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Abstract. The so-called ω-encoding, introduced by Goudarzi, Joux
and Rivain (Asiacrypt 2018), generalizes the commonly used arithmetic
encoding. By using the additionnal structure of this encoding, they pro-
posed a masked multiplication gadget (GJR) with quasilinear (random-
ness and operations) complexity. A follow-up contribution by Goudarzi,
Prest, Rivain and Vergnaud in this line of research appeared in TCHES
2021. The authors revisited the aforementioned multiplication gadget
(GPRV), and brought the IOS security notion for refresh gadgets to
allow secure composition between probing secure gadgets.

In this paper, we propose a follow up on GPRV, that is, a region-
probing secure arithmetic circuit masked compiler. Our contribution
stems from a single Lemma, linking algebra and probing security for
a wide class of circuits, further taking advantage of the algebraic struc-
ture of ω-encoding, and the extension field structure of the underlying
field F that was so far left unexploited. On the theoretical side, we pro-
pose a security notion for ωd-masked circuits which we call Reducible-
To-Independent-K-linear (RTIK). When the number of shares d is less
than or equal to the degree k of F, RTIK circuits achieve region-probing
security. Moreover, RTIK circuits may be composed naively and remain
RTIK. We also propose a weaker version of IOS, which we call KIOS,
for refresh gadgets. This notion allows to compose RTIK circuits with a
randomness/security tradeoff compared to the naive composition.

To substantiate our new definitions, we also provide examples of com-
petitively efficient gadgets verifying the latter weaker security notions.
Explicitly, we give 1) two refresh gadgets that use d − 1 random field
elements to refresh a length d encoding, both of which are KIOS but not
IOS, and 2) a multiplication gadget with bilinear multiplication com-
plexity dlog 3 and uses d fresh random elements per run. Our compiler
outperforms ISW asymptotically, but for our security proofs to hold, we
do require that the number of shares d is less than or equal to the degree
of F as an extension, so that there is sufficient structure to exploit.
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1 Introduction

Since their introduction in the late 90’s by Kocher [KJJ99,Koc96], side-channel
attacks have proven to be a major threat to cryptography. While cryptanalysis
can evaluate the black-box security of cryptographic protocols, their security can
be totally compromised by physical attacks. In a nutshell, side-channel attacks
refer to any attack taking advantage of the implementation of a cryptographic
protocol, rather than only the public parameters and public communications.
If a hardware device is manipulating carelessly a secret value, many observable
signals (such as its temperature, power consumption, electromagnetic field, etc)
are likely to leak secret information, and might even lead to a full-key recovery.
These practical security flaws call for a solid non-ad hoc response.

Of all the side-channel adversary models such as the noisy leakage model
[PR13,DDF14,DFS15] or the random probing model [ADF16], arguably the
easiest to deal with is the so called (threshold) t-probing model [ISW03]. A
t-probing adversary may choose adaptively and learn any t intermediate values
of the circuit. While t-probing security reduces to the more realistic models, the
reductions are somewhat loose and depend more on the ratio t divided by the
size of the circuit than t itself.

Masking is a countermeasure that provably prevents recovering information
when the adversary is snooping on the circuit. Informally, masking uses secret-
sharing techniques to provide probing security to a circuit. A sensitive inter-
mediate value x of the cryptographic protocol is encoded into a vector of d
shares (x0, . . . , xd−1). While the knowledge of all d shares allows to recover the
secret it encodes, masking requires that any d − 1 shares are independent of the
secret value x. Any partial knowledge of the shares is therefore made useless in
masking schemes, so as to provide t-probing security for t < d. The operations
(additions, negations and multiplications for arithmetic circuits) then have to be
performed securely in the encoded domain, so as to never manipulate secret vari-
ables directly. Each operation (or gate) of the circuit is transformed into a secure
counterpart (or gadget), that takes as input encodings of the secrets, and outputs
an encoding of the evaluation of the corresponding operation. Usually, masking
schemes admit a coordinate-wise secure addition, leaving the multiplication the
most challenging operation to perform securely in the encoded domain.

Replacing every gate with probing secure gadgets unfortunately does not
imply probing security for the whole circuit [BCPZ16,CPRR13], and extra efforts
have to be put into composition security. Composition of gadgets is a line of
research that has received a lot of attention, and is still an active field of research
[ADF16,CS20,BCPZ16,GPRV21,BBD+16].

The first masked multiplication for any number of shares was introduced in
2003 in [ISW03], and several variants achieving different trade-offs have been
proposed [RP10,BBP+16,BBP+17]. The encoding used by ISW is the so called
arithmetic masking (originally for boolean masking, but the arithmetic masking
translation remains secure [RP10]), where the shares x = (x1, . . . , xd) of some
field element x ∈ F are such that x1 + · · · + xd = x. Another way to interpret
arithmetic masking is to say that the shares are the coefficients of a polynomial
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such that its evaluation in 1 is the secret. From a high level, the multiplica-
tion of two sharings a,b of two secrets a, b in ISW computes the coefficients of
the polynomial c = ab and rearranges the coefficients so as to have c of the
same length d as a and b. This polynomial multiplication is performed following
the schoolbook multiplication algorithm mixed up with some randomness for
security. This yields a multiplication gadget running in O(d2) time with O(d2)
randomness. The paper [GJR18], started a line of research towards constructing
multiplication gadgets based on the Fast Fourier Transform. GJR uses a differ-
ent type of encoding called ω-encoding, where a’s evaluation is taken in some
field element ω rather than 1. Arithmetic masking seems to be incompatible
with the FFT since a1 + · · · + ad is an intermediate value of the FFT algorithm,
which the adversary may therefore probe, and immediately break the masking
scheme. There was a flaw in the original security proof of the GJR multiplication
gadget, which was patched later in [GPRV21] and named GJR+. While GJR is
a theoretical breakthrough, its range of application excludes AES for example.
The security relies on the random choice of ω, hence for reaching a reasonable
level of security, GJR+ requires an underlying field of exponential size in the
security parameter, which limits its practical applications. The follow-up paper
[GPRV21] proposed a security proof for GJR+ for fields of smaller sizes. This
security proof relies on a non-standard ad-hoc assumption. This assumption,
roughly speaking assumes that the computation of the FFT and inverse FFT
of a polynomial are both probing secure. While one can check this hypothe-
sis by exhaustive search, the computation becomes very costly as d increases.
The authors raise the open problem to build a strong theoretical foundation for
replacing their assumption with a full proof.

The randomness complexity of a compiler (meaning the transformation of a
circuit that replaces operation gates with secure masked gadgets) is of major
importance. The predilection physical support for masked implementation is
embedded systems, where randomness is expensive to produce. In this consider-
ation, one of the goals in the field of masking is to achieve notions of security
using as little randomness as possible. The authors of [GPRV21] give a generic
composition Theorem that only requires t-probing security for the operation gad-
gets, and mask refreshing (they give such refresh algorithm verifying the desired
Input-Output-Separation property) in between any two gadgets. This theorem
ensures that the obtained compiler achieves the r-region-probing-security notion.
Informally, region probing security means that the circuit can be split into inde-
pendent regions, in which the side-channel adversary may probe a fixed ratio of
the intermediate values yet learns no information on the secrets. The authors
prove that a variant of the refresh gadget from [BCPZ16] achieves the IOS prop-
erty and only requires d log d

2 random field elements.

1.1 Results and Technical Overview

From a high level, this paper is a retake on the circuit compiler from [GPRV21],
and proposes a region-probing secure masked compiler for arithmetic circuits
over extension fields. The contributions of this paper are listed in 4 categories:
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1. Revisiting probing security from a probabilistic angle.
2. Introduction of new security notions tailored for circuits over extension fields:

for operation gadgets (RTIK) and for refresh gadgets (RTK, KIOS)
3. Composition Theorems for RTIK gadgets and KIOS refresh gadgets, and

security reductions from the latter notions to region-probing security.
4. Examples of competitively efficient multiplication gadgets and refresh gadgets

achieving the aforementioned notions, constituting our masked compiler.

We detail separately each of these items in the following.

From Game-Based Definitions to Probabilistic Definitions. The usual
definition of t-probing security involves the existence of a simulator able to sim-
ulate the distribution of given wires with only partial knowledge of the secret.
This simulation-based definition is inherited from the idea that a t-probing side-
channel adversary plays a t-probing security game, in which the adversary learns
some information on the wires W of the circuit C, then wins if he guesses right
the decoding of the sharings. The simulation argument implies that the side-
channel information yields no advantage. While simulators can be suitable tools
for proving probing security, they do not seem to be a good fit with our tech-
niques. We propose to take a different path and redefine probing security as
the statistical independence of the leakage and the secrets. While this idea is
nothing new, we believe that the formal definitions from Subsect. 3.1 can be of
independent interest. In particular, we formally define the intuitive idea that a
given set of probes Q contains more information than some other set of probes
P . This syntax enables “game hop”-based proof strategy. Informally, we let the
adversary pick the initial set of probes P of his choice, then instead of proving
some independence relation between P and the secrets directly, we reduce, via
successive elementary game hops, the set of probes P to a set of probes Q that
at least preserves the information of the adversary. At the end of this reduction
from P to Q, the latter set of probes Q is such that our techniques apply and we
manage to prove the independence of Q and the secrets, which in turn implies
independence between P and the secrets.

Bridging Algebra and Probing Security. We consider a circuit C over a
finite field F. We remind that our goal in this paper is to exploit the underlying
field extension structure of F, thus for the sake of clarity, we assume that F = Fpk

is the finite field with pk elements where p is a prime and k ≥ 2. An even more
concrete example is taking F to be the AES field F28 . We deal with polynomial
encodings, which is a special case of linear sharings where our decoding vector
is chosen to be ωd = (1, ω, . . . , ωd−1), for some field element ω ∈ F. In other
words, an ωd-encoding x ∈ F

d of some element x is such that

ωT
d x =

d−1∑

i=0

xiω
i = x.

The bridge relating the structure of F and probing security is the single Lemma
2. Consider that our circuit C takes as input an ωd-encoding x. In a nutshell,
Lemma 2 says that under the conditions that
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1. The number of shares is at most the degree of the extension: d ≤ k
2. The intermediate values that the adversary can probe in C are of the form

pT x with p ∈ F
d
p,

then there exists a choice of ω for which C is d − 1-probing secure. This choice
of ω is actually any ω of algebraic degree greater than or equal to d over Fp.
The geometry of this Lemma makes it intuitively more permissive than the
usual definitions for t-probing, r-region-probing, (strong) non-interference and
probe-isolating-non-interference. Indeed, the latter definitions (in probabilistic
terms) require roughly speaking that the probes are independent of at least
one coordinate of each sharings. The former on the other hand implies security
regardless of the direction of the affine subspace in which the encoding lies,
provided that the latter subspace is directed by the kernel of a matrix over the
subfield, and that its dimension is at least 1.

By following the rules for modifying the set of probes of the adversary, we
can relax condition 2.: our circuit C is also d − 1-probing secure if for all sets P
of d − 1 probes (that does not necessarily verify 2.), we can find a set of d − 1
probes Q that contain at least as much information as P , but Q does verify 2.

The RTIK security notion (which stands for Reducible-To-Independent-K-
Linear) for ωd-masked circuits over extension fields roughly encompasses the
circuits that fulfill the requirements of the above. The requirements for a circuit
to be RTIK are slightly more general: the subfield K that contains the coefficients
of the probes may be bigger than the prime field of F, and the circuit C may take
several encodings as input. In that case, we simply require that there exists some
mutually independent encodings (x1, . . . ,xn) and sets of probes (Q1, . . . , Qn)
such that each Qi is K-linear in xi. Notice that some of these encodings may
not be inputs neither outputs of C.

Since by construction, RTIK circuits over extension fields fall into the require-
ments of the core Lemma, it follows that RTIK circuits are d−1-probing secure.
Actually, RTIK circuits are secure in the stronger r-region-probing model, where
the adversary may place some number of probes in several different subcircuits.
We note that similarly as the Probe-Isolating-Non-Interfering security notion
[CS20], (all known) RTIK gadgets can be composed directly without refresh,
in which case the composition of RTIK circuits remains RTIK, which in turn
is r-region probing secure for some ratio r. We also mention that in terms of
implementation, RTIK circuits seem rather stable, since as long as the wires are
of the right K-linear form, the order of the operations does not affect security.

Although RTIK circuits may be composed directly and remain region-probing
secure, the size of the probing regions of the composite circuits may increase and
hence reduce the probing ratio, thus reduce the overall security of the imple-
mentation. To mitigate this loss of security, we introduce a security notion for
refresh gadgets inspired by the Input-Output Separative (IOS) property. We
briefly recall the idea behind the IOS property. Consider an IOS refresh gadget
R and two encodings x and y with y = R(x). Let us also assume that x is an
output of some gadget G1, and y is an input of some gadget G2. We now let
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the t-probing adversary pick and learn t intermediate variables in either G1, R,
or G2. In this setting, the IOS property claims that any probe inside of the
refresh gadget can be “moved” to a probe on a coordinate of x and/or a probe
on a coordinate of y. The probes on x are then considered as probes in G1,
the probes on y are then considered as probes on G2, and R itself is no more
probed by the adversary. This reduces the security of the composition of the
two gadgets G1, G2 to the individual security of each of the two gadgets. The
security notion α-KIOS that we define is identical to the IOS property, except
the probes on x and y do not have to be coordinates, but any K-linear function
of those inputs.1 Executing the same reduction as the one explained above for
IOS refresh gadgets, one ends up with K-linear probes on x, y, which in turn
fall into the requirements of our core Lemma. Applying a KIOS refresh to an
encoding in between two RTIK circuits creates a new region at the cost of using
random elements.

KIOS Refresh Gadgets Using d − 1 Randomness for Length d Input
Encoding. To substantiate the KIOS notion, we give examples of KIOS
refresh gadgets. Notice that 1-KIOS is strictly weaker than IOS, and there-
fore any IOS refresh is an example of 1-KIOS refresh, including the one from
[GPRV21](Actually, we prove the IOS property for a mild generalization of
this algorithm) which uses d log d

2 random elements. We also give an example
of a 2-KIOS refresh gadget that is not IOS. This gadget is obtained by simply
adding coordinate-wise an encoding of 0, obtained by running the algorithm
PolyGenZero presented in Algorithm 4, which uses d − 1 random field elements.
We highlight that for security, we need the algebraic degree of ω over K to be
greater than d, and for PolyGenZero to be correct, we also need the algebraic
degree of ω over K to be less than d. In other words, we need ω to have algebraic
degree exactly d over K, and such choice of ω is only possible when d divides
[F : K]. The intuition on the construction of this 2-KIOS gadget is detailed in
Sect. 5.2.

We give a second example of KIOS refresh, which also uses d − 1 random
elements, and is 1-KIOS. The counterpart for this improvement is that it is
slightly bigger than the previous one as a circuit. The intuition behind this
algorithm is derived from the RTIK multiplication gadget Algorithm8. In a
nutshell, the idea is to sample a uniformly random vector r, then multiply it
using Karatsuba’s algorithm with some fixed polynomial u. Provided that the
only common factor of u and the minimal polynomial of ω is X − ω (which
again requires degK(ω) = d), this algorithm generates ωd-encodings of 0, which
we can add coordinate-wise to obtain a 1-KIOS refresh gadget.

A Tight Compression Algorithm. The masked multiplication of two order
d encodings should remain an order d encoding, but the computation of the
polynomial product of two polynomials a,b of degree d − 1 yields a polynomial

1 We also add a coefficient α to its definition, which upper bounds the ratio of K-
linear probes on x, y after the reduction and the count of initial probes in the KIOS
gadget.
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z of degree 2d − 1. The compression algorithm proposed in [GJR18,GPRV21]
entails a loss of a factor 2 on the number of tolerated probes in the (region)
probing security of the multiplication gadget. We define a folding algorithm
that achieves the conversion of order 2d − 1 encoding into order d encoding,
and such that each of its intermediate values are K-linear. As a consequence,
it can be composed without refresh and without tightness loss at the end of a
multiplication gadget. Nonetheless, our folding algorithm is a bigger circuit (we
left as an interesting open question estimating the count of operations in this
algorithm depending on ω and K) than the compression algorithm from [GJR18,
GPRV21], which mildly decreases the tolerated probing rate of the adversary.

Multiplication Gadgets with Subquadratic Randomness and Multipli-
cations.2 The multiplication gadget GJR+ [GPRV21] has two security proofs,
depending on the size of F (and to some extent d). When |F| ≥ 2λ for some secu-
rity parameter λ a statistical argument based on the random choice of ω implies
security in the random-probing model. When |F| is too small, the authors rely on
a non-standard ad-hoc assumption that the circuit computing the FFT and its
inverse are t-probing secure. Due to combinatorial explosion, it is only possible
to test the assumption for small values of d, thus leaving a hole in the shape of
the RTIK notion. Our first multiplication gadget is a generalization of GJR+,
where one can use any evaluation-interpolation polynomial multiplication algo-
rithm (not only the FFT), and turn it into a multiplication gadget. The regimes
in which we can prove that [GPRV21]’s assumption hold is restricted to the
tuples (F, d) such that d ≤ [F : K]. The subfield K for which the RTIK property
holds is the smallest subfield that contains the coefficients of both evaluation and
interpolation. Hence for maximizing the upper bound on d, one should choose
the multiplication algorithm so that K is as small as possible, which is a first
hint towards switching to Karatsuba’s multiplication.

We also propose an optimized version of a multiplication gadget based on
Karatsuba’s algorithm. This Algorithm 8 uses d random field elements per run
(which is most likely close to optimal), but does dlog 3 bilinear multiplications. It
verifies the RTIK property, thus it is composable without extra refreshing.3 The
intuition behind the optimizations is detailed in Sect. 6. We compare the perfor-
mances of our optimized multiplication gadget with a few existing constructions
in Fig. 1. We highlight that Algorithm 8 and ISW are the only multiplication gad-
gets that can be securely composed without extra refreshing. In terms of bilinear
multiplication, Algorithm 8 is worse than GJR+ and Beläıd bil [BBP+17], but
better than Beläıd rand [BBP+17] and ISW. In terms of randomness, Algorithm
8 is close to optimal with d random elements, only beaten by Beläıd rand by
one random element. Further details on this comparison can be found in the full
2 Please note that while we discuss about the asymptotic behaviour of the perfor-

mances of our multiplication gadgets, their security only falls into our framework for
bounded order of masking d, for a fixed F.

3 This multiplication gadget actually behaves as a KIOS refresh with regards to region-
probing secure composition. It introduces d random elements to increment the num-
ber of regions when composed with other circuits.
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version, including estimates of the probing ratio of the gadgets, where Algorithm
8 is also competitive.

Fig. 1. Comparison table of multiplication gadgets for a number of shares d. ISW
[ISW03] for arithmetic encodings, Belaid rand [BBP+17] Alg. 5, Belaid bil [BBP+17]
Alg. 4, and GJR+ [GPRV21]). The composable row answers the question: “Is naive
composition of this multiplication gadget secure ?”

1.2 Limitations and Open Questions

Lack of Concreteness. Our contribution mostly stands on the theoretical side.
While we give performance comparisons in the full version and make a toy imple-
mentation in sage available, the concrete evaluation of the algorithms developed
in this paper would deserve a thorough investigation, that is left for future work.
Determining if masking an actual cryptographic algorithm using our techniques
can be more efficient than state-of-the-art masked implementation is another
interesting open question.

Range of Applications. An extension field F/K of degree k is proven secure with
our techniques up to d = k shares. For example, in the AES field F256, we have
k = 8, thus our masked compiler tolerates a number of shares d up to 8, with
extra efficiency for d|k, i.e d ∈ {2, 4, 8}. The real world masked implementation
are for the most part within this range, but it seems to be an interesting open
question to lift the upper bound, especially for the extension field of lower degree,
that have insufficient algebraic structure for our techniques to apply. An example
where this restriction is virtually absent is in the NTRUprime field [BCLV17].
This field is chosen as Fpq , where both q and p are primes, and q is a few hundreds.
Gadget expansion [AIS18,BCP+20,BRTV21,BRT21], which is, waving hands,
aiming at boosting the security by repeating the masked compilation several
times instead of just one, is an interesting direction which we leave for future
work.

Masking Lattice-Based Cryptography. We believe that part of the techniques
and algorithms proposed in this paper may apply to the usual power-of-two
cyclotomic ring structure underlying lattice-based cryptography. It is also an
interesting open question to know to what extent our constructions survive in the
ring setting. Since the standardization of several lattice-based schemes, especially
Kyber, constructing efficient equality-testing gadgets [DVBV22,CGMZ21,BC22]
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has received a lot of attention and the contributions of this paper may provide
a different angle towards constructing efficient equality-test gadgets.

Formal Verification of Implementations. Maskverif [BBC+18,BBC+19] is a tool
that, roughly speaking, when fed an implementation and an adversary model
returns the level of security achieved by the input implementation against the
given adversary model. The RTIK property seems like a nice property for auto-
mated testing, and appears to be more resilient against glitches (due to the
fact that the order in which a computation is made is irrelevant, as long as the
wires are K-linear) thus it is also an interesting open question to construct a
verification tool for implementations.

Remark 1. The proofs of Lemmas, Propositions and Theorems that are missing
from the body of the paper can be found in the appendix, sorted by Sections in
increasing order.

2 Background

2.1 Notations

Algebra. Throughout the paper, F denotes a field and K ⊂ F a subfield of F. We
write Fq the finite field with q elements. Field elements are written in lower-case
letters, vectors are written in bold lower-case letters and matrices are written
in bold upper-case letters. Unless stated otherwise, vectors are column vectors,
and for a vector x, we denote xT its transpose. We write � the component-
wise product of two vectors. We write Fd[X] the set of polynomials in X of
degree at most d that have coefficients in F. To ease the readability, we identify
a polynomial to its list of coefficients, and use either notations interchangeably.
An element a ∈ F

d can be treated as an element of Fd−1[X] depending on
context, e.g by writing a(ω) the evaluation of the polynomial whose coefficients
list is a in a field element ω, or multiplying two polynomials ab while keeping
the vector notation. We write πK(ω) the minimal polynomial of ω over K, and
we write degK(ω) the degree of πK(ω). The notation [n] shall denote the set
{1, . . . , n].

Distributions. For a distribution D, we do not have notation conventions
whether the support of D is a scalar or a vector, but rather rely on context.
For random variables X,Y , we write X ⊥ Y when X is independent of Y. For a
random variable X and a set A in the domain of X, we use the standard notation
X(A) =

∑
a∈A X(a). We write (X|Y ) the conditional probability of X given Y .

To ease the notations, we write (X|Y,Z) = (X|(Y,Z)).

Circuits. A circuit is a directed acyclic graph whose vertices are operations,
and each edge is an intermediate value, intermediate variable or wire. We shall
call internal randomness of a circuit the list ρ of the elements sampled by ran-
dom gates in the circuit. This way, every intermediate value of the circuit is a
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deterministic function of its input and the internal randomness of the circuit.
For a set of intermediate values P = (p1, . . . , pn) of a circuit with input χ and
internal randomness ρ, we write P (χ,ρ) = (p1(χ,ρ), . . . pn(χ,ρ)). When ρ is
not in the argument of P , we shall write P (χ) the random variable P (χ,ρ) for a
uniformly random ρ. We assume throughout the paper that the secret informa-
tion manipulated by a circuit is a deterministic function of its input and internal
randomness. For a circuit C, we usually write W its set of wires, and we shall
write |W| the number of intermediate variables of C.

2.2 Masking

Encodings. For a vector v ∈ (F\{0})d, a v-linear sharing of an element x ∈ F is
a vector x satisfying vT x = x. Arithmetic masking is a particular case of v-linear
sharing, where v = (1 . . . 1). For ω an element of F, we let ωd = (ωi)0≤i≤d−1.
We say that a vector x ∈ F

d is an ωd-encoding of a field element x ∈ F when
ωT

d x = x (or equivalently x(ω) = x), which is also a particular case of linear
sharing. For x ∈ F, the set of v-encodings of x is Hv

x = {x ∈ F
d, vT x = x} and

can be seen both as an affine hyperplane (with the convention Hv
0 = Hv). We

shall omit the supscript v when it is clear from context, and we notice that Hωd
x

can also be seen as the set of degree d polynomials x such that x(ω) = x. We
define Uv(x) to be the uniform distribution over Hv

x , and extend it coordinate-
wise when applied on multiple entries. We say that (x1, . . . ,xn) are mutually
independent ωd-encodings when for all x1, . . . , xn, the distributions (x1|ωT

d x1 =
x1), . . . , (xn|ωT

d xn = xn) are mutually independent.
We call an addition gadget (respectively a multiplication gadget) with respect

to ωd-encodings a circuit that takes as input two ωd-encodings a,b and returns
an ωd-encoding of ωT

d a+ωT
d b (respectively ωT

d a ·ωT
d b). A correct refresh gadget

with respect to ωd-encodings is a circuit that takes as input an ωd-encoding and
returns an ωd-encoding of the same secret. In general, for a gate g in a circuit C,
we say that G is a correct ωd-encoding gadget for g when G takes as input ωd-
encodings of the sensitive inputs of g, and returns ωd-encodings of the sensitive
outputs of g.

Security Properties. We define the threshold-probing security game, region-
probing security game, the simulation-based Input-Output Separation property
for refresh gadgets and the associated composition theorem.

Definition 1 (t-probing security game). Let n, t ≥ 1, C be a circuit and W
be its set of intermediate variables. Let χ be the distribution of the input in of C
and x1, . . . , xn be secret random variables following a distribution φ. A t-probing
adversary A on (C, χ, φ) plays the following game:

1. The challenger samples the input in from χ
2. A chooses a set of probes P ⊂ W with |P | ≤ t
3. The challenger runs C(in) and sends P (in) to A
4. A returns (y1, . . . , yn). He wins if (y1, . . . , yn) = (x1, . . . , xn).
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A circuit C for which there is no unbounded adversary A, playing the t-
probing security game with respect to secrets x1, . . . , xn, that has an advantage
against an adversary who skips steps 1) and 2) is called t-probing secure. In the
context of masking, the input distribution χ of C contains uniform encodings of
the secret inputs, and the decoding of these are the secrets of this circuit that
the adversary attempts to guess after probing.

Definition 2 (r-region probing security game). Let n ≥ 1, 0 < r < 1, C be
a circuit with input random variable in following a distribution χ and x1, . . . , xn

be secret random variables following a distribution φ. Let C1, . . . , Cm be subcir-
cuits of C such that (C1, . . . , Cm) is a disjoint covering of C, W1, . . . ,Wm be the
respective sets of intermediate variables of each subcircuit. A r-region probing
adversary against (C, χ, φ) with regions C1, . . . , Cm plays the following game :

1. The challenger samples the input in from χ
2. A chooses m sets of probes (Pi ⊂ Wi)i≤m with |Pi| ≤ �r|Wi|	
3. The challenger runs C(χ) and sends (Pi(χ))i≤m to A
4. A returns (y1, . . . , yn). He wins if (y1, . . . , yn) = (x1, . . . , xn).

With identical input distribution χ and secrets to hide, any t-probing secure
circuit C is trivially t/|C|-region probing secure. Conversely, if a circuit is r-region
probing secure with m = 1, it is 
r|C|�-probing secure. When χ and φ are clear
from context, we simply say that C is t-probing secure, and similarly for region-
probing security. For saving space and improving the readability, we omit the
input of the probes when it is clear from context and write P instead of P (in).

Definition 3 (t-input-output separation). Let v ∈ (F\{0})d. A refresh gad-
get GR is called t-input-output separative when for any x,y with y = GR(x), we
have that y follows U(vT x) and for any set of intermediate values W with |W| ≤
t, we have that there exists a two-stage simulator SGR,W = (S1

GR,W ,S2
GR,W) with

the following properties.

1. The first one S1
GR,W , returns two sets of indices I,J ⊂ [d] such that |I|, |J | ≤

|W|.
2. The second one S2

GR,W , ran on input x|I ,y|J , returns an output identically
distributed as W(x, r), where r is the internal randomness of GR, x|I is x
restricted to the coordinates that appear in I and similarly for y|J .

The following composition Theorem claims that if a circuit C is split into
t-probing secure subcircuits separated by t-IOS refresh gadgets, then the whole
circuit is r-region probing secure for some ratio r. The statement of the Theorem
deals with so-called standard masked compilers of arithmetic circuits, but similar
proof techniques could aim for a more general claim involving non-arithmetic
gadgets.

Theorem 1 (Composition Theorem, adapted from Theorem 1
[GPRV21]). Let C be an arithmetic circuit. If G+ is a t+-probing secure addi-
tion gadget, G× is a t×-probing secure multiplication gadget and GR is a tR-IOS
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refresh gadget, then the circuit Ĉ taking as input an encoding of the input of C
obtained by replacing addition gates with G+, multiplication gates by G× and
applying a refresh gadget GR to any input of an operation gadget is r-region
probing secure, with

r = max
t≤tR

min
(

t+ − 3t

|G+| ,
t× − 3t

|G×| ,
t

|GR|
)

.

3 Probabilistic Approach to Probing Security

In this section, we make our first step towards bridging probing security and
algebra, which boils down to redefining from a probabilistic perspective the usual
definitions of probing security, region-probing security and the IOS composition
property. While the usual simulation-based definitions have their advantages,
the probabilistic versions of the latter properties are a much better fit with our
techniques. All the results, definitions and propositions in this section are stated
for linear sharings (v-encodings for any v ∈ (F\{0})d).

3.1 Redefining Probing Security Through Sets of Probes
and Distribution of Secrets

The t-probing security game, as defined in Definition 1, is usually translated
as the simulatability of the leakage. In this subsection, we redefine t-probing
security (as well as r-region probing security) in a formalism that relies on dis-
tributions rather than simulation. From a high level, one can think of these
probabilistic definitions as simply cutting the middle-man, where the middle-
man is the simulator. Indeed, in a simulation-based proof, one has to define the
simulator for any given set of probed wires (and maybe modify the probes of
the adversary before doing so), and then justify that this simulator is actually
giving samples of the right distribution. By relying directly on the distribution
argument, we focus on proving that the leakage distribution is independent of
the secrets, which in our mind highlights the key arguments of the proof and
arguably makes it shorter.

We start off with a binary relation written ≤ on sets of probes, from which
we derive that various elementary operations on sets of probes at least preserve
the information learnt by the adversary.

Definition 4 (Partial order of probe sets). Let P,Q be two sets of probes
on a circuit C, taking as input a random variable in following a distribution χ
and manipulating secret random variables x1, . . . , xn following a distribution φ.
We say that Q contains more information than P , and we write P ≤ Q, when

((x1, . . . , xn)|(P (in), Q(in))) = ((x1, . . . , xn)|Q(in)).
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When P ≤ Q, intuitively, all the sensitive information on the input in of
C carried by P is also carried by Q. The binary relation ≤ verifies reflexivity
and transitivity, but not antisymmetry. Since antisymmetry is irrelevant for our
purposes, we chose to write this binary relation as a partial order relation. The
point of this binary relation is to provide a formal justification for modifying the
set of probes that the adversary initially chooses in the probing security games.
By using a few allowed elementary operations one after another, we are able to
reduce any initial set of probes to another set of probes that has a shape that
fits our techniques in the following sections.

We now provide an illustration of elementary operations on a set of probes
P1. The obtained sets P2, P3 are such that P3 ≥ P2 ≥ P1, thus P3 ≥ P1. Consider
some circuit C that takes as input two arithmetic encodings (x0, x1), (y0, y1). The
secrets manipulated by the circuit are x = x0+x1 and y = y0+y1. Consider that
a 3-probing adversary choses the set of probes P1 = (2x0, y0, x0 + y0). The first
operation that we can do on this set of probes while preserving the information
it contains is to remove the constant factor 2: with P2 = (x0, y0, x0 + y0), we
have P2 ≥ P1. Second, we can remove the redundancy : if the adversary learns
x0 and y0, he might as well compute x0+y0 himself. With P3 = (x0, y0), we have
P3 ≥ P2. Adding extra relations to a set of probes also yields that it contains
more information. For instance if Q1 = (x0 + y0), then Q2 = (x0, y0) is such
that Q2 ≥ Q1. Examples of proofs that rely on an increasing sequence of sets of
probes can be found in the proofs of Propositions 5 and 6 and Theorems 5 and
6.

We now proceed to define t-probing security and r-region probing security
for masked circuit from a probabilistic perspective.

Definition 5 (t-probing security of linear-masked circuits, convenient
version). Let v ∈ (F\{0})d, C be a circuit taking as input v-encodings x1, . . . ,xn

and W be the set of intermediate variables of C. Then C is t-probing secure when
∀P ⊂ W with |P | ≤ t, we have

(vT x1, . . . ,vT xn) ⊥ P (x1, . . . ,xn).

Definition 6 (r-region-probing security of linear-masked circuits, con-
venient version). Let v ∈ (F\{0})d, 0 < r < 1, C be a circuit, C1, . . . , Cm be
subcircuits of C such that (C1, . . . , Cm) is a disjoint covering of C, W1, . . . ,Wm

be the induced sets of intermediate variables of the subcircuits. We let x1, . . .xn

be the input v-encodings of C. Then C is r-region-probing secure when ∀P =
(P1, . . . , Pm) ⊂ W1 × · · · × Wm, with Pi ⊂ Wi and |Pi| ≤ �r|Ci|	, we have

(vT x1, . . . ,vT xn) ⊥ P (x1, . . . ,xn).

In both definitions, the information learnt by the adversary (i.e
P (x1, . . . ,xn)) is therefore independent of the secrets hidden in the circuit (i.e
each sensitive entry xi = vT xi). Since there is information-theoretically no infor-
mation learnt by the adversary by probing, if a masked circuit verifies one of the
definitions above, it also verifies the corresponding usual game-based definition.
The following Proposition links the relation ≤ to region probing security.
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Proposition 1. Let v ∈ (F\{0})d, 0 < r < 1, C be a circuit taking as input
v-encodings x1, . . . ,xn. Assume that there exists a set of disjoint subcircuits
C1, . . . , Cm covering C, inducing sets of intermediate variables (W1, . . . ,Wm),
such that for all set of probes P = (P1, . . . , Pm) with |Pi| ≤ �r|Wi|	 for all
i ≤ m, there exists a set of probes Q = (Q1, . . . , Qm) such that

1. ∀ i ≤ m, Pi ≤ Qi

2. (vT x1, . . . ,vT xn) ⊥ Q(x1, . . . ,xn).

Then C is r-region probing secure.

Using the correspondence between t-probing security and r-region probing
security with m = 1, the Proposition above then implies that if for any set P of
t probes on a circuit C, there exists a set Q with P ≤ Q and Q is independent
of the secrets, then the latter circuit is C is t-probing secure.

3.2 Revisiting Input-Output-Separation: Refreshing ωd-encodings
and Composition of Gadgets

For our own technical purposes (e.g. the proof of Theorem 5) and for expos-
ing the close relation between KIOS Definition 11 and IOS Definition 3, we
redefine the Input-Output Separation property introduced in [GPRV21]. The
property Reducible-To-Coordinates (RTC) for generators of v-encodings of 0 is
closely connected to the �-free property defined in the proof of Theorem 2 from
[GPRV21] (from which the authors deduce the IOS property), thus we redefine
the IOS property based on this RTC property. We prove that our new definition
encompasses the original one, and give explicitly the template to build an IOS
refresh gadget Algorithms 2 and 4 from an RTC generator of encodings of 0.

Definition 7. (Reducible-To-Coordinates) Let v ∈ (F\{0})d, t be an integer
and R be a gadget taking as input a dimension d, and returning a uniform v-
encoding r of 0. We say that R is Reducible-To-Coordinates (RTC) when the
distribution of r is uniform conditioned on vT r = 0 and for every set of t probes
P on R, there exists two sets of probes Q1, Q2 such that

1. |Q1| ≤ t
2. (Q1, Q2) ≥ P
3. Every probe in Q1 is a coordinate of r
4. The distributions Q2 and (r|Q1) are independent

Notice that in the definition above, the binary relation ≤ is taken with respect
to the secret r0, . . . , rd−1, i.e all the coordinates of the fresh vector r, where for
t-probing security of masked circuits we take the secrets to be the decoding of
the masked inputs.

Proposition 2. Algorithm 1 is RTC with v = (1, . . . , 1).
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Algorithm 1. ArithGenZero, adapted from Appendix C [BCPZ16]
.

Require: Masking order d
Ensure: t ∈ F

d such that
∑

ri = 0

1: if d = 1 then
2: return 0
3: end if
4: if d = 2 then
5: r ← F

6: return (−r, r)
7: end if
8: (r0, . . . , r�d/2�−1) = ArithGenZero(�d/2�)
9: (r�d/2�, . . . , rd−1) = ArithGenZero(�d/2�)

10: for i = 0 to �d/2� − 1 do
11: si ← F

12: ti = ri + si

13: t�d/2�+i = r�d/2�+i − si

14: end for
15: if d is odd then
16: td−1 = rd−1

17: end if
18: return t

The Proposition above is a mild generalization of Theorem 2 from [GPRV21].
They prove that the refresh gadget obtained by adding coordinate-wise an encod-
ing of 0 generated using ArithGenZero is IOS when d is a power-of-two. We adapt
their result from IOS to RTC, and extend it to any d ≥ 1 by considering the
refresh gadget from Appendix C [BCPZ16].

Definition 8. (Input-Output Separative) Let v ∈ (F\{0})d, t be an integer and
G be a gadget taking as input a v-encoding x, and returning an encoding y of the
same secret as x. We say that G is t-IOS when the distribution of y is uniform
conditioned on vT y = vT x and for every set of t probes P on G, there exists
three sets of probes Qx, Qy, Q2 such that

1. |Qx| ≤ t, |Qy| ≤ t
2. (Qx, Qy, Q2) ≥ P
3. Every probe in Qx is a coordinate of x and every probe in Qy is a coordinate

of y
4. The distributions Q2 and ((x,y)|(Qx, Qy)) are independent

Proposition 3. Let v ∈ (F\{0})d, t be an integer and G be a gadget taking as
input a v-encoding x, and returning an encoding y of the same secret as x. If G
is t-IOS according to Definition 8, then it is also t-IOS according to Definition
3 and vice-versa.
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Algorithm 2. RTC generator to IOS refresh template
Require: Masking order d, v ∈ (F\{0})d, RTC generator of arithmetic encodings of

0 R, v-encoding x
Ensure: y ∈ F

d such that vTy = vTx

1: r = R(d)
2: for i = 0 to d − 1 do
3: si = v−1

i ri

4: end for
5: y = x + s
6: return y

Proposition 4. If R is an RTC generator of arithmetic encodings of 0, then
the refresh gadget obtained by instantiating Algorithm 2 with R is an IOS refresh
gadget for v-encodings.

4 Algebraic Approach in Probing Security for Extension
Fields

In this section, we focus on the setting where F is an extension field over some
subfield K. We only consider a specific type of encoding, which is ωd-encoding,
where ωd = (1, ω, ω2, . . . , ωd−1) is the vector with all the first d powers of some
fixed field element ω ∈ F. Unless specified otherwise, ω is chosen so that its
algebraic degree over the subfield K is at least the number of shares, in order to
apply the core Lemmas from Sect. 4.1. We remind the reader that the notions
detailed in this section exploit the algebraic structure of F, and for our techniques
to apply, the number of shares d cannot exceed [F : K].

In the first subsection, we state the core Lemmas that make the connection
between the extension field structure of F/K and probing security. In the second
subsection, we introduce the RTIK security notion for circuits (a priori of any
size between operation gadget to a full cryptographic algorithm implementation)
that in turn implies region-probing security. In the last subsection, we show that
RTIK circuits admit nice composition properties without refresh. We finally show
that refreshing the encodings in between two RTIK circuits gives more security
at the cost of randomness, and that the refresh gadget is still secure with a
slightly weaker notion KIOS than the IOS notion.

4.1 Probing Security of K-Linear Circuits

This subsection contains two technical results Lemmas 1 and 2 that are building
blocks for proving t-probing security of ωd-masked circuits.

From a high level, the first Lemma 1 claims that when degK(ω) ≥ d, the
vector ωd is never in the span of � < d vectors over K, where K is a subfield of
F. The intuition of the connection between this statement and probing security
is as follows: This statement says, roughly speaking, that the probes are linearly
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independent of the decoding operation, and this statement is in turn used to
prove the probabilistic independence between probes and secret in Lemma 2.

To illustrate the correspondance between K-linear circuits and threshold-
probing security, consider a t-probing adversary against some circuit C, taking
as input a uniform ωd-encoding of the secret. We assume that the adversary
has no prior knowledge on the secret a = ωT

d a manipulated by C, hence from
the adversary’s perspective, before probing, a is distributed uniformly over F

d.
Now, say we can force every intermediate value of our circuit C to be K-linear in
a. Then, when the adversary probes t < d linearly independent inner products
of the encoding a, he receives some values v ∈ F

t of the form v = Pa where
P ∈ Kt×d. The probability that the secret is some a′ ∈ F, from the adversary’s
perspective, is then proportional to the number of solutions to the equations
v = Pa and ωT

d a = a′. When degK(ω) ≥ d is satisfied, Lemma 1 tells us that
ωd /∈ Span PT , from which follows that the set of solutions to the latter equations
is an affine subspace of dimension d − t − 1, of cardinality |F|d−t−1 no matter
what a′ ∈ F is. In other words, the secret in the adversary’s view is distributed
uniformly random, therefore the adversary did not learn anything by probing,
which is t-probing security.

We prove (in a slightly more general fashion) the result sketched above in
Lemma 2. This Lemma is central in our framework: every security notion intro-
duced in the next subsection relates to it. The convenient form of Lemma 2 makes
it likely to find other applications in constructing efficient masked gadgets.

Lemma 1. Let F be a finite field, K be a subfield of F, P ∈ Kt×d such that
rank P = t and ω ∈ F. If degK(ω) ≥ d and t < d, then

rank
[

P
ωT

d

]
= t + 1.

Proof. Let us assume for one moment that rank
[

P
ωT

d

]
= t, i.e ωd ∈ Span PT .

This means that there exists t coefficients λi ∈ F
t such that PT λ = ωd. Now,

since t < d, there exists vectors pt+1, . . . ,pd with coefficients in K that complete
P into an invertible matrix. We let Q be its inverse, and we write q the last row
of Q. We have

[
PT |pt+1| . . . |pd

]

⎡

⎢⎢⎢⎣

λ
0
...
0

⎤

⎥⎥⎥⎦ = ωd

⎡

⎢⎢⎢⎣

λ
0
...
0

⎤

⎥⎥⎥⎦ = Qωd.
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Taking the last row in the last equality, we get qT ωd = 0, and due to the
invertibility of Q, q = 0. In other words, the polynomial with coefficients q
cancels ω and has degree at most d−1, which is a contradiction with degK(ω) ≥
d, and the claim follows.

Lemma 2. Let d be an order of masking, C be a circuit taking as input a uniform
ωd-encoding x with ω ∈ F. If all the intermediate variables p of C are of the form
p(x) = pT x for some vector p ∈ Kd, then C is d − 1-probing secure.

Proof. Let A be a d−1-probing adversary against C, probing a set P of interme-
diate values of C. Let φ be the distribution of the secret input x, inducing by uni-
formity a distribution φ̄(x) = 1

|F|d−1 φ(ωT x). There exists a matrix P ∈ K(d−1)×d

such that P (x) = Px. We assume without loss of generality that P is full-rank,
otherwise some rows of P are redundant and the matrix P′ obtained by removing
redundancy defines a set of probes P ′ ≥ P , and is full-rank. For x ∈ F,v ∈ F

d−1,
we have

P(ωT
d x = x ∩ P (x) = v) = P(ωT

d x = x ∩ Px = v) (1)

= φ̄

(
ker

[
P
ωT

d

]
+ x∗

)
(2)

= φ̄ (x∗) =
1

|F|d−1
φ(x) (3)

= P(P (x) = v)) · P(ωT
d x = x), (4)

where Eq. (1) is the hypothesis of the Lemma, Eq. (2) holds for some solution

x∗ to the equation
[

P
ωT

d

]
x∗ =

[
v
x

]
, Equation (3) follows from Lemma 1 which

implies that the matrix
[

P
ωT

d

]
is of rank d, therefore its kernel is 0, and Eq. (4)

holds because P(P (x) = v) = P(x ∈ kerP + x′) = 1
|F|d−1

∑
y∈F

φ(y) = 1
|F|d−1 ,

where x′ is an offset vector solution to P (x′) = v. Since we have P(P (x) = v) =
|F|−(d−1) and φ(x) = P(ωT

d x = x), we conclude independence.

4.2 Weaker Condition for Region-Probing Security in Extension
Fields

In this section, we extend the results of the above subsection to circuits manipu-
lating several ωd-encodings. Namely, we introduce the RTIK security notion and
show that RTIK circuits are region-probing secure. Rephrasing (and simplifying)
the RTIK property: an ωd-masked circuit C is said RTIK when any set of probes
P can be reduced to a set of probes Q in which every probe is K-linear in a
single ωd-masked encoding.
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Definition 9 (Reducible-To-Independent-K-Linear (RTIK)). Let C be
a circuit over a finite field F, K be a subfield of F, W be the set of wires of C
and (x1, . . . ,xn) be mutually independent ωd-encodings. We say that C is RTIK
w.r.t (x1, . . . ,xn) when for all set of probes P ⊂ W, there exists a set of probes
Q = (Q1, . . . , Qn) ⊂ W such that the following holds:

1. Q ≥ P
2. ∀i ∈ [n], |Qi| ≤ |P |
3. For all i ∈ [n], every probe in Qi is a linear function of xi over K.

Theorem 2 (Security of RTIK circuits.). Let n, d be integers, C be a circuit
over a finite field F, K be a subfield of F, W be the set of wires of C, ω ∈ F be a
field element such that degK(ω) ≥ d and (x1, . . . ,xn) be mutually independent
ωd-encodings.

If C is RTIK with respect to (x1, . . . ,xn), then there exists a number m ≥ n,
a ratio r, and m regions (C1, . . . , Cm) such that C is r-region-probing secure with
respect to (C1, . . . , Cm). The probing ratio r is given by

min
i∈[n]

⎛

⎜⎜⎜⎝
d − 1∑

I⊂[n]
s.t i∈I

|WI |

⎞

⎟⎟⎟⎠ ,

WI and the subcircuits C1, . . . , Cm are explicited in the proof.

Regions and Probing Ratio. Our proof of Theorem 2 is tight for two reasons.
First, it is tight in the sense that any ratio r greater than the one defined in the
proof leads to an attack in the region-probing model. Second, it is tight in the
sense that there exists an RTIK circuit C (wrt encodings x1, . . . ,xn) such that
the ratio r satisfies r|C| = n(d − 1), which is optimal. The latter justifies an
improvement upon the direct reduction from the threshold probing model.

4.3 Composition Notions for RTIK Circuits

We first show that some RTIK gadgets with a nice additionnal feature can be
composed naively and still enjoy region-probing security.

Theorem 3. Let C be a circuit over a finite field F, and K be a subfield of F.
If C can be split into two disjoint subcircuits C1, C2 such that

1. C1 is RTIK with respect to encodings (x1
1, . . . ,x

1
n)

2. C2 is RTIK with respect to encodings (x2
1, . . . ,x

2
m)

3. The intersection of the input encodings of C2 and the output encodings of C1

is contained in both (x1
1, . . . ,x

1
n) and (x2

1, . . . ,x
2
m),

then C is RTIK.
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On the Extra Condition for Naive Composition of RTIK Circuits.
The condition 2. from the Theorem above asks, roughly speaking, that when
evaluating C2 on (part of) the output of C1, the encodings that are passed on
from C1 to C2 are part of those vectors that define the RTIK property for both
circuits. In practice, we are not aware of any combination of useful circuits that
do not verify the aforementioned property. In all generality, we were not able
to prove that this condition is always verified, but all our gadgets, as well as
all coordinate-wise gadgets do verify the condition, and any circuit composed of
our gadgets also verifies this condition.

Composition of More Than Two Gadgets. As one would expect, it is
possible to prove that the composition of several gadgets which enjoy the nice
extra composability feature is RTIK. Indeed, by induction, one can step by step
prove using Theorem 3 that the successive compositions are indeed RTIK, as the
property propagates with no slack from two circuits to their composition. The
fact that there is no slack is ensured by 2. from Definition 9. While it is possible
to construct gadgets that verify 1. 2. and 4. as well as |Qi| ≤ α|P | for some
slack factor α (e.g. the NaiveFold algorithm defined in Sect. 5.1), we decide not
to introduce this extra notation as the slack factor of a compound circuit grows
exponentially with the number of subcircuits, and thus leads to rather inefficient
constructions.

Why Refreshing a Secure Circuit? Again, the probing ratio r is given by
the minimum over i of the individual d−1∑ |WI | , where I is a subset of indices
containing i, and WI is the set of wires mapped to |I| probes, each on a single
encoding xj , j ∈ I. When one of the subcircuits

⋃

I⊂[n]
i∈I

WI ,

is particularly large compared to the others, it may be beneficial to break it
down into smaller independent subcircuits so as to increase the security of the
compound circuit. This act of splitting a circuit into subcircuits can be done
using an IOS refresh on the encodings, but the weaker notion of KIOS, more
adapted to our RTIK circuits, is also suited. This notion is very similar to the
IOS notion, thus we follow a similar path towards defining it.

Definition 10. (Reducible-To-K-Linear) Let ω ∈ F and K be a subfield of F.
Consider a gadget R taking as input a dimension d and returning an ωd-encoding
r of 0. Let α > 0 be the slack factor of R. We say that R is α-Reducible-To-K-
Linear (RTK) when the output distribution of R is a uniform ωd-sharing of 0,
and for any set of independent probes P on R with |P | = t < d, there exists sets
of probes Q1, Q2 such that

1) |Q1| ≤ αt.
2) (Q1, Q2) ≥ P
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3) Every probe in Q1 is K-linear in r.
4) The distributions Q2 and (r|Q1) are independent.

Notice that with this definition, if R is RTC with respect to ωd, then R is
1-RTK. We now define the security notion achieved by the ωd-encoding refresh
gadget obtained by adding coordinate-wise a fresh ωd-encoding of 0 to the input.
The intuition why the KIOS security notion for refresh gadget brings composition
security is similar to the one for IOS refresh gadgets. If we have y = r+x, where
x is some input ωd-encoding and r is generated using an α-RTK generator of
encodings of 0, then we can reduce the probes in the α-RTK to K-linear probes
on r, given by some matrix P. In the next reduction step, we give to the adversary
Px and Py, which are still both K-linear. We can then remove the probes on r
as they are redundant, and that way we achieve separation between x and y.

Definition 11. ((K-Input-Output Separative)). Let ω ∈ F, K be a subfield
of F, α > 0 and G be a gadget taking as input an ωd-encoding x, and returning
an ωd-encoding y of the same secret as x. We say that G is K-Input-Output
Separative (KIOS) when the distribution of y is uniform conditioned on y(ω) =
x(ω) and for every set of t probes P on G, there exists three sets of probes
Qx, Qy, Q2 such that

1. |Qx| ≤ αt, |Qy| ≤ αt
2. (Qx, Qy, Q2) ≤ P
3. Every probe in Qx is K-linear in x, and every probe in Qy is K-linear in y
4. The distributions Q2 and ((x,y)|(Qx, Qy)) are independent

We finally state in the Theorem below that placing a KIOS refresh in between
RTIK circuits achieves region-probing security as well. The idea behind this com-
position Theorem is very similar to the intuition detailed in [GPRV21] on IOS
composition. The basic idea is that when C2 takes as input the output of some
circuit C1, one applies a KIOS refresh gadget on each input encoding of C2.
In the reduction, using the KIOS property, the leakage of the refresh is trans-
ferred to K-linear probes on C1 and C2. The leakage from the two subcircuits
are then independent, and from the RTIK property, those leakages are K-linear,
and Lemma 2 yields the region probing security.

Randomness/Security Tradeoffs of Refreshing. As stated throughout the
subsection, using KIOS refresh gadgets on the encodings increases the amount
of encodings (x1, . . . ,xn) in the RTIK definition, which in turn increases the
number of subcircuits in the region-probing security of the latter circuit, and
eventually increases the region-probing ratio r. One has to keep in mind that
refreshing the shares of an encoding is costly in terms of randomness (and slightly
increases the total number of wires in the circuit), thus one has to carefully
optimize the amount of refreshing in a circuit to reach the desired security level.
Notice that we assume that we use a KIOS refresh gadget in the statement of the
KIOS composition Theorem with slack factor 1. Indeed, when the slack factor
of the KIOS refresh is 1, then the resulting circuit is RTIK, but when the slack
factor α > 1, the resulting circuit is not RTIK as it does not verify the property
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3. of the RTIK definition, but it does verify the other ones 1. 2. and 4. When
α > 1, the resulting circuit remains r-region probing secure, but the number of
tolerated probes per region is divided by α.

Theorem 4. (KIOS Composition Theorem). Let C be a circuit over a finite
field F, and K be a subfield of F. If there exists two disjoint RTIK subcircuits
C1, C2 of C such that C is the composition of C1 and C2, then the circuit Ĉ obtained
by applying a 1-KIOS refresh to the outputs of C1 that are inputs of C2 is RTIK.

5 Miscellaneous RTIK and KIOS Gadgets

This section contains two ωd-encodings building-block algorithms for construct-
ing a masked compiler. Both algorithms rely on an additional restriction on
d and degK(ω): For security in our framework of RTIK gadgets, we need
d ≤ degK(ω) and for correctness of the gadgets presented in this section, we
also need d ≥ degK(ω). In other words, we need ω to be of degree exactly d. A
classical result in algebra tells us that such a choice of ω is only possible when
d is a factor of [F : K]. The reason why we add the restriction d ≥ degK(ω) for
correctness is that we will exploit the minimal polynomial ω, which we write πω

throughout the section, in ways that are detailed in the subsections below.

5.1 Folding Gadget

This subsection is dedicated to a folding gadget that exploits the algebraic struc-
ture brought by ωd-encodings. Folding gadgets are those that on input some
ωd1-encoding x return an ωd2-encoding y of the same secret, where d1 ≥ d2.
Since we only need (d1, d2) = (2d − 1, d), we shall particularize to these specific
values in the following, but our construction extends to d1 ≥ 2d − 1. We first
recall the so-called NaiveFold algorithm, as used in [GJR18,GPRV21]. This fold-
ing algorithm does not require any extra condition to be correct, but entails a
factor two loss in probe tolerance.

Algorithm 3. NaiveFold
Require: ω2d−1-encoding x
Ensure: y ∈ F

d such that xT ω2d−1 = yT ωd

1: for i = 0 to d − 2 do
2: yi = xi + ωdxd+i

3: end for
4: yd−1 = xd−1

5: return y

As stated above, one problem with this compression is that in the current
state-of-the-art methods for proving probing security, when the adversary probes
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some xi + ωdxd+i, we have to give away both xi and xd+i. This entails a slack
factor of 2 that doubles the number of probes of the adversary, hence in the
end halves the number of probes tolerated in the region. Evaluating our folding
matrix is an RTIK circuit (in particular it has no slack factor), but it may also
contain more wires than the NaiveFold algorithm, thus the gain in probing ratio
is slightly fewer than a factor 2. We also remark that the NaiveFold algorithm
computes the reduction modulo (Xd − ωd), while the folding matrix computes
the reduction modulo πω.

The intuition of the construction is as follows: we define a full-rank folding
matrix F ∈ Kd×(2d−1), with coefficients in the subfield K, and mapping the
ω2d−1-encodings of some x ∈ F to the ωd-encodings of this same x. This way,
the computation of y = Fx is K-linear and the folding circuit is RTIK. The
existence of this matrix is only guaranteed when degK(ω) ≥ d, therefore, so we
can also use Lemma 2, we actually need the equality.

We now proceed to describe how to construct such a matrix, for a given ω and
d. Suppose degK(ω) = d. Then, the minimal polynomial πω of ω over K has
degree d, therefore π = ωd −πω is of degree d− 1 and is such that π(ω) = ωd. In
general, any ωd+i for 0 ≤ i ≤ d − 2 is a polynomial in ω with coefficients in K
and degree ≤ d − 1. Let us therefore write πi the column vector of coefficients
of the i-th polynomial, for example π0 = π. One can check that the matrix

F =
[
Id π0 π1 . . . πd−2

]

satisfies the equation FT ωd = ω2d−1. This implies that ωT
2d−1x = ωT

d Fx =
ωT

d y.

Optimizing the Choice of ω. We emphasize on the fact that one should
choose ω so as to minimize the count of operations in the folding process, to in
turn minimize the ratio of tolerated probes per gate in the region. The element
ω has to be chosen from a fixed field F, among the elements of given degree
d over some fixed subfield K and it seems hard to make a general statement
about the sparsity of the matrix F. Nonetheless, in very specific cases, F can be
very sparse. For example, if K = Fp, and d + 1 is a prime, one can chose ω to
be a primitive d + 1-th root of unity. This way, the minimal polynomial of ω is
1 + X + · · · + Xd, and ωd+1 = 1. Then, for any 0 ≤ d − 3, we have ωd+1+i = ωi

and ωd = −∑d−1
i=0 ωi. In this particular setting, the computation of y = Fx

takes approximately 3d wires.

5.2 Refresh Gadgets

In this subsection, we describe a 2-RTK generator of ωd-encodings of 0 that only
uses d − 1 random field elements, as well as a 1-RTK generator of ωd-encodings
of 0 that uses d − 1 random field elements. While the second one seems strictly
better than the first one, it also contains more gates, and thus depending on
the use-case and the metric to be optimized, the first one may yield a better
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efficiency. We may recall that we are using the minimal polynomial πω of ω,
which can only be made possible if d|[F : K].

2-RTK Algorithm. For the first construction, we require, on top of the con-
dition d|[F : K], that the greatest common divisor of ωd − πω and Xd − ωd is
X − ω. The intuition how Algorithm 4 works is as follows. First, the algorithm
samples a uniformly random vector x ∈ F

d−1. Next, we compute s = πωx, and
we obtain a polynomial s of degree d + d − 2. The algorithm then returns r
as the naive fold of s as described in the subsection above. The correctness is
verified by construction: the evaluation of r in ω is 0 since πω divides s and the
evaluation in ω is invariant through the naive fold. Remember that as explained
in the previous section, the algorithm that takes as input an ωd-encoding x and
returns y = x+r where r is generated by such an α-RTK generator of encodings
of 0 is α-KIOS.

Algorithm 4. PolyGenZero
Require: Masking order d with d = degK(ω)
Ensure: r ∈ F

d such that rT ωd = 0

1: x ← F
d−1

2: s = πωx
3: r = NaiveFold(s)
4: return r

Proposition 5. If degK(ω) = d and the greatest common divisor of πω and
Xd − ωd is X − ω, then PolyGenZero is 2-RTK.

1-RTK Algorithm. The second RTK algorithm that we detail here is very
similar to the refreshing procedure of Algorithm 8 that cuts the bilinear depen-
dencies of our optimized RTIK multiplication gadget. We detail the instantiation
of this RTK algorithm with Karatsuba’s multiplication. More details on the asso-
ciated evaluation matrix M1 and interpolation matrix M2 can be found in the
full version of the paper. We start off by fixing a polynomial u ∈ F

d with the
following properties:

The Karatsuba evaluationu′ = M1uhas all non-zero entries (5)
The greatest common divisor ofu(X) and πω(X) is X − ω. (6)

We store the fix evaluation vector u′. Then, Algorithm 5 samples a uniformly
random polynomial r ∈ F

d, which therefore encodes a uniformly random value.
We compute its Karatsuba evaluation of r′ = M1r, and multiply this vector
with u′ coordinate-wise to obtain x′ = r′ � u′. Finally, we return s = FM2x′,
which is the folding of the Karatsuba’s interpolation of x′.

Proposition 6. If degK(ω) = d and the vector u ∈ F
d is such that Eqs. (5) and

(6) hold, then Algorithm 5 is a 1-RTK generator of ωd-encodings of 0.
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Algorithm 5. KaratsubaRTK
Require: Masking order d with d = degK(ω)
Ensure: s ∈ F

d such that sT ωd = 0

1: r ← F
d−1

2: r′ = M1r
3: x′ = r′ � u′

4: s = FM2(x
′)

5: return s

5.3 Square Gadget in Characteristic 2

In this subsection, we show that the usual square gadget in characteristic 2 is
RTIK. The typical example of use of this gadget is to compute the inverse of an
element of F256 in the AES S-box as a subalgorithm of the square-and-multiply
computation of the 255-th power. The RTIK security of this gadget falls into
the wider class of coordinate-wise gadgets.

The algorithm works as follows: since we are working in characteristic 2, we
have the classical identity that for any x, y ∈ F, (x + y)2 = x2 + y2. We apply
this identity to the decryption of the encoding x:

(
d−1∑

i=0

xiω
i

)2

=
d−1∑

i=0

x2
i ω

2i.

In other words, to compute and encoding y of the square of xT ωd, we can
square each coordinate of x, and multiply the result coordinate-wise with the
vector w = (ω−i)0≤i≤d−1. Correctness follows from the latter identity, and since
all the operations are coordinate-wise, this gadget is RTIK.

Algorithm 6. SquareGadget
Require: Encoding x ∈ F

d of length d
Ensure: y ∈ F

d such that yT ωd = (xT ωd)2

1: z = x2 � Coordinate-wise operation
2: y = z � w
3: return y

6 Subquadratic Multiplication Gadgets

In this section, we show that the FFT-based multiplication gadget from GPRV
[GPRV21] can be proven secure in the region-probing model - provided that
there is sufficient structure in F for the targeted number of shares. The frame-
work that we prove secure in the first subsection is actually a generalization of
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GPRV, where the evaluation-interpolation polynomial multiplication algorithm
used does not have to be the FFT, but any evaluation-interpolation-based mul-
tiplication gadget. There is a counterpart for using a polynomial multiplication
with low bilinear multiplication complexity: roughly speaking, the fewer bilinear
multiplications, the lower the upper bound on the available number of shares. In
the second subsection, we detail an optimized version of the previous construc-
tion based on Karatsuba’s multiplication. This masked multiplication gadget
is RTIK (thus in the proper setting, it is region-probing secure) and performs
competitively well (see the full version for detailed comparison with existing
gadgets.) The mutliplication gadgets presented in this section verify the extra
composability condition from Theorem 3.

6.1 (Re)Revisited Quasilinear Masked Multiplication:
Region-Probing Security Proof for GPRV

In this subsection, we show that (almost) any polynomial multiplication algo-
rithm can be turned into a masked multiplication gadget. More precisely, the
polynomial multiplication gadgets that fit our transformation ̂ are those algo-
rithms that are based on evaluation-interpolation. This definition encompasses
Karatsuba’s algorithm, all Toom-Cook variants (which contains Karatsuba) and
the FFT. The FFT instantiation of this transformation is GPRV’s multiplica-
tion.

Definition 12. (Evaluation-Interpolation-Based Polynomial Multipli-
cation Algorithms). Let M be an algorithm taking as input two polynomials
of degree d − 1 that returns the product of the two inputs and K a subfield
of F. We say that M is a K-Interpolation-Multiplication algorithm (K-IM for
short) when there exists matrices M1,M2 with coefficients in K such that for
any (a,b) ∈ Fd−1[X]2, we have M(a, b) = M2 · (M1a � M1b).

The architecture of our transformation applied to the FFT follows the
blueprint from [GPRV21], whose security relies on the assumption that the cir-
cuits computing the evaluation and interpolation of the FFT are t-probing secure
for some t. The assumption can be tested by exhausting the subsets of probes
for a given size among the circuits, which is only possible for small number of
shares. Our gadgets on the other hand are proven RTIK, which in turn yields
region-probing security through Lemma 1. Our gadgets are thus theoretically
sound, since they rely on no assumption, but rather a condition relating the
multiplication algorithm M, the order of masking d and to some extent the size
of F (we need d ≤ log |F|). This condition is d ≤ k where k = [F : K], in order
to apply Lemma 1. To be specific, K is defined as the subfield such that M is
a K-IM, as defined in Definition 12. In other words, K is the smallest subfield
of F such that the evaluation and interpolation operations induced by M are
K-linear.

Intuition of the Transformation. The transformation of a suitable multipli-
cation algorithm M taking as input two polynomials a,b into a secure multi-
plication gadget works as follows. Since M can be split into two phases, namely
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evaluation and interpolation, our gadget M̂ starts by computing the evalua-
tion of both polynomial entries a′ = M1a and b′ = M1b. Then, M̂ computes
the evaluation x′ = a′ � b′ of the product ab by multiplying coordinate-wise
their evaluations. Before proceeding to interpolation, we need to cut the bilinear
dependencies between a,b, which is done using the IOS refresh template Algo-
rithm 2, with a suitably chosen v (that depends on the interpolation of M) and
ArithGenZero Algorithm 1. M̂ now computes the interpolation of the refreshed
encoding y′, which yields the 2d − 1 coefficients of a polynomial z encoding ab.
Notice that if a(ω) = a, b(ω) = b, we want to find a polynomial c that encodes
ab, for the same ω and masking order d. To this end, we multiply z with the
folding matrix F so c = Fz has degree d− 1, and c(ω) = z(ω) = a(ω)b(ω) = ab,
and the algorithm finally returns this c. The construction of the matrix F is
detailed in Sect. 5.1.4

Intuition of the Security Proof. By definition of K, all the wires in the eval-
uation and interpolation subcircuits are K-linear. When the adversary probes
an xi = a′

ib
′
i, the reduction gives him both factors a′

i, b
′
i, which we recall are K-

linear functions of a,b. The effect of the refresh is to create a third independent
encoding c (the output of the gadget), together with a third probing region in
which the probes are reducible to K-linear functions of c. Notice that since the
length of x is T (d) (the multiplication complexity of M), the cost of this refresh
in randomness is T (d) log T (d)/2. When the folding matrix F does not exist, one
can use the NaiveFold algorithm instead. Probes in the NaiveFold of the form
(zi + ωdzd+i) are reduced to (zi, zd+i), doubling the total number of probes of
the adversary in the circuit.

Algorithm 7. Multiplication gadget M̂(a,b). The algorithm R on line 4 is
Algorithm 2 instantiated with ArithGenZero
Require: A K-IM M with matrices M1,M2, folding matrix F (see Subsection 5.1)

and two input encodings a,b ∈ F
d

Ensure: c ∈ F
d such that ωT

d a · ωT
d b = ωT

d c

1: a′ = M1a � Evaluation of a
2: b′ = M1b � Evaluation of b
3: x′ = a′ � b′ � Component-wise multiplication of evaluations
4: y′ = R(x′,MT

2 ω2d−1) � Refresh
5: z = M2y

′ � Interpolation of the product
6: c = Fz � Folding
7: return c

4 We assume that the folding matrix exists i.e d|[F : K]. If this condition is not verified,
one can still use the NaiveFold at the cost of roughly halving the tolerated probing
ratio.
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Theorem 5. Let d be an order of masking, K be a subfield of F, M be a K-IM
and ω ∈ F such that degK(ω) = d. Then, the instantiation of Algorithm 7 with
M is a correct RTIK multiplication gadget.

6.2 Efficient Karatsuba-Based Multiplication Gadget

In this subsection, we detail an optimized version of the GPRV-type transforma-
tion from the previous subsection. The optimizations come from various technical
improvements detailed below. We assume in the description of Algorithm 8 that
d is a divisor of k, where k is the degree of F over its prime field. This assumption
allows us to work with the degree d minimal polynomial π of ω over K, hence
use the folding matrix Sect. 5.1.

Choice of Karatsuba’s Multiplication. Choosing particularly Karatuba’s
multiplication benefits our algorithm in several ways. Firstly, Karatsuba’s algo-
rithm offers a trade-off between the size of the circuit and the number of bilinear
multiplications that is advantageous for degrees relevant to masking in prac-
tice (e.g. between 2 and a few dozens). Second, the subfield K associated to
Karatuba’s algorithm is F’s prime field, which maximizes the degree k of F/K.
Remind that in our framework, the maximum number of probes per region is
k − 1. Finally, Karatsuba’s algorithm verifies a crucial property for the random-
ness optimization detailed below.

Linear Randomness. The transformation presented in Sect. 6.1 yields a mul-
tiplication gadget running in the same time O(T (d)) as M, and requiring
O(T (d) log T (d)) random field elements. The randomness cost of the multipli-
cation comes solely from the use of ArithGenZero on the evaluation vector of
the product. Intuitively, it may seem expensive to spend T (d) log T (d)/2 ran-
dom field elements on refreshing an encoding that masks the product of the two
inputs. The encoding x′ to be refreshed is even compressed into the ωd-encoding
c, thus a single ωd-encoding of 0 is enough entropy to mask x′. To refresh x′

into y′, we compute x′ = y′ +r′ �u′ as follows. We sample a completely uniform
ωd-encoding r from F

d, and compute its Karatsuba’s evaluation r′ = M1r. We
then multiply this vector r′ coordinate-wise with a fixed vector u′ and add this
vector to x′ to obtain y′. This vector u′ is the Karatsuba’s evaluation of some
fixed polynomial u satisfying the following two properties.

1. We require that u is such that its evaluation u′ has all non-zero coefficients.
This condition allows us to swap the probes of the form r′

i for probes of the
form r′

iu
′
i.

2. We require that the GCD of u(X) and π(X) is X−ω. The first consequence of
the latter condition is that u(ω) = 0, thus ru(ω) = 0 from which we deduce
the correctness of the gadget. The second consequence of this condition is
that the reduction modulo (π) of the polynomial ru is therefore a uniformly
random encoding of 0, from which we conclude the mutual independence of
a,b, c.



Exploiting Algebraic Structures in Probing Security 265

Special Variant for d = 2. We mention that a variant of Algorithm 8, where r
is sampled with an RTC generator of encodings of 0 such as ArithGenZero and
u only has to be such that u′ has all non-zero entries. This variant is also RTIK
and uses d log d

2 random elements. While d log d
2 means more random elements

than the d random elements needed for Algorithm 8 whenever d ≥ 3, for d = 2,
this variant uses only one random element versus two for Algorithm 8.

Algorithm 8. Multiplication gadget karaopti(a,b)
Require: a,b ∈ F

d independent encodings
Ensure: c ∈ F

d such that ωT
d a · ωT

d b = ωT
d c

1: a′ = M1a � Evaluation of a
2: b′ = M1b � Evaluation of b
3: x′ = a′ � b′ � Share-wise multiplication
4: r ← F

d � Fresh uniform encoding
5: r′ = M1r
6: s′ = r′ � u′

7: y′ = x′ + s′ � Refresh
8: z = M2y

′ � Interpolation of the product
9: c = Fz � Folding

10: return c

Theorem 6. Let F be a finite field of degree k over its prime field K, ω ∈ F

be a fixed element of F, π be the minimal polynomial of ω over K, d be the
number of shares and u ∈ F

d a fixed polynomial. Let M1,M2 be the evaluation
and interpolation matrices of Karatsuba’s multiplication. We assume that the
two entries a,b are mutually independent encodings.

If we have the following three properties:

1. degK(ω) = d
2. gcd(u(X), π(X)) = X − ω
3. M1u = u′ has all non-zero coefficients

then karaopti is a correct RTIK multiplication gadget with respect to a,b, c.
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