger uses the pairwise
channels approach for group messaging in small groups, Signal currently uses Sender
Keys whenever possible.

2 Recent academic works and ongoing discussions in mailing lists have identified and
addressed several security issues that emerged during the standardisation of MLS [7,
11,35].
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ciency suffices in practice. Thirdly, Sender Keys offers forward-secure confiden-
tiality and robust support for concurrent and out-of-order application message
exchange.

Surprisingly, despite having the widest adoption and an open source imple-
mentation of its core cryptographic operations [43], Sender Keys has not been
formally studied in the literature, prompting the following natural question:

Can we formalise the Sender Keys protocol in a meaningful security model?

To answer this question we start by introducing a new cryptographic prim-
itive, along with a security model, to capture a broad class of group messaging
protocols that do not necessarily employ CGKA [7] at their core. Our framework
provides native support for group messaging protocols that utilise secure two-
party communication channels under the hood, for which we introduce a clean
level of abstraction. This novel framework proves instrumental in our analysis,
as existing literature predominately focuses on CGKA-oriented models that do
not suit Sender Keys and similar protocols.

Subsequently, we present a detailed description of the core Sender Keys pro-
tocol within our framework and provide a security proof validating the soundness
of the protocol. In our analysis, we observe that Sender Keys presents several defi-
ciencies that, despite not being easily exploitable flaws, prevent several desirable
and fundamental security notions, such as secure group membership, from being
met. These include forward security under message injections, resilience against
injections impacting group membership changes3, and fast recovery from state
compromise. These findings call into question the widespread use of the term
“secure messaging” by commercial messaging solutions, motivating the need for
more detailed discussion about the nuances around these protocols.

In this regard we propose an improved version of Sender Keys, that we call
Sender Keys+, where we only employ readily available cryptographic primitives
that have minimal impact on efficiency4. This addresses the following pertinent
question:

How can we improve the security of Sender Keys
whilst preserving its practical efficiency?

Overall, we believe that the formalisation and establishment of a provably
secure variant of Sender Keys, such as the Sender Keys+ protocol proposed in
this work, can serve as a valuable foundation for future implementations of the
protocol.

3 Note that Signal uses a dedicated private group management solution in practice [25]
that we do not capture and is less affected by this attack vector than WhatsApp [46];
we refer to our full version for further details.

4 Our approach veers away from a theoretically systematic exploration to determine
the “optimal” security for a Sender Keys-like protocol, as this would require non-
standard primitives that considerably degrade performance [9,15].
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1.1 Contributions

In summary, the main scientific contributions of our paper are the following:

– We introduce a new cryptographic primitive that we call Group Messenger
(GM). We establish a modular security model for GM designed to capture
messaging protocols like Sender Keys that are not necessarily based on group
key agreement. It accounts for an active adversary capable of controlling the
network and adaptively learning the secret states of different parties.

– We develop a general framework for composing two-party channels with group
messaging protocols that use them. Our approach parameterises the security
of the Group Messenger primitive based on the underlying two-party channels,
presenting a novel perspective that, to the best of our knowledge, has not been
explored previously.

– We formally describe Sender Keys, based on an analysis of Signal’s source
code [43], WhatsApp’s security white paper [48], and the yowsup library [33].

– We prove the security of Sender Keys in our model and describe several
shortcomings. These force us to restrict the capabilities of the adversary sub-
stantially for the proof to be carried out.

– We propose security fixes and improvements, several of which result in the
improved protocol Sender Keys+. In particular, we secure group member-
ship changes, improve the forward security of the protocol, and introduce
an efficient key update mechanism. We also formalise the additional security
guarantees in our model.

Full Version. Due to space constraints, some parts of the modelling, all proofs,
some additional clarifications and the full protocol description are only available
in the full version of this work [13].

1.2 Paper Overview

Security in Group Messaging. Besides standard notions such as confidentiality,
authenticity, and integrity of sent messages, two security properties are com-
monly considered in the messaging literature: forward security (FS) and post-
compromise security (PCS) [28]. Both properties require some form of key updat-
ing mechanism, and forward security requires secure state erasures to achieve.
Additionally, protocols must secure group membership updates, namely removed
members must not be able to read messages sent after their removal, and newly
added members must not (by default) be able to read past messages.

Most of the different formalisations of security in the literature model an
adversarial Delivery Service (DS), the entity responsible for delivering messages
between parties over the network. The adversary (modelling the DS) can act
as an eavesdropper with extended capabilities, e.g., that can schedule messages
to be consistently delivered by users, as in [7], as a semi-active adversary that
can schedule messages arbitrarily [39], or as an active adversary that can inject
messages [9,14]. In many protocols, including Sender Keys and MLS, the DS
relies mainly on some centralised infrastructure (the central server hereafter).
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Sender Keys. In a Sender Keys group G, every user ID ∈ G owns a so-called
sender key which is shared with all group members. A sender key is a tuple
SK = (spk, ck), where spk is a public signature key (with a private counterpart
ssk), and ck is a symmetric chain key. Every time ID sends a message m to the
group, ID encrypts m using a message key mk that is deterministically derived
(via a key derivation function H1) from its chain key ck and erased immediately
after being used. Upon message reception, group members derive mk to decrypt
the corresponding ciphertext, which can also be delivered out-of-order as we
discuss in later sections. Messages are authenticated by appending the sender’s
signature to them. In Fig. 1, we show a high-level abstraction of what occurs in
a three-member group G = {A,B,C} when A sends a message that parties B
and C receive.

Fig. 1. Simplified diagram for sending/receiving messages between three group mem-
bers. For ID ∈ {A, B, C}, ID’s initial sender key is (ckID, spkID). The state γID of ID
contains the sender keys of all group members.

Informally, forward security is provided by using a fresh message key for
every message: every time a message is sent, the chain key is symmetrically
ratcheted, i.e., hashed forward using a key derivation function H2. The protocol,
that we describe further in Sect. 4, also requires that there exist confidential and
authenticated two-party communication channels between each pair of group
members. These are used for sharing sender keys when parties are added or
removed from the group, or when some party updates their key material. For
example, in the event that some ID leaves the group, members erase their own
sender key and start over. This mechanism provides a form of PCS when a user
is removed as the key material is refreshed.
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Modelling Two-party Channels. Formally capturing the security of two-party
channels is central to our analysis of Sender Keys in particular since fresh sender
keys are sent over these channels. Two-party channels that are not regularly
used can undermine security. For example, if a group member ID ’s state is
compromised, there is no guarantee that fresh keys sent by other members (via
two-party channels) are not leaked, since ID ’s two-party channels may not yet
have healed yet. Moreover, two-party channels can take more than one round
trip to heal when using the Double Ratchet, as is the case for WhatsApp and
the Signal Messenger [6].

Our modelling starts in Sect. 2 with the introduction of a primitive 2PC for
two-party channels. We define a two-party channel with initialisation (Init), chan-
nel initialisation (InitCh) send (Send) and receive (Recv) algorithms. Notably,
InitCh allows parties to adaptively bootstrap channels, and deviates from works
on ratcheting-based two-party messaging that abstract authentication away [17].
Our security model captures both forward security and post-compromise secu-
rity. To model PCS, we introduce a crucial parameter, denoted as Δ and referred
to as the PCS bound. This parameter, inspired by [6] and [22], serves as an upper
bound on the number of communication steps or channel epochs required to
restore security following a compromise.

Our Primitive: Group Messenger. In Sect. 3, we define a new cryptographic
primitive, Group Messenger (GM), which includes five stateful algorithms that:
initialise a party’s state (Init), send an application message (Send), receive an
application message (Recv), execute a change proposal in the group (Exec), and
process a change in the group (Proc). Supported group changes are: group cre-
ation, member addition, member removal, and sender key updates. Note this
contrasts with the three-phase propose/commit/process flow for updates (the
so-called propose-commit paradigm [9]) used by MLS and newer CGKA proto-
cols.

We define a game-based security notion for GM that captures a partially
active adversary with control over the Delivery Service, taking inspiration from
previous CGKA modelling [9,14]. In our model in Sect. 3.1, we capture the secu-
rity of each protocol by parameterising the game with a cleanness predicate
(sometimes safety predicate in other work), which excludes trivial attacks and
reflects security weaknesses.

Security Analysis of Sender Keys. With this formalism established, in Sect. 5.1
we define cleanness predicates for Sender Keys that precisely capture its security.
We define three sub-predicates that restrict the capabilities of the adversary for
message challenges, capturing confidentiality; for message injections, capturing
integrity and authenticity; and for re-orderings and forgeries of control messages
(concurrency), capturing the message ordering provided by the central server.

Notably, the restrictions that we impose via our cleanness predicates are
necessary for the security proof to go through and reveal several shortcomings
in the protocol. Examples include:
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– Sender Keys achieves only a weak form of PCS through key updates. Healing
from a compromise requires multiple messages (at least Δ+1), even if a user
is removed during healing.

– Control messages lack proper authentication and are malleable. An adversary
with partial control over the network, such as the server, can make arbitrary
changes in the group membership (such as adding new users without any
member’s authorisation), which is a significant practical concern.

– Forward security is sub-optimal, as messages are malleable after they are sent
if a state exposure occurs.

In our full version, we also compare our description of Sender Keys with
the implementations in WhatsApp and Signal, clarifying the extent to which
our findings are applicable to these popular apps. We remark that our core
analysis is nevertheless implementation-agnostic, and the fact that we model
the underlying two-party channels in a fine-grained fashion allows us to capture
their impact on security of Sender Keys in the face of state exposure (i.e., FS
and PCS).

Shortcomings and Proposed Improvements. Leaving aside the security limita-
tions that are intrinsic to the design of the protocol, we find that one can improve
both its security and efficiency in several aspects. Hence, in Sect. 6 we pro-
pose modifications to the protocol with the aim of securing group membership,
strengthening the (weaker than expected) forward security for authentication,
and integrating efficient post-compromise security updates. Notably, our novel
PCS update mechanism improves the key update mechanism implemented by our
core protocol and performed in Signal, bringing down the total communication
complexity from quadratic to linear in the group size. Moreover, as a result of
our modular approach with respect to modelling two-party channels, our mod-
elling can capture the security improvement (or weakening) that results from
replacing the Double Ratchet by an alternative two-party messaging protocol.

We extend the techniques used in the original proof to establish the security
of our modified protocol, called Sender Keys+. The main technical step involves
redefining the cleanness predicates, which are strictly less restrictive compared
to those used for the original protocol. Notably, the adversary is now allowed to
inject control messages (given the group has recovered from any state exposures).
We also allow the adversary to mount more fine-grained attacks for application
message forgeries, and allow arbitrary challenges after some party has updated
over a refreshed channel (before, we could only allow challenges on the updater).

1.3 Additional Related Work

A notable recent research direction revolves around the MLS protocol [16] and
the CGKA abstraction [7]. This line of work started with asynchronous ratchet
trees [27] and quickly led to TreeKEM [18] and its variants [5,9,11,39]. [10]
considers CGKA where the central server ‘splits’ ciphertexts for receiving parties,
reducing bandwidth overhead. The CGKA of [34] has O(n)-sized ciphertexts in
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all cases, but its relative simplicity makes them attractive and for smaller groups
can be concretely competitive in performance. We provide a more thorough
comparison between CGKA-based protocols and Sender Keys in Sect. 6.4.

The formal extension of CGKA to group messaging was explored in [8], while
the key schedule of MLS was proven secure in [23]. The work of [29] shares
some similarities with ours as it also constructs group messaging from two-party
channels and achieves O(n) key update complexity. However, they do not model
two-party channels as a standalone primitive nor dynamic groups formally, and
their protocols require more interaction than ours (e.g., the initial group key
agreement protocol can take several rounds).

Concurrency, a crucial aspect in CGKA-based protocols, has been a central
topic in works such as [4,5,20]. Secure administration in CGKAs was explored
in [14]. In [47] a Sender Keys-like approach is utilized to construct a decentralised
CGKA protocol but they do not capture group messaging, and their security
model does not support message injections (hence considering a passive adver-
sary). Moreover, the theorems in their work assume a non-adaptive adversary
where the adversary must announce all queries at the game’s outset. This work
nonetheless extends the scope of modern messaging to decentralised networks
without a central authority, diverging from existing approaches that target cen-
tralised networks. A simplified (notably lacking forward security) decentralised
variant of Sender Keys is implemented by the Session app [37].

Also relevant to our work are secure two-party messaging protocols that
propose alternatives to the Double Ratchet [41], such as [6,15,32,36,44,45].
Inspired by more practical-oriented endeavors, we acknowledge recent crypto-
graphic audits conducted on Telegram [3], Matrix [1], Threema [38], and What-
sApp’s backup service [31].

Sender Keys. While some works on Sender Keys lack formalism and security
proofs, they offer valuable insights. In [46] the authors evaluate Sender Keys,
provide a high-level description of the protocol, and examine practical vulnera-
bilities in WhatsApp group chats. Multi-group security and key update mech-
anisms for Sender Keys are informally discussed in [30]. In [12], a preliminary
analysis of the security of Sender Keys is carried out. While the paper only
includes informal discussions and no proofs, it serves as an initial exploration for
the ideas in the present work. We remark that the scope of [12] is limited, as it
does not formally develop a security model, and assumes that all two-party chan-
nels used by Sender Keys are perfectly secure, which is unrealistic and impossible
to develop in practice.

Concurrent work by Albrecht, Dowling and Jones [2] develops a device-
oriented security model and a proof for a recent specification of Matrix (i.e., for
the updated protocol that mitigates the issues described in [1]). For group mes-
saging, Matrix implements the Megolm protocol, which is Sender Keys-inspired
but still deviates significantly from our description in this work, particularly
regarding server interaction. Remarkably, [2] and our work arrive to similar con-
clusions in our analysis, such as the insecurity of group management and the
challenges imposed by message ordering. Our works are complimentary and open
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new research directions. Examples include exploring whether the improvements
behind Sender Keys+ can also be applied to Megolm, as well as extending our
modelling to consider the (challenging) multi-device setting as they do.

2 Preliminaries

Notation. Unless otherwise stated, all algorithms are probabilistic, and
(x1, . . . ) $← A(y1, . . . ) is used to denote that A returns (x1, . . . ) when run on
input (y1, . . . ). Blank values are represented by ⊥, which we return in case of
algorithm failure. We denote the security parameter by λ and its unary represen-
tation by 1λ. We also define the state γ of a user ID as the data required by ID
for protocol execution, including message records, group-related variables, and
cryptographic material. We store such material in dictionaries M [·] and write
a ← M [b] to assign, to a, the value stored in M under key b. All dictionaries can
optionally be indexed by an oracle query q to represent the state of a dictionary
at the time q is made, e.g., E [ID ; q] denotes the value of E [ID ] at the begin-
ning of query q. We define the clause require P on a logical predicate P that
immediately returns ⊥ if P is not satisfied (or false if the algorithm returns a
boolean value). For two sets S and T , let S ∪←− T denote the reassignment of S
to the set S ∪ T , and let S −←− T denote the reassignment of S to the set S \ T .
To indicate that certain variable values are not crucial to the algorithm’s logic,
we use “·” notation. For instance, Receive(ID , C) = (·, ID ′, e′′

2pc, i
′′
2pc) denotes

that the first variable can take any value. We defer the definitions of standard
cryptographic primitives used throughout this work to the full version.

2.1 Two-Party Channels

Towards defining our Group Messenger primitive with support for two-party
channels, we define them below as a standalone primitive.

Definition 1 (Two-Party Channel). A two-party channel scheme 2PC :=
(Init, InitCh,Send,Recv) is defined as the following tuple of PPT algorithms.

γ $← Init(ID): Given a user identity ID, the probabilistic initialisation algorithm
returns an initial state γ.

b $← InitCh(ID∗, γ): Given a state γ and a user identity ID∗, the probabilis-
tic channel initialisation algorithm returns an acceptance bit b ∈ {0, 1} and
updates the caller’s state.

(C, e2pc, i2pc) $← Send(m, ID∗, γ): Given a message m, the intended message recip-
ient ID∗ and a state γ, the probabilistic sending algorithm returns a ciphertext
C and a channel epoch-index pair (e2pc, i2pc) corresponding to m (or ⊥ upon
failure), and updates the state.

(m, ID∗, e2pc, i2pc) ← Recv(C, γ): Given a ciphertext C and a state γ, the deter-
ministic receiving algorithm returns a message m, a user identity ID∗ corre-
sponding to the sender of m and a channel epoch-index pair (e2pc, i2pc) corre-
sponding to m (or ⊥ upon failure), and updates the state.
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Our 2PC := (Init, InitCh,Send,Recv) primitive captures two initialisation func-
tions. The first function initialises the state of a party by taking its ID as input,
while the second function is used to initialise a communication channel with a
counterpart ID∗. Consider two parties, ID and ID∗ who intend to communicate
over a two-party channel. Both parties initialise their states, γID and γID∗ using
the Init function. Subsequently, ID (or ID∗) initiates the communication chan-
nel by invoking the InitCh(γID , ID∗) (or InitCh(γID∗ , ID)) function. It is worth
noting that, similar to DCGKA [47], our two-party channel primitive assumes
the presence of a public-key infrastructure, which is omitted here for simplicity.

We adopt the notion of channel epochs from [6], such that in each two-
party channel, ID and ID ′ are associated with a channel epoch e2pc, indicating
the number of times the direction of communication has changed (alongside a
message index i2pc).

Security. The Double Ratchet protocol has been the subject of several academic
works [6,21,24,26] that analyse its security on a fine-grained level for two-party
communication. When used by multiple parties in a group during the execution
of Sender Keys, analysing the Double Ratchet protocol becomes complex, making
it difficult to replace it with other protocols. To tame this complexity, we adopt a
comparatively simpler notion of two-party communication in similar complexity
to the formalism of Weidner et al. for their DCGKA protocol [47].

In the game-based security notion that we define for two-party channels, that
we formalise in our full version, we parameterise security by a cleanness predicate
C2pc and a PCS bound Δ > 0. Broadly, the cleanness predicate prevents the
adversary from winning the game by making a trivial attack, i.e., via a bit guess
(resp. forgery) based on a challenge (resp. delivery) using exposed key material.
PCS after an exposure is parameterised by Δ, which is the number of message
round-trips (i.e. number of times that the sender-receiver roles alternate) that
the channel requires for healing. In our modelling, out-of-order delivery is also
supported.

Instantiations. By previous work [6], the Double Ratchet can be seen to achieve
a PCS bound of Δ = 3. However, by replacing the Diffie Hellman key exchange
component in the Double Ratchet (referred to as continuous key agreement [6])
with a KEM, the PCS bound can be improved to Δ = 2. This is optimal since
if a user is exposed in channel epoch e2pc and acts as the sender, then they can
decrypt a message from channel epoch e2pc+1 based on correctness requirements.
While we do consider protocols with weak PCS and hence larger values of Δ,
including Δ = ∞ if new randomness is never injected in key derivation, protocols
lacking forward security are considered insecure within our model.

For channel initialisation InitCh, an initial key exchange between the parties
needs to be carried out. Typically this is done via the asynchronous X3DH
protocol [42] and by relying on a PKI, that we abstract away in this work.
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3 Group Messenger

We introduce our main cryptographic primitive called Group Messenger that
captures sending and receiving application messages between members of a
dynamic group. We note that our primitive captures a single group; extend-
ing it to multiple groups is straightforward by using group identifiers (see e.g.
[14]).

Definition 2 (Group Messenger). A Group Messenger GM :=
(Init,Send,Recv,Exec,Proc) is defined as the following tuple of PPT algorithms.

γ $← Init(ID): Given a user identity ID, the probabilistic initialisation algorithm
returns an initial state γ.

C $← Send(m, γ): Given a message m and a state γ, the probabilistic sending
algorithm returns a ciphertext C (or ⊥ upon failure) and updates the state.

(m, ID∗, e, i) ← Recv(C, γ): Given a ciphertext C and a state γ, the deterministic
receiving algorithm returns a message m, an identity ID∗ corresponding to
the sender, a group epoch e and index i both corresponding to m (or ⊥ upon
failure), and updates the state.

T $← Exec(cmd, IDs, γ): Given a command cmd ∈ {crt, add, rem, upd}, a list of
identities IDs and a state γ, the probabilistic execution algorithm returns a
control message T (or ⊥ upon failure) and updates the state.

b ← Proc(T, γ): Given a control message T and a state γ, the deterministic
processing algorithm outputs an acceptance bit b ∈ {0, 1} and updates the
state.

In our syntax, a distinction is made between application messages and control
messages. Specifically, distinct algorithms are employed for the transmission and
reception of application messages, as well as for the execution and processing of
group modifications. These modifications, executed via Exec, are parameterised
by a command cmd that encompasses various operations such as user addition
add, removal rem, group creation crt, or user key material update upd. Moreover,
in scenarios where two-party messaging protocols are necessitated for the imple-
mentation of the group primitive (although not applicable to CGKAs such as
TreeKEM [7]), two-party messages are formally assumed to be sent alongside or
within ciphertexts or control messages. Consequently, they are abstracted away
from our syntax. Looking ahead, we will enforce that ciphertexts and control mes-
sages are sent alongside two-party channel ciphertexts (and can be received with
a different ciphertext or control message) when we define security in Sect. 3.1.

Message Epochs. We define a message epoch as a pair of integers (e, i), internal
to the state γ of a party ID , that captures time and synchronisation between
parties. Message epochs are central to our description of Sender Keys and secu-
rity model. Each application message sent by ID corresponds to a single message
epoch (e, i), which is output by the Recv algorithm at the receiver’s end. The
epoch e advances whenever ID processes a new group change (i.e., a control
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message). The index i advances when ID sends a new message. If control mes-
sages are delivered to group members in lockstep (i.e. sequentially in the same
order), parties who have the same epoch e will have the same view of the group
membership. We define a total ordering (e, i) ≤ (e′, i′) when e < e′, or e = e′

and i < i′. Nevertheless, we remark that 2PC channel epochs are independent
from GM message epochs.

Oracles for Correctness and Security. We introduce game-based notions for
GM correctness and security, where the adversary A will have access to various
oracles that we outline below.

Create(ID , IDs): creates a group by executing Exec(crt, IDs, γ) with ID as
the initiator, generating a control message T .

Challenge(ID ,m0,m1): outputs a ciphertext Cb corresponding to the message
mb sent by ID , where b is the bit that parametrises the game. Namely, A
obtains Cb ← Send(mb, γ[ID ]).

Send(ID ,m): ID sends an application-level message m using the Send algorithm,
producing a ciphertext C.

Receive(ID , C): ID receives a ciphertext C by calling Recv(C, γ[ID ]). The
sender ID ′ is inferred from the message as output by Recv. In the event
of a successful forgery, A obtains the value of b.

Add(ID , ID ′)/Remove(ID , ID ′)/Update(ID): ID adds ID ′ / removes ID ′ /
refreshes ID ’s secrets by calling Exec(add, ID ′, γ[ID ]) / Exec(rem, ID ′, γ[ID ])
/ Exec(upd, ID , γ[ID ]), generating control message T .

Deliver(ID , T ): ID is delivered a control message T via Proc(T, γ[ID ]).
Expose(ID): Leaks the state γ of ID to A.

Correctness. To ensure correctness, several properties must be satisfied given
that all messages are generated honestly.

– Message delivery : Application messages (generated by Send) must be received
correctly by all group members.

– Group evolution: Group operations, such as crt (group creation), add (user
addition), rem (user removal), and upd (key update), must have their intended
effects on the group when received and processed.

– Group membership consistency : The list of group members must be consistent
among all group members, assuming they process the same sequence of control
messages.

– Out-of-order delivery : Messages corresponding to past epochs must be
decryptable if delivered out-of-order. Messages corresponding to future epochs
must be rejected upon reception.

To formally capture correctness, a game-based correctness notion can be con-
sidered between a challenger and a computationally unbounded adversary. In
the correctness game, the adversary initiates the protocol by calling the Create
oracle once. The adversary can use the Send and Receive oracles as usual, and
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also has access to the Add, Remove, Update, Deliver and Expose oracles. How-
ever, the Challenge oracle may not be called, and Send and Deliver can only
be called on honestly generated ciphertexts or control messages.

Looking ahead, the predicates used in the correctness analysis need to be
modified from those used in security to suit the context. Notably, there is no
need for a challenge predicate since the challenge oracle is not allowed. However,
the concurrency predicate (defined later) is essential, addressing situations where
members propose concurrent group changes or process group changes in different
orders.

3.1 Security Model

We introduce a game-based model of security for our Group Messenger primitive
that captures the main desirable security properties of a group messaging scheme.
In brief, our game M-INDGM,C captures a partially active adversary who can,
in particular, expose the state of users and inject (possibly malformed) messages
at any time. We consider the confidentiality of application messages with FS
and PCS, and we also model the out-of-order delivery of application and control
messages.

Definition 3 (Message indistinguishability of GM). Let GM := (Init,Send,
Recv,Exec,Proc) be a group messenger. Message indistinguishability with b ∈
{0, 1} and cleanness predicate C for GM is defined via the game M-INDGM,C

depicted in Fig. 2. We define the advantage of adversary A in M-INDGM,C as

Advm-ind
GM,C (A) :=

∣
∣
∣Pr[M-INDA

GM,1,C ⇒ 1] − Pr[M-INDA
GM,0,C ⇒ 1]

∣
∣
∣ .

We say that GM is (q, ε)-M-INDGM,C if for all PPT adversaries A who make at
most q oracle queries we have Advm-ind

GM,C (A) ≤ ε.

Game Description. The M-INDGM,C game that we introduce in Fig. 2, is
played between a PPT adversary A and a challenger. The game is parameterised
by a bit b that has to be guessed by A, as in a message indistinguishability game.
The adversary wins the game if it directly guesses b correctly, or if it carries out
a successful forgery. The game is further parameterised by a protocol-specific
cleanness predicate (sometimes safety predicate [7]) that rules out trivial attacks
and captures the exact security of the protocol.

Message Epochs. We define a function m-ep(ID , ID ′, q) that indicates the highest
message epoch (e, i), as output by the Recv algorithm, for which a user ID has
received a message from ID ′ at the time of query q for ID 	= ID ′. For ID = ID ′,
this indicates the local state value for (E [ID ], I[ID ]). The m-ep function reflects
the view of user ID ′ by user ID .
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Fig. 2. Game defining M-INDA
GM,b,C with adversary A and cleanness predicate C. Lines

in teal correspond only to bookkeeping and state update operations. All oracles except
for Create and Expose can only be called when ep > 0.

Dictionaries. The challenger keeps a record of messages and game variables in
several dictionaries. The state of each party is stored in γ[·] and updated when an
algorithm is called on a given γ[ID ]. Ciphertexts and challenged ciphertexts are
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stored in M and CH, respectively, each of them indexed by an ID and a message
epoch (e, i). The unique honest control message that starts a given epoch e is
stored in T [e], and the most recent epoch of the group is stored in variable ep
(note that we implicitly assume a total ordering of control messages). The current
message epoch of ID is stored in E [ID ], I[ID ]. Even if each control message in
T corresponds to a single epoch, different parties can be in different epochs. We
say ID is in epoch e before query q if the last control message processed by ID
before query q is T [e].

The message epochs corresponding to skipped messages from sender ID ′

stored by ID are kept in SM[ID , ID ′]. We keep SM updated in the Receive
oracle as follows: given a message epoch (e, i) and an ID ′ output by Recv, if
(e, i) ∈ SM[ID , ID ′] then (e, i) is erased from SM[ID , ID ′]. Otherwise, we add
all pairs (e′, i′) such that (e′, i′) < (e, i) and (e′, i′) corresponds to all messages
sent by ID ′ not delivered to ID .

Outcome. After q oracle queries, A outputs a guess b′ of b if the cleanness pred-
icate C is satisfied (otherwise the game aborts). A can win the game in three
different ways: by directly guessing the challenge bit correctly, by injecting a
forged application message via Receive successfully, or by injecting a forged
control message via Deliver. The cleanness predicate C parameterises the secu-
rity of a given protocol by restricting the capabilities of the adversary to exclude
a class of attacks. Additionally, we explicitly state predicates recv-forgery and
proc-forgery in our game, which model the (general, not protocol-specific) con-
ditions under which a Receive or Deliver call result in a successful forgery
(leaking b to A). We expand on these predicates in Sect. 3.2.

Related Security Notions. Our security model takes inspiration from the
game-based modelling developed for MLS and for CGKA [7,39]. Nevertheless, it
is not possible to adopt these models as they consider a single group key, which
is not compatible with a Sender Keys (or similar) approach to group messaging.
The closest security model to ours in the literature comes from the DCGKA
scheme [47], which however does not consider message injections nor adaptive
security.

Limitations. Our security game allows a single successful injection to occur,
since after this point the adversary is given the secret key for free. That is, we
do not allow ‘trivial’ message forgeries that do not result in the adversary win-
ning the game. Hence, full active security cannot be captured by our modelling.
Like several other models in the literature (e.g., [7,39,47]), our security model
considers a single group (see [30] for an analysis of cross-group security) and
ignores randomness exposure or manipulation [15].

3.2 Modelling Two-Party Channel Ciphertexts

Given that the GM protocol uses two-party channels (as Sender Keys does), these
need to be modelled accurately within the GM security game, particularly to
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describe forgeries via the recv-forgery and proc-forgery predicates. We introduce
additional notation to define how two-party ciphertexts can be sent alongside GM
messages; we opt for such modelling for convenience, as in this way the adversary
gets access to all two-party channels explicitly. We remark that this subsection
can be skipped for GM protocols that do not employ two-party channels.

Essentially, we want to capture the fact that an Exec or Send call can output
several two-party channel ciphertexts, whereas Proc and Recv should only take as
input a single two-party channel ciphertext (i.e., the one intended for the caller)
for efficiency. We thus assume input/output ciphertexts and control messages for
group messenger algorithms take the following form. Let C2pc be a 2PC ciphertext
and let Tcore (resp. Ccore) be the remaining part of a control (resp. application)
message in the GM primitive. For output, we assume control messages output by
Exec are of the form (Tcore, C

1
2pc, . . . , C

k
2pc), and ciphertexts output by Send are of

the form (Ccore, C
1
2pc, . . . , C

k
2pc) for some k. For input, we assume control messages

input to Exec (resp. to Recv) are of the form (Tcore, C2pc) (resp. (Ccore, C2pc)).

Forgery Predicates. We define the predicates proc-forgery and recv-forgery
in Fig. 3 used in Fig. 2 using the input/output semantics introduced above. The
purpose of these predicates is to handle ciphertext ‘splitting’ resulting from the
use of two-party channels. Without accounting for this splitting, forgeries could
be defined as usual, i.e. any ciphertext input to Proc (resp. Recv) that was not
previously output by Exec (resp. Proc) would be considered a forgery. Essentially,
we consider that a control message T ∗ = (T ∗

core, C
∗
2pc) is a forgery whenever either

T ∗
core or C∗

2pc are not part of an honestly generated message (i.e. in T [·]). Forgeries
for Recv are defined analogously.

Fig. 3. Predicates that determine what is considered a forgery in Fig. 2 for algorithms
Proc and Recv.

The predicates imply that it is not considered a forgery if a two-party cipher-
text is received with a different control message/ciphertext than it was sent with.
That is, the adversary is allowed to mix-and-match ciphertexts, i.e., by replacing
the Ci corresponding to some T (resp. C0) by C ′

i corresponding to some other
T ′ (resp. C ′

0).

4 Sender Keys

Two-Party Channels and the Server. The Sender Keys protocol assumes the exis-
tence of authenticated and secure two-party communication channels between



WhatsUpp with Sender Keys? Analysis, Improvements and Security Proofs 323

each pair of users, which can be achieved through the use of Signal’s Double
Ratchet protocol [41] also used by WhatsApp [48]. Additionally, the protocol
relies on a central server to distribute both control messages and application
messages. We assume that the server provides a total ordering for control mes-
sages, ensuring that all parties process control messages in the correct order.5

Total ordering is not required for application messages. User authentication is
initially performed via the central server (modelled here with 2PC.InitCh), after
which users authenticate other group members through the underlying two-party
communication channel. We note that this deviates from other work in the lit-
erature such as [11] where the authentication service is different to the delivery
service.

4.1 Protocol

We describe the Sender Keys protocol in our GM syntax according to the details
inferred from [48] and [43], although we acknowledge that our interpretation
may not precisely match the closed-source implementation of WhatsApp. In
this section we present a detailed overview of the main algorithms depicted
in Fig. 4. For Exec and Proc, we only present the remove operation as it involves
key refreshing and is considered the most complex, while the create, add, and
update operations follow a similar approach. For the sake of clarity, we make
some simplifications in this section, and refer to the full version for the complete
protocol logic and description.

Primitives. The protocol relies on standard primitives including a symmet-
ric encryption scheme SymEnc = (Gen,Enc,Dec), a signature scheme Sig =
(Gen,Sgn,Ver), and two different key derivation functions H1,H2 (our improved
protocol also uses message authentication codes).

State Initialisation. Each user is assumed to maintain a state γ containing: a
secret key used for signing ssk, a list of current group members G, the current
epoch ep, the current index of their chain key ick (indicating the number of
times the user’s sender key has been ratcheted forward), a list of key counters
kc (indicating the number of times that a sender key has been re-sampled since
ID initialised their state), a dictionary of sender keys SK[·] := (spkID , ckID , ick)
indexed by a user ID and a key counter, and a list of message keys MK. The
Init algorithm initialises the state variable of users; in practice this is done by a
user when they install the messaging application.

Group Creation. This occurs via Exec(crt, IDs, γ), which takes a list of users
G := {ID1, . . . , ID |G|} as input; two-party channels are initialised by users upon
processing the control message via 2PC.InitCh.

5 We remark that total ordering is a standard assumption in the CGKA line of work [7–
9,11,39] and is assumed by MLS.
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Fig. 4. Sender Keys protocol description (main operations). For conditions of the form
“require T” when T is false, the function outputs ⊥ and all computation is reverted.
The full protocol is available in the full version.

Message Sending. To send an application message m to the group, every ID ∈ G
must have the caller’s (ME ) sender key. The process is as follows:

– If ME does not have a sender key, ME generates a fresh sender key
((γ.ssk, spk) $← Sig.Gen(1λ) and ck $← {0, 1}λ). The sender key is then set
as SK[ME , kc[ME ]] ← (spk, ck, ick) where ick = 0. ME shares this key with
each ID ∈ G using 2PC.Send, resulting in a vector of ciphertexts C.

– If ME has a non-empty sender key but not all parties have it, ME shares the
key with them via 2PC.Send and updates C.

Then ME generates a new message key mk from their chain key
SK[ME , kc[ME ]].ck, encrypts m using mk, and ratchets its chain key forward
by setting ck ← H2(SK[ME , kc′].ck). Finally, ME signs the ciphertext and sends
it together with C.
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Message Receiving. To receive a message from ID , ME follows these steps:

– ME checks if they have ID ’s sender key SK[ID , kc′] corresponding to the key
counter kc′ indicated in the received message. If ME does not have it, they
retrieve it from the two-party ciphertext C2pc using 2PC.Recv, aborting the
Recv call if the sender key cannot be found.

– ME performs epoch consistency checks and verifies the signature on the
ciphertext using the signature public key SK[ID , kc′].spk.

– The message key mk required to decrypt the message is computed from the
chain keys as mk ← H1(SK[ID , kc′].ck), and is deleted after use.

Out-of-Order Messages. In the scenario of out-of-order message delivery
(handled by UpdateKeysRecv), the following cases arise (we let ick :=
SK[ID , kc′].ick):

– If the received message comes from a past epoch (e, i) < (ep, ick), ME searches
for the relevant skipped message key in MK.

– If e = ep and i > ick, ME ratchets ID ’s chain key i − ick times, and stores the
skipped message keys in MK.

– If e > e, the message reception fails since ME is not synchronised with the
latest group epoch and cannot (even) determine whether the sender is still a
member of the group.

Handling out-of-order message delivery constitutes a significant portion of the
protocol’s logic. For instance, parties must keep track of (and announce) the
highest ick associated with a given kc. Failing to do so can result in correctness
and security issues, as parties may overlook the need to store and delete keys in
MK.

Key Updates. In certain implementations of Sender Keys (although not specified
in [48]) a simple (but weak) on-demand key update mechanism is supported. A
party ME can update its key material via Exec(crt,ME , γ). This operation
lazily samples a fresh sender key (spk, ck, 0) and distributes it over the two-party
channels. All users sample a fresh key after processing a removal.

Membership Changes. The protocol allows individual group members to be
added or removed from the group via Exec(add, ID , γ) and Exec(rem, ID , γ).
These operations result in the distribution of a control message T to the group
sent in clear. Newly added members are also sent a welcome 2PC ciphertext
containing group information. Note that we model single adds/removes for sim-
plicity but this can be extended in a straightforward manner to handle batched
group changes.

Upon processing a control message via Proc(T, γ), ME proceeds as follows:

– If some ID∗ is being removed at epoch e, ME erases all sender keys cor-
responding to ID∗ (except for skipped message keys).6 For other users, old

6 A different deletion schedule may be applied as long as these keys are clearly marked
as being no longer valid, e.g., if ID∗ announces its maximum ick value over two-party
channels when it processes its own removal.
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sender keys are replaced with new ones when receiving messages from epoch
e′ ≥ e, ensuring messages sent concurrently with the removal can be received.

– If some ID∗ is being added, ME initialises its 2PC with ID∗ via 2PC.InitCh.
– If ME is itself removed, it erases its state. If it is added to some group

(or processes a create message), it initialises two-party channels with every
ID ∈ G.

Note that after either updating or adding or removing a user, new sender keys
are only distributed once a party sends his first message.

5 Security

In this section, we argue that Sender Keys as described in Sect. 4 is secure with
respect to our security model in Sect. 3.1. However, the security captured by
our cleanness predicate is far from theoretically optimal since Sender Keys is
relatively weak in security, and so in Sect. 6 we strengthen it by modifying the
protocol in different ways. Our predicates are parameterised by the security of
the underlying two-party channels. We first state our main theorem below.

Theorem 1. Let SymEnc := (Enc,Dec) be a (q, εsym)-IND-CPASymEnc,b sym-
metric encryption scheme, Sig := (Gen,Sgn,Ver) a (q, εsig)-SUF-CMASig sig-
nature scheme, H : {0, 1}λ → {0, 1}λ × {0, 1}λ (where H(x) := (H1(x),H2(x))) a
(q, εprg)-PRGH function and 2PC a (q, ε2pc)-2PC-IND2PC,C2pc,Δ two-party chan-
nels scheme for PCS bound Δ > 0. Then Sender Keys (Fig. 4) is

(q, 2 · ε2pc + q2 · (ε2pc + εsym + q · εprg) + q · εsig)-M-INDGM,C

with respect to cleanness predicate C = CΔ
sk (Fig. 8), where two-party channels

cleanness predicate C2pc is defined in the full version.

We define Csk in Sect. 5.1 and prove the theorem in the full version. A proof sketch
is provided in Sect. 5.2. Our security notion is adaptive as users can adaptively
call oracles and in particular compromise users. Security is tighter when we
restrict the game to consider non-adaptive adversaries as described below.

Corollary 1. Under the same conditions of Theorem 1, and considering a non-
adaptive security game, Sender Keys (Fig. 4) is (q, 2 · ε2pc + q · (εsym + q · εprg) +
q · εsig)-M-INDGM,C with respect to cleanness predicate C = Csk (Fig. 8).

Sender Keys and Two-Party Channels. To illustrate how the cleanness predi-
cates for Sender Keys must depend on the underlying two-party channels, con-
sider a strongly secure two-party channel 2PC that provides optimal FS and
PCS. Now, consider an execution of Sender Keys where all parties share the
same view of the group G = {ID1, ID2, ID3}, in which

1. ID1 generates a control message (Tcore,C) to remove party ID3 (q1 =
Remove(ID1, ID3)),
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2. ID1 and ID2 process T (q2,1 = Deliver(ID1, (Tcore,C[ID1])), q2,2 =
Deliver(ID2, (Tcore,C[ID2]))),

3. A exposes ID2 (q3 = Expose(ID2));
4. ID1 sends an application message (q4 = Send(ID1,m)).

Recall that in step 4, ID1 samples a new sender key that it sends to ID2 over
2PC, since processing remove messages results in the sender keys of all parties
being refreshed. Even with optimally-secure 2PC, the adversary will be able to
decrypt the key sent over 2PC (by the correctness of the channel) and thus
decrypt the ciphertext output in query q4.

5.1 Cleanness

Our goal is to describe a suitable cleanness predicate Csk for Sender Keys. The
intuition behind this cleanness predicate is based on the following observations
about the protocol:

– The exposure of a group member compromises the security of subsequent
chain and message keys7 until a secure key refresh takes place. This enables
the adversary to forge messages since they also gain access to the exposed
signature keys.

– Control messages can be trivially forged and injected by a network adversary
as they are not authenticated.

– Forward-secure confidentiality holds except for messages delivered out-of-
order since parties only delete message keys after using them, so a message
that is delayed forever results in the corresponding message key never being
deleted.8

– All parties recover from state exposure (via Expose(ID)) after security on the
two-party channels is restored (considering the PCS bound Δ) and then either
a) a removal is made effective, or b) all parties update their keys successfully.

To formalise the security predicate we introduce conventions for tracking
the channel epochs of each user’s two-party channels. We assume the game
M-INDGM,C maintains the largest channel epoch-index for each user’s two-party
channels over time. The game obtains this information by observing the channel
epoch-index pairs generated by the 2PC.Send and 2PC.Recv operations within
the group messenger. Specifically, we use a variable of the form EI[ID , ID ′], where
EI[ID , ID ′] represents the largest channel epoch-index pair from ID ’s perspec-
tive for the channel between them and user ID ′, as for two-party channels. More
generally, two-party state variables that we use below can be tracked easily by
an M-INDGM,C adversary such that our predicates are well-defined.

7 Although it is not captured in our model, note that the exposure of a message key
alone only compromises the message it refers to and does not (computationally) leak
information about the chain key or other message keys.

8 In practice, applications like WhatsApp and Signal bound the amount of (logical)
time that keys are active for and the total number of keys that can be stored at
once.
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The RefreshΔ Predicate. We define the predicate refreshΔ(ID , ID ′, qi, e),
parameterised by the PCS bound Δ > 0 of the underlying two-party chan-
nels. Informally, given that ID ′ is exposed in query qi (qi = Expose(ID ′)),
refreshΔ(ID , ID ′, qi, e) is true if the (ID , ID ′) channel has healed and then ID
has sampled a fresh sender key in or by epoch e (or will do so upon their next
Send call). If the predicate is true, ID has recovered from the exposure in qi.

More formally, let (e2pc, i2pc) = max{EI[ID ′, ID ; qi], EI[ID , ID ′; qi]}. Then
refreshΔ(ID , ID ′, qi, e) is true if a) for (e′

2pc, i
′
2pc) = EI[ID ′, ID ; qj ] for some j > i,

e′
2pc ≥ e2pc + Δ holds; and b) during query qk with k ≥ j, member ID processes

one of the following control messages corresponding to epoch e:

1. a removal of some member ID∗,
2. an addition of ID itself,
3. a group creation message, or
4. an update from ID itself.

In particular, if ID executes (and processes) an update that involves sending
new key material over a refreshed two-party channel, this key material should be
safe. We also define a simpler predicate refresh-s(ID , e) which is true if member
ID processes one of the aforementioned control messages corresponding to epoch
e. Observe that both refreshΔ and refresh-s events may only happen when ID
moves to a new group epoch e.

Cleanness for Sender Keys. We divide our cleanness predicate into three
components (challenge, injection, concurrency) that we specify below. The final
predicate is defined in Fig. 8.

Challenge (Fig. 5). The effect of this predicate is to prevent challenges on exposed
users (i.e., due to Expose calls). After exposing (with query qi) any user ID ′,
adversarial queries to Challenge are disallowed for every ID in the group until
refreshΔ(ID , ID ′, qi, e) occurs for some later epoch e > E [ID ′; qi]. Note that this
only restricts challenge queries qj where i < j. To capture forward security
precisely, some challenges made before an exposure (i > j) are also forbidden.
These affect messages sent by some ID in epochs (e, i) ≥ m-ep(ID ′, ID , qi), which
correspond to keys that ID ′ still stores (including skipped message keys stored
at exposure time) or can derive due to being in a previous message epoch (for
example if the user is offline).

Injection (Fig. 6). Firstly, let us recall the two-party ciphertext splitting seman-
tics defined in Sect. 3.2. Namely, a GM ciphertext C naturally splits into
C = (Ccore, C2pc) where C2pc is processed by the two-party channels. An injec-
tion is said to have occurred when a message with a forged Ccore and/or C2pc

was successfully processed.
We define the injection predicate to prevent injections of application messages

coming from a user that has been exposed and has not refreshed its keys. We
start with the definition for Ccore. After exposing a specific user ID ′ with query qi,
A cannot make a query qj = Receive(ID , C) to impersonate ID ′ with a forgery
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Fig. 5. Challenge cleanness predicate for Sender Keys where the adversary makes oracle
queries q1, . . . , qq.

ciphertext C corresponding to some epoch e∗ (i.e., such that tuple (ID ′, e∗) is
output by Recv(C, γ[ID ]) in the game) in the following situations:

1. e∗ ≥ E [ID ′; qi] and there hasn’t been a refreshΔ(ID ′, ID , qi, e
′) event for the

sender ID ′ at some epoch e′ such that E [ID ′; qi] < e′ ≤ e∗, where the receiver
ID has also processed the key update from ID ′’s message at injection time,
i.e., E [ID ; qj ] ≥ e′.

2. e∗ < E [ID ′; qi] but the signature key of ID ′ at epoch e∗ was the same key as
in the exposure epoch E [ID ′; qi]. Formally, this is expressed by the condition
that there has not been any event refresh-s(ID ′, e′) for an epoch e∗ < e′ ≤
E [ID ′; qi].

For C2pc, we directly adopt the injection cleanness predicate C2pc-inj used
to define two-party channel security (see full version). For additional clarity,
we parametrize the predicates by the ciphertexts Ccore, C2pc. We also define the
auxiliary predicate CΔ

sk-inj-core(Ccore) in Fig. 6.

Fig. 6. Auxiliary core injection cleanness predicate (top) and injection cleanness pred-
icate (bottom) for Sender Keys, where the adversary makes oracle queries q1, . . . , qq.
The injection cleanness predicate additionally uses the C2pc-inj defined in the full version.

Concurrency (Fig. 7). This predicate ensures several properties in the protocol.
Firstly, it enforces that users process control message in the same order (albeit
they need not be synchronised beyond this restriction). Additionally, it prevents
the injection of all control messages. It is important to note that control messages
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are not signed in the core protocol, making injections trivial. Furthermore, the
predicate guarantees that every user proposing a group change (via the Exec,
Add, Remove or Update oracles) is in the most recent epoch. In practice, this
predicate ensures that there is a unique honest control message in each epoch of
the game.

The concurrency predicate ensures both security and correctness by address-
ing scenarios where members propose concurrent group changes or process group
changes in different orders. Without enforcing this predicate, the protocol’s
behaviour becomes ill-defined.

Fig. 7. Concurrency cleanness predicate in the ideal case where the adversary makes
oracle queries q1, . . . , qq.

Fig. 8. Sender Keys cleanness predicate which makes use of sub-predicates defined
in Figs. 5 to 7.

Limitations and Extensions. Our cleanness predicate enforces a total order-
ing on control messages, in contrast to considering causal ordering such as in [47]
or no ordering at all. This assumption is consistent with real-world protocols (as
in WhatsApp) where a central server is trusted to provide such an ordering, but
makes our model unsuitable for decentralized protocols. If our security model
allowed for it, one could modify our cleanness predicates to allow for ‘trivial’
injections that are non-winning, by not giving the adversary the challenger’s bit
b given that the forgery is trivial (i.e., it violates the injection predicate). Our
concurrency predicate and security model could be strengthened to allow several
Exec calls in an epoch, from which the network chooses one that is processed to
all parties, which has been modelled for TreeKEM in the past [7].

5.2 Proof Sketch for Theorem 1

Towards proving the theorem we construct a series of hybrids. We first transition
to a game where injections on the two-party channels are disallowed, following
from their underlying security. After that, we transition to a game where oracle
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Receive never outputs challenge bit b, reducing the transition to SUF-CMA
signature security, while still excluding trivial injections due to cleanness. Then,
we move to a game where the adversary is limited to a single Challenge query,
losing a factor of q in the resulting reduction. Subsequently, we transition to
a game where the message key used in the Challenge query (if it exists) is
replaced by a uniformly random key that remains unknown to the adversary due
to cleanness, and the two-party ciphertexts that send the key’s ancestor chain
key are replaced by dummy ciphertexts, which follows from the 2PC security
and the PRG security of (H1,H2). Finally, we directly reduce to the IND-CPA
security of the symmetric encryption scheme.

6 Analysis and Improvements

For the proof of security of Sender Keys (Theorem 1) to go through, we need
to impose severe restrictions on the adversarial behaviour through the cleanness
predicate Csk. Hence, even if we manage to prove Sender Keys secure, we do so
under a weak model that reveals important security shortcomings of the protocol.
In this section, we elaborate on these limitations and propose changes to enhance
security while maintaining efficiency. Some of these findings were presented in a
preliminary analysis in [12].

6.1 Security Analysis and Limitations

Injection of Control Messages. Our first observation is that control mes-
sages lack user authentication, necessitating a high level of trust in the server to
prevent the crafting of its own messages. To address this, in predicate Csk-con we
need to enforce that every delivered control message has been honestly gener-
ated. A server deviating from standard behavior could mount a host of attacks.
Here are three examples.

Censorship attack: The server can remove any member(s) ID from G such
that all remaining members assume ID left the group by himself, whilst ID
believes a different user ID ′ removed him.

– The server delivers a control message T := (rem, ID , ID , ·) ← Exec(rem, ID ,⊥)
to every ID ′ ∈ G \ {ID}.

– The server delivers a control message T ′ := (rem, ID ′, ID , ·) ← Exec(rem,
ID ,⊥) to ID ∈ G.

Burgle into the group attack: This attack, observed in [46], allows the server to
add any member(s) ID to G. For this, the server just delivers a control message
T := (add, ·, ID , ·) ← Exec(add, ID ,⊥) to every ID ′ ∈ G.

Unsafe group administration: In general, administration cannot be enforced
or trusted due to the lack of authentication of control messages, similarly to
what has been observed for CGKA-based protocols in [14].
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Weak Post-compromise Security. Sender Keys offers a very limited form of
PCS. Essentially, a refreshΔ event is the only possibility for ID to recover from a
state compromise. This event only occurs whenever another user is removed or
whenever ID triggers an on-demand update (or trivially when ID is new to the
group). On-demand updates are supported by our primitive syntax and protocol
description, but it is not clear whether they are implemented in practice (for
instance, there is no mention to them in [48]).

Moreover, the update mechanism is not satisfactory. Since only the updater
ID refreshes its sender key, this allows a passive adversary to eavesdrop on mes-
sages sent by any other group member due to the adversary’s knowledge of the
chain keys corresponding to those members. Extending the update mechanism
to the entire group in a naive manner would result in a total communication
complexity of O

(
n2

)
.

PCS and Two-Party Channels. PCS guarantees are even weaker due to the
reliance of Sender Keys on two-party channels. As parametrized by refreshΔ,
if ID sends new key material over a two-party channel with ID ′ that has not
been healed (after Δ round-trip messages) since the last exposure of either ID
or ID ′, then such key material is still compromised. In practice, if the state of
ID is compromised, both the group and the two-party sessions will be exposed.
Therefore, unless parties refresh their individual two-party channels consciously
(by sending each other messages), executing updates or removals in the group
session will not have the desired healing effect.

In the real world, usually not all pairs of members of a group exchange private
messages regularly, hence not refreshing their two-party channels. The fact that
even manually triggering a key update does not necessarily heal the group from
a state compromise conveys an important security limitation.

Lack of Forward Security on Authentication. Beyond PCS limitations,
we observe that the forward security guarantees for authentication provided by
Sender Keys are sub-optimal. Consider a simple group G = {ID1, ID2} and
the attack described in Fig. 9. Note that q3 is a forbidden query by Csk-inj. q3
attempts to inject a message that corresponds to key material used before the
state exposure, hence one can envision stronger FS where queries like q3 are
allowed. This attack can occur naturally if ID2 is offline when m is first sent.

Fig. 9. Attack on authentication forward security in Sender Keys.
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An attack of a similar nature can also occur in a messaging scheme where
the same signature keys are re-used across groups, and are refreshed at different
times, as pointed out in [30].

Additional Remarks. In the full version, we introduce additional discus-
sions on trade-offs between concurrency and efficiency, randomness manipula-
tion, stronger notions of security, and multi-group security. With respect to the
latter, our formalism can be adapted to capture multi-group security formally
via the use of group identifiers, which we leave for future work.

6.2 Proposed Improvements: Sender Keys+

We propose several improvements to Sender Keys below. Our improvements are
constrained by the desire to retain the performance characteristics and structure
of Sender Keys. In particular, we retain O(1)-sized ciphertexts, do not increase
key sizes, and utilize only standard cryptographic primitives. Our improved ver-
sion of Sender Keys, which we call Sender Keys+, is presented fully in our full
version. We formalise security by introducing several modifications to our clean-
ness predicate, which we describe here but also relegate their specification to the
full version.

Secure Control Messages. A simple way of resolving the attacks in Sect. 6.1
would be for users to sign their own control messages and verify signatures before
processing control messages. Additional protocol logic for correctness is required,
namely that users who craft a control message but have not shared their sender
key yet (because they have not spoken in the group) generate a signature key
pair and share their public key over the two-party channels.

By introducing this tweak, we can weaken the cleanness predicate such that it
no longer enforces honest control message delivery (Csk+-con). On the other hand,
we need to introduce the restriction that no secret signature key ssk can be known
to the adversary at delivery time, similar as in the injection predicate. We do so
by introducing a new control predicate CΔ

sk+-ctr that follows the blueprints of the
injection predicate (Fig. 6).

Improved Forward-Secure Authentication. We propose two possible
improvements that address the attack in Sect. 6.1 to varying extents.

MACing from the Chain Key. The first improvement, which has minimal over-
head, is to MAC the application messages with a MAC key τk that we derive
via an additional H3(ck). The modification is done in the Send algorithm as
follows: given an unsigned ciphertext C̃ = (c, (e, i),ME ), we obtain the MAC
tag τ ← MAC.Tag(τk, C̃). Then, we sign the ciphertext with the appended tag
σ ← Sig.Sgn(ssk, (C̃, τ)). The verification of the MAC tag is easily carried out
at the receiver’s end. We include this simple tweak in our improved protocol.
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Naturally, symmetric encryption can alternatively be replaced with an AEAD
to achieve the same effect.

The main security improvement that results from this upgrade is that, in the
attack in Sect. 6.1, the adversary additionally needs knowledge of τk to forge the
MAC tag. Hence, one of the following situations must occur before delivery:

– The sender ID is exposed before the message is sent. Then, both τk and ssk
are compromised.

– The sender ID is exposed after the message is sent (leaking ssk), and another
group member ID ′ is exposed before the message is delivered (leaking τk).

In particular, the attack of Fig. 9 no longer results in a successful message
delivery. The MAC key can be stored together with the message key for out-of-
order messages, such that the MAC can always be verified in a correct execution
of the protocol. We note that insider attacks (forgeries from other group mem-
bers) cannot be prevented by MACing, but we do not model these.

The modified injection predicate that results from this improvement is
roughly as follows. Essentially, we define an auxiliary predicate CΔ

sk+-inj-extra that
considers the security given by the message/MAC keys (similarly as in Fig. 5).
Then, the modified Csk+-inj is the logical disjunction of the former injection pred-
icate with CΔ

sk+-inj-extra, and hence strictly weaker.

Ratcheting Signature Keys. An alternative mitigation strategy for the attack
of Fig. 9 is to ratchet signature keys. Let (ssk, spk) be ID ’s signature key pair,
where spk is part of its sender key. Before sending a new message m to the
group, ID can generate a new key pair (ssk′, spk′) $← Gen(1λ). Then, ID can
attach the new spk′ to the ciphertext corresponding to encrypting m, and sign
the package using ssk. This (by now standard) countermeasure not only provides
strong forward security but also post-compromise security for the authentication
of messages. Nevertheless, it involves larger overhead, so it may not be desirable
in all scenarios and we refrain from including it in Sender Keys+.

Efficient PCS Updates. We propose an asynchronous update mechanism to
refresh all chain keys at once, recovering PCS on-demand for the whole group
with a single update (and O(n) complexity for a group of n users). Recall that
our Group Messenger primitive supports updates via Exec(upd, {ID}).

A Naive Solution. Let ID be the updating party. ID generates a new sender
key for himself as in the case of a remove operation; namely samples a fresh
ck and a fresh (ssk, spk) $← Sig.Gen(1λ). Additionally, ID samples randomness
r $← {0, 1}λ. Then, it distributes (ck, spk, r) over the two-party channels. Upon
reception, every group member (including ID itself) sets SK[ID ] ← (ck, spk);
and then for every ID ′ ∈ G, set SK[ID ′].ck ← Hr(SK[ID ′].ck, r), where Hr :
{0, 1}2λ → {0, 1}λ is a secure key derivation function. Since r is freshly sampled
and distributed securely, all chain keys recover from exposure. Note that r must
be used and erased immediately, as all updated chain keys are exposed if r is
leaked at any future time.
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Our Solution. The previous solution fails in out-of-sync scenarios such as the
following. Suppose that ID ′ is in message epoch (1, 1) when ID sends an update
message T . Then, ID ′ speaks in the group before receiving T (for example,
while being offline), ratcheting its key to (1, 2). All group members will update
the chain key ck1,1

ID′ (i.e. corresponding to the message epoch (e, i) = (1, 1)) in
SK[ID ′], but ID ′ will be in message epoch (1, 2) (and therefore will have erased
ck1,1

ID′). In general, if there are application messages in transit concurrently with
the update, users will be out-of-sync.

To support asynchronicity, we propose that all parties ratchet their chain key
N times forward, where N is a fixed constant that we call the concurrency bound
(for example N = 100; in practice the cost of executing 100 hash function calls
sequentially is negligible). In the event that � messages have been sent out-of-
sync, then the chain key is ratcheted N − � times instead. Then, parties update
the ratcheted chain keys with the sent randomness r. To synchronise between
them and with the update initiator ID , the latter sends a list with his view
of the key indices of each group member (in the control message). Our update
mechanism, included in Sender Keys+, requires the assumption of total ordering
of control messages to avoid overlapping updates.

The security improvement is reflected in the challenge cleanness predicate
as follows. The predicate is as the challenge predicate for Sender Keys (Fig. 5),
except that now it also suffices that some arbitrary member ID∗ that has a
healed channel with ID ′ updates after the exposure, and that ID processes such
update before the challenge.

Efficient Remove Operations. The previous update mechanism can be
extended to improve the efficiency of group removals from O

(
n2

)
(everyone

needs to generate and distribute a new key) to O(n) in terms of communication
complexity. Note a removal can be made effective if the party that sends the
remove message T distributes update material among all group members except
for the removed party ID ′. If ID ′ leaves, the next member that speaks in the
group must also trigger an update. This tweak, like our solution above, has the
drawback that the signature keys are not refreshed. Thus, we do not include
this tweak in Sender Keys+. Furthermore, considering the minimal overhead of
updates, they could potentially become the preferred method for sharing sender
keys in the group under all circumstances. This approach allows the group to
achieve PCS almost for free.

6.3 Security of Sender Keys+

Following similar steps as the proof for Theorem 1, we can prove the security
of our Sender Keys+ protocol with respect to the modified cleanness predicate.
The proof is provided in the full version.

Theorem 2. Let SymEnc := (Enc,Dec) be a (q, εsym)-IND-CPASymEnc,b sym-
metric encryption scheme, Sig := (Gen,Sgn,Ver) a (q, εsig)-SUF-CMASig sig-
nature scheme, H : {0, 1}λ → {0, 1}λ × {0, 1}λ a (q, εprg)-PRGH function,
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F a (q, εdprf)-dual-PRFF function, MAC a (q, εmac)-SUF-CMAMAC message
authentication code and 2PC a (q, ε2pc)-2PC-IND2PC,C2pc,Δ two-party channels
scheme for PCS bound Δ > 0. Then Sender Keys+ is

(q, 2 · ε2pc + q3 · (ε2pc + εsym + q · εprg + N · q · εdprf + q · εmac) + q · εsig)-M-INDGM,C

with respect to predicate C =:= CΔ
sk+-chall ∧ CΔ

sk+-inj ∧ CΔ
sk+-con ∧ CΔ

sk+-ctr and con-
currency bound N .

6.4 Sender Keys+ Vs CGKA

As remarked in the introduction, Sender Keys (and especially Sender Keys+)
offers different efficiency and security trade-offs over CGKA-based protocols. We
provide a detailed comparison below.

PCS. When a user ID is exposed, the confidentiality of all subsequent messages
is lost in both CGKA and Sender Keys(+). For an update to take effect in Sender
Keys(+), all two-party channels must have healed. In this case, an update by
ID ′ only heals the confidentiality of messages sent by ID ′ in Sender Keys, as
opposed to the confidentially of messages sent by all members in Sender Keys+.

It is worth noting that both Sender Keys and Sender Keys+ require up to
PCS bound Δ messages (or rounds) to heal after a compromise (due to the two-
party channels) in addition to the update message. In contrast, a single message
suffices for some CGKA protocols [7,9,10,39].

Update Efficiency. In Sender Keys+, an update message requires O(n) com-
munication by the updating user, where each member is sent a constant-size
message. In TreeKEM variants, or in general binary-tree-based CGKAs, updates
involve best-case O(log n) size for the updating user and have to be entirely
downloaded by each member, involving a total O(n log n) download overhead.
Nevertheless, this can be degrade to O(n) per member. The multi-recipient PKE
approach in [34] achieves the same asymptotic complexity as Sender Keys+,
although with larger concrete costs.

Insider Security. The attack in [11] that reveals the need for IND-CCA (and
not only IND-CPA) encryption in TreeKEM also applies to Sender Keys, but
can be fixed with the use of a MAC. Following the analysis in [11], it is not clear
how to mount fake group attacks as they do, although if different users process
different control messages, they may end up with different views of the group.
This attack however also applies to CGKAs in general.

Separately, we note that Sender Keys(+) does not suffer from the forward
security issues from MLS’s CGKA [7].
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7 Conclusion and Future Work

In conclusion, our modular approach to modelling Sender Keys has allowed us to
identify its main security limitations, some of which we can mitigate while pre-
serving efficiency. We have demonstrated that the protocol at its core is sound,
although it does have notable shortcomings that can be remedied without sacri-
ficing performance. We propose Sender Keys+ as a viable alternative for group
messaging when strong PCS is not a critical requirement or regular updates
are performed. Interestingly, our modelling of two-party channels has revealed
the difficulty of achieving PCS in Sender Keys, even after updates or removals,
contradicting folklore assumptions.

In practice, it is common for two-party channels between group members to
remain stagnant for extended periods if private communication is not frequent.
This degrades the overall group security, underscoring the importance of imple-
menting a regular refresh mechanism by default, especially if PCS updates are
implemented. Additionally, Sender Keys is commonly supplemented by addi-
tional mechanisms not considered in our study, such as support for multiple
devices and encrypted cloud backups that increase the attack surface.

Looking forward, several research directions emerge. Firstly, our security
model can be extended to encompass randomness manipulation, successful mes-
sage injections, insider threats, and other relevant scenarios. Investigating the
practical behaviour of Sender Keys would provide valuable insights for improved
modelling and the identification of potential vulnerabilities. Benchmarking both
the baseline and extended Sender Keys protocols would also contribute to assess-
ing their practicality. Additionally, it is important to address the challenges
that arise when total order is violated, and to design a protocol that avoids
the drawbacks associated with decentralised continuous group key agreement
(DCGKA) such as the need for multi-round communication [47]. Towards a more
concurrency-friendly Sender Keys protocol, an important direction is the design
of a mechanism for resolving ties in control messages that are sent concurrently.
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Abstract. Updatable public key encryption has recently been intro-
duced as a solution to achieve forward-security in the context of secure
group messaging without hurting efficiency, but so far, no efficient lattice-
based instantiation of this primitive is known.

In this work, we construct the first LWE-based UPKE scheme with
polynomial modulus-to-noise rate, which is CPA-secure in the standard
model. At the core of our security analysis is a generalized reduction
from the standard LWE problem to (a stronger version of) the Extended
LWE problem. We further extend our construction to achieve stronger
security notions by proposing two generic transforms. Our first transform
allows to obtain CCA security in the random oracle model and adapts the
Fujisaki-Okamoto transform to the UPKE setting. Our second transform
allows to achieve security against malicious updates by adding a NIZK
argument in the update mechanism. In the process, we also introduce
the notion of Updatable Key Encapsulation Mechanism (UKEM), as the
updatable variant of KEMs. Overall, we obtain a CCA-secure UKEM in
the random oracle model whose ciphertext sizes are of the same order of
magnitude as that of CRYSTALS-Kyber.

1 Introduction

Secure group messaging aims to allow secure, long-lasting, communication for a
large group of users. The larger the group and the longer the communication, the
likelier one of the group member gets compromised. When the latter happens,
ideally, one would like to guarantee that messages sent before the attack occurred
remain hidden to the attacker. This corresponds to the notion of forward secu-
rity [5,9,13,17,19,29,35] and can be achieved by relying on forward-secure public
key encryption (FS-PKE), but it vastly hurts efficiency compared to relying on
standard PKE. FS-PKE generates an initial key pair (pk0, sk0) which allows to
derive a chain of key pairs (pk1, sk1), (pk2, sk2), . . . where each pkt+1 can be
derived publicly from pkt (and skt+1 from skt). Hence, the first epoch key pair
of an FS-PKE scheme implicitly defines all the subsequent epoch key pairs. For-
ward security further requires that it should be hard to go back in the secret
c© International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14442, pp. 342–373, 2023.
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key chain, as compromising skj should not hurt the confidentiality of messages
encrypted under pkt for t < j. Therefore, FS-PKE can be seen as a simple form
of hierarchical identity-based encryption (HIBE) [17,28], and tight connections
between the notions have been observed [26]. As of today, FS-PKE schemes have
similar performances as HIBE constructions, and therefore relying on FS-PKE
for building secure group messaging seems inherently inefficient. The extreme
alternative is to rely on standard PKE and to require every user to refresh their
key pair on a regular basis. This assumes users to be active and online, which is
an undesirable assumption in the context of group messaging. Moreover, a user
refreshing its own key only guarantees confidentiality of messages it receives
(and therefore messages sent by other users) but does not provide any guarantee
about messages it sent. For the latter, users have to rely on the willingness of
receivers to update their keys.

Updatable public-key encryption (UPKE), recently introduced in [4,30],
offers a compromise between the above two approaches by relaxing the update
mechanism of FS-PKE: in a UPKE scheme, any user can update any other user’s
key pair by running an update algorithm with (high-entropy) private coins. As
a consequence, a key pair does not need to contain any information about the
next epoch key pair as this information can be provided by the external user
who proceeds in the update. This change allows to hope for UPKE construc-
tions with similar efficiency as standard PKE, but a sender can now protect the
messages it sent by updating the receiver’s key.

To be formal, a UPKE scheme consists in a standard PKE scheme (KeyGen,
Enc,Dec) augmented with two additional algorithms (UpdatePk,UpdateSk). The
UpdatePk algorithm can be run by any user on inputs a target public key pkU

t of a
user U used at epoch t and fresh private coins r. It produces a public key pkU

t+1 for
user U for epoch t+1 as well as an update ciphertext up (encrypted under pkU

t ).
The UpdateSk algorithm then allows user U , given an update ciphertext up and
its secret key skU

t to update the latter to obtain secret key skU
t+1 corresponding to

pkU
t+1. Security of UPKE guarantees that ciphertexts encrypted under U ’s public

key pkU
t at any epoch t remain secret to an attacker which compromises skU

j

for j > t, as long as any of the updates which occurred between epoch t and
epoch j was performed by an honest user (i.e., using private coins unknown
to the attacker). This is formalized by the notion of IND-CR-CPA security, in
which the adversary can impose updates of the target user’s public key with
Chosen Randomness (CR) (i.e., providing the private coins used by the update
mechanism to the challenger). This has been the main security notion studied so
far [4,22,30]. For practical applications, stronger notions are desirable, and were
introduced in [22]: first, the adversary could have access to a decryption oracle
(using the secret key of the current epoch), which corresponds to CCA security.
Second, the adversary could generate malicious updates. The latter notion cor-
responds to IND-CU-CPA/CCA security, where the adversary provides Chosen
Updates (CU) by providing (possibly malicious) updates to the challenger rather
than providing private coins (used to honestly generate updates in the chosen
randomness setting).
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UPKE has been constructed from various assumptions over the past years. An
efficient IND-CR-CPA construction based on the Computational Diffie-Hellman
(CDH) assumption and in the random oracle model (ROM) was proposed in [4,
30]. Constructions in the standard model were first proposed in [22] from the
Learning with Errors (LWE) assumption and from the Decisional Diffie-Hellman
(DDH) assumption, but the latter two constructions are mainly of theoretical
interest as they rely on bit-by-bit encryption, and circular-secure and leakage-
resilient PKE. The LWE-based construction notably relies on super-polynomial
modulus-to-noise rate due to the use of the noise flooding technique. Generic
transforms from IND-CR-CPA security to IND-CU-CCA security are described
in [22] but rely on heavy tools, namely one-time, strong, true-simulation f -
extractable Non-Interactive Zero-Knowledge (NIZK) arguments [21]. In [1], an
efficient construction based on the Decisional Composite Residuosity (DCR)
assumption was proposed. The authors show that a variant of the ElGamal
Paillier encryption scheme [16] can be turned into a (standard model) IND-
CR-CPA UPKE scheme, and achieve IND-CR-CCA and IND-CU-CCA UPKE
by further adding NIZK proofs using the Naor-Yung paradigm [38]. Concrete
instantiations of the latter NIZKs are proposed in the random oracle model,
resulting in the first efficient IND-CR-CCA and IND-CU-CCA instantiations
from the DCR assumption and the strong RSA assumption [8], in the ROM.

1.1 Contributions

We provide the first efficient UPKE instantiation based on the LWE assumption
with polynomial modulus-to-noise rate.

First, we construct a UPKE encryption scheme which follows the lines of
the PKE scheme from [34], which underlies CRYSTALS-Kyber [11]. The main
technicalities lie in its security analysis: (i) we prove our construction to achieve
IND-CR-CPA security in the standard model, based on a new assumption which
generalizes the extended-LWE assumption defined in [39], and (ii) we show that
the latter assumption reduces to the standard LWE assumption by extending
the results from [15].

Second, we provide two simple generic transforms which allow to convert any
IND-CR-CPA UPKE construction into IND-CR-CCA and IND-CU-CCA UPKE
schemes in the ROM. As we aim for practical constructions, we focus on con-
structing updatable key encapsulation mechanism (UKEM), which we introduce
as the updatable variant of KEM. Our first transformation is an adaption of the
Fujisaki-Okamoto transform [24] to the context of UPKE and allows to gener-
ically transform an IND-CR-CPA UPKE into an IND-CR-CCA UKEM with a
minimal cost, in the ROM. The second transformation relies on the existence of a
NIZK argument for a specific language. As an important remark, the underlying
NIZK only plays a role in the update mechanism and should only satisfy basic
properties (namely, a single-theorem NIZK with computational soundness and
computational zero-knowledge is sufficient) while prior constructions [1,22] relied
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on strong NIZK notions (e.g., statistical-simulation-sound NIZKs for instanti-
ating Naor-Yung). The latter NIZK argument can be efficiently instantiated
from [33].

1.2 Technical Overview

We now present our contributions in more details, starting with our IND-CR-
CPA UPKE construction.

IND-CR-CPA UPKE from Lattices. Our IND-CR-CPA construction follows the
LWE-variant of [34]: a public key is an LWE instance (A,b) with b = As + e
for A ∈ Z

n×n
q and s, e ←↩ DZn,σ, the LWE secret s being the corresponding

secret key. An encryption of a message μ ∈ Z
n
p is a pair (ct0, ct1) of the form

(XA + E,Xb + f + �q/p� · μ mod q) with X,E ←↩ DZn×n,σ, f ←↩ DZn,σ. Such a
ciphertext can be decrypted by rounding ct1 − ct0s since:

ct1 − ct0s = Xb + f + �q/p� · μ − (XA + E)s = Xe + f − Es + �q/p� · μ

where the term Xe + f − Es is small. Updating a key pair is done by sampling
small vectors r,η ←↩ DZn,σ. The public key is updated to (A,b + Ar + η) =
(A,A(s + r) + e+ η). The corresponding update ciphertext up is an encryption
of r (which fits in the plaintext space) under the original public key (A,b).
The updated secret key is then s + r. Correctness follows from the correctness
of the PKE scheme. We emphasize that the secret key and noise term might
have increased in norm, which can hurt correctness of decryption. We provide
more details about how we handle this issue later, when we mention concrete
instantiations.

Let us now focus on the security analysis. An IND-CR-CPA attacker first
sees a public key (A,b = As + e) and can make a first sequence of updates with
private coins of its choice (r1,η1), . . . , (rchall,ηchall) before asking for a challenge
ciphertext for a pair of plaintexts (μ0,μ1) at epoch chall. The challenge cipher-
text is then encrypted under public key pkchall = (A,b+AΔr

chall+Δη
chall), where

Δr
chall =

∑chall
i=1 ri and Δη

chall =
∑chall

i=1 ηi. It can then ask for an additional
sequence of updates (rchall+1,ηchall+1), . . . , (rlast,ηlast) until it decides to com-
promise the secret key. When the latter happens, an honest update is performed
by the challenger using randomness r∗,η∗. Let Δr

last and Δη
last denote respec-

tively
∑last

i=1 ri and
∑last

i=1 ηi. Then, the adversary’s goal is to guess which plain-
text was encrypted, given the compromised secret key s+Δr

last +r∗ and the last
update ciphertext which encrypts r∗ under public key (A,b + AΔr

last + Δη
last).

The prior lattice-based construction from [22] has a similar structure (though
it is based on the Dual-Regev PKE scheme [25]) and the authors argue about
security by using the following observation, which we adapt to our construc-
tion for the exposition. First, notice that the final update ciphertext, which
encrypts r∗, can be transformed into an encryption of −s as we are given s +
Δr

last+r∗ and Δr
last is known. It then suffices to argue that the scheme is circular-

secure, given the compromised secret key (which is additional leakage about s).
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To do so, observe that, for a ciphertext (ct0, ct1) = (XA + E,Xb + f+�q/p�·μ),
the second term can be re-written as (XA + E)s + Xe + f+�q/p�·μ−Es, where
XA + E is the first part ct0 of the ciphertext. That is, we have:

ct1 = ct0s + f + Xe − Es + �q/p� · μ .

Therefore, assuming f is much larger than Xe − Es, the ciphertext distribution
is statistically close to (ct0, ct0s+f+�q/p�·μ). Under the LWE assumption, ct0 is
pseudorandom, and then any (linear) information about the secret s contained
in μ can be absorbed by the term ct0s. The Leftover Hash Lemma allows to
complete the security analysis by proving that the latter term is statistically close
to uniform, as long as s retains enough min-entropy (in this case, conditioned
on the leaked key s + Δr

last + r∗). Hence, using noise-flooding and assuming
LWE, the scheme is proven secure. The proof additionally relies on the (key)-
homomorphism of Dual-Regev to incorporate updates required by the adversary
in the challenge/update ciphertext and keys.

Our analysis deviates from the above and avoids the noise-flooding step.
Instead, we directly prove pseudorandomness of the above XA + E term. It
seems that the LWE assumption for the instance (A,XA + E) would suffice,
but the issue is that the second term ct1 = (XA + E)s + Xe + f +�q/p� ·μ−Es
of the above tuple contains information about X and E, namely the terms Xe
and −Es. This is similar to the Extended-LWE assumption [39], which claims
that pseudorandomness of an LWE instance (A,As + e) still holds when the
adversary is given an additional hint h computed as 〈z, e〉 mod q for a small z
chosen by the adversary independently of A. However, the latter assumption is
not sufficient: in our case, the sample contains a hint about both the error and
the secret and, additionally, as we are interested in updatable encryption, the
adversary can make update queries before asking for the challenge. To answer
such queries, one needs to know A, which is part of the public key, in advance.
We introduce the Hermite Normal Form Adaptive Extended LWE assumption
HNF-AextLWE, which precisely states that pseudorandomness of (A,As + e)
still holds, provided an additional hint of the form 〈z0, s〉 + 〈z1, e〉 + g mod q,
with z0, z1 being small vectors arbitrarily chosen by the adversary after it sees A
and g being a small Gaussian noise. Equipped with this assumption, the rest of
the proof can be adapted and we are able to prove the IND-CR-CPA security
of our UPKE scheme under the HNF-AextLWE assumption. It remains to show
that the latter assumption is implied by the standard LWE assumption.

Reduction from LWE. We first make a reduction from the adaptive extended-
LWE (AextLWE) problem to the HNF-AextLWE problem. AextLWE generalizes
the Extended-LWE problem by allowing the adversary to choose a small vector z
arbitrarily given A. The reduction adapts the one from LWE to HNF-LWE given
in [6] to our setting. It relies on the observation made in [15] that, if A ∈ Z

m×n
q

for m ≥ 16n + 4 log log q, one can extract an invertible matrix A0 from A
together with another matrix A1 ∈ Z

m′×n
q with m′ = m − 16n − 4 log log q

such that the matrix A1 · A−1
0 is uniformly distributed. Importantly, a hint
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〈z0, s∗〉 + 〈z1, e∗〉 + g mod q for an HNF-AextLWE instance using A∗ can be
computed as a hint 〈z, e〉 + g mod q for an AextLWE instance using A.

We then show that LWE reduces to this new adaptive version by showing
that taking a larger standard deviation allows the additional Gaussian noise g
in the hint h = 〈z, e〉 + g mod q to hide the information given by it. Precisely,
the standard deviation must be taken larger by a factor ‖z‖2 (which has to be
small by definition). The proof technique is similar to that of [18,31], except
that we need to show that the adaptive nature of our assumption still allows for
a reduction.

The reduction goes as follows: Given an LWE instance (A,b), first send A to
the AextLWE adversary to receive its choice of small hint vector z. In response,
sample an additional error e′ and Gaussian term g′ from a well-chosen distri-
bution that depends on the small vector z chosen by the adversary, and return
b′ = b + e′ and a hint h = 〈z, e′〉 + g′.

One can rewrite the hint as h = 〈z, e + e′〉 − 〈z, e〉 + g′ = 〈z, e + e′〉 + g for
g = −〈z, e〉+g′. If the vector b is equal to As+e, as we have b′ = As+(e+e′)
and h = 〈z, e + e′〉 + g, it suffices to show that the joint distribution of e + e′

and g is a spherical Gaussian. This is achieved by applying a convolution lemma
to the sum (

e + e′

−zT e + g′

)

=
(

Id
−zT

)

e +
(
e′

g′

)

,

which is possible if the standard deviation is larger by a factor of ‖z‖2. The
analysis for the case where of uniform b is identical.

Combining the above two results, we then obtain an IND-CR-CPA UPKE
construction based on the standard LWE assumption, leading to the first lattice-
based UPKE with polynomial modulus-to-noise ratio. We now explain how we
transform this construction in order to achieve IND-CU-CCA security.

A Fujisaki-Okamoto Transform for UPKE. Prior works [1,22] have relied on the
Naor-Yung paradigm [38] to achieve CCA-security, which requires simulation-
sound NIZK proofs. While this allows to remain in the standard model, efficient
instantiations of NIZKs rely on random oracles, which motivates us to consider
a ROM-based transform following the Fujisaki-Okamoto transform [24]. As we
aim for practical efficiency, we focus on constructing IND-CR-CCA updatable
key encapsulation mechanism (UKEM), a notion we introduce in this work. Our
transform allows to construct IND-CR-CCA UKEM in the ROM with similar
efficiency as that of the underlying IND-CR-CPA UPKE. To encapsulate a key
for a target user with public key pkt (at epoch t), one produces a ciphertext ct as
an encryption of a uniform message m with randomness extracted from applying
a hash function G (modeled as a random oracle) to the public key pkt and the
message m. The encapsulated key is defined as H(ct,m) for another hash function
(also modeled as a random oracle). Decapsulation recovers m by decrypting ct
and re-encrypts it to check that ct was properly generated, in which case one com-
putes the key H(ct,m). The update mechanism UpdatePk,UpdateSk are exactly
the same as that of the underlying IND-CR-CPA UPKE scheme. Overall, this
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is the same transform as for PKE [27] except that pkt is fed as input to G. The
security analysis follows the standard route for FO analyses: we modify oracles
to allow the challenger to simulate the decapsulation oracle without knowledge
of the secret key sk. The main change is that we rely on the additional pkt which
is fed as an additional input to the hash function G in order to keep track of
possibly valid ciphertexts known by the adversary for each epoch t.

In a concurrent work, Asano et al. [7] define a similar FO transform to build
IND-CR-CCA secure UPKEs. The authors point out a weakness in the generic
CCA transform from [22]: the latter work does not consider the possibility of
updates of the public key that would allow the adversary to come back to the
challenge public key and then trivially break security by querying the CCA
decryption oracle on the ciphertext. This is allowed as in [22], this query is
forbidden only at the challenge epoch. This is solved in [7] by generalizing the
technique of [1], which adjoins a counter to the public key that is incremented at
each update. The construction of [7] relies on using this counter in the derandom-
ization step of their FO transform, which then makes any ciphertext generated
in a previous epoch invalid for decryption queries. Our security model for IND-
CR-CCA UKEM deals with this problem by adding another sanity check in the
decapsulation oracle: we require that the adversary is not allowed to make a
decapsulation query of the challenge ciphertext only if it current public key is
the same as the challenge one.

Adding Security Against Malicious Updates. Next, we extend our IND-CR-CCA
construction to achieve IND-CU-CCA security. This is achieved via the stan-
dard Naor-Yung “double-encrypt + NIZK” paradigm [38] applied (only) to the
update mechanism: a user’s public key is now a pair of public keys (pkL

0 , pkR).
The first one is an evolving key, for which the user keeps the corresponding secret
key skL

0 , while the second one is never updated and its corresponding secret key
is discarded after generation. To update a target public key (pkL

t , pkR) used at
epoch t, one updates the first key as before by revealing the next epoch pub-
lic key pkL

t+1 and encrypting the private coins r used for the update. However,
rather than encrypting r under pkL

t only, one also encrypts it under pkR. Addi-
tionally, one produces a NIZK argument that the private coins underlying each
ciphertext and used for updating the public key match. The encapsulation and
decapsulation mechanisms are unchanged (and only use pkL

t ).
These changes allow us to argue about IND-CU-CCA security using stan-

dard techniques. Let up∗ = (ct∗L, ct∗R, π∗) denote the honest update generated
by the challenger before leaking the secret key, and r∗ denote the underlying
private coins. In the IND-CU-CCA security reduction, one can then replace π∗

by a simulated proof and ct∗R by an encryption of 0 using the zero-knowledge
property and the IND-CPA security of the underlying PKE, since no information
about skR is revealed to the adversary. The soundness of the NIZK argument
guarantees that the adversary cannot produce an accepting argument for invalid
updates. Hence, security can be reduced to that of the underlying IND-CR-CCA
UKEM: the IND-CR-CCA attacker can use the additional key skR to decrypt the
private coins r used by the IND-CU-CCA adversary in its valid updates queries,
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and forward r to its IND-CR-CCA challenger for producing the same update.
A crucial remark is that the adversary gets to see an update (and then a NIZK
argument) generated by the challenger only at the very end of the game, when
it compromises the key. In particular, it can no longer query oracles from this
point and therefore cannot use this proof as part of oracle queries. This allows
us to rely on a NIZK argument which is only computational zero-knowledge.

Concrete Parameters. We provide concrete parameters for our (IND-CR-CPA /
IND-CR-CCA) scheme, following design choices of CRYSTALS-Kyber [11]: we
instantiate our construction in the module lattices setting, using binomial distri-
butions. In particular, we assume that our scheme is secure in the module setting
though our security analysis does not immediately carries over to the Module
Learning With Errors (MLWE) setting [14,32]. To extend it, one would need
a similar reduction from decision entropic-MLWE to MLWE, which is currently
lacking though a recent work from [12] shows a reduction for the search variants,
providing a first step in this direction.

Notice that, as our modulus is small and the key can keep growing with
(adversarially generated) updates, we can only guarantee correctness for a
bounded number of updates as the decryption error might become too large
at some point. We introduce a parameter k which is the maximal number of
updates for which correctness is guaranteed with probability extremely close
to 1. This parameter affects the size of the modulus q and forces us to use a
larger modulus compared to Kyber (which uses q = 3329 and achieves a cipher-
text size of 0.8 KB for 128 bit CCA security). Note that in practice, if randomness
is honestly sampled from centered distribution (e.g., r ← U({−1, 0, 1}n)), the
expected number of supported updates is O(k2). In Table 1, we provide parame-
ters for our IND-CR-CPA/CCA UKEM schemes, for k ∈ {25, 210, 215, 220}, and
for a security of λ close to 128 bits.

Table 1. Concrete parameters for our IND-CR-CCA UKEM.

λ q k |ct| |up|
DCR-based construction [1] 128 ∞ 8.3 KB 1.5 KB

Estimate for [22] 120 ≈ 285 25 33 KB 360 KB

This work 128 ≈ 221 25 1.8 KB 5.4 KB

128 ≈ 226 210 3.0 KB 12 KB

116 ≈ 231 215 5.8 KB 12 KB

128 ≈ 236 220 9.1 KB 27 KB

We provide a brief comparison with the DCR-based (IND-CR-CPA) con-
struction of [1], whose ciphertext/update size is about 1.5 KB. Note that in the
latter work, the authors achieve CCA-security by adding NIZKs, which hurts
their ciphertext size for the CCA setting (about 8.3 KB for 128 bits of security),
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while using our FO transform leaves us with the same numbers for our IND-CR-
CCA construction. In order to give an insight on the efficiency gain compared
to the construction of [22] (which was not meant to be efficient), we provide
estimates of practical parameters for their scheme. As it requires flooding, we
first make the assumption that flooding by 64 bits suffices (see [37]). In order
to give optimistic parameters, we relax their statistical leftover hash lemma to
a computational one, i.e., we use an adaptation of the scheme from [34] rather
than dual Regev encryption. This leads to considering parameters for our scheme
but with flooding. Also, to achieve IND-CR-CCA security, we apply our efficient
FO transform and not their generic one.

2 Preliminaries

We start by giving out the mathematical background and some useful lemmas
needed in this paper.

Throughout this paper, we use bold upper case letters to denote matrices (A),
bold lower case letters for vectors (a) and italic letters for scalars (a). For any
vector x = (x1, . . . , xn), we use the �2-norm ‖x‖2 =

√∑
x2

i , the �1-norm ‖x‖1 =∑ |xi| and the �∞-norm ‖x‖∞ = max |xi|. For any matrix A = (a1‖ . . . ‖an),
we define ‖F‖2 = max ‖ai‖2, ‖F‖1 = max ‖ai‖1 and ‖F‖∞ = max ‖ai‖∞. We
let �·� denote the floor function and �·
 denote the rounding to the closest integer
with ties being rounded up, which are extended to vectors by considering their
coefficient-wise application. For x ∈ Q

n and q > p > 0, we write �x
p,q for
�p/q ·x mod q
. In this work, the modulus q will always be implicit and omitted.

For a distribution S, we note s ←↩ S the fact that s is sampled using distribu-
tion S. For a random variable X, we write X ∼ S if X follows the distribution S.
We let B(p) denote the Bernouilli distribution of parameter p. We write a ≈δ b
for a, b, δ > 0 if there exists ε < δ such that |a − b| = ε.

We say an algorithm is PPT if it is probabilistic, polynomial-time. We use
log to denote the logarithm in base 2 and ln to denote the logarithm in base e.

We use the convolution product to express the distribution of a sum of ran-
dom variables, which we remind below as well as some additional basic operations
and properties of probability distributions and discrete Gaussian distributions.

Definition 1 (Convolution). Let m ∈ N. Let S1,S2 be two probability distri-
bution on Z

m. We define the convolution product S1 ∗ S2 as:

S1 ∗ S2(x) =
∑

y∈Zm

S1(x − y)S2(y).

If X ∼ S1 and Y ∼ S2 are independent random variables, then X +Y ∼ S1 ∗S2.

We recall the definition of min-entropy.

Definition 2 (Min-entropy). Let X,Y be random variables. We define the
min-entropy

H∞(X) = − log
(
max

x
P [X = x]

)
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and the average conditional min-entropy:

H∞(X |Y ) = − log
(
Ey[max

x
P [X = x |Y = y]]

)
.

Definition 3 (Statistical distance). Let S1,S2 be two distributions on Z
n.

We define the statistical Δ(S1,S2) as:

Δ(S1,S2) =
1
2

∑

x∈Zn

|S1(x) − S2(x)| .

2.1 Gaussian Distributions

We give the definition of Gaussian distribution and several useful lemmas that
are used afterwards.

Definition 4 (Gaussian distribution). Let m ∈ N. For any symmetric
positive-definite matrix Σ ∈ R

m×m, define the function gΣ : Rm → R as

ρΣ(x) = exp
(

−π
xT Σ−1x

2

)

.

We define the Gaussian distribution on Z
m with center parameter c and covari-

ance matrix parameter Σ as DZm,Σ,c(x) = ρΣ(x − c)/ρΣ(Zm − c). We will also
use, for σ > 0, the notation DZm,σ to denote DZm,σ2Id,0. Additionally, we will
let DZm×n,σ denote the distribution obtained by sampling n vectors from DZm,σ

and viewing them as the columns of a matrix in Z
m×n.

Lemma 1 (Gaussian tail-bound, [20, Lemma 2.13]). Let x ∼ DZm,σ, then
for all t > 1, we have

P

[

‖x‖2 ≥ tσ

√
m

2π

]

≤ e− m
2 (1−t)2 .

Lemma 2 (Gaussian convolution, [10, Lemma 4.12]). Let c1, c2 ∈ Z
n.

Let X ∼ DZn,σ,c1 , Y ∼ DZn,σ′,c2 and let S be the distribution followed by X +Y .
Then, if

(
1
σ2

+
1

σ′2

)−1/2

>

√

ln(2n(1 + 1
ε ))

π
,

then we have the following inequality

Δ
(
S,D

Zn,
√

σ2+σ′2,c1+c2

)
<

2ε

1 − ε
.

We now state a discrete Gaussian decomposition result.
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Lemma 3 (Gaussian decomposition, instantiated from [36, Lemma 1]).
For m ≥ n, let F ∈ Z

m×n be a matrix and let s1(F) be the largest singular value
of F. Take σ, σ1 > 0. Let e1 ∼ DZn,σ1 and e2 ∼ DZm,Σ for

Σ = σ2Id − σ2
1F

T F .

Then, if σ >
√

2σ1s1(F) and σ1 >
√

2 ln(2n(1 + 1/ε))/π, we have:

Δ (S,DZm,σ) <
2ε

1 − ε
,

where S is the distribution of Fe1 + e2.

In order to apply Lemma 3, one needs to control the ratio s1(F). This is the
purpose of the following result.

Lemma 4 (Adapted from [2, Lemma 8]). There exists a constant K > 1
such that the following holds. For m ≥ 2n, σ > K

√
n and F ←↩ DZm×n,σ

P
[
s1(F) > Kσ

√
m

]
< e−m/K ,

where s1(F) denotes the largest singular value of F

2.2 Updatable Public Key Encryption

We recall the syntax of Updatable Public Key Encryption (UPKE) and adapt
the underlying IND-CR-CPA security notion defined in [22], with a minor mod-
ification: we define correctness and security with a bound on the number of
updates. This is motivated by the fact that, in our LWE-based scheme, updates
make the key slightly larger and then after a (large but polynomial) number of
updates, correctness of decryption is no longer guaranteed. This results from the
fact that we are able to work over a (small) polynomial modulus.

Definition 5. (Updatable Public Key Encryption) An updatable public key
encryption scheme is a tuple UPKE = (KeyGen,Enc,Dec,UpdatePk,UpdateSk)
of PPT algorithms with the following syntax:

– KeyGen(1λ) takes as input a security parameter 1λ and outputs a pair (pk, sk).
– Enc(pk,m) takes as input a public key pk and a message m and outputs a

ciphertext ct.
– Dec(sk, ct) takes as input a secret key sk and a ciphertext ct and outputs a

message m′.
– UpdatePk(pk) takes as input a public key pk and outputs an update up and a

new public key pk′.
– UpdateSk(sk, up) takes as input a secret key sk and an update up and outputs

a new secret key sk′.
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(k, δ)-Correctness: Let (pk0, sk0) ← KeyGen(1λ) be a key pair and k > 0 be an
integer. For t < k, define

(upt+1, pkt+1) ← UpdatePk(pkt) and skt+1 ← UpdateSk(skt, upt+1).

The UPKE scheme is said to be (k, δ)-correct, for δ > 0, if for all messages m
and t ≤ k

P [Dec(skt,Enc(pkt,m)) �= m] < δ ,

where the probability is over the coins of the underlying algorithms.

We give the definition from [22] which we adapt to the bounded number of
updates setting by adding a parameter k for the number of updates.

Definition 6 (k-IND-CR-CPA security). Let k > 0 be an integer and (KeyGen,
Enc,Dec,UpdatePk,UpdateSk) be a UPKE scheme. Let R be the randomness
space of

UpdatePk. We give the k-IND-CR-CPA security game in Fig. 1.
The advantage of A in winning the above game is

AdvIND-CR-CPA
UPKE (A) =

∣
∣
∣
∣Pr [β = β′] − 1

2

∣
∣
∣
∣ .

A UPKE scheme is k-IND-CR-CPA-secure if for all PPT attackers A, the
advantage AdvIND-CR-CPA

UPKE (A) is negligible.

Fig. 1. k-IND-CR-CPA security game.

We also recall the definition of γ-spreadness, which allows to bound the
probability that a specific randomness r was used to produce a valid encryption.
It is used in Sect. 5 for our FO transform.
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Definition 7 (γ-spreadness, adapted from [23, Sect. 2.1]). Let γ > 0. We
say that a UPKE (KeyGen,Enc,Dec,UpdatePk,UpdateSk) is γ-spread if for all
m, c and (pk, sk) ← KeyGen(1λ), we have

P [Enc(pk,m) = c] ≤ γ.

2.3 Updatable Key Encapsulation Mechanism

We introduce the KEM variant of UPKE, which we term Updatable KEM or
UKEM. Defining the KEM equivalent of UPKE seems particularly relevant con-
sidering that UPKE was introduced as a group messaging primitive, hence requir-
ing real-world efficiency.

We adapt the definitions of IND-CR-CCA and IND-CU-CCA security notions
defined by [22] for UPKEs.

Definition 8 (Updatable KEM (UKEM)). An updatable KEM is a tuple
(KeyGen,Encaps,Decaps,UpdatePk,UpdateSk) of algorithms with the following
syntax:

– KeyGen(1λ) takes as input a security parameter 1λ and outputs a pair (pk, sk).
– Encaps(pk) takes as input a public key pk and outputs an encapsulation c and

a key K.
– Decaps(sk, c) takes as input a secret key sk and an encapsulation c and out-

puts a key K ′.
– UpdatePk(pk) takes as input a public key pk and outputs an update up and a

new public key pk′.
– UpdateSk(sk, up) takes as input a secret key sk and an update up and outputs

a new secret key sk′.

(k, δ)-Correctness: Let (pk0, sk0) ← KeyGen(1λ) be a key pair and k > 0 be an
integer. For t < k, define

(upt+1, pkt+1) ← UpdatePk(pkt) and skt+1 ← UpdateSk(skt, upt+1).

The UKEM scheme is said to be (k, δ)-correct, for δ > 0, if for all t ≤ k

P [Decaps(skt, ct) �= Kt | (ct,Kt) ← Encaps(pkt)] < δ ,

where the probability is over the coins of the underlying algorithms.

The k-IND-CR-CCA security corresponds to a variant of k-IND-CR-CPA where
the adversary is given access to a decapsulation oracle. We define k-IND-CR-CCA
in the Random Oracle Model (ROM), as we make use of the Fujisaki-Okamato
transform in Sect. 5 in order to build our IND-CR-CCA UKEM.

Definition 9 (k-IND-CR-CCA KEM security in the ROM). Let (KeyGen,
Encaps,Decaps,UpdatePk,UpdateSk) be a UKEM with key space K. Let R denote
the randomness space of UpdatePk. We give the game for k-IND-CR-CCA security
for an adversary that has access to a random oracle H in Fig. 2.
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Fig. 2. k-IND-CR-CCA security game in the ROM. Note that if β = 0, then the value
of the key K� is the output of Encaps.

The advantage of A in winning the above game is

AdvIND-CR-CCA
UKEM (A) =

∣
∣
∣
∣Pr [β = β′] − 1

2

∣
∣
∣
∣ .

A UKEM scheme is k-IND-CR-CCA-secure if for all PPT attackers A, the
advantage AdvIND-CR-CCA

UKEM (A) is negligible.

Notice that compared to the IND-CR-CCA definition for UPKE given in [22],
we add a check in the Odec oracle that the current public key pkt is different
from the challenge public key pkchall. This disallows trivial attacks in which an
adversary might make carefully chosen updates that would cancel out in order
to get back to the challenge public key and issue a decryption query on the
challenge. Another approach to solve this is given in [7], which generalizes the
one considered in [1].

In order to define the stronger k-IND-CU-CCA security notions for UKEM, we
add an algorithm VerifyUpdate to the UKEM syntax that allows a user to check
the validity of an update. Specifically, VerifyUpdate(pk, (pk′, up)) takes as input
the current epoch public key pk and a proposed update (pk′, up) and returns a
Boolean value. k-IND-CU-CCA security aims to guarantee security against adver-
saries who makes malicious updates.

Definition 10 (k-IND-CU-CCA KEM security in the ROM). Let (KeyGen,
Encaps,Decaps,UpdatePk,UpdateSk,VerifyUpdate) be a UKEM. The security
game for IND-CU-CCA is identical to the IND-CR-CCA game, except for the mod-
ified Oup(·) oracle. We present the modified Oup oracle in Fig. 3.
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Fig. 3. k-IND-CU-CCA security game in the ROM.

A UKEM scheme is k-IND-CU-CCA-secure if for all PPT attackers A, its
advantage AdvIND-CU-CCA

UKEM (A) is negligible.

In the rest of the paper, we omit the k in k-IND-CR-CPA/k-IND-CR-CCA/k-
IND-CU-CCA when it is implicit.

3 Extended LWE

We start by recalling the Learning With Errors (LWE) assumption.

Definition 11. (Learning With Errors - LWE) Let λ ≥ 0 be a security parame-
ter. Let q = q(λ), n = n(λ),m = m(λ) ≥ 0, S be a distribution on Z

n
q and χ be

an error distribution on Z
m. The goal of LWEq,n,m,χ(S) for an adversary A is

to distinguish between (A,b = As + e) and (A,u), for A ←↩ U(Zm×n
q ), s ←↩ S,

e ←↩ χm and u ←↩ U(Zm
q ). We define the advantage of A in the LWE game as

AdvLWE(A) := |P [A(A,As + e) → 1] − P [A(A,u) → 1]| .

To keep the notations simple, we write LWEq,n,m,σ for σ > 0, to denote
LWEq,n,m,DZm,σ

(U(Zn
q )).

The extended-LWE assumption claims that pseudorandomness of an LWE
instance (A,As + e) still holds when the adversary is given an additional hint h
computed as 〈z, e〉 mod q for a small z chosen by the adversary independently
of A. We define Adaptive extended-LWE, an adaptive version of this assumption.
As the name suggests, it allows the adversary to choose the hint vector z adap-
tively, i.e. after having seen the matrix A, which is not allowed in the definition
of the extended-LWE from [39]. In Theorem 1, we prove that LWE reduces to
this adaptive version.

Definition 12 (Adaptive extended-LWE - AextLWE). Let λ ≥ 0 be a security
parameter. Let q = q(λ), n = n(λ),m = m(λ), B = B(λ) ∈ N and χ be an
error distribution on Z

m. The goal of AextLWEq,n,m,χ,B for an adversary A is
to distinguish between the case where β = 0 and β = 1 in the interactive game
depicted in Fig. 4. We define the advantage of A in the AextLWE game as

AdvAextLWE(A) := |P [A(A,As + e, z, h) → 1] − P [A(A,u, z, h) → 1]| ,
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where the elements are distributed as shown in Fig. 4.
To keep the notations simple, we write AextLWEq,n,m,σ,B, for σ > 0, to denote

AextLWEq,n,m,DZm,σ,B.

Fig. 4. The decision game for AextLWEq,n,m,χ.

We define the Hermite Normal Form (HNF) variant of Adaptive extended-
LWE, based on the normal form reduction from [6, Lemma 2]. Lemma 5 shows
that the HNF variant reduces to the standard Adaptive extended-LWE.

Definition 13 (HNF Adaptive extended-LWE - HNF-AextLWE). Let λ ∈ N

be a security parameter. Let q = q(λ), n = n(λ),m = m(λ), B = B(λ) ∈ N

and χ be an error distribution on R
m. The goal of HNF-AextLWEq,n,m,χ,B for

an adversary A is to distinguish between the case where β = 0 and β = 1 in
the interactive game depicted in Fig. 5. We define the advantage of A in the
HNF-AextLWE game as

AdvHNF-AextLWE(A) = |P [A(A,As + e, z0, z1, h) → 1] − P [A(A,u, z0, z1, h) → 1]|

where the elements are distributed as shown in Fig. 5.
To keep the notations simple, we write HNF-AextLWEq,n,m,σ,B, for σ > 0, to

denote HNF-AextLWEq,n,m,DZm,σ,B.

Multiple-secret Variants. We consider the multiple-secret variants of all our
assumptions Asp ∈ {LWE,AextLWE,HNF-AextLWE} which consist in consider-
ing k distinct secrets for the same public matrix A, thus replacing the secret
vector s ∈ Z

n
q by a secret matrix S ∈ Z

n×k
q and the error vector e by an error

matrix E ∈ Z
m×k
q . Note that for AextLWE and HNF-AextLWE, the hint h ∈ Zq

also becomes a vector h ∈ Z
k
q . Also, the multiple-secret variants for AextLWE
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Fig. 5. The decision game for HNF-AextLWEq,n,m,χ.

and HNF-AextLWE could allow for a different z for each secret, but we restrict
ourselves to the case where the z is the same for all secrets, as it is all we need
for our proofs.

Using a hybrid argument, one can show that for every adversary A for the
multiple-secret variant of Asp with k secrets, there exists an adversary B with a
similar run-time against the single-secret problem Asp such that A’s advantage
is bounded by k · AdvAsp(B).

Lemma 5. Let q ≥ 25, n ≥ 1,m ≥ 16n + 4 log log q, then any adversary A for
HNF-AextLWEq,n,m′,σ,B , where m′ = m − 16n − 4 log log q, running in time T
can be used to build an adversary B for AextLWEq,n,m,σ,B running in time ≈ T ,
with advantage

AdvHNF-AextLWE(A) ≤ 4 · AdvAextLWE(B) .

Proof. Assume A is an adversary against HNF-AextLWE. We construct an adver-
sary B against AextLWE with the claimed advantage as follows.

Adversary B receives a matrix A =
(
AT

0 ‖AT
1

)T ∈ Z
m×n
q from the AextLWE

challenger, with A0 ∈ Z
n×n
q and A1 ∈ Z

m−n×n
q . According to [15, Claim 2.13],

with probability at least 1 − 2e−1 ≥ 1/4, there exist n linearly independent
rows within the first 16n + 4 log log q rows of A and an efficient way to find
them, so that B can reorder the matrix so that A0 is invertible. If it cannot find
such n rows, adversary B aborts. To avoid keeping track of the indices for the
reordering, assume that A is such that A0 is invertible and denote by Ad the
last 15n + 4 log log q rows of A1 so that A1 = (ÃT

1 ‖AT
d )

T
with Ã1 ∈ Z

m′×n
q .

It then computes A∗ = −Ã1A
−1
0 ∈ Z

m′×n
q and sends A∗ to adversary A.

Adversary A responds with the hint vectors z0 ∈ Z
n
q , z1 ∈ Z

m′
q . Then, adver-

sary B forwards z = (zT
0 ‖zT

1 ‖0m−m′−n)T ∈ Z
m
q to its challenger and receives a

vector b =
(
bT
0 ‖bT

1 ‖dT
)T and a hint h = 〈z, e〉 + g mod q from the AextLWE
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challenger, with b0 ∈ Z
n
q , b1 ∈ Z

m′
q , d ∈ Z

m−m′
q and g ←↩ DZ,σ. It then com-

putes b∗ = b1 + A∗b0 and sends (b∗, h) to A. Finally, it receives a response
bit β from A, which it forwards to its challenger.

In the case where b was a uniform vector, as A0 is an invertible matrix,
matrix A∗ is uniform and so is b∗ = b1 + A∗b0.

If we are in the case where
⎛

⎝
b0

b1

d

⎞

⎠ =

⎛

⎝
A0

Ã1

Ad

⎞

⎠ s +

⎛

⎝
e0
e1
ed

⎞

⎠

for s ←↩ DZn,σ, e0 ←↩ DZn,σ, e1 ←↩ D
Zm′ ,σ and ed ←↩ D

Zm−m′ ,σ, then

b∗ = Ã1s + e1 − Ã1A
−1
0 A0s + A∗e0 = A∗e0 + e1.

Furthermore, the hint is exactly

〈z, e〉 + g =
〈
zT
0 ‖zT

1 ‖0m−m′
, eT

0 ‖eT
1 ‖eT

d

〉
+ g

= 〈z0, e0〉 + 〈z1, e1〉 + g mod q.

Consequently, adversary A receives a valid HNF Adaptive extended-LWE
instance.

Adversary B runs A only once and has to compute the reordering which is
feasible in time poly(λ). It has advantage at least AdvHNF-AextLWE(A)/4, complet-
ing the proof of the lemma. ��

We now show that LWE reduces to Adaptive extended-LWE .

Theorem 1. Let q be a prime, ε > 0 and n,m,B, γ, σ ≥ 0. Assume that
σ >

√
2 ln(2(n + 1)(1 + 1/ε))/π and γ > σ

√
2(1 + nB2). Then for any adver-

sary A for AextLWEq,n,m,σ,B running in time T , there exists an adversary B for
LWEq,n,m,γ,B running in time poly(m, log q) · T such that:

AdvAextLWE(A) ≤ AdvLWE(B) + 2
2ε

1 − ε
.

Proof. Let A be an adversary against AextLWEq,n,m,σ. We build an adversary B
against LWEq,n,m,γ as follows. Adversary B receives from its LWE challenger
a tuple (A,b). It forwards A to A and receives a small hint vector z such
that ‖z‖∞ ≤ B.

It then samples [e′T ‖g′]T ←↩ DZn+1,Σ, for some Σ defined later on. It sets
b′ = b + e′ and h = 〈z, e′〉 + g′ and sends (b′, h) to A. Adversary B receives a
final bit from A which it forwards to its challenger.

Assume we are in the β = 0 case of the LWE game. Then b = As + e
and b′ = As + (e + e′). The hint h = 〈z, e′〉 + g′ can be rewritten as h =
〈z, (e + e′)〉 − 〈z, e〉 + g′. Notice that if

(
e + e′

−〈z, e〉 + g′

)

=
(

e
−zT e

)

+
(
e′

g′

)

∼ DZn+1,γ (1)
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this corresponds to the β = 0 case of the AextLWE game.
It thus suffices to set Σ accordingly. Notice that as e ∼ DZn,σ, we have

(
e

−zT e

)

=
(

Id
−zT

)

e ∼ DZn+1,σ2FFT

for F = [Id‖ − z]T . Let us then take Σ = γ2Id − σ2FFT . Note that s1(F)2 =
1 + ‖z‖22 ≤ 1 + nB2. By assumption, we have γ >

√
2σs1(F). By applying

Lemma 3, we get
(

e
−zT e

)

+
(
e′

g′

)

≈δ DZn+1,γ (2)

for δ = 2ε/(1 − ε).
In the β = 1 case of the LWE game, the vector b is uniform and so is b′. The

same analysis holds for the distribution of the hint h, so this case matches with
the β = 1 case of the AextLWE game for A. ��

4 IND-CR-CPA UPKE from LWE

We now describe a UPKE scheme with security based on the HNF-AextLWE
assumption. As already shown, it is implied by the standard LWE assumption.
Our scheme, detailed in Fig. 6, avoid noise flooding by taking advantage of the
HNF-AextLWE assumption defined in Sect. 3. We then provide the first efficient
UPKE scheme based on lattices. Our construction follows the lines of [34] which
underlies Kyber [11].

In contrast, the only prior lattice-based construction, proposed in [22] and
based on the Dual-Regev PKE from [25], is highly inefficient: (i) it supports only
binary plaintexts, (ii) updates are done via bit-by-bit encryption of the private
coins, and (iii) the security analysis relies on noise flooding, which requires a
super-polynomial modulus.

Theorem 2. Let ε, δ ∈ (0, 1), k > 0. Let q, p be primes and n,m>0 and σ, σc >
0 such that σ ≥ √

2 ln(2n(1 + 1/ε))/π and σc > 2σ
√

1 + n((k + 1)yσ)2, where
y =

√−2 log(δ/(4n)).
Assuming the hardness of HNF-AextLWE, the scheme presented in Fig. 6 is k-

IND-CR-CPA secure. More precisely, for any adversary A for the k-IND-CR-CPA
game, there exists an adversary B for HNF-AextLWE running in similar time as
A such that:

AdvIND-CR-CPA
UPKE (A) ≤ (2n + 8) · 2ε

1 − ε
+ (2n + 1) · AdvHNF-AextLWE(B) .

Furthermore, assuming q > 2pσc · (2y2σnk + y) and p > 2yσ, the scheme is
(k, δ)-correct.
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Fig. 6. LWE-based IND-CR-CPA UPKE construction.

Proof. The proof of correctness is detailed in the full version of the paper. We
also provide a proof of γ-spreadness there, which is relevant for the next section.

We show the IND-CR-CPA security of the scheme. Let us start by defining all
the security games.

Game G0: This is the original IND-CR-CPA game. Adversary A receives pk0 =
(A,b0 = As + e) and queries the Oup(·) oracle with randomness (r1,η1), . . . ,
(rchall,ηchall) until it asks for a challenge at epoch chall for a pair of plaintexts
(μ0,μ1). At this epoch, the secret key is skchall = s + Δr

chall where Δr
chall =

∑chall
i=1 ri and the public key is

pkchall =
(
A, bchall = A(s + Δr

chall) + e + Δη
chall

)
,

with Δη
chall =

∑chall
i=1 ηi. It receives a challenge

c∗ =
(
Tchall = XchallA + Echall, padchall = Xchallbchall + fchall + �q/p� · μβ

)
,

for β ∈ {0, 1} uniform.
Then the adversary queries the Oup(·) oracle until the last epoch last. At this

epoch, the secret key is sklast = s+Δr
last, where Δr

last =
∑last

i=1 ri and the public
key is pklast = (A,blast = A(s + Δr

last) + e + Δη
last), where Δη

last =
∑last

i=1 ηi.



362 C. Abou Haidar et al.

The challenger samples the final update r∗,η∗ ←↩ DZn,σ and sends

up∗ = Enc(pklast, r∗)
= (Tlast = XlastA + Elast, padlast = Xlastblast + flast + �q/p� · r∗)

together with pk∗ = (A,blast + Ar∗ + η∗) and sk∗ = s + Δr
last + r∗ to the

adversary.

Game G1: In this game we modify the update up∗. Instead of computing it as

up∗ = (Tlast = XlastA + Elast, padlast = Xlastblast + flast + �q/p� · r∗),

the challenger sets

up∗ = (Tlast = XlastA + Elast, padlast = Xlastblast + flast + �q/p� · (−s)).

This modification results in a computationally equivalent game. Indeed
adversary receives up∗ together with sk∗ = s + Δr

last + r∗ with Δr
last known

to the adversary. This modification is just a subtraction of �q/p� · (s + r∗) in
padlast.

Game G2: In this game, we again modify the update. This time the challenger
computes the update up∗ as

Tlast = XlastA + Elast − �q/p� · Id,

padlast = Tlast(s+Δr
last)−Elast(s + Δr

last) + Xlast(e + Δη
last)

+ flast + �q/p� · Δr
last.

Notice that

padlast = Xlastblast + flast + �q/p� · (−s).

Therefore, the only difference with the previous game is that we subtract a
publicly computable element �q/p� · Id in Tlast, which implies that this game is
computationally equivalent to the last one.

Game G3: In this game, instead of computing Tlast as Tlast = XlastA+Elast −
�q/p� · Id the challenger sets Tlast uniformly, i.e., Tlast ←↩ U(Zn×n

q ).
Lemma 6 below states that games G2 and G3 are computationally indistin-

guishable. The proof relies on the hardness of HNF-AextLWE. In particular, any
adversary B has advantage at most Adv(B) ≤ n ·AdvHNF-AextLWE at distinguishing
games G2 and G3.

Game G4: Here, instead of having the challenger sample s, e ←↩ DZn,σ at the
start of the game, and r∗,η∗ ←↩ DZn,σ at the end and setting sk∗ = s+r∗+Δr

last

and pk∗ = (A,A(s + Δr
last + r∗) + e + Δη

last + η∗), we do the following.
Let us define distributions S, St and Sẽ as:

S = D
Zn,σ

√
2, St = D

Zn, σ√
2
, t
2
, and Sẽ = D

Zn, σ√
2
, ẽ2

.
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Then, in game G4, the challenger samples t, ẽ ←↩ S at the beginning of the
game, then samples s ←↩ St, e ←↩ Sẽ and finally sets sk∗ = t + Δr

last and pk∗ =
(A,At + ẽ + AΔr

last + Δη
last).

Let δ = 2ε/(1 − ε). Lemma 2 shows that this change only induces a sta-
tistically negligible bias. Specifically, assuming σ ≥ √

2 ln(2n(1 + 1/ε))/π, t is
within statistical distance at most δ from the distribution of s + r∗ in game G3,
and the marginal distribution of s in game G4 with respect to the adversary’s
view is:

P [s = x] =
∑

y∈Zn

P [s = x|t = y]P [t = y]

=
∑

y∈Zn

DZn, σ√
2

(
x − y

2

)
D

Zn,σ
√
2(y)

=
∑

y∈Zn

D
Zn,σ

√
2(2x − y)D

Zn,σ
√
2(y)

≈δ DZn,2σ(2x) = DZn,σ(x).

The fourth equality comes from applying Lemma 2 for the convolution of two
Gaussian distributions with the same standard deviation. The same argument
applies for ẽ and e. Hence any adversary B has advantage at most 4δ = 8ε/(1−ε)
in distinguishing games G3 and G4.

Game G5: In this game, we replace b0 and up∗ = (Tlast,padlast) by uniform
elements. Note that Tlast is already uniform since game G3. Hence, the challenger
samples b0,padlast ←↩ U(Zn

q ), and sets pk0 = (A,b0) at the start of the game,
and returns up∗ = (Tlast,padlast) as the last update message.

Lemma 7 below states that this game and the previous one are computation-
ally indistinguishable under the LWE assumption.

Game G6: This is the final game. Here, the challenger replaces the challenge c∗

to make it uniform: it samples Tchall ←↩ U(Zn×n
q ) and padchall ←↩ U(Zn

q ), and
then sets c∗ = (Tchall,padchall).

Remember that in game G5, we have c∗ = (XchallA + Echall,Xchallbchall +
fchall + �q/p� · μβ). We can rewrite c∗ in a matrix form as:

Xchall

(
A‖bchall

)
+

(
Echall‖fchall

)
+ �q/p� · (

0‖μβ

)
(3)

with A ←↩ U(Zn×n
q ) and bchall = b0 + AΔr

chall + Δη
chall. Recall that we have

b0 ←↩ U(Zn
q ) since game G5. The last column of Equation (3) is

(Xchallb0 + fchall) + (Xchall(AΔr
chall + Δη

chall)) + �q/p� · μβ .

and can be rewritten as

(Xchallb0 + fchall,0)
+ TchallΔ

r
chall − EchallΔ

r
chall + XchallΔ

η
chall + fchall,1

+ �q/p� · μβ ,
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where fchall = fchall,0 + fchall,1 for fchall,0, fchall,1 ←↩ D
Zn,σc/

√
2. Consider we

are working with standard deviation σc/
√

2 instead of σc. The first term is
a multiple-secret LWE sample that is independent of any adversarially chosen
value. The second one can be computed from Tchall. The next three can be
viewed as an HNF-AextLWE hint on the secret Xchall and the error Echall with
hint vector z0 = Δη

chall and z1 = Δr
chall, which are small vectors. The difference

in standard deviation can be handled as in Lemma 7 by adding terms sampled
from D

Zn,σc/
√
2 to the matrices Xchall and Echall. Applying Lemma 2 proves

this change to be statistically unnoticeable.
The above indicates that the modification between games G5 and G6 can

be analyzed by using the multiple-secret variant of HNF-AextLWEq,n,n+1, σc√
2
,kyσ

with n secrets and hint vector z = [(Δη
chall)

T ‖(Δr
chall)

T ]T . Consequently, any
adversary A has advantage at most n · AdvHNF-AextLWE + (2n + 1) · 2ε/(1 − ε) in
distinguishing between games G5 and G6.

Note that in game G6, the adversary has no information on the challenge μβ .
Hence AdvG6(A) = 0. We obtain

AdvIND-CR-CPA
UPKE (A) ≤ (2n + 8) · 2ε

1 − ε
+ (2n + 1) · AdvHNF-AextLWE.

This completes the proof, up to Lemmas 6 and 7 below. ��
Lemma 6. For any adversary A that distinguishes between games G2 and G3,
there exists an efficient algorithm B for HNF-AextLWEq,n,n,σc,B (for B = (k +
1)yσ), calling A once, such that AdvdistG2,G3

(A) ≤ n · AdvHNF-AextLWE(B).

Proof. This proof constructs an algorithm B for the multiple-secret variant of the
HNF-AextLWE assumption with n secrets, using a distinguisher A for games G2

and G3.
Algorithm B receives a matrix A ∈ Z

n×n
q from the HNF-AextLWE challenger.

Then it samples s, e ←↩ DZn,σ and sets pk0 = (A,b0 = As + e), forwards pk0
to A and acts as A’s challenger until the last update phase where it has to
send up∗ and sk∗ to A. At this stage, algorithm B knows the sum of all the
updates Δr

last and the sum of all the noises used for each updates Δη
last as A

has finished querying the Oup oracle.
The HNF-AextLWE challenger expects small vectors z0, z1 for which to send

a hint h. Let Xlast ←↩ DZn×n,σc
be the secret matrix and Elast ←↩ DZn×n,σc

be the error matrix sampled by the challenger in the multiple-secret variant of
HNF-AextLWE. Algorithm B sets z0 = e + Δη

last and z1 = −(s + Δr
last).

It then receives from the challenger a matrix B ∈ Z
n×n
q and a hint

h = Xlastz0 + Elastz1 = (Xlast‖Elast)z + flast ,

where z =
(
zT
0 ‖zT

1

)T and flast ←↩ DZn,σc
. The matrix B is either uniform or of

the form XlastA + Elast.
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Adversary B sets

up∗ = (Tlast = B − �q/p� · Id, Tlast(s + Δr
last) + h + �q/p� Δr

last)

=
(
Tlast, Tlast(s + Δr

last) + Xlast(e + Δη
last) − Elast(s + Δr

last)

+ flast + �q/p� Δr
last

)
.

It also sets pk∗ = (A,b0 +A(Δr
last + r∗)+Δη

last +η∗) and sk∗ = s+Δr
last + r∗,

where r∗,η∗ ←↩ DZn,σ.
The case where B is uniform corresponds to adversary A playing game G3

and the case where B = XlastA + Elast corresponds to A playing game G2.
Hence B has the same advantage as A.

By a hybrid argument, there exists an adversary B′ for HNF-AextLWEq,n,n,σ,B

such that the advantage of B in the multiple-secret variant of HNF-AextLWE
with n secrets can be bounded by n · AdvHNF-AextLWE(B′), completing the proof.
��
Lemma 7. For any adversary A that distinguishes between games G4 and G5,
there exists an adversary B for LWEq,n,2n,σ/2 calling A once, such that:

AdvdistG4,G5
(A) ≤ AdvLWE(B) +

6ε

1 − ε
.

Proof. Let us build an adversary B for LWEq,n,2n,σ/2 that uses any distin-
guisher A between games G4 and G5.

Adversary B receives a uniform B ∈ Z
2n×n
q and a vector c ∈ Z

2n
q from the

LWE challenger. The vector c is either uniform or computed as an LWE sample
with secret s ←↩ DZn,σ/2. Now adversary B samples Elast,Xlast ←↩ DZn×n,σc

. It
then computes

B′ = MB +
(

0
Elast

)

, with M =
(

Id 0
Xlast Id

)

∈ Z
2n×2n
q

and parses B′ as
(
AT ‖TT

last

)T . Let t, ẽ ←↩ S = D
Zn,σ

√
2. After that, it samples

elements s′ ←↩ DZn,σ/2,t/2, η ←↩ DZn,σ/2,ẽ/2 and f ′ ←↩ DZn,(σ2
c−σ2/4)Id that are

used to adjust the standard deviations of the discrete Gaussian distributions
involved in the proof. Then it sets e′ =

(
ηT ‖f ′T )T and c′ = M(c + e′) + MBs′

and parses c′ as
(
bT
0 ‖uT

1

)T .
From there, adversary B runs as A’s challenger and sets pk0 = (A,b0). At

epoch last, it computes

up∗ = (Tlast,u1 + (Tlast − Elast + �q/p� · Id)Δr
last) + XlastΔ

η
last.

If A returns G4 then B guesses that c is an LWE sample and if A returns G5 it
guesses that it is uniform.

If c is uniform, as M is invertible, B′ and c′ are also uniformly distributed
and adversary A is playing game G5.
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If c = Bs + (eT ‖fT )T , for s ←↩ DZn,σ/2 and e, f ←↩ DZn,σ/2, then

c′ = M
(

Bs +
(

e + η
f + f ′

))

+ MBs′

=
(

A
Tlast − Elast

)

(s + s′) +
(

e + η
Xlast(e + η) + f + f ′

)

=
(
b0

u1

)

.

Let us set s̄ = s + s′, ē = e + η, f̄ = f + f ′. Then, using the equation above, we
have the following:

up∗ = (Tlast, u1 + (Tlast − Elast + �q/p� · Id)Δr
last + XlastΔ

η
last)

= (Tlast, (Tlast − Elast)s̄ + Xlast(ē + Δη
last) + f̄

+ (Tlast − Elast + �q/p� · Id)Δr
last)

= (Tlast, (Tlast − Elast)(s̄ + Δr
last) + Xlast(ē + Δη

last) + f̄ + �q/p� · Δr
last).

(4)
Let δ = 2ε/(1 − ε), for ε ∈ (0, 1). As s ←↩ DZn,σ/2 and s′ ←↩ DZn,σ/2,t/2,

Lemma 2 gives that the distribution of s̄ has statistical distance at most δ from
D

Zn,σ/
√
2,t/2. Similarly, errors η and f ′ were chosen such that ē and f̄ are within

statistical distance at most δ from D
Zn,σ/

√
2,ẽ and DZn,σc

. The equation above
shows that up∗ is statistically close (at distance at most 3δ) from its value in
game G4, thus A can be viewed as playing game G4.

Overall, algorithm B has advantage at least AdvdistG4,G5
(A) − 3δ, completing

the proof. ��

5 A UPKE Fujisaki-Okamoto Transform

In this section, we describe a transform from an IND-CR-CPA UPKE into an
IND-CR-CCA UKEM following the Fujisaki-Okamoto [24] technique.

Definition 14 (FO-transform for UPKEs). Let UPKE be a UPKE, and G
and H be two functions modeled as random oracles. We define the transform
FO(UPKE,G,H) in Fig. 7.

Fig. 7. Transform FO(UPKE,G,H) for a UPKE using random oracles G,H.
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Our FO transform is essentially the KEM⊥ construction from [27]. We add pk
to the inputs of the hash function used to determinize the Enc algorithm in order
to prevent trivial attacks, given the ability of the adversary to update the key
pair.

Theorem 3 (FO Transform for UPKEs). Let γ, δ ∈ (0, 1), k > 0. Let
UPKE = (Enc,Dec,UpdatePk,UpdateSk) denote a γ-spread and (k, δ)-correct k-
IND-CR-CPA UPKE scheme. Then the UPKE FO(UPKE,G,H) is a (k, δ)-correct
k-IND-CR-CCA UKEM in the ROM.

More precisely, for any adversary A for the k-IND-CR-CCA UKEM game in
the ROM making at most qG queries to oracle G, qH queries to oracle H and qD
queries to oracle Odec, there exists an adversary B for the k-IND-CR-CPA game
of UPKE with a similar running time such that:

AdvIND-CR-CCA(A) ≤ qG · δ + qD · γ + 2
(

AdvIND-CR-CPA(B) +
qG + qH

|M|
)

.

The proof of the above theorem follows standard techniques for FO analysis
(e.g., [27]), and is detailed in the full version of this paper.

Note that we rely on the γ-spreadness of the underlying UPKE scheme. We
prove this property for the scheme from Sect. 4 in the full version of this paper.

6 Obtaining IND-CU-CCA Security

In this section, we further boost security in order to achieve IND-CU-CCA-
security. As in [1], we use a NIZK argument that two keys encrypt the same
message in order to make a reduction from IND-CU-CCA to IND-CR-CCA. This
technique allows to extract the randomness used by the adversary for the oracle
queries to Oup(·), to forward it to the update oracle of the IND-CR-CCA chal-
lenger. We give the definitions about Non Interactive Zero Knowledge (NIZK)
argument in the ROM in the full version of the paper.

Let UPKE = (KeyGen,Enc,Dec,UpdatePk,UpdateSk) be a k-IND-CR-CPA
UPKE, for some k > 0. Define UKEM = (KeyGen,Encaps,Decaps,UpdatePk,
UpdateSk) as the k-IND-CR-CCA UKEM scheme obtained by applying our FO
transform from Sect. 5 to UPKE, using G,H modeled as random oracles. Let F
be a third function, also modeled as a random oracle. We assume that UpdatePk
proceeds in two parts (this is the case for all known constructions, including the
one from Sect. 4): UpdatePk(pk) = (Enc(pk, r),NewPk(pk, r)), i.e., a first part
which encrypts the randomness of the update using the UKEM encryption algo-
rithm, and a second one which returns the updated public key. Let us define the
language

LUKEM
up = {(pk0, pk1, pk′, ct0, ct1) | ∃r0, r1, r,

ct0 = Enc(pk0, r; r0) ∧ ct1 = Enc(pk1, r; r1) ∧ (pk′, ct0) = UpdatePk(pk0; r)}.
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Fig. 8. Construction of a IND-CU-CCA UKEM.

Let Π = (ProveF,VerifyF) a NIZK argument in the random oracle for LUKEM
up .

We construct an k-IND-CU-CCA UKEM as described in Fig. 8.

Theorem 4. Let UPKE,UKEM,Π be defined as above. Then, the construction
UKEM described in Fig. 8 is an k-IND-CU-CCA UKEM. Specifically, for any
adversary A against the k-IND-CU-CCA security of UKEM, there exist adver-
saries B, C,D, E with running times similar to A’s such that:

AdvIND-CU-CCA(A) ≤ AdvIND-CR-CCA
UKEM (B) + AdvIND-CR-CPA

UPKE (C) + AdvzkΠ(D) + AdvsoundΠ (E) .

The proof closely follows the one of IND-CU-CCA security of the construction
from [1] and is detailed in the full version of the paper.
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7 Concrete Parameters

In this section, we give some concrete parameters for the scheme presented in
Sect. 4, which can directly be transformed into an IND-CR-CCA UKEM by
applying the FO transform from Sect. 5. We focus on the latter. We conjecture
that security holds in the module setting and use the lattice-estimator SAGE
module (commit fd4a460) from [3] to estimate the security of the given parameter
sets. For our UPKE/UKEM, we consider the module variant of the scheme
presented in Sect. 4, i.e., we define R = Z[X]/(Xd + 1) and Rq = R/qR and we
consider the base ring to be R instead of Z.

Note that, for p > 0 a prime, the message space of Enc for the module variant
is M = Rn

p which is of size pdn. For optimization purposes, we drop the last n−1
rows of the whole ciphertext computed by Enc in our encapsulation mechanism,
so that an encapsulation is just:

c = (xT A + eT ,xb + f + �q/p� m)

for x, e ∈ Rn
q , f ∈ Rq and m ∈ Rp. The message space is now M = Rp, of

size pd. This optimization is made possible by considering the UKEM, which
only require a message space with at least λ bits of entropy, which is the case
when setting d = 256. The whole message space Rn

p is only used to encrypt
updates, as an update changes all components of the secret key.

Also, as done in [11], we replace Gaussian distributions by the centered bino-
mial distributions Bη, which for η > 0, samples elements (ai, bi)i≤η ←↩ U({0, 1}2)
and returns

∑η
i=1 (ai − bi). Samples from Bη are contained in [−η, η], and we

choose the modulus q such that perfect correctness (δ = 0) is guaranteed up to
a bounded number of (possibly malicious) updates. We let k denote this bound,
and provide parameters for k ∈ {25, 210, 215, 220}. We are assuming worst-case
updates and then make q scale linearly with k. It could be tempting to make it
scale with

√
k as updates are symmetric and centered in 0 though we should not,

as they are chosen by the attacker. Due to this requirement, our UPKE/UKEM
suffers from a loss compared to Kyber, which can take q as small as 3329 and
then have ciphertexts of size 0.8 KB.

As we are working in the UPKE setting, we consider that the adversary gets
a leakage s+r on the initial secret key s, which roughly halves the variance of the
distribution of s in the adversary’s view (as shown in the proof of Theorem 2).
We use a script to compute the average variance left on s conditioned on the
value of s + r. We obtain that for s ←↩ Bn

2η, we are left on average as if s was
sampled from Bn

η . This is taken into account for the security estimates.
Our parameters are given in Table 2. Note that as done in Kyber, in order to

have fast multiplication using the Number Theoretic Transform in the ring, we
take modulus q = 1 mod 2d. This is the first practical lattice-based construction
of UPKE/UKEM, hence there are no equivalent constructions to compare our
results to. We achieve similar efficiency as the IND-CR-CPA construction of [1],
which is based on the DCR assumption achieves a ciphertext and update size
of 1.5 KB (for the CPA case only, although our FO transform applies to their
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scheme). Note that by increasing d, the matrices involved become smaller. Hence,
a tradeoff can be made to reduce the sizes of the updates at the cost of increasing
ciphertext size. For small number of updates, we also apply the bit-dropping
technique from Kyber to improve parameters. This optimization drops parts of
the least significant bits of the ciphertexts to reduce their size. We use the script
provided at https://github.com/pq-crystals/security-estimates to estimate the
correctness loss implied by using this technique.

Table 2. Parameter sets for the module variant of our IND-CR-CCA UKEM.

λ q n d p η δ k |ct| |up|
DCR-based construction [1] 128 0 ∞ 8.3 KB 1.5 KB

Estimate for [22] 120 ≈ 285 11 256 21 10 0 25 33 KB 360 KB

This work 128 ≈ 221 3 256 5 2 2−136 25 1.8 KB 5.4 KB

128 ≈ 226 4 256 5 2 0 210 3.0 KB 12 KB

116 ≈ 231 2 512 5 2 0 215 5.8 KB 12 KB

128 ≈ 236 3 512 5 2 0 220 9.1 KB 27 KB

IND-CU-CCA Instantiation. In order to add security against chosen updates via
our transform from Sect. 6, we can further add a computationally sound NIZK
argument for LUKEM

up in the updates. In the module setting, the language LUKEM
up

can be defined as:

LUKEM
up = {(pk0, pk1, pk′, ct0, ct1) | ∃X0,X1,E0,E1 ∈ Rn×n, f0, f1, r ∈ Rn

ct0 = (X0A + E0,X0b + f0 + �q/p� · r) mod q ∧ ‖X0‖2, ‖E0‖2, ‖f0‖2 < B0

∧ ct1 = (X1Ã + E1,X1b̃ + f1 + �q/p� · r) mod q ∧ ‖X1‖2, ‖E1‖2, ‖f1‖2 < B0

∧ ‖b′ − (b + Ar)‖2 ≤ B1 ∧ ‖r‖2 < B1 }.

where pk0 = (A,b), pk1 = (Ã, b̃), pk′ = (A,b′) and B0, B1 are bounds for
correctness.

Proving membership in LUKEM
up then corresponds to proving 4 norm bounds

for matrices, 4 norm bounds for vectors and 2n2 + 2n linear equations over Rq.
This can be achieved by applying [33], which allows to prove exact norm bounds
and linear relations using a commit-and-prove protocol. This only affects the size
of the updates, since the ciphertext remains the same as in the IND-CR-CCA
setting.
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1. Abou Haidar, C., Libert, B., Passelègue, A.: Updatable public key encryption from
DCR: efficient constructions with stronger security. In: CCS (2022)

2. Agrawal, S., Gentry, C., Halevi, S., Sahai, A.: Sampling discrete gaussians effi-
ciently and obliviously. In: ASIACRYPT (2013)

3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. ePrint 2015/046 (2015)

4. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improve-
ments for the IETF MLS standard for group messaging. In: Micciancio, D., Ris-
tenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 248–277. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56784-2 9

5. Anderson, R.: Two remarks on public-key cryptology. In: CCS (1997). invited talk
6. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives

and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

7. Asano, K., Watanabe, Y.: Updatable public key encryption with strong CCA secu-
rity: Security analysis and efficient generic construction. Cryptology ePrint Archive
2023/976 (2023)
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21. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17373-8 35

22. Dodis, Y., Karthikeyan, H., Wichs, D.: Updatable public key encryption in the
standard model. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044,
pp. 254–285. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2 9
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Abstract. Updatable encryption (UE) enables a cloud server to update
ciphertexts using client-generated tokens. There are two types of UE:
ciphertext-independent (c-i) and ciphertext-dependent (c-d). In terms of
construction and efficiency, c-i UE utilizes a single token to update all
ciphertexts. The update mechanism relies mainly on the homomorphic
properties of exponentiation, which limits the efficiency of encryption
and updating. Although c-d UE may seem inconvenient as it requires
downloading parts of the ciphertexts during token generation, it allows
for easy implementation of the Dec-then-Enc structure. This methodol-
ogy significantly simplifies the construction of the update mechanism.
Notably, the c-d UE scheme proposed by Boneh et al. (ASIACRYPT’20)
has been reported to be 200 times faster than prior UE schemes based
on DDH hardness, which is the case for most existing c-i UE schemes.
Furthermore, c-d UE ensures a high level of security as the token does
not reveal any information about the key, which is difficult for c-i UE
to achieve. However, previous security studies on c-d UE only addressed
selective security; the studies for adaptive security remain an open prob-
lem.

In this study, we make three significant contributions to ciphertext-
dependent updatable encryption (c-d UE). Firstly, we provide stronger
security notions compared to previous work, which capture adaptive
security and also consider the adversary’s decryption capabilities under
the adaptive corruption setting. Secondly, we propose a new c-d UE
scheme that achieves the proposed security notions. The token genera-
tion technique significantly differs from the previous Dec-then-Enc struc-
ture, while still preventing key leakages. At last, we introduce a packing
technique that enables the simultaneous encryption and updating of mul-
tiple messages within a single ciphertext. This technique helps alleviate
the cost of c-d UE by reducing the need to download partial ciphertexts
during token generation.
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1 Introduction

Regularly changing encryption keys is widely recognized as an effective approach
to mitigate the risk of key compromise, especially when outsourcing encrypted
data to a semi-honest cloud server. Updatable encryption (UE), introduced by
Boneh et al. [5], offers a practical solution to this challenge. In UE schemes, in
addition to the usual KG,Enc,Dec algorithms, two core algorithms, TokenGen
and Update, are employed. Essentially, TokenGen takes the old and new encryp-
tion keys, along with possibly a small fraction of the ciphertext, and generates
an update token on the client side. This token is then sent to the cloud server,
which utilizes the Update algorithm to convert ciphertexts from the old keys to
the new keys.

c-d/c-i UE. Depending on if a part of ciphertext (called ciphertext header)
is needed in the token generation algorithm TokenGen, UE schemes have two
variants: ciphertext-independent (c-i) UE [6,15,17,18,20,23] and ciphertext-
dependent (c-d) UE [4,5,10,11]. In the former, tokens are independent of cipher-
texts, and a single update token is used to update all old ciphertexts. In the
latter, update tokens depend on the specific ciphertext to be updated and a tiny
part of the ciphertexts is downloaded by the client when generating the update
tokens.

In this paper, we specifically focus on ciphertext-dependent UE (c-d UE) due
to its notable advantages in terms of efficiency and security. First of all, c-d UE
schemes have been reported to be more efficient than ciphertext-independent (c-
i) constructions. For instance, the nested c-d UE construction presented in [4],
which relies solely on symmetric cryptographic primitives, approaches the per-
formance of AES. In contrast, c-i UE schemes imply the use of public key encryp-
tion, as proven by Alamati et al. [3], and most c-i constructions require costly
exponentiation operations to update ciphertexts. With regard to UE security,
Jiang [15] demonstrated that there are no c-i UE schemes stronger than those
with no-directional key updates, as defined in Sect. 3. However, constructing
such schemes remains an open problem, primarily due to the requirement that
update tokens should not reveal any information about either the old key or the
new key. Consequently, only two c-i UE schemes with no-directional key updates
have been proposed thus far. One is presented by Slamanig [23], which is based
on the SXDH assumption, thus necessitating expensive exponential operations.
The other is introduced by Nishimaki [20], relying on the existence of indistin-
guishability obfuscation, but remains purely theoretical. On the other hand, for
c-d UE, the construction of no-directional key update schemes is considerably
easier and practical. In fact, the token generation algorithm in all existing c-d UE
constructions [4,5,10,11] benefits from a “Dec-then-Enc” process. This involves
decrypting the ciphertext header using the old key to recover the secret informa-
tion, and then computing the token by encrypting the secret information using
the new key. As a result, the old key remains independent of the token, while
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the new key is safeguarded by the underlying encryption scheme. The update
token does not divulge any information about the old and new keys.

Security Notions (c-d UE). The primary security objective of UE is to ensure
the confidentiality of ciphertexts even when the keys are exposed. Extensive
research on this topic has been conducted in [4,10,11]. Previous security models
provide guarantees that adversaries cannot differentiate between a freshly gen-
erated ciphertext in the current epoch and an updated ciphertext rotated to the
current epoch. In practical scenarios, this property safeguards the confidential-
ity of the age of ciphertext, i.e., the number of times it has been updated, from
being leaked to an adversary. For instance, consider a situation where a client
stores its encrypted medical records with a cloud provider. The existing security
notions ensure that the adversary observing the records cannot determine which
records are new and which ones are old, thereby preserving the sort of privacy.

Limitation. Unfortunately, prior work on c-d UE has the following limitations:

1. The current security notions for c-d UE solely capture selective security, where
the adversary is provided with certain keys at the beginning of the security
experiment. It is needed to introduce a stronger notion of adaptive security,
which guarantees security in the model where the adversary can corrupt keys
throughout the experiment.

2. Prior notions for c-d UE only apply to randomized ciphertext updates (see
Sect. 2.1 for details), whereas the ciphertext update procedure can be also
deterministic1, which can be seen in our construction in Sect. 5.1. It is still an
open problem how could we capture confidentiality for both types of cipher-
text updates.

3. The current security notions for c-d UE are complex, requiring multiple sim-
ulations of oracles that the adversary has access to in the security analysis.
A simpler and more compact notion can help one simplify the proof.

1.1 Related Work

Constructions of UE. Since the introduction of updatable encryption by
Boneh et al. [5], various constructions have been proposed. All c-d UE schemes in
[4,5,10,11] benefit from a Dec-then-Enc structure in token generation, whether
they are treated in a symmetric manner to deploy double encryption or rely on
key-homomorphic PRFs. As a consequence, tokens only contain the ciphertext
under the new key, avoiding the issue of leaking neither old nor new key.

By comparison, all c-i UE schemes in [6,17,18] are based on the DDH or
SXDH assumption and rely on the homomorphic properties of exponentiation
to rotate ciphertexts. Tokens are the division of the new key and the old key;
therefore, one of the two successive keys key can be inferred if the other is leaked.
Such a leakage limitation is also applied to the scheme proposed by Jiang [15],
1 Note this case does not require the server to generate randomness for ciphertext

updates, which is required in the former case.
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because tokens are the subtraction of new and old keys, even though this scheme
avoids the expensive exponentiation but is instead lattice-based.

Two promising c-i UE schemes have been proposed to overcome this leakage
limitation. Nishimaki [20] presented a construction that utilizes indistinguishabil-
ity obfuscation (IO) for an update circuit, which operates as a Dec-then-Enc pro-
cess taking a ciphertext as input. This scheme relies on an assumption that there
exists a practical IO. Slamanig and Striecks [23] gave a pairing-based scheme and
defined an expiry model: each ciphertext is associated with an expiry epoch, after

Fig. 1. A comparison of c-i UE which can avoid the leakage of “ciphertext age” and all
existing c-d UE. The second column set states the direction of key updates, achieved
security, and the underlying assumptions, where bk. stands for the backward direc-
tional key updates, s and a represent the selective and adaptive security, respectively,
and KH-PRF, IO, OWF, HomHash represent key-homomorphic PRF, indistinguisha-
bility obfuscation, one-way function, and homomorphic hash function respectively. The
third column set shows the computational efficiency in terms of the most expensive cost
of encryption, token generation, and update for one-block ciphertext ([20,23] are omit-
ted here as the first is theoretical and the second is built on a different expiry model).
For lattice-based schemes, (a, b, c) denotes the major computation cost by the multipli-
cation of two matrices of size a×b and b×c, and m and n denote the size of the matrix
generated on Zq in the setup, for which m = O(nk), k = �q�, message bit length l = nk,
m̄ = O(nk), and the maximum number of updates le. In our UE schemes, tokens are
generated with multiple calls to a preimage sampling oracle, and N is a power of 2
that defines the associated cyclotomic ring. AE represents authenticated encryption,
[10] instantiates HomHash from DDH groups, and KH-PRFs are constructed from the
Ring-LWE problem in [4].
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which the updated ciphertext cannot be decrypted anymore. Their scheme con-
sumes expensive group operations and moreover, the key size increases linearly
to the maximum number of updates.

In Fig. 1, we provide a comparison of UE schemes in terms of security and
efficiency. Our c-d UE constructions offer several advantages compared to c-i UE
schemes. Regarding security, we achieve no-directional key updates to protect
keys being derived by tokens, in comparison to the difficulty in constructing such
c-i UE, as discussed above. In terms of efficiency, we utilize lattice encryption
to circumvent expensive group operations that are used in [6,23]. Compared to
lattice-based c-i UE Schemes, our works are the first to achieve CCA-1 security,
and TDUE exhibits equivalent complexity to that of [20] for both the encryption
and update algorithms, an improvement by a factor n over the algorithms in
[15]2. Our packing UE further reduces the encryption and update algorithms’
complexity of TDUE by a factor N , leading to more efficient encryption and
update compared to [13,15,20]. Nevertheless, it is worth noting that [15] pro-
vides the most efficient token generation using a simple vector subtraction. In
comparison with c-d UE schemes, our constructions ensure the confidentiality
that hides ciphertext age, whereas [10,11] only capture message confidentiality
and re-encryption indistinguishability. Note that Boneh et al. [4] demonstrated
that, for c-d UE, even the combination of the above two notions cannot prevent
the leakage of ciphertext age (see Fig. 3 for more details). Moreover, our schemes
are the first c-d UE schemes to achieve adaptive security.

Relative Primitives. Proxy Re-encryption (PRE) and Homomorphic Encryp-
tion (HE) are two highly related primitives to updatable encryption.

Proxy Re-encryption (PRE) enables a ciphertext to be decryptable by the new
key after re-encryption. Compared to UE, it does not necessarily require the
updated ciphertext to be indistinguishable from fresh encryption, thereby not
covering the confidentiality requirement inherent in UE. However, PRE schemes
have served as a source of inspiration for the construction of UE due to the
similar ciphertext update process, for example, the ElGamal-based proxy re-
encryption scheme is adapted to RISE [18] and Sakurai et al. [22] to SHINE
[6].

The PRE scheme proposed by Kirshanova [16] is based on lattices and only
uses the old secret key (serving as the trapdoor) to sample a matrix as the update
token to rotate ciphertexts, which are LWE samples. Such a matrix leaks neither
the old nor the new keys, since it does not involve any function of old and new
keys (recall the key leakage caused the division or subtraction of two keys in the
token of c-i UE schemes). However, Fan and Liu [12] pointed out a mistake in the
security proof of [16] that the simulated game in the proof is not indistinguishable
from the real game. In this work, a new UE scheme that leverages a part of the
techniques in [16] is constructed with a detailed reduction proof.
2 Note that, for lattice-based schemes, the cost is determined by the multiplication of

two matrices, which takes O(nml) for matrices of size n × m and m × l by a naive
multiplication, for example.
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Fully Homomorphic Encryption (FHE) develops a key-switching technique [7,8]
that takes as input the old ciphertext and the encryption of the old key under
the new key (called the key-switching key) and outputs a new ciphertext that
is decryptable by the new key. Such a technique has been used in [13,17] to
construct UE schemes with so-called backward directional key updates. In our
UE construction, the matrix in the token is called a key-switching matrix as it
achieves the same functionality as the key-switching key in FHE.

1.2 Our Approaches

We propose new UE schemes that achieve the new confidentiality notion. To
achieve this, we first build a new PKE scheme inspired by [19] that utilizes
lattice trapdoor techniques as the underlying encryption scheme. For the UE
construction, we leverage the “re-encryption key generation” process in [16] to
generate a key-switching matrix, which is used to update ciphertexts from the
old to the new key. However, the key-switching matrix alone is not sufficient to
achieve our confidentiality notion, which will be discussed later in this section.
A detailed proof of our construction is presented in Sect. 5.3.

A New PKE Scheme. This scheme is based on lattice trapdoor techniques.
The public key is a 1 × 3 block matrix Aμ = [A0 | A0R+HμG | A1] ∈ Z

m̄+2nk

where A0 and A1 are two random matrices, and Hμ is an invertible matrix. The
secret key is the trapdoor R for the first two block matrices of Aμ, which allows
for an efficient algorithm for inverting LWE samples related to Aμ (see Sect. 4.1
for more details). The ciphertext is a tuple c = (Hμ,b) where b is a LWE sample
as follows:

bt = stAμ + (e0, e1, e2)t + (0, 0, encode(m))t mod q, (1)

for a proper encoding algorithm encode, error items (e0, e1, e2), and integer q. To
decrypt a ciphertext, one first recovers s and (e0, e1) from the first two blocks of
b using the trapdoor R and an inversion algorithm. Then m and e2 are recovered
from the last block of b with the recovered s and the inverse of encode.

Key-Switching Matrix. The key-switching matrix enables the transition of
a ciphertext in Eq. (1) to a new ciphertext with the same form, denoted as
c′ = (Hμ,b′), where

b′t = stA′
μ + e′t + (0,0, encode(m))t mod q, (2)

for new public matrix A′
μ and new error items e′. This matrix is essentially the

transition matrix from Aμ to A′
μ, with the last row block matrix [0 0 I], i.e.,

Aμ ·M = A′
μ. The old ciphertext c is updated by multiplying bt and M, that is

btM = stAμ · M + et · M + (0,0, encode(m))t · M
= stA′

μ + e′t + (0,0, encode(m))t mod q,
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which matches the desired form in Eq. (2). The matrix M can be efficiently
generated by the trapdoor (secret key) R and the preimage sampling algorithm,
as presented in Sect 2.2.

Challenges and a New UE Scheme. We state that there are two techni-
cal challenges in directly using the key-switching matrix as the update token
to construct a secure UE scheme satisfying our confidentiality notion, which
requires the indistinguishability between “fresh” and updated ciphertexts. The
first observation is that Hμ, as part of the ciphertext, is never rotated in the
update process. The adversary can distinguish the challenge ciphertexts by com-
paring Hμ extracted from the challenge output and input. Beyond that, s is
also never changed during the update process. With the known s used in the
challenge input ciphertext, the adversary may attempt to decrypt the challenge
output (note that the last step in the decryption algorithm in PKE only requires
s). If it fails, then the adversary knows the challenge output is a fresh encryption
of the challenge input message. Otherwise, that is an update of the challenge
input ciphertext.

Our solution to address the challenges is to change the invertible matrix Hμ

and the variable s in each update. Specifically, a new invertible matrix H′
μ and

a fresh encryption of message 0 under the new key with H′
μ, denoted by b0,

are generated in the token generation algorithm to improve the randomness.
In summary, the update token is a triple Δ = (M,b0,H′

μ), and the update of
ciphertext c = (Hμ,b) works by multiplying b by M and then adding b0. That
is, c′ = (H′

u,b′), where

(b′)t = bt · M + bt
0

=
[
stAμ + et + (0, 0, encode(m))t

]
M + (s′)tA′

μ + (e′)t

= (s + s′)tA′
μ +

(
etM + (e′)t

)
+ (0, 0, encode(m))t mod q.

Thus, the updated ciphertext shares the same form as the old ciphertext, but
has a new independent invertible matrix and new random factor s + s′, thereby
avoiding the two problems mentioned above. Note that even if an adversary
corrupts the update token and the old key (or new key), it can only recover A′

μ

(or Aμ, resp.) that is actually public. Therefore, the UE scheme does not leak
any information about secret keys, and its token generation process is different
from the previously commonly used Dec-then-Enc method.

Regarding the CCA-1 security, at a high level, the decryption procedure
allows the adversary to recover at most Aμ before the challenge phase, while
ensuring that the secret key R (i.e., the trapdoor) remains statistically hidden
from the adversary. We state that the scheme cannot achieve CCA-2 security as
the decryption of a challenge ciphertext with extra small noise, which is also a
valid ciphertext, reveals the information of the challenge plaintext.

A Packing UE. Our packing UE scheme allows for the simultaneous encryption
and update of multiple messages in a single ciphertext. It is based on our UE
scheme with the main difference in the encoding algorithm as follows:

encode(m0, . . . ,mN−1) = encode(m0) + encode(m1)X + · · · + encode(mN−1)X
N−1,
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for messages m0, . . . ,mN−1, where the encode in the right side is the same as
that in the PKE scheme. Multiple message blocks are encrypted into one single
ciphertext, which can then be recovered degree by degree. This packing scheme
enhances efficiency by requiring only one ciphertext header to be downloaded
during the update process.

1.3 Summary of Contributions

We strengthen the confidentiality notions for c-d UE to address the above lim-
itations 1–3 of existing work and provide efficient UE schemes that achieve the
confidentiality we define. First, we simplify the description of the confidential-
ity model by reducing the number of oracles available to the adversary, while
maintaining the same level of security. This simplification facilitates the security
analysis of UE schemes. Our new definition “maximizes” the capability of the
adversary, including the ability to corrupt keys in an adaptive manner and gain
access to the decryption oracle, thus providing stronger security than prior work.

We then propose a new construction that is the first c-d UE to achieve adap-
tive security under the LWE assumption. It is built on our lattice-based PKE
scheme and rotates ciphertext with a key-switching matrix, which differs from
the Dec-then-Enc structure used in existing c-d UE schemes. We also propose a
new packing method to further enhance the efficiency of c-d UE. Our approach
enables multiple messages to be encrypted and updated simultaneously, reducing
the overhead associated with downloading ciphertext headers during the update
process.

2 Preliminaries

We use upper-case and lower-case bold letters to denote matrices and column
vectors, respectively. For a vector x, we denote the 2-norm of x by ‖x‖ and
the infinity norm by ‖x‖∞. The largest singular value of a matrix B is denoted
by s1(B) := max

u
‖Btu‖, where the maxima is taken over all unit vectors u

and Bt is the transpose of B. For two matrices A and B, [A | B] denotes the
concatenation of the columns of A and B. We also use standard asymptotical
notations such as ω, Ω and O.

2.1 Updatable Encryption

We briefly review the syntax of ciphertext-dependent UE and prior confidential-
ity notions for c-d UE.

Definition 1 ([4,5,11]). A ciphertext-dependent UE scheme includes a tuple
of PPT algorithms {KG, Enc, Dec, TokenGen, Update} that operate in epochs
starting from 0.

– KG(1λ): the key generation algorithm outputs an epoch key ke.



382 H. Chen et al.

– Enc(ke,m): the encryption algorithm takes as input an epoch key ke and a
message m and outputs a ciphertext header ĉte and a ciphertext body cte, i.e.,
ct = (ĉte, cte).

– Dec(ke, (ĉte, cte)): the decryption algorithm takes as input an epoch key ke and
a ciphertext (ĉte, cte) and outputs a message m′ or ⊥.

– TokenGen(ke, ke+1, ĉte): the token generation algorithm takes as input two
epoch keys ke and ke+1 and a ciphertext header ĉte, and outputs an update
token Δe+1,ĉte or ⊥.

– Update(Δe+1,ĉte , (ĉte, cte)): the update algorithm takes as input a token
Δe+1,ĉt related to the ciphertext (ĉte, cte), and outputs an updated ciphertext
(ĉte+1, cte+1) or ⊥.

In an updatable encryption scheme, there are two ways to generate a cipher-
text: either via the encryption algorithm to produce the fresh ciphertext, or via
the update algorithm to produce an updated ciphertext. The correctness of a UE
scheme requires both types of ciphertexts to decrypt correctly to the underlying
message, except with a low failure probability.

Prior Notions of Confidentiality. To capture the security under key leakage,
the challenger in prior confidentiality games [4,11] provides the adversary selec-
tive keys in the setup phase. In the query phase, the adversary is given access
to query the algorithms involved in UE schemes, including {Enc, TokenGen,
Update}, to obtain the encryption of messages, update tokens, and updates of
ciphertexts, respectively. The adversary then submits two challenge inputs in
the challenge phase based on the information it has acquired and receives the
challenge output from the challenger. The goal of the adversary is to guess which
challenge input the challenge output is related to (encrypted or updated from).
The adversary can continue querying those oracles as long as the combination
of queries would not lead to a trivial win, and eventually submits a guess bit.

Prior confidentiality notions have three variants with the only difference in
challenge inputs: UP-IND [11] has inputs of two messages (m̄0, m̄1) to capture
the security of fresh encryptions, UP-REENC [11] uses inputs of two ciphertexts
(c̄0, c̄1) to protect the confidentiality after updating, and Confidentiality [4], which
is stronger the former two, takes one message and one ciphertext as input (m̄0, c̄1)
to protect against the leakage of the age of ciphertext, i.e., the number of update
times, to the adversary. We rewrite the confidentiality game of Confidentiality in
Fig. 2 with two modifications.

First, we describe oracles that operate in consecutive epochs {. . . , e − 1, e,
e + 1, . . . }, which is more consistent with the practical periodic updating of
ciphertexts and differs from the node-based oracles originating from proxy re-
encryption in prior work. Second, we introduce a new lookup table in the game
to track non-challenge ciphertexts (as defined in Definition 2) to address the
insufficient analysis of trivial win conditions for deterministic UE schemes in
prior work [4,5,10,11]. Our main observation is that for UE schemes with deter-
ministic updates, the adversary should be prevented from querying OUpdate and
OTokenGen on the challenge input ciphertext in the challenge epoch before query-
ing the challenge oracle, as this would enable the adversary to know one of the
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Fig. 2. Security game for Confidentiality. The adversary in the startup is provided with
selective keys whose epochs are recorded by the set K, and the other keys are kept
private from the adversary. Initially set to be empty, the table Tchall (or Tnon) maps
an epoch and challenge-equal (or non-challenge, respectively) ciphertext header pair
to the corresponding challenge-equal (or non-challenge, respectively) ciphertext body.
xx = det means the update algorithm is deterministic.

possible challenge output ciphertexts in advance due to the determinism of the
update. Such conditions are not analyzed in prior notions, which are therefore
only applicable to UE with randomized updates; however, the update algorithm
can be deterministic as in our construction, even though the encryption algo-
rithm must be randomized.
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Definition 2. A ciphertext is called challenge-equal ciphertext, if the adversary
learns it via querying the challenge oracle OChall, or obtains it by updating the
challenge ciphertext using OUpdate or tokens acquired from OTokenGen. Any cipher-
text that is not obtained through these methods is referred to as a non-challenge
ciphertext.

The functionalities and restrictions of oracles used in the Confidentiality game
in Fig. 2 are as follows.

– OEnc: returns an encryption of a message.
– OUpdate: returns an update of a valid (lines 1–3) ciphertext, recorded by TCchall

(line 9) or TCnon (line 12) according to the input. But the update of challenge-
equal ciphertexts in epochs with known epoch keys is not allowed (line 6).

– OTokenGen: returns a token related to a valid ciphertext, and updates TCchall

(line 7) or TCnon (line 11). But tokens related to challenge-equal ciphertexts
in epochs with known epoch keys are not allowed to be acquired (lines 1–2).

– OChall: returns the challenge output, either a fresh encryption of the input
message or an update of input valid ciphertext (lines 2–4). However, this
oracle should not be queried in epochs with known epoch keys (line 1), and
for deterministic UE, the input ciphertext should not be updated in advance
(lines 9–10).

In fact, the adversary may infer more ciphertexts, tokens, and keys from
corrupted information, aside from the recorded sets, and the extended leakages
cannot be tracked (but can be computed) by look-up tables. For example, a
token can be inferred if two successive epoch keys are known. We will show in
Lemmas 3 to 5 that trivial win conditions on recorded leakages and extended
leakages are actually the same for no-directional UE (Definition 5). Therefore, it
is sufficient to check the above restrictions on recorded look-up tables to avoid
trivial win.

2.2 Gaussians and Lattices

Given a matrix A ∈ Z
n×m
q , we first review the Learning With Errors (LWE)

and Short Integer Solution (SIS) problems as follows:

– LWEq,α: for arbitrary s ∈ Z
n
q and error e from the discrete Gaussian distribu-

tion DZm,αq (Definition 4), let bt = stA+et mod q ∈ Z
m
q . The search-LWEq,α

is to find s and e from (A,b); the decision-LWEq,α is to distinguish between
b and a uniformly random sample from Z

m
q .

– SISq,β : find a nonzero x ∈ Z
m such that Ax = 0 mod q and ‖x‖ ≤ β.

When A is a uniformly random matrix, solving the above two problems is
computationally intractable under some parameter settings [2,21]. However, for
a random matrix A with a G-trapdoor (Definition 3), those two problems can
be solved immediately (Lemma 1 and Lemma 2).
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For the rest of the paper, let q ≥ 2 be an integer modulus with k = �log2 q�,
and G is defined as G := In ⊗ gt ∈ Z

n×nk
q , i.e.,

G = diag(gt, . . . ,gt),

where gt = [1 2 4 . . . 2k−1] ∈ Z
1×k
q and integer n ≥ 1.

Definition 3 (G-trapdoor). Let A ∈ Z
n×m
q for some m ≥ nk ≥ n. A

G-trapdoor for A is a matrix R ∈ Z
(m−nk)×nk
q such that A [RI ] = HG for

some invertible matrix H ∈ Z
n×n
q .

As an example in [19], R is a G-trapdoor for a random matrix A = [A0| −
A0R + HG], where A0 is a uniform matrix in Z

n×m
q , H ∈ Z

n×n
q is an invertible

matrix and R is chosen from a distribution over Z
m×nk
q .

Lemma 1 ([19], Theorem 5.4). Given a G-trapdoor R for A ∈ Z
n×m
q and an

LWE instance bt = stA + et, if ‖[Rt I] · e‖∞ ≤ q/4 , then there is an efficient
algorithm called InvertO(R,A,H,b) that recovers s and e from the bt = stA+et.

Lemma 2 ([19], Theorem 5.5). Given a G-trapdoor R for A ∈ Z
n×m
q with

invertible matrix H and any u ∈ Z
n
q , there is an efficient algorithm called

SampleDO(R,A,H,u, s) that samples a Gaussian vector x from DZm,s such that
Ax = u, where s can be as small as

√
s1(R)2 + 1 ·

√
s1(

∑
G) + 1 ·ω(

√
log n) and

s1(
∑

G) is a constant for given G(equal to 4 if q is a power of 2, and 5 other-
wise).

Definition 4 ([1]). For a positive real s, the discrete Gaussian distribution over
a countable set A is defined by the density function

DA,s(x) :=
ρs(x)

∑
y∈A ρs(y)

,

where ρs(x) = exp
(
−π‖x‖2/s2

)
.

Lemma 1 and Lemma 2 work for G as well. More conclusions related to
Gaussians and lattices are provided in Appendix B of the full version [9].

3 New Confidentiality Notions for Updatable Encryption

To simplify the security notion given in [4], we define a new confidentiality notion
called sConfidentiality, where we replace OTokenGen and OUpdate in the security
game with a single OsUpd that returns both the update token and updated cipher-
text to the adversary simultaneously. We prove in Theorem 1 that sConfidentiality
and Confidentiality are equal for UE schemes with no-directional key updates.
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Meanwhile, to provide the adversary with maximum power, we introduce a
new stronger confidentiality notion than sConfidentiality, called xxIND-UE-atk3,
where the adversary is given extra access to ODec and OCorr, which enables it to
corrupt epoch keys at any time during the game. To avoid making the security
game trivial, we fully analyze the conditions for any trivial win in this game
model. A brief comparison of the proposed notions with those of prior work is
presented in Fig. 3.

Fig. 3. A summary of confidentiality notions, where xx ∈ {rand, det} represents the
update procedure can be either randomized or deterministic. The adversary in each
confidentiality game provides two challenge inputs based on the oracles it has access to
and tries to distinguish the challenge outputs. Confidentiality is proven stronger than
both UP-IND and UP-REENC in [4], and OsUpd is defined in Sect. 3.2. Chen et al. [10]
proposed strengthened UP-IND and UP-REENC to capture malicious update security,
with the modification in the oracle OUpdate that enables the adversary to query the
update of maliciously generated ciphertexts, instead of only honestly generated cipher-
texts as in [11].

3.1 UE Schemes with No-Directional Key Updates

In c-i UE schemes, update tokens are generated by two successive epoch keys:
Δ = TokenGen(ke, ke+1), e.g., Δ = ke+1/ke in [6] or Δ = ke+1 −ke in [15]); there-
fore, one key may be derived by the other if the token is known by the adver-
sary. However, in c-d UE schemes, tokens are also determined by the ciphertext
header: Δ = TokenGen(ke, ke+1, ĉte), so keys may not be derived via corrupted
tokens. We generalize the definition of no-directional key updates from c-i UE
to c-d UE as follows.

Definition 5. A UE scheme, either ciphertext-independent or ciphertext-
dependent, is said to have no-directional key updates if epoch keys cannot be
inferred from known tokens.
3 The same notion for the c-i UE scheme was proposed in [6]. We aim to unify the

notions for c-i/c-d UE that both capture adaptive security and prevent the leakage
of ciphertext age. Note that, as analyzed in the introduction, there are intrinsic
differences between c-i UE and c-d UE. The disparity is evident in the confidentiality
notion, specifically in the approach to recording leakage sets.
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Jiang [15] proposed the open problem of constructing no-directional c-i UE
schemes. However, all known c-d UE schemes in [4,5,10,11] (as well as our
construction in Sect. 5) have no-directional key updates, which benefit from a
Dec-then-Enc process as discussed in the introduction. In contrast, there are
only two c-i UE schemes with no-directional key update: one is not practical [17]
and the other is less efficient [23]. In the following, we focus on c-d UE schemes
with no-directional key updates.

3.2 A Simplified Confidentiality Notion

Based on our refinement on Confidentiality, we now define a new simplified
confidentiality notion by substituting the oracles OTokenGen and OUpd in the
Confidentiality game with a single OsUpd that returns both the token and update
simultaneously. We call this new notion sConfidentiality. In Theorem 1, we prove
sConfidentiality is equivalent to Confidentiality for UE schemes with no-directional
key updates, as defined in [4].

Fig. 4. Security game for sConfidentiality in Definition 6.

Definition 6 (sConfientiality). Let UE = {KG,Enc,Dec,TokenGen,Update} be
an updatable encryption scheme. For a security parameter λ, an integer l, an
adversary A, and a binary bit b ∈ {0, 1}, we define the confidentiality experiment
ExptsConfUE (λ, l,A, b) and oracles O = {OEnc,OsUpd,OChall} as described in Fig. 4.
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The experiment maintains two look-up tables TCnon and TCchall that record non-
challenge and challenge-equal ciphertexts known to the adversary, respectively,
and an epoch set K in which epoch keys are provided to the adversary in setup.

We say that an updatable encryption scheme UE satisfies sConfidentiality if
there exists a negligible function negl(λ) such that for all K ⊆ [0, . . . , l] and
efficient adversaries A, we have

∣
∣
∣Pr

[
ExptsConfUE (λ, l,A, 0) = 1

]
− Pr

[
ExptsConfUE (λ, l,A, 1) = 1

]∣∣
∣ ≤ negl(λ).

Theorem 1. Let UE = (KG,Enc,Dec,TokenGen,Update) be an updatable
encryption scheme with no-directional key updates. For any sConfidentiality
adversary A against UE, there is a Confidentiality adversary B against UE such
that

AdvsConfUE,A(1λ) ≤ AdvConfUE,B(1λ). (3)

In addition, for any Confidentiality adversary B against UE, there is a
sConfidentiality adversary A against UE such that

AdvConfUE,B(1λ) = AdvsConfUE,A(1λ).

Proof. In general, we construct a reduction that runs the Confidentiality (or
sConfidentiality) game and simulates all responses to the queries of the adversary
in the sConfidentiality (or Confidentiality game, respectively), as shown in Fig. 5.
The details are presented in Appendix A of the full version [9]. �

Fig. 5. Reductions in the proof of Theorem 1. When the adversary makes queries to
specific oracles, indicated above the arrow, the reduction forwards to the adversary the
corresponding responses from its own challenger, marked below the arrow.
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3.3 A Stronger Confidentiality Notion

We now provide a stronger confidentiality notion, called xxIND-UE-atk for c-d UE
in Definition 7, which provides the adversary with more power than the notion of
sConfidentiality in Sect. 3.2. All available oracles that the adversary has access to
are described in Fig. 8. The stronger notion allows the adversary to corrupt keys
at any time during the game by querying OCorr, instead of selecting the compro-
mised keys in the setup phrase. In addition, the adversary is provided with an
extra ability to query the decryption oracle compared with sConfidentiality. Prior
to defining xxIND-UE-atk, we first analyze the conditions that lead the adver-
sary to trivially win the game through a combination of queries, which therefore
should be excluded from the game.

Leakage Information. To track the information leaked to the adversary, we
similarly record two look-up tables TCnon and TCchall as defined in Sect. 3.2, and
an epoch set K in which the epoch key is corrupted via OCorr. We define TCchall[0]
as the set of epochs in which the adversary learns a challenge-equal ciphertext,
and T as the set of epochs in which the adversary learns a token corresponding
to a challenge-equal ciphertext, which are exactly the epochs stored in TCchall

and Δe,ĉt, respectively. A summary of notations is shown in Table 1.

Table 1. Summary of leakage set notations

Notations Descriptions

TCnon Look-up table recording leaked non-challenge ciphertexts

TCchall Look-up table recording leaked challenge-equal ciphertexts

TCchall[0] Set of epochs in which a challenge-equal ciphertext is learned

K Set of epochs in which the adversary learned the epoch key

T Set of epochs in which a token w.r.t. a challenge-equal ct is learned

Leakage Extension. Note that the adversary possibly extends its corrupted
information TCnon,TCchall,K via corrupted tokens, and the former leakages may
also in turn help to corrupt more tokens. We denote TC∗

chall[0],K∗, T ∗ as the
extended sets of TCchall[0],K, T , respectively. Following the analysis in [18], the
extended leakage sets are computed as follows:

K∗ = K (no-directional key updates), (4)
T ∗ = {e ∈ {0, . . . , l} | (e ∈ T ) ∨ (e ∈ K∗ ∧ e − 1 ∈ K∗}, (5)

TC∗
chall[0] = {e ∈ {0, . . . , l} | (e ∈ TCchall[0]) ∨ (e − 1 ∈ TCchall[0] ∧ e ∈ T ∗)∨

(e + 1 ∈ TCchall[0] ∧ e + 1 ∈ T ∗)}. (6)

An example is shown in Fig. 6. Assume the adversary queries OsUpd only in epoch
e− 5 and corrupts epoch keys in epochs e− 5 and e− 4. Even though it cannot
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Fig. 6. Example of leakage sets. Marks � and × indicate if an epoch key/token is
corrupted. The green mark � indicates an epoch key/token can be inferred from other
corrupted keys and tokens. (Color figure online)

Fig. 7. A summary of trivial win conditions, where ē is the challenge epoch, (ĉt, ct)
is the challenge input ciphertext whose underlying message is m1, m is the challenge
input message, and m′ is the returned message of decryption algorithm. Oracles are
given in Fig. 8.

learn the token in epoch e − 4 by OsUpd, it can infer that token via corrupted
keys in e − 5 and e − 4, which further infers the ciphertexts in e − 4.

Trivial Win Conditions. We follow the analysis of trivial win conditions for
c-i UE in [6,15,17,18], as shown in Fig. 7. Our analysis for c-d UE in Lemmas 3
to 5 shows that it is sufficient to check trivial win conditions on recorded leakages
K,TCchall, T , eliminating the need to calculate extended leakages K∗,TC∗

chall, T ∗

and check trivial win conditions on them.

I. Trivial win by keys and ciphertexts
If the adversary knows the epoch key and a valid challenge-equal ciphertext

in the same epoch, it can recover the underlying message by a direct decryption
with its corrupted key and therefore win the game. Namely, we should ensure
K∗ ∩ TC∗

chall[0] = ∅. The following lemma shows this condition is equal to K ∩
TCchall[0] = ∅ for c-d UE with no-directional key updates.

Lemma 3. For c-d UE schemes with no-directional key updates, we have K∗ ∩
TC∗

chall[0] = ∅ ⇐⇒ K ∩ TCchall[0] = ∅.
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Proof. By the definition of no-directional key updates, we have K∗ = K. In
addition, we have TCchall[0] ⊆ TC∗

chall[0]. Therefore, we only need to prove
TCchall[0] = TC∗

chall[0] when K ∩ TCchall[0] = ∅.
Suppose TCchall[0] = ∪{estart, . . . , eend}. We prove that the adversary cannot

learn a challenge-equal ciphertext in epoch eend+1 either by querying or inferring.
First, the adversary cannot learn a challenge-equal ciphertext in epoch eend+1

via querying OsUpd, since eend is the last epoch in the epoch continuum; other-
wise, the received updated ciphertext will be recorded in the table TCchall, which
conflicts with the condition that eend is the last epoch in the epoch continuum.
Alternatively, it can update challenge-equal ciphertext in epoch eend with its
inferred token as Eq. (6). But from K ∩ TCchall[0] = ∅, we know the epoch key
kend is unknown to the adversary, which is needed to infer the token in eend+1

(see Eq. (5)).
The proof is the same for the challenge-equal ciphertext in epoch estart.

Therefore, the adversary cannot learn a challenge-equal ciphertext in any epoch
outside of the set TCchall[0], which implies that TCchall[0] = TC∗

chall[0]. �

Remark 1. Lemma 3 shows that the adversary cannot infer a challenge-equal
ciphertext in an epoch that is not recorded in the look-up table, i.e., TCchall[0] =
TC∗

chall[0]. But that does not mean all the ciphertexts known to the adversary
are stored in the table TCchall, or equally TCchall = TC∗

chall, which is only true
for deterministic UE. For randomized UE schemes, the adversary can create an
arbitrary number of valid challenge-equal ciphertexts in any epoch in TCchall[0]
by performing the update with its known ciphertexts and tokens.

II. Trivial Win by Updates
For UE schemes with randomized updates, there are no restrictions on the update
oracle. However, for UE schemes with deterministic updates, the adversary can
learn one of the possible challenge outputs by querying the oracle OsUpd on the
challenge input (ĉt, ct), or infer the update of (ĉt, ct) if ē ∈ T ∗, in advance before
the challenge phase. In the first case, all known ciphertext leakages before the
challenge are recorded by TCnon, so that we can set lines 8–9 in challenge oracle
to check for this, as shown in Fig. 8. In the second case, if ē ∈ T (⊆ T ∗), i.e.,
the token is learned by querying OsUpd, it goes back to the first case (OsUpd also
returns the updated ciphertext, which is recorded in TCnon). If ē ∈ T ∗\T , the
following lemma shows the impossibility.

Lemma 4. For c-d UE schemes with no-directional key updates, if K ∩
TCchall[0] = ∅, then the challenge epoch ē �∈ T ∗\T .

Proof. Note that since the adversary queries the challenge oracle in ē, then
ē ∈ TCchall[0]. Due to K ∩ TCchall[0] = ∅, we know the epoch key kē is unknown
to the adversary, which is necessary to infer Δē,ĉt (see Eq. (5)). �

III. Trivial win by decryptions
Table TC∗

chall records all the challenge-equal ciphertexts known to the adver-
sary in the game. By Remark 1, we first have the following lemma.
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Fig. 8. An overview of the oracles that the adversary has access to in Definition 7.
In the decryption oracle, m is the challenge input message and m1 is the underlying
message of the challenge input ciphertext.

Lemma 5. For c-d UE schemes with no-directional key updates, if K ∩
TCchall[0] = ∅, then TC∗

chall = TCchall for deterministic UE, and TC∗
chall[0] =

TCchall[0] for randomized UE.

For UE schemes with deterministic ciphertext updates, table TCchall records
all leaked challenge-equal ciphertexts in the game. The adversary can trivially
win the game by querying the decryption oracle on the challenge-equal cipher-
texts recorded on the table TCchall (line 2 in ODec, Fig. 8).

For UE schemes with randomized ciphertext updates, the epoch set TCchall[0]
records all the epochs in which the adversary can generate a valid challenge-equal
ciphertext. The adversary can trivially win the game if the returned message of
the decryption oracle in epochs in TCchall[0] is the challenge message or the
plaintext of the challenge input ciphertext (lines 3–4).

In summary, the above analysis shows trivial win conditions for c-d UE can
be checked immediately based on the recorded leakages during the confidentiality
game, without the need for extra calculations and further checks of the extended
leaked sets of keys, tokens and ciphertext as in previous work for c-i UE in
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[6,15,18]. After all the queries, if ⊥ is not returned, only one condition remains
to be checked: K∩TCchall[0] = ∅. This advantage is due to both the no-directional
key update setting and the proper ways of recording leakage information via
look-up tables. Finally, we introduce the definition of xxIND-UE-atk.

Definition 7 (xxIND-UE-atk). Let UE = (KG,Enc,Dec,TokenGen,Update) be
a ciphertext-dependent updatable encryption scheme with no-directional key
updates. For an adversary A and b ∈ {0, 1}, we define the confidential-
ity experiment ExpxxIND-UE-atk-b

UE,A in Fig. 9 for xx ∈ {det, rand} and atk ∈
{CPA,CCA-1,CCA}.

We say UE meets the xxIND-UE-atk confidentiality if there is a negligible
function negl(λ) such that AdvxxIND-UE-atk

UE,A (λ) ≤ negl(λ), where

AdvxxIND-UE-atk
UE,A (λ) =

∣
∣
∣Pr

[
ExpxxIND-UE-atk-1

UE,A = 1
]

− Pr
[
ExpxxIND-UE-atk-1

UE,A = 0
]∣∣
∣ .

Fig. 9. The confidentiality game ExpxxIND-UE-atk-b
UE,A where xx ∈ {det, rand} indicates the

type of UE scheme (deterministic or randomized) and atk ∈ {CPA,CCA-1,CCA} indi-
cates the type of attack model. In the game, the adversary is given access to a set
of oracles, denoted by O1 and O2 which are shown in Fig. 8 and Fig. 10. During the
setup phase, the adversary generates a challenge plaintext and a challenge ciphertext
using the oracles in O1, and submits them to the challenger in the challenge phase.
The adversary continues to query the oracles in O2 and eventually provides a guess
bit. The only condition for the adversary to lose the game is K ∩ TCchall[0] �= ∅.

Future Extensions. In our security model, the adversary is only allowed to
query the update oracle with “correctly” generated ciphertexts throughout the
experiment. An interesting future work is to investigate security notions that
capture both adaptive security and protection against malicious updates.

3.4 Firewall Techniques

Firewall Technique. In c-i UE, the firewall technique was developed in [17,18]
to facilitate security proof by separating epochs into different regions. Inside an
insulated region, the simulation in the proof should appropriately respond to the
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Fig. 10. Oracles that the adversary has access to before and after the challenge phase
in the confidentiality game for different attacks. It can corrupt keys at any time during
the game in all attacks via querying OCorr, but is not allowed to query the decryption
oracle in the CPA attack, limited to query the decryption oracle before the challenge
in the CCA-1 attack, and free to query the decryption oracle in the CCA attack.

queries of the adversary, since it corrupts all tokens within this region. While
outside, the simulation can generate tokens and epoch keys freely.

In c-d UE, we similarly define the insulated region, inside which all tokens
related to challenge-equal ciphertexts (called challenge-equal tokens) are cor-
rupted but no epoch key is corrupted.

Definition 8 (Firewall). In ciphertext-dependent UE schemes, an insulated
region with firewalls fwl and fwr, denoted by FW, is a consecutive sequence of
epochs (fwl, . . . , fwr) for which:

– no key in the sequence of epochs {fwl, . . . , fwr} is corrupted;
– no challenge-equal tokens in epochs fwl and fwr + 1 is corrupted;
– all challenge-equal tokens in epochs {fwl + 1, . . . , fwr} are corrupted.

Suppose an xxIND-UE-atk adversary A queries the challenge oracle in the
epoch ē and does not trigger trivial win conditions in the game, and TCchall[0] =
∪{estart, . . . , eend}. The proof of Lemma 3 shows A cannot update a ciphertext
from the epoch eend to the start epoch e′

start of the next continuum. Thus, we
have TCchall[0] = {estart, . . . , eend}, meaning that the epoch set in which A knows
a challenge-equal ciphertext is only a consecutive continuum starting from the
challenge epoch (estart = ē), and ending in the epoch eend, the last epoch that the
adversary queries the update oracle OsUpd on the challenge-equal ciphertext. The
epoch keys and tokens in the epoch in TCchall[0] have the following properties.

– A does not know the challenge-equal token in epochs estart and eend + 1,
following from the proof of Lemma 3;

– A knows all challenge-equal tokens in epochs in {estart+1, . . . , eend}, obtained
when A queries the updates of challenge-equal ciphertexts via OsUpd;

– A does not know any key in epochs in {estart, . . . , eend}, as K∩TCchall[0] = ∅;

We thus have the Lemma 6, following from the discussion above, and Lemma
7, as a corollary of Lemma 6, both of which provide important tools in the
confidentiality proof for c-d UE.

Lemma 6. Let UE = (KG,Enc,TokenGen,Update,Decrypt) be a c-d UE
scheme with no-directional key updates, and xx ∈ {det, rand} and atk ∈



CCA-1 Secure Updatable Encryption with Adaptive Security 395

{CPA,CCA-1,CCA}. For an xxIND-UE-atk adversary A against UE, the set of
epochs in which A knows a challenge-equal ciphertext is an insulated region (Def-
inition 8), starting from the challenge epoch and ending at the last epoch in which
the adversary queries the OsUpd.

Lemma 7. For a c-d UE with no-directional key updates, if the xxIND-UE-atk
adversary knows a challenge-equal ciphertext in epoch e, then e must be in an
insulated region.

4 A CCA-1 Secure PKE Scheme

In this section, we propose a new PKE scheme called TDP, which is based on the
lattice trapdoor techniques. We will use this scheme in Sect. 5 as the underlying
encryption scheme to build our UE scheme.

4.1 A New PKE Scheme

Our overall idea is to construct a 1 × 3 block matrix Aμ in the encryption
algorithm, with the secret key serving as the trapdoor for the first two blocks of
Aμ to ensure the correctness of decryption.

We introduce some parameters involved in the construction in Fig. 11, where
we use standard asymptotic notations of O,Ω, ω. Let λ be the security parameter,
ω(

√
log n) is a fixed function that grows asymptotically faster than

√
log n, and

Λ(Gt) is the lattice generated by Gt.

Fig. 11. A summary of notations used in PKE construction and their functionalities.

The PKE scheme TDP is described as follows. On a first reading, we suggest
readers to neglect the error parameter settings that are used to control the error
bound within the decryption capability, in order to have a simpler view at a high
level.
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– TDP.KG(1λ): choose A0
$← Z

n×m̄
q , R1, R2

$← D and let A = [A0 | A1 |
A2] = [A0 | −A0R1 | −A0R2] ∈ Z

n×m
q where m = m̄ + 2nk. The public key

is pk = A and the secret key is sk = R1.

– TDP.Enc(pk = A,m ∈ {0, 1}nk): choose an invertible matrix Hμ ∈ Z
n×n
q ,

and let Aμ = [A0 | A1 + HμG | A2]. Choose a random vector s ∈ Z
n
q

and an error vector e = (e0, e1, e2) ∈ DZm̄,αq × DZnk,d × DZnk,d where d2 =
(‖e0‖2 + m̄ · (αq)2) · ω(

√
log n)2. Let

bt = stAμ + et + (0, 0, encode(m))t mod q, (7)

where the first 0 has dimension m̄ and the second has dimension nk. Output
the ciphertext c = (Hμ, b). Notice that R1 is a trapdoor for [A0 | A1+HμG].

– TDP.Dec(sk = R1, c = (Hμ,b)): let Aμ = [A0 | A1 + HμG | A2]. The
decryption first recovers s from the first two blocks via the invert algorithm
and then the message m from the third block by decoding (when s is known):

(b0,b1,b2)t =st[A0 | A1 + HμG | A2]

+ (e0, e1, e2)t + (0, 0, encode(m))t mod q.

1. If c or b does not parse, or Hμ = 0, output ⊥. Otherwise parse bt =
(b0,b1,b2)t.

2. Recover s. Call InvertO(R1, [A0 | A1 + HμG], [b0,b1], Hμ) by Lemma
1, which returns s and (e0, e1) such that

(b0,b1)t = st[A0 | A1 + HμG] + (e0, e1)t mod q.

If InvertO fails, output ⊥. Invert bt
2 − stA2 again and find the unique

solution u, e2 to the equation

bt
2 − stA2 = utG + et

2 mod q,

3. If ‖e0‖ ≥ αq
√

m̄ or ‖ej‖ ≥ αq
√

2m̄nk · ω(
√

log n) for j = 1, 2, output ⊥
(Lemma 12 in the full version [9]).

4. Recover the plaintext. Output the following result

encode−1
(
bt

2 − stA2 − et
2

)
∈ Z

nk
2 ,

if it exists, otherwise output ⊥.

4.2 Correctness and Security

We provide a full proof of the correctness (Lemma 8) and security (Lemma 9)
of the updatable encryption scheme TDUE in Sect. 5, which is based on TDP as
a subcase of TDUE.
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Lemma 8. Our TDP decrypts correctly except with 2−Ω(n) failure probability.

Proof. The proof is the same as that of Lemma 10, except the bound for the
error vectors. The secret key R serves as the trapdoor for the first two blocks of
Aμ, which ensures the proper recovery of s in Step 2 as long as the error bound is
within the capability of Invert. That is ‖et(R

I )‖ ≤ q/4 by Lemma 1. By Lemma
14 in the full version [9], we have s1(R) = ω(

√
log n) ·O(

√
nk). By Lemma 12 in

the full version [9], we have ‖e0‖ ≤ αq
√

m̄ and ‖ei‖ ≤ αq
√

2m̄nk · ω(
√

log n) for
j = 1, 2, except with negligible probability 2−Ω(n), where m̄ = O(nk). Therefore,
∥
∥(e0, e1)t [RI ]

∥
∥

∞ ≤
∥
∥(e0, e1)t [RI ]

∥
∥ ≤

∥
∥et

0R
∥
∥ + ‖e1‖ ≤ αq · O(nk) · ω(

√
log n),

which is further smaller than q/4 since 1/α = 4 ·O(nk) ·ω(
√

log n), and ‖e2‖∞ ≤
q/4 for the same reason, which ensures the correct recovery of s, u and m. �

Lemma 9. Our PKE scheme TDP is CCA-1 secure if the LWE problem is hard.

Proof. We provide a detailed CCA-1 proof for our UE scheme in Theorem 2. Note
that, if the adversary is disallowed to query the token generation and update
algorithm, the CCA-1 game for UE is exactly the standard CCA-1 game for the
underlying PKE. Therefore, CCA-1 security of TDP follows from Theorem 2. �

5 A CCA-1 Secure Updatable Encryption Scheme

Based on our PKE scheme in Sect. 4, we construct a new UE scheme, which is
IND-UE-CCA-1 secure under the assumption of the LWE hardness.

5.1 Construction

Our UE scheme uses the same encryption and decryption algorithm in TDP,
i.e., the ciphertext of a plaintext m is of the form (ĉt, ct) = (Hμ, stAμ + et +
(0,0,encode(m)t). To update a ciphertext, at a high level, the update algorithm
first generates a key-switching matrix M with the last row block matrix [0 0 I],
such that AμM = A′

μ for the aimed A′
μ in the new ciphertext. This step is

feasible since the secret key is the trapdoor for the first two blocks of Aμ, ensuring
an efficient preimage sampling algorithm (Lemma 2). To increase the randomness
of s, then we add a fresh encryption of message 0 to the ciphertext. Figure 12
shows an overview of the ciphertext update.

We use the same parameters as in Sect. 4.1 except the following. We also
suggest readers on the first reading to neglect the parameter setting for error
items which are used to control the updated error bound.

– 1/α = 4l·ω(
√

log n)2l+2O(
√

nk)3l+3 where l is the maximal number of updates
that the scheme can support.

– τ =
√

s1(R)2 + 1 ·
√

s1(
∑

G) + 1 ·ω(
√

log n) is the smallest Gaussian param-
eter for the discrete Gaussian distribution from which the sampling algorithm
SampleDO can sample vectors, where s1(

∑
G) = 5 by Theorem 1.
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Fig. 12. An overview of ciphertext update in our UE construction. The first step mainly
updates Aµ to A′

µ, and the second step refreshes the randomness s.

The UE scheme TDUE is described as follows.

– TDUE.KG(1λ): output TDP.KG(1λ).

– TDUE.Enc(pk = A,m ∈ {0, 1}nk): output TDP.Enc(A,m).

– TDUE.Dec(sk = R1, c = (Hμ,b)): output TDP.Dec(R1, (Hμ,b)).

– TDUE.TokenGen(pk, sk, pk′,Hμ): parse pk = [A0 | A1 | A2] = [A0 | −A0R1 |
−A0R2], sk = R1, and pk′ = [A′

0 |A′
1 | A′

2].
1. Generate a random invertible matrix H′

μ and let A′
μ = [A′

0 | A′
1 +H′

μG |
A′

2]. We first generate a transition matrix M for which AμM = A′
μ in

the following steps 2, 3, and 4, and then compute the encryption of the
message 0 under A′

μ in step 5.
2. Call SampleO(R1, [A0 | −A0R1 +HμG],Hμ,A′

0, τ) (Lemma 2 and R1 is
a trapdoor for [A0 | −A0R1 + HμG]), which returns an (m̄ + nk) × m̄
matrix, parsed as X00 ∈ Z

m̄×m̄ and X10 ∈ Z
nk×m̄ with Gaussian entries

of parameter τ , satisfying

[A0 | −A0R1 + HμG]
[
X00

X10

]
= A′

0. (8)

3. Call SampleO(R1, [A0 | −A0R1 +HμG],Hμ,A′
1 +H′

μG, τ
√

m̄/2), which
returns X01 ∈ Z

m̄×nk
q and X11 ∈ Z

nk×nk
q with Gaussian entries of param-

eter τ
√

m̄/2 such that

[A0 | −A0R1 + HμG]
[
X01

X11

]
= A′

1 + H′
μG. (9)

4. Continue calling the sample oracle SampleO(R1, [A0 | − A0R1 +
HμG],H1, A′

2 − A2, τ
√

m̄/2) and obtain X02 ∈ Z
m̄×nk
q and X12 ∈

Z
nk×nk
q with Gaussian entries of parameter τ

√
m̄/2 such that

[A0 | −A0R1 + HμG]
[
X02

X12

]
= A′

2 − A2. (10)
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Let M be the key-switching matrix as follows:

M =

⎡

⎣
X00 X01 X02

X10 X11 X12

0 0 I

⎤

⎦ . (11)

Note that Aμ = [A0 | A1 + HμG | A2]. Then we have AμM = A′
μ from

Eqs. (8) to (10).
5. Let b0 be the ciphertext of message m = 0 under the public key pk′ with

the invertible matrix H′
μ generated in step 1. That is,

bt
0 = (s′)tA′

μ + (e′)t mod q.

6. Output the update token Δ = (M,b0,H′
μ).

– TDUE.Update(Δ, c = (Hμ,b)): parse Δ = (M,b0,H′
μ) and compute

(b′)t = bt · M + bt
0 mod q,

and output c′ = (H′
μ,b′).

No-Directional Key Updates. TDUE has no-directional key updates since one
can only learn from the update token about the value of A′

μ (or Aμ) through
AμM = A′

μ even if sk (or sk′, resp.) is corrupted, whereas A′
μ and Aμ are

random due to the leftover hash lemma and the distribution of the secret key.
Therefore, the adversary cannot infer any information about the secret key from
the update tokens.

5.2 Correctness

We prove that the decryption algorithm in our scheme can perform correctly with
overwhelming probability. Note that the second component in the ciphertext
generated by the update algorithm (updated ciphertext) is as follows:

(b′)t = bt · M + bt
0

=
[
stAμ + et + (0, 0, encode(m))t

]
M + (s′)tA′

μ + (e′)t

= (s + s′)tA′
μ +

(
etM + (e′)t

)
+ (0, 0, encode(m))t mod q. (12)

The third equation holds because AμM = A′
μ and the last nk rows in M is

[0 0 I]. Therefore the item (0, 0, encode(m))t stays the same when multiplied
by M. Then the updated ciphertext shares the same form with the fresh cipher-
text (generated by the encryption algorithm), except that the update algorithm
enlarges the error terms by etM + (e′)t, which may cause the failure in the
invert algorithm InvertO and further influence the correctness of the decryption
algorithm. In the following, we show that the decryption algorithm can tolerate
the accumulated errors in the updated ciphertexts by choosing an appropriate
value for the parameter α.
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Lemma 10. Our UE scheme TDUE decrypts correctly except with 2−Ω(n) failure
probability.

Proof. Since the decryption on the fresh ciphertext (from Enc) is a subcase of
that on the updated ciphertext (from Update), we choose to prove that the
decryption algorithm can output a correct plaintext after performing l updates
from epoch 0, where l is the maximum update number.

Let (pke, ske = Re)0≤e≤l ← KG(1n) be the public and secret key in epoch e.
For a random plaintext m ∈ {0, 1}nk, let ce be the ciphertext of m in epoch e,
which is updated from c0 = Enc(m) = (Hμ,0, st

0Aμ,0 + et
0 +(0, 0, encode(m))t).

For 1 ≤ i ≤ l, let the token in epoch i be Δi = (Mi,b0,i,Hμ,i), where b0,i is
the fresh ciphertext of message 0 in epoch i, i.e., bt

0,i = st
iAμ,i + et

i in which
Aμ,i = [A0,i | A1,i+Hμ,iG | A2,i]. Iteratively by Eq. (12), we know the updated
ciphertext of m in epoch l is cl = (Hμ,l,bl) where

bt
l = (

l∑

i=0

si)tAμ,l +
l∑

i=0

(et
i

l∏

j=i+1

Mj) + (0,0, encode(m))t.

Let
∑l

i=0(e
t
i

∏l
j=i+1 Mj) = (e(l)

0 , e(l)
1 , e(l)

2 )t = (e(l))t. In Appendix C of the
full version [9], we provide the upper bound for the error e(l) such that

∥
∥
∥(e(l)

0 , e(l)
1 , e(l)

2 )t ·
[
Rl

I
0

]∥∥
∥

∞
< q/4 and

∥
∥
∥e(l)

2

∥
∥
∥

∞
< q/4, (13)

except with probability 2−Ω(n) via the appropriate parameter selection for the
scheme. Let bt

l = (b(l)
0 ,b(l)

1 ,b(l)
2 )t. Then by Lemma 1, the call to InvertO made

by Dec(skl, (Hμ,l,bl)) returns s (=
∑l

i=0 si) and (e(l)
0 , e(l)

1 ) correctly, for which

(b(l)
0 ,b(l)

1 )t = st[A0,l | A1,l + Hμ,lG] + (e(l)
0 , e(l)

1 )t mod q.

It follows that
(b(l)

2 )t − stA2,l = (e(l)
2 )t + encode(m)t, (14)

where
∥
∥
∥e(l)

2

∥
∥
∥ < q/4 by Inequality (13) and encode(m)t = utG for some u ∈ Z

nk
q

by the definition of encode. Inverting (b(l)
2 )t − stA2,l, we can find the unique

solution e(l)
2 and u to Eq. (14). Finally, we have

encode−1
(
(utG)t

)
= encode−1 (encode(m)) = m.

Therefore, the decryption algorithm Dec outputs m as desired. �

5.3 Security Proof

In this section, we show that our scheme is IND-UE-CCA-1 secure under the
hardness assumption of LWE.
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Theorem 2. For any IND-UE-CCA-1 adversary A against TDUE, there exists
an adversary B against LWEn,q,α such that

AdvIND-UE-CCA-1
TDUE,A (1λ) ≤ 2(l + 1)3 ·

[
(l + 2) · negl(λ)

+ (nDec + nsUpd) · 2−Ω(n) + AdvLWE
n,q,α(B)

]
,

where l is the maximum number of ciphertext updates that the scheme TDUE
supports, and nDec and nsUpd are the number of queries to the oracles ODec and
OsUpd, respectively.

Fig. 13. Steps in the security proof of TDUE. Within an insulated region, the reduction
should appropriately respond to all the queries made by the adversary. Outside the
region, the reduction can generate epoch keys and tokens freely. ct is the abbreviation
of ciphertext.

Proof. In general, we take three steps, see Fig. 13, to bound the advantage of the
adversary. In the first step, we build a hybrid game Hi for each epoch i, following
[15,20]. To the left of i, the game Hi returns the real challenge-equal ciphertexts
and real generated tokens to respond to OChall and OsUpd queries; while, to the
right of i, Hi returns random ciphertexts and tokens as responses. To distin-
guish games Hi and Hi+1, we assume the adversary queries a challenge-equal
ciphertext in epoch i, otherwise the response of both games will be the same.
Therefore, the epoch i must be in an insulated region by Lemma 7. In Step 2,
we then set up a modified game of Hi, called Gi that is the same as Hi except
for the two randomly chosen epochs fwr, fwl to simulate the insulated region
around epoch i: if the adversary queries keys inside the region [fwr, · · · , fwl] or
challenge-equal tokens in epochs fwr or fwl + 1, Gi aborts. In the last step, we
play three games to bound the advantage of distinguishing games Gi and Gi+1. In
Game 1, we simulate keys inside the insulated region, which are unknown to the
adversary, and show how to simulate the response to queries on challenge-equal
and non-challenge ciphertexts with the simulated keys. We then simulate the
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challenge-equal ciphertext in the second game, which allows for the construc-
tion of a reduction that solves the LWE by simulating the second game to the
adversary. We provide the details in Appendix D of the full version [9]. �

5.4 A Packing UE

We now introduce a packing method to further improve the efficiency of c-d UE,
which allows us to encrypt multiple messages into one ciphertext and execute
ciphertext updates simultaneously.

Let N be a power of 2, R = Z[X]/(XN +1), and Rq = R/(qR) be the residue
ring of R modulo q. Any polynomial p(X) in R can be represented by p(X) =∑N−1

i=0 piX
i with degree less than N , which is associated with its coefficient

vector {p0, . . . , pN−1} ∈ Z
N . For a distribution X , when we say p(X) $← X , we

mean the coefficient of p(X) is chosen from X . We use the same notations as in
Sect. 5.1

Encoding. Prior to the packing construction, we first present an efficient encod-
ing algorithm that encodes multiple messages m0, . . . , mN−1 ∈ Z

nk
2 as an ele-

ment in Rq with coefficients in Λ(Gt) as follows:

encode(m0, . . . ,mN−1) = B ·
(
m0 + m1x + · · · + mN−1x

N−1
)
,

where B ∈ Z
nk×nk is any basis of Λ(Gt). Note that it can be efficiently decoded.

At a high level, multiple message blocks are encrypted in the following form:

(b0,b1,b2(x))t = st[A0 | A0R + HμG | A2(x)]

+ (e0, e1, e2(x))t + (0, 0, encode(m0, . . . ,mN−1))t mod q. (15)

Compared to TDUE, the major modification in this approach is in the third block
that uses polynomial matrices and vectors. The secret key R is still the trapdoor
for [A0 | A0R + HμG]. Therefore, the decryption procedure is able to properly
recover s from the first two blocks in Eq. (15) as TDUE.Dec, and then call InvertO

over b2(x) − stA2(x) degree by degree to recover every message. Moreover, the
token generation is feasible due to a generalized preimage sampling algorithm in
Lemma 11.

Lemma 11. Given a G-trapdoor R for A ∈ Z
n×m
q with invertible matrix

H and any polynomial vector u(X) ∈ Rn
q , there is an efficient algorithm

called GSampleDO(R,A,H,u(X), s) that samples a Gaussian polynomial vec-
tor p(X) ∈ Rm

q with coefficients from DZ,s such that A ·p(X) = u(X), where s
is the smallest Gaussian parameter defined in Lemma 2.

Proof. Calling the oracle SampleDO on each coefficient vector of u(X) returns a
vector pi such that

Api = ui,

for 0 ≤ i ≤ N and u(X) =
∑N−1

i=0 uiX
i. Denote p(X) =

∑N−1
i=0 piX

i, then we
know Ap(X) = u(X). �
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Packing UE. Our packing UE scheme is described as follows.

– KG(1λ): choose A0
$← Z

n×m̄
q , R1, R2(X) $← D and let A = [A0 | A1 | A2] =

[A0 | −A0R1 | −A0R2(X)] ∈ Rn×m
q where m = m̄ + 2nk. The public key is

pk = A and the secret key is sk = R1.

– Enc(pk = A,m0, . . . ,mN−1 ∈ {0, 1}nk): choose an invertible matrix Hμ ∈
Z

n×n
q , and let Aμ = [A0 | A1 + HμG | A2]. Choose a random vector s ∈ Z

n
q

and an error vector e = (e0, e1, e2(X)) ∈ DZm̄,αq × DZnk,d × DZnk,d where
d2 = (‖e0‖2 + m̄ · (αq)2) · ω(

√
log n)2. Let

bt = stAμ + et + (0, 0, encode(m0, . . . ,mN−1)t mod q, (16)

where encode(m0, . . . ,mN−1) = B · (m0 + m1X + · · · + mN−1X
N−1).

– Dec(sk = R1, c = (Hμ,b)): Recover s as the steps 1 to 3 in the decryption
algorithm of TDP. Parse bt = (b0,b1,b2(X))t, invert b2(X)t − stA2 degree
by degree, and find the unique solution ui, e2,i to the equation

bt
2,i − stA2,i = ut

iG + et
2,i mod q,

by Lemma 1 if they exist, where b2(X) =
∑

b2,iX
i and A2 =

∑
A2,iX

i.
Output the following result as mi if it exists,

encode−1
(
(ut

iG)t
)

∈ Z
nk
2 ,

for 0 ≤ i ≤ N − 1, otherwise output ⊥.
– TokenGen(pk, sk, pk′,Hμ): Generate block matrices M00, M01, M10, M11 of

M as in steps 2 and 3 of TDUE.TokenGen, and call the algorithm GSampleDO

in Lemma 11 to find M02(X) ∈ Rm̄×nk
q ,M12(X) ∈ Rnk×nk

q such that

[A0 | −A0R1 + HμG]
[
M02(X)
M12(X)

]
= A′

2 − A2.

Generate b0 a fresh encryption of message 0. Output the update token Δ =
(M,b0,H′

μ).
– TDUE.Update(Δ, c = (Hμ,b)): parse Δ = (M,b0,H′

μ) and compute

(b′)t = bt · M + bt
0 mod q,

and output c′ = (H′
μ,b′).

Remark. The correctness and IND-UE-CCA-1 security of packing UE is anal-
ogous to those of TDUE (as shown in Lemma 10 and Theorem 2). We omit
the details. For a message of bit length Nnk, packing UE, compared to TDUE,
reduces the number of ciphertexts by a factor of N , and only one ciphertext
header is required to be downloaded in the token generation procedure.
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6 Conclusion and Future Work

In this paper, we propose a stronger confidentiality notion than prior work for
ciphertext-dependent updatable encryption, which captures adaptive security
and is applied to both types of UE schemes: deterministic and randomized
updates. We also provide a new public key encryption scheme, based on which
we construct our updatable encryption scheme. Moreover, we propose a cost-
effective packing UE scheme that is able to execute ciphertext updates simulta-
neously.

Future Work. The first FHE scheme introduced by Gentry [14] and all its
subsequent works require a “circular security” assumption, namely that it is
safe to encrypt old secret keys with new keys. Such an idea has inspired the
UE construction with backward directional key updates. In turn, we suggest
an open problem that if no-directional updatable encryption, which is able to
update ciphertext without revealing old and new keys, can be used to construct
FHE that does not rely on the assumption.
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able comments and Hao Lin for the technical discussions. This work was partly sup-
ported by the EU Horizon Europe Research and Innovation Programme under Grant
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Abstract. Distributed broadcast encryption (DBE) improves on the
traditional notion of broadcast encryption by eliminating the key-escrow
problem: In a DBE system, users generate their own secret keys non-
interactively without the help of a trusted party. Then anyone can broad-
cast a message for a subset S of the users, in such a way that the resulting
ciphertext size is sublinear in (and, ideally, independent of) |S|. Unfor-
tunately, the only known constructions of DBE requires heavy crypto-
graphic machinery, such as general-purpose indistinguishability obfusca-
tion, or come without a security proof.

In this work, we formally show that obfuscation is not necessary for
DBE, and we present two practical DBE schemes from standard assump-
tions in prime-order bilinear groups. Our constructions are conceptually
simple, satisfy the strong notion of adaptive security, and are concretely
efficient. In fact, their performance, in terms of number of group elements
and efficiency of the algorithms, is comparable with that of traditional
(non distributed) broadcast encryption schemes from bilinear groups.

Keywords: Pairing-based Cryptography · Broadcast Encryption ·
Key-Escrow

1 Introduction

In a broadcast encryption (BE) scheme [14] a broadcaster encrypts a message
for some subset S of the users who are listening on a broadcast channel. Any
user that belongs to the set S can recover the message using their own secret
key. The security requirement stipulates that, even if all users not in S collude,
they learn nothing about the broadcasted message.

Broadcast encryption has been an active area of research since their introduc-
tion in the 1990 s, where a major goal is to obtain schemes with short parameters,
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notably ciphertext size that is sublinear in the total number of users L, so as
to minimize bandwidth consumption. In a celebrated work from 2005, Boneh,
Gentry and Waters (BGW) [4] presented a pairing-based broadcast encryption
scheme with constant-size ciphertext (ignoring the contribution from the set
S). A series of follow-up works [5,11,21] showed how to achieve constant-size
ciphertext under the standard k-Lin assumption, improving upon the q-type
assumption used in BGW, while additionally strengthening the security guaran-
tees from selective to adaptive security. More recent works [1,2,10,35], improv-
ing upon [6,7], showed how to achieve poly(log L) total parameter size under
stronger, non-falsifiable assumptions.

All of the aforementioned broadcast encryption schemes suffer from the noto-
rious key escrow problem: the schemes require a central authority holding a
master secret key, that generates and distributes keys for all users of the system.
Moreover, the central authority can decrypt any ciphertext ever encrypted using
this master secret key. Another security concern is that the central authority
needs to remain online with a long-term secret key, which constitutes a recur-
rent single point of failure.

Distributed Broadcast Encryption. To circumvent the key escrow prob-
lem [7,38] introduced the notion of distributed broadcast encryption (DBE),1

where users choose their own public/secret key pairs, and replacing the central
authority with a bulletin board of user public keys. This not only solves the
key escrow problem, but also captures many applications such as peer-to-peer
networks, on-the-fly data sharing, and group messaging.

Wu, Qin, Zhang and Domingo-Ferrer [38] (henceforth WQZD), present a
pairing-based scheme for L users with a transparent set-up where each user’s
public key comprises O(L2) group elements, and the ciphertext comprises O(1)
group elements (more discussion on this in Sect. 1.2), however without a security
proof. Shortly after, Boneh and Zhandry [7] construct a distributed broadcast
encryption scheme with poly(log L)-sized public keys and ciphertext assuming
indistinguishability obfuscation, in a stronger model with a one-time trusted
sampling of a common reference string (CRS). We stress that the trusted setup
only needs to be done once (e.g., with an MPC), that the same CRS can be reused
across different systems, and that there is no need to store any long-term secrets,
thereby also circumventing the key escrow problem. We regard this mostly as a
feasibility result, given the state of affairs for obfuscation [8,9,20,26,27,36]. In
this work, we address the following question:

Can we construct simple and efficient distributed broadcast encryption
with small ciphertexts?

In particular, we focus on pairing-based schemes, due to the increasing sup-
port (e.g., high-quality implementations with strong assurance and performance,
on-going IETF standardization) and deployment of pairing-based cryptography.

1 In [38] under the name’Ad Hoc Broadcast Encryption’.
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1.1 Our Results

We construct simple pairing-based distributed broadcast encryption (DBE)
schemes where, for a bound of L users:

– Ciphertexts comprise a constant number of group elements, like in BGW;
– Encryption to a set S only requires retrieving O(|S|) group elements from the

bulletin board;
– Users only need to store O(L) group elements for decryption;
– Both encryption and decryption take time linear in |S|.

In particular, our schemes achieve similar efficiency as the state-of-
the-art vanilla (non-distributed) pairing-based broadcast encryption schemes
(cf. Table 2).

Our schemes rely on standard assumptions in bilinear groups, such as the
bilinear Diffie-Hellman Exponent (BDHE) [4], or the k-Lin assumption [3,24,32].
Two of our schemes satisfy strong security guarantees, which ensure that the
message is hidden even against an adversary that adaptively corrupts honest
users and can register malformed public keys to the bulletin board. For the case
of the BDHE scheme, this is achieved by a generic transformation that turns
any scheme that satisfies a very weak notion of security (that we refer to as
semi-selective) to an adaptively secure scheme, following the approach of [21].

Furthermore, we show how to achieve two strengthenings of DBE inspired
by recent works on registration-based encryption [12,16,17,22,25]:

– The first is that of dynamic joins, where users can register public keys and join
the bulletin board at any time, and secret keys may require to be updated once
a new user joins. We show a generic transformation (following [12,16,22,25])
where users need to check the bulletin board for updates at most poly(log L)
times throughout the lifetime of the system, while increasing the ciphertext
size by a O(log L) factor.

– The second is that of malicious corruptions, where malicious users can reg-
ister (possibly-malformed) keys. We show that as long as public keys pass a
simple validity check, then the presence of malicious users do not comprise
correctness or privacy of our schemes.

1.2 Discussion and Related Works

Prior Works. Besides “trivial” schemes, where one simply encrypts the mes-
sage in parallel for all users in the subsets, the only DBE schemes proposed in
the literature are from Wu, Qin, Zhang and Domingo-Ferrer [38] and Boneh and
Zhandry [7]. We present an explicit comparison of known DBE schemes, along
with their underlying assumptions in Table 1. We mention here that the con-
ference version of [38] presents a construction without a proof of security. On
the other hand, the full version [37] presents a different construction, along with
a security proof. In the full version of this paper [28] we show, unfortunately,
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Table 1. Comparison with existing DBE schemes. The notation in the table ignores
constants and factors that depend only on the security parameters. |BB| denotes the
size of the bulletin board, whereas L denotes the maximum number of users allowed in
the system. Encryption and decryption take time O(|S|) in all cases. (First two rows
are the “naive” constructions with O(L) ciphertext where we encrypt to all public keys
in the set.)

Assumption |pp| |uskj | |upkj | |ct| |BB| #Updates

Folklore PKE – 1 1 |S| L –

Folklore RBE log L log L 1 |S| L log L log L

Boneh-Zhandry iO and OWF L 1 1 1 L L

WQZD BDHE L L L2 1 L3 L

Scheme 1 BDHE L 1 L 1 L2 L

Scheme 1 (Log. Updates) BDHE L 1 L log L L2 log L

Scheme 2 k-Lin L2 1 L 1 L2 L

Scheme 2 (Log. Updates) k-Lin L2 1 L log L L2 log L

that their argument is flawed by presenting an attack against their full-version
construction. For completeness, we also provide a proof (although only for the
weaker notion of selective security) for a slight variant of the conference version
[38].

We shall mention here explicitly that neither work explicitly considered the
settings with dynamic joins, and therefore the resulting schemes also have a linear
(in L) number of updates. However, we stress that a similar transformation as
the one that we present in this work can be applied also to their schemes to
reduce the number of updates to log L, while increasing the ciphertext size to
log L.

Decentralized Broadcast Encryption. Phan, Pointcheval, and Strefler [31]
put forth the notion of decentralized broadcast encryption, which relies on inter-
active key generation to solve the key-escrow problem in broadcast encryption.
That is, upon a new user’s arrival, a subset of the users should be online to
involve in an interactive protocol with the new user, in order for the keys of the
system–new user’s key and (part of) the previous ones–to be updated. Further-
more, the ciphertext is not always succinct on the set size, it can vary from 1 to
O(|S|), depending on the structure of S. They provided efficient instantiations
based on the DDH assumption in pairing-free groups.

In contrast, the model of [7,38] (which is also the one that we adopt in this
work) insist on a non-interactive key generation procedure, apart from a single
write access to the public bulletin board and up to O(log L) reads per user and
it is required that the ciphertexts are poly-logarithmic in |S| for every possible
broadcast-set S.
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Registration-Based Encryption. Another related (but different) notion is
that of registration-based encryption [16]. Also in registration-based encryption
(RBE) users sample their own secret keys and there is no key authority that
knows a master secret key. However RBE assumes the existence of a semi-trusted
key curator that aggregates the public keys of the users and generates a short
master public key that anyone can use to encrypt with respect to identities. On
the other hand, in DBE there is no key curator, but just an append-only bulletin
board (alternatively, one can think of the key curator as doing nothing). These
settings entail two different technical challenges:

– In RBE, the non-triviality of the scheme comes from the size of the master
public key, which is required to be sublinear, ideally independent, of the
number of users. (No requirement on the size of the ciphertext)

– In DBE, the challenge stems from the size of the ciphertext, which is required
to be sublinear, ideally independent, of the size of the set. (No requirement
on the size of the master public key)

Because of the above differences the two primitives are formally incompa-
rable, i.e., RBE does not imply DBE and vice-versa. We also point out that
DBE (and in fact broadcast encryption) does not support the functionality of
encryption “with respect to identity” as in RBE, which is rather a property of
identity-based broadcast encryption.

Recently Hohenberger et al. introduced the relevant to RBE notion of Reg-
istered (ciphertext-policy) attribute-based encryption [25] and, as Agrawal and
Yamada [2] observed, CP-ABE implies broadcast encryption. However, the same
comparison with RBE applies; R-ABE’s objective is to have sublinear master
public key, which is orthogonal to sublinear ciphertexts. In fact, their ciphertext
is linear in the size of policy, therefore naively using the R-ABE as an DBE
yields O(|S|)-sized ciphertexts.

User Identifiers. We discuss possible choices for assigning user identifiers to
participants. For the static settings, where all users are fixed at the beginning
of the system, one can simply identify users in the set by their lexicographical
ordering. This is what is done in traditional (non-distributed) broadcast encryp-
tion systems. In the dynamic settings, where users can post public keys on the
bulletin board at different times, one can envision different mechanisms. The
simplest one is to identify users by their time of arrival: The bulletin board
specifies a counter corresponding to how many users have joined the system so
far as well as the identifiers of all the users who have joined the system so far,
in order. When a user joins, it checks the counter first, increments it by 1 to j
and runs keygen with j and submits her public key, upkj , with its identifier that
also gets appended to the bulletin board; the identifier is now associated with
index/time j. When a sender comes along, it looks up the bulletin board to check
the identifiers and the corresponding indices, and uses that to determine a set
S ⊆ [L]. When we say that our scheme supports poly(log L) updates, we mean
that a decryptor will only need to look up the bulletin board at most poly(log L)
times for public key updates, even if L users join the system.
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Common Reference String. We point out explicitly that, similarly to recent
works on RBE [22] and R-ABE [25] and R-FE [15], two of our schemes are in the
common reference string model, where a reference string must be sampled in such
a way that the underlying trapdoor is kept secret. We argue that this assumption
is still substantially better than having a trusted authority distributing secret
keys for all parties. This is because the common reference string is sampled once
and for all and there is no long term secret that needs to be stored. Additionally,
availability-wise, no trusted authority must remain online to send secret keys and
no secure communication channels are needed.

One way to sample a common reference string is to have a one-time ceremony,
where a group of non-colluding parties run a multi-party computation protocol
to compute the common reference string, each supplying their own random-
ness. Furthermore, the common reference string can be reused across different
instances of the scheme. We also point out that our first scheme has an updatable
common reference string [23] of the form

[α], . . . , [αL], [αL+2], . . . , [α2L]

for a secret scalar α. This class of common reference strings can be easily updated
using the techniques in [23,30], where each update can be verified via a simple
proof of knowledge of discrete logarithm. This highly mitigates the trust in the
common reference string since anyone can update it and even one honest update
(the underlying update trapdoor is destroyed) suffices.

Efficiency Comparison with Non-distributed BE. In Table 2 we provide a
comparison of our DBE with traditional BE from bilinear groups. Although we
compare primitives with different objectives and functionalities, our objective is
to show the cost of getting rid of the trusted authority in broadcast encryption.
For fairness, we compare with the variant of our schemes in the static settings,
i.e., where the set of users is fixed, which is the same as traditional BE. The
conclusion is that in comparison to [4] and [21] we achieve essentially the same
efficiency properties except for a log L overhead on the size of the ciphertext
(for the variant with efficient updates). [34] achieves the best tradeoff between
parameters that we do not achieve. We note that in the case of DBE, due to
absence of the trusted authority, we have a quadratic-sized Bulletin Board.

1.3 Open Problems

We view our work as opening a promising new line of research in pairing-based
broadcast encryption. In fact there is a number of problems that our work leaves
open: For example, we ask what are the optimal parameters for pairing-based
DBE, and whether we can achieve similar tradeoffs as for the case of vanilla
broadcast encryption [34]. Furthermore, an outstanding open problem is whether
we can construct distributed broadcast encryption from other assumptions, such
as lattice-based computational problems.
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Table 2. Comparison with existing BE schemes with O(1)-size ciphertexts from Bilin-
ear Groups. The notation in the table ignores constants and factors that depend only
on the security parameters, except for |ct| which is concrete in number group elements.
|Enc| denotes the overall size of information needed to encrypt a message (e.g. mpk or
crs), and |Dec| the overall size of information to decrypt (e.g. uskj or sk). |BB| denotes
the size of the bulletin board (for DBE), whereas L denotes the maximum number
of users allowed in the system. We omit from the comparison schemes like [34] which
achieves O(N1/3) parameters but not O(1)-size ciphertexts. Recall SXDH = 1-Lin.

Assumption Dist Security |Enc| |Dec| |ct| |BB| #Updates

BGW05 [4] BDHE No Selective L L 3 – N/A

Scheme 1a BDHE Yes Selective L L 3 L2 L

GW09 [21] BDHE No Adaptive L L 6 – N/A

GKW18 [19] SXDH No Adaptive L L 4 – N/A

Scheme 1b BDHE Yes Adaptive L L 6 L2 L

Scheme 2 SXDH Yes Adaptive L L 4 L2 L

2 Technical Overview

2.1 High-Level Overview

Syntax for Distributed Broadcast Encryption. We begin with the syntax
for distributed broadcast encryption in the simplest setting. There are L users
in the system and a public parameter pp given to all users.

– User j given pp, generates a public/private key pair (upkj , uskj) and posts
upkj to a public bulletin board.

– Encryption to a set S takes as input {upkj}j∈S and a message M and outputs
a ciphertext ct.

– Decryption takes as input a set S, a ciphertext ct, the public keys {upkj}j∈S ,
and a secret key uski for some i ∈ S.

The basic semantic security requirement says that given an encryption ct
of M for any set S, along with {upkj}j∈[N ] and {uskj}j /∈S , the message M
remains hidden. The stronger notion of adaptive security (where the adversary
can choose S after seeing some of the public keys) can be achieved with a semi-
generic transformation due to [21], which we adapt to the distributed setting.
However, to keep things simple, in this overview we focus on selective security,
where the set S is fixed in advance.

Looking ahead, we present two constructions of DBE satisfying these basic
requirements, one based on DBHE and the second based on k-Lin. These two
schemes constitute the basic building blocks for our “full fledged”–enhanced with
additional requirements described below–DBE schemes. We defer an overview
of both constructions for now, and proceed instead to describe the additional
requirements for DBE and how we achieve them via a series of generic transfor-
mations.
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Malicious Corruptions. Next, we strengthen our security requirements to
allow for malicious corruptions, where a user j controlled by an adversary may
post an arbitrary, malformed upk∗

j to the bulletin board, as long as upk∗
j passes

some validity check. We have two requirements: first, we want functionality to
hold even amidst malicious corruptions, namely an honest user i should correctly
decrypt an honestly generated encryption for a set S where i ∈ S, even if S
contains malformed public keys. Next, we require that semantic security holds
even if all keys outside S (i.e., [L] \ S) are corrupted. We note that, as typically
in Broadcast Encryption, it’s meaningless to assume corruptions inside S; an
adversary controlling a user inside S can trivially decrypt.

We show that any scheme that is semantically secure without malicious cor-
ruptions is also semantically secure with malicious corruptions. The reduction is
fairly straight-forward, crucially relying on the fact that our syntax for encryp-
tion takes as input only the public keys of users in S, and since we do not allow
malicious corruptions inside S, malicious coruptions do not affect the distribu-
tion of the challenge ciphertext.

Reducing the Number of Updates. It is typical in dynamic settings without
a private key generator authority that the users have to update their decryption
keys. Following similar settings, such as Registration-based Encryption, we put
forward a generic transformation to any DBE scheme that allows users to update
their decryption keys only logarithmic number—in the total number of users,
L—times throughout the history of the system. We defer to Sect. 4.3 for the
technical details.

2.2 Scheme from BDHE

We rely on an asymmetric bilinear group (G1,G2,GT , e) of prime order p where
e : G1×G2 → GT . We use [·]1, [·]2, [·]T to denote component-wise exponentiations
in respective groups G1,G2,GT . For this overview we implicitly assume that
all algorithms take the description of the group (together with corresponding
random generators) as input, (p,G1,G2,GT , [1]1, [1]2, e).

BGW Broadcast Encryption. Our starting point is the BGW broadcast
encryption scheme [4] which we recap below:

pp =
(
[α]1, . . . , [αL]1, [α]2, . . . , [αL]2, [αL+2]2, . . . , [α2L]2

)

msk = t, t ←$ Z
∗
p

mpk = ([t]1)

ct =

⎛

⎝[s]1, [s(t +
∑

j∈S

αj)]1, [sαL+1]T · M

⎞

⎠ , s ←$ Z
∗
p

ski = [tαL+1−i]2
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Decryption by a user i ∈ S is based on the following equation:

e

⎛

⎝[s(t +
∑

j∈S

αj)]1, [αL+1−i]2

⎞

⎠ =

= e

⎛

⎜
⎜
⎝[s]1,

ski︷ ︸︸ ︷

[tαL+1−i]2 ·[
∑

j∈S,j �=i

αL+1+j−i]2

⎞

⎟
⎟
⎠ [sαL+1]T

Observe that the secret keys of all users depend on the same secret value: the
master secret key t. It is worth noting that this is a technique that is common
even among all subsequent broadcast encryption schemes. The natural question
when adapting BGW to the distributed setting is: who chooses t?

Our DBE. Our core technique is the following: let t be t =
∑

i∈S ti where ti is
chosen by the i’th user. This transforms the above decryption equation to:

e

(

[s
∑

i∈S

(tj + αj)]1, [αL+1−i]2

)

=

= e

⎛

⎝[tiαL+1−i +
∑

j∈S,j �=i

(
tjα

L+1−i + αL+1+j−i
)
]1, [s]2

⎞

⎠ [sαL+1]T =

= e

⎛

⎜
⎜
⎝

ski,i︷ ︸︸ ︷

[tiαL+1−i]1
∏

j∈S,j �=i

⎧
⎪⎪⎨

⎪⎪⎩

ski,j︷ ︸︸ ︷

[tjαL+1−i]1 ·[αL+1+j−i]1

⎫
⎪⎪⎬

⎪⎪⎭
, [s]2

⎞

⎟
⎟
⎠ [sαL+1]T

Now, as it is evident, the cross-terms tjα
L+1−i appear in the decryption equa-

tion. Therefore, in order to make decryption possible, it is inevitable that the
decryptor i knows these terms.

This affects the efficiency of the scheme (making the user’s necessary informa-
tion to decrypt linear in L), but is very convenient for the distributed setting.
The intuition is that each user i can be attached to one distinct ti that she
can sample locally. Then user i publishes the cross-terms of all the other users
ski,j = tiα

L+1−j , except of course for ski,i = tiα
L+1−i which is her secret key. In

terms of correctness, observe that ski,i is only used in the decryption equation
of i, i.e. it never plays the role of a cross-term. Additionally, publishing ski,j

doesn’t affect security as long as ski,i remains secret.
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To summarize, our DBE is given as follows:

pp =
(
[α]1, . . . , [αL]1, [α]2, . . . , [αL]2, [αL+2]2, . . . , [α2L]2

)

uskj = [tjαL+1−j ]2, tj ←$ Z
∗
p

upkj =
(
[tj ]1, [tjα]2, . . . , [tjαL+1−j−1]2, [tjαL+1−j+1]2, . . . , [tjαL]2

)

ct =

⎛

⎝[s]1, [s(
∑

j∈S

tj + αj)]1, [sαL+1]T · M

⎞

⎠ , s ←$ Z
∗
p

It is worth noting that in terms of efficiency the public parameters and the
ciphertext remain unaffected. Futhermore, from the point of view of the encryp-
tor the (asymptotic) storage overhead is the same as BGW: In BGW (translated
to asymmetric groups) an encryptor needs pp = ({[αi]1}i∈[L], {[αi]2}i∈[2L]\{L+1})
and [t]1 while in our case the same pp and [t1]1, . . . , [tL]1, therefore both are O(L).

Security Proof Sketch. The decision Blinear Diffie-Hellman Exponent
assumption [4] says that [sαL+1]T is pseudorandom given ({[αi]1}i∈[L],
{[αi]2}i∈[2L]\{L+1}) := pp and [s]1 := ct1. The security reduction for selective
security given S∗ proceeds as follows:

– for all j /∈ S∗, reduction samples tj “in the clear”;
– for all j ∈ S∗, reduction samples t̃j and implicitly sets tj := t̃j − αj .

Now, observe that

ct =

⎛

⎝[s]1, [s
∑

j∈S

t̃j ]1, [sαL+1]T · M

⎞

⎠

the reduction can simulate:

– the public parameters using the input of the assumption;
– the challenge ct given [s] and the target of the assumption.
– terms [tjαL+1−i]2, j /∈ S∗ and any i, we can simulate using tj
– terms [tjαL+1−i]2, j ∈ S∗, i �= j: we can simulate using t̃j and [αL+1−i+j ]2
– terms [tjαL+1−j ]2, j ∈ S∗: appear only in skj , which the adversary is not

allowed to query

Interestingly, our modification described above allows us to prove our DBE
scheme semi-statically secure, something that is not possible for BGW. Semi-
static security is a strengthening of static security in the sense that the adversary
still outputs the target set S∗ a-priori but at the challenge stage is allowed to ask
a ciphertext for any subset S∗∗ ⊆ S∗. This security notion is interesting since
Gentry and Waters showed a generic transformation (in the Random Oracle
model) from a semi-statically secure scheme to fully adaptive [21]. We adapt
this transformation in the distributed broadcast encryption setting in Sect. 4.2.
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2.3 Scheme from k-Lin

Our k-Lin Distributed Broadcast Encryption conceptually follows the frame-
work of Gay et al. [19] that construct (plain) Broadcast Encryption from k-Lin.
The [19] scheme itself conceptually holds similarities with the Broadcast Encryp-
tion scheme of Gentry and Waters (GW) [21]. In order to ease the presentation,
first we give some context to the reader on the GW construction.

GW Broadcast Encryption. The GW scheme works as follows:

pp = ([w1]1, . . . , [wL]1) , wi ← Z
∗
p

msk = ([α]2, [w1]2, . . . , [wL]2) , α ←$ Z
∗
p

mpk = [α]T

ct =

⎛

⎝[s]1, [s
∑

j∈S

wj ]1, [sα]T · M

⎞

⎠ , s ← Z
∗
p

ski =
(
[α + wiri]2, [ri]2, {[riwj ]2}j∈[L]\{i}

)
, ri ← Z

∗
p

Decryption uses the fact that if i ∈ S, then:

e

⎛

⎜
⎜
⎝[s]1,

ski,i︷ ︸︸ ︷
[α + riwi]2 ·

∏

j∈S,j �=i

ski,j︷ ︸︸ ︷
[riwj ]2

⎞

⎟
⎟
⎠ = e

(

[s
∑

i∈S

wj ]1, [ri]2

)

[sα]T

GKW Broadcast Encryption. The observation of Gay et al. [19] is that one
can ’push’ ski,j to the parameters (sampling a-priori all ri’s). This makes the
public parameters quadratic, but achieves constant-sized decryption keys. This
gives us:

pp =
({[wi]1}i∈[L], {[ri]2}i∈[L], {[riwj ]2}i,j∈[L],i �=j

)
, wi, ri ← Z

∗
p

msk = ([α]2, [w1]2, . . . , [wL]2, r1, . . . , rL)
mpk = [α]T

ct =

⎛

⎝[s]1, [s
∑

j∈S

wj ]1, [sα]T · M

⎞

⎠ , s ← Z
∗
p

ski = [α + wiri]2

Looking ahead, GKW (almost) generically transforms the scheme to the k-
Lin setting to achieve adaptive security (without the use of random oracles). For
presentational purposes we postpone this to the end of the section and continue
with the traditional setting, stated above.
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Towards Our DBE. In the distributed case we crucially rely on the fact that
ski,j ’s can be ’pushed’ to the public parameters, since there is no private key
generator authority to sample ri on-the-fly to extract the decryption key of the
user i.

However, we’re not done, there still remains the natural question: who sam-
ples α, or in more general, how are the secret keys ski formed so that they do
not depend on a (universal) master secret key? We resolve this as follows: As in
our previous DBE scheme, user i samples a fresh ti ← Z

∗
p. Then, we replace wj

in ct with tj + wj , which yields

ct =

⎛

⎝[s]1, [s
∑

j∈S

(tj + wj)]1, [sα]T · M

⎞

⎠

Doing the same with ski and the corresponding entries of the public parameters
(the GW parts of ski that were ’pushed’ to the pp) yields:

ski = [α + (wi + ti)ri]2

pp(3) = {[(tj + wj)ri]2}i,j∈[L],i �=j

This leads us naturally to the following DBE scheme:

pp =
(
[α]T , {[wi]1}i∈[L], {[ri]2}i∈[L], {[α + riwi]2}i∈[L], {[riwj ]2}i,j∈[L],i �=j

)

uskj = [tjrj ]2, tj ← Z
∗
p

upkj = ([tj ]1, [tjr1]2, . . . , [tjrj−1]2, [tjrj+1]2, . . . , [tjrL]2)

ct =

⎛

⎝[s]1, [s
∑

j∈S

(tj + wj)]1, [sα]T · M

⎞

⎠ s ← Z
∗
p

Regarding efficiency, the above Distributed Broadcast Encryption Scheme
preserves the decryption and encryption key sizes, O(L), of the GW scheme, but
at the cost of having quadratic public parameters instead of linear.

Security Intuition. To gain some intuition about security, consider an adver-
sary that tries to recover [sα]T by computing e([s

∑
j∈S(tj + wj)]1, [ri]2) and

e([s], [α + wiri]). Then notice that:

– if i /∈ S, it can’t cancel out [swiri]T .
– if i ∈ S, it can’t cancel out [stiri]T without uski, which of course is not

allowed to query in the security game of a (distributed) broadcast encryption
(otherwise it trivially recovers the message).
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Final Scheme from k-Lin. To obtain a scheme under k-Lin following [11,19],
we sample A ← Z

k×(k+1)
p and make the following substitutions:

s �→ s�A ∈ Z
1×(k+1)
p , α �→ k ∈ Z

k+1
p ,

wj �→ Wj ∈ Z
(k+1)×k
q ,

tj �→ Tj ∈ Z
(k+1)×k
q ,

[wj ]1, [α]T �→ [AWj ]1, [Ak]T

We defer further details to Sect. 6.

3 Preliminaries

Notation. We write λ for the security parameter. By [N ] we denote the set
of integers {1, . . . , N} and, more generally, by [A,B] the set {A, . . . , B} for any
A,B ∈ Z, A ≤ B. With x ←$ X we denote the procedure of x being uniformly
sampled from a finite set X. Throughout our work “PPT” stands for probabilistic
polynomial-time algorithm.

3.1 Bilinear Groups

A generator BG takes as input a security parameter 1λ and outputs a description
G := (p,G1,G2,GT , g1, g2, e), where p is a prime of Θ(λ) bits, G1, G2 and GT

are cyclic groups of order p, and e : G1 × G2 → GT is a non-degenerate bilinear
map. We require that the group operations in G1, G2, GT and the bilinear
map e are computable in deterministic polynomial time in λ. Let g1 ∈ G1,
g2 ∈ G2 and gT = e(g1, g2) ∈ GT be the respective generators. We employ the
implicit representation of group elements: for a matrix M over Zp, we define
[M]1 := gM1 , [M]2 := gM2 , [M]T := gMT , where exponentiation is carried out
component-wise. We denote [A]s · [B]s = [A + B]s for s = 0, 1, T . We further
define, for any A ∈ Z

n×m
p and B ∈ Zm×�,

e([A]1, [B]2) := [AB]T ∈ G
n×�
T .

We recall two standard assumptions over Bilinear Groups, that we will use in
the following sections. First, the (decision) Bilinear Diffie-Hellman Exponent
assumption introduced by Boneh et. al. [4].

Assumption 1 (Decision BDHE assumption). Let BG be a bilinear group
generator, bg := (p, G1, G2, GT , [1]1, [1]2, e) ←$ BG(1λ), α, s ←$ Z

∗
p and define

D =
({

[αj ]1
}

j∈[q]
,
{
[αj ]2

}
j∈[2q],j �=q+1

, [s]1
)

and T ←$ GT . Then for any PPT adversary A and any positive integer q:

AdvdBDHE
BG,q,A(λ) :=

∣
∣Pr[A (

bg,D, [sαq+1]T
)

= 1] − Pr[A (bg,D, T ) = 1]
∣
∣ = negl(λ)

where the above probabilities are taken over the choices of bg, α, s and T .
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We also recall the k-Lin assumption [3,24,32] which belongs to the more
general family of Matrix Diffie-Hellman Assumptions [13]. Define the distribution
Lk outputting a matrix A ∈ Z

(k+1)×k
p as:

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . ak

1 1 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

where a1, . . . , ak ←$ Zp. The k-Lin assumption is stated below.

Assumption 2 (k-Lin assumption). Let BG be a bilinear group generator,
bg := (p, G1, G2, GT , [1]1, [1]2, e) ←$ BG(1λ), k any positive integer, v ←$ Z

k
p,

u ←$ Z
k+1
p and A ←$ Lk Then for any PPT adversary A:

Advk-Lin
BG,q,A(λ) := |Pr[A (bg, [A]s, [Av]s) = 1] − Pr[A (bg, [A]s, [u]s) = 1]| = negl(λ)

where the above probabilities are taken over the choices of bg,A,v,u.

We note that if s = 1 we have the k-Lin assumption for group G1 and similarly
s = 2 for G2.

4 Definitions

We consider a model where the system is initialized with some public parame-
ters, given an upper bound on the number of users, L. Users are indexed by a
unique identifier j ∈ [L] which can be, e.g., their time of arrival. Upon each user
joining the system, they append their public key on a bulletin board that we
assume all users in the system have access to. Importantly, the bulletin board is
append-only, and we implicitly assume that all parties involved scrutinize that
the public keys of the other parties are well-formed. If not, the public key is sim-
ply discarded. By looking at the public parameters and at the users public keys,
it is then possible to encrypt a message for a subset S ⊆ [L] of the public keys.
What makes the scheme non-trivial is the fact that the size of the ciphertext
must be sublinear (and ideally independent) of the size of S.

4.1 Distributed Broadcast Encryption

We present the formal definitions in the following. The syntax is canonical for
broadcast encryption, except that each user samples locally a key pair (usk, upk)
and, consequently, the encryption and decryption will take as input the public
keys corresponding to the users in the set S. For starters, we define a minimal
notion of security, where the adversary is allowed to choose a set S∗ for the
challenge ciphertext at the beginning of the experiment, but it is otherwise
not allowed to corrupt honest users. Later in this Section, we will show how
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to generically lift this definition to the more challenging settings with adaptive
corruptions.

To prevent the adversary from registering public keys that would sabotage
the decryption of honest users, we define a validity-check predicate that ensures
that the keys are well-formed. Then the correctness guarantee is that, if the
check succeeds, then correctness must hold unconditionally.

Definition 1 (Distributed Broadcast Encryption). Let λ be a security
parameter and let M = {Mλ}λ∈N be the message space. A distributed broad-
cast encryption scheme with message space M is a tuple of efficient algorithms
ΠDBE = (Setup,KeyGen,Enc,Dec) with the following properties:

– Setup(1λ, 1L) → pp: On input the security parameter λ and the number of
slots L, the setup algorithm returns some public parameters pp.

– KeyGen(pp, j) → (uskj , upkj): On input the public parameters and a slot index
j ∈ [L], the key generation algorithm generates a secret key uskj and a public
key upkj for the j-th slot.

– Enc(pp, {upkj}j∈S , S,M) → ct: On input the public parameters pp, the public
keys {upkj}j∈S, a subset S ⊆ [L], and a message M ∈ M, the encryption
algorithm returns a ciphertext ct.

– Dec(pp, {upkj}j∈S , uski, ct, S, i) → M : On input the public parameters pp, the
public keys {upkj}j∈S, a secret key uski a ciphertext ct, a subset S, and an
index i, the decryption algorithm returns a message M .

Moreover, the algorithms must satisfy the following properties.

– Correctness: For all λ ∈ N, L ∈ N, j ∈ [L], all pp in the support of
Setup(1λ, 1L), all (uski, upki) in the support of KeyGen(pp, i), all {upkj}j �=i

such that isValid(pp, upkj , j) = 1, all M ∈ M, all S ⊆ [L] such that i ∈ S, it
holds that

Pr
[
Dec(pp, {upkj}j∈S , uski, ct, S, i) = M : Enc(pp, {upkj}j∈S , S,M)

]
= 1.

– Verifiable Keys: There exists an efficient algorithm isValid such that for all
λ ∈ N, L ∈ N, j ∈ [L], all pp in the support of Setup(1λ, 1L), it holds that

(·, upkj) ∈ KeyGen(pp, j) =⇒ isValid(pp, upk∗
j , j) = 1

– (Selective) Security: Define the following experiment between an adversary
A and a challenger, parameterized by a bit b.

• Setup Phase: The adversary A sends a set S∗ ⊆ [L] to the challenger,
who samples pp ← Setup(1λ, 1L) and gives pp to A.

• Key Generation Phase: For all j ∈ S∗, the challenger samples a key
pair (uskj , upkj) ← KeyGen(pp, j) and sends {upkj}j∈S∗ to A.

• Challenge Phase: The adversary sends a pair of messages M∗
0 ,M∗

1 ∈
M. The challenger computes

ct∗ ← Enc(pp, {upkj}j∈S∗ , S∗,M∗
b )

and sends it over to A.
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• Output Phase: At the end of the experiment, algorithm A outputs a bit
b′ ∈ {0, 1}, which is the output of the experiment.

We say that a distributed broadcast encryption scheme ΠdRBE is selectively
secure if for all polynomials L = L(λ) and all efficient adversaries A, there
exists a negligible function negl such that for all λ ∈ N:

∣
∣
∣
∣Pr [b = b′] − 1

2

∣
∣
∣
∣ = negl(λ).

4.2 Semi-selective to Adaptive

In the following we show a series of transformation that allow us to compile a
scheme that satisfies a weak notion of security into one that satisfies adaptive
security. We proceed in three steps:

– First, we define a stronger notion of selective security, called semi-selective
security.

– Second, we show how the transformation described in [21] allows us to build
a scheme with adaptive security, albeit only for honestly generated keys.

– Third we show how to handle maliciously generated keys.

Let us first define the notion of semi-selective security. The experiment is
unchanged, except that the adversary in the challenge phase can specify any
S∗∗ ⊆ S∗ and the challenge ciphertext is defined as

ct∗ ← Enc(pp, {upkj}j∈S∗∗ , S∗∗,M∗
b ).

From Semi-selective to Passive-Adaptive. Before showing the generic
transformation, we provide the formal definition of passive-adaptive security
below.

Definition 2 (Passive-Adaptive Security). Define the following experiment
between an adversary A and a challenger, parameterized by a bit b.

– Setup Phase: The challenger samples pp ← Setup(1λ, 1L) and gives pp to
A.

– Key Query Phase: The adversary A is provided with access to the following
oracles.

• Key Generation Oracle: On input an index j ∈ [L], check if this
index was queried before to this oracle, and return ⊥ if this is the case.
Otherwise, sample (uskj , upkj) ← KeyGen(pp, j) and sent upkj to A.

• Key Corrupt Oracle: On input an index j ∈ [L], check if upkj was
sampled in the key generation oracle and return the corresponding uskj to
A. In this case, we refer to the index j as “corrupted”. Otherwise, return
⊥.
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– Challenge Phase: The adversary sends a pair of messages M∗
0 ,M∗

1 ∈ M

and a set S∗. If there exists some index j ∈ S∗ such that j was corrupted,
then the challenger aborts the experiment. Otherwise it computes

ct∗ ← Enc(pp, {upkj}j∈S∗ , S∗,M∗
b )

and sends it over to A.
– Output Phase: At the end of the experiment, algorithm A outputs a bit

b′ ∈ {0, 1}, which is the output of the experiment.

We say that a distributed broadcast encryption scheme ΠdRBE is passive-
adaptively secure if for all polynomials L = L(λ) and all efficient adversaries
A, there exists a negligible function negl such that for all λ ∈ N:

∣
∣
∣
∣Pr [b = b′] − 1

2

∣
∣
∣
∣ = negl(λ).

We are now ready to state the intermediate result, which follows immediately
by a transformation from [21]. Although this transformation was originally pre-
sented in the context of (non-distributed) broadcast encryption, we observe that
the same proof strategy works here.

Lemma 1 (Semi-selective to Passive-Adaptive). Let ΠDBE be a semi-
selectively secure distributed broadcast encryption scheme. Then there exists a
scheme Π ′

DBE that is passive-adaptively secure.

Proof (Proof Sketch). The transformation is identical to [21] and we sketch it
here only for completeness.

– Setup: Run the setup of the original scheme except that we double the number
of users 2L.

– Key Generation: On input an index j ∈ [L], the user generates two keys

(usk2j , upk2j) ← KeyGen(pp, 2j) and (usk2j−1, upk2j−1) ← KeyGen(pp, 2j −1)

then it flips a coin and throws away one of the two secret keys.
– Encryption: For all j ∈ S, sample a random bit tj , then define two sets

S0 = {2j − tj}j∈S and S1 = {2j − (1 − tj)}j∈S .

Encrypt the message M with respect to both S0 and S1 and attach {tj}j∈S

to the ciphertext.
– Decryption: Decrypt one of the two ciphertexts, depending on which secret

key was kept.

Remark 1. Observe that the compiled scheme has public parameters and cipher-
text doubled, when compared to the original scheme. Furthermore, the ciphertext
is augmented with a string of |S| bits. As already observed in [21], this can be
reduced to λ bits in the random oracle model.
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Next, we show that the scheme is passive-adaptively secure. The proof pro-
ceeds in two steps, first we switch the encryption of under the set S0 to encrypt
a random message and then the encryption under S1. Since the argument is
identical, we only outline the reduction for the first case.

– Sample a random string T = (t1, . . . , tL) ← {0, 1}L. Set S∗ = {2j − tj}j∈[L]

as the initial set for the semi-selective security.
– Receive pp from the challenger, along with the keys {upk∗

j}j∈S∗ .
– Activate the passive-adaptive adversary on input pp.
– Answer the queries of the adversary on index j as follows:

• Key Generation Oracle: On input an index j, set upk2j−tj = upk∗
j and

sample upk2j−(1−tj) with the knowledge of the secret key.
• Key Corrupt Oracle: On input an index j, check if a key was created for

this index and return usk2j−(1−tj) in case.
– In the challenge phase, the adaptive adversary specifies a set S∗∗ ⊆ [L], which

must be a subset of the S∗ and furthermore must not include any corrupted
index. The reduction sets Set S0 = {2i−ti}i∈S∗∗ and send S0 to the challenger,
who responds with ct∗. Then it samples the other ciphertext honestly for the
set S1 = {2i − (1 − ti)}i∈S∗∗ and sends both to the adversary.

– In the output phase, return whatever the adversary returns.

Observe that the reduction perfectly simulates the view of the adversary and
therefore they have the same advantage.

From Passive to Active Security. Next, we show that any scheme that
satisfies passive-adaptive security also satisfies active-adaptive security, which
we define below. The difference with respect to the previous notion, is that we
now allow the adversary to register malicious keys, captured by an additional
“Malicious Corrupt Oracle”.

Definition 3 (Active-Adaptive Security). Define the following experiment
between an adversary A and a challenger, parameterized by a bit b.

– Setup Phase: The challenger samples pp ← Setup(1λ, 1L) and gives pp to
A.

– Key Query Phase: The adversary A is provided with access to the following
oracles.

• Key Generation Oracle: On input an index j ∈ [L], check if this
index was queried before to this oracle or to the malicious corrupt ora-
cle, and return ⊥ if this is the case. Otherwise sample (uskj , upkj) ←
KeyGen(pp, j) and send upkj to A.

• Key Corrupt Oracle: On input an index j ∈ [L], check if upkj was
sampled in the key generation oracle and return the corresponding uskj to
A. In this case, we refer to the index j as “corrupted”. Otherwise, return
⊥.
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• Malicious Corrupt Oracle: On input (j, upk∗
j ) check if this index j ∈

[L] was queried before to this oracle or to the key generation oracle, and
return ⊥ if this is the case. Otherwise Store upk∗

j and label the index j as
“corrupted”.

– Challenge Phase: The adversary sends a pair of messages M∗
0 ,M∗

1 ∈ M

and a set S∗. If there exists some index j ∈ S∗ such that j was corrupted,
then the challenger aborts the experiment. Otherwise it computes

ct∗ ← Enc(pp, {upkj}j∈S∗ , S∗,M∗
b )

and sends it over to A.
– Output Phase: At the end of the experiment, algorithm A outputs a bit

b′ ∈ {0, 1}, which is the output of the experiment.

We say that a distributed broadcast encryption scheme ΠdRBE is adaptively secure
if for all polynomials L = L(λ) and all efficient adversaries A, there exists a
negligible function negl such that for all λ ∈ N:

∣
∣
∣
∣Pr [b = b′] − 1

2

∣
∣
∣
∣ = negl(λ).

We now show that any scheme that is passive-adaptively secure is also active-
adaptively secure. The intuition here is that the challenge ciphertext cannot
depend on public keys for which the attacker knows the secret (since otherwise
the scheme would be trivially broken), so the queries to the malicious-corrupt
oracles have no effect on the distribution of the challenge ciphertext.

Lemma 2 (Passive-Adaptive to Active-Adaptive). LetΠdRBE be a passive-
adaptively secure distributed broadcast encryption scheme. Then ΠdRBE is also
active-adaptively secure.

Proof (Proof Sketch). The reduction only forwards the messages of the adversary
to the challenger, except for the queries to the malicious corrupt oracle, which
the reduction simply discards. Since the challenge ciphertext is computed as

ct∗ ← Enc(pp, {upkj}j∈S∗ , S∗,M∗
b ).

and the set S∗ does not contain any corrupted index, the distribution simulated
by the reduction is identical to the view that the adversary is expecting. Thus
any advantage of the active-adaptive adversary immediately carries over to the
(passive-adaptive) reduction.

4.3 Logarithmic Updates

One drawback of the current syntax for distributed broadcast encryption is that
the decrypter has to constantly check the public bulletin board for public keys,
since every time a new user joins a new public key is added to the system. It is
desirable to minimize the number of updates that each user must receive, without
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affecting the functionality. More precisely, in the current model, all users need
to know {upki : i ∈ [S]} in order to decrypt a ciphertext encrypted with respect
to S. In the following we show that we can get away with checking the bulletin
board log L times, with a modest increase in ciphertext size. Before discussing
how to turn a scheme into one with logarithmic updates, let us make the notion
of update somewhat more formal: We now define the notion of U -updates and
we say that a scheme has logarithmic updates if U = O(log L). The following
definition implicitly assumes that users are indexed by their time of arrival.

Definition 4 (U-updates). A DBE scheme with parameter L has U -updates
if, for all i ∈ [L] there exists a series of subsets

S1 ⊆ · · · ⊆ SU ⊆ [L]

such that for any T ∈ [L] and for any S∗ ⊆ [T ] it holds that

Pr
[
Dec(pp, {upkj}j∈Si

, uski, ct, S
∗, i) = M : Enc(pp, {upkj}j∈S∗ , S∗,M) = ct

]
= 1.

where i is the largest index such that |Si| ≤ T .

The Transformation. In the following we describe a simple transformation
that achieves exactly this. This transformation has been used many times in the
literature [12,16,22,25] and we report it here for completeness. For convenience,
we are going to assume that the total number of users in the system is

L = 1 + 2 + 4 + · · · + 2�

which is without loss of generality, since we can always pad the number of users
to that L is of this form. Let us describe the algorithms of the scheme.

– Setup: Sample the public parameter pp for a distributed broadcast encryption
scheme with parameter L, and initialize k = � + 1 “master public keys”
{mpkk = ∅}k∈[�+1].

– Key Generation: When the user indexed by j joins the system, it runs the
key generation algorithm KeyGen(pp, j) as prescribed by the scheme.

– Update: Upon each user joining the system, we will assign a k such that their
public key is added to mpkk. Let k be the smallest integer such that mpkk = ∅,
the update algorithm proceeds as follows:

• If k = 1, then we are simply going to assign mpk1 = {upkj}.
• Else, we are going to set

mpkk = mpkk−1 ∪ · · · ∪ mpk1 ∪ {upkj}

and reset mpkk−1 = · · · = mpk1 = ∅.
Note that, by construction, the cardinality of mpkk is either 0 or 2k−1. There-
fore, each user will only have to keep track of the master public key he cur-
rently resides into, along with its secret key.
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– Encryption: Let S be the encryption subset and let us define {Sk = ∅}k∈[�+1].
For each j ∈ S, based on the current number of users, we can derive the
master public key where upkj currently resides, which we denote by mpkkj

.
We then add Skj

∪ {j}. The encrypter computes � + 1 ciphertexts as
{
ctk ← Enc(pp, {upkj}j∈Sk

, Sk,M)
}

k∈[�+1]
.

– Decryption: The j-th user decrypts the ciphertext corresponding to the mpkk

where their key currently resides.

It is important to observe that each user only has to keep track of the keys
inside of her master public key (i.e., the bundle), so it will only have to update
their keys whenever the public key is moved up to the next bundle. Since there
are at most � + 1 ≈ log(L) bundles, it follows that each user receives at most
logarithmically many updates throughout the lifetime of the system.

As for the correctness of the scheme, it suffices to observe that, by construc-
tion S = S1 ∪ · · · ∪ S�+1 and therefore correctness follow from the correctness
of the underlying distributed broadcast encryption scheme. Security also follows
from a standard hybrid argument.

5 Distributed Broadcast Encryption from Decision
Bilinear Diffie-Hellman Exponent

In this section we present our first Distributed Broadcast Encryption scheme
from the decision Bilinear Diffie-Hellman Exponent assumption. For a more intu-
itive overview we refer to Sect. 2.2.

5.1 Our Distributed Broadcast Encryption Scheme

Below we describe our Distributed Broadcast Encryption scheme ΠDBE,1.

– Setup(1λ, 1L): On input the security parameter λ and the number of slots L,
generate a bilinear group bg := (p,G1,G2,GT , [1]1, [1]2, e) ← BG(1λ), sample
α ←$ Z

∗
p and output the public parameters as:

pp =
(
bg, [α]1, . . . , [αL]1, [α]2, . . . , [αL]2, [αL+2]2, . . . , [α2L]2

)

We denote pp := (pp0, pp1, . . . , pp3L) (defining pp2L+1 = [0]2).

– KeyGen(pp, j): on input the public parameters pp :=
(
bg,

{
[αj ]1

}
j∈[L]

,
{
[αj ]2

}
j∈[2L],j �=L+1

)
and a slot j , sample the secret κj ←$ Z

∗
p and output:

uskj = [tjαL+1−j ]2
upkj =

(
[tj ]1, [tjα]2, . . . , [tjαL+1−j−1]2, [tjαL+1−j+1]2, . . . , [tjαL]2

)
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– Enc(pp, {upkj}j∈S , S,M): on input the public parameters pp := (bg, {[

αj ]1
}

j∈[L]
,

{
[αj ]2

}
j∈[2L],j �=L+1

)
, a set S ⊆ [L], the corresponding users’

public keys upkj :=
(
[tj ]1, [tjα�]2

)
�∈[L],� �=L+1−j

for each j ∈ S and a message

M ∈ GT , sample s ←$ Z
∗
p, compute [sαL+1]T = e

(
[sα]1, [αL]2

)
and output:

ct =

⎛

⎝[s]1, [s
∑

j∈S

(tj + αj)]1, [sαL+1]T · M

⎞

⎠

where [s
∑

j∈S(tj + αj)]1 is computed as
∏

j∈S([stj ]1 · [αj ]1) using upkj and
pp.

– Dec(pp, {upkj}j∈S , uski, ct, S, i) → M : on input the public parameters pp :=(
bg,

{
[αj ]1

}
j∈[L]

,
{
[αj ]2

}
j∈[2L],j �=L+1

)
, a set S ⊆ [L], the corresponding

users’ public keys upkj :=
(
[tj ]1, [tjα�]2

)
�∈[L],� �=L+1−j

for each j ∈ S, a slot
index i ∈ S, the user’s corresponding secret key uski := [tiαL+1−i]2 and a
ciphertext ct = (ct1, ct2, ct3) output:

M ′ = ct3 · e (
ct−1

2 , pp2L+1−i

) · e
⎛

⎝ct1, uski ·
∏

j∈S,j �=i

(upkj,L+1−i · pp2L+1+j−i)

⎞

⎠

where pp2L+1−i := [−αL+1−i]2, uski := [tiαL+1−i]2, upkj,L+1−i :=
[tjαL+1−i]2, pp2L+1+j−i := [αL+1+j−i]2

Remark 2 (Storage requirements for the encryptor and decryptor). Syntactically
speaking, in DBE to be able to encrypt and decrypt with respect to any arbitrary
set S ⊆ [L] one needs to store all public keys {upkj}j∈[L], of size O(L2) in the
above scheme. However, concretely in our scheme it suffices to have linear size
of information from {upkj}j∈[L]:

Encryptor: [t1]1, . . . , [tL]1
Decryptor i: [t1αL+1+1−i]2, . . . , [ti−1α

L]2, [ti+1α
L+2]2, . . . , [tLαL+1+L−i]2.

To ease the presentation of the definition of DBE we do not formalize this aspect
of our concrete scheme, letting {upkj}j∈S to be the inputs of Enc and Dec in the
formal description of the construction.
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5.2 Correctness

As noted in the definition of DBE correctness, in Sect. 4.1, to prove correctness
we first need to prove that there exists an isValid algorithm. We prove existence
of such an algorithm for our scheme above by concretely constructing it.

Verifiable Keys. We define isValid(pp, upk∗
j , j) as follows:

– Parse upk∗
j := (upk∗

j,0, . . . , upk
∗
j,L+1−j−1, upk

∗
j,L+1−j+1, . . . , upk

∗
j,L).

– Then if the following holds output 1.

e
(
upk∗

j,0, [α
L]2

)
= e

(
[αL−1]1, upk∗

j,1

)
= . . . = e

(
[αj ]1, upk∗

j,L+1−j−1

)
=

= e
(
[αj−2]1, upk∗

j,L+1−j+1

)
= . . . = e

(
[1]1, upk∗

j,L

)

otherwise output 0.

Since upk∗
j,k ∈ G2 (upk∗

j,0 ∈ G1 resp.) and G2 (G1 resp.) has prime order, p,
there exist uk ∈ Z

∗
p such that upk∗

j,k = [uk]2 for all k ∈ [L] (upk∗
j,0 = [u0]1 resp.).

From this and the above paring checks we get that:

[u0α
L]T = [u1α

L−1]T = . . . = [uj−1α
j ]T = [uj+1α

j−2]T = . . . = [uL]T

Which gives us that:

upk∗
j =

(
[u0]1, [u0α]2, . . . , [u0α

L−j ]2, [u0α
L−j+2]2, . . . , [u0α

L]2
)
.

Therefore if isValid(pp, upk∗
j , j) = 1 then upk∗

j is in the support of KeyGen:
(·, upk∗

j ) ← KeyGen(pp, j) for tj := u0 ∈ Z
∗
p and uskj = [u0α

L+1−j ]2.

Correctness. Let arbitrary λ ∈ N, L ∈ N, pp :=
(
bg,

{
[αj ]1

}
j∈[L]

,
{
[αj

]2}j∈[2L],j �=L+1

)
for some α ∈ Z

∗
p, uski = [tiαL+1−i]2, upki :=

(
[ti]1[tiαk

]2)k∈[L],k �=L+1−i for some ti ∈ Z
∗
p, upkj such that isValid(pp, upkj , j) = 1 and

for all j ∈ [L]. Furthermore, let S ⊆ [L] such that i ∈ S and M ∈ M. Then
Enc(pp, {upkj}j∈S , S,M) gives:

ct =

⎛

⎝[s]1, [s
∑

j∈S

(tj + αj)]1, [sαL+1]T · M

⎞

⎠
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and Dec(pp{upkj}j∈S , uski, ct, S, i) gives:

M ′ = ct3 · e
(
ct−1

2 , pp2L+1−i

) · e

⎛

⎝ct1, uski ·
∏

j∈S,j �=i

(upkj,L+1−i · pp2L+1+j−i)

⎞

⎠

= ct3 · e
(
ct2, [−αL+1−i]2

) ·

· e

⎛

⎝ct1, [tiαL+1−i]2 · [
∑

j∈S,j �=i

(tjαL+1−i + αL+1+j−i)]2

⎞

⎠ =

= M · [sαL+1]T · e

⎛

⎝[s
∑

j∈S

(tj + αj)]1, [−αL+1−i]2

⎞

⎠ ·

· e

⎛

⎝[s]1, [tiαL+1−i +
∑

j∈S,j �=i

(tjαL+1−i + αN+1+j−i)]2

⎞

⎠ =

= M · [sαL+1]T · [s
∑

j∈S

(tj + αj)(−αL+1−i)]T ·

· [s(tiαL+1−i +
∑

j∈S,j �=i

(tjαL+1−i + αN+1+j−i))]T =

= M · [sαL+1 − s
∑

j∈S

(tjαL+1−i + αL+1+j−i) + stiα
L+1−i+

+ s
∑

j∈S,j �=i

(tjαL+1−i + αN+1+j−i)]T =

= M · [sαL+1 − sαL+1]T =
= M · [1]T =
= M

In the above equations we used the fact that since isValid(pp, upkj , j) = 1 the
key upkj is in the support of KeyGen (for some tj).

5.3 Security

For the security of our scheme we rely on the (decisional) Bilinear Diffie Hellman
Exponent assumption [4] (see Sect. 3.1).

We prove our scheme semi-selectively secure (see Sect. 4.2). Looking ahead,
we can transform our semi-selective DBE scheme to a fully adaptive using the
generic transformation of 4.2 (which extends the standard transformation of
Gentry and Waters [21] to the distributed setting).

A more intuitive description of the security proof can be found in Sect. 2.2.
Below we formally state our main security theorem together with its proof.

Theorem 3. If the decisional Bilinear Diffie-Hellman Exponent assumption
holds, then ΠDBE,1 is a semi-selectively secure Distributed Broadcast Encryption
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scheme. More specifically for every PPT adversary A against the semi-selective
security of the above DBE construction, ΠDBE,1, there exists a PPT adversary B
against the decisional Bilinear Diffie-Hellman Exponent assumption such that:

AdvΠDBE,1
L,A (λ) ≤ AdvdBDHE

BG,L,B(λ).

Proof. Assume a PPT adversary A that wins the semi-selective security of the
above Distributed Broadcast Encryption scheme with a non-negligible probabil-
ity ε > 1/poly(λ). Moreover let B be an adversary to the dBHE assumption. B
plays the role of the challenger in the DBE semi-selective security game with A
in order to win the game of the assumption (parametrized by q = L).

B takes as input bg,
{
[αj ]1

}
j∈[L]

,
{
[αj ]2

}
j∈[2L],j �=q+1

, [s]1 and T . The
adversary A sends to B the target set S∗ and then B responds with pp =(
bg,

{
[αj ]1

}
j∈[L]

,
{
[αj ]2

}
j∈[2L],j �=L+1

)
, which is identically distributed to an

honestly generated pp.

Key Generation Phase: Recall that in our security definition (Definition 1)
we are only concerned about keys for j ∈ S∗, thus it is sufficient for B to
simulate those keys. For each j ∈ S∗, B samples t̃j ←$ Z

∗
p and implicitly sets

tj = t̃j − αj (without knowing α). That is, using the assumption’s inputs [αj ]1
and {[αj ]2}j∈[2L],j �=L+1, it computes:

upkj =
(
[t̃j − αj ]1, {[t̃jα� − α�+j ]2}�∈[L],� �=L+1−j

)
:=

:=
(
[t̃j − αj ]1, {[(t̃j − αj)α�]2}�∈[L],� �=L+1−j

)
:=

:=
(
[tj ]1, {[tjα�]2}�∈[L],� �=L+1−j

)

and sends upkj to A. Since t̃j is uniformly random so is tj := t̃j − αj , therefore
upkj is identically distributed to an honestly generated one.

Challenge Phase: A sends M∗
0 ,M∗

1 ∈ GT and a new target set S∗∗ ⊆ S∗. B
samples a bit b ←$ {0, 1} and sets

ct∗ =

⎛

⎝[s]1, [s
∑

j∈S∗∗
t̃j ]1, T · M∗

b

⎞

⎠

using the assumption’s input and the previously sampled t̃j ’s. Note that since
S∗∗ ⊆ S∗ all the corresponding upkj are simulated by B. Thus [s

∑
j∈S∗∗ t̃j ]1 :=

[s
∑

j∈S∗∗(tj+αj)]1 which means that ct∗ is identically distributed to an honestly
generated ciphertext. Finally, B sends ct∗ to A.

At the end A sends her guess b′.
Note that if T = [sαL+1]T then the ciphertext ct∗ is perfectly indistinguish-

able from a real one so Pr[b = b′] = ε. On the other hand if T is uniformly
random then the ciphertext leaks nothing about Mb, so Pr[b = b′] = 1/2. It
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follows directly that B has advantage ε in distinguishing between T = [sαL+1]T
and a random T . In conclusion:

AdvdBDHE
BG,L,B(λ) = ε

which contradicts the dBDHE assumption.

After that, from lemmata 1 and 2 of Sect. 4.2 we get a distributed broadcast
encryption construction with adaptive security. We summarize this result in
corollary 1 stated below:

Corollary 1. Let Π ′
DBE,1 be the Distributed Broadcast Encryption (DBE)

scheme after applying the transformation of lemma 1 to the ΠDBE,1 DBE scheme
described above. Then Π ′

DBE,1 is an adaptively secure DBE scheme in the ran-
dom oracle model, assuming that the decisional Bilinear Diffie-Hellman Exponent
assumption holds.

Remark 3. As stated in Remark 1 we can instead achieve an adaptively secure
DBE in the standard model, at the cost of an |S|-bit overhead on the size of the
ciphertext.

5.4 Efficiency

Here we describe the efficiency and the possible trade-offs of our scheme after
the transformations of Sect. 4.2 (Lemma 1) to achieve adaptive security. Also we
assume a random oracle is used to output the S-sized bit-string and is given in
the ciphertext.

The public parameters consist of 2L G1 and 4L G2-elements: |pp| = O(L).
The secret key of a user is 2 G2-element: |uskj | = O(1). The public key of each
user is 2 G1 and 2(L−2) G2-elements: |upkj | = O(L). The ciphertext size is 4 G1

and 2 GT -elements, independently of the size of the set of users S that encrypts
the message for: |ct| = O(1). Finally both Enc and Dec run in time O(|S|).

The overall information that has to be stored in the bulletin board has size
O(L2), dominated by the L public keys {uskj}j∈[L] each of size O(L). The storage
overhead of an encryptor and any decryptor i ∈ [L] is O(L) (see remark 2).

Concretely: |pp| = 6L · |G1|, |uski| = 2 · |G2|, |upkj | = 2 · |G1|+(2L−2) · |G2|,
|ct| = 4|G1| + 2|GT |, |Encryptor| = 2L|G1|, |Decryptor| = (2L − 2)|G2|, |BB| =
2L|G1| + L(2L − 2)|G2|.

Logarithmic Updates. As discussed in Sect. 4.3, without further care, each
decryptor needs to update her view after each new public key is entering the sys-
tem, which trivially results in O(L) updates. In order to reduce the maximum
necessary number of these updates to O(log L) we need to apply a standard
transformation [16], which gives an O(log L) overhead to the size of the cipher-
text.

Concretely: |ct| = 4 log L|G1|+2 log L|GT |, |Decryptor| ∈ {0, 2, 6, . . . , 2 ·2k −
2, . . . , 2L/2 − 2}|G2| (worst case (L − 2)|G2|) and the rest of the values remain
as above.
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Square-Root Trade-off. Another, standard in Broadcast Encryption, trans-
formation [4,18] that provides a trade-off between ciphertext size and storage
requirements (i.e. pp and upkj size) is to consider Lε, 0 ≤ ε < 1 number of sets
of users. That is ’divide’ [L] = 1, . . . , L in B = Lε (assume wlog that B divides
L) sets

A1 = {1, . . . ,
L

B
}, A2 = { L

B
+ 1, . . . ,

2L

B
}, . . . , AB = { (B − 1)L

B
+ 1, . . . , L}.

This results in O(Lε)-sized ciphertexts but smaller parameters and public keys,
O(L1−ε). We note that, interestingly for the case of Distributed Broadcast
Encryption, this additionally results in O(L1−ε) number of updates for the
decryptor. One can also consider a combination of both the above transfor-
mations to reduce the number of decryptor’s updates to log(L1−ε) at the cost of
increasing the ciphertext size to O(Lε log(L1−ε)).

Concrete Numbers. For the sake of concreteness, we consider an example use
case where we have a relatively small number of users L = 1024 and the BLS12-
381 curve instantiating the bilinear group. Then our (logarithmic updates) vari-
ant has:

– |pp| = 288KB
– |uski| = 0.19KB
– |upkj | = 191.9KB
– |BB| = 191.9MB
– |Encryptor| = 96KB
– |Decryptor| = 95.1KB (worst case)
– |ct| = 13KB
– Number of decryptor updates: 10

6 Distributed Broadcast Encryption from k-Lin

Now we present our second Distributed Broadcast Encryption scheme from a
static assumption, k-Lin. We prove this scheme adaptively secure in the stan-
dard model using the standard “dual-system” methodology [29,33]. For a more
intuitive overview we refer to Sect. 2.3.

6.1 Our Construction

Below we provide the description of our second Distributed Broadcast Encryp-
tion scheme ΠDBE,2.

– Setup(1λ, 1L): On input the security parameter λ and the number of slots L,
generate a bilinear group bg := (p,G1,G2,GT , [1]1, [1]2, e) ← BG(1λ), sample
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A� ←$ Lk, k ←$ Z
k+1
p and W ←$ Z

(k+1)×k
p , rj ←$ Z

k
p for each j ∈ [L] and

output the public parameters as:

pp =
(
bg, [A]1, {[AWj ]1}j∈[L], {[rj ]2}j∈[L],

{[W�rj ]2}�,j∈[L],� �=j , {[k + Wjrj ]2}j∈[L], [Ak]T
)

We denote pp =
(
pp(0), pp(1), pp(2), pp(3), pp(4), pp(5), pp(6)

)

– KeyGen(pp, j): on input the public parameters pp and a slot j , sample the
secret Tj ←$ Z

(k+1)×k
p and output:

uskj = [Tjrj ]2
upkj = ([ATj ]1[Tjr1]2, . . . , [Tjrj−1]2, [Tjrj+1]2, . . . , [TjrL]2)

– Enc(pp, {upkj}j∈S , S,M): on input the public parameters pp, a set S ⊆ [L],
the corresponding users’ public keys upkj for each j ∈ S and a message
M ∈ GT , sample s ←$ Z

k
p and output:

ct =

⎛

⎝[s�A]1, [s�A
∑

j∈S

(Tj + Wj)]1, [s�Ak]T · M

⎞

⎠

where [s
∑

j∈S(Tj + Aj)]1 is computed as =
∏

j∈S([s�ATj ]1 · [s�AWj ]1)
using upkj,0 and pp.

– Dec(pp, {upkj}j∈S , uski, ct, S, i): on input the public parameters pp, a set S ⊆
[L], the corresponding users’ public keys upkj for each j ∈ S, a slot index
i ∈ S, the user’s corresponding secret key uski := [Tiri]2 and a ciphertext
ct = (ct1, ct2, ct3) output:

M ′ = ct3 · e

⎛

⎝ct−1
1 , pp

(5)
i · uski ·

∏

j∈S,j �=i

(upkj,i · pp(5)j,i )

⎞

⎠ · e
(
ct2, pp

(3)
i

)

where pp
(5)
i := [k + Wiri]2, uski := [Tiri]2, upkj,i := [Tjri]2, pp

(5)
j,i = [Wjri],

pp
(3)
i := [ri]2

6.2 Correctness

Verifiable Keys. We define isValid(pp, upk∗
j , j) as follows:

– Parse upk∗
j := (upk∗

j,0, . . . , upk
∗
j,j−1, upk

∗
j,j+1, . . . , upk

∗
j,L).

– Then if the following holds output 1.

e
(
upk∗

j,0, [r1]2
)

= e
(
[A]1, upk∗

j,1

)

...

e
(
upk∗

j,0, [rj−1]2
)

= e
(
[A]1, upk∗

j,j−1

)

e
(
upk∗

j,0, [rj+1]2
)

= e
(
[A]1, upk∗

j,j+1

)

...

e
(
upk∗

j,0, [rL]2
)

= e
(
[A]1, upk∗

j,L

)
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otherwise output 0.

It is easy to see that of (·, upk∗
j ) ∈ KeyGen(pp, j) then isValid(pp, upk∗

j , j) = 1.
On the other hand, if isValid(pp, upk∗

j , j) = 1 then we get the following: Since
upk∗

j,k ∈ G
k+1
2 (upk∗

j,0 ∈ G
k×k
1 resp.) and G2 (G1 resp.) has prime order, p, there

exist uj,� ∈ Z
k+1
p such that upk∗

j,� = [uj,�]2 for all � ∈ [L], � �= j (upk∗
j,0 = [Uj ]1

resp.). From this and the above paring checks we get that:

[Ujr1]T = [Auj,1]T
...

[Ujrj−1]T = [Auj,j−1]T
[Ujrj+1]T = [Auj,j+1]T

...
[UjrL]T = [Auj,L]T

Correctness. Let arbitrary λ ∈ N, L ∈ N,

pp =
(
bg, [A]1, {[AWj ]1}j∈[L], {[rj ]2}j∈[L],

{[W�rj ]2}�,j∈[L],� �=j , {[k + Wjrj ]2}j∈[L], [Ak]T
)

for some A ∈ Z
k×(k+1)
p , k ∈ Z

k+1
p and W ∈ Z

(k+1)×k
p , rj ∈ Z

k
p for each j ∈ [L],

uski = [Tjrj ]2 and upki := ([ATi]1, [Tir�])�∈[L],� �=i for some Ti ∈ Z
(k+1)×k
p .

Moreover, let {upkj}j∈[L],j �=i such that isValid(pp, upkj , j) = 1, S ⊆ [L] such
that i ∈ S and M ∈ M. Then Enc(pp, {upkj}j∈S , S,M) gives:

ct =

⎛

⎝[s�A]1, [
∑

j∈S

(s�Uj + s�AWj)]1, [s�Ak]T · M

⎞

⎠

where [Uj ]1 = upkj,0, and Dec(pp{upkj}j∈S , uski, ct, S, i) gives:

M ′ = ct3 · e
(
ct2, pp

(3)
i

)
· e

⎛

⎝ct−1
1 , pp

(5)
i · uski ·

∏

j∈S,j �=i

(upkj,i · pp(5)j,i )

⎞

⎠ =

= M · [s�Ak]T · e

⎛

⎝[
∑

j∈S

(s�Uj + s�AWj)]1, [ri]2

⎞

⎠ ·

· e

⎛

⎝[−s�A]1, [k + Wiri]2 · [Tiri]2 ·
∏

j∈S,j �=i

([uj,i]2 · [Wjri])

⎞

⎠ =

= M · [s�Ak]T · [
∑

j∈S

(s�Auj,i + s�AWjri)]T ·
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· [−s�Ak − s�AWiri − s�ATiri −
∑

j∈S,j �=i

(s�Auj,i + −s�AWjri)]T =

= M · [s�Ak]T · [−s�Ak]T =
= M

where in the above we used that Ujri = Auj,i, since isValid(pp, upkj , j) = 1

6.3 Security

We base the security of our scheme to the k-Lin assumption [3,24,32], the state-
ment of which is given in Sect. 3.1.

We prove adaptive security, following the techniques of [19, Sect. 6]. Inter-
estingly, we achieve adaptive security without the need of the [21] transforma-
tion, therefore our scheme is adaptively secure (while maintaining constant-sized
ciphertexts) in the standard model.

Theorem 4. If the k-Lin assumption holds, then ΠDBE,2 is an adaptively secure
Distributed Broadcast Encryption scheme. More specifically for every PPT adver-
sary A against the active-adaptive security of the above DBE construction,
ΠDBE,2, there exists a PPT adversary B against the k-Lin assumption such that:

AdvΠDBE,2
BG,L,A(λ) ≤ (2L + 1) · Advk-Lin

BG,k,B(λ) +
1
p
.

Proof. We prove the theorem using a sequence of Hybrids: Game0, Game1, . . .,
GameL. In Game0 we switch to a “semi-functional” ciphertext. In Gamei (1 ≤
i ≤ L) we switch to “semi-functional” keys usk1, . . . , uski while maintaining the
rest of the keys functional. In GameL we have both the ciphertext and all the
keys being semi-functional and it follows Mb is information-theoretically masked
(unless with a negligible probability 1/p).

Hybrid 0. The Game0 is the same as the (adaptive) security game of definition 2
except we switch the ciphertext to “semi-functional”. That is

ct =

⎛

⎝[c�]1, [c� ∑

j∈S

(Tj + Wj)]1, [c�k]T · M

⎞

⎠

where c ←$ Z
k+1
p .

It is straightforward to show that Game0 is negligibly close to the original
game: Then there is an PPT adversary B0 such that

|AdvΠDBE,2
BG,L,A(λ) − AdvGame0

BG,L,A(λ)| ≤ Advk-Lin
BG,L,B0

(λ).

Let B0 be an adversary to k-Lin, receiving (bg, [A�]1, [c]1), where [c]1 is either
[A�s] (for some random s ∈ Z

k
p) or random. B0 will use an adversary A′ that
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can distinguish with probability ε > 1/poly(λ) between Game0 and the original
game. B0 samples Wj , rj ,k,Tj and computes the public parameters and all
the keys of the system according to ΠDBE,2 honestly. Now if c = A�s then B0

perfectly simulates the original game otherwise if c is random perfectly simulates
Game0, which means that by answering the same bit as A′, B0 gains advantage
ε against the k-Lin game.

It will be useful for the next Hybrids to state that with probability 1 − 1/p
over c: c lies outside the row span of A, so there exists a non-zero a⊥ ∈ Z

k+1
p

such that A · a⊥ = 0 and c · a⊥ �= 0. Moreover, we can efficiently compute a⊥

given A, c.

Hybrid i Gamei is the same as Gamei−1 except we replace [k + Wiri]2 with
[k + Wiri + δia⊥]2, where δi ← Zp. We claim that hybrids i − 1 and i are
computationally indistinguishable assuming k-Lin in G2, which tells us
(
A,AWi, [Wiri]2, [ri]2, [WiB]2, [B]2

) ≈c

(
A,AWi, [Wiri+δia⊥]2, [ri]2, [WiB]2, [B]2

)

where B ← Z
k×k
p .2 Then, as in the previous case, we build a reduction that

reduces distinguishing between Hybrid i−1 and Hybrid i to k-Lin. In particular:

|AdvGamei−1
BG,L,Bi−1

(λ) − AdvGamei
BG,L,Bi

(λ)| ≤ 2 · Advk-Lin
BG,L,B0

(λ).

We proceed via a case analysis:

– i /∈ S: the reduction samples c,k,T1, . . . ,TL at random, and for all j �= i:
samples Wj , r̃j ← Z

k
p and implicitly sets rj := Br̃j . In particular, it can

1. simulate the challenge ciphertext without knowing Wi since i /∈ S;
2. compute [rj ]2, [Tirj ]2 for all i, j using [B]2, r̃j ,Ti

3. compute [Wjri]2, j �= i using [ri]2,Wj

4. compute [Wirj ]2, j �= i using [WiB], r̃j

5. compute pp, upk1, . . . , upkL, usk1, . . . , uskL.
– i ∈ S: the reduction proceeds as in the previous case, with the following

changes:
1. samples T̃i ← Z

(k+1)×k
p (instead of Ti at random) and implicitly sets

Ti := T̃i − Wi;
2. simulates c(Ti + Wi) in the challenge ciphertext using cT̃i;
3. simulates [Tirj ]2 = [T̃iBr̃j − WiBr̃j ]2, j �= i using [WiB]2, [B]2 along

with T̃i, r̃j .
In particular, we do not need to simulate uski = [Tiri]2 since the query is not
allowed.

Formally, the reduction guesses at random which case we will fall into, and abort
if the guess is wrong, incuring a factor 2 security loss. This step is essentially
the same as [19, Lemma 6.3].
2 k-Lin tells us that

[B]2, [ri]2, [t
�B]2, [t

�ri] ≈c [B]2, [ri]2, [t
�B]2, [t

�ri + δi]

Now, the reduction samples a random W̃i and programs Wi = W̃i + a⊥t.
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Hybrid 3. We complete the proof using an information-theoretic argument,
which states that ck is uniformly random (and in turn perfectly masks Mb)
given

A,Ak, c,k + δia⊥, i = 1, . . . , L

This comes directly from [19, Lemma 6.4].

6.4 Efficiency

We compute the efficiency of our scheme for k = 1. As can be seen by the
construction’s description, the public parameters of our scheme are dominated
by O(L2) vectors in (G2)2, upkj consists of O(L) elements (1 in G1 and L − 1
in (G2)2) and uskj is one vector of groups elements in (G2)2. The cipertext
has size O(1) independently of the size of the set S. The remark 2 of the BDHE
construction applies here as well giving O(L)-size storage for both the Encryptor
and the Decryptor. Finally the overall information that has to be stored in the
bulletin board is O(L2), which is the L upkj ’s.
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