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Preface

The 29th Annual International Conference on the Theory and Application of Cryptology
and Information Security (Asiacrypt 2023) was held in Guangzhou, China, onDecember
4–8, 2023.The conference covered all technical aspects of cryptology, andwas sponsored
by the International Association for Cryptologic Research (IACR).

We received an Asiacrypt record of 376 paper submissions from all over the world,
and the Program Committee (PC) selected 106 papers for publication in the proceedings
of the conference. Due to this large number of papers, the Asiacrypt 2023 program had
3 tracks.

The two program chairs were supported by the great help and excellent advice of six
area chairs, selected to cover themain topic areas of the conference. The area chairs were
Kai-Min Chung for Information-Theoretic and Complexity-Theoretic Cryptography,
Tanja Lange for Efficient and Secure Implementations, Shengli Liu for Public-Key
Cryptography Algorithms and Protocols, Khoa Nguyen for Multi-Party Computation
and Zero-Knowledge, Duong Hieu Phan for Public-Key Primitives with Advanced
Functionalities, and Yu Sasaki for Symmetric-Key Cryptology. Each of the area chairs
helped to lead discussions together with the PC members assigned as paper discussion
lead. Area chairs also helped to decide on the submissions that should be accepted from
their respective areas. We are very grateful for the invaluable contribution provided by
the area chairs.

To review and evaluate the submissions, while keeping the load per PC member
manageable, we selected a record size PC consisting of 105 leading experts from all
over the world, in all six topic areas of cryptology. The two program chairs were not
allowed to submit a paper, and PC members were limited to submit one single-author
paper, or at most two co-authored papers, or at most three co-authored papers all with
students. Each non-PC submission was reviewed by at least three reviewers consisting of
either PC members or their external sub-reviewers, while each PC member submission
received at least four reviews. The strong conflict of interest rules imposed by IACR
ensure that papers are not handled by PC members with a close working relationship
with the authors. There were approximately 420 external reviewers, whose input was
critical to the selection of papers. Submissions were anonymous and their length was
limited to 30 pages excluding the bibliography and supplementary materials.

The review process was conducted using double-blind peer review. The conference
operated a two-round review system with a rebuttal phase. After the reviews and first
round discussions the PC selected 244 submissions to proceed to the second round and
the authors were then invited to participate in an interactive rebuttal phase with the
reviewers to clarify questions and concerns. The remaining 131 papers were rejected,
including one desk reject. The second round involved extensive discussions by the PC
members. After several weeks of additional discussions, the committee selected the final
106 papers to appear in these proceedings.



vi Preface

The eight volumes of the conference proceedings contain the revised versions of the
106 papers that were selected. The final revised versions of papers were not reviewed
again and the authors are responsible for their contents.

The PC nominated and voted for two papers to receive the Best Paper Awards,
and one paper to receive the Best Early Career Paper Award. The Best Paper Awards
went to Thomas Espitau, Alexandre Wallet and Yang Yu for their paper “On Gaussian
Sampling, Smoothing Parameter and Application to Signatures”, and to Kaijie Jiang,
Anyu Wang, Hengyi Luo, Guoxiao Liu, Yang Yu, and Xiaoyun Wang for their paper
“Exploiting the Symmetry of Zn: Randomization and the Automorphism Problem”. The
Best Early Career Paper Award went to Maxime Plancon for the paper “Exploiting
Algebraic Structure in Probing Security”. The authors of those three papers were invited
to submit extended versions of their papers to the Journal of Cryptology. In addition,
the program of Asiacrypt 2023 also included two invited plenary talks, also nominated
and voted by the PC: one talk was given by Mehdi Tibouchi and the other by Xiaoyun
Wang. The conference also featured a rump session chaired by Kang Yang and Yu Yu
which contained short presentations on the latest research results of the field.

Numerous people contributed to the success of Asiacrypt 2023. We would like to
thank all the authors, including those whose submissions were not accepted, for submit-
ting their research results to the conference. We are very grateful to the area chairs, PC
members and external reviewers for contributing their knowledge and expertise, and for
the tremendous amount of work that was done with reading papers and contributing to
the discussions. We are greatly indebted to Jian Weng and Fangguo Zhang, the General
Chairs, for their efforts in organizing the event and to KevinMcCurley and KayMcKelly
for their help with the website and review system. We thank the Asiacrypt 2023 advi-
sory committee members Bart Preneel, Huaxiong Wang, Kai-Min Chung, Yu Sasaki,
Dongdai Lin, Shweta Agrawal and Michel Abdalla for their valuable suggestions. We
are also grateful for the helpful advice and organization material provided to us by the
Eurocrypt 2023 PC co-chairs Carmit Hazay and Martijn Stam and Crypto 2023 PC co-
chairs Helena Handschuh and Anna Lysyanskaya. We also thank the team at Springer
for handling the publication of these conference proceedings.

December 2023 Jian Guo
Ron Steinfeld
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A New Approach Based on Quadratic
Forms to Attack the McEliece

Cryptosystem

Alain Couvreur1, Rocco Mora2, and Jean-Pierre Tillich2(B)

1 Inria Saclay, LIX, CNRS UMR 7161, École Polytechnique, 1 rue Honoré d’Estienne
d’Orves, 91120 Palaiseau Cedex, France

alain.couvreur@inria.fr
2 Inria Paris, 2 rue Simone Iff, 75012 Paris, France
{rocco.mora,jean-pierre.tillich}@inria.fr

Abstract. We introduce a novel algebraic approach for attacking the
McEliece cryptosystem which is currently at the 4-th round of the NIST
competition. The contributions of the article are twofold. (1) We present
a new distinguisher on alternant and Goppa codes working in a much
broader range of parameters than [FGO+11]. (2) With this approach we
also provide a polynomial–time key recovery attack on alternant codes
which are distinguishable with the distinguisher [FGO+11].

These results are obtained by introducing a subspace of matrices rep-
resenting quadratic forms. Those are associated with quadratic relations
for the component-wise product in the dual of the Goppa (or alternant)
code of the cryptosystem. It turns out that this subspace of matrices con-
tains matrices of unusually small rank in the case of alternant or Goppa
codes (2 or 3 depending on the field characteristic) revealing the secret
polynomial structure of the code. MinRank solvers can then be used to
recover the secret key of the scheme. We devise a dedicated algebraic
modeling in characteristic 2 where the Gröbner basis techniques to solve
it can be analyzed. This computation behaves differently when applied
to the matrix space associated with a random code rather than with a
Goppa or an alternant code. This gives a distinguisher of the latter code
families, which contrarily to the one proposed in [FGO+11] working only
in a tiny parameter regime is now able to work for code rates above 2

3
.

It applies to most of the instantiations of the McEliece cryptosystem in
the literature. It coincides with the one of [FGO+11] when the latter
can be applied (and is therefore of polynomial complexity in this case).
However, its complexity increases significantly when [FGO+11] does not
apply anymore, but stays subexponential as long as the co-dimension
of the code is sublinear in the length (with an asymptotic exponent
which is below those of all known key recovery or message attacks). For
the concrete parameters of the McEliece NIST submission [ABC+22],
its complexity is way too complex to threaten the cryptosystem, but is
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smaller than known key recovery attacks for most of the parameters of
the submission. This subspace of quadratic forms can also be used in a
different manner to give a polynomial time attack of the McEliece cryp-
tosystem based on generic alternant codes or Goppa codes provided that
these codes are distinguishable by the method of [FGO+11], and in the
Goppa case we need the additional assumption that its degree is less
than q ´ 1, where q is the alphabet size of the code.

1 Introduction

The McEliece Cryptosystem

The McEliece encryption scheme [McE78], which is only a few months younger
than RSA [RSA78], is a code-based cryptosystem built upon the family of binary
Goppa codes. It is equipped with very fast encryption and decryption algorithms
and has very small ciphertexts but large public key size. Contrarily to RSA which
is broken by quantum computers [Sho94], it is also widely viewed as a viable
quantum-safe cryptosystem. A variation of this public key cryptosystem intended
to be IND-CCA secure and an associated key exchange protocol [ABC+22] is one
of the three remaining code-based candidates in the fourth round of the NIST
post-quantum competition on post-quantum cryptography. Its main selling point
for being standardized is that it is the oldest public key cryptosystem which has
resisted all possible attacks be they classical or quantum so far, this despite very
significant efforts to break it.

The consensus right now about this cryptosystem is that key-recovery attacks
that would be able to exploit the underlying algebraic structure are way more
expensive than message-recovery attacks that use decoding algorithms for generic
linear codes. Because of this reason, the parameters of McEliece encryption
scheme are chosen according to the latest algorithms for decoding a linear
code. This is also actually another selling point for this cryptosystem, since
despite significant efforts on improving the algorithms for decoding linear codes,
all the classical algorithms for performing this task are of exponential com-
plexity and this exponent has basically only decreased by less than 20 per-
cent for most parameters of interest after more than 60 years of research
[Pra62,Ste88,Dum89,CC98,MMT11,BJMM12,MO15,BM17]. The situation is
even more stable when it comes to quantum algorithms [Ber10,KT17].

Key Recovery Attacks

The best key recovery attack has not changed for many years. It was given in
[LS01] and consists in checking all Goppa polynomials and all possible supports
with the help of [Sen00]. Its complexity is also exponential with an exponent
which is much bigger than the one obtained for message recovery attacks. There
has been some progress on this issue, not on the original McEliece cryptosys-
tem, but on variations of it. This concerns very high rate binary Goppa codes for
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devising signature schemes [CFS01], non-binary Goppa codes over large alpha-
bets [BLP10,BLP11], or more structured versions of the McEliece system, based
on quasi-cyclic alternant codes [BCGO09,CBB+17] (a family of algebraic codes
containing Goppa codes retaining the essential algebraic features of Goppa codes)
or on quasi-dyadic Goppa codes such as [MB09,BLM11,BBB+17].

The quasi-cyclic or quasi-dyadic alternant/Goppa codes have been attacked
in [FOPT10,GUL09,BC18] by providing a suitable algebraic modeling for the
secret key and then solving the algebraic system with Gröbner bases techniques.
This algebraic modeling tries to recover the underlying polynomial structure of
these codes coming from the underlying generalized Reed-Solomon structure by
using just an arbitrary generator matrix of the alternant or Goppa code which
is given by the public key of the scheme. This is basically the secret key of
the scheme. It allows to decode the alternant or Goppa code and therefore all
possible ciphertexts. Recall that a generalized Reed-Solomon code is defined by

Definition 1 (Generalized Reed-Solomon (GRS) code). Let x “ (x1, . . . ,
xn) P F

n be a vector of pairwise distinct entries and y “ (y1, . . . , yn) P F
n

a vector of nonzero entries, where F is a finite field. The generalized Reed-
Solomon (GRS) code over F of dimension k with support x and multiplier y
is

GRSk(x,y) def“ {(y1P (x1), . . . , ynP (xn)) | P P F[z],degP ă k}.

Alternant codes are defined as subfield subcodes of GRS codes, meaning that an
alternant code A of length n is defined over some field Fq whereas the underlying
GRS code C is defined over an extension field Fqm of degree m. The alternant
code is defined in this case as the set of codewords of the GRS code whose entries
all belong to the subfield Fq, i.e. A “ C X F

n
q . Rather than trying to recover

the polynomial structure of the underlying GRS code, the algebraic attack in
[FOPT10] actually recovers the polynomial structure of the dual code. Recall
that the dual code of a linear code is defined by

Definition 2 (dual code). The dual C K of a linear code C of length n over
Fq is the subspace of Fn

q defined by C K def“ {d P F
n
q : d · c “ 0, ∀c P C }, where

d · c “ ∑n
i“1 cidi with c “ (ci)1ďiďn and d “ (di)1ďiďn.

The dual code of an alternant code has also a polynomial structure owing to the
fact that the dual of a GRS code is actually a GRS code:

Proposition 1 ([MS86, Theorem 4, p. 304]). Let GRSr(x,y) be a GRS
code of length n. Its dual is also a GRS code. In particular GRSr(x,y)K “
GRSn´r(x,yK), with yK def“

(
1

π′
x (x1)y1

, . . . , 1
π′
x (xn)yn

)
, where πx(z)

def“ ∏n
i“1(z ´

xi) and π′
x is its derivative.

It is actually the dual of the underlying GRS code which serves to define the
multiplier and the support of an alternant code as shown by
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Definition 3 (alternant code). Let n ď qm, for some positive integer m. Let
GRSr(x,y) be the GRS code over Fqm of dimension r with support x P F

n
qm

and multiplier y P (F∗
qm)n. The alternant code with support x and multiplier y,

degree r over Fq is

Ar(x,y) def“ GRSr(x,y)K X F
n
q “ GRSn´r(x,yK) X F

n
q .

The integer m is called extension degree of the alternant code.

It is much more convenient to recover with an algebraic modeling the support
and the multiplier of the dual of the underlying GRS code because any codeword
c of the alternant code Ar(x,y) is readily seen to be orthogonal to any codeword
d of GRSr(x,y), i.e. c ·d “ 0. The algebraic modeling of [FOPT10] is based on
such equations where the unknowns are the entries of x and y. Goppa codes can
be recovered from this approach too, since they are particular alternant codes:

Definition 4 (Goppa code). Let x P F
n
qm be a support vector and Γ P Fqm [z] a

polynomial of degree r such that Γ (xi) ‰ 0 for all i P {1, . . . , n}. The Goppa code
of degree r with support x and Goppa polynomial Γ is defined as G (x, Γ ) def“
Ar(x,y), where y

def“
(

1
Γ (x1)

, . . . , 1
Γ (xn)

)
.

The algebraic modeling approach of [FOPT10] worked because the quasi cyclic/
dyadic structure allowed to reduce drastically the number of unknowns of the
algebraic system when compared to the original McEliece cryptosystem. A vari-
ant of this algebraic modeling was introduced in [FPdP14] to attack certain
parameters of the variant of the McEliece cryptosystem [BLP10,BLP11] based
on wild Goppa codes/wild Goppa codes incognito. It only involves equations
on the multiplier y of the Goppa code induced by the wild Goppa structure.
The McEliece cryptosystem based on plain binary Goppa codes seems immune
to both the approaches of [FOPT10] and [FPdP14]. The first one because the
degree and the number of variables of the resulting system are most certainly
too big to make such an approach likely to succeed if not at the cost of a very
high exponential complexity (but this has to be confirmed by a rigorous analysis
which is hard to perform because Gröbner bases techniques perform here very
differently from a generic system). The second one because this modeling does
not apply to binary Goppa codes. In particular, it needs a very small extension
degree and a code alphabet size that are prime powers rather than prime.

It was also found that Gröbner bases techniques when applied to the algebraic
system [FOPT10] behaved very differently when the system corresponds to a
Goppa code instead of a random linear code of the same length and dimension.
This approach led to [FGO+11] that gave a way to distinguish high-rate Goppa
codes from random codes. It is based on the kernel of a linear system related to
the aforementioned algebraic system. It was shown there to have an unexpectedly
high dimension when instantiated with Goppa codes or the more general family
of alternant codes rather than with random linear codes. Another interpretation
was later on given to this distinguisher in [MP12], where it was proved that
the kernel dimension is related to the dimension of the square of the dual of
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the Goppa code. Very recently, [MT22] revisited [FGO+11] and gave rigorous
bounds for the dimensions of the square codes of Goppa or alternant codes and
a better insight into the algebraic structure of these squares. The component-
wise/Schur product/square of codes is defined from the component-wise/Schur
product a ‹b def“ (a1b1, . . . , anbn) of vectors a “ (ai)1ďiďn and b “ (bi)1ďiďn by

Definition 5. The component-wise product of codes C ,D ⊆ F
n is defined as

C ‹ D
def“ 〈 c ‹ d | c P C ,d P D 〉

F
.

If C “ D , we call C ‹2 def“ C ‹ C the square code of C .

The reason why Goppa codes behave differently from random codes for this
product is essentially because the underlying GRS code behaves very abnormally
with respect to the component-wise product. Indeed,

Proposition 2 ([CGG+14]). Let GRSk(x,y) be a GRS code with support x,
multiplier y and dimension k. We have GRSk(x,y)‹2 “ GRS2k´1(x,y ‹ y).
Hence, if k ď n`1

2 , dimFqm (GRSk(x,y))‹2 “ 2k ´ 1.

On the other hand, random linear codes behave very differently, because they
attain with probability close to 1 [CCMZ15] the general upper bound on the
dimension given by dimF C ‹2 ď min

(
n,

(
dimF C `1

2

))
. In other words, the dimen-

sion of the square of a random linear code scales quadratically as long as the
dimension is k “ O (

√
n) and attains after this the full dimension n, whereas the

dimension of the square of a GRS code of dimension k increases only linearly in
k. This peculiar property of GRS codes survives in an attenuated form in the
square of the dual of an alternant/Goppa code as shown by [MT22].

This tool was also instrumental in another breakthrough in this area, namely
that for the first time a polynomial attack [COT14,COT17] was found on the
McEliece scheme when instantiated with Goppa codes. This was done by using
square code considerations. However, this attack required very special param-
eters to be carried out: (i) the extension degree should be 2, (ii) the Goppa
code should be a wild Goppa code. It is insightful to remark that this attack
exploits the unusually low dimension of the square of wild Goppa codes when
their dimension is low enough whereas the distinguisher of [FGO+11] actually
uses the small dimension of the square of the dual of a Goppa or alternant code.
The dual of such codes has a much more involved structure, in particular it
loses a lot of the nice polynomial structure of the Goppa code (this was essential
in the attack performed in [COT14]). This is probably the reason why for a
long time the distinguisher of [FGO+11] has not turned into an actual attack.
However, recently in [BMT23] it has been found out that in certain cases (i)
very small field size q “ 2 or q “ 3 over which the code is defined, (ii) being a
generic alternant code rather than being in the special case of Goppa code, (iii)
being in the region of parameters where the distinguisher of [FGO+11] applies,
then this distinguisher can actually be turned into a polynomial-time attack.
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Note that [BMT23] also made some crucial improvements in the algebraic mod-
eling of [FOPT10] (in particular by adding low-degree equations that take into
account that the multiplier and support of the alternant/Goppa code should
satisfy certain constraints).

A New Approach

A First Idea: Non Generic Quadratic Relations on the Extended Dual
Alternant/Goppa Code. We devise in this work a radically new approach
toward attacking the McEliece cryptosystem when it is based on alternant or
Goppa codes. This leads to two new contributions: (1) a new distinguisher on
alternant and Goppa codes and (2) a polynomial time key-recovery attack on the
alternant and part of the Goppa codes that are distinguishable by [FGO+11].
Both exploit the structure of the extension over a larger field of the dual of an
alternant/Goppa code. The extension of a code over a field extension is given by

Definition 6 (Extension of a code over a field extension). Let C be a
linear code over Fq. We denote by CFqm the Fqm-linear span of C in F

n
qm .

Definition 7 (Image of a code by the Frobenius map). Let C ⊆ Fqm be
a code, we define C (q) def“ {(cq

1, . . . , c
q
n) | (c1, . . . , cn) P C }.

It turns out that the extension of the dual of an alternant code actually contains
GRS codes and their images by the Frobenius map:

Proposition 3 ([BMT23]). Let Ar(x,y) be an alternant code over Fq. Then
(
Ar(x,y)K)

Fqm
“ ∑m´1

j“0 GRSr(x,y)(q
j) “ ∑m´1

j“0 GRSr(xqj

,yqj

).

Observe now that a GRS code contains non-zero codewords c1, c2, c3 satisfying
a very peculiar property, namely

c1 ‹ c3 “ c‹2
2 . (1)

This can be seen by choosing c1 “ yxa “ (yix
a
i )1ďiďn, c2 “ yxb “ (yix

b
i )1ďiďn

and c3 “ yxc “ (yix
c
i )1ďiďn for any a, b, c in �0, r ´ 1� satisfying b “ a`c

2 . Such
a relation is unlikely to hold in a random linear code of dimension k, unless it is
of rate k/n close to 1. Therefore the dual code of our alternant or Goppa code
contains very peculiar codewords. The issue is now how to find them?

A New Concept: The Code of Quadratic Relations. Equation (1) can
be viewed as a quadratic relation between codewords. There is a natural object
that can be brought in that encodes in a natural way quadratic relations

Definition 8 (Code of quadratic relations). Let C be an [n, k] linear code
over F and let V “ {v1, . . . ,vk} be a basis of C . The code of relations between
the Schur’s products with respect to V is

Crel(V) def“ {c “ (ci,j)1ďiďjďk |
∑

iďj

ci,jvi ‹ vj “ 0} ⊆ F
(k`1

2 ).
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Such an element c “ (ci,j)1ďiďjďk of Crel(V) defines a quadratic form as

Qc(x1, · · · , xk) “
∑

iďj

ci,jxixj .

When a basis V containing the aforementioned ci’s is chosen, there exists an
element in Crel(V) whose associated quadratic form is of the form xixj ´ x2

�

(for vi “ c1, vj “ c3, v� “ c2). In other words, this quadratic form is of rank
3 (in odd characteristic). To find such non–generic elements in Crel(V), it is
convenient to represent the elements of Crel(V) as matrices corresponding to the
bilinear map given by the polar form of the quadratic form, i.e. the matrix Mc

corresponding to c P Crel(V) that satisfies for all x and y in F
k
qm

xMcy
ᵀ “ Qc(x ` y) ´ Qc(x) ´ Qc(y). (2)

This definition allows to have a matrix definition of the quadratic form which
works both in odd characteristic and characteristic 2 and which satisfies the
crucial relation (3) when the basis is changed. Note that Mc is symmetric in
odd characteristic, whereas it is skew-symmetric in characteristic 2.

Remark 1. By skew symmetric matrices in characteristic 2 we mean symmetric
matrices with zero diagonal.

Definition 9 (Matrix code of relations). Let C be an [n, k] linear code over
F and let V “ {v1, . . . ,vk} be a basis of C . The matrix code of relations
between the Schur’s products with respect to V is

Cmat(V) def“ {Mc “ (mi,j)1ďiďk
1ďjďk

| c “ (ci,j)1ďiďjďk P Crel(V)} ⊆ Sym(k,F),

where Mc is defined as mi,j
def“ mj,i

def“ ci,j , i �“ j and mi,i
def“ 2ci,i, 1 ď i ď k.

The previous discussion shows that if V contains the triple c1, c2, c3, then
there exists a matrix of rank 3 in the matrix code of relations in odd charac-
teristic. Note that the matrix is of rank 2 in characteristic 2 since the polar
form corresponding to the quadratic form Q(x) “ xixj ´ x2

� is given by
(xi ` yi)(xj ` yj) ´ (x� ` y�)2 ´ xixj ` x2

� ´ yiyj ` y2
� “ xiyj ` xjyi.

Now the point is that even if we do not have a basis containing the ci’s, there
are still rank 3 (or 2) matrices in the matrix code of relations. This holds because
a change of basis basically amounts to a congruent matrix code. Indeed if A and
B are two different bases of the same code, there exists (see Proposition 4) an
invertible P P F

kˆk such that

Cmat(A) “ P ᵀCmat(B)P . (3)

Therefore for any choice of basis, there exists a rank 3 matrix in the correspond-
ing matrix code of relations. Finding such matrices can be viewed as a MinRank
problem for rank 3 with symmetric matrices.
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Problem 1 (Symmetric MinRank problem for rank r). Let M1, · · · ,MK be K
symmetric matrices in F

NˆN . Find an M P 〈M1, · · · ,MK 〉
F

of rank r.

Of course, the dimension of the matrix code could be so large that there
are rank 3 (or 2) matrices which are here by chance and which are not induced
by these unusual quadratic relations between codewords of the GRS code. We
will study this problem and will give in Sect. 4 bounds on the parameters of the
problem which rule out this possibility. Basically, the parameters that we will
encounter for breaking McEliece-type systems will avoid this phenomenon.

A Dedicated Algebraic Approach for Finding Rank 2 Elements in a
Skew-Symmetric Matrix Code. There are many methods which can be used
to solve the MinRank problem, be they combinatorial [GC00], based on an alge-
braic modeling and solving them with Gröbner basis or XL type techniques, such
as [KS99,FLP08,FSEDS10,VBC+19,BBC+20] or hybrid methods [BBB+22].
Basically all of them can be adapted to the symmetric MinRank problem. One of
the most attractive methods for solving the problem for the parameters we have
is the Support Minors approach introduced in [BBC+20]. Unfortunately due to
the symmetric or skew-symmetric form of the matrix space, solving the corre-
sponding system with the proposed XL type approach behaves very differently
from a generic matrix space and its complexity seems very delicate to predict. For
this reason, we have devised another way of solving the corresponding MinRank
problem in characteristic 2. First, we took advantage that the algebraic system
describing the variety of skew-symmetric matrices of rank ď 2 has already been
studied in the literature and Gröbner bases are known. Next, we add to this
Gröbner basis the linear equations expressing that the skew-symmetric matrix
should also belong to the matrix code of relations. This allows us to understand
the complexity of solving the corresponding algebraic system. It turns out that
the Gröbner basis computation behaves very differently when applied to the
skew-symmetric matrix space associated with a random code rather than with
a Goppa or an alternant code. This clearly yields a way to distinguish a Goppa
code or more generally an alternant code from a random code. Contrarily to
the distinguisher that has been devised in [FGO+11] which works only for a
very restricted set of parameters, this new distinguisher basically works already
for rates above 2

3 . This concerns an overwhelming proportion of code parameters
that have been proposed (and all parameters of the NIST submission [ABC+22]).
Interestingly enough, for the code parameters where [FGO+11] works, our new
distinguisher coincides with it. Despite the fact that its complexity increases
significantly when [FGO+11] does not apply anymore, it stays subexponential
as long as the co-dimension of the code is sublinear in the length. Interestingly
enough in this regime, its asymptotic exponent is below those of all known key
recovery or message attacks. For the concrete parameters of the McEliece NIST
submission [ABC+22], its complexity is too complex to threaten the cryptosys-
tem, but is smaller than known key recovery attacks for most of the parameters
of the submission.



A New Approach Based on Quadratic Forms to Attack McEliece 11

A New Attack Exploiting Rank Defective Matrices in the Matrix Code
of Relations. There is another way to exploit this matrix code which consists
in observing that for a restricted set of code parameters (i) the degree r of the
alternant code is less than q ` 1 or q ´ 1 in the Goppa case, (ii) the code is
distinguishable with the method of [FGO+11], a rank defective matrix in the
matrix code of relations leaks information on the secret polynomial structure of
the code. This can be used to mount a simple attack by just (i) looking for such
matrices by picking enough random elements in the matrix code and verifying
if they are rank defective (ii) and then exploiting the information gathered here
to recover the support and multiplier of the alternant/Goppa code.

Summary of the Contributions. In a nutshell, our contributions are

– We introduce a new concept, namely the matrix code of quadratic relations
which can be derived from the extended dual of the Goppa/alternant code
for which we want to recover the polynomial structure. This is a subspace of
symmetric or skew-symmetric matrices depending on the field characteristic
over which the code is defined which has the particular feature of containing
very low-rank matrices (rank 3 in odd characteristic, rank 2 in character-
istic 2) which are related to the secret key of the corresponding McEliece
cryptosystem.

– We devise a dedicated algebraic approach for finding these low-rank matri-
ces in characteristic 2 when this subspace of matrices is formed by skew-
symmetric matrices. It takes advantage of the fact that we know a Gröb-
ner basis for the algebraic system expressing the fact that a skew-symmetric
matrix is of rank ď 2 based on the nullity of all minors of size greater than 2.
This system can be solved with the help of Gröbner bases techniques. It turns
out that the solving process behaves differently when applied to the matrix
code of quadratic relations associated with a random linear code rather than
with a Goppa or an alternant code. This gives a way to distinguish a Goppa
code or more generally an alternant code from a random code which contrar-
ily to the distinguisher of [FGO+11,FGO+13] works for virtually all code
parameters relevant to cryptography (recall that the latter works only for
very high rate Goppa or alternant codes). Moreover, the complexity of this
system solving can be analyzed and an upper bound on the complexity of the
distinguisher can be given. It is polynomial in the same regime of parameters
when the distinguisher of [FGO+11] works. Even if its complexity increases
significantly outside this regime, it is less complex than all known attacks in
the sublinear co-dimension regime. For the concrete NIST submission param-
eters [ABC+22] its complexity is very far away from representing a threat,
but is below the known key attacks for most of these parameters. This can
be considered as a breakthrough in this area.

– Rank defective elements in this matrix space also reveal something about
the hidden polynomial structure of the Goppa or alternant code in a certain
parameter regime, namely when (i) the degree r of the alternant code is less
than q `1 or q ´1 in the Goppa case, (ii) the code is distinguishable with the
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method of [FGO+11]. We use this to give a polynomial-time attack in such a
case by just looking for rank defective elements with a random search. This
complements nicely the polynomial attack which has been found in [BMT23]
which also needs that the code is distinguishable with [FGO+11], but works
in the reverse parameter regime r ě q`1 (and has also additional restrictions,
code alphabet size either binary or ternary and it does not work for Goppa
codes). Note that in conjunction with the filtration of [BMT23], this new
attack works for any distinguishable generic alternant code. This gives yet
another example of a case when the distinguisher of [FGO+11] turns into an
actual attack of the scheme.

Important Note. Proofs of all results and more experimental results can be
found at [CMT23].

2 Notation and Preliminaries

2.1 Notation

General Notation. �a, b� indicates the closed integer interval between a and
b. We will make use of two notations for finite fields, Fq denotes the finite field
with q elements, but sometimes we do not indicate the size of it when it is not
important to do so and simply write F. Instead, a general field (not necessarily
finite) is denoted by K and its algebraic closure by K.

Vector and Matrix Notation. Vectors are indicated by lowercase bold letters
x and matrices by uppercase bold letters M . Given a function f acting on F and
a vector x “ (xi)1ďiďn P F, the expression f(x) is the component-wise mapping
of f on x, i.e. f(x) “ (f(xi))1ďiďn. We will even apply this with functions f
acting on F ˆ F: for instance for two vectors x and y in F

n and two positive
integers a and b we denote by xayb the vector (xa

i yb
i )1ďiďn. We will use the

same operation over matrices, but in order to avoid confusion with the matrix
product, we use for a matrix A “ (ai,j)i,j the notation A(q) which stands for
the entries of A all raised to the power q, i.e. the entry (i, j) of A(q) is equal to
aq

i,j . The scalar product between x “ (xi)1ďiďn P F
n and y “ (yi)1ďiďn P F

n is
denoted by x · y and is defined by x · y “ ∑n

i“1 xiyi.

Symmetric and Skew-Symmetric Matrices. The set of k ˆ k symmetric
matrices over F is denoted by Sym(k,F), whereas the corresponding set of skew-
symmetric matrices is denoted by Skew(k,Fq).

Vector Spaces. Vector spaces are indicated by C . For two vector spaces C and
D , the notation C ‘ D means that the two vector spaces are in direct sum, i.e.
that C X D “ {0}. The F-linear space generated by x1, . . . ,xm P F

n is denoted
by 〈x1, . . . ,xm 〉

F
.

Codes. A linear code C of length n and dimension k over F is a k dimensional
subspace of Fn. We refer to it as an [n, k]-code.
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Ideals. Ideals are indicated by calligraphic I. Given a sequence S of polynomi-
als, I(S) refers to the polynomial ideal generated by such sequence. Given the
polynomials f1, . . . , fm, we denote by I (f1, . . . , fm) the ideal generated by them.
The variety associated with a polynomial ideal I ⊆ K[x1, . . . , xn] is indicated by
V (I) and defined as V (I) “ {a P K

n | ∀f P I, f(a) “ 0}.

2.2 Distinguishable Alternant or Goppa Code

We will frequently use here the term distinguishable alternant/Goppa (in the
sense of [FGO+11]) code. They are defined as

Definition 10 (Square–distinguishable alternant/Goppa code). A (gen-
eric) alternant code Ar(x,y) of length n over Fq and extension degree m is said
to be square–distinguishable if

n ą
(

rm ` 1
2

)

´ m

2
(r ´ 1)

(

(2eA ` 1)r ´ 2
qeA `1 ´ 1

q ´ 1

)

(4)

where eA
def“ max{i P N | r ě qi ` 1} “ ⌊

logq(r ´ 1)
⌋
.

A Goppa code G (x, Γ ) of the same parameters is said to be square–
distinguishable if

n ą
(

rm ` 1
2

)

´ m

2
(r ´ 1)(r ´ 2), if r ă q ´ 1 (5)

n ą
(

rm ` 1
2

)

´ m

2
r
(
(2eG ` 1)r ´ 2(q ´ 1)qeG ´1 ´ 1

)
, otherwise, (6)

where eG
def“ min{i P N | r ď (q ´ 1)2qi} ` 1 “

⌈
logq

(
r

(q´1)2

)⌉
` 1.

This definition is basically due to the fact that there is a way to distinguish such
codes from random codes in this case [FGO+11]. For our purpose, it is better
to use the point of view of [MT22] and to notice that they are distinguishable
because the computation of the dimension of the square of the dual code leads to
a result which is different from n and

(
rm`1

2

)
(which is the expected dimension

of the square of a dual code of dimension rm). This is shown by

Theorem 1 ([MT22]). Let eA and eG be defined as in Definition 10. For an
alternant code Fq of length n and extension degree m we have

dimFq (Ar(x,y)K)‹2 ď min

{
n,

(
rm ` 1

2

)
´ m

2
(r ´ 1)

(
(2eA ` 1)r ´ 2

qeA `1 ´ 1

q ´ 1

)}
.

(7)
For a Goppa code G (x, Γ ) of length n over Fq with Goppa polynomial Γ (X) P
Fqm [X] of degree r we have

dim(G (x, Γ )
K
)

‹2 ď min

{
n,

(rm ` 1

2

)
´ m

2
(r ´ 1)(r ´ 2)

}
, if r ă q ´ 1 (8)

dim(G (x, Γ )
K
)

‹2 ď min

{
n,

(rm ` 1

2

)
´ m

2
r

(
(2eG ` 1)r ´ 2(q ´ 1)q

eG ´1 ´ 1
)}

, otherwise. (9)
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3 Invariants of the Matrix Code of Quadratic Relations

3.1 Changing the Basis

The fundamental objects that we have introduced, namely the code of relations
Crel(V) and the corresponding matrix code Cmat(V) both depend on the basis V
which is chosen. However, all these matrix codes are isometric for the rank metric,
namely the metric d between matrices given by d(X,Y ) def“ Rank(X´Y ). This
holds because of the following result:

Proposition 4. Let A and B be two bases of a same [n, k] F-linear code C ,
with F. Then Cmat(A) and Cmat(B) are isometric matrix codes, i.e. there exists
P P GLk(F) such that

Cmat(A) “ P ᵀCmat(B)P . (10)

The matrix P coincides with the change of basis matrix between A and B.

This Proposition is proved in [CMT23, Appendix B]. This result implies that
there are several fundamental quantities which stay invariant when considering
different bases, such as for instance

– the distribution of ranks {ni, 0 ď i ď k} where ni is the number of matrices
in Cmat(V) of rank i;

– the dimension of Cmat(V), more precisely:

Proposition 5. Let C ⊆ F
n be an [n, k] linear code with ordered basis V. Then

dimF Cmat(V) “ dimF Crel(V) “
(

k ` 1
2

)

´ dimF C
‹2.

(this result is proved in [CMT23, §3])

We will sometime avoid specifying the basis, and simply write Cmat, when
referring to invariants for the code.

4 Low-Rank Matrices in Cmat

4.1 Low-Rank Matrices from Quadratic Relations in [FGO+13]

By Proposition 4, all the matrix codes Cmat(B) are isometric for any choice of
basis B. We will be interested here in showing that the matrix code of quadratic
relations associated to the extension over Fqm of the dual of an alternant code
Ar(x,y) defined over Fq contains many low rank matrices. This is due to the
fact that this code contains the GRS codes GRSr(xqi

,yqi

) for all i P �0,m ´ 1�
(Proposition 3). This will be clear if we choose the basis appropriately. We can
namely choose the following ordered basis, that we call canonical basis:

A “ (a0, · · · ,ar´1,a
q
0, · · · ,aq

r´1, · · · ,aqm´1

0 , · · · ,aqm´1

r´1 )

“ (y,xy, . . . ,xr´1y, . . . ,yqm´1
, (xy)q

m´1
, . . . , (xr´1y)q

m´1
). (11)
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There are simple quadratic relations between the aqj

i owing to the trivial alge-
braic relations introduced in [FGO+13]: (xay)q

l ‹ (xby)q
u “ (xcy)q

l ‹ (xdy)q
u

if
aql ` bqu “ cql ` dqu. This amounts to the quadratic relation between the basis
elements

aql

a ‹ aqu

b ´ aql

c ‹ aqu

d “ 0. (12)

It is readily seen that matrix of Cmat(B) corresponding to this quadratic relation
is of rank 4 with the exception of the case c “ d and l “ u where it is of rank 3
(odd characteristic) or rank 2 (characteristic 2). Indeed, if we reorder the basis
B such that it starts with aql

a , aql

b , aql

c , then it is readily seen that the matrix
M P Cmat(B) corresponding to (12) has only zeros with the exception of the
first 3 ˆ 3 block M ′ which is given by

M ′ “
⎡

⎣
0 1 0
1 0 0
0 0 ´2

⎤

⎦ (odd characteristic), M ′ “
⎡

⎣
0 1 0
1 0 0
0 0 0

⎤

⎦ (characteristic 2).

This leads to the following fact

Fact 1. Consider the alternant code Ar(x,y) of extension degree m and let
Cmat(A) be the corresponding matrix code associated to the basis choice (11).
Let l P �0,m´1� and a, b, c in �0, r ´1� be such that a` b “ 2c. Then the matrix

of Cmat(A) corresponding to the quadratic relation aql

a ‹ aql

b ´
(
aql

c

)‹2 “ 0 is of
rank 3 in odd characteristic and of rank 2 in characteristic 2.

This already shows that there are many rank 2 or 3 matrices in Cmat correspond-
ing to an alternant code. But it will turn out some subsets of the set of rank ď 2
matrices of Cmat form a vector space of matrices. Moreover, depending on the
fact that the alternant code has a Goppa structure we will have even more low
rank matrices as we show below. We namely have in characteristic 2

Proposition 6. Let Ar(x,y) be an alternant code of extension degree m and
order r over a field of characteristic 2. Then Cmat contains

⌊
r´1
2

⌋
-dimensional

subspaces of rank-(ď 2) matrices. If Ar(x,y) is a binary Goppa code with a
square-free Goppa polynomial, then Cmat contains (r ´ 1)-dimensional subspaces
of rank-(ď 2) matrices.

We can also give a lower bound on the number of such matrices as shown by

Proposition 7. Let Ar(x,y) be an alternant code in characteristic 2 and exten-
sion degree m. The matrix code of quadratic relationships Cmat contains at least
Ω(m(qm(r´2)) matrices of rank 2.

In the particular case of binary Goppa codes associated to a square-free
polynomial (i.e. the standard choice in a McEliece cryptosystem) we have

Proposition 8. Let G (x, Γ ) be a binary Goppa code of extension degree m
with Γ a square-free polynomial of degree r. Then Cmat contains at least
m (qmr´1)(qm(r´1)´1)

q2m´1 matrices of rank 2.
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These propositions are proved in [CMT23, Appendix C.1]. It also turns out
that for the “canonical” choice mentioned above (namely when choosing the
basis A given in (11)) under certain circumstances, Cmat contains the subspace
of block diagonal skew symmetric matrices with blocks of size r

Proposition 9. Let G (x, Γ ) be a binary [n, n´rm] Goppa code with Γ a square-
free polynomial of degree r and let A be the canonical basis of G (x, Γ )K

Fqm
given

in (11) with y “ 1
Γ (x) . Then Cmat(A) contains the space of block-diagonal skew-

symmetric matrices with r ˆ r blocks.

4.2 The Random Case

We have described in the previous subsection a family of matrices in Cmat(A)
with a small rank. In particular, we found rank 3 matrices for odd character-
istic and rank 2 matrices for even characteristic. In the case of binary Goppa
codes with square-free Goppa polynomial, the subspace generated by such rank
2 matrices is even bigger. Since the two codes Cmat(A) and Cmat(B) have the
same weight distribution, the same number of low-rank matrices must exist for
Cmat(B) as well. We may wonder if such low-rank matrices exist in the matrix
code of relationships Cmat(R) of an [n, rm] random Fqm -linear code R with basis
R. This can be determined by computing the Gilbert-Varshamov distance dGV
for spaces of symmetric (resp. skew-symmetric) matrices, which is the smallest d

such that |Cmat(R)||B(Sym)
d | ě |Sym(rm,Fqm)| (resp. cardCmat(R)|B(Skew)

d | ě
|Skew(rm,Fqm)|) where B

(Sym)
d (resp. B

(Skew)
d ) is the ball of radius d (with

respect to the rank metric) of the space of symmetric (resp. skew-symmetric)
matrices. The rationale of this definition is that it can be proved that for a ran-
dom linear code C the probability of having a non zero matrix of rank ď d in

C is upper-bounded by the ratio |C ||B(Sym)
d |

|Sym(rm,Fqm )| in the symmetric case. A simi-
lar bound holds in the skew-symmetric case. In a low dimension scenario, more
precisely when

(
rm`1

2

) ď n, the code Cmat(R) is expected to be trivial. This
corresponds indeed to the square distinguishable regime. We will then assume(
rm`1

2

) ą n.

Proposition 10. Let R Ă F
n
qm be a random code of dimension rm with basis

R and let
(
rm`1

2

) ą n. Under the assumption that Cmat(R) has the same rank
weight distribution as a random linear matrix code, it contains matrices of rank
ď d with non-negligible probability iff n ď drm ´ (

d
2

)
(symmetric case), or n ď

(d ` 1)rm ´ (
d`1
2

)
(skew-symmetric case, characteristic 2, d even).

This proposition is proved in [CMT23, Appendix C.2]. In particular, we
expect rank-3 symmetric matrices in Cmat(R) in odd characteristic or rank-2
skew-symmetric matrices in Cmat(R) in characteristic 2 for

n ď 3rm ´ 3. (13)

We observe that for all security levels of Classic McEliece [ABC+22], the code
rate is such that n “ αrm with α P (3.5, 5). This means that any algorithm that
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finds low-rank matrices in Cmat(R) represents a distinguisher between Goppa
codes (and more in general alternant codes) and random linear codes for Classic
McEliece rates.

5 A New Distinguisher of Alternant and Goppa Codes
in Characteristic 2

We are going to focus here on the particular case of characteristic 2 where we
want to find rank 2 matrices in the matrix code of quadratic relations. We are
going to consider a particular algebraic modeling for finding matrices of this
kind for which we can estimate the running time of Gröbner bases algorithms
for solving it. We will show that the behavior of the Gröbner basis computation is
quite different when applied to the matrix code corresponding to an alternant (or
a Goppa) code rather than to the matrix code corresponding to a random code
of the same dimension and length as the alternant/Goppa code. This provides
clearly a distinguisher of an alternant or Goppa code whose complexity can
be estimated. Interestingly enough, it coincides with the square distinguisher
of [FGO+11] for the parameters where the latter applies, but it also permits
to distinguish other parameters and can distinguish Goppa or alternant codes
of rate in the range [ 23 , 1], contrarily to the former which works only for rate
extremely close to 1.

5.1 A Modeling Coming from the Pfaffian Ideal

We are first going to give an algebraic modelling expressing that a skew-
symmetric matrix M with arbitrary entries is of rank ď 2. To do so, we express
the fact that all minors of size 4 should be zero. This implies that M should be
of rank ď 2, because any skew-symmetric matrix is of even rank and therefore
cannot have rank 3. In other words, let us consider the generic skew-symmetric
matrix M “ (mi,j)i,j P Skew(s,Fqm), whose entries mi,j with 1 ď i ă j ď s
are independent variables. Let m “ (mi,j)1ďiăjďs. We will write sometimes mj,i

with i ă j, this must just be seen as an alias for mi,j and not as another variable.
We denote by Minors(M , d) the set of all minors of M of size d. The set of
specializations of M that provide rank 2 matrices is the variety of the determi-
nantal ideal generated by Minors(M , 3). We refer the reader to [MS05, § 15.1]
Since there do not exist rank 3 matrices in Sym(s,Fqm), the ideal generated by
Minors(M , 4) leads to the same variety.

The homogeneous ideal I(Minors(M , 2l)) is not radical. The determinant
of a generic skew-symmetric matrix of size 2lˆ2l is the square of a polynomial of
degree l, called Pfaffian [Wim12, § 1.1]. It is well-known that the corresponding
radical ideal is generated by the square roots of a subset of minors, namely those
corresponding to a submatrix with the same subset for row and column indexes.
Note that such matrices are skew-symmetric as well, and thus their determinant
is the square of a Pfaffian polynomial. In particular, we define
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Definition 11 (Pfaffian ideal for rank 2). The Pfaffian ideal of rank 2 for
M in characteristic 2 is

P2(M) def“ I (mi,jmk,l ` mi,kmj,l ` mi,lmj,k | 1 ď i ă j ă k ă l ď s) , (14)

We have

Proposition 11 ([HT92, Theorem 5.1]). The basis {mi,jmk,l ` mi,kmj,l `
mi,lmj,k | 1 ď i ă j ă k ă l ď s} is a Gröbner basis of P2(M) with respect to a
suitable order.

Another straightforward result, proved in [CMT23, §5.1], is that

Proposition 12. We have V (P2(M)) “ V (I(Minors(M , 4))).

Our modeling takes advantage of the deep knowledge we have about this
ideal. We express now the fact that a matrix M of size s belongs to some matrix
code Cmat associated to an [n, k] code (which implies that s “ n´k since we are
looking at quadratic relations on the dual code) by t

def“ (
s
2

) ´ dimCmat linear
equations L1 “ 0, . . . , Lt “ 0 linking the mi,j ’s. The algebraic modeling we use
to express that an element M of Cmat is of rank ď 2 uses these t linear equations
and the Gröbner basis of the Pfaffian ideal. In other words, we have the following
algebraic modeling

Modeling 1 (M P Cmat, Rank(M) ď 2)

–
(

s
4

)
quadratic equations mi,jmk,l ` mi,kmj,l ` mi,lmj,k “ 0 where 1 ď i ă j ă

k ă l ď s

– t
def“ (

s
2

) ´ dimCmat linear equations L1 “ 0, . . . , Lt “ 0 linking the mij’s
expressing the fact that M belongs to Cmat.

5.2 Gröbner Bases and Hilbert Series

We will be interested in computing the Hilbert series of the ideal corresponding
to Modeling 1 because it will turn out to behave differently depending on the
code we use for defining the associated matrix code Cmat. This will lead to a
distinguisher of alternant or Goppa codes. Given a homogeneous ideal I P K[z],
z “ (z1, . . . , zn), the Hilbert function of the ring R “ K[z]/I is defined as

HFR(d)
def“ dimK(R) “ dimK(K[z]d) ´ dimK(Id),

where K[z]d “ {f P K[z] | deg(f) “ d} and Id “ I X K[z]d. Then the Hilbert
series of R is the formal series HSR(t)

def“ ∑
dě0 HFR(d)td. We are interested in

computing individual terms HFR(d). This can be done by computing the rank
of the Macaulay matrix at degree d by taking m generators of the ideal I (see
[CMT23, Appendix A]). An upper bound on its cost can therefore be derived
directly from [BFS15, Proposition 1]:
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Proposition 13. Let F “ {f1, . . . , fm} Ă K[z1, . . . , zn] be a homogeneous sys-
tem. Let I be the corrresponding ideal. The term HFR(d) of degree d of the
Hilbert function of R “ K[z]/I can be computed in time bounded by

O
(

md

(
n ` d ´ 1

d

)ω)

,

where ω is the linear algebra exponent.

Fortunately, the Hilbert function for our Pfaffian ideal is known. We define
the quotient ring R(M) “ Fqm [m]/P2(M). The Hilbert function (or equiva-
lently the Hilbert series) of R(M) is well-known:

Proposition 14 ([GK04, (from) Theorem 1]). Let M “ (mi,j)i,j be the
generic s ˆ s skew-symmetric matrix over F. Then dimV (P2(M)) “ 2s ´ 3 and

HFR(M )(d) “
(s ` d ´ 2

d

)2
´

(s ` d ´ 2

d ` 1

)(s ` d ´ 2

d ´ 1

)
“ 1

s ` d ´ 1

(s ` d ´ 1

d ` 1

)(s ` d ´ 1

d

)
,

HSR(M )(z) “
∑s´3

d“0

((s´2
d

)2 ´ (s´3
d´1

)(s´1
d`1

))
zd

(1 ´ z)2s´3
.

Modeling 1 adds linear equations to it expressing the fact that the matrix should
also be in the matrix code of quadratic relations. There is one handy tool that
allows to compute the Hilbert series obtained by enriching with polynomials an
ideal whose Hilbert series is known.

Proposition 15 ([Bar04, Lemma 3.3.2]). As long as there are no reductions
to 0 in the F5 algorithm, the Hilbert function HFK[x]/I(f1,...,fm)(d) satisfies the
following recursive formula:

HFK[x ]/I(f1,...,fm)(d) “ HFK[x ]/I(f1,...,fm´1)(d) ´ HFK[x ]/I(f1,...,fm´1)(d ´ deg(fm)).

Essentially, reductions to 0 in F5 [Fau02] correspond to “non generic” reductions
to 0 and experimentally we have not observed this behavior for Modeling 1 when
we add the linear equations expressing that M belongs to the matrix code Cmat
of relations associated to a random linear code.

5.3 Analysis of the Hilbert Series for the Pfaffian Ideal

We will from now on consider that the matrix code Cmat of quadratic relations
is associated to a code C over Fqm of parameters [n,mr] which are the same
as those of the extended dual code Ar(x,y)K

Fqm
of an alternant code Ar(x,y)K

of length n over Fq and extension degree m which we assume to be of generic
dimension k “ n´mr. We will from now on also assume that the [n,mr] code C
we consider satisfies dimC ‹2 “ n. Equivalently, we suppose that the code is not
square distinguishable and will look for another and more powerful distinguisher.
This corresponds to the generic case of a random code as soon as

(
rm`1

2

) ě n



20 A. Couvreur et al.

and to duals of alternant codes/Goppa codes that are not square–distinguishable.
Recall that, from Proposition 5,

dimFqm Cmat(V) “
(

mr ` 1
2

)

´ dimFqm C ‹2 “
(

mr

2

)

` mr ´ n “
(

mr

2

)

´ k,

where k
def“ n ´ rm is given above and corresponds to the dimension of the

alternant code we are interested in. Notice that k is also the cardinality of the
set of independent linear equations expressing in Modeling 1 that the rm ˆ rm
matrix M belongs to Cmat since

(
rm
2

)´dimCmat “ k. We are now going to show
that the Hilbert function of the ring Fqm [m]/(P(M)`〈Li〉i) differs starting from
some degree d̄ depending on how the linear relations Li’s are defined (coming
from Cmat associated to a random C or to the extended dual of an alternant or
Goppa code). We will assume that the parameters of our matrix code are such
that we do not expect a matrix or rank 2 when C is random, which according
to Proposition 10 holds as soon as n ą 3rm ´ 3, i.e. essentially for k/n ą 2/3.

Random Case. We assume that there are no reductions to 0 in F5 and that
we can apply inductively Proposition 15

HFK[z ]/(I`I(L1,...,L�))(d) “ HFK[z ]/(I`I(L1,...,L�´1))(d) ´ HFK[z ]/(I`I(L1,...,L�´1))(d ´ 1)

“ · · · “
d∑

i“0

(´1)i
(

�

i

)
HFK[z ]/I(d ´ i).

This holds as long as there are no reductions to 0 in F5. When there are, we
expect that the Hilbert series at this degree is zero, which means that the induc-
tion formula when adding a polynomial f to I should be

HFK[z ]/(I`I(f))(d) “ max(HFK[z ]/I(d) ´ HFK[z ]/I(d ´ deg(f)), 0).

This leads to the following conjecture, supported by extensive experiments for
several choices of matrix code dimension and matrix size.

Conjecture 1 (Random case). Let L1, . . . , Lk be the k “ n ´ rm linear
relations relative to the matrix code Cmat associated to a random [n, rm]-code as
above. Let P`

2 (M) def“ P2(M) ` I (L1, . . . , Lk). If HFF[m ]/P`
2 (M )(d′) ą 0 for all

d′ ă d, then

HF
F[m ]/P2̀ (M )(d) “ max

(
0,

d∑
i“0

(´1)
i
(k

i

)
HFF[m ]/P2(M )(d ´ i)

)

“ max

(
0,

d∑
i“0

(´1)i

rm ` d ´ i ´ 1

(k

i

)(rm ` d ´ i ´ 1

d ´ i ` 1

)(rm ` d ´ i ´ 1

d ´ i

))
. (15)

Otherwise HFF[m ]/P`
2 (M )(d) “ 0.

Because we assume that Modeling 1 has only zero for solution in the case of a
random code, there exists a d such that HFF[m ]/P`

2 (M )(d) “ 0. Experiments (see
[CMT23, Appendix D.2]) lead to conjecture the following behavior:
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Conjecture 2. Let Cmat be the matrix code of relations originated by a random
[n, rm] code as above. Let P`

2 (M) the corresponding Pfaffian ideal and dreg “
min{d : HFF[m ]/P`

2 (M )(d) “ 0}. Then dreg „ c (rm)2

n´rm for a constant c equal or
close to 1

4 .

The value dreg is known in the literature as the degree of regularity.

Alternant/Goppa Case. In the alternant/Goppa case however the Hilbert
series never vanishes because the variety of solutions has always positive dimen-
sion. We can even lower its dimension by a rather large quantity. The proof of
the next proposition can be found in [CMT23, §5.3].

Proposition 16. Let Cmat be the matrix code of quadratic relations correspond-
ing to the extended dual of an [n, n ´ rm] binary Goppa code with a square-
free Goppa polynomial. Let P`

2 (M) be the corresponding Pfaffian ideal. Then
dimV (P`

2 (M)) ě 2r ´ 3.

More in general, we can upper bound the dimension of the variety using the
following proposition, whose proof is given in [CMT23, Appendix D.1].

Proposition 17. Let Cmat be the matrix code of quadratic relations correspond-
ing to the extended dual of an [n, n´rm] alternant code over a field of character-
istic 2. Let P`

2 (M) be the corresponding Pfaffian ideal. Then dimV (P`
2 (M)) ě

r ´ 2.

Remark 2. Equalities in the two previous propositions were met in the experi-
ments we performed. Note that, comparing with Proposition 6, the Pfaffian ideal
contains subspaces of dimension roughly half the dimension of the variety.

Now, as a consequence of the variety not being trivial, we have the following
result, whose proof can be found in [CMT23, §5.3].

Proposition 18. Let Cmat be the matrix code of quadratic relations correspond-
ing to the extended dual of an [n, n ´ rm] alternant code. Let P`

2 (M) be the
corresponding Pfaffian ideal. For all d P N, HFF[m ]/P`

2 (M )(d) ą 0.

Computing the Hilbert function up to some degree d provides a distinguisher as
soon as it assumes a different value depending on whether it refers to random or
alternant/Goppa codes. Thanks to Proposition 18, this will happen at the latest
at the degree of regularity dreg corresponding to a random code.

An Extension of the Distinguisher of [FGO+11]. All these considerations
lead to a very simple distinguisher of alternant or more specifically of Goppa
codes, we compute for a code HFFqm [m ]/P`

2 (M )(d) at a certain degree (where
P`
2 (M) is the associated Pfaffian ideal), and say that it does not behave like

a random code if this Hilbert function evaluated at degree d does not coincide
with the formula we expect from a random code which is given in Conjecture 1.
This leads us to the following definition
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Definition 12 (d-distinguishable). An [n, rm] Fqm-linear code C is said to be
d-distinguishable from a generic [n, rm] linear code over Fqm when the following
holds

HF
Fqm [m ]/P2̀ (M )(d) ‰ max

(
0,

d∑
i“0

(´1)i

rm ` d ´ i ´ 1

(n ´ rm

i

)(rm ` d ´ i ´ 1

d ´ i ` 1

)(rm ` d ´ i ´ 1

d ´ i

))

where P`
2 (M) is the Pfaffian ideal associated to C .

Note that in general HFFqm [m ]/P`
2 (M )(1) “ dimFqm Cmat(B), hence a different

evaluation of the Hilbert function in degree 1 witnesses an unusually large dimen-
sion of Cmat(B) and consequently an atypically small dimension of the square
code. Indeed, this corresponds to the square distinguisher from [FGO+11]. Being
1-distinguishable is therefore being square-distinguishable. In this sense, this new
distinguisher generalizes the square-distinguisher of [FGO+11].

We can readily find examples of codes which are not square-distinguishable
(i.e. 1-distinguishable), but are distinguishable for higher values of d. We provide
parameters of 2-distinguishable alternant/Goppa codes in [CMT23, §5.3].

For the time being, we have only a limited understanding of how
HFF[m ]/P`

2 (M )(d) behaves for alternant/Goppa codes. However in the case of
binary square-free Goppa code, i.e. those used in McEliece’s schemes, we can
significantly improve upon the HFF[m ]/P`

2 (M )(d) ą 0 lower bound as shown by

Theorem 2. Let G (x, Γ ) be a non distinguishable binary [n, k “ n´rm] Goppa
code with Γ a square-free polynomial of degree r and extension degree m. Let
P`
2 (M) be the corresponding Pfaffian ideal. Then, for all d ą 0,

HFF2m [m ]/P`
2 (M )(d) ě m

((
r ` d ´ 2

d

)2

´
(

r ` d ´ 2
d ` 1

)(
r ` d ´ 2

d ´ 1

))

.

The proof is given in [CMT23, Appendix D]. Theorem 2 has some theoretical
interest, because it shows that the distinguisher can be further improved by
analyzing the matrix code of relations obtained from a Goppa code.

5.4 Complexity of Computing the Distinguisher and Comparison
with Known Key and Message Attacks

Complexity of Computing the Distinguisher. The complexity of comput-
ing the distinguisher is upper-bounded by using Proposition 13

Proposition 19. The computation of HFFqm [m ]/P`
2 (M )(d) for the Pfaffian ideal

associated to an [n,mr]-code has complexity

O
(

d

(

n ´ rm `
(

rm

4

)) ((
rm
2

) ` d ´ 1
d

)ω)

,

where ω is the linear algebra exponent.
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However, in the case at hand, we can use Wiedemann’s algorithm [Wie86],
because (i) we know the Hilbert function for the Pfaffian ideal associated to
an [n,mr] random code, and know when it is equal to 0, namely for d “ dreg,
(ii) we only have to check whether at degree d “ dreg the Macaulay matrix
Mac(F, dreg) has a non zero kernel, (iii) this Macaulay matrix is sparse, since
the Pfaffian equations contain only 3 quadratic monomials, and therefore the
number of entries in a row of Mac(F, dreg) is upper-bounded with the number of
nonzero entries of the polynomial mαL(m), where m is the variable vector of
the matrix entries, L “ 0 is one of the k linear equations and α is a multi-index
exponent of multi-degree dreg´1. This quantity clearly coincides with the number
of nonzero entries of L itself and can be upper bounded by

(
rm
2

) ´ k ` 1 thanks
to Gaussian elimination. There is another point that is potentially problematic
for applying Wiedemann’s algorithm. It is the fact that the Macaulay matrix
(call it M) is non square (it has more rows than columns). The standard trick
consisting in choosing randomly a subset of rows so that the resulting submatrix
is square does not work here, because there are many small subsets of rows in
the Macaulay matrix M that are not linearly independent. The effect of this is
that this strategy typically tends to give rank defective submatrices even if the
whole matrix is not rank defective. There is an easy way to settle this issue in
the case at hand. Let us say that the Macaulay matrix has a rows and b columns.
We choose a random matrix N in F

bˆa
qm with row weight ≈ the average column

weight w2 of M and column weight close to the average row weight w1 of M . If
we use the sparseness of M to perform the multiplication (which is something
we do here), multiplication by N has the same cost as multiplication by M . We
claim that in the case at hand, N ·M has typically the same rank as a random
square matrix when M is of full rank, which would give the following behavior.

Conjecture 1. If M is of full rank b, prob(Rank(N · M) “ b) “ 1 ´ O (q´m).

We run a few experiments for various field sizes that all indicated that this
simple heuristic predicts indeed the right behavior. This gives that the cost of
multiplication in Wiedemann’s algorithm can be bounded by O (a · w1 ` b · w2).
Since a · w1 “ b · w2 we can bound the overall cost of Wiedemann’s algorithm
by O (a · b · w1) “ O (bN) where N is the number of non zero elements in the
Macaulay matrix. From these considerations, we obtain

Proposition 20. Checking whether a code is an alternant code or a generic
linear code can be performed with a complexity upper-bounded by

O
⎛
⎝

⎛
⎝

((
rm

2

)
´ k ` 1

)
(n ´ rm)

((
rm
2

)
` dreg ´ 2

dreg ´ 1

)
` 3

(
rm

4

)((
rm
2

)
` dreg ´ 3

dreg ´ 2

)⎞
⎠

((
rm
2

)
` dreg ´ 1

dreg

)⎞
⎠ .

(16)

Complexity of the Standard Approach for Key Recovery. Recall that it
consists in guessing the irreducible Goppa polynomial Γ and the support set of
coordinates. After that, the Support Splitting Algorithm (SSA) [Sen00] checks
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whether the public code is permutation equivalent to the guessed Goppa code.
The total complexity of this approach can be estimated as

O
⎛

⎝

(
qm

n

)

r

∑

a|r
μ(a)(qm)

r
a

⎞

⎠ , (17)

where μ is the Möbius function. We refer to [CMT23, §5.4] for more details.

Comparison of Distinguisher with the Key-Attack. The comparison of
all the methods we have just presented is given in Table 1 with respect to Clas-
sic McEliece parameters. We remark that, using sparse linear algebra, we can
improve upon the classical method for all parameters except those for category
5. Note that in this case the Goppa code is full-support and therefore the support
coordinates do not need to be guessed, leading to a big improvement upon non-
full support instances. However, our distinguisher suffers less than the standard
key-recovery algorithm from taking instances that are not full support. Indeed,
if we consider the same r and m used in Category 5, but a smaller length n,
then our distinguisher approach outperforms the previous one. In fact, this can
be seen directly from Category 3, which shares the same r and m with Category
5, but it is not full support.

Table 1. Computational cost comparison between this distinguisher and retrieving the
permutation equivalence

Category n r m dreg R classical key-recovery
C “(2m

n

)
r

∑
a|r μ(a)(2m)

r
a

dense linear algebra C “(
rm
4

)
dreg

((
rm
2

)
´k`dreg´1

dreg

)ω
sparse linear
algebra C as in
(16)

1 3488 64 12 84 0.7798 22476 · 2762 “ 23238 23141 22229

2 4608 96 13 212 0.7292 28093 · 21241 “ 29334 27931 25642

3 6688 128 13 229 0.7512 25629 · 21657 “ 27286 29030 26423

4 6960 119 13 169 0.7777 24997 · 21540 “ 26537 26779 24820

5 8192 128 13 154 0.7969 20 · 21657 “ 21657 26329 24499

We also remark that our distinguishing modeling works for any alternant
code, while the classical key-recovery procedure described here is specific for
Goppa codes. Indeed, guessing a valid pair of support x and multiplier y for a
generic alternant code is dramatically more costly for two reasons. First of all,
the n multiplier coordinates yi’s are independent and do not have a compact
representation through a degree-r polynomial. Moreover, in order to guess a
correct code permutation, the support and multiplier coordinate indexes must
correspond.

In Fig. 1 we show the growth of the degree of regularity dreg for a random
[n “ 2m, n ´ rm] code, for fixed m. The graph is defined on the integer interval
whose endpoints are given by the smallest value of r for which [FGO+11] is not
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Fig. 1. Growth of the degree regularity in function of r for fixed m

Fig. 2. Degree of regularity and complexity cost with respect to sparse linear algebra
for the fixed rate R “ 4/5

able to distinguish a binary Goppa code and the largest value for which this new
modeling is able to distinguish respectively. Note that in this case the rate is
decreasing. On the other hand, Fig. 2 provides the degree of regularity dreg and
the complexity estimate using sparse linear algebra, for m fixed, r growing and
n “ 5rm, i.e. for the fixed rate R “ 4/5. The domain of the graph is computed
in the same way as for Fig. 1.

Sublinear Regime. It is insightful to study the asymptotic complexity of dis-
tinguishing an [n, rm]-code in the sublinear regime, when the dimension rm is
sublinear in the codelength n and to compare it with key and message attacks.
Assume that rm “ Θ (nα) where α P [12 , 1). We will also be interested in the case
where the code is a binary Goppa code. To simplify a little bit the discussion
and to minimize the complexity of the known key attack, we will assume that
we have a Goppa code of full support, i.e. n “ 2m.

A binary Goppa code of length n, extension degree m and degree r allows
to correct r errors. Because the number of errors to decode is sublinear in the
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codelength, the complexity Cmess of message attacks for binary [n, n´mr] Goppa
codes (namely that of decoding r errors in an [n, n ´ mr] code) is of the form
2´r log2(1´R)(1`o(1)) for the best known generic decoding algorithms by [CS16]
where R is the code rate, i.e. R “ n´mr

n . We clearly have log2(Cmess) “ (1 ´
α)rm(1 ` o(1)) since ´ log2(1 ´ R) “ ´ log2

(
rm
n

) “ (1 ´ α) log n(1 ` o(1)).
On the other hand, the complexity Ckey of key attacks is of the form

O (
2rm(1`o(1))

)
in the full support case. Here we have log2(Ckey) “ rm(1`o(1)).

Our distinguisher has complexity Cdist which can be estimated through Proposi-
tion 20 and dreg by Conjecture 2, from which we readily obtain that log2(Cdist) “
4αc (rm)2

n log n(1`o(1)), where c is the constant appearing in Conjecture 2. This
whole discussion is summarized in Table 2. The complexity of key attacks is big-
ger than the complexity of message attacks, however now asymptotically the
complexity of the distinguisher is significantly lower than both attacks: message
attacks gain a constant factor 1 ´ α in the exponent when compared to key
attacks, whereas the distinguisher gains a polynomial factor Θ

(
rm
n log n

) “ o(1)
in the exponent with respect to both key and message attacks.

Table 2. Logarithm of the complexity C of different attacks for full support n “ 2m

binary [n, n ´ mr] Goppa codes in the sublinear codimension regime rm “ Θ (nα),
where α P [ 1

2
, 1).

type Key attack Message attack distinguisher

log2 C rm(1 ` o(1)) (1 ´ α)rm(1 ` o(1)) 4αc (rm)2

n
logn(1 ` o(1))

6 An Attack on Distinguishable Random Alternant
Codes, Without the Use of Gröbner Bases

We are going to present now a polynomial time attack on square-distinguishable
generic alternant codes defined over Fq as soon as the degree r satisfies r ă q `1
by using this new notion of the matrix code of quadratic relations. We also recall
that a square-distinguishable alternant code must have degree r ě 3 [FGO+11].
If we combine this together with the filtration technique of [BMT23] which allows
to compute from a square-distinguishable alternant code of degree r satisfying
r ě q `1 an alternant code with the same support but of degree r ´1, we obtain
an attack on all square-distinguishable generic alternant codes. This is a big
improvement on the attack presented in [BMT23] which needed two conditions to
hold: (1) a square-distinguishable alternant code, (2) q is either 2 or 3. Moreover
[BMT23] could not handle the subcase where the alternant code is actually a
Goppa code, whereas our new attack is able to treat this case at least in the case
r ă q ´ 1. We present in Table 3 a summary of the attacks. The reason why for
the time being the square-distinguishable Goppa codes are out of reach, is that
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Table 3. Summary of the attacks against square-distinguishable codes. The column q
corresponds to the restrictions on q for the attack to work and the column r has the
same meaning for the parameter r.

code technique/paper r(ě 3) q

(generic)
square-distinguishable
alternant code

[BMT23] any P {2, 3}

(generic)
square-distinguishable
alternant code

this paper ă q ` 1 any

(generic)
square-distinguishable
alternant code

this paper + filtration
techn. of [BMT23]

any any

square-distinguishable
Goppa codes

this paper ă q ´ 1 any

the filtration technique of [BMT23] for reducing the degree of the code does not
work for the special case of Goppa codes.

Thus, from now on, we will consider an alternant code Ar(x,y) ⊆ F
n
q of

extension degree m which is such that r ă q`1. For generic alternant codes, this
corresponds to the square-distinguisher case with e “ 0. If instead the alternant
code is also Goppa, then we restrict ourselves to the case of r ă q ´ 1. We will
show now how to recover x and y from the knowledge of a generator matrix of
this code by making use of the matrix code of quadratic relations associated to
the extended dual code over Fqm .

The Idea

We first present the underlying idea by picking the canonical basis A of (11)
and the parity-check matrix HA of Ar(x,y)Fqm whose rows correspond to the
elements of A in that same order. We also assume q is odd for now. The crucial
point is that, with the assumption of a square-distinguishable generic alternant
code (resp. Goppa code) with r ă q ` 1 (resp. r ă q ´ 1), the analysis provided
in [FGO+11] implies that the matrix code is generated by all and only relations
of the kind

yql

xaql ‹ yql

xbql “ yql

xcql ‹ yql

xdql

where l is arbitrary in �0,m´1� and a, b, c, d in �0, r ´1� such that a` b “ c`d.
This corresponds to the quadratic relation aql

a ‹ aql

b ´ aql

c ‹ aql

d “ 0. The related
code of relations Cmat(A) has therefore a block diagonal structure with blocks
of size r, i.e. , for each element in A P Cmat(A), we have
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A “

⎡

⎢
⎢
⎢
⎣

A0,0

A1,1 0

0
. . .

Am´1,m´1

⎤

⎥
⎥
⎥
⎦

(18)

where the diagonal blocks Ai,i are symmetric and of size r. Clearly Rank(Ai,i) ď
r and, because of the block diagonal shape, Rank(A) “ ∑

i Rank(Ai,i). Now
assume that A happens to be minimally rank defective, i.e. Rank(A) “ rm ´
1. It means that for exactly one index j P �0,m ´ 1�, Rank(Aj,j) “ r ´ 1,
and for all i P �0,m ´ 1� \ {j}, Rank(Ai,i) “ r. We consider the left kernel
of (the map corresponding to) the matrix A, simply denoted by ker(A). Note
that, if we identify row vectors with column vectors, left and right kernels are
the same in this case, as A is symmetric. Since Rank(A) “ rm ´ 1, we have
dim(ker(A)) “ 1. Let v “ (v0, . . . ,vm´1) P F

rm
qm be a generator of ker(A),

with vi P F
r
qm . Because of the block diagonal structure of A, v must satisfy

v “ (0r, . . . ,0r,vj ,0r, . . . ,0r). In other words, the computation of this nullspace
provides information about the position of the vectors generating a single GRS
code GRSr(xqj

,yqj

). The key idea is that if enough of such vectors are found,
a basis of the corresponding GRS code can be retrieved.

6.1 Choosing B with a Special Shape

Consider an ordered basis

B “ (b0, . . . , br´1, b
q
0, . . . , b

q
r´1, . . . , b

qm´1

0 , . . . , bqm´1

r´1 ) (19)

of Ar(x,y)K
Fqm

. Such a basis can be computed by drawing b0, . . . , br´1 P
Ar(x,y)K

Fqm
at random, applying the Frobenius map m ´ 1 times and check-

ing if the obtained family generates Ar(x,y)K
Fqm

, or equivalently if its dimension
is rm. If not, draw another r-tuple b0, . . . , br´1 at random until the construction
provides a basis. We remark that even sampling a basis as in (19) does not pro-
vide a basis with the same properties of A, i.e. (b0, . . . , br´1) is not an ordered
basis of GRSr(x,y), except with negligible probability.

When B is chosen as in (19), the transition matrix P has a special shape.

Lemma 1. The matrix P is blockwise Dickson. That is to say, there exist
P 0, . . . ,Pm´1 P F

rˆr
qm such that

P “

⎡

⎢
⎢
⎢
⎢
⎣

P 0 P 1 · · · Pm´1

P
(q)
m´1 P

(q)
0 · · · P

(q)
m´2

...
...

. . .
...

P
(qm´1)
1 P

(qm´1)
2 · · · P (qm´1)

0

⎤

⎥
⎥
⎥
⎥
⎦

. (20)
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Let S P GLmr(Fqm) be the right r-cyclic shift matrix, i.e.

S
def“

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ir

Ir 0

0
. . .

Ir

Ir

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (21)

Note that S´1 “ Sᵀ is the left r-cyclic shift matrix. The block-wise Dickson
structure of P can be re-interpreted as follows:

Proposition 21. Let S be defined as in (21) and P satisfy the blockwise Dick-
son structure of (20). Then P “ SᵀP (q)S.

The following result will also be used frequently in what follows

Proposition 22. Whenever a basis B has the form given in (19), Cmat(B) is
stable by the operation M 	 →́ SᵀM (q)S.

The proof is given in [CMT23, Appendix E]. Note that S(qi) “ S for any i. By
applying i times the map M 	 →́ SᵀM (q)S, we obtain M 	 →́ (Sᵀ)iM (qi)(S)i.
We say that M and (Sᵀ)iM (qi)(S)i are blockwise Dickson shift of each other.

6.2 The Full Algorithm with Respect to a Public Basis B
Algorithm 1 provides a sketch of the attack in the case of odd chacteristic
field size. We will then justify why this algorithm is supposed to work with
non-negligible probability, elaborate on some subroutines (as sampling matrices
of rank rm ´ 1). The adaptation to the even characteristic case is treated in
[CMT23, Appendices E8, E.9, E.10]. We now show the structure of the attack.
Starting form a public basis, compute a basis as in (19), as already explained
above. Similarly to HA, we define HB as the parity-check matrix of Ar(x,y)Fqm

whose rows correspond to the elements of B in that same order. The correct-
ness of the whole algorithm follows immediately from the following propositions
whose proofs can be found in [CMT23, Appendix E]. The first one explains why
when we have one kernel element in Algorithm 1 at line 6 we can find m ´ 1
other ones.

Proposition 23. Let v be in the kernel of a matrix B in Cmat(B) of rank rm´1.
Then vqS, . . . ,vqm´1

Sm´1 are m ´ 1 elements that are also kernel elements
of matrices in Cmat(B) of rank rm ´ 1 which are respectively SᵀB(q)S, · · · ,
(Sᵀ)m´1B(qm´1)Sm´1.

Then we are going to give a description of the space V produced in line 17.
Basically this a vector space of elements that correspond to a similar GRS code,
in the following sense.
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Algorithm 1. Sketch of the attack in odd characteristic
Input: (a basis of) an alternant code Ar(x,y)
Output: a pair (x′,y′) of support and multiplier for Ar(x,y)

1: Choose a basis B “ (b0, . . . , br´1, . . . , b
qm´1

0 , . . . , bqm´1

r´1 ) for Ar(x,y)K
Fqm

2: Saux Ð {0}
3: repeat
4: Sample B P Cmat(B) of rank rm ´ 1 at random
5: v Ð generator of ker(B)

6: Saux Ð Saux `
〈
v, vqS, . . . , vqm´1

Sm´1
〉
Fqm

7: until dimFqm Saux “ (r ´ 1)m
8: Sample B1 P Cmat(B) of rank rm ´ 1 at random
9: u1 Ð generator of ker(B1)

10: V Ð 〈u1〉
11: for j P �2, r� do
12: Sample Bj P Cmat(B) of rank rm ´ 1 at random
13: uj Ð generator of ker(Bj)
14: repeat
15: uj Ð uq

jS
16: until dimFqm Saux ` 〈u1,uj〉 “ (r ´ 1)m ` 1
17: V Ð V ` 〈uj〉
18: D Ð V K

19: G Ð D
20: for j P �1, m ´ 2� do
21: D Ð D(q)S
22: G Ð G X D
23: Apply the Sidelnikov-Shestakov attack [SS92] on G · HB
24: Return the support-multiplier pair (x′,y′) found from Sidelnikov-Shestakov attack

Definition 13. Let A,B be the two bases introduced before and P the change
of basis, i.e.HB “ PHA. Let u1,u2 P F

rm
qm be two vectors such that

∀t P {1, 2}, ut(P´1)
ᵀ
P´1HB P GRSr(x,y)q

jt

for some values jt P �0,m ´ 1�. We say that u1 and u2 correspond to the
same GRS code with respect to the basis B if and only if j1 “ j2.

Two vectors u1 and u2 obtained by computing the nullspaces of rank rm ´ 1
matrices may or may not correspond to the same GRS code. In any case, from
them, we can easily exhibit two vectors corresponding to the same GRS code by
choosing among their shifts uqi

t Si. More precisely, we have

Proposition 24. Let A,B be the two bases introduced before and P the change
of basis, i.e.HB “ PHA. Let u1,u2 P F

rm
qm be two vectors such that

∀t P {1, 2}, ut(P´1)
ᵀ
P´1HB P GRSr(x,y)(q

jt )

for some values jt P �0,m ´ 1�. There exists a unique l P �0,m ´ 1� such that u1

and uql

2 Sl correspond to the same GRS code.
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To detect which shift of u2 corresponds to the same GRS code of u1, we rely
on the following proposition.

Proposition 25. Let v1, . . . ,vr´1,u1,u2 P F
rm
qm be the generators of the kernels

of B1, . . . ,Br´1,B
′,B′′ P Cmat(B) respectively, for randomly sampled matrices

of rank rm ´ 1. Define

Saux
def“

〈
vql

j Sl | j P �1, r ´ 1�, l P �0,m ´ 1�
〉

Fqm

.

If the following conditions are satisfied:

– dimFqm Saux “ (r ´ 1)m (i.e. the (r ´ 1)m vectors that generate Saux are
linearly independent);

– dimFqm Saux ` 〈ut 〉
Fqm

“ (r ´ 1)m ` 1, t “ 1, 2;

then the two following statements are equivalent:

1. dimFqm Saux `
〈
u1,u

ql

2 Sl
〉

Fqm

“ (r ´ 1)m ` 1;

2. u1 and uql

2 Sl correspond to the same GRS code with respect to B.

We are therefore able to construct a space of dimension r whose elements all
correspond to a same GRS code. Then we use

Proposition 26. Let j P �0,m ´ 1�. Let Vj be the [rm, r] linear code gen-
erated by r linearly independent vectors corresponding to the same GRS code
GRSr(x,y)(q

j) with respect to B. Then the linear space V K
j orthogonal to Vj is

such that
V K

j HB “
∑

iP�0,m´1�\{j}
GRSr(x,y)(q

i). (22)

Given V K
j , the other codes V K

i HB that are sums of m ´ 1 GRS codes can be
obtained according to the following chain of equalities

∑

iP�0,m´1�\{j`l mod m}
GRSr(x,y)(q

i) “
⎛

⎝
∑

iP�0,m´1�\{j}
GRSr(x,y)(q

i)

⎞

⎠

(ql)

“(V K
j HB)(q

l) “ (V K
j )(q

l)H
(ql)
B “ (V K

j )(q
l)SHB.

After this, we are ready to compute a basis of a GRS code.

Proposition 27. Let V K
j be a linear space satisfying Eq. (22), for all j P �0,m´

1�. Then with the standard assumption that all GRSr(x,y)(q
j) are in direct sum,

we obtain, for any j P �0,m ´ 1�,

GRSr(x,y)(q
j) “

⋂

iP�0,m´1�\{j}
V K

i HB.
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At this point, it is sufficient to run the Sidelnikov-Shestakov [SS92] attack on
the GRS code. This algorithm takes as input the basis of a GRS code and returns
as output a valid pair of support and multiplier for it. Thanks to Propositions 3
and 27, this is also a valid pair for the alternant/Goppa code, thus concluding the
key-recovery attack. The runtime of the Sidelnikov-Shestakov attack is O(n3).

Remark 3. In the q odd case, the only exception to what was said until now
occurs for r “ 3. In this case a non-full rank diagonal block Bj,j becomes the
null block, because there are no matrices of rank 1 or 2. In this case, the kernel
of a rank r(m ´ 1) “ 3m ´ 3 matrix is a three-dimensional subspace, which
immediately provides the subspace Vj from which to recover the associated GRS
codes.

How to Sample Matrices in Cmat(B) of Rank rm ´ 1

This is the most costly part of the algorithm. We address here the case of odd
characteristic, as the case of even characteristic needs an ad hoc discussion and
is treated in [CMT23, Appendix E]. It is not too difficult to estimate that the
density of rank rm ´ 1 matrices inside Cmat(B) is of order q´m and therefore it
is desirable to have a better technique than just a brute force approach. More
precisely, we take two matrices D1,D2 at random in Cmat(B) and solve over
Fqm the equation det(wD1 ` D2) “ 0. The determinant det(wD1 ` D2) is a
univariate polynomial of degree rm and since w is taken over Fqm we can expect
to have solutions with non-negligible probability. A root w0 of det(wD1 ` D2)
determines a matrix w0D1 ` D2 whose rank is strictly smaller than rm but
not necessarily equal to rm ´ 1. However, the rank rm ´ 1 is by far the most
likely outcome. Repeating the process enough times (Θ(1) times on average)
then provides a matrix of rank rm ´ 1.

6.3 Complexity

The bottelneck of the attack is the computation of rank rm ´ 1 matrices in
Cmat(B) which is explained in the previous paragraph. The computation of
the polynomial det(wD1 ` D2) can be done by choosing rm distinct elements
α1, . . . , αrm of Fqm , compute the values det(α1D1 `D2), . . . ,det(αrmD1 `D2)
and then recover the polynomial det(wD1 ` D2) by interpolation. This repre-
sents the calculation of rm “ O(n) determinants of rmˆrm matrices and hence
a cost O(nω`1), where ω is the complexity exponent of linear algebra. Once this
polynomial (in the variable w) is computed, the cost of the root–finding step is
negligible compared to that of the previous calculation.

Since the latter process should be repeated O(n) times, we get an overall
complexity of O(nω`2) operations inFqm .
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7 Conclusion

A General Methodology for Studying the Security of the McEliece
Cryptosystem with Respect to Key–Recovery Attacks. Trying to find
an attack on the key of the McEliece scheme based on Goppa codes, has turned
out over the years to be a formidable problem. The progress on this issue has
basically been non existent for many years and it was for a long time judged that
the McEliece scheme was immune against this kind of attacks. This changed a
little bit when many variants of the original McEliece came out, either by turn-
ing to a slightly larger class of codes namely the alternant codes which retain
the main algebraic structure of the Goppa code and/or adding additional struc-
ture on it [BCGO09,BBB+17], changing the alphabet [BLP10,BLP11], or going
to extreme parameters [CFS01]. This has lead to devise many tools to attack
these variants such as algebraic modeling to recover the alternant stucture of a
Goppa code which is basically enough to recover its structure [FOPT10], using
square code considerations [COT14,COT17,BC18], or trying to solve a sim-
pler problem which is to distinguish these algebraic codes from random codes
[FGO+11,FGO+13,MT22]. We actually believe that in order to make further
progress on this very hard problem, it is desirable to move away now from study-
ing particular schemes proposed in the literature, by exploring and developing
systematically tools for solving this problem and study the region of parameters
(alphabet size q, code length n, degree r of the code, extension degree m) where
these methods work. We suggest the following research plan

– Studying the slightly more general problem of attacking alternant codes might
be the right way to go because it retains the essential algebraic features of
Goppa codes and it allows to find attacks that might not work in the subcase
of Goppa codes where the additional structure can be a nuisance. An example
which is particularly enlightening here is the recent work [BMT23] (attack on
generic alternant codes in a certain parameter regime which amazingly does
not work in the particular case of Goppa codes where the additional structure
prevents the attack to work).

– A particularly fruitful research thread is to study the potentially easier prob-
lem of finding a distinguisher for alternant/Goppa codes first.

– Turn later on this distinguisher into an attack (such as [BMT23] for the
distinguisher of [FGO+11]).

This is the research plan we have followed to some extent here.

A Distinguisher in Odd Characteristic. It is clear that any algebraic mod-
eling for solving the symmetric MinRank problem for rank 3 could be used
to attack the problem in odd characteristic. The Support Minors modeling of
[BBC+20] would be for instance a good candidate for this. The difficulty is here
to predict the complexity of system solving, since the fact that the matrices are
symmetric gives many new linear dependencies that do not happen in the generic
MinRank case. This is clearly a promising open problem.
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Turning the Distinguisher of Sect. 5 into an Attack. The Pfaffian modeling
for the distinguisher can be used in principle to attack the key-recovery problem
as well. This problem is strictly harder than just distinguishing because of the
algebraic structure in the code Cmat(A) that is much stronger than in Cmat(R)
(random case). In particular, rank 2 matrices are found at a potentially larger
degree than d̄ at which the Hilbert function in the random case becomes 0. The
fact that the solution space is very large, in particular it contains a rather large
vector space (see Sect. 4), suggests though that we can safely specialize a rather
large number of variables to speed up the system solving. Once a rank 2 matrix
is found, the attack is not finished yet, but it is tempting to conjecture that
the main bottleneck is to find such a matrix first and that some of the tools
developed in the attack given in Sect. 6 might be used to finish the job.

Indeed, since rank 2 matrices in Cmat(A) are identically zero outside the
main block diagonal, we can consider a matrix subcode spanned by many of
them, obtained by solving the Pfaffian system with different specializations. This
subcode will have a block diagonal shape and that is why the attack of the last
section is expected to apply on such subspace.
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Abstract. We define and analyze the Commutative Isogeny Hidden
Number Problem which is the natural analogue of the Hidden Num-
ber Problem in the CSIDH and CSURF setting. In short, the task is
as follows: Given two supersingular elliptic curves EA, EB and access
to an oracle that outputs some of the most significant bits of the CDH
of two curves, an adversary must compute the shared curve EAB =
CDH(EA, EB).

We show that we can recover EAB in polynomial time by using Cop-
persmith’s method as long as the oracle outputs 13

24
+ ε ≈ 54% (CSIDH)

and 31
41

+ ε ≈ 76% (CSURF) of the most significant bits of the CDH,
where ε > 0 is an arbitrarily small constant. To this end, we give a
purely combinatorial restatement of Coppersmith’s method, effectively
concealing the intricate aspects of lattice theory and allowing for near-
complete automation. By leveraging this approach, we attain recovery
attacks with ε close to zero within a few minutes of computation.

Keywords: Coppersmith · Isogenies · CSIDH · CSURF · Hidden
Number Problem

1 Introduction

The Hidden Number Problem (HNP) introduced by Boneh and Venkatesan [5]
asks to compute a hidden number α given many tuples (ti,MSBk(α · ti mod p))
for randomly chosen ti ∈ Z

∗
p. Here, we denote by MSBk(x) the k most significant

bits of x. One of the applications of the hidden number problem is the assessment
of the bit security of the Diffie-Hellman key exchange over Z

∗
p. More concretely,

the task can be rephrased as follows: compute the shared Diffie-Hellman key
gab = CDH(ga, gb) ∈ Z

∗
p given access to an oracle OMSBk

that on input h ∈ Z
∗
p

outputs the k most significant bits of CDH(ga, h). The famous result by Boneh
and Venkatesan states that one can recover gab in polynomial time if k ≥ √

log p.
Therefore, the

√
log p most significant bits of the shared key gab are as hard

to compute as the whole key. The existence of the oracle OMSBk
is typically

motivated by side-channel attacks and it has recently been shown that such

c© International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14441, pp. 39–71, 2023.
https://doi.org/10.1007/978-981-99-8730-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8730-6_2&domain=pdf
http://orcid.org/0000-0002-1755-8153
http://orcid.org/0000-0003-3066-0133
https://doi.org/10.1007/978-981-99-8730-6_2


40 J. Meers and J. Nowakowski

oracles exist in practice [35,41]. Furthermore, the hidden number problem can
be used to cryptanalyze ECDSA, Intels Software Guard Extensions (SGX), DSA
and qDSA [2,6,17,19,37,47].

The seminal result by Boneh and Venkatesan inspired many follow-up works
that investigated different variants of the hidden number problem, for exam-
ple in the context of Elliptic Curve Diffie-Hellman [4,26,44,53]. As it turns
out, the Elliptic Curve Hidden Number Problem (EC-HNP) is already much
harder to solve and requires different techniques. In particular, Boneh, Halevi
and Howgrave-Graham propose in [3] to use Coppersmith’s method [13,14] to
solve EC-HNP for k ≥ 0.98 log p and curves defined over Fp. More recently,
this approach was further improved, making it feasible to solve EC-HNP for
k ≥ 1

d+1 log p and any fixed d > 0 [54].1 Here the key ingredient is (a very
involved variant of) Coppersmith’s method.

The recent advent of quantum computers completely bypasses the bit security
statements of the (elliptic curve) Diffie-Hellman key exchange since the discrete
logarithm problem for groups can be solved in quantum polynomial time due
to Shor’s algorithm [45]. To thwart this issue, many post-quantum secure alter-
natives have been proposed. One popular approach is based on isogenies which
are rational maps between (supersingular) elliptic curves. In some settings, iso-
genies give rise to cryptographic group actions in the sense of [1] which behave
very similarly to exponentiation in prime order groups. Due to this (syntacti-
cal) similarity, many protocols and results from the Diffie-Hellman context have
been adapted to the isogeny setting (for example [20,28,29,55]). However, this
is not the case for the bit security of isogeny based key exchanges. One of the
few results in that area studies the bit security of the SIDH key exchange and
states that computing one component of the secret j-invariant of a curve is as
hard as computing both components [22]. Due to the recent devastating attacks
on SIDH [8,31,40], however, the statement about its bit security is now obso-
lete. Apart from SIDH there still exist (non-interactive) key exchanges based on
isogenies that are still believed to be post-quantum secure. The most prominent
examples are CSIDH [10] and CSURF [7], both of which are based on the group
action of fractional ideals on the set of supersingular elliptic curves over Fp.
These key exchanges are not affected by the attacks on SIDH, yet very little is
known about their bit security.

1.1 Our Contributions

In this work, we close this gap and analyze the hardness of the Commutative
Isogeny Hidden Number Problem (CI-HNP) for CSIDH and CSURF, which can
be informally stated as follows:

1 Note that if d is not fixed the runtime of the algorithm is in fact super-exponential
in d.
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Commutative Isogeny Hidden Number Problem (Informal). Given two public
curves EA, EB defined over Fp and access to an oracle OMSBk

that on input
two elliptic curves E, E′ outputs MSBk(CDH(E,E′)), recover the shared curve
EAB = CDH(EA, EB).

Solving CI-HNP. Our first major contribution is a (heuristic) polynomial time
algorithm based on Coppersmith’s method that recovers the shared curve EAB

for k = (1324 + ε)n (CSIDH) and k = (3141 + ε)n (CSURF), where n = log p and
ε > 0 is an arbitrarily small constant. We remark that our results do not yield
an unconditional bit security statement for the respective non-interactive key
exchanges due to the heuristic nature of Coppersmith’s method. Nevertheless,
our result implies that (under some constraints) computing the 13

24n (CSIDH)
and 31

41n (CSURF) most significant bits of the shared curve EAB is as hard
as solving CDH and quantumly as hard as solving DLOG due to the quantum
equivalence of the latter two assumptions [52].

Automated Coppersmith. As our second major contribution, we give a signifi-
cantly simplified reformulation of Coppersmith’s method. This allows us to auto-
mate Coppersmith’s method almost entirely, and to easily apply it to CI-HNP.
This is in stark contrast to almost all previous Coppersmith-type results, which
typically required highly involved lattice constructions that had to be fine-tuned
using ad-hoc techniques. (See, e.g., May’s recent survey [32] and the references
therein.) Our approach, on the other hand, only requires to specify which mono-
mials we want to include in our lattice basis. For any given set of monomials
our approach then automatically (and efficiently) constructs the corresponding
optimal lattice.

We also give a simple automated strategy for selecting these monomials.
While this strategy might not always yield optimal results, it performs well in
practice, and allows us to derive our bounds for CI-HNP. Furthermore, it enables
another interesting application: For any given system of polynomial equations
our algorithm can (under some reasonable heuristics) automatically derive upper
bounds on the size of the roots that can be recovered by Coppersmith’s method –
a process that prior to our work involved a lot of manual effort. Our reformulation
of Coppersmith’s method is not specific to the application at hand and might
therefore be of independent interest.

Implementation. As our third contribution we provide an efficient open source
implementation of our automated variant of Coppersmith’s method in SageMath.
The source code is available at

https://github.com/juliannowakowski/automated-coppersmith.

Using this implementation, we run our algorithm for CI-HNP on cryptographi-
cally sized instances with bitsize n = 512, 1024, 1792. Our experimental results
verify the correctness of our heuristic algorithm, and show that we come close to
the asymptotic bounds of k = 13

24n ≈ 0.542n and k = 31
41n ≈ 0.756n in a matter

of minutes.

https://github.com/juliannowakowski/automated-coppersmith
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1.2 Technical Details and Related Work

Similar to the case of EC-HNP we use Coppersmith’s method to recover the
least significant bits of the Montgomery coefficient of the shared curve EAB .
To this end, we define polynomial relations between the Montgomery coefficient
of EAB and the Montgomery coefficients of its d-isogenous neighboring curves,
essentially replicating the behaviour of the modular polynomials but for the
case of Montgomery coefficients. We then embed the partial information from
the oracle OMSBk

in the coefficients of these polynomials by querying OMSBk

on specific input. As a consequence, we can construct a system of polynomial
equations that has a common small root in the Montgomery coefficient of the
curve EAB . In a last step, this small root is found by Coppersmith’s method.

Comparison with HNP and EC-HNP. In their original work Boneh and
Venkatesan use lattice reduction techniques to solve HNP over Z

∗
p [5]. More

specifically, given many oracle queries one derives an underdetermined system of
linear equations that is subsequently encoded into a lattice. By solving a closest
vector problem in the lattice one obtains the secret value. With EC-HNP it is
already much harder to implement this approach as the system of equations is
inherently nonlinear. In fact, each query to the oracle results in a bivariate poly-
nomial of total degree 3. The secret value is then encoded in a common small
root of these polynomials, and recovered via Coppersmith’s method [54]. Nev-
ertheless, both HNP and EC-HNP have in common that one can get arbitrarily
many equations by querying the oracle OMSBk

as many times as needed. Phrased
differently, the system of polynomial equations – while still being underdeter-
mined – can be made arbitrarily large. Furthermore, each polynomial in the
system of equations has the same shape.

Unfortunately, in the case of CI-HNP neither of the two properties hold. In
both the CSIDH and CSURF settings, each curve has for any given degree d at
most two d-isogenous neighbours defined over Fp. Hence, if we wish to make many
such oracle queries we necessarily have to use isogenies of higher degree, which
in turn result in high-degree polynomial relations. Therefore, we are left with
a choice: either have few polynomials of low degree or have many polynomials
with very high degree. Additionally, by changing the degree of the isogeny one
obtains polynomials of a different shape, making optimizations very challenging.

Recovery Rates. Curiously, the recovery rates between CSIDH and CSURF
differ quite significantly. It turns out that the reason for this is an order-3 sub-
group of the ideal class group cl(O) in the CSIDH setting that is not present
in CSURF. Subsequently, in the CSIDH setting we are able to construct more
polynomial relations which have smaller degree compared to the CSURF setting.
Since Coppersmith’s method performs best for polynomials with low degree, this
results in a better recovery rate. It is worth mentioning that in the context of
analyzing the security of the CSIDH key exchange the same order-3 subgroup
is also responsible for reducing the security of the key exchange by a factor of
1
3 [11,38].
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Comparison with SIDH. The Isogeny Hidden Number Problem has been con-
sidered before by Galbraith, Petit, Shani and Ti in the context of SIDH [22].
However, their approach only applies to SIDH due to the fact that in this setting
the resulting polynomial equations are defined over Fp2 . If we let Fp2 = Fp(θ)
where θ2 ∈ Fp denotes some quadratic non-residue, then any equation f(j) = 0
over Fp2 results in two equations over Fp: for f(j) = freal(j) + fim(j) · θ = 0, we
must have freal(j) = 0 and fim(j) = 0 simultaneously. This trick in combination
with the modular polynomial allowed the authors of [22] to build a system of
two polynomial equations in two unknowns which can be solved exactly. Subse-
quently the authors were able to recover one component of the secret j-invariant
given an oracle that returns the other component.

This approach is not applicable to CSIDH and CSURF as in this context
the polynomial relations are necessarily defined over Fp. We therefore have to
resort back to heavy machinery like Coppersmith’s method to solve systems of
polynomial equations.

Coppersmith’s Method. To solve a system of polynomial equations, Copper-
smith’s method requires as input a set of well-chosen shift-polynomials. Crucially,
these shift-polynomials fi must satisfy several technical constraints imposed by
Coppersmith’s method while simultaneously minimizing the determinant of a
certain matrix. Concretely, the matrix has as entries the coefficient vectors of
the fi. In the process of selecting the fi a ripple effect can occur where a locally
optimal choice of a single fi leads to an overall larger determinant. We observe,
however, that choosing globally optimal fi can be fully automated once we fix the
set of monomials over which the fi are defined. Therefore, the only non-trivial
task is choosing a “good” set of monomials. The subsequent optimal construc-
tion of the fi then reduces to a purely combinatorial strategy, somewhat similar
to the celebrated Jochemsz-May strategy [27]. However, we significantly improve
on Jochemsz-May since we can handle systems of polynomial equations, whereas
their strategy only handles single polynomial equations. This is particularly use-
ful for the application at hand as in the case of CI-HNP we must deal with such
a system of polynomial equations.

Computing Asymptotic Bounds. Similar to the construction of the shift-
polynomials, the task of determining asymptotic upper bounds for Copper-
smith’s method is typically very time-consuming and has to be performed manu-
ally each time a new set of polynomials is considered. Moreover, the proof that a
given asymptotic bound holds is oftentimes convoluted. We overcome both issues
by combining our automated variant of Coppersmith’s method with polynomial
interpolation. More specifically, given a system of polynomial equations our algo-
rithm determines (under some reasonable heuristics) the size of the largest root
that can be recovered. This upper bound may not be optimal with respect to the
given system of polynomial equations, but nevertheless serves as a good starting
point. We demonstrate the usefulness of this approach in the main body of this
paper. In addition, the accompanying proof is easy to verify but crucially relies
on the correctness of the heuristic. Fortunately, it appears that from the output
of our algorithm it is always possible to extract a rigorous proof of correctness
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that does not involve the aforementioned heuristic. This task, however, requires
manual work.

1.3 Outline of the Paper

The paper is organized as follows: In Sect. 2 we give some basic preliminaries for
CSIDH, CSURF and Coppersmith’s method. Our new formulation of Copper-
smith’s method is described in Sect. 3 and proven in Sect. 4. In Sect. 5 we show
how to solve CI-HNP and discuss the quantum hardness of simulating OMSBk

. In
Sect. 6 we give results on the practical recovery rate of our heuristic algorithm,
which experimentally verify its correctness. We conclude our work in Sect. 7
where we also state some open problems.

2 Preliminaries

We use the notation x $← X to indicate that x is uniformly sampled from a set
X . By log n we denote the base 2 logarithm of n. For a prime p with p ≡ 3
mod 4 and a square a ∈ Fp we further define

√
a ∈ Fp to be the unique square

root of a which is itself again a square. It can be computed as
√

a = a(p+1)/4

mod p. For a n-bit prime p and an integer x ∈ Zp we denote by MSBk(x) the k
most significant bits of x, i.e. the integer t such that 0 ≤ x − t · 2n−k < p/2k.

2.1 Elliptic Curves and Isogenies

The following facts about isogenies are mostly taken from Silverman [46].
Let E/Fp be an elliptic curve over a finite field Fp with p an odd prime. We

denote the point at infinity with ∞E . For an extension field K ⊇ Fp we denote
the set of K-rational points by E(K). An elliptic curve is called supersingular if
#E(Fp) = p + 1 and ordinary otherwise.

An isogeny is a morphism ϕ : E → E′ between elliptic curves E,E′ such
that ϕ(∞E) = ∞E′ . The degree of ϕ is its degree as a morphism and we call ϕ
separable if p � deg ϕ. An isogeny can be expressed as a fraction of polynomials
and we call two elliptic curves isogenous if there exists an isogeny between them.
An isogeny is called an isomorphism if it has an inverse (which may be defined
over the algebraic closure of Fp). In that case the inverse is again an isogeny.
One can check whether two elliptic curves are isomorphic by comparing their
j-invariant, which is a simple algebraic expression in the coefficients of the curve
equation.

An isogeny from E to itself is called an endomorphism. The set End(E) of
endomorphisms of E (defined over the algebraic closure) forms a ring under
addition and composition and is thus called the endomorphism ring. We denote
by Endp(E) the subring defined over Fp, which is an order in the imaginary
quadratic field Q(

√−p) if E is supersingular.
Any isogeny ϕ : E → E′ is automatically a group homomorphism from E

to E′ and as such its kernel is a finite subgroup of E. In the case where ϕ is
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separable we have that deg ϕ = #ker ϕ. Conversely, any finite subgroup G ⊂ E
corresponds to a separable isogeny ϕ : E → E′ with kernel kerϕ = G that
is unique up to post-composition with an isomorphism. Since E′ is uniquely
determined by ker ϕ (again up to isomorphism), we write E′ = E/G from now
on. One can compute ϕ and E/G via Vélus formula [51], which can be evaluated
in time polynomial in the size of the kernel.

For an integer n we denote the multiplication-by-n map by [n], which is
an endomorphism of E. Its kernel is the n-torsion subgroup E[n] = {P ∈ E :
[n]P = ∞E}. Another important endomorphism is the Frobenius endomorphism
πE , sending (x, y) ∈ E to (xp, yp) ∈ E. In the case where E is supersingular it
satisfies πE ◦ πE = −p, implying that Z[

√−p] ⊆ Endp(E).

2.2 Group Actions from Isogenies

Currently there exist two popular constructions for an isogeny-based group
action, namely CSIDH [10] and CSURF [7]. They mainly differ in the choice of
Endp(E). Indeed, if p ≡ 3 mod 4 and E is supersingular there are two choices
for Endp(E), namely Z[

√−p] and Z[(1+
√−p)/2]. The following section is mostly

based on [7,10], however we also incorporate some recent suggestions related to
CSURF stated in [12].

CSIDH. Let p = 4·�1 . . . �n−1 be a prime where the �i are small odd primes. Fix
the order O = Z[π], where π =

√−p is the Frobenius endomorphism. Let E��p(O)
be the set of supersingular elliptic curves E defined over Fp with endomorphism
ring Endp(E) ∼= O (called the floor). The ideal class group cl(O) acts on the set
E��p(O) in the following way: to each a ⊆ O we can associate the subgroup

E[a] :=
⋂

ϕ∈a

{P ∈ E : ϕ(P ) = ∞E} ⊆ E.

Here, we view ϕ as an endomorphism of E through the isomorphism Endp(E) ∼=
O.

Theorem 1 (Theorem 4.5 of [43]). The map

� : cl(O) × E��p(O) → E��p(O),

sending ([a], E) to a � E := E/E[a] is a well-defined free and transitive group
action.

Observe that because p ≡ −1 mod �i the ideal (�i) splits in Z[π] as (�i) =
〈�i, π−1〉〈�i, π+1〉. Additionally, since #E(Fp) = p+1 each curve in E��p(O) has
an Fp-rational point P→ generating a subgroup of order �i, which corresponds to
the ideal li = 〈�i, π − 1〉. Therefore, the action � can be computed efficiently for
the ideals li by finding P→ and then applying Vélu’s formula. A similar reasoning
applies to the ideal li = 〈�i, π+1〉 where the only difference is that the generating
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E E/〈P→〉E/〈P←〉

E/〈P↓〉

E��p(Z[(1 + π)/2 ])

E��p(Z[π])

Fig. 1. The 2-isogeny graph for a prime p ≡ 7 mod 8.

point P← of order �i has its x-coordinate in Fp but its y-coordinate outside of
Fp. Therefore, the CSIDH group action can be evaluated efficiently for ideals of
the form

∏
lei
i , where the ei are from a small range [−B,B].

For each E on the floor there exists a unique A ∈ Fp called the Montgomery
coefficient such that E is isomorphic to the curve EA : y2 = x3 + Ax2 + x [10,
Proposition 8]. The curve EA is called the Montgomery form of E and we denote
by Mp(O) the set of Montgomery coefficients of curves in E��p(O). We can now
see the group action � equivalently as a group action

� : cl(O) × Mp(O) → Mp(O), (1)

where we identify each A ∈ Mp(O) with the curve EA. By slight abuse of
notation we denote this action by � as well.

Lastly, we define E0 : y2 = x3 + x to be the starting curve of the group
action. Indeed, E0 has endomorphism ring Z[π] and therefore lives on the floor.

CSURF. Let p = 4·�0 . . . �n−1 be a prime such that �0 = 2 and the �i are small
odd primes for i > 0. Fix the order O = Z[(1+π)/2] where again π =

√−p is the
Frobenius endomorphism and E��p(O) is the set of supersingular elliptic curves
with endomorphism ring O (which is now called the surface). The ideal class
group cl(O) acts in a very similar way on E��p(O). In fact, the action of the ideals
li with i > 0 can be evaluated in the same way as in CSIDH. The only difference
is that the ideal (2) now splits in Z[(1+π)/2] as (2) = 〈2, (π−1)/2〉〈2, (π+1)/2〉
due to the congruence p ≡ 7 mod 8.

This means that there are two additional ideals l0 and l0 available for the
group action. In contrast to the odd degree isogenies, for each E ∈ E��p(O) there
are now three points of order 2 with x-coordinate in Fp. It turns out that l0
is generated by a point P→ of order 2 whose four halves are all Fp-rational.
Similarly, the four halves of the point P← generating l0 have x-coordinate in Fp

but y-coordinate outside of Fp. The remaining point P↓ of order two has its four
halves completely outside of Fp and quotienting out 〈P↓〉 results in a curve on the
floor (see Fig. 1). In order to compute the action of l0 and l0, one first finds the
corresponding point of order 2 and then applies Vélu’s formula. In accordance
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with the literature, we call the isogenies generated by P← and P→ horizontal,
whereas the isogeny generated by P↓ is called vertical.

Another difference to CSIDH is that there are now two isomorphic curves
in Montgomery form for each E ∈ E��p(O) [7, Corollary 1]. To make the choice
unique one can choose the curve EA : y2 = x3 + Ax2 + x such that A ± 2 are
both squares2 in Fp. As before, let Mp(O) denote the set of such Montgomery
coefficients. We again have a group action

� : cl(O) × Mp(O) → Mp(O), (2)

where A ∈ Mp(O) is identified with EA.
Lastly, we set the starting curve to be E3/

√
2 : y2 = x3 + (3/

√
2)x2 + x,

which has endomorphism ring Z[(1 + π)/2]. Note that due to the convention on
modular square roots, we also have that

3√
2

± 2 =
1√
2
(3 ± 2

√
2) =

1√
2
(1 ±

√
2)2

are both squares.

Remark 1. In [7] it was suggested to identify E ∈ E��p(O) with its corresponding
Montgomery− form E−

A : y2 = x3 + Ax2 − x as it uniquely represents the
isomorphism class of E [7, Proposition 4]. However, this suggestion was later
revoked due to slower low-level arithmetics on Montgomery− curves [12, p. 12].
Additionally, one uses regular Montgomery curves to compute the action of the
2-isogenies anyway [7, Algorithm 1], which is why we choose to work with regular
Montgomery curves as well.

2.3 Cryptographic Assumptions and Protocols

The CSIDH and CSURF group action can be used to instantiate a non-
interactive key exchange (NIKE) similar to the Hashed Diffie-Hellman key
exchange over prime-order groups (see Fig. 2). In the Random Oracle Model
its passive security relies on the hardness of the following two problems, which
go back to Couveignes (who called them Vectorization and Parallelization) [16].
Both definitions apply to the CSIDH and CSURF setting.

Definition 1 (Discrete Logarithm Problem (DLOG)). Let E ∈ E��p(O) be
a fixed starting curve and [a] $← cl(O). Given the tuple (E, a � E), recover [a].

Definition 2 (Computational Diffie-Hellman Problem (CDH)). Let E ∈
E��p(O) be a fixed starting curve and [a], [b] $← cl(O). Given the tuple (E, a �
E, b � E), compute ab � E.

2 This actually guarantees that P→ = (0, 0).
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Alice A Bob B

skA = [a] $← cl(O) skB = [b] $← cl(O)
pkA = a � M pkB = b � M

K := H(b � pkA) = H(a � pkB) = H(ab � M)

Fig. 2. Non-interactive key exchange based on CSIDH/CSURF where M is the
Montgomery coefficient of a fixed starting curve and H : {0, 1}∗ → {0, 1}λ is a hash
function.

Remark 2. In the following we leave out the starting curve E as long as there is
no ambiguity.

Galbraith et al. showed that for efficiently computable group actions, CDH
is equivalent to DLOG in a quantum setting [21]. Their reduction assumes a
perfect adversary A against CDH, i.e. an adversary with success probability 1,
which is then used to construct a quantum adversary against DLOG. Moreover,
they assume that the action of a random element [a] $← cl(O) can be computed
efficiently, which in general is not the case for the CSIDH and CSURF group
action. Furthermore, it is currently not known how to sample an element [a]
uniformly at random for arbitrary parameter sets.

More recently, their result was improved by Montgomery and Zhandry who
showed that the equivalence also holds for any adversary A having a non-
negligible success probability [36]. The authors also gave some mild evidence
that the equivalence holds for restricted effective group actions (of which CSIDH
and CSURF are instantiations, see also [1]), but this result only holds for generic
adversaries making classical queries to a group action oracle.

In the special case of the CSIDH and CSURF group action, Wesolowski
showed that CDH and DLOG are quantumly equivalent under the generalized
Riemann hypothesis [52].

2.4 Polynomials

Let x1, . . . , xk be symbolic variables. A monomial is a product of the form xi1
1 · . . . ·

xik
k , where i1, . . . , ik ∈ N. In particular, a product of the form c ·xi1

1 · . . . ·xik
k , where

c �= 1, is not a monomial. Let f(x1, . . . , xk) =
∑

i1,...,ik∈N
αi1,...,ik · xi1

1 · . . . · xik
k

be a polynomial with coefficients αi1,...,ik ∈ Z. We say that xi1
1 · . . . · xik

k is a
monomial of f , if αi1,...,ik �= 0. If all monomials of f are elements of some set
M, then we say that f is defined over M. We denote by deg(f) the total degree
of f , i.e.,

deg(f) := max
αi1,...,ik


=0
(i1 + . . . + ik).

The degree of some finite set of polynomials F ⊆ Z[x1, . . . , xk] is defined as

deg(F) := max
f∈F

deg(f).



The Hidden Number Problem for CSIDH and CSURF 49

The norm of f , denoted ‖f‖, is defined as the Euclidean norm of its coefficient
vector, i.e.,

‖f‖ :=
√ ∑

i1,...,ik∈N

α2
i1,...,ik

.

Definition 3. For a set of polynomials F ⊂ Z[x1, . . . , xk], we define the set of
its integer roots as

ZZ(F) :=
{
r = (r1, . . . , rk) ∈ Z

k | ∀f ∈ F : f(r) = 0
}

.

Similarly, for parameters M,X1, . . . , Xk ∈ N, we define the corresponding set of
its small modular roots as

ZM,X1,...,Xk
(F) :=

{
r = (r1, . . . , rk) ∈ Z

k
∣∣∣∀f ∈ F : f(r) ≡ 0 mod M,
∀j : |rj | ≤ Xj

}
.

For a finite set F = {f1, . . . , fn}, we may abuse notation and write

ZZ(f1, . . . , fn) := ZZ(F),
ZM,X1,...,Xk

(f1, . . . , fn) := ZM,X1,...,Xk
(F).

Definition 4. Let M be a set of monomials. A monomial order (on M) is a
total order ≺ on M, that satisfies the following two properties:

1. For every λ ∈ M, it holds that 1 ≺ λ.
2. If λ1 ≺ λ2, then λ · λ1 ≺ λ · λ2 for every monomial λ ∈ M.

We frequently use the lexicographic monomial order ≺lex .The leading monomial
of a polynomial f (with respect to some monomial order ≺) is the unique mono-
mial λ of f , which satisfies λ′ ≺ λ for every monomial λ′ of f . The coefficient of
the leading monomial is called leading coefficient. If the monomial order is clear
from the context, we denote by LM(f) and LC(f) the leading monomial and the
leading coefficient of f , respectively. Notice that for any two polynomials f, g we
have

LM(fg) = LM(f)LM(g), (3)
LC(fg) = LC(f)LC(g). (4)

If LC(f) = 1, then we say that f is monic.

2.5 Lattices

A (full-rank) lattice is a set of the form L(B) := B · Z
d, where B ∈ R

d×d is an
invertible matrix. We call B a basis matrix of L(B) and say that L(B) is the
lattice generated by the columns of B. The value d is called the dimension of
L(B). The determinant of L(B) is defined as det L(B) := |detB|. We call two
basis matrices B1,B2 ∈ R

d×d equivalent, if L(B1) = L(B2). For equivalent basis
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matrices B1,B2 it holds that detL(B1) = detL(B2). The norm of a lattice
vector v ∈ L(B), denoted ‖v‖, is the Euclidean norm.

The famous LLL lattice-reduction Algorithm [30] computes on input of a
lattice basis B = (bi,j)1≤i≤j≤d ∈ Z

d×d an equivalent basis in time polynomial in
d and maxi,j log(|bi,j |), consisting of relatively short lattice vectors:

Lemma 1. Let B = (b1, . . . ,bd) be an LLL-reduced basis of a d-dimensional
lattice Λ ⊆ Z

d and let M,m ∈ N, such that log(M) ≥ d ≥ m. Suppose that

det(Λ) ≤ M (m−k)d

holds for some k ≤ d. Then

‖bi‖ <
Mm

√
d

holds for every i = 1, . . . , k.

A proof for Lemma 1 is given in the full version of the paper.

3 Coppersmith’s Method

In this section, we introduce our significantly simplified reformulation of Copper-
smith’s method. In Sect. 3.1, we recall the high-level idea behind Coppersmith’s
method, as well as the heuristic, that is used in almost all Coppersmith-type
results. After that, we give in Sect. 3.2 a purely combinatorial reformulation and
show how this allows us to automate Coppersmith’s method almost entirely. As
an application of our reformulation, we derive in Sect. 3.3 two new Coppersmith-
type bounds, which we use in Sect. 5 to prove our results for CI-HNP.

3.1 High Level Idea

Suppose we are given a modulus M ∈ N, polynomials f1, . . . , fn ∈ ZM [x1, . . . , xk]
and bounds X1, . . . , Xk ∈ N. If the bounds are sufficiently small (and k is fixed),
then Coppersmith’s method finds all small modular roots

r ∈ ZM,X1,...,Xk
(f1, . . . , fn)

in time polynomial in log(M).
The main idea behind Coppersmith’s method is to transform the system of

polynomial equations defined by the fi’s over ZM into an efficiently solvable
system of equations defined over Z. To this end, Coppersmith’s method uses
lattice-based techniques to construct k polynomials h1, . . . , hk ∈ Z[x1, . . . , xk],
such that all small modular roots of the fi’s are also integer roots of the hi’s,
i.e.,

ZM,X1,...,Xk
(f1, . . . , fn) ⊆ ZZ(h1, . . . , hk).

Given the hi’s, we can efficiently compute all small modular roots r as follows:
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In the univariate setting, where k = 1, we simply compute all roots of h1 over
R using standard techniques (such as Newton’s method or the Sturm sequence)
and then output those that lie in ZM,X1(f1, . . . , fn). In the multivariate setting,
where k > 1, we follow a Gröbner basis based approach. Here, we first com-
pute the Gröbner basis of the ideal a := (h1, . . . , hk) ⊆ Q[x1, . . . , xk]. Assuming
that the variety of a is zero-dimensional (which is usually the case in prac-
tice) we then efficiently obtain ZZ(h1, . . . , hk) from the Gröbner basis, again
using standard techniques. Finally, from ZZ(h1, . . . , hk) we efficiently obtain
ZM,X1,...,Xk

(f1, . . . , fn).

The Coppersmith Heuristic. Unfortunately, there is no provable guarantee
that the variety of a is zero-dimensional. In the multivariate setting, Copper-
smith’s method thus relies on the following (well-established) heuristic.

Heuristic 1 (Coppersmith Heuristic). The polynomials obtained from Cop-
persmith’s method generate an ideal of a zero-dimensional variety.

While one can deliberately construct polynomials f1, . . . , fn and moduli M for
which Heuristic 1 fails (see, e.g., [15, Section 12]), the heuristic holds for most
instances arising in practice.

Nevertheless, we stress that it is important to verify the correctness of Heuris-
tic 1 experimentally, since there are a few instances known for which the heuristic
unexpectedly fails (see, e.g., the discussion on [48] in [34, Section 4]). We verify
the correctness of Heuristic 1 for our algorithm for CI-HNP in Sect. 6.

Constructing h1, . . . , hk . To construct the polynomials h1, . . . , hk, Copper-
smith’s method requires as input a set of polynomials F ⊂ Z[x1, . . . , xk] satisfy-
ing certain technical constraints. (The hi’s are then computed as integer linear
combinations of the elements of F .) Construction of F is often difficult and usu-
ally done in an ad-hoc fashion. Furthermore, proving that a given set F satisfies
the required technical constraints is often very tedious.

To overcome these issues, we introduce in the following Sect. 3.2 our novel
and automated approach to Coppersmith’s method, which allows us to greatly
simplify construction of F .

3.2 Coppersmith’s Method Automated

The main idea behind our automated approach to Coppersmith’s method is the
following Definition 5. It allows us to abstract away all technicalities arising
from lattice theory in Coppersmith’s method and to replace them by purely
combinatorial constraints.

Definition 5. Let M be a finite set of monomials, and let ≺ be a monomial
order on M. A set of polynomials F is called (M,≺)-suitable, if:

1. Every f ∈ F is defined over M.
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2. For every monomial λ ∈ M there is a unique polynomial f ∈ F with leading
monomial λ (with respect to ≺).

If F is (M,≺)-suitable and λ ∈ M, then we denote by F [λ] the unique polyno-
mial f ∈ F with leading monomial λ.

We note that similar but less general constraints on F have first been used in [33,
Lemma 4]. Definition 5 now allows us to compactly formulate Coppersmith’s
method as follows.

Theorem 2 (Coppersmith’s Method). Suppose we are given a modulus
M ∈ N, polynomials f1, . . . , fn ∈ ZM [x1, . . . , xk] and bounds 0 ≤ X1, . . . , Xk ≤
M , where k = O(1). Furthermore, suppose we are given an integer m ∈ N, a
set of monomials M, a monomial order ≺ on M, and an (M,≺)-suitable set of
polynomials F ⊆ ZMm [x1, . . . , xk] with

ZM,X1,...,Xk
(f1, . . . , fn) ⊆ ZMm,X1,...,Xk

(F). (5)

If the conditions

∏

λ∈M
|LC(F [λ])| ≤ M (m−k)|M|

∏
λ∈M λ(X1, . . . , Xk)

, (6)

log(M) ≥ |M| ≥ m and |M| ≥ k hold, then we can compute all

r ∈ ZM,X1,...,Xk
(f1, . . . , fn)

in time polynomial in deg(F) · log(M), under Heuristic 1 for k > 1.

A proof for Theorem 2 is given in Sect. 4. The algorithm behind Theorem 2 is
given in Algorithm 1.

Algorithm 1: Coppersmith’s Method.
Input: Integers M, m ∈ N, polynomials f1, . . . , fn ∈ ZM [x1, . . . , xk], bounds

0 ≤ X1, . . . , Xk ≤ M , set of monomials M, monomial order ≺ on M,
and a (M, ≺)-suitable set of polynomials F ⊆ ZMm [x1, . . . , xk],
satisfying the constraints of Theorem 2.

Output: All r ∈ ZM,X1,...,Xk(f1, . . . , fn).
1 Construct an |M| × |M| basis matrix B, whose columns are the coefficient

vectors of the polynomials F [λ](X1x1, . . . , Xkxk), where λ ∈ M.
2 LLL-reduce B.
3 Interpret the first k column of the resulting matrix as coefficient vectors of

polynomials hi(X1x1, . . . , Xkxk).

4 Compute the Gröbner basis of
(
h1(x1, . . . , xk), . . . , hk(x1, . . . , xk)

)
.

5 return all r ∈ ZZ(h1, . . . , hk) ∩ ZM,X1,...,Xk(f1, . . . , fn).

Given a modulus M ∈ N, polynomials f1, . . . , fn ∈ ZM [x1, . . . , xk] and
bounds X1, . . . , Xk ∈ N, Theorem 2 now suggests the following simple approach
for computing all small modular roots r ∈ ZM,X1,...,Xk

(f1, . . . , fn):
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1. Pick a set of monomials M in x1, . . . , xk with |M| ≥ k, a monomial order ≺
on M, and an m ∈ N, such that log(M) ≥ |M| ≥ m.

2. Pick an (M,≺)-suitable set of polynomials F ⊆ ZMm [x1, . . . , xk], satisfying
Eqs. (5) and (6).

3. Apply Theorem 2/Algorithm 1 to compute all r ∈ ZM,X1,...,Xk
(f1, . . . , fn).

As we show below, choosing an optimal F can be automated entirely, once
M, m and ≺ are fixed. Furthermore, choosing m and ≺ is very easy. In our
new approach all difficulties of Coppersmith’s method thus boil down the much
simpler task of choosing M.

Below, we also describe a very simple and automated strategy for choosing
M. While this strategy does not always yield optimal results, it still performs
well in practice.

Choosing F . Suppose we have already chosen M, ≺ and m. The set F then
has to satisfy the following three conditions:

1. It has to be (M,≺)-suitable,
2. it has to satisfy Eq. (5),
3. it has to satisfy Eq. (6).

Satisfying Eq. (5) is easy: Like in all other Coppersmith-type results, we simply
construct F using so-called shift-polynomials, i.e., polynomials of the form

p[j1,...,jk,i1,...,in] := xj1
1 · . . . · xjk

k · f i1
1 · . . . · f in

n · Mm−(i1+...+in), (7)

for some appropriately chosen integers j1, . . . , jk, i1, . . . , in ∈ N, where i1 + . . .+
in ≤ m. Since for any r ∈ ZM,X1,...,Xk

(f1, . . . , fn) we have

f i1
1 (r) · . . . · f in

n (r) ≡ 0 mod M i1+...+in ,

it then holds that
p[j1,...,jk,i1,...,in](r) ≡ 0 mod Mm.

The resulting F := {p[j1,...,jk,i1,...,in]}j1,...,jk,i1,...,in thus satisfies Eq. (5).
For satisfying Eq. (6), notice that the right hand side in Eq. (6) does not

depend on F . For fixed M, ≺, and m, Eq. (6) thus simply requires that the
product of (the absolute values of) the leading coefficients of the polynomials in
F is smaller than some constant. Making the mild assumption that the fi’s are
monic, it follows from Eq. (4) that the leading coefficient of the shift-polynomial
p[j1,...,jk,i1,...,in] from Eq. (7) is

LC
(
p[j1,...,jk,i1,...,in]

)
= Mm−(i1+...+in).

Hence, the larger the sum i1+. . .+in gets, the smaller gets the leading coefficient
of the corresponding shift-polynomial. To satisfy Eq. (6), we thus have to take
shift polynomials p[j1,...,jk,i1,...,in] with as large i1 + . . . + in as possible.

Finally, to ensure that F is (M,≺)-suitable, we have to include for every
monomial λ ∈ M one shift-polynomial p[j1,...,jk,i1,...,in] in F , such that
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1. the leading monomial of p[j1,...,jk,i1,...,in] is λ, and
2. p[j1,...,jk,i1,...,in] is defined over M.

From Eq. (3) it easily follows that the shift-polynomials, which satisfy these
conditions, are exactly the polynomials of the form

f[λ,i1,...,in] :=
λ

LM(f1)i1 · . . . · LM(fn)in
· f i1

1 · . . . · f in
n · Mm−(i1+...+in), (8)

where

1. LM(f1)i1 · . . . · LM(fn)in divides λ, and
2. f[λ,i1,...,in] is defined over M.

Hence, to construct an optimal set of shift-polynomials, we simply have to enu-
merate all such shift-polynomials f[λ,i1,...,in] and then include for every λ ∈ M
one shift-polynomial in F , that maximizes the sum i1 + . . . + in.

A formal description of this approach is given in Algorithm 2. The runtime
of Algorithm 2 is O(|M| · mn), which – for fixed n – is polynomial in our main
parameter log(M), since by construction m ≤ |M| ≤ log(M).

A somewhat optimized implementation of the algorithm is available in our
GitHub repository. As we show in Sect. 6, our implementation is very efficient,
even for cryptographically-sized instances.

Algorithm 2: Constructing an optimal set F .
Input: Set of monomials M, monomial order ≺ on M, monic polynomials

f1, . . . , fn, and integer m ∈ N.
Output: (M, ≺)-suitable set of shift-polynomials F , satisfying Eq. (5), and

minimizing the left hand side in Eq. (6).
1 F := ∅
2 for λ ∈ M do
3 Enumerate all shift-polynomials f[λ,i1,...,in], as in Eq. (8), such that

LM(f)i1 · . . . · LM(f)in divides λ, and f[λ,i1,...,in] is defined over M.
4 Among all such f[λ,i1,...,in] pick one that maximizes i1 + . . . + in and include

it in F .
5 end
6 return F

Choosing ≺. The choice of ≺ is usually of secondary importance in Copper-
smith’s method, and simply choosing the lexicographic order ≺lex will suffice
in most applications. Indeed, if we were to restate all known Coppersmith-type
results from the literature using the language of our new Theorem 2, then almost
all results would use ≺lex as monomial order.3

3 However, we note that some results, which deeply exploit the algebraic structure of
the underlying polynomials f1, . . . , fn via unravelled linearization [24], e.g., [33,49,
50], would require more involved monomial orders.
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Choosing m and M. Instead of choosing one fixed m and M, we define an
increasing sequence M1 ⊂ M2 ⊂ M3 ⊂ . . . of sets of monomials. While the
Coppersmith-type literature strongly suggests that there is no fully automated
strategy for choosing the Mi’s, it appears that defining

Mi :=
{

λ | λ is a monomial of f j1
1 · . . . · f jn

n , 0 ≤ j1, . . . , jn ≤ i
}

(9)

mi := i · n, (10)

often provides a good starting point, which one then may further optimize by
incorporating special properties of the underlying polynomials f1, . . . , fn.

The condition from Eq. (6), under which Coppersmith’s method is successful,
then typically translates to an inequality of the form

Xα1
1 · . . . · Xαk

k ≤ M δ−ε, (11)

for some constants α1, . . . , αk, δ ≥ 0 and some ε > 0 that tends to 0 as Mi

increases. (In other words, the larger we pick Mi, the better Coppersmith’s
method performs.)

For the best possible result, we thus always pick the largest Mi that satis-
fies the condition |Mi| ≤ log(M) (which is imposed by Theorem 2). A typical
Coppersmith-type result thus is a bound on the Xi’s as in Eq. (11), where the
error term ε vanishes as M → ∞.

Computing Asymptotic Bounds. Once we have chosen our sequence of sets
Mi, we can use Algorithm 2 to construct – for any fixed Mi and mi := i · n –
a corresponding optimal set of shift-polynomials Fi. Given Fi, Mi and mi, we
may then derive from Eq. (6) a bound on X1, . . . , Xk, under which Coppersmith’s
method successfully recovers the desired small roots.

However, in practice one usually is not interested in the performance of Cop-
persmith’s method for one fixed i, but rather in its asymptotic performance,
i.e., usually it is desirable to obtain asymptotic bounds as in Eq. (11). Luckily,
Algorithm 2 also allows us to derive such asymptotic bounds via polynomial
interpolation as follows:

It turns out that the terms in Eq. (6) grow in practice as

M (m−k)|Mi| = MpM(mi), (12)
∏

λ∈Mi

|LC(Fi[λ])| = MpF (mi) (13)

∏

λ∈Mi

λ(X1, . . . , Xk) = X
p1(mi)
1 · . . . · X

pk(mi)
k , (14)

where pM, pF , p1, . . . , pk are polynomials of degree k + 1. Based on this obser-
vation, we simply run Algorithm 2 on M1, . . . ,Mk+2 to construct k + 2 sets
of shift-polynomials F . Given M1, . . . ,Mk+2 and the corresponding Fi’s, we
obtain the values of the polynomials pF , pM, p1, . . . , pk on k +2 different inputs.
Using polynomial interpolation, we then easily construct pM, pF , p1, . . . , pk.
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Denoting the leading coefficients of the polynomials by �M, �F , �1, . . . , �k, Eq.
(6) then translates to an asymptotic bound

X�1
1 · . . . · X�k

k ≤ M �M−�F −ε, (15)

for some ε > 0 that vanishes as m increases, similar to Eq. (11).
When defining Mi and mi as in Eqs. (9) and (10), it is easy to see that

exponents in Eqs. (12) and (14) indeed grow as polynomials in mi. However,
proving that the same also holds for Eq. (13) appears to be difficult. Therefore,
we require the following heuristic assumption.

Heuristic 2. Let f1, . . . , fn ∈ Z[x1, . . . , xk], let ≺ be a monomial order on
x1, . . . , xk, and define

Mi :=
{

λ | λ is a monomial of f j1
1 · . . . · f jn

n , 0 ≤ j1, . . . , jn ≤ i
}

mi := i · n,

for i ∈ N. Then there exists a polynomial p(m) of degree k +1, such that for any
set Fi, that is obtained from Algorithm 2 on input (Mi,≺, (f1, . . . , fn),mi), it
holds that

∏

λ∈Mi

|LC(Fi[λ])| = Mp(mi).

In practice, Heuristic 2 always seems to hold. It is in an interesting open problem
to further explore this behavior of Algorithm 2.

We note that in order to increase confidence in Heuristic 2 for any given set of
polynomials {f1, . . . , fn}, one may construct significantly more than k+2 sets Mi

with corresponding sets of shift-polynomials Fi. If the polynomial interpolation
then still yields a polynomial of degree k+1, this serves as a very strong indication
of the correctness of Heuristic 2.

If one still wishes to rigorously prove asymptotic bounds, i.e. without Heuris-
tic 2, then one can proceed as follows: We run Algorithm 2 on M1, . . . ,Mk+2,
but instead of using polynomial interpolation, we (manually) look for patterns
in the algorithms output, i.e., we look for patterns in the resulting sets of shift-
polynomials Fi. From these patterns, we then derive formulas that describe for
any given Mi the corresponding set Fi. Finally, these formulas allow us to derive
an asymptotic bound as in Eq. (15).4

Clearly, this approach is significantly less automated than our polynomial
interpolation approach based on Heuristic 2. However, due to the use of Algo-
rithm 2 it is arguably still much simpler than most previous approaches to Cop-
persmith’s method.

4 We note that this approach is similar to the integer programming approach recently
introduced by May, Nowakowski and Sarkar [33, Remark 1].
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3.3 Applications of Our Automated Approach

Let us now use our automated approach to Coppersmith’s method to derive two
new Coppersmith-type bounds, which we use in the subsequent Sect. 5 to prove
our results for CI-HNP.

Theorem 3. Suppose we are given a modulus M ∈ N, polynomials

f(x, y, z) := xy + f1x + f2y + f3,

g(x, y, z) := yz + g1y + g2z + g3,

h(x, y, z) := xz + h1x + h2z + h3,

for some constants fi, gi, hi ∈ Z, bounds X,Y,Z ∈ N, and an arbitrarily small
constant ε > 0. If M is sufficiently large, and

XY Z < M11/8−ε,

then we can compute all r ∈ ZM,X,Y,Z(f, g, h) in time polynomial in log(M),
under Heuristics 1 and 2.

Proof. Following our strategy from Sect. 3.2, we choose a parameter i ∈ N, define

Mi :=
{
λ | λ is a monomial of f j1gj2hj3 , 0 ≤ j1, j2, j3 ≤ i

}

mi = i · 3,

and equip the elements in Mi with the lexicographic monomial order ≺lex on
x, y, z. Note that the constraints |Mi| ≥ mi and |Mi| ≥ 3 from Theorem 2 are
trivially satisfied. For sufficiently large M , the additional constraint log(M) ≥
|Mi| is also satisfied.

It is easy to see that

M (m−3)|Mi| = MpM(mi),
∏

λ∈Mi

λ(X,Y,Z) = XpX(mi) · Y pY (mi) · ZpZ(mi),

for some polynomials pM, pX , pY , pZ of degree 4. Under Heuristic 2, we also have
∏

λ∈Mi

|LC(Fi[λ])| = MpF (mi)

for some polynomial pF of degree 4, where Fi denotes the output of Algorithm 2
on input (Mi,≺lex, (f, g, h),mi).

We run Algorithm 2 for i = 1, . . . , 5. From the output of the algorithm, we
obtain the following values:

Using polynomial interpolation, we obtain

pM(mi) =
8
27

m4
i + o(m4

i ),

pF (mi) =
13
81

m4
i + o(m4

i ),

pX(m) = pY (mi) = pZ(mi) =
8
81

m4
i + o(m4

i ).
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mi pM(mi) pF (mi) pX(mi) pY (mi) pZ(mi)

3 0 50 27 27 27

6 375 439 250 250 250

9 2058 1767 1029 1029 1029

12 6561 4946 2916 2916 2916

15 15972 11200 6655 6655 6655

Hence, the condition from Eq. (6) becomes

X8/81Y 8/81Z8/81 < M8/27−13/81−ε = M11/81−ε

for some ε > 0 that vanishes as m (or equivalently M) increases. Taking the
8
81 -th root and replacing ε by 81

8 ε in the above inequality, we obtain

XY Z < M11/8−ε,

as required. ��
In the full version of the paper, we show that Theorem 3 remains correct even
when removing Heuristic 2 from the theorem. (However removing the heuristic
comes at the cost of a significantly more complicated proof and manual effort.)
We see this as a strong indication of the correctness of Heuristic 2.

Theorem 4. Suppose we are given a modulus M ∈ N, polynomials

f(x, y, z) := x2 + f1xy2 + f2xy + f3x + f4y
2 + f5y + f6,

g(x, y, z) := z2 + g1x
2z + g2xz + g3z + g4x

2 + g5x + g6,

for some bounds fi, gi ∈ Z, bounds X,Y,Z ∈ N, and an arbitrarily small constant
ε > 0. If M is sufficiently large, and

XY Z < M30/41−ε,

then we can compute all r ∈ ZM,X,Y,Z(f, g, h) in time polynomial in log(M),
under Heuristics 1 and 2.

The proof of Theorem 4 is analogous to that of Theorem 3 and therefore omitted.
A rigorous but involved proof that does not require Heuristic 2 is given in the
full version of the paper.

The ε-term in Theorems 3 and 4. Previous works on Coppersmith’s
method often (implicitly) assume that one can easily eliminate the ε-term in
Coppersmith-type bounds. However, as we discuss in the full version of the
paper, when dealing with systems of multivariate equations (as in Theorems 3
and 4), the ε-term is inherent and eliminating it requires sub-exponential (but
super-polynomial) runtime.
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4 Proof for Theorem 2

The main idea behind Coppersmith’s method is the following simple Lemma
2. Intuitively, it states that small modular roots of a polynomial h with small
coefficients are actually integer roots of h.

Lemma 2 (H̊astad [23], Howgrave-Graham [25]). Let h(x1, . . . , xk) be a
polynomial with at most d monomials, and let Mm,X1, . . . , Xk ∈ N. Suppose
h has a root r = (r1, . . . , rk) modulo Mm, satisfying |ri| ≤ Xi for every i =
1, . . . , k. If

‖h(X1x1, . . . , Xkxk)‖ <
Mm

√
d

,

then h(r1, . . . , rk) = 0 holds over the integers.

As discussed in Sect. 3.1, given a set of polynomials F , Coppersmith’s method
efficiently computes all small modular roots r ∈ ZM,X1,...,Xk

(F) by constructing
a set of k-polynomials {h1, . . . , hk} such that

ZM,X1,...,Xk
(F) ⊆ ZZ(h1, . . . , hk).

To this end, Coppersmith’s method uses LLL lattice reduction to construct the
hi’s as small-norm integer linear combinations of the f ∈ F . By Lemma 2 every
r then is an integer root of the hi’s, as required.

Using this observation we now prove Theorem 2, which for the sake of read-
ability we recall below.

Theorem 2 (Coppersmith’s Method). Suppose we are given a modulus M ∈
N, polynomials f1, . . . , fn ∈ ZM [x1, . . . , xk] and bounds 0 ≤ X1, . . . , Xk ≤ M ,
where k = O(1). Furthermore, suppose we are given an integer m ∈ N, a set
of monomials M, a monomial order ≺ on M, and an (M,≺)-suitable set of
polynomials F ⊆ ZMm [x1, . . . , xk] with

ZM,X1,...,Xk
(f1, . . . , fn) ⊆ ZMm,X1,...,Xk

(F). (5)

If the conditions

∏

λ∈M
|LC(F [λ])| ≤ M (m−k)|M|

∏
λ∈M λ(X1, . . . , Xk)

, (6)

log(M) ≥ |M| ≥ m and |M| ≥ k hold, then we can compute all

r ∈ ZM,X1,...,Xk
(f1, . . . , fn)

in time polynomial in deg(F) · log(M), under Heuristic 1 for k > 1.

Proof. For every i = 1, . . . , |M|, let λi denote the i-th smallest monomial in M
(with respect to ≺). For every λ ∈ M, we denote by fλ ∈ Z

|M| the coefficient



60 J. Meers and J. Nowakowski

vector of F [λ](X1x1, . . . , Xkxk), where the i-th coordinate of fλ is the coefficient
of λi in F [λ](X1x1, . . . , Xkxk).

We construct an |M| × |M| lattice basis matrix B, where the i-th column
of B is the vector fλi

. Since λi is the leading monomial of Fλi
, the i-th entry of

fλi
equals LC(Fλi

) ·λi(X1, . . . , Xk). Further, for every j > i the j-th entry of fλi

equals 0, since λi ≺ λj . Hence, B is a triangular matrix with determinant

detB =
∏

λ∈M
LC(F [λ]) · λ(X1, . . . , Xk).

Together with Eq. (6) this implies

detL(B) ≤ M (m−k)|M|. (16)

We compute an LLL-reduced basis BLLL = (b1, . . . ,b|M|) of L(B). From
log(M) ≥ |M| ≥ m, Lemma 1 and Eq. (16) it follows that the first k columns
b1, . . . ,bk of BLLL have norm

‖b1‖, . . . , ‖bk‖ <
Mm

√|M| . (17)

Notice, since |M| ≥ k, the matrix BLLL indeed has at least k columns.
By definition of B, every vector bi from the LLL-reduced basis is the coeffi-

cient vector of some polynomial hi(X1x1, . . . , Xkxk), such that

hi(x1, . . . , xk) =
∑

λ∈M
αi,λF [λ](x1, . . . , xk), (18)

for some αi,λ ∈ Z. Let r ∈ ZM,X1,...,Xk
(f1, . . . , fn). Since

ZM,X1,...,Xk
(f1, . . . , fn) ⊆ ZMm,X1,...,Xk

(F),

it follows from Eq. (18) that

hi(r) ≡
∑

λ∈M
αi,λF [λ](r) ≡ 0 mod Mm.

Together with Eq. (17) and Lemma 2, this implies that r is a root of h1, . . . , hk

have r over the integers. Hence,

ZM,X1,...,Xk
(f1, . . . , fn) ⊆ ZZ(h1, . . . , hk).

Since the entries of B are upper bounded by polynomials of degree at most
d := deg(F) in Mm, the runtime of LLL to compute BLLL is polynomial in
d ·m · log(M) ≤ d log(M)2 and |M| ≤ log(M). Hence, we can compute h1, . . . , hk

in time polynomial in d · log(M), as required.
Finally, if k = 1, we efficiently obtain all r ∈ ZM,X1,...,Xk

(f1, . . . , fn), by
computing all integer roots of h1 and then outputting only those that lie in
ZM,X1,...,Xk

(f1, . . . , fn). If k > 1, we efficiently obtain all such r’s under Heuris-
tic 1 from the Gröbner basis of a := (h1, . . . , hk), which we can compute in
polynomial time, since k = O(1). ��
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5 The Commutative Isogeny Hidden Number Problem

In this section we use the results developed in Sect. 3 to solve the Commutative
Isogeny Hidden Number Problem. We assume that an elliptic curve is always
represented by its corresponding Montgomery coefficient. That is, oracles or
algorithms that take as input an elliptic curve always expect the Montgomery
coefficient of said curve. The same principle applies to the output of such an
oracle or algorithm. This means that we mainly work with the group action
from Eq. (1) and Eq. (2), respectively.

We now define the main computational problem, which applies to both
CSIDH and CSURF where we (implicitly) set the prime p, the order O and
the starting curve M accordingly.

Definition 6 (Commutative Isogeny Hidden Number Problem
(CI-HNPk)). Let p be an n-bit prime and let k < n be a positive integer. Further
let [a], [b] $← cl(O). Assume that there exists an oracle OMSBk

that on input two
Montgomery coefficients M0,M1 ∈ Mp(O) computes

OMSBk
(M0,M1) := MSBk(CDH(M0,M1)).

Given the tuple (a�M, b�M) and access to OMSBk
, the task is to recover ab�M .

Remark 3. Because we can write

Mab := ab � M = OMSBk
(a � M, b � M) · 2n−k + mab (19)

for some mab < 2n−k we focus on recovering mab from now on.

In the next sections we give an algorithm A that solves CI-HNPk for both
CSIDH and CSURF. Like many algorithms that solve a flavour of the hidden
number problem, A proceeds in two stages:

1. Query the oracle OMSBk
on specific input, obtaining a set of bivariate poly-

nomial equations that have a common small root in mab.
2. Use Coppersmith’s method to solve the system of equations, yielding the

common root mab.

We remark that the second stage is the same for both CSIDH and CSURF.
Furthermore, for the results in the following sections it is actually sufficient to
have a static oracle. That is, an oracle where one of the inputs to the oracle is
fixed, i.e.

OMSBk
(M ′) := MSBk(CDH(M ′, b � M))

with b as in Definition 6.
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5.1 Solving CI-HNP for CSIDH

Let p ≡ 3 mod 8 be a prime and O = Z[π]. Our goal is to find polynomial
relations between neighboring Montgomery curves similar to what the modular
polynomial provides for j-invariants. A variant of Vélu’s formula dedicated to
Montgomery curves provides a good starting point.

Theorem 5 (Proposition 1 in [39]). Let EA : y2 = x3+Ax2+x with A2 �= 4
be a Montgomery curve defined over Fp and let G ⊂ EA(Fp) be a finite subgroup
such that (0, 0) /∈ G. Further define ϕ to be a separable isogeny with ker ϕ = G.
Then there exists a Montgomery curve EB : y2 = x3 + Bx2 + x such that, up to
isomorphism, ϕ : EA → EB and

B = τ(A − 3σ), where τ =
∏

P∈G\{∞}
xP , σ =

∑

P∈G\{∞}

(
xP − 1

xP

)
.

By expanding the equation for B we immediately get a polynomial that
relates two isogenous Montgomery coefficients to each other. Evidently, Theorem
5 can handle isogenies of almost arbitrary degree d and therefore could be used to
derive polynomials describing the neighborhood of any two d-isogenous curves.
To keep the total degree of the polynomial low, however, it is beneficial to look
at isogenies of small degree. It is therefore natural to consider 3-isogenies as they
have the smallest kernel amongst those isogenies admissible by the CSIDH group
action. Moreover, removing the unwanted variables {xP }P∈G\{∞} can be done
via the 3-division polynomial (for a precise definition see [9]) and a resultant
computation.

In the case of 3-isogenies this approach yields polynomial relations of total
degree 6. However, we can improve on this by instead considering 4-isogenies.
In fact, the ideal (4) splits in Z[π] as ll = 〈4, π − 1〉〈4, π + 1〉. Most notably, the
ideal l has order 3 which is a direct result of using the class group of the non-
maximal order Z[π] [11,38]. Hence the following formulas are only applicable to
the CSIDH setting.

Proposition 1 (Theorem 7 in [38]). Let A ∈ Mp(Z[π]) be the Montgomery
coefficient of the curve EA ∈ E��p(Z[π]). The two 4-isogenous curves of EA in
E��p(Z[π]) are

EB : y2 = x3 + Bx2 + x, where B = 2
A − 6
A + 2

and
EC : y2 = x3 + Cx2 + x, where C = 2

A + 6
2 − A

.

It is immediately evident that due to their simple form, the 4-isogeny formulas
result in polynomial relations of degree only 2.
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M Ma

Mb MSB(Mab)

Mac

MSB(Mabc)
b

a

b

a c

c

b

Fig. 3. Visualization of the general strategy where c is an ideal of small norm (i.e. an
isogeny of small degree). Here, OMSBk allows us to compute the most significant bits of
Mab and Mabc, which are connected by the same ideal c.

Corollary 1. The Montgomery coefficients A, B and C from Proposition 1
satisfy the relations

2A − AB − 2B − 12 = 0,

2C − AC − 2A − 12 = 0 and
2B − BC − 2C − 12 = 0.

Proof. This is a simple restatement of Proposition 1 where the third formula is
derived from the first two by taking the resultant with respect to A. ��

Remarkably, due to the small order of l we get three relations between A and
its 4-isogenous neighbors B and C that all have the same total degree. This is
particularly interesting as we can usually only hope to craft two polynomial rela-
tions of the same degree between A and its d-isogenous neighbors. The reason
for this is that the two neighboring curves B and C are in general d2-isogenous,
resulting in a third polynomial relation of larger degree. As it turns out, Cop-
persmith’s method strongly benefits from having a third relation of the same
total degree, which in turn allows us to solve CI-HNPk for a smaller value k.

Theorem 6. Let p ≡ 3 mod 8 be a n-bit prime, and let ε > 0 be an arbitrarily
small constant. There exists a PPT algorithm A that solves CI-HNPk in the
CSIDH setting for k = (1324 + ε)n under Heuristic 1.

Proof. Let (Ma,Mb) be an instance of CI-HNPk. The algorithm A proceeds as
follows: First, it uses Proposition 1 to compute the 4-isogenous neighbors of
Ma, which we denote by Mac and Mad respectively. It then submits the queries
OMSBk

(Ma,Mb) and OMSBk
(Mac,Mb), which yield the most significant bits of

Mab = CDH(Ma,Mb) and Mabc = CDH(Mac,Mb) (see Fig. 3). Since the group
action is commutative we have that Mab and Mabc are 4-isogenous as well, thus
satisfying the first equation in Corollary 1. The same process is repeated for
Mad, yielding the most significant bits of Mabd. Finally, by using Eq. (19) we
can rewrite the resulting equations in terms of the least significant bits mab, mabc

and mabd, which are now small roots of size p11/24 of the respective polynomials.
A then finds these small roots via Theorem 3. ��

5.2 Solving CI-HNP for CSURF

Let p ≡ 7 mod 8 be a prime and O = Z[(1+π)/2]. We use a very similar strategy
compared to Sect. 5.1 to craft the polynomials. Unfortunately, we cannot use the
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same trick involving 4-isogenies from Proposition 1 as they are specific to the
CSIDH setting. Instead, we can consider 2-isogenies since we have the ideals l0
and l0 available. The resulting formulas still have small degree but cannot quite
compete with the formulas for 4-isogenies in CSIDH. In particular, the ideal l0
has very large order, meaning that we only get two relations between a curve
and its 2-isogenous neighbors.

Recall that the point P→ = (0, 0) has order 2 and corresponds to the ideal
l0. In order to compute the image curve of the vertical isogeny with kernel 〈P→〉
we use the following formula from [18, Equation (18)].

Proposition 2. Let A ∈ Mp(Z[(1 + π)/2]) be the Montgomery coefficient of
the curve EA and let P→ = (0, 0). The curve EA/〈P→〉 is isomorphic to a
Montgomery curve EB that can be written as

EB : y2 = x3 + Bx2 + x, where B =
A + 6

2
√

A + 2
.

Note that A + 2 is a square by definition. Squaring both sides and rearranging
terms yields a bivariate polynomial of total degree 3.

Corollary 2. Let the notation be as in Proposition 2. The Montgomery coeffi-
cients A and B satisfy

A2 + 12A − 4B2A − 8B2 + 36 = 0.

The formula above only applies to the vertical isogeny generated by the point
P→. However, one can treat the other vertical isogeny generated by P← �= (0, 0)
similarly by observing that if E′ = E/〈P←〉, then E ∼= E′/〈P→〉. We thus get
almost the same formula as in Corollary 2 where the only difference is that the
coefficient A now takes the role of the image curve.

Corollary 3. Let A ∈ Mp(Z[(1 + π)/2]) be the Montgomery coefficient of
EA and let EC be the Montgomery curve isomorphic to EA/〈P←〉. Then the
Montgomery coefficients A and C satisfy

C2 + 12C − 4A2C − 8A2 + 36 = 0.

Observe that in Corollary 3 the monomials involving the Montgomery coeffi-
cient A are quite different compared to Corollary 2. This is in stark contrast to
the CSIDH setting (in particular Corollary 1) where in the first two equations the
monomials involving A are almost identical (up to sign). This “asymmetry” in
the polynomials is undesirable for Coppersmith’s method. In combination with
the fact that we only have two relations instead of three, we have to increase the
value k significantly in order to solve CI-HNPk for CSURF.

Theorem 7. Let p ≡ 7 mod 8 be a n-bit prime, and let ε > 0 be an arbitrarily
small constant. There exists a PPT algorithm A that solves CI-HNPk in the
CSURF setting for k = (3141 + ε)n under Heuristic 1.
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Simulating OMSBk Solving CDH Solving DLOG
Thm. 6/7 [52]

Fig. 4. Overview of the reduction from simulating the oracle OMSBk to DLOG. Dashed
lines denote quantum reductions.

Proof. The algorithm A proceeds like in the previous section. Given an instance
(Ma,Mb) of CI-HNPk, A first computes the 2-isogenous coefficients Mac and Mad

by quotienting out 〈P→〉 and 〈P←〉 on Ma, respectively. It then submits the oracle
queries OMSBk

(Ma,Mb) and OMSBk
(Mac,Mb), which yield the most significant

bits of the coefficients Mab = CDH(Ma,Mb) and Mabc = CDH(Mac,Mb). Lastly
it uses Eq. (19) to express the equation from Corollary 2 in terms of mab and
mabc, where mab and mabc are now small roots of size p10/41 of the corresponding
polynomial. The same process is repeated with the curve Mad and Corollary 3.
The small root mab is then found by Coppersmith’s method and the bound for
k follows from Theorem 4. Note that the monomials in Theorem 4 differ slightly
from those appearing in Corollary 2 and Corollary 3 due to the substitution
mentioned in Eq. (19). ��

5.3 Hardness of Simulating OMSBk

The results from the previous sections can be directly used to analyze the hard-
ness of simulating the oracle OMSBk

. More concretely, simulating OMSBk
is quan-

tumly as hard as solving DLOG due to the equivalence of CDH and DLOG in
the CSIDH/CSURF setting. For simplicity we state the following result only for
CSIDH, the statement and proof for CSURF is completely analogous.

Corollary 4. Let p ≡ 3 mod 4 be an n-bit prime, O = Z[π] and k = (1324 + ε)n
for some arbitrary small constant ε > 0. Assume that there exists an efficient
(possibly quantum) algorithm A with

Pr[A(a � M, b � M) = OMSBk
(a � M, b � M)] = 1

where [a], [b] $← cl(O). Then there exists an efficient quantum algorithm B solving
DLOG in the CSIDH setting under Heuristic 1.

Proof. The reduction is straightforward and depicted in Fig. 4. In a first step, we
use our algorithm developed in Theorem 6 to transform the algorithm A into an
algorithm A′ solving CDH under Heuristic 1. In a second step we can simply use
A′ (which still has success probability 1) together with the techniques developed
by [52] to construct the algorithm B solving DLOG. ��

We currently require A to simulate OMSBk
perfectly. This is a direct con-

sequence of the fact that there is no obvious way to re-randomize the inputs
to the oracle OMSBk

such that we still get meaningful information about the
neighboring curves of ab � M .
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6 Experimental Results

We implemented our new automated variant of Coppersmith’s method from
Theorem 2 in SageMath and used it to run our algorithms from Theorems 6 and
7 in practice.

CSIDH and CSURF Results. We ran our algorithms from Theorems 6 and 7
using SageMath 9.7 on an AMD EPYC 7763 processor with 128 physical and 256
logical cores. As Table 1 shows, our algorithms perform well in practice and we
come close to our asymptotic bounds of k = 13

24n ≈ 0.542n and k = 31
41n = 0.756n

in a matter of minutes.

Table 1. Experimental results for CSIDH/Theorem 6 (top) and CSURF/Theorem 7
(bottom) with n-bit prime p and k-bit MSB oracle, averaged over 10 runs each. The
columns m and |M| show the parameters m and |M| used in Coppersmith’s method.
The columns F , LLL and GB show the required runtime for constructing the set F ,
running LLL and computing the Gröbner basis, respectively. For every n and m, the
table shows the smallest k for which our algorithms were able to solve CI-HNPk.

n k (known bits) m |M| (lattice dim.) Runtime

F LLL GB

512 318 (62.11%) 3 27 < 1 s <1 s <1 s

512 302 (58.98%) 6 125 <1 s 30 s 5 s

512 297 (58.00%) 9 343 2 s 8 min 56 s

1024 634 (61.91%) 3 27 <1 s 1 s 1 s

1024 601 (58.69%) 6 125 <1 s 39 s 9 s

1024 589 (57.52%) 9 343 3 s 10min 2 min

1792 1108 (61.83%) 3 27 <1 s 1 s 1 s

1792 1051 (58.65%) 6 125 <1 s 50 s 15 s

1792 1028 (57.37%) 9 343 3 s 13min 3 min

n k (known bits) m |M| (lattice dim.) Runtime

F LLL GB

512 438 (85.55%) 2 33 <1 s 1 s <1 s

512 419 (81.84%) 4 165 <1 s 52 s 4 s

512 405 (79.10%) 6 469 1 s 16min 34 s

1024 874 (85.35%) 2 33 <1 s 1 s <1 s

1024 830 (81.05%) 4 165 <1 s 1 min 6 s

1024 808 (78.91%) 6 469 1 s 22min 57 s

1792 1528 (85.27%) 2 33 <1 s 2 s 1 s

1792 1451 (80.97%) 4 165 <1 s 2 min 7 s

1792 1412 (78.79%) 6 469 1 s 31min 2 min
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In every experiment Heuristic 1 was valid, i.e., we were always able to extract
the unknowns from the Gröbner basis. This confirms the correctness of our
heuristic algorithms.

Implementation Details. For constructing the set of shift-polynomials F , we
used in our experiments a slightly optimized implementation of Algorithm 2.
Instead of simply enumerating all possible shift-polynomials in Step 3 of the
algorithm, our implementation iterates over a carefully crafted tree of shift-
polynomials. The tree is constructed only implicitly, and our implementation
automatically detects (and ignores) some branches that are not worth visiting.
This results in a significant speed-up in practice.

The LLL lattice reduction step was performed using the recently published
flatter algorithm [42], which significantly outperforms SageMath’s native
implementation of LLL (which internally calls FPLLL).

For the Gröbner basis computation, we used SageMath’s native Gröbner
basis algorithm (which internally calls Singular) to compute Gröbner bases
over small finite fields F2, F3, F5, F7 . . ., and then recovered the desired roots via
Chinese remaindering.

7 Conclusion

In this work we analyzed the Commutative Isogeny Hidden Number Problem
and solved it for k = 13

24n (CSIDH) and k = 31
41n (CSURF) by using a new

and automated variant of Coppersmith’s method. Since the recovery rate for
CSURF is much worse compared to CSIDH, we conclude that in the context of
side-channel attacks, CSURF offers more resilience against exposing the most
significant bits of the shared key. Even more generally it seems to be advisable
that the class group cl(O) does not contain a small order subgroup, which is in
line with previous observations [11,38].

Furthermore, we gave a purely combinatorial restatement of Coppersmith’s
method that allows for near complete automation. In particular, we identified a
single step in Coppersmith’s method that, when optimized, yields provably opti-
mal results. We implemented our variant of Coppersmith’s method in SageMath
and demonstrated its practicality by using it to solve the Commutative Isogeny
Hidden Number Problem. In particular, we gave highly simplified proofs for the
recovery bound of our algorithm that only rely on a mild heuristic.

Open Problems. Lastly we state some open problems. Improving the recovery
bound for either CSIDH or CSURF would of course be desirable. Apart from
incremental improvements coming from an improved Coppersmith lattice the
only other natural option seems to be to incorporate higher-degree isogenies.
This would yield more polynomial relations at the expense of higher total degrees
of said polynomials. It is currently not known whether this trade-off can be used
to increase the overall recovery rate. Alternatively, finding a completely different
approach to solving CI-HNP would be very intriguing.

Secondly, any improvements to Corollary 4 would be welcome, either by
extending the reduction to adversaries with non-negligible success probability or
by removing the condition on CSIDH/CSURF being effective group actions.
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Thirdly, proving Heuristic 2 (even in some special cases) would be very inter-
esting as it would yield an efficient algorithm that can derive provably correct
recovery bounds.
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Abstract. The LWE problem is one of the prime candidates for building
the most efficient post-quantum secure public key cryptosystems. Many
of those schemes, like Kyber, Dilithium or those belonging to the NTRU-
family, such as NTRU-HPS, -HRSS, BLISS or GLP, make use of small
max norm keys to enhance efficiency. The presumably best attack on
these schemes is a hybrid attack, which combines combinatorial tech-
niques and lattice reduction. While lattice reduction is not known to be
able to exploit the small max norm choices, May recently showed (Crypto
2021) that such choices allow for more efficient combinatorial attacks.

However, these combinatorial attacks suffer enormous memory require-
ments, which render them inefficient in realistic attack scenarios and,
hence, make their general consideration when assessing security question-
able. Therefore, more memory-efficient substitutes for these algorithms
are needed. In this work, we provide new combinatorial algorithms for
recovering small max norm LWE secrets using only a polynomial amount
of memory. We provide analyses of our algorithms for secret key distri-
butions of current NTRU, Kyber and Dilithium variants, showing that
our new approach outperforms previous memory-efficient algorithms. For
instance, considering uniformly random ternary secrets of length n we
improve the best known time complexity for polynomial memory algo-
rithms from 21.063n down-to 20.926n. We obtain even larger gains for LWE
secrets in {−m, . . . , m}n with m = 2, 3 as found in Kyber and Dilithium.
For example, for uniformly random keys in {−2, . . . , 2}n as is the case
for Dilithium we improve the previously best time from 21.742n down-to
21.282n.

Our fastest algorithm incorporates various different algorithmic tech-
niques, but at its heart lies a nested collision search procedure inspired
by the Nested-Rho technique from Dinur, Dunkelman, Keller and Shamir
(Crypto 2016). Additionally, we heavily exploit the representation tech-
nique originally introduced in the subset sum context to make our nested
approach efficient.
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1 Introduction

The Learning with Errors (LWE) problem is one of the most promising candi-
dates for post-quantum cryptographic constructions. Given a matrix A ∈ Z

n×n
q

and a vector b = As− e ∈ Z
n
q , where e is a short error vector, the problem asks

to recover the secret vector s. The LWE problem is known to be as hard as some
worst case lattice problems, which made it an attractive choice as foundation
for several efficient cryptographic systems [6,9,21,29,34,36,37]. The most effi-
cient of these schemes rely on ring variants of LWE, which exploit the algebraic
structure of the underlying rings to represent the matrix A [9,30]. Further, some
schemes restrict the error term e, as well as the vector s, to vectors with small
max norm [6,14,23,28]. Crystals-Kyber [9], which is going to be standardised
by NIST, for example, samples key and error from a centered binomial distri-
bution, which in turn results in small max norm key and error of norm 2 or
3. NTRU-type schemes go even further and choose ternary secrets with coef-
ficients in {0,±1}, i.e., with max norm 1. Usually, these are efficiency driven
decisions, whose security argument is based on the lack of faster algorithms to
solve these variants, since lattice reduction is not known to be able to exploit
small max norm. However, the best attack on ternary LWE keys is considered to
be a combination of combinatorial attacks and lattice reduction, known as the
hybrid attack introduced by Howgrave-Graham [26]. Internally, this attack bal-
ances the complexity of an involved meet-in-the-middle and a lattice reduction
step. Therefore, progress on combinatorial attacks has a strong potential to affect
parameter selection for those schemes. Putting the focus on the NTRU-family
of schemes and its variants we concentrate in this work on LWE with ternary
secrets. However, our attacks also translate well to higher max norm variants as
we showcase by an application to LWE keys as found in Kyber and Dilithium
(see Sect. 6).

Intuitively, it is clear that small max norm keys with reduced search space of
size D allow for faster combinatorial attacks that rely on enumerating possible
keys. However, for a long time, the best combinatorial algorithm was a basic meet-
in-the-middle attack by Odlyzko from 1996, mentioned in the original NTRU
paper [25], achieving a running time of D0.5. Recently, May [31] showed how to
adapt advanced techniques from solving the subset sum problem to the small
max norm LWE setting. This results in significant improvements of the running
time to approximately D0.25 for ternary LWE keys.

However, the biggest obstacle of all combinatorial approaches, including the
results by May and its recent adaptation to the cases of Kyber and Dilithium [22],
is their huge memory complexity, which is as high as their time complexity. Even
if such large amounts of memory should be ever available, the slowdown emerging
from accessing such large-scale memories is likely to render those algorithms
inefficient.
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In contrast, in this work we provide new (heuristic) algorithms for solving
the LWE problem with small max norm secrets using only polynomial memory.
Polynomial memory algorithms are of crucial importance to cryptanalysis for
multiple reasons. On the one hand, they allow for very efficient implementations
on inherently memory constrained platforms such as FPGAs or even more com-
monly used GPUs [5,15,32,33]. Practical record computations, therefore, often
start from a low-memory algorithm, with only polynomial memory requirement,
which is then supported by the available memory if possible [10,18,38]. Further,
aiming at near- to mid-term quantum cryptanalytic implementations, the focus
has to be on low-memory algorithms.

Our algorithms almost achieve the same running time as Odlyzko’s meet-
in-the-middle, i.e., D0.5, while in contrast only using a negligible amount of
memory. Our fastest construction is based on a variety of different techniques,
but at its heart lies a nested collision search procedure inspired by the nested
rho technique from [13], which is also the foundation of the fastest (heuristic)
polynomial space algorithm for subset sum [17]. Our analyses, thereby, rely only
on mild heuristics, which are frequently applied and experimentally verified in
the context of collision search and the representation technique. Asymptotically
our approach outperforms pure lattice enumeration, which has also only polyno-
mial space requirements, but comes at a running time of 2cn log n, where c is a
constant and n the LWE dimension [3,20]. In contrast our algorithms’ running
times are single exponential in the LWE dimension, i.e., of the form 2c′n for
a constant c′. Further, we significantly improve the constant c′ in comparison
to previously suggested memoryless algorithms based on conventional collision
search techniques, such as [31,39].

With respect to concrete, currently proposed parameters, pure combinatorial
attacks, such as Odlyzko’s, May’s and ours, are quite far from competing against
pure lattice strategies.1 Hence, our attacks, analogous to those of May [31], do
not invalidate security claims of currently suggested parameters as we improve
primarily on the memory complexity. However, advances on those attacks, on
one hand, strengthen our understanding of the hardness of those problems by
providing clean combinatorial upper bounds; especially they clarify the effect
of the sparsity of the secret, heavily exploited by those strategies, showing that
overly sparse choices might lead to unwanted drops in security. Furthermore
and probably most importantly, combinatorial attacks have a huge potential
to improve the Hybrid attack by replacing Odlyzko’s meet-in-the-middle with
faster routines, such as, May’s [31], or more memory-efficient strategies, such as
ours. However, replacing Odlyzko’s is not possible in a plug-and-play manner as
detailed and posed as an open question in [31]. Since then the problem has been
actively investigated by multiple recent works [7,24], and once a clear consensus
is reached, we also expect practical implications of our attacks.

1 Best runtime results from May [31] are slightly less than the square of current lattice
complexities.
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Our Contribution. We first revisit basic collision search techniques for solving
the ternary LWE problem introduced by van Vredendaal [39] and recently refined
by May [31] to set the baseline for our new algorithmic improvements. In this
context, as a small initial contribution, we provide a single framework from which
the algorithms of [39] as well as all variations given in [31] can be obtained as
different instantiations.

We then introduce our novel nested collision search algorithm that leads
to significant runtime improvements over previous approaches. In terms of the
search space size D our nested algorithm applied to ternary LWE achieves approx-
imately a running time of D0.55, which is just slightly higher than the running
time of Odlyzko’s meet-in-the-middle but reduces the memory from D0.5 to a
negligible amount. In comparison, the polynomial memory technique of van Vre-
dendaal obtains a running time of D0.75, while May obtains roughly D0.65.2
For keys following distributions as in Kyber, we get even closer to meet-in-the-
middle’s running time by reaching D0.513 and D0.508 respectively. We illustrate
the running time exponent of our algorithm on ternary LWE in comparison to
van Vredendaal and May as a function of the Hamming weight w of the solution
in Fig. 1. We observe that our technique outperforms both previous methods for
all choices of the weight. Furthermore, in contrast to May’s method, our tech-
nique follows the natural behavior of a reduced time complexity for high weights,
i.e., when the search space starts decreasing again.
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Fig. 1. Runtime exponents c as a function of the relative weight w/n for different
polynomial memory algorithms and Odlyzko’s MitM, with memory equal to time. The
running time is of the form T = 2cn+o(n).

On the technical side, we employ multiple techniques to make the nested
approach functional and efficient. Methods based on conventional collision search
2 Since May’s algorithm performance is worse towards high weights, we considered for

this comparison only weights w/n ≤ 2
3
.
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rely on Odlyzko’s hash function to eliminate e from the LWE identity. This
gives an exact identity which can then be formulated as collision search problem.
However, while the solution forms a collision between the defined functions by
construction, not necessarily every collision leads to the solution. Therefore, the
collision search needs to be re-applied an exponential number of times until a
collision is found that gives rise to the solution.

In a nutshell, we replace the iterative application of the collision search by
another layer of collision search. While this increases the time to perform a sin-
gle (two-layer) collision search, it is compensated by eliminating the need for
multiple iterations, as a single (two-layer) collision search suffices to identify the
solution. Unfortunately, Odlyzko’s hash function is not well compatible with our
nested approach. First, it is not additive, which is crucial to enable the nesting
and its output of only n bits is not sufficient for both collision searches. How-
ever, we circumvent this problem by adapting a guessing strategy introduced
in [31] in the context of non-polynomial space algorithms. Here, we first guess
r := n

log n coordinates of e, which can be done in subexponential time O(3r). We
then use the resulting exact identity to identify in the first layer collision search
those elements (x,y) that fulfill the LWE identity A(x + y) = b + e on the r
known coordinates. In the second layer, we may then again rely on Odlyzko’s
hash function to extract the solution, similar to the conventional methods. Fur-
ther, to make the nesting efficient, we incorporate the representation technique
from subset sum [27], which allows to increase the number of collisions that give
rise to the solution. It has previously been observed that the digit set, i.e., the
alphabet to which the coordinates of the vectors x,y belong, plays a crucial
role for the number of representations [4,8,31]. In this context, we also pro-
vide the quite technical analysis for an extended digit set of {0,±1,±2}, i.e.,
x,y ∈ {0,±1,±2}n, to obtain further improvements. Eventually, we use sev-
eral further tricks to speed up our procedure. Therefore we embed the concept
of partial representations introduced in [11,17] and combine it with an initial
instance permutation, similar to the one in [17]. Further, we borrow techniques
from decoding random linear codes [35] (Information Set Decoding) to obtain
improvements, especially in the case of uniform random ternary secrets.

Eventually, we extend all our results to the cases of Kyber and Dilithium
involving digit sets of {−3, . . . , 3}. For a better comparison, we also extend the
results from May, which were originally only provided for ternary keys.

Further, we extend our results to a small (but exponential) memory setting
by introducing a Parallel Collision Search (PCS) based time-memory trade-off.
This reflects the practical scenario where even low memory devices provide a
certain (small) amount of memory.

Heuristic Assumptions. When applied to random LWE instances our algorithms
rely only on standard assumptions in the context of collision search and represen-
tation based algorithms, which have been extensively verified in multiple prior
works [13,17,18,27]. However, we also provide experimental data that verify
those assumptions in our precise setting in the full version of this work [16].
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An application of our results to structured LWE instances, as found in Kyber,
Dilithium or NTRU, further requires the assumption that the introduced struc-
ture does not affect the behavior of our algorithms. Note that this assumption is
common in the analysis of combinatorial algorithms in the LWE context [22,31]
and was recently made more explicit by Glaser-May [22]. Also, a similar assump-
tion is required in the related code-based setting when applying such algorithms
to structured candidates like BIKE or HQC, which has held true in extensive
practical experiments [18,19].

Source Code. The source code of all our implementations is available at https://
github.com/arindamIITM/Small-LWE-Keys.

Outline. In Sect. 2 we give basic notations and definitions including the for-
malization of the ternary LWE problem and we recall standard techniques for
collision search. Subsequently, in Sect. 3 we give a framework for methods solving
LWE via conventional collision search from which we derive the algorithms of
van Vredendaal and May. We give our main result, the nested-collision technique
together with several improvements in Sect. 4. In Sect. 5 we conclude the ternary
analysis with a detailed comparison of our new method and previous approaches,
while in Sect. 6 we provide runtime results of our attacks applied to Kyber and
Dilithium keys. Eventually, we present a time-memory trade-off for small but
exponential amounts of memory in Sect. 7.

2 Preliminaries

We denote vectors as bold lower case and matrices as bold upper case letters.
For a vector x and an integer � we denote by π�(x) := (x1, . . . , x�) the canonical
projection to the first � coordinates of x. For a vector s ∈ Z

n
q its Hamming weight

or just weight is defined as the number of non-zero coordinates of s.

2.1 Complexity Statements

For complexity statements we use standard Landau notation, where Õ-notation
suppresses polylogarithmic factors. In this context, we frequently use the well
known approximation for multinomial coefficients that can be derived from Stir-
ling’s formula (

n

k1n, . . . , kpn

)
= Õ

(
2H(k1,...,kp)n

)
, (1)

where H denotes the Shannon entropy function H(k1, . . . , kp) = −
∑p

1 ki log2(ki)
with

∑p
1 ki = 1. Since kp is fully determined by the remaining ki’s we define the

following notation
(

n
k1n,...,kp−1n,·

)
:=

(
n

k1n,...,kpn

)
.

https://github.com/arindamIITM/Small-LWE-Keys
https://github.com/arindamIITM/Small-LWE-Keys
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2.2 LWE and Ternary Vectors

In this work, we focus on LWE instances with max norm one, i.e., ternary secrets
and errors. However, in principle our techniques extend to any constant max
norm, as we show by application to LWE with secrets in {−m, . . . ,m}n for
m = 2, 3 in Sect. 6.

Definition 1 (Ternary LWE problem). Let n ∈ N and q = poly(n). Given a
matrix A ∈ Z

n×n
q , a vector b ∈ Z

n
q and an integer w the ternary LWE problem

asks to find a vector s ∈ {−1, 0, 1}n of weight w satisfying the LWE identity
As = b+ e mod q, where e ∈ {−1, 0, 1}n is an arbitrary ternary vector.

Motivated by cryptographic constructions our definition covers only square
matrices A, even though our results extend well to the non-square case. Fur-
ther, we restrict the modulus q = poly(n) which is proven to be a hard regime
and larger choices might allow for faster attacks [2].

In our analysis we assume all entries of the matrix A are drawn independently
and uniformly at random from Zq. Note that, apart from ring LWE instantiations
this is generally the case and we do not exploit the ring structure in our attacks.
Moreover, we only consider the case of balanced weight-w solutions, i.e., solutions
with the same amount of w/2 entries equal to 1 and w/2 entries equal to −1. Most
NTRU-type instantiations, such as NTRU, GLP, and BLISS, use balanced weight
secrets by default. But even if the proportion of ones and minus ones should be
unknown, our attacks can easily be generalized by iterating our procedures for
each possible proportion. For constant max norm secrets this results at most in
a polynomial overhead. In this context, we denote the set of ternary vectors of
length n and balanced weight w as τn(w/2), that is,

τn(w/2) = {s ∈ {0,±1}n : s has w/2 many 1-entries ∧ w/2 many (−1)-entries}.

Odlyzko’s Hash Function. In the context of the LWE problem, Odlyzko made
use of a locality sensitive hash function that eliminates the unknown ternary
vector e from the LWE identity. For a vector x ∈ Z

n
q the hash function maps

each coordinate xi ∈ {−�q/2�, . . . , 0, . . . , �q/2�} to its sign. More precisely let
us define h : Zn

q → {0, 1}n in the following way. For x ∈ Z
n
q we coordinate-wise

assign the binary hash label h(x)i where,

h(x)i =
{
0, if xi < 0
1, if xi ≥ 0

Note that, as long as e does not cause the signs of both sides of the LWE identity
to diverge we have h(As) = h(b). Such a divergence can only happen if there
are coordinates equal to −1 or �q/2� present in As or b, which are called edge
cases. Therefore, split the ternary e = e1 − e2 with ei ∈ {0, 1}n and rewrite the
LWE identity as As+ e2 = b+ e1. Now the addition of ei can only cause a sign
flip for the mentioned edge cases of −1 or �q/2� coordinates.
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2.3 Collision Search

Let f : S → S be any random function on S. Then a collision in f defines a tuple
(y1, y2) ∈ S2 with f(y1) = f(y2). Such a collision can be found using O(

√
|S|)

evaluations of f and polynomial memory. The standard technique is to create a
chain of invocations of the function f from a random starting point x. That is
iterating f(x), f2(x), f3(x), . . ., until a repetition occurs, which is found via a
cycle detection algorithm. Let fk(x) be the first repeated value in the chain and
let fk+l(x) be its second appearance (compare to Fig. 2). We denote the output
of a collision finding algorithm on f with starting point x as Rho(f, x) which
gives the colliding inputs. More precisely,

Rho(f, x) = (fk−1(x), fk+l−1(x)).

x

z1
z2 · · · zk−1

zk

zk+1

zk+2

zk+3

. . .

zk+l−1

Fig. 2. Application of Rho - function for f with starting point x. f i(x) is denoted by
zi.

The technique also extends to finding collisions between two different func-
tions, i.e., two random functions f1 : S → S and f2 : S → S. Therefore we define
another function F : S → S as

F (x) =
{

f1(x), if g(x) = 0
f2(x), if g(x) = 1

where g : S → {0, 1} is a random function. Now we search for collisions in F
using the previously discussed method. A collision (y1, y2) in F , i.e., F (y1) =
F (y2), yields a collision between f1 and f2 iff g(y1) �= g(y2), which happens with
probability 1

2 . In case of g(y1) = g(y2), one might (deterministically) change the
starting point and reapply the procedure. Since, in expectation, this results only
in a constant factor overhead, we conveniently write Rho(f1, f2, x) to denote the
collision (y1, y2) between f1 and f2 reachable from starting point x still using
O(

√
|S|) evaluations of the function F .

Note that several starting points x might lead to the same collision
(y1, y2), for instance any point z1, . . . , zk−1 in Fig. 2 produces the same colli-
sion (zk−1, zk+l−1). To obtain (heuristic) independence between different calls
to the Rho function we introduce randomizations of the functions called flavors.
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Definition 2 (Flavour of a function). Let f : S → S be a function and
Pt : S → S be a family of bijective functions indexed by t ∈ N. Then the tth

flavour of f is defined as
f [t](x) := Pt(f(x)).

A collision (y1, y2) in f [t] satisfies

f [t](y1) = f [t](y2) ⇔ Pt(f(y1)) = Pt(f(y1)) ⇔ f(y1) = f(y2).

Hence, (y1, y2) is a collision in f itself. When searching for collisions in randomly
flavored functions, i.e., for random choices of t, we (heuristically) assume that
different invocations of the Rho-function produce independent and uniformly
at random drawn collisions form the set of all collisions. This is a standard
assumption in the context of collision search [4,13,17] which has been verified
experimentally multiple times [13,17] in different settings.

3 Solving LWE via Collision Search

For didactic reasons and to set the baseline for our improvements, let us start
by recalling the memory-less attacks given by van Vredendaal [39] and more
recently by May [31] which are based on conventional collision search.

Let us first give a general framework for this kind of attack, which later allows
to instantiate the different algorithms. Recall the LWE identity

As = b+ e mod q, (2)

where A,b are known. We split s = s1 + s2 in the sum of two addends, where
si ∈ Ti.3 Further, we define the two functions fi : Ti → {0, 1}�, i = 1, 2 where

f1 : x 
→ π�

(
h(Ax)

)
and f2 : x 
→ π�

(
h(b − Ax)

)
.

Hence, the functions output the first � bits of Odlyzko’s hash function applied to
the respective input. Note that, as long as we restrict to no edge cases regarding
the hash function h (see Sect. 2), any tuple (s1, s2) that sums to s forms a col-
lision between the functions f1 and f2. The algorithms now search for collisions
in f1, f2 until they find a collision (x,y) for which A(x+ y) − b and x+ y are
both ternary, and then outputs s = x+ y.

Remark 1 (Hashing back to the range). Technically, for a collision search proce-
dure as outlined in Sect. 2 to work, the used functions need to have same domain
and range, as they are iteratively applied to their own output. However, for sim-
plicity of notation, we only ensure that domain and range have the same size
in all our algorithms. Prior to applying the functions to their own output, one
would apply a bijective mapping from the range to the domain, i.e., here from
{0, 1}� to Ti.
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Algorithm 1: Collision-Search
Input: (A,b) ∈ Z

n×n
q × Z

n
q , positive integer w ≤ n

Output: s ∈ τn(w/2) such that e = As − b mod q ∈ {−1, 0, 1}n

1 � := log |T1|
2 repeat
3 choose random flavour for f1, f2

4 choose random starting point v ∈ {0, 1}�

5 (z1, z2) ← Rho(f1, f2,v)
6 until z1 + z2 ∈ τn(w/2) ∧ A(z1 + z2) − b ∈ {−1, 0, 1}n

7 return s = z1 + z2

Correctness of Algorithm 1. To ensure that our functions have domain and range
of same size we choose � := log |T1| and guarantee |T1| = |T2| by our later choice
of T1, T2.

Note that for any s1, s2 that sums to s we have f1(s1) = f2(s2), as long as
there is no edge case among the lower � coordinates of As1 and b−As2, i.e. an Zq

coordinate equal to �q/2� or −1. In [39] it was shown, that the probability of no
edge case occurring for such a pair is constant. Therefore as long as the function
domains include at least a single representation of s, i.e., a pair (s1, s2) ∈ T1 ×T2

with s = s1 + s2, there is a collision that leads to the solution with constant
probability. Now, by the standard assumption that the collisions sampled by the
algorithm for different function flavors are independent and uniform, the algo-
rithm is able to find this collision and hence, succeeds with constant probability.

Complexity of Algorithm 1. If f1, f2 behave like random functions, we expect that
there exists a total amount of

|T1| · |T2|
|{0, 1}�| =

|T1|2
|T1|

= |T1|

collisions, between them, since � := log |T1| and |T1| = |T2|. Further, we know
that finding one of these collisions takes time Õ

(√
|T1|

)
. If now there exist R

representations of s, i.e., pairs (s1, s2) ∈ T1 × T2 that sum to s, we expect that
after finding |T1|

R collisions, we found one that is a representation of s. Finding
these |T1|

R collisions takes expected time

T = Õ
(
|T1|/R ·

√
|T1|

)
= Õ

(
|T1|3/2/R

)
.

Remark 2 (Random behavior of the functions). All algorithms following this
framework are based on the heuristic assumption that the constructed func-
tions behave like random functions with respect to collision search and the total
number of existing collisions. This assumption has been verified experimentally
3 The precise choice of Ti depends on the specific instantiation and is described later.
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various times in different settings [1,12,13,17,38]. We provide additional exper-
imental evidence for its validity in our precise setting in the full version of this
work [16].

The different algorithms from [31,39] now differ in their choice of function
domains Ti.

Van Vredendaal’s Instantiation. Van Vredendaal [39] chooses a meet in the
middle split of s, i.e.,

T1 := {(x, 0n/2) | x ∈ τn/2(w/4)}
T2 := {(0n/2,x) | x ∈ τn/2(w/4)}.

The algorithm assumes that the −1 and 1 entries of s distribute evenly on both
sides. Note that if this is not the case one might re-randomize the initial instance
by permuting columns of A, as AP, with solution P−1s, where P is a permuta-
tion matrix. The expected amount of random permutations until we obtain the
desired weight distribution is

(
n

w/2,w/2,·
)

(
n/2

w/4,w/4,·
)2 = poly(n),

which vanishes in our asymptotic notation. For evenly distributed s and this
specific choice of domains Ti, we have clearly only one representation (s1, s2) ∈
T1 × T2 of s, i.e., R = 1. Since the domain size is determined as

|T1| = O
(

n/2
w/4, w/4, ·

)

the time complexity of Algorithm 1 for van Vredendaal’s choice of domains
becomes

Tv-V = Õ
(
|T1|3/2/R

)
= Õ

((
n/2

w/4, w/4, ·

)3/2
)

= Õ
(
23H(ω/2,ω/2,·)n/4

)
,

where ω := w/n.

May’s Instantiations. May gives three different instantiations for Ti, called
Rep-0, Rep-1 and Rep-2. For all choices the weight of the vectors distributes
over the full n coordinates. The difference then lies in the precise choice of weight
and the digit set. Let us start with the most simple Rep-0 variant.

Rep-0 Instantiation. Here the domains are chosen as

T1 = T2 := τn(w/4),
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which results in a domain size of

|Ti| = O
(

n

w/4, w/4, ·

)
.

Note that when representing s = s1 + s2 with si ∈ Ti, we can obtain a 1 (resp. a
−1) coordinate only as 1 + 0 or 0 + 1 (resp. −1 + 0 or 0 − 1), while a 0 only as
0 + 0. Therefore the number of representations amounts to

R =
(

w/2
w/4

)2

.

as we can freely choose w/4 out of w/2 of the ones to be represented as 1 + 0
while the rest is represented as 0 + 1 (and analogously for the −1’s).

The time complexity is then given as

TRep-0 = Õ
(
|Ti|3/2/R

)
= Õ

(
2
(
3H(ω/4,ω/4,·)/2−ω

)
n

)
,

where again ω := w/n.

Rep-1 Instantiation. The Rep-1 instantiation increases the weight of the vectors
to w/2 + 2d for some small d, that has to be optimized, i.e.,

T1 = T2 := τn(w/4 + d).

Similar to before we have

|Ti| = O
(

n

w/4 + d,w/4 + d, ·

)
.

The benefit of the increased weight lies in an increased number of represen-
tations. As now it is possible to represent a zero coordinate in s = s1 + s2 not
only as 0 + 0 but also via −1 + 1 and 1 + (−1). In total, this leads to

R =
(

w/2
w/4

)2(
n − w

d, d, ·

)
,

as we represent d zeros via −1 + 1, d as 1 + (−1) and n − w − 2d as 0 + 0. In
total the time complexity of this approach then becomes

TRep-1 = Õ
(
|Ti|3/2/R

)
= Õ

(
2

(
3H(ω/4+δ,ω/4+δ,·)/2−ω−(1−ω)H

(
δ/(1−ω),δ/(1−ω),·

))
n

)
,

where d = δn.

Rep-2 Instantiation. In the Rep-2 instantiation May defines the vectors no
longer over {−1, 0, 1}n but over {−2,−1, 0, 1, 2}n. Again the additional −2 and
2 entries lead to more representations. However, the analysis becomes quite tech-
nical. We give an extended analysis of this representation approach for our nested
algorithm in Sect. 4.3 and an analysis of an extension to Rep-3 in the appendix.
For a complexity analysis specific to May’s instantiation we refer to [31]. In
Fig. 3 we illustrate the runtime exponents of the algorithms by May and van
Vredendaal.
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Fig. 3. Comparison between van Vredendaal’s instantiation and May’s instantiations.

4 Nested Collision Search for LWE

So far the collision search algorithm solves the LWE identity only on a projec-
tion after applying Odlyzko’s hash function. To eventually identify the solution
among all candidates that satisfy this less restrictive identity, the collision search
procedure is repeated an exponential amount of times. In other words, a brute
force technique is applied to isolate the solution.

Our nested collision search procedure now replaces the brute force step by a
second collision search. While one might hope that a single collision (x,y) would
then suffice to solve the problem, usually x,y do not sum to a ternary vector, i.e.,
x+ y /∈ {−1, 0, 1}n. Therefore the algorithm still needs to iterate over multiple
collisions. However, as soon as x+ y ∈ {−1, 0, 1}n, it implies that s = x+ y is
the solution.

Let us start again with a general framework before discussing our concrete
instantiations. For the two-layer approach, we split the solution into four sum-
mands s = s1 + s2 + s3 + s4. This implies

A(s1 + s2 + s3 + s4) = b+ e mod q

⇔ A(s1 + s2) = b − A(s3 + s4) + e mod q.

Further, for now we assume that we know the first 2� coordinates of e. Then we
obtain

π2�

(
A(s1 + s2)

)
= b′ − π2�

(
A(s3 + s4)

)
mod q, (3)

where b′ := π2�(b+e) is known. This layer-2 identity will later be used to identify
(s1, s2) and (s3, s4) among a set of candidates. Further let r := π�

(
A(s1 + s2)

)
be the lower � coordinates of the left side of this layer-2 identity. Then we obtain
our two layer-1 identities as

π�(As1) = r − π�(As2) mod q

π�(As3) = π�(b′) − r − π�(As4) mod q.
(4)
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Now let us define the functions f1, f2 and f3, f4 used for collision search on
layer one, where fi : Ti → Z

�
q as

f1, f3 : x 
→ π�(Ax), f2 : x 
→ r − π�(Ax) and f4 : x 
→ π�(b′) − r − π�(Ax).
(5)

Note that the value of r is not known a priori; hence the algorithm iterates
over random choices of r until it succeeds. By definition any representation
(s1, s2, s3, s4) of s with π�

(
A(s1 + s2)

)
= r satisfies the layer-1 (and layer-2)

identities and furthermore yields collisions in our functions fi. Namely (s1, s2)
forms a collision between the functions f1, f2, while (s3, s4) forms a collision in
f3, f4. While not every collision is a representation, we can sample candidates
for s1, s2 (resp. s3, s4) by finding collisions between f1, f2 (resp. f3, f4).

Every collision, regardless of being a representation or not, already fulfills
one of the layer-1 identities (Eq. (4)) (depending if the collision is between f1, f2

or f3, f4). Furthermore, note that any tuple (y1,y2,y3,y4) where (y1,y2) is a
collision in f1, f2 and (y3,y4) a collision in f3, f4, already fulfills the layer-2 iden-
tity (Eq. (3)) on the lower � coordinates. Therefore just consider the summation
of both layer-1 identities from Eq. (4).

Collision Search

f1 f2

(y1,y2)
(satisfying 1st layer-1 identity, Eq. (4))

g1

Collision Search

f3 f4

(y3,y4)
(satisfying 2nd layer-1 identity, Eq. (4))

g2

Collision Search

(y1,y2,y3,y4)
(satisfying also layer-2 identity, Eq. (3))

Fig. 4. Schematic illustration of multiple-layer collision search.

We now apply a second collision search to identify those pairs of collisions
that jointly satisfy the layer-2 identity on all 2� coordinates. This process is
illustrated in Fig. 4.

Let ϑ� : Zk
q → Z

�
q, k ≥ 2� be the projection to the coordinates of the vector

indexed by � + 1 to 2�, i.e., for x = (x1, . . . , xk) we let ϑ�(x) := (x�+1, . . . , x2�).
Now we are ready to define the second layer functions gi : Z�

q → Z
�
q, i = 1, 2.

These functions take as input a starting point of a collision search proce-
dure between the layer-1 functions f2i−1, f2i and compute the colliding entries
y2i−1,y2i reachable from that starting point. Finally they output the upper �
coordinates of the corresponding value of the layer-2 identity for (y2i−1,y2i).
More formally, we have
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g1 : x 
→ ϑ�(A(y1 + y2)), where (y1,y2) = Rho(f [x]
1 , f

[x]
2 ,x) and

g2 : x 
→ ϑ�(b′) − ϑ�(A(y3 + y4)), where (y3,y4) = Rho(f [x]
3 , f

[x]
4 ,x). (6)

Note that here we flavour the inner functions fi deterministically via the
starting point used for collision search (see Definition 2), similar to [13,17]. In
this way g1, g2 stay deterministic, as required for the general collision search
procedure, while we obtain (heuristic) independence of returned collisions from
the inner functions.

The general algorithm is outlined in Algorithm 2 as pseudocode and visually
illustrated in Fig. 5. The smaller Rho-structures in the figure represent the layer-
1 collision search, while the layer-2 search is formed as a big Rho using multiple
layer-1 collision searches.

Algorithm 2: Nested-Collision-Search
Input: (A,b) ∈ Z

n×n
q × Z

n
q , positive integer w ≤ n

Output: s ∈ τn(w/2) such that e = As − b mod q ∈ {−1, 0, 1}n

1 Let fi and gj be as defined in Eqs. (5) and (6)

2 � :=
logq |τn(w/2)|

2

3 repeat
4 Choose random permutation P, A′ ← AP

5 Choose e′ ∈ {−1, 0, 1}2� randomly
6 b′ ← π2�(b) + e′

7 Choose r, z ∈ Z
�
q randomly

8 Define functions as in Eqs. (5) and (6) based on A′,b′ and r
9 Choose random flavour for g1, g2

10 (z1, z2) ←− Rho(g1, g2, z)
11 Compute (y1,y2) = Rho(f1, f2, z1)
12 Compute (y3,y4) = Rho(f3, f4, z2)
13 Set s′ = y1 + y2 + y3 + y4

14 until s′ ∈ τn(w/2)
15 return Ps′

4.1 Analysis of Nested Collision Search

Correctness. First note the permuted instance defined by A′ = AP has solu-
tion s′ = P−1s. Hence, once this solution is found we have to return s = Ps′.

We have already shown, that any representation (s1, s2, s3, s4) of the solution
s for the correct choice of r = π�

(
A(s1+s2)

)
and the correct guess for e′ = π2�(e)

satisfies the layer-1 and layer-2 identities (compare to Eq. (3) and Eq. (4)).
Further, we know that such a representation forms a collision in g1, g2. Therefore
by sampling independent and uniformly random collisions between g1 and g2 we
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collision in (g1, g2)

application of gi

collision in (f2i−1, f2i)

Fig. 5. Illustration of the nested collision search. Different colors identify different
function flavors. Dashed arrows indicate mapping from collisions to starting points
(Color figure online).

can find s, given there exist at least one representation (which will be ensured by
the choice of Ti later). Again we obtain heuristic independence of the sampled
collisions by the choice of random flavors in each iteration.

It remains to show that after finding a collision (x1,x2) in g1, g2 for which
the value s′ = y1 + y2 + y3 + y4 ∈ τn(w/2), i.e., s′ is a ternary vector of
weight w, it suffices to conclude that s′ is a solution. Therefore note that the
expected number of elements from τn(w/2) that fulfill the layer-2 identity is by
the randomness of A

|τn(w/2)|
q2�

= 1,

since we choose � = logq |τn(w/2)|
2 . Hence, once such an element is found, we

conclude that it is s. This proves correctness under the same heuristic used by
the algorithms based on conventional collision search (see Remark 2).

Note that the specific choice of � implies that the range of all functions is of
size q� =

√
|τn(w/2)|. Hence, to allow for collision search, we have to ensure

|Ti| != q� =
√

|τn(w/2)| (7)

by our choice of function domains Ti.

Complexity. For a representation (s1, s2, s3, s4) of s with si ∈ Ti let

s = s1 + s2︸ ︷︷ ︸
a1

+ s3 + s4︸ ︷︷ ︸
a2

. (8)

In our analysis we consider only those representations where ai ∈ Di for some set
Di, which we refer to as mid-level domains.4 Let us assume that there exist R2

different representations (a1,a2) ∈ D1×D2 of the solution s. Further assume that
4 The concrete choice of Di, similar to the function domains Ti, depends on the instan-

tiation and is specified later.
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any such a1 (analogously any such a2) has R1 representations (s1, s2) ∈ T1 × T2

(analogously (s3, s4) ∈ T3 × T4).
Consider one iteration of Algorithm 2. We denote by Er the event that there

exist a representation (a1,a2) of s for the choice of r made in line 7, i.e., a
representation with π�(Aa1) = r. The event of guessing π2�(e) correctly we
denote by Ee. Eventually, we denote the event that the tuple (y1,y2,y3,y4)
obtained in line 11 and 12 is a representation of s by Es. Then we expect

Pr [Ee ∩ Er ∩ Es]
−1 =

(
Pr [Ee] · Pr [Er | Ee] · Pr [Es | Ee ∩ Er]

)−1

iterations of the loop until success.
The probability of guessing the correct e′ in line 5 of Algorithm 2 is qe =

3−2� = 3− logq |τn(w/2)|. Since q = poly(n) and |τn(w/2)| = 2cn for some constant
c, it follows that

q3 := Pr [Ee] = 3−2� = 2−Θ( n
log n ).

Further, by the randomness of A, we have

q2 := Pr [Er | Ee] =
R2

q�
.

Now given Ee ∩Er there exists a representation (a1,a2). As both, a1 and a2,
have R1 different representations (s1, s2) and (s3, s4), we find a total of (R1)2

pairs of representations that together lead to a1,a2. Recall that each such pair
fulfills the layer-1 and layer-2 identities and, hence, forms a collision between the
functions g1, g2. Therefore, a random collision in the functions g1, g2 leads to s
with probability

q1 := Pr [Es | Ee ∩ Er] =
(R1)2

q�
,

as by Remark 2 there exist a total of q� collisions between g1 and g2.
Eventually, the time per iteration of the loop is dominated by the collision

search between g1 and g2. This collision search requires O(q
�
2 ) evaluations of

those functions. Now for each evaluation a collision search between f1, f2 (resp.
f3, f4) with time complexity Õ

(
q

�
2

)
is performed. Hence the time per iteration

is Õ
(
q

�
2 · q

�
2

)
= Õ

(
q�

)
.

Overall this leads to time complexity

T = (q1q2q3)−1 · q� =

(
|τn(w/2)| 3

2

(R1)2 · R2

)1+o(1)

=

⎛
⎝

(
n

w/2,w/2,·
) 3

2

(R1)2 · R2

⎞
⎠

1+o(1)

. (9)

Remark 3. Note that the heuristic specified in Remark 2 must fail if there are
significantly more collisions between the constructed functions than there would
be between random functions. Precisely, this is the case if (R1)2 > q�, since there
are (R1)2 collisions caused by representations in the second layer functions, while
for random functions we would expect q� collisions. However, we actively prevent
this due to an appropriate choice of function domains ensuring R1 < q

�
2 .
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A Different Analysis Approach. Another way to derive the time complexity of
Algorithm 2 is via directly computing the probability that the sampled tuple
(y1,y2,y3,y4) sums to a ternary vector. We provide this alternative analysis in
the full version of this work [16].

Use of Odlyzko’s Hash Function. Our construction does not rely on Odlyzko’s
hash function but instead guesses 2� coordinates of e to obtain an exact identity
on these coordinates. For the first layer this is necessary to ensure that any pair of
collisions between f1, f2 and f3, f4 jointly satisfy the layer-2 identity on the lower
� coordinates. This is because the exact identities in contrast to Odlyzko’s hash
function are additive, i.e., adding both identities from Eq. (4) results in a valid
identity. Note that, for the second layer, we could apply Odlyzko’s hash function
rather than relying on the exact identity on the subsequent � coordinates. Then
guessing � rather than 2� bits of e would suffice. However, as this only improves
second order terms we decided for ease of exposition to not rely on Odlyzko’s
hash function at all.

4.2 Concrete Instantiations

Next we give a first concrete instantiation for Algorithm 2, i.e., we specify the
choice of function domains Ti and the mid level domains Di. We start with a
choice of domains representing ternary vectors analogously to the Rep-1 instan-
tiation given in Sect. 3.

Nested-1 Instantiation. Recall that for the nested collision search besides the
function domains Ti we have to specify the sums we aim to obtain on the middle
level, i.e., the mid-level domains Di of the ai from Eq. (8). We consider for the
Di ternary vectors of length n with balanced weight p2 := w/4+ d2, where d2 is
an optimization parameter.

The function domains Ti are then chosen as all ternary vectors of length n
and balanced weight p1 := p2/2 + d1 = w/8 + d2/2 + d1, where d1 has again to
be optimized. In summary, we have

Di := τn(p2) and Ti := τn(p1)

This gives function domains of size

|Ti| =
(

n

p1, p1, ·

)
.

Let us now determine the number of representations R1, R2. Recall that R2

is the amount of different (a1,a2) ∈ D1 ×D2 that sums to the solution s. Hence,
we have

R2 =
(

w/2
w/4

)2(
n − w

d2, d2, ·

)
,
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as s ∈ τn(w/2). Furthermore, each element of a1 respectively a2 has

R1 =
(

p2

p2/2

)2(
n − 2p2

d1, d1, ·

)

representations as the sum of elements from Ti.
Now plugging R1 and R2 into Eq. (9) gives the running time TNested-1 of this

instantiation.
To obtain the runtime exponent c in TNested-1 = 2cn, we again approximate

the involved binomial and multinomial coefficients via Eq. 1. Further we model
d1 = δ1n and d2 = δ2n for δi ∈ [0, 1]. Eventually we obtain c by minimizing over
the choice of δ1, δ2 under the constraint on the function domain’s size given in
Eq. 7. For this minimization we use a numerical optimizer provided by the scipy
python library, inspired by the code used for numerical optimization in [8]. The
code used to run the numerical optimization for all our algorithms is available
at https://github.com/arindamIITM/Small-LWE-Keys.

Remark 4 (Optimization Accuracy). In general these kind of numerical opti-
mizers do not guarantee to find a global minimum, but instead might return
only a local minimum or miss optimal parameters slightly. However, to increase
the confidence in the optimality of the returned value, we minimized over thou-
sands of runs of the optimizer on random starting points and multiple different
formulations of the problem, until no further improvement could be obtained.

Note that for w ≥ 0.64 even for d1 = d2 = 0, which minimizes the function
domains we have |Ti| >

√
|τn(w/2)|. Therefore we do not obtain further instan-

tiations as we can not satisfy Eq. 7. In the following, we make use of the concept
of partial representations to allow for an adaptive scaling of the function domain
size.

Nested-1+ Instantiation. We now split the vectors of the domains into two
parts, a disjoint part of length (1 − γ)n and a joint part of length γn (compare
to Fig. 6).

Precisely, for γ ∈ [0, 1] we define the function domains Ti as

T1 = τ γ̄n/4(γ̄w/8) × 0 × 0 × 0 × τγn(p1),

T2 = 0 × τ γ̄n/4(γ̄w/8) × 0 × 0 × τγn(p1),

T3 = 0 × 0 × τ γ̄n/4(γ̄w/8) × 0 × τγn(p1),

T4 = 0 × 0 × 0 × τ γ̄n/4(γ̄w/8) × τγn(p1),

where γ̄ = 1−γ and p1 := γw/8+d2/2+d1. This gives function domain sizes of

|Ti| =
(

γ̄n/4
γ̄w/8, γ̄w/8, ·

)(
γn

p1, p1, ·

)
.

https://github.com/arindamIITM/Small-LWE-Keys
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Fig. 6. Weight distribution of function domains using partial representations. Gray
areas indicate regions of fixed balanced-ternary weight, where γ̄ := 1 − γ

Analogously, to the previous instantiation we define the domains Di on the
middle level as

D1 = τ γ̄n/4(γ̄w/8) × τ γ̄n/4(γ̄w/8) × 0 × 0 × τγn(p2),

D2 = 0 × 0 × τ γ̄n/4(γ̄w/8) × τ γ̄n/4(γ̄w/8) × τγn(p2),

where p2 = γw/4 + d2.
To be able to construct the solution, we assume that on all five parts the

weight of the solution is distributed proportionally. This can be achieved by
the permutation in line 4 of Algorithm 2. Again, as for the van Vredendaal
instantiation from Sect. 3, this causes only a small polynomial overhead.

Observe that as before we hope that on the jointly enumerated part (now of
size γn) the vectors of weight p1 add up to weight p2. Further recall, that on
the disjoint weight part of length γ̄n = (1 − γ)n we have only a single represen-
tation of any element from (τ γ̄n(γ̄w/8))4. Hence, the number of representations
is similar as before, but takes into account the reduced length of γn, where
representations exist. For representations from the middle level we get

R2 =
(

γw/2
γw/4

)2(
γ(n − w)
d2, d2, ·

)
,

while every element on the middle level has R1 =
(

p2
p2/2

)2(γn−2p2
d1,d1,·

)
many repre-

sentations.
Similar as before we obtain the running time TNested-1+ of this instantia-

tion using Eq. 9. Again, we obtain the runtime exponent c by approximating the
multinomial coefficients, letting d1 = δ1n, d2 = δ2n and finally minimizing over
the choice of δ1, δ2 and γ. The obtained runtime exponents of both our instan-
tiations Nested-1 and Nested-1+ are given in Fig. 7 in comparison to the
exponents of van Vredendaal’s as well as May’s Rep-2 instantiation of the basic
collision search. We observe that Nested-1+ significantly outperforms all other
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Fig. 7. Runtime exponents of Nested-1 and Nested-1+ instantiations compared to
previous work.

instantiations for almost all choices of the weight w. Only for a weight w close
to n, i.e. w/n close to one, van Vredendaal’s algorithm offers a slightly better
running time. In comparison to May’s representation based instantiations our
nested approach has the natural property that for large weights, with decreased
search space size, the running time also decreases again.

We also observe that Nested-1+ not only extends Nested-1 to weights
w/n > 0.64, it also offers runtime improvements in the regime w/n ≥ 0.44.
This value of w/n = 0.44 marks the point from where the γ-parameter of the
Nested-1+ instantiation is chosen smaller than one to fulfill the correctness
constraint from Eq. (7). The ability to control the domain sizes by γ instead
of having to decrease the representation parameters d1 and d2 results in the
superiority of Nested-1+ over Nested-1 in this regime.

4.3 Exploiting the Permutation

Next, we show how to improve the algorithm by aiming at a non-proportional
weight distribution induced by the permutation. Then we give two further instan-
tiations for the function domains one based on Rep-1-like representations and
one exploiting the Rep-2 concept.

Recall that by our choice of function domains (see Eq. (7)), as soon as we find
a collision between the second-layer functions gi, that leads to an s′ ∈ τn(w/2)
it implies that s′ is a solution. In our previous instantiation Nested-1+, we
introduced a disjoint weight part, which automatically leads to elements of the
desired form on a (1 − γ) fraction of the coordinates. In other words a collision
between g1 and g2 leading to an s′ /∈ τn(w/2) is always caused by the coordinates
in the jointly enumerated part not adding up as desired.
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The idea is now to exploit the permutation to distribute a higher fraction of
the weight on the disjoint part in the solution P−1s of the permuted instance.
Since, in turn the decreased weight on the joint part increases the probability
that elements add up to ternary vectors, as desired.

More precisely, instead of obtaining the proportional ternary weight of γw
on the γn-part and (1−γ)w/4 in each of the four disjoint parts we aim at weight
βγw on the joint part and (1 − βγ)w/4 on the disjoint parts for some positive
β ∈ [w−(1−γ)n

γw , 1]. The lower bound on β just ensures that the length of the
disjoint parts is larger or equal to the weight, i.e., (1 − βγ)w/4 ≤ (1 − γ)n/4.
Note that once we assume the solution s′ = P−1s to the permuted instance in
this form, the search space changes from τn(w/2) to

D :=
(
τ γ̄n/4

(
(1 − βγ)w/8

))4

× τγn(βγw/2),

where γ̄ := 1 − γ. This means the size of the search space reduces to

|D| =
(

γ̄n/4
(1 − γβ)w/8, (1 − γβ)w/8, ·

)4(
γn

βγw/2, βγw/2, ·

)
.

In turn the expected amount of elements from D that satisfy the second-layer
identity Eq. (3) is |D|

q2� . Hence, to guarantee that there exists only one such ele-

ment in expectation we have to choose � = logq |D|
2 . In other words, the constraint

from Eq. (7) now changes to
|Ti| !=

√
|D|. (10)

While the analysis from Sect. 4.1 in principle still holds, we need to account
for the probability of the weight being distributed as desired. Note that this
probability can be expressed as

q4 := Pr[P−1s ∈ D] =
|D|

|τn(w/2)| .

Hence, in total the algorithm needs to be iterated q−1
4 times more often. Together

with the changed value of � we obtain (compare to Eq. 9)

T = (q1q2q3q4)−1q� =

(
|D| 1

2 · |τn(w/2)|
(R1)2R2

)1+o(1)

. (11)

Nested-1∗ Instantiation Let us first consider an instantiation using again the
Rep-1 concept for representations. We now choose according to the changed
weight distribution adapted function domains as shown in Fig. 8.

More formally, we let
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Fig. 8. Weight distribution of function domains for Nested-1∗ instantiation. Gray
regions are of fixed balanced-ternary weight, with α := 1 − βγ

T1 = τ γ̄n/4(αw/8) × 0 × 0 × 0 × τγn(p1),

T2 = 0 × τ γ̄n/4(αw/8) × 0 × 0 × τγn(p1),

T3 = 0 × 0 × τ γ̄n/4(αw/8) × 0 × τγn(p1),

T4 = 0 × 0 × 0 × τ γ̄n/4(αw/8) × τγn(p1),

where γ̄ := 1−γ, α := (1−βγ) and p1 := βγw/8+d2/2+d1. This gives function
domain sizes of

|Ti| =
(

γ̄n/4
αw/8, αw/8, ·

)(
γn

p1, p1, ·

)
.

Accordingly, we adjust the mid-level domains to

D1 = τ γ̄n/4(αw/8) × τ γ̄n/4(αw/8) × 0 × 0 × τγn(p2),

D2 = 0 × 0 × τ γ̄n/4(αw/8) × τ γ̄n/4(αw/8) × τγn(p2),

with p2 := βγw/4 + d2 In turn this leads to an amount of

R2 =
(

βγw/2
βγw/4

)2(
γ(n − βw)

d2, d2, ·

)
,

representations of the solution as sum of elements from D1,D2. Furthermore,
every element from D1 (resp. D2) as sum of elements from T1, T2 (resp. T3, T4)
has

R1 =
(

p2

p2/2

)2(
γn − 2p2

d1, d1, ·

)

representations.
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We now obtain the running time T ∗
Nested-1 via Eq. (11). As before we approx-

imate the multinomial coefficients via Eq. (1) and perform a numerical optimiza-
tion to obtain the runtime exponent c in T ∗

Nested-1 = 2cn. Here, we minimize c
over the choice of β, γ, δ1 and δ2, where d1 = δ1n and d2 = δ2n, while ensuring
the constraint given in Eq. (10).

Nested-2∗ Instantiation. Eventually, we provide an instantiation using Rep-2
like representations, i.e., function and mid level domains whose vectors have
coordinates in {−2,−1, 0, 1, 2} (see Fig. 9). This increases the number of repre-
sentations at the cost of quite technical analysis. While in principle it is pos-
sible to extend the digit set further, previous results on subset sum [8] and
LWE [31] indicate that the runtime quickly converges. For the formal defi-
nition of our function domains, let us first extend the definition of τn(·) to
τn
2 (a, b) := {x ∈ {±2,±1, 0}n : |x|1 = |x|−1 = a ∧ |x|2 = |x|−2 = b}, where

|x|i := |{j | xj = i}|.
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Fig. 9. Weight distribution of function domains for Nested-2∗ instantiation. Gray
regions with single numbers indicate parts with fixed balanced-ternary weight, where
α := 1−βγ. Gray parts with two numbers n1, n2 contain n1 1 s, n1 −1s, n2 2 s, n2 −2s
and rest zeros.

The function domains are then defined as

T1 = τ γ̄n/4(αw/8) × 0 × 0 × 0 × τγn
2 (n1, n2),

T2 = 0 × τ γ̄n/4(αw/8) × 0 × 0 × τγn
2 (n1, n2),

T3 = 0 × 0 × τ γ̄n/4(αw/8) × 0 × τγn
2 (n1, n2),

T4 = 0 × 0 × 0 × τ γ̄n/4(αw/8) × τγn
2 (n1, n2),

where γ̄ := 1 − γ and α := (1 − βγ), while we derive the precise form of n1 and
n2 later. This gives function domain sizes of

|Ti| =
(

γ̄n/4
αw/8, αw/8, ·

)(
γn

n1, n1, n2, n2, ·

)
.
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Accordingly, we adjust the mid-level domains to

D1 = τ γ̄n/4(αw/8) × τ γ̄n/4(αw/8) × 0 × 0 × τγn
2 (nmid

1 , nmid
2 ),

D2 = 0 × 0 × τ γ̄n/4(αw/8) × τ γ̄n/4(αw/8) × τγn
2 (nmid

1 , nmid
2 ),

while again we postpone determining nmid
1 , nmid

2 to the analysis of the number
of representations.

Let us start by determining the number of representations of the ternary
weight-ω solution s as sum of elements from D1,D2. Recall that we only have
representations on the last γn coordinates, where we assume s to have weight
ŵ := γβw. To represent a −1, 0 or 1 of the solution we have the following
possibilities

0 : 0 + 0︸ ︷︷ ︸
mmid

, 1 − 1︸ ︷︷ ︸
zmid
1

, −1 + 1︸ ︷︷ ︸
zmid
1

, 2 − 2︸ ︷︷ ︸
zmid
2

, −2 + 2︸ ︷︷ ︸
zmid
2

,

1 : 1 + 0︸ ︷︷ ︸
ŵ
4 −omid

, 0 + 1︸ ︷︷ ︸
ŵ
4 −omid

, 2 − 1︸ ︷︷ ︸
omid

, −1 + 2︸ ︷︷ ︸
omid

,

−1 : −1 + 0︸ ︷︷ ︸
ŵ
4 −omid

, 0 − 1︸ ︷︷ ︸
ŵ
4 −omid

, −2 + 1︸ ︷︷ ︸
omid

, 1 − 2︸ ︷︷ ︸
omid

,

(12)

where we let mmid := γn− ŵ−2zmid
1 −2zmid

2 . The number below the correspond-
ing representation denotes how often we expect this representation to appear
among all representations of −1, 0 and 1 coordinates. Therefore note that as
required the total number of 1 and −1 entries, i.e., the sum over the number of
the corresponding row, adds up to ŵ/2 and the number of 0 entries to γn − ŵ.
After we have specified how often the respective events occur, we can directly
derive the number of representations as

R2 =
(

γn − ŵ

mmid, zmid
1 , zmid

1 , zmid
2 , zmid

2

)(
ŵ/2

ŵ/4 − omid, ŵ/4 − omid, omid, omid

)2

,

where the first factor counts the possibilities to represent 0 s and the second
those to represent ±1s. Now a simple counting argument yields the previously
omitted number of coordinates equal to ±1s and ±2s in the mid level domains
as5

nmid
1 = zmid

1 + ŵ/4 − omid + omid = ŵ/4 + zmid
1 and nmid

2 = zmid
2 + omid,

where zmid
1 , zmid

2 and omid are subject to optimization. Note that for γ = β = 1
we obtain as a special case the necessary representation formula for the Rep-2
instantiation of May, which we omitted previously (see Sect. 3).

Next let us determine the number of representations of any element from the
mid-level domains Di as sum of elements from the function domains Ti. Therefore
5 We have to count the appearances of 1 (resp. 2) entries on the left (or right) of the

possible representations given in Eq. (12).
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let us again specify the number of representations, which is similar to before, but
we additionally get multiple possibilities to represent 2 and −2 entries

0 : 0 + 0︸ ︷︷ ︸
m

, 1 − 1︸ ︷︷ ︸
z1

, −1 + 1︸ ︷︷ ︸
z1

, 2 − 2︸ ︷︷ ︸
z2

, −2 + 2︸ ︷︷ ︸
z2

,

1 : 1 + 0︸ ︷︷ ︸
nmid
1
2 −o

, 0 + 1︸ ︷︷ ︸
nmid
1
2 −o

, 2 − 1︸ ︷︷ ︸
o

, −1 + 2︸ ︷︷ ︸
o

,

−1 : −1 + 0︸ ︷︷ ︸
nmid
1
2 −o

, 0 − 1︸ ︷︷ ︸
nmid
1
2 −o

, −2 + 1︸ ︷︷ ︸
o

, 1 − 2︸ ︷︷ ︸
o

,

2 : 2 + 0︸ ︷︷ ︸
nmid
2 −t

2

, 0 + 2︸ ︷︷ ︸
nmid
2 −t

2

, 1 + 1︸ ︷︷ ︸
t

,

−2 : −2 + 0︸ ︷︷ ︸
nmid
2 −t

2

, 0 − 2︸ ︷︷ ︸
nmid
2 −t

2

, −1 − 1︸ ︷︷ ︸
t

,

where m := γn − 2(nmid
1 + nmid

2 + z1 + z2), and again z1, z2, o and t denote
optimization parameters for the number of zeros, ones and twos represented via
the respective combinations. Observe that again the number of total represented
1s (resp. −1s) add to nmid

1 , the number of 2s (resp. −2s) to nmid
2 and the number

of 0s to γn − 2(nmid
1 + nmid

2 ) as required for mid-level elements. From here we
can derive the number of representations as

R1 =
(

γn − 2(nmid
1 + nmid

2 )
m, z1, z1, z2, z2

)(
nmid

1
nmid
1
2 − o,

nmid
1
2 − o, o, o

)2(
nmid

2
nmid
2 −t

2 ,
nmid
2 −t

2 , t

)2

,

where the first term counts the representations of 0, the second those of ±1
and the last those of ±2 coordinates. As before, a counting argument yields the
necessary number of ±1 and ±2 coordinates in the function domains as

n1 = z1 +
nmid

1

2
− o + o + t = z1 + t +

nmid
1

2
and n2 = z2 + o +

nmid
2 − t

2
.

Now that we determined the number of representations R1 and R2 we
obtain the running time TNested-2∗ of this instantiation using Eq. (11). In
our numerical optimization of the running time we optimize over the choice of
z̃1, z̃2, õ, t̃, z̃

mid
1 , z̃mid

2 , õmid, t̃mid, γ and β, where for integer optimization parame-
ters χ we let χ = χ̃n with χ ∈ [0, 1].

We illustrate the optimized runtime exponents of our Nested-1∗ and
Nested-2∗ instantiations in comparison to our previous Nested-1+ instanti-
ation in Fig. 10 on the left. We observe improvements especially for high weights.
However, we also obtain improvements for smaller weights. In the same figure
on the right, we illustrate the exponent difference between Nested-1∗ and
Nested-1+ as well as between Nested-1∗ and Nested-2∗. For Nested-1∗ we
observe improvements starting from w/n ≥ 0.44, which marks the point where
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Fig. 10. On the left: Runtime exponents of Nested-1+, Nested-1∗ and Nested-2∗.
On the right: Improvement in the runtime exponent (log TA − log TB)/n of B =
Nested-1∗ over A = Nested-1+ (dash dotted line) and the improvement of B =
Nested-2∗ over A = Nested-1∗ (solid line).

we have γ < 1. Since the improvement of Nested-1∗ stems entirely from using
the permutation to shift more weight to the disjoint part of size (1 − γ)n, we
expect no improvement as long as γ = 1. We also observe that for w/n = 1 both
instantiations Nested-1+ and Nested-1∗ converge to the same running time,
resulting in a difference of zero. On the other hand, Nested-2∗ obtains further
improvements over Nested-1∗ for all choices of the weight w, with higher gains
towards larger values of w. The gain in this case stems entirely from adding the
±2 to the representations and is therefore not bound to parameterizations with
γ < 1.

4.4 An Improvement for Uniform Secrets

We conclude this section by outlining a (small) improvement for a weight close
to w/n = 2/3, i.e. around the weight of uniform ternary secrets. The idea is
to apply an initial permutation to redistribute the weight on (e, s), similar to
Information Set Decoding (ISD) techniques [35]. Therefore we rewrite the LWE
identity As = b+ e as

(I | A)(−e, s) = b,

where I is the n×n identity matrix. Now applying a permutation to the columns
of (I | A) yields

(I | A)P
(
P−1(−e, s)

)
= H(−e′, s′) = b,

where (−e′, s′) := P−1(−e, s). Further multiplying both sides of the equation
with an invertible matrix Q, such that QH = (I | A′) and defining b′ := Qb
yields A′s′ = b′ + e′.

Now, assume that the permutation distributes a balanced weight of w − p
on s′ and accordingly a balanced weight of 2n/3 + p on e′, since e is usually



Memory-Efficient Attacks on Small LWE Keys 99

a uniform ternary vector. Then we expect Algorithm 2 to perform faster on
the reduced weight instance (A′,b′) than on the initial instance (A,b) as its
running time (compare to Eq. (11)) depends only on the weight of s but not
on the weight of e. On the downside we need to reapply the algorithm P =

( 2n
n
3 + w

2 , n
3 + w

2 ,·)
( n

w−p
2 ,

w−p
2 ,·)(

n
n
3 + p

2 , n
3 + p

2 ,·)
times on random permutations of the instance to expect

the weight to be distributed as desired for one of the instances. The running
time is then given as P · Tw−p, where Tw−p is the same as T in Eq. (11) but for
w − p instead of w. In the uniform secret case of w/n = 2/3 this yields a (slight)
improvement from 20.93n down-to 20.926n for our Nested-2∗ instantiation. Note
that if w is small the secret s′ after the permutation is expected to have weight
w′ > w, which is why we do not obtain improvements in this regime.

5 Complexity of Solving Ternary LWE Without Memory

Eventually, let us give a concluding comparison between the best instantiations
of the basic collision search by van Vredendaal (v-V) and May (Rep-2) and
our best Nested-2∗ instantiation of the nested collision search approach. We
illustrate the runtime exponents of all these algorithms on the left of Fig. 11.
Observe that our Nested-2∗ algorithm yields the best running time for all
choices of the weight w. Moreover the improvement in the exponent compared to
the minimum of v-V and Rep-2 reaches as high as 0.2 for a weight of w = 0.81n.
While the most interesting weights are usually smaller than that, note that we
also obtain significant improvements for all cryptographically relevant weights.
For instance for a weight of w = 0.667n, which models the uniform secret case
we obtain a significant improvement by a factor larger than 20.13n. Table 1 shows
the runtime exponent of all three methods for various weights used in schemes
belonging to the NTRU-family. The exponent improvement of our Nested-2∗

for all weights w/n compared to the best previous approach is illustrated on
the right of Fig. 11. As comparison the graphic shows the runtime improvement
of May over van Vredendaal. Note that for w ≥ 0.82 May does not obtain any
improvement over van Vredendaal.

Table 1. Runtime exponents for nested collision search (including improvement from
Sect. 4.4) in comparison to conventional collision search approaches.

w/n v-V Rep-2 Nested-2∗

0.300 0.8860 0.7716 0.6482
0.375 0.9971 0.8573 0.7272
0.441 1.0732 0.9172 0.7928
0.500 1.1250 0.9620 0.8425
0.621 1.1837 1.0376 0.9140
0.668 1.1887 1.0632 0.9262
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Fig. 11. On the left: Runtime exponents of van Vredendaal’s, May’s and our nested
approach. Improvement close to uniform case (Sect. 4.4) illustrated as orange dotted
line. On the right: Improvement in the runtime exponent of May’s Rep-2 over van
Vredendaal (dashed line) and of Nested-2∗ over the minimum of van Vredendaal’s
and May’s algorithms (solid line). (Color figure online)

6 Extending Results to Kyber and Dilithium

In the following, we extend our results as well as the results from May and van
Vredendaal to the cases of Kyber and Dilithium, which also rely on the hardness
of LWE with small max norm keys. We recall that this extension requires the
heuristic assumption that the introduced structure does not affect our analysis.

More precisely, Kyber uses keys sampled from a centered binomial distribu-
tion B(η) with parameter η ∈ {2, 3}, resulting in keys s ∈ {−η, . . . , η}. Dilithium
keys have coordinates uniformly distributed over {±2,±1, 0}, which we denote
by U(2), implying keys s ∈ {−2, . . . , 2}.

Table 2. Runtime exponents for nested collision instantiations and conventional colli-
sion search approaches with different key distributions.

Key-Dist. v-V Rep-3 Nested-3∗

U(1) 1.1888 1.0625 0.9297
U(2) 1.7415 1.4601 1.2815
U(3) 1.9698 1.7323 1.5049
B(1) 1.1250 0.9620 0.8427
B(2) 1.5230 1.2118 1.0404
B(3) 1.7501 1.3585 1.1838

We give in Table 2 the runtime exponents on Kyber and Dilithium key dis-
tributions of Algorithm 1 using the van-Vredendaal instantiations (v-V) as well
as using Rep-3 representations, i.e., we represent the solution s = s1 + s2 with
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si ∈ {±3,±2,±1, 0}. Additionally, we state the runtime exponent of our nested
collision search, Algorithm 2, using a Nested-3∗ instantiation, which is the same
as Nested-2∗, but extending function domains by ±3. We also provide data for
the U(1),U(3) and B(1) distributions to indicate the scaling.

Additionally we provide in Table 3 the running time exponent c in dependence
on the search space, i.e., the running time is of the form T = Dc with D the size of
the search space. We observe that for both distributions the attacks become more
efficient for increasing η, indicated by the decreasing value of c. This is related to
the representation method, which overcompensates the increase in domain size
by the increasing number of representations. Note that this indicates that with
respect to combinatorial approaches increasing η will not result in significantly
increased security.

Our attacks are especially efficient on the centered binomial distributions
used in Kyber, where they reach almost the meet-in-the-middle exponent c =
0.5. However, for Dilithium like distributions (U(2)) we also obtain a notable
improvement down to a constant of c = 0.552. For the full details of the analysis
we refer the reader to the full version of this article [16].

Table 3. Runtime exponents c = logD T for nested collision instantiations and conven-
tional collision search approaches with different key distributions in dependence on the
search space size D.

Key-Dist. v-V Rep-3 Nested-3∗

U(1) 0.75 0.6704 0.5866
U(2) 0.75 0.6289 0.5519
U(3) 0.75 0.6171 0.5361
B(1) 0.75 0.6414 0.5619
B(2) 0.75 0.5968 0.5124
B(3) 0.75 0.5832 0.5074

7 Time-Memory Trade-Off Using PCS

So far, all our attacks can be instantiated with a polynomial amount of memory.
However, in a realistic attack scenario even low memory devices such as FPGAs
or GPUs still have a small amount of memory available. In the following we show
how to apply the time-memory trade-off technique known as Parallel Collision
Search (PCS) [38] to our construction to further speed up our algorithms by the
use of small but exponential amounts of memory.

Theorem 1 (Parallel Collision Search, [38]). Let f1, f2 : S → S be two
independent random functions. Then Parallel Collision Search finds M collisions
between f1 and f2 using on expectation Õ

(
(M · |S|)1/2

)
function evaluations and

Õ (M) units of memory.
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Recall that, to succeed Algorithm 2 has to find multiple collisions between g1

and g2, namely on expectation C := (q1q2q3)−1 many (compare to Eq. (9)). So
far, those collisions are found by iterative applications of the collision search tech-
nique. We now use the PCS technique to find M collisions at once by increasing
the memory usage of the algorithm to Õ (M).

However, such a straightforward application of the PCS technique is not suffi-
cient to achieve meaningful trade-offs for reasonable amounts of memory. This is
because the amount of needed collisions C is an upper bound for the maximum
memory that can be spend and usually C is quite small for optimal instantia-
tions. In order to obtain instantiations leveraging more memory, we adapt the
time complexity to incorporate the PCS speedup and perform a numerical re-
optimization of the running time. This allows for a choice of instantiations with
larger C that in turn enables to fully leverage the available memory. However,
once C becomes maximal no further speedups by increasing the memory are
possible. Table 4 provides a comparison of the running time using polynomial
memory and the running time using the maximal amount of memory that can
be leveraged.

Table 4. Runtime and memory exponents for time-memory trade-offs in comparison
to polynomial memory algorithm Nested-2∗.

w/n time at poly. memory best time required memory

0.300 0.6482 0.6204 0.06
0.375 0.7272 0.6974 0.07
0.441 0.7928 0.7569 0.09
0.500 0.8425 0.8017 0.11
0.621 0.9140 0.8669 0.15
0.668 0.9262 0.8824 0.17

Note that there also exist instantiations for any memory smaller than the
maximal memory given in the table. We provide the full trade-off curves in the
full version of this work [16].
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Abstract. Allmodern lattice-based schemesbuild onvariants of theLWE
problem. Information leakage of the LWE secret s ∈ Z

n
q is usually modeled

via so-called hints, i.e., inner products of s with some known vector.
At Crypto‘20, Dachman-Soled, Ducas, Gong and Rossi (DDGR)

defined among other so-called perfect hints and modular hints. The trail-
blazing DDGR framework allows to integrate and combine hints succes-
sively into lattices, and estimates the resulting LWE security loss.

We introduce a new methodology to integrate and combine an arbi-
trary number of perfect and modular in a single stroke. As opposed to
DDGR’s, our methodology is significantly more efficient in constructing
lattice bases, and thus easily allows for a large number of hints up to cryp-
tographic dimensions – a regime that is currently impractical in DDGR’s
implementation. The efficiency of our method defines a large LWE param-
eter regime, in which we can fully carry out attacks faster than DDGR can
solely estimate them.

The benefits of our approach allow us to practically determine which
number of hints is sufficient to efficiently break LWE-based lattice schemes
in practice. E.g., for mod-q hints, i.e., modular hints defined over Zq,
we reconstruct Kyber-512 secret keys via LLL reduction (only!) with an
amount of 449 hints.

Our results for perfect hints significantly improve over these numbers,
requiring for LWE dimension n roughly n/2 perfect hints. E.g., we recon-
struct via LLL reduction Kyber-512 keys with merely 234 perfect hints. If
we resort to stronger lattice reduction techniques like BKZ, we need even
fewer hints.

For mod-q hints our method is extremely efficient, e.g., taking total time
for constructing our lattice bases and secret key recovery via LLL of around
20 mins for dimension 512. For perfect hints in dimension 512, we require
around 3 h.

Our results demonstrate that especially perfect hints are powerful
in practice, and stress the necessity to properly protect lattice schemes
against leakage.

Keyword: LWE with Hints, Partial Key Exposure, PQC Standards

1 Introduction

History of Lattice Schemes. Basing the (post-quantum) security of cryp-
tographic schemes on the hardness of lattice problems has been a big success
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story in the last 25 years, resulting in the recent NIST standardization of
Kyber [BDK+18], Dilithium [DKL+18] and Falcon [FHK+18]. Moreover,
Google [KMS22] currently chooses to secure its internal communication with
NTRU [HPS98].

As a historical curiosity, back in the 80 s and early 90 s lattices were mainly
considered a powerful cryptanalysis tool [JS98]. After the invention of the famous
Lenstra-Lenstra-Lovász (LLL) lattice reduction algorithm [LLL82], many cryp-
tosystems have been broken disastrously via lattice reduction. E.g., knapsack-
based cryptosystems [Odl90], which can be seen as an early predecessor of mod-
ern lattice schemes, were successfully attacked via lattices [CLOS91].

This led to a common belief that lattice reduction behaves much better than
theoretically predicted, and not few cryptographers thought that finding short
lattice vectors is feasible in general. This misunderstanding came from the design
of knapsack/lattice schemes in too small dimension, for which lattices do not
reveal their hardness.

The situation changed with Ajtai’s [Ajt96] NP hardness proof of the shortest
vector problem, and the construction of the Ajtai-Dwork cryptosystem [AD97]
with its cryptographically desirable worst- to average-case reduction.

While Ajtai-Dwork focussed on the hardness guarantees of lattice-based
crypto, the invention of the NTRU cryptosystem of Hoffstein, Pipher and Sil-
verman [HPS98] with its compact lattice bases as public keys was a cornerstone
for the practicality of lattice schemes.

Back on the provable security path, the introduction of the Learning with
Errors (LWE) problem together with Regev’s encryption scheme [Reg05] paved
the way to amazingly versatile lattice constructions in all areas of cryptogra-
phy. Eventually, a combination of the strong LWE security guarantees with the
practicality of the NTRU cryptosystem was achieved via formulating the Ring-
LWE [SSTX09,LPR10,PRS17] and Module-LWE [BGV14,LS15] variants.

LWE in Practice. In summer 2022, NIST announced the standardization of
Kyber [BDK+18] as a lattice-based encryption/key encapsulation mechanism,
and Dilithium [DKL+18] and Falcon [FHK+18] as lattice-based signature
schemes. Kyber can be considered a highly-optimized version of Regev encryp-
tion [Reg05], based on Module-LWE. Kyber encryption comes in a package,
called Crystals, with a corresponding signature scheme Dilithium [DKL+18],
also based on Module-LWE. The signature scheme Falcon [FHK+18] is based
on an NTRU-type security assumption.

Motivation of Hints. Given the importance of side-channel leakage in real-
world cryptography, NIST especially focused before its standardization decision
on vetting lattice candidates against secret key leakage.

An LWE public key (A,b, q) ∈ Z
n×m
q × Z

m
q × N satisfies the LWE relation

sA + e ≡ b mod q for some small-norm secret s ∈ Z
n
q , and some error e ∈ Z

m
q .

NTRU can be considered a special case with b = 0m.
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LWE-based encryption schemes like Regev [Reg05] and Kyber [BDK+18]
only store the secret s, but not the error e. Decryption of a ciphertext c ∈ Z

n
q

is realized via computing the inner product 〈c, s〉. This computation may leak
information about s.

LWE/NTRU-based signature schemes like Dilithium [DKL+18] and Fal-
con [FHK+18] usually store both (s, e) as secret key. Dilithium computes for
a salted hash h := H(m, ·) of message m both inner products 〈h, s〉 and 〈h, e〉.
Falcon computes for a salted hash h = H(m, ·) a polynomial ring product
h · s ∈ Zq[X]/(Xn + 1), and later a ring product involving (s, e). As a conclu-
sion, all these computations may either leak information on s or e alone, or on
(s, e) together.

In order to model the effect of such a secret key leakage, Dachman-Soled,
Ducas, Gong, and Rossi [DDGR20] proposed a general lattice framework that
quantifies the LWE security loss when revealing a so-called hint (v,w, �) ∈ Z

n
q ×

Z
m
q × Z satisfying

〈(v,w), (s, e)〉 = �. (1)

The inner product computation of Eq. (1) is usually performed in Zq, which we
call a mod-q hint. However, the authors of [DDGR20] also point out that fast
NTT-based schemes like Kyber, Dilithium and Falcon usually postpone the
reduction modulo q to the end of the computation for efficiency reasons. Thus,
a side-channel may as well leak the value of � in Eq. (1) before mod q reduction,
a so-called perfect hint.

The framework of [DDGR20] is more generally applicable, also allowing for
modular hints other than mod-q hints, and for so-called approximate hints. In
this work, we solely focus on perfect and modular hints, since they are especially
simple, and allow for tremendous speedups in practice. Additionally, we study
mod-q hints in more detail, as we consider them practically highly relevant for
cryptographic systems with mod-q arithmetic. It remains an interesting open
problem to provide similar speedups for the technically more involved approxi-
mate hints in the DDGR-framework.

As opposed to DDGR, our approach addresses hints for the secret s only,
i.e., hints (v, �) with 〈v, s〉 = �. We show that (at least) for mod-q hints this
is no limitation, and actually provides benefits. Additionally, for perfect hints
and general modular hints (i.e., not necessarily mod-q hints), this significantly
simplifies the analysis of the resulting lattice bases.

Too Many Hints. Any mod-q hint (v, �) can be considered an error-free LWE
sample. If we obtain n hints (v1, �1), . . . , (vn, �n) with linearly independent vi,
then we can solve for s via Gaussian elimination, even without A. Therefore,
clearly an amount of n (linearly independent) mod-q hints is sufficient to reach
a too many hints regime, in which we can attack LWE in polynomial time. Since
perfect hints can be reduced modulo q, the upper bound of n also trivially holds
for perfect hints.

Our goal in this work is to explore and expand the too many hints regime as
far as possible by determining the minimal number of hints that is required to
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break LWE and its various cryptographic instances in practice, efficiently. This
includes the regime where we break LWE in polynomial time using LLL reduction
only, as well as the regime where breaking LWE is still feasible in practice with
BKZ lattice reduction. In such a hint regime where BKZ reduction is feasible,
our algorithm yields practical LWE attacks, as opposed to the implementation
of the DDGR framework, in which the lattice construction (and therefore the
whole attack) is currently infeasible.

While [DDGR20] provides pioneering work on LWE hints and their effects,
the DDGR framework currently fails to let us explore the too many hints regime
in a satisfactory way. First, the implementation of DDGR includes hints suc-
cessively in a computationally intensive manner via the dual lattice, which in
practice does not allow us for integrating a number of hints in the order of n.
Second, since we cannot even construct the desired lattice bases, we especially
cannot test lattice reduction on real-world instances of lattice schemes.

Our Results. Our new approach resolves these issues, and provides us with
real-world data on standardized schemes, rather than security estimates.

Idea of Our Method. In comparison to DDGR, our method is less lattice-centric
and more LWE-centric. That is, whereas DDGR starts with a basis, which is suc-
cessively transformed by each hint, we first process all hints, and then integrate
them into a lattice basis.

From the trivial upper bound n argument for the too many hints regime we
already see that every mod-q hint reduces the subspace of all possible s by one
dimension. Thus, one can view mod-q hints as a dimension reduction method,
as it was, e.g., used in the recent analysis of NTRU in the more restricted attack
setting of secret key bit leakage [EMVW22]. Hence, we expect that k mod-q
hints leave us with the hardness of an (n − k)-dimensional LWE problem.

Since, e.g., LWE with Kyber-like parameters is solvable with LLL reduction
in dimension around n = 63, we would expect that 512−63 = 449 modular hints
are sufficient for extracting Kyber-512 secret keys. We show that this is indeed
the case.

Efficiency of Lattice Basis Construction. For mod-q hints we propose a simple,
and extremely efficient linear algebra approach that in the presence of k hints
reduces the LWE dimension from n to n− k. Even in cryptographic dimensions,
our lattice basis construction takes only a matter of seconds.

For perfect hints our lattice basis construction is technically more involved.
We first construct a matrix solely involving our hints, then use LLL for dimension
reduction, and eventually integrate the reduced hints together with the LWE
samples into a lattice basis. This construction is still efficient, but significantly
slower than our mod-q hint method. Lattice basis construction takes, e.g., 3 h
for LWE dimension n = 512, and up to one week for n = 1024.

The case of general modular hints is (essentially) reduced to the case of perfect
hints, making their lattice basis construction as efficient as in the perfect hint
case.
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Our lattice basis construction methodology does not only allow to integrate
different types of hints separately, but also to freely combine them.

Quality of Lattice Basis. It goes without saying, that a construction method
for a lattice basis that incorporates hints should be efficient. But of even larger
importance is the quality of the resulting basis, meaning from a cryptanalyst’s
perspective that the information provided by the hints has been fully exploited,
and the resulting lattice requires reduction methods as weak as possible to reveal
the LWE secret.

We thoroughly analyze the characteristics of our constructed lattices, in terms
of the three main criteria lattice dimension, lattice determinant, and length of
the desired secret short vector. Our analysis shows that the quality of our lattice
bases for all types of hints is identical to the quality achievable with the DDGR
framework.

Our Experimental Results. A rough outline of our experiments is provided in
Table 1.

Table 1. Minimal amount k of mod-q/perfect hints required for solving instances with
LLL. Time includes both lattice basis construction and LLL reduction.

Kyber Falcon NTRU-HRSS Kyber Dilithium

512 512 701 768 1024

mod-q 449 (88%) 452 (88%) 622 (89%) 702 (91%) 876 (85%)

Time 20 mins 20 mins 45 mins 35 mins 10 h

perfect 234 (46%) 233 (46%) 332 (47%) 390 (51%) 463 (45%)

Time 3 h 3 h 11 h 1 day 7 days

In the case of mod-q hints, we require for LWE dimension n roughly k ≈
0.9n hints too reach the too many hints regime, in which we can solve via LLL
reduction, see Table 1. Recall that our mod-q approach directly constructs an
LWE problem in dimension n − k ≈ 0.1n.

Notice that for Kyber-512, Falcon-512, and Kyber-768 we have 60 ≤
n − k ≤ 66. NTRU-HRRS allows for larger LWE dimension n − k = 79, since it
has larger q and smaller secret vector norm. As one would expect, Dilithium’s
very large q enables LLL-only attacks for the largest LWE dimension n−k = 148.

We would like to stress that Table 1 only provides the number of hints, for
which we can solve via simple LLL reduction. E.g. we also solved Kyber-512
instances with 440 mod-q hints with stronger BKZ reduction of block-size 3 in
less than an hour. Thus, Table 1 basically provides the number of hints for which
we obtain minimal attack time. The attack time in the mod-q scenario is almost
exclusively spend on LLL reduction, since our lattice basis construction can be
performed in a matter of seconds.
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In the case of perfect hints, we require for LWE dimension n roughly k ≈ n/2
hints. We find such a small number of hints quite remarkable!

Interestingly, in contrast to the mod-q setting, run time in the perfect hint
setting is almost exclusively spend on lattice basis construction. Recall that our
construction process first uses the hints only, uses LLL reduction for dimension
reduction, and eventually integrates the LWE samples. It seems that LLL reduc-
tion of the hints only already yields an overall well-reduced lattice basis. Hence,
after our lattice basis construction step we could almost always directly read off
the desired secret lattice vector, and therefore solve LWE.

Our Software. We provide a highly efficient open-source Python implementa-
tion of our framework. The source code is available together with an extensive
documentation at

https://github.com/juliannowakowski/lwe with hints .

At the heart of our implementation lies the class LWELattice, which allows to
easily construct lattice bases for attacking LWE – with or without hints. The
class LWELattice also provides an implementation of the (progressive) BKZ
algorithm, based on the fpylll library [dt21]. Our implementation also ships with
key generation algorithms for Kyber, Falcon, NTRU-HPS, NTRU-HRSS and
Dilithium, as well as for Kyber-like and Falcon-like toy instances in small
dimensions.

Lattice Attacks Go Practice. Classical public-key schemes like RSA encryp-
tion and DSA signatures have experienced extensive studies on hint vulnera-
bilities, starting with the seminal works of Boneh and Venkatesan [BV96] and
Coppersmith [Cop97]. This led to critical security issues in real world application
like [HDWH12]. We see our work as a step towards making hint vulnerabilities
also practical in the lattice world.

Organisation of the Paper. In Sect. 2, we provide some background on lat-
tices and LWE. Section 3 introduces our highly efficient LWE transformation
for mod-q hints. Section 4 is devoted to our technically more involved lattice
basis construction for perfect hints. In Sect. 5, we show how to integrate general
modular hints in the aforementioned lattice basis construction. Section 6 pro-
vides a runtime comparison of our method with DDGR, and demonstrates how
significant we improve in efficiency. Our experiments are presented in Sect. 7.

2 Preliminaries

2.1 Linear Algebra

Vectors are denoted by lower-case bold vectors, matrices are denoted by upper-
case bold vectors. We use row notation for vectors and write B = [b1, . . . ,bn]

https://github.com/juliannowakowski/lwe_with_hints
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for a matrix B with rows bi. To denote a matrix B with columns bT
i , where

(·)T denotes the transpose, we write B = (bT
1 | . . . |bT

n ). The i-th vector of the
standard basis of R

n is denoted by ei, e.g., e1 = (1, 0, . . . , 0). The n-dimensional
identity matrix is denoted by In, all-zero (n×m)-matrices are denoted by 0n×m,
and the n-dimensional all-zero vector is denoted by 0n. If the dimensions are clear
from the context, we drop the indices from 0n×m and 0n. The Euclidean norm
and the Euclidean inner product are denoted by ‖ · ‖ and 〈·, ·〉, respectively.

Lemma 2.1. Let v = (v1, . . . , vn) ∈ R
n be a vector, whose coordinates are i.i.d.

random variables with zero mean and standard deviation σ < ∞. Then it holds
that

E[‖v‖] ≤ σ
√

n.

Asymptotically, the upper bound is sharp, i.e.,

E[‖v‖] ∼ σ
√

n

as n → ∞.

A proof for Lemma 2.1 is given in the full version of the paper [MN23].
For v ∈ R

n, we denote by v⊥ the subspace orthogonal to v. More generally,
for a linear subspace U ⊆ R

n, we denote by U⊥ the orthogonal complement
of U . The orthogonal projection of v onto U is denoted by πU (v).

2.2 Lattices

For a matrix B = [b1, . . . ,bn] ∈ Q
n×m, we denote by

L(B) := Z
n · B = {α1b1 + . . . + αnbn | αi ∈ Z}

the lattice generated by the rows of B.1 If the rows of B are linearly independent,
we call B a basis matrix of L(B). Two bases B1,B2 ∈ R

n×m generate the same
lattice if and only if there exists a unimodular matrix U ∈ Z

n×n such that
B1 = U · B2. The number of rows in any basis matrix of some lattice Λ is
called the dimension of Λ and denoted by dimΛ. Equivalently, the dimension
of Λ is defined as the dimension of the linear subspace span

R
(Λ). A lattice with

quadratic basis matrix is called a full-rank lattice.
The determinant of a lattice Λ with basis matrix B is defined as

det Λ :=
√

det(BBT ).

Notice that the determinant does not depend on the choice of basis. The i-th
successive minimum of Λ is defined as

λi(Λ) := min {r > 0 | Λ contains i linearly independent vectors of length ≤ r} .

A lattice vector v ∈ Λ of length ‖v‖ = λ1(Λ) is called a shortest vector of Λ.
1 We restrict ourselves to rational matrices, because for irrational B with linearly

dependent rows, the resulting set L(B) might not be a lattice.
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Heuristic 2.2 (Gaussian Heuristic). Let Λ be an n-dimensional lattice. The
Gaussian heuristic predicts that λ1(Λ) equals

gh(Λ) :=
√

n

2πe
det(Λ)1/n.

A set of linearly independent lattice vectors {v1, . . . ,vk} ⊂ Λ is called primitive
(with respect to Λ), if it can be extended to a basis of Λ. Equivalently, the set
{v1, . . . ,vk} is called primitive, if Λ ∩ span

R
({v1, . . . ,vk}) = L(v1, . . . ,vk).

For instance, {2e1, . . . , 2en} ⊂ Z
n is not primitive with respect to Z

n, since
Z

n ∩ span
R
({2e1, . . . , 2en}) = Z

n, but L(2e1, . . . , 2en) = 2Z
n.

Lemma 2.3. Let V = [v1, . . . ,vk] ∈ Z
k×n. The set {v1, . . . ,vk} ⊂ Z

n is prim-
itive with respect to Z

n if and only if L(VT ) = Z
k.

A proof for Lemma 2.3 is given in the full version of the paper [MN23].

Lemma 2.4 (Adapted from [MRW11, Proposition 1]). Let 1 ≤ k < n be
integers. Let B ∈ Z

n×k be a matrix, whose entries are independent and uniformly
distributed over {−B, . . . , B − 1} for some B ∈ N. Then it holds that

Pr[L(B) = Z
k] > (1 − 22+k−n) + o(1),

as B → ∞.

A proof for Lemma 2.4 is given in the full version of the paper [MN23].
The dual of a lattice Λ is defined as

Λ∗ := {w ∈ span
R
(Λ) | ∀v ∈ Λ : 〈w,v〉 ≡ 0 mod 1}.

For every lattice Λ it holds that (Λ∗)∗ = Λ. If Λ �= {0}, then it holds that

det(Λ) · det(Λ∗) = 1. (2)

The integer lattice Z
n is self-dual, i.e., (Zn)∗ = Z

n.

Lemma 2.5 ([Mar13, Proposition 1.3.4]). Let Λ ⊂ R
n be a full-rank lattice

and let U ⊆ R
n be a linear subspace. Then it holds that Λ ∩ U = (πU (Λ∗))∗.

Lemma 2.6 ([Mar13, Proposition 1.2.9]). Let Λ ⊂ R
n be a full-rank lattice

and let U ⊂ R
n be a d-dimensional linear subspace with 0 < d < n, such that

Λ ∩ U is a d-dimensional lattice. Then it holds that

det(πU⊥(Λ)) =
det Λ

det(Λ ∩ U)
.
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2.3 LWE

Definition 2.7 (LWE). Let n, m and q be positive integers, and let χ be a
distribution over Z. The LWE problem or more precisely the LWE problem with
short secrets for parameters (n,m, q, χ) is defined as follows: Given

– a uniformly random matrix A ∈ Z
n×m
q , and

– a vector b ≡ sA + e mod q, where s ← χn, e ← χm,

find s ∈ Z
n
q . The vector s is called the secret, e is called the error. The tuple

(A,b, q) is called an LWE instance. A tuple (aT
i , bi), where aT

i is the i-th column
of A and bi = 〈ai, s〉 + ei is the i-th coordinate of b, is called an LWE sample.

We note that in Regev’s original definition of LWE [Reg05], the coordinates
of the secret and the error do not follow the same distribution. Most practical
LWE-based schemes, however, use the short secret variant from Definition 2.7.
We further note that for efficiency purposes most practical LWE-based schemes
do not sample the matrix A uniformly at random, but instead use A’s, which
can be stored more compactly. Most importantly, in so-called Ring-LWE and
Module-LWE variants one encodes ring-/module structure into A. This allows
to store A with only k · n elements from Zq, where k � n is a small integer,
typically 1 ≤ k < 10. The NTRU problem [HPS98] can be considered as a special
variant of (Ring-)LWE, where the vector b is fixed to 0.

An overview of parameters used in practice is given in Table 2.

Table 2. Parameters of practical LWE-based schemes.

Scheme n m q σ ≈ E[‖(e,s)‖]√
m+n

Variant

Kyber-512 512 512 3329 1.22 Module-LWE

Kyber-768 768 768 3329 1.00 Module-LWE

Kyber-1024 1024 1024 3329 1.00 Module-LWE

Dilithium-1024 1024 1024 8380417 1.41 Module-LWE

Dilithium-1280 1280 1536 8380417 2.58 Module-LWE

Dilithium-1792 1792 2048 8380417 1.41 Module-LWE

Falcon-512 512 512 12289 4.05 NTRU

Falcon-1024 1024 1024 12289 2.87 NTRU

NTRU-HPS-509 509 509 2048 0.76 NTRU

NTRU-HPS-677 677 677 2048 0.72 NTRU

NTRU-HPS-821 677 677 4096 0.80 NTRU

NTRU-HRSS 701 701 8192 0.99 NTRU

Remark 2.8 For Kyber and Dilithium we calculated the standard deviation
of the coordinates of (e, s), and then used Lemma 2.1 to approximate E[‖(e,s)‖]√

m+n



Too Many Hints - When LLL Breaks LWE 115

in Table 2. For NTRU, we could not apply Lemma 2.1, because NTRU-HRSS
and NTRU-HPS keys do not meet the requirements of the lemma. Instead, we
determined the value of E[‖(e, s)‖] experimentally by calculating the average
over 100 random keys each. Falcon keys, on the other hand, follow a discrete
Gaussian distribution with standard deviation σ = 1.17

√
q

m+n , allowing us to

compute E[‖(e, s)‖] = 1.17
√

q exactly.

2.4 The Primal Lattice Reduction Attack

Definition 2.9 (LWE Lattice). For an LWE instance (A,b, q), where A ∈
Z

n×m, we define the corresponding LWE lattice ΛLWE as the lattice generated by
the rows of the following basis matrix

BLWE :=

⎛
⎝

qIm 0 0
A In 0
b 0 1

⎞
⎠ . (3)

Equivalently, ΛLWE is defined as

ΛLWE :=
{

(x,y, t) ∈ Z
m × Z

n × Z | x ≡ yA + tb mod q
}

.

One can easily verify that the LWE lattice contains the vector

t := (−e, s,−1) ∈ ΛLWE. (4)

Since the coordinates of s and e follow in practice a distribution with zero mean
and small standard deviation σ, we have by Lemma 2.1

E[‖(e, s)‖] ≤ σ
√

m + n.

For typical parameters (see Table 2), the expected norm of t is therefore signifi-
cantly shorter than what the Gaussian heuristic gh(ΛLWE) predicts for λ1(ΛLWE).
Accordingly, t is likely a shortest vector of ΛLWE.

The primal lattice reduction attack solves the LWE problem by running the
BKZ algorithm [Sch87] on BLWE to search for a shortest vector of ΛLWE.

Complexity. The complexity of the primal lattice reduction attack is usually
measured in the Core-SVP model, as introduced in [ADPS16]. In this model,
one only estimates the so-called BKZ-blocksize at which BKZ will successfully
recover t from ΛLWE. The blocksize is the most important parameter for the
runtime of BKZ. Running the algorithm with blocksize β takes time at least

20.292β+o(β).

Worth noting, for β = 2 the BKZ algorithm is (essentially) identical to the
famous LLL algorithm [LLL82].
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Estimating the exact required blocksize is still an active area of research.
The current state of the art is heavily based on heuristics and experimental
observations. We refer the reader to the survey of Albrecht and Ducas [AD21] for
a nice overview. The Leaky-LWE estimator from [DDGR20] currently provides
the most accurate estimates for the required blocksize.

For our purposes, it suffices to know that the complexity of BKZ for finding a
shortest vector v in a lattice Λ mainly depends on the following two parameters:

1. the lattice dimension dim Λ,
2. the so-called gap ‖v‖

gh(Λ) .

The smaller the above two parameters get, the smaller is the necessary blocksize
for BKZ to recover v from Λ, i.e., BKZ performs the better, the smaller the
dimension and the length of v get, and the larger the determinant of Λ gets.

The Embedding Factor. In the typical setting, where both secret and error
follow a distribution with zero mean and (known) standard deviation σ, one
can slightly improve the lattice basis BLWE by replacing the so-called embedding
factor, i.e., the 1 in the bottom right of BLWE, by σ. (This slightly decreases the
gap of ΛLWE.) Additionally, if the distribution has a non-zero mean μ �= 0, then
the vectors b and 0 in the last row of BLWE should be replaced by b − μm and
μn, respectively, where μi := (μ, . . . , μ) ∈ Z

i.

2.5 Ignoring LWE Samples

By removing columns from the LWE matrix A and accordingly updating the
lattice basis BLWE, we can easily decrease the dimension of ΛLWE, while still
keeping the secret s in the lattice. In the literature, this technique is commonly
known as ignoring LWE samples.

For typical parameters, the current estimators suggest that applying this
technique decreases the required blocksize for the primal attack. For instance,
for Kyber-768, the leaky LWE estimator suggests that ignoring 70 samples
minimizes the required blocksize.

However, as discussed in [DDGR20, Remark 30], it is not the case that (man-
ually) ignoring samples actually decreases the required blocksize in practice. In
fact, when adding too many samples, the estimators simply start to overesti-
mate the required blocksize, but the actual blocksize necessary in practice will
not increase. (See Fig. 1 for an illustration of this phenomenon.)

This is caused by the fact that the estimators currently do not capture
the phenomenon that BKZ can ignore unnecessary samples on its own. (See
again [DDGR20, Remark 30] for an explanation.) For simplicity, one can there-
fore always use all available LWE samples, i.e., keep A unchanged, and let BKZ
perform the optimization on its own.
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Fig. 1. Required blocksize for the primal attack on 32 random Kyber-like LWE
instances with n = 128, q = 3329, ‖(e, s)‖ ≈ 1.22 · √

m + n and varying m ∈
{128, . . . , 200}. For all m ≥ 157 we require an average blocksize of roughly 43.

2.6 LWE Hints

In this section we recall the definition of LWE hints, as first introduced by
Dachman-Soled, Ducas, Gong and Rossi (DDGR) in [DDGR20].

Definition 2.10 (LWE Hints). Let s ∈ Z
n
q be an LWE secret. We define the

following LWE hints for s.

1. A tuple v = (v, �) ∈ Z
n × Z with

〈v, s〉 = �

is called a perfect hint.
2. A tuple v = (v, �,m) ∈ Z

n × Z × N with

〈v, s〉 ≡ � mod m

is called a modular hint. If m = q, we call v a mod-q hint.

As discussed in the introduction, we slightly deviate from the original definition
in the DDGR framework.

First, the DDGR framework defines hints more generally for both LWE error
and secret. However, we restrict ourselves to secret-only hints. Second, DDGR
also define a noisy variant of perfect hints, called approximate hints. It is an open
problem to adapt our framework for this type of hints. Third, DDGR define a
fourth type of hints, called short vector hints. However, short vector hints are of a
very different nature than perfect, modular and approximate hints. In particular,
as noted in [DDGR20, Section 4.5], these are not expected to be obtained via
side channels, but rather by design. For integrating approximate and short vector
hints we do not propose any new techniques.
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3 Integrating Mod-q Hints

Let us first restrict ourselves to modular hints v = (v, �, q), which we call mod-q
hints. The case of general modular hints is analyzed in Sect. 5.

Since all operations in LWE-based schemes are performed modulo q, we con-
sider leakage of mod-q hints practically highly relevant. Therefore, mod-q hints
deserve a more in-depth analysis.

The downside of the simple methodology introduced in this section is that it
cannot easily be combined with the perfect hint framework from Sects. 4. If one
obtains mod-q and perfect hints together, then one has to use the more powerful
general modular hint approach from Sect. 5.

Secret-Only Hints. Recall that in our work we use secret-only hints (v, �, q)
satisfying 〈v, s〉 ≡ � mod q. In contrast, [DDGR20] uses secret-error hints
(v,w, �, q) satisfying 〈(v,w), (s, e)〉 ≡ � mod q. In the full version of the
paper [MN23], we show that the more general secret-error hints form in the
mod-q case equivalence classes with the following two properties.

(1) Each equivalence class contains exactly one representative with w = 0, i.e.,
a secret-only hint.

(2) Integrating more than one hint from the same equivalence class does not
improve the resulting lattice basis.

By Property (1), we may work in the mod-q setting without loss of generality
with secret-only hints. By Property (2), it is also advised to exclude secret-error
hints in the mod-q setting for avoiding useless hints.

Transforming LWE. Suppose we are given mod-q hints vi = (vi, �i, q), i =
1, . . . , k for some LWE instance (A,b, q) ∈ Z

n×m
q × Z

m
q × N with n-dimensional

secret s = (s1, . . . , sn) ∈ Z
n
q and error e ∈ Z

m
q . Then we construct via linear

algebra an LWE instance (Â, b̂, q) ∈ Z
(n−k)×m
q × Z

m
q × N with

– (n − k)-dimensional secret ŝ = (sk+1, . . . , sn),
– and the same error e ∈ Z

m
q .

In particular, we decrease the dimension by k, while leaving the number of
samples m unchanged, thereby increasing the sample/dimension ratio from m/n
to m/(n − k). Other works that addressed mod-q hints to reduce the LWE-
dimension either addressed the restrictive case of standard unit vectors (that
directly provide coordinates of s and therefore also can be considered as perfect
hints) [EMVW22], or transformed into a large norm secret [WWX22], unsuited
for lattice reduction.

In lattice language, our mod-q hint transformation of the LWE instance
improves the primal lattice reduction attack from Sect. 2.4 by

(1) decreasing the dimension of ΛLWE by k,
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(2) decreasing the length of the secret vector t from Eq. (4),
(3) while preserving the determinant of ΛLWE.

Remark 3.1. As in the DDGR framework, we assume throughout this work that
our hints v1, . . . ,vk are linearly independent. In particular, we assume k ≤ n.
We would like to stress that linear independence is a very natural restriction. If
there was a framework that could improve the primal lattice reduction attack
via linearly dependent hints, then LWE would not be hard, since after guessing
one initial perfect/modular hint an attacker can easily generate arbitrarily many
linearly dependent hints.

3.1 Mod-q Hints Provide LWE Dimension Reduction

Throughout this section, we assume that q is prime, which is true for all LWE-
based schemes addressed in this work, only NTRU uses a power-of-two q. At the
end of the section, we discuss in Remark 3.4 the small necessary adaptation for
NTRU.

Let us begin by defining some useful matrix notation.

Definition 3.2 (Hint Matrix). Let vi = (vi, �i) ∈ Z
n×Z, where i = 1, . . . , k.

We define the corresponding hint matrix as

Hint
(
v1, . . . ,vk

)
:=

⎛
⎜⎜⎝

| |
vT
1 . . . vT

k

| |
�1 · · · �k

⎞
⎟⎟⎠ =

(
V
�

)
∈ Z

(n+1)×k
q . (5)

Idea of Dimension Reduction. The hint matrix from Definition 3.2 satisfies

(s,−1) ·
(

V
�

)
≡ 0k mod q. (6)

Since the hint vectors v1, . . . ,vk are linearly independent, there exists a full rank
k × k submatrix of V. For ease of notation, we assume that the first k rows of
V form a full rank matrix V1. This can always be achieved by row permutation
of V, where s has to be permuted accordingly.

Let V−1
1 be the inverse of V1 in F

k×k
q . Multiplying Eq. (6) by V−1

1 gives

(s,−1) ·
⎛
⎝

Ik

V2V−1
1

�V−1
1

⎞
⎠ ≡ (s,−1) ·

(
V
�

)
· V−1

1 ≡ 0k mod q. (7)

Let (A,b, q) ∈ Z
n×m
q × Z

m
q × N be an LWE instance with secret s and error e.

Write

A =
(
A1

A2

)
with A1 ∈ Z

k×m
q ,A2 ∈ Z

(n−k)×m
q .
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Then

(s,−1) ·
⎛
⎝

Ik

V2V−1
1

�V−1
1

A1

A2

b

⎞
⎠ ≡ (0k,−e) mod q.

Using column operations, we now use the identity matrix Ik to eliminate A1,
i.e., we eliminate the first k rows of A. Notice that since our k modular hints
are error-free, this operation does not increase the error vector e. We obtain

(s,−1) ·
⎛
⎝

Ik

V2V−1
1

�V−1
1

0
Â
b̂

⎞
⎠ ≡ (0k,−e) mod q.

Eventually, (Â, b̂, q) is our new LWE instance with the (n − k)-dimensional
secret ŝ = (sk+1, . . . , sn). Thus, we used our k mod-q hints to eliminate the first
k coordinates of s.

Reconstruction of s. Our transformation of s to ŝ eliminates the first k coor-
dinates (s1, . . . , sk). By Eq. (7) we have

(s1, . . . , sk) ≡ −ŝV2V−1
1 + �V−1

1 mod q,

which allows us to easily reconstruct the remaining k coordinates when given ŝ.

The following theorem details all required linear algebra transformations in
our LWE dimension reduction.

Theorem 3.3. Let (A,b, q) ∈ Z
n×m
q × Z

m
q × N be an LWE instance with n-

dimensional secret s = (s1, . . . , sn) ∈ Z
n
q and error e ∈ Z

m
q . Let v1, . . . ,vk be

mod-q hints with hint matrix Hint
(
v1, . . . ,vk

)
= [V, �] ∈ Z

(n+1)×k
q . Let us denote

A = [A1,A2],V = [V1,V2] with A1 ∈ Z
k×m
q ,V1 ∈ Z

k×k
q . Then (Â, b̂, q) ∈

Z
(n−k)×m
q × Z

m
q × N with

Â ≡ A2 − V2V−1
1 A1 mod q,

b̂ ≡ b − �V−1
1 A1 mod q

is an LWE instance with secret ŝ = (sk+1, . . . , sn) ∈ Z
n−k
q and error e ∈ Z

m
q .

Proof. Let s = (s1, s2) with s2 = ŝ ∈ Z
n−k
q . We have to show that ŝÂ ≡

b̂ − e mod q. Using the definition of Â we obtain

ŝÂ ≡ s2A2 − s2V2V−1
1 A1 mod q.

By Eq. (7) we have sVV−1
1 ≡ �V−1

1 . Since also sVV−1
1 ≡ s1 + s2V2V−1

1 , we
obtain s2V2V−1

1 ≡ �V−1
1 − s1. This implies

ŝÂ ≡ s2A2 − (�V−1
1 − s1)A1 ≡ s1A1 + s2A2 − �V−1

1 A1 mod q

≡ sA + b̂ − b ≡ b̂ − e mod q.

��
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Remark 3.4. For the NTRU case with power-of-two q, we require that some k×k
submatrix V1 of V is invertible over F2, which implies invertibility over Zq. For
k � n this happens with overwhelming probability.

4 Integrating Perfect Hints

Suppose we are given k perfect hints vi = (vi, �i) ∈ Z
n × Z, i = 1, . . . , k. In

this section, we introduce our new approach for incorporating perfect hints, that
improves the primal lattice reduction attack by

(1) decreasing the dimension of the LWE lattice ΛLWE by k (Sect. 4.1),
(2) increasing its determinant by a factor detL(v1, . . . ,vk) (Sect. 4.2), while
(3) preserving the length of the secret vector t from Eq. (4) (Sect. 4.1).

Additionally, we show that the effect of the integration of perfect hints is the
exact same as in the original DDGR framework (Sect. 4.2). However, in contrast
to DDGR’s approach, our novel and simplified view allows for a highly efficient
implementation (Sect. 4.3). We provide a run time comparison with DDGR in
Sect. 6.

4.1 Decreasing the Dimension of ΛLWE, While Preserving ‖t‖

Embedding Hints into ΛLWE. Let us first embed the perfect hints into our
lattice basis. Let (A,b, q) ∈ Z

n×m
q × Z

m
q × N be an LWE instance with secret

s ∈ Z
n
q . The main idea behind our new approach is to view the perfect hints

�i = 〈vi, s〉

as error-free LWE samples without reduction modulo q. A very natural approach
for embedding the perfect hints into our lattice is then to construct a hint matrix
H = Hint(v1, . . . ,vk) = (V, �) (Definition 3.2) and to generalize the definition
of the LWE lattice ΛLWE (Definition 2.9) as follows.

Definition 4.1 (Hint Lattice). Let (A,b, q) be an LWE instance, where A ∈
Z

n×m, and let H = (V, �) ∈ Z
(n+1)×k be a hint matrix. The corresponding hint

lattice ΛLWE
H is defined as the lattice generated by the following matrix:

BLWE
H :=

⎛
⎝

qIm 0 0 0
A V In 0
b � 0 1

⎞
⎠ ∈ Z

(m+n+1)×(m+k+n+1). (8)

Notice that we did not change the lattice dimension yet: Even though the hint
lattice ΛLWE

H lies in the larger vector space R
m+k+n+1 (as opposed to ΛLWE lying

in R
m+n+1), the dimension of the lattice remains

dim ΛLWE
H = dimΛLWE = m + n + 1.
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Decreasing Dimension of ΛLWE
H . By definition of the hint matrix H = (V, �),

the LWE secret s satisfies

(s,−1) ·
(
V
�

)
=

(
〈v1, s〉 − �1, . . . , 〈vk, s〉 − �k

)
= 0k.

From that, it easily follows that the hint lattice ΛLWE
H contains the short vector

tH := (−e,0k, s,−1),

which has the same length as the original secret vector t, defined in Eq. (4).
To reduce the dimension of our lattice by k, we now simply use the fact that

the coordinates of tH at positions m + 1 to m + k are zero. Instead of searching
for tH in ΛLWE

H , we simply search in the (m + n + 1 − k)-dimensional2 sublattice
ΛLWE
H,k ⊂ ΛLWE

H as defined below:

ΛLWE
H,k :=

{
(v1, . . . , vn+m+k+1) ∈ ΛLWE

H | vm+1 = . . . = vm+k = 0
}

= ΛLWE
H ∩ e⊥

m+1 ∩ . . . ∩ e⊥
m+k.

4.2 Perfect Hints Increase det ΛLWE by det L(v1, . . . , vk)

To integrate k perfect hints v1, . . . ,vk, DDGR suggest to intersect the LWE
lattice ΛLWE with the subspace orthogonal to all vi’s, i.e., to work with the
lattice

ΛDDGR
v1,...,vk

:= ΛLWE ∩ (0m,v1)⊥ ∩ . . . ∩ (0m,vk)⊥.

As shown by DDGR, this reduces the dimension of the lattice by k and increases
the determinant by a factor of roughly ‖v1‖ · . . . · ‖vk‖.3

At first glance, the DDGR approach may seem complementary to our app-
roach, where we first construct the hint lattice ΛLWE

H (lying in a different vector
space than ΛDDGR

v1,...,vk
) and then intersect it with the subspace orthogonal to the

standard basis vectors em+1, . . . , em+k.
While we already showed that our approach also reduces the lattice dimension

by k, it is not so obvious, how the determinant of our lattice ΛLWE
H,k compares with

that of ΛDDGR
v1,...,vk

. In particular, it is unclear whether one lattice performs better
than the other.

Interestingly, our Theorem 4.2 below shows, however, that our new lattice
has the exact same determinant as DDGR’s. In fact, Theorem 4.2 even shows
something slightly stronger: The lattices ΛDDGR

v1,...,vk
and ΛLWE

H,k are isometric, i.e.,
there is an isomorphism between them, that preserves their geometries. Hence,

2 Here we require the hints to be linearly independent. More generally, we have
dim ΛLWE

H,k = n + m + 1 − rankR(H).
3 The DDGR estimate is correct under some primitivity condition (see [DDGR20,

Section 4.1]) and the assumption that the hints are not too far from orthogonal
(see [DDGR20, Remark 25]).
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the lattices ΛDDGR
v1,...,vk

and ΛLWE
H,k have the exact same quality from a cryptanalytic

perspective.
More importantly, we show in Theorem 4.3 that our restriction to secret-

only hints allows us to precisely estimate the determinant. We prove under
a mild assumption that the determinant increases exactly by a factor of
det L(v1, . . . ,vk), as opposed to DDGR’s rough estimation of ‖v1‖ · . . . · ‖vk‖.

Theorem 4.2. Let v1, . . . ,vk be perfect hints with hint matrix H =
Hint

(
v1, . . . ,vk

)
. There exists an isometry from the hint sublattice ΛLWE

H,k to
ΛDDGR
v1,...,vk

. In particular,

dim ΛLWE
H,k = dim ΛDDGR

v1,...,vk
, and

detΛLWE
H,k = det ΛDDGR

v1,...,vk
.

Proof. Let u = (u1,u2) ∈ Z
m × Z

n+1 and let

x := u · BLWE ∈ ΛLWE,

y := u · BLWE
H ∈ ΛLWE

H ,

where BLWE and BLWE
H are defined as in Eqs. (3) and (8), respectively. From the

shapes of BLWE and BLWE
H it easily follows that

x = (w,u2), (9)
y = (w,u2 · H,u2), (10)

for some w ∈ Z
m. Comparing the definitions of ΛDDGR

v1,...,vk
and ΛLWE

H,k with Eqs. (9)
and (10), we obtain the following chain of equivalences:

x ∈ ΛDDGR ⇐⇒ 〈u2,vi〉 = 0, for all i = 1, . . . , k

⇐⇒ u2 · H = 0k

⇐⇒ y ∈ ΛLWE
H,k .

This, in turn, implies that

ϕ : ΛDDGR
v1,...,vk

→ ΛLWE
H,k , (x1, . . . , xm+n+1) �→ (x1, . . . , xm,0k, xm+1, . . . , xm+n+1)

is an isometry, which proves the theorem. ��
Theorem 4.3. Let v1, . . . ,vk be (secret-only) perfect hints with hint matrix
H = Hint

(
v1, . . . ,vk

)
. Suppose L(H) = Z

k. Then it holds that

det ΛLWE
H,k = detΛDDGR

v1,...,vk
= detΛLWE · det L(v1, . . . ,vk).

Proof. The proof uses the technique from [DDGR20, Lemma 12]. Let U :=
v⊥
1 ∩ . . . ∩ v⊥

k . From the shape of the basis matrix BLWE (see Eq. (3)), it easily
follows that4

detΛDDGR
v1,...,vk

= qm · det(Zn+1 ∩ U) = det(ΛLWE) · det(Zn+1 ∩ U). (11)

4 Equation (11) would become false, if we would allow secret-error hints.
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Using Lemma 2.5 and the fact that Z
n+1 is self-dual, we obtain

Z
n+1 ∩ U = (πU (Zn+1))∗,

which together with Eq. (2) and Lemma 2.6 gives

det(Zn+1 ∩ U) =
1

det(πU (Zn+1))
=

det(Zn+1 ∩ U⊥)
det(Zn+1)

= det(Zn+1 ∩ U⊥). (12)

By assumption, the rows of H span the integer lattice Z
k. Together with

Lemma 2.3 and the definition of H (Definition 3.2) this implies that {v1, . . . ,vk}
is primitive with respect to Z

n+1, and thus

Z
n+1 ∩ U⊥ = Z

n+1 ∩ span
R
(v1, . . . ,vk) = L(v1, . . . ,vk). (13)

Combining Eqs. (11), (12) and (13), we obtain

det ΛDDGR
v1,...,vk

= det(ΛLWE) · det L(v1, . . . ,vk),

which together with Theorem 4.2 proves the theorem. ��

The Condition L(H) = Z
k. Theorem 4.3 requires the hint matrix H to gen-

erate the integer lattice Z
k. In practice, we can expect that H behaves like a

random matrix. If k is significantly smaller than n, then Lemma 2.4 shows that
L(H) = Z

k holds with very high probability. Hence, we expect that Theorem 4.3
typically applies in practice.

In the case of a single perfect hint, i.e., k = 1, the condition L(H) = Z
k

simply requires that the greatest common divisor of the entries of v1 equals 1.
From the shape of the basis matrix BLWE (Eq. (3)), it is easy to see that for a
secret only hint this is equivalent to requiring that v1 is primitive with respect
to the dual (ΛLWE)∗. Hence, for the case of k = 1, our new Theorem 4.3 boils
down to DDGR’s original result.

Corollary 4.4 ([DDGR20, Lemma 12]). Let v1 be a (secret-only) perfect hint
with hint matrix H = Hint

(
v1

)
. Suppose v1 is primitive with respect to the dual

lattice (ΛLWE)∗. Then it holds that

det ΛLWE
H,1 = ΛDDGR

v1
= det ΛLWE · det L(v1) = det ΛLWE · ‖v1‖.

4.3 Computing a Basis for ΛLWE
H,k

To be able to search for the secret vector tH in the sublattice ΛLWE
H,k ⊂ ΛLWE

H ,
we of course first have to compute a basis for ΛLWE

H,k . To this end, we intro-
duce our new algorithm Construct-Sublattice (Algorithm 1). The runtime
of Construct-Sublattice is dominated by one call to LLL in dimension n+1,
and by multiplying two matrices in dimensions (n+1)× (n+1) and (n+1)×m
– making the algorithm highly practical.
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Algorithm 1: Construct-Sublattice

Input: An LWE instance (A,b, q), where A ∈ Z
n×m, a hint matrix

H := Hint
(
(v1, . . . ,vk)

) ∈ Z
(n+1)×k, and a scaling parameter c > 0.

Output: A basis of ΛLWE
H,k or Fail.

1 Multiply the first k columns of H by �2n
2 · c�. Denote the resulting matrix by H̃.

2 Run the LLL algorithm on (H̃ | In+1) to obtain a reduced basis

HLLL ∈ Z
(n+1)×(n+k+1) and a unimodular matrix U ∈ Z

(n+1)×(n+1), such that

HLLL = U · (H̃ | In+1).

3 if the upper-left (n + 1 − k) × k block of HLLL is non-zero then
4 Return Fail.
5 else

6 Compute a matrix Ã as follows:

Ã := U ·
(
A
b

)
.

7 Construct the following matrix:

B :=

(
qIm 0

Ã HLLL

)
∈ Z

(m+n+1)×(m+k+n+1).

8 Delete the last k rows of B.
9 Return the resulting matrix.

The main idea behind our algorithm is to appropriately scale the basis matrix
BLWE

H of ΛLWE
H by some scaling parameter c, such that LLL can only find lattice

vectors in ΛLWE
H , which have zeros in the coordinates m+1 to m+k. Additionally,

we exploit the fact that the q-vectors (i.e., the first m rows of BLWE
H , as defined

in Eq. (5)) already belong to the sublattice ΛLWE
H,k .

In Theorem 4.5 below, we prove a rigorous – yet impractical – bound on
the scaling parameter, for which Construct-Sublattice provably returns a
basis for ΛLWE

H,k . Building on the theorem, we then derive a heuristic bound on
the scaling parameter, that works well in practice.

Theorem 4.5. Let H := Hint
(
v1, . . . ,vk

)
be a hint matrix. Let U := e⊥

1 ∩
. . . ∩ e⊥

m ⊂ R
m+k+n+1 be the subspace orthogonal to the first m standard

basis vectors. If we call Construct-Sublattice with scaling parameter c ≥
λn+1−k(πU (ΛLWE

H,k )), then the algorithm outputs a basis of ΛLWE
H,k .

Proof. Let us first show that on input c ≥ λn+1−k(πU (ΛLWE
H,k )), the algorithm

does not output Fail. Let c′ := �2n
2 · c�. By construction, every row hi of HLLL

is of the form

hi = (c′ · hi,1, . . . , c
′ · hi,k, hi,k+1, . . . , hi,n+k+1). (14)
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Since HLLL is LLL-reduced, it holds that

‖hi‖ ≤ 2
n
2 · λi(L(H̃)), (15)

see [LLL82, Proposition 1.12].
From the shape of the basis matrix BLWE

H (Eq. (8)) and the definition of ΛLWE
H,k ,

it easily follows that the (n + 1 − k)-dimensional lattice πU (ΛLWE
H,k ) is (isometric

to) a sublattice of L(H̃). Together with Eq. (15), this yields

‖hi‖ ≤ 2
n
2 · λi(πU (ΛLWE

H,k )) ≤ 2
n
2 · λn+1−k(πU (ΛLWE

H,k )) ≤ c′, (16)

for every i = 1, . . . , n + 1 − k.
Since by Eq. (14), the first k coordinates of hi are multiples of c′, Eq. (16)

implies that these coordinates are, in fact, equal to zero. In particular, the upper-
left (n + 1 − k) × k block of HLLL is non-zero. Hence, the algorithm does not
output Fail.

It remains to show that the matrix returned in Step 9 indeed is a basis matrix
for ΛLWE

H,k . Let U be the unimodular matrix produced by Step 2. One can easily
verify that the matrix B, produced by Step 7 of the algorithm, is given by

B =
(
Im 0
0 U

)
· BLWE

H ·
⎛
⎝

Im 0 0
0 c′Ik 0
0 0 In+1

⎞
⎠ .

The matrix B is thus obtained by scaling the columns m + 1 to m + k of a basis
matrix of ΛLWE

H by c′. Since by construction the first m+n+1− k rows are zero
in the columns m + 1 to m + k, this shows that the matrix returned in Step 9 is
a basis for ΛLWE

H,k , as required. ��
To use Construct-Sublattice in practice, Theorem 4.5 shows that we need to
efficiently compute an upper bound c on the (n+1−k)-th successive minimum of
πU (ΛLWE

H,k ). Unfortunately, we can not hope to rigorously prove any useful upper
bound on λn+1−k(πU (ΛLWE

H,k )).5 However, we may heuristically assume that

λ1 ≈ λ2 ≈ . . . ≈ λn+1−k

and then use the Gaussian heuristic6

gh(πU (ΛLWE
H,k )) =

√
n + m + 1 − k

2πe
· (

det πU (ΛLWE
H,k )

)1/(n+m+1−k)

=

√
n + m + 1 − k

2πe
·
(

det ΛLWE
H,k

qm

)1/(n+m+1−k)

(17)

5 E.g., we cannot hope to upper bound λn+1−k(πU (ΛLWE
H,k)) in terms of the determinant

of the lattice, since it is easy to construct examples, where λ2 is arbitrarily large,
while the determinant is small.

6 Equation (17) easily follows from the shape of BLWE
H (see Eq. (8)).
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as an upper bound on λn+1−k(πU (ΛLWE
H,k )). Making the additional assumption

that L(H) = Z
k (which is justified by Lemma 2.4), we obtain by Theorem 4.3

det ΛLWE
H,k = det ΛLWE · det L(v1, . . . ,vk) = qm · det L(v1, . . . ,vk),

which then yields the following heuristic:

Heuristic 4.6. Let H := Hint
(
v1, . . . ,vk

)
be a hint matrix. If we call

Construct-Sublattice with scaling parameter

c =

√
n + m + 1 − k

2πe
· det L(v1, . . . ,vk)1/(n+m+1−k),

then the algorithm outputs a basis of ΛLWE
H,k .

We experimentally confirm correctness of Heuristic 4.6 in Sect. 7.

Remark 4.7. Instead of LLL-reducing (H̃ | In+1) in Step 2 of the algorithm, we
could first reduce only H̃, and after that apply the corresponding transformation
matrix to the (n+1)-dimensional identity matrix. (Similarly, as we do with [A,b]
in Step 6.) However, using (H̃ | In+1) has the benefit that the identity matrix
forces LLL to take small linear combinations of the rows of H̃. In particular, it
increases the probability of LLL taking the particularly small linear combination
(s,−1) to create a zero in the first k coordinates. Whenever this happens, we
can immediately read off the LWE secret from the basis. As we show in Sect. 7,
in the regime of too many hints, this frequently occurs in practice.

Remark 4.8. More generally, given any lattice Λ ⊂ R
d and a collection of

standard basis vectors {ei}i∈I , I ⊆ {1, . . . , d}, the ideas behind Construct-
Sublattice can easily be adapted to efficiently compute a basis of Λ∩(

⋂
i∈I e⊥

i ).

5 Integrating Modular Hints

Suppose we are given k modular hints vi = (vi, �i,mi) ∈ Z
n × Z × N, for

i = 1, . . . , k. Our new algorithm for incorporating modular hints improves the
primal lattice reduction attack by

(1) increasing the determinant of ΛLWE by a factor of
∏k

i=1 mi,
(2) while leaving dimension of the lattice,
(3) and norm of the secret vector t from Eq. (4) unchanged.

As in the perfect hint case, the effect of the integration of modular hints is
thus the exact same as in the DDGR framework. However, since our approach
uses our algorithm Construct-Sublattice (Algorithm 1) from Sect. 4.3, it is
significantly more efficient than DDGR’s. Yet, it is slightly less efficient than
our approach for mod-q hints from Sect. 3, which requires only elementary linear
algebra.

As we discuss in Sect. 5.2, an advantage of our general modular hint approach
over our mod-q approach is, however, that it allows to easily combine modular
hints with perfect hints, and to integrate both types of hints very efficiently in
one stroke. We give a more in-depth comparison with the approach from Sect. 3
in Sect. 5.3.
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5.1 Increasing det ΛLWE, While Preserving dim ΛLWE and ‖t‖
Let (A,b, q) ∈ Z

n×m
q × Z

m
q × N be an LWE instance with secret s ∈ Z

n
q , and let

vi = (vi, �i,mi) ∈ Z
n × Z × N be modular hints such that

〈vi, s〉 ≡ �i mod mi, (18)

for i = 1, . . . , k.
Our main idea from Sect. 4 for integrating perfect hints is to view our hints

as error-free LWE samples without reduction modulo q. For modular hints we
now follow a very similar approach: We simply view the hints as error-free LWE
samples with reduction modulo mi. Apart from some minor modifications, our
approach for modular hints then boils down to the perfect hint setting.

Embedding Hints Into ΛLWE. Let v′
i := (vi, �i). Similarly as in Sect. 4, we

start by defining a hint matrix H = Hint(v′
1, . . . ,v

′
k) = (V, �) ∈ Z

(n+1)×k (Def-
inition 3.2). However, instead of using H to directly construct the hint lattice
ΛLWE
H from Definition 4.1 (as we would in the perfect hint setting), we first define

an additional matrix

M :=

⎛
⎜⎝

m1

. . .
mk

⎞
⎟⎠ ∈ Z

k×k. (19)

Then, closely following the definition of the hint lattice ΛLWE
H,k , we define the

following matrix

BLWE
M,H :=

⎛
⎜⎜⎝

qIm 0 0 0
0 M 0 0
A V In 0
b � 0 1

⎞
⎟⎟⎠ ∈ Z

(m+k+n+1)×(m+k+n+1). (20)

Notice that BLWE
M,H naturally extends the definition of the original basis matrix

BLWE from Eq. (3). Indeed, the columns m + 1 to m + k of BLWE
M,H simply corre-

spond to additional LWE samples, defined over Zmi
, instead of Zq.

Increased Determinant. Let ΛLWE
M,H := L(BLWE

M,H). Since BLWE
M,H is triangular

and M is diagonal, we have

detΛLWE
M,H = qm · detM = qm ·

k∏
i=1

mi = det ΛLWE ·
k∏

i=1

mi.

Hence, we already increased the determinant of ΛLWE by the desired factor.
Notice that the increase in determinant, though, comes at the cost of increas-

ing the lattice dimension by k.7 However, as we show below, the techniques,

7 This is in contrast to the perfect hint setting, where embedding the hints does not
increase the lattice dimension.
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that allow us to decrease the lattice dimension in the perfect hint setting to
n + m + 1 − k, now allow us to preserve our lattice dimension of n + m + 1 in
the modular hint setting.

Preserving dimΛLWE. Lifting Eq. (18) to the integers, we obtain

〈vi, s〉 = �i − rimi,

for some unknown ri ∈ Z. Let r := (r1, . . . , rk). By construction, it then holds
that

(r, s,−1) ·
⎛
⎝

M
V
�

⎞
⎠ =

(
r1m1 + 〈v1, s〉 − �1, . . . , rkmk + 〈vk, s〉 − �k

)
= 0k.

Hence, by Eq. (20), ΛLWE
M,H contains the short vector

tH := (−e,0k, s,−1),

which has the same length as the original secret vector t, defined in Eq. (4).
Completely analogous to the perfect hint setting, we now simply suggest to

search for tH in the following (m + n + 1)-dimensional sublattice of ΛLWE
M,H:

ΛLWE
M,H,k :=

{
(v1, . . . , vn+m+k+1) ∈ ΛLWE

M,H | vm+1 = . . . = vm+k = 0
}

= ΛLWE
M,H ∩ e⊥

m+1 ∩ . . . ∩ e⊥
m+k,

which has the same dimension as the original lattice ΛLWE.
Making again the assumption that our hint matrix H behaves like a random

matrix (as we already did in Sect. 4.2), Lemma 2.4 then suggests that with high
probability H generates the integer lattice Z

k. In that case, the sublattice ΛLWE
M,H,k

also has the required determinant, as we show in the following theorem.

Theorem 5.1. Suppose L(H) = Z
k. Then it holds that

det ΛLWE
M,H,k = det ΛLWE

M,H = det ΛLWE ·
k∏

i=1

mi.

Proof. Let U := e⊥
m+1 ∩ . . . ∩ e⊥

m+k. By Lemma 2.6, we obtain

det(ΛLWE
M,H,k) = det(ΛLWE

M,H ∩ U) =
det(ΛLWE

M,H)

det(πU⊥(ΛLWE
M,H))

. (21)

For any subset A ⊆ R
k, let A∼ := {0}m × A × {0}n+1 ⊂ R

m+k+n+1. Looking at
the shape of the basis matrix BLWE

M,H in Eq. (20) and using U⊥ = (Rk)∼, it easily
follows that

πU⊥(ΛLWE
M,H) = L([M,H])∼ ⊇ L(H)∼ = (Zk)∼.
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Together with πU⊥(ΛLWE
M,H) ⊆ (Zk)∼, this yields πU⊥(ΛLWE

M,H) = (Zk)∼, and thus

det(πU⊥(ΛLWE
M,H)) = 1. (22)

Plugging in Eq. (22) into Eq. (21), the theorem follows. ��
We note that (as in the previous sections) we require our hints v′

i to be linearly
independent, see also Remark 3.1. If the hints were linearly dependent, we would
have L(H) � Z

k, in which case Theorem 5.1 no longer applies, and we would
have det ΛLWE

M,H,k < det ΛLWE
M,H.

Efficiently Computing a Basis for ΛLWE
M,H,k. As discussed above, our new

lattice ΛLWE
M,H,k has the exact same quality as the original lattice of DDGR. How-

ever, since our lattice ΛLWE
M,H,k is obtained by intersecting ΛLWE

M,H with standard
basis vectors, we can compute a basis for our lattice much more efficiently than
DDGR, by simply using our algorithm Construct-Sublattice (Algorithm 1),
as discussed in Remark 4.8.

5.2 Combining Modular and Perfect Hints

In a scenario, where we are given both modular hints vi = (vi, �i,mi), for i =
1, . . . , k, as well as perfect hints wi = (wi, �i), for i = k + 1, . . . , k + �, our
approach has the additional advantage that we can easily integrate all hints
in one stroke. To this end, we simply construct a second hint matrix H′ :=
Hint(wk+1, . . . ,wk+�) = (W, �′), along with the following lattice basis

⎛
⎜⎜⎝

qIm 0 0 0 0
0 M 0 0 0
A V W In 0
b � �′ 0 1

⎞
⎟⎟⎠ ,

and then search for the LWE secret in the sublattice, that has zeros in the
columns m + 1 to m + k + �.

5.3 Comparison with Section 3

In our simple linear algebra approach from Sect. 3 for integrating k mod-q hints,
the hints eliminate k coordinates of the secret vector t, and decrease the dimen-
sion of ΛLWE by k, while leaving the determinant unchanged. At first glance, this
seems complementary to our more involved approach from Sect. 5.1, where ‖t‖
and dimension remain unchanged, while the determinant grows by a factor qk.

Notice that after increasing the determinant by qk we may ignore, however,
up to k LWE samples, as explained in Sect. 2.5. Since every ignored LWE sample
decreases the dimension of the lattice by one, eliminates one coordinate of t, and
decreases the determinant by a factor q, our more involved approach thus

(1) eliminates i coordinates of t,
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(2) decreases the dimension of ΛLWE by i,
(3) and increases the determinant by qk−i,

for some freely choosable parameter 0 ≤ i ≤ k. As discussed in Sect. 2.5, the
BKZ algorithm can optimize the value of i on its own.

As one expects, this additional degree of freedom makes the more involved
approach from Sect. 5.1 slightly better than the approach from Sect. 3, in the
sense that it requires slightly smaller BKZ blocksizes to recover the secret. Worth
noting, in the regime of too many hints, where mere basis construction dominates
the runtime, the approach from Sect. 3 is, however, still preferable.
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Fig. 2. Required runtime for integrat-
ing n/2 random perfect hints into n-
dimensional random Kyber-like LWE
instances with m = n, q = 3329 and
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0 50 100 150 200

0.01

0.1

1

10

100

1000

k = # Hints

Clocktime in minutes

DBDD optimized from [DDGR20]
Construct-Sublattice
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6 Runtime Comparison with DDGR

Instead of using Construct-Sublattice for constructing a basis for ΛLWE
H,k ⊂

ΛLWE
H (or ΛLWE

M,H,k ⊂ ΛLWE
M,H), we could also use the following slight modification

of [DDGR20] for integrating perfect hints. Using the algorithm from [DDGR20,
Section 4.1] for computing a lattice slice, we first compute a basis for Λ1 :=
ΛLWE
H,k ∩ e⊥

m+1, and then iteratively compute bases for Λi := Λi−1 ∩ e⊥
m+i, with

i = 2, . . . , k, until we obtain a basis for Λk. Since

ΛLWE
H,k = ΛLWE

H ∩ e⊥
m+1 ∩ . . . ∩ e⊥

m+k = Λk,

we obtain a basis for ΛLWE
H,k .

While this approach runs in polynomial time, it is unfortunately too slow in
practice, because it is sequential. This is, in fact, precisely the issue that renders
DDGR’s implementation impractical in cryptographic dimensions.
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Another Inferior Approach. As another alternative to compute a basis for
ΛLWE
H,k , we could also use the following standard approach for computing the

intersection of two lattices. Let d := m+k+n+1, define U := e⊥
m+1∩. . .∩e⊥

m+k ⊂
R

d, and let BU ∈ Z
(d−k)×d be a basis matrix for the linear subspace U . (For

instance, BU may be obtained by taking the identity matrix Id, and removing
the (m + 1)-th to (m + k)-th rows.) We construct the following lattice basis

(
BLWE

H BLWE
H

BU 0

)
∈ Z

(2d−2k)×2d,

and compute its Hermite normal form (HNF). By a simple dimension counting
argument, it is easy to see that the HNF then has the following shape

(
B1 B2

0d−k×d B3

)
,

where B1 is a basis matrix of L(BLWE
H ) + L(BU ), and – more importantly – B3

is a basis matrix of ΛLWE
H ∩ U = ΛLWE

H,k .
However, this approach requires arithmetic on a 2(n + m + 1)-dimensional

lattice, whereas Construct-Sublattice mainly works on a (n+1)-dimensional
lattice. Therefore, it is also much slower than our approach.

As Figs. 2 and 3 show, our new algorithm greatly improves over the runtime of
DDGR’s algorithm. For instance, to integrate 30 perfect hints into a Kyber-512
instance, the DDGR algorithm requires more than 31 h, whereas ours requires
less than 20 s.8

7 Experimental Results

We provide experimental data for our implementation of the mod-q hint app-
roach as described Sect. 3, and the implementation of Construct-Sublattice
(Algorithm 1) from our perfect hint approach from Sect. 4.

Setup. In our experiments, we took hints vi = (vi, �i), respectively vi =
(vi, �i, q), where vi is drawn uniformly at random from {0, . . . , q}n. In the mod-q
hint setting, we generated 16 random keys per scheme. In the perfect hint set-
ting, we generated 32 random keys per scheme (with the exception of Dilithium,
where we used only 16 keys.)

Worth noting, we did not implement Construct-Sublattice exactly as in
the pseudocode from Algorithm 1, but added a minor tweak: Instead of directly
LLL-reducing the matrix (H̃ | In+1) (see Step 2 of the algorithm), we first
removed for every perfect hint one column from the (n+1)-dimensional identity
matrix. (In other words, we projected the lattice ΛLWE

H,k against some more stan-
dard basis vectors.) Curiously, we observed that this slightly worsens the gap of
8 We ran both the DDGR algorithm and Construct-Sublattice in Sage9.7, using

the latest patch to speed up fpylll, see https://github.com/fplll/fpylll/pull/239.

https://github.com/fplll/fpylll/pull/239
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the lattice (the dimension remains unchanged), but BKZ finds the LWE secret at
slightly smaller blocksizes. Additionally, this decreases the practical runtime of
LLL, since the lattice lies in a smaller vector space. We leave it as an interesting
open question to further study this BKZ behavior.

Hardware. We performed all our experiments on an AMD EPYC 7763 with 1
TB of RAM, as well as on an AMD EPYC 7742 with 2 TB of RAM. Each EPYC
is equipped with 128 physical cores that with parallelization give 256 threads.
We used the high number of cores only to run multiple experiments in parallel,
but we did not use parallelism do speed up any single experiment.

Results. Our results are depicted in Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13. In the
mod-q setting, BKZ blocksize 2 denotes LLL reduction. We see, e.g., that for
Kyber-512 with k ≥ 449 all instances could be solved via LLL, determining our
too many hints regime. In the perfect hint setting, we denote by blocksize 0 that
after running Construct-Sublattice we could already directly read off our
secret vector, without further reduction of the resulting hint lattice ΛLWE

H,k . We see,
e.g., that we are in the too many hints regime for perfect hints for Kyber-512
with k ≥ 233.

We choose a different format for displaying our Dilithium perfect hint
results, because we were unable to run the BKZ algorithm on the hint lattice
ΛLWE
H,k for Dilithium, since we always encountered the infamous infinite loop

in babai error. Nevertheless, we still provide the data points, at which we could
already read off the LWE secret from the output of Construct-Sublattice.

As expected, Heuristic 4.6 was valid in every experiment.
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Fig. 4. [Kyber-512, mod-q hints]
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Fig. 5. [Kyber-512, perfect hints]



134 A. May and J. Nowakowski

690 695 700 705
0.5
0.6
0.7
0.8

Clocktime in hours

Average

690 695 700 705
2

4

6

# Hints

BKZ blocksize

Single experiments
Average

Fig. 6. [Kyber-768, mod-q hints]

360 365 370 375 380 385 390
21
22
23
24
25

Clocktime in hours

Average

360 365 370 375 380 385 390
0

2

4

6

8

10

# Hints

BKZ blocksize

Single experiments
Average

Fig. 7. [Kyber-768, perfect hints]
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Fig. 8. [Falcon-512, mod-q hints]
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Fig. 9. [Falcon-512, perfect hints]
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Fig. 10. [NTRU-701, mod-q hints]
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Fig. 11. [NTRU-701, perfect hints]
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Fig. 12. [Dilithium-1024, mod-q hints]
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2 Université Paris-Saclay, CEA, List, 91120 Palaiseau, France
ambroise.fleury@cea.fr

3 Univ Rennes, CNRS, IRISA, Rennes, France
{pierre-alain.fouque,paul.kirchner}@irisa.fr

Abstract. The Number Field Sieve (NFS) is the state-of-the art algo-
rithm for integer factoring, and sieving is a crucial step in the NFS. It is
a very time-consuming operation, whose goal is to collect many relations.
The ultimate goal is to generate random smooth integers mod N with
their prime decomposition, where smooth is defined on the rational and
algebraic sides according to two prime factor bases.

In modern factorization tool, such as Cado-NFS, sieving is split into
different stages depending on the size of the primes, but defining good
parameters for all stages is based on heuristic and practical arguments.
At the beginning, candidates are sieved by small primes on both sides,
and if they pass the test, they continue to the next stages with bigger
primes, up to the final one where we factor the remaining part using the
ECM algorithm. On the one hand, first stages are fast but many false
relations pass them, and we spend a lot of time with useless relations. On
the other hand final stages are more time demanding but outputs less
relations. It is not easy to evaluate the performance of the best strategy
on the overall sieving step since it depends on the distribution of num-
bers that results at each stage.

In this article, we try to examine different sieving strategies to speed
up this step since many improvements have been done on all other steps
of the NFS. Based on the relations collected during the RSA-250 factor-
ization and all parameters, we try to study different strategies to better
understand this step. Many strategies have been defined since the dis-
covery of NFS, and we provide here an experimental evaluation.

1 Introduction

The RSA cryptosystem was one of the first primitives of public-key cryptography
to be invented. It still plays a dominant role in the computer security ecosystem,
even though post-quantum alternatives are gaining traction. Together with the
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Diffie-Hellman key exchange protocol, it is related to hard number theoretic
questions such as integer factorization, which thus underpin most of modern
cryptography, both now and in the years to come.

The major cryptanalytic tool to assess the hardness of integer factoring, and
therefore the security of RSA-based cryptography, is the Number Field Sieve
algorithm (NFS). While the asymptotic complexity of this algorithm is well-
known, it is often difficult to estimate the time and resources that are needed to
factor an integer. As such, all regulatory bodies recommend that people either
avoid RSA entirely, or prefer large RSA key sizes for safety, e.g. at least 2048
bits until 2030, and at least 3072 bits after this date. In environments where
computing power is plentiful, this recommendation is most often followed. Yet,
we do rely on cryptography that uses smaller key sizes. The first author’s credit
card has a 1152-bit RSA public key which is valid until 2026. In some European
countries (including France), the complete certification chain credit cards hinges
on the security of 1408-bit RSA. This is well below recommended key sizes, but
also well above the latest published academic record (829 bits [6]).

The regular publication of computational records [6,14] enables the crypto-
graphic community and the greater public to gain a better understanding of the
actual security level offered by the RSA cryptosystem. For this purpose, high-
quality implementations of the NFS algorithm are required. The most recent
record, the factorization of a 250-digit RSA challenge key, was done using Cado-
NFS [20]. It is an open-source software, whose source code is publicly available.

The most time-consuming step of a large factorization using the NFS is the
collection of many relations: in the recent RSA-250 record, it required 2450
core-years, which is 90% of the total computation time. A “relation” in the NFS
is a pair of small integers (a, b) such that the evaluations of two homogeneous
polynomials F0(a, b) and F1(a, b) are sufficiently smooth. F0(a, b) is often called
the “rational norm” and F1(a, b) is the “algebraic norm”.

Collecting relations can be done using many algorithms; among these, sieving
is one of the most efficient. Cado-NFS uses a highly optimized sieve. It follows that
improving sieving algorithms would have a practical impact on the performance
of integer factoring algorithms, and in turn on the security of RSA.

The “batch smooth part” algorithm of Bernstein [4] was also used with prac-
tical success in the recent record [6]. It was used in combination with sieving:
sieving happened on the algebraic side, while Bernstein’s algorithm was used on
the surviving (a, b) pairs on the rational side.

In this paper, we explore the idea of combining sieving and batch smooth
part extraction on the same side. Our guiding principle is that sieving small
primes is costly because they “hit” more often than large ones. We explore the
possibility of not sieving primes less than, say about 100000, and instead recover
the missing small factors using Bernstein’s algorithm.

Our contribution is two-fold. First, we describe statistical properties of the
relations collected during the factorization of RSA-250. While it was widely
assumed that a prime factor p occurs in a “random” relation with probability
1/p, we observe (and justify theoretically) that p occur with probability 1/pα
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for some α < 1 that we characterize. We also propose an empirical model of
the number of relations found per special-q, which enables us to reason about
alternative relation collection strategies; in particular, we are able to assess the
actual effectiveness of a relation collection algorithm that finds less relations but
faster. These might need to sieve more special-q, with diminishing returns.

Second, we implemented the combination of sieving and batch smooth part
extraction described above inside Cado-NFS, thanks to its open-source nature.
Exploiting the availability of the relations collected during the record factor-
ization of RSA-250, we carefully selected parameters to obtain an alternative
relation collection procedure that finds 90% of all relations found by the “origi-
nal” Cado-NFS implementation, using only 80% of the time. Combined with the
previous reasoning about, we expect that this procedure will have to process
16% more special-q to collect as many relations as Cado-NFS did during the fac-
torization of RSA-250. As such, we expect our implementation to yield a ≈ 5%
speedup over the whole factorization of a 250-digit integer.

This paper is organized as follows: in Sect. 2, we describe Bernstein’s batch
smooth part algorithm. In Sect. 3, we give some background on the NFS and some
implementation aspects of Cado-NFS that enable us to control the size of the
integers F1(a, b) (the “algebraic norms”) that are sieved. In Sect. 4 we describe
the relation collection algorithm of Cado-NFS in more details. In Sect. 5, we
present a statistical analysis of the relations collected during the factorization of
RSA-250. In Sect. 6, we discuss the combination of sieving and batch smoothness
detection on the same side, and we present practical results in Sect. 7.

All experiments described in this paper were conducted on a cluster of iden-
tical nodes equipped with two Intel Xeon Gold 6130 CPUs.

2 Bernstein’s Batch Smooth Part Algorithm

Given a set of integers N = {n1, . . . , nk} and a set of prime numbers P , Bern-
stein’s batch smooth part algorithm [4] finds simultaneously for each integer
in N the product of its prime factors that are in P . When P contains all the
primes up to a given bound, this extracts the smooth part of these integers. Its
time complexity is O

(
b log2+o(1) b

)
, b being the total number of bits in N and

P .
This algorithm uses product and remainder trees (see [9, pp. 325–384] for

more details). A product tree is a binary tree used to compute the product of
many integers. Its leaves are labelled with the input integers while each internal
node is labelled with the product of the labels of its children. The computation
thus proceeds from the bottom up. The root is therefore labelled with the product
of all the leaves. This structure enables the faster computation of x1x2 . . . xn as
often multiplies integers of similar sizes.

A remainder tree is a tree built upon a product tree to compute z mod ni

efficiently, for a given z and a large set of ni’s. First compute the product tree of
the ni’s. Then the computation proceeds from the top down as shown in Fig. 1.
The root initially receives z; when an internal node receives a value x, it reduces
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z mod n0n1n2n3

z mod n0n1

z mod n0 z mod n1

z mod n2n3

z mod n2 z mod n3

Fig. 1. Remainder tree as used in Cado-NFS

it modulo its label and sends the result to its children. The leaf labelled by ni

then outputs z mod ni.
Bernstein later proposed “scaled remainder trees” [5] that trade divisions for

multiplications, thus saving a constant factor. This variant is implemented and
used in Cado-NFS. In our experiments, the scaled version is always faster than
the simple version, when both are implemented using the GMP.

The batch smooth part algorithm works as follows, for a set of integers N =
{n1, . . . , nk} and a set of prime numbers P = {p1, . . . , p�}:

1. Using a product tree, compute z ← p1 × · · · × p�

2. Using a remainder tree, compute ri ← z mod ni (for all 1 ≤ i ≤ k)
3. For 1 ≤ i ≤ k, do:

(a) Set si ← 1
(b) Set g ← gcd(ri, ni)
(c) If g = 1, then si is the smooth part of ni

(d) Otherwise, set si ← si × g and ni ← ni/g, then return to step 3b

The computation of the smooth part of a huge number of integers N can
be done by invoking the algorithm multiple times with small chunks of N .
Because the first operation in the remainder tree algorithm is the computation
of z mod

∏k
i=1 ni, it would be a waste of resources to have z much smaller than

the product of the ni’s. It is more efficient to split N in batches of about 0.5 log2 z
bits, and to process them separately, keeping only z across all iterations.

Some performance measurements (using the implementation in Cado-NFS)
are shown in Fig. 1.

3 The Number Field Sieve

The Number Field Sieve (NFS) is the state-of-the-art algorithm for integer fac-
toring, discrete logarithm modulo p as well as in medium and large characteristics
finite fields. Completely describing the NFS is out of the scope of this article;
the interested reader can consult the books [8,13,16] or the recent computational
record [6].

The full algorithm consists of several steps executed in sequence: polynomial
selection, sieving, filtering, linear algebra and square root. Each of this step can
be performed by a variety of sub-algorithms. Because we are mostly concerned
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Fig. 2. Performance of batch smooth part algorithm of [4]. The implementation is
taken from Cado-NFS. This shows the time needed to process n/2 bits with a prime
product of n bits

with sieving strategies, we only very briefly describe the global mathematical
setup and we will not discuss other steps beyond the strict necessary. We also
focus on the case of integer factoring.

3.1 Mathematical Background

We briefly present some mathematical background below; for more details about
number fields, the reader may refer to [17].

Let f = fdx
d + · · · + f1x + f0 denote a polynomial with integer coefficients,

of degree d, irreducible over Q, and let α be a complex root of f (i.e. f(α) = 0).
We denote by F (x, y) = f(x/y)yd the “homogenized version” of f . We work
inside the number field K := Q(α) defined by f . Any element A ∈ Q(α) can be
represented as A = P (α) for some polynomial P with rational coefficients.

A complex number is an algebraic integer if it is the root of a monic poly-
nomial (leading coefficient 1) with integer coefficients. The set R of all alge-
braic integers contained in K forms the ring of integers of K (equivalently,
the maximal order of K). In general, α is not an algebraic integer unless f is
monic, i.e. fd = 1. However, α̂ = fd · α is always an algebraic integer because
f̂(x) = F (x, fd)/fd = xd + fd−1x

d−1 + fd−2fdx
d−2 + . . . + f0f

d−1
d is a monic

polynomial with integer coefficients and f̂(α̂) = fd
d−1f(α) = 0.

The ring of integers R is often strictly larger than Z[α̂]. In addition, it is
well-known that R is usually not a unique factorization domain, which means
that elements do not always have a unique factorization as a product of other
irreducible elements. However R is a Dedekind domain: any ideal of R factors
uniquely as a product of prime ideals of R. This property is not necessarily



Alternative Sieving Strategies for the NFS 143

true in Z[α̂], but we have a good enough substitute (see [8, Proposition 5.4] for
details).

The norm of u ∈ K, denoted by N(u), is the product of all its conjugates
in Q. Concretely, if u = P (α), then N(u) = (1/fd)deg P Res(f, P )—because the
resultant is the product of the evaluations of P at all the complex roots of f . In
general, N(u) ∈ Q and when u is an algebraic integer, then N(u) is an integer.
In the special case where u = a+αb with a, b ∈ Z, then N(fdu) = fd

−1 ·F (a, b).
For a non-zero ideal I of Z[α̂], denote by ‖I‖ the “norm” of I, namely the

cardinality of the quotient ring Z[α̂]/I, which is always finite. For any two ideals
I and J of Z[α̂], we have ‖IJ‖ = ‖I‖ × ‖J‖; it follows that I is a prime ideal of
Z[α̂] whenever ‖I‖ is a prime integer. For a principal ideal spanned by u ∈ Z[α̂],
we have ‖〈u〉‖ = |N(u)|. It follows that if u ∈ Z[α̂] and the principal ideal
spanned by u is factored as a product of ideals: 〈u〉 = I1 . . . Ik, then we have a
factorization of N(u) over Z: N(u) = ‖I1‖ × · · · × ‖Ik‖. In this case, finding the
factorization of 〈u〉 can be done by factoring the integer N(u); from its prime
factors, the prime ideals that appear in the factorization of 〈u〉 over Z[α̂] can
usually be found relatively easily.

If I is a prime ideal1 of Z[α̂], then I ∩ Z is also a prime ideal of Z. As such,
I contains a unique prime number p (I “lies over” p). When I is prime, the
quotient Z[α̂]/I is a finite integral domain, hence a finite field, and therefore
‖I‖ = pk for some k (the inertial degree of I).

Suppose that p does not divide fd. Under this assumption, we describe the
prime ideals contained in Z[α̂] of inertial degree one that lie over p. These ideals
are of the form 〈p, α̂ − r〉 where f(r) ≡ 0 mod p. Here is why: suppose that I

is such an ideal; then because Z[α̂]/I � Zp and α̂ is a root of f̂ , the canonical
ring homomorphism Z[α̂] → Z[α̂]/I sends α̂ to a root r of f̂ modulo p (it follows
that there are prime ideals that lie over p only when f̂ has roots modulo p,
and therefore when f does). Hence, a prime ideal gives rise to a pair (p, r) with
f(r) ≡ 0 mod p. Conversely, consider such a pair (p, r) and consider the ring
homomorphism Z[α̂] → Zp that sends α̂ to r and p to 0. Its kernel is an ideal of
Z[α̂] of norm p, therefore it is a prime ideal of inertial degree one. These prime
ideals can be fully described by a pair of integers (p, r).

In the context of NFS, we are interested in the factorization of ideals 〈a−bα〉
when a, b ∈ Z are coprime. It turns our that only prime ideals of inertial degree
1 can appear in the factorization (see [8] for a proof). When f is monic, testing
if 〈p, α − r〉 divides 〈a − bα〉 amounts to testing if the latter is contained in the
former, and this comes down to checking if a − bα can be written as an integer
linear combination of p and α − r. In turn, this is equivalent to a ≡ br mod p.

The theory of the NFS is often presented in the simpler situation where f is
monic. In practice this is not the case: there is a performance incentive to choose
a non-monic polynomial f . Indeed, this gives more freedom in the choice of f
and enables the use of polynomials with smaller coefficients, which is beneficial.
The main mathematical hurdle is that α is not an algebraic integer in that case.

1 Recall that I �= Z[α̂] is prime iff rs ∈ I implies that r ∈ I or s ∈ I for any
r, s ∈ Z[α̂]—in particular, a product of ideals is not prime.
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The principal ideals 〈a − bα〉 are therefore fractional ideals, i.e. they can be
written as u−1I where u is an algebraic integer and I is an ideal of R. Indeed,
〈a − bα〉 = fd

−1I with I = 〈fda − b(fdα)〉, and this is a (usual) ideal of R. More
precisely, I is an ideal of Z[α̂].

Montgomery introduced a clever way of dealing with the fact that α is not
an algebraic integer [18]. Let J = {x ∈ R : xα ∈ R}. It is easy to check that
J is an ideal of R. Because fdα ∈ R, then fd ∈ J ; in addition, a complete set of
generators of J is always available. In fact, J × 〈1, α〉 = R and ‖J‖ = fd. The
point is that J × 〈a − bα〉 is an ideal of R; Its norm is precisely Res(a − bx, f) =
F (a, b). In addition, J × 〈p, r − α〉 is a prime ideal of norm exactly p.

Up to minor details, we can multiply all ideals by J when f is not monic and
work in Z[α̂] instead of Z[α]. In both cases, the norm of 〈a− bα〉 (or J ×〈a− bα〉
when f is not monic) is exactly Res(a − bx, f), and the norm of 〈p, α − r〉 (or
J × 〈p, α − r〉) is exactly p.

3.2 Overview of the Algorithm

In order to factor an integer N , the first thing to do is to find two irreducible
polynomials f0(X) and f1(X) in Z[x] with a common root m modulo N . These
two polynomials define two algebraic number fields Q(αi), with fi(αi) = 0. This
leads to the commutative diagram shown in Fig. 3.

Z[x]

Z[α0] Z[α1]

ZN

x �→ α0 x �→ α1

α0 �→ m α1 �→ m

Fig. 3. The mathematical setup of NFS.

Finding two polynomials with a common root modulo a composite N of
unknown factorization is difficult in general, and therefore f0(X) is usually only
of degree one. It follows that Z[α0] is in fact a subring of Q. This leads to a
commonly used terminology that distinguishes the “rational side” (f0) and the
“algebraic side” (f1).

The main idea, and the most time-consuming operation in the NFS, consists
in finding relations. A relation is a pair (a, b) of coprime and preferably small
integers, such that the two principal ideals 〈a−bαi〉 ∈ Z[αi] completely factor as
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a product of prime ideals of small norm contained in some predetermined finite
sets F0 and F1. This presentation implicitly assumes that f1(X) is monic; see
the discussion above for the complications when it is not the case.

The intuitive idea is then to multiply a subset of these relations to obtain
a square in Z on the rational side and a square in Z[α1] on the algebraic side.
Then, walking down the commutative diagram, we “transfer” these to ZN in
order to obtain a congruence of squares modulo N . Then, given a2 ≡ b2 mod N ,
we find that there is some integer k such that (a − b)(a + b) = kN , so that if
a = ±b, then the greatest common divisor of a + b and N will be a divisor of N .

For a pair (a, b) to yield an actual relation, the above conditions mean that a−
mb factors over primes less than a given bound (on the rational side) and that the
principal ideal 〈a−α1b〉 factors over prime ideals, necessarily of inertial degree 1,
of norm less than a given bound (on the algebraic side). As explained above,
these ideals are described by pairs (p, r) where f1(r) ≡ 0 mod p. Concretely, this
means that the integer F1(a, b) has to split into a set of precomputed primes
integers less than the chosen bound—this holds true even when f is not monic.

In the next subsections, we give enough background to control the size of the
integers F1(a, b) that are sieved for smoothness. These integers are often called
the “norms”.

3.3 Polynomial Selection

For the factorization of RSA-250, the following polynomials were chosen:

f0 = 185112968818638292881913X − 3256571715934047438664355774734330386901

f1 = 86130508464000X6 − 81583513076429048837733781438376984122961112000

− 66689953322631501408X5 − 1721614429538740120011760034829385792019395X

− 52733221034966333966198X4 − 3113627253613202265126907420550648326X2

+ 46262124564021437136744523465879X3

It can be observed that the coefficients of f1 approximately form a geometric
progression of reason s = 354109.861; s is the skewness of the polynomial. If
f(X) =

∑d
i=0 fiX

i, write ‖f‖1 =
∑ |fi| the �1-norm of f (also for multivariate

polynomials) and write:

F ′
1(X,Y ) =

1
fd

F1(X,Y/s)

≈ X6 − 2.19X5Y − 0.0049X4Y 2 + 12.1X3Y 3

− 2.3X2Y 4 − 3.59XY 5 − 0.48Y 6

It follows that if |a| ≤ x and |bs| ≤ x, then |F1(a, b)| = fd|F ′
1(a, bs)| ≤ fdx

6‖F ′
1‖1.

In the case of RSA-250, ‖F ′
1‖1 ≈ 21.66, so we get an upper-bound of |F1(a, b)| ≤

250.73x6.
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3.4 Relation Collection

The goal of the relation collection step is to collect a large number of (a, b) pairs
such that both “norms” F0(a, b) and F1(a, b) are sufficiently smooth. Several
strategies can be used (and combined) for this purpose, but current implemen-
tations of the NFS all rely on a form of sieving. The interested reader will find
an introduction and many details about sieving in general in [13].

From a high-level perspective, the process works as follows (for side i):

1. Initialize a large array S representing many (a, b) pairs.
2. For all ideals p in the factor base, mark all locations in S where p | 〈a − bαi〉.
3. Discard (as probably non-smooth) all pairs with cofactor larger than a thresh-

old T .
4. Finish factoring the remaining cofactors and check if they are B-smooth.

Concretely, the large array stores the (log of the) “norm” associated to the
ideal 〈a − bαi〉, which is the result of the evaluation of Fi(a, b). On the rational
side, the factor base is composed of all prime integers less than some bound.
On the algebraic side, the factor base is composed of all prime ideals (of inertial
degree 1) described by pairs (p, r) with p a prime integer less than some other
bound and f1(r) ≡ 0 mod p. The locations where p divides 〈a − bαi〉 are those
where a ≡ br mod p. Marking the ideal amounts to subtracting the log of p from
the log of F1(a, b). After all primes have been sieved, the large array contains
the log of the norms of the cofactors.

Implementing this procedure requires choosing the range of sieved primes and
the threshold T . A simple option consists in sieving all prime (and prime powers)
up to B, which makes the fourth step (“cofactorization”) trivial. In practice, it
is usually more efficient to sieve only a subset of those primes. Cado-NFS sieves
all primes up some bound (denoted as limi for side i), which is less than the
final smoothness bound 2lpbi (lpb stands for large prime bound), and uses the
elliptic curve method in the cofactorization step. Primes that are in [limi, 2lpbi ]
are called “large primes”.

Implementing this strategy is a matter of trade-offs. If the threshold T is too
low, many potential relations will be discarded by the filter (false negatives).
If T is too high, many non-smooth numbers will proceed to the cofactorization
step (false positives) and increase its cost.

Sieving more primes makes this filter more “precise” (reduce both false rates),
but obviously makes sieving more expensive. Choosing these parameters is a non-
trivial balancing act.

It is possible to either sieve on both side to identify (a, b) pairs where both
norms are smooth (this requires choosing two sets of parameters), or to sieve on
one side and process the “surviving” (a, b) pairs using an other strategy for the
other side. In particular, because algebraic norms are larger than their rational
counterparts, the proportion of pairs where F1(a, b) is sufficiently smooth may
potentially be small. The number of surviving pairs after sieving on the algebraic
side may therefore be small enough that checking the smoothness of F0(a, b)
using the product tree algorithm (for the survivors only) gets faster than sieving
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again all (a, b) pairs on the rational side. Both strategies were used during the
factorization of RSA-250. In the sequel, we focus on sieving and assume that
sieving happens on both sides.

Lattice Sieving. Cado-NFS uses the technique of lattice sieving or special-q
sieving [19]. The idea consists in picking a particular prime ideal q with descrip-
tion (p, r)—it will be “special”—and restricting our attention to (a, b) pairs such
that q divides 〈a − bα1〉. We then know in advance that F1(a, b) is a multiple of
p, and this reduces the problem to testing if F1(a, b)/p is smooth. Because this
is a smaller number, it is a bit more likely.

Relation collection can then work by allocating a large array that holds A
pairs, filling it with (a, b) such that the special-q divides the principal ideal on
the algebraic side and detecting all actual relations in the array. The process
can then be repeated for all special-q ideals of norm inside a specific interval,
the “special-q” range. In the factorization of RSA-250, this was the interval [1G;
12G].

For each special-q described by (p, r), the set all of (a, b) pairs such that
a − br ≡ 0 mod p, or, in other terms, such that a − br = kp for k ∈ Z, forms a
Euclidean lattice. More precisely, we have:

(a, bs) = (b, k)
(

r s
p 0

)

where s is the skewness of f1. Let V = ps the module of the determinant of the
basis matrix; in this case, it is also the volume of the lattice. This shows that
the larger the special-q, the farthest apart are the corresponding (a, b) pairs.

Using Lagrange reduction, a reduced basis of this lattice can be computed in
quadratic time. This yields two integer vectors u = (a0, b0) and v = (a1, b1) such
that ‖u‖ ≤ ‖v‖ and ‖u‖ · ‖v‖ ≤ √

4/3V . A sieving area A is chosen depending
on the available amount of memory (A = 233 for RSA-250). A total of A pairs
(a, b) are sieved, with

(a, bs) = i · u + j · v where |i| ≤ I

2
, 0 ≤ j ≤ J and IJ = A.

Choice of Sieve Regions. The bounds I and J can be chosen so as to minimize
the maximum norm of F1 over the corresponding parallelogram. It follows from
the properties of Lagrange-reduction that ‖u‖2 ≤ √

4/3V , and therefore both
a0 and b0 are less than B := (4/3)1/4

√
V in absolute value. Next, write t =

B/max(|a1|, |b1|) so that

|a1| · t ≤ B and |b1| · t ≤ B.

t is a measure of how “thin” the sieved parallelogram is, because t =
Θ

(√|u‖/‖v‖
)
. In general, the ratio ‖u‖/‖v‖ could be as low as 1/V , with

u = (1, 0) and v = (0, V ). However, this is quite unlikely if the input basis is
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“sufficiently random”. Let v� = v − μu with μ = uv/‖u‖2; v� is the orthogo-
nal projection of v onto the orthogonal of u. Define γ as ‖u‖/‖v�‖. It is shown
in [21] that Pr[γ ≤ x] tends to 3x/π for “random” inputs. Because ‖v�‖ ≤ ‖v|, it
follows that |u‖/‖v‖ ≤ γ. As a consequence, the probability to obtain a seriously
unbalanced basis is small.

In any case, very thin sieve regions are unfavorable for a variety of reasons,
and special-q’s are discarded if t is too small (say less than 1/100). It follows
that, concretely, t is lower-bounded by some constant.

Finally, observe that

|a| = |ia0 + ja1| ≤ I

2
a0 + Ja1 ≤ B

(
I

2
+ J/t

)
,

|bs| = |ib0 + jb1| ≤ I

2
b0 + Jb1 ≤ B

(
I

2
+ J/t

)
.

It remains to choose I and J such that I/2+J/t is minimal under the constraint
that IJ = A. It is not difficult to see that the optimal choice is I =

√
2A/t. In

that case we have that both |a| and |bs| are less than 2
√

Aps/(t
√

3). This choice

of I and J thus guarantees that |F1(a, b)| is less than fd26A3p3s3t−3
√

3
−3‖F ′

1‖1
over the sieved region.

Plugging in the numerical constants of the RSA-250 factorization yields an
upper-bound of about 2208p3, assuming t ≈ 1. Example of sieved zones are shown
in Fig. 4.

Random (a, b) Pairs Processed by Cado-NFS. For our purpose, we need
to observe statistical properties of the norms of “random” (a, b) pairs processed
during a factorization. Assuming that F1(a, b) behaves like a random number is
not reasonable, at least because F1(a, b) ≡ 0 mod 6 in RSA-250 for the chosen
polynomial.

However, it is possible to accumulate a realistic sample using the following
simple-minded procedure:

1. Pick a random special-q (in the full range used in the factorization)
2. Compute the sieve region as discussed above.
3. Pick a random (a, b) pair that would have been sieved with this special-q
4. Compute the “norms”, i.e. F0(a, b) and F1(a, b).

We accumulated a bit more than 100M samples using this procedure, mostly
to observe empirically the smoothness properties of the norms “under real-life
conditions”.
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Fig. 4. Sieved regions for q = 1G (red), q = 4G (green), q = 12G (blue). The level sets
of |F1(a, bs)| are shown in black. From outer to inner, they correspond to the following
sizes (in bits): 300, 294, 288, 282, 274 and 268). (Color figure online)

4 Relation Collection in Cado-NFS

In this section, we give a succinct description of the algorithm implemented in
Cado-NFS. Its goal is to find pairs (a, b) such that both F0(a, b) and F1(a, b) are
sufficiently smooth. The smoothness bound on the rational side is 2lpb0 , and it
is 2lpb1 on the algebraic side (lpb stands for “large prime bound”). In RSA-250,
lpb0 = 36 and lpb1 = 37.

The global process follows the outline given in Sect. 3.4 and uses special-
q sieving. Given a large collection of pairs (a, b), the sieve finds “small” prime
divisors of Fi(a, b) up to some bounds. In Cado-NFS, the smoothness bounds used
by the sieve are called lim0 (on the rational side) and lim1 (on the algebraic
side). In the factorization of RSA-250, their values are: lim0 = lim1 = 231.

Factoring with a sieve is akin to finding primes with the sieve of Eratosthenes.
It is a very efficient method and works best on large sets of numbers. However,
sieving requires the target set of integers to have a specific structure. In particu-
lar, given a polynomial S ∈ Z[X], it is easy to sieve S(0), S(1), S(2), . . . . Indeed,
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if S(n) ≡ 0 mod p, then r ← n mod p is a root of S modulo p. It follows that
S(r + kp) is always a multiple of p. Finding all the S(i) that are divisible by p
requires repeating this procedure with all roots of S modulo p. This generalizes
without problem to multivariate polynomials.

Sieving can be seen as a form of sorting: for each prime p, “emit” pairs
(r + kp, p) [a pair (n, p) means that p divides n]; sort these pairs according to
their first coordinate [this collects together all (n, . . . ) pairs]; scan the list of
sorted pairs, and read in (n, . . . ) all the prime factors of consecutive integers n.
This idea is at the heart of “bucket sieving” [1].

Sieving is much faster than the batch smooth part algorithm of [4]. For
instance, in the factorization of RSA-250, on the rational side, the product of all
primes less than 231 has size 3.1 Gbit. Figure 1 shows that processing a batch of
≈ 5M numbers of about 300 bits takes 271 s. Therefore processing 233 of them
using the batch smooth part algorithm would require about 125 h. On the other
hand, sieving completes the process in about 216 s.

However, sieving only applies to structured sets of integers. The strength of
the batch smooth part algorithm is that it applies to any set of integers.

4.1 Surviving Pairs

In Cado-NFS, the step after sieving is called “cofactorization”. It attempts to
find “large” prime divisors above limi and below 2lpbi . As this part is sequential
and costly, only promising pairs are processed. There are called survivors. What
makes a pair a survivor is the size of the cofactor (the non-factored part) of
Fi(a, b) after the sieve has found all prime divisors less than limi. A pair (a, b)
“survives” if the size the cofactors on both sides are less than 2mfbi . As discussed
above, choosing limi and mfbi is a matter of compromises. The goal of the sieve is
to discard a huge proportion of (a, b) pairs without removing too many would-be
relations.

Sieving is thus done as follows:

1. Sieve norms on both algebraic and rational sides.
2. Keep only promising pairs (= survivors).
3. Find tiny factors with trial division on both sides.
4. Filter survivors once more.
5. Send them to cofactoring.

Product tree factoring is preferred on the rational side for large special-q’s.
Indeed, as opposed to sieving, product tree (batch) factoring doesn’t need its
inputs to follow any sequence and can thus be used directly on surviving pairs
in any order. This makes it possible to filter promising pairs right after sieving
on the algebraic side, effectively swapping sieving the entire rational side with
batch factoring a small subset of these pairs. A second filter is then applied after
batch factoring. Sieving is thus done as follows:

1. Sieve norms on the algebraic side.
2. Keep only promising pairs (= survivors).
3. Find tiny factors with trial division in survivors on the algebraic side.
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4. Filter survivors once more.
5. Batch factor survivors on the rational side.
6. Filter survivors once more.
7. Send them to cofactoring.

4.2 Different Sieves

Inside Cado-NFS sieving, different techniques are used depending on the side and
targeted ideals. An overview of these are shown on Table 1.

Small primes, that is primes in [2, 2I ], are sieved using the small sieve (the
parameter I is the same as the sieving region bound introduced in Sect. 3.4).
The small sieve is done in two passes. The first one is approximate, a base L
is first picked in order for all values of logLnormi(a, b) for all pairs (a, b) to fit
in [0, 255]. Logs of norms are then rounded to the nearest integer so they fit in
an 8-bit integer. This approximation is then sieved by primes from the factor
base. Newly found factors are not written next to norms they divide—or their
logarithmic approximation—. Instead, every small prime is reduced through logL

to an 8-bit integer as well. This integer is then subtracted to all norms they are
a factor of. The approximate information gathered on the first pass is enough to
pick survivors. Following this, a second pass, lossless, is done on all small primes
but tiny ones. Primes sieved are registered only as factors if ticking a survivor.
Tiny factors are found after all sieving is done with trial division.

Primes above 2I are sieved using a bucket sieving technique, similar to a
bucket sort, with one pass for medium-sized (below bkthresh1) and two for
larger ones. As opposed to the small sieve, this is lossless.

Table 1. Repartition of sieving algorithms

Factor base range [2, 2I ] [2I , bkthresh1] [bkthresh1, lim]

Sieving algorithm Small sieve 1-level bucket sieve 2-level bucket sieve

5 Relations Collected During the Factorisation
of RSA-250

During the factorization of RSA-250, 8.4G relations were produced in total and
were kept after the factorization was completed. We were kindly provided access
to this dataset, hereafter denoted as “RSA-250 relations”.

The relations are stored in gzipped text files totaling 786 GB (1.5 TB uncom-
pressed), in a straightforward format. Analyzing this dataset enables us to sim-
ulate various algorithmic strategies and choose parameters for the proposed
improvement without having to run costly exploratory experiments. This pro-
cess also uncovered minor discrepancies between the actual data and what is
announced on the web page of the record2.
2 https://gitlab.inria.fr/cado-nfs/records/-/tree/master/rsa250.

https://gitlab.inria.fr/cado-nfs/records/-/tree/master/rsa250
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This section describes simple statistics about the relations. As a foreword,
parsing 780 GB of compressed text data is an interesting “big-data” engineer-
ing problem. The relations are spread over many gzipped files. While we could
have used off-the-shelf MapReduce-style solutions [11] such as Apache Hadoop
or Apache Spark [22] for this purpose, we found it easier to write a collection
of multi-threaded C programs that parse the relations and accumulate various
statistics. A single file is processed by a single thread—this is imposed by the
sequential nature of access to the content gzipped files. This programs reads
from the network file system at 370 MB/s and parses about 3.8M relations per
second using 32 cores. The whole dataset is then processed in about 40 min.

The special-q range is split in two: the “small” ones (less than 4G) and the
“large” ones (greater than 4G), with different algorithmic strategies and different
parameters on both ranges. Table 2 shows basic information about the collected
relations.

Table 2. Basic statistics about the RSA-250 relations.

small large

special-q range [1G; 4G) [4G; 12G)

# relations 3.9G 4.5G

Algorithm for the rational side Sieve Product tree

Avg. Rational norms (bits), stdev 151.8 ± 2.0 152.6 ± 2.0

Algebraic norms (bits) 283 ± 8.6 288 ± 8.4

mfb1 111 74

The relation-collection process is controlled by several parameters described
in Sect. 4. The most important for our purposes are lim (largest sieved prime),
lpb (large prime bound—size of the largest prime allowed in a relation) and mfb
(size of the largest residue after sieving). These parameters usually have different
values on both sides, and mfb changes over the special-q range. These values can
be found on the web page of the record and are summarized in Table 3. The
choices of lpb and mfb allow for two large primes on the rational side and three
large primes on the algebraic side (this may include the special-q).

Table 3. Parameters used to collect the RSA-250 relations.

Side 0 (rational) 1 (algebraic)

lim 231 231

lpb 36 37

mfb 72 111 (small q) or 74 (large q)

It follows that in a collected relation:

– The rational norm (≈ 152 bits) is 236-smooth, and contains a relatively large
part of size ≈ 152 − 72 = 80 bits which is 231-smooth.
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– The algebraic norm (≈ 285 bits) is 237-smooth. Over the large special-q range,
it contains a relatively large part of size at least 285 − 32 − 74 = 179 bits
which is 231-smooth.

This is another indication that the norms in the collected relations are not
uniformly random B-smooth integers. It must be noted in addition that in the
“small” special-q range, half of the special-q fall into the range of sieved primes.

5.1 Frequency of Primes

While this is not directly related to our primary objective (improving sieving
strategies), we take the opportunity to discuss an interesting phenomenon about
the collected relations. Earlier works about structured Gaussian elimination
applied to integer factoring (including notably [2,7]), assume that the prime
factor p occur with probability 1/p in the collected relations, as it would in
random integers.

Fig. 5. Density of primes in the RSA-250 relations (log-log scale). The vertical dotted
blue line marks the largest sieved prime. The special-q range [1G; 12G) appears in
pink. (Color figure online)

The distribution of primes in the RSA-250 relations can be observed in Fig. 5.
It is clearly visible that p occurs with frequency 1/pα with α < 1. This phe-
nomenon is not surprising; intuitively, smooth numbers should have more small
factors than random integers. This can be quantified as follows. Let Ψ(x, y)
denote the number of y-smooth integers less than x. Take a y-smooth integers
less than x which is a multiple of p; divide it by p; this yields a y-smooth num-
ber less than x/p (this is in fact a bijection). It follows that the number of such
integers is exactly Ψ(x/p, y).

The probability that a random y-smooth number less than x is divisible
by p is therefore Ψ(x/p, y)/Ψ(x, y). Tenenbaum and Hildebrand have shown in
1986 [12, Theorem 3] that Ψ(cx, y)/Ψ(x, y) ≈ cα with c ≤ y and α is the unique
positive solution of ∑

p≤y

log p

pα − 1
= log x.
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It follows that:
Ψ(x/p, y)
Ψ(x, y)

≈ 1
pα

.

Because of the “classical” Mertens-like asymptotic evaluation
∑

p≤x(log p)/(p −
1) = log x − γ + o(1) when x → +∞, the value of α is necessarily less than 1
(γ = 0.56... denotes the Euler-Mascheroni constant).

It is shown in [12] that α = log(1+y/ log x)
log y

(
1 + O

(
log log y
log y

))
. This is quite

consistent with Fig. 5. When y is large compared to log x, this can be simplified
to α ≈ 1 − log u/(log y), where u is defined as usual as u := log x/ log y, or even
to α ≈ 1 − (log log x)/(log y). See [10] for more details.

Beyond statistics properties of smooth numbers, the particular algorithm
used to collect relations also has visible effects: sieved primes appear more fre-
quently than large primes (slight drop on the right of the dashed vertical blue
line). Special-q’s appear with a frequency boost because lattice sieving favors
relations that contain them. This highlights again that the RSA-250 relations
are not uniformly random smooth numbers.

5.2 Yield per Special-q

In this section, we turn our attention to the number of relations found per special-
q. A faster sieving procedure that finds less relations will need to examine more
special-q’s. Our goal here is to provide a quantitative model.

Fig. 6. Density of relations per special-q.

Table 2 shows that the yield is higher for small special-q’s: the average “den-
sity” of relations is 1.3 for small special-q versus 0.56 for large special-q—this
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means that over a range [a, b) of small special-q’s, the average number of relations
found is 1.3(b − a). Note that this numbers do not account for duplicate rela-
tions; the proportion of duplicates is expected to be higher for small special-q’s.
In total, 70% of these relations are unique.

The sieving parameters are different for small and large special-q’s, and this
is sufficient to explains a large drop in yield at the transition between the two
ranges. However, the number of relations found per special-q decreases with q.
Figure 6 shows this well-known phenomenon more precisely. Two causes may
account for this.

Firstly, because a special-q contains a prime integer, their density is about
1/ log q thanks to the prime number theorem. This means that the density of
primes is about 4.5% at for q = 4G, and it drops to 4.30% at the end of the
special-q range (q = 12G). Even if the number of relations found per special-q
were strictly constant, the rarefaction of primes would accounts for a 5% drop
in the “density” of relations over the large special-q range.

Secondly, as argued in Sect. 3.4, the algebraic norms are less than ≈ 2208p3

in the sieved zones, however since the special-q can be taken out, we are left
with numbers of size less than ≈ 2208p2. It seems plausible that the number of
relations collected per special-q is correlated with the probability that integers
of this size are 237-smooth.

The proportion of y-smooth integers between x and x + dx is given by

Ψ(x + dx, y) − Ψ(x, y)
dx

= ρ(u) + O
(

1
log x

)

where u = (log x)/(log y) and ρ is the Dickman function—see [15] for details.
Let R(q) denote the “density” of relations at this value of q (this is what Fig. 6
shows). Our initial assumption was that R(q) would be correlated with f(q) =
1/ log(q)·ρ((208+2 log2 q)/37). One standard way of visually asserting the quality
of this model is to plot the “residues” R(q)/f(q). Figure 7 (left) shows that R(q)
decreases faster than this simple model predicts.

However, tinkering a bit shows that a slightly more general model is sufficient.
Define fα(q) = 1/ log(q) · ρ((208 + α log2 q)/37); then over the small special-q
range, R(q) is about 297M times f2.419245(q) whereas over the large special-q
it is about 255M times f2.53737(q). Figure 7 (right) shows that the residues are
flat. The values of α given above have been found by dichotomy search with
the objective of minimizing the absolute value of the slope of a linear regression
performed on R(q)/fα(q). This model seems empirically good; however we have
no explanation as to why values of α greater than 2 (and less than 3) provide a
better fit.



156 C. Bouillaguet et al.

Fig. 7. Residues of potential models of the yield per special-q. Left: R(q)/f2(q). Right
R(q)/f2.419245(q) (small) and R(q)/f2.53737(q) (large).

In any case, this yields a good model of the yield per special-q (it is shown in
black in Fig. 6). The multiplicative constants (297M and 255M) accounts for the
sieving area, the fact that pairs where a and b are not coprime are discarded,
the fact that there is a large 231-smooth part, etc. With y = 237 and p in
[109; 101000], we have 7 ≤ u ≤ 8, where u is again log p/ log y. In this range, ρ(u)
can be approximated to good accuracy by a power series. Set x ← 2u − 15 and:

107ρ(u) ≈ 1.7178674920 − 2.8335703447x + 2.3000577581x2 − 1.2233613236x3

+ 0.47877283118x4 − 0.14657423350x5 + 0.036375058464x6 + . . .

If one is willing to commit to these estimates, then they can be used to predict
the number of relations that would have been obtained over a larger range of
special-q’s:

#relations = 3.9G +
∫ qmax

4G

f2.53737(q)dq (1)

This can easily be estimated using a generic numerical integration algorithm.
Over the range of small special-q, this model overestimates the number of rela-
tions found by 8%. However, the quality of the fit over the large special-q range
is amazingly good: (1) predicts the actual number of collected relations when
4G ≤ q ≤ 12G with relative error 0.027%.

This has interesting consequences. For instance, assume that an alternative
relation collection procedure runs faster but produces (say) only 50% of the rela-
tions compared to the current one; further assume that this proportion remain
constant for all special-q’s. The above reasoning enables us to venture the fol-
lowing prediction: recovering as many relations will require sieving special-q’s
up to ≈ 34.5G. Taking into account the density of primes, the new procedure
has to sieve about 2.75× more special-q’s. As such, it breaks even if it is at least
2.75× faster than the original. In the same way, a procedure that keeps 85% of
the relations will need to sieve almost 3.3G extra special-q’s, i.e. do ≈ 26% extra
work.
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6 Combining Sieving and the Batch Smooth Part
Algorithm on the Same Side

During the factorization of RSA-250, sieving and the batch smooth part algo-
rithm described in Sect. 2 were both used—on different sides. In this section,
we explore the possibility of using both on the same side. To the best of our
knowledge, this has not been tested in practice.

This idea is however not new. In 2002, Bernstein [3] suggested the following
strategy:

Sieve all primes p up through, say, B; throw away the n’s whose unfactored
part is uncomfortably large; then apply some other method to the n’s that
remain.

“Some other method” could reasonably be understood as the batch smooth
factor algorithm and presented in the very same manuscript, and the faster batch
smooth part version described in [4]. The suggestion here is to sieve only small
primes. A potential advantage is that it would enable the use of a smaller sieve
area, thus reducing memory consumption, and/or improving memory locality.

Another option would be to skip small primes entirely. Again this is not a
new idea; it seems that it was already part of the folklore in 1993:

Furthermore, one often does not sieve with the small primes below a certain
small prime bound [...] [16]

Indeed, small primes have more “hits” and require more time than large ones.
Prime ideals below 2I—small sieved ones—are of particular interest to speed

up the sieving process. Indeed, our intuition is that comparatively more time is
spent on small primes to retrieve fewer factor bits than sieving larger primes. In
addition, finding the remaining small factors after sieving larger ones would be
efficient as their size would be small. That is to say, sieving is more efficient on
large primes while batch factoring is more efficient on small ones as it benefits
from a smaller factor base.

To discuss these two ideas, we split sieved primes (below limi) in two subsets:
extra-small primes that are below a certain bound 2B and medium primes that
are above.

1. Sieve using either extra-small or medium primes on both sides
2. Keep only promising pairs (= survivors) that have small enough cofactors
3. Use the Batch smooth part algorithm on survivors to find extra-small

factors on side 1
4. Filter survivors once more on side 1 (discard those with cofactor size greater

than mfb1 bits)
5. Use the Batch smooth part algorithm again on survivors to find extra-small

factors on side 0
6. Filter survivors again on side 0 (discard those with cofactor size greater than

mfb0 bits)



158 C. Bouillaguet et al.

7. Send survivors to the cofactoring step

We introduce new parameters for intermediate bounds, mfbb0 and mfbb1.
After sieving one of the subsets of primes on both sides, a pair (a, b) is considered
a survivor in step 2 if the cofactor on side i has less than mfbbi bits.

6.1 Sieving only Extra-Small Primes

In this section, we try to evaluate the idea of sieving only extra-small primes.
This enables the use of a smaller sieve area, which may have some benefits.

We now show that using a “large-ish” sieve region of size A = 233 as was done
in the factorization of RSA-250 is indeed not a good strategy. Sieving primes up
to 231 with sieve area 233 requires 213 s using a single-thread. Extracting the
231-smooth part of a single batch of size ≈ 1.5 Gbit requires 270 s. This is the
size of about 15M cofactors of size, say, 100 bits. Therefore, rejecting pairs with
“uncomfortably large” cofactors should only allow a fraction 0.1746% of all pairs
to survive, otherwise applying the batch smooth part algorithm will be slower
than sieving altogether. Note that this is a very conservative stance: even a lower
proportion could make the combination of sieving + batch smoothness detection
slower than just sieving.

For each value of the bound B that delimits the extra-small primes from
the medium ones, we exhaustively try all pairs of thresholds mfbb0 and mfbb1.
For each combination of (B, mfbb0, mfbb1), we estimate the proportion of pairs
that would survive until after step 2 of the procedure above and enter the batch
smooth part algorithm. This estimation is done using our collection of “random”
pairs from Sect. 3.4. If this proportion is larger than the threshold given above,
we reject the set of parameters. Among all valid parameters set, we find the one
that preserves the maximum number of relations found during the factorization
of RSA-250—this is estimated thanks to the RSA-250 dataset. The result is
shown in Table 4.

Looking at Table 4, we are tempted to conclude that the procedure will not
be practical. Unless 2B gets quite close to the actual limit of 231, the test in
step 2 is not precise enough to simultaneously keep the actual relations and
discard sufficiently many unpromising (a, b) pairs. Therefore, restricting sieving
to a small set of extra-small primes seems bound to discard a significant fraction
of potential relations. In turn, as discussed in Sect. 5.2, it seems difficult to be
able to break even with pure sieving.

This does not mean that the overall strategy is doomed. In particular, the
above reasoning does not rule out the possibility that it could be competitive
when used with a smaller sieve area. Here, the argument was that if the sieve
area is large, then the proportion of pairs that survive the test must be small
otherwise their number will overwhelm the batch smoothness detection algo-
rithm. Reducing the sieve area will reduce the number of surviving pairs, and
may alleviate this problem.

However, we believe that we have shown that this specific strategy requires
very different parameters than those used in the factorization of RSA-250. This,
in turn, is not surprising.
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Table 4. “Optimal” parameters for sieving only extra-small primes with a sieve area
of 233. The fourth column shows the proportion of RSA-250 relations that would survive
the process. The fifth column shows the proportion of pairs that survive step 2. The
last row of the table describes what was actually done in the factorization of RSA-250.

B mfbb0 mfbb1 % surviving rel. % surviving pairs

8 123 266 0.5 0.17

9 121 258 0.8 0.17

10 119 253 1.1 0.17

11 115 255 1.6 0.17

12 113 250 2.2 0.17

13 114 239 2.9 0.17

14 112 236 4.0 0.17

15 113 228 5.2 0.17

16 115 220 6.9 0.17

17 118 212 9.2 0.17

18 117 209 12.3 0.17

19 115 207 15.8 0.17

20 113 205 19.1 0.17

21 99 216 25.9 0.17

22 96 215 33.5 0.17

23 96 210 39.8 0.17

24 100 201 48.5 0.17

25 101 195 61.8 0.17

26 99 193 72.3 0.17

27 99 189 76.7 0.17

28 123 168 82.5 0.17

29 103 177 92.6 0.17

30 103 172 98.4 0.17

31 99 155 100.0 0.11

6.2 The Other Way Around: Do Not Sieve Extra-Small Primes

We now turn our attention to the opposite strategy: sieving only the medium
primes, on both sides. Extra-small ones are found in a second step using the
batch smooth part algorithm. The intuition is that step 1 is the most efficient
part of sieving. It gives us a lot of information to decide if a pair is in a good
position to be a relation while being very fast. It allows us to remove a good
amount of pairs in step 2 before looking for small factors in steps 3 and 5 using
the batch smooth part algorithm.
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This is bound to be less precise compared to “pure” sieving as it starts
filtering pairs earlier, after fewer prime factors have been treated. Ideally, this
loss of precision would not lead to too many useless survivors (false positives) nor
lost relations (false negatives). The challenge is to find parameters that would
make the alternative faster while limiting the loss of relations compared to the
original implementation of Cado-NFS.

We essentially had a dual approach: we imposed a proportion of RSA-250
relations that must survive the whole procedure. For each value of the bound B
that delimits extra-small primes (not sieved) and medium primes, we exhaus-
tively try all pairs of thresholds mfbb0 and mfbb1. For each combination of
(B, mfbb0, mfbb1), we estimate the fraction of RSA-250 relations that would
be found. If this proportion is too low, we discard the parameters. Note that
if (mfbb0, mfbb1) is valid, then so does (mfbb0 + u, mfbb1 + v). Among all valid
parameter sets, we single out the ones that minimize the proportion of surviving
pairs at the end of step 2. The results can be seen in Fig. 8.

In light of the discussion in Sect. 5.2, we focus on high proportions of pre-
served RSA-250 relations. In addition, one particularly relevant choice of B is
B = 17, as it means that the “small sieve” can be completely disabled (only
bucket sieving remains). Reasonable parameters set are shown in Table 5.

7 Experiments and Practical Results

We implemented the strategy discussed in Sect. 6.2 inside Cado-NFS. This has
been a non-trivial programming effort, as this required modifying a complex
program made of 29K lines of C++ code spread over nearly 50 files.

The modifications we performed can be summarized as follows:

– We altered the piece of code that holds the factor base for sieving to remove
primes less than 2B , where B is a new command-line parameter. We also
inserted there a precomputation of the product of extra-small prime factors.

– The sieve area is divided into “sieve regions” of size about 64 KB. We altered
the piece of code that fully processes a sieve region. The original searches “sur-
vivors” (cofactor of less than mfbi bits) after sieving and launches an asyn-
chronous cofactorization task for each surviving pair. We inserted a modified
survivor detection procedure using the new mfbbi parameters; the extra-small
primes factors of survivors are recovered by the batch smooth part algorithm;
then pairs are fed back to the preexisting mechanism.

Our implementation is not particularly well optimised. In particular, because
we operate inside a single sieve region, we may or may not have enough survivors
to completely fill one batch. Regardless of its performance, the sheer availabil-
ity of our implementation enabled us to empirically validate the results of the
simulations presented in Fig. 8 and in Table 5.

Actual performance results are shown in Figs. 9 and 10. With B = 17 (i.e.
disabling the small sieve entirely), our code manages to get faster than the
original Cado-NFS implementation, while targeting 85% or 90% of the RSA-250
relations. The figures strongly suggest that B = 17 is the optimal choice.
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Fig. 8. Possible choices of mfbb0 and mfbb1 that preserve the given fraction of RSA-
250 relations. Sieving all primes between 2i and 231 with i = 10 (red), i = 12 (green),
i = 14 (orange), i = 17 (black), i = 20 (cyan) and i = 24 (olive). The big dot shows the
values that minimize the proportion of pairs that survive step 2. (Color figure online)
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Table 5. Reasonable parameters for sieving only primes between 2B = 217 and limi =
231 with a sieve area of 233. The third column shows the proportion of RSA-250 relations
that would survive the whole process (including batch smoothness detection to find
small primes). The fourth column shows the proportion of pairs that would survive
step 2, before batch smoothness detection (the column shows x, the actual proportion
is 10x).

mfbb0 mfbb1 % surviving rel. log10 proportion surviving pairs

93 135 50.3 −6.165

115 146 75.1 −5.063

116 158 85.0 −4.556

117 167 90.0 −4.233

125 178 95.0 −3.568

136 192 99.0 −2.788

Fig. 9. Results of processing a large special-q with different bounds with optimal
parameters targeting 85% of the RSA-250 relations

Tables 6 and 7 show the result of slightly longer experiments. We processed
several special-q near the beginning and the two-thirds of the whole range. The
“local speedup” is the ratio between the speed-up and the proportion of relations
found (it is equal to one if the performance of the new code is strictly proportional
to the original).

The observed speed-up may seem modest; we nevertheless consider it a sig-
nificant achievement in view of the fact that Cado-NFS is a complex, highly
optimized piece of code that holds the current computational record.
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Fig. 10. Results of processing a large special-q with different bounds with optimal
parameters targeting 90% of the RSA-250 relations

Table 6. Results when processing 34 special-q’s in the range [8204724066, 8204725068].

B mfbb0 mfbb1 # relations found × original Time (s) × original local speed-up

Original Cado-NFS 390 – 8619 – –

17 89 137 232 0.59 6589 0.76 0.78

17 108 143 328 0.84 6691 0.78 1.08

17 111 147 347 0.89 6940 0.81 1.10

17 114 152 361 0.93 7292 0.85 1.09

17 116 158 367 0.94 7450 0.86 1.09

17 117 167 371 0.95 8088 0.94 1.01

Table 7. Results when processing 25 special-q’s in the range [2500000000, 2500000500].

B mfbb0 mfbb1 # relations found × original Time (s) × original local speed-up

Original Cado-NFS 674 – 6942 – –

17 114 152 519 0.77 5242 0.76 1.02

17 116 158 561 0.83 5442 0.78 1.06

17 117 167 606 0.90 5684 0.82 1.10

17 125 178 646 0.96 7558 1.01 0.88

17 148 191 667 0.99 20077 2.89 0.34

Tables 6 and 7 hints at the possibility of collecting 90% of the relations found
by the “original” Cado-NFS, in roughly 82% of the time. Assume that this is fea-
sible over the whole special-q range. According to the estimate given in Sect. 5.2,
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such a procedure would have to sieve 16% more special-q than the original.
Under these assumptions, the new relation collection procedure would yield a
5% speedup over the original Cado-NFS to factor a 250-digit number.

8 Conclusion

This work introduces an alternative sieving method in Cado-NFS and shows it can
be more efficient than what was used to factor the current RSA-250 record. We
achieve acceleration factors of up to 1.1 on sampled sieved regions. These results
come however at a cost: the loss of precision at the heart of our proposition leads
to finding fewer relations for the same amount of explored regions. As sieving
gets less efficient for larger special-q’s, compensating lost relations gets costlier.
Further experiments are needed in order to find better parameters, focusing not
only on the local speed-up but also on the proportion of found relations and the
added work they imply.

The way we integrated Bernstein’s batch factoring algorithm within Cado-
NFS sieving might not be optimal. Batch factoring happens twice for each sieved
region, once on each side. It is more efficient to fill one batch. In our implemen-
tation, this is however usually not the case on the first side (algebraic) and far
from it on the second side (rational) as most norms are discarded between both
steps. Dissociating batch factoring from sieved regions might then lead to further
acceleration.

We showed experiments on the bound B separating sieved primes and those
in batch factoring. We have yet to try experimenting different bounds for each
side (B0 and B1) although it appears disabling entirely the small sieve for both
sides, as we did, is the straightforward approach.

Finally, data collected during RSA-250 allowed us to draw early conclusions
to pick optimal parameters such as mfbb0 and mfbb1 for each targeted propor-
tion of relations. This brings us closer to an answer to the question “would the
RSA-250 record have been beaten quicker using our alternative?”. Exploring
parameters for yet-to-be factored sized numbers would bring an answer to the
more interesting one “will the next RSA record be faster with it?”.

Acknowledgments. We are indebted to Régis de la Bretèche for pointing us to the
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Abstract. Z
n is one of the simplest types of lattices, but the compu-

tational problems on its rotations, such as ZSVP and ZLIP, have been
of great interest in cryptography. Recent advances have been made in
building cryptographic primitives based on these problems, as well as
in developing new algorithms for solving them. However, the theoretical
complexity of ZSVP and ZLIP are still not well understood.

In this work, we study the problems on rotations of Z
n by exploiting

the symmetry property. We introduce a randomization framework that
can be roughly viewed as ‘applying random automorphisms’ to the out-
put of an oracle, without accessing the automorphism group. Using this
framework, we obtain new reduction results for rotations of Z

n. First, we
present a reduction from ZLIP to ZSCVP. Here ZSCVP is the problem of
finding the shortest characteristic vectors, which is a special case of CVP
where the target vector is a deep hole of the lattice. Moreover, we prove a
reduction from ZSVP to γ-ZSVP for any constant γ = O(1) in the same
dimension, which implies that ZSVP is as hard as its approximate ver-
sion for any constant approximation factor. Second, we investigate the
problem of finding a nontrivial automorphism for a given lattice, which
is called LAP. Specifically, we use the randomization framework to show
that ZLAP is as hard as ZLIP. We note that our result can be viewed as
a Z

n-analogue of Lenstra and Silverberg’s result in [JoC2017], but with
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a different assumption: they assume the G-lattice structure, while we
assume the access to an oracle that outputs a nontrivial automorphism.

Keywords: Lattice automorphism · Randomized reduction · ZLIP ·
Gradient descent · Characteristic vectors of the unimodular lattice

1 Introduction

Lattices are fundamental mathematical concept that represent discrete additive
subgroups of R

m. A lattice is usually defined by a set of n linearly independent
basis vectors b1,b2, . . . ,bn ∈ R

m, such that any point in the lattice can be
expressed as an integer linear combination of the basis vectors. Lattices offer a
rich geometric structure that can be used to define various computationally hard
problems. Two of the famous problems are the Shortest Vector Problem (SVP),
which involves finding the shortest non-zero vector in a given lattice, and the
Closest Vector Problem (CVP), which involves finding the lattice point closest to
a given target point. Both of these problems are known to be NP-hard, and their
theoretical complexity and solving algorithms have been extensively studied [1,5,
8,10]. In recent decades, lattices have played a crucial role in cryptography, with
numerous cryptographic schemes being constructed based on the lattice-related
computationally hard problems [45].

In addition to SVP and CVP, there are also other important lattice-related
problems that have gained considerable attention. One such problem is the Lat-
tice Isomorphism Problem (LIP). Two lattices L1 and L2 are said to be isomor-
phic if there exists an orthogonal transformation that maps L1 to L2. The LIP is
to find such an orthogonal transformation given the lattice bases of L1 and L2.
Research on the LIP dates back to the 1990s, with the development of algorithms
for solving low-dimensional LIP [46]. Then a subsequent work studies the asymp-
totic complexity of LIP and proves that LIP is at least as hard as the Graph
Isomorphism Problem (GIP) [50]. In [28], Haviv and Regev propose an nO(n)-
time algorithm for the general LIP, which remains the fastest known algorithm
for solving LIP. There are also works that study LIP from different perspectives.
Sikirić et al. [21] demonstrate that with access to an SVP oracle, an LIP instance
can be converted to a GIP instance. Although GIP has a quasi-polynomial time
algorithm as shown in [7], the worst-case number of shortest vectors may be expo-
nential, which can lead to a potentially exponential-sized graph in [21]. Recently,
Ducas and Gibbons have adapted the notion of the hull of a code and showed
that it could be used to launch geometric attacks on certain special lattices [17].
Another line of research focuses on constructing cryptographic schemes based
on the LIP. The proposed schemes include public-key encryption, signature, key
encapsulation mechanism, and identification [9,18,19]. Notably, the security of
some of these schemes relies on a special case of the LIP, i.e., the ZLIP.

The ZLIP involves finding an orthogonal transformation that maps Z
n to L,

provided that L is isomorphic to Z
n. Initially, the ZLIP is studied for cryptanaly-

sis purposes of GGH [26] and NTRUSign [30]. In [25], Gentry and Szydlo extract
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the secret key of NTRUSign by solving an special form of the ZLIP, i.e., solving
a structured U from its Gram matrix G = U�U up to a signed permutation.
Then Nguyen and Regev propose an alternative method for GGH by tackling a
learning a parallelepiped problem using gradient descent [43]. Additionally, an
in-depth analysis of the algorithm proposed by Gentry and Szydlo is provided in
[32,33]. For the theoretic complexity of ZLIP, Szydlo [53] provides a reduction
from search ZLIP to decision LIP, and results from [31] suggest that ZLIP is
in co-NP. On the other hand, solving algorithms and experiments for ZLIP are
proposed in [11,23]. Recent progress has also been made in [20], where Ducas
provides a reduction from n-dimensional ZLIP to n

2 -dimensional SVP. Plugging
in the fastest known algorithm for SVP from [2], it results in a 2n/2-time algo-
rithm for ZLIP. In addition, Bennett et al. [9] provide a reduction from ZSVP to
O(1)-uSVP, which leads a 2n/2 time algorithm for ZSVP. Due to the well-known
reduction from ZLIP to ZSVP, the results of [9] imply a reduction from ZLIP
to O(1)-uSVP and a 2n/2-time algorithm for ZLIP.

1.1 Our Results and Techniques

The basis observation of this work is that Z
n (and its rotations) possesses a

remarkable degree of symmetry. For a lattice L isomorphic to Z
n, the automor-

phism group Aut(L) is isomorphic to the signed permutation group S±
n (see

Sect. 2), which is known to be the largest possible for any lattice in R
n when

n > 10.1 Leveraging this powerful property of symmetry, we delve into the ZLIP
and focus on two key questions, i.e.,

Q1: Can the symmetry be used to assist in the solving or the reduction of the
computational problems associated with Z

n?
Q2: Is it feasible to efficiently obtain a nontrivial automorphism for a lattice

isomorphic to Z
n?

Centered on these two questions, we present the following results.

A Randomization Framework. To address the first question, we provide a
randomization framework, which can be roughly viewed as ‘applying random
automorphisms’ in Aut(L) to the output of an oracle, without knowing the spe-
cific elements in Aut(L). The framework utilizes the fact the Aut(L) is a sub-
group of the orthogonal group On(R), and the latter can be efficiently sampled
uniformly at random.2 The following toy example illustrates how the random-
ization framework operates.

1 In fact, the signed permutation group S±
n is the largest possible automorphism group

among all lattices in R
n, with the exception of dimensions n = 2, 4, 6, 7, 8, 9, 10 [44].

2 Strictly speaking, we can efficiently generate matrices in On(R) distributed with
Haar measure. We refer to Sect. 3 for a detailed discussion.
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Denote the square on the left-hand side as �0, and define G = R/(2πZ).
Consider the action of G on �0 as rotations, i.e., ρ(�0) = �ρ,∀ρ ∈ G, where
�ρ is the rotation of �0 around the origin O by ρ. In terms of rotations, the
automorphism group of �0 can be expressed as Aut(�0) = π

2 Z4, which is a
subgroup of G = R/(2πZ). We assume there is an oracle O that takes as input
any �ρ and outputs an arbitrary vertex of �ρ. The oracle does not know the
specific rotation ρ and the correspondence of the vertices between �0 and �ρ.
Next, we show how the randomization framework can obtain random vertices
of �0 without accessing Aut(�0). Specifically, the randomization framework 1)
generates a ρ ∈ G uniformly at random; 2) invokes the oracle O with input
ρ(�0) = �ρ and obtains an arbitrary vertex of �ρ; 3) applies ρ−1 to the obtained
vertex and outputs a vertex of �0. Using the randomness of ρ, it can be proved
that the obtained vertex is uniformly distributed with respect to the action of
Aut(�0) (see Appendix A).

The randomization framework for lattices generalizes the above example.
Specifically, given a lattice L and an oracle defined for any rotations of L, the
framework randomizes the oracle’s output such that the resulting samples follow
a distribution that is invariant under the action of Aut(L). Another challenge
should be addressed by the randomization framework is how to ‘conceal’ the
information of the random orthogonal matrix from the oracle’s input. This is
achieved by using the method introduced in [9,19,28], which samples a basis via
a discrete Gaussian distribution.

New Reduction Results for ZLIP. The randomization framework enables us
to derive new reduction results for ZLIP or ZSVP.

Theorem 1.1. There is an efficient randomized reduction from ZLIP to
ZSCVP.

In Theorem 1.1, we introduce a new problem, ZSCVP, which requires finding
the shortest characteristic vector of a given lattice L ∼= Z

n. We note that the set
of characteristic vectors forms a coset w + 2L, and a characteristic vector can
be efficiently computed for a given basis (see Lemma 2.6). Thus ZSCVP can be
viewed as a CVP in the lattice 2L. Previous studies on ZLIP mainly focused
on reductions to SVP or its variants [9,18,20]. To the best of our knowledge,
Theorem 1.1 is the first direct reduction from ZLIP to CVP. Moreover, ZSCVP is
a very special case of CVP, where the target vector is a deep hole in the lattice 2L.
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We believe this is a non-trivial observation that could facilitate further research
on ZLIP, as finding or verifying a deep hole for a lattice is generally hard [27].

The proof of Theorem 1.1 relies on the fact that Aut(L) acts transitively
on the set of shortest characteristic vectors. This allows us to sample uniformly
from this set using the randomization framework. Then we can show that with
polynomial many samples, we can efficiently find the shortest vectors of L by
using the gradient descent method adopted in [43].

Theorem 1.2. For any constant γ = O(1), there is an efficient randomized
reduction from ZSVP to γ-ZSVP in the same dimension.

Theorem 1.2 shows that ZSVP is as hard as its approximate version for any
constant approximation factor. Plugging the best known algorithm for O(1)-SVP
in [6,39] gives a 20.802n-time algorithm for ZSVP. However, γ-ZSVP is a special
case of γ-SVP, so a more efficient algorithm for ZSVP might exist if we can
exploit its special structure, which can be an open problem for future research.

The proof of Theorem 1.2 relies on an analysis of the orbits of the vectors in
L∩γBn

2 under the action of Aut(L). We show that we can sample uniformly from
one orbit using the randomization framework. The shortest vectors can then be
obtained by doing pairwise subtraction on a polynomial number of vectors in
the same orbit.

The Lattice Automorphism Problem. To answer the second question, we
introduce a new problem, ZLAP, which requires finding a nontrivial automor-
phism in Aut(L). Our main result is the following reduction.

Theorem 1.3. There is an efficient randomized reduction from ZLIP to ZLAP.

According to Theorem 1.3, it has ZLIP ≤ ZLAP. On the other hand, a simple
deduction gives ZLAP ≤ ZLIP by using Lemma 2.8. Therefore, we can conclude
that ZLAP = ZLIP with respect to the randomized reduction.

The key idea to prove Theorem 1.3 is still to use the randomization framework
to sample automorphisms for a lattice L ∼= Z

n, such that they are uniformly dis-
tributed with respect to the conjugate action of Aut(L). However, the number
of conjugacy classes of Aut(L) is exponential in n, which makes direct appli-
cation of the randomization framework inefficient. To overcome this, we devise
a preprocessing method and a two-level randomization technique, which effec-
tively transform the automorphisms into some specific conjugacy classes, while
maintaining the uniformity. Then our problem turns to how to use these random
automorphisms to recover the shortest vectors of L. To solve this problem, we
consider the distribution of 〈x, φx〉 for a random automorphism φ uniformly dis-
tributed over a conjugacy class and a fixed x ∈ R

n. This distribution captures
the geometric information of the automorphisms, and we show that the shortest
vectors of L can be recovered from this distribution using the gradient descent
method.

Additionally, we can use the hardness of ZLAP to link ZLIP with the hidden
subgroup problem (HSP) on GLn(Z). To see this, let L be a lattice with a
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basis B. Then Aut(L) is isomorphic to the stabilizer group Stab(G), where
G = B�B. Hence, LAP of L is equivalent to finding a nontrivial element in
Stab(G) (see Lemma 2.9). Since Stab(G) is a subgroup of GLn(Z), we can
formulate a corresponding HSP on GLn(Z). By Theorem 1.3, we eventually
obtain the following result. The only previous relation between lattice problems
and HSP that we are aware of is due to Regev [47], who shows that HSP on the
dihedral group is harder than

√
n-uSVP.

Corollary 1.1. There exists an efficient randomized reduction from ZLIP to a
variant of HSP on GLn(Z).

1.2 Related Works

Reduction from ZSVP to Approximate SVP. In [9], Bennet et al. present
a reduction from ZSVP to γ-uSVP for any constant γ = O(1) using lattice
sparsification techniques [34,51]. They also propose a simple projection-based
reduction from ZSVP to

√
2-SVP, and suggest that this result may be extended

to a more general case. Our result in Theorem 1.2 provides a different perspective
on the reduction from ZSVP to approximate SVP, and includes the

√
2-SVP

result in [9] as a special case.

Graph Automorphism Problem (GAP). The GAP, which requires to find
a generating set of the automorphism group of a given graph,3 is a well-studied
problem that has a close connection to the GIP. It is known that GAP and GIP
are computationally equivalent [40]. Our result shows that ZLIP and ZLAP
are also equivalent in the sense of randomized reduction. For general lattices,
we further prove that LAP ≤ LIP (Corollary 4.2), while the reverse direction
remains open.

LIP for G-Lattices. In [33], Lenstra and Silverberg investigate the isomor-
phism problem between a G-lattice and Z〈G〉 = Z[G]/(u+1), where G is a finite
abelian group containing an element u of order 2. A G-lattice is defined as a
lattice L equipped with a homomorphism f : G → Aut(L) such that f(u) = −1.
The authors propose a deterministic polynomial time algorithm for solving the
isomorphism problem between a G-lattice and Z〈G〉. Our results on LAP can
be viewed as a Z

n-analogue of Lenstra and Silverberg’s result, but there are two
key differences. Firstly, Lenstra and Silverberg’s algorithm assumes the G-lattice
structure, whereas in our reduction we assume access to an oracle that returns an
arbitrary nontrivial automorphism. Secondly, they focus on deterministic algo-
rithms, where we employ a randomization framework that produces randomized
reductions.

3 This differs slightly from our definition of LAP, which only asks to find a nontrivial
automorphism. We remark that for ZLAP, finding a nontrivial automorphism and
finding a generating set of the automorphism group are equivalent by Theorem 1.3.
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1.3 Outline

The rest of the paper is organized as follows. Section 2 provides basic definitions
and preliminaries. In Sect. 3, we present the randomization framework and use it
to prove Theorem 1.1 and Theorem 1.2, along with some corollaries. In Sect. 4,
we show the proof of Theorem 1.3 and some corollaries. Section 5 concludes the
paper.

2 Preliminary

2.1 Notations

– Matrices and column vectors are denoted by bold letters, such as A and a.
For a matrix A = (a1, . . . ,an) we denote its Gram-Schmidt orthogonalisation
by Ã = (ã1, . . . , ãn). The Euclidean norm of a ∈ R

n is denoted by ‖a‖. The
transpose of A is denoted by A�, and (A−1)� is abbreviated as A−�.

– Let [n] = {1, 2, . . . , n} for a positive integer n. The size of a finite set A is
denoted by |A|. For a, b ∈ Z, a | b means that b is divisible by a.

– Let GLn(R) and GLn(Z) be the general linear group of rank n over R and
Z respectively. We use On(R) to represent the group of orthogonal matrices
O ∈ GLn(R) such that O�O = In, where In is the identity matrix.

– For a matrix B ∈ GLn(R), we denote L(B) as the lattice generated by B.
We denote the standard basis of Z

n as {ei}i∈[n]. We use L1
∼= L2 to represent

that two lattices L1 and L2 are isomorphic.
– We denote the group of permutation matrices of size n×n as Sn, and denote

the group of signed permutation matrices of size n×n as S±
n , where a signed

permutation matrix is a type of generalized permutation matrix, where the
nonzero entries are ±1. We use Pn to represent the permutation matrix(

0 1
In−1 0

)
. For two groups G and H, we use H ≤ G to represent H is a

subgroup of G.

2.2 Lattice and Related

A lattice L of rank n and dimension m is a set of points in R
m that can

be expressed as integer combinations of n linearly independent basis vectors
b1, ...,bn. Denote B = (b1, ...,bn) as the basis of the lattice L, and then
L = {Bz : z ∈ Z

n}. In the rest of this paper, we will consider only full-rank
lattices, where m = n and B ∈ GLn(R). The dual lattice of L is defined as
L∗ def= {u ∈ R

n : 〈u,v〉 ∈ Z for all v ∈ L}, and the dual basis of a lattice basis B
is defined as B∗ = B−�. Let λi(L) denote the i-th successive minimum of the
lattice L, and let bl(L) denote the minimum value of maxi∈[n] ‖bi‖ taken over
all bases of L. It is known that λn(L) ≤ bl(L) ≤

√
n
2 λn(L) [13].

For the lattice Z
n, a bound on the number of integer points contained in a

ball of radius r centered at the origin is established in [48].
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Lemma 2.1 [48]. Suppose r satisfies 1 ≤ r ≤ √
n and r2 ∈ Z, then it has

(
2n/r2

)r2

≤ |Zn ∩ rBn
2 | ≤ (

2e3n/r2
)r2

, (1)

where Bn
2 is the closed Euclidean unit ball. Then for r = O(1), it has

|Zn ∩ rBn
2 | ≤ nO(1).

Lattice Problems. In addition to SVP and CVP, the following approximate
lattice problem is also involved in our reduction.

Definition 2.1 (γ-SVP). Given a basis B of a lattice L as input, the γ-SVP
is to find a nonzero short vector in L of length at most γλ1(L). If L ∼= Z

n, we
call this problem γ-ZSVP.

γ-SVP has been extensively studied in the literature, see, e.g., [3,4,6,39,54].
The lemma below states the best-known result for γ-SVP with γ = O(1).

Lemma 2.2 [39]. For every constant ε > 0, there exists a constant γ = γ(ε) ≥ 1
depending only on ε such that there is a randomized algorithm that solves γ-SVP
on lattices of dimension n in 2(0.802+ε)npoly(n) time.

Gaussian Measure Over Lattices. Let ρs(y) = exp
(−π‖y‖2/s2

)
,y ∈ R

n, to
be the Gaussian function centered at origin with parameter s, then the discrete
Gaussian distribution with parameter s on a lattice L of rank n defined by

DL,s(y) = ρs(y)/ρs(L),y ∈ L. (2)

For a set A ⊆ L, we denote ρs(A) =
∑

x∈A ρs(x). The following results will be
used in our reduction.

Lemma 2.3 [28]. Let L be a lattice of dimension n with det(L) ≥ 1. Then
for any s ≥ bl(L), the probability that a set of

(
n2 + n(n + 20 log log(s

√
n))

log(s
√

n)) vectors chosen independently according to DL,s does not generate L
is 2−Ω(n).

In [24], Gentry et al. present an efficient approach that produces a sample
distribution that is statistically close to the DL,s for sufficiently large parame-
ter s. Furthermore, Brakerski et al. provide an algorithm that samples exactly
according to DL,s [12].

Lemma 2.4 [12]. Suppose L is a lattice of dimension n with a basis B. Then
there exists an efficient algorithm SampleD which inputs B and outputs a vector
from DL,s for any s ≥ √

ln(2n + 4)/π · maxi

∥
∥
∥b̃i

∥
∥
∥.

Lemma 2.5 (Chernoff-Hoeffding Bound [29]). Let X1, . . . , XM ∈ [0, 1] be
independent and identically distributed random variables. Then for s > 0 it has

Pr
[∣∣
∣M · E [Xi] −

∑
Xi

∣
∣
∣ ≥ sM

]
≤ 2e−Ms2/10. (3)
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2.3 Characteristic Vector of Unimodular Lattices

A lattice L is said to be unimodular if L = L∗. Equivalently, the Gram matrix
of B is unimodular, i.e., B�B ∈ GLn(Z), where B ∈ GLn(R) is a basis of L.
Clearly, any rotation of Z

n is unimodular. However, a lattice being unimodular
does not necessarily imply that it is isomorphic to Z

n, e.g., the unimodular
lattice E8 is not isomorphic to Z

8.

Definition 2.2 (Characteristic Vector). Suppose L is a unimodular lattice.
A vector w ∈ L is called a characteristic vector of L if it has 〈w,v〉 ≡ 〈v,v〉
mod 2 for all v ∈ L.

We denote the set of characteristic vectors as χ(L). For any unimodular
lattice L, the following properties hold for the characteristic vector, and their
proofs can be found in [41] and Appendix B.

Lemma 2.6. Assume B = (b1, ...,bn) is a basis of a unimodular lattice L and
B−� = (d1, ...,dn), then it has:

1) w =
∑n

i=1 ‖di‖2 bi is a characteristic vector of L.
2) χ(L) = w + 2L for any characteristic vector w ∈ χ(L).
3) w ∈ L is a characteristic vector if and only if 〈w,bi〉 ≡ 〈bi,bi〉 mod 2 for

i ∈ [n].

Lemma 2.6 indicates that for a given basis B, we can efficiently compute a
characteristic vector of L, as well as efficiently verify whether a given vector is a
characteristic vector. For a lattice L that is isomorphic to Z

n, the characteristic
vector has the following more particular properties.

Lemma 2.7. Suppose L ∼= Z
n. Assume B = OU is a basis of L, where O ∈

On(R) and U ∈ GLn(Zn). Then it has:

1) χ(L) = {Oz : z ∈ Z
n such that zi ≡ 1 mod 2,∀i ∈ [n]}.

2) The shortest characteristic vectors are exactly {Oz : zi = ±1,∀i ∈ [n]}.

The problem of finding the shortest characteristic vector plays a crucial role
in our reduction. We note that this problem is equivalent to the CVP in the
lattice 2L, with the target point being any characteristic vector w ∈ χ(L).

Definition 2.3 (Shortest Characteristic Vector Problem (SCVP)).
Given a basis B ∈ GLn(R) of a unimodular lattice L as input, SCVP is to
find a shortest characteristic vector w ∈ χ(L). In particular, if L ∼= Z

n, we call
this problem ZSCVP.
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2.4 Lattice Isomorphism and Automorphism

Two n-dimensional lattices L1 and L2 are said to be isomorphic if there exists
an orthogonal matrix O ∈ On(R) such that L2 = {Ov : v ∈ L1}. The auto-
morphism group Aut(L) of an n-dimensional lattice L consists of all orthogonal
matrices that preserve L, i.e.,

Aut(L) = {O ∈ On(R) : Ov ∈ L for all v ∈ L}. (4)

It is clear that Aut(L) contains the automorphisms ±In, which are called trivial
automorphisms of L.

Lemma 2.8 For any two isomorphic lattices L1 and L2, it has:

1) Aut(L1) ∼= Aut(L2). For any O ∈ On(R) such that L2 = OL1, the map
φ defined by φ(O1) = OO1O−1,∀O1 ∈ Aut(L1), is an isomorphism from
Aut(L1) to Aut(L2).

2) There is a one-to-one correspondence between Aut(L1) and the set all iso-
morphisms between L1 and L2. For any O ∈ On(R) such that L2 = OL1,
the map ψ defined by ψ(O1) = OO1,∀O1 ∈ Aut(L1), is a bijection between
Aut(L1) and the isomorphisms from L1 to L2.

For a lattice L with a basis B, Aut(L) is closely related to the stabilizer of
G = B�B. Particularly, for a positive definite n × n matrix G, the stabilizer of
G is a finite group defined by Stab(G) =

{
U ∈ GLn(Z) : U�GU = G

}
.

Lemma 2.9 Let L be a lattice with a basis B. Then it has Stab(B�B) ∼=
Aut(L), and the map φ defined by φ(U) = BUB−1,∀U ∈ Stab(B�B), is an
isomorphism from Stab(B�B) to Aut(L).

Proof. For any U ∈ Stab(B�B), it has (φ(U))�(φ(U)) = B−�U�(B�B)UB−1

= In and φ(U)B = BU. Thus it has φ(U) ∈ Aut(L). On the other hand, for
any O ∈ Aut(L), there exists a U′ ∈ GLn(Z) such that OB = BU′. Thus
B−1OB ∈ GLn(Z) and it can be easily verified that φ−1(O) ∈ Stab(B�B).
Besides, it is clear that φ defines a homomorphism, which completes the
proof. ��

A natural problem related to lattice automorphism is how to find a nontrivial
automorphism for a given lattice L, which is defined as follows.

Definition 2.4 (Lattice Automorphism Problem (LAP)). Given a basis
B of a lattice L, such that Aut(L) �= {±In}. The LAP is to find an automorphism
O ∈ Aut(L) such that O �= ±In. In particular, If L ∼= Z

n, we call this problem
ZLAP.

Automorphisms of Rotations of Z
n . It is known that Aut(Zn) = S±

n . Then
for any L ∼= Z

n, it has Aut(L) ∼= S±
n . Specifically, from Lemma 2.8 it has

Aut(L) = OS±
n O−1 for any isomorphism O such that L = OZ

n. Besides, sup-
pose w ∈ χ(L) is a shortest characteristic vector of L, then the set of shortest
characteristic vectors of L can be expressed as {Ow : O ∈ Aut(L)}.
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Besides, it is worth noting that finding a shortest vector of L ∼= Z
n directly

yields a non-trivial automorphism of L. Assume that we have a shortest vector
v ∈ L. Let L′ = πspan(v)⊥(L) ∼= Z

n−1, then L = vZ ⊕ L′. From this, we can
easily construct an O ∈ On(R) such that Ov = −v and Ox = x for all x ∈ L′.
Thus O ∈ Aut(L) and O �= ±In.

3 Randomized Reduction Framework for Rotations of Z
n

This section demonstrates how the randomization framework can be used to
obtain specific reductions for rotations in Z

n. In Sect. 3.1, we explain the random-
ization framework and discuss how it can be used to get a reduction from ZLIP to
ZSCVP. Then we prove the reduction from ZSVP to γ-ZSVP in Sect. 3.2. Addi-
tionally, Sect. 3.3 presents some other interesting results that can be obtained
using the randomization framework.

3.1 A Reduction from ZLIP to ZSCVP

Suppose that L ∼= Z
n and B is a basis of L. Given a ZSCVP oracle O, which takes

a lattice basis B as input and returns a shortest characteristic vector in χ(L).
We first show that the randomization framework enables us to sample uniformly
and independently from the set of shortest characteristic vectors of L. We then
prove that, with a polynomial number of such samples, we can effectively recover
the shortest vectors in L and thus solve the ZLIP.

The Randomization Step. To begin with, we establish the following lemma,
which states we can efficiently sample a basis according to some distribution,
such that the distribution is invariant under the action of Aut(L) on the input.
The primary technique used in this lemma is to sample a basis via a discrete
Gaussian distribution over L, which has been commonly utilized in existing
lattice literature. e.g., [9,14,19,28].

Lemma 3.1. There is an efficient algorithm that takes as input a basis B for
a lattice L and outputs a basis according to a distribution A(B), such that the
distribution A(B) is identical to A(OB) for any O ∈ Aut(L).

Proof. We assume that det(L) = 1. If this is not the case, we can consider
L/det(L)

1
n instead of L. To start with, we apply LLL algorithm to B and obtain

a reduced basis B′ = [b′
1, . . . ,b

′
n] of L such that ‖b′

i‖ ≤ 2n/2. Then using Lemma
2.4, we can efficiently sample p(n) vectors v1, . . . ,vp(n) according DL,s, where
s = 2n and p(n) is the number of vectors required in Lemma 2.3. We note that
the vectors v1, . . . ,vp(n) generate L with overwhelming probability by Lemma
2.3. Finally, we run LLL algorithm on v1, . . . ,vp(n) to get a basis B1 of L and
output it. Observe that applying Aut(L) to the input basis has no effect on the
distribution DL,s, and thus has no effect on the output distribution A(B). ��
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An intuitive explanation of Lemma 3.1 is that the input basis is ‘concealed’
within the output basis. This is a crucial point in our randomization framework.

Proposition 3.1 (Randomization). Given a ZSCVP oracle O, which takes
a lattice basis B̃ as input, subject to the condition that L(B̃) ∼= Z

n, and returns
a shortest characteristic vector in χ(L(B̃)). Then for a lattice L ∼= Z

n, we can
sample uniformly and independently from the set of shortest characteristic vec-
tors of L.

Proof. Let B be a basis of the lattice L. To start with, we sample an orthogonal
matrix O1 from On(R) uniformly at random. Here the term “uniform” refers
to the Haar measure, which ensures that the distribution of the matrix remains
unchanged when multiplied by any orthogonal matrix [15]. Please refer to the
discussion following this proof for the sampling method. Using Lemma 3.1 we
can obtain a basis B1 ← A(O1B) of the lattice L1 = O1L. Then we call the
ZSCVP oracle O, taking B1 as input to obtain a shortest characteristic vector
w1 ∈ χ(L1). Finally, we compute O−1

1 w1 ∈ χ(L).
We claim that O−1

1 w1 is uniformly distributed in the set of shortest charac-
teristic vectors of L. In other words, the probability

PrO1←On(R);B1←A(O1B)[O−1
1 O(B1) = w] (5)

is identical for any shortest characteristic vector w ∈ χ(L). Note that the set
of shortest characteristic vectors of L can be written as {Ow : O ∈ Aut(L)}.
Then it suffices to show that Pr[O−1

1 O(B1) = w] = Pr[O−1
1 O(B1) = Ow] for

any O ∈ Aut(L). Note that

PrO1←On(R);B1←A(O1B)[O−1
1 O(B1) = Ow]

= PrO1←On(R);B1←A(O1B)[(O1O)−1O(B1) = w]

= Pr(O1O)←On(R);B1←A(O1B)[(O1O)−1O(B1) = w]

= Pr(O1O)←On(R);B1←A(O1OB)[(O1O)−1O(B1) = w]

= PrO1←On(R);B1←A(O1B)[O−1
1 O(B1) = w].

The second equality follows from the property of Haar measure. The third
equality can be deduced from the fact that O1OB = (O1OO−1

1 )O1B and
O1OO−1

1 ∈ Aut(L1) using Lemma 3.1. The last equality is simply a substitu-
tion of the variable. Thus O−1

1 w1 is uniformly distributed in the set of shortest
characteristic vectors of L.

To establish the independence of O−1
1 w1 for each trial, we can consider the

joint distribution by leveraging the above method and taking into account that
the choice of O1 is independent. See the full version of the paper for a proof. ��

To carry out the randomization framework, it is necessary to generate a uni-
formly distributed random orthogonal matrix, i.e., with respect to the Haar mea-
sure. Random orthogonal matrices are important in various fields, such as mul-
tivariate analysis, directional statistics, and physical systems modeling. There
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have been numerous studies on efficiently generating random orthogonal matri-
ces. One method is to perform a QR decomposition on a matrix whose entries
are independently drawn from a standard normal distribution, with the result-
ing orthogonal matrix distributed according to the Haar measure [42]. Another
approach involves constructing a Householder reflection from a uniformly dis-
tributed unit vector of dimension n, and then applying it to an (n− 1)× (n− 1)
uniformly distributed orthogonal matrix [16,52].

Remark 1. It appears that we need to tackle the precision issue in our approach
because matrices over R are involved. Precision is a subtle issue for LIP because
orthogonal matrices often involve irrational numbers that cannot be represented
exactly. This issue has been explored in the literature on lattices, such as [9,
28]. In our paper, we follow their approach of ignoring the precision issue and
focus on the core aspects of reduction. We note that the precision issue is not
a critical concern in our reduction. As demonstrated in the recovery step, it is
possible to efficiently reconstruct the shortest vectors from their approximations.
Furthermore, the connection between the automorphism group and the stabilizer
group, as described in Lemma 2.9, allows us to transform our reductions using
the Gram matrix (as adopted in [18,19,21]). For a detailed discussion, please see
the full version of the paper.

The Recovery Step. In this step, we demonstrate how to recover the shortest
vectors in L from a polynomial number of shortest characteristic vectors in χ(L)
obtained in the previous step. Essentially, our task is to solve the following
problem.

Problem 3.1. Given a basis B of a lattice L ∼= Z
n, and w1,w2, . . . ,wpoly(n) ∈

χ(L) that are drawn uniformly and independently from the set of shortest char-
acteristic vectors of L. The goal is to find the shortest vectors of L.

Suppose that {v1, . . . ,vn} is a set of n linearly independent shortest vectors
of L, and denote O = (v1, . . . ,vn) ∈ On(R). Then by Lemma 2.7, the set of
shortest characteristic vectors of L can be expressed as {z1v1 + · · ·+ znvn : zi =
±1,∀i ∈ [n]}. Define the function

Mk(x) = E[〈w,x〉k], x ∈ R
n, (6)

where k ∈ Z
+, and w is uniformly distributed over the set of shortest characteris-

tic vectors of L. From Chernoff-Hoeffding bound, we can effectively approximate
Mk(x) by making use of a polynomials number of shortest characteristic vector
as provided in Problem 3.1. As the set of shortest characteristic vectors is sym-
metric around the origin, it has Mk(x) = 0 for any odd k. On the other hand, a
straightforward calculation shows that

M4(x) = 3 ‖x‖4 − 2
n∑

i=1

〈vi,x〉4 (7)
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Next, we focus on the x that is on the unit sphere and define

f(x) = −1
2
(M4(x) − 3) =

n∑

i=1

〈vi,x〉4. (8)

Then the following lemma is clear.

Lemma 3.2. The global maximum of f(x) over the unit sphere is attained at
{±v1, . . . ,±vn}, which is exactly the set of shortest vectors of L.

Lemma 3.2 allows us to convert Problem 3.1 into the problem of maximizing
f(x) over the unit sphere. One widely-used approach to solve this problem is via
gradient descent as that adopted in [43]. Taking into account the approximation
error of Mk(x), we present Algorithm 1 as a solution to Problem 3.1, as well as
an analysis of the algorithm in Proposition 3.2.

Algorithm 1: Solve Problem 3.1 via Gradient Descent.
Require: A polynomial number of samples uniformly distributed over the

shortest characteristic vectors of a lattice L ∼= Z
n

Ensure: An approximation a shortest vector of L
1: Choose x uniformly at random from the unit sphere of R

n

2: Compute an approximation of the gradient ∇f(x)
3: xnew ← ∇f(x)
4: xnew ← xnew/ ‖xnew‖
5: Compute the approximations of f(xnew) and f(x)
6: if f(xnew) ≤ f(x) then
7: return x
8: else
9: Replace x by xnew and go to step 2

10: end if

In step 2 of Algorithm 1, we need to approximate the gradient ∇f(x),
which can be done via two methods. The first method involves using
the equations ∇M4(x) = E[∇(〈w,x〉4)] = 4E[〈w,x〉3w], and ∇f(x) =
− 1

2 (∇M4(x) − 12x). Alternatively, the second method involves approximat-
ing f(x + ty) =

∑n
i=1〈vi,x + ty〉4 for 0 ≤ t ≤ 4, and then computing∑n

i=1〈vi,x〉k〈vi,y〉4−k, 0 ≤ k ≤ 4, using linear algebra. Specifically, by set-
ting k = 3, we get

∑n
i=1〈vi,x〉3〈vi,y〉 = 〈∑n

i=1〈vi,x〉3vi,y〉, and by letting
y run over the standard basis ei, i ∈ [n], we can obtain an approximation of
∇f(x) = 4

∑n
i=1〈vi,x〉3vi.

Proposition 3.2. Suppose that L ∼= Z
n. For any c0 > 0, there exists a constant

c1 > 0 such that Algorithm 1 inputs nc1 samples that are independently and
uniformly distributed over the shortest characteristic vectors of L, and outputs
a vector x such that ‖x − v‖ ≤ n−c0 for some shortest vector v ∈ L, with
O(log log n) descent steps and a constant probability. Moreover, O(n log n) calls
to Algorithm 1 will find all shortest vectors of L with an overwhelming probability.
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Proof. We start by ignoring the approximation error and analyzing Algorithm 1.
In this proof, we use the coordinate representation of vectors under the orthog-
onal basis {vi}1≤i≤n, i.e., x = (x1, . . . , xn) ∈ R

n, where xi = 〈x,vi〉. Then
by

∇f(x) = 4
n∑

i=1

〈vi,x〉3vi, (9)

we can deduce that a single iteration transforms the the vector x = (x1, . . . , xn)
into α · (x3

1, . . . , x
3
n) for some normalization factor α. Thus after r iterations,

a vector (x1, . . . , xn) becomes a vector α · (x3r

1 , . . . , x3r

n ) for some normalization
factor α. We note that the original vector (x1, . . . , xn) is uniformly sampled from
the unit sphere. It can be proved that with some constant probability, there exits
a k ∈ [n] such that |xk| ≥ (1 + Ω(1/ log n))|xi|,∀i �= k [43]. For such a vector,
r = O(log log n) iterations are enough to increase this gap to more than nlog n,
which means that we have one coordinate very close to ±1, and all others are at
most n− log n in absolute value.

Next, we take into account the approximation error. By Chernoff-Hoeffding
bound, for any c > 0, there exits a c1 such that with overwhelming proba-
bility all gradients in r < poly(n) iterations have errors at most n−c in the
Euclidean norm. In one iteration, let x = (x1, . . . , xn) be such that |xk| ≥
(1 + Ω(1/ log n))|xi|,∀i �= k. Then clearly |xk| > n−1/2 since ‖x‖ = 1. Let
(y1, . . . , yn) = ∇f(x) and hence |yk| = 4|xk|3 > n−2.

Let (ỹ1, . . . , ỹn) be an approximation of ∇f(x). By our assumption on the
approximation ∇f(x), for each i, we have |ỹi − yi| ≤ n−c. Then, for any i �= k,
we have

|ỹk|
|ỹi| ≥ |yk| − n−c

|yi| + n−c
≥ |yk| (1 − n−(c−2))

|yi| + n−c
. (10)

Hence, if |yi| > n−(c−1), then |ỹk|
|ỹi| is at least (1 − O(1/n))(xk/xi)3. Otherwise,

|ỹk|
|ỹi| is at least Ω(nc−3). After r = O(log log n) steps, the gap xk/xi becomes
Ω(nc−3). Therefore, for any c0 > 0, we can choose c appropriately such that the
Euclidean distance between the output vector and one of ±vi’s is less than n−c0 .

Finally, from the Coupon Collector’s problem, O(n log n) calls to Algorithm
1 will find all shortest vectors of L with overwhelming probability. ��

Given approximations of the shortest vectors of L as in Proposition 3.1,
there is an effective way to recover the exact shortest vectors {vi}1≤i≤n from its
approximations {ṽi}1≤i≤n using a set of n linearly independent shortest char-
acteristic vectors. Specifically, let W = {w1, . . . ,wn} be a set of n linearly
independent shortest characteristic vectors, where wi = zi1v1 + . . . + zinvn

and zij = ±1, and suppose ṽi = vi + εi such that ‖εi‖ ≤ n−c. Observe that
〈wi, ṽj〉 = zij +

∑n
l=1 zil〈vl, εj〉, and 〈vl, εj〉 ≤ ‖vl‖ · ‖εj‖ ≤ n−c. It follows that

|〈wi, ṽj〉 − zij | ≤ n−(c−1) < 1
2 for c > 2, n > 2. Thus zij can be recovered by

just taking sign(〈wi, ṽj〉), and {vi}1≤i≤n can be exactly recovered consequently.



182 K. Jiang et al.

Proof of the Reduction. By combining the above two steps, we can conclude
the following reduction.

Theorem 3.1. There is an efficient randomized reduction from ZLIP to
ZSCVP.

Proof. The theorem is a direct result of Proposition 3.1 and Proposition 3.2. ��
For a unimodular lattice L, it has χ(L) = w + 2L for any characteristic

vector w ∈ χ(L) according to Lemma 2.6. Therefore, SCVP can be considered
as a CVP in the lattice 2L, with the target vector being w. Furthermore, for
L ∼= Z

n, the ZSCVP is a very special case of CVP. Lemma 2.6 tells us the target
w is completely dependent on the given basis and Lemma 2.7 tells us that the
distance between w and 2L is

√
n, and the deep holes of 2L are exactly χ(L).

Therefore, the ZSCVP can be viewed as a CVP in the lattice 2L, with a deep
hole as the target vector. We believe this is a non-trivial observation that could
aid in further study of ZLIP, as it is known that calculating or verifying a deep
hole for a lattice is a difficult problem in general [27].

3.2 A Reduction from ZSVP to γ-ZSVP

The randomization framework can be readily adapted to other oracles for rota-
tions of Z

n. In this subsection, we explore the approximate ZSVP and establish
the following reduction.

Theorem 3.2. There is an efficient randomized reduction from ZSVP to γ-
ZSVP for any constant γ = O(1).

Proof. Suppose that L ∼= Z
n. Denote A = L ∩ γBn

2 , then by Lemma 2.1 it
has |A| = |Zn ∩ γBn

2 | ≤ nc for some constant c. Consider the action of Aut(L)
on A. Write A = ∪v∈ĀAv to be the disjoint union of distinct orbits, where
Av = {Ov : O ∈ Aut(L)} and Ā is a set of representative vectors with respect
to the action of Aut(L) on A.

Using the randomization framework, we can invoke the γ-ZSVP oracle m =
poly(n) times, with m > nc, yielding a vector set X = {x1, . . . ,xm} ⊆ A. Then
through a deduction similar to Proposition 3.1, it can be shown that, if X ∩ Av

is nonempty, the vectors in X ∩Av are independently and uniformly distributed
over Av. Since m > nc ≥ |Ā|, there must exist two xi and xj fall in a same orbit
Av. We claim that the probability that xi −xj is a multiple of a shortest vector
of L, (i.e., xi−xj

‖xi−xj‖ is a shortest vector), is at least 1/|Av| ≥ 1/nc. To prove
the claim, suppose that v1, . . . ,vn are n linearly independent shortest vectors
of L, and write xi = xi,1v1 + · · ·+xi,nvn. Without loss of generality, we assume
xi,1 �= 0. It is evident that xi,1(−v1)+xi,2v2+ · · ·+xi,nvn ∈ Av. Moreover, with
probability 1/|Av|, it has xj = xi,1(−v1) + xi,2v2 + · · · + xi,nvn for a randomly
chosen xj from Av. Thus xi − xj = 2xi,1v1, which is a multiple of the shortest
vector v1.
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Then we compute xi − xj for all i, j ∈ [m], and check if it is a multiple
of a shortest vector. This step requires at most m2 checks. Finally, repeating
the whole process O(nc+1) times, we can get a shortest vector in L with an
overwhelming probability. ��

Using the fastest known algorithm for O(1)-SVP as stated in Lemma 2.2,
we can obtain a 20.802n-time algorithm for the ZSVP. It is worth noting that
γ-ZSVP is a special case of γ-SVP, so there is potential for a better algorithm for
the ZSVP problem if we can develop a more specialized algorithm for γ-ZSVP.
However, further research is needed to establish such an algorithm.

The approach used in Theorem 3.2 can be extended to handle general values
of γ, but the resulting reduction may not have a guaranteed polynomial-time
complexity. Specifically, denote (γ, n) = |Ā| and ξ(γ, n) = maxv∈Ā |Av|. Let
TZSVP(γ, n) be the run time of an algorithm for γ-ZSVP on lattices of dimension
n.

Corollary 3.1. There is a randomized algorithm that solves ZSVP on lattices
of dimension n in ξ(γ, n) · ((γ, n) · TZSVP(γ, n) + (γ, n)2) · poly(n) time.

3.3 Other Corollaries from the Randomization Framework

Another advantage of the randomization framework is the suitability for using
fixed-dimensional oracles, which makes it useful for fixed-dimensional reduction.
As a simple example, we demonstrate how to use the randomization framework
to establish a reduction from ZLIP to ZSVP for a fixed dimension in the fol-
lowing corollary. Note that without the fixed dimension restriction, a reduction
from ZLIP to ZSVP can be established by employing the projecting method [9].
Specifically, suppose that L ∼= Z

n. We call an n-dimensional ZSVP oracle to
obtain a shortest vector v1 ∈ L, from which we can efficiently obtain a basis for
the (n−1)-dimensional sublattice L1 ⊆ L that is orthogonal to v1. Then we call
an (n − 1)-dimensional ZSVP oracle to obtain a shortest vector in L1, and then
we recursively find n linearly independent shortest vectors of L.

Corollary 3.2. There is an efficient randomized reduction from ZLIP to ZSVP
in the same dimension.

Proof. Suppose that L ∼= Z
n. Note that Aut(L) acts transitively on the set

of shortest vectors of L. By invoking the ZSVP oracle with the randomiza-
tion framework, we can obtain vectors that are independently and uniformly
distributed over the set of shortest vectors of L. Then we just need to sam-
ple O(n log n) shortest vectors to get a set of linearly independent ones, e.g.,
{v1, . . . ,vn}. This gives the matrix O = (v1, . . . ,vn) ∈ On(R) which is an iso-
morphism from L to Z

n. ��
It is worth noting that, like Corollary 3.1, the reductions in Theorem 3.1 and

Theorem 3.2 can also be modified to fixed-dimensional reductions. Another sim-
ple application of the randomization framework is demonstrated by the following
result.
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Corollary 3.3. In the sense of randomized reduction, the (n − 1)-dimensional
ZSVP is easier than the n-dimensional ZSVP.

Proof. Suppose that L ∼= Z
n−1. We first embed L into an n-dimensional lat-

tice L1
∼= Z

n by adding en to the basis of L. Then we invoke the n-dimensional
ZSVP oracle using the randomization framework to obtain vectors that are inde-
pendently and uniformly distributed over the set of shortest vectors of L1. The
probability of such a vector falling into L is 1− 1

n . By invoking the n-dimensional
ZSVP oracle O(log n) times, we can obtain a shortest vector in L(B) with an
overwhelming probability. ��

4 A Reduction from ZLIP to ZLAP

This section focuses on the ZLAP, which involves finding a nontrivial automor-
phism in Aut(L) for a given lattice L ∼= Z

n (Definition 2.4). Although the effect
of ‘applying random automorphisms’ to the output of an oracle can be achieved
via the randomization framework, the ZLAP still seems difficult. In fact, we
can prove that the ZLAP is as hard as ZLIP. Note that ZLAP ≤ ZLIP follows
directly from Lemma 2.8. Therefore, in this section, we focus on the reduction
from ZLIP to ZLAP, which is achieved in two steps. The first step shows how
to efficiently sample automorphisms independently and uniformly from a special
conjugacy class by invoking the ZLAP oracle using the randomization framework
(Sect. 4.1). The second step demonstrates how to use these automorphisms to
recover the shortest vectors (Sect. 4.2). Besides, in Sect. 4.3 we introduce other
results related to ZLAP.

4.1 Random Sample from a Conjugacy Class

To begin with, we give a brief introduction to the conjugation of the automor-
phism group Aut(L) for any lattice L ∼= Z

n. For convenience, lowercase Greek
letters such as φ are used to represent automorphisms in Aut(L) throughout
this section. In Aut(L), two automorphisms φ1 and φ2 are conjugate if there
exists an automorphism φ ∈ Aut(L) such that φ1 = φφ2φ

−1, which is denoted
by φ1 ∼ φ2. Conjugation is an equivalence relation that divides Aut(L) into
disjoint conjugacy classes, which are denoted by Cφ = {φ1 ∈ Aut(L) : φ1 ∼ φ}.
For two lattices L1

∼= L2, from Lemma 2.8 it has Aut(L1) ∼= Aut(L2). This
implies that the isomorphisms between L1 and L2 induce a canonical bijection
between the conjugacy classes of L1 and those of L2, i.e., τ : Cφ → COφO−1 for
any φ ∈ Aut(L1) and any O ∈ On(R) such that L2 = OL1. Thus by an abuse of
notation, we also use φ1 ∼ φ2 to represent τ(Cφ1) = Cφ2 for any φ1 ∈ Aut(L1)
and φ2 ∈ Aut(L2).

For the lattice Z
n, it has Aut(Zn) = S±

n and we are particularly interested
in the conjugacy classes defined by the following types of matrices in S±

n .

– Ti,j,k = diag{( 0 1
1 0 ) , . . . , ( 0 1

1 0 ) ,−Ii, Ij}, where there are k ( 0 1
1 0 )’s on the diag-

onal such that 2k + i + j = n and i, j < n.
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– Tp,k = diag{Pp, . . . ,Pp, In−pk}, where there are k Pp’s on the diagonal and
p > 2 is an odd prime number. We remind that Pp =

(
0 1

Ip−1 0

)
.

– Tn = diag{( 0 −1
1 0

)
, . . . ,

(
0 −1
1 0

)}, where n is even.

The aim of this subsection is to prove the following statement, which claims
that we can efficiently sample automorphisms from one conjugacy class.

Proposition 4.1. Assume that n is odd and the lattice L ∼= Z
n. Given a ZLAP

oracle O for dimension n. Then there exists i, j, k such that we efficiently obtain
poly(n) samples φ1, φ2, . . . , φpoly(n) ∈ Aut(L) that are independently and uni-
formly distributed over the conjugacy class {φ ∈ Aut(L)|φ ∼ Ti,j,k}.

The main approach for proving the proposition is still utilizing the random-
ization framework to generate samples uniformly distributed over each conjugacy
class. However, due to the total number of conjugacy classes being exponential
in n, we can not effectively sample from one class as that in Theorem 3.2. To
address this, we modify the randomization procedure by preprocessing the out-
puts of the oracle to ensure that the resulting automorphisms belong to one of
the conjugacy classes corresponding to Ti,j,k, Tp,k or Tn. The number of these
types of conjugacy classes is a polynomial of n, allowing for efficient sampling
from one conjugacy class.

Preprocessing and Randomization. Firstly, we give an efficient preprocess-
ing algorithm that transforms the output of the oracle into specific conjugacy
classes.

Lemma 4.1 (Preprocessing). Suppose that L ∼= Z
n. Then there exists an

efficient algorithm P that takes a nontrivial automorphism φ ∈ Aut(L) as input
and returns an automorphism P(φ) ∈ Aut(L) falling into one of the conjugacy
classes corresponding to Ti,j,k, Tp,k, or Tn. Additionally, it can be efficiently
identified which conjugacy class P(φ) belongs to.

Proof. The algorithm begins by computing ord(φ) := min{i ∈ Z
+ : φi = In}. It

is clear that ord(φ) | |S±
n |. We note that ord(φ) can be computed in a polynomial

time of n, which is proved in Lemma 4.2. In the following, the algorithm processes
φ according to its order.

(1) ord(φ) is odd. Let p be the smallest odd prime factor of ord(φ).4 Then the
algorithm outputs P(φ) = φord(φ)/p. It can be deduced that P(φ) ∼ Tp,k,
where k = (n−d)/(p−1) and d is the dimension of the eigenspace associated
with the eigenvalue 1 of P(φ). The proof is given in Lemma 4.3.

(2) ord(φ) is even and φord(φ)/2 = −In. If 4 � ord(φ), it can be deduced that
ord(−φ) = ord(φ)/2 is odd. Thus, we can preprocess φ by multiplying it
with −In, which transforms it into the case of (1). If 4 | ord(φ), then the
algorithm outputs P(φ) = φord(φ)/4, and it can be deduced that P(φ) ∼ Tn.
The proof is given in Lemma 4.3.

4 Note that ord(φ) | |S±
n |, then each prime divisor of ord(φ) is no more than n.

Therefore p can be computed efficiently.
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(3) ord(φ) is even and φord(φ)/2 �= −In. The algorithm outputs P(φ) = φord(φ)/2.
Let V1 be the eigenspace associated with the eigenvalue 1 of P(φ), and let
d be the dimension of V1. Define L1 = V1 ∩ L. It can be deduced that
P(φ) ∼ Tn−d−k,d−k,k, where k = log2(det(L1)

2). The proof is given in
Lemma 4.3. ��

Lemma 4.2. Suppose that L ∼= Z
n. Then there is an efficient algorithm that

takes any φ ∈ Aut(L) as input and computes ord(φ).

Proof. Suppose that λφ(x) ∈ Z[x] is the characteristic polynomial of φ. Then
λφ(x) can be factorized into the product of integer irreducible polynomials using
LLL algorithm [38]. Since the eigenvalues of φ are roots of unity, it follows that
these irreducible polynomials are cyclotomic polynomials of degrees no more
than n. Next, we turn to determine the order of these cyclotomic polynomi-
als. For a cyclotomic polynomial Φm(x) of order m, its degree is the Euler’s
totient function ϕ(m). It is known that ϕ(m) ≥ √

m/2, then the orders of these
cyclotomic polynomials are no more than 2n2, and thus can be efficiently deter-
mined. Finally, ord(φ) is computed by just taking the least common multiple of
the orders of these cyclotomic polynomials. ��
Lemma 4.3. Suppose that ψ ∈ S±

n . Let V1 be the eigenspace associated with the
eigenvalue 1 of ψ, d = dim(V1), and let L1 = V1 ∩ Z

n. Then

– If ord(ψ) = p for a odd prime p, it has ψ ∼ Tp,k, where k = (n − d)/(p − 1).
– If ord(ψ) = 4 and ψ2 = −In, it has ψ ∼ Tn.
– If ord(ψ) = 2 and ψ �= −In, it has ψ ∼ Tn−d−k,d−k,k for det(L1) > 1, where

k = log2(det(L1)
2).

Proof. As ψ is a signed permutation, we focus on the action of ψ on the set of
vectors E = {±e1, . . . ,±en}.

If ord(ψ) = p for a odd prime p. For any ei ∈ E, it has either ψei = ei or
the vectors ei, ψei, . . . , ψ

p−1ei ∈ E are linearly independent. Thus ψ ∼ Tp,k. It
follows that d = dim(V1) = k + (n − pk), i.e., k = (n − d)/(p − 1).

If ord(ψ) = 4 and ψ2 = −In. For any ei ∈ E, there is a v ∈ E such that
v �= ±ei and ψei = v, ψv = −ei. It follows that ψ ∼ Tn.

If ord(ψ) = 2 and ψ �= −In. Then the vectors in E can be divided into three
categories. The first catergry consists of the v ∈ E such that ψv = v, and the
second catergry consists of the v ∈ E such that ψv = −v. The third catergry
contains all u,v ∈ E such that u �= v, ψu = v and ψv = u. It follows that
ψ ∼ Ti,j,k. Since ψ �= ±In, it has i, j < n. Moreover, observe that for Ti,j,k, a
basis of V1 is {e1+e2, e3+e4, . . . , e2k−1+e2k}∪{en−j+1, . . . , en}. Thus d = k+j

and det(L1) = 2
k
2 , which implies that k = log2(det(L1)

2), i = n − d − k and
j = d − k. ��

Next, we integrate the randomization framework (Proposition 3.1) and the
preprocessing technique (Lemma 4.1) to establish the following proposition.
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Lemma 4.4 (Randomization). Given a ZLAP oracle O, which takes a lattice
basis B̃ as input, subject to the condition that L(B̃) ∼= Z

n, and returns a nontriv-
ial automorphism in Aut(L(B̃)). Then for a lattice L ∼= Z

n, we can efficiently
sample automorphisms in Aut(L) such that they are uniformly and independently
distributed in each of the conjugacy classes corresponding to Ti,j,k, Tp,k, or Tn.

Proof. Let B be a basis of L. Similar to Proposition 3.1, we sample an orthogonal
matrix O1 from On(R) uniformly at random, and obtain a basis B1 ← A(O1B)
of the lattice L1 = O1L. Then we call the ZLAP oracle, taking B1 as input
to obtain a nontrivial automorphism φ1 ∈ Aut(L1). Applying the preprocessing
technique in Lemma 4.1 to φ1, we obtain an automorphism ψ1 ∈ Aut(L1) in
one of the conjugacy classes corresponding to Ti,j,k, Tp,k, or Tn. Finally, we
compute O−1

1 ψ1O1 ∈ Aut(L).
Next we prove that for any conjugacy class Cφ0 , φ0 ∈ Aut(L), the probability

PrO1←On(R);B1←A(O1B)[O−1
1 ψ1O1 = φ] (11)

is identical for each φ ∈ Cφ0 . Note that for each φ′ ∈ Aut(L), it has

PrO1←On(R);B1←A(O1B)[O−1
1 ψ1O1 = φ′φφ′−1]

= Pr(O1φ′)←On(R);B1←A(O1B)[(O1φ
′)−1ψ1(O1φ

′) = φ]

= PrO1←On(R);B1←A(O1B)[O−1
1 ψ1O1 = φ].

Moreover, it is clear that O−1
1 ψ1O1 is in one of the conjugacy classes corre-

sponding to Ti,j,k, Tp,k, or Tn, which proves the uniformity. The independence
of each trial follows from the same reason as in Proposition 3.1. ��

Conversion to a Special Conjugacy Class. Observe that the total number of
conjugacy classes corresponding to Ti,j,k, Tp,k and Tn is O(n2). Then by Lemma
4.1 and Lemma 4.4, we can efficiently sample poly(n) automorphisms in Aut(L)
such that they are independently and uniformly distributed in a conjugacy class
corresponding to one of the Ti,j,k, Tp,k and Tn. In order to ease the analysis of
the shortest vector recovery, we further introduce a technique that transforms
the automorphisms into a conjugacy class that corresponds to Ti,j,k. For the
sake of simplicity, we will focus on the case where n is odd, which excludes Tn.
To begin with, we establish the following lemma.

Lemma 4.5. Assume that n is odd and L ∼= Z
n. Let φ ∈ Aut(L) be an auto-

morphism such that φ ∼ Tp,k, and let φ1 be an automorphism that is uniformly
distributed over Cφ. Then the probability that 2 | ord(φ1φ) and (φ1φ)ord(φ1φ)/2 �=
−In is at least 1/n4.

Proof. Suppose O ∈ On(R) is an isomorphism from Z
n to L such that φ =

OTp,kO−1. Then we can express φ1 as OSTp,kS−1O−1, where S is uniformly
distributed over S±

n . Therefore φ1φ = OSTp,kS−1Tp,kO−1. In the following, we
analyze the probability that STp,kS−1Tp,k contains a 2-cycle. There are two
cases.
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(1) p > 3 or k ≥ 2. In this case there exist four distinct integers i1, i2, i3, i4 ∈ [n]
such that Tp,kei1 = ei2 and Tp,kei3 = ei4 . We are interested in the
probability that STp,kS−1Tp,kei1 = ei3 and STp,kS−1Tp,kei3 = ei1 , i.e.,
(i1, i3) is a 2-cycle with respect to the action of STp,kS−1Tp,k. Note
that the above conditions can be written as Tp,k(S−1ei2) = S−1ei3 and
Tp,k(S−1ei4) = S−1ei1 . Since S is uniformly distributed over S±

n , it can be
deduced that the probability is as least 1

4 · kp(kp−3)
n4 ≥ 1

n4 .
(2) p = 3, k = 1. In this case we are interested on the probability that (1, 2) is a 2-

cycle with respect to the action of STp,kS−1Tp,k, i.e., STp,kS−1Tp,ke1 = e2
and STp,kS−1Tp,ke2 = e1. The conditions can be written as Tp,k(S−1e2) =
S−1e2 and Tp,k(S−1e3) = S−1e1. It can be deduced that the probability is
at least n−pk

n · 1
2 · pk

n2 > 1
n4 .

Observe that STp,kS−1Tp,k contains a 2-cycle implies that 2 | ord(φ1φ) and
(φ1φ)ord(φ1φ)/2 �= −In. Therefore we can conclude the lemma. ��

In the rest of this subsection, we give the proof of Proposition 4.1. Partic-
ularly, we present a two-level randomization technique for generating automor-
phisms that are uniformly and independently distributed over a conjugacy class
associated with Ti,j,k.

medskipProof of Proposition 4.1. To begin with, we randomly select O1 ∈
On(R) and create the lattice L1 = O1L (first-level randomization). Using Lemma
4.4, we can efficiently obtain poly(n) samples in φ1, . . . , φpoly(n) ∈ Aut(L1) that
are uniformly and independently distributed in one of the conjugacy classes cor-
responding to Ti,j,k or Tp,k (second-level randomization). Note that we exclude
Tn since n is odd. There are two cases.

(1) These poly(n) samples are in a conjugacy class corresponding to Ti,j,k. We
just apply O−1

1 φiO1 and obtain poly(n) samples in Aut(L).
(2) These poly(n) samples are in a conjugacy class corresponding to Tp,k. Using

Lemma 4.5, we can show that, with a probability of at least 1/n4, the
automorphisms φ2φ1, φ3φ1 . . . , φpoly(n)φ1 ∈ Aut(L1) satisfy the conditions
2 | ord(φiφ) and (φ1φ)ord(φiφ)/2 �= −In. By properly defining poly(n), we
can obtain such an automorphism φiφ with overwhelming probability. We
can then apply the preprocessing procedure (Lemma 4.1) to φiφ to get an
automorphism in a conjugacy class corresponding to Ti,j,k, resulting in a
desired random automorphism in Aut(L).

Then Proposition 4.1 can be proved by repeating the above procedure poly-
nomial times. ��

4.2 Recover the Shortest Vectors

Using Proposition 4.1, a reduction from ZLIP to ZLAP can be established by
solving the following problem, which can be viewed as an analogue of Problem
3.1.



Exploiting the Symmetry of Z
n 189

Problem 4.1. Given a basis B of a lattice L ∼= Z
n, and a set of automorphisms

φ1, φ2, . . . , φpoly(n) ∈ Aut(L) that are drawn uniformly and independently from
a conjugacy class Cφ0 , where φ0 ∼ Tk1,k2,l and k1, k2, l are fixed. The goal is to
find the shortest vectors of L.

Define the function

gk(x) = E[〈φx,x〉k],x ∈ R
n, (12)

where k ∈ Z
+ and φ is uniformly distributed over Cφ0 . Similar to the deduction

in Sect. 3, for any x ∈ R
n, gk(x) can be effectively approximated by using the

given samples in Cφ0 due to Chernoff bound. Suppose {v1, . . . ,vn} is a set of
independent shortest vectors of L. Then any x ∈ R

n can be expressed as a linear
combination x = x1v1 + · · · + xnvn, i.e., xi = 〈x,vi〉 for 1 ≤ i ≤ n. Then the
following lemma can be derived.

Lemma 4.6. For k = 1, 2, it has

g1(x) =
k2 − k1

n

n∑

i=1

xi
2 =

k2 − k1
n

‖x‖2

g2(x) =
n2 − 2nl − (k1 − k2)2 − 4l

n(n − 1)

n∑

i=1

xi
4 +

6l + (k1 − k2)2 − n

n(n − 1)
(

n∑

i=1

xi
2)2

Proof. We refer the proof to Appendix C. ��
On the other hand, note that

∇E[〈φx,x〉2] = E[∇〈φx,x〉2] = 2E[〈φx,x〉 · (φ + φ�)x]. (13)

Thus the gradient

∇g2(x) = 4
n∑

i=1

(
n2 − 2nl − (k1 − k2)2 − 4l

n(n − 1)
x3

i +
6l + (k1 − k2)2 − n

n(n − 1)
xi‖x‖2)vi

can be effectively approximated by using the given samples in Cφ0 .
Observe that n is odd and n = k1 + k2 + 2l, it follows that the coefficient

n2 − 2nl − (k1 − k2)2 − 4l = 4k1k2 + 2l(k1 + k2 − 2) �= 0. Again we can use the
gradient descent to solve Problem 4.1. Specifically, we assume that x is on the
unit sphere, and define

f2(x) = (g2(x)− 6l + (k1 − k2)2 − n

n(n − 1)
)/

n2 − 2nl − (k1 − k2)2 − 4l

n(n − 1)
=

n∑

i=1

〈vi,x〉4.

Then ∇f2(x) = 4
∑n

i=1 〈vi,x〉3vi can be computed from ∇g2(x)5, and clearly
the global maximum of f2(x) over the unit sphere is attained at {±v1, . . . ,±vn}.
Taking into account the approximation error, we present Algorithm 2 as a solu-
tion to Problem 4.1, and an analysis of the algorithm in Proposition 4.2.
5 The second method described in Sect. 3 can also be used to approximate the gradient

∇g2(x).
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Algorithm 2: Solve Problem 4.1 via Gradient Descent
Require: A polynomial number of samples in Aut(L) that are uniformly and

independently distributed over the conjugacy class Cφ0 , where k1, k2, l are
fixed and φ0 ∼ Tk1,k2,l

Ensure: An approximation a shortest vector of L
1: Choose x uniformly at random from the unit sphere of R

n

2: Compute an approximation of the gradient ∇f2(x)
3: xnew ← ∇f2(x)
4: xnew ← xnew/ ‖xnew‖
5: Compute the approximations of f2(xnew) and f2(x)
6: if f2(xnew) ≤ f2(x) then
7: return x
8: else
9: Replace x by xnew and go to step 2

10: end if

Proposition 4.2. Suppose that n is odd and L ∼= Z
n. For any c0 > 0, there

exists a constant c1 > 0 such that Algorithm 2 inputs nc1 samples that are inde-
pendently and uniformly distributed over a conjugacy class Cφ0 , where k1, k2, l
are fixed and φ0 ∼ Tk1,k2,l. And Algorithm 2 outputs a vector x such that
‖x − v‖ ≤ n−c0 for some shortest vector v ∈ L, with O(log log n) descent steps
and a constant probability. Moreover, O(n log n) calls to Algorithm 2 will find
all shortest vectors of L with an overwhelming probability.

Proof. The proof is similar to that of Proposition 3.2 and is omitted here. ��
Similar to Proposition 3.2, we can also recover the exact shortest vectors through
good enough approximations of the shortest vectors of L by using a set of random
automorphisms. The details can be found in Appendix D.

Combining Proposition 4.1 and Proposition 4.2, we can prove our main result
in this section.

Theorem 4.1. There is an efficient randomized reduction from ZLIP to ZLAP.

Proof. If the dimension n is odd, then the theorem follows directly from Propo-
sition 4.1 and Proposition 4.2. For even n, we utilize Corollary 3.3 to convert
the ZLIP into an n + 1 dimensional problem, which we can then solve using the
same approach. ��
Remark 2. It is worth mentioning that all reductions in this paper are dimension-
preserving, except for Theorem 4.1. In Theorem 4.1, the condition that n is odd
(required in Proposition 4.1 and Proposition 4.2) is primarily for ease of analysis
and is not a fundamental requirement. We believe that for even n, similar results
can be obtained through a more complex deduction process. However, we do not
provide a detailed analysis in this paper and leave it as future work.
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4.3 Related Corollaries of Lattice Automorphisms

To begin with, we show that the lattice automorphisms can be linked with the
hidden subgroup problem (HSP) on GLn(Z). HSP is a fundamental problem in
quantum computation that encompasses a variety of problems, including fac-
toring, discrete logarithm [49], principal ideal [22], graph isomorphism [35], and
unique shortest vector problem [47]. It is of great importance in the theory of
quantum computing as virtually all known quantum algorithms that run super-
polynomially faster than classical algorithms solve special cases of the HSP on
abelian groups such as those presented in [22,49], while the other problems cor-
respond to non-abelian groups. As far as we know, prior to this paper, there
were no known applications of the HSP on GLn(Z).

Definition 4.1 (HSP). Given a group G, a subgroup H ≤ G, and a set X.
Let f : G → X be a function that hides H, i.e., ∀g1, g2 ∈ G, f(g1) = f(g2) ⇔
g1H = g2H. The HSP is to find a generating set of H given the function f as
an oracle.

Typically G and X are required to be finite, allowing for a well-defined prob-
lem size and efficient solution strategies. Nevertheless, for certain special infinite
groups G and sets X, well-defined problems can still be formulated and solved
efficiently [36,37]. Additionally, the case where G is a continuous group is also
addressed in [22].

Corollary 4.1. There is an efficient randomized reduction from ZLIP to a vari-
ant of HSP on GLn(Z).

Proof. Given a basis B of lattice L ∼= Z
n. Let G = X = GLn(Z) and H =

Stab(B�B) ≤ G. Define f : G → X such that f(U) = U�B�BU,∀U ∈
GLn(Z). Then clearly f can be computed efficiently, and f hides H. By Lemma
2.9 there is a direct connection between H = Stab(B�B) and Aut(L), and thus
the statement follows directly from Theorem 4.1. ��

Another natural question is whether the randomization framework can be
applied in the reduction of general lattices. The following conclusions demon-
strate that it is still applicable to specific problems. However, we believe that
the randomization framework is better suited to lattices with high symmetry,
i.e., those with a large automorphism group.

Corollary 4.2. There is an efficient randomized reduction from LAP to LIP in
the same dimension.

Proof. Let L be an n dimensional lattice with a basis B. To begin with, we choose
a random O1 ∈ On(R). Using Lemma 3.1, we can obtain a basis B1 ← A(O1B).
Then we call the LIP oracle O with input B and B1, and get an isomorphism
O = O(B,B1) from L to L1. For any φ, φ0 ∈ Aut(L), it can be deduced that
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PrO1←On(R);B1←A(O1B)[O−1
1 O(B,B1) = φφ0]

= PrO1φ←On(R);B1←A(O1φB)[(O1φ)−1O(B,B1) = φ0]

= PrO1←On(R);B1←A(O1B)[O−1
1 O(B,B1) = φ0],

which implies that O−1
1 O(B,B1) is uniformly distributed in Aut(L). Thus if

Aut(L) �= {±In}, we can efficiently obtain a nontrivial automorphism from
Aut(L) with an overwhelming probability by repeating the above process O(n)
times. ��

5 Conclusion

We present a randomization framework for lattices that randomizes the output
of an oracle in such a way that the resulting samples conform to a distribution
that is invariant under the action of the automorphism group. Using this frame-
work, we derive three randomized reductions related to the rotation of Z

n: ZLIP
to ZSCVP, ZSVP to O(1)-ZSVP, and ZLIP to ZLAP. These results offer new
insights into the study of rotations of Z

n, and we believe they will pave the way
for further research into ZLIP and ZSVP.
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Appendix A Proof of the Toy Example

With respect to the oracle O, the rotated square is determined by the angle θ
between the line connecting its vertex on the first quadrant to the origin O and
the positive direction of the x-axis. Denoted the rotated square by �θ, θ ∈ [0, π

2 ).
Note we can regard θ as functional of ρ, and write θ[ρ] = θ[ρ + π

2 ]. We’ll show
that,

Prρ←G[ρ−1O(�θ[ρ]) = i] =
1
4
, ∀i ∈ Z/4Z.
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Proof. For any i ∈ Z/4Z, Prρ←G[ρ−1O(�θ[ρ]) = i] is a functional about ρ which
is a distribution on G = R/2πZ. Then we have

Prρ←G[ρ−1O(�θ[ρ]) = i] = Prρ←G[O(�θ[ρ]) = ρ(i)]

= Pr
ρ+ π

2 ←G
[O(�θ[ρ+π

2 ]) = (ρ +
π

2
)(i)]

= Pr
ρ+ π

2 ←G
[O(�θ[ρ]) = ρ(i + 1)]

= Pr
ρ←G

[O(�θ[ρ]) = ρ(i + 1)].

This means ∀i ∈ Z/4Z, Prρ←G[ρ−1O(�θ[ρ]) = i] = 1
4 . ��

Appendix B Proof of the Property of the Characteristic
Vectors

Lemma 2.6. Assume B = (b1, ...,bn) is a basis of L and B−� = (d1, ...,dn),
then it has:

1) w =
∑n

i=1 ‖di‖2 bi is a characteristic vector of L.
2) χ(L) = w + 2L for any characteristic vector w ∈ χ(L).
3) w is a characteristic vector if and only if 〈w,bi〉 ≡ 〈bi,bi〉 mod 2 for i ∈ [n].

Proof. 1) Let v =
∑n

i=1 vidi ∈ L(B), then 〈w,v〉 = 〈∑n
i=1 ‖di‖2 bi,

∑n
i=1 vidi〉

=
∑n

i=1 vi ‖di‖2 ≡ ∑n
i=1 v2

i ‖di‖2 ≡ 〈v,v〉 mod 2, we used vi ≡ v2
i mod 2.

Thus w is a characteristic vector.
2) Assume w is a characteristic vector of L, then for any x ∈ L, w+2x is also a

characteristic vector of L, because 〈w + 2x,v〉 = 〈w,v〉 + 2〈x,v〉 ≡ 〈w,v〉 ≡
〈v,v〉 mod 2. On the other hand, if w′ =

∑n
i=1 aibi ∈ χ(L), then ai =

〈w′,di〉 ≡ 〈di,di〉 = ‖di‖2 mod 2, thus for any i ∈ [n], ai ≡ ‖di‖2 mod 2
and we know w =

∑n
i=1 ‖di‖2 bi ∈ χ(L), thus w′ = w + 2L. Thus χ(L) is a

coset of w + 2L, where w is any element in χ(L).
3) Obviously, if w ∈ χ(L), ∀ i ∈ [n], 〈w,bi〉 ≡ 〈bi,bi〉 mod 2. On the other

hand, if w ∈ L satisfying ∀ i ∈ [n], 〈w,bi〉 ≡ 〈bi,bi〉 mod 2. Then for any
v =

∑n
i=1 vibi ∈ L, without loss of generality, assume vi ≡ 1 mod 2 for

1 ≤ i ≤ k, and vi ≡ 0 mod 2 for k + 1 ≤ i ≤ n. Thus we have 〈w,v〉 ≡
〈w,b1 + . . . + bk〉 ≡ ∑k

i=1〈w,bi〉 ≡ ∑k
i=1〈bi,bi〉 ≡ 〈v,v〉 mod 2. ��

Lemma 2.7. Suppose L ∼= Z
n. Assume B = OU is a basis of L, where O ∈ On(R)

and U ∈ GLn(Zn). Then it has:

1) χ(L) = {Oz : z ∈ Z
n such that zi ≡ 1 mod 2,∀i ∈ [n]}.

2) The shortest characteristic vectors are exactly {Oz : zi = ±1,∀i ∈ [n]}.

Proof. 1) Let O = (v1, . . . ,vn) and w = B(U−1z) = Oz, where z ∈ Z
n is

the vector that ∀i ∈ [n], zi = 1. Note that L = O · Z
n. Thus assume v =∑n

i=1 aivi, then 〈w,v〉 =
∑n

i=1 aizi ≡ ∑n
i=1 a2

i = 〈v,v〉 mod 2, where we
used a2

i ≡ ai mod 2 and zi ≡ 1 mod 2. Thus w ∈ χ(L), so χ(L) = {Oz : z ∈
Z

n such that zi ≡ 1 mod 2,∀i ∈ [n]}.
2) Note that O is an orthogonal matrix, thus the shortest characteristic vectors

are {Oz : zi = ±1, ∀ i ∈ [n]} by 1). ��
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Appendix C Proof of Lemma 4.6

Proof. Let D be the set of n×n diagonal matrices whose diagonal entries are ±1.
Then D forms a subgroup of S±

n , and S±
n is the semidirect product of D and Sn.6

For φ0 ∈ Aut(L) and φ0 ∼ Tk1,k2,l, let O ∈ On(R) such that L = OZ
n, then it

has Cφ0 = {OTTk1,k2,lT−1O−1 : T ∈ S±
n }. Denote y = O−1x = (x1, · · · , xn).7

For k = 1, it has

g1(x) = E[〈φx,x〉] =
1

|S±
n |

∑

T∈S±
n

〈OTTk1,k2,lT−1O−1x,x〉

=
1

|S±
n |

∑

P∈Sn

∑

D∈D
〈OPDTk1,k2,lD−1P−1O−1x,x〉

=
1

|S±
n |

∑

P∈Sn

∑

D∈D
〈DTk1,k2,lD−1P−1O−1x,P−1O−1x〉

=
1

|S±
n |

∑

P∈Sn

∑

D∈D
〈DTk1,k2,lD−1P−1y,P−1y〉.

Denote Wk1,k2,l = diag{02l,−Ik1 , Ik2}, where 02l is the 2l×2l zero matrix. Then
it has

∑
D∈D DTk1,k2,lD−1 = |D| · Wk1,k2,l, and thus

g1(x) =
|D|
|S±

n |
∑

P∈Sn

〈Wk1,k2,lP−1y,P−1y〉

=
1

|Sn|
∑

P∈Sn

(−(x2
P(2l+1) + · · · + x2

P(2l+k1)
) + (x2

P(2l+k1+1) + · · · + x2
P(n)))

=
−k1 + k2

n
(x2

1 + · · · + x2
n) =

k2 − k1
n

‖x‖2 ,

where P(i) represents the row number of the ‘1’ in P’s i-th column.
For k = 2, it has

g2(x) =
1

|S±
n |

∑

T∈S±
n

〈OTTk1,k2,lT−1O−1x,x〉2

=
1

|S±
n |

∑

P∈Sn

∑

D∈D
〈DTk1,k2,lD−1P−1O−1x,P−1O−1x〉2

=
1

|S±
n |

∑

P∈Sn

∑

D∈D
〈DTk1,k2,lD−1P−1y,P−1y〉2.

6 ‘Semidirect product’ means that S±
n = DSn, D ∩ Sn = {In} and D is a normal

subgroup of S±
n . This implies that for any T ∈ S±

n , there exist unique D ∈ D and
P ∈ Sn such that T = PD.

7 This is consistent with the notation xi = 〈x,vi〉 in Sect. 4.2.
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For fixed P ∈ Sn and D ∈ D, denote z = P−1y = (z1, · · · , zn) and D = D−1 =
diag{d1, · · · , dn}, where di = ±1. Then it has

DTk1,k2,lD−1z = (d1d2z2, d1d2z1, . . . , d2l−1d2lz2l, d2l−1d2lz2l−1,

− z2l+1, . . . ,−z2l+k1 , z2l+k1+1, . . . , zn),

and 〈DTk1,k2,lD−1z, z〉 =
∑l

i=1 2d2i−1d2iz2i−1z2i−
∑2l+k1

i=2l+1 z2i +
∑n

i=2l+k1+1 z2i .
It follows that

∑

D∈D
〈DTk1,k2,lD−1z, z〉2 = |D|

⎛

⎝4
l∑

i=1

z22i−1z
2
2i +

n∑

i=2l+1

z4i +
∑

2l+1≤i,j≤2l+k1

z2i z2j

−2
∑

2l+1≤i≤2l+k1
2l+k1+1≤j≤n

z2i z2j +
∑

2l+k1+1≤i,j≤n

z2i z2j

⎞

⎟
⎟
⎠ .

Observe that zi = xP(i) for 1 ≤ i ≤ n, then it can be deduced that

g2(x) =
1

|S±
n |

∑

P∈Sn

∑

D∈D
〈DTk1,k2,lD−1z, z〉2

=
4l + k1(k1 − 1) − 2k1k2 + k2(k2 − 1)

n(n − 1)

∑

1≤i,j≤n

x2
i x

2
j +

(n − 2l)
n

∑

1≤i≤n

x4
i

=
6l + (k1 − k2)2 − n

n(n − 1)

∑

1≤i,j≤n

x2
i x

2
j +

(n − 2l)
n

∑

1≤i≤n

x4
i

=
n2 − 2nl − (k1 − k2)2 − 4l

n(n − 1)

n∑

i=1

xi
4 +

6l + (k1 − k2)2 − n

n(n − 1)
(

n∑

i=1

xi
2)2.

��

Appendix D Recover the Exact Shortest Vectors
in Proposition 4.2

In this appendix, we demonstrate how to recover the exact shortest vectors
by using good enough approximations of the shortest vectors of L and auto-
morphisms of Aut(L), thereby completing Proposition 4.2. In fact, this can be
reduced to the following problem.

Problem D.1. Suppose n is odd. Given a basis B of a lattice L ∼= Z
n, a poly-

nomial number of automorphisms φ1, φ2, . . . , φp(n) ∈ Aut(L) that are drawn uni-
formly and independently from a conjugacy class Cφ0 , where φ0 ∼ Tk1,k2,l and
k1, k2, l are fixed, and an approximation of a set of independent shortest vectors
vi, i.e., {ṽ1, . . . , ṽn} such that ṽi = vi + εi and ‖εi‖ ≤ n−c. The goal is to find
the shortest vectors of L, i.e., V = {v1, . . . ,vn}.
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Note that for any φ ∈ Cφ0 , it has φ = VSV−1, where S ∈ S±
n and S ∼ Tk1,k2,l

(i.e., ∃T ∈ S±
n such that S = TTk1,k2,lT−1), and φ acts on the set of shortest

vectors {±v1, . . . ,±vn}. Then for 1 ≤ i, j ≤ n, it has ‖φvi ± vj‖ = 0 or 2 and

|‖φṽi ± ṽj‖ − ‖φvi ± vj‖| ≤ ‖φεi ± εj‖ ≤ 2n−c. (14)

Thus, for any given φ ∈ Cφ0 , we can decide whether ‖φvi ± vj‖ = 0, and thus
exactly recover the corresponding matrix S ∈ S±

n .
Next, we demonstrate that, for the given automorphisms φ1, φ2, . . . , φp(n) ∈

Cφ0 and the corresponding matrices Si ∈ S±
n , 1 ≤ i ≤ p(n), such that φi =

VSiV−1, we can efficiently recover V. For φ,S ∈ R
n×n, define K(φ,S) :=

{X ∈ R
n×n : XSX−1 = φ}. Then clearly, K(φ,S) is an R-linear space, and

V ∈ K(φi,Si). Moreover,

K(φi,Si) = {X : XSiX−1 = VSiV−1}
= {X : (V−1X)Si(V−1X)−1 = Si}
= {VX : XSiX−1 = Si}
= V · {X : XSiX−1 = Si}
= V · K(Si,Si).

Therefore, V ∈ V · ⋂p(n)
i=1 K(Si,Si). Note that K(Si,Si) is a subgroup of S±

n .
Let Ti ∈ S±

n such that Si = TiTk1,k2,lT−1
i . Then it has

K(Si,Si) = {X : XSiX−1 = Si}
= {X : XTiTk1,k2,lT−1

i X−1 = TiTk1,k2,lT−1
i }

= {X : (T−1
i XTi)Tk1,k2,l(T−1

i XTi)−1 = Tk1,k2,l}
= TiK(Tk1,k2,l,Tk1,k2,l)T−1

i .

Since φi is drawn uniformly from the conjugacy class Cφ0 , then Si is distributed
uniformly in the conjugacy class CTk1,k2,l

. Then from the group action perspec-
tive, the coset TiK(Tk1,k2,l,Tk1,k2,l) is distributed uniformly in the left cosets
of Tk1,k2,l in S±

n . Equivalently, K(Si,Si) = TiK(Tk1,k2,l,Tk1,k2,l)T−1
i can be

viewed as a random subgroup of S±
n such that Ti is drawn uniformly at random

from S±
n . There are two cases for Tk1,k2,l.

Case 1. l = 0. In this case, it has k1, k2 > 0, and thus there exists 1 ≤
a �= b ≤ n such that Tk1,k2,lea = ea and Tk1,k2,leb = −eb (we recall that
{ea}a∈[n] is the standard basis). Thus, for an X ∈ K(Tk1,k2,l,Tk1,k2,l), we have
e�

a Xeb = −e�
a XTk1,k2,leb = −e�

a Tk1,k2,lXeb = −e�
a Xeb, i.e., e�

a Xeb = 0.
Similarly, it can be deduced that e�

b Xea = 0.
Therefore, for any Y ∈ K(Si,Si), we have T�

i YTi ∈ K(Tk1,k2,l,Tk1,k2,l).
It follows that (Tiea)�Y(Tieb) = (Tieb)�Y(Tiea) = 0. Note that Ti can
be viewed as drawn uniformly at random from S±

n , and S±
n acts transitively

on all the pairs {(±ea,±eb) : 1 ≤ a �= b ≤ n}. Thus, for a sufficiently large
polynomial p(n), it has e�

a Yeb = e�
b Yea = 0 for all 1 ≤ a �= b ≤ n and Y ∈
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⋂p(n)
i=1 K(Si,Si). In other words,

⋂p(n)
i=1 K(Si,Si) consists of all diagonal matrices

in R
n×n, i.e.,

⋂p(n)
i=1 K(φi,Si) = {V · diag{d1, . . . , dn} : di ∈ R}. Then V can be

reconstructed by first computing an R-linear basis of the space
⋂p(n)

i=1 K(φi,Si)
and then recovering each ±vi via vector normalization.

Case 2: l �= 0. In this case, it has k1 �= 0 (or k2 �= 0). Thus we have
Tk1,k2,le1 = e2, Tk1,k2,le2 = e1, and there exists 3 ≤ j ≤ n such that
Tk1,k2,lej = −ej (or Tk1,k2,lej = ej if k2 �= 0). Then, by a similar deduction as
in Case 1, we have e�

1 Xe1 = e�
2 Xe2, e�

1 Xe2 = e�
2 Xe1, and e�

1 Xej = −e�
2 Xej

(or e�
1 Xej = e�

2 Xej if k2 �= 0) for all j ∈ [n] and X ∈ K(Tk1,k2,l,Tk1,k2,l).
Again, due to the transitivity of the action of S±

n on {(±ea,±eb,±ec)}, we
can deduce that for a large enough polynomial p(n), it has e�

a Yea = e�
b Yeb,

e�
a Yeb = e�

b Yea, and e�
a Yec = −e�

b Yec, e�
a Yec = e�

b Yec for all 1 ≤ a �=
b �= c ≤ n and Y ∈ ⋂p(n)

i=1 K(Si,Si). In other words,
⋂p(n)

i=1 K(Si,Si) = {hIn :
h ∈ R}. Then V can be reconstructed by first computing a nonzero matrix in
⋂p(n)

i=1 K(φi,Si) and then performing normalization.
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Abstract. Whereas theoretical attacks on standardized cryptographic
primitives rarely lead to actual practical attacks, the situation is differ-
ent for side-channel attacks. Improvements in the performance of side-
channel attacks are of utmost importance.

In this paper, we propose a framework to be used in key-recovery
side-channel attacks on CCA-secure post-quantum encryption schemes.
The basic idea is to construct chosen ciphertext queries to a plaintext
checking oracle that collects information on a set of secret variables in
a single query. Then a large number of such queries is considered, each
related to a different set of secret variables, and they are modeled as a
low-density parity-check code (LDPC code). Secret variables are finally
determined through efficient iterative decoding methods, such as belief
propagation, using soft information. The utilization of LDPC codes offers
efficient decoding, source coding, and error correction benefits. It has
been demonstrated that this approach provides significant improvements
compared to previous work by reducing the required number of queries,
such as the number of traces in a power attack.

The framework is demonstrated and implemented in two different
cases. On one hand, we attack implementations of HQC in a timing
attack, lowering the number of required traces considerably compared to
attacks in previous work. On the other hand, we describe and implement
a full attack on a masked implementation of Kyber using power analy-
sis. Using the ChipWhisperer evaluation platform, our real-world attacks
recover the long-term secret key of a first-order masked implementation
of Kyber-768 with an average of only 12 power traces.
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1 Introduction

NIST [1] is running a standardization process (referred to as the NIST PQ
project) for post-quantum public-key cryptographic algorithms (PQC schemes),
which are supposed to be secure even against attacks from quantum comput-
ers. This is not the case for most public-key algorithms in use today [43]. The
project started in 2017 and just recently the first choices for standardization were
announced. The project is ongoing and round 4 will involve a further examina-
tion of additional schemes. All of the schemes in the NIST PQ project are based
on a variety of hard problems that are believed to be intractable for quantum
computers, and many of them can be categorized as either Public-key Encryption
(PKE) or Key Encapsulation Mechanisms (KEMs). These PKE/KEM schemes
are based on either the Learning with Errors (LWE) problem as introduced by
Regev [37] in 2005 or on code-based problems, initiated in [28].

Two such schemes will be considered in this paper. One is CRYSTALS-Kyber
[41], selected by NIST as the candidate for standardization for KEMs. The secu-
rity of Kyber is based on the Module LWE problem and has strong confidence
in its theoretical security, while also offering a good performance. The other
scheme is HQC [2], a code-based round 4 candidate. Other code-based round 4
candidates are BIKE [4] and Classic McEliece [3]. NIST has stated that one of
the schemes HQC or BIKE may be standardized.

LWE- or code-based PKE/KEMs are usually built to be secure against chosen
plaintext attacks (IND-CPA secure) and then transformed to be secure against
adaptive chosen ciphertext attacks (IND-CCA secure) by applying some CCA
conversion method, such as the Fujisaki-Okamoto (FO) transform. The FO trans-
form involves a re-encryption after decryption, which enables the detection of
invalid ciphertexts and correspondingly return failure. Invalid chosen ciphertexts
that are not proper encryptions of a message will almost always be rejected by
the decryption/decapsulation.

Side-Channel Attacks (SCA) were introduced by Kocher [27] and are a sep-
arate area of research today. For PQC schemes, it is a major concern and NIST
also in the later rounds encouraged more research on the security of PQC schemes
against side-channel cryptanalysis. In relation to this, there has been great
research interest in developing new side-channel attacks on all relevant NIST
candidates as well as studying efficient side-channel protection techniques.

There are many different approaches to SCA on PQC schemes. Following
previous work, we may roughly classify attacks into two main categories. The
first category includes attacks that require either a single trace or at least only a
few traces to perform key recovery or message recovery and targets very precise
leakages in an implementation. The second category includes attacks of a more
generic type, exploiting arbitrary leakages in the implementation of the algo-
rithm, but typically requiring the collection of many traces in the attack phase.
These more generic attacks are modeled by instantiating a side-channel oracle
for chosen ciphertexts. The oracle is explained in more detail in the following.
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1.1 Related Works

Key-recovery chosen-ciphertext side-channel attacks (KR-CCA-SCA) are attacks
where the adversary recovers the secret key in the scheme by using chosen cipher-
text calls to the decryption or decapsulation algorithm and getting measurement
data from some side-channel.

KR-CCA-SCA attacks on PQC encryption schemes are a well-established
research field, as evidenced by numerous publications [9,14,16–18,22,29,34,
36,40,42,47]. These attacks can be classified depending on where the infor-
mation leakages are detected. The first type of KR-CCA-SCAs [16,18,36]
exploits leakages from the two added procedures, the re-encryption and cipher-
text comparison, of the FO transform, since these two components in the FO
transform depend on the decrypted message vector. There are also KR-CCA-
SCAs [14,17,22,29,40] that exploit side-channel leakages from the CPA-secure
decryption, where parts of the decryption procedure will directly use the secret
key.

In [35], Ravi et al. classified side-channel-assisted CCA attacks on lattice-
based KEMs into three main categories, plaintext-checking (PC) oracle based
attacks [9,36], decryption-failure (DF) oracle based attacks [18], and full-domain
(FD) oracle based attacks [29,47]. The classification depends on what kind of
answer the oracle gives. In a DF oracle, the oracle answer is simply whether
the chosen ciphertext decodes/decrypts to a valid message or not. On the other
hand, a PC oracle and an FD oracle require message recovery before key recovery
can take place. In a PC oracle, the response of the oracle is whether the chosen
ciphertext results in a specific given message upon decryption. In an FD Oracle,
the oracle returns the full message that has been decrypted. As a result, in a
PC oracle based attack, it is possible to recover a maximum of one bit of secret
information from a single side-channel measurement; however, if the message is
of m-bit length (where m is 256 for Kyber), it is possible to recover m bits of
secret information with an FD oracle based attack.

Recently, Tanaka et al. in [44] and Rajendran et al. in [33] have independently
proposed a new type of oracle called multi-values PC oracle. This oracle can
extract 8–12 bits of information from a single decapsulation oracle call through
multi-class classification. The multi-values PC oracle can be considered as a
compromise between the PC oracle and the FD oracle, although it is still much
less efficient than the latter.

For general PQC schemes, Ueno et al. [45] have shown that all round-3 NIST
KEM candidates except for Classic McEliece are vulnerable to KR-CCA-SCAs.
However, it was later established in [40] that the attack detailed in [45] is only
applicable to earlier versions of the HQC proposal and not to the recent Reed-
Muller-Reed-Solomon (RMRS) version. Schamberger et al. in [40] and Goy et
al. in [14] very recently proposed new power side-channel attacks on the RMRS
version of the HQC scheme, but their attack only applied to power analysis with
leakages from the CPA decryption. In [16] a generic PC oracle based attack
on the RMRS version of the HQC scheme has been proposed, presented in the
format of timing attacks.
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One central problem in KR-CCA-SCAs is identifying a generic approach to
optimize the selection of chosen ciphertexts, in order to efficiently extract secret
keys from various types of oracles. The main obstacles arise from two primary
sources: (1) the inaccuracies that may occur in the construction of oracles and
(2) the non-uniform distribution from which secret symbols are generated. To
overcome these challenges, one may need to incorporate concepts from coding
theory, particularly in the areas of source coding and error correction. Several
early research efforts are made to address these challenges, as documented in [29,
32,42]. But the existing solutions are limited in scope, either because they are
restricted to a specific oracle or because they are applicable only to particular
types of side-channel leakages. Finally, there is ample room for improvement in
terms of attack efficiency.

1.2 Contributions

In this paper, we propose a framework named SCA-LDPC to improve the key-
recovery side-channel attacks on CCA-secure PQC encryption schemes. The
basic idea is to construct chosen ciphertext queries to an oracle that collects
information on a set of secret variables in a single query. Then a large number of
such queries are considered, each related to a different set of secret variables, and
they are modeled as a low-density parity-check code (LDPC code). The secret
variables are then determined through efficient iterative decoding methods, such
as belief propagation (BP), using soft information.

New Concepts. The concept of designing chosen-ciphertexts to gather side-
channel information in a linear parity check is novel. This approach has the
potential to provide both source coding and error correction simultaneously.
The reason for this is that the combination of multiple secret entries is typi-
cally more closely aligned with the uniform distribution, which allows for more
effective extraction of information from a single side-channel measurement. This
effect echoes the concept of source coding in information theory, leading us to
term it as the source coding gain throughout the paper. This gain can result
in a substantial improvement for proposals with extremely low entropy secret
symbols, as demonstrated for HQC, as well as a noticeable improvement for
lattice-based schemes. The error correction gain is realized through the utiliza-
tion of linear parity checks, which enable the utilization of correctly recovered
coefficients to rectify incorrect decisions. The implementation of these linear
checks in the form of an LDPC code was selected due to its efficient decoding
capabilities and its well-known near-optimal performance from an information-
theoretical perspective.

The new framework has significantly transformed the design philosophy
of prior methods for source coding and error correction, as documented
in [29,32,42]. The previously proposed methods aimed to achieve full key recov-
ery with higher accuracy by introducing additional measurements for each indi-
vidual secret symbol, thereby increasing the success rate of symbol recovery.
The new framework, however, proposes a novel approach by allowing for fewer
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measurements on the secret symbols, leading to a higher level of symbol-level
errors, which are subsequently corrected by the specially designed LDPC codes
through inter-symbol parity checks.

We emphasize that the framework is generic in nature and can be applied
to both code-based and lattice-based schemes, across adaptive and non-adaptive
attack models, and in a multitude of side-channel leakage scenarios, including
timing, cache-timing, power, and electromagnetic leakages. To demonstrate the
applicability of the framework, we have instantiated it in two relevant applica-
tions: an adaptive timing attack on an HQC implementation with PC oracles,
and a non-adaptive power attack on a Kyber implementation with FD oracles.
The choice of Kyber and HQC as the primary targets was motivated by their
significance, with Kyber being selected as the primary KEM/PKE algorithm for
standardization by NIST and HQC still being considered for standardization at
the end of round-4. In the full version of the paper [20], we extend our discussions
to include the methods of attacking Saber and FrodoKEM to further enhance
the generality of the framework.

New Results. We list the contributions of the paper in the following.

– We introduce a code design method in designing capacity-approaching LDPC
/QC-LDPC codes over binary and non-binary alphabets. Our method estab-
lishes a relationship between oracle calls and parity checks in the LDPC code,
leading to substantial improvements over previous methods in both noiseless
and noisy real-world scenarios. The prior improvement is primarily attributed
to source coding, while the latter improvement is the result of a combination
of source coding and error correction.

– We simulate the performance with different noise levels and characterize the
performance of the new approach through a simulation method. The simu-
lated gains are substantial. For example, when the oracle accuracy is 100%, as
is the case for the key misuse oracle or an oracle constructed from highly reli-
able side-channels such as cache-timing leaks on an Intel-SGX platform [25],
we can recover the secret key of hqc-128 with approximately 9,000 traces in
the PC oracle. Using the same oracle setting as the ideal oracle in [16], we have
achieved an improvement factor of 86.6, as we only need about 10,000 traces,
compared to the 866,000 traces reported in [16]. This significant improvement
is due to the fact that the HQC secret entries are sampled from a distribution
with extremely low entropy and the previously known methods (e.g., in [16])
ignore the potential source coding gain. In the scenario of perfect FD oracles,
the number of traces required to recover Kyber-768 is only 7, which meets the
Shannon lower bound.

– We perform actual attacks on two target algorithms, Kyber and HQC, in
real-world scenarios. The results of our study demonstrate a close alignment,
or even an improvement, of the real attack performance when compared to
the simulation results. The first attack is a full power analysis on a masked
implementation of Kyber-768. The attack was carried out using the Chip-
Whisperer framework on the open-source mkm4 library in [23] with the profil-
ing and attack phases performed on two distinct boards, both equipped with
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ARM-Cortex-M4 CPUs. In the real-world scenario, we obtained FD oracles
with varying accuracy levels based on their positions. The average accuracy
was estimated to be approximately 95%. The full secret key was success-
fully recovered with an average of 12 traces. In comparison, the simulation
required roughly 17 traces for the same oracle accuracy. The better perfor-
mance in the real-world scenario can be attributed to the availability of soft
information and the possibility of some secret symbols having a high accuracy
since they are related to a high-accuracy oracle, which in turn helps in the
correct decoding of other positions through the parity checks of the specially
designed LDPC codes.
The second attack is a full timing attack simulation on HQC, validated with
a real-world timing oracle. The real-life attack performance highly depends
on the targeted platform. On our laptop with an Intel Core i5 CPU, we can
achieve full key recovery against hqc-128 with 218 decapsulation calls.

– The software for attack and simulation is made open-source1.

It is important to note that, in accordance with previous research, our app-
roach focuses on recovering the entire secret vector through side-channel leak-
ages. The sample complexity can be reduced by performing additional post-
processing procedures, such as information set decoding and lattice reduction [8],
to recover a portion of the secret entries. The specific reduction in the number of
traces depends on the permissible amount of computation for post-processing.

Comparison with Previous Studies in [29,32,42]. In [32], Qin et al. presented an
efficient PC oracle based attack on lattice-based schemes by adaptively choosing
a new ciphertext for decryption based on the side-channel information obtained
from previous power/electromagnetic measurements. Their approach is similar
to the well-known Huffman coding method and can result in a source coding
gain. Shen et al. in [42] further extended this work by proposing a detection
coding method to identify incorrectly recovered positions and to send additional
measurements for those secret positions. Note that these studies are limited to
PC oracle based attacks on lattice-based schemes and operate in adaptive mode,
resulting in a more restrictive attack model and lower efficiency compared to
other attacks based on more powerful oracles. For example, when the oracle
accuracy is 95%, it was reported in [42] that 3874 traces are required to attack the
Kyber-512 scheme; in contrast, the new attack based on the FD oracle presented
in this paper only requires 12 traces in a real attack (or 17 traces in simulation)
to attack the Kyber-768 scheme. Furthermore, from a viewpoint of information
theory, LDPC codes are attractive due to their near-optimal performance. As a
result, they are expected to provide improved performance in scenarios where
the oracle accuracy is low, compared to the detection codes proposed in [42].

A relevant study [29] has proposed the extended Hamming coding method
to enhance the FD oracle based power attack on the masked Saber, a round-
3 NIST PQ KEM candidate, in the non-adaptive attack model. However, this
approach does not provide any source coding gain and its error correction is
1 https://github.com/atneit/SCA-LDPC.

https://github.com/atneit/SCA-LDPC
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limited to an inner-symbol style, resulting in a lack of inter-symbol connections
and a less potent error correction mechanism. A more detailed comparison of
our work with [29] can be found in Sect. 6.3.

Differences from SASCA. The new framework connects to soft-analytic side-
channel attacks (SASCAs) proposed by Veyrat-Charvillon et al. in [46] since
both employ iterative decoding. A coding-theoretical treatment on SASCA is
presented in [15]. SASCA has been employed for attacking lattice-based scenarios
by exploiting leakages from the number-theoretical transform (NTT) of secret
polynomials (e.g., in [22,31]).

While both attacks use iterative coding, the new SCA-LDPC attack differs
from SASCA in several ways. First, the applicability of SASCA extends to both
symmetric and asymmetric cryptography; in contrast, the SCA-LDPC attacks
fall into the category of PC oracle (and its variants) based KR-CCA-SCAs for
lattice-based and code-based systems, presenting unique advantages for these
types of systems. Our SCA-LDPC framework employs oracles, thereby being
capable of utilizing various types of leakages, including those related to timing
that are seldom explored in SASCA. SASCA, mainly used to extract information
from physical leakages, can offer an alternative means for generating oracles
in contrast to the template attack or the machine learning approaches. The
second primary distinction is that SASCA builds its code using pre-existing
connections formed by the intrinsic structure of the cipher or implementation,
whereas SCA-LDPC provides the attacker with greater flexibility in choosing
ciphertexts to create new parity check variables and establish new connections,
ultimately constructing a linear code with near-optimal decoding efficiency.

Relations to Concurrent and Subsequent Works. The new SCA-LDPC frame-
work is generic in the investigation of side-channel security for post-quantum
PKE/KEMs. Given the current relevance of this subject, numerous concurrent
and subsequent studies are emerging, such as [5,10,25]. We detail the connections
between these works in the full version of the paper [20].

1.3 Organization

The remaining parts of the paper are organized as follows. In Sect. 2, we present
the necessary background information. In Sect. 3, we present a general descrip-
tion of the new attacking framework. We apply the new attack ideas towards
Kyber and HQC, in Sect. 4 and Sect. 5, respectively. Then, we present the exten-
sive computer simulation results and real-world attacks in Sect. 6. We finally
conclude the paper and present future directions in Sect. 7.

2 Preliminaries

We present the necessary background in this section. We first provide the
employed notations and terminology in coding theory, followed by a descrip-
tion of the two KEM candidates, Kyber and HQC. Finally, we conclude this
section by outlining the threat model.
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2.1 Notations and Coding Terminology

Notation. For a finite set I, the symbol #{I} denotes the number of elements in
I. Let Fq be the finite field of size q, �x� the rounding function, and H, G, and K
three cryptographic hash functions. Let Rq be a polynomial ring Fq[x]/(x256+1).
The central binomial distribution Bμ outputs

∑μ
i=1(ai − bi), where ai and bi are

independently and uniformly randomly sampled from {0, 1}. The Bernoulli dis-
tribution Berη defines a random variable from {0, 1}, which is 1 with probability
η and 0 otherwise. The notation a $← U denotes that the entries in a are ran-
domly sampled from the distribution U, where a is a vector or polynomial. For
a set I, a $← I means that the entries in a are uniformly sampled from the set
I at random. For a vector or polynomial a, a[i] refers to the coefficient of a at
the index i. The Shannon’s binary entropy function of a random variable X is
defined as H(X) = −∑

x∈X Pr [X = x] log2 Pr [X = x] .

Linear Codes. The Hamming weight of a vector x is its number of non-zero ele-
ments, denoted by wH (x). We define an [n, k, d]q linear code C as a linear sub-
space over Fq of length n, dimension k, and minimum distance d. Here minimum
distance is defined as the minimum Hamming weight of its non-zero elements.
Since a linear code C is a subspace, we can define it as the image of a matrix
G, called a generator matrix. We can also define the code C as the kernel of a
matrix H ∈ F

(n−k)×n
q . Here H is called a parity-check matrix of C.

LDPC Codes. Low-density parity-check (LDPC) codes are linear codes with a
sparse parity-check matrix first introduced in [13]. LDPC codes can be consid-
ered sparse graph codes because they can be decoded efficiently using iterative
decoding (such as belief propagation [30]) on the Tanner graph, a bipartite graph
with edges corresponding to non-zero elements in the parity-check matrix H.

Concatenated Codes. Forney [11] in 1965 firstly proposed the concatenated code
construction approach of combining two simple codes called an inner code and
an outer code, respectively, to achieve good error-correcting capability with rea-
sonable decoding complexity. Let the inner code Cin : Ak → An, the outer
code Cout : BK → BN , and #{B} = #{A}k. The concatenated code is a code
Ccon : AkK → AnN . The key of the concatenated code construction method
is that the decoding can be done sequentially by passing first the inner code
decoder and then the outer code decoder. Typically in the inner code decod-
ing, one can use a maximum-likelihood decoding approach, while the outer code
allows efficient decoding in polynomial time (e.g. by employing an LDPC code).

2.2 Kyber

Kyber [41], the KEM version of the Cryptographic Suite for Algebraic Lattices
(CRYSTALS), is based on the module Learning with Errors (MLWE) problem
and has been solicited as the KEM/PKE standard in the NIST PQ project.
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Table 1. Parameter sets for Kyber [41]

nmod d q μ1 μ2 (du, dv)

Kyber-512 256 2 3329 3 2 (10,4)
Kyber-768 256 3 3329 2 2 (10,4)
Kyber-1024 256 4 3329 2 2 (11,5)

Kyber achieves the IND-CCA security through a tweaked Fujisaki-Okamoto
transform [12] transforming an IND-CPA-secure PKE Kyber.CPAPKE to
an IND-CCA-secure KEM Kyber.CCAKEM. The description algorithms of
Kyber.CPAPKE and Kyber.CCAKEM can be found in [41]. We include a sim-
plified description of these functions in the full version of paper [20].

In the following, we define the compression function and the decompression
function, i.e., Compq(x, d) and Decompq(x, d), respectively.

Definition 1. The Compression function is defined as: Zq → Z2d

Compq(x, d) =
⌈
2d

q
· x

⌋

(mod 2d). (1)

Definition 2. The Decompression function is defined as: Z2d → Zq

Decompq(x, d) =
⌈ q

2d
· x

⌋
. (2)

The compression and decompression function can be done coefficient-wise if
the input is a polynomial or a vector of polynomials x ∈ Rd

q . The procedure
KDF(·) denotes a key-derivation function.

The security parameter sets for the three versions of Kyber, Kyber-512, Kyber-
768, and Kyber-1024 are shown in Table 1. In Kyber q is a prime 3329. Let H0

be a negacyclic matrix from a vector h0, i.e. the first row is h0, subsequent rows
are cyclically shifted, when the value is moved from the last column to the first
one, it is multiplied by −1. Let d denote the rank of the module, set to be 2, 3,
and 4, respectively, for Kyber-512, Kyber-768, and Kyber-1024. When sampling
from central binomial distribution Bμ, Kyber also has two parameters (μ1, μ2),
set to be (3, 2) for Kyber-512 and (2, 2) for Kyber-768 and Kyber-1024.

2.3 HQC

HQC (Hamming Quasi-Cyclic) [2] is one of the main code-based IND-CCA-
secure KEMs in the NIST PQ project, which has advanced to the fourth round.
Its security is based on the hardness of decoding a random quasi-cyclic code in the
Hamming metric. In HQC, the base field is F2 and R2 denotes the polynomial
ring F2[x]/(xn − 1). The multiplication of two polynomials u,v ∈ R2 can be
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represented as a vector and a circulant matrix, induced from a vector in F
n
2 .

Given y = (y1, y2, . . . , yn) ∈ F
n
2 , its corresponding circulant matrix is defined as

rot(y) =

⎛

⎜
⎜
⎜
⎝

y1 yn · · · y2
y2 y1 · · · y3
...

...
. . .

...
yn yn−1 · · · y1

⎞

⎟
⎟
⎟
⎠

.

We can write the multiplication of uv as u·rot(v)T or v ·rot(u)T. The transpose
of the circulant matrix is the counterpart of the negacyclic matrix.

The detailed description of the IND-CPA-secure PKE version of HQC and the
IND-CCA-secure KEM version can be found in the HQC reference document [2].
We list them in the full version of paper [20]. The procedure KeyGen(·) randomly
generates two private vectors x,y ∈ R2 with a low Hamming weight w as the
private key. It also generates a random public vector h ∈ R2, computes s =
x+h ·y, and returns (h, s) as the public key. The scheme employs a linear code C
with a generator matrix G and generates noise e, r1, r2 ∈ R2 with low Hamming
weight in the encryption. The encryption function computes u = r1 +h · r2 and
v = mG + s · r2 + e and returns (u,v) as the ciphertext. In decryption, the
secret vector y is an input and it computes

v − u · y = mG+ s · r2 − u · y + e
︸ ︷︷ ︸

ê

. (3)

Since wH (ê) is small, the decryption function inputs v − u · y to the decoder of
C and can succeed with high probability.

The parameter sets of HQC are shown in Table 2. In the recent version pub-
lished in June 2021, HQC employs a concatenation of outer [n1, k1, n1−k1+1]256
Reed-Solomon (RS) codes and inner duplicated Reed-Muller (RM) codes built
from the first-order [128, 8, 64]2 Reed-Muller code. The encoding procedure first
encodes a message m ∈ F

8k1
2 to a codeword m̂ ∈ F

n1
28 of the employed short-

ened Reed-Solomon codes. It then maps each byte of m̂ to a codeword of the
first-order RM and repeats the RM codeword for 3 or 5 times depending on
the security level to obtain a duplicated RM codeword in F

n2
2 . In summary, we

employ a linear code mG ∈ F
n1n2
2 . The HQC proposal makes all computations

in the ambient space F
n
2 and truncates the remaining n − n1n2 useless bits.

The IND-CCA security of the KEM version of HQC is achieved by the
Hofheinz-Hövelmanns-Kiltz (HHK) transform [24].

2.4 Threat Model

We consider a side-channel-assisted chosen-ciphertext attack on a KEM’s
decapsulation algorithm, where the attacker selects ciphertexts and observes
specific side-channel data, such as timing [18], cache-timing [25], or
power/electromagnetic leakages [36], from the targeted device, which can be
a high-end CPU, low-end CPU (e.g., ARM cortex-M4), or hardware device.
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Table 2. The HQC parameter sets [2]. The inner code is the duplicated Reed-Muller
code defined by the first-order [128, 8, 64]2 Reed-Muller code.

Instance RS-S Duplicated RM
n1 k1 dRS Mult n2 dRM n1n2 n ω ωr = ωe

hqc-128 46 16 31 3 384 192 17 664 17 669 66 75

hqc-192 56 24 33 5 640 320 35 840 35 851 100 114

hqc-256 90 32 49 5 640 320 57 600 57 637 131 149

Specifically, we assume that a communication party Alice is using her device
for key establishment. An adversary called Mallory sends selected ciphertexts
to Alice to recover Alice’s long-term secret key. Alice runs the decapsulation
algorithm and Mallory will fail if the used KEM algorithm is IND-CCA secure.
However, the designed side-channel-assisted CCAs can make the attack success-
ful after a few such attempts, using the observed side-channel leakages.

This side-channel-assisted CCA attack model is well-established – it is stated
in [45] that all the NIST round-3 KEM candidates except for Classic McEliece
are vulnerable to such attacks exploring leakages from FO transform. The basic
idea is to construct a PC oracle outputting whether Dec(c′) ?= m, where c′ is
the chosen ciphertext and m is a message vector.

Finally, the attacker recovers the long-term secret keys based on the output of
the PC oracle. Since the PC oracle is generally built from measurements of side-
channel leakages, it cannot be 100% correct, in practice. We denote the accuracy
of the constructed PC oracle ρ, i.e., the oracle outputs the right decision with
probability ρ and the wrong one with probability 1 − ρ.

Note that we are discussing general methods for near-optimal CCA SCAs.
This new coding-theoretical approach for reduced sample (trace) complexity can
be applied in various side-channel attacks on various platforms, while the starting
oracle accuracy ρ can be different. A PC oracle with 100% correctness (ρ = 1)
can also be connected to a key misuse attack model, as described in [32].

Profiled Power/EM Attacks. Specific to power/EM attacks, we mainly consider
a profiled setting that the adversary has a similar but different device to perform
training activities. Though the adversary has no access to the secret key in the
targeted device, the secret key in the training device can be freely set. We can also
apply the new idea to non-profiled attacks that can build the required abstract
oracles online, but the sample complexity analysis will be different.

Comparison with the Adaptive Model in Power/EM Attacks. The studies [32,33,
42] proposed efficient adaptive KR-CCA-SCAs on lattice-based proposals. This
attack model allows the adversary to select a new chosen ciphertext based on
information obtained from previous power/EM traces, which can be employed for
source coding on secret coefficients. This approach can result in reduced sample
complexity close to the lower Huffman or Shannon bounds. However, this attack
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model is strong for many practical (say IoT) applications since the adversary
needs to have good connections with the device measuring the power/EM leak-
ages and good computation capability to instantly process the obtained traces.
We highlight that our new SCA-LDPC attack framework eliminates the require-
ment and offers source coding gain in a non-adaptive attack model.

3 The SCA-LDPC Attack Framework

This section presents a new idea of incorporating LDPC codes and soft informa-
tion to design chosen ciphertexts and improve previously established KR-CCA-
SCAs for CCA-secure post-quantum Key Encapsulation Mechanisms (KEMs)
and encryption schemes. We propose a novel technique to extract, from a single
side-channel measurement, information regarding a low-weight parity check of
the secret coefficients, as opposed to information regarding a single coefficient
in previous methods. The sparse system is then solved using iterative decoding
methods, such as belief propagation. This new approach enables the attainment
of both source coding benefits and error correction advantages. This is due to
the combination of several secret coefficients, which leads to a more uniform
extraction of information from a single trace. Additionally, the correct recov-
ery of coefficients facilitates the correction of erroneous decisions through spare
parity-check relations. The adoption of this new method significantly reduces
the number of necessary side-channel measurements. We call the new attack
strategy a framework as it is generic and can be applied to both code-based and
lattice-based schemes, in a multitude of side-channel leakage scenarios including
timing, cache-timing, power, and electromagnetic leakages.

We start this section by assuming the availability of a well-designed LDPC
code with specific dimensions and proceed to explain its utilization for improved
side-channel information extraction. We then in Sect. 3.2 present a simple
method for constructing such linear codes, the effectiveness of which will be
demonstrated through experiments in Sect. 6. In addition, we broaden the frame-
work by introducing a concatenated construction, where the LDPC codes are uti-
lized as the outer code. This construction is particularly efficient for lattice-based
schemes that feature a large alphabet size or for scenarios where the accuracy
of the oracle constructed from side-channel measurements is limited.

3.1 New Attack Idea

Given a good linear code with a sparse parity-check matrix Hr×n, there are
k = n − r secret positions to recover. In lattice-based and code-based KEM
proposals, the value k is usually divided into b blocks, each of which has the size
of k/b. We add the constraint that H should have the form of

H =
[
Hr×k| − Ir×r

]
.

Our goal is to recover the first k secret entries si. One parity-check equation, i.e.,
one row in the parity-check matrix H, will introduce one check variable ci for
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Fig. 1. The Tanner graph explanation.

i ∈ {k+1, . . . , k+r}. We can rewrite each parity-check equation as ci =
∑

j∈I sj

and the size of #{I} is small since the matrix H is of low density.
The secret entries si are typically generated according to a certain secret dis-

tribution. For example, in the lattice-based scheme Kyber, the secret entries are
generated from the central binomial distribution Bμ; in the code-based scheme
HQC, the secret vector is very sparse and each secret entry can be viewed as a
Bernoulli variable Berη, where η is a small positive number. The secret distribu-
tion can be utilized as the prior information for si. Moreover, additional informa-
tion can be obtained through the implementation of side-channel measurements
of si, which subsequently updates the relevant distribution. This approach is par-
ticularly beneficial in lattice-based scenarios. We then design new ciphertexts to
obtain side-channel leakages of sparse linear combination ci of sj for j ∈ I. The
side channel information could reveal an empirical probability of ci. The prob-
lem of recovering all si for i ∈ {1, . . . , k} is transformed into a coding problem
through a noisy discrete channel. Note that the design method for ciphertexts
that can reveal partial information of ci, is unique to each proposed scheme and
differs between lattice-based and code-based schemes. This ciphertext design is
one main technical challenge in the proposed attack framework.

Explanation. The attack idea is illustrated in Fig. 1. We assume that six secret
coefficients or variables si for 1 ≤ i ≤ 6 need to be recovered. For each si, we
can use the a priori distribution (e.g., in the HQC case), or we have more traces
or oracle calls to get a better knowledge of its distribution (e.g., in the Kyber
case). We show 4 parity checks in this example, and each check connects to a
new variable vi. From side-channel measurements or oracle calls, we got addi-
tional information about these variables. Thus, we could assign the correspond-
ing distribution to these variables and build a Tanner graph as in Fig. 1. With
this sparse bipartite Tanner graph, we perform iterative decoding to recover the
desired secret coefficients si for 1 ≤ i ≤ 6.

The Gain of Using LDPC Codes. It is essential to select a sparse graph code
that facilitates efficient decoding and renders the key recovery procedure com-
putationally feasible. Therefore, it is natural to examine LDPC codes that have
favorable characteristics from an information-theoretic point of view. We intro-
duce the variables ci, which are sparse linear combinations of the secret coeffi-
cients sj , thereby facilitating a more efficient extraction of information from a
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single side-channel measurement. This is due to the fact that the distribution of
ci is typically closer to a uniform distribution compared to the distribution of
si, resulting in substantial source coding gains, particularly in the case of HQC
and to a significant extent in Kyber. Further discussions regarding these source
coding gains will be presented in Sect. 6. Finally, LDPC codes can offer close to
optimal error correction performance, rendering the attack framework efficient
in terms of the number of side-channel measurements required, even when the
oracle constructed from side-channel leakages is highly inaccurate.

Example 1 (The source coding gain for hqc-128). In hqc-128, the length of y
is n = 17669 and the Hamming weight of y is wH (y) = 66. Hence, we can
approximate each position of y as a Bernoulli distribution Berη, where η ≈
0.0037. Assume that we have a perfect oracle to inform us of the value of one
position from one oracle call. If we try to recover a bit in y by one oracle call,
with Shannon’s binary entropy function, the obtained information is bounded by
0.0352 bit. If we xor 50 i.i.d. secret positions (as we did later in Sect. 6) and try
to recover the new random bit from one oracle call, then we can instead obtain
0.6255 bit of information. Thus, from an information-theoretical perspective, the
new framework is much more advantageous.

The Ciphertext Selection. If PC oracle variants can be developed to directly
reveal information about a single secret symbol (see [45] for example), the frame-
work can be utilized to extract information about linear combinations of mul-
tiple symbols. Therefore, the new attack framework can be applied to enhanc-
ing attacks on LWE/LWR-based schemes, NTRU-based schemes, and HQC-like
schemes.

In the case of LWE/LWR-based schemes and HQC-like schemes, the cipher-
texts are made up of two components, one of which is directly multiplied by the
secret key in decryption. Prior attack strategies select a single non-zero position
in this component (a matrix or a vector) to extract information about a single
secret symbol. We could instead select a small number of non-zero positions to
recover information about linear combinations. The specific implementations for
NTRU-based schemes are more intricate, necessitating further research.

3.2 Code Generation

It has been demonstrated in previous research [39] that random sparse linear
codes exhibit superior decoding performance and specific classes of Low-Density
Parity-Check (LDPC) codes, such as [38], can attain error-correction capabilities
that approach the Shannon capacity. In this work, we present a straightforward
code construction method that has shown remarkable results in our experiments.

We first borrow the concept of distance spectrum from [19].

Definition 3 (Distance Spectrum [19]). For a binary vector h ∈ F
n0
2 , we

define its distance spectrum D(h) as

D(h) = {d : 1 ≤ d ≤ 	n0/2�, d classified as existing in h},
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where “existing in h” means there are two ones in h with distance d or (n0 − d)
inbetween. A distance d can appear many times in the distance spectrum of a
given bit pattern h. We call this number the multiplicity of d.

In our new attack, we first generate QC-LDPC codes with mb blocks of the
parity-check matrix

Hini =

⎡

⎢
⎣

H11 · · · H1b

...
. . .

...
Hm1 · · · Hmb

⎤

⎥
⎦ ,

where Hij is the circulant matrix (or the negacyclic matrix in the q-ary case)
generated from a binary vector hij for 1 ≤ i ≤ m, 1 ≤ j ≤ b with a low Hamming
weight. We generate the vectors hij randomly with the constraint that only
distances of multiplicity 1 are allowed in its distance spectrum. This can be
done with high probability since the constructed LDPC codes are sparse. The
key point in the design is that a length-4 cycle occurs in the associated Tanner
graph if the multiplicity of a distance in the distance spectrum is larger than 2.
By avoiding such patterns in a block, we can avoid many length-4 cycles; such
attempts can improve the decoding performance as short cycles can substantially
hurt the decoding performance [39].

We select r rows of Hini (randomly or according to certain rules) to form a
sub-matrix H′ and append −Ir×r, where Ir×r is the identity matrix. Thus, the
parity-check matrix of the final generated code is

H =
[
H′

r×n0b| − Ir×r

]
(4)

Concatenated Code Construction. The LDPC codes generated from the above
simple approach can serve as the outer code in the concatenated construction.
The inner code can be any linear code such as a repetition code, the extended
Hamming codes, and a further concatenation of the extended Hamming codes
and repetition codes in [29]. Moreover, we can include a soft-input-soft-output
decoder (e.g., in [26]) to utilize the soft-information. Note that in the soft-
decoding procedure (e.g., the BP algorithm) of the outer code, only a distribution
of each secret coefficient random variable is required; we could thus employ a
code with an efficient maximum likelihood decoding procedure as the inner code
allowing an efficient calculation of the soft output of the coefficient distribution.

In summary, such concatenated code construction enhances decoding capa-
bility and also balances decoding complexity, as the decoding of both outer and
inner codes is efficient. This construction is particularly effective for lattice-based
proposals or when the side-channel oracle exhibits a low level of accuracy.

4 Application to Kyber

In this section, we outline the details of how the new SCA-LDPC framework
can be applied to Kyber. The attack is more effective for Kyber if we have
side-channel leakages for both si and cj . We demonstrate how to obtain these
leakages, construct inner codes for them, and apply the outer LDPC decoder.



218 Q. Guo et al.

4.1 Basic Key Recovery Attack

In the following, we explain the basic attack to obtain side-channel informa-
tion about secret coefficients si. We focus on Kyber-768 mostly because the
new protected implementation [23] that we target supports only this set of
parameters. For Kyber-768, the secret key is s = (s0, s1, s2), a ciphertext is a
pair (u′,v′). To decrypt a ciphertext, one computes m = Compq(v − sTu, 1),
where u = Decompq(u′, du) = (u0,u1,u2), v = Decompq(v′, dv). The com-
mon practice [36] is to choose a ciphertext that leads to m = (0, 0, . . . , 0) or
m = (1, 0, . . . , 0). In other words, all bits of the message are fixed to 0 except
the first one. This can be done, for example, by setting u0 = (ku, 0, . . . , 0),
u1 = u2 = 0 and v = (kv, 0, . . . , 0), where ku, kv are some numbers modulo q.
In this case, the message bits are subject to the following equation.

m[i] =

{
Compq(kv − ku · s0[0], 1), i = 0
Compq(ku · s0[i], 1), i ≥ 1

(5)

By choosing appropriate values for ku and kv, it is possible to force m[i] to
always be zero for i ≥ 1, while the value of m[0] depends on the first secret
coefficient s0[0]. Since secret coefficients for Kyber-768 are taken from the range
[−2, . . . , 2], some of the coefficients are encoded as 0, while others are encoded as
1. We can use several such ciphertexts with (possibly) different kv and/or ku to
get an inner code of longer length. This way, using an oracle that distinguishes
message (1, 0, . . . , 0) from (0, 0, . . . , 0), the attacker can get the distribution of a
secret coefficient closer to the real value the more ciphertexts he uses.

There are restrictions for the values ku and kv: (1) these values are taken from
the image of Decompq; (2) ku is chosen in a way such that Compq(ku ·s, 1) = 0
for any secret coefficient s (follows from Eq. (5)). Thus, one cannot use any
code; even though it is possible to encode each secret coefficient with only
�log2(5)� = 3 bits, for any fixed in-advance combination of 3 ciphertexts one
cannot fully determine an arbitrary secret coefficient even with perfect oracle.

One way to solve this problem [42] is to choose ciphertexts adaptively based
on the output of the oracle, but we take a different approach. Consider an FD
oracle based attack, i.e., assume that we have a set of oracles (Oi)i∈(0..n−1),
where n is the length of the message. Given a ciphertext, the oracle Oi says if
m[i] = 1 or not. Essentially, the attacker calls all of these oracles at once, giving
them the same ciphertext, this way he can get information about the whole
message to be decrypted, the scenario is the same as in [29]. The attacker can
create a ciphertext in the following way, set u0 = (ku, 0, . . . , 0), u1 = u2 = 0,
and v = (kv, kv, . . . , kv), then

m[i] = Compq(kv − ku · s0[i], 1), (6)

i.e., ith bit of the message depends on s0[i]. Thus, from one ciphertext the infor-
mation about the block of 256 coefficients s0 can be obtained. Since there is
no more restriction on m[i] = 0 for i ≥ 1, the amount of possible inner codes
increases greatly. Table 3 shows an inner code from three ciphertexts built from
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Table 3. Example of an inner code for the secret coefficients. Each value from the
range [−2, . . . , 2] is encoded with 3 bits (columns of the table), therefore, the secret
coefficient could be fully determined with just 3 oracle calls given that the oracle is
perfect.

(k′
u, k′

v) Secret coefficient
–2 –1 0 1 2

(630, 14) 0 1 0 1 1
(706, 6) 0 0 1 1 0
(706, 10) 0 1 1 0 0

(k′
u, k′

v) pairs, this code can be used to fully determine 256 secret coefficients
with perfect oracles. Note that to create an actual ciphertext (u′,v′) we need
a pair (k′

u, k′
v) that maps to (ku, kv) with coefficient-wise function Decompq.

The next block of secret coefficients s1 can be retrieved by setting u0 = 0,
u1 = (ku, 0, . . . , 0), u2 = 0 and so on. Note that the attacker could choose dif-
ferent values in v, this way different encodings can be used for different message
bits (although all those encodings should have the same ku) and this potentially
opens up the possibility of the adaptive attack. However, such an attack is more
complicated since the set of allowed encodings given the fixed ku is quite limited,
and the attacker has to choose the same ku for all 256 coefficients. We leave it
as a potential follow-up work and focus on the situation where for all message
bits there is a fixed in-advance encoding to be used.

The common approach in the literature is to use just an inner code for secret
coefficients (without outer code) that makes the probability of getting the wrong
coefficient to be very small (with real imperfect oracles), such that the probability
to get all secret coefficients correctly is close to 1. In our approach, however, we
use a shorter inner code that is not sufficient by itself, for example in our real
attack from Sect. 6.1 we encode each secret coefficient with only 2 bits and encode
the values −2 and 2 the same way, i.e., with only inner code it is impossible to
differentiate between these values.

How to Choose Inner Code. For the fixed in-advance code length � we want
to create an inner code C� that maximizes the information we get from the
oracles with accuracy ρ. We solve this problem by considering the entropy of
secret coefficients. Initially, each of them is distributed according to Bμ, whose
entropy is H(Bμ) ≈ 2.03, for μ = 2. Each value s ∈ Bμ is encoded as C�(s) –
a binary string of length �. Given an output string y of length � from an oracle
(note that y can be different from every C�(s), s ∈ Bμ), consider the probability
Pr [Bμ = s | y] for each s ∈ Bμ. As an example from Table 3, Pr [Bμ = 0 | 011] =
1 for the perfect oracle, but it is less than 1 for an oracle with ρ < 1 since we
could have reached this y from another coefficient.

To avoid ambiguity, we denote yρ as the output of the oracle with the
accuracy ρ. The conditional distribution Bμ|yρ can be naturally defined as
Pr [(Bμ|yρ) = s] = Pr [Bμ = s|yρ]. Now, the difference between the entropy val-
ues H(Bμ) − H(Bμ|yρ) shows how much information the output yρ gives. To
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assess how good the code is, we can compute the expectation of this information
as

I(C�) =
∑

yρ∈{0,1}�

(H(Bμ) − H(Bμ|yρ)) · Pr [Y = yρ] ,

where Y is a random variable that describes the output of an oracle with accuracy
ρ on a random secret coefficient. The probability of the specific oracle’s output
is computed as follows.

Pr [Y = yρ] =
∑

x∈supp(Bμ)

ρd(yρ,C�(x))(1 − ρ)�−d(yρ,C�(x))Pr [Bμ = x] ,

where d(·, ·) is the Hamming distance. To decode a received word yρ, one com-
putes conditional probability Bμ|yρ of secret coefficient, i.e. we use maximum-
likelihood decoding approach.

4.2 Improving the Attack Using LDPC

The basic attack allows us to compute the conditional distribution for each secret
coefficient using the inner code. Now, following our framework, we create an outer
LDPC code. For it to work, we also need a way to get information about parity
checks ci. Let us describe how to create a ciphertext corresponding to a parity
check. Consider an example: Let u1,u2 and v be as above, but u0 = ku + kux2,
then

sTu = ku

(
(s0[0] − s0[n − 2]) + (s0[1] − s0[n − 1])x + (s0[2] + s0[0])x2 + . . .

)
.

Looking at the first message bit

m[0] = Compq(kv − ku · (s0[0] − s0[n − 2]), 1)

and comparing it to Eq. (6), one can recover c0 ← s0[0]−s0[n−2] using a similar
approach as in recovering s0[0] with O0. However, c0 lies in the range [−4, . . . , 4],
therefore the recovery process is more complicated. However, we still use several
different ciphertexts to get an inner code for the check variables. In other words,
there are two inner codes: one for secret coefficients, and another one for check
variables. Each of them helps us to compute conditional distributions, which we
use with outer LDPC code.

Now, let us represent c0 as a vector h0 with values from {−1, 0, 1} such that
c0 = hT

0 (s0[0], . . . , s0[n − 1]). In general, if u0 = ku · ∑w
j=1 xij , then h0 is a

vector with w nonzero entries at the positions (−ij) mod n, where the entry is 1
if and only if ij = 0. Let H0 be a negacyclic matrix of the vector h0. With this
ciphertext, the ith message bit is connected to the ith row of H0(s0[0], . . . , s0[n−
1])T. Note that, unlike in Sect. 3.1, ci is the sum of secret coefficients, possibly
multiplied by −1. However, this does not significantly affect the result since
from the distribution of the coefficient it is trivial to obtain the distribution of
the negative coefficient and vice versa. Thus, we still call ci the sum of secret
coefficients.
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Let ur = ku · ∑w
j=1 xi

(r)
j , r ∈ {0, 1, 2}. Ciphertext (u,v) with the help of

oracles Oi reveals information about 256 parity checks. The parity-check matrix
of the outer LDPC code in this case is of the form

Hini =
[
H0|H1|H2

]
,

where Hj is the negacyclic matrix obtained from the vector connecting c0 and
sj . Due to the FD oracle, parity checks c1, . . . , cn−1 must be negacyclic shifts
of c0. We only demonstrated the parity-check matrix for the outer LDPC code
consisting of block of 256 checks, but there could be several such blocks. Note
that in general, the polynomials ur do not have to use the same w.

There are three main ways to increase the success probability of the attack.

1. Increase the length of the inner code for the secret coefficients. Querying
oracles as in Sect. 4.1 leads to a more accurate distribution for each coefficient.

2. Similarly, increase the length of the inner code for the check variables, i.e.,
fix the indexes i

(r)
j and use different (ku, kv).

3. Increase the number of check blocks. The resulting parity-check matrix of the
LDPC code Hini consists of 3 × m blocks of negacyclic matrices, where m is
the number of “unique” parity checks c0, cn, c2n, . . .

Creating the best inner code for the check variables that maximizes the
amount of information is a challenging task. An educated guess would be the
most accurate way to describe our approach to tackling this problem.

5 Application to HQC

In this section, we describe the detailed attack on HQC. OHQC denotes a general
side-channel-based PC oracle for HQC, referenced prior-art assumes timing leak-
age, but this is not required. We treat a key-misuse oracle as a chosen-ciphertext
side-channel oracle with 100% oracle accuracy.

5.1 Key-Recovery Attack with OHQC

In [16] the authors presented a plaintext checking (PC) oracle based on timing
information due to the use of rejection sampling. In this section, we describe
how the PC attack works and then explain how we can improve it by using our
new SCA-LDPC framework, which is based on coding theory.

Currently, HQC makes use of so-called rejection sampling in the CPA secure
encryption function [2,16]. The rejection sampling algorithm is used to construct
random vectors with a specific Hamming weight ω. It works by random sampling
of bit positions in the vector, and if some positions are sampled twice, they are
rejected. Straight-forwardly implemented, this algorithm leaks timing informa-
tion due to the inherently random number of rejections that occur. The HQC
implementations tested in [16] leak timing information mainly through the use of
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so-called “seedexpander” calls. The output of the seedexpander function is deter-
ministic pseudo-randomness given by an eXtendable Output Function (XOF).
The rejection sampling algorithm uses the seedexpander function to generate rel-
atively large blocks of randomness, at a time. The timing distribution, therefore,
is highly dependent on the number of seedexpander calls needed. The minimum
number of seedexpander calls occurs when there are no rejections in the rejection
sampling algorithm. In practice, we classify timing measurements based on the
number of additional seedexpander calls. They are each related to one of the
four2 distributions S0,S1,S2,S3, listed in increasing order of rarity.

Prior to the publication of the referenced work, it was believed that this
randomness was only dependent on values known to the attacker, in this case,
the plaintext m. The assumption then was that constant time implementation
was not needed for the rejection sampling algorithm. Certainly, it was shown
in [16] that this assumption is problematic. Although m is indeed known to the
attacker, the result of the implicitly carried out comparison m′ ?= m is not. Here
m′ = decode(c+ e′) and e′ is a extra noise supplied by the attacker.

The authors showed a key-recovery attack where, by using the timing infor-
mation due to rejection sampling, knowledge of m′ ?= m is leaked. The attack
required 866,000 so-called “idealized oracle” (Oideal

HQC) queries for the 128-bit secu-
rity setting. The idealized oracle assumes a noise-free environment where a single
timing measurement is sufficient to determine the membership of Sj (where j = 3
in [16]). Unfortunately, this is not sufficient for a 100% correct oracle, due to
reasons explained in the following paragraph.

What follows is a high-level summary of the referenced attack; A plaintext m
is selected according to some criteria useful for the distinguisher. In the case of
timing leakage, the distinguishing property is such that the selected m results
in the timing distribution S3, since it is the one most easily distinguished. The
probability of for any random m′, where m′ �= m, resulting in the same S3

timing distribution is low (0.58% per [16]). In other words, m′ ?= m can be
distinguished with a high, yet-not-complete, advantage.

A ciphertext c′ = (u,v) is crafted in the next step such that r1 is 1 ∈ R and
r2 and e is 0 ∈ R. By Eq. (3) this results in

v − u · y = mG+ s · r2 + e − (r1 + h · r2) · y = mG − r1 · y = mG − y (7)

which makes y the only remaining error for the decoder to correct. Note too
that by knowledge of −y = y it is a simple computation to find the rest of the
private key, since x = s−h ·y. Calculating x is quite unnecessary, however, since
it is not used in decapsulation.

Plainly, this crafted ciphertext is invalid and will be rejected in the ciphertext
comparison step of the decapsulation. However, a valid ciphertext is not required

2 Strictly, there is no upper bound, but the practical benefit of finding a value for S≥4

is not worth the exponential effort required [16].
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due to the timing leakage in the XOF via the non-constant time rejection sam-
pling algorithm. The reencryption step immediately preceding the comparison
derives the values of r1, r2 and e from the XOF seeded by m. The single bit
information m′ ?= m leaks prior to the ciphertext comparison step.

Hall et al. proposed in [21] a way to recover y; An additional error vector e′ is
added to c′. e′ is of just sufficient weight to cause a decoding failure (i.e. m′ �= m
is leaked). The basic attack then simply iterates through each bit 0 ≤ i ≤ N
of e′ not already flipped to find those positions that if flipped would result in a
decoding success. If this is the case for any value of i this indicates that the bit
was already flipped in y in the ciphertext.

However, this technique alone is not sufficient to provide decisions on all
bits in the ciphertext. The reason is twofold. First, unflipping a bit in the error
pattern given to the RMRS decoder does not guarantee a decoding success,
and secondly due to the possibility that both m′ and m result in the timing
distribution S3, even though m′ �= m. This is modeled by Oideal

HQC, the idealized
oracle from [16], which though noise-free, is not 100% correct.

The first problem is solved by using many different error patterns e′. The
second was solved by majority voting, i.e. by gathering three or more decisions
for every bit. Both of these solutions drive up the number of required oracle
calls, even in the ideal timing leakage setting. For the 128-bit security level, this
number adds up to 866,000 oracle calls [16].

5.2 New Improved Attack Using LDPC Codes

What follows is a description of the new attack listed in Fig. 2, a PC oracle OHQC

is assumed. Like in the original attack [16] we select a plaintext with good side-
channel detection properties (in the original case this is a timing property).

The next step is to construct a N × N regular cyclic LDPC parity-check
matrix Hini without cycles of length 4, with a good decoding performance. Hini
has a row-weight of W . This construction is detailed in Sect. 3.2, with (m =
1, b = 1). The first row of Hini is the vector hini.

We craft a special ciphertext c′ where r2 = 0, e = 0 and r1 = hini. Similarly
to the case given by Eq. (7) above, this results in

v − u · y = . . . = mG − r1 · y = mG − hiniy (8)

which makes the added noise that the decoder has to correct equal to hiniy. In
other words, each bit position i in c′ correspond to the result of a parity-check
equation over y, given by hini >> i (cyclic shift by i steps) due to the cyclic
nature of our LDPC code.

The Reed-Muller (RM) and Reed-Solomon (RS) concatenated (RMRS)
decoder, used in HQC, can be attacked in two stages. First we select (dRS −1)/2
outer RM blocks (each RM block decodes to one RS symbol) to flip in c′ (by
XOR with e′). This results in a state where if one more block is flipped it will
result in a decoding error in the RS decoder. A decoding failure such as that
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Fig. 2. HQC new attack algorithm. O0=repeat
HQC denotes a PC oracle which is repeated

as necessary (determined by empirical study) to achieve better than nominal error rate
in the case of decoding failure; decoding successes are never repeated. O1=repeat

HQC works
in a similar but opposite fashion.
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would be detected by OHQC. We randomly select another block which we denote
B.

The next stage is to find which bits IB
e′ to flip in the block B that results in

a decoding failure. We do this by flipping bits i ∈ IB
e′ such that e′[i] = 1 in block

B until a RM decoding failure occurs. This propagates as a failure symbol to
the RS decoder which is already on the brink of being overwhelmed. This results
in a state where c′ + e′ fails to decode due to too much additional noise in the
block B partition of e′.

An Aside on Oracle Accuracy. The LDPC code helps with recovery from bad
oracle decisions. However, the stateful nature of the new algorithm can cause cer-
tain poor oracle decisions to propagate and result in the algorithm ending up in
a bad state. Such errors occur naturally more often for less accurate oracles. We
compensate for these effects by introducing extra confirmation calls to those ora-
cle decisions which are most sensitive. These are denoted in Fig. 2 by Or=repeat

HQC ,
where r ∈ {0, 1} indicates which Oracle outputs are repeated for confirmation.
O0=repeat

HQC means decoding failures are confirmed but decoding successes are not.
The number of repeated oracle calls is determined by empirical study.

After finding an error pattern resulting in decoding failure, the next step is
to reduce the number of flipped bits, in block B. The goal is to find the minimal
pattern that still results in a decoding failure. We do this by unflipping each of
the flipped bits i ∈ IB

e′ in block B. This results in one of two cases:

1. If we get a decoding success we record it in IB
0 for later use, undo the flip

and then move on to select another bit i ∈ IB
e′ .

2. If we still get a decoding failure we try again with another flipped bit i ∈ IB
e′ .

Once we have run out of flipped bits in IB
e′ to check, we have achieved a

minimal bit pattern in IB
0 for block B that results in decoding failure. That

is, the set IB
0 contains those bits that result in a decoding success if any are

unflipped. Conversely, when flipped, they have been unambiguously shown to
increase the noise for the RMRS decoder. All bits in IB

0 can therefore reliably
be assumed to correspond to a satisfied parity check. So, for each bit i ∈ IB

0 we
construct3 our sub matrix H′ by the selection of row i of Hini.

Working from the minimal decoding failure pattern (e′[i] = 1∀ i ∈ IB
0 and

e′[i] = 0∀ i /∈ IB
0 ) for RM block B we can now flip bits that so far have been

left untouched (i /∈ IB
e′ ), one at a time. For each flip, if it results in a decoding

success, then we record it in IB
1 . Such a bit must mean that by flipping it we

reduce the noise that the RMRS decoder has to handle. Therefore, this bit can
be reliably assumed to correspond to an unsatisfied parity-check equation, or a
’1’ in the vector hiniy. When all bits have been tested we extend our sub matrix
H′ by the selection of all rows i ∈ IB

1 of Hini.
At this time in the algorithm, r number of parity-check equations have been

collected in H′. The remaining step is to construct parity-check matrix H =[
H′

r×n|Ir×r

]
and a message vector

3 or extend if this is not the first selected block/iteration of the algorithm.
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μ =
[
0n|0#{IB0

0 }|1#{IB0
1 } . . . |0#{IBt

0 }|1#{IBt

1 }
]

(9)

in such a way that we have n zeroes, each representing an unknown bit-value
of y to be recovered. The message is appended by the following redundancies: a
single 0 for each satisfied parity-check equation hitherto selected (i ∈ IB

0 ) and a
1 for each unsatisfied parity check (i ∈ IB

1 ). We do this for all t blocks B that
have so far been selected.

We try to decode the message μ and recover y from the first n bits. We
use H as input and a suitable decoder such as sum-product or the min-sum
approximation.

If the decoding is not successful we unflip all bits in block B and unflip all
other blocks. Then we restart the algorithm (using the same ciphertext) and
select another block. The old IB

0 and IB
1 are saved and re-used in the next

decoding attempt. We continue until successful.
In some cases (for less accurate oracles) one might still fail to decode even

after all outer RM blocks have been exhausted. In such cases, one can simply
save μ and H′ and continue extending them by restarting the algorithm.

6 Experiments

In this section, we show the results of simulations and real-world experiments
for Kyber and HQC.

6.1 Masked Kyber

Software Simulations. We introduce software simulations, where we fix the
accuracy ρ of each oracle Oi to be the same.

The attack improves as the weight of the rows in the parity matrix increases.
However, the decoding time increases exponentially with it. In the course of
experiments, we found that the value w = 2 works best, i.e., the parity-check
matrix consists of negacyclic matrices with row weight 2. For Kyber-768, this
means that each check variable is the sum of 6 secret coefficients.

The three main parameters of the attack are m0, m1 and m2, where m0

and m2 are the lengths of the inner code for the secret coefficients and the check
variables, resp., m1 is the number of blocks of check variables. Recall that Kyber-
768 has 3 blocks of 256 secret coefficients, and we assume that from one power
trace we get information about all 256 message bits. This means that we need
3m0 and m1 · m2 traces to get the distributions for secret coefficients and check
variables, respectively. The interested reader is referred to the full version of the
paper [20] for the actual codes used in the simulation and in the real attack.

We evaluate our methodology against the majority voting technique, a con-
ceptually simple coding approach that can be considered as a repetition code.
Majority voting is a typical approach to ensure that a single secret coefficient
can be recovered with high accuracy. This approach has been selected as the
baseline attack method due to its relevance as the most frequently used coding
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Table 4. Comparison with the majority voting for full-key recovery. t is the number
of votes cast, values in the brackets are m0, m1 and m2, resp.

ρ = 0.995 Number of traces Average number of errors

Majority Voting (t = 3) 27 (ref) 0.21/768

Our Method (2, 1, 4) 10 (−63%) 0.37/768

ρ = 0.95 Number of traces Average number of errors
Majority Voting (t = 7) 63 (ref) 0.47/768

Our Method (3, 4, 2) 17 (−73%) 0.16/768

ρ = 0.9 Number of traces Average number of errors
Majority Voting (t = 11) 99 (ref) 0.67/768

Our Method (4, 3, 4) 24 (−75.8%) 0.46/768

scheme for attacking Kyber in previous literature (e.g., in [42]). For majority
voting, we choose the code as in Table 3 and use t votes, i.e., the actual code is
repeated t times. We run 1000 tests and compute the average number of wrong
secret coefficients, the attack is considered successful if this number is less than
1. For our approach, we choose m0, m1, and m2 such that the total number of
traces is minimized and the average number of errors is close to majority voting.
We run 100 tests, and all tests are done with randomly generated secret keys.
The results for a wide range of accuracy levels are shown in Table 4.

Real-World Experiments. We conduct our experiments in the ChipWhis-
perer toolkit, including the ChipWhisperer-Lite board, the CW308 UFO board,
and the CW308T-STM32F4 target board with a 32-bit ARM Cortex-M4 CPU.
We target the mkm4 library4 in [23] implementing a first-order masked version of
Kyber. The library is compiled using the -O3 optimization level, which is typi-
cally harder to attack [29,42]. The target board is run at 24MHz, and the traces
are sampled at 24MHz.

We attacked the function masked_poly_tomsg in the first draft of the work
and it was the first power analysis attack on an open-source masked imple-
mentation of Kyber, as far as we know. Then we switched to the function
masked_poly_frommsg similarly to [10]. With this approach, real oracles from
side-channel leakages have better accuracy, leading to a lower amount of traces.

The function masked_poly_frommsg (shown in Fig. 3) maps each masked
polynomial coefficient to a corresponding message bit during decapsulation. In
one loop the function works on the message bits XORed with random bits; on
the other loop it works with these random bits themselves. Obtaining a power
trace for these two loops allows us to retrieve information about all message bits
and implement the FD oracles Oi.

The attack scenario is the same as in [29]. First, there is the profiling stage
during which, using the profiling device D1, we collect 100,000 power traces of
4 https://github.com/masked-kyber-m4/mkm4.

https://github.com/masked-kyber-m4/mkm4
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Fig. 3. The attacked function in Kyber.CPAPKE.Enc() (from [23])

Table 5. Accuracy of recovering particular bit for models. Device D1 is the profiling
device, and D2 is the device to be attacked.

Device ρ0 ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7

D1 0.9651 0.9986 0.9985 0.9985 0.9992 0.9995 1.0000 1.0000

D2 0.9390 0.9811 0.9923 0.9023 0.9654 0.8940 0.9404 0.9873

the function masked_poly_frommsg. It is done by generating a random message
which is encrypted using the device’s public key, the resulting ciphertext is passed
to the measured by the ChipWhisperer decapsulation function. Each byte of the
message is computed in the same way, and the power traces corresponding to
each byte are similar. Thus, we can train only 8 neural network models, one for
each bit of the byte. Models are trained for up to 100 epochs. The interested
reader is referred to the full version of the paper [20] for the architecture of the
model.

Each of the 8 models simulates the 32 oracles Oi+8j , j = 0, . . . , 31, with some
accuracy ρi. The oracle behaves like a binary symmetric channel with success
probability ρi, but the model provides soft values, which can be treated as the
probabilities of output being 1 or 0 from the model’s perspective. Thus, the
real-world attack is more powerful since there is more information we can work
with.

After the profiling stage, there is the attacking stage. The assumption is that
the attacker has access for a (relatively) short period of time to a similar device
D2. After collecting power traces for decapsulation on chosen ciphertexts, the
attacker’s goal is to recover the key using the trained models. The Table 5 shows
the accuracy ρi of recovering ith bit for devices D1 and D2.
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Table 6. Real-world attack results on the first-order masked Kyber-768. We performed
100 runs of the attack with a random secret key for each run.

Number of traces Average number of errors

Majority Voting (t = 11) 99 0.34/768

Our Method (2, 2, 3) 12 0.82/768

The experimental results (shown in Table 6) with the average oracle accuracy
of 0.9502 are better than the simulation results with an accuracy of 0.95. There
are two reasons for this: (1) real models provide soft values, making the attack
more powerful; (2) In the simulation, the accuracy of each bit is the same, but
for our LDPC approach, it is more beneficial for some bits to be more reliable
than others.

On the other hand, the success of majority voting approach depends on the
worst bit position. In other words, in the real world majority voting works worse
since the bottleneck is the worst bit. The real attack with accuracy from Table 5
uses t = 11 votes, i.e. in total we need 99 traces (instead of 63 as in Table 4). In
this case, our framework uses 86% fewer traces.

6.2 HQC

In order to test the new attack strategy against HQC it is advantageous to make
as close to an apples-to-apples comparison as possible against the results of [16].
To this end, we model the PC oracle as follows; The success probability for an
oracle query is determined by ρ0 and ρ1, which are the probabilities of correctly
classifying decoding failures and decoding successes, respectively. For the case of
the ideal HQC timing oracle used in [16] these values are listed in Table 7 and
correspond to ρ0 = ρf and ρ1 = ρs. We label the ideal oracle Oideal

HQC.

Table 7. Ideal HQC timing oracle, Oideal
HQC, as modelled with ρf and ρs.

Real Reported as
decoding failure decoding success

decoding failure ρf = 0.9942 1− ρf = 0.0058

decoding success 1− ρs = 0 ρs = 1.0

Simulating real-world attacks with noisy measurements can be done by select-
ing other values of ρ0 and ρ1. For simplicity, we introduce ρ as a single representa-
tive value of PC oracle accuracy, where ρ = ρ0 = ρ1. We label the corresponding
oracle Oρ

HQC.
By empirical study we have selected a row weight of W = 50 in the con-

structed LDPC code (for hqc-128). This is close to the upper limit of our code
generation algorithm. Using a bigger W would occasionally require a more
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advanced algorithm with backtracking of the random walk. Regardless, the
decoding appears to suffer in reliability for values W > 50. Smaller values of
W require more parity checks and thus make the attack slower.

Some interesting ρ values, corresponding to real attacks, are {1.0, 0.995,
0.95, 0.9}. In Fig. 4 we show the results of simulations using the various oracle
models we have described so far. The results for Oideal

HQC indicate an 86.6 times
improvement over the original attack [16].

Fig. 4. Experiment for hqc-128. The median number of oracle calls for successful key
recovery, are 59500, 35250, 18000, 10000, and 9000 respectively for the listed oracles.
For each oracle model, 100 key-recovery simulations ran to completion.

We have validated our attack by running a real timing oracle on a Ubuntu
20.04 LTS laptop with Intel Core i5-7200@2.50GHz. Measurement noise was
reduced by turning of hyper-threading and by running in recovery mode. We
used 218 measurements to generate a profile, first of a decoding success and
again of a decoding failure. Measuring 8 decapsulations resulted in an oracle
accuracy of ρOreal

HQC
= 0.951 as determined by 1000 trials. The simulated results

for O0.95
HQC indicate a real-life key recovery attack of hqc-128 can be done by

measuring 23 × 35250 ≈ 218 decapsulation calls.

6.3 Discussions

In this section, we present discussions on the performance of the new SCA-LDPC
framework, including its information-theoretical advantages and limitations. Fur-
thermore, we compare the SCA-LDPC framework with the inner-symbol error
correction method proposed in [29] and highlight the advantages of the former.

A Non-rigorous Information Theoretical Bound. Assuming that a single side-
channel measurement provides a certain amount of information (denoted by I
bits), and considering the fact that there are k secret symbols that are inde-
pendently generated from a distribution with entropy E bits, it is possible to
calculate a lower bound for the number of measurements required. This can
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be accomplished by dividing k · E by I. Estimation of I can be performed by
considering each recovered message bit as a Bernoulli variable, with a specified
probability ρi of being correct. It is noteworthy that the value of ρi may vary
for different secret positions. This information-theoretical estimation is approx-
imate in nature. It is subject to limitations arising from the simplicity of the
Bernoulli model. Additionally, near-optimal source coding and channel coding
are required to match the derived lower bound. Notwithstanding these limita-
tions, the estimation suggests the possibility of improvement, though the extent
of such improvement may be constrained.

The aforementioned lower bound is equivalent to the well-known Shannon
source coding bound when the accuracy of the oracle is 100%, which can be
used to characterize the source coding gain. The results obtained from the FD
oracle based attack on the scheme Kyber-768 exactly meet the lower bound of 7
traces. Conversely, for the PC oracle based attack on hqc-128, 1324 parity checks
were required, a factor of 2.1 times the lower bound of 628 checks.

It has been observed that the difference between the simulated results and
the lower bound increases as the oracle accuracy decreases. For example, in the
case of the PC oracle based attack on hqc-128, when the oracle accuracy drops
to 0.95, the ratio of the simulated parity checks to the lower bound increases to
approximately 2.7, as calculated by 2396/880. For the FD oracle based real-world
attack on Kyber-768, based on the message recovery accuracy data presented in
the second row of Table 5, the lower bound was determined to be 9, which is
slightly lower than the 12 traces utilized in the actual attack.

Limitations. Despite the remarkable reduction of necessary side-channel mea-
surements, a gap remains between actual performance and our non-rigorous
information-theoretical lower bound. This gap may be attributed to the require-
ment of an extremely long codeword, potentially in the range of tens of millions
of bits, for the LDPC codes to approach optimality. Additionally, it may be a
result of the simplicity and inadequacy of our current code-construction method.
More sophisticated LDPC code construction techniques could further reduce the
required number of measurements.

Our Method vs. Inner-Symbol Error Correction. The new SCA-LDPC framework
utilizes a system of sparse parity checks to interconnect all the secret symbols.
As a result, accurately determined symbols can be utilized to rectify incorrectly
determined symbols, categorizing this method as inter-symbol error correction.
On the other hand, the method presented in [29] falls under the category of
inner-symbol error correction, as the utilization of extended Hamming codes
increases the possibility of recovering individual secret symbols, which all must
be recovered independently.

Both methods can be applied to the FD oracle based attack on lattice-based
schemes in a non-adaptive attack model. However, the inner-symbol error cor-
rection method presented in [29] offers no source coding gain and has inferior
error correction capabilities. For instance, it is demonstrated in [29] that for a
platform with an average message bit recovery rate of 0.972, 216 traces, or 9×24,
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are required to recover the long-term secret key of a masked Saber implemen-
tation. We utilize the detailed message bit recovery rates recorded in Table 20
of [29] to calculate the corresponding lower bound, which is determined to be
10 traces. This demonstrates a significant gap of 21.6 between the actual perfor-
mance in a real-world scenario and the calculated lower bound. While there is
no guarantee that the non-rigorous lower bound will always be attainable, the
small ratio of 1.33, or 12/9, for our SCA-LDPC attack on Kyber, illustrates the
superior efficiency of our method in terms of the required number of traces.

The substantial improvement of the new SCA-LDPC framework can be
attributed to various factors, such as the utilization of soft information in the
real-world attack that we conducted. The dominant reason is that all the secret
symbols are interconnected and correlated, and redundant symbols are intro-
duced, allowing for the effective handling of a significant number of symbol-level
errors. On the contrary, in the inner-symbol error correction method, all the
symbols (e.g., 768 symbols in the Saber case) are independent and needs to be
successfully recovered, thus precluding the tolerance of any symbol-level errors.
Last, in a real-world attack scenario, several secret positions typically have a
higher chance of containing errors, which can be effectively corrected through
the inter-symbol approach, but may prove to be a bottleneck for the inner-symbol
method where all symbols must be correctly identified independently.

7 Concluding Remarks and Future Work

From coding theory, we have presented a generic framework for key-recovery
side-channel attacks on CCA-secure post-quantum encryption/KEM schemes.
Our design philosophy is to employ randomly generated LDPC codes with effi-
cient decoding to connect secret coefficients, which introduces additional bene-
fits of source coding and error correction. We presented simulation results and
real-world experiments on the main lattice-based KEM Kyber and the code-
based KEM HQC. The new attack framework can significantly improve the
state-of-the-art in terms of the required number of side-channel measurements.
Our improvement has great practical impact. For instance, in real-world attack
scenarios against a masked Kyber implementation, we require just 12% of the
traces compared to the majority voting method. As our simulation results indi-
cate that the gain would increase as the oracle accuracy decreases, this significant
reduction could feasibly turn a previously impractical attack into a practical one.
Also, we have a remarkable gain in the HQC timing attack instance. An expla-
nation for our substantial improvements is that LDPC codes are considered to
have near-optimal performance from an information-theoretic standpoint.

The sample complexity of the new attack framework can be improved further
by (i) employing a more advanced code-construction method with improved
decoding performance or by (ii) heavy post-processing such as lattice-reduction
or information-set decoding. An intriguing area of study is to utilize sophisticated
coding-theoretical methods [39], such as density evolution or EXIT charts, to
carry out efficient and precise security assessments against proposed attacks.
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While the new attack framework is general, the specific attack instances
can vary due to the diversity of schemes, oracle types, and leakages. We note
that schemes selected as new standards such as Kyber should be given primary
consideration for investigation. From a research standpoint, it would be engaging
to explore the framework’s precise implementation and performance in NTRU [7]
and NTRU prime [6]. Additionally, future research could explore whether this
framework could be extended to target Classic McEliece and BIKE.

Last, the new attack framework shows the need for countermeasures such
as constant-time implementations or higher-order masked implementations. As
noted in [45], masked hardware exhibits much higher security compared to
masked software when considering PC oracle-based side-channel attacks. As our
simulations indicate that the gain of the new attack framework increases with
less accurate oracles, it would be fascinating to examine the exact improvements
in this attack scenario. Furthermore, it would also be worthwhile to investigate
whether SASCA could deliver more accurate PC oracles than a deep learning-
based approach in this context.
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Abstract. The so-called ω-encoding, introduced by Goudarzi, Joux
and Rivain (Asiacrypt 2018), generalizes the commonly used arithmetic
encoding. By using the additionnal structure of this encoding, they pro-
posed a masked multiplication gadget (GJR) with quasilinear (random-
ness and operations) complexity. A follow-up contribution by Goudarzi,
Prest, Rivain and Vergnaud in this line of research appeared in TCHES
2021. The authors revisited the aforementioned multiplication gadget
(GPRV), and brought the IOS security notion for refresh gadgets to
allow secure composition between probing secure gadgets.

In this paper, we propose a follow up on GPRV, that is, a region-
probing secure arithmetic circuit masked compiler. Our contribution
stems from a single Lemma, linking algebra and probing security for
a wide class of circuits, further taking advantage of the algebraic struc-
ture of ω-encoding, and the extension field structure of the underlying
field F that was so far left unexploited. On the theoretical side, we pro-
pose a security notion for ωd-masked circuits which we call Reducible-
To-Independent-K-linear (RTIK). When the number of shares d is less
than or equal to the degree k of F, RTIK circuits achieve region-probing
security. Moreover, RTIK circuits may be composed naively and remain
RTIK. We also propose a weaker version of IOS, which we call KIOS,
for refresh gadgets. This notion allows to compose RTIK circuits with a
randomness/security tradeoff compared to the naive composition.

To substantiate our new definitions, we also provide examples of com-
petitively efficient gadgets verifying the latter weaker security notions.
Explicitly, we give 1) two refresh gadgets that use d − 1 random field
elements to refresh a length d encoding, both of which are KIOS but not
IOS, and 2) a multiplication gadget with bilinear multiplication com-
plexity dlog 3 and uses d fresh random elements per run. Our compiler
outperforms ISW asymptotically, but for our security proofs to hold, we
do require that the number of shares d is less than or equal to the degree
of F as an extension, so that there is sufficient structure to exploit.
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1 Introduction

Since their introduction in the late 90’s by Kocher [KJJ99,Koc96], side-channel
attacks have proven to be a major threat to cryptography. While cryptanalysis
can evaluate the black-box security of cryptographic protocols, their security can
be totally compromised by physical attacks. In a nutshell, side-channel attacks
refer to any attack taking advantage of the implementation of a cryptographic
protocol, rather than only the public parameters and public communications.
If a hardware device is manipulating carelessly a secret value, many observable
signals (such as its temperature, power consumption, electromagnetic field, etc)
are likely to leak secret information, and might even lead to a full-key recovery.
These practical security flaws call for a solid non-ad hoc response.

Of all the side-channel adversary models such as the noisy leakage model
[PR13,DDF14,DFS15] or the random probing model [ADF16], arguably the
easiest to deal with is the so called (threshold) t-probing model [ISW03]. A
t-probing adversary may choose adaptively and learn any t intermediate values
of the circuit. While t-probing security reduces to the more realistic models, the
reductions are somewhat loose and depend more on the ratio t divided by the
size of the circuit than t itself.

Masking is a countermeasure that provably prevents recovering information
when the adversary is snooping on the circuit. Informally, masking uses secret-
sharing techniques to provide probing security to a circuit. A sensitive inter-
mediate value x of the cryptographic protocol is encoded into a vector of d
shares (x0, . . . , xd−1). While the knowledge of all d shares allows to recover the
secret it encodes, masking requires that any d − 1 shares are independent of the
secret value x. Any partial knowledge of the shares is therefore made useless in
masking schemes, so as to provide t-probing security for t < d. The operations
(additions, negations and multiplications for arithmetic circuits) then have to be
performed securely in the encoded domain, so as to never manipulate secret vari-
ables directly. Each operation (or gate) of the circuit is transformed into a secure
counterpart (or gadget), that takes as input encodings of the secrets, and outputs
an encoding of the evaluation of the corresponding operation. Usually, masking
schemes admit a coordinate-wise secure addition, leaving the multiplication the
most challenging operation to perform securely in the encoded domain.

Replacing every gate with probing secure gadgets unfortunately does not
imply probing security for the whole circuit [BCPZ16,CPRR13], and extra efforts
have to be put into composition security. Composition of gadgets is a line of
research that has received a lot of attention, and is still an active field of research
[ADF16,CS20,BCPZ16,GPRV21,BBD+16].

The first masked multiplication for any number of shares was introduced in
2003 in [ISW03], and several variants achieving different trade-offs have been
proposed [RP10,BBP+16,BBP+17]. The encoding used by ISW is the so called
arithmetic masking (originally for boolean masking, but the arithmetic masking
translation remains secure [RP10]), where the shares x = (x1, . . . , xd) of some
field element x ∈ F are such that x1 + · · · + xd = x. Another way to interpret
arithmetic masking is to say that the shares are the coefficients of a polynomial
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such that its evaluation in 1 is the secret. From a high level, the multiplica-
tion of two sharings a,b of two secrets a, b in ISW computes the coefficients of
the polynomial c = ab and rearranges the coefficients so as to have c of the
same length d as a and b. This polynomial multiplication is performed following
the schoolbook multiplication algorithm mixed up with some randomness for
security. This yields a multiplication gadget running in O(d2) time with O(d2)
randomness. The paper [GJR18], started a line of research towards constructing
multiplication gadgets based on the Fast Fourier Transform. GJR uses a differ-
ent type of encoding called ω-encoding, where a’s evaluation is taken in some
field element ω rather than 1. Arithmetic masking seems to be incompatible
with the FFT since a1 + · · · + ad is an intermediate value of the FFT algorithm,
which the adversary may therefore probe, and immediately break the masking
scheme. There was a flaw in the original security proof of the GJR multiplication
gadget, which was patched later in [GPRV21] and named GJR+. While GJR is
a theoretical breakthrough, its range of application excludes AES for example.
The security relies on the random choice of ω, hence for reaching a reasonable
level of security, GJR+ requires an underlying field of exponential size in the
security parameter, which limits its practical applications. The follow-up paper
[GPRV21] proposed a security proof for GJR+ for fields of smaller sizes. This
security proof relies on a non-standard ad-hoc assumption. This assumption,
roughly speaking assumes that the computation of the FFT and inverse FFT
of a polynomial are both probing secure. While one can check this hypothe-
sis by exhaustive search, the computation becomes very costly as d increases.
The authors raise the open problem to build a strong theoretical foundation for
replacing their assumption with a full proof.

The randomness complexity of a compiler (meaning the transformation of a
circuit that replaces operation gates with secure masked gadgets) is of major
importance. The predilection physical support for masked implementation is
embedded systems, where randomness is expensive to produce. In this consider-
ation, one of the goals in the field of masking is to achieve notions of security
using as little randomness as possible. The authors of [GPRV21] give a generic
composition Theorem that only requires t-probing security for the operation gad-
gets, and mask refreshing (they give such refresh algorithm verifying the desired
Input-Output-Separation property) in between any two gadgets. This theorem
ensures that the obtained compiler achieves the r-region-probing-security notion.
Informally, region probing security means that the circuit can be split into inde-
pendent regions, in which the side-channel adversary may probe a fixed ratio of
the intermediate values yet learns no information on the secrets. The authors
prove that a variant of the refresh gadget from [BCPZ16] achieves the IOS prop-
erty and only requires d log d

2 random field elements.

1.1 Results and Technical Overview

From a high level, this paper is a retake on the circuit compiler from [GPRV21],
and proposes a region-probing secure masked compiler for arithmetic circuits
over extension fields. The contributions of this paper are listed in 4 categories:
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1. Revisiting probing security from a probabilistic angle.
2. Introduction of new security notions tailored for circuits over extension fields:

for operation gadgets (RTIK) and for refresh gadgets (RTK, KIOS)
3. Composition Theorems for RTIK gadgets and KIOS refresh gadgets, and

security reductions from the latter notions to region-probing security.
4. Examples of competitively efficient multiplication gadgets and refresh gadgets

achieving the aforementioned notions, constituting our masked compiler.

We detail separately each of these items in the following.

From Game-Based Definitions to Probabilistic Definitions. The usual
definition of t-probing security involves the existence of a simulator able to sim-
ulate the distribution of given wires with only partial knowledge of the secret.
This simulation-based definition is inherited from the idea that a t-probing side-
channel adversary plays a t-probing security game, in which the adversary learns
some information on the wires W of the circuit C, then wins if he guesses right
the decoding of the sharings. The simulation argument implies that the side-
channel information yields no advantage. While simulators can be suitable tools
for proving probing security, they do not seem to be a good fit with our tech-
niques. We propose to take a different path and redefine probing security as
the statistical independence of the leakage and the secrets. While this idea is
nothing new, we believe that the formal definitions from Subsect. 3.1 can be of
independent interest. In particular, we formally define the intuitive idea that a
given set of probes Q contains more information than some other set of probes
P . This syntax enables “game hop”-based proof strategy. Informally, we let the
adversary pick the initial set of probes P of his choice, then instead of proving
some independence relation between P and the secrets directly, we reduce, via
successive elementary game hops, the set of probes P to a set of probes Q that
at least preserves the information of the adversary. At the end of this reduction
from P to Q, the latter set of probes Q is such that our techniques apply and we
manage to prove the independence of Q and the secrets, which in turn implies
independence between P and the secrets.

Bridging Algebra and Probing Security. We consider a circuit C over a
finite field F. We remind that our goal in this paper is to exploit the underlying
field extension structure of F, thus for the sake of clarity, we assume that F = Fpk

is the finite field with pk elements where p is a prime and k ≥ 2. An even more
concrete example is taking F to be the AES field F28 . We deal with polynomial
encodings, which is a special case of linear sharings where our decoding vector
is chosen to be ωd = (1, ω, . . . , ωd−1), for some field element ω ∈ F. In other
words, an ωd-encoding x ∈ F

d of some element x is such that

ωT
d x =

d−1∑

i=0

xiω
i = x.

The bridge relating the structure of F and probing security is the single Lemma
2. Consider that our circuit C takes as input an ωd-encoding x. In a nutshell,
Lemma 2 says that under the conditions that



Exploiting Algebraic Structures in Probing Security 241

1. The number of shares is at most the degree of the extension: d ≤ k
2. The intermediate values that the adversary can probe in C are of the form

pT x with p ∈ F
d
p,

then there exists a choice of ω for which C is d − 1-probing secure. This choice
of ω is actually any ω of algebraic degree greater than or equal to d over Fp.
The geometry of this Lemma makes it intuitively more permissive than the
usual definitions for t-probing, r-region-probing, (strong) non-interference and
probe-isolating-non-interference. Indeed, the latter definitions (in probabilistic
terms) require roughly speaking that the probes are independent of at least
one coordinate of each sharings. The former on the other hand implies security
regardless of the direction of the affine subspace in which the encoding lies,
provided that the latter subspace is directed by the kernel of a matrix over the
subfield, and that its dimension is at least 1.

By following the rules for modifying the set of probes of the adversary, we
can relax condition 2.: our circuit C is also d − 1-probing secure if for all sets P
of d − 1 probes (that does not necessarily verify 2.), we can find a set of d − 1
probes Q that contain at least as much information as P , but Q does verify 2.

The RTIK security notion (which stands for Reducible-To-Independent-K-
Linear) for ωd-masked circuits over extension fields roughly encompasses the
circuits that fulfill the requirements of the above. The requirements for a circuit
to be RTIK are slightly more general: the subfield K that contains the coefficients
of the probes may be bigger than the prime field of F, and the circuit C may take
several encodings as input. In that case, we simply require that there exists some
mutually independent encodings (x1, . . . ,xn) and sets of probes (Q1, . . . , Qn)
such that each Qi is K-linear in xi. Notice that some of these encodings may
not be inputs neither outputs of C.

Since by construction, RTIK circuits over extension fields fall into the require-
ments of the core Lemma, it follows that RTIK circuits are d−1-probing secure.
Actually, RTIK circuits are secure in the stronger r-region-probing model, where
the adversary may place some number of probes in several different subcircuits.
We note that similarly as the Probe-Isolating-Non-Interfering security notion
[CS20], (all known) RTIK gadgets can be composed directly without refresh,
in which case the composition of RTIK circuits remains RTIK, which in turn
is r-region probing secure for some ratio r. We also mention that in terms of
implementation, RTIK circuits seem rather stable, since as long as the wires are
of the right K-linear form, the order of the operations does not affect security.

Although RTIK circuits may be composed directly and remain region-probing
secure, the size of the probing regions of the composite circuits may increase and
hence reduce the probing ratio, thus reduce the overall security of the imple-
mentation. To mitigate this loss of security, we introduce a security notion for
refresh gadgets inspired by the Input-Output Separative (IOS) property. We
briefly recall the idea behind the IOS property. Consider an IOS refresh gadget
R and two encodings x and y with y = R(x). Let us also assume that x is an
output of some gadget G1, and y is an input of some gadget G2. We now let



242 M. Plançon

the t-probing adversary pick and learn t intermediate variables in either G1, R,
or G2. In this setting, the IOS property claims that any probe inside of the
refresh gadget can be “moved” to a probe on a coordinate of x and/or a probe
on a coordinate of y. The probes on x are then considered as probes in G1,
the probes on y are then considered as probes on G2, and R itself is no more
probed by the adversary. This reduces the security of the composition of the
two gadgets G1, G2 to the individual security of each of the two gadgets. The
security notion α-KIOS that we define is identical to the IOS property, except
the probes on x and y do not have to be coordinates, but any K-linear function
of those inputs.1 Executing the same reduction as the one explained above for
IOS refresh gadgets, one ends up with K-linear probes on x, y, which in turn
fall into the requirements of our core Lemma. Applying a KIOS refresh to an
encoding in between two RTIK circuits creates a new region at the cost of using
random elements.

KIOS Refresh Gadgets Using d − 1 Randomness for Length d Input
Encoding. To substantiate the KIOS notion, we give examples of KIOS
refresh gadgets. Notice that 1-KIOS is strictly weaker than IOS, and there-
fore any IOS refresh is an example of 1-KIOS refresh, including the one from
[GPRV21](Actually, we prove the IOS property for a mild generalization of
this algorithm) which uses d log d

2 random elements. We also give an example
of a 2-KIOS refresh gadget that is not IOS. This gadget is obtained by simply
adding coordinate-wise an encoding of 0, obtained by running the algorithm
PolyGenZero presented in Algorithm 4, which uses d − 1 random field elements.
We highlight that for security, we need the algebraic degree of ω over K to be
greater than d, and for PolyGenZero to be correct, we also need the algebraic
degree of ω over K to be less than d. In other words, we need ω to have algebraic
degree exactly d over K, and such choice of ω is only possible when d divides
[F : K]. The intuition on the construction of this 2-KIOS gadget is detailed in
Sect. 5.2.

We give a second example of KIOS refresh, which also uses d − 1 random
elements, and is 1-KIOS. The counterpart for this improvement is that it is
slightly bigger than the previous one as a circuit. The intuition behind this
algorithm is derived from the RTIK multiplication gadget Algorithm8. In a
nutshell, the idea is to sample a uniformly random vector r, then multiply it
using Karatsuba’s algorithm with some fixed polynomial u. Provided that the
only common factor of u and the minimal polynomial of ω is X − ω (which
again requires degK(ω) = d), this algorithm generates ωd-encodings of 0, which
we can add coordinate-wise to obtain a 1-KIOS refresh gadget.

A Tight Compression Algorithm. The masked multiplication of two order
d encodings should remain an order d encoding, but the computation of the
polynomial product of two polynomials a,b of degree d − 1 yields a polynomial

1 We also add a coefficient α to its definition, which upper bounds the ratio of K-
linear probes on x, y after the reduction and the count of initial probes in the KIOS
gadget.
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z of degree 2d − 1. The compression algorithm proposed in [GJR18,GPRV21]
entails a loss of a factor 2 on the number of tolerated probes in the (region)
probing security of the multiplication gadget. We define a folding algorithm
that achieves the conversion of order 2d − 1 encoding into order d encoding,
and such that each of its intermediate values are K-linear. As a consequence,
it can be composed without refresh and without tightness loss at the end of a
multiplication gadget. Nonetheless, our folding algorithm is a bigger circuit (we
left as an interesting open question estimating the count of operations in this
algorithm depending on ω and K) than the compression algorithm from [GJR18,
GPRV21], which mildly decreases the tolerated probing rate of the adversary.

Multiplication Gadgets with Subquadratic Randomness and Multipli-
cations.2 The multiplication gadget GJR+ [GPRV21] has two security proofs,
depending on the size of F (and to some extent d). When |F| ≥ 2λ for some secu-
rity parameter λ a statistical argument based on the random choice of ω implies
security in the random-probing model. When |F| is too small, the authors rely on
a non-standard ad-hoc assumption that the circuit computing the FFT and its
inverse are t-probing secure. Due to combinatorial explosion, it is only possible
to test the assumption for small values of d, thus leaving a hole in the shape of
the RTIK notion. Our first multiplication gadget is a generalization of GJR+,
where one can use any evaluation-interpolation polynomial multiplication algo-
rithm (not only the FFT), and turn it into a multiplication gadget. The regimes
in which we can prove that [GPRV21]’s assumption hold is restricted to the
tuples (F, d) such that d ≤ [F : K]. The subfield K for which the RTIK property
holds is the smallest subfield that contains the coefficients of both evaluation and
interpolation. Hence for maximizing the upper bound on d, one should choose
the multiplication algorithm so that K is as small as possible, which is a first
hint towards switching to Karatsuba’s multiplication.

We also propose an optimized version of a multiplication gadget based on
Karatsuba’s algorithm. This Algorithm 8 uses d random field elements per run
(which is most likely close to optimal), but does dlog 3 bilinear multiplications. It
verifies the RTIK property, thus it is composable without extra refreshing.3 The
intuition behind the optimizations is detailed in Sect. 6. We compare the perfor-
mances of our optimized multiplication gadget with a few existing constructions
in Fig. 1. We highlight that Algorithm 8 and ISW are the only multiplication gad-
gets that can be securely composed without extra refreshing. In terms of bilinear
multiplication, Algorithm 8 is worse than GJR+ and Beläıd bil [BBP+17], but
better than Beläıd rand [BBP+17] and ISW. In terms of randomness, Algorithm
8 is close to optimal with d random elements, only beaten by Beläıd rand by
one random element. Further details on this comparison can be found in the full
2 Please note that while we discuss about the asymptotic behaviour of the perfor-

mances of our multiplication gadgets, their security only falls into our framework for
bounded order of masking d, for a fixed F.

3 This multiplication gadget actually behaves as a KIOS refresh with regards to region-
probing secure composition. It introduces d random elements to increment the num-
ber of regions when composed with other circuits.
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version, including estimates of the probing ratio of the gadgets, where Algorithm
8 is also competitive.

Fig. 1. Comparison table of multiplication gadgets for a number of shares d. ISW
[ISW03] for arithmetic encodings, Belaid rand [BBP+17] Alg. 5, Belaid bil [BBP+17]
Alg. 4, and GJR+ [GPRV21]). The composable row answers the question: “Is naive
composition of this multiplication gadget secure ?”

1.2 Limitations and Open Questions

Lack of Concreteness. Our contribution mostly stands on the theoretical side.
While we give performance comparisons in the full version and make a toy imple-
mentation in sage available, the concrete evaluation of the algorithms developed
in this paper would deserve a thorough investigation, that is left for future work.
Determining if masking an actual cryptographic algorithm using our techniques
can be more efficient than state-of-the-art masked implementation is another
interesting open question.

Range of Applications. An extension field F/K of degree k is proven secure with
our techniques up to d = k shares. For example, in the AES field F256, we have
k = 8, thus our masked compiler tolerates a number of shares d up to 8, with
extra efficiency for d|k, i.e d ∈ {2, 4, 8}. The real world masked implementation
are for the most part within this range, but it seems to be an interesting open
question to lift the upper bound, especially for the extension field of lower degree,
that have insufficient algebraic structure for our techniques to apply. An example
where this restriction is virtually absent is in the NTRUprime field [BCLV17].
This field is chosen as Fpq , where both q and p are primes, and q is a few hundreds.
Gadget expansion [AIS18,BCP+20,BRTV21,BRT21], which is, waving hands,
aiming at boosting the security by repeating the masked compilation several
times instead of just one, is an interesting direction which we leave for future
work.

Masking Lattice-Based Cryptography. We believe that part of the techniques
and algorithms proposed in this paper may apply to the usual power-of-two
cyclotomic ring structure underlying lattice-based cryptography. It is also an
interesting open question to know to what extent our constructions survive in the
ring setting. Since the standardization of several lattice-based schemes, especially
Kyber, constructing efficient equality-testing gadgets [DVBV22,CGMZ21,BC22]
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has received a lot of attention and the contributions of this paper may provide
a different angle towards constructing efficient equality-test gadgets.

Formal Verification of Implementations. Maskverif [BBC+18,BBC+19] is a tool
that, roughly speaking, when fed an implementation and an adversary model
returns the level of security achieved by the input implementation against the
given adversary model. The RTIK property seems like a nice property for auto-
mated testing, and appears to be more resilient against glitches (due to the
fact that the order in which a computation is made is irrelevant, as long as the
wires are K-linear) thus it is also an interesting open question to construct a
verification tool for implementations.

Remark 1. The proofs of Lemmas, Propositions and Theorems that are missing
from the body of the paper can be found in the appendix, sorted by Sections in
increasing order.

2 Background

2.1 Notations

Algebra. Throughout the paper, F denotes a field and K ⊂ F a subfield of F. We
write Fq the finite field with q elements. Field elements are written in lower-case
letters, vectors are written in bold lower-case letters and matrices are written
in bold upper-case letters. Unless stated otherwise, vectors are column vectors,
and for a vector x, we denote xT its transpose. We write � the component-
wise product of two vectors. We write Fd[X] the set of polynomials in X of
degree at most d that have coefficients in F. To ease the readability, we identify
a polynomial to its list of coefficients, and use either notations interchangeably.
An element a ∈ F

d can be treated as an element of Fd−1[X] depending on
context, e.g by writing a(ω) the evaluation of the polynomial whose coefficients
list is a in a field element ω, or multiplying two polynomials ab while keeping
the vector notation. We write πK(ω) the minimal polynomial of ω over K, and
we write degK(ω) the degree of πK(ω). The notation [n] shall denote the set
{1, . . . , n].

Distributions. For a distribution D, we do not have notation conventions
whether the support of D is a scalar or a vector, but rather rely on context.
For random variables X,Y , we write X ⊥ Y when X is independent of Y. For a
random variable X and a set A in the domain of X, we use the standard notation
X(A) =

∑
a∈A X(a). We write (X|Y ) the conditional probability of X given Y .

To ease the notations, we write (X|Y,Z) = (X|(Y,Z)).

Circuits. A circuit is a directed acyclic graph whose vertices are operations,
and each edge is an intermediate value, intermediate variable or wire. We shall
call internal randomness of a circuit the list ρ of the elements sampled by ran-
dom gates in the circuit. This way, every intermediate value of the circuit is a
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deterministic function of its input and the internal randomness of the circuit.
For a set of intermediate values P = (p1, . . . , pn) of a circuit with input χ and
internal randomness ρ, we write P (χ,ρ) = (p1(χ,ρ), . . . pn(χ,ρ)). When ρ is
not in the argument of P , we shall write P (χ) the random variable P (χ,ρ) for a
uniformly random ρ. We assume throughout the paper that the secret informa-
tion manipulated by a circuit is a deterministic function of its input and internal
randomness. For a circuit C, we usually write W its set of wires, and we shall
write |W| the number of intermediate variables of C.

2.2 Masking

Encodings. For a vector v ∈ (F\{0})d, a v-linear sharing of an element x ∈ F is
a vector x satisfying vT x = x. Arithmetic masking is a particular case of v-linear
sharing, where v = (1 . . . 1). For ω an element of F, we let ωd = (ωi)0≤i≤d−1.
We say that a vector x ∈ F

d is an ωd-encoding of a field element x ∈ F when
ωT

d x = x (or equivalently x(ω) = x), which is also a particular case of linear
sharing. For x ∈ F, the set of v-encodings of x is Hv

x = {x ∈ F
d, vT x = x} and

can be seen both as an affine hyperplane (with the convention Hv
0 = Hv). We

shall omit the supscript v when it is clear from context, and we notice that Hωd
x

can also be seen as the set of degree d polynomials x such that x(ω) = x. We
define Uv(x) to be the uniform distribution over Hv

x , and extend it coordinate-
wise when applied on multiple entries. We say that (x1, . . . ,xn) are mutually
independent ωd-encodings when for all x1, . . . , xn, the distributions (x1|ωT

d x1 =
x1), . . . , (xn|ωT

d xn = xn) are mutually independent.
We call an addition gadget (respectively a multiplication gadget) with respect

to ωd-encodings a circuit that takes as input two ωd-encodings a,b and returns
an ωd-encoding of ωT

d a+ωT
d b (respectively ωT

d a ·ωT
d b). A correct refresh gadget

with respect to ωd-encodings is a circuit that takes as input an ωd-encoding and
returns an ωd-encoding of the same secret. In general, for a gate g in a circuit C,
we say that G is a correct ωd-encoding gadget for g when G takes as input ωd-
encodings of the sensitive inputs of g, and returns ωd-encodings of the sensitive
outputs of g.

Security Properties. We define the threshold-probing security game, region-
probing security game, the simulation-based Input-Output Separation property
for refresh gadgets and the associated composition theorem.

Definition 1 (t-probing security game). Let n, t ≥ 1, C be a circuit and W
be its set of intermediate variables. Let χ be the distribution of the input in of C
and x1, . . . , xn be secret random variables following a distribution φ. A t-probing
adversary A on (C, χ, φ) plays the following game:

1. The challenger samples the input in from χ
2. A chooses a set of probes P ⊂ W with |P | ≤ t
3. The challenger runs C(in) and sends P (in) to A
4. A returns (y1, . . . , yn). He wins if (y1, . . . , yn) = (x1, . . . , xn).



Exploiting Algebraic Structures in Probing Security 247

A circuit C for which there is no unbounded adversary A, playing the t-
probing security game with respect to secrets x1, . . . , xn, that has an advantage
against an adversary who skips steps 1) and 2) is called t-probing secure. In the
context of masking, the input distribution χ of C contains uniform encodings of
the secret inputs, and the decoding of these are the secrets of this circuit that
the adversary attempts to guess after probing.

Definition 2 (r-region probing security game). Let n ≥ 1, 0 < r < 1, C be
a circuit with input random variable in following a distribution χ and x1, . . . , xn

be secret random variables following a distribution φ. Let C1, . . . , Cm be subcir-
cuits of C such that (C1, . . . , Cm) is a disjoint covering of C, W1, . . . ,Wm be the
respective sets of intermediate variables of each subcircuit. A r-region probing
adversary against (C, χ, φ) with regions C1, . . . , Cm plays the following game :

1. The challenger samples the input in from χ
2. A chooses m sets of probes (Pi ⊂ Wi)i≤m with |Pi| ≤ �r|Wi|	
3. The challenger runs C(χ) and sends (Pi(χ))i≤m to A
4. A returns (y1, . . . , yn). He wins if (y1, . . . , yn) = (x1, . . . , xn).

With identical input distribution χ and secrets to hide, any t-probing secure
circuit C is trivially t/|C|-region probing secure. Conversely, if a circuit is r-region
probing secure with m = 1, it is 
r|C|�-probing secure. When χ and φ are clear
from context, we simply say that C is t-probing secure, and similarly for region-
probing security. For saving space and improving the readability, we omit the
input of the probes when it is clear from context and write P instead of P (in).

Definition 3 (t-input-output separation). Let v ∈ (F\{0})d. A refresh gad-
get GR is called t-input-output separative when for any x,y with y = GR(x), we
have that y follows U(vT x) and for any set of intermediate values W with |W| ≤
t, we have that there exists a two-stage simulator SGR,W = (S1

GR,W ,S2
GR,W) with

the following properties.

1. The first one S1
GR,W , returns two sets of indices I,J ⊂ [d] such that |I|, |J | ≤

|W|.
2. The second one S2

GR,W , ran on input x|I ,y|J , returns an output identically
distributed as W(x, r), where r is the internal randomness of GR, x|I is x
restricted to the coordinates that appear in I and similarly for y|J .

The following composition Theorem claims that if a circuit C is split into
t-probing secure subcircuits separated by t-IOS refresh gadgets, then the whole
circuit is r-region probing secure for some ratio r. The statement of the Theorem
deals with so-called standard masked compilers of arithmetic circuits, but similar
proof techniques could aim for a more general claim involving non-arithmetic
gadgets.

Theorem 1 (Composition Theorem, adapted from Theorem 1
[GPRV21]). Let C be an arithmetic circuit. If G+ is a t+-probing secure addi-
tion gadget, G× is a t×-probing secure multiplication gadget and GR is a tR-IOS
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refresh gadget, then the circuit Ĉ taking as input an encoding of the input of C
obtained by replacing addition gates with G+, multiplication gates by G× and
applying a refresh gadget GR to any input of an operation gadget is r-region
probing secure, with

r = max
t≤tR

min
(

t+ − 3t

|G+| ,
t× − 3t

|G×| ,
t

|GR|
)

.

3 Probabilistic Approach to Probing Security

In this section, we make our first step towards bridging probing security and
algebra, which boils down to redefining from a probabilistic perspective the usual
definitions of probing security, region-probing security and the IOS composition
property. While the usual simulation-based definitions have their advantages,
the probabilistic versions of the latter properties are a much better fit with our
techniques. All the results, definitions and propositions in this section are stated
for linear sharings (v-encodings for any v ∈ (F\{0})d).

3.1 Redefining Probing Security Through Sets of Probes
and Distribution of Secrets

The t-probing security game, as defined in Definition 1, is usually translated
as the simulatability of the leakage. In this subsection, we redefine t-probing
security (as well as r-region probing security) in a formalism that relies on dis-
tributions rather than simulation. From a high level, one can think of these
probabilistic definitions as simply cutting the middle-man, where the middle-
man is the simulator. Indeed, in a simulation-based proof, one has to define the
simulator for any given set of probed wires (and maybe modify the probes of
the adversary before doing so), and then justify that this simulator is actually
giving samples of the right distribution. By relying directly on the distribution
argument, we focus on proving that the leakage distribution is independent of
the secrets, which in our mind highlights the key arguments of the proof and
arguably makes it shorter.

We start off with a binary relation written ≤ on sets of probes, from which
we derive that various elementary operations on sets of probes at least preserve
the information learnt by the adversary.

Definition 4 (Partial order of probe sets). Let P,Q be two sets of probes
on a circuit C, taking as input a random variable in following a distribution χ
and manipulating secret random variables x1, . . . , xn following a distribution φ.
We say that Q contains more information than P , and we write P ≤ Q, when

((x1, . . . , xn)|(P (in), Q(in))) = ((x1, . . . , xn)|Q(in)).
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When P ≤ Q, intuitively, all the sensitive information on the input in of
C carried by P is also carried by Q. The binary relation ≤ verifies reflexivity
and transitivity, but not antisymmetry. Since antisymmetry is irrelevant for our
purposes, we chose to write this binary relation as a partial order relation. The
point of this binary relation is to provide a formal justification for modifying the
set of probes that the adversary initially chooses in the probing security games.
By using a few allowed elementary operations one after another, we are able to
reduce any initial set of probes to another set of probes that has a shape that
fits our techniques in the following sections.

We now provide an illustration of elementary operations on a set of probes
P1. The obtained sets P2, P3 are such that P3 ≥ P2 ≥ P1, thus P3 ≥ P1. Consider
some circuit C that takes as input two arithmetic encodings (x0, x1), (y0, y1). The
secrets manipulated by the circuit are x = x0+x1 and y = y0+y1. Consider that
a 3-probing adversary choses the set of probes P1 = (2x0, y0, x0 + y0). The first
operation that we can do on this set of probes while preserving the information
it contains is to remove the constant factor 2: with P2 = (x0, y0, x0 + y0), we
have P2 ≥ P1. Second, we can remove the redundancy : if the adversary learns
x0 and y0, he might as well compute x0+y0 himself. With P3 = (x0, y0), we have
P3 ≥ P2. Adding extra relations to a set of probes also yields that it contains
more information. For instance if Q1 = (x0 + y0), then Q2 = (x0, y0) is such
that Q2 ≥ Q1. Examples of proofs that rely on an increasing sequence of sets of
probes can be found in the proofs of Propositions 5 and 6 and Theorems 5 and
6.

We now proceed to define t-probing security and r-region probing security
for masked circuit from a probabilistic perspective.

Definition 5 (t-probing security of linear-masked circuits, convenient
version). Let v ∈ (F\{0})d, C be a circuit taking as input v-encodings x1, . . . ,xn

and W be the set of intermediate variables of C. Then C is t-probing secure when
∀P ⊂ W with |P | ≤ t, we have

(vT x1, . . . ,vT xn) ⊥ P (x1, . . . ,xn).

Definition 6 (r-region-probing security of linear-masked circuits, con-
venient version). Let v ∈ (F\{0})d, 0 < r < 1, C be a circuit, C1, . . . , Cm be
subcircuits of C such that (C1, . . . , Cm) is a disjoint covering of C, W1, . . . ,Wm

be the induced sets of intermediate variables of the subcircuits. We let x1, . . .xn

be the input v-encodings of C. Then C is r-region-probing secure when ∀P =
(P1, . . . , Pm) ⊂ W1 × · · · × Wm, with Pi ⊂ Wi and |Pi| ≤ �r|Ci|	, we have

(vT x1, . . . ,vT xn) ⊥ P (x1, . . . ,xn).

In both definitions, the information learnt by the adversary (i.e
P (x1, . . . ,xn)) is therefore independent of the secrets hidden in the circuit (i.e
each sensitive entry xi = vT xi). Since there is information-theoretically no infor-
mation learnt by the adversary by probing, if a masked circuit verifies one of the
definitions above, it also verifies the corresponding usual game-based definition.
The following Proposition links the relation ≤ to region probing security.
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Proposition 1. Let v ∈ (F\{0})d, 0 < r < 1, C be a circuit taking as input
v-encodings x1, . . . ,xn. Assume that there exists a set of disjoint subcircuits
C1, . . . , Cm covering C, inducing sets of intermediate variables (W1, . . . ,Wm),
such that for all set of probes P = (P1, . . . , Pm) with |Pi| ≤ �r|Wi|	 for all
i ≤ m, there exists a set of probes Q = (Q1, . . . , Qm) such that

1. ∀ i ≤ m, Pi ≤ Qi

2. (vT x1, . . . ,vT xn) ⊥ Q(x1, . . . ,xn).

Then C is r-region probing secure.

Using the correspondence between t-probing security and r-region probing
security with m = 1, the Proposition above then implies that if for any set P of
t probes on a circuit C, there exists a set Q with P ≤ Q and Q is independent
of the secrets, then the latter circuit is C is t-probing secure.

3.2 Revisiting Input-Output-Separation: Refreshing ωd-encodings
and Composition of Gadgets

For our own technical purposes (e.g. the proof of Theorem 5) and for expos-
ing the close relation between KIOS Definition 11 and IOS Definition 3, we
redefine the Input-Output Separation property introduced in [GPRV21]. The
property Reducible-To-Coordinates (RTC) for generators of v-encodings of 0 is
closely connected to the �-free property defined in the proof of Theorem 2 from
[GPRV21] (from which the authors deduce the IOS property), thus we redefine
the IOS property based on this RTC property. We prove that our new definition
encompasses the original one, and give explicitly the template to build an IOS
refresh gadget Algorithms 2 and 4 from an RTC generator of encodings of 0.

Definition 7. (Reducible-To-Coordinates) Let v ∈ (F\{0})d, t be an integer
and R be a gadget taking as input a dimension d, and returning a uniform v-
encoding r of 0. We say that R is Reducible-To-Coordinates (RTC) when the
distribution of r is uniform conditioned on vT r = 0 and for every set of t probes
P on R, there exists two sets of probes Q1, Q2 such that

1. |Q1| ≤ t
2. (Q1, Q2) ≥ P
3. Every probe in Q1 is a coordinate of r
4. The distributions Q2 and (r|Q1) are independent

Notice that in the definition above, the binary relation ≤ is taken with respect
to the secret r0, . . . , rd−1, i.e all the coordinates of the fresh vector r, where for
t-probing security of masked circuits we take the secrets to be the decoding of
the masked inputs.

Proposition 2. Algorithm 1 is RTC with v = (1, . . . , 1).
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Algorithm 1. ArithGenZero, adapted from Appendix C [BCPZ16]
.

Require: Masking order d
Ensure: t ∈ F

d such that
∑

ri = 0

1: if d = 1 then
2: return 0
3: end if
4: if d = 2 then
5: r ← F

6: return (−r, r)
7: end if
8: (r0, . . . , r�d/2�−1) = ArithGenZero(�d/2�)
9: (r�d/2�, . . . , rd−1) = ArithGenZero(�d/2�)

10: for i = 0 to �d/2� − 1 do
11: si ← F

12: ti = ri + si

13: t�d/2�+i = r�d/2�+i − si

14: end for
15: if d is odd then
16: td−1 = rd−1

17: end if
18: return t

The Proposition above is a mild generalization of Theorem 2 from [GPRV21].
They prove that the refresh gadget obtained by adding coordinate-wise an encod-
ing of 0 generated using ArithGenZero is IOS when d is a power-of-two. We adapt
their result from IOS to RTC, and extend it to any d ≥ 1 by considering the
refresh gadget from Appendix C [BCPZ16].

Definition 8. (Input-Output Separative) Let v ∈ (F\{0})d, t be an integer and
G be a gadget taking as input a v-encoding x, and returning an encoding y of the
same secret as x. We say that G is t-IOS when the distribution of y is uniform
conditioned on vT y = vT x and for every set of t probes P on G, there exists
three sets of probes Qx, Qy, Q2 such that

1. |Qx| ≤ t, |Qy| ≤ t
2. (Qx, Qy, Q2) ≥ P
3. Every probe in Qx is a coordinate of x and every probe in Qy is a coordinate

of y
4. The distributions Q2 and ((x,y)|(Qx, Qy)) are independent

Proposition 3. Let v ∈ (F\{0})d, t be an integer and G be a gadget taking as
input a v-encoding x, and returning an encoding y of the same secret as x. If G
is t-IOS according to Definition 8, then it is also t-IOS according to Definition
3 and vice-versa.
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Algorithm 2. RTC generator to IOS refresh template
Require: Masking order d, v ∈ (F\{0})d, RTC generator of arithmetic encodings of

0 R, v-encoding x
Ensure: y ∈ F

d such that vTy = vTx

1: r = R(d)
2: for i = 0 to d − 1 do
3: si = v−1

i ri

4: end for
5: y = x + s
6: return y

Proposition 4. If R is an RTC generator of arithmetic encodings of 0, then
the refresh gadget obtained by instantiating Algorithm 2 with R is an IOS refresh
gadget for v-encodings.

4 Algebraic Approach in Probing Security for Extension
Fields

In this section, we focus on the setting where F is an extension field over some
subfield K. We only consider a specific type of encoding, which is ωd-encoding,
where ωd = (1, ω, ω2, . . . , ωd−1) is the vector with all the first d powers of some
fixed field element ω ∈ F. Unless specified otherwise, ω is chosen so that its
algebraic degree over the subfield K is at least the number of shares, in order to
apply the core Lemmas from Sect. 4.1. We remind the reader that the notions
detailed in this section exploit the algebraic structure of F, and for our techniques
to apply, the number of shares d cannot exceed [F : K].

In the first subsection, we state the core Lemmas that make the connection
between the extension field structure of F/K and probing security. In the second
subsection, we introduce the RTIK security notion for circuits (a priori of any
size between operation gadget to a full cryptographic algorithm implementation)
that in turn implies region-probing security. In the last subsection, we show that
RTIK circuits admit nice composition properties without refresh. We finally show
that refreshing the encodings in between two RTIK circuits gives more security
at the cost of randomness, and that the refresh gadget is still secure with a
slightly weaker notion KIOS than the IOS notion.

4.1 Probing Security of K-Linear Circuits

This subsection contains two technical results Lemmas 1 and 2 that are building
blocks for proving t-probing security of ωd-masked circuits.

From a high level, the first Lemma 1 claims that when degK(ω) ≥ d, the
vector ωd is never in the span of � < d vectors over K, where K is a subfield of
F. The intuition of the connection between this statement and probing security
is as follows: This statement says, roughly speaking, that the probes are linearly
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independent of the decoding operation, and this statement is in turn used to
prove the probabilistic independence between probes and secret in Lemma 2.

To illustrate the correspondance between K-linear circuits and threshold-
probing security, consider a t-probing adversary against some circuit C, taking
as input a uniform ωd-encoding of the secret. We assume that the adversary
has no prior knowledge on the secret a = ωT

d a manipulated by C, hence from
the adversary’s perspective, before probing, a is distributed uniformly over F

d.
Now, say we can force every intermediate value of our circuit C to be K-linear in
a. Then, when the adversary probes t < d linearly independent inner products
of the encoding a, he receives some values v ∈ F

t of the form v = Pa where
P ∈ Kt×d. The probability that the secret is some a′ ∈ F, from the adversary’s
perspective, is then proportional to the number of solutions to the equations
v = Pa and ωT

d a = a′. When degK(ω) ≥ d is satisfied, Lemma 1 tells us that
ωd /∈ Span PT , from which follows that the set of solutions to the latter equations
is an affine subspace of dimension d − t − 1, of cardinality |F|d−t−1 no matter
what a′ ∈ F is. In other words, the secret in the adversary’s view is distributed
uniformly random, therefore the adversary did not learn anything by probing,
which is t-probing security.

We prove (in a slightly more general fashion) the result sketched above in
Lemma 2. This Lemma is central in our framework: every security notion intro-
duced in the next subsection relates to it. The convenient form of Lemma 2 makes
it likely to find other applications in constructing efficient masked gadgets.

Lemma 1. Let F be a finite field, K be a subfield of F, P ∈ Kt×d such that
rank P = t and ω ∈ F. If degK(ω) ≥ d and t < d, then

rank
[

P
ωT

d

]
= t + 1.

Proof. Let us assume for one moment that rank
[

P
ωT

d

]
= t, i.e ωd ∈ Span PT .

This means that there exists t coefficients λi ∈ F
t such that PT λ = ωd. Now,

since t < d, there exists vectors pt+1, . . . ,pd with coefficients in K that complete
P into an invertible matrix. We let Q be its inverse, and we write q the last row
of Q. We have

[
PT |pt+1| . . . |pd

]

⎡

⎢⎢⎢⎣

λ
0
...
0

⎤

⎥⎥⎥⎦ = ωd

⎡

⎢⎢⎢⎣

λ
0
...
0

⎤

⎥⎥⎥⎦ = Qωd.
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Taking the last row in the last equality, we get qT ωd = 0, and due to the
invertibility of Q, q = 0. In other words, the polynomial with coefficients q
cancels ω and has degree at most d−1, which is a contradiction with degK(ω) ≥
d, and the claim follows.

Lemma 2. Let d be an order of masking, C be a circuit taking as input a uniform
ωd-encoding x with ω ∈ F. If all the intermediate variables p of C are of the form
p(x) = pT x for some vector p ∈ Kd, then C is d − 1-probing secure.

Proof. Let A be a d−1-probing adversary against C, probing a set P of interme-
diate values of C. Let φ be the distribution of the secret input x, inducing by uni-
formity a distribution φ̄(x) = 1

|F|d−1 φ(ωT x). There exists a matrix P ∈ K(d−1)×d

such that P (x) = Px. We assume without loss of generality that P is full-rank,
otherwise some rows of P are redundant and the matrix P′ obtained by removing
redundancy defines a set of probes P ′ ≥ P , and is full-rank. For x ∈ F,v ∈ F

d−1,
we have

P(ωT
d x = x ∩ P (x) = v) = P(ωT

d x = x ∩ Px = v) (1)

= φ̄

(
ker

[
P
ωT

d

]
+ x∗

)
(2)

= φ̄ (x∗) =
1

|F|d−1
φ(x) (3)

= P(P (x) = v)) · P(ωT
d x = x), (4)

where Eq. (1) is the hypothesis of the Lemma, Eq. (2) holds for some solution

x∗ to the equation
[

P
ωT

d

]
x∗ =

[
v
x

]
, Equation (3) follows from Lemma 1 which

implies that the matrix
[

P
ωT

d

]
is of rank d, therefore its kernel is 0, and Eq. (4)

holds because P(P (x) = v) = P(x ∈ kerP + x′) = 1
|F|d−1

∑
y∈F

φ(y) = 1
|F|d−1 ,

where x′ is an offset vector solution to P (x′) = v. Since we have P(P (x) = v) =
|F|−(d−1) and φ(x) = P(ωT

d x = x), we conclude independence.

4.2 Weaker Condition for Region-Probing Security in Extension
Fields

In this section, we extend the results of the above subsection to circuits manipu-
lating several ωd-encodings. Namely, we introduce the RTIK security notion and
show that RTIK circuits are region-probing secure. Rephrasing (and simplifying)
the RTIK property: an ωd-masked circuit C is said RTIK when any set of probes
P can be reduced to a set of probes Q in which every probe is K-linear in a
single ωd-masked encoding.
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Definition 9 (Reducible-To-Independent-K-Linear (RTIK)). Let C be
a circuit over a finite field F, K be a subfield of F, W be the set of wires of C
and (x1, . . . ,xn) be mutually independent ωd-encodings. We say that C is RTIK
w.r.t (x1, . . . ,xn) when for all set of probes P ⊂ W, there exists a set of probes
Q = (Q1, . . . , Qn) ⊂ W such that the following holds:

1. Q ≥ P
2. ∀i ∈ [n], |Qi| ≤ |P |
3. For all i ∈ [n], every probe in Qi is a linear function of xi over K.

Theorem 2 (Security of RTIK circuits.). Let n, d be integers, C be a circuit
over a finite field F, K be a subfield of F, W be the set of wires of C, ω ∈ F be a
field element such that degK(ω) ≥ d and (x1, . . . ,xn) be mutually independent
ωd-encodings.

If C is RTIK with respect to (x1, . . . ,xn), then there exists a number m ≥ n,
a ratio r, and m regions (C1, . . . , Cm) such that C is r-region-probing secure with
respect to (C1, . . . , Cm). The probing ratio r is given by

min
i∈[n]

⎛

⎜⎜⎜⎝
d − 1∑

I⊂[n]
s.t i∈I

|WI |

⎞

⎟⎟⎟⎠ ,

WI and the subcircuits C1, . . . , Cm are explicited in the proof.

Regions and Probing Ratio. Our proof of Theorem 2 is tight for two reasons.
First, it is tight in the sense that any ratio r greater than the one defined in the
proof leads to an attack in the region-probing model. Second, it is tight in the
sense that there exists an RTIK circuit C (wrt encodings x1, . . . ,xn) such that
the ratio r satisfies r|C| = n(d − 1), which is optimal. The latter justifies an
improvement upon the direct reduction from the threshold probing model.

4.3 Composition Notions for RTIK Circuits

We first show that some RTIK gadgets with a nice additionnal feature can be
composed naively and still enjoy region-probing security.

Theorem 3. Let C be a circuit over a finite field F, and K be a subfield of F.
If C can be split into two disjoint subcircuits C1, C2 such that

1. C1 is RTIK with respect to encodings (x1
1, . . . ,x

1
n)

2. C2 is RTIK with respect to encodings (x2
1, . . . ,x

2
m)

3. The intersection of the input encodings of C2 and the output encodings of C1

is contained in both (x1
1, . . . ,x

1
n) and (x2

1, . . . ,x
2
m),

then C is RTIK.
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On the Extra Condition for Naive Composition of RTIK Circuits.
The condition 2. from the Theorem above asks, roughly speaking, that when
evaluating C2 on (part of) the output of C1, the encodings that are passed on
from C1 to C2 are part of those vectors that define the RTIK property for both
circuits. In practice, we are not aware of any combination of useful circuits that
do not verify the aforementioned property. In all generality, we were not able
to prove that this condition is always verified, but all our gadgets, as well as
all coordinate-wise gadgets do verify the condition, and any circuit composed of
our gadgets also verifies this condition.

Composition of More Than Two Gadgets. As one would expect, it is
possible to prove that the composition of several gadgets which enjoy the nice
extra composability feature is RTIK. Indeed, by induction, one can step by step
prove using Theorem 3 that the successive compositions are indeed RTIK, as the
property propagates with no slack from two circuits to their composition. The
fact that there is no slack is ensured by 2. from Definition 9. While it is possible
to construct gadgets that verify 1. 2. and 4. as well as |Qi| ≤ α|P | for some
slack factor α (e.g. the NaiveFold algorithm defined in Sect. 5.1), we decide not
to introduce this extra notation as the slack factor of a compound circuit grows
exponentially with the number of subcircuits, and thus leads to rather inefficient
constructions.

Why Refreshing a Secure Circuit? Again, the probing ratio r is given by
the minimum over i of the individual d−1∑ |WI | , where I is a subset of indices
containing i, and WI is the set of wires mapped to |I| probes, each on a single
encoding xj , j ∈ I. When one of the subcircuits

⋃

I⊂[n]
i∈I

WI ,

is particularly large compared to the others, it may be beneficial to break it
down into smaller independent subcircuits so as to increase the security of the
compound circuit. This act of splitting a circuit into subcircuits can be done
using an IOS refresh on the encodings, but the weaker notion of KIOS, more
adapted to our RTIK circuits, is also suited. This notion is very similar to the
IOS notion, thus we follow a similar path towards defining it.

Definition 10. (Reducible-To-K-Linear) Let ω ∈ F and K be a subfield of F.
Consider a gadget R taking as input a dimension d and returning an ωd-encoding
r of 0. Let α > 0 be the slack factor of R. We say that R is α-Reducible-To-K-
Linear (RTK) when the output distribution of R is a uniform ωd-sharing of 0,
and for any set of independent probes P on R with |P | = t < d, there exists sets
of probes Q1, Q2 such that

1) |Q1| ≤ αt.
2) (Q1, Q2) ≥ P
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3) Every probe in Q1 is K-linear in r.
4) The distributions Q2 and (r|Q1) are independent.

Notice that with this definition, if R is RTC with respect to ωd, then R is
1-RTK. We now define the security notion achieved by the ωd-encoding refresh
gadget obtained by adding coordinate-wise a fresh ωd-encoding of 0 to the input.
The intuition why the KIOS security notion for refresh gadget brings composition
security is similar to the one for IOS refresh gadgets. If we have y = r+x, where
x is some input ωd-encoding and r is generated using an α-RTK generator of
encodings of 0, then we can reduce the probes in the α-RTK to K-linear probes
on r, given by some matrix P. In the next reduction step, we give to the adversary
Px and Py, which are still both K-linear. We can then remove the probes on r
as they are redundant, and that way we achieve separation between x and y.

Definition 11. ((K-Input-Output Separative)). Let ω ∈ F, K be a subfield
of F, α > 0 and G be a gadget taking as input an ωd-encoding x, and returning
an ωd-encoding y of the same secret as x. We say that G is K-Input-Output
Separative (KIOS) when the distribution of y is uniform conditioned on y(ω) =
x(ω) and for every set of t probes P on G, there exists three sets of probes
Qx, Qy, Q2 such that

1. |Qx| ≤ αt, |Qy| ≤ αt
2. (Qx, Qy, Q2) ≤ P
3. Every probe in Qx is K-linear in x, and every probe in Qy is K-linear in y
4. The distributions Q2 and ((x,y)|(Qx, Qy)) are independent

We finally state in the Theorem below that placing a KIOS refresh in between
RTIK circuits achieves region-probing security as well. The idea behind this com-
position Theorem is very similar to the intuition detailed in [GPRV21] on IOS
composition. The basic idea is that when C2 takes as input the output of some
circuit C1, one applies a KIOS refresh gadget on each input encoding of C2.
In the reduction, using the KIOS property, the leakage of the refresh is trans-
ferred to K-linear probes on C1 and C2. The leakage from the two subcircuits
are then independent, and from the RTIK property, those leakages are K-linear,
and Lemma 2 yields the region probing security.

Randomness/Security Tradeoffs of Refreshing. As stated throughout the
subsection, using KIOS refresh gadgets on the encodings increases the amount
of encodings (x1, . . . ,xn) in the RTIK definition, which in turn increases the
number of subcircuits in the region-probing security of the latter circuit, and
eventually increases the region-probing ratio r. One has to keep in mind that
refreshing the shares of an encoding is costly in terms of randomness (and slightly
increases the total number of wires in the circuit), thus one has to carefully
optimize the amount of refreshing in a circuit to reach the desired security level.
Notice that we assume that we use a KIOS refresh gadget in the statement of the
KIOS composition Theorem with slack factor 1. Indeed, when the slack factor
of the KIOS refresh is 1, then the resulting circuit is RTIK, but when the slack
factor α > 1, the resulting circuit is not RTIK as it does not verify the property
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3. of the RTIK definition, but it does verify the other ones 1. 2. and 4. When
α > 1, the resulting circuit remains r-region probing secure, but the number of
tolerated probes per region is divided by α.

Theorem 4. (KIOS Composition Theorem). Let C be a circuit over a finite
field F, and K be a subfield of F. If there exists two disjoint RTIK subcircuits
C1, C2 of C such that C is the composition of C1 and C2, then the circuit Ĉ obtained
by applying a 1-KIOS refresh to the outputs of C1 that are inputs of C2 is RTIK.

5 Miscellaneous RTIK and KIOS Gadgets

This section contains two ωd-encodings building-block algorithms for construct-
ing a masked compiler. Both algorithms rely on an additional restriction on
d and degK(ω): For security in our framework of RTIK gadgets, we need
d ≤ degK(ω) and for correctness of the gadgets presented in this section, we
also need d ≥ degK(ω). In other words, we need ω to be of degree exactly d. A
classical result in algebra tells us that such a choice of ω is only possible when
d is a factor of [F : K]. The reason why we add the restriction d ≥ degK(ω) for
correctness is that we will exploit the minimal polynomial ω, which we write πω

throughout the section, in ways that are detailed in the subsections below.

5.1 Folding Gadget

This subsection is dedicated to a folding gadget that exploits the algebraic struc-
ture brought by ωd-encodings. Folding gadgets are those that on input some
ωd1-encoding x return an ωd2-encoding y of the same secret, where d1 ≥ d2.
Since we only need (d1, d2) = (2d − 1, d), we shall particularize to these specific
values in the following, but our construction extends to d1 ≥ 2d − 1. We first
recall the so-called NaiveFold algorithm, as used in [GJR18,GPRV21]. This fold-
ing algorithm does not require any extra condition to be correct, but entails a
factor two loss in probe tolerance.

Algorithm 3. NaiveFold
Require: ω2d−1-encoding x
Ensure: y ∈ F

d such that xT ω2d−1 = yT ωd

1: for i = 0 to d − 2 do
2: yi = xi + ωdxd+i

3: end for
4: yd−1 = xd−1

5: return y

As stated above, one problem with this compression is that in the current
state-of-the-art methods for proving probing security, when the adversary probes
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some xi + ωdxd+i, we have to give away both xi and xd+i. This entails a slack
factor of 2 that doubles the number of probes of the adversary, hence in the
end halves the number of probes tolerated in the region. Evaluating our folding
matrix is an RTIK circuit (in particular it has no slack factor), but it may also
contain more wires than the NaiveFold algorithm, thus the gain in probing ratio
is slightly fewer than a factor 2. We also remark that the NaiveFold algorithm
computes the reduction modulo (Xd − ωd), while the folding matrix computes
the reduction modulo πω.

The intuition of the construction is as follows: we define a full-rank folding
matrix F ∈ Kd×(2d−1), with coefficients in the subfield K, and mapping the
ω2d−1-encodings of some x ∈ F to the ωd-encodings of this same x. This way,
the computation of y = Fx is K-linear and the folding circuit is RTIK. The
existence of this matrix is only guaranteed when degK(ω) ≥ d, therefore, so we
can also use Lemma 2, we actually need the equality.

We now proceed to describe how to construct such a matrix, for a given ω and
d. Suppose degK(ω) = d. Then, the minimal polynomial πω of ω over K has
degree d, therefore π = ωd −πω is of degree d− 1 and is such that π(ω) = ωd. In
general, any ωd+i for 0 ≤ i ≤ d − 2 is a polynomial in ω with coefficients in K
and degree ≤ d − 1. Let us therefore write πi the column vector of coefficients
of the i-th polynomial, for example π0 = π. One can check that the matrix

F =
[
Id π0 π1 . . . πd−2

]

satisfies the equation FT ωd = ω2d−1. This implies that ωT
2d−1x = ωT

d Fx =
ωT

d y.

Optimizing the Choice of ω. We emphasize on the fact that one should
choose ω so as to minimize the count of operations in the folding process, to in
turn minimize the ratio of tolerated probes per gate in the region. The element
ω has to be chosen from a fixed field F, among the elements of given degree
d over some fixed subfield K and it seems hard to make a general statement
about the sparsity of the matrix F. Nonetheless, in very specific cases, F can be
very sparse. For example, if K = Fp, and d + 1 is a prime, one can chose ω to
be a primitive d + 1-th root of unity. This way, the minimal polynomial of ω is
1 + X + · · · + Xd, and ωd+1 = 1. Then, for any 0 ≤ d − 3, we have ωd+1+i = ωi

and ωd = −∑d−1
i=0 ωi. In this particular setting, the computation of y = Fx

takes approximately 3d wires.

5.2 Refresh Gadgets

In this subsection, we describe a 2-RTK generator of ωd-encodings of 0 that only
uses d − 1 random field elements, as well as a 1-RTK generator of ωd-encodings
of 0 that uses d − 1 random field elements. While the second one seems strictly
better than the first one, it also contains more gates, and thus depending on
the use-case and the metric to be optimized, the first one may yield a better
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efficiency. We may recall that we are using the minimal polynomial πω of ω,
which can only be made possible if d|[F : K].

2-RTK Algorithm. For the first construction, we require, on top of the con-
dition d|[F : K], that the greatest common divisor of ωd − πω and Xd − ωd is
X − ω. The intuition how Algorithm 4 works is as follows. First, the algorithm
samples a uniformly random vector x ∈ F

d−1. Next, we compute s = πωx, and
we obtain a polynomial s of degree d + d − 2. The algorithm then returns r
as the naive fold of s as described in the subsection above. The correctness is
verified by construction: the evaluation of r in ω is 0 since πω divides s and the
evaluation in ω is invariant through the naive fold. Remember that as explained
in the previous section, the algorithm that takes as input an ωd-encoding x and
returns y = x+r where r is generated by such an α-RTK generator of encodings
of 0 is α-KIOS.

Algorithm 4. PolyGenZero
Require: Masking order d with d = degK(ω)
Ensure: r ∈ F

d such that rT ωd = 0

1: x ← F
d−1

2: s = πωx
3: r = NaiveFold(s)
4: return r

Proposition 5. If degK(ω) = d and the greatest common divisor of πω and
Xd − ωd is X − ω, then PolyGenZero is 2-RTK.

1-RTK Algorithm. The second RTK algorithm that we detail here is very
similar to the refreshing procedure of Algorithm 8 that cuts the bilinear depen-
dencies of our optimized RTIK multiplication gadget. We detail the instantiation
of this RTK algorithm with Karatsuba’s multiplication. More details on the asso-
ciated evaluation matrix M1 and interpolation matrix M2 can be found in the
full version of the paper. We start off by fixing a polynomial u ∈ F

d with the
following properties:

The Karatsuba evaluationu′ = M1uhas all non-zero entries (5)
The greatest common divisor ofu(X) and πω(X) is X − ω. (6)

We store the fix evaluation vector u′. Then, Algorithm 5 samples a uniformly
random polynomial r ∈ F

d, which therefore encodes a uniformly random value.
We compute its Karatsuba evaluation of r′ = M1r, and multiply this vector
with u′ coordinate-wise to obtain x′ = r′ � u′. Finally, we return s = FM2x′,
which is the folding of the Karatsuba’s interpolation of x′.

Proposition 6. If degK(ω) = d and the vector u ∈ F
d is such that Eqs. (5) and

(6) hold, then Algorithm 5 is a 1-RTK generator of ωd-encodings of 0.
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Algorithm 5. KaratsubaRTK
Require: Masking order d with d = degK(ω)
Ensure: s ∈ F

d such that sT ωd = 0

1: r ← F
d−1

2: r′ = M1r
3: x′ = r′ � u′

4: s = FM2(x
′)

5: return s

5.3 Square Gadget in Characteristic 2

In this subsection, we show that the usual square gadget in characteristic 2 is
RTIK. The typical example of use of this gadget is to compute the inverse of an
element of F256 in the AES S-box as a subalgorithm of the square-and-multiply
computation of the 255-th power. The RTIK security of this gadget falls into
the wider class of coordinate-wise gadgets.

The algorithm works as follows: since we are working in characteristic 2, we
have the classical identity that for any x, y ∈ F, (x + y)2 = x2 + y2. We apply
this identity to the decryption of the encoding x:

(
d−1∑

i=0

xiω
i

)2

=
d−1∑

i=0

x2
i ω

2i.

In other words, to compute and encoding y of the square of xT ωd, we can
square each coordinate of x, and multiply the result coordinate-wise with the
vector w = (ω−i)0≤i≤d−1. Correctness follows from the latter identity, and since
all the operations are coordinate-wise, this gadget is RTIK.

Algorithm 6. SquareGadget
Require: Encoding x ∈ F

d of length d
Ensure: y ∈ F

d such that yT ωd = (xT ωd)2

1: z = x2 � Coordinate-wise operation
2: y = z � w
3: return y

6 Subquadratic Multiplication Gadgets

In this section, we show that the FFT-based multiplication gadget from GPRV
[GPRV21] can be proven secure in the region-probing model - provided that
there is sufficient structure in F for the targeted number of shares. The frame-
work that we prove secure in the first subsection is actually a generalization of
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GPRV, where the evaluation-interpolation polynomial multiplication algorithm
used does not have to be the FFT, but any evaluation-interpolation-based mul-
tiplication gadget. There is a counterpart for using a polynomial multiplication
with low bilinear multiplication complexity: roughly speaking, the fewer bilinear
multiplications, the lower the upper bound on the available number of shares. In
the second subsection, we detail an optimized version of the previous construc-
tion based on Karatsuba’s multiplication. This masked multiplication gadget
is RTIK (thus in the proper setting, it is region-probing secure) and performs
competitively well (see the full version for detailed comparison with existing
gadgets.) The mutliplication gadgets presented in this section verify the extra
composability condition from Theorem 3.

6.1 (Re)Revisited Quasilinear Masked Multiplication:
Region-Probing Security Proof for GPRV

In this subsection, we show that (almost) any polynomial multiplication algo-
rithm can be turned into a masked multiplication gadget. More precisely, the
polynomial multiplication gadgets that fit our transformation ̂ are those algo-
rithms that are based on evaluation-interpolation. This definition encompasses
Karatsuba’s algorithm, all Toom-Cook variants (which contains Karatsuba) and
the FFT. The FFT instantiation of this transformation is GPRV’s multiplica-
tion.

Definition 12. (Evaluation-Interpolation-Based Polynomial Multipli-
cation Algorithms). Let M be an algorithm taking as input two polynomials
of degree d − 1 that returns the product of the two inputs and K a subfield
of F. We say that M is a K-Interpolation-Multiplication algorithm (K-IM for
short) when there exists matrices M1,M2 with coefficients in K such that for
any (a,b) ∈ Fd−1[X]2, we have M(a, b) = M2 · (M1a � M1b).

The architecture of our transformation applied to the FFT follows the
blueprint from [GPRV21], whose security relies on the assumption that the cir-
cuits computing the evaluation and interpolation of the FFT are t-probing secure
for some t. The assumption can be tested by exhausting the subsets of probes
for a given size among the circuits, which is only possible for small number of
shares. Our gadgets on the other hand are proven RTIK, which in turn yields
region-probing security through Lemma 1. Our gadgets are thus theoretically
sound, since they rely on no assumption, but rather a condition relating the
multiplication algorithm M, the order of masking d and to some extent the size
of F (we need d ≤ log |F|). This condition is d ≤ k where k = [F : K], in order
to apply Lemma 1. To be specific, K is defined as the subfield such that M is
a K-IM, as defined in Definition 12. In other words, K is the smallest subfield
of F such that the evaluation and interpolation operations induced by M are
K-linear.

Intuition of the Transformation. The transformation of a suitable multipli-
cation algorithm M taking as input two polynomials a,b into a secure multi-
plication gadget works as follows. Since M can be split into two phases, namely
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evaluation and interpolation, our gadget M̂ starts by computing the evalua-
tion of both polynomial entries a′ = M1a and b′ = M1b. Then, M̂ computes
the evaluation x′ = a′ � b′ of the product ab by multiplying coordinate-wise
their evaluations. Before proceeding to interpolation, we need to cut the bilinear
dependencies between a,b, which is done using the IOS refresh template Algo-
rithm 2, with a suitably chosen v (that depends on the interpolation of M) and
ArithGenZero Algorithm 1. M̂ now computes the interpolation of the refreshed
encoding y′, which yields the 2d − 1 coefficients of a polynomial z encoding ab.
Notice that if a(ω) = a, b(ω) = b, we want to find a polynomial c that encodes
ab, for the same ω and masking order d. To this end, we multiply z with the
folding matrix F so c = Fz has degree d− 1, and c(ω) = z(ω) = a(ω)b(ω) = ab,
and the algorithm finally returns this c. The construction of the matrix F is
detailed in Sect. 5.1.4

Intuition of the Security Proof. By definition of K, all the wires in the eval-
uation and interpolation subcircuits are K-linear. When the adversary probes
an xi = a′

ib
′
i, the reduction gives him both factors a′

i, b
′
i, which we recall are K-

linear functions of a,b. The effect of the refresh is to create a third independent
encoding c (the output of the gadget), together with a third probing region in
which the probes are reducible to K-linear functions of c. Notice that since the
length of x is T (d) (the multiplication complexity of M), the cost of this refresh
in randomness is T (d) log T (d)/2. When the folding matrix F does not exist, one
can use the NaiveFold algorithm instead. Probes in the NaiveFold of the form
(zi + ωdzd+i) are reduced to (zi, zd+i), doubling the total number of probes of
the adversary in the circuit.

Algorithm 7. Multiplication gadget M̂(a,b). The algorithm R on line 4 is
Algorithm 2 instantiated with ArithGenZero
Require: A K-IM M with matrices M1,M2, folding matrix F (see Subsection 5.1)

and two input encodings a,b ∈ F
d

Ensure: c ∈ F
d such that ωT

d a · ωT
d b = ωT

d c

1: a′ = M1a � Evaluation of a
2: b′ = M1b � Evaluation of b
3: x′ = a′ � b′ � Component-wise multiplication of evaluations
4: y′ = R(x′,MT

2 ω2d−1) � Refresh
5: z = M2y

′ � Interpolation of the product
6: c = Fz � Folding
7: return c

4 We assume that the folding matrix exists i.e d|[F : K]. If this condition is not verified,
one can still use the NaiveFold at the cost of roughly halving the tolerated probing
ratio.



264 M. Plançon

Theorem 5. Let d be an order of masking, K be a subfield of F, M be a K-IM
and ω ∈ F such that degK(ω) = d. Then, the instantiation of Algorithm 7 with
M is a correct RTIK multiplication gadget.

6.2 Efficient Karatsuba-Based Multiplication Gadget

In this subsection, we detail an optimized version of the GPRV-type transforma-
tion from the previous subsection. The optimizations come from various technical
improvements detailed below. We assume in the description of Algorithm 8 that
d is a divisor of k, where k is the degree of F over its prime field. This assumption
allows us to work with the degree d minimal polynomial π of ω over K, hence
use the folding matrix Sect. 5.1.

Choice of Karatsuba’s Multiplication. Choosing particularly Karatuba’s
multiplication benefits our algorithm in several ways. Firstly, Karatsuba’s algo-
rithm offers a trade-off between the size of the circuit and the number of bilinear
multiplications that is advantageous for degrees relevant to masking in prac-
tice (e.g. between 2 and a few dozens). Second, the subfield K associated to
Karatuba’s algorithm is F’s prime field, which maximizes the degree k of F/K.
Remind that in our framework, the maximum number of probes per region is
k − 1. Finally, Karatsuba’s algorithm verifies a crucial property for the random-
ness optimization detailed below.

Linear Randomness. The transformation presented in Sect. 6.1 yields a mul-
tiplication gadget running in the same time O(T (d)) as M, and requiring
O(T (d) log T (d)) random field elements. The randomness cost of the multipli-
cation comes solely from the use of ArithGenZero on the evaluation vector of
the product. Intuitively, it may seem expensive to spend T (d) log T (d)/2 ran-
dom field elements on refreshing an encoding that masks the product of the two
inputs. The encoding x′ to be refreshed is even compressed into the ωd-encoding
c, thus a single ωd-encoding of 0 is enough entropy to mask x′. To refresh x′

into y′, we compute x′ = y′ +r′ �u′ as follows. We sample a completely uniform
ωd-encoding r from F

d, and compute its Karatsuba’s evaluation r′ = M1r. We
then multiply this vector r′ coordinate-wise with a fixed vector u′ and add this
vector to x′ to obtain y′. This vector u′ is the Karatsuba’s evaluation of some
fixed polynomial u satisfying the following two properties.

1. We require that u is such that its evaluation u′ has all non-zero coefficients.
This condition allows us to swap the probes of the form r′

i for probes of the
form r′

iu
′
i.

2. We require that the GCD of u(X) and π(X) is X−ω. The first consequence of
the latter condition is that u(ω) = 0, thus ru(ω) = 0 from which we deduce
the correctness of the gadget. The second consequence of this condition is
that the reduction modulo (π) of the polynomial ru is therefore a uniformly
random encoding of 0, from which we conclude the mutual independence of
a,b, c.
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Special Variant for d = 2. We mention that a variant of Algorithm 8, where r
is sampled with an RTC generator of encodings of 0 such as ArithGenZero and
u only has to be such that u′ has all non-zero entries. This variant is also RTIK
and uses d log d

2 random elements. While d log d
2 means more random elements

than the d random elements needed for Algorithm 8 whenever d ≥ 3, for d = 2,
this variant uses only one random element versus two for Algorithm 8.

Algorithm 8. Multiplication gadget karaopti(a,b)
Require: a,b ∈ F

d independent encodings
Ensure: c ∈ F

d such that ωT
d a · ωT

d b = ωT
d c

1: a′ = M1a � Evaluation of a
2: b′ = M1b � Evaluation of b
3: x′ = a′ � b′ � Share-wise multiplication
4: r ← F

d � Fresh uniform encoding
5: r′ = M1r
6: s′ = r′ � u′

7: y′ = x′ + s′ � Refresh
8: z = M2y

′ � Interpolation of the product
9: c = Fz � Folding

10: return c

Theorem 6. Let F be a finite field of degree k over its prime field K, ω ∈ F

be a fixed element of F, π be the minimal polynomial of ω over K, d be the
number of shares and u ∈ F

d a fixed polynomial. Let M1,M2 be the evaluation
and interpolation matrices of Karatsuba’s multiplication. We assume that the
two entries a,b are mutually independent encodings.

If we have the following three properties:

1. degK(ω) = d
2. gcd(u(X), π(X)) = X − ω
3. M1u = u′ has all non-zero coefficients

then karaopti is a correct RTIK multiplication gadget with respect to a,b, c.
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Abstract. Private set intersection (PSI) is one of the most important
privacy-enhancing technologies with applications such as malware and
spam detection, recognition of child pornography, contact discovery, or,
more recently, contact tracing. In this paper, we investigate how PSI can be
constructed and implemented simply and practically efficient. To this end,
a natural possibility is the use of trusted execution environments (TEEs),
which are commonly used in place of a trusted third party due to their
presumed security guarantees. However, this trust is often not warranted:
Today’s TEEs like Intel SGX suffer from a number of side-channels that
allow the host to learn secrets of a TEE, unless countermeasures are taken.
Furthermore, due to the high complexity and closed-source nature, it can-
not be ruled out that a TEE is passively corrupted, i.e. leaks secrets to
the manufacturer or a government agency such as the NSA. When con-
structing a protocol using TEEs, such (potential) vulnerabilities need to
be accounted for. Otherwise, all security may be lost.

We propose a protocol for two-party PSI whose security holds in a set-
ting where TEEs cannot be fully trusted, e.g. due to the existence of side-
channels. In particular, we deal with the possibilities that i) the TEE is
completely transparent for the host, except for very simple secure cryp-
tographic operations or ii) that it leaks all secrets to a third party, e.g.
the manufacturer. Even in this challenging setting, our protocol is not
only very fast, but also conceptually simple, which is an important feature
as more complex protocols tend to be implemented with subtle security
faults.

To formally capture this setting, we define variants of the ideal func-
tionality for TEEs due to Pass et al. (EUROCRYPT 2017). Using these
functionalities, we prove our protocol’s security, which holds under univer-
sal composition. To illustrate the usefulness of our model, we sketch other
possible applications like (randomized) oblivious transfer or private com-
putation of the Hamming distance.

Our PSI implementation, which uses Intel SGX as TEE, computes
the intersection between two sets with 224 128-bit elements in 7.3 s. This
makes our protocol the fastest PSI protocol to date with respect to single-
threaded performance.

Keywords: private set intersection · universal composability · trusted
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1 Introduction

Private set intersection (PSI) allows mutually distrusting parties P1, . . . , Pn with
input sets S1, . . . , Sn to compute the intersection S = S1 ∩ · · · ∩ Sn such that a
dishonest party does not learn anything about another party’s set that it cannot
compute from its own input and the intersection S.

PSI can be used for a number of problems, making it an important privacy-
enhancing technology:

– malware [45,46] or spam [23] detection, where a server holds a list of signa-
tures against which a client wants to check an email or an executable,

– recognition of child pornography, for example on mobile devices or on cloud
storage, either by direct comparison or through perceptual hashing [30],

– contact discovery for messenger services [33],
– COVID contact tracing [21] or
– learning if secret agents have been arrested [3].

In many of these cases, it is not only suffices, but highly desirable for privacy
reasons if only one party learns the intersection result. This natural variant,
called one-sided PSI [42], has been widely considered in the literature (e.g. [3,
22,26,40–42]).

Security Notions for PSI. For a long time, the security of PSI protocols has
mainly been considered for the case of passive corruptions in a stand-alone set-
ting, i.e. for semi-honest adversaries that adhere to the protocol description and
without the presence of other protocol executions. While this setting allows (rela-
tively) efficient protocols, the offered security is often insufficient: In real life, one
or more of the protocol parties may behave maliciously with the intent of gain-
ing information about another party’s secrets. Thus, it is very important that
PSI protocols are secure even against malicious adversaries. Most recent works
like [40,41] have both a semi-honest and a malicious variant with the malicious
variant being a bit slower as it has to perform additional consistency checks.

Typically, protocols are seldom executed in isolation. When PSI is used for
contact discovery by a messenger on a smartphone, other apps are executed in
the background and may also execute cryptographic protocols, e.g. the estab-
lishment of TLS sessions. These other cryptographic protocols should not affect
the security of the PSI, and vice versa.

In order for security to hold in such a setting, an appropriate security notion
that is closed under general concurrent composition, i.e. holds in the presence
of arbitrary other protocols that are executed concurrently, is necessary. This is
fulfilled by Universally Composable (UC) security [10].

Composable Security. UC security is based on the simulation paradigm where
the “real-world” execution of a protocol π is compared to the “ideal-world” execu-
tion of an ideal functionality F , which acts as a trusted third party performing
the desired task by definition. For every real-world adversary A in the execution
with π, the existence of a corresponding ideal-world adversary S interacting with
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F , called the simulator, must be proven. Both executions must be indistinguish-
able for an interactive distinguisher Z, called the environment. The environment
(adaptively) chooses the parties’ inputs and may communicate with the adver-
sary freely throughout the execution. If Z cannot distinguish between the real
and the ideal execution, then all properties of the ideal execution, which is secure
by definition, carry over to the real execution. In contrast to stand-alone security
notions, this strong security notion is harder to achieve.

In order to achieve UC security, several prerequisites have to be met:

1. A trusted setup such as a common reference string, a public key infrastructure
or a random oracle is necessary [12,13].

2. The simulator has to be able to extract the inputs of a corrupted party.

For a large class of setups such as a common reference string or a public-key
infrastructure, a protocol’s communication complexity is lower-bounded by the
size of a party’s input (implicit in [36]). Unlike in protocols with stand-alone
security, we thus cannot hope to compress the set elements by simply (locally)
applying a cryptographic hash function, as this would prevent extraction.

Use of Random Oracles in Previous Protocols. In order to circumvent this
extractability problem and still allow compression, many protocols for compos-
able PSI (e.g. [22,40–42]) resort to the use of random oracles, which can be
thought of as idealized hash functions. As they provide input awareness, extrac-
tion and thus composable security becomes possible.

However, all security may be lost when the random oracle is instantiated by
e.g. a cryptographic hash function [14,15]. Thus, there usually is a large gap
between the security proof and the actual security provided by the modified
protocol used in the implementation. Moreover, security proofs may use proper-
ties such as code-correlation robustness (e.g. in [22,40]) provided by the random
oracle, which also may not be fulfilled by its instantiation.

Additional and more subtle problems may arise during protocol composition,
as several protocol instances may implicitly share state via a common hash func-
tion1 that is used to instantiate the random oracle, possibly allowing malleability
attacks. This also holds for global random oracles [9,16], unless special care to
obtain the session ID or hash key is taken. Thus, the gap between the protocol
with security proof and the implemented protocol may be even larger.

Hardware Assumptions as Alternatives. In order to close the gap between the
protocol under analysis and the protocol to be implemented while still achieving
high performance, in particular with network communication complexity that is
independent of the elements’ size, we investigate how hardware assumptions can
be leveraged to achieve composable PSI.

1 While this can be prevented in principle by using appropriate building blocks (e.g.
by obtaining an independent key for the hash function using a coin-toss build from a
non-malleable commitment scheme), we are not aware that this is done in practice.
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Trusted execution environments (TEEs), which have been available for sev-
eral years on mainstream CPUs, promise the secure execution of user-supplied
programs in isolation from the host system at near native speed. In particular,
some modern TEEs have a feature called remote attestation, which enables a
third party to obtain evidence about the code running inside a TEE. This is
sufficient to establish a cryptographic secret with the TEE. Using this secret,
private inputs can be passed into the TEE for further processing. Due to the
isolation properties of the TEE, secrets are assumed to be protected even if the
computer hosting the TEE is compromised.

With such strong assumptions, one-sided PSI for two parties seems trivial:
Both parties perform remote attestation with the TEE, thereby verifying that
it runs the expected code and establishing a secure channel. Via this secure
channel, they send their private inputs. After the TEE has received the inputs
and computed the intersection, one party obtains the output. However, it can be
shown that any protocol with only one TEE cannot satisfy UC security [7,39]
for many tasks, including PSI, highlighting the technical challenges in achieving
such a strong security notion.

Reducing Trust. Leaving this fact aside, the simple PSI protocol suffers from
several problems. First of all, the run-time of the program executed inside the
TEE may depend on a party’s secret input: If one input is {0}, the computation
might take one second. If it is {1}, it might take one minute. This inherent timing
side-channel, which can be easily observed from the outside by waiting for the
result, is not mitigated by TEEs.

Even if the run-time of the program in question is not subject to such gross
timing side-channels, the TEE usually needs to be trusted completely, which
may not be warranted:

– TEEs such as Intel SGX may not protect against even more subtle side-
channels resulting e.g. from memory access patterns by design [19], possibly
requiring expensive techniques such as oblivious RAM (ORAM) [1,24] to
mitigate them.

– They repeatedly suffered from a number of vulnerabilities exposing additional
side-channels, allowing the party hosting the TEE to learn all its secrets and
even impersonate a TEE [37,38,43,48].

Even when ignoring vulnerabilities, side-channels that exist by design could
render the above protocol completely insecure, as the party hosting the TEE
could be able to learn all the inputs of the other party. Thus, measures against
side-channels have to be included into the protocol design.

Transparent enclaves, introduced by [47], (also in [39]) consider this setting.
Transparent enclaves are able to securely perform remote attestation, but oth-
erwise have no secrets whatsoever with respect to their respective host, thereby
capturing all possible side-channels. Interestingly, such transparent enclaves still
allow for the efficient realization of cryptographic building blocks like commit-
ment schemes or zero-knowledge proof systems [39,47]. This is because the trans-
parent TEE only sees secrets belonging to its owner (and attestation secrets also
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remain secure, preventing a corrupted party to impersonate a TEE). For the
same reason, transparent enclaves can be used as efficient passive-security-to-
active-security compilers.

In line with the model of [39,47], we consider an intermediate setting between
fully trusted and fully transparent TEEs. In particular, we assume that very
simple cryptographic building blocks like key exchange or secret-key encryption
schemes are also implemented side-channel-free, just like the signature scheme
in [39] used for remote attestation. Otherwise, the enclaves are again completely
transparent. We believe that such an intermediate model is well-motivated as

– it can be plausibly realized (see Sect. 3.4 for a discussion) in practice,
– provides a natural framework for the design and analysis of protocols using

cryptography (or possibly other operations on sensitive data) in a setting
where side-channels may be present and

– if even the proposed simple operations cannot be performed securely, it may
be plausible to assume that remote attestation is also impossible.

We call such a TEE almost-transparent.
Additionally, we consider the setting of “passively corrupted” or “semi-honest”

TEEs where all TEEs leak all secrets (to a third party that does not participate
in the protocol execution as a party), e.g. to the manufacturer or some govern-
ment agency. In the case of Intel SGX, such fears are particularly plausible due
to the use of an Intel attestation service [29] or the out-of-band communication
supported by many chipsets [31]. A similar model has been proposed before [32].

Interestingly, even such a weak assumption enables to construct a protocol
for one-sided PSI that is practically efficient and features a low asymptotic com-
munication complexity.

In order to formally capture the proposed variants, we adapt the global ideal
functionality for TEEs of [39]. Given the fact that e.g. Intel SGX instances
share state via common attestation keys, it is crucial that this shared state is
also captured in the model. Here, this is achieved by using a global functionality
that can be used by multiple protocols, faithfully capturing subtleties that may
arise from such shared state. Using our adapted functionalities, we can prove
the security of our protocol in the UC framework [10,12], using the “Universal
Composability with Global Subroutines” (UCGS) [4] formalism to capture global
ideal functionalities within UC.

In contrast to protocols using random oracles, we believe that the structural
gap between the protocol under analysis and the protocol to be implemented is
much smaller in our case as our model faithfully captures the expected security
guarantees of TEEs without fully trusting them.

Looking ahead, we will demonstrate the usefulness of our model by proposing
protocols for additional interesting tasks like oblivious transfer or computing the
Hamming distance.

In the following, we give an informal description of our construction for PSI.
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1.1 The PSI Protocol in a Nutshell

In our protocol for two-party one-sided PSI, we assume that both protocol parties
P1 and P2 each have access to a TEE. Intuitively, we use the TEEs to

1. implement a “query-once” oracle for the party P1 that receives the output and
to

2. enforce honest behavior of the party P2 that does not receive the intersec-
tion, but can compute arbitrary hashes (without having any hashes of P1 to
compare against).

Using their TEEs together with local computations, P1 and P2 both create hashes
of their encrypted inputs (in order to improve communication efficiency), with
P2 eventually sending its hashes to P1, which can then compute the intersection.

The interaction with the TEEs is done in a way such that the TEEs neither
learn the parties’ inputs nor the intersection’s size.

P1 P2

S1 S2

FKE

k1, k3 k1, k3

eid1 eid2
eid2 eid1

k2 k2

C1 = {ci1 = Enc(k1, si1)
| si1 ∈ S1}
(ready, σ1)

σ1

(query)C ′
1 = {c′

i = Enc(k2, ci1)
| ci1 ∈ C1} k2

C2 = {ci2 = Enc(k3,Enc(k2,Enc(k1, si2)))
| si2 ∈ S2}

(output,UHF, H = {UHF(ci2)}, σH)

(output,UHF, H, σH)

{sj1 | sj1 ∈ S1 ∧ UHF(Enc(k3, c′
j)) ∈ H}

Fig. 1. Overview of the messages exchanged in our PSI protocol (simplified).
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Protocol Description. An overview of the messages exchanged is given in Fig. 1.
Initially, P1 and P2 exchange two keys k1 and k3 through the ideal functionality
for key exchange FKE. They use k1 to deterministically encrypt their sets S1 resp.
S2. P1 then sends the resulting set of ciphertexts C1 to its TEE, which encrypts
these ciphertexts deterministically with another key k2 that it has exchanged
with the TEE of P2, resulting in C ′

1. This key k2 can be obtained by P2 from its
TEE, but not by P1. P2 encrypts its ciphertexts of S2 under k1 iteratively also
under k2 and k3, resulting in the set C2. The ciphertexts in C2, each for one ele-
ment in S2, are sorted lexicographically (to later hide the “position” of elements
in the intersection) and then sent to P2’s TEE (via P2). P2’s TEE samples a
universal hash function UHF, evaluates UHF on the ciphertexts, resulting in the
set H and returns UHF and H to P2, which forwards the (signed) hashes to P1.
After having obtained the hashes H, P1 queries its TEE to obtain C ′

1. Using k3,
P1 also encrypts the ciphertexts in C ′

1 with k3, applies UHF and compares its
own hashes with the hashes obtained from P2 in H. Each element in S1 that
is associated with hashes of both parties is added to the intersection result S.
Finally, P1 sorts and outputs S. In our model, all messages coming from a TEE
are digitally signed with a trusted master key and include a TEE’s code and
ID. Thus, such signatures can be easily recognized and checked for authenticity.
Also, a party can verify that a TEE is running the expected code, which is part
of the protocol description. For the formal protocol definition, see Sect. 4.

Security. For an overview about which entity knows which keys, see Table 1.

Table 1. Overview of the used keys.

Key Known to
P1 P2 TEE of P1 TEE of P2

k1 � � – –
k2 – � � �
k3 � � – –

The intuition behind the protocol’s security is as follows: If P1 is corrupted,
P1 does not know the key k2 and can create ciphertexts under k2 only via its
TEE. This is possible only once, as specified by the program running on the TEE.
After having received hashes from P2, P1 is thus unable to create appropriate
ciphertexts for elements not in S1 that would, for example, allow it to perform
a brute-force search to learn inputs of S2 not in the intersection. At the same
time, it cannot decrypt ciphertexts of elements of P2 (even when ignoring the
information lost due to the application of the hash function). As the hashes result
from lexicographically sorted ciphertexts, a malicious P1 with partial knowledge
of P2’s input cannot learn anything about P2’s inputs not in the intersection from
the order of the transmitted hashes. (If we omitted the sorting, a party P1 with
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input {2} could distinguish between inputs {1, 2} and {2, 3} of P2 by observing if
the first or the second hash matches.) With respect to simulation-based security,
we note that the protocol does not continue unless P1 sends its ciphertexts C1

to the TEE. The simulator can observe this and decrypt the ciphertexts with
k1.

Conversely, if P2 is corrupted, privacy trivially follows from the fact that P2

does not see input-dependent messages from P1. Extractability of a corrupted
P2’s input follows from a similar argument like in the case of a corrupted P1,
together with the fact that the hash function is evaluated by the TEE, preventing
P2 from cheating after the extraction.

If P1 and P2 are honest, but both TEEs are passively corrupted in the sense
that they leak all information (including randomness of local cryptographic oper-
ations) to a third party, we observe the following: All private inputs of P1 to its
TEE are encrypted with k1, which the TEE does not know. The private inputs
of P2 are iteratively encrypted using keys k1, k2 and k3, where k3 is unknown
to the TEEs. Thus, jointly corrupted TEEs may learn the size of each party’s
input, but nothing else about them. Also, the intersection’s size remains hidden.

In any case, the program running on the TEEs is deterministic and does
not operate on secrets, with the exception of simple cryptographic assumptions,
which we assume to be secure, and, in particular, free of side channels. As a
consequence, side channels (which we assume do not affect these cryptographic
operations) do not affect the security of our protocol.

For the formal security proof, see the full version.

Implementation and Evaluation. We implemented our protocol with Intel SGX
enclaves using a single AES operation on 128-bit blocks as deterministic encryp-
tion. For the universal hash function, we selected xxhash with a randomly cho-
sen seed. We used the SGX remote attestation functionality to ensure that the
expected enclave code is running. To verify the remote attestation, the Intel
Attestation Service needs to be contacted and returns a signed confirmation of
the validity of the attestation data.

We evaluated the runtime of the protocol for different input set sizes. With
respect to the runtime, we distinguish between a constant input-independent
setup phase and an input-dependent online phase, whose runtime is linear in
the number of input elements. Computing the intersection of two sets with 224

128-bit elements takes 7.3 s, of which the setup phase, including communication
with the Intel Attestation Service, takes 2.0 s.

1.2 Our Contribution

We present a new approach for composable private set intersection, namely the
use of trusted execution environments (TEEs). This approach comes with a
number of benefits, namely

– very simple protocols, facilitating an easy analysis and implementation,
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– high practical performance and asymptotic complexity, with a single-threaded
performance that is better than the best known protocol for (composable and
maliciously secure) PSI and

– meaningful security guarantees, as the assumptions for the TEEs are com-
paratively weak. Moreover, there is no large gap between the protocol under
analysis and the protocol to be implemented. With random oracles, which
are usually used by the most efficient protocols, such a large gap exists.

In more detail, the network communication complexity of our protocol is in
Θ(poly(κ) + |S2| · λ), where λ is the statistical security parameter and |S2| the
cardinality of P2’s set. In particular, it is independent of the set elements’ size.
The run-time complexity of our protocol is in O(poly(κ, λ, �)) · (|S1| + |S2|)),
where � is an upper bound for the set elements’ size. Concretely, without having
the implementation explicitly optimized for bandwidth, we measure 135MByte
on sets of 224 elements, which is roughly 64.1 bits per element, outperforming
[41] at 300 bits per element for the same setting.

We achieve this performance by using TEEs, which are a powerful tool to
guarantee the correct and secure execution of a computation. In our protocol,
we use them i) to locally extract a corrupted party’s input, allowing the network
communication to be compressed and ii) to force honest behavior without having
to rely on e.g. zero-knowledge proofs.

A main advantage of our approach is that we do not require full trust in the
security of the used TEEs. Our main requirement is the correct attestation of an
execution, together with the existence of secure implementations for very simple
cryptographic building blocks like key exchange, deterministic encryption and
signature schemes, including secure handling of the keys.

Under these assumptions, our protocol can deal with the following cases:

– The TEE leaks all secrets to the host, except for locally performed simple
cryptographic operations. This captures a setting where side channels for the
general execution exist, but a limited set of operations can still be performed
securely, e.g. because they have been implemented in a way that addresses
platform-specific side-channels.

– The TEE leaks all secrets to the vendor or another party not participating in
the protocol execution, including secrets of locally performed cryptographic
operations. Intuitively, this captures the setting of a manufacturer or a gov-
ernment agency introducing backdoors to TEEs. (We call such enclaves semi-
honest or passively corrupted.)

To the best of our knowledge, we are the first to consider TEEs with a realistic
security model for the task of PSI. In any case, we can protect the private inputs
of honest parties P1 and P2 from the TEEs. Surprisingly, we can also protect the
size of the intersection from passively corrupted TEEs, which is not guaranteed
by naïve constructions using TEEs or some server-aided PSI protocols.

Our main technical tool consists of a deterministic secret-key encryption
scheme to hide a party’s inputs from the TEEs and the other party, while still
allowing efficient comparisons on ciphertexts. Using an appropriate operation
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mode, a deterministic encryption scheme can be constructed very efficiently using
an arbitrary block cipher such as AES. In particular, this allows fast implemen-
tations when accelerated AES is available, e.g. via the widely-available AES-NI
instruction set [25].

To reduce the communication complexity, we employ universal hashing. A
key insight is that this hashing must be performed by the TEE in order to allow
extraction.

In order to formally capture the properties of semi-honest or almost-
transparent TEEs, we extend the model of [39]. Using this extended functionality,
we prove the security of our protocol in the UC framework [4,10].

To demonstrate the efficiency of our approach, we also provide an implemen-
tation of our protocol using Intel SGX [19] as TEEs.

1.3 Related Work

Private set intersection has been intensively studied during the previous decades,
considering different aspects such as optimizing intersections between two parties
versus considering arbitrary many parties, having a server that does not collude
with the parties aide in the computation versus only having the parties take part
or semi-honest versus malicious security.

We focus the examination of existing PSI protocols on three other publica-
tions as they consider a similar setting compared to our work, are fairly recent
and highly efficient.

[40] introduces a new data structure called PaXoS (a probe-and-XOR of
strings) from which the authors build a PSI protocol. The protocol has both a
semi-honest and a malicious variant with only a small performance difference.
[22] generalizes the idea of encoding one input set into a data structure, and
improves the failure probability of such an encoding. The authors use amplifica-
tion techniques to ensure a low failure probability while simultaneously improv-
ing the runtime by 20–40%.

[41] further drastically improves the OKVS (oblivious key value store) con-
structions by using VOLE (vector oblivious linear evaluation) as the main prim-
itive. Using similar techniques as the other protocols, this work also has a semi-
honest and malicious variant with only a relatively small performance difference.

In order to achieve composable security and not resorting to random ora-
cles, we assume trusted hardware that may have side-channels or be corrupted
semi-honestly as a compromise between having no trusted hardware at all and
performing the whole computation blindly trusting the hardware. Such a use
case for trusted hardware was also considered by [32]. In their work, the authors
use SGX enclaves to generate correlated randomness like randomized oblivious
transfer tuples to use in generic stand-alone multi-party computation protocols.
Their security model assumes trusted hardware, like an independent server in
server-aided computation, that can only be corrupted independently of the par-
ties that execute the protocol. If the trusted hardware in [32] is passively cor-
rupted, the setting is comparable to our model of semi-honest enclaves (see
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Sect. 3.3).However, our achieved security notion is stronger, featuring universal
composability.

1.4 Insecurity of Previous Implementations

When giving a simulation-based proof of security, the simulator must be able to
faithfully simulate the execution by what it learns from the ideal functionality.
Often, protocols are given in pseudocode only, using mathematical abstractions
such as sets for the protocol parties’ inputs. When implementing the protocol,
these abstractions have to be instantiated using data structures, e.g. by lists or
arrays for variables that are typed as sets in the pseudocode.

A problem arises when these data structures have a different semantic. In
lists or arrays, elements are ordered, whereas sets may be unordered. This may
lead to subtle problems such as the implementation allowing to distinguish if an
honest party’s input is {1, 2} versus {2, 3}, even if the intersection is {2} in both
cases, due to the position of the matching element. If UC security is considered,
this is a problem, as the simulator only learns the intersection {2}, while the
environment knows the input {1, 2} resp. {2, 3}.

Two implementations [40,41] exhibit this problem, allowing to learn some-
thing about the input of the party that does not learn the intersection, because
the used data structures are ordered. Due to the use of (unordered) sets in the
protocol description, this is not accounted for in the proof. As the simulator is
not given this leakage, the simulators stated (implicitly) in [40,41] cannot cor-
rectly simulate in presence of this leakage. While the proof of security is arguably
sound, a different and insecure protocol is implemented. While even more severe,
this problem due to implementing a different protocol than the analyzed one is
similar to the one that exists when random oracles are replaced by hash functions
(see Use of Random Oracles in Previous Protocols in Sect. 1).

In order to fix the vulnerability, we propose the implementation to be mod-
ified to hide the order of the input, e.g. by (pseudo)randomly permuting it or
possibly by sorting the hashes or ciphertexts of the input, which also leads to a
(pseudo)random permutation. Unfortunately, the price to pay for this solution is
a decrease in efficiency, as sorting and permuting are computationally expensive.

We believe that this issue highlights a general problem with respect to the
usability of cryptographic protocols: Many important assumptions are implicit
(and thus overlooked later on, e.g. for the implementation), and today’s protocols
are increasingly complex in order to achieve the best performance or security
guarantees, making their security hard to analyze.

1.5 Outline

After the preliminaries in Sect. 2, we present our models for semi-trusted TEEs
in Sect. 3. Using these ideal functionalities, we give our construction for effi-
cient one-sided two-party private set intersection in Sect. 4. Then, we present
our implementation and evaluate its performance in Sect. 5. Finally, we present
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further applications of our model in Sect. 6. The security proof and a short intro-
duction to UC security can be found in the full version.

2 Preliminaries

2.1 Notation

For a probabilistic algorithm X, let x ← X(a) denote the output of X on input
a. For a set S, let s

$← S denote that s is chosen uniformly at random from S.
κ ∈ N denotes a (computational) security parameter, λ ∈ N a statistical one. For
a hybrid Hi, let outi denote its output.

2.2 Building Blocks and Security Notions

Deterministic Secret-Key Encryption. In our protocol, we use deterministic state-
less secret-key encryption schemes (SKE). It is well known that such encryption
schemes cannot fulfill the established notion of indistinguishability under chosen
plaintext attack (IND-CPA) security: Upon sending challenges (m0,m1) and
receiving a ciphertext c, the adversary can determine if c is associated with m0

or m1 by simply querying its encryption oracle on m0 or m1 and comparing the
result with c.

By restricting such queries, IND-CPA security can be meaningfully relaxed
for the deterministic and stateless setting. Instead of using the “find-then-guess”
variant of IND-CPA as in the example above, we propose a notion based on
the “left-or-right” (LoR) variant of IND-CPA security [6] (also in [8]), which
is often more convenient in reductions and equivalent to the find-then-guess
variant. In LoR-CPA, the adversary is not given a single challenge ciphertext c,
but interacts with a LoR oracle that can be queried multiple times on ciphertext
pairs (mi

0,m
i
1). Depending on the choice bit b, the adversary always receives

encryptions of mi
b.

Definition 1 (det-LoR-CPA Security for SKE). Let SKEdetCPA =
(Gen,Enc,Dec) be a deterministic SKE scheme and let Expdet-LoR-CPA

A,SKEdetCPA
(κ, z)

denote the output of the following experiment:

Experiment Expdet-LoR-CPA
A,SKEdetCPA

(κ, z):

1. Define OEnc(k, b,m0,m1) as Enc(k,mb).
2. k ← Gen(1κ)

3. b
$← {0, 1}

4. b′ ← A(1κ, z)OEnc(k,b,·,·)

5. Return 1 if b = b′ and 0 otherwise.

We say that SKEdetCPA is deterministic left-or-right-secure under chosen-
plaintext attack (det-LoR-CPA-secure) if for every legal PPT adversary A, there
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exists a negligible function negl such that for all κ ∈ N and all z ∈ {0, 1}∗, it
holds that Advdet-LoR-CPA

A,SKEdetCPA
:= |Pr[Expdet-LoR-CPA

A,SKEdetCPA
(κ, z) = 1] − 1

2 | ≤ negl(κ).
Let Q be the set of queries sent by A to OEnc. An adversary A is legal if it

holds that

– |mi
0| = |mi

1| for all (mi
0,m

i
1) ∈ Q and

– mi
0 = mj

0 ⇐⇒ mi
1 = mj

1 for all i, j in {1, . . . , |Q|}.
Looking ahead to our construction, we only reduce to the security of cipher-

texts created by honest parties. Thus, the adversary has no (implicit) access to
an encryption oracle. As such, the restrictions in Definition 1 for the adversary
are natural in the considered setting and do not require additional assumptions
about the adversary.

Key Exchange. Key exchange allows parties to exchange a secret key in the pres-
ence of an adversary. In the following, we re-state the definition of universally
composable key exchange from [17]. This definition can be satisfied by a variant
of the well-known Diffie-Hellman key exchange [20] if authenticated communica-
tion is available [17].

Definition 2 (Ideal Functionality FKE (adapted from [17])). FKE proceeds
as follows, running on security parameter κ, with parties P1, . . . , Pn and an
adversary S.

Upon receiving an input (Establish-session, sid , Pi, Pj , role) from some
party Pi, record the tuple (sid , Pi, Pj , role) and send this tuple to the adversary.
In addition, if there already is a recorded tuple (sid , Pj , Pi, role′) (either with
role′ �= role or role = role′) then proceed as follows:

1. If both Pi and Pj are uncorrupted then choose k
$← {0, 1}κ and make a private

delayed output (key, sid , k) to Pi and Pj.
2. If either Pi or Pj is corrupted, then send a message (Choose-value, sid , Pi, Pj)

to the adversary; receive a value k from the adversary, make outputs
(key, sid , k) to Pi and Pj and halt.

Universal Hash Functions. Universal hash functions (UHFs) [18] allow the com-
pression of elements with a bounded collision probability. In contrast to cryp-
tographic hash functions, collision resistance is only guaranteed if the UHF is
chosen after the elements to be hashed. However, UHFs exist unconditionally,
i.e. no complexity assumptions are required.

Definition 3 (Universal Hash Function). We say that a family of hash func-
tions Hλ = {h : Xλ → Yλ} is universal if for all x1, x2 ∈ Xλ such that x1 �= x2,
it holds that Pr[h(x1) = h(x2) | h ← Hλ] ≤ 1/|Yλ|, where the probability is over
the choice of h.

We usually consider Y to depend on a statistical security parameter λ instead
of a computational security parameter κ.
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3 Transparent Enclaves with Secure Operations

A secure enclave or trusted execution environment (TEE) a is a part of a system
isolated from any interference of other parts of the platform (e.g. by the operating
system or other applications running on the same system), promising the secure
execution of arbitrary user-defined programs.

Remote Attestation. The real power of enclaves comes in the form of so-called
remote attestation, which can be used to attest for another system that a specific
output was computed by an enclave running a specific program. Intuitively, a
remote attestation can be viewed as a signature of an enclave’s output together
with the enclave’s program code using a secret key that is only available to
the enclave. Often, e.g. in the case of Intel SGX, the verification key for such
a signature would be globally known and shared between all protocols using
enclaves, and as such a remote attestation would be verifiable by anyone.

Remote attestation can be used together with a key exchange to establish a
secure channel into an enclave: The enclave performs one side of the key exchange
and outputs the result with an attestation. The client verifies the attestation
and completes the key exchange. The attestation confirms to the client that
the other side of the key exchange was executed by an enclave running the
specified program, and, if the enclave program does not leak the secret, no one
outside will have access to the exchanged key. Additionally, the client can embed
a verification key into the enclave’s program and sign their part of the key
exchange to ensure that the enclave will only accept input from them. After the
key exchange has finished, the client can then send its inputs, encrypted with the
exchanged key using e.g. an IND-CCA-secure encryption scheme, to the enclave.

Computing Arbitrary Functionalities. TEEs with remote attestation seem to
solve secure computation problems very efficiently: The parties agree on a func-
tionality and a system that they will trust to run the enclave. Every party
providing input will perform a key exchange with the enclave and send their
input as described above. Having all parties embed a verification key into the
enclave’s program prevents the entity managing the trusted hardware to mix up
the parties’ inputs or swap them with their own. The enclave will perform the
desired computation and uses the same secure channels to send each party their
output.2

Side-Channels and Vulnerabilities. However, trusting the enclave completely
with the inputs might not be desirable: First of all, today’s enclaves like Intel
SGX may have side-channels by design, e.g. in the form of allowing the observa-
tion of memory access patterns, which may depend on secrets stored inside the
enclave.
2 Depending on the model considered, this approach may not yield provable security

for technical reasons. For example the model of [39] provably requires two TEEs for
any two-party functionality. However, as this is outside the scope of our paper, we
will not further discuss it and refer the interested reader to [39].
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Furthermore, the enclave might be subject to vulnerabilities. For Intel SGX,
there was a series of (now patched) attacks on enclaves that range from extracting
an enclave’s inner state, injecting computation faults into an enclave’s program
or even extracting the attestation key. This allows an attacker to forge attesta-
tions and thereby break the security of enclaves completely. Therefore, protocols
should require as little trust as possible.

Formal Models. Given their usefulness, TEEs have seen wide application in
cryptography, with several formal models existing (e.g. [5,32,39,47]). As we are
interested in universal composability, we focus on the work of [39].

Often having one verification key for the remote attestation for many enclaves,
e.g. as in the case of Intel SGX, a natural choice is to model TEEs in a framework
like the Generalized Universal Composability (GUC) framework [12], which is the
framework used by [39]. Following a recent result [4], global ideal functionalities
can also be captured within the standard UC framework, which has been done
for the ideal functionality of [39] in [7].

The ideal functionality of [39], called Gatt, models TEEs without any kind
of side-channels. Gatt uses a common signing key pair for signing remote attes-
tations, where everyone can obtain the verification key. Further, Gatt is parame-
terized with a list of parties that may install enclaves with arbitrary programs,
called the registry. Once the installation has been performed, the installing party
receives a handle for the corresponding enclave instance. A second interface of the
ideal functionality allows parties to resume the execution of their own enclaves
by providing input and obtain the program’s output together with a signature on
the session identifier, the enclave handle, the program’s code and the program’s
output. This signature models remote attestation.

Unfortunately, the ideal functionality Gatt is very optimistic in the sense that
it considers the TEE to be completely trusted and does not model any side-
channels—neither those inherent in the program that is to be executed, nor
those present e.g. in Intel SGX due to memory access patterns.

To alleviate this, [39] also propose a variant of Gatt to model so-called trans-
parent enclaves, first introduced by [47]. For transparent enclaves, it is assumed
that the attestation of the enclave system is secure (i.e. there will only be attes-
tations of correct enclave outputs with the program that produces them), but
that, at the same time, the enclave’s owner has access to all of the enclave’s
randomness. In such a model, performing a key exchange with the enclave is
useless, as the enclave owner would learn the secret key and could subsequently
decrypt ciphertexts containing secret inputs. Here, leaking the randomness seems
to capture many, if not all, side-channels.

Interestingly, transparent enclaves are still useful, as they can be used as very
efficient passive-security-to-active-security compilers. In particular, very efficient
protocols for commitments and zero-knowledge proofs are presented in [39].

A More Realistic Model. Given that Intel SGX’s remote attestation is (in part)
performed by a so-called quoting enclave provisioned by Intel that has access to
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the attestation key, but is not fundamentally different from any other enclave run-
ning on that system [19], transparent enclaves seem to be overly pessimistic. Of
course, Intel has spent significant effort in hardening the code of the attestation
enclave e.g. by using side-channel-free algorithms or placing memory barriers
after security checks to prevent speculative execution, but the same argument
might hold for careful implementations of cryptographic primitives offered by
the trusted cryptographic library provided by the Intel SGX SDK, which can be
used by any user-defined enclave program.

This observation suggests that there is a practically motivated and natural
middle ground between fully trusted enclaves and transparent enclaves where
additional cryptographic operations are possible in a secure way, whereas the
rest of the execution is subject to side-channels (unless countermeasures are
taken).

To this end, we extend the ideal functionality for transparent enclaves to addi-
tionally allow secure key exchange and symmetric encryption, in total analogy
to the digital signatures in [39]. This choice is motivated by what operations are
assumed to secure for Intel SGX, given appropriate side-channel-free implemen-
tations. However, we stress that this list is not final. Indeed, we envision further
variants of our ideal functionality depending on which cryptographic primitives
are needed and can plausibly be implemented in a secure way.

Adding these additional secure operations comes, however, with a caveat:
Only leaking the enclave’s randomness does no longer lead to a meaningful model.
In the original model, transparent enclaves could not keep a secret from the host
because the host could extract the key exchange by learning the randomness.
In our model, key exchange between enclaves is possible. Consider the following
protocol between parties P1 and P2 with enclaves E1 and E2 respectively:

1. E1 and E2 exchange a key k in a side-channel-free manner.
2. P1 sends its secret x to its enclave E1.
3. E1 encrypts x using k in a side-channel-free manner to the ciphertext c and

sends c to E2 (via P1 and P2).
4. E2 decrypts c to x using k in a side-channel-free manner and evaluates a

deterministic function f that is affected by side-channels, e.g. in the form of
memory access patterns, on x and halts without output.

Clearly, P2 should learn x in the above example. In the original model for trans-
parent enclaves, this would be the case as P2 would learn k via the leaked
randomness, could decrypt c and obtain x. If not for this leakage, P2 could not
learn x, as the computation of f is deterministic, leading to no leakage according
to the model.

In order to address this problem, we augment our ideal functionality to not
only leak randomness, but also i) the enclave memory as well as ii) the output
of secure operations, e.g. released keys. This leads again to a meaningful model.

By explicitly distinguishing between secure operations and a side-channel-
affected general execution, the requirements of an implementation become
explicit.
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3.1 Ideal Functionality with Secure Operations

We start with a definition of secure TEEs, i.e. TEEs without side-channels or
leakage. This definition is based on the definition of [39] (with a fix from [7]),
with the following differences:

1. In the original definition, the functionality is parameterized with a list of
parties reg (the registry) able to install programs. Intuitively, this captures
that only a subset of the protocol parties may have a TEE. In particular, the
adversary (resp. simulator) is unable to install a program if all parties in the
registry are honest. This leads to technical problems (see [39] for details). We
have chosen to allow all parties and the adversary to create TEEs by removing
reg. We believe that this is plausible in our practice-oriented setting due to
the wide availability of TEEs such as Intel SGX.

2. We introduce a number of secure enclave operations, allowing to e.g. exchange
keys between two enclaves or to perform deterministic encryption. While such
secure enclave operations are not necessary if the TEEs are fully trusted, they
are useful if we assume side-channels during the execution of enclave programs
(see Definitions 5 and 6). Note that in the original definition of transparent
enclaves [47], the signature scheme used for the attestation signatures is also
modeled to keep its security. If this were not the case, all security guarantees
would be lost as an adversary could completely impersonate a TEE.

Definition 4 (Ideal Functionality Gatt[Sig,SKE, κ]).
// initialization:
On initialize: (mpk,msk) ← Sig.Gen(1κ), T = ∅, S = ∅.

// public query interface
On receive∗ getpk from some P : Send mpk to P .

Secure enclave operations

On receive∗ (kex, eid2) from a TEE with EID eid1:

– Sample k
$← {0, 1}κ and hdl

$← {0, 1}κ.
– For i ∈ {1, 2}, send (key-exchange, eid1, eid2, eidi) to the adversary. Upon

confirmation, set S[eidi, hdl] = k and output (eid1, eid2, hdl) to the TEE with
eidi.

On receive∗ (ske.gen) from a TEE with EID eid:

– Let k ← SKE.Gen(1κ).
– Sample a random handle hdl

$← {0, 1}κ, set S[eid, hdl] = k and return hdl.

On receive∗ (ske.enc, hdl,m) from a TEE with EID eid:

– If there is no entry S[eid, hdl], abort. Otherwise, return
SKE.Enc(S[eid, hdl],m).
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On receive∗ (ske.dec, hdl, c) from a TEE with EID eid:

– If there is no entry S[eid, hdl], abort. Otherwise, return
SKE.Dec(S[eid, hdl], c).

On receive∗ (release-key, hdl) from a TEE with EID eid:

– If there is no entry S[eid, hdl], abort. Otherwise, return S[eid, hdl].

Normal enclave operations

// local interface — install an enclave:
On receive∗ (install, idx , prog) from some ITI μ where μ is either a protocol
party or the adversary:

– If P is honest, assert idx = sid .
– Generate nonce eid $← {0, 1}κ, store T [eid, μ] = (idx , prog,0), send eid to μ.

//local interface — resume an enclave
On receive∗ (resume, eid, inp) from some ITI where μ is either a protocol party
or the adversary:

– Let (idx , prog,mem) = T [eid, μ], abort if not found.
– Let (outp,mem′) = prog(inp,mem), update [eid, μ] = (idx , prog,mem′).
– Let σ = Sig.Sign(msk, (idx , eid, prog, outp)) and send (outp, σ) to μ.

Remark 1. For the sake of an easier description, the key exchange between
enclaves is modeled in an ideal way similar to Definition 2. Alternatively, we
could have incorporated an explicit protocol such as the signed Diffie-Hellman
key exchange.

Remark 2. Sometimes, we need to be able to iteratively perform secure enclave
operations without leaking intermediate results. For example, we might want to
encrypt a message m under a key with handle hdl and then encrypt the resulting
ciphertext with a key with a different handle hdl′ in a way that the ciphertext
resulting from the encryption with hdl is not leaked.

To this end, we can naturally augment the secure enclave operations to option-
ally return handles only and to accept them as inputs instead of real messages.
The release-key operation could be generalized to work on arbitrary handles.
However, for the sake of better readability, we have chosen to not to include
these additional modes of operation in the formal description of the model and
our protocols.

Following this basic definition, we define two variants of TEEs that capture
side-channels resp. semi-honest TEEs leaking all secrets to the adversary.
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3.2 Almost-Transparent Enclaves

We now consider a variant of the functionality in Definition 4 where all normal
enclave operations are affected by side-channels. Per the discussions above, it is
insufficient to only leak the used randomness in the setting we consider. Instead,
we also leak the pre-computation memory. Using this information, the computa-
tion can be fully reproduced, including its timing (which is not modeled), inputs
and outputs as well as memory access patterns.

Definition 5. (Almost-transparent Enclave Ĝatt). Ĝatt is defined identi-
cally to Gatt, except that besides outputting the pair (outp, σ) to the caller upon
the resume entry point, it also leaks to the caller

– all random bits internally generated during the computation,
– the enclave memory mem pre-execution and
– the output of secure operations.

Note that this definition, adapted from [39], does not include randomness or
memory used by secure enclave operations or the randomness used to generate
the signing key.

3.3 Semi-honest Enclaves

Apart from side-channels that leak information to a TEE’s host, we are also
interested in the setting where the TEE is passively corrupted and leaks all infor-
mation about the computation. In contrast to the leakage due to side-channels,
this leakage could be to a third party not participating in the protocol execu-
tion, e.g. the manufacturer or a government agency. The fear of such leakage
is plausible because many of today’s TEE implementations are very complex,
closed-source and could possibly interact with other hardware building blocks,
e.g. the network interface, without knowledge of the operating system (OS).
On Intel systems, out-of-band network communication is often supported by the
chipset [31]. This adversarial model has been previously considered in [32], albeit
in a much simpler model without composability.

Definition 6 (Semi-honest Enclave G̃att). G̃att is defined identically to Gatt,
except that for each activation, a tuple (inp, outp, r) is stored, where inp denotes
the functionality’s input, outp the output (if applicable, ⊥ otherwise) and r the
randomness used during the activation, including secure operations. The adver-
sary may retrieve all previously stored and new tuples by sending a special mes-
sage leak to G̃att.

In contrast to transparent enclaves, semi-honest enclaves leak all inputs, outputs
and randomness, including enclave operations and the randomness used for the
signature key generation.

With semi-honest enclaves, one cannot simply execute a passively secure
protocol fully inside the TEEs anymore and hope to achieve meaningful security.
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Looking ahead, we find that our construction for PSI is secure even in the
presence of semi-honest TEEs, as long as no protocol party is corrupted. This
captures a setting where the TEE leaks everything to e.g. the manufacturer or
a government agency, but does not cooperate with the parties using the TEEs.

3.4 Possible Realizations of Our Model

Our model of TEEs with secure and side-channel-free cryptographic operations
is motivated by a number of existing systems:

– Enclaves that are free of side-channels are trivially able to perform crypto-
graphic operations in a secure manner, given appropriate implementations.

– Intel SGX needs to perform a number of cryptographic operations in a secure
manner for attestation [19]. In particular, this includes i) message authentica-
tion codes (MACs) and ii) digital signatures. Also, the trusted cryptographic
library distributed by Intel as part of the SGX SDK contains implementa-
tions of i) key exchange and ii) secret-key encryption. Given the prevalence
of SGX vulnerabilities, realizing secure enclave programs is indeed a difficult
task. However, there are “best practices” provided by Intel [28]. Additionally
using memory barriers, constant-time code and data-oblivious implementa-
tions may be helpful to avoid side-channel leakage.
We also note that one needs to consider the adversarial model of the used
TEE. For example, advanced attacks using fault injection or power attacks
may (or may not) invalidate the adversarial model altogether, rendering the
assumption (that certain operations can be performed securely) wrong. In the
case of SGX, mitigations for vulnerabilities covered by the adversarial model
are available and are checkable via remote attestation.

– Intel SGX could also be combined with different technologies for trusted exe-
cution, e.g. Intel Trusted Execution Technology (TXT), to perform crypto-
graphic operations. Intel TXT has previously been used to securely perform
cryptographic operations [34].

– Many mobile devices that feature enclaves such as ARM TrustZone have
dedicated secure hardware for cryptographic operations, e.g. recent Apple
iPhones [2] or Google Pixel smartphones [35].

– Some IBM systems have a feature called IBM Secure Execution [27], which
provides Linux-based secure enclaves. These could be combined with a dedi-
cated hardware security module (HSM), which are also available from IBM.

– Secure enclaves are also supported by the open-source instruction set RISC-V
[44]. If necessary, this instruction set could possibly be extended to be able
to perform basic cryptographic operations in hardware.

4 One-Sided Private Set Intersection

Before describing our protocol, we state the ideal functionality we realize. FoPSI,
the ideal functionality for one-sided PSI, takes inputs S1 and S2 from P1 resp.
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P2 and computes the intersection S = S1 ∩ S2, which is lexicographically sorted
and returned to P1. The lexicographical sorting is employed in order to avoid
ambiguity and the introduction of leakage of the private inputs depending on
the result’s sorting. See Sect. 1.4 for examples in previous protocols.

Definition 7 (Ideal Functionality FoPSI). Parameterized by a security
parameter κ and two parties P1 and P2. The input of each party consists of
a set with elements from {0, 1}κ.

– On input (input, sid , S1) from P1, store S1 and send (input1, sid , |S1|) to the
adversary.

– On input (input, sid , S2) from P2, store S2 and send (input2, sid , |S2|) to the
adversary.

– When having received input from both parties, compute the intersection S =
S1 ∩ S2 and sort S lexicographically. Also, send (size, sid , |S|) to the adver-
sary.

– Generate a private delayed output (result, sid , S) for P1.

Remark 3. In Definition 7, the adversary always learns |S1|, |S2| and |S|, regard-
less of which parties are corrupted. More fine-grained leakage can be modeled
(and realized by our protocol) at the cost of a more complex description of FoPSI.

Remark 4. In FoPSI, only the party P1 obtains the intersection result. If the con-
sidered universe U is small enough (e.g. when U consists of telephone numbers),
a malicious party P1 could use the whole universe U as its input and would then
learn the input of P2. Under notions of PSI where both parties learn the output,
this could possibly be detected heuristically by P2 after it has learned the result.
In the case of one-sided PSI, this is not possible.

If protection against such an attack strategy is necessary, FoPSI can be easily
modified in a number of ways to e.g. i) limit the input size of either or both
parties, ii) tell P2 the size of P1’s input or to iii) only output the result to P1 if
a certain threshold for the intersection’s size is met or kept.

Looking ahead, our construction could be easily adapted to the first two
points while retaining its security properties. For the last point, an easy modifi-
cation is possible that would, however, allow the TEEs to learn the intersection’s
size, which we currently prevent.

We now present our construction πoPSI. We assume the existence of authen-
ticated communication and consider adversaries that statically corrupt protocol
parties, i.e. at the very beginning of the execution.

The protocol description is split into three parts: The actual protocol exe-
cuted by P1 and P2, together with the programs executed by each party’s TEE.

Construction 1 (Protocol πoPSI). Let Sig be a signature scheme and
SKEdetCPA a deterministic secret-key encryption scheme. Let κ ∈ N be a secu-
rity parameter. Let Gatt = Gatt[Sig,SKEdetCPA, κ].

Program prog1 of P1’s enclave:
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1. Receive (mpk, eid1, eid2, prog2) as first input.
2. Execute (key-exchange, eid2). Eventually, receive a message (eid′

1, eid
′
2, hdl).

Store hdl if eid′
1 = eid1 and eid′

2 = eid2.
3. On input (input, sid , C1):

– Set C ′
1 = {c′

i | c′
i = ske.enc(hdl, ci), ci ∈ C1}.

– Output (ready, sid).
– Upon the next activation, output (sid , C ′

1).
4. Ignore all further messages.

Program prog2 of P2’s enclave:

1. Receive (mpk, eid1, eid2, prog2) as first input.
2. Eventually receive a message (eid′

1, eid
′
2, hdl). Store hdl if eid′

1 = eid1 and
eid′

2 = eid2.
3. On input (query, sid), execute (release-key, hdl) to obtain k2 and output

(key, sid , k2).
4. On input (input, sid , C2, λ), sample a UHF UHF from the set of UHFs

with domain {0, 1}poly(κ), codomain {0, 1}λ and super-polynomial image size
in λ where poly(κ) is a polynomial denoting the length of the cipher-
texts to be hashed. Compute H = {hi | hi = UHF(ci), ci ∈ C2} and output
(output, sid ,UHF,H).

5. Ignore all further messages.

Protocol:
If activated without the initial input, a party yields the execution until the input
is received.

1. Each party Pi (eventually) receives input (input, sid , Si) and is parameterized
with a security parameter κ and a statistical security parameter λ.

2. P1 and P2 each send (getpk) to Gatt to obtain the master public key mpk.
3. P1 and P2 call FKE twice, using SIDs sid ||1 and sid ||2 (with P1 acting as

initiator) to obtain keys k1, k3.
4. P1 sends (install, sid , prog1) to Gatt, where prog1 is the program for P1’s

enclave in Construction 1. It obtains eid1 as answer and sends eid1 to P2.
5. Similarly, P2 installs an enclave with program prog2, obtains eid2 and sends

it to P1.
6. P1 sends (mpk, eid1, eid2, prog2) to its TEE with EID eid1 via Gatt. Con-

versely, P2 sends (mpk, eid1, eid2, prog1) to its TEE with EID eid2.
7. Let S1 = {s11, . . . , s

n1
1 }. For i = 1, . . . , n1, let ci

1 = SKEdetCPA.Enc(k1, si
1). P1

sends C1 = {c11, . . . c
n1
1 } to the TEE with EID eid1 and receives (ready, σ1)

as answer, which it forwards to P2.
8. On receiving (ready, σ1) from P1, P2 verifies the signature σ1 and sends,

upon successful verification, (query) to its TEE with EID eid2 to obtain k2.
Let S2 = {s12, . . . , s

n2
2 }. Then, P2 computes ci

2 = SKEdetCPA.Enc(k3,SKEdetCPA.
Enc(k2,SKEdetCPA.Enc(k1, si

2))) for i = 1, . . . , n2, sorts C2 = {c12, . . . , c
n2
2 } lex-

icographically and sends it, together with the statistical security parameter λ,
to the TEE with eid2. It receives (output, sid ,UHF,H, σH), which it forwards
to P1.
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9. On receiving (output, sid ,UHF,H, σH), P1 verifies the signature σH .
Upon successful verification, it verifies that H is consistent with λ,
it queries its TEE with EID eid1 to obtain C ′

1. Then, it computes
S = {sj

1 | sj
1 ∈ S1 ∧ UHF(SKEdetCPA.Enc(k3, c′

j)) ∈ H, c′
j ∈ C ′

1}, sorts S lexico-
graphically and outputs (result, sid , S).

In order to prove the security of our protocol, it is crucial that the environ-
ment is not able to access Gatt (and its variants) arbitrarily. In particular, the
environment may access Gatt only with identities of 1. corrupted parties (and
thus through the adversary) or 2. (honest) parties with a session ID that does
not belong to an actual session in the execution. The first criterion is neces-
sary to achieve a meaningful security notion, while the last criterion prevents
the environment from accessing Gatt with identities belonging to the test ses-
sion or challenge session. This is in line with what is assumed by prior work, in
particular in [7,39] For a discussion on the formalism, see [4,11].

We formally define the following identity bound ξ.

Definition 8 (Identity Bound). Let eid = (μ, sid ||pid) be an extended iden-
tity. Then, ξ(eid) = 1 if and only if

– the party with extended ID eid is corrupted or
– sid is not the session ID of an ITI existing in the current execution.

With this definition at hand, we are ready to state our main theorem.

Theorem 1. Let π̂oPSI = πGatt→Ĝatt

oPSI be the protocol where Gatt is replaced with
Ĝatt and let π̃oPSI = πGatt→G̃att

oPSI be the protocol where Gatt is replaced with G̃att.
If Sig is an EUF-CMA-secure signature scheme, SKEdetCPA is a det-LoR-CPA-

secure secret-key encryption scheme, κ is the computational security parameter
and λ ∈ Θ(κ) is the statistical security parameter, then π̂oPSI ξ-UC-realizes FoPSI

in the presence of Ĝatt[Sig,SKEdetCPA, κ],FKE under static corruptions.
Under the same assumptions, π̃oPSI ξ-UC-realizes FoPSI in the presence of

G̃att[Sig,SKEdetCPA, κ],FKE if the adversary does not corrupt any protocol party.

Informally, this means that πoPSI is secure if a) the TEEs are almost-
transparent, even if P1 and / or P2 are corrupted or b) if the TEEs are semi-
honest and P1 and P2 are honest. Then, the TEEs do not learn the intersection
size |S|.

We give a very short proof sketch.

Proof (sketch). If P1 is corrupted, the simulator must be able to extract the
inputs of P1 and provide them to FoPSI. Also, the simulator must simulate
messages leading to the correct output for P1, only knowing the intersection,
but not P2’s elements that are not in the intersection.

In order to extract P1’s input, the simulator reads the ciphertexts P1 sends
to its TEE, which are encrypted with k1. As the simulator simulates the honest
party P2, it knows k1 and can decrypt the ciphertexts, learning P1’s input S1.



Practically Efficient PSI from Trusted Hardware with Side-Channels 291

Upon providing this input to FoPSI, the simulator learns the intersection S
as well as |S2|. For elements in the intersection, it can then prepare appropriate
ciphertexts such that P1 can compute the correct results. For elements not in
the intersection (which the simulator does not know), it can create “dummy
ciphertexts” to random values.

If P2 is corrupted and P1 is honest, the simulator’s task is easier as it only
has to extract P2’s input, which it does as described above.

If both parties are honest and the TEE is passively corrupted, the simulator
learns |S1| and |S2| and can sample “dummy elements” for S1 and S2. Using these
dummy elements, it can execute the protocol on behalf of the honest parties.

For the full proof, see the full version.

Remark 5. For the case of semi-honest corruptions of P1 and P2, two-sided pri-
vate set intersection, i.e. where both P1 and P2 obtain the result, can be easily
obtained by executing πoPSI twice, once in each direction.

Remark 6. In πoPSI, we encrypt the input to the TEEs. This prevents a passively
corrupted TEE from learning e.g. a party’s private input and the intersection. If
one is willing to abandon these security guarantees, one could provide the TEE
with the sets S1 and S2 in the clear and have it apply a user-defined function
on the inputs, e.g. a perceptual hash algorithm. This way, our protocol can be
adapted to different applications while retaining its efficiency and security in the
presence of side-channels.

Let � be a bound for the set elements’ size3. It is easy to see that the net-
work communication complexity is in Θ(poly(κ) + |S2| · λ), assuming that i) the
key exchange protocol has a communication complexity in Θ(poly(κ)), which
holds for FKE as well as e.g. for the Diffie-Hellman key exchange, ii) the length
public keys and signatures of the signature scheme Sig can also bounded by
a polynomial poly(κ) and iii) the description of the UHF UHF is bounded by
a polynomial poly(κ). In particular, the communication complexity is linear in
|S2| and independent of |S1| and �.

The runtime complexity is in O((|S1|+|S2|)·poly(κ, �)), assuming that i) FKE

resp. its instantiation can be executed in O(poly(κ)) steps, ii) the ciphertexts
of plaintexts with length � and keys with length in O(κ) can be computed in
O(poly(κ, �)) steps and have length O(κ+�), iii) the sorting can be performed in
O((κ+ �) · |S2|) resp. O(λ · |S|) steps, iv) the UHF can be sampled and evaluated
(once) in O(poly(�, κ, λ)) steps and v) the signatures can be verified in O(poly(κ))
steps. If � ∈ O(κ), we obtain a runtime complexity of O((|S1| + |S2|) · poly(κ)).
Remark 7. Extending the above protocol to the multi-party setting is non-trivial.
Let P1 be the party that is supposed to receive the intersection and let P2, . . . , Pn

be the other parties. First, we observe that merely executing the protocol n − 1
times, once between P1 and each other party, is insecure in the sense that P1

learns more than the intersection of all sets.
3 In FoPSI and πoPSI, we assume that � = κ. However, this can be easily generalized.
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This problem also needs to prevented in a modified protocol: Currently, the
party learning the intersection has to collect messages from each party which it
can only process to compute the joint intersection, but not the individual ones.
This seems to require a different protocol altogether and we leave the case of
PSI with more than two parties in our model as future work.

5 Implementation and Evaluation

We implemented the proposed private set intersection protocol with Intel SGX
enclaves on an Intel Xeon E3-1275 v6 processor.4

Remote attestation of SGX enclaves is more involved than modeled in the
ideal functionality. While the ideal functionality just signs enclave outputs with
a globally known signature key-pair, SGX enclaves complement their output
with data called attestation evidence. However, in contrast to the formal model,
this data cannot be independently verified. SGX provides two implementations
of attestations: EPID and DCAP. To check the correctness of an EPID attesta-
tion, the attestation evidence needs to be submitted to an Intel-operated service,
called the Intel Attestation Service. That service decrypts the attestation evi-
dence and then verifies the contained group signature. The result of that check
is then reported back, together with an RSA-2048 signature with a fixed key.
Such a web request takes approximately 300 ms. If a protocol needs many attes-
tations by the same enclave, the necessity of many separate interactions with
the attestation service can be sidestepped by initially generating a signature key
pair, then performing remote attestation with the verification key as output, and
then using this keypair to sign all of the output that needed attestation before.
For the evaluation, we used EPID attestations and but did not implement this
optimization. ECDSA attestations realized with the Intel DCAP toolkit implic-
itly use this optimization, as only one initial attestation needs to be verified by
the “Provisioning Certification Service” operated by Intel to attest an ECDSA
signature keypair which is then used to sign and verify all further attestations.
Additionally, cacheable attestation collateral needs to be downloaded from an
Intel service to ensure that the attesting system is up-to-date.

For our benchmarks, we used EPID attestations, also because we found
the responses from the Intel Attestations Service can be verified more easily
from with enclaves than DCAP attestations. We use the RSA-2048 signature
in the response from the Intel Attestation Service to check an attestation. Its
required verification key is delivered into the enclaves by embedding it directly
into the enclaves’ code. Verifying DCAP attestations from within enclaves is
more involved.

The runtime of the set intersection protocol consists of a constant part,
mainly for doing the interactions with the Intel Attestation Service to confirm
the validity of a remote enclave attestation and exchanging a key between the
enclaves before the actual computation, and a part linear in the input size.
Figure 2 shows the overall runtime for set intersection with 128-bit elements.
4 For the code, see https://github.com/kastel-security/psi-with-sgx.

https://github.com/kastel-security/psi-with-sgx
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The protocol for the different parties was executed in the same program with
a simulated veth device introducing 10ms of latency for all TCP packets. To
intersect 224 128-bit elements with another set of 224 128-bit elements, having
half of the elements in the intersection, we get a total runtime of 7.3 s of which
the linear regression suggests a constant overhead of 2.0 s. For comparison the
maliciously secure protocol from Rindal et al. [41] takes around 8.0 s in their
paper and takes around 10.7 s when run on our hardware.

Fig. 2. Runtime of the PSI protocol, depending on the number of elements in the input
sets for elements of 128 bit size. The size of S1 and S2 is equal and |S1 ∩ S2| = |S1|

2
.

The time is shown as total runtime including wait time for the Intel Attestation Service
(roughly 0.8 s) which is also shown for reference in the “web” series. Error bars are the
standard derivation over 10 measurements.

The size of the enclave memory of SGX enclaves needs to be known ahead of
time and additionally cannot be increased without limits as it becomes harder to
keep this memory protected with a larger enclave state. Luckily, our protocol can
easily be implemented with limited enclave state size by streaming the values
for encryption/hashing through the enclave, not requiring the enclave memory
size to depend on the sets’ size. A modification is needed for P2’s enclave, which
needs to keep a large set of values as internal state, and then choose the UHF
and start outputting hashes. For the correctness, it is important that P2 needs to
be committed to all the values before the enclave chooses the UHF. To eliminate
the large intermediate state, the enclave can just store a collision-resistant hash
(we used SHA256) of the values. Later, when the UHF needs to be evaluated
on that data, the data is supplied by P2 again. After the hashes are calculated,
the attestation on the universally hashed values is only released if the collision-
resistant hash on the input is unchanged, compared to the one calculated in
the commit phase. As passing data into enclaves is fast (enclaves can access
non-enclave memory at will), this approach brings a significant performance
improvement.

For an instantiation of the UHF, we use the 64-bit variant XXHash and for
choosing a random hash function we choose the 64-bit seed of XXHash uniformly
at random. PSI benchmarks usually assume constant-size elements of 128-bit.
Deterministically encrypting 128-bit elements can be easily done with just a
single AES operation. For sorting we use an optimized variant of radix sort. As
x86-64 CPUs support 128-bit unsigned integers as native types, implementing a
128-bit radix sort is straightforward.
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Fig. 3. Evaluation and comparisons executed on our hardware. The runtime was mea-
sured for inputs consisting of 224 128-bit elements on the same hardware.

Figure 3 show the runtime of our PSI protocol compared to two recent mali-
ciously secure PSI protocols [40,41]. Further information on how the protocols
were executed is given in the full version. Due to implementation differences and
restrictions of our evaluation setup we did not execute all PSI protocols with
the exact same network abstraction. The differences that remained are noted in
the column “Network Model”. In our implementation we use a real TCP socket
connected over a loopback adapter that simulates latency (and optionally band-
width limitation). For the implementation based on PaXoS we did not simulate
latency, the implementation based on VOLE does not use sockets at all, but com-
municates via an in-memory buffer. The network model for our implementation
is the most pessimistic one. For the last line in the table, we adjusted [41] to not
leak the input set order anymore. Details can be found in the full version.

6 Further Applications

We present further applications of the model defined in Sect. 3.

6.1 One-Sided Hamming Distance

Using a protocol that is somewhat reminiscent of our construction πoPSI for one-
sided PSI, parties P1 and P2 can compute the Hamming distance on bitstrings
in a way that P1 learns the distance, even if the TEEs are almost-transparent
or passively corrupted (and P1 and P2 honest).

First of all, we need an additional cryptographic building block called message
authentication codes (MACs), which can be seen as the symmetric analogue of
digital signatures. As MACs are part of the attestation protocol of Intel SGX [19],
we assume that MAC tags can be computed and verified securely and consider
a variant of Gatt that supports MACs as secure operations. In the following, we
assume that MACs are length-normal, i.e. that for messages x1, x2 with |x1| =
|x2|, the MAC tags of x1 and x2 have the same length.

Roughly, the protocol works as follows:

Construction 2 (Protocol πHD, informal). 1. P1 and P2 exchange a key
k4
SKE for a deterministic secret-key encryption scheme. P2 also generates a

signature key pair.
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2. For its input string S1 = b11|| . . . ||bn1
1 , P1 encrypts the i-th bit bi

1 of its input
together with the position i, i.e. (bi

1||i) using k4
SKE and sends the resulting

ciphertext set C1 to its TEE, which stores it. As the TEE does not know
k4
SKE, the input of P1 is hidden.

3. P1 obtains keys kMAC and k2
SKE from its TEE. For each position, P1 encrypts

(0||i) and (1||i) using k4
SKE and creates a MAC tag for each ciphertext. Then, it

sorts the pairs consisting of ciphertexts and MAC tags and sends the resulting
set M to P2.

4. P2 verifies that the ciphertexts have been correctly created (using k4
SKE), signs

M and sends the signature σM to P1.
5. P1 sends M and σM to its TEE, which checks the signature σM , the MAC

tags and that each input provided by P1 is contained in M . This ensures that
P1’s input is correct.

6. Then, the TEE of P1 encrypts the input ciphertexts C1 of P1 using a key
k3
SKE that is not known by any other entity, masking the ciphertexts. It also

computes MAC tags of these new ciphertexts using kMAC and again encrypts
the resulting ciphertexts and MAC tags first under the key k2

SKE shared with
P1 and then under a key k1

SKE that is currently only known to the TEEs of P1

and P2, resulting in set C ′
1. The same is done for the ciphertexts in M , using

k3
SKE, kMAC and k1

SKE, resulting in M ′. Both C ′
1 and M ′ are output to P1.

7. P1 forwards C ′
1 and M ′ to P2, which sends (release-key) to its TEE in

order to obtain k1
SKE, which it uses to partially decrypt the two sets. Let C ′′

1

denote the first (partially decrypted) set, which contains encryptions of S1

under k4
SKE, k3

SKE and k2
SKE, which is not known to P2. Let M ′′ denote the

second (partially decrypted) set, which contains encryptions of M under k4
Enc

and k3
Enc. From M ′′, P2 can select the ciphertexts which belong to its input, i.e.

for (bi
2||i) when the i-th bit of P2’s input is bi

2. Let C2 denote the resulting set.
However, it cannot compare these ciphertexts to the corresponding ciphertexts
of P1, as it does not know k2

SKE. P2 sorts C ′′
1 and C2 and sends both to P1.

8. P1 decrypts C ′′
1 using k2, resulting in the set C ′′′

1 . In order to check if P2 has
cheated, it checks that all elements in C2 and C ′′′

1 are unique and have correct
MAC tags under kMAC. As P2 does not know kMAC, it cannot fake MAC tags.

9. P1 can now compare the ciphertexts in C2 and C ′′′
1 . The number of matching

ciphertexts indicates the Hamming distance between the inputs of P1 and P2.
As the ciphertexts are randomly permuted and P1 does not know k3, P1 only
knows how many ciphertext match, but does not know to which position they
belong.

For a formal protocol description, see the full version.

6.2 Trusted Initializer

A popular application of TEEs is the use as a trusted initializer [32], which
provides protocol parties with correlated randomness.

In this setting, leakage to the manufacturer is usually unproblematic, as the
correlated randomness is independent of the parties’ inputs and the TEEs are
not used for further computation.
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However, side-channels may pose a problem, as they could allow one party to
learn “too much”. To this end, consider the following protocol, somewhat similar
to the construction in [32]. Let PRG be a pseudorandom generator and let Sig
be a signature scheme.

1. Parties P1 and P2 are each equipped with a TEE.
2. The TEEs initially exchange keys k0, k1.
3. The TEE of P1 computes mb = PRG(kb) for b ∈ {0, 1} and outputs (m0,m1)

to P1.
4. The TEE of P2 samples a random b′ $← {0, 1} and outputs (b′,mb′ =

PRG(kb′)) to P2.

This randomized OT can later be de-randomized. If the TEE of P2 has side-
channels that expose k0 and k1, the protocol is completely insecure, as P2 would
learn both m0 and m1.

We propose a construction for randomized oblivious transfer which is not
only secure for semi-honest TEEs, but also for almost-transparent TEEs.

Construction 3 (Protocol πrOT). Let Sig be a signature scheme and
SKEdetCPA a deterministic secret-key encryption scheme. Let κ ∈ N be a
security parameter. Let M = {0, 1}κ be a message space. Let Gatt =
Gatt[Sig,SKEdetCPA, κ].

Program prog1 of P1’s enclave:

1. Receive (mpk, eid1, eid2, prog2) as first input.
2. Execute (key-exchange, eid2). Eventually, receive a message (eid′

1, eid
′
2, hdl).

Store hdl if eid′
1 = eid1 and eid′

2 = eid2.
3. On input (init, sid , σ, vk):

(a) Abort if Sig.Vfy(ready, σ, vk) �= 1.
(b) Sample m0,m1

$← M .
(c) Set ci = ske.enc(hdl,mi) for i ∈ {0, 1}.
(d) Output (ciphertexts, sid , (c0, c1, vk)).
(e) Upon the next activation, output (result, sid ,m0,m1).

4. Ignore all further messages.

Program prog2 of P2’s enclave:

1. Receive (mpk, eid1, eid2, prog2) as first input.
2. Eventually receive a message (eid′

1, eid
′
2, hdl). Store hdl if eid′

1 = eid1 and
eid′

2 = eid2.
3. On input (init, sid , (ciphertexts, sid , (c0, c1), vk), σ′):

(a) Verify that σ′ is a valid signature for the output
(ciphertexts, sid , (c0, c1), vk) of the TEE with EID eid1. If the
verification fails, halt.

(b) Sample b
$← {0, 1}.

(c) Set mb = ske.dec(hdl, cb).
(d) Output (result, sid , (b,mb)).

4. Ignore all further messages.
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Protocol:
If activated without input, a party yields the execution until input is received.

1. Each party Pi (eventually) receives input (start, sid).
2. P1 and P2 each send (getpk) to Gatt to obtain the master public key mpk.
3. P2 generates a signature key pair (sk2, vk2) ← Sig.Gen(1κ) and sends vk2 to

P1.
4. P1 sends (install, sid , prog1) to Gatt, where prog1 is the program for P1’s

enclave in Construction 3. It obtains eid1 as answer and sends eid1 to P2.
5. Similary, P2 installs an enclave with program prog2, obtains eid2 and sends

it to P1.
6. P1 sends (mpk, eid1, eid2, prog2) to its TEE with EID eid1 via Gatt. Con-

versely, P2 sends (mpk, eid1, eid2, prog1) to its TEE with EID eid2.
7. P1 samples r0, r1

$← M and sends (r0, r1) to P2 via FSMT, i.e. via a secure
channel.

8. Upon receiving (r0, r1) via FSMT, P2 samples a random bit b′ $← {0, 1} and
sends b′ to P1 via FSMT.

9. P2 also generates a signature to the message “ready”, i.e. computes σ2 ←
Sig.Sign(sk2, ready). Then, P2 sends σ2 to P1.

10. Upon receiving σ2, P1 sends (init, sid , σ2, vk2) to its TEE with EID eid1,
receives (ciphertexts, sid , (c0, c1, vk2), σC) as answer and forwards it to P2.

11. On its next activation P1 activates its TEE with EID eid1 again and receives
(result, sid ,m0,m1). Then, P1 outputs (result, sid , (m0 ⊕ r0,m1 ⊕ r1) if
b′ = 0 and (result, sid , (m1 ⊕ r1,m0 ⊕ r0) otherwise, i.e. if b′ = 1.

12. Upon receiving (ciphertexts, sid , (c0, c1, vk′), σC) from P1, P2 asserts that
vk′ = vk2 and verifies σC . In case of failure, abort. Then, P2 sends
(init, sid , (ciphertexts, sid , (c0, c1, vk′), σC)) to its TEE with EID eid2
and receives (result, (b,mb)) as answer. P2 then outputs (result, b ⊕
b′,m′

b ⊕ rb).

We consider the following functionality, where M is a message space.

– If P1 is honest, choose m0,m1
$← M uniformly at random. If P1 is corrupted,

the adversary may provide m0,m1 ∈ M .
– If P2 is honest, choose b

$← {0, 1} uniformly at random. If P2 is corrupted,
the adversary may provide (b,mb) ∈ {0, 1} × M .

– Generate a private delayed output (m0,m1) to P1 and a private delayed
output (b,mb) to P2.

This functionality provides meaningful security for P1 because P2 never learns
m1−b and for P2 because P1 never learns b.

If P1 is corrupted, the simulator simulates P2 honestly and observes the
protocol output for P1. It sends the output to the ideal functionality as m0,m1.

Similarly, if P2 is corrupted, the simulator simulates P1 honestly and observes
the output for P2. Then, it sends this output to the functionality as (b,mb).

If the TEE is corrupted semi-honestly, the simulator simply executes the
protocol honestly on behalf of P1 and P2 and reports all messages from the TEE
functionality.
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The key insight with respect to the security in the presence of almost-
transparent TEEs is the fact the TEE of P2 selectively decrypts only one of the
ciphertext, with the other ciphertext’s plaintext remaining hidden. In a sense,
this is the computational analogue of an erasure channel.

6.3 Oblivious Transfer

Construction 3 can be easily modified to directly compute oblivious transfer for
user-provided inputs (m0,m1) of P1 and b of P2.

7 Conclusion

Private set intersection is an important privacy-enhancing technology with many
possible applications. In this work, we have constructed and implemented a
protocol for one-sided two-party PSI using trusted execution environments that
is both asymptotically and practically efficient, beating the best known protocol
with respect to single-threaded performance.

Instead of fully trusting the TEE, we substantially lower the required trust:
Our protocol remains secure even if either i) the TEEs have side-channels and
leak information to the host, except for simple cryptographic operations that
remain secure or ii) the TEEs are semi-honest and leak all information to an
entity such as the manufacturer, but not the protocol participants. This is moti-
vated by what is assumed to be provided by current TEEs such as Intel SGX.

To show the usefulness of our model, we have also presented protocols in our
model for additional tasks such as computing the one-sided Hamming distance
or (randomized) oblivious transfer.
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Abstract. Active fault injection is a credible threat to real-world digi-
tal systems computing on sensitive data. Arguing about security in the
presence of faults is non-trivial, and state-of-the-art criteria are overly
conservative and lack the ability of fine-grained comparison. However,
comparing two alternative implementations for their security is required
to find a satisfying compromise between security and performance. In
addition, the comparison of alternative fault scenarios can help optimize
the implementation of effective countermeasures.

In this work, we use quantitative information flow analysis to estab-
lish a vulnerability metric for hardware circuits under fault injection
that measures the severity of an attack in terms of information leakage.
Potential use cases range from comparing implementations with respect
to their vulnerability to specific fault scenarios to optimizing counter-
measures. We automate the computation of our metric by integrating it
into a state-of-the-art evaluation tool for physical attacks and provide
new insights into the security under an active fault attacker.

Keywords: Fault Injection Analysis · Fault Metric · Quantitative
Information Flow

1 Introduction

Since their first publication in 1997 by Boneh et al. [12], Fault Injection Anal-
ysis (FIA) has become a fundamental part of the threat landscape for digital
systems. In FIA, a malicious attacker disturbs the intended execution flow of a
sensitive system to cause a denial of service, escalate privileges, or gain secret
information. Such disturbance of execution is possible through fault injection, for
example, via clock glitching [1], voltage glitching [50], electromagnetic pulses [6],
or focused laser beams [52]. To thwart the exploitation of FIA, system design-
ers use shields and sensors to prevent and notice a fault injection attempt or
introduce redundancy in time, space, or information to detect the propagation
of faults throughout the system after successful penetration.

However, the construction of FIA-secure systems requires clear criteria of
vulnerability and security for a circuit under attack to direct the deployment
of countermeasures. State-of-the-art security definitions for FIA focus on the
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observability of faulty behavior at the outputs. In particular, the fault effect
is propagated through the circuit and deemed insecure when the output gets
affected and dedicated countermeasures are not triggered [4,22,43]. While help-
ful, this criterion lacks precision for FIA aimed at information leakage. Specifi-
cally, it is overly conservative in some cases and fails to detect practical attacks
in others. On the one hand, some faults may propagate undetected to the out-
puts without affecting security. For example, injecting a fault directly into the
output of some cryptographic cipher does not affect the security but is marked
insecure by the criterion. Hence, the criterion is more a measure of the effec-
tiveness of the countermeasures than of the circuit’s vulnerability. On the other
hand, Statistical Ineffective Fault Analysis (SIFA) exploits the fact that a fault
injection has no impact on the execution (ineffective fault) and is therefore not
captured by the criterion at all while being a viable threat to implementation
security. For SIFA, additional rules are introduced, such as checking the statisti-
cal dependency between secrets and fault detection behavior [31,42]. In addition,
the given criterion is binary in the sense that it only offers a categorization in
the buckets secure and insecure. Hence, a qualitative comparison within one of
those categories is not possible.

To overcome these limitations, we need a general metric to capture the secu-
rity quantitatively in the context of information-leaking FIA. In particular, such
a quantitative metric universally describes the secrecy loss caused by fault injec-
tion, i.e., not by providing a specific attack but by a quantification that is inde-
pendent of the used analysis method. Such a quantitative metric can be used to
identify the necessity of countermeasures and measure their effectiveness more
tightly, leading to more optimal secure designs. It also allows the comparison
of different designs for security, enabling a trade-off between performance (area,
power, latency) and security. Such a trade-off could mean that a certain level of
vulnerability is willingly accepted to gain some performance. However, it requires
a realistic assessment of the cost in terms of security. Similarly, a designer (or
attacker) can locate the most vulnerable fault positions to prioritize develop-
ment efforts where they are most effective. Also, such a quantitative metric
can be used by machine learning algorithms to learn the construction of secure
designs in a fine-grained manner. Since machine learning provides no guarantees
for the resulting designs, security criteria are required again to assess the result.

To summarize, the overall goal is to create a framework and automated tool
for the computation of fault severity that requires minimal effort from the user,
with domain- and design-specific information being derived automatically or
provided with ease. The tool will be used in an automatic design or evaluation
framework to determine realistic fault locations, compute a quantitative secu-
rity metric for the threat, and use the security assessment to optimize circuit
synthesis for both performance and security.

Contribution. In this work, we show how to use methods of Quantitative
Information Flow (QIF) analysis [3,53] to evaluate security in the context of
information-leaking FIA (cf. Sect. 3). For that, we extend a commonly used fault
model [44] with probabilistic faults and show how to model FIA based on stateless
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information channels. Hence, we merge results from two scientific communities
to define a quantitative vulnerability metric for FIA that separates the notion
of secrecy-loss due to fault injection from specific attacks against specific imple-
mentations. We provide an algorithm for precise computation, exploiting the effi-
cient representation of boolean functions via Binary Decision Diagrams (BDDs),
and integrate this approach into the state-of-the-art evaluation tool for physical
security VERICA [42] (cf. Sect. 4). In our implementation, we cover deterministic
information channels only. However, we show that we can transform each prob-
abilistic channel into a deterministic channel with external random inputs and,
hence, this is no restriction in generality.

The proposed quantitative FIA metric can be used to evaluate the efficiency
of fault attacks (cf. Sect. 5) or the quality of countermeasures (cf. Sect. 6). We
use the analysis of attacks to showcase the accuracy of our metric achieved by
the tight match between theory and practice. Afterward, the analysis of counter-
measures focuses on the generation of new insights to deepen our understanding
of secrecy loss due to active fault injection. In particular, we show that some of
the recent findings (and foundations to some security proofs) on SIFA are flawed.
Also, our quantitative metric allows identifying fault locations that reduce the
amount of leakage caused by other faults. This enables the implementation of
new defense mechanisms, where the structure of the circuit ensures that when
there is a leaking fault, there is always a leakage-reducing fault active.

While there already exist occasional works in the literature that use QIF for
the evaluation of FIA, these works are non-generic and limited to specific attacks,
countermeasures, or ciphers (cf. Sect. 8.1). Hence, applying those methods to
other scenarios requires significant effort and expert knowledge. In contrast, we
provide a general evaluation method for automatic computation.

2 Preliminaries

The important notation used throughout this work is given in Table 1. In general,
we write functions in sans serif font (e.g., F) and sets as upper-case characters
using a calligraphic font (e.g., S). We denote a distribution over a set S by DS.

2.1 Fault Injection Analysis

Fault Injection Methods. In FIA, an adversary disrupts the normal execution
of a system under attack to gain an advantage. Most fault injection methods
require physical access to the attacked device and often manipulate the tim-
ing behavior of the circuit [44]. Prominent examples include clock glitching [1],
which increases the clock frequency; voltage glitching [50], which increases the
propagation delay of logic gates by lowering the supply voltage; electromagnetic
pulses [6], which reset parts of the circuit and cause a race between clock and
information signals; or focused laser beams [52], which temporarily affect the
physical properties of transistors. Recently, however, more and more research
has shown the ability to inject faults via software, allowing remote execution of



Quantitative Fault Injection Analysis 305

Table 1. Important notations used throughout this work.

Notation Description

C
ir
cu

it

C Digital logic circuit.
C Information-theoretic channel.

S, S, s Set of secrets, random variable of secrets, and secret value.
X , X, x Set of inputs (no secrets), random variable of inputs, and input value.

R, r Set of random values and specific random value.
Y, Y , y Set of outputs, random variable of outputs, and output value.

Y ′, y′ Random variable of faulty output, and faulty output value.
δ Detection flag.

F
IA

k Maximum number of simultaneous faults (security order).
τ Fault type.
F Set of possible fault combinations.
V Vulnerability metric (probability of correct guess in one attempt).
L Leakage metric (number of leaked bits).

FIA. This can be done through the energy management system of modern Cen-
tral Processing Units (CPUs) [55], through high-frequency accesses to memory
locations [29], through valid but malicious bitstreams for Field-Programmable
Gate Arrays (FPGAs) [28], or through randomly occurring faults in large sys-
tems [54]. In general, faults can be transient, i.e., having only a short-term effect,
or permanent.

Analysis Methods. By exploiting faults, an adversary can bypass access-control
mechanisms, cause denial of service, or obtain secret information. In this work, we
focus on the leakage of sensitive information, where many analysis mechanisms
are inspired by techniques from cryptanalysis. The first published fault attack by
Boneh et al. [12] falls in the category of Algebraic Fault Analysis (AFA) [19]. It
solves a system of equations depending on correct and faulty outputs and inter-
mediate variables for the secret. Similarly, Differential Fault Analysis (DFA) [9]
exploits known differentials between a correct and a faulty intermediate state to
reduce the possible key space. In particular, only those key hypotheses remain
where, for all pairs of correct and faulty outputs, the intermediate differential
matches with the induced fault. The same idea can be applied to impossible
differentials [8]. Collision-based Fault Analysis (CFA) [10] uses only correct and
faulty output pairs where the output does not change despite the injected fault.
The simplest example is a known fault injected into some key bit. If the output
is the same for the correct and the faulty output, then the fault is a correct
key guess. All the previous FIA techniques require pairs of correct and faulty
outputs. The insight of biased FIA [37] is that only faulty outputs are needed if
the fault injection causes some bias in an intermediate state, either because of
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Fig. 1. Framework for quantitative fault-injection analysis.

dependencies between the secret and the fault occurrence or because of the fault
itself is biased (e.g., set/reset faults). Then, only those key hypotheses remain
that lead to the known bias in the intermediate state. SIFA [23] uses the same
idea, but creates the bias by discarding all outputs where the fault has an effect.

2.2 Side-Channel Analysis and Masking

Another highly relevant attack is passive Side-Channel Analysis (SCA), where
an adversary observes some physical characteristics such as timing [35], instan-
taneous power consumption [36], or electromagnetic emanations [27] to recover
some processed secret, e.g., a cryptographic key. For arguing about SCA secu-
rity theoretically, the d-probing model [33] was introduced, where an adversary
gets access to d chosen intermediate values. As protection against such attacks,
boolean masking [15] replaces each xi ∈ F2 with a vector 〈xi,0, . . . , xi,n−1〉 ∈ F

n
2

with n ∈ N, such that knowing any set of up to d shares xi,j does not reveal
any information about xi, and xi =

⊕n−1
j=0 xi,j . The optimal amount of shares is

n = d+1 (with less there is a trivial attack by probing all shares of some value).
Similarly, the circuit is transformed into a masked circuit by transferring each
operation to a set of operations that produces share vectors of the output from
share vectors of the input.

3 A Vulnerability Metric for FIA

In the following, we describe the proposed vulnerability metric for FIA. For that,
we start by defining our circuit, fault, and adversary models. Then we present
our framework by showing how to construct an appropriate information channel
and describe the actual computation of the vulnerability metric (cf. Fig. 1).

3.1 Circuit Model

Stateless Channel. We model a circuit C as a probabilistic information chan-
nel C : X ×S → DY with a secret s ∈ S and some x ∈ X as inputs that produce a
(probabilistic) output y ∈ Y [3]. Thereby, the adversary tries to learn the secret
s and the output y should model all information that an adversary learns by
observing the execution of the circuit. In general, we describe such a channel as
a matrix, where each entry C(x,s),y gives the probability Pr[y | x, s]. Hence, each
row lists all the output probabilities given a specific input and sums up to 1. If
C(x, s) is uniquely defined, i.e., each row has exactly one entry equal to 1, we
call the circuit deterministic.



Quantitative Fault Injection Analysis 307

We assume a stateless channel, meaning that each input is processed inde-
pendently of all previous inputs, i.e., there is no notion of time or order between
different executions. In particular, the channel always accepts the same input
multiple times and processes it in the same (probabilistic) way. This restriction
has implications for the type of countermeasures captured by this model, as
discussed below (cf. Sect. 3.4). A stateless channel does not restrict the circuit
to be stateless, i.e., the circuit may contain memory elements such as registers.
However, before feeding a new input to the circuit, all memory elements are reset
to an initial value, so there is no dependency between different executions.

Directed Graph. To precisely model the ability of a faulting adversary, we
need more internal information about the circuit than provided by a probabilistic
channel. A common method in the literature is to model a circuit via a Direct
Acyclic Graph (DAG) [44]. For this, we define a set of input and output gates
Gio = {in, out} where in has no input and outputs a value from the finite field
F2, and out does the opposite. Further, without loss of generality, we define the
set of combinatorial gates to be Gc = {inv, and, nand, xor, xnor} and the set of
memory gates to be clocked registers Gm = {reg}. To represent probabilistic
circuits, we define a randomness gate Grand = {rand} with no input that outputs
an independent and uniformly chosen value at each clock cycle. Then, we model
a circuit C as a directed graph C = {G,W}, where vertices g ∈ G = Gio ∪ Gc ∪
Gm ∪ Grand represent logical gates and edges w ∈ W represent wires connecting
two gates and carrying a value from the field F2.

3.2 Fault Model

We assume a slightly modified version of the fault model from Richter-
Brockmann et al. [44]. In this model, up to k faults are injected into gates,
and affected gates are transformed to a different gate type specified by the fault
type τ ∈ T (cf. Fig. 2a and 2b). Typical fault types are set, reset (replacing the
targeted gate with a constant one or zero, respectively), or bit flips (inversion of
the gate). In contrast to Richter-Brockmann et al., we introduce a probabilistic
notion of fault location. A fault can occur in a subset of gates G′ ⊆ G. Then
a fault is a tuple fi = (g, τ) with g ∈ G′ and τ ∈ T . We define a probability
distribution DF over the set F of all fault combinations f with up to k faults.
The combination with zero faults is always in DF , potentially with probability
zero. Hence, each fault combination will occur with a certain probability defined
by Pr[f ] ∈ DF , as depicted in Fig. 2c.

This model naturally expresses transient faults, i.e., faults that affect the
circuit only for a short amount of time (at one invocation). Permanent faults
can be modeled by altering the underlying circuit structure according to the
fault (as a fault is inherently a gate transformation).

Motivation for Probabilistic Fault Model. In the context of FIA, we consider an
adversary (cf. Sect. 3.3) who is deliberate in the choice of faults that they inject.
Specifically, an adversary will always try to inject faults that maximize the gain,
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Fig. 2. In our fault model gates are transformed into other gate types depending on
the fault type τ ∈ T . Each fault combination occurs with a probability Pr[f ] ∈ DF .

i.e., maximize the leakage of some secret value. However, in practice, an adversary
is restricted in the means of fault injection, resulting in a certain imprecision in
the fault location. While precise methods exist, e.g., via focused laser beams [52],
those methods are expensive in equipment and challenging in execution. Other
fault methods, e.g., clock or voltage glitching [1,50], are much easier and cheaper
but have a widely dispersed effect on the circuit. For example, the effect of clock
glitching is determined by the timing behavior of each path given the current
inputs together with the previously stored values of each register [44]. Similarly,
a laser attack where the diameter of the laser beam is larger than the size of
the transistor switches in the underlying technology may simultaneously affect
multiple neighboring gates. Hence, mostly an attacker is not in total control of
the effect the injected fault has on the circuit, which leads to a probabilistic fault
behavior. We model this probabilistic behavior by DF . While we extend the fault
model with probabilistic faults and use DF in our subsequent analysis, we do
not answer the question of how to come up with reasonable fault distributions.
However, in practice, all fault attacks have implicit or explicit assumptions on
DF (e.g., uniformly distributed faults) which can be used for analysis. Ideally,
deriving DF would be part of a security-aware Electronic Design Automation
(EDA) environment, which computes a reasonable approximation given some
fault injection parameters. However, as this is a complex research question in its
own right, we leave this for future work.

3.3 Adversary Model

The adversary Af gets access to a circuit C that can be invoked exactly twice
with the same input, once without manipulation and once with manipulation
via fault injection. For this, Af has access to the circuit structure as a directed
graph and the corresponding channel matrix. The goal of Af is to learn the
specific input s ∈ S of which Af has prior knowledge of the general distribution
DS. In addition, Af knows the distribution over the other inputs DX (which is
independent of DS) and of the distribution over possible faults DF .

Usually, the distribution of secrets DS is defined as a uniform distribution,
meaning that the adversary has no prior knowledge about the secret. The distri-
bution over the other inputs DX can be adjusted to model the specific scenario
of interest. For example, a uniform distribution to represent other secret values
Af is not particularly interested in, a distribution with Pr[x] = 1 for some x ∈ X
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to represent a known or adversary chosen input value, or something in between
for scenarios where Af has some knowledge about the input, e.g., because of
formatting or padding.

After the invocation of C , Af gets access to a fault-free output y and a
faulty output y′. Providing Af with the pair (y, y′) marks a powerful attacker
who can observe the precise effect of the injected fault. Often this is justified by
an adversary who can run a circuit multiple times with the same input (as the
channel C is stateless). By using probabilistic channels, our model also accounts
for circuits where different probabilistic choices are used to derive y and y′.
Importantly Af is an information-theoretical adversary, and we do not restrict
the computational power. Also, the adversary always tries to learn a secret and is
not interested in behavior manipulation for other purposes, e.g., denial of service
or bypassing access control.

3.4 Constructing a FIA Channel

Channel Composition. Channels can be combined into larger channels
according to certain rules. In the following, we provide the composition rules
for two types of two-channel compositions. Of course, these can be extended to
the composition of any number of channels through iterative composition.

Parallel Composition. The simplest variant of channel composition is a parallel
composition [3], where the adversary gets the output of two independent runs of
two channels. The resulting channel matrix can be computed from the channel
matrices being composed. In particular, given two channels C1 : X → Y1 and
C2 : X → Y2 the entries for the parallel channel matrix can be computed as
(C1 ‖ C2)x,(y1,y2) = C1

x,y1
· C2

x,y2
.

Composition via Internal Probabilistic Choice. Another form of composition is
internal probabilistic choice [3], where the adversary gets the output of only one
of two channels, but does not know which one was chosen. Again, the resulting
channel matrix can be computed from the two channels. Given two channels
C1 : X → Y1 and C2 : X → Y2 the entries for the composed channel can be
computed by

(C1 ⊕r C
2)x,y =

⎧
⎪⎨

⎪⎩

Pr[C1]C1
x,y + (1 − Pr[C1])C2

x,y y ∈ Y1 ∩ Y2

Pr[C1]C1
x,y y ∈ Y1 \ Y2

(1 − Pr[C1])C2
x,y y ∈ Y2 \ Y1

FIA Channel. We use the above composition rules to construct a channel
that represents the adversary’s view and knowledge. In particular, we construct
individual channels Cf for all fault combinations f ∈ F , such that Cf represents
the circuit C under the fault combination f . All these channels are composed
by internal probabilistic choice under the distribution DF to model a randomly
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Fig. 3. Construction of a FIA information channel via composition.

selected fault scenario. The resulting channel CF is then composed in parallel
with the unaltered circuit channel C, to acknowledge the leakage of pairs of
correct and faulty outputs. An overview of the construction is given in Fig. 3.
As a result, the overall channel matrix can be computed as

CFIA
(x,s),(y,y′) = C(y,s),y

∑

f∈F
Pr[f ]Cf

(x,s),y′

By providing the same input x and s to all channels, we can model the correct
and incorrect channel executions as independent runs while still guaranteeing
that the output pair (y, y′) results from the same inputs.

Coverage of FIA Channel. The presented FIA channel covers a wide range of
possible fault attacks and circuit structures. In particular, the channel represents
all attacks that use only faulty outputs, use only correct outputs (where faulty
outputs are suppressed), and use a combination of faulty and correct outputs.
While the last attack scenario is trivially covered, the other two scenarios are
included because the FIA channel is a composition of the channels that model
the attacks where only one type of output is used. In particular, the composition
strategies used do not reduce the amount of leaked information. The proposed
channel is restricted in the sense that Af only has access to a single output pair
(y, y′). However, we argue that the analysis of leakage for a single output pair
is a good enough approximation of the severity of attacks using multiple output
pairs since these attacks also rely on the existence of leakage for a single output
pair. Similarly, an attacker using multiple faulty outputs y′

i for each non-faulty
output y relays on the existence of leakage in the case of a single faulty y′.

Since the only requirement for the channel is that it is stateless, a wide range
of countermeasures can be evaluated. In particular, all countermeasures that do
not depend on a stored state are covered by our model, e.g., detection, correction,
and infection based on redundancy in time, space, or information. An example
of a countermeasure that is out of scope is an implementation that stores all
used inputs and never responds to an input a second time.
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3.5 FIA Vulnerability and Leakage

Vulnerability. After constructing the appropriate channel for FIA, we can
now compute the leakage of a given fault scenario and use this leakage as a
metric for severity. In general, the vulnerability V is defined as the probability
that an adversary can guess the secret in one attempt [3,53]. In particular, an
adversary would always guess the most likely value to maximize the probability
of success and hence V [S] = maxs∈S Pr[S = s]. However, we are interested in the
vulnerability given some output observation, which is given by the conditional
vulnerability [3,53] with V [S | Y ] =

∑
y∈Y Pr[Y = y] ·maxs∈S Pr[S = s | Y = y].

Intuitively, the conditional vulnerability provides the expected probability that
an adversary can guess the secret in one attempt, given a particular observation.
Using the expected probability makes it a property of the channel rather than
of a specific observation. Hence, the FIA vulnerability separates the secrecy loss
caused by a fault injection from the specific attack and provides a general metric.
Computing the conditional vulnerability is more practical when computed as
V [S | Y ] =

∑
y∈Y maxs∈S Pr[Y = y | S = s]Pr[S = s], which is equivalent using

Bayes’ Theorem [53]. Then, using the channel CFIA defined above, we can derive
the vulnerability for FIA as:

V [S | Y, Y ′] =
∑

y,y′
max

s
(Pr[s]Pr[y, y′ | s])

(∗)=
∑

y,y′
max

s
(
∑

x

Pr[s]Pr[x]Pr[y, y′ | x, s])

(∗∗)=
∑

y,y′
max

s
(
∑

x

Pr[s]Pr[x]Pr[y | x, s]
∑

f

Pr[f ]Pr[y′ | x, s]).

* Law of total probability ** Channel decomposition

Information Leakage. Translating the vulnerability to a measure of bits
leads to the min-entropy H∞(S) = log2(1/V [S]) or the conditional min-entropy
H∞(S | Y ) = log2(1/V [S | Y ]) [3,53]. Here, the min-entropy is an expression of
the residual uncertainty of the secret for the adversary. Finally, we can compute
the information leakage L as the difference between the uncertainty before and
after the circuit execution, i.e., L[S | Y ] = H∞(S) − H∞(S | Y ) [3,53].

The information leakage is a measure of the information that an adversary
can expect to learn about a secret after observing the execution of the system
(in our case, the FIA channel), i.e., the leakage is weighted by the probability of
occurrence. Thus, a non-integer value can be interpreted as: There is a certain
probability that some of the secret bits will be leaked to the adversary.

3.6 Composition of Independent Fault-Channels

With the above-given definition of vulnerability, we can provide a meaningful
definition of independence in the context of faults. In particular, two faults (or
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sets of faults) are independent of each other if the vulnerability caused by both
faults can be split into the product of the individual vulnerabilities for each fault
(with a correction term for the general vulnerability of the secret). Hence, the
definition mirrors the definition of independent probabilities.

Definition 1. For a given channel C two fault combinations f0, f1 ∈ F are
independent iff

V [S | Cf0 → (Y, Y ′)] · V [S | Cf1 → (Y, Y ′)] = V [S] · V [S | Cf0∧f1 → (Y, Y ′)].

Intuitively, this means that the impact of f0 does not interfere with the
impact of f1 and vice versa. This gets more obvious when considering the leak-
age of two independent faults, which gets additive. Hence, the two faults leak
different, i.e., independent, bits about the secret.

Theorem 1. Two fault combinations f0, f1 ∈ F are independent iff
L[S|Cf0 → (Y, Y ′)] + L[S|Cf1 → (Y, Y ′)] = L[S|Cf0∧f1 → (Y, Y ′)].

Proof.

V [S | Cf0 → (Y, Y ′)] · V [S | Cf1 → (Y, Y ′)] = V [S] · V [S | Cf0∧f1 → (Y, Y ′)]

⇔ H∞(S | Cf0 → (Y, Y ′)) + H∞(S | Cf1 → (Y, Y ′))

= H∞(S) + H∞(S | Cf0∧f1 → (Y, Y ′))

⇔ H∞(S) − H∞(S | Cf0 → (Y, Y ′)) + H∞(S) − H∞(S | Cf1 → (Y, Y ′))

= H∞(S) − H∞(S | Cf0∧f1 → (Y, Y ′))

⇔ L[S | Cf0 → (Y, Y ′)] + L[S | Cf1 → (Y, Y ′)] = L[S | Cf0∧f1 → (Y, Y ′)]

The property of independent faults can be used to analyze fault scenarios in
isolation rather than in combination. Usually, the independence of faults follows
from the underlying circuit structure, i.e., the propagation path of the faults does
not cross. Then, the leakage can be computed independently for each circuit part
and then be combined by Theorem 1 (cf. Sect. 5.1 and 5.2).

4 Methodology for Computation

Below we present how to efficiently compute the FIA vulnerability and leakage
with Reduced Ordered Binary Decision Diagrams (ROBDDs) [2,13], a canonical,
graph-based representation of boolean functions based on the Shannon Decompo-
sition (in accordance with the literature we refer to ROBDDs as BDDs through-
out this work). The transformation from a circuit to a BDD is simple but limited
to DAGs. As a consequence, no looping is allowed within the circuit, and thus no
iterative circuits are supported. However, such circuits can be trivially supported
by simple loop unrolling. In addition, we restrict ourselves to deterministic cir-
cuits/channels for simplicity. However, we show below how to transform any
probabilistic channel into a deterministic channel, so this is not a real limitation
of our approach.
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4.1 Circuit Transformation

We begin by describing some basic circuit/channel transformations required as
preprocessing for our main algorithm.

Deterministic and Probabilistic Channels. Our approach is tailored to
deterministic channels. However, we show that any probabilistic channel can be
transformed into an equivalent deterministic channel. As a result, the proposed
analysis approach applies to all channels, after a preprocessing for probabilistic
channels has been applied. The transformation is done by adding additional
random input variables that externalize the random choices of the channel. The
formal result is given in Theorem 2, where we use the notation C → y to indicate
that the value y is an output of channel C.

Theorem 2. Any probabilistic channel CP : X → DY can be transformed to a
deterministic channel CD : X × R → Y with Pr[CP → y | x] = Pr[CD → y | x].

Proof. Let CP : X → DY be a probabilistic channel with corresponding channel-
matrix entries 0 ≤ CP

x,y ≤ 1. By definition of the channel matrix it holds that
CP

x,y = Pr[y | x]. We start by defining a set of random elements R such that
there is a distinct rx ∈ R for each x ∈ X with ∃y ∈ Y : CP

x,y �∈ {0, 1}. Further,
let all rx ∈ R be of �log2(|Y|)� bits such that each value rx = i selects one
output value yi ∈ Y. We define the distribution DR such that ∀rx ∈ R it holds
that Pr[rx = i] = CP

x,yi
= Pr[y | x]. Now we define a deterministic channel

CD : X × R → Y with the following channel matrix entries:

CD
(x,rx),yi

=

{
1, if CP

x,yi
�= 0 ∧ rx = i

0, otherwise

This is the required channel for the following reasons:

Pr[CD → yi | x] (∗)=
∑

j

Pr[yi | x ∧ rx = j]Pr[rx = j]

(∗∗)= Pr[yi | x ∧ rx = i]Pr[rx = i]
(∗∗)= Pr[rx = i]
(∗∗∗)= Pr[CP → y | x]

* Law of total probability ** Definition CD
(y,rx),yi

*** Definition Pr[rx = i]

Since the adversary Af has access to the channel matrix CP , it is essential
to provide Af with the distribution DR after the transformation to CD. Oth-
erwise, the adversary would be less powerful than before the transformation,
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Fig. 4. A circuit under fault injection is adapted to include a MUX that selects between
the correct and the faulty behavior of the circuit.

since the details of the probabilistic choices would be missing. In addition, the
computation of the vulnerability in the channel CFIA changes to:

V [S | Y, Y ′] =
∑

y,y′
max

s
(
∑

x,r

Pr[s]Pr[x]Pr[r]Pr[y | x, s, r]
∑

f

Pr[f ]Pr[y′ | x, s, r])

(1)

Fault-Selection Variables. The adversary and fault model used allows Af to
select a subset of gates and change them to different gate types according to
the specified fault types. A trivial algorithm would instantiate a different circuit
C f for each combination of faults f ∈ F (as indicated in Fig. 3) and change the
gates accordingly. These different circuit instances can be distributed in time or
space. We introduce a more efficient method by proposing a way to encode all
possible fault combinations into a single circuit representation. To do this, we
introduce new fault-selection signals selg for each fault location g ∈ G′. Then,
for each fault location g ∈ G′, we add a Multiplexer (MUX) to the circuit so that
the select signal of the MUX is driven by the signal selg. Now, the MUX will
pass the output of g if selg = 0, or otherwise select a fault type. For each fault
type τ , a different gate is added to the circuit so that the gate type corresponds
to τ , the inputs of the gate are the same as the inputs of g, and the output
is connected to the MUX. An example instantiation is shown in Fig. 4. In this
way, we can evaluate different combinations of faults f ∈ F by activating the
corresponding fault selection signals selg. Of course, this increases the size of
the circuit and thus the size of the associated BDD, but it eliminates the need
to create each faulty circuit individually.

4.2 Computation of FIA Vulnerability

General Idea. A naive computation of the FIA vulnerability V [S | Y, Y ′] starts
by deriving the channel matrix CFIA, as shown in Fig. 3, by iterating over all
x ∈ X , s ∈ S, r ∈ R, and f ∈ F , before computing Eq. 1. Note, however, that
after transforming the probabilistic channel CFIA into a deterministic channel,
all entries in CFIA are either one or zero. Thus, the matrix is just an encoding
of valid input/output pairs that can be efficiently encoded via a BDD. When
computing Eq. 1, we ensure that we only iterate over valid pairs of (y, y′) by fixing
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Fig. 5. High-level overview of the principle of Algorithm 1, with H = X × S × R × F .

the faulty output y′, determining all input and fault combinations that can lead
to y′, and computing only the corresponding non-faulty outputs y. This general
principle is illustrated in Fig. 5 and can be efficiently realized using BDDs. In
addition, this approach allows for parallel and probabilistic computation of V [S |
Y, Y ′], as we discuss below and in Appendix A.

Deterministic Computation. Our BDD-based algorithm for computing the
FIA vulnerability V [S | Y, Y ′] is given in Algorithm 1. The use of BDDs allows
the efficient inversion of a channel since the set of satisfying assignments of a
function is given by all paths ending in the true-leave of the function’s BDD
(without storing the entire channel matrix).

The input to Algorithm 1 is a circuit C and a set of fault combinations F . We
first extend the circuit with fault selection variables (cf. Sect. 4.1) and construct
the corresponding channel BDD C′. Then, according to Fig. 5, we iterate over
all possible faulty output values y′ and compute the corresponding part of the
vulnerability. For the actual computation, we need all inputs x ∈ X , s ∈ S in
addition to all fault combinations f ∈ F that can lead to the faulty output y′.
This gives us the set of satisfying assignments H = X × S × R × F of the BDD
that encodes the output y′. The set of satisfying assignments also contains the
specific values for r ∈ R that lead to the faulty output. However, to get all
possible pairs (y, y′) we consider all possible assignments to r when computing
y (cf. Line 12). In addition, since we have a deterministic channel, it holds that
Pr[y′ | x, s, r, f ] = 1 for (x, s, r, f) ∈ H while Pr[y′ | x, s, r, f ] = 0 otherwise.
Given the set H, we can compute all pairs (y, y′) with Pr[y, y′ | x, s, r, f ] = 1
and then compute the vulnerability V [S | Y, Y ′ = y′].

Since Algorithm 1 isolates the computation of V [S | Y, Y ′ = y′] for each y′,
it is easy to parallelize the computation and derive the overall vulnerability V
by summing up all individual V [S | Y, Y ′ = y′] at the end.

Complexity. The runtime of Algorithm 1 depends on the circuit structure, the
number of faults, and their locations. Without this information, it is hard to
estimate the number of matching faults in Line 8 and the size of L in each loop
iteration. This makes the impact of the fault cardinality a function of the circuit
and the fault locations. However, if we inspect the algorithm considering its use
with deterministic circuits, we can see that throughout all iterations of the outer
loop, the for loop in Line 6 is executed for all inputs x, s, since in a deterministic
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Algorithm 1: Fault-vulnerability for deterministic circuits.
1 function fault_vulnerability(C , F):

// Get BDD of circuit
2 C′ ← BDD[add_fault_mux(C , F)]

// Compute vulnerability
3 V ← 0
4 for y′ = 0 to 2m do

// Get satisfying assignment for given y′

5 H ← SAT(BDD[C′ = y′])
6 L ← ∅
7 for ∀(x, s) ∈ H do

// Compute
∑

f Pr[f ]Pr[y′ | x, s]

8 fpr ← 0
9 for f with matching (x, s) do

10 fpr ← fpr + Pr[f ]

11 for ∀r ∈ R do
12 y ← C (x, s, r)

// Sum up according to matching y
13 if (y, s) ∈ L then
14 Ly,s ← Ly,s + Pr[x] · fpr · Pr[s]
15 else
16 Ly,s ← Pr[x] · fpr · Pr[s]

// Sum up everything
17 for ∀y ∈ L do
18 V ← V +max(Ly)

19 return V

circuit all inputs result in exactly one output value. Later, and within this for
loop, there is a loop over all random values r. Thus, the algorithm is at least
exponential in the number of input bits (secret, non-secret, and random).

4.3 Implementation

We integrated the computation of the FIA vulnerability and leakage, as described
in Sect. 4.2, into the state-of-the-art verification tool VERICA [42]1. VERICA is
a BDD-based framework for verifying the independence of secrets and probe
distributions for SCA, evaluating the impact of fault propagation on the circuit
output for FIA, and the combination of both for Combined Analysis (CA). In
contrast to the general fault model (cf. Sect. 3.2), we also allow faults at inputs
to model cases where the analysis is performed for a part of a larger design, and
thus faults can be placed outside of the analyzed section.

1 https://github.com/Chair-for-Security-Engineering/VERICA.

https://github.com/Chair-for-Security-Engineering/VERICA
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Input/Output. VERICA receives as input a Verilog netlist of the design under test,
an annotation file that defines the type of input/output signals (e.g., secrets, ran-
domness, sharing, or replication), and a definition of the fault model, i.e., the
transformation of gates under faults. In addition, to compute the fault vulner-
ability, a fault whitelist has to be provided that specifies the fault locations
(gates) and the fault probabilities (for specific gates). The tool then outputs the
vulnerability (and leakage) of the given scenario.

Restrictions to the Implementation. For simplicity and ease of use, we have made
the following design choices for the practical implementation. First, we assume
that all faults at different fault locations are independent of each other, i.e., the
probability of two faults occurring together is the product of the individual prob-
abilities. This simplifies the definition of the fault distribution DF since only one
fault probability per fault location needs to be defined. Second, we assume that
all inputs x ∈ X , s ∈ S, and r ∈ R are drawn from an independent and uniform
distribution. For s and r, this is the most natural choice for most real-world sce-
narios. For x, this restriction means that Af has no control or prior knowledge
of the non-secret input, which limits the applicable scenarios. However, it is a
reasonable assumption when x is the internal state of a cryptographic function.
Both assumptions are not intrinsic to the way of computation, but a simplifica-
tion to reduce the burden on the user. Of course, all of the above restrictions
(Sect. 3 and Sect. 4) still apply.

5 Measuring the Efficiency of Fault Attacks

In the following section, we evaluate the described methodology for a quanti-
tative FIA metric with respect to the match between theory and practice, by
analyzing the efficiency of known fault attacks. To do so, we extend the fault
model from Sect. 3.2 with additional faults on input values, i.e., each input bit
can be manipulated with a set, reset, or bit-flip fault. While input faults have
no counterpart in real-world attacks (an input fault is just another input), it is
useful when analyzing only parts of circuits where input faults can occur through
fault propagation. Indeed, in the following we only focus on scenarios where we
analyze parts of the circuits and, hence, Af has no prior knowledge of the non-
secret input x. All of our circuits are synthesized using the Synopsys Design
Compiler with a subset of cells in the NanGate 45 nm Open Cell Library (OCL).

We report our results using the leakage L[S | Y, Y ′]. In general, vulnerability
and leakage are two representations of the same quantitative metric with dif-
ferent advantages and disadvantages. While the vulnerability provides a stand-
alone metric for security, the leakage is more human understandable but requires
knowledge of the bit width of the secret. We decided to focus on the leakage and
provide the theoretical maximum leakage where necessary for interpretation.
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Fig. 6. Setup for key addition. Fig. 7. Setup for DFA.

Table 2. Leakage after injecting faults into a key addition (cf. Fig. 6).

Fault Metric
location Pr[f] type V * H∞* L

in
p
u
t

k
ey

s0 1.0 set 0.125 3.000 1.000

s0 1.0 reset 0.125 3.000 1.000

s0 1.0 flip 0.062 4.000 0.000

s0 0.5 set 0.094 3.415 0.585

in
p
u
t

st
a
te

x0 1.0 set 0.125 3.000 1.000

x0 1.0 reset 0.125 3.000 1.000

x0 1.0 flip 0.062 4.000 0.000

k
=

2 s0 s1 1.0 1.0 set 0.250 2.000 2.000

s0 s1 1.0 0.5 set 0.188 2.415 1.585

* with n = 4.

Theoretical maximum: Lmax
KeyAdd = 4.

5.1 Faulting Key Addition

We start our analysis with a simple key addition, i.e., an xor between some
intermediate state x and some secret key s, as shown in Fig. 6. This is a well-
understood construction with respect to FIA and serves as a trivial test of the
soundness of our approach. The results for a 4-bit word are given in Table 2.
As expected, set/reset faults on a key bit si lead to the leakage of one bit (the
faulted key bit), while a bit flip does not reveal any secret information (because
x is unknown). The reason is that for set/reset faults, the two outputs y and
y′ are equal if and only if the injected fault is ineffective. In contrast, a bit flip
always results in an effective fault at the output. A similar effect can be achieved
by corrupting a state bit xi, as knowing two bits of an xor operation completely
determines the third bit. An interesting property of the key addition is that each
bit is processed individually, and thus faults injected into a key bit si only affect
the leakage of that particular key bit. In other words, the injected faults are
independent (cf. Definition 1) and it is sufficient to analyze a single construction
and scale the leakage to the number of faulted key bits.

5.2 Differential Fault Analysis

One of the most common fault attacks on cryptographic ciphers is DFA [9],
where an adversary Af gains access to a set of correct and faulty ciphertext
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Table 3. DFA against PRESENT and DEFAULT with a single S-box (cf. Fig. 7). Each
fault is a bit-flip with probability Pr[fi] = 1 at the indicated input xi. In addition, we
provide the number of key candidates left after observation of one pair (y, y′), where
256 × 16 means that in 256 cases for (y, y′) there are 16 key candidates left.

Fault PRESENT DEFAULT
location L Key Candidates L Key Candidates

in
p
u
t

- 0.000 256 × 16 0.000 256 × 16

x0 x1 x2 x3 2.000 256 × 4 0.000 256 × 16

x0 2.000 256 × 4 1.000 256 × 8

x0 x3 2.585 128 × 2, 128 × 4 0.000 256 × 16

x1 x2 2.585 128 × 2, 128 × 4 0.000 256 × 16

x0 x1 x2 2.585 128 × 2, 128 × 4 1.000 256 × 8

x3 2.585 128 × 2, 128 × 4 1.000 256 × 8

x1 2.807 192 × 2, 64 × 4 1.000 256 × 8

x2 2.807 192 × 2, 64 × 4 1.000 256 × 8

x0 x1 2.807 192 × 2, 64 × 4 1.000 256 × 8

x0 x2 2.807 192 × 2, 64 × 4 1.000 256 × 8

x1 x3 2.807 192 × 2, 64 × 4 1.000 256 × 8

x2 x3 2.807 192 × 2, 64 × 4 1.000 256 × 8

x0 x1 x3 2.807 192 × 2, 64 × 4 1.000 256 × 8

x0 x2 x3 2.807 192 × 2, 64 × 4 1.000 256 × 8

x1 x2 x3 3.000 256 × 2 1.000 256 × 8

Theoretical maximum: Lmax
PRESENT = 4, Lmax

DEFAULT = 4.

pairs (y, y′) and uses statistical analysis to reduce the search space for the secret
key s. For DFA to work, Af must inject bit-flip faults into an intermediate state
with a subsequent nonlinear layer. For block ciphers, this is commonly done by
attacking the last-round key and targeting the faults at the input of the last-
round S-boxes. Hence, we have y = S(x) ⊕ s and y′ = S(x ⊕ Δ) ⊕ s for an
intermediate state x and a fault difference Δ (a potential last-round linear layer
can be removed by choosing the corresponding output bits accordingly). More
advanced attacks use the same principle but inject faults in earlier rounds to
exploit fault propagation in the given cipher structure to affect multiple S-boxes
at once. Therefore, to analyze the susceptibility of ciphers to DFA, it is sufficient
to analyze the S-box and key addition of the last round, as shown in Fig. 7, with
bit-flip faults on the input bits xi. This simplification removes the propagation
of faults to the input of the last-round S-boxes. While it removes a potential
dependency between faults at the S-box input this is a common way to analyze
DFA [48]. Similar to the key addition analyzed in the last section, the last-round
S-boxes are also in parallel to each other, and faults injected into different S-
boxes are independent of each other. Hence, we can restrict our analysis to a
single instance and scale the leakage to the full set of affected S-boxes.
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4-Bit S-boxes. The results for two 4-bit S-boxes are given in Table 3, along
with the number of key candidates remaining after observation of one pair (y, y′).
In particular, we analyze the S-boxes of PRESENT [11], a cipher with a focus on
implementation efficiency in hardware, and DEFAULT [5], which is specifically
designed to resist DFA. First, we observe that the leakage metric is directly
related to the number of remaining key candidates. For example, for PRESENT
we have a leakage of L = 2 when flipping the bit x0. For the same scenario,
it holds that for all possible pairs of (y, y′), 4 out of 16 key candidates remain
after observing (y, y′), which means that Af learns exactly 2 bits of the key. For
the leakage metric, a higher value is better for the adversary, corresponding to a
lower number of remaining key candidates. In addition, our metric also correctly
measures the improved resistance of the DEFAULT S-box against DFA.

8-Bit S-boxes. We also analyzed AES regarding its susceptibility to DFA by
using the AES S-box in the construction of Fig. 7. Interestingly, for all possible
input differentials (with Pr[f ] = 1), we computed a leakage of L = 6.989 bits
(where 8 is the theoretical maximum), i.e., all faults are equally bad and leak
almost all possible key bits. This is confirmed by the number of key candidates
left which is 1024 × 4 ∧ 64512 × 2 for all fault scenarios. This behavior changes
when each bit flip occurs with a probability Pr[f ] < 1, e.g., a bit-flip probability
of Pr[f ] = 0.5 leads to a leakage of L = 6 when only bit x7 can flip and L = 0
when all bits can flip. However, further analysis is needed to obtain realistic fault
scenarios (cf. Sect. 8.2) and their leakage behavior.

5.3 Statistical Ineffective Fault Analysis

Another popular fault attack is SIFA [23], which exploits the knowledge that a
fault is injected into some intermediate state but has no effect on the output. This
is useful in situations where faulty outputs are suppressed, so Af only knows
correct outputs and whether a fault is ineffective (has no effect). A sufficient
condition for a SIFA vulnerability is a statistical dependency between the detec-
tion behavior and the secret. That is if an attacker can learn something about
the secret just by observing the detection behavior (in the form of a detection
flag or suppression of incorrect outputs), SIFA is possible. However, contrary to
claims in the literature [31], we later show that this is not a necessary condition
for SIFA, i.e., security does not follow from the absence of dependency.

In the following, we show that our tool accurately detects leaks from SIFA
when there is a statistical dependency between the detection flag and secrets. To
do this, we implement two instances of a design and feed the outputs to a detec-
tion module, as shown in Fig. 8. Then, faults are injected into only one instance
to maintain the correct functionality of the detection module. By considering
only the detection flags as outputs, we can ensure that the only leakage detected
by our metric results from a SIFA vulnerability.

For the evaluation, we selected three circuits discussed by Daemen et al. [20]
based on masking (cf. Sect. 2.2). On its own, masking is not sufficient to protect
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Table 4. SIFA against ISW multiplication, and χ3 and χ5 with masked Toffoli gates
(cf. Fig. 8). All faults occur with probability Pr[f ] = 1 and no randomness source is
faulted.

Fault Metric L

location type ISW χ3 χ5

in
te

rn
a
l

k
=

1
any set 0.000 0.000 0.000

any reset 0.000 0.000 0.000

any flip 0.000 0.000 0.000

in
p
u
t

m
a
x

s0,0 set 0.585 0.000 0.000

s0,0 reset 0.585 0.000 0.000

s0,0 flip 1.000 0.000 0.000

k
=

2

inv(s0,1) inv(s0,0) set – 0.585 0.322

Theoretical maximum: Lmax
ISW = 2, Lmax

χ3 = 3, Lmax
χ5 = 5.

against SIFA, but it provides valuable properties by ensuring that intermediate
values are independent of secrets [23]. Below, we consider the circuit’s unshared
inputs as secrets, use a security order d = 1, and implement a detection module
for each share index individually to preserve the independence properties (cf.
Fig. 8).

ISW Multiplication. The first circuit we analyze is the ISW multiplica-
tion [33] with additional registers to prevent SCA leakage from glitches. This
circuit implements a masked and, where each input and output is masked
with two shares. As can be seen in Table 4, there is no leakage for any inter-
nal fault with cardinality k = 1 (excluding randomness generation). However,
when some input s0,0 (first share of first input) is faulted, we see leakage due
to a dependency between the secret values and the detection signal [20], i.e.,
Pr[s0 · s1 = 1] �= Pr[s0 · s1 = 1 | f ineffective]. Thus, the composition of the ISW
multiplication is not SIFA-secure. From the structure of the circuit follows that
faults in any input behave the same.

The inferred leakage is specific to the given implementation since imple-
mentation changes change the possible fault locations. For example, the Syn-
opsys Design Compiler replaces and(s0,0, s1,1) with nor(inv(s0,0), inv(s1,1)) for
timing and area optimization unless instructed otherwise. However, this poten-
tially allows Af to fault the gate inv(s0,0), which effectively introduces a fault
at input s0,0 (with the corresponding leakage behavior).

S-boxes from XOODOO and KECCAK. To protect against SIFA, Daemen
et al. [20] propose circuits constructed by the composition of masked Toffoli
gates. A Toffoli gate computes the term x0 ⊕ (x1 · x2) and has the property that
all injected effective faults (set, reset, bit flip) are effective faults at the output.
This guarantees that there is no dependency between the detection behavior
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Fig. 8. Setup for SIFA. Fig. 9. Setup for analysis of detection.

Fig. 10. Setup for analysis of correc-
tion.

Fig. 11. Setup for CA.

and the secrets since all effective faults are always detected. Two S-boxes that
can be easily implemented with Toffoli gates are those from XOODOO [21] and
KECCAK [7]2. The analyzed instances are claimed to be first-order SIFA secure,
i.e., there should be no leakage for a single fault. Our metric accurately shows the
independence of the detection behavior and the secrets for k = 1, while leakage
can be seen for two injected faults (cf. Table 4).

6 Evaluating the Quality of Countermeasures

The quantitative FIA metric cannot only be used to measure the efficiency of
fault attacks but also to evaluate the quality of countermeasures or the general
resistance of designs against FIA. The last section used known attack vectors to
highlight the close match between theory and practice. In contrast, we now show
that meaningful insights can be drawn even under the constraints of scalability.

6.1 Detection/Correction

Various countermeasures against FIA have been proposed in the literature based
on redundancy in time, space, or information. Common to all countermeasures
is that redundancy is used either to react to the detection of faults or to directly
correct faults that occur. To evaluate the effectiveness of countermeasures, we
use the setting shown in Fig. 7, but with countermeasures applied. As S-box, we
choose the PRESENT S-box because of its interesting leakage behavior for DFA
(cf. Sect. 5.2), which we implemented according to Cassiers et al. [14].

2 We implemented both S-boxes with Toffoli gates in parallel (instead of sequential,
as in [20], to get the correct output) and without any registers.
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Table 5. Leakage for faults injected in a PRESENT S-box & KeyAdd with counter-
measures (cf. Fig. 9 and 10). All faults occurs with probability Pr[f ] = 1.

Fault Metric L

location type Plain Detection
(both - y, δ)

Detection
(no flag - y)

Detection
(flag only - δ) Correction

in
p
u
t

m
a
x

x2 set 3.000 1.000 0.954 0.000 0.000

x2 reset 3.000 1.000 0.954 0.000 0.000

x2 flip 2.807 0.000 0.000 0.000 0.000

in
te

rn
a
l

m
a
x

inv(x1) set 3.000 1.000 0.954 0.000 0.000

inv(x1) reset 3.000 1.000 0.954 0.000 0.000

and(x2, x̄1) flip 3.000 1.000 0.954 0.000 0.000

Theoretical maximum: Lmax
PRESENT = 4.

Detection/Correction. The most basic countermeasures are based on repe-
tition (in space or time) of the computation, which allows comparing the result
of different instances to either detect faults (inequality) or correct them directly
(majority voting). To detect an arbitrary set of k faults k + 1 instances are
required, while for correction, 2k+1 instances are required. In Table 5, we show
the leakage behavior for countermeasures with k = 1 and spatial repetition,
where we have chosen one of the locations with the highest leakage for a given
scenario. With respect to the countermeasures, we distinguish between plain (no
countermeasure, no repetition - cf. Fig. 7), detection (2 repetitions with output
set to 0 on fault detection - cf. Fig. 9), and correction (3 repetitions with major-
ity voting - cf. Fig. 10). To get a fine-grained analysis of the detection, we have
three different versions of the detection circuit: (i) detection flag δ and output
y are given to Af , (ii) only the output y is given to Af while the detection flag
is suppressed, and (iii) only the detection flag δ is given to Af while the output
is suppressed (cf. Sect. 5.3). We further distinguish between faults at inputs and
faults in the internal structure (including the detection/correction logic).

We observe that the detection countermeasure cannot prevent all existing
leaks. This is due to the occurrence of ineffective faults and the resulting biased
intermediate state, as exploited by SIFA [23]. Implementing the attack in the
given scenario reduces the key space to 8 out of 16, which perfectly matches
the inferred leakage of L = 1. Also, there is no leakage for bit flip faults at
the inputs, since these do not introduce any bias [23] and all faults are effec-
tive faults at the output [20]. However, we observe no leakage when we look
only at the detection flag, which means that there is no statistical dependency
between the detection behavior and the secrets. From this, we conclude that
there are designs vulnerable to SIFA whose detection behavior is independent
of secrets, directly contradicting Proposition 1 of Hadzic et al. [31] which claim
the opposite. Significantly, this has implications for verification methods of SIFA
security that reduce to this proposition (e.g., [31,42]). In cases where there is
some leakage for detection, it is always L = 1 (we observed the same behavior
when using the AES S-box). Whether this is a coincidence or a structural prop-
erty requires further investigation. For the same cases, suppressing the detection
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Table 6. Leakage of faults injected in masked PRESENT S-box with key addition
(Fig. 7 with masking) for Af obtaining shared outputs (L[{si,j} | y, y′]) and unshared
outputs (L[s | y, y′]), respectively. All faults occur with probability Pr[f ] = 1.

Fault L[{si,j} | y, y′] L[s | y, y′]

location type DOM HP C2 DOM HP C2

in
p
u
t

st
a
te

m
a
x

(k
=

1
)

x2,0 set 2.000 2.000 2.000 2.000

x2,0 reset 2.000 2.000 2.000 2.000

x2,0 flip 2.807 2.807 2.807 2.807

x2,0 x2,1 set 3.170 3.170 3.000 3.000

x2,0 x2,1 reset 3.170 3.170 3.000 3.000

x2,0 x2,1 flip 1.585 1.585 0.000 0.000

se
cr

et
m

a
x

s0,0 set 0.000 0.000 0.000 0.000

s0,0 reset 0.000 0.000 0.000 0.000

s0,0 flip 0.000 0.000 0.000 0.000

s0,0 s0,1 set 1.000 1.000 1.000 1.000

s0,0 s0,1 reset 1.000 1.000 1.000 1.000

s0,0 s0,1 flip 0.000 0.000 0.000 0.000

ra
n
d
.

m
a
x

r0 set 1.322 1.322 0.000 0.000

r0 reset 1.322 1.322 0.000 0.000

r0 flip 2.000 2.000 0.000 0.000

in
te

rn
a
l

m
a
x

inv(x3,0) set 1.907 1.907 1.585 1.585

inv(x3,0) reset 1.907 1.907 1.585 1.585

inv(x3,0) flip 2.700 2.700 2.322 2.322

and(x3,1, x1,0 ⊕ x2,0) set 1.700 – 1.700 –
and(x1,0 ⊕ x2,0, r0) set – 1.700 – 1.700

Theoretical maximum: Lmax
PRESENT = 4.

signal only marginally reduces the leakage, since Af can no longer trivially dis-
tinguish between 0 as a valid or suppressed faulty output. Finally, as expected,
there is no leakage when the correction is used.

Masking. As mentioned above, masking is not a countermeasure against FIA,
but against passive SCA, although it has some advantageous properties for the
prevention of SIFA. However, real-world implementations must withstand a wide
variety of attacks, so it is interesting to analyze masking from a FIA perspective.
To do so, we consider the circuit shown in Fig. 7 with masking using d = 1
and instantiating the S-box with composable-secure DOM [24] and HPC2 [14]
gadgets (i.e., small but secure subcircuits that can be securely combined). In
Table 6, we show the corresponding leakage, again selecting a location with the
maximum leakage for a given fault scenario (except for the two simultaneous
faults in the input state x, where we selected both shares of x2).
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In general, masking does not seem to harm FIA security. In particular, faults
in the input state x have the same effect as without sharing (cf. Table 5). Flipping
one share results in a bit-flip in the unshared value, while flipping both shares
results in no fault. If the secret itself is faulted, it is necessary to set/reset both
shares of the same secret si, which results in resetting the unshared secret bit
(cf. Sect. 5.1). Faulting random inputs ri (required to refresh the masking after
non-linear operations) does not result in a leak after observing the unshared
output. This is expected since the value of the randomness has no functional
impact. Also, the leakage decreases as one moves from looking at the shared
outputs to the unshared outputs since there is less information in the unshared
values. Finally, for this particular design, the type of gadgets has no impact
on the leakage behavior. However, this may be different when considering fault
combinations from real-world attack scenarios (e.g., clock glitching - cf. Sect. 8.2).

6.2 Detailed Analysis of Combined Vulnerabilities

Real-world circuits are not only exposed to FIA and SCA individually but poten-
tially also to the combination of both attacks. While the VERICA tool [42] can
verify security in such a CA setting, it does not provide a quantitative security
assessment for vulnerable designs. Similar to the general FIA setting, we can
also apply our quantitative metric to CA by computing V [S | P,P ′], where the
adversary receives a set of probes P instead of the outputs Y . Such an analy-
sis may be more efficient than for general FIA (for a given probe set) since it
is worthwhile to consider an internal subset of the design structures (which is
probed) instead of the entire circuit. In general, security against CA seems to
be quite expensive [25], and we hope that a dedicated quantitative analysis can
instruct more efficient protection mechanisms with an acceptable leakage level.

For our case study, we chose a ParTI [49] implementation of a PRESENT S-
box. ParTI is a protection scheme that combines masking (in particular Threshold
Implementation (TI) [18]) with error detection codes to protect against both FIA
and SCA individually. However, the scheme does not claim security against com-
bined attacks. We use an implementation with k = 1 and d = 1, for which we ran
VERICA to find a suitable probe position (output y3,2) and removed all parts not
related to that probe (cf. Fig. 7). We consider all unshared inputs as secrets.

ParTI Implementation of PRESENT Sbox. In Table 7, we show the leak-
age for all unshared-input bits together (s) and for each unshared-input bit
individually (si). Concerning the fault locations, we selected locations with the
maximum leakage when one input is faulted with a given fault type, the mini-
mum leakage when two inputs are faulted with a given fault type such that the
single-bit fault with the most leakage is in the fault pair and the maximum leak-
age for an internal fault. First, we observe that some fault locations and types
leak more across all inputs than the sum of all individual leakages. For example,
while L[s | y3,2] = 0.129 for reset faults in s3,0 and s3,1, the same scenario leads
to

∑
i L[si | y3,2] = 0, 087. Thus, Af learns something about the combination of

secrets even if the individual secret is securely hidden, e.g., if it is more likely
that s = 〈0, 0, 0, 0〉, even if the distribution over each si is uniform. For some of
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Table 7. Leakage of Combined Analysis on ParTI implementation of the PRESENT
S-box when the output y3,2 is probed (cf. Fig. 11). All faults occur with probability
Pr[f ] = 1.

Fault Metric L[t | y3,2, y
′
3,2]

location type t = s t = s0 t = s1 t = s2 t = s3

in
p
u
t

m
a
x

s3,0 set 0.392 0.322 0.044 0.044 0.000

s3,0 reset 0.392 0.322 0.044 0.044 0.000

s1,0 flip 0.585 0.585 0.000 0.000 0.000

s1,0 s3,0 set 0.492 0.459 0.000 0.044 0.000

s1,0 s3,0 reset 0.492 0.459 0.000 0.044 0.000

s0,0 s1,0 flip 0.585 0.585 0.000 0.000 0.000

in
p
u
t

m
in

w
it
h

m
a
x

k
=

1 s3,0 s0,1 set 0.170 0.170 0.000 0.000 0.000

s3,0 s3,1 reset 0.129 0.087 0.000 0.000 0.000

s1,0 s0,1 flip 0.000 0.000 0.000 0.000 0.000

in
te

rn
a
l

m
a
x

xor(t0, s2,0 ⊕ s3,2) set 0.833 0.807 0.000 0.000 0.000

nand(s2,0, s1,2 ⊕ s3,0) reset 0.858 0.807 0.000 0.000 0.022

nor(s̄1,0, t1) flip 1.000 1.000 0.000 0.000 0.000

t0 = s2,0 · (s1,2 ⊕ s3,0); t1 = s0,1 ⊕ s1,2 ⊕ s3,0 ⊕ x2,0.
Theoretical maximum: Lmax

PRESENT = 4.

the given fault scenarios, the sum of the individual leakages is larger than the
combined leakage. However, since the difference is only marginal, we explain this
by rounding errors throughout the computation.

Second, we see that adding additional faults to a fault scenario can have
different effects. In Fig. 12, we provide additional insight into three of the given
scenarios. Specifically, we show the leakage over the change in fault probability
for two faults, where the x-axis is always the probability for a fault in s1.0.
While adding a bit-flip fault in s0,0 has no effect (cf. Fig. 12a), a set fault in
s3,0 increases the leakage (cf. Fig. 12b). However, the reverse is also possible,
i.e., a fault that reduces or even eliminates the leakage (e.g., bit-flip s0,1 - cf.
Fig. 12c). This gives us a new protection scheme against FIA by constructing
a design structure that ensures that when a fault occurs in s1,0, there is also a
fault in s0,1. Since most faults are related to the timing behavior of a circuit [44],
this can be achieved by delaying some of the signals in the circuit. We can also
see that, in general, for a single fault, a lower fault probability means a lower
leakage, which follows directly from the equation for the vulnerability (cf. Eq. 1).

7 Performance of Prototype Implementation

In the following, we provide some insight into the performance of our imple-
mentation. We run all experiments on a 64-bit Linux Operating System (OS)
environment on an Intel Xeon E5-1660v4 CPU with 16 cores, a clock frequency
of 3.20GHz, and 128GB of RAM.
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Fig. 12. Leakage behavior of fault combinations under changing fault probability.

Table 8. Execution time for vulnerability computation on a 64-bit Linux OS executing
on an Intel Xeon E5-1660v4 CPU with 16 cores, a clock frequency of 3.20 GHz, and
128GB of RAM.

Design Fault Metric
Description inx,r ins out comb. reg. k Pr[f] type time L

P
R
E
S
E
N
T

∗

Plain 4 4 4 26 0 1 0.7 flip 0.82 s 2.561

Plain 4 4 4 26 0 4 0.7 flip 0.80 s 2.407

DOM 8 4 4 91 16 1 0.7 flip 1.15 s 0.766

DOM 8 4 4 91 16 4 0.7 flip 3.56 s 0.766

HPC2 8 4 4 115 44 1 0.7 flip 1.16 s 1.036

HPC2 8 4 4 115 44 4 0.7 flip 2.69 s 1.514

2× 8 8 8 52 0 1 0.7 flip 0.81 s 2.561

2× 8 8 8 52 0 4 0.7 flip 0.90 s 3.124

3× 12 12 12 78 0 1 0.7 flip 8.57 s 2.561

3× 12 12 12 78 0 4 0.7 flip 38.70 s 3.124

4× 16 16 16 104 0 1 0.7 flip 44.30min 2.561

4× 16 16 16 104 0 4 0.7 flip 3.50 h 3.124

A
E
S

∗

Plain 8 8 8 143 0 1 0.7 flip 0.84 s 7.043

Plain 8 8 8 143 0 4 0.7 flip 1.03 s 5.712

Detection 8 8 8 319 0 1 0.7 flip 0.96 s 0.000

Detection 8 8 8 319 0 4 0.7 flip 1.62 s 0.000

Correction 8 8 8 464 0 1 0.7 flip 0.97 s 0.000

Correction 8 8 8 464 0 4 0.7 flip 5.88 s 0.000

2× 16 16 16 288 0 1 0.7 flip 1.22 h 7.043

2× 16 16 16 288 0 4 0.7 flip 6.89 h 13.359

K
E
C
C
A
K

∗∗ 1 B. Input 0 10 10 1175 0 1 0.7 flip 1.99 s 9.743

1 B. Input 0 10 10 1175 0 4 0.7 flip 3.36 s 9.970

2 B. Input† 10 10 10 2392 0 1 0.7 flip 5.59min 7.995

2 B. Input† 10 10 10 2392 0 4 0.7 flip 59.11min 6.643

*S-box & KeyAdd; **b = 25, r = 10; †single core.
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In Table 8, we show the execution time together with important charac-
teristics of the analyzed circuits (for randomly selected faults). The results
clearly confirm the complexity considerations in Sect. 4.2, i.e., the execution time
depends strongly (exponentially) on the number of input bits. We are able to
analyze a design with 32 inputs, 16 outputs, and 104 gates (4× PRESENT S-box
& KeyAdd) in 45 min with a single fault and in about 4 hours with four faults.
A design with the same input and output sizes but more than twice the number
of combinatorial gates (2× AES S-box & KeyAdd) takes about twice as long.
At the same time, the size of the circuit does not have such a significant impact
on the execution time, and a design with over 2000 gates can be evaluated in
less than 6 min with one fault and in less than 1 h with four faults, even on a
single core (for 16 cores, we ran out of memory because the BDD library used
requires a copy of the BDD for each core). The parallel implementations of S-
box & KeyAdd could also be analyzed separately due to their independence with
respect to the leakage (cf. Sect. 5.1), but we show them here to give a sense of
scalability.

8 Related and Future Work

In the following section, we will discuss related and future work of the presented
methodology.

8.1 Related Work

Quantitative Information Flow. Early methods for QIF relied on Shan-
non entropy along with mutual information to measure the flow of informa-
tion [16,17]. Intuitively, the Shannon entropy is a measure of uncertainty because
it provides the minimum number of bits required to encode a given piece of infor-
mation. However, it has been shown that the security guarantees derived from
Shannon entropy do not generally provide meaningful results [53]. To better cap-
ture the information leakage, Smith proposed the min-entropy as a measure of
uncertainty [53], which was later refined and extended (see Alvim et al. [3] for
an overview). We, therefore, rely on the min-entropy as presented in Sect. 4.

QIF for Hardware. The first attempt at quantitative analysis in the context of
hardware was done by Mao et al. [39], who evaluated the leakage caused by the
timing behavior (in the number of cycles) of an algorithmic hardware implemen-
tation in terms of mutual information. An extension to general information flow
with automatic integration into a Hardware Description Language (HDL) was
proposed by Guo et al. with QIF-Verilog [30]. They define operation-specific rules
for leakage propagation from inputs to outputs of logical operations. These rules
are inspired by Smith’s vulnerability metric V , but not an exact computation.
Later, Reimann et al. extended this approach with QFlow [41] by computing
the vulnerability V and the leakage L of subparts (groups of operations) and
combining them via a Markov chain. However, this requires the assumption of
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independence for all inputs to a component of the Markov chain, which is usually
not given. In contrast, we analyze the entire system at once, leading to an exact
computation with weaknesses in scalability. It remains an open question how the
approaches for HDLs can be tailored to the computation of V in the context of
FIA.

QIF for Fault Injection Analysis. Information-theoretic metrics and QIF
have also been used in the context of FIA. Sakiyama et al. [48] used Shan-
non entropy to determine the information leakage in DFA given a design as
shown in Fig. 7. They used a handcrafted analysis to analyze and improve exist-
ing attacks against AES. Later, Liu et al. [38] extended this approach to gen-
eral Substitution-Permutation Networks (SPNs) with potential FIA countermea-
sures. However, they assume the independence of internal signals for computa-
tional efficiency. In another line of research, Patranabis et al. [40] analyze the
security of a specific infection scheme in software using the mutual information
between an output differential y ⊕ y′ and the key s. An infection scheme tries
to make a faulty output y′ useless for Af by randomizing the effect of the fault.
Hence, security is achieved when the mutual information is equal to zero. A
more general methodology has been proposed by Feng et al. [26] for build-out
infections, i.e., infections applied after an unmodified cipher implementation. In
particular, they consider an attacker who obtains an output differential y ⊕ y′

after a single fault injection. Using the structure of build-out infection schemes,
the authors decompose the security analysis into the contribution of the unpro-
tected cipher and the contribution of the infection scheme. In addition, common
infection schemes are a composition of simple randomness-based operations that
can be analyzed individually. While the methodology covers a wide range of
infection schemes, the preparation must be tailored to the individual cipher and
infection scheme and requires considerable expertise. In contrast to these works,
we use QIF based on the min-entropy to develop a general metric for FIA not
tailored to specific attacks and circuit structures. In addition, we introduce the
notion of probabilistic faults into the fault model, allowing the analysis of more
realistic fault scenarios.

Fault Analysis Tools. In recent years, the research community has focused on
the development of automatic tools for fault susceptibility. The first set of tools
focuses on the construction of potential key distinguishers for DFA, i.e., differen-
tials between correct and incorrect intermediate states, and the evaluation of the
associated attack complexity. For this purpose, XFC [34] uses classical IFA in a
high-level cipher description. For the same purpose, ExpFault [47] uses system
simulation in combination with data mining techniques. Of course, these meth-
ods are limited to DFA. The second set of tools takes a more general approach
by analyzing the impact of faults on the output, i.e., distinguishing between
detected, ineffective, and effective faults. To do this, VerFi [4] uses traditional
simulation techniques to evaluate the system behavior, while FIVER [43] uses
symbolic analysis based on BDDs. As an extension to FIVER, VERICA [42] com-
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pares output distributions to verify security against SIFA. Except for the SIFA
extension, these tools assume that all faulty outputs are equally dangerous, and
are therefore unable to make a qualitative comparison between two different fault
scenarios. However, since these tools are much more efficient than the proposed
FIA vulnerability calculation, they can be used as a preliminary analysis step
to extract interesting fault scenarios. As a third set of tools, recent works com-
pare ciphertext distributions with a t-test for different fault locations with fixed
secrets or different secrets with fixed fault locations [45,46]. The ciphertexts for
the analysis are generated by non-exhaustive simulation and a design is classified
as vulnerable to FIA when the two ciphertext distributions can be distinguished
according to the t-test. Again, the result does not allow a quantitative analysis,
as the t-test provides a score for the confidence of the classification and not for
the difference of the distributions.

8.2 Future Work

The first and most obvious shortcoming of our proposal is scalability. While we
have shown that valuable insights can be gained from essential cryptographic
components of small or medium size, more efficient methods of evaluation are
needed for larger structures. Thus, we need some notion of composability to
reduce the complexity of a single analysis and still be able to conclude complex
structures. One approach in this direction is the construction of checkpoints (as
proposed by Shahmirzadi et al. [51]) that isolate two parts of a design with
respect to faults. Of course, this approach imposes additional overhead on the
design, and more efficient methods are desirable.

In this work, we consider an adversary who has access to exactly one pair of
correct and faulty outputs (y, y′). While this seems to be a good approximation
for the general vulnerability of a design to FIA, since more advanced attacks rely
on the existence of leakage in this simple case, a criterion for multiple output
pairs may provide more fine-grained insights. A trivial way to achieve this is to
combine different FIA channels into one large channel that produces a set of
output pairs (yi, y

′
i). However, since the complexity is already high for a single

output pair, it is prohibitive for additional pairs and more efficient approaches
are needed. In addition, we only consider state-less channels, which limits the
type of circuits and countermeasures that can be analyzed. Thus, extending the
concept to state-full channels is a valuable generalization.

Our fault model is based on a distribution over a set of faults DF , without
providing any instructions on how to come up with this set and distribution
of faults. Indeed, this is a complex and challenging problem in itself. We envi-
sion a tool that analyzes a given circuit structure with respect to a given fault
scenario and returns a set of likely fault combinations and an estimate of their
distribution. Combined with our approach, this would provide a powerful tool
for real-world evaluation of security in the context of FIA.
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9 Conclusion

In this work, we have shown how methods from QIF can be used to estab-
lish a quantitative metric for the security of a circuit against FIA. This metric
allows for fine-grained analysis of existing and new defense mechanisms, thus
enabling a trade-off between performance and security. Although computation-
ally expensive, the proposed method can provide new insights and enhance the
understanding of FIA and related countermeasures. For example, we were able
to find incorrect assumptions in the context of SIFA security and enable the
identification of security-enhancing faults.
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A Probabilistic Computation

A.1 Methodology

The isolated computation of V [S | Y, Y ′ = y′] for each y′ ∈ Y allows not only the
parallel computation of the vulnerability but also a probabilistic computation.
Here, instead of computing the exact value of V [S | Y, Y ′], we can approximate
it using a subset of Y. Specifically, we use the Monte-Carlo method [32], where
the mean of a set of samples is used to estimate the mean of a probability
distribution. This is a good approximation if the sample set is large enough
and each sample is chosen independently. The quality of the approximation is
given by the Confidence Interval (CI), which provides a range in which the true
distribution mean lies with a certain probability (given by the confidence level).

To compute the FIA vulnerability probabilistically, we randomly select N
faulty output values y′ ∈ Y and compute V [S | Y, Y ′ = y′] (as done in Algorithm
1). We then estimate the overall vulnerability by scaling the mean of the samples
by the number of existing faulty outputs y′:

V [S | Y, Y ′] ≈ |Y|
∑N

i=0 V [S | Y, Y ′ = y′
i]

N
(2)

Then the CI can be calculated using the Central Limit Theorem as (μ−z σ√
N

, μ+
z σ√

N
), where μ is the sample mean, σ is the sample standard deviation, and z

is the z-score of the confidence level. The z-score of common confidence levels
is 1.64 for a 90% confidence level, 1.96 for a 95% confidence level, and 2.57 for
a 99% confidence level. For efficient computation, an iterative formula for mean
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Fig. 13. Leakage over the number of runs for probabilistic computation with a set fault
injected to the first input (i.e., x0 or x0,0) Leakage is given in blue while upper and
lower bounds of the confidence range (95%) are given in black. Lighter colors represent
different executions. The precise leakage is marked in red. (Color figure online)

and variance can be used. The CI is defined for the mean vulnerability and
therefore must be scaled up for the overall vulnerability, similar to Eq. 2. This
results in a CI that grows with the number of possible output values.

A.2 Evaluation

In Fig. 13, we show the convergence of the estimated leakage to the real leakage
over the number of executions for four different circuits. While the estimation
improves with an increasing number of executions, several thousand executions
are required to obtain a high-confidence result. Thus, this only becomes inter-
esting for circuits with a high number of output bits, and for most of the designs
we analyzed, the exact computation is faster than running the probabilistic algo-
rithm so often. Interestingly, however, there are some cases where the probabilis-
tic algorithm yields the exact leakage after only one iteration (cf. Fig. 13b and
13d). This is the case when the vulnerability is the same for all possible output
values, i.e., the expression maxs(

∑
x Pr[s]Pr[x]Pr[y | x, s]

∑
f Pr[f ]Pr[y′ | x, s]) is

the same for all (y, y′). Further investigation is required to determine the set of
circuits for which this holds. If this can be easily determined, the computation
can be accelerated significantly, e.g., running 10 iterations for the 4× PRESENT
S-box & KeyAdd takes only 3.87 s instead of about 3.5 h to get the exact leakage
for four faults.
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Abstract. Time-lock puzzles wrap a solution s inside a puzzle P in such a way
that “solving” P to find s requires significantly more time than generating the
pair (s,P), even if the adversary has access to parallel computing; hence it can be
thought of as sending a message s to the future. It is known [Mahmoody, Moran,
Vadhan, Crypto’11] that when the source of hardness is only a random oracle,
then any puzzle generator with n queries can be (efficiently) broken by an adver-
sary in O(n) rounds of queries to the oracle.

In this work, we revisit time-lock puzzles in a quantum world by allowing the
parties to use quantum computing and, in particular, access the random oracle
in quantum superposition. An interesting setting is when the puzzle generator is
efficient and classical, while the solver (who might be an entity developed in the
future) is quantum-powered and is supposed to need a long sequential time to suc-
ceed. We prove that in this setting there is no construction of time-lock puzzles
solely from quantum (accessible) random oracles. In particular, for any n-query
classical puzzle generator, our attack only asks O(n) (also classical) queries to
the random oracle, even though it does indeed run in quantum polynomial time if
the honest puzzle solver needs quantum computing.

Assuming perfect completeness, we also show how to make the above attack
run in exactly n rounds while asking a total ofm ·n queries wherem is the query
complexity of the puzzle solver. This is indeed tight in the round complexity, as
we also prove that a classical puzzle scheme of Mahmoody et al. is also secure
against quantum solvers who ask n−1 rounds of queries. In fact, even for the fully
classical case, our attack quantitatively improves the total queries of the attack of
Mahmoody et al. for the case of perfect completeness from O(mn logn) tomn.
Finally, assuming perfect completeness, we present an attack in the “dual” setting
in which the puzzle generator is quantum while the solver is classical.

We then ask whether one can extend our classical-query attack to the fully
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quantum setting, in which both the puzzle generator and the solver could be quan-
tum. We show a barrier for proving such results unconditionally. In particular, we
show that if the folklore simulation conjecture, first formally stated by Aaronson
and Ambainis [arXiv’2009] is false, then there is indeed a time-lock puzzle in
the quantum random oracle model that cannot be broken by classical adversaries.
This result improves the previous barrier of Austrin et. al [Crypto’22] about key
agreements (that can have interactions in both directions) to time-lock puzzles
(that only include unidirectional communication).

1 Introduction

Time lock puzzles (TLPs) allow a puzzle generator Gen to efficiently generate a puzzle
P for a solution s, in such a way that solving the puzzle P back into s would require
significantly more time, even if the adversary uses multiple computers in parallel. TLPs
allow “sending a message to the future” as they only allow “opening the envelope” P if
a significant amount of time is spent by the solver.

The work of Rivest, Shamir, and Wagner [RSW96] both presented a construction of
a time-lock puzzle and also presented applications of such primitives. Their construc-
tion was based on the assumption that repeated squaring of integers modulo RSA com-
posites cannot be expedited even with parallel computing, unless one knows the factor-
ing of the composite in which case they can expedite the process. Hence, the puzzle gen-
erator can find the solution by “solving the puzzle” through a shortcut, while others are
forced to follow the sequential path. The work of [RSW96] also suggested using TLPs
for other applications such as delayed digital cash payments, sealed-bid auctions and
key escrow. Boneh and Naor [BN00] further showed the usefulness of such “sequen-
tial” primitives by defining and constructing timed commitments and showing their use
for applications such as fair contract signing. More recently, time-lock puzzles have
found more applications such as non-interactive non-malleable commitments [LPS17].

Despite their usefulness, it is still not known how to build TLPs based on more stan-
dard assumptions, and particularly based on “symmetric key” primitives. One might be
tempted to use inversion of (say, exponentially hard) one-way functions as the process
of solving puzzles. However, an adversary with k times parallel computing power can
expedite the search process by a factor k through a careful splitting of the search space
into k subspaces. Taking symmetric primitives to their extreme (idealized) form, one
can ask whether random oracles can be used for constructing TLPs. The good thing
about oracle models in general, and the random oracle model in particular, is that one
can easily define information-theoretic notions of time based on the total number of
queries asked to them, and also define the notion of parallel time based on the number
of rounds of queries that an algorithm asks to the oracle. This means that asking, say,
10 queries in parallel to the oracle only counts as a single unit of (parallel) time.

The work of Mahmoody, Moran, and Vadhan [MMV11] proved a strong barrier
against constructing TLPs from symmetric primitives by ruling out constructions that
solely rely on random oracles. In particular, it was proved that if a puzzle generator
asks only n queries to the random oracle and that the puzzle can be solved (honestly)
with m oracle queries, then there is always a way to expedite the solving process to
only O(n) rounds of queries while the total number of queries is still poly(n,m). Note
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that the polynomial limit on the total number of queries is necessary to make such an
attack interesting, as it is always possible to ask all of the (exponentially many) queries
of oracle in one round and then solve the puzzle without any further queries. The attack
of [MMV11] was in fact a polynomial time attack, though if one was willing to give up
on that feature and only aim for polynomial number of queries (which still suffices for
ruling out a ROM-based construction) they could achieve it in exactly n rounds as well.

Motivated by the developments in the area of quantum cryptography, in which some
or all of the parties of a cryptosystem might access quantum computation, we revisit
the barrier of constructing TLPs in the random oracle model. The extension of ROMs
with quantum access was formally introduced in the work of Boneh et al. [BDF+11].
Therefore, one can study the existence of TLPs in the quantum random oracle model
in which either (or both) of the puzzle generator or the puzzle solver could access the
random oracle in quantum superposition. This leads us to the main questions:

Can we construct time-lock puzzles from random oracles if either or both of the
puzzle generator and puzzle solver have quantum access to the random oracle?

Therefore, the question above deals with three settings: (1) only the puzzle solver
is quantum, (2) only the puzzle generator is quantum, (3) both algorithms are quantum.
In the first two settings, the puzzle is a classical string, as it needs to be output or read
by a classical algorithm. In addition, although the first two settings are not “full-fledged
quantum”, we find them meaningful. Particularly, the first setting is quite natural, as it
gives the extra quantum power to the more power entity; indeed, the puzzle generator
is supposed to be the more efficient entity out of the two players of the scheme.

In a related work, Unruh [Unr14] formalizes the notion of timed-release encryp-
tion1 in the quantum setting and shows how one can bootstrap time-lock puzzles to
make them revocable; namely, before the puzzles are solved the solver can convince
the generator, through interaction, that they are not going to find the solution after all.

1.1 Our Results

Our main result is an impossibility result that extends the result of [MMV11] to the
setting in which the puzzle solver is allowed to use quantum power. In particular, we
prove the following theorem.

Theorem 1 (Attacking classical-generator quantum-solver TLPs – Informally
stated, see Theorem 6). Any time-lock puzzle in the random oracle model with a
classical-query puzzle generator and a quantum-query puzzle solver can always be
broken by an attacker who asks only O(n) rounds of classical queries to the random
oracle, where n is the total number of oracle queries of the puzzle generator. The total
number of queries of the attack will be polynomial in n,m where m is the number of
(potentially quantum) oracle queries of the honest solver.

1 This is closely related to our notion of time-lock puzzles, with the difference that the puzzle
solution is given to the puzzle generator at the beginning.
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Note that it would be enough to find an attacker with quantum queries to the random
oracle so long as the number of rounds of queries is polynomial, however, our theorem
above goes one step further and shows that the quantum nature of the honest solver
cannot be crucial, as there will always be an “equivalent” classical-query solver as well.

Complexity of Our Attack. Our vanilla attack is not efficient, but similarly to the work
of [MMV11], we are also able to make our attack efficient, though our efficient attack
will run in quantum polynomial time, as it will need to simulate the honest solver in
its head. Note that our attack’s parallel complexity is only measured by its number
of rounds of queries to the oracle, and hence the (sequentially long) running time of
the simulation of the honest adversary in the attacker’s head is ignored in this regard.
However, our result shows that basing the sequential soundness solely on the (quantum-
accessible) random oracle is not going to be possible for constructing TLPs, even when
we use extra computational assumptions. In particular, one can imagine potential TLP
constructions in the ROM in which quantum polynomial-time adversaries cannot solve
certain puzzles and would be forced to ask a large number of rounds of oracle queries.
This would be similar to classical results such as [BR93] in which random oracles are
used along with computational assumptions. The fact that our attack runs in quantum
polynomial time rules out such approaches as well.

Optimal Attacks on Perfectly-Complete Protocols. The work of [MMV11] also pre-
sented an attack with exactly n rounds of queries. They also showed that such n-round
attack is optimal, in general, by presenting an n-query puzzle generator that asks all of
its queries in 1 round in such a way that it requires n rounds to be solved. The scheme
is based on a construction that we refer to as a pseudo-chain. In this work, we also show
that optimal-round attacks exist, at least for perfectly complete schemes.

Theorem 2 (Tight attack on classical-generator quantum-solver TLPs – Infor-
mally stated, see Theorem 4.10 in the full version). Suppose Π is a TLP as in the
setting of Theorem 1 and with perfect completeness. Then, Π can be broken in n rounds
of queries and a total of m · n queries.

We further observe that the n-round is indeed optimal by proving that the same
pseudo-chain scheme of [MMV11] needs n rounds of queries by the solver, even if it
can ask quantum queries to the random oracle.

Theorem 3 (A TLP with a linear difficulty gap for quantum-solver– Informally
stated, see Theorem 5.3 in the full version). Define the puzzle-generating function
f to be fH(x0, x1, . . . , xn+1) := (x0,H(x0) ⊕ x1, . . . , H(xn) ⊕ xn+1). Then any
attacker that makes at most n rounds of quantum queries can find xn+1 with at most
negligible probability.

Breaking Quantum-Generator Classical-Solver Puzzles. We then turn to the next set-
ting, in which only the puzzle generator has quantum access to the random oracle. This
setting is perhaps less natural for a TLP as the puzzle generator in a TLP is usually
the less resource-intensive party. However, we still find this a natural setting, in part
due to its potential applications beyond the TLP itself. In particular, if one can break
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quantum-generator classical-solver TLPs in a few rounds in the ROM, it would have
corollaries to the round complexity of attacks on key agreements in the ROM as well.
In fact, as observed in [MMV11], the transcript T of a key agreement can be seen as
a puzzle generated by the two honest parties with the solution being the agreed key k.
Then, an attacker who gets T and finds k can be seen as a puzzle solver. The work
of [ACC+22] showed that under the so-called polynomial compatibility conjecture, any
n query perfectly complete key agreement in the quantum ROM in which the messages
are classical can be broken by poly(n) classical queries to the oracle. Hence, by inter-
preting the attack on the key agreement as a puzzle solver as explained above, an attack
on TLPs with quantum generators and classical solvers would imply novel attacks on
the key agreement protocols in the quantum ROM with O(n) rounds of attack queries.
In part, with such motivation in mind, we take a step towards proving such attacks on
TLPs by proving the following result. Indeed we show a variant of the attack of The-
orem 2 that works for the “opposite” direction of quantum-generator classical-solver
TLPs.

Theorem 4 (Attacking quantum-generator classical-solver TLPs – Informally
stated, see Theorem 4.6 in the full version). Suppose Π is a TLP with perfect com-
pleteness in which the puzzle generator can ask n quantum queries to the random oracle,
and the solver asks m classical queries to the random oracle. Then, Π can be broken
in n rounds and a total of m · n oracle queries.

Theorem 4 is also tight, in the sense that it asks exactly n rounds of queries. How-
ever, similarly to Theorem 2, it requires perfect completeness. This means that if one can
improve the attack of [ACC+22] to find the key with probability 1 in poly(m,n) total
number of classical queries, then our Theorem 4 would immediately imply a round-
optimal n-round attack.

Quantum Generators and Solvers. Finally, we turn to the case in which both puzzle
generator and puzzle solver are allowed to use quantum access to the random oracle
model. Note that, in general, in this setting one can imagine the puzzle itself to be a
quantum object. For this setting, we are not able to present an attack. On the contrary,
we identify a barrier for proving such result unconditionally, so long as the attack only
uses classical queries to the oracle, which is the case in all of our attacks above. In
particular, we show that if the so-called (folklore) “simulation conjecture” [AA14] is
false, then there exists a TLP with a quantum puzzle generator and a quantum solver
that cannot be solved by classical-query attackers, even if they ask any polynomial
number of queries to the oracle.

The simulation conjecture states that for any algorithm Q that asks n quantum
queries to a random oracleH , the probability pH = Pr[QH = 1] can be ε-approximated
for 1 − ε fraction of the random oracles H , for arbitrarily small ε = 1/poly(n) using
only poly(n) number of classical queries to H . When, pH ∈ {0, 1} for all H , then this
conjecture is known to be true (e.g., see [OSSS05]), but the general case is open and
has resisted to be solved for more than a decade after its official exposition by [AA14].

Theorem 5 (Barrier for classically attacking fully quantum TLPs – Informally
stated, see Theorem 8). If the simulation conjecture is false, then there is a time lock
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puzzle in the quantum random oracle model that cannot be broken by classical adver-
saries.

Our theorem above does not lead to an actual useful TLP in the quantum random
oracle model, as it does not even offer a meaningful gap between the (true) running time
of the honest solver and that of the puzzle generator. However, it has the crucial prop-
erty that a classical (potentially malicious) solver is at a full disadvantage and cannot
solve the puzzle even with an arbitrary polynomial number of queries, regardless of its
parallel complexity. Consequently, it only serves as a barrier for extending Theorem 1
using a classical attack. Having said that, it is certainly possible that Theorem 1 could
potentially be extended to the fully quantum setting using a quantum adversary. We
leave this as an intriguing open question.

1.2 Technical Overview

Here we describe some of the ideas behind the proofs of our Theorems 1 and 5. We start
by describing our ideas behind the attack of Theorem 1.

Ideas Behind Our Attacks of Theorem 1. Our starting points are the attacks (from
the full version of) [MMV11], in which two different types of attacks on TLPs are pre-
sented: (1) computationally unbounded attacks with tight adaptivity2 n and (2) poly-
time attacks with adaptivity O(n) (specifically as small as 2n rounds). When we move
to the quantum-solver setting, we observe that their proofs suffer from incomparable
issues: the first attack primarily picks its oracle queries based on the puzzle genera-
tor’s algorithm, which for us is also classical, and hence the attack description is more
“quantum-solver friendly”. However, the analysis of this attack goes through condi-
tioning on events that do not have a direct quantum variant (at least at first sight). The
second attack from [MMV11] is in an opposite form: the attack’s description seems to
heavily rely on the solver being classical (more on this below) and hence seems to be
a more challenging path to take for us here. Having said that, we show that it is indeed
possible to extend a variant of the second attack to the quantum-solver setting by devel-
oping new ideas that might be useful for other contexts as well. As a bonus, we are also
able to make the attack efficient (in quantum polynomial time).

The Classical Attack of [MMV11]. We start by describing the attack of [MMV11] at
a high level, and then we address the challenges that arise when we move to the quan-
tum solver setting and explain how to address them. Suppose the Gen makes n oracle
queries. Then, the attacker will do the following in 3n rounds (of oracle queries), while
in each round it learns more oracle queries encoded in a list/partial function L (that
grows over time). In round i, the adversary will pick a full execution of the puzzle
solver SolHi(P) → si over the given puzzle P to obtain the solution si, while Hi is a
“random oracle” sampled in adversary’s head conditioned on the learned list L. Then,
at the end of this round, the adversary will ask all of the queries asked by SolHi(P)
from the real oracle H and add this information to L. Let Qi be the queries asked in

2 In fact, [MMV11] also showed that n-adaptivity is the best one can hope for, as there is a
matching positive construction.
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this round. The key observation is as follows: during the round-by-round executions,
the adversary makes and learns more and more about the true oracle H (through the list
L). But only in n out of those 3n executions, the listQi can have a new intersection with
the solver’s queries Q. So, in most of these executions, no such intersections exist, in
which case the adversary gets a perfectly consistent execution of the random oracle that
would be guaranteed to have the same completeness error as that of the honest solver.
Therefore, in most of the rounds, the adversary finds the true answer s to the puzzle P.

Challenge: Quantum Queries Do Not Co-exist. When we move to the quantum-solver
setting, the adversary still can sample a full execution SolHi(P) conditioned on a classi-
cal list of query-answer pairs L that it has previously learned about the true oracle H by
sampling Hi conditioned on L in its head and running the honest solver relative to Hi.
This is despite the fact that Sol is now a quantum algorithm, yet this is all happening in
the adversary’s head. However, the real challenge is to go one step further: how can the
adversary extract the set of queries that SolHi is asking from its oracle Hi and ask them
from the real oracle? After all, it is well-known that when we move to the quantum
setting, then multiple queries asked by the same algorithm Sol might not coexist.

Idea: LearningAmplitude-HeavyQueries, in Parallel. Inspired by [ACC+22], our main
idea for resolving the challenge above is to define a classical set of queries that are
well-defined to coexist and can be learned from the real oracle in parallel, while at the
same time, these queries will provide useful information for the attacker to succeed. In
particular, for every quantum execution of SolHi , we say that a classical query q is ε-
amplitude heavy, if there is one of the quantum queries q̃ (out of them quantum queries)
of SolHi such that, the classical query q has at least amplitude ε within q̃. It is easy to
see that the number of such queries cannot be more than poly(m/ε) for every execution
SolHi , and therefore, the set HQi

ε of all ε-amplitude heavy queries of this execution
will constitute a sufficiently small (i.e., polynomial-size) classical set. Our adversary
will then ask all of the (classical) queries inside the ε-amplitude heavy queries set HQi

ε

at the end of each round i. One can now show that if the number of rounds of the attack
is, say 3n, then again in most of the attack rounds, the attacker’s heavy set of queries
(that it also learns at the end of the round) will not have a new collision with the puzzle
generator’s set of queries Q. It remains to show that this condition will again guarantee
that the attacker will have a good chance of finding the true puzzle solution s in such
rounds.

Final Touch: One-Way to Hiding. Suppose the adversary has already learned a set L of
oracle query-answer pairs about the real oracle H , and that it makes a simulation SolHi

to obtain a candidate solution si by sampling the oracle Hi at random conditioned on
L. Further, suppose that we somehow have the guarantee that none of the ε-amplitude
heavy (classical) queries of the (quantum) execution SolHi will intersect with any of
the puzzle generator’s queries. In this case, we show how to use the useful one-way to
hiding lemma of [AHU19], and show that the execution SolHi will be statistically close
to a perfectly consistent execution, in which one also conditions on the query-answer
pairs of the puzzle generator. As a result, this execution by the adversary SolHi would
have (almost) the same chance to find the true answer, as an honest solver would.
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Putting things together, this means that our attack would also succeed in finding the
true answer in most of the rounds out of the 3n rounds of the attack, and hence it can
e.g., take the majority of the obtained solutions to find the correct solution.

Learning Amplitude-Heavy Queries (Parallel) Efficiently. In order to make the attack
efficient, the following issues need to be addressed. First, Eve cannot sample a full
(exponential size) oracle to run the solver. To efficiently simulate a partially fixed quan-
tum random oracle, we instead use 2m-wise independent functions [Zha12], wherem is
the query complexity of the solver. Next, in each round, Eve cannot compute exponen-
tially many query amplitudes of the simulated puzzle solver. Instead, we “experimen-
tally extract” such amplitude-heavy queries. To do so, we rely on the “original version”
of one-way to hiding lemma in [Unr14]. Intuitively, if a query q is of high amplitude,
then running the solver until a random point and measuring the query register will out-
put q with sufficiently large probability. Following this idea, we run such extractions
many times in each single round, before extracting a long list of classical queries and
asking them from the oracle. This leads to a quantum time-efficient algorithm to extract
(almost all) ε-amplitude heavy queries, which turns out to be sufficient for the proof.

Ideas Behind the Proofs of the Tight Attacks of Theorems 2 and 4. Our attack is
inspired by the classical result [BI87,Nis89,Tar89,HH87] that D(f) ≤ C0(f) ·C1(f),
in which f : {0, 1}N → {0, 1} is an arbitrary boolean function, D is the decision-tree
complexity of f (i.e., the smallest number of adaptive queries to the N input bits to f
to determine its output), and Cb(f) for b ∈ {0, 1} is the b-certificate complexity of f
(i.e., the smallest number of input bits that would provably reveal the output to be b).
To see the connection, roughly speaking one has to think of the random oracle of N
queries as a giant input x = (x1, . . . , xN ) and the puzzle solution as the “output” of the
function f(x). (Of course, the puzzle generation is randomized, but in this simplified
exposition we intentionally ignore this fact.) Below we describe our ideas first for the
purely classical case, in which we quantitatively improve the query-complexity of the
attack of [MMV11], and then explain the additional ideas for the quantum case.

We define two specific forms of certificates for the puzzle solution being 0 or 1.
Suppose P is a puzzle and s ∈ {0, 1} is its solution. Consider a full execution of the
puzzle generator, using the real oracle H , in which it contains the query-answer pairs
PG about the oracle H and at the end outputs (P, s). In this case, PG serves as a cer-
tificate for s, because no solver can obtain the opposite answer 1 − s with respect to
any oracle that is consistent with PG; this holds due to the perfect completeness of the
scheme. Similarly, for any execution of the solver that solves P into solution s and con-
tains query-answer pairs PS about the oracle H , it holds that PS serves as a certificate
for the solution being s for a similar reason. We will limit ourselves to using only PG

for s = 0 certificates and PS for s = 1 certificates.
Now, a key observation is that, in case of perfectly complete TLPs, any b-certificate,

as a set of query-answer pairs, shall be inconsistent with any (1 − b)-certificate, in that
they contain a similar query with different answers because otherwise, one can extend
them to a full oracle in which the solver finds a wrong solution. Therefore, this leads
to the following n-round attack of total mn query complexity: so long as the puzzle
solution is not determined by what the attacker knows (which includes the puzzle P),
the attacker would pick a 1-certificate S for some oracle that is consistent with attacker’s
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knowledge about the random oracle, and then it asks all of the queries Q in S from the
real oracle. The key idea is that, if the answer is still not defined, it at least holds that the
effective size of any 0-certificate (among the remaining unknown queries of the oracle)
will shrink by one or more. Hence, the process stops in n rounds.

Quantum Solver or Quantum Generator. For the case that either the puzzle generator
or the puzzle solver is quantum, we further use inspiration from the attack on key-
agreement from random oracles in [ACC+22] for the case that one party is quantum
and the other one is classical. In their work, they show how to associate a degree-d
polynomial over variables x1 . . . xN ∈ {±1} (where the random oracle has a domain
of sizeN ) to the quantum state of the quantum-party conditioned on the transcript of the
scheme, in which that party asks d quantum queries to the random oracle. The key idea,
at a high level, that generalizes the fully-classical case described above is to replace the
query-set QP of a classical party (who is now going to be a quantum algorithm) by
the set of oracle queries (that correspond to variables xi ∈ {x1 . . . , xN}) that in turn
correspond to a maximal monomial in the polynomial that encodes the quantum state
of the quantum party (conditioned on the transcript). Then, we show that the same key
idea about the inconsistency (and hence non-empty intersections of the query sets) of
the 0-certificates and 1-certificates still carries to this generalized setting. This allows
us to obtain a classical attack with the same round and query complexity as the fully
classical case. For the case of classical puzzle solvers, the attack indeed remains the
same exact (round-optimal) attack as that of the fully classical case. For the case of
quantum puzzle solvers, the attacker will pick maximal monomials in the polynomial
representing the solver’s quantum state and ask all of the queries in that monomial in
each round.

Ideas Behind the Proof of Theorem 3. Informally, the “knowledge depth” of the
attacker after i rounds of queries is at xi. Therefore, in order for the attacker to solve the
puzzle better than randomly guessing xn, the attacker must make a lucky guess. That
is, there exists some i ∈ [n] such that the attacker’s queries in the i-th round hit any of
{xi, xi+1, . . . , xq}. We use hybrid arguments to gradually collect the probabilities that
the attacker makes a lucky guess in every round. Finally, we show that the attacker can
only randomly guess xn given there is no lucky guess. In particular, we design hybrids
carefully in such a way that (1) in the first hybrid, the game refers to the actual real
attack, (2) the last hybrid is trivial information theoretically hard to attack, as the adver-
sary would have to guess a random string of length κ independent of its view, and (3) the
neighboring hybrids are computationally indistinguishable up to certain bounds due to
a standard argument. The latter relies on the fact [BBBV97,AHU19] that any quantum
algorithm that makes 1 round of k-parallel quantum queries cannot distinguish whether
a random oracle has been reprogrammed on S random points with advantage more than
O(

√
k · S/2κ), where κ is the input length of the random oracle.

Ideas Behind the Barrier of Theorem 5. We now describe ideas behind our barrier of
Theorem 5 against breaking fully TLPs classically. In fact, we prove something more
general about key-agreements in the (quantum) random oracle model resisting classi-
cal attacks. Namely, we show that if the simulation conjecture is false, then there is a
way for two (quantum) parties Alice and Bob to agree on a classical (random) key by
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calling a random oracle H in quantum superposition and Alice sending a single clas-
sical message c to Bob with the following property. Any computationally unbounded
Eve who observes Alice’s classical message and can query the random oracle H in
poly(κ) points classically has a negligible chance of finding this key. If we can con-
struct such a protocol, it would be easy to use it to build a TLP on top of it by having
Alice hide the puzzle solution using the key and send s ⊕ key along with the transcript
(single message) c as the puzzle’s description. The solver will then use Bob’s algorithm
to find the key, and then uncover the puzzle solution s. This protocol has the property
that any classical-query adversary will have a negligible chance of solving it, establish-
ing Theorem 5. Previously, [ACC+22] showed how to assume the simulation conjec-
ture is false to build an interactive key-agreement between quantum-powered parties in
the quantum-random oracle model that was secure against polynomial-classical-query
adversaries. Here, in this work, we improve their result to obtain such a protocol only
with one-way communication.

Idea: Classically-Secure Quantum Key-Agreement with One-Way Communication. At a
high level, we use ideas from [ACC+22] to prove a similar result, but their result ended
up with an interactive key agreement protocol. Here, it is crucial for us to obtain a
non-interactive key-agreement protocol which we can then use to obtain a time-lock
puzzle. We follow the path of [ACC+22] initially, but then the two papers diverge
as follows. [ACC+22] relies on a result from [HMST22] that allows how to leverage
interaction to bootstrap the obtained key agreement into one with negligible sound-
ness and completeness error. The reduction from [HMST22] is computational, which
is a stronger reduction but comes at the cost of interaction. On the other hand, we
leverage the information-theoretic nature of the security of our key agreement and the
fact [ACC+22] already provides a weakly secure key-agreement protocol with one-way
communication that has sufficiently small completeness error.

Outline of the Technical Steps for Theorem 5. To construct a classically-secure quantum
key-agreement with one-way communication we go through the following steps.

Step 0 We start off with the weak key agreement protocol from [ACC+22] (based on
the simulation conjecture being false) in which Alice and Bob have quantum access
to the random oracle, Alice sends a single message to Bob, and they have com-
pleteness error ε = 1/poly(κ) and the soundness error is δ = negl(κ) against any
adversary with a polynomial number of classical queries. As mentioned above, this
completeness error ε = 1/poly(κ) can be made arbitrarily small.

Step 1 Using Goldreich-Levin’s hard-core bit lemma, we turn the above protocol into a
new one in which Alice and Bob agree on a bit that remains indistinguishable from
random, even if the adversary is given the transcript.

Step 2 Using parallel repetition, we increase the length of the key. An interesting subtle
point here is that we cannot rely on the vanilla hybrid arguments to argue that this
parallel repetition will increase the length of the key securely; that is because the
adversary’s complexity class is different from that of honest players (who will be
simulated as part of the hybrid argument). Despite this subtlety, since our security
notion here is information theoretic, the hybrid argument still goes through.
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Step 3 The completeness error in all the steps above can be kept ε′ < 1/poly(κ) <
1/2. We finally make a final change to make the completeness error also negligible:
we use another parallel repetition and this time we let Alice pick a random key key
and send key ⊕ keyi for various keys that she agrees with Bob. Bob then recovers
key in most of these executions and finds key by taking a majority.

1.3 Related Work

The study of so-called sequential primitives is not limited to time-lock puzzles. A
closely related primitive is a proof of sequential work (PoSW) [MMV13,CP18]. A
PoSW also has a challenger (who takes the role of the puzzle generator) and a solver,
but the solver’s answer back to the challenger could be not unique, while its validity
should be efficiently verifiable. Hence, one can interpret PoSW as a TLP with more
than one possible solution, and whose exact solutions might not be even known to
the challenger at the time of generating the challenge to the solver/prover. The works
of [CFHL21,BLZ21] showed that PoSW can be achieved in a post-quantum world from
random oracles in a strong sense that stands at the opposite of our negative result of The-
orem 1: there is a TLP in which the protocol for the honest parties is classical, while its
soundness holds against adversaries who are quantum powered.

Another closely related primitive to TLPs the primitive of verifiable delay func-
tions [BBBF18,LW17,Pie19,Wes19]. A VDF is similar to a time-lock puzzle, in the
sense that the challenger generates a puzzle/challenge with a unique solution s, but s
might not be known to the challenger during the time of generation. Yet, when the solver
solves the challenge, it can prove the validity of its answer through a verification pro-
cess that is quite fast, just like the puzzle generation phase. It was shown [MSW20] that
certain special forms of VDFs are impossible to achieve in the random oracle model. It
is possible that using (a generalization of) our techniques one could extend our impos-
sibility results to such classes of VDFs as well, though we leave this exploration for
the full version of this paper. See [JMRR21] for a comprehensive study of the relation
between the primitives above and other closely related sequential primitives.

Our work can be seen as continuing the line of work initiated by [HY20] for proving
quantum black-box separations. Their work proved that collision-resistant hash func-
tions cannot be based on trapdoor permutations, even through a quantum reduction.
Even though we do not prove any such results explicitly, we present attacks in the ran-
dom oracle model, which can provide many computational primitives for free, and so
our work would also imply corresponding black-box separations. See [AHY23,AK22]
for more recent works on barriers against black-box quantum constructions.

2 Preliminaries

2.1 Basic Notations

Let κ ∈ N denote the security parameter. For n ∈ N, let [n] to denote the set
{1, 2, . . . , n}. Let Un be a random variable that returns a random string of length n.

By negl(·) we denote a negligible function. For a finite set S, by x
$←− S we mean x
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is chosen uniformly from S. Throughout this work, we use the standard bra-ket nota-
tion for quantum objects. For the basics of quantum computing, we refer the readers
to [NC10]. By ‖ · ‖ we denote the 2-norm.

2.2 Quantum Computation

Definition 1 (Quantum Oracle Algorithm). A q-query quantum oracle algorithm
A(·) that has access to an oracle H , defined by the unitary OH can be specified by
a sequence of unitaries (Uq, Uq−1, . . . , U0). The final state of the algorithm is defined
as UqOHUq−1 . . . OHU0|0〉.

The query operator OH is defined as OH |x, y〉 	→ |x, y ⊕ H(x)〉, where we refer to
the first register as the query register.

Definition 2 (Query Amplitude [BBBV97]). Let A(·) = (Uq, . . . , U0) be a quantum
oracle algorithm, H : X → Y be an oracle and S ⊆ X be a set. The query amplitude
μ(AH ,S) ∈ R≥0 is defined as

μ(AH ,S) :=
q−1∑

i=0

‖ΠS |ψH
i 〉‖2,

where ΠS is the projector onto S acting on the query register of A; each |ψH
i 〉

denotes the state of the algorithm right before the (i + 1)th query, i.e., |ψH
i 〉 :=

UiOH . . . OHU0|0〉.
If S is a singleton, i.e., {x}, by a slight abuse of the notation we denote it as μ(AH , x).
Note that μ(AH ,S) is at most the number of queries made by A. Moreover, for any
disjoint S1,S2 ⊆ X , it holds that μ(AH ,S1) + μ(AH ,S2) = μ(AH ,S1 ∪ S2).

The following lemma is restated from a similar result in [Unr14].

Lemma 1 ([Unr14]). For every (fixed) H : X → Y , every (fixed) S ⊆ X , every (fixed)
z ∈ {0, 1}∗, and every quantum oracle algorithm A(·), there exists a quantum oracle
algorithm Ext(AH(z)) that uses A(·) as subroutine and outputs an element in S with
probability μ(AH(z),S)/q, where q is the number of queries made by AH(z).

For completeness, the proof of Lemma 1 and the explicit description of the extractor
Ext can be found in Appendix A.

Lemma 2 (One-way-to-hiding, Theorem 3 in [AHU19], restated). Let S ⊆ X be
random. Let F,G : X → Y be random functions satisfying ∀x /∈ S, F (x) = G(x). Let
z be a random bitstring. (S, F,G, z may have arbitrary joint distribution.) Let A(·) be
a q-query quantum oracle algorithm. Let

Pleft := Pr[b = 1 : b ← AF (z)],

Pright := Pr[b = 1 : b ← AG(z)],

Pguess := Pr[x ∈ S : x ← Ext(AF (z))].

Then
|Pleft − Pright| ≤ 2q

√
Pguess.

The same holds with Ext(AG(z)) instead of Ext(AF (z)) in the definition of Pguess.
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Combining Lemma 1 and Lemma 2, we obtain the following corollary.

Corollary 1. Let S ⊆ X be random. Let F,G : X → Y be random functions satisfying
∀x /∈ S, F (x) = G(x). Let z be a random bitstring. (S, F,G, z may have arbitrary
joint distribution.) Let A(·) be a q-query quantum oracle algorithm. Then

|Pleft − Pright| ≤ 2
√

qE [μ(AF (z),S)],

where the probability of the expectation is over S, F,G and z.

Proof. Note that the probability Pguess can be written as

Pguess = Pr
[
x ∈ S : x ← Ext(AF (z))

]

= Es,f,g,z′
[
Pr

[
x ∈ S | S = s, F = f,G = g, z = z′ : x ← Ext(AF (z))

]]

= ES,F,G,z

[
μ(AF (z),S)

q

]
,

where the last equality follows from Lemma 1. Plugging Pguess into Lemma 2 finishes
the proof. �

2.3 Time-Lock Puzzles in the Random Oracle Model

The following definition of time-lock puzzles in the quantum world focuses on a clas-
sical puzzle generator, while the solver and the adversary are both quantum. We only
allow a constant blow-up in the parallel complexity of the attacker, compared to that of
the honest solver.

Definition 3 (Time-Lock Puzzle with Quantum Solver). A time-lock puzzle scheme
consists of a randomized oracle algorithm puzzle generator (P, s) ← GenH(rG) (where
P is the puzzle and s is the correct solution), and a quantum oracle algorithm puzzle
solver s′ ← SolH(P) (where s′ is the solution that the solver finds). For a puzzle gen-
erator who makes at most n classical queries and a puzzle solver who makes at most m
(m � n) quantum queries to the oracle, we expect the following properties:

– Completeness: If the honest solver Sol finds the correct solution with probability
1 − ρ as follows

Pr[s = s′ : (P, s) ← GenH(rG), s′ ← SolH(P)] ≥ 1 − ρ,

we say the scheme has ρ completeness error. By default, we anticipate the complete-
ness error to be negligible ρ ≤ negl(κ).

– Soundness: We say the scheme has σ soundness error, if for every quantum oracle
algorithm E that makes poly(κ) queries to the oracle H in O(n) rounds,

Pr[s = s′ : (P, s) ← GenH(rG), s′ ← EH(P)] = σ.

By default, we anticipate the scheme to have σ ≤ negl(κ) soundness error.
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3 Attacks on Time-Lock Puzzles with Classical Puzzle Generators

In this section, we present attacks for time-lock puzzles with classical generators and
quantum solvers (CGQS). The attacks can be seen as a quantum extension of the “effi-
cient but non-optimal adversary” in the full version of [MMV11]. We provide two
attacks: one is query-efficient and one is (quantum) time-efficient, but they are incom-
parable as they provide different trade-offs between parameters.

3.1 Inefficient Attacks on CGQS Time-Lock Puzzles

We now state our result about breaking classical-generator quantum-solver (CGQS)
time-lock puzzles in the (quantum) random oracle model. In order to keep the notation
clean, for the rest of the work, we sometimes omit the ceiling function of parameters
and treat it as an integer when it is clear from the context.

Theorem 6 (Breaking CGQS Time-Lock Puzzles). Consider any time-lock puzzle
scheme in the random oracle model where the generator asks n classical queries, the
solver asks m quantum queries and the completeness is 1 − ρ (see Definition 3). For
any ε, δ ∈ (0, 1], there exists a randomized solver Eve (denoted by E) who asks at most
qE classical queries in at most dE rounds and achieves the following bounds for the
failure probability ν = 1 − Pr[s = s′ : (P, s) ← GenH(rG), s′ ← EH(P)], where
the probability is over the randomness of the generator, the randomness of Eve and the
random oracle H .

1. Small failure probability: Eve asks qE = 4n2m2

εδ2 queries in dE = n/ε rounds with
failure probability ν ≤ ρ + ε + δ.

2. 2n adaptivity: Eve asks qE = 8n2m2

δ2 queries in dE = 2n rounds with failure prob-
ability ν ≤ (2n + 1)(ρ + δ).

Proof of Theorem 6. We first prove Part 1 of Theorem 6. Then we will obtain Part 2
through a modified attack and a different analysis. We first introduce some notations.

Notation. Let QG be the set of points queried by GenH for generating the puzzle and
the solution. Let PG be the set of query-answer pairs learned by GenH , i.e., PG =
{(q,H(q)) | q ∈ QG}. Sometimes we abuse the notation and use (QG,H(QG)) to
denote the same thing (PG). For a partial function F : S → Y where S is a subset
of the domain X , by YX |F we mean the set of functions that are consistent with F .
Sometimes we refer to a partial function L as a list and use Q(L) to denote its domain.

Consider the following construction:

Construction 1 (Random Stoppage Attack). Let n, m be, in order, the number of
queries made by GenH and SolH .

– Input: the puzzle P generated by GenH and parameters ε, δ ∈ (0, 1].
– Set I = n/ε and initialize a list L1 = ∅.
– Pick i∗ $←− [I].
– For i ∈ {1, . . . , i∗}, run Solve(i).
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– Output si∗ .

In the ith round, the subroutine Solve(i) is defined in Algorithm 1. We note that Con-
struction 1 should be understood by syntactically replacing Solve(i) with the code of
Solve(i). Looking ahead, Solve(i) will appear again in the rest of the proof.

Algorithm 1 Solve(i) :

– Set Qi = ∅.
– Sample a full oracle Hi

$←− YX |Li
.

– Run SolHi(P) to get the solution si.
– For every x ∈ X \ Q(Li), compute the query amplitude μ(SolHi(P), x).
– For every x ∈ X \Q(Li), if μ(SolHi(P), x) ≥ δ′ := δ2

4nm , then let Qi ← Qi ∪{x}.
– Ask the classical queries Qi from the real oracle to obtain H(Qi).
– Update the list by Li+1 ← Li ∪ (Qi,H(Qi)).

Efficiency. In each round, since the number of queries made by Sol is at most m, there
are at most m

δ′ = 4nm2

δ2 points that can be added into Qi. Moreover, there are at most
I = n

ε rounds. Therefore, Eve’s adaptivity is at most n
ε and the total number of Eve’s

queries is at most 4n2m2

εδ2 .

Completeness. For analysis, we introduce the following experiment which is identical
to Construction 1 except that it does not stop at a random point.

Experiment 1. Let n, m be, in order, the number of queries made by GenH and SolH .

1. Input: the puzzle P generated by GenH and parameters ε, δ ∈ (0, 1].
2. Set I = n/ε and initialize a list L1 = ∅.
3. For i ∈ [I], run Solve(i).
4. Output sI .

Before proving the completeness, we introduce some notations for the above exper-
iment. By private queries we mean the set QG \ Q(Li), i.e., the set of queries that are
asked by the puzzle generator but not asked by Eve before the ith round. For an oracle
H : X → Y and a set S ⊆ X , by H[S�] we mean the oracle that is obtained by
resampling the function value of every point in S uniformly from Y .
For every i ∈ [I], define the event Heavyi as

Heavyi :=
[
μ(SolHi(P),QG \ Q(Li)) ≥ nδ′

]
, (1)

i.e., the query amplitude of SolHi(P) on the private queries is at least nδ′ in the ith

round. We say that the ith round is heavy if the event Heavyi holds.
For every i ∈ [I], define the event Findi as

Findi := [Qi ∩ (QG \ Q(Li)) �= ∅] ,
i.e., Eve learns at least one of the private queries in the ith round.

First, the following lemma states that the occurrence of Heavyi implies that Eve
learns some private query in the ith round.



354 A. Afshar et al.

Lemma 3. For every i ∈ [I],

Pr[Findi | Heavyi] = 1.

Equivalently, Heavyi ⊆ Findi.

Proof. Conditioned on the event Heavyi happening, it means that the query amplitude
of SolHi(P) on the private queries QG \ Q(Li) is at least nδ′ in the ith round. Since
the number of queries made by Gen is at most n, by an averaging argument, there exists
x ∈ QG \ Q(Li) such that μ(SolHi(P), x) ≥ δ′. By construction, the point x will be
added into Qi. Thus, Eve learns at least one of the private queries in the ith round. �

Next, since the puzzle generator asks at most n queries, the number of occurring
events among {Findi}i∈[I] is at most n in every execution.

Lemma 4. For every i ∈ [I], let IFindi
be the indicator variable of Findi. Then

Pr

⎡

⎣
∑

i∈[I]

IFindi
≤ n

⎤

⎦ = 1.

Proof. For the sake of contradiction, suppose there is a nonzero probability that all
events Findi1 , . . . ,Findi�

occur for some pairwise distinct i1, . . . , i� ∈ [I], where 
 > n.
Then it means that for all k ∈ [
], the set Qik

∩ QG is nonempty. Moreover, all of them
are pairwise disjoint since Eve never asks the same query. However, it will lead to the
following contradiction

n < 
 ≤
⋃

k∈[�]

|Qik
∩ QG| ≤ |QG| ≤ n.

�
The above two lemmas together imply that the number of occurring events among

{Heavyi}i∈[I] is at most n in every execution.

Corollary 2. For every i ∈ [I], let IHeavyi
be the indicator variable of Heavyi. Then

Pr

⎡

⎣
∑

i∈[I]

IHeavyi
≤ n

⎤

⎦ = 1.

Proof. It immediately follows from Lemma 3 and Lemma 4. �
Before we move on, we rewrite Experiment 1 as the following equivalent experiment
under the view of lazy evaluation:

Experiment 2

1. Run (P, s) ← Gen(·)(rG) by lazy evaluation.
// The set PG of query-answer pairs is sampled.
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2. Set I = n/ε and initialize a list L1 = ∅.
3. For i ∈ [I], do the following:

– For every x ∈ X \ (QG ∪ Q(Li)), uniformly sample a value yx from Y .
– Combine PG, Li, and all the query-answer pairs sampled in the previous step
into a full oracle H . (Note that in each iteration H could be different.)

– Sample Hi ← H [(QG \ Q(Li))�].
// All private queries are resampled uniformly.

– Run SolHi(P) to obtain the solution si.
– Set Qi = ∅.
– For every x ∈ X \ Q(Li), compute the query amplitude μ(SolHi(P), x).
– For every x ∈ X \ Q(Li), if μ(SolHi(P), x) ≥ δ′ := δ2

4nm , then let Qi ←
Qi ∪ {x}.

– Ask the classical queries Qi from the real oracle and obtain the answers.
– Update the list by appending the query-answer pairs obtained in the previous
step to get Li+1.

The distribution of Hi is consistent with that in Experiment 1 since every query beyond
Q(Li) is independently and uniformly sampled.

We now show that, as long as the ith round is not heavy, Eve’s simulation will be
good enough to generate the correct solution with high probability. Formally, we have
the following lemma.

Lemma 5. For every i ∈ [I], it holds that

Pr [s = si ∧ ¬Heavyi] ≥ Pr [s = s′ ∧ ¬Heavyi] − δ.

where the probability is defined over Experiment 2 and s′ is defined to be generated by
SolH(P) instead of using Hi in the i-th iteration.

Proof. By Corollary 1 (setting F = Hi, G = H , S = QG \ Q(Li), z = (P, s), and
AF (z) = V ◦ SolHi(P), where V(si) = 1 if s = si, and 0 otherwise), we have

Pr [s = si ∧ ¬Heavyi]
=Pr[¬Heavyi] · Pr [s = si | ¬Heavyi]

=Pr[¬Heavyi] · Pr
[
AF (z) = V ◦ SolHi(P) = 1 | ¬Heavyi

]

≥Pr[¬Heavyi] ·
(
Pr

[
AG(z) = V ◦ SolH(P) = 1 | ¬Heavyi

]
− 2

√
mnδ′

)

≥Pr
[
V ◦ SolH(P) = 1 ∧ ¬Heavyi

]
− δ

=Pr [s = s′ ∧ ¬Heavyi] − δ,

where the first inequality follows from Corollary 1 by letting the joint distribution of
(F,G,S, z) be the conditional distribution given ¬Heavyi; the second inequality fol-
lows from our choice of parameter δ = 2

√
mnδ′. This finishes the proof. �

Finally, with the above lemmas in hand, the completeness can be proven in the
following lemma:
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Lemma 6 (Completeness of Construction 1).

Pr
[
s = si∗ :

(P,s)←GenH(rG)
i∗←[I]

si∗ ←SolHi∗ (P)

]
≥ 1 − ρ − ε − δ.

Proof. The success probability of Eve in Construction 1 is given by

Pr
[
s = si∗ :

(P,s)←GenH(rG)
i∗←[I]

si∗ ←SolHi∗ (P)

]
=

1
I

I∑

i=1

Pr [s = si]

≥ 1
I

I∑

i=1

Pr [s = si ∧ ¬Heavyi]
(i)

≥ 1
I

I∑

i=1

Pr [s = s′ ∧ ¬Heavyi] − δ

≥ 1
I

I∑

i=1

(Pr [s = s′] − Pr[Heavyi]) − δ = Pr [s = s′] − 1
I
E

[
I∑

i=1

IHeavyi

]

− δ

(ii)
≥ Pr [s = s′] − ε − δ

(iii)
≥ 1 − ρ − ε − δ,

where (i) is due to Lemma 5, (ii) follows from Corollary 2 and (iii) follows from the
completeness of the puzzle. �
This concludes the efficiency and completeness of Eve in Construction 1, and hence it
finishes the proof of Part 1 of Theorem 6.

Part 2. We now move to prove Part 2 of Theorem 6. The idea is to use the majority of
the solutions obtained in all rounds. Consider the following construction:

Construction 2 (Majority Vote Attack). Let n, m be, in order, the number of queries
made by GenH and SolH .

– Input: the puzzle P generated by GenH and a parameter δ ∈ (0, 1].
– Set I = 2n and initialize a list L1 = ∅ and a multiset S = ∅.
– For i ∈ {1, . . . , I}, do the following:

• Run Solve(i).
• Update the solution set by S ← S ∪ {si}.

– Sample a full oracle HI+1
$←− YX |LI+1 .

– Run one more execution SolHI+1(P) to get the solution sI+1.
– Update the solution set by S ← S ∪ {sI+1}.
– If there exists s∗ ∈ S that has multiplicity at least I/2 + 1 = n + 1, output s∗.
Otherwise, abort.

Efficiency. In each round, since the number of queries made by Sol is at most m, there
are at most m

δ′ = 4nm2

δ2 points that can be added into Qi. Moreover, there are at most
I = 2n rounds. Therefore, Eve’s adaptivity is 2n and the total number of Eve’s queries
is at most 8n2m2

δ2 .
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Completeness. For every i ∈ [I+1], let Successi denote the event that s = si. Following
the same argument in Lemma 5, Eve’s simulation error is at most δ conditioned on the
event ¬Heavyi happening. Hence, for every i ∈ [I + 1], we have

Pr[Successi ∨ Heavyi] = Pr[¬Heavyi] · Pr[Successi | ¬Heavyi] + Pr[Heavyi]
≥ 1 − ρ − δ.

Equivalently, for every i ∈ [I + 1],

Pr[¬Successi ∧ ¬Heavyi] ≤ ρ + δ.

Therefore, by a union bound over i ∈ [I + 1], we have

Pr

⎡

⎣
∧

i∈[I+1]

(Successi ∨ Heavyi)

⎤

⎦ ≥ 1 − (I + 1)(ρ + δ).

Suppose the above event holds for the rest of the proof. By Corollary 2, with probability
one, the number of the happening events Heavyi is at most n, which means the number
of happening events Successi is at least n + 1. This implies the success of Eve’s attack
in Construction 2 and finishes the proof of Part 2 of Theorem 6. �

3.2 Efficient Attacks on CGQS Time-Lock Puzzles

The attacks in the last subsection could be made time-efficient at the cost of a slightly
worse query complexity. In Construction 1 and Construction 2, in order to find queries
with a large amplitude, Eve needs to sample a full oracle and compute exponentially
many query amplitudes. Moreover, as a quantum nature, the queries made by SolHi(P)
cannot be “recorded”. Fortunately, by leveraging Lemma 1, we still have an efficient
way to extract queries with a large amplitude. Although directly invoking Lemma 1
guarantees some probability for successful extraction, the probability is still too low. In
this way, it will increase the number of rounds (adaptivity) by a large factor.

To overcome this issue, Eve will instead run the solver many times in each round.
By choosing parameters properly, we show that Eve can find queries with a large ampli-
tude with high probability. Lastly, the efficient simulation of a (partially fixed) quantum
random oracle can be done by using 2m-wise independent functions [Zha12]. Below,
we show how to convert Construction 1 into a quantum time-efficient attack.

Theorem 7 (Efficiently Breaking CGQS Time-Lock Puzzles). Consider any time-
lock puzzle scheme in the random oracle model where the generator asks n classical
queries, the solver asks m quantum queries and the completeness is 1 − ρ (see Defini-
tion 3). For any ε, δ ∈ (0, 1] and γ > 1, there exists an efficient, randomized solver Eve
(denoted by E) who asks at most qE classical queries in at most dE rounds and in time
O(dE · T ), where T is the running time of the honest solver, and it achieves the follow-
ing bound for the failure probability ν = 1 − Pr[s = s′ : (P, s) ← GenH(rG), s′ ←
EH(P)], where the probability is over the randomness of the generator, the randomness
of Eve (including the randomness of using the quantum solver as subroutines) and the
random oracle H .
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– Small failure probability: Eve asks qE = 4nm2

εδ2 ln
(

γ
γ−1

)
queries in dE = n/ε

rounds with failure probability ν ≤ ρ + γε + δ.

Remark 1. Here, we compare the parameters in Theorem 7 with the parameters in

Theorem 6. Suppose we let n = ln
(

γ
γ−1

)
and let n,m, ε, δ be identical, then Eve’s

adaptivity and the number of total queries in each construction will be equivalent. In
this way, we can solve the above equation and obtain γ ≈ 1 + e−n.

Remark 2. Construction 2 can be made efficient in a similar manner.

Proof. Proof of Theorem 7. Consider the following efficient variant of Construction 1:

Construction 3 (Efficient Random Stoppage Attack). Let n, m be, in order, the
number of queries made by GenH and SolH .

– Input: the puzzle P generated by GenH and parameters ε, δ ∈ (0, 1], γ > 1.
– Set I = n/ε and initialize a list L1 = ∅.
– Pick i∗ $←− [I].
– For i ∈ {1, . . . , i∗}, do the following:

• Set Qi = ∅.
• Use 2m-wise independent functions to simulate Hi

$←− YX |Li
.

• Run SolHi(P) to get the solution si.
• Let γ′ := m

nδ′ ln
(

γ
γ−1

)
, where δ′ := δ2

4nm .

• For j ∈ [γ′], do the following:
∗ Run Ext(SolHi(P)) to get x ∈ X .

(Note that the oracle used in each execution is fixed, i.e., Hi.)
∗ If x /∈ Q(Li) ∪ Qi, then Qi ← Qi ∪ {x}.

• Make classical queries to the (real) random oracle H on all points in Qi and
obtain H(Qi).

• Update the list by Li+1 ← Li ∪ (Qi,H(Qi)).
– Output si∗ .

Efficiency. In each round, the size of Qi is at most γ′ = m
nδ′ ln

(
γ

γ−1

)
=

4m2

δ2 ln
(

γ
γ−1

)
. Moreover, there are at most I = n/ε rounds. Therefore, Eve’s adap-

tivity is at most n/ε and the total number of Eve’s queries is at most 4nm2

εδ2 ln
(

γ
γ−1

)
.

Notice that the iteration of the extractor in each round can be performed in parallel. In
addition, the amount of randomness for initiating a 2m-wise independent function is
O(m) = O(T ). Hence, Eve’s running time is O(dE · T ).

Completeness. The following lemma is the generalization of Lemma 3. Given that the
ith round is heavy, repeating the extractor in Lemma 1 many times will output a private
query with high probability.

Lemma 7. For every i ∈ [I], it holds that

Pr[Findi | Heavyi] ≥ 1
γ

.
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Proof. Conditioned on the event Heavyi happening, it means that the query amplitude
of SolHi(P) on the private queries QG \ Q(Li) is at least nδ′ in the ith round. By
Lemma 1, the probability of obtaining x ∈ QG\Q(Li) in each iteration of the extractor
is at least nδ′/m. Moreover, each iteration is independent because the randomness of
the extractor comes from the choice of query and the measurement. Both of them are
fresh every time. Hence, after γ′ iterations, the probability of obtaining x ∈ QG\Q(Li)
is at least

1 −
(
1 − nδ′

m

)γ′

≥ 1 − eln(1−1/γ) =
1
γ

,

where we use 1 − x ≤ e−x for x ∈ R and γ′ = m
nδ′ ln

(
γ

γ−1

)
. �

Lemma 8. For every i ∈ [I], let IFindi
be the indicator variable of Findi. Then

Pr

⎡

⎣
∑

i∈[I]

IFindi
≤ n

⎤

⎦ = 1.

Proof. The proof is the same as Lemma 4. �
The following corollary is the generalization of Corollary 2.

Corollary 3. For every i ∈ [I], let IHeavyi
be the indicator variable of Heavyi. Then

E

⎡

⎣
∑

i∈[I]

IHeavyi

⎤

⎦ ≤ γn.

Proof. From Lemma 7, we have

Pr[Heavyi] ≤ γ Pr[Heavyi ∧ Findi] ≤ γ Pr[Findi].

By Lemma 8, it holds that

E

⎡

⎣
∑

i∈[I]

IHeavyi

⎤

⎦ =
∑

i∈[I]

Pr[Heavyi] ≤ γ
∑

i∈[I]

Pr[Findi] = γE

⎡

⎣
∑

i∈[I]

IFindi

⎤

⎦ ≤ γn.

�
Finally, we have the following lemma, which is the counterpart of Lemma 6.

Lemma 9 (Completeness of Construction 3).

Pr
[
s = si∗ :

(P,s)←GenH(rG)
i∗←[I]

si∗ ←SolHi∗ (P)

]
≥ 1 − ρ − γε − δ.
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Proof. Following the same lines in the proof of Lemma 6, we have

Pr
[
s = si∗ :

(P,s)←GenH(rG)
i∗←[I]

si∗ ←SolHi∗ (P)

]

≥ Pr
[
s = s′ : (P,s)←GenH(rG)

s′←SolH(P)

]
− 1

I
E

⎡

⎣
∑

i∈[I]

IHeavyi

⎤

⎦ − δ

≥ Pr
[
s = s′ : (P,s)←GenH(rG)

s′←SolH(P)

]
− γε − δ

≥ 1 − ρ − γε − δ.

where the second to last inequality follows from Corollary 3. �
This concludes the efficiency and completeness of Eve in Construction 3. �

4 Barriers for Classical Attacks on Fully Quantum Puzzles

In this section, we present a fully quantum - i.e., quantum generator and quantum solver
(QGQS) - time-lock puzzle construction that is secure against polynomial-query classi-
cal adversaries, assuming the quantum simulation conjecture does not hold.

Simulation Conjecture. Let A(·) be a quantum oracle algorithm that outputs a single
bit. For every fixed oracle H , let p(AH) := Pr[1 ← AH(1κ)]), where the probability is
over the execution of A. We say an algorithm B λ-approximates an algorithm A if:

EH [|p(AH) − p(BH)|] ≤ λ

The following is a weaker (asymptotic) version of the folklore Simulation Conjec-
ture, which is stated as Conjecture 4 in [AA14].

Conjecture 1 (Quantum Polynomial-Query Simulation Conjecture). For any con-
stant c, there exists a constant d, such that for all κc-query quantum algorithm Q(·)(·),
there exists a deterministic κd-query classical algorithm A(·)(·), such that A(1κ) κ−c-
approximates Q(1κ) for sufficiently large κ (when accessing a random oracle).

We now formally define the main result of this section, which is a fully quantum
time-lock puzzle that cannot be broken by classical-query adversaries, assuming that
the simulation conjecture is false.

Theorem 8 (Classically breaking QGQS TLPs implies the Simulation Conjec-
ture). If Conjecture 1 does not hold, there exists an infinite set K (of security param-
eters κ) such that there is a protocol between two quantum oracle algorithms Gen and
Sol that (quantumly) access a random oracle H satisfying the following:

– Completeness: Pr[s′ = s : (P, s) ← GenH , s′ ← SolH(P)] ≥ 1 − negl(κ).
– Soundness: For any computationally unbounded classical adversary A who ask
poly(κ) classical queries to H , and for every κ ∈ K, we have

Pr[s′′ = s : (P, s) ← GenH , s′′ ← AH(P)] ≤ negl(κ).
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The exact form of Conjecture 1 first appeared in [ACC+22, Conjecture 7.1], using
which they proved the following lemma.

Lemma 10 (Weak Key Agreement with One-Way Communication [ACC+22]). If
Conjecture 1 does not hold, there exists an infinite set K (of security parameters κ),
such that for all polynomially small ε0 = 1/poly(·) there is a protocol between two
quantum oracle algorithms QA and QB that (quantumly) access a random oracle H
satisfying the following:

– One-way communication: QH
A sends a single classical message c to QH

B , after
which they each output keyA,keyB.

– Completeness: Pr[keyA = keyB : (keyA, c) ← QH
A , keyB ← QH

B (c)] ≥ 1 − ε0(κ).
– Soundness: For any computationally unbounded classical adversary A who ask
poly(κ) classical queries to H , and for every κ ∈ K, we have

Pr[keyA = keyE : (keyA, c) ← QH
A , keyE ← AH(c)] ≤ δ0(κ),

where δ0(·) is a negligible function.

Outline of the Technical Steps. To construct a fully quantum time-lock puzzle we first
show how to amplify the key agreement of Lemma 10 to a key agreement with negligi-
ble completeness and soundness error. Then we will show how to transform such a key
agreement protocol into a time-lock puzzle. Here is a sketch of this process, where all
the items below are with one-way communication (OWC).

Step 0 Start with the weak key agreement with OWC of Lemma 10.
Step 1 Construct a weakly complete and strongly sound (WCSS) single-bit key agree-

ment with OWC. (See Construction 4.)
Step 2 Construct a weakly complete and strongly sound multi-bit key agreement with

OWC. (See Construction 5.)
Step 3 Construct a strongly complete and strongly sound (SCSS) multi-bit key agree-

ment with OWC. (See Construction 6.)
Step 4 Transform a multi-bit key agreement with OWC to a time-lock puzzle while

preserving the soundness and completeness error. (See Construction 7)

Here we show how to do Step 1.

Construction 4 (WCSS Single-Bit Key Agreement with OWC). Let QA0 , QB0 be a
weak key agreement scheme from Lemma 10 with completeness error ε0(κ) and sound-
ness error δ0(κ). Let H be an oracle and define QA1 and QB1 as follows:

– QA1 performs the following:
1. Run QA0 to get (c0, keyA0

) ← QH
A0
.

2. Sample r ← {0, 1}|keyA0 | and compute keyA1
= 〈r, keyA0

〉.
3. Let c1 = c0||r

– QB1 performs the following:
1. Let c1 = c0||r.
2. Run QB0 to get keyB0

← QH
B0
(c0).



362 A. Afshar et al.

3. Compute keyB1
= 〈r, keyB0

〉.

Theorem 9 (Completeness of Construction 4). If the construction from Lemma 10
has completeness error ε0(κ), then Construction 4 has completeness error ε1 ≤ ε0.

Proof. By the construction, if keyA0
= keyB0

, then keyA1
= keyB1

, thus ε1 ≤ ε0. �
Theorem 10 (Soundness of Construction 4). If the construction from Lemma 10 has
a soundness error δ0(κ), then Construction 4 has a soundness error δ1 ≤ nO(1) · δΩ(1)

0 ,
where n = |keyA0

|. In particular, if δ0 ≤ negl(κ), then δ1 ≤ negl(κ) as well.

Proof. The proof is similar to the proof of the Hard-core bit lemma from [GL89]. In
particular, the proof of the Hard-core bit lemma from [GL89] is black-box and trans-
forms any adversary who guesses the hard-core bit with probability ρ, to an inverting
adversary that guesses the pre-image with probability poly(ρ/n), and the same reduc-
tion works even if the pre-image and image are jointly sampled (rather than the image
being a deterministic function of the pre-image). �

Next, we show how to do Step 2.

Construction 5 (WCSS Multi-Bit Key Agreement with OWC). Let QA1 , QB1 be a
WCSS Single-Bit key agreement scheme from Construction 4 with completeness error
ε1(κ) and soundness error δ1(κ). Let u = poly(κ) (to be chosen later) be the length of
the key, H be an oracle, and define QA2 and QB2 as follows:

– QA2 performs the following:
1. Divide oracle H to u independent oracles Hi (according to some canonical

division).
2. For i ∈ [u] run QA1 to get (c1,i, keyA1,i) ← QHi

A1
.

3. Let c2 = c1,1|| · · · ||c1,u and keyA2
= keyA1,1|| · · · ||keyA1,u.

– QB2 performs the following:
1. Let c2 = c1,1|| · · · ||c1,u.
2. Divide oracle H to u independent oracles Hi (according to the same canonical

division).
3. For i ∈ [u] run QB1 to get keyB1,i ← QHi

B1
(c1,i).

4. Compute keyB2
= keyB1,1|| · · · ||keyB1,u.

Theorem 11 (Completeness of Construction 5). If Construction 4 has completeness
error ε1(κ), then Construction 5 has completeness error ε2 ≤ u · ε1.

Proof. By the construction, if for all i ∈ [u], keyA1,i = keyB1,i, then keyA2
= keyB2

.
We conclude the proof by a union bound and letting ε2 ≤ uε1. �
Theorem 12 (Soundness of Construction 5). If Construction 4 has a soundness error
δ1(κ), then Construction 5 has a soundness error (advantage) δ2 = uδ1.
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Proof. Suppose there exists an adversary QE2 such that:

|Pr[1 ← QH
E2
(c2, keyA2

)] − Pr[1 ← QH
E2
(c2, Uu)]| ≥ δ2.

We show there exists an adversary QE1 that breaks the soundness in Theorem 10 with
an advantage at least δ1. To do so define hybrids {Hk}k for k ∈ {0, · · · , u} (where
H0 is the experiment of Construction 5) such that in hybrid Hk, we replace keyA1,i

with key′
A1,i ← {0, 1} when constructing keyA2

. Namely, in hybrid Hk, we have
keyA2

= key′
A1,1|| · · · ||key′

A1,k||keyA1,k+1|| · · · ||keyA1,u. Now note that in hybrid Hu,
keyA2

is completely random, thus an adversary has no advantage in distinguishing keyA2

from random. Therefore, ifQE2 exists, then there is an index k∗ ∈ [u] s.t. there is a com-
putationally unbounded classical adversary QE2,k∗ that can distinguish hybrids Hk∗−1

and Hk∗ with an advantage at least δ2/u = δ1. I.e., there is QE2,k∗ such that:

|Pr[1 ← QH
E2,k∗(c2, key

k∗−1
A2

)] − Pr[1 ← QH
E2,k∗(c2, key

k∗
A2
)]| ≥ δ1,

where keyk
A2

is the corresponding values of keyA2
in hybrid Hk. Now construct QE1 on

input (c′′
1 , b′′) and given access to oracle H ′′ as follows:

1. For i ∈ [u]/{k∗} sample oracles Hi
′′, and compute (c′′

1,i, key
′′
A1,i) ← QHi

′′
A1

.
2. Let (c′′

1,k∗ , key′′
A1,k∗) = (c′′

1 , b′′).
3. Let c′′

2 = c′′
1,1|| · · · ||c′′

1,u and key′′
A2

= U1|| · · · ||U1||key′′
A1,k∗ || · · · ||key′′

A1,u.
4. Send (c′′

2 , key′′
A2
) to QE2,k∗ .

5. Answer QE2,k∗’s queries on oracle i using H ′′ for i = k∗, and Hi
′′ otherwise.

6. Output whatever QE2,k∗ outputs.

Now note that (c′′
2 , key′′

A2
) perfectly simulates (c2, key

k∗−1
A2

) if b′′ = keyA1
, and per-

fectly simulates (c2, key
k∗
A2
) if b′′ ← {0, 1}. Thus QE1 perfectly simulates the security

experiment for QE2,k∗ , therefore, has the same advantage δ1. �
Now we show how to do Step 3.

Construction 6 (SCSS Multi-Bit Key Agreement with OWC). Let QA2 , QB2 be a
WCSS Multi-Bit key agreement scheme from Construction 5. Let t = poly(κ) (to be
chosen later), H be an oracle, and define QA3 and QB3 as follows:

– QA3 performs the following:
1. Divide oracle H to t independent oracles Hi (according to some canonical

division).
2. For i ∈ [t] run QA2 to get (c2,i, keyA2,i) ← QHi

A2
.

3. Sample keyA3
← {0, 1}t.

4. For i ∈ [t] let keyi = keyA3
⊕ keyA2,i.

5. Let c3 = c2,1|| · · · ||c2,t||key1|| · · · ||keyt.
– QB3 performs the following:

1. Let c3 = c2,1|| · · · ||c2,t||key1|| · · · ||keyt.
2. Divide oracle H to t independent oracles Hi (according to the same canonical

division).
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3. For i ∈ [t] run QB2 to get keyB2,i ← QHi

B2
(c2,i).

4. For i ∈ [t] compute keyB3,i ← keyi ⊕ keyB2,i.
5. Compute keyB3

= maji(keyB3,i).

Theorem 13 (Completeness of Construction 6). If Construction 5 has completeness
error ≤ 1/4, then Construction 6 has completeness error ε3 ≤ 2−t/8.

Proof. By the construction, if for at least t/2 of i ∈ [t] we have keyA2,i = keyB2,i, then
keyA3

= keyB3
. Since for each of the sub-protocols the probability of keyA2,i = keyB2,i

is at least 3/4, then by the Hoeffding inequality, the probability of not having the correct
key in at least t/2 of i ∈ [t] is at most e−2σ2t for σ = |1/2−1/4| = 1/4, which implies
the error to be at most e−2t/16 < 2−t/8. �
Theorem 14 (Soundness of Construction 6). If Construction 5 has a soundness error
δ2(κ), then Construction 6 has a soundness error δ3 = tδ2.

Proof. Suppose there exists an adversary QE3 such that:

|Pr[1 ← QH
E3
(c3, keyA3

)] − Pr[1 ← QH
E3
(c3, Uu)]| ≥ δ3.

We show there exists an adversary QE2 that breaks the soundness in Theorem 12 with
an advantage at least δ2. To do so define hybrids {Hk}k for k ∈ {0, · · · , t} (where
H0 is the experiment of Construction 6) such that in hybrid Hk, we replace keyi with
key′

i = keyA3
⊕ key′

A2,i when constructing c3. Namely, in hybrid Hk, we have c3 =
c2,1|| · · · ||c2,t||key′

1|| · · · ||key′
k||keyk+1|| · · · ||keyt. Now note that in hybridHt, there is

no information about keyA3
in c3, thus an adversary has no advantage in distinguishing

keyA3
from random. Therefore, if QE3 exists, then there is an index k∗ ∈ [t] s.t. there

is a computationally unbounded classical adversary QE3,k∗ that can distinguish hybrids
Hk∗−1 and Hk∗ with an advantage at least δ3/t = δ2. I.e., there is QE3,k∗ such that:

|Pr[1 ← QH
E3,k∗(ck∗−1

3 , keyA3
)] − Pr[1 ← QH

E3,k∗(ck∗
3 , keyA3

)]| ≥ δ2,

where ck
3 is the corresponding values of c3 in hybrid Hk. Now construct QE2 on input

(c′′
2 , x′′) and given access to oracle H ′′ as follows:

1. For i ∈ [t]/{k∗} sample oracles Hi
′′, and compute (c′′

2,i, key
′′
A2,i) ← QHi

′′
A2

.
2. Let (c′′

2,k∗ , key′′
A2,k∗) = (c′′

2 , x′′).
3. Sample a random key′′

A3
← {0, 1}u.

4. For i ∈ [t] let key′′
i = key′′

A3
⊕ key′′

A2,i.
5. Let c′′

3 = c′′
2,1|| · · · ||c′′

2,t||Uu|| · · · ||Uu||key′′
k∗ || · · · ||key′′

t .
6. Send (c′′

3 , key′′
A3
) to QE3,k∗ .

7. Answer QE3,k∗ ’s queries on oracle i using H ′′ for i = k∗, and Hi
′′ otherwise.

8. Output whatever QE3,k∗ outputs.

Now note that c3 perfectly simulates ck∗−1
3 if x′′ = keyA2

, and perfectly simulates ck∗
3

if x′′ ← {0, 1}u. Thus QE2 perfectly simulates the security experiment for QE3,k∗ ,
therefore, has the same advantage δ2. �
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Finally, we show how to do Step 4.

Construction 7 (QGQS Time-Lock Puzzle From Key Agreement with OWC). Let
QA3 , QB3 be an SCSS Multi-Bit key agreement scheme from Construction 6 with com-
pleteness error ε3(κ) and soundness error δ3(κ). Let H be an oracle, and define Gen
and Sol as follows:

– Gen performs the following:
1. Run QA3 to get (c3, keyA3

) ← QH
A3
.

2. Let P = c3 and s = keyA3
.

– Sol performs the following:
1. Let P = c3.
2. Run QB3 to get keyB3

← QH
B3
(c3).

3. Let s′ = keyB3
.

Theorem 15 (Completeness of Construction 7). If Construction 6 has completeness
error ε3(κ), then Construction 7 has completeness error ε4 ≤ ε3. Namely, we have:

Pr[s′ = s : (P, s) ← GenH , s′ ← SolH(P)] ≥ 1 − ε4(κ).

Proof. By the construction, if we have keyA3
= keyB3

, then s′ = s, thus ε4 ≤ ε3. �
Theorem 16 (Soundness of Construction 7). If Construction 6 has a soundness error
δ3(κ), then Construction 7 has a soundness error δ4 = δ3 + 2−u. Namely, we have:

Pr[s′′ = s : (P, s) ← GenH , s′′ ← QH
E4
(P)] ≤ δ4(κ).

Proof. Suppose there exists an adversary QE4 such that:

Pr[s′′ = s : (P, s) ← GenH , s′′ ← QH
E4
(P)] ≥ δ4.

We show there exists an adversary QE3 that breaks the soundness in Theorem 14
with an advantage at least δ3. Consider hybrids H0 and H1 where H0 is the output
of Construction 7, and H1 is similar to H0 except that we replace s = keyA3

with
s′ ← {0, 1}u. Note that in H1, no adversary can find the key with a better advantage
than a random guess, so if QE4 exists, then there exists Q′

E4
that distinguishes H0 and

H1 with an advantage at least δ4 − 2−u = δ3. Construct QE3 s.t. on input (c3, x), send
(P, s) = (c3, x) to Q′

E4
and output whatever Q′

E4
outputs. Note that QE3 perfectly sim-

ulates H0 if x = keyA3
and perfectly simulates H1 if x ← {0, 1}u. Thus, QE3 has the

same advantage as Q′
E4
. �

Proof of Theorem 8. To prove this theorem we only need to determine the choice
of parameters in Constructions 10, 4, 5, 6, and 7. Let κ be chosen according to K in
Lemma 10. Let t = u = κ, ε0 = 1/4κ and δ0 = negl(κ). Then by Theorem 9
ε1 ≤ 1/4κ, by Theorem 10 δ1 ≤ negl(κ), by Theorem 11 ε2 ≤ 1/4, by Theorem 12
δ2 ≤ negl(κ), by Theorem 13 ε3 ≤ negl(κ), by Theorem 14 δ2 ≤ negl(κ), by Theo-
rem 15 ε4 ≤ negl(κ), by Theorem 16 δ4 ≤ negl(κ). Finally, note that ε4 and δ4 are the
completeness and soundness errors of a QGQS time-lock puzzle. �
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A The Description of the Extractor in Lemma 1

We give a proof and the description of Ext for completeness.

Proof of Lemma 1.
Define the algorithm Ext(AH(z)) as follows:

– Pick i
$←− [q].

– Run AH(z) until (right before) the ith query.
– Measure the query register of AH(z) in the computational basis to obtain the out-
come x ∈ X .

– Output x.

The probability that Ext(AH(z)) successfully outputs x ∈ S is given by

q∑

j=1

Pr[i = j] Pr[x ∈ S | i = j : x ← |ψH
i 〉] = 1

q

q∑

j=1

‖ΠS |ψH
j 〉‖2 =

μ(AH(z),S)
q

.

�
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Abstract. Compressed oracles (Zhandry, Crypto 2019) are a powerful
technique to reason about quantum random oracles, enabling a sort of
lazy sampling in the presence of superposition queries. A long-standing
open question is whether a similar technique can also be used to reason
about random (efficiently invertible) permutations.

In this work, we make a step towards answering this question. We first
define the compressed permutation oracle and illustrate its use. While the
soundness of this technique (i.e., the indistinguishability from a random
permutation) remains a conjecture, we show a curious 2-for-1 theorem:
If we use the compressed permutation oracle methodology to show that
some construction (e.g., Luby-Rackoff) implements a random permuta-
tion (or strong qPRP), then we get the fact that this methodology is
actually sound for free.

1 Introduction

The random oracle [6] is a powerful heuristic1 for cryptographic security proofs.
It allows us to abstract from the gritty details of the definition of a hash func-
tion and to imagine it to be just a random function. We can then use powerful
reasoning techniques such as lazy sampling to make security proofs simpler or,
in many cases, possible in the first place. (Lazy sampling refers to the technique
of choosing the outputs of the random oracle “on demand”, when they are first
accessed). These techniques are useful even if we are not in the random oracle
model. For example, when working with a pseudorandom function, the first step
in a proof is often to replace it by a fictitious random function. Quite similar to
the random oracle are random permutations (to model cryptographically-strong
permutations), or ideal ciphers (a heuristic model for block ciphers, basically a
key-indexed family of random permutations). In the standard model, random
permutations occur in security proofs involving pseudorandom permutations

1 In general, this heuristic is not sound: There are contrived protocols which are secure
in the random oracle model but insecure when the oracle is instantiated with any
hash function [11]. However, in practice the random oracle model has proven to be a
very good heuristic. Readers who reject heuristics in security proofs may still enjoy
the results in this work as a result about generic query complexity, or as a technique
for security proofs involving pseudorandom permutations.
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(e.g., in protocols involving block ciphers). In such proofs, we often consider
invertible random permutations, i.e., we also give the adversary access also to
the inverse of the permutation. All of this can be handled very nicely using lazy
sampling.

At least, this is the situation in classical cryptography. Once quantum
(or post-quantum) cryptography enters the picture, using the random oracle
becomes much harder. This is because the quantum random oracle gives the
adversary superposition-access to the random oracle. That is, the adversary can
query the random oracle on a superposition of many different values. Then lazy
sampling as in the classical case does not work any more: The adversary could
query the oracle on a superposition of all inputs already in the very first query.
If we were to sample the oracle at all the sampled positions, this would mean
sampling the whole function in one go. But that goes against the very idea of
lazy sampling. Furthermore, we cannot just measure where the oracle is queried
as this would disturb the adversary state, and we need to make sure that our
technique does not influence the way in which the adversary is entangled with
the random oracle (in a way that the adversary can notice).

The above does not mean that the random oracle is unusable in the quantum
setting. A number of techniques have been developed for handling the random
oracle (history-free reductions, 2q-wise independent functions, semi-constant dis-
tributions, small-range distributions, one-way to hiding (O2H) theorems, poly-
nomial method, adversary method, see the related work below). However, none
of these have the general applicability of the lazy sampling method, and they
are often much harder to use. Then, surprisingly, Zhandry [30] discovered that
a variant of lazy sampling is actually possible with quantum random oracles,
although it is not as simple (and as general) as in the classical case. We refer
to this technique as Zhandry’s “compressed oracle technique”. (We give more
details about it below).

However, when talking about (invertible) random permutations, the situation
is much more limited. The abovementioned tools are specific to the random func-
tion case2. To the best of our knowledge, no hardness results are known about
invertible random permutations, not even simple query complexity results such
as the hardness of searching an input with certain properties. As a consequence,
we do not know anything about the post-quantum security of cryptosystems
built from invertible permutations, such as the industry-standard SHA3 [22].

The present work attempts a first step towards closing this gap. We present
a sufficient condition for a variant of the compressed oracle technique to work
also for random permutations.

The Compressed Oracle Model. Zhandry [30] presented a different way to see
the random oracle. The traditional quantum random oracle is modeled by giving
an adversary access to the unitary operation |x, y〉 �→ |x, y ⊕ h(x)〉 where h is
2 Except for the O2H theorem. Some variants of the O2H theorem apply to arbitrarily

distributed functions [2], in particular to invertible permutations. (An invertible
permutation can be modeled as a function f : {0, 1} × {0, 1}n → {0, 1}n, uniformly
sampled from the set of all functions where f(0, ·) is a permutation and f(1, ·) its
inverse). However, we are not aware of any work that makes use of this.
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a uniformly randomly chosen function. (I.e., all outputs of h are chosen inde-
pendently). Given such a unitary, the adversary can evaluate h in superposition.
Now Zhandry showed that the random oracle can be replaced (in an indistin-
guishable way) by a random oracle that keeps a lazily evaluated function in a
separate register H (inaccessible to the adversary). That is, initially that register
H contains |∅〉 where ∅ represents the empty partial function. Then, upon a
query with input x = x0, the function will be updated to contain a superposition
of all |x0 �→ y〉 (for different y) and y will be the result of the query. (Here x0 �→ y
is the partial function defined only at input x0). Further queries can add more
entries to this function, and if, say, H contains |h〉 and h(x) �= ⊥, and we query
the oracle at x, we get h(x). When the adversary uncomputes some information
that it computed before, the corresponding output in h can become undefined
again. And all of this is possible in superposition between different inputs. Now
all of this is extremely simplified, and hold only up to some error terms that
are annoying but necessary. The advantage of this model is that we can, within
limits (due to the annoying error terms), treat the random oracles as if it did
lazy sampling even in the quantum setting. We give more details in Sect. 3.

Compressed Permutations. In this work, we ask the question whether we can
extend the idea above to random permutations. After all, in the classical case,
lazy sampling works for random permutations is almost as easy as for random
functions. However, the compressed oracle has so far withstood all attempts to
be ported to the permutation setting. (See the related work below). But before
we come to our contribution, let us first make explicit why we are interested in
a compressed oracle for random permutations (compressed permutation oracle,
CPO). There are two main ways in which we could use this technique:

– We are analyzing a cryptographic scheme that uses an invertible permuta-
tion. And we wish to model that permutation in an idealized way (random
oracle like). E.g., we might want show that the Sponge construction [7], where
the block function is an invertible permutation (as is the case with SHA3)
implements a pseudorandom random function. We would then replace the
invertible permutation in the proof by a CPO and then use the features of
the CPO (such as “lazy sampling”) to make the proof simpler.
Analogously, we can use the technique for an analysis of a scheme using an
ideal cipher. (Since the ideal cipher is simply a family of invertible permuta-
tions).

– We are analyzing a cryptographic scheme that implements an invertible per-
mutation or a strong pseudorandom permutation (PRP, i.e., a secure block-
cipher). For example, in the classical case, the four-round Luby-Rackoff con-
struction [21] is known to be a strong PRP if the round function is a (nonin-
vertible) pseudorandom function [21]; we do not know yet whether an analo-
gous result holds in the quantum case3. To show this, it is sufficient to show

3 We know that four rounds are not sufficient [20], but nothing excludes that, e.g.,
five-round Luby-Rackoff could be a strong qPRP. [18] proves that four-round Luby-
Rackoff is a qPRP (but not a strong one) but their result contains a flaw and the
fix is work in progress [17].
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that Luby-Rackoff, using a random function as the round function, is indis-
tinguishable from a random permutation (given queries in both directions).
Now there can be different approaches for the latter, but one promising avenue
for this would be: (a) Show that Luby-Rackoff is indistinguishable from a CPO
(using the fact that the CPO gives us an explicit list of all queries to the ran-
dom permutation in the proof). (b) Use that a CPO is indistinguishable from
a random invertible permutation.

In this paper, we are specifically interested in the second use case. The prob-
lem with that use case is that, even if we show (a), we still do not know whether
a CPO is indistinguishable from a random permutation (i.e., (b)). We show that
this is not a problem. Specifically, we show the following almost circular seeming
result:

Main contribution: If some construction (say based on a random ora-
cle) is indistinguishable from a CPO (i.e., we have (a)), then the CPO is
indistinguishable from an invertible permutation (i.e., we get (b)).

So, if we show (a), we get (b) for free!
This has two benefits:

– If we are in the second use case, we do not need to worry whether the CPO is
indeed indistinguishable from an invertible permutation. We simply can focus
on the (admittedly still rather hard) problem of analyzing the construction.

– This gives a new approach towards showing that the CPO technique works –
if we can show (a) for any construction (even some practically irrelevant
one), then we know that the CPO is indistinguishable from an invertible
permutation in general. So we can then also use it, e.g., in the first use case
(say, quantum security of SHA3).

This brings us a step closer towards being able to handle invertible permu-
tations in the quantum setting.

Related Work. Quantum Random Oracles. [19,26] showed that finding preim-
ages in the random oracle is hard ( [10] showed this in worst-case setting). [9]
introduced “history-free reductions” which basically amounts to replacing the
random oracle by a different function right from the start. [31] showed that ran-
dom oracles can be simulated using 2q-wise independent functions. Based on
this, [26] introduces a technique for extracting preimages of the random ora-
cle. [31] introduces the “semi-constant distributions” technique that allows us to
program the random oracle in many random locations with a given challenge
value without the adversary noticing. [29] improves upon this with the “small-
range distribution” technique that allows us to simulate random oracles using
random looking functions with a small range. [28] shows that random oracles are
collision resistant (this is generalized by [4,16,23] to the case of non-uniformly
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distributed functions with independently sampled outputs). Collision-resistance
of the random oracle is generalized to the “collapsing property” which allows us
to show that measuring the output of the random oracle effectively measures
the input [25]. More general methods for problems in quantum query complex-
ity (not limited to random oracles) include the polynomial method [5] and the
adversary method [1]. [3] shows that the difficulties of using the quantum ran-
dom oracle are not just a matter of missing proof techniques, but that in certain
cases classically secure schemes are not secure in the quantum random oracle
model.

Compressed Oracles. Compressed oracles were introduced in [30] and used there
to show indifferentiability of the Merkle-Damgård construction, as well as secu-
rity of the Fujisaki-Okamoto transform. [12] generalizes [30] to Fourier transforms
over abelian groups, thus allowing random functions with a range different from
{0, 1}n. Different from [30], they do not have a compression/decompression algo-
rithm but instead reason using invariants that are expressed in a basis different
from the computational basis. They also introduce support for parallel queries.
[15] generalizes [30] to non-uniformly distributed functions, but only for the case
where all outputs are independently sampled. (This is similar to what we achieve
in our reformulation of [30] in Sect. 3, although we additionally get rid of the
Fourier transform).

Random Permutations. [28] shows that random functions are indistinguishable
from (noninvertible) random permutations. This allows us to derive results
for random permutations from results for random functions. [27] shows the
existence of quantum-secure pseudorandom permutations (qPRP, secure under
superposition-queries of the function and its inverse) from quantum one-way
functions. In particular, this implies that a random invertible permutation can
be efficiently simulated4. However, [27] does not give us any technique for analyz-
ing schemes that use a qPRP. When analyzing such a scheme we would replace
the qPRP by an invertible random function in the proof, and the techniques
from the present paper could be helpful.

Security of the Sponge Construction. The sponge construction was proposed by
[7]. In the classical random oracle model, security of the sponge construction was
shown by [8], both when the sponge is based on random functions and on invert-
ible random permutations. They showed indifferentiability, which implies many
other properties such as collision-resistance, pseudorandomness, and more. In the
quantum setting, collision-resistance and the collapsing property from [25] were
shown in [13] in the random function case. Quantum pseudorandomness of the
sponge was shown by [14] but only in the case where the underlying round func-
tion is secret (the adversary cannot query it). Indifferentiability in the quantum
setting was shown by [15] in the random function case. All those results immedi-
ately imply the corresponding results in the non-invertible random permutation
4 If we implement the underlying quantum one-way function using a random oracle,

and we simulate that random oracle with the method from [31] or [30], then we even
get a simulation without computational assumptions.
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case since random functions and permutations are indistinguishable [28]. How-
ever, for invertible random permutations, no quantum results are known5.

Organization. In Sect. 2 we introduce relevant notational conventions. In Sect. 3,
we present compressed oracles for random functions. Specifically, we recap and
give a new, more streamlined view on Zhandry’s technique. (We recommend
readers familiar with Zhandry’s technique to at least skim it because it will
introduce some of the formalism for later). We also give a short example how
it is used. In Sect. 4, we formulate the compressed permutation oracle and give
an example how to use it. In Sect. 5, we prove our main result: If some con-
struction implements the compressed permutation oracle, then the compressed
permutation oracle is indistinguishable from a random permutation.

2 Preliminaries

Total and Partial Functions. Throughout this work, we will extensively deal
with total and partial functions to describe states, queries, and invariants. For
sets D,R, let D → R be the total functions from D to R, and D ↪→ R the total
injections (i.e., injective total functions) from D to R. Furthermore, D → R
are the partial functions. For a partial function f : D → R, dom f ⊆ D is the
domain (inputs on which f is defined) and f is the image of f .

∅ is the empty partial function (defined nowhere).

Quantum-Related Notation. Quantum states are elements of a (not necessarily
finite-dimensional) Hilbert space H. We usually represent quantum states with
greek letters (e.g., ψ) and use ket-notation (|x〉) to refer to basis states of the
computational basis unless specified otherwise, and 〈x| is the adjoint of |x〉 (〈x| =
|x〉†). (I.e., |x〉 for x ∈ X form an orthonormal basis of C

X). ‖ψ‖ is the norm
of ψ ∈ H, and |||A||| is the operator norm of the bounded operator A : H → H′.
For S ⊆ H, S is the (closed) span of S, i.e., the smallest topologically closed
subspace of H containing S. Projector always means orthogonal projector.

We will often need to consider the distance between a vector and a subspace:
For two vectors ψ,ψ′ ∈ H, we write ψ

ε≈ψ′ to denote ‖ψ − ψ′‖ ≤ ε. And if S is
a closed subspace of H, then we write ψ

ε≈ S to denote ∃ψ′ ∈ S. ψ
ε≈ ψ′6.

Quantum Oracle Queries. Throughout the paper, we will frequently refer to
oracle queries. Thus, we fix some variables once and for all: D always refers to
the domain and R to the range of the function. (I.e., queries are always made to
a function h :→ DR). We will also fix once and for all the sizes of D and R as
M := |D| and N := |R|. (In particular, D,R are assumed to be finite).

We furthermore assume a commutative group operation ⊕ on D and on R
with the property x ⊕ x = 0. (For example, D = R = {0, 1}n and ⊕ is bit-wise
XOR).
5 [24] has a proof of collision resistance but it was found to be flawed and withdrawn.
6 Or equivalently: ‖(1 − P )ψ‖ ≤ ε where P is the projector onto S.
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A query to a fixed function f :→ DR can then be implemented by the unitary
Uf : |x〉|y〉 �→ |x〉|y ⊕ f(x)〉. (The fact that this is unitary follows from the fact
that ⊕ is a group operation). However, we will more often be interested in queries
to a function that is also stored in a quantum register: For a set Func ⊆ D → R
that will always be clear from the context, define the unitary StO (for “standard
oracle”) on C

D ⊗ C
R ⊗ C

Func by:

StO|x〉|y〉|h〉 = |x〉 y ⊕ h(x) |h〉

Here y ⊕ h(x) is defined to be y when h(x) = ⊥. (This latter case only arises if
Func contains partial functions).

Non-unitaries in Quantum Circuits. We will sometimes have operations in quan-
tum circuits that are not unitaries (or isometries). For example, we might have a
projector P as a gate. Mathematically, this simply means that the current state
is multiplied with P (analogous to applying a unitary). Of course, this implies
that a normalized state could become a non-normalized state. An operational
interpretation of this is the following: We measure with the binary measurement
P , 1 − P , and if the measurement fails (second outcome), we abort. The state
after applying P then describes the state in the non-aborting computation path,
scaled with the square-root of the probability of reaching that path.

In general the gate might not be a projector, either. (E.g., a gate G = UP
that is a product of a unitary U and a projector P ). But the operational inter-
pretation is still the same. (An alternative interpretation is that of a program
that terminates with probability ≤ 1).

3 Compressed Function Oracles

We will now recapitulate and rephrase Zhandry’s compressed oracle technique
[30]. Trying to emphasize more the separation between implementation issues
(encoding via “databases” etc.) and the core concepts. Then we proceed to give
a different view on the technique that does not involve Fourier transforms and
which is, in our opinion, conceptually simpler.

We will often refer to the compressed oracle as compressed function oracle or
CFO to distinguish it from the compressed permutation oracle introduced later.

A reader who wishes to skip this part and to directly learn our new technique
can skip ahead to the mini-summary at the end of this section (page 18).

In a nutshell, the compressed oracle technique is a way to simulate/implement
a quantum random oracle (i.e., a uniformly random function h : D → R to which
an adversary or quantum algorithm has superposition query access) in a way that
has the following crucial features:

– The adversary cannot distinguish between the original random oracle and the
simulation. This allows us to use the simulation in proofs instead of the
original oracle.
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– The simulation uses an internal state that has a small representation. This is
not the case for trivial implementations of the random oracle: Those would
have to pick and store the value table of the random function at the beginning.
This value table would require |D| · log|R| classical bits which is infeasible for
typical size of the domain D. In contrast, the compressed oracle only requires
roughly q(log|D| + log|R|) qubits after q queries to the random oracle.

– The simulation keeps track where the random oracle was already queried, and
what the result of that query is. E.g., if the adversary queries h(x) (possi-
bly in superposition between different values x), and gets y := h(x), then
the simulation will keep a record that a query x �→ y was performed (or a
superposition of such records). While this is trivial in the classical case, it is
highly surprising that this is possible in the quantum case: Naively keeping
a record of the queries would entangle the adversary’s state with the state of
the compressed oracle, something the adversary might detect7. Having this
record is the arguably the main advantage of the compressed oracle technique
as a proof technique. For example, it allows us to formulate invariants such
as “the adversary has not yet queried an x with h(x) = 0”.

– The simulation is efficient. That is, its runtime is polynomial in the number of
queries performed by the adversary, and the bitlengths of the inputs and out-
puts of h. This is closely related to the fact that the internal state has a small
representation. Previous approaches for efficiently implementing/simulating
the quantum random oracle either required computational assumptions (sim-
ulation via quantum pseudorandom functions [29]) or required the simulator
to know the number of queries that the adversary will perform at the outset
of the simulation (simulation via 2q-wise independent functions [31]).

Through the rest of this section, we present our reformulation of Zhandry’s
technique before considering permutations.

7 For example, the adversary might initialize a register X with
∑

x
1√
M

|x〉, then per-
form a superposition query with input x. The compressed oracle needs to record the
query x �→ y (in superposition between different x). Now the register X is entangled
with the compressed oracle’s record. (Or, if the compressed oracle would measure
the query input, the register X would collapse to a single value). Now the adver-
sary might wish to distinguish whether the compressed oracle records its queries or
not. For that purpose, the adversary uncomputes the previous query. Now X would
be in the original state when using the original random oracle; the adversary can
check whether this is the case. But if the compressed oracle keeps a record of the
query x �→ y, the state X will not be in its original state but entangled with the
compressed oracle. So in order to be indistinguishable, the compressed oracle needs
to forget the query (i.e., erase the record x �→ y from its state). In other words, the
compressed oracle needs to not only record queries, but also “unrecord” queries in
case of uncomputations. Since the compressed oracle does not know a priori whether
a given query is a computation or an uncomputation (or something in between), it
would seem impossible to solve this problem. The surprising fact of the compressed
oracle technique is that it does solve this problem, almost as a side effect.
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Standard Oracle. Consider the original quantum random oracle. This oracle
initially classically samples a random function h

$← ( → DR
)
. And then a query

to the function h is implemented by a unitary Uf : |x〉|y〉 �→ |x〉|y ⊕h(x)〉 on the
adversary’s query registers X,Y .

It is easy to see that this is perfectly indistinguishable from the following
construction (called the standard oracle in [30])8: An additional quantum register
H is initialized with

∑
h∈→DR

1√
|→DR| |h〉, i.e., with the uniform superposition

of all possible functions. The adversary does not get access to this register H,
but instead the oracle query is changed to be the unitary StO : |x〉|y〉|h〉 �→
|x〉|y ⊕ h(x)〉|h〉 on registers X,Y,H.

To better understand the following steps, imagine that the register H consists
of many separate registers Hx (x ∈ D), each Hx storing the output h(x). (That
is, h is represented as a value table in H with Hx being the table entries). Each
Hx has Hilbert space C

R.

Compressed Oracle. Next, we transform the oracle into yet another representa-
tion. First, we extend the registers Hx to allow for a value |⊥〉, i.e., the Hilbert
space of a single Hx is C

R∪{⊥}. This means that the register H now contains not
only total functions h, but can also contain superpositions of partial functions.
(⊥ denoting an undefined output).

Intuitively, |⊥〉 in some Hx will mean that the corresponding h-output is
not yet determined, i.e., that any value is still possible. In particular, having
|⊥〉 in all registers Hx (i.e., having the empty partial function |∅〉 in H) should
correspond to the initial state of the random oracle.

We make this more formal by defining an encoding/decoding operation to
map between states that do not use |⊥〉 (as in the standard oracle) and states
that do use |⊥〉 (compressed states).

Let Q denote the quantum Fourier transform on C
R. We extend it to work on

the register Hx by defining Q|⊥〉 := |⊥〉. (In [30], the specific case R = {0, 1}n

is considered. In this case the quantum Fourier transform is simply a Hadamard
gate on each qubit in Hx. But in [12], the case for general abelian groups R
is considered and other quantum Fourier transforms are used). Let U⊥ be the
unitary with U⊥|⊥〉 = |0〉, U⊥|0〉 = |⊥〉, U⊥|y〉 = |y〉 for y �= 0. Let Decomp1 :=
Q · U⊥ · Q† (the decompression operation).

In the standard oracle, Hx has initial state
∑

y
1√
|R| |y〉. If we apply Decomp†

1

to it, we get
∑

y

1√
|R| |y〉 Q†

�−→ |0〉 U†
⊥�−→ |⊥〉 Q�−→ |⊥〉.

Thus, by applying Decomp†
1 to all registers Hx in the initial state of the standard

oracle, we get |⊥〉 in every Hx. This leads to the following idea: Initialize all Hx

8 The indistinguishability formally follows from the fact that the query commutes
with a computational basis measurement of the register H, and the fact that if that
computational basis measurement is performed at the beginning of the execution,
then it is equivalent to uniformly (classically) sampling h.
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Fig. 1. Operation of CFO for fixed x0 := 1. U denotes the operation |y0〉|y〉 �→ |y0 ⊕
y〉|y〉.

with |⊥〉. And whenever we want to perform an oracle query, we decompress
all Hx by applying Decomp1 (for the initial state, this gives the initial state of
the standard oracle). Then we apply StO (the standard oracle)9. And then we
compress all Hx again by applying Decomp†

1. This will lead to exactly the same
behavior as the standard oracle (since successive Decomp1, Decomp†

1 pairs cancel
out).

In other words, we define the compressed oracle to be the oracle with the
initial state |⊥〉 ⊗ · · · ⊗ |⊥〉 in register H, and that applies the following unitary
to X,Y,H on each query:

CFO := (IX ⊗ IY ⊗ Decomp†) · StO · (IX ⊗ IY ⊗ Decomp)

with Decomp :=
⊗

x∈D

Decomp1. (1)

Now CFO is perfectly indistinguishable from the standard oracle.

The Size of the Compressed Oracle. So far, we have seen that the compressed
oracle CFO simulates the standard oracle. But why is it useful? To see this, we
will think of the register H as containing partial functions: The basis states of H
are |yx1 , . . . , yxN

〉 for yx1 ∈ R∪{⊥} where x1, . . . , xN are the elements of D. This
is the value table of a partial function f :→ DR. We will identify |yx1 , . . . , yxN

〉
with |f〉. In particular, the initial state of CFO is then |⊥, . . . ,⊥〉 = |∅〉. (∅ is
the completely undefined partial function).

Consider a state |x0〉|y0〉|f〉 before a query to the compressed oracle, with
|domf | ≤ �. (The initial state has � = 0).

Applying CFO to this state will decompress all Hx (which does not affect
|x〉) apply StO (which does not affect Hx for x �= x0 for this particular state),
and then compress all Hx again. This is illustrated in the left side of Fig. 1 for
9 Since we extended the space of the register Hx to be R ∪ {⊥}, StO must be well-

defined also on states where one or many of the Hx are |⊥〉, i.e., on superpositions of
partial functions. See the preliminaries for the precise definition for that case. Note,
however, that since we start from an initial state that is a superposition of total
functions, this case never arises no matter what queries to StO we perform, unless
we apply some other operations to the oracle register H directly.
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x0 := 1. On all Hx with x �= x0, Decomp1 and Decomp†
1 cancel out (see the

right side of Fig. 1). Thus, no matter what x0, y0, f are, the resulting state will
be a superposition of f ′ with f ′ = f except on x0. In particular, |domf ′| ≤
|domf | + 1 ≤ � + 1. Since this holds for any |x0, y0, f〉 with |domf | ≤ �, this also
holds for any superposition of such states. Thus we have shown10 that any state
of the compressed oracle that is a superposition of |f〉 of size ≤ � will, after a
query, be a superposition of |f〉 of size ≤ � + 1.

In particular, after q queries, the compressed oracle state is a superposition
of partial functions of size ≤ q. Such a partial function can be represented in
approximately q(log|D| + log|R|) bits, hence the state of the compressed oracle
indeed has a much smaller representation. This justifies the name “compressed
oracle”.

And we also can see that it indeed “records” queries in some sense: if the
state of the oracle contains |f〉, then every x ∈ domf must have been queried.
Otherwise we would have f(x) = ⊥ as in the initial state. The converse does not
hold, though, because queries can be uncomputed and thus removed from f .

Efficient Implementation. So far, we do not have an efficiently simulatable oracle
because we represent the state of the compressed oracle by giving the complete
value table for the partial functions f . (Each potential output is stored in a dif-
ferent register Hx). However, an algorithm implementing CFO is free to store the
partial functions in a more efficient way, namely as sorted lists of input/output
pairs (called a database in [30]), leading to a compact state. And an efficient
circuit for the unitary CFO can be constructed by only applying Decomp1 on
those entries of the database that are involved in the present query. This then
gives the oracle defined in [30]. We omit the details here as they are not relevant
for the rest of this paper.

The advantage of separating the definition of the efficient encoding of the
compressed oracle state from the conceptual encoding as a partial function is
that proofs will not have to consider the concrete encoding with ordered asso-
ciation lists only when analyzing the runtime of the simulation and can use the
mathematically simpler concept of partial functions everywhere else. In partic-
ular, in information-theoretical proofs, we do not need to consider the efficient
encoding at all.

Getting Rid of the Fourier Transform. So far, we have described the compressed
oracle as in Zhandry’s original work (although with a different presentation). As
presented originally, it would seem that the Fourier transform is an integral part
of the idea of the compressed oracle11. We will now show that there is a different
view which does not involve the Fourier transform at all. Recall the definition

10 Actually, we have handwavingly sketched it but a formal proof is easy and follows
the same ideas.

11 [30] considers the special case of a qubit-wise Hadamard which is the Fourier trans-
form over the abelian group {0, 1}n. [12] generalizes this to Fourier transforms over
arbitrary abelian groups.
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of Decomp1 = Q · U⊥ · Q†. Using that definition, we can compute what Decomp1
does to various basis states:

|⊥〉 Q†
�−→ |⊥〉 U⊥�−→ |0〉 Q�−→

∑

z

Qz0|z〉 =: |∗〉

|y〉 Q†
�−→

∑

z

Qyz|z〉 U⊥�−→
∑

z

Qyz|z〉
︸ ︷︷ ︸

=Q†|y〉

+ Qy0︸︷︷︸
=〈∗| y〉

(|⊥〉 − |0〉) Q�−→ |y〉 + 〈∗| y〉(|⊥〉 − |∗〉).

Note that this calculation did not use that Q is the Fourier transform, only
the fact that it is unitary. And the state |∗〉 is simply the first column of Q.
Which, in case of the Fourier transform, is of course the uniform superposition
|∗〉 =

∑
z

1√
N

|z〉. However, any other unitary with the same first column would
lead to the same result – the definition of Decomp1 does not actually use the
Fourier transform, and it only depends on the first column of Q! In fact, the
above calculation works even if the first column is not the uniform superpo-
sition. For example, if we wish to analyze random oracles that use a random
function h that is not uniformly chosen, but where each h(x) is independently
chosen according to some distribution D, we take a unitary Q whose first column
is |∗〉 :=

∑
z

1√
D(z)

|z〉, and now Decomp1 still maps

Decomp1 : |⊥〉 �→ |∗〉
Decomp1 : |y〉 �→ |y〉 + 〈∗| y〉(|⊥〉 − |∗〉). (2)

In fact, we can just take this as the definition of Decomp1 (relative to a given
|∗〉). The operators Q and U⊥ are then just a technical tool to show that Decomp1
is indeed unitary, and one possible way of implementing Decomp1 efficiently, but
they are not part of its definition.

We can still define an oracle CFO based on this new Decomp1 in the same way
as before via (1). Except now CFO will be indistinguishable from the standard
oracle that has the initial state |∗〉⊗· · ·⊗|∗〉. Which is indistinguishable from the
original random oracle if |∗〉 is the uniform superposition. And if |∗〉 =

∑
z αz|z〉,

then it is indistinguishable from the a random oracle where each h(x) is sampled
to be y with probability |αy|212. Everything discussed so far still applies. In
particular, we still have that the oracle is compressed and records queries: In the
compressed state, for any x that has not been queried, Hx will be in state |⊥〉
(with the intuitive meaning that the value of h(x) is not sampled yet).

Thus, by removing the Fourier transform from the picture, we have gener-
alized the compressed oracle technique to nonuniformly distributed oracles “for
free”13. However, we stress that this approach does not yet allow us to model ran-
12 We could go even farther and use a different |∗〉 for every x. This would allow us to

analyze oracles where h(x) is picked from different distributions for different x.
13 [15] also generalizes Zhandry’s technique to non-uniformly distributed functions.

(With the condition that the outputs are independently sampled, i.e., not covering
permutations). However, their presentation still involves Fourier transforms.
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dom permutations because a random permutation h does not have independently
distributed h(x)14.

In our opinion, this new view of the compressed oracle has multiple advan-
tages:

– It becomes clearer what the essence of the transformation Decomp1 is (see
also the discussion below). To assume that the Fourier transform plays a
relevant role in the construction may even hinder understanding of what is
really happening.

– There is no need to find a group structure on the range R of the function so
that it matches the operation ⊕ in the definition of the oracle query unitary
|x〉|y〉 �→ |x〉|y ⊕ h(x)〉. This may lead to less requirements in proofs.

– The technique becomes more general as we are not limited to uniformly dis-
tributed functions.

For the remainder of this paper, we will not make use of this potential for
generalization and assume that Q is an arbitrary unitary whose first column is
the uniform superposition.
14 We had one failed approach how to generalize this to random permutations (and

possibly other function distributions). Since we believe that this approach might be
natural, we shortly describe it here and why we got stuck trying to use it:

For S ⊆ R, we can define DecompS
1 to be the Decomp1 operation for the uniform

distribution on S. (I.e., DecompS
1 is defined by (2) where |∗〉 :=

∑
y∈S

1√
|S| |y〉).

Then we can define Decomp@x
1 to apply DecompM

1 on register Hx, where M
is the set of all values that are not yet used in other registers. Formally, if
D = {x1, . . . , xM}, Decomp@xi

1 |y1, . . . , yM 〉 := |y1, . . . , yi−1〉 ⊗ DecompSi
1 |yi〉 ⊗

|yi+1, . . . , yM 〉 where Si := R \ {y1, . . . , yi−1, yi+1, . . . , yM}. (Here all yi ∈ R ∪ {⊥}).
And then we can define a decompression for permutations as Decompperm1 :=

Decomp@xM
1 Decomp

@xM−1
1 · · ·Decomp@x2

1 Decomp@x1
1 .

It is reasonably easy to verify that Decomp1|⊥ . . . ⊥〉 =
∑

h:↪→R
1√

|↪→R| |h〉. So

decompressing the initial state indeed leads to a uniform superposition of permuta-
tions (more precisely, of injections).

And it is also easy to define an oracle query in this model, namely CFOperm :=
Decompperm † ⊗ StO ⊗ Decompperm .

However, beyond that, things become difficult. First, the definition of Decomp1
depends on the ordering of the domain D. If we would apply the Decomp@xi

1 in a
different order, we would get a different operator Decompperm1 . Second, it becomes
very difficult to understand the behavior of CFOperm . We were unable to give an
explicit description of how it operates on a basis state. And it is not clear that
CFOperm maps a state |y1 . . . 〉 where at most � of the yi �= ⊥ to a superposition of
states |ỹ1 . . . 〉 where at most � + 1 of the ỹi �= ⊥. But if this does not hold, then we
do not have a compressed oracle because we have no upper bound on the size of the
oracle state.

However, we do not exclude that these problems could be solved and the app-
roach made viable. For example, it might be possible to find some operator that
approximately implements CFOperm and that has an easy description and that does
not grow the state too much during a query. But we were unable to find such an
operator.



382 D. Unruh

Understanding Decomp. In order to better understand what the decompression
operation does, let us have another look at the definition.

Decomp1 : |⊥〉 �→ |∗〉
Decomp1 : |y〉 �→ |y〉 + 〈∗| y〉(|⊥〉 − |∗〉)

︸ ︷︷ ︸
correction term

(3)

And thus Decomp operates as follows:

Decomp : |y1y2y3 . . . 〉 �→ |ŷ1ŷ2ŷ3 . . . 〉 + correction (4)

where ŷ := y for y ∈ R and ŷ := ∗ for y = ⊥, and where correction is a sum of
tensor products of “correction terms”.

This means that in the compressed oracle state, |⊥〉 is used to denote the
uniform superposition in Hx, i.e., an output that is completely undetermined so
far. On the other hand, |y〉 in the compressed oracle state has a somewhat more
subtle meaning. Intuitively, we might expect/want that |y〉 in the compressed
oracle state means that the output is y. I.e., |y〉 in the compressed state should
translate to |y〉 in the uncompressed state. In other words, the intuitively natural
definition of Decomp1 would be the definition (4) with the “correction term”
removed. Unfortunately, the resulting operation would not be unitary. So the
purpose of the correction terms is to stay as close to mapping |y〉 to |y〉 as
possible, while keeping the operation unitary. Note that the correction terms are
small because 〈∗| y〉 = 1/

√
N15.

This leads to a different view of how Decomp1 could be derived: Instead of
constructing it bottom-up from Q and U⊥, we could use the ansatz that Decomp
is an operator defined as:

Decomp : |⊥ . . . ⊥〉 �→ |∗〉 . . . |∗〉
Decomp : |y1y2y3 . . . 〉 �→ |ŷ1ŷ2ŷ3 . . . 〉 + correction (5)

where correction must be chosen in such a way that Decomp becomes unitary,
such that correction is as small as possible, and – most importantly – that the
correction terms do not make the compressed oracle state bigger (i.e., when
starting with |y1y2 . . . 〉 where there are at most � non-⊥ entries, decompressing
with Decomp, applying the oracle query operation StO, and then recompressing
with Decomp†, we should get a superposition of states |y′

1y
′
2 . . . 〉 with at most

� + 1 non-⊥ entries). The definitions of Decomp given above are then just one
(although very natural) solution to this ansatz.

Mainly, we presented this approach in (5) to give a different view on the com-
pressed oracle technique (that hopefully gives some intuition about what is going
on). But maybe this approach is also one way to extend the compressed oracle
15 However, the fact that they are small does not, unfortunately, mean that we can

ignore them in calculations. They do, in many situations, add up to very relevant
errors. In fact, Decomp1 without the correction terms has operator norm

√
2 which

means that the errors can be almost as big as the state itself.
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technique to more complex cases such as oracles with non-independently chosen
outputs or similar. We did not manage to use it for the random permutation
case, but maybe future work will.

The Sanitized CFO. There is a subtle variation of the CFO that we described
above. We call it the sanitized CFO. Recall that we use Decomp1 to switch
between two representations of the oracle state, the compressed representation
(where the initial state is |∅〉), and the uncompressed representation (where the
initial state would be the superposition of all total functions). In the compressed
representation, we make strong use of the fact that the oracle register H can con-
tain partial functions. But in the uncompressed representation, partial functions
make little sense, so the initial state in that representation is the superposition
of only total functions. And it follows directly from the definition (1) of the
CFO that throughout an execution, the uncompressed state will never contain
a partial function (see also footnote 9). We arbitrarily specified the behavior of
StO when it encounters h(x) = ⊥ to do nothing. Since this case never occurs,
we can also define StO differently, for example:

StOs|x〉|y〉|h〉 =

{
|x〉 |y ⊕ h(x)〉 |h〉 if h(x) �= ⊥,

0 if h(x) = ⊥.

(Note: StO is not a unitary because it may return 0. Cf. Sect. 2, “non-unitaries
in quantum circuits” for the meaning of such operations).

That is, this oracle effectively measures whether h(x) = ⊥ before computing
the query and, if so, diverges. (We call this the sanitized standard oracle since it
removes the case where h(x) is undefined in the uncompressed representation).
Based on this, we can define the sanitized CFO :

CFOs := Decomp† · StOs · Decomp. (6)

It is straightforward to verify that CFOs and CFO are perfectly indistinguishable
(by adversaries that do not touch H, and given initial state |∅〉). In particular,
CFOs is also indistinguishable from a random function. Everything said above
about CFO also applies to CFOs. (Only difference: CFOs is not unitary because
it represents a potentially diverging computation).

If there is no difference between the CFO and the sanitized CFO, why con-
sider the latter? This is because CFOs behaves more nicely when it comes to
invariant preservation. (The concept of invariant preservation will be explored
in the “usage example” below).

For example, if the state of the X,Y,H registers lies in the subspace
Span{|xyh〉 : x = 0, y = 0}, then after a query to CFOs, the state is O(1/

√
N)-

close to the subspace Span{|xyh〉 : x = 0, y = h(0)}. This is very natural because
it says that after a evaluating the oracle at 0, the Y -register contains the result of
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that evaluation. Surprisingly, we cannot show a corresponding invariant preser-
vation for CFO16.

CFO still performs well with invariants that do not talk about the Y register.
If the CFO is invoked by the adversary, there is little to be said about the content
of Y , anyway. But when the CFO is queried by an honest party or the challenger,
for example, the oracle response in Y may be very relevant. So in some proofs,
we might get further using CFOs, while in others it may not matter.

The difference between CFOs and CFO will also matter in the compressed
permutation case in Sect. 4.

Note: Zhandry’s original work [30] defines (something very close to) the non-
sanitized CFO, not the sanitized one. So their work is subject to the same limi-
tation.

Usage Example. We will now give an example how the compressed oracle is
used. We do not work out all the details (in particular, we skip some calcula-
tions) but instead focus on a high level overview required for understanding the
methodology. The example works both with CFO and CFOs in the same way.

Consider the following problem:

Given quantum (i.e., superposition) access to a random oracle H, find x
such that H(x) = 0.

We want to show that this problem is hard. We will use the compressed oracle
to do so17.

Fix an adversary ACFO making polynomially many queries. Recall that H is
the register of the CFO that contains the superposition of the partial functions
h, and that those partial functions intuitively represent the knowledge what has
been queried and what the responses were.

Consider the following invariant I := Span{|h〉 : 0 /∈ imh}. This invariant
contains all superpositions of partial functions h where 0 is not in the outputs,
i.e., where A never got 0 as a result to its queries.

In an execution of ACFO, the initial state of the system has |∅〉 in H. Since
0 /∈ im∅, we have |∅〉 ∈ I. Thus the initial state of the overall system (containing
X, Y , and A’s registers) is in I as well18.

Now, when A performs a (w.l.o.g. unitary) operation on its registers, this
operation does not touch H. (Recall that H is inaccessible to A). So if the state
ψ before that operation is ψ ∈ I, then the state ψ′ after the operation is also

16 For example, |0〉X |0〉Y |∗〉H0 is in the first subspace (where the content of regis-
ter H outside H0 does not matter and is omitted here), but CFO|0〉X |0〉Y |∗〉H0 =
|0〉X |0〉Y |∗〉H0 is not even close to the second subspace.

17 Of course, there are many results that show that this specific problem is hard,
predating the compressed oracle technique, and considerably simpler mathematically
(e.g., [3,19]). This just happens to be the simplest example to demonstrate the
technique.

18 Strictly speaking, the initial state is in I⊗ HXY ... where HXY ... is the Hilbert space
of all registers besides H. We omit the ⊗HXY ... for simplicity.
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ψ′ ∈ I. In fact, if ψ
ε≈ I, then ψ′ ε≈ I as well. (This follows immediately from

the previous fact because the unitary performed by A has operator norm 1).
More interesting is the case when A queries the CFO. In that case, it is less

obvious, but we can show:

ψ ∈ I =⇒ ψ′ O
(√

1
N

)

≈ I.

(Here ψ,ψ′ are the state before and after the query). We will not do the math
here, see for example Zhandry’s original paper [30] for a calculation, or [12] for
some generic rules for bounding such invariant preservations in the CFO.

And again using that CFO has operator norm 1 and the triangle inequality
for the norm, we get

ψ
ε≈ I =⇒ ψ′ ε+O

(√
1
N

)

≈ I.

So by induction, we have that if the adversary does q queries, the final state

is ψfinal

O
(
q
√

1
N

)

≈ I. This is negligible if q � √
N , meaning that the adversary

needs around
√

N queries to find a zero-preimage19. This concludes the analysis
of zero-preimage finding in the CFO.

The advantage of the CFO is that it can be very easily adapted to a variety
of different problems by changing the invariant I. For example, if we want to
show that finding a collision (x �= x′ with H(x) = H(x′)) is hard, we use the
invariant

I := span{|h〉 : h injective}
instead. This represents the fact that the oracle as queried so far is injective,
i.e., no two outputs are the same, i.e., the adversary has not found a collision.
Obviously the initial state |∅〉 ∈ I again, and we can show (see, e.g., [30] again):

ψ ∈ I =⇒ ψ′ O
(√

i
N

)

≈ I in the i-th query.

Then the proof proceeds as above by induction, giving us ψfinal

O
(√

q3
N

)

≈ I. So
finding a collision takes 3

√
N queries.

19 There is a technicality we gloss over here: We only have shown that the oracle state
does not contain a zero-preimage. To fully finish the proof, we additionally need to
show that this implies that the adversary cannot guess a zero-preimage. For example,
the adversary could just output something random that was not queried before and
hope that it is a zero-preimage. The probability of the latter succeeding is, of course,
tiny. But in a complete analysis, this all needs to be taken into account. This is
important but not relevant for illustrating the compressed oracle technique, nor for
the purposes of our paper. We refer to existing works on the compressed oracle (e.g.,
[30]) for details on this.
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Technical Summary. The standard oracle StO operates on registers X,Y,H with
Hilbert spaces C

D, C
R, C

→DR. It is defined as the unitary StO : |x, y, h〉 �→
|x, y⊕h(x), h〉 if h(x) �= ⊥ and StO : |x, y, h〉 �→ |x, y, h〉 otherwise. The sanitized
StOs is defined the same, except StO : |x, y, h〉 �→ 0 when h(x) = ⊥. The initial
state of H is

∑
h∈→DR|R|−|D|/2|h〉 (uniform superposition of all total functions).

The compressed function oracle CFO operates the same registers X,Y,H.
H can be seen equivalently as a collection of registers Hx with x ∈ D, each
having Hilbert space C

R∪{⊥}. Q is an arbitrary unitary with Q|0〉 =
∑

x
1√
N

|x〉
(e.g., the quantum Fourier transform). U⊥ is the unitary mapping |⊥〉 �→ |0〉,
|0〉 �→ |⊥〉, |z〉 �→ |z〉 otherwise. Decomp1 := Q · U⊥ · Q† is the decompression
unitary (for a single register Hx). Decomp is Decomp1 applied to each Hx (making
it an operation on H). Then the CFO is defined as Decomp · StO ·Decomp†. The
sanitized CFOs is defined as Decomp · StOs · Decomp†. The initial state of H is
|∅〉 (the empty partial function) for both CFO and CFOs.

4 Compressed Permutation Oracles

In the preceding section, we considered compressed function oracles. These mod-
els the “normal” random oracle in which the adversary gets access to a uniformly
random function. However, in many cases, we may be interested in uniformly
random permutations, instead. For example, an ideal cipher is nothing but a
family of random permutations (indexed by the key). Abstractly, random per-
mutations are not a much more complicated concept than random functions
(we simply pick the function from a smaller set) but they can be considerably
harder to analyze. The reason for this is that in a random function, all outputs
are sampled independently, while in a random permutation, this is not the case.
Because of this, even simple questions relating to (superposition access to) ran-
dom permutations are to the best of our knowledge not in the scope of existing
techniques, such as the following conjecture:

Conjecture 1 (Double-sided zero-search). Let H be a uniformly random per-
mutation on {0, 1}2n. The following problem is hard for any adversary making
polynomially many superposition queries to H and H−1:

Find x ∈ {0, 1}n such that H(x‖0n) = y‖0n for some y.

Note that in this example, we explicitly allowed the adversary to query not
only H (what we call a “forward query”), but also H−1 (“backward query”).
If we model a non-invertible permutation (adversary can only make forward
queries), random permutations are easy to handle, even in the quantum setting.
Namely, we know that a random permutation is indistinguishable from a random
function, even in the quantum setting [28]. So when analyzing a situation where
the adversary has quantum access to a non-invertible function, we can simply
replace it by a random function as the first step, and analyze from there using
established techniques for random oracles (such as, for example, the CFO).

What we are interested in are, therefore, invertible random permutations
(forward and backward queries).
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In the classical setting, even invertible random permutations are quite easy to
handle: The same way as we can model a random oracle via lazy sampling (i.e.,
pick all outputs of the oracle only when first accessed), we can also model a ran-
dom permutation via lazy sampling: We pick the output to a forward query x at
random, unless that query was already made, or some backward query returned
x. And mutatis mutandis for backward queries. This does not give us exactly the
distribution of answers that a random permutation would give, but is negligibly
close. And now we have all the nice benefits of the lazy sampling of the random
oracle, in particular the fact that any fresh queries give (near) uniformly random
independent outputs.

Since the compressed oracle technique, roughly speaking, is a quantum ana-
logue of lazy sampling, we might wonder whether the same is possible in the
quantum setting. That is, is the following possible?

Define an oracle CPO (for “compressed permutation oracle”) that keeps a
superposition of partial functions as its internal state, that responds to
forward and backward queries in some way that increases the length of
those partial function only by 1 (or at least something small), and that
is indistinguishable from having access to a permutation that is chosen
uniformly at random.

It turns out that defining such a CPO is not too hard. What is hard (and
what we will only make a step towards in this paper) is to prove that the CPO
is indeed indistinguishable from a truly random permutation.

To define CPO, we need to define its behavior on forward and backwards
queries. Forward queries are easy: The internal state is, like in the CFO case,
a superposition of partial functions. That is, a register H with Hilbert space
C

D→D. (Since we are in the permutation case, we have D = R and thus D → R
becomes D → D). A forward query to CPO is then just handled by the oracle
CFOs defined in the previous section.

(We could use the non-sanitized CFO here as well, but we use the sanitized
CFO for two reasons: It tends to behave better with some invariants as explained
in the previous section, and more importantly, we do not know how to prove the
results in the next section with the non-sanitized one).

Backward queries are more interesting. We could define an oracle that, given
an input |x〉, searches through the partial function |h〉 in H, and tries to find x
in the output of h. (All of this in superposition between different |x〉 and |h〉,
of course). But there is a simple trick that makes the definition (and also the
use of CPO in the end) much simpler without changing its substance: Instead
of searching through |h〉, we simply invert h in place, then evaluate it, and then
invert it again.

More precisely: Let Flip be a linear operator such that Flip|h〉 = |h−1〉
for all injective h. We do not specify what Flip does on any |h〉 that is not
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injective20. We only require that |||Flip||| ≤ 1, that is, |||Flipψ||| ≤ ψ for all ψ. (This
is to avoid strange cases where the state of the system ends up having norm
greater than 1).

Then a backward query to CPO is handled by invoking the operator Flip ·
CFOs · Flip. (Inverting, evaluating, inverting back).

To summarize:

Definition 1 (Compressed permutation oracle). CPO is a pair of oracles
CFOs and Flip ·CFOs ·Flip where CFOs is as defined in (6) in the previous section,
and Flip|h〉 = |h−1〉 for injective h (and |||Flip||| ≤ 1), both operating on the
same registers X,Y,H where H is private to CPO (not accessible to the querying
algorithm) and initialized in the beginning with |∅〉.

We conjecture:

Conjecture 2. For any polynomial-query algorithm A,
∣
∣
∣Pr[ACPO ⇒ 1] − Pr[Aπ,π−1 ⇒ 1 : π

$← (↪→ D)]
∣
∣
∣ is negligible.

(Negligible in log|D|).

Usage Example. We now illustrate how the CPO can be used by showing Con-
jecture 1 (double-sided zero-search) using the CPO. Of course, the validity of
this example rests on Conjecture 2.

The reasoning is very similar to that done for the zero-preimage search in
Sect. 3. We urge the reader to recap that reasoning first.

Specifically, we first come up with some invariant that describes that the
adversary has not found x, y with H(x‖0n) = y‖0n.

I := Span{|h〉 : �xy. h(x‖0n) = y‖0n}.

Obviously, the initial state of the CPO (namely |∅〉 in H) satisfies I, and unitaries
evaluated by the adversary on non-H registers preserve I.

Given a forward-query to CPO (i.e., an application of the operator CFOs),
we have

ψ ∈ I =⇒ ψ′ O(2−n/2)≈ I (7)

where ψ,ψ′ are the state before/after that query. Again, we omit the details of
this computation and refer the reader to existing work21. We only stress that
intuitively, this is what we expect, since when querying the oracle on any fresh
input, the output will be of the form y‖0n only with small probability.
20 For example, Flip|h〉 might return an h′ that so that h′(x) is the lexicographically

smallest preimage of x under h if there are several. Or Flip|h〉 = 0 for non-injective h.
Since a non-injective h should not happen anyway when simulating a permutation,
it should not matter how Flip is defined on these, so we make sure that our results
hold independent of the design choices for that case.

21 Existing work on compressed oracles applies here since (7) refers specifically to the
preservation of I under a query to CFOs and thus is not specific to the permutation
case.
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The only conceptually new thing in this example is when the adversary per-
forms a backward-query: This will execute Flip·CFOs ·Flip. Note that if h satisfies
h(x‖0n) = y‖0n, then h−1 satisfies it, too. So any |h〉 ∈ I is mapped by Flip to
|h−1〉 ∈ I. Thus Flip preserves I. (Meaning, if ψ ∈ I, then Flipψ ∈ I). Further-
more, we already know from (7) that an invocation of CFOs only introduces an
O(2−n/2) distance from I. So together with the fact that Flip preserves I, we
have that (7) also holds for backward-queries.

All in all, we then have by induction that for a q-query adversary, at the end
it holds:

ψfinal

O
(
q2−n/2

)

≈ I.

So to find a “doubled-sided zero”, the adversary needs Θ(2n/2) queries.

5 Towards Compressed Permutations

As discussed in the introduction, page 4, the main contribution of our work is
the following claim:

Main contribution (informal): If some construction (say based on a
random oracle) is indistinguishable from a CPO, then the CPO is indis-
tinguishable from a random invertible permutation.

To make this formal, we first need to say what exactly we mean by a con-
struction. Specifically, we focus on constructions that implement permutations.
Roughly speaking, such a construction is some deterministic algorithm C that
uses one or several oracles H1, . . . ,Hn and implements two functions π and τ
that are inverses of each other.

For example, in the case of three-round Luby-Rackoff22, the algorithm C
would take three oracles and implement π(xLxR) as: t1 := H1(xL), t2 :=
H2(xR ⊕ t1), t3 := H3(xL ⊕ t2), return (xL ⊕ t2, xR ⊕ t1 ⊕ t3), and τ(xLxR) as:
t1 := H3(xL), t2 := H2(xR ⊕ t1), t3 := H1(xL ⊕ t2), return (xL ⊕ t2, xR ⊕ t1⊕ t3).
It is easy to see that π and τ are permutations with τ = π−1 for any choice of
H1,H2,H3.

More abstractly, a construction is some function C that takes (fixed) func-
tions H1, . . . , Hn, and returns functions π, τ . (Deterministically. That is, for fixed
H1, . . . ,Hn, π, τ are fixed, too). We do not care about the algorithmic details of
how C transforms the oracles H1, . . . , Hn into functions π, τ . While it would be
typical that C does this by doing a few queries to H1, . . . , Hn, this is formally
not required for our result.

In addition to the algorithm/function C that specified how π, τ are imple-
mented given the oracles, the specification of the construction also needs to tell

22 We use three-round Luby-Rackoff for this example just to keep the formulas short and
readable. We are aware that three-round Luby-Rackoff is not even indistinguishable
from an invertible random permutation in the classical setting, let alone the quantum
setting.
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us what kinds of oracles H1, . . . , Hn are. E.g., in the Luby-Rackoff case, they are
random functions. In other constructions, they might be functions with some
other distribution (e.g., uniformly random permutations). To be as general as
possible, we simply include the desired distribution D of the oracles in the spec-
ification of the construction.

The following definition summarizes all this:

Definition 2. A permutation-construction (C,D) (implicitly parametrized by a
security parameter λ) consists of a function C that takes a tuple of functions
H = (H1, . . . , Hn) and returns a pair of functions π, τ : D → D, and of a
distribution D (for the functions H1, . . . , Hn), and satisfies the following:

For H distributed according to D, with overwhelming probability, π is a per-
mutation and τ = π−1.

Remark. We do not require that π, τ can be efficiently computed given oracle
access to H. In practice, one would of course require efficient constructions, but
our result holds without this additional condition, so we do not include it in our
definition.

Remark. Note that the definition requires that the construction produces an
invertible permutation (and not, e.g., a pair of non-invertible functions) with
overwhelming probability, i.e., it includes a correctness requirement. But it does
not require that π and τ look random in any way.

Notation. Given H, C(H) is a pair of functions π, τ . If we write AC(H), we
mean that A gets superposition access to π, τ . I.e., AC(H) can be read as (π, τ) :=
C(H), Aπ,τ .

We are ready to state the main result formally:

Theorem 1. Let C be a permutation-construction. Assume that for any
polynomial-query adversary A,

∣
∣
∣Pr[AC(H) ⇒ 1 : H

$← D] − Pr[ACPO ⇒ 1]
∣
∣
∣ is negligible. (8)

Then for any polynomial-query adversary A,
∣
∣
∣Pr[ACPO ⇒ 1] − Pr[Aπ,π−1 ⇒ 1 : π

$← (↪→ D)]
∣
∣
∣ is negligible. (9)

(Recall that ↪→ D is the set of permutations on D).

In particular, the existence of such a construction shows Conjecture 223.
We present a similar result where the construction may use computational

assumptions in Corollary 1 below.

23 For those domains D that the construction C actually operates on. (E.g., if C only
implements permutations on domains D = {0, 1}n2

, then this would only prove
Conjecture 2 for such domains).
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Fig. 2. Circuits implemented by B. (a) shows π′, (b) shows τ ′. The 〈0| gate denotes a
multiplication with 〈0|. Equivalently, this can be thought of as applying a projector onto
|0〉 on Y ′ and then removing the register Y ′. Uf is the unitary Uf : |x, y〉 �→ |x, y⊕f(x)〉.
Ûf is the unitary Ûf : |x〉 �→ |f(x)〉. (Recall that f is bijective, so Ûf is a unitary).

The (very rough) idea of the proof is simple: For a random permutation f , let
f◦CPO denote the CPO, but where we apply f to its outputs. (Or its inputs when
doing a backward query). Then CPO and f ◦ CPO are indistinguishable. (This
follows from symmetries in the definition of CPO and does not require that CPO
is actually indistinguishable from a permutation). By assumption, CPO and the
construction C are indistinguishable, so f ◦CPO and f ◦C are indistinguishable,
too. (Since a distinguisher could just simulate f itself). And since C implements a
permutation (not necessarily random), f ◦C is a random permutation composed
with permutation, thus a random permutation. So f ◦C is indistinguishable from
f . Taking this all together, we have that CPO is indistinguishable from f which
shows the theorem.

Proof. Fix a polynomial-query adversary Aπ,τ (taking two oracles π, τ). We need
to show that (9) holds for this adversary.

Consider the following adversary Bπ,τ :

– It takes two oracles π, τ .
– It picks a permutation f :↪→ D uniformly at random
– It runs Aπ′,τ ′

where π′, τ ′ are implemented by the circuits in Fig. 2.
– It returns what A returns.

For the intuition: if π and τ are simply oracles providing superposition access
to some functions π, τ , then π′ = f ◦ π and τ ′ = τ ◦ f−1. And if moreover
τ = π−1, then τ ′ = π′−1. However, B may be invoked with stateful oracles π, τ ,
so we cannot simply define π′, τ ′ that way but instead need to give concrete
circuits. (We also take care to ensure that B does not make more queries than
A. Otherwise the proof of (10) below would become much harder).

We have:
Pr[ACPO ⇒ 1] ≈ Pr[BCPO ⇒ 1]. (10)

Here ≈ means a negligible difference. Intuitively, this follows because the defini-
tion of the CPO is symmetric, i.e., all inputs and outputs are treated the same,
so permuting them should not make a difference. In reality, we need to be more
careful because with small probability we can end up with oracle states on which
Flip is defined arbitrarily (and possibly non-symmetrically). We defer the proof
of (10) to the auxiliary Lemma 1 below.
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Fig. 3. Circuits Cψ, Dφ in invariant preservation proof.

Since B makes the same number of queries as A, it is a polynomial-query
adversary. So by assumption (8) of the lemma, we have:

Pr[BCPO ⇒ 1] ≈ Pr[BC(H) ⇒ 1 : H
$← D]. (11)

Since C is a permutation-construction by assumption, for any fixed H,
C(H) = (πH , τH) for some functions πH , τH that depend only on H (see Defini-
tion 2). We call H good if πH is a permutation and τH = π−1

H . Still by definition
of permutation-constructions, H is good with overwhelming probability. For a
fixed good H, we thus have:

Pr[BC(H) ⇒ 1] = Pr[BπH ,π−1
H ⇒ 1] (∗)= Pr[Af◦πH ,π−1

H ◦f−1 ⇒ 1 : f
$← (↪→ D)]

= Pr[Af◦πH ,(f◦πH)−1 ⇒ 1 : f
$← (↪→ D)]

(∗∗)= Pr[Af,f−1 ⇒ 1 : f
$← (↪→ D)] = Pr[Aπ,π−1 ⇒ 1 : π

$← (↪→ D)]

Here (∗) follows since the circuits that B computes f◦π, τ◦f−1 given oracles that
implement fixed functions π, τ . And (∗∗) follows because for fixed permutation
πH and uniformly random permutation f , we have that f ◦ πH has the same
distribution as f .

Since this holds for any good H, and H is good with overwhelming proba-
bility, by averaging we have:

Pr[BC(H) ⇒ 1 : H
$← D] ≈ Pr[Aπ,π−1 ⇒ 1 : π

$← (↪→ D)]. (12)

Equation (9) follows by (10)–(12). ��
Lemma 1. For B as defined in the proof of Theorem 1, we have

Pr[ACPO ⇒ 1] ≈ Pr[BCPO ⇒ 1].

Here ≈ means negligible difference.
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Fig. 4. Circuits Dψ, Dφ in invariant preservation proof.

Proof. The basic idea in this proof is that B essentially just permutes the dif-
ferent possible outputs of the permutation implemented by the CPO, and since
the definition of the CPO does not treat any possible output differently from
any other, this permutation of outputs has no observable effect. However, this
is not fully true: For example, if the oracle register H contains |h〉 where h is a
non-injective partial function, the behavior of Flip is unspecified and might be
asymmetric. (E.g., Flip might always pick the lexigraphically smallest string in
case of ambiguities). To work around this, we first sanitize our CPO somewhat.
Let P be the projection onto Span{|h〉 : h injective} on register H. We then
insert P before every call to Flip. Specifically, let CPO′ denote the two oracles
CFOs and Flip · P · CFOs · Flip · P . (Instead of CFOs and Flip · CFOs · Flip as per
definition of CPO). That is, CPO′ adds extra invocations of the projection P
before each Flip24. The oracles making up CPO′ are also depicted in the top
rows of Figs. 3 and 4, respectively. Then we have

Pr[ACPO ⇒ 1] ≈ Pr[ACPO′ ⇒ 1] and Pr[BCPO ⇒ 1] ≈ Pr[BCPO′ ⇒ 1]
(13)

We see this as follows: Consider the invariant I := Span{|h〉 : h injective}.
This invariant is preserved by adversary operations on registers other than H.
Queries to CFOs introduce an O(i/N) error in the i-th query which is negligible.
And since with h, h−1 is also injective, we have that Flip preserves I. Finally,
the difference between ACPO and ACPO′

is that the latter has additional applica-
tions of the projector P . Since P projects onto I by definition, and the state is
negligibly close to I, this will change the state by a negligible amount. Therefore
the final state of A differs only by a negligible amount (in the norm). Thus A’s
output probability also differs only by a negligible amount. Analogously for B.
This shows (13).

Because of (13), to prove our lemma, it is sufficient to show:

Pr[ACPO′ ⇒ 1] = Pr[BCPO′ ⇒ 1]. (14)
24 See the Sect. 2 (paragraph “non-unitaries in quantum circuits”) for the meaning of

applying a projection as part of a circuit.
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And by averaging, it is sufficient to show this for a fixed permutation f . (Then
it will also hold when B chooses f at random). Thus, for the remainder of this
proof, f will be an arbitrary but fixed permutation on D.

Let V denote the unitary on H mapping |h〉 to |f ◦ h〉. To show (14), we will
show that the states of ACPO′

and BCPO′
are always related by V . More precisely,

when ψ is the state of A before or after the invocation of the n-th query to CPO′

(or the initial or final state), and φ is the state of B before or after the n-th
invocation of the corresponding circuits from Fig. 2 (or the initial or final state),
then:

ψ = V φ. (15)

For the initial state, (15) is immediate. (Recall that in the initial state, H
contains |∅〉, and V |∅〉 = |f ◦ ∅〉 = |∅〉). We then proceed inductively through
the execution of A and B.

Without loss of generality, A or B, respectively, interleave oracle queries and
applications of some unitary operation on the adversary’s state. This unitary is
the same for A and B, and it trivially commutes with V (since V operates on H
and H is not part of A’s or B’s state). Thus (15) is preserved under application
of this unitary.

It remains to show that (15) is preserved under invocations of the oracle by
A and B, respectively. (In the case of B, this is meant to include the wrapper
circuits from Fig. 2). Let ψ, φ denote the state of A or B before that invocation,
and ψ′, π′ the one after the invocation. We then need to show

ψ = V φ =⇒ ψ′ = V φ′ (16)

for ψ′ and φ′ being computed as in Fig. 3 or Fig. 4. (Depending whether the
current query of A/B is one to its first or second oracle).

We first show (16) for ψ′, φ′ as computed in Fig. 3. Denote the operation
computed by the circuit for φ′ by Cφ. Then we need to show that ψ′ = CFOsψ =
CFOsV φ

!= V φ′ = V Cφφ. So it is sufficient to prove CFOsV = V Cφ. Since
Decomp is unitary, this is equivalent to showing

Decomp · CFOs · V · Decomp† = Decomp · V · Cφ · Decomp†. (17)

Note that V and Decomp commute: Both V and Decomp operate on each
Hx individually, namely as Ûf and Decomp1 where Ûf is the unitary map-
ping |z〉 �→ |f(z)〉, |⊥〉 �→ |⊥〉. So we only need to check that Ûf and
Decomp1 commute. Using the formula for Decomp1 from (2), we compute
that Decomp1Ûf |⊥〉 = |∗〉, ÛfDecomp1|⊥〉 = Uf |∗〉 = |∗〉, Decomp1Ûf |z〉 =
Decomp1|f(z)〉 = |f(z)〉+ 1√

N
|⊥〉− 1√

N
|∗〉, ÛfDecomp1|z〉 = Ûf |z〉+ 1√

N
Ûf |⊥〉−

1√
N

Ûf |∗〉 = |f(z)〉+ 1√
N

|⊥〉− 1√
N

|∗〉. So Ûf , Decomp1 commute on all basis states,
hence they commute everywhere, hence V and Decomp commute.

Therefore the lhs of (17) equals Decomp · CFOs · Decomp† · V which is by
definition StOs · V . And the rhs equals what is drawn in Fig. 5(a). (Besides
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commuting Decomp and V , we also inserted Decomp, Decomp† in the middle.
These cancel out because they are unitary). And since StOs = Decomp · CFOs ·
Decomp†, Fig. 5(a) further simplifies to what is shown in Fig. 5(b).

Fig. 5. Circuits in invariant preservation proof, first case.

Finally, both StOs · V and the circuit from Fig. 5(b), upon input |x, y, h〉,
return the state |x, y ⊕ f(h(x)), f ◦ h〉 when h(x) �= ⊥ and 0 when h(x) = ⊥25.
(By elementary computation using the definitions of StOs, Uf , V ). Since they
return the same state on every basis state, they are equal (by linearity). Thus
the lhs and the rhs of (17) are equal; (17) holds. Hence (16) holds for ψ′, φ′ as
computed in Fig. 3.

We now show (16) for ψ′, φ′ as computed in Fig. 4. Denote the circuit defining
ψ′ by Dψ and the circuit defining φ′ by Dφ. Then we need to show that ψ′ =
Dψψ = DψV φ

!= V φ′ = V Dφφ. So it is sufficient to prove DψV = V Dφ, or
equivalently Dψ = V DφV † (since V is unitary).

Define the unitary W : |h〉 �→ |h ◦ f〉 on H. (Note: compared to V , here we
have h ◦ f , not f ◦ h).

Note that FlipPV † = WFlipP : For non-injective h, FlipPV †|h〉 and
WFlipP |h〉 are both 0. (P projects such |h〉 to 0, and V † preserves non-
injectivity). For injective h, FlipPV †|h〉 = |(f−1 ◦ h)−1〉 = |h−1 ◦ f〉 and
WFlipP |h〉 = |h−1 ◦ f〉. So FlipPV † and WFlipP coincide on all basis states,
hence FlipPV † = WFlipP .

Analogously, V FlipP = FlipPW †.
This means that V DφV † can be rewritten to the circuit in Fig. 6(a). To show

that that circuit is equal to Dψ, all we need to prove is that the dashed part in
Fig. 6(a) (henceforth called Eφ) is equal to CFOs. And since Decomp is unitary,
this in turn is equivalent to

Decomp · CFOs · Decomp† = Decomp · Eφ · Decomp†. (18)
25 This is where we need to use the sanitized CFO. StOs ·V and the circuit from Fig. 5(b)

(with StO instead of StOs) return different states.
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Fig. 6. Circuits in invariant preservation proof, second case.

Note further that W and Decomp† commute: W is just a reordering of the
registers Hx (it moves Hx into Hf−1(x)), and Decomp† applies the same unitary
to each of those registers. So it makes no difference whether we apply Decomp†

before or after reordering. Analogously W † and Decomp commute.
So DecompEφDecomp† is equal to what is depicted in Fig. 6(b). And, since

DecompCFOsDecomp† = StOs, that in turn simplifies to Fig. 6(c). (Denoted Fφ).
So our goal (18) becomes StOs = Fφ. And by elementary calculation, we get that
Fφ|x, y, h〉 = |x, y ⊕ h(x), h〉, same as StOs. So they coincide on basis states, so
we have StOs = Fφ, hence (18) holds. So (16) holds for ψ′, φ′ as computed in
Fig. 4.

So (16) holds in all cases. This implies that (15) holds for the final states of
A and B. The output bit of the adversary A and B is produced by the same
measurement on A’s and B’s final state, respectively, and that measurement
measures only registers belonging to the adversary (i.e., not H). So applying V
on H does not change the distribution of that output bit. Hence (14) holds. By
(13) the lemma follows. ��

Computational Case. Theorem 1 assumes that the construction C is indistin-
guishable from CPO for all polynomial-query adversaries, not just polynomial-
time adversaries. If we have a construction C that is only secure under computa-
tional assumptions, Theorem 1 cannot be applied. However, the following variant
of Theorem 1 applies. That is, we can at least show that CPO is computationally
indistinguishable from a random invertible permutation.
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Corollary 1. Let C be a permutation-construction. Assume that C is effi-
ciently implementable26. Assume that a strong qPRP with domain D
exists27. Assume that for any polynomial-time adversary A,

∣
∣
∣Pr[AC(H) ⇒ 1 : H

$← D] − Pr[ACPO ⇒ 1]
∣
∣
∣ is negligible. (19)

Then for any polynomial-time adversary A,
∣
∣
∣Pr[ACPO ⇒ 1] − Pr[Aπ,π−1 ⇒ 1 : π

$← (↪→ D)]
∣
∣
∣ is negligible. (20)

(The differences from Theorem 1 are highlighted in boldface).

Proof. The proof closely follows the lines of the one of Theorem 1. Fix a
polynomial-time adversary Aπ,τ . Define Bπ,τ as in the proof of Theorem 1.
We assume that the unitaries Ûf and Û†

f in B are implemented by the following
respective subcircuits:

– Initialize an extra register Z with |0〉, apply Uf to XZ, swap X,Z, apply
Uf−1 to XZ, and discard Z.

– Initialize an extra register Z with |0〉, apply Uf−1 to XZ, swap X,Z, apply
Uf to XZ, and discard Z.

These subcircuits exactly implement Ûf and Û†
f , so this replacement does not

change the behavior of B.
Since A is polynomial-time it is also polynomial-query, and thus we have by

Lemma 1:
Pr[ACPO ⇒ 1] ≈ Pr[BCPO ⇒ 1].

By assumption of the lemma, a strong qPRP fk :↪→ D exists. Let B̂ be
defined like B, with the following differences: It initially picks a key k for the
strong qPRP fk. And invocations to Uf and Uf−1 are replaced by Ufk

and Uf−1
k

.
Since CFOs and Flip can be implemented efficiently (using a compact repre-

sentation of the partial functions in H), and A is polynomial-time, and fk is a
strong qPRP, it follows that

Pr[BCPO ⇒ 1] ≈ Pr[B̂CPO ⇒ 1].

Also note that B̂ is the polynomial-time. (B was not because it picks a
random permutation f . There might not be a polynomial-time implementation
for that). Then by assumption (19), we have:

Pr[B̂CPO ⇒ 1] ≈ Pr[B̂C(H) ⇒ 1 : H
$← D].

26 That is, we assume that there is a (potentially stateful) polynomial-time algorithm
Ĉ such that Ĉ is indistinguishable from C(H) with H

$← D by all polynomial-query
(not only polynomial-time) algorithms.

27 See, e.g., [27] for constructions.
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By assumption, C is efficiently implementable, so there is a polynomial-time Ĉ
that is indistinguishable from C(H) by polynomial-query adversaries, so:

Pr[B̂C(H) ⇒ 1 : H
$← D] ≈ Pr[B̂Ĉ ⇒ 1].

Since Ĉ is polynomial-time, we can use the strong qPRP property of fk again
and get:

Pr[B̂Ĉ ⇒ 1] ≈ Pr[BĈ ⇒ 1].

And since B is polynomial-query (though not polynomial-time because it picks
a random permutation f),

Pr[BĈ ⇒ 1] ≈ Pr[BC(H) ⇒ 1 : H
$← D].

Finally, exactly as in the proof of Theorem 1, we show:

Pr[BC(H) ⇒ 1 : H
$← D] ≈ Pr[Aπ,π−1 ⇒ 1 : π

$← (↪→ D)].

Taking all the equations together, we get (20). ��
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Abstract. We give a tighter security proof for authenticated key
exchange (AKE) protocols that are generically constructed from key
encapsulation mechanisms (KEMs) in the quantum random oracle model
(QROM). Previous works (Hövelmanns et al., PKC 2020) gave reductions
for such a KEM-based AKE protocol in the QROM to the underlying
primitives with square-root loss and a security loss in the number of
users and total sessions. Our proof is much tighter and does not have
square-root loss. Namely, it only loses a factor depending on the number
of users, not on the number of sessions.

Our main enabler is a new variant of lossy encryption which we call
parameter lossy encryption. In this variant, there are not only lossy pub-
lic keys but also lossy system parameters. This allows us to embed a
computational assumption into the system parameters, and the lossy
public keys are statistically close to the normal public keys. Combining
with the Fujisaki-Okamoto transformation, we obtain the first tightly
IND-CCA secure KEM in the QROM in a multi-user (without corrup-
tion), multi-challenge setting.

Finally, we show that a multi-user, multi-challenge KEM implies a
square-root-tight and session-tight AKE protocol in the QROM. By
implementing the parameter lossy encryption tightly from lattices, we
obtain the first square-root-tight and session-tight AKE from lattices in
the QROM.

Keywords: Authenticated key exchange · key encapsulation
mechanism · quantum random oracle model · tight security · lattices

1 Introduction

Authenticated key exchange (AKE) is a fundamental primitive in cryptography.
An AKE allows to establish a session key between two users. In combination with
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symmetric-key primitives, this allows to establish a secure channel. Many well-
known AKE protocols (such as SIGMA [25] and HMQV [26]) are constructed
based on the Diffie-Hellman assumption. Contrary to that, we focus on quantum-
safe AKE in this paper.

KEM/PKE-based AKE. It is known that AKE protocols can be constructed
generically from key encapsulation mechanisms (KEMs) or public-key encryp-
tion (PKE) (e.g., [9,10,19]). In particular, a quantum-safe AKE can be con-
structed from a quantum-safe KEM. One main advantage of such KEM-based
AKE protocols is that they do not require any digital signature to authenticate
the protocol transcripts explicitly. Considering the (in)efficiency of quantum-safe
signature schemes, this avoids a significant overhead.

AKE in the QROM and Its Non-Tightness. The well-established random
oracle model (ROM) [4] idealizes hash functions and is used to prove the security
of many practical cryptographic protocols, including the aforementioned generic
KEM-based AKE protocols. For quantum adversaries, however, it is more real-
istic to assume that they can run an “offline” primitive such as a hash function
in a quantum manner. To model this, the quantum (accessible) random oracle
model (QROM) has been introduced in [7]. In the QROM, a quantum adversary
can query the random oracle on arbitrary superpositions. This makes it difficult
to use many of the proof techniques applied in the classical ROM. In addition, it
introduces a large security loss. We take the existing KEM-based AKE protocol
[19] in the QROM as an example. Its security bound is1

Θ(S2 + S · N) ·
(
εIND-CPA +

√
Q · εIND-CPA

)
, (1)

where S, N , and Q are the numbers of total sessions, users, and random oracle
queries, respectively, and εIND-CPA is the advantage of breaking the underlying
IND-CPA secure PKE. This is the only known bound in the QROM. Regarding
the level of IND-CPA security, especially the square-root loss (i.e., the term√

εIND-CPA) is undesirable. This square-root loss results from the use of the so-
called oneway-to-hiding strategy in the QROM [2]. In practice, the PKE would be
implemented by a standardized scheme with a 128-bit security guarantee. Even
without counting other non-tight terms, the resulting AKE is only guaranteed to
have 64-bit security, which is not a reasonable security margin. Even worse, for
today’s applications, it is easy to have S = 230 and N = 230. Hence, the security
bound given by Eq. (1) provides almost no security guarantee given such a PKE
implementation.

In this paper, our goal is to minimize the security loss of AKE protocols in
the QROM. We emphasize that there is no known tightly secure AKE protocol in
the QROM, and most tightly secure AKE protocols (e.g., [14,15,20]) are based
on variants of Diffie-Hellman assumptions, which are not quantum-safe.

1 For all security bounds in this section, we ignore all additive and negligible statistical
terms.
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1.1 Our Contributions

We propose a tighter proof for KEM-based AKE protocols in the QROM. Our
proof does not have square-root loss and is tight with respect to the number of
total sessions. Assuming a multi-challenge IND-CCA secure (MC-CCA) KEM
(with advantage denoted as εMC-CCA) and a multi-user, multi-challenge IND-
CCA (MUC-CCA) secure KEM (with advantage denoted as εMUC-CCA), our
security bound for AKE in the QROM is

Θ(N) · εMC-CCA + Θ(1) · εMUC-CCA. (2)

The concrete bound is given in Theorem 3. Here, the multi-user security provides
an adversary with multiple users’ public keys but does not allow corruption for
any of the corresponding secret keys. The multi-challenge security allows an
adversary to ask for multiple challenge ciphertexts under any user.

We also show that MC-CCA and MUC-CCA can be efficiently achieved
either tightly or almost tightly2 from the Decisional Learning with Errors (LWE)
assumption. In combination, our bound for the resulting AKE protocol is

Θ(N) · Θ(λ) · εLWE + Θ(λ) · εLWE, (3)

where λ is the security parameter, and εLWE is the advantage against the LWE
assumption (cf. Corollary 2). Our AKE model is essentially the Bellare-Rogaway
model [5], and additionally, it captures the key-compromise-impersonation (KCI)
attacks.

Parameter Lossy Encryption. Our technical tool is a more expressive and
fine-grained variant of lossy encryption which we call parameter lossy encryp-
tion (PLE). (Slightly) different from the original notion of lossy encryption [16],
the PLE has a system parameter that is shared among many users in the sys-
tem, and each user has an independent public key. Both public keys and system
parameters have a lossy mode. Under such lossy parameters and lossy public
keys, ciphertexts statistically hide the encrypted messages. This enables a tight
security proof as follows: Under the normal parameters, lossy public keys are
statistically close to the normal ones. Further, lossy parameters are computa-
tionally indistinguishable from normal parameters. In combination, this allows
us to switch from the normal to the lossy setting with a security loss that is
independent of the number of keys.

Tight Security in the QROM from PLE. Separating the system parame-
ter from public keys can improve efficiency, since multiple users can share the
same system parameter, instead of generating an independent parameter that is
in a user’s public key. This can largely improve the communication complexity of
a KEM-based AKE, where an initiator will generate an ephemeral public key and
send it to the responder (cf. Fig. 11). Moreover, separating the system parame-
ters is important for tightness. For instance, a PLE scheme immediately implies
2 This is a relaxed tightness notion from [8] where security loss is at most linear in

the security parameter λ.
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a multi-user, multi-challenge IND-CPA KEM tightly without random oracles,
while the (original) lossy encryption can only tightly imply multi-challenge IND-
CPA KEM. This is because the original lossy encryption requires computational
assumptions to switch user public keys to lossy one-by-one, which introduces
a security loss linear in the number of users. More importantly, the aforemen-
tioned fine-grained separation is very useful to remove the square-root loss in
the QROM. When we apply the Fujisaki-Okamoto transformation [11,17] to
achieve IND-CCA security, the only step that needs computational assumptions
is switching normal system parameters to lossy ones, and all the other proof
steps are merely statistical. The parameter-switching step does not involve ran-
dom oracles. When the oneway-to-hiding lemma [2] is used, the square root
function is only applied on a purely statistical term and does not affect the secu-
rity loss with respect to computational assumptions. Hence, this gives us the first
tightly secure multi-user, multi-challenge IND-CCA KEM in the QROM, which
solves the open problem in [19] about a root-tight proof of IND-CCA security.
We note that the work of Pan and Zeng [32] tightly implied a PKE with the
same security in the classical ROM, yet it is not clear how to transform it in the
QROM, since they used a lot of reprogramming.

Parameter Lossy Encryption from Lattices. Finally, we propose a tight
construction of PLE from the LWE assumption. Our construction extends the
dual Regev encryption [13,33] with lossy LWE matrices [27]. Combining with
the aforementioned generic constructions, we obtain

– the first lattice-based AKE protocol in the QROM that does not have square-
root security loss and is tightly secure with respect to the number of total
sessions. It is not tight with respect to the number of users;

– the first tightly IND-CCA secure lattice-based KEM in the multi-user, multi-
challenge setting and in the QROM.

Both results provide new insights on minimizing the security loss in the QROM,
namely, PLE is a useful tool to tighten security loss in the QROM. It may be
useful for future applications.

Open Problems. We view avoiding the square-root loss and loss concerning
the number of total sessions as an important step towards tightly secure AKE
in the QROM. It would be interesting to extend our techniques to construct a
tightly secure AKE in the QROM. Another interesting open problem is how to
construct our parameter lossy encryption from other quantum-safe assumptions,
e.g., module-LWE.

1.2 More Related Work

The work of Fujioka et al. (FSXY) [9] constructed AKE generically from KEMs
in the standard model. One may think that it is secure in the QROM with the
same proof. However, as pointed out by Hövelmanns et al. [19], FSXY has two
major drawbacks: First, it requires perfect correctness, which makes it hard to
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instantiate with lattices. Second, it lacks simplicity, making it overly compli-
cated and very inefficient. Moreover, the security loss of FSXY is Θ(N2S) which
is much larger than ours. Another work on AKE protocols in the QROM is
due to Xue et al. [36] which constructed AKE from commutative supersingular
isogenies. Similar to the work of Hövelmanns et al., it contains square-root-loss
and depends on both the number of users and sessions. Hence, the work of
Hövelmanns et al. is the most representative for our discussion. We note a very
recent work on lattice-based tightly secure AKE [30] in the classical ROM, but
extending it to the QROM is not trivial, since it seems difficult to extend the
programming techniques of [30] to the QROM.

2 Preliminaries

For an integer n, we define the notation [n] := {1, . . . , n}. Let X and Y be two
finite sets. The notation x $← X denotes sampling an element x from X uniformly
at random. Let A be an algorithm. If A is probabilistic, then y ← A(x) means
that the variable y is assigned to the output of A on input x. If A is deterministic,
then we may write y := A(x). We write AO to indicate that A has classical access
to oracle O, and A|O〉 to indicate that A has quantum access to oracle O All
algorithms (including adversaries) in this paper are probabilistic polynomial-
time (PPT), unless we state it otherwise. We use code-based games [6] to define
and prove security. We implicitly assume that Boolean flags are initialized to
false, numerical types are initialized to 0, sets and ordered lists are initialized
to ∅, and strings are initialized to the empty string ε. The notation Pr[GA ⇒
1] denotes the probability that the final output GA of game G running an
adversary A is 1. Let Ev be an (classical) event. We write Pr[Ev : G] to denote the
probability that Ev occurs during the game G. In our security notions throughout
the paper, we let N,S be numbers of users and challenges, respectively, which
are assumed to be polynomial in λ.

2.1 Quantum Random Oracle Model

In the quantum random oracle model (QROM), some hash functions are mod-
elled as publicly quantum-accessible random oracles (see [7] for more details).
Unlike the classical random oracle model, the efficient reduction algorithm in the
QROM cannot use lazy sampling to simulate quantum random oracles (QROs).
In this paper, we do not specify the way for reduction algorithms to simulate
QROs. Following the convention in [21,22,24,34], we assume that reduction algo-
rithms (i.e., game simulators) have access to some internal quantum random
oracles (which can be instantiated by quantum-secure pseudo-random functions
or real-world hash functions [24,34]). Lemma 1 gives a probabilistic bound for
an adversary A (at most q queries to |O〉) to distinguish whether it is inter-
acting with random oracle O0 or interacting with random oracle O1, where
O0\S = O1\S. If A can distinguish, then Lemma 1 states that there exists an
PPT reduction EXT that randomly measures A’s QRO queries and outputs an
element x ∈ S.
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Lemma 1 (OW2H, probabilities [2]). Let X ,Y, and S ⊆ X be sets. Let
O0,O1 : X → Y be random functions satisfying ∀x /∈ S, O0(x) = O1(x). Let
inp be some bitstring. (S,O0,O1, inp) may have arbitrary joint distribution. Let
A be an adversary issuing at most q quantum-superposition queries to random
oracle and, on input inp, it outputs either 0 or 1. Let EXTO (O = O0 or O1)
be a quantum algorithm that on input inp does the following: It picks i∗ $←
[q], runs A|O〉(inp) until i∗th query (denoted as |φ〉) to O, and returns x′ :=
Measure(|φ〉). Then we have

∣∣∣Pr[1 ← A|O0〉(inp)] − Pr[1 ← A|O1〉(inp)]
∣∣∣

≤ 2q
√

Pr[x′ ∈ S : x′ ← EXTA,|O1〉(inp)]

We consider a special case of Lemma 1. Let S in Lemma 1 be a randomly
generated set and independent of inp. Then we have the following corollary. The
proof is straight-forward since the S is independently random, the probability
that EXT finds an element in S is the uniform probability |S|

|X | .

Corollary 1. With the same notations and assumptions in Lemma 1, if S is
random set generated at independently and uniformly random, then we have

∣∣∣Pr[1 ← A|O0〉(inp)] − Pr[1 ← A|O1〉(inp)]
∣∣∣ ≤ 2q

√
|S|/|X |

Lemma 2 gives a probabilistic bound for an adversary (has quantum access
to oracles) to distinguish h(k, ·) and h′, where k is secret, h and h′ are QRO and
have the same image. When the image set is large enough, the adversary cannot
distinguish these two oracles, unless it “queries” the oracle on k.

Lemma 2 ([34]). Let s be an integer. Let h : {0, 1}s × X → Y and h′ : X → Y
be two independent random oracles. If an unbounded time quantum adversary A
that queries H at most qH times, then we have

∣∣Pr[1 ← A|h〉,|h(k,·)〉() | k ← {0, 1}s] − Pr[1 ← A|h〉,|h′〉()]
∣∣ ≤ 2qH · 2−s/2

We also need the following lemma to handle PKE schemes with imperfect
correctness (Definition 2). Let Bλ be the Bernoulli distribution (i.e., Pr [b = 1] =
λ for the bit b ← Bλ). Roughly speaking, for any unbounded and quantum
adversary A, Lemma 3 bounds A’s advantage in distinguishing whether it is
interacting with a constant function or a function that follows the Bernoulli
distribution Bλ. We call such a distinguishing problem as Generic quantum
Distinguishing Problem with Bounded probabilities (GDPB).

Lemma 3 (GDPB [19]). Let X be a finite set, and let λ ∈ [0, 1]. Then, for
any unbounded and quantum algorithm A issuing at most q quantum queries,

∣∣∣Pr[GDPBA
λ,0 ⇒ 1] − Pr[GDPBA

λ,1 ⇒ 1]
∣∣∣ ≤ 8(q + 1)2λ,

where games GDPBA
λ,b are defined in Fig. 1.
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Game GDPBA
λ,b

01 (λx)x∈X ← A
02 if ∃x ∈ X s.t. λx > λ: return 0
03 if b = 0
04 Define F := 0
05 else for x ∈ X
06 F(x) ← Bλx

07 b′ ← AF

08 return b′

Fig. 1. Game GDPBA
λ,b used in Lemma 3.

2.2 Background About Lattices

In this section, we recall the LWE assumption and some well-known facts about
Gaussians [12,29], and the lossy LWE technique and a generalized leftover hash
lemma [1,23]. First, we recall the LWE assumption.

Definition 1 (LWEAssumption). Let n,m be positive integers, q be a prime.
Let χ be a distribution over Z. All of these are implicitly parameterized by the
security parameter λ. We say that the LWEn,m,q,χ assumption holds, if for any
algorithm B, the following advantage is negligible in λ:

AdvLWEn,m,q,χ(B) := |Pr[B(A,b) = 1 | A $← Z
n×m
q ,b $← Z

m
q ]

−Pr[B(A,A�s+ e) = 1 | A $← Z
n×m
q , s $← Z

n
q , e ← χm]|.

Let s > 0. We define the discrete Gaussian distribution over Z with
parameter s, denoted by D

Z,s to be the distribution proportional to ρs(x) :=
exp(−π‖x‖2/s2), restricted to Z. Next, we recall well-known regularity lemmas
and tail bounds, following [12,29].
Lemma 4. Consider natural numbers n,m ∈ N and a prime q at least poly-
nomial in n. Assume m ≥ 2n log q and s ≥ ω(

√
logm). Then, the following

distributions have negligible statistical distance:
{
(A,Ae)

∣∣ A $← Z
n×m
q , e ← Dm

Z,s

}
and

{
(A,b)

∣∣ A $← Z
n×m
q , b $← Z

n
q

}
.

Lemma 5. For any s ≥ ω(
√
logm), and x ← Dm

Z,s, the probability that ‖x‖ >

s
√

m is at most 2−m+1.

We also make use of the lossy LWE technique. For that, we require the follow-
ing lemmas from [1,23]. The lemmas make use of the so called “smooth average
min-entropy” H̃ ·

∞ (· | ·) [23].
Lemma 6. Consider positive integers n, t,m, q, g, and β, s′ > 0 and a distribu-
tion χ over Z such that s′ ≥ βqgnm and Pr[|x| ≥ βq | x ← χ] ≤ negl(λ). Assume
s is uniformly distributed over [−g, g]n, and e is distributed according to Ds′

Z,Zm.
Let B $← Z

n×t
q ,C $← Z

t×m
q ,D ← χn×m and set A := BC + D. Then, for any

ε ≥ 2−λ, we have

H̃ε
∞

(
s | A�s+ e

) ≥ n log(2g + 1) − (t + 2λ) log q − negl(λ).
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Lemma 7. Let H := {hk : X → Y}k be a universal family of hash functions.
Assume that the keys k of H are distributed according to some distribution K.
Further, let U denote a random variable distributed uniformly over Y and X
be any random variable with values in X and I be any random variable. Let
ε ≥ 0. With these assumptions, the statistical distance between (K,hK(X), I)
and (K,U, I) is upper bounded by

2ε +
1
2

√
2−H̃ε∞(X | I) · |Y|.

3 Parameter Lossy Encryption

In this section, we focus on public key encryption. Formally, a public key encryp-
tion (PKE) scheme PKE consists of four algorithms (Setup,KG,Enc,Dec) and a
message space M that is assumed to be efficiently recognizable. The algorithms
work as follows:

– The setup algorithm Setup, on input the security parameter λ, outputs system
parameters par.

– The key generation algorithm KG, on input the parameter par, outputs a
public and secret key pair (pk, sk).

– The encryption algorithm Enc, on input pk and a message m ∈ M, outputs
a ciphertext c ∈ C.

– The decryption algorithm Dec, on input sk and a ciphertext c, outputs a
message m′ ∈ M or a rejection symbol ⊥ /∈ M.

Definition 2 (Correctness of PKE). A PKE scheme PKE = (Setup,KG,
Enc,Dec) with message space M is (1 − δ)-correct if

E(pk,sk)←KG

[
max
m∈M

Pr [Dec(sk, c) �= m : c ← Enc(pk,m)]
]

≤ δ,

where the expectation is taken over par ← Setup(λ), (pk, sk) ← KG(par) and
randomness of Enc. Here δ := δ(λ) is related to the security parameter λ.

For technical reasons, we also need a bound on the probability that two public
keys collide.

Definition 3 (Collision Probability of Key Generation). We define the
collision probability of KG of PKE as

ηPKE := max [Pr [pk0 = pk1 : (pk0, sk0) ← KG(par), (pk1, sk1) ← KG(par)]] ,

where the maximum is taken over all pk0, pk1.

We can assume that ηPKE is negligible, as otherwise an adversary would have
non-negligible probability of sampling a secret key for a given public key, which
would imply that the scheme is insecure for any reasonable notion.

Lossy Encryption. We recall the notion of lossy encryption [3,16,18]. In lossy
encryption schemes, there are two modes of the public keys. Public keys in the



Tighter Security for Generic Authenticated Key Exchange in the QROM 409

real mode work as defined above. On the other hand, if we encrypt a plaintext
using a public key in lossy mode, the ciphertext statistically hides the plaintext.
Real and lossy public keys should be computationally indistinguishable. Unlike
the lossy encryption in [3,18], we do not require openability here.

Definition 4 (Lossy Encryption). Let PKE := (Setup,KG,Enc,Dec) be a
PKE scheme with message space M′. PKE is lossy if there is an algorithm LKG
such that the following properties hold:

– PKE is correct according to Definition 2.
– Key Indistinguishability: We say PKE satisfies key indistinguishability if for

any algorithm B, the advantage function

Advind-keyPKE (B) := |Pr [B (par, pk) ⇒ 1] − Pr [B(par, lpk) ⇒ 1]|
is negligible, where the probability is taken over par ← Setup(λ), (pk, sk) ←
KG(par), and lpk ← LKG(par).

– Lossiness: For any arbitrary messages m,m′ ∈ M′, the statistical distance
between the following distributions D and D′ is at most εlo, where εlo is neg-
ligible:

D :=
{
(par, lpk, c)

∣∣∣∣
par ← Setup(λ), lpk ← LKG(par)
c ← Enc(lpk,m)

}
,

D′ :=
{
(par, lpk, c)

∣∣∣∣
par ← Setup(λ), lpk ← LKG(par)
c ← Enc(lpk,m′)

}
.

We refer to εlo as the lossiness of PKE.

We give a lattice-based lossy encryption in Sect. 3.3. The construction is essen-
tially the Regev encryption scheme [33].

3.1 Parameter Lossy Encryption

We now extend the lossiness notion to a multi-user notion, where the global
system parameters are also allowed to have a lossy mode. We call this new
notion parameter lossy encryption.

Definition 5 (Parameter Lossy Encryption). Let PKE := (Setup,KG,
Enc,Dec) be a PKE scheme with message space M′. PKE is parameter lossy
if there are algorithms LSetup and LKG such that the following properties hold:

– PKE is correct according to Definition 2.
– Parameter-Key Indistinguishability: We say PKE satisfies parameter-key

indistinguishability if for any PPT algorithm B, the advantage function

Advind-par-keyPKE (B) := |Pr [B (par, pk1, . . . , pkN ) ⇒ 1]
− Pr [B(lpar, lpk1, . . . , lpkN ) ⇒ 1] |

is negligible, where N denotes the number of users, and the first probability
is taken over the experiment par ← Setup(λ), (pk1, sk1) ← KG(par), . . . , (pkN ,
skN ) ← KG(par) and the second one is taken over lpar ← LSetup(λ), lpk1 ←
LKG(lpar), . . . , lpkN ← LKG(lpar).
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– Lossiness: For any arbitrary messages m,m′ ∈ M′, the statistical distance
between the following distributions D and D′ is at most εlo, where εlo is neg-
ligible:

D :=
{
(lpar, lpk, c)

∣∣∣∣
lpar ← LSetup(λ), lpk ← LKG(lpar)
c ← Enc(lpk,m)

}
,

D′ :=
{
(lpar, lpk, c)

∣∣∣∣
lpar ← LSetup(λ), lpk ← LKG(lpar)
c ← Enc(lpk,m′)

}
.

We refer to εlo as the lossiness of PKE.

3.2 Parameter Lossy Encryption from Lattices

We construct a parameter lossy encryption scheme from the (Decisional) Learn-
ing With Errors (LWE) assumption. Essentially, in our encryption we extend the
(dual) Regev scheme [13,33] with a lossy mode of system parameters.

Scheme. Our scheme has message space {0, 1}�. As common for lattice-based
encryption schemes, a message m ∈ {0, 1}� has to be encoded on encryption and
decoded on decryption. More precisely, we define the following algorithms and
use them in our scheme:

– Algorithm Encode(m) computes a vector m� ∈ Z
�
q. The ith coordinate of m�

is given as �q/2� · mi for each i ∈ [�].
– Algorithm Decode(m�) computes a message m ∈ {0, 1}� by componentwise

rounding. That is, for all i ∈ [�], it sets mi = 0 if mi is closer to 0 than to
�q/2�. Otherwise, it sets mi = 1.

Further, our scheme makes use of parameters n,m, q, t, g ∈ N, s, s′, s′′ ∈ R, s, s′,
s′′ > 0 satisfying the following conditions:

– n = Θ(λ), q prime
– m ≥ 2n log q (for Lemma 4)
– s, s′ ≥ ω(

√
logm) (for Lemmata 4 and 5)

– ss′m ≤ q/4 (for correctness)
– s′ ≥ gn2m (for Lemma 6, we choose βq = n)
– n log(2g + 1) − (t + 2λ) log q − negl(λ) ≥ λ log q + Ω(n) (for Lemma 7)

For example, a (very conservative) parameter setting that satisfies all these con-
ditions for a given λ is

n := 56λ n6 < q ≤ n7, g :=
√

n, s :=
√

n,
t := λ, m := 2n log q, s′ := n2.5m, s′′ :=

√
n.

Formally, we present our scheme in Fig. 2.

Analysis. We show correctness, parameter-key indistinguishability, and lossi-
ness. The proof of correctness follows standard arguments [33].

Lemma 8. The scheme PKE in Fig. 2 is (1 − δ)-correct, for negligible δ.
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Setup(λ)

01 A $← Z
n×m
q

02 return par := A

LSetup(λ)

03 B $← Z
n×t
q , C $← Z

t×m
q

04 D ← Dn×m
Z,s′′

05 A := BC+D
06 return lpar := A

KG(par = A)

07 sk := X ← Dm×�
Z,s

08 pk := Y := AX
09 return (pk, sk)

LKG(lpar = A)

10 lpk := Y $← Z
n×�
q

11 return lpk

Enc(pk = Y, m)

12 s $← [−g, g]n, e ← Dm
Z,s′

13 m� := Encode(m)
14 c� := s�A+ e�

15 v� := s�Y +m�

16 return c := (c�,v�)

Dec(sk = x, c = (c�,v�))

17 m� := v� − c�X
18 return Decode(m�)

Fig. 2. The parameter lossy encryption scheme PKE := (Setup,KG,Enc,Dec) from the
LWE assumption with algorithms LSetup and LKG.

Proof. Let sk = X ← Dm×�
Z,s and pk = Y = AX be a pair of public key and

secret key. Consider a message m ∈ {0, 1}� and an honestly computed ciphertext
c := (c�,v�) for m. We have c� = s�A + e� and v� := s�Y + m�. Now,
consider m� computed during the decryption algorithm. We have

m� = v� − c�X = m� − e�X.

Thus, one can see that decryption recovers m if each coordinate of e�X has
absolute value less than q/4. Fix such a coordinate, say the ith, and call it z.
Except with negligible probability (see Lemma 5), we have that ‖e‖ ≤ s′√m,
and the ith column x of X satisfies ‖x‖ ≤ s

√
m. Thus, we have

|z| = |e�x| ≤ ‖e‖‖x‖ ≤ ss′m < q/4.

except with negligible probability.

Lemma 9. If the LWEt,m,q,D
Z,s′′ assumption holds, then the scheme PKE with

algorithms LSetup and LKG as presented in Fig. 2 satisfies parameter-key indis-
tinguishability. Namely, for any adversary A, there is an algorithm B such that
the running time of B is about that of A and

Advind-par-keyPKE (A) ≤ n · AdvLWEt,m,q,D
Z,s′′ (B) + negl(λ).

Proof. To show parameter-key indistinguishability, we need to argue that the
distributions of (1) parameters and keys output by Setup and KG and (2) param-
eters and keys output by LSetup and LKG are computationally indistinguishable.
We show this using a sequence of hybrid distributions. Namely, we start with
distribution D1, which is the distribution output by Setup and KG, namely

D1 :=
{
(A,Y1, . . . ,YN )

∣∣∣∣
A $← Z

n×m
q ,

∀i ∈ [N ] : Xi ← Dm×�
Z,s ,Yi := AXi

}
.

Now, we argue that the distribution

D2 :=
{
(A,Y1, . . . ,YN )

∣∣∣∣
A $← Z

n×m
q ,

∀i ∈ [N ] : Yi
$← Z

n×�
q

}
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is statistically close to D1. This can easily be seen using � · N applications of
Lemma 4. Next, using n applications of the LWEt,m,q,D

Z,s′′ assumption (one per
row of A), we see that the distribution

D3 :=

⎧
⎨
⎩(A,Y1, . . . ,YN )

∣∣∣∣∣∣
B $← Z

n×t
q ,C $← Z

t×m
q ,D ← Dn×m

Z,s′′

A := BC+D,
∀i ∈ [N ] : Yi

$← Z
n×�
q

⎫
⎬
⎭

is computationally indistinguishable from D2. Finally, observe that D3 is exactly
the distribution of parameters and keys output by LSetup and LKG.

Lemma 10. The scheme PKE with algorithms LSetup and LKG as presented in
Fig. 2 satisfies lossiness.

Proof. Fix two arbitrary messages m,m′ ∈ {0, 1}�. According to the definition of
lossiness, and the specification of scheme PKE and algorithms LSetup and LKG,
we need to argue that the following distributions D and D′ are statistically close:

D :=

⎧
⎨
⎩(A,Y, c�,v�)

∣∣∣∣∣∣
B $← Z

n×t
q , C $← Z

t×m
q , D ← Dn×m

Z,s′′ ,

A := BC+D, Y $← Z
n×�
q ,

c� := s�A+ e�, v� := s�Y + Encode(m)

⎫
⎬
⎭ ,

D′ :=

⎧
⎨
⎩(A,Y, c�,v�)

∣∣∣∣∣∣
B $← Z

n×t
q , C $← Z

t×m
q , D ← Dn×m

Z,s′′ ,

A := BC+D, Y $← Z
n×�
q ,

c� := s�A+ e�, v� := s�Y + Encode(m′)

⎫
⎬
⎭ .

Observe that it is sufficient to argue that s�Y is statistically close to uniform
over Z

�
q, given A,Y, c� as in D and D′. To do this, we make use of Lemma 7.

Namely, we consider the hash function family s �→ s�Y parameterized by Y. As
Y is sampled uniformly at random in distributions D and D′, and q is a prime,
this family is universal. Next, we claim that s has a lot of entropy given c�.
Precisely, we use Lemma 6 and derive

H̃ε
∞ (s | c) ≥ n log(2g + 1) − (t + 2λ) log q − negl(λ)

≥ λ log q + Ω(n),

where the first inequality follows from Lemma 6, and the last inequality follows
from our assumptions on parameters. Now that the lower bound on the entropy
of s is established, we use Lemma 7 with ε = 2−λ and Y := Z

λ
q , and get that the

statistical distance between s�Y and uniform, given A,Y, c�, is at most

2ε +
1
2

√
2−H̃ε∞(s | c) · |Y| ≤ 2−λ+1 +

1
2

√
2−λ log q−Ω(n)+λ log q ≤ negl(λ),

which finishes the proof.
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3.3 Lossy Encryption from Lattices

We present a simple construction of lossy encryption from lattices. The con-
struction is essentially Regev’s public key encryption scheme [33] Formally,
the public key encryption PKE = (Setup,KG,Enc,Dec) and algorithm LKG for
message space {0, 1}� is given in Fig. 3. For our description, we rely on algo-
rithms Encode and Decode introduced in Sect. 3.2. It makes use of parameters
n,m, q ∈ N, s, s′ ∈ R, s, s′ > 0, that should satisfy the following conditions

– n = Θ(λ), q prime
– m ≥ 2(n + �) log q (for Lemma 4)
– s, s′ ≥ ω(

√
logm) (for Lemmata 4 and 5)

– ss′m ≤ q/4 (for correctness)

An example non-optimized instantiation for a given security parameter λ and
message length � = n is n := λ, n3 < q ≤ n4, m := 4n log q, and s := s′ := logm.

Setup(1λ)

01 return par := A $← Z
n×m
q

KG(par = A)

02 sk := S $← Z
n×�
q , E ← Dm×�

Z,s

03 pk := Y := S�A+E� ∈ Z
�×m
q

04 return (pk, sk)

LKG(par = A)

05 return lpk := Y $← Z
�×m
q

Enc(pk = Y, m)

06 x ← Dm
Z,s′

07 c := Ax
08 v := Yx+ Encode(m)�

09 return c := (c,v)

Dec(sk = S, c = (c,v))

10 m := v − S�c
11 return Decode(m�)

Fig. 3. The lossy PKE scheme PKE := (Setup,KG,Enc,Dec) from the LWE assumption
with algorithm KG.

We now turn to the analysis of PKE. We show correctness, key indistinguisha-
bility, and lossiness.

Lemma 11. The scheme PKE in Fig. 3 is (1 − δ)-correct, for negligible δ.

Proof. The proof is standard [13,33]. One can easily see that decryption works
as long as |e�x| < q/4 for any column e of E. By Lemma 5 and our assumption
about s, s′,m, and q, we have

|e�x| ≤ ‖e‖‖x‖ ≤ ss′m < q/4.

with overwhelming probability.

Lemma 12. If the LWEn,m,q,D
Z,s

assumption holds, then the scheme PKE with
algorithm LKG as presented in Fig. 3 satisfies key indistinguishability. Namely,
for any algorithm A, there is an algorithm B such that the running time of B is
about that of A and

Advind-keyPKE (A) ≤ � · AdvLWEn,m,q,D
Z,s (B)
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Proof. The statement follows directly from the LWE assumption, applied to each
row of matrix Y.

Lemma 13. The scheme PKE with algorithm LKG as presented in Fig. 3 satis-
fies lossiness.

Proof. Fix two arbitrary messages m,m′ ∈ {0, 1}�. Now, according to the defi-
nition of lossiness and the specification of the scheme, we have to argue that the
distributions D and D′ are statistically close, where D and D′ are given as

D :=
{
(A,Y, c,v)

∣∣∣∣
A $← Z

n×m
q , Y $← Z

�×m
q

c := Ax, v := Yx+ Encode(m)�

}
,

D′ :=
{
(A,Y, c,v)

∣∣∣∣
A $← Z

n×m
q , Y $← Z

�×m
q

c := Ax, v := Yx+ Encode(m′)�

}
.

It is sufficient that in both distributions the term
[
A
Y

]
x

is statistically close to uniform. This is guaranteed by Lemma 4.

4 CCA Secure KEMs from (Parameter) Lossy Encryption

In this section, we construct two KEM schemes KEM1 and KEM2 from lossy
encryption and parameter lossy encryption, respectively. The schemes KEM1

and KEM2 have tight multi-challenge, and tight multi-user multi-challenge secu-
rity, respectively, and will be used in the construction of our AKE protocol in
Sect. 6. Before we describe the schemes in Sects. 4.1 and 4.2, we recall the formal
definition of KEMs and define the security notions of interest.

Definitions. We recall the syntax and security definitions of a KEM. A KEM
KEM consists of four algorithms (Setup,KGen,Encaps,Decaps) and a key space
K that is assumed to be efficiently recognizable. The algorithms work as follows:

– The setup algorithm Setup, on input the security parameter λ, outputs system
parameters par.

– The key generation algorithm KGen, on input the parameter par, outputs a
public and secret key pair (pk, sk).

– The encapsulation algorithm Encaps, on input pk, outputs a ciphertext e and
a key K ∈ K.

– The decapsulation algorithm Decaps, on input sk and a ciphertext e, outputs
a key K ∈ K or a rejection symbol ⊥ /∈ K.

In this paper, we use MC-IND-CCA secure KEM and MUC-IND-CCA secure
KEM to construct AKE protocols.

Definition 6 (MC-IND-CCA Security of KEM). Let KEM = (Setup,
KGen,Encaps,Decaps) be a KEM. We say that KEM is MC-IND-CCA secure,
if for any algorithm A, the advantage
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Game MC-IND-CCAA
KEM,b(λ)

01 par ← Setup(λ)
02 (pk, sk) ← KGen(par)
03 for i ∈ [S]
04 (e, K) ← Encaps(pk)
05 e[i] := e,K0[i] := K

06 K1[i]
$← K

07 b′ ← ADec(par, pk, e,Kb)
08 return b′

Game MUC-IND-CCAA
KEM,b(λ)

09 par ← Setup(λ)
10 for j ∈ [N ]
11 (pkj , skj) ← KGen(par)

12 for i ∈ [S]
13 (e, K) ← Encaps(pkj)

14 e[j, i] := e
15 K0[j, i] := K

16 K1[j, i] $← K
17 pk[j] := pkj

18 b′ ← ADecmu (par,pk, e,Kb)
19 return b′

Oracle Dec(e)
20 if e ∈ e
21 return ⊥
22 K := Decaps(sk, e)
23 return K

Oracle Decmu(j, e)

24 if e ∈ e[j, ·]
25 return ⊥
26 K := Decaps(skj , e)
27 return K

Fig. 4. Games MC-IND-CCAA
KEM,b and MUC-IND-CCAA

KEM,b for a KEM KEM =
(Setup,KGen,Encaps,Decaps). In Decmu, e[j, ·] is the list (e[j, 1], ..., e[j, S]).

AdvMC-IND-CCA
KEM (A) := |Pr[MC-IND-CCAA

KEM,0(λ) ⇒ 1]

− Pr[MC-IND-CCAA
KEM,1(λ) ⇒ 1]|

is negligible in λ, where games MC-IND-CCAA
KEM,b(λ) for b ∈ {0, 1} are specified

in Fig. 4.

Definition 7 (MUC-IND-CCA Security of KEM). Let KEM = (Setup,
KGen,Encaps,Decaps) be a KEM. We say that KEM is MUC-IND-CCA secure, if
for any algorithm A, the advantage

AdvMUC-IND-CCA
KEM (A) := |Pr[MUC-IND-CCAA

KEM,0(λ) ⇒ 1]

− Pr[MUC-IND-CCAA
KEM,1(λ) ⇒ 1]|

is negligible in λ, where games MUC-IND-CCAA
KEM,b(λ) for b ∈ {0, 1} are specified

in Fig. 4.

4.1 MC-IND-CCA Secure KEM from Lossy Encryption

Let PKE = (Setup,KG,Enc,Dec) be a lossy encryption scheme with message
space M′, randomness space R′, and ciphertext space C′. Let s be an integer
and K be a key space. Let H : M′ × C′ → K, H′ : {0, 1}s × C′ → {0, 1}s, and
G : M′ → R′ be random oracles. Our KEM scheme KEM1 with KEM key space
K is shown in Fig. 5.

KEM1 has the same structure as the modular Fujisaki-Okamoto transforma-
tion FO �⊥[PKE,G,H] from [19,21], but its underlying PKE is a lossy encryption
scheme. Theorem 1 shows that, if PKE is a lossy encryption, then KEM1 is a
tightly IND-CCA secure KEM in the multi-challenge setting (Definition 6) in
the QROM.

Theorem 1. Let S be the number of challenge ciphertexts. If PKE is a (1− δ)-
correct lossy encryption (Definition 4) with lossiness εloPKE and H′,G, and H are
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KGen1(par)

01 (pk, sk) ← KG(par)
02 k $← M′

03 pk′ := pk
04 sk′ := (sk, k)
05 return (pk′, sk′)

Encaps1(pk)

06 r $← M′, R := G(r)
07 e := Enc(pk, r;R)
08 K := H(r, e)
09 return (e, K)

Decaps1((sk, k), e)

10 r′ := Dec(sk, e)
11 if r′ = ⊥∨e �= Enc(pk, r′;G(r′))
12 K := H′(k, e)
13 else K := H(r′, e)
14 return K

Fig. 5. The KEM scheme KEM1 = (Setup := Setup,KGen1,Encaps1,Decaps1) based on
a lossy encryption scheme PKE = (Setup,KG,Enc,Dec), where par ← Setup(λ). KEM1

has implicit rejection property, namely, the decryption algorithm returns a pseudoran-
dom KEM key if the input ciphertext is invalid.

modeled as quantum random oracles, then for any quantum adversary A, there
exists an adversary B such that the running time of A is about that of B and

AdvMC-IND-CCA
KEM1

(A) ≤ 4Advind-keyPKE (B) + S2

(
1

|M′| +
1

|K| +
1
2s

)

+
S + S2

|R′| + 48(1 + (qH + qG + 2qDec + S)2)δ

+ 4 (qG + qH)

√
S · εloPKE +

S

|M′| + 4qH′ · 2−s/2,

where qH′ , qG, qH, and qDec are the numbers of A’s queries to H′,G,H, and Dec,
respectively.

The proof of Theorem 1 is the almost identical to the one of Theorem 2, except
that Theorem 1 deals with only one user and uses the key indistinguishability of
lossy encryption (cf. Definition 4) instead of the parameter-key indistinguisha-
bility. By letting N := 1 in the proof of Theorem 2, all arguments can be adapted
to the proof of Theorem 1. Thus, we refer the reader to the proof of Theorem 2.

4.2 MUC-IND-CCA Secure KEM from Parameter Lossy
Encryption

Let PKE = (Setup,KG,Enc,Dec) be a parameter lossy encryption scheme with
public key space PK′, message space M′, randomness space R′, and ciphertext
space C′. Let s be an integer and K be a key space. Let H : PK′ × M′ × C′ → K,
H′ : PK′ ×{0, 1}s ×C′ → {0, 1}s, and G : PK′ ×M′ → R′ be random oracles. Fix
par ← Setup(λ) and our KEM scheme KEM2 with KEM key space K is defined
as in Fig. 6.

KEM2 has two differences compared to the modular Fujisaki-Okamoto trans-
formation FO �⊥[PKE,G,H] from [19,21]. The first one is that we include a user
public key into the hash function. We suppose that this change is necessary for
tightness in the multi-user setting. The second difference is that our security
requirement on the underlying PKE is parameter lossy. More precisely, we show
in Theorem 2 that, if PKE is a parameter lossy encryption, then KEM2 is a tightly
IND-CCA secure KEM in the multi-user and multi-challenge setting (Definition
7) in the QROM.
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KGen2(par)

01 (pk, sk) ← KG(par)
02 k $← {0, 1}s

03 pk′ := pk
04 sk′ := (sk, k)
05 return (pk′, sk′)

Encaps2(pk)

06 r $← M′

07 R := G(pk, r)
08 e := Enc(pk, r;R)
09 K := H(pk, r, e)
10 return (e, K)

Decaps2((sk, k), e)

11 r′ := Dec(sk, e)
12 if r′ = ⊥
13 ∨e �= Enc(pk, r′;G(pk, r′))
14 K := H′(pk, k, e)
15 else K := H(pk, r′, e)
16 return K

Fig. 6. KEM scheme KEM2 = (Setup,KGen2,Encaps2,Decaps2) based on a parame-
ter lossy encryption PKE = (Setup,KG,Enc,Dec), where par ← Setup(λ). KEM2 has
implicit rejection property, namely, the decryption algorithm returns a pseudorandom
KEM key if the input ciphertext is invalid.

Theorem 2. Let N be the number of users and let S be the number of challenge
ciphertexts. If PKE is a (1 − δ)-correct parameter lossy encryption (Definition
5) with lossiness εloPKE and H′,G, and H are modeled as quantum random oracles,
then for any quantum adversary A, there exists an adversary B such that the
running time of A is about that of B and

AdvMUC-IND-CCA
KEM2

(A) ≤ 4Advind-par-keyPKE (B) + 48N(1 + (qH + qG + 2qDec + S)2)δ

+
NS + N2S2

|R′| + N2S2

(
1

|M′| +
1

|K| +
1
2s

+ ηPKE

)

+ 4(qG + qH)

√
NS · εloPKE +

NS

|M′| + 4NqH′ · 2−s/2,

where qH′ , qG, qH, and qDec are the numbers of A’s queries to H′,G,H, and
Decmu, respectively. ηPKE is the collision probability of KG (Definition 3).

Proof (Theorem 2). We prove the theorem via a sequence of games, formally
given in Fig. 7. Following [19,21,34], we assume that the game has access to some
internal quantum random oracles (QROs) which are used to simulate the QROs
accessed by the adversary. Namely, let h′, h′

pk1
, . . . , h′

pkN
: C′ → K be internal

QROs used to simulate H′, h, hpk1 , . . . , hpkN
: C′ → K be internal QROs used to

simulate H, and g, g′
pk1

, . . . , g′
pkN

: M′ → R′ be internal QROs used to simulate
G. Such internal QROs can be simulated be several ways [34], e.g., using 2q-wise
independent hash function (if the adversary queries the QRO at most q times)
[37]. For sake of simplicity, during all our security games, we implicitly exclude
collisions of users’ public keys pki’s and secret keys ki’s for implicit rejection
and the collisions of the PKE messages rj,i’s, randomnesses Rj,i’s, and KEM
keys Kj,i. Excluding such collisions will add

N2S2

(
1

|M′| +
1

|K| +
1

|R′| +
1
2s

+ ηPKE

)

to the final bound. In G0, we use g, h′, and h to simulate G,H′,H, respectively.
This game is equivalent to MUC-IND-CCAA

KEM2,0 game (Definition 7), so we have

Pr
[
MUC-IND-CCAA

KEM2,0 ⇒ 1
]
= Pr

[
GA

0 ⇒ 1
]
.
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Game G0-G9

01 par ← Setup(λ)
02 par := lpar ← LSetup(λ) //G6-G9
03 for j ∈ [N ]
04 (pkj , (skj , kj)) ← KG(par)

05 (lpkj , lskj) ← LKG(par) //G6-G7

06 (pkj , skj) := (lpkj , lskj) //G6-G7

07 for i ∈ [S]

08 rj,i
$← M′

09 Rj,i := G(pkj , rj,i)

10 Rj,i
$← R′ //G7-G9

11 e := Enc(pkj , rj,i;Rj,i)

12 Kj,i := H(pkj , rj,i, e)

13 Kj,i := hpkj (e) //G3-G9

14 Kj,i
$← K //G9

15 e[j, i] := e,K[j, i] := Kj,i

16 pk[j] := pkj

17 b′ ← ADecmu,|H〉,|H′〉,|G〉(par,pk, e,K)
18 return b′

Oracle H′(pk, k, e)

19 return h′(pk, k, e)

Oracle Decmu(j, e)

20 if e ∈ e[j, ·]
21 return ⊥
22 r′ := Dec(skj , e)
23 if r′ = ⊥ ∨ c �= Enc(pkj , r′;G(pkj , r′))
24 K := H′(pkj , kj , e)

25 K := h′
pkj

(e) //G1-G2

26 else
27 K := H(pkj , r′, e)

28 K := hpkj (e) //G3

29 K := hpkj (e) //G4-G9

30 return K

Oracle G(pk, r)

31 if pk ∈ pk //G2-G4, G8-G9
32 return g′

pk(r) //G2-G4, G8-G9

33 return g(pk, r)

Oracle H(pk, r, e)

34 if pk ∈ pk //G3-G9
35 ∧e = Enc(pk, r;G(pk, r)) //G3-G9
36 return hpk(e) //G3-G9
37 return h(pk, r, e)

Fig. 7. Games sequence G0-G9 in the proof of Theorem 2. Highlighted lines are only
executed in the corresponding games.

G1: If A queries Decmu on (j, e) that e is invalid, then Decmu returns h′
pkj

(e)
instead of H′(pkj , kj , e). We use Lemma 2 to bound the difference. Concretely,
we apply Lemma 2 for any user j ∈ [N ], by viewing H′(pkj , ·) as oracle h in
Lemma 2, and h′

pkj
as oracle h′ in Lemma 2. Thus, we have

∣∣Pr [
GA

0 ⇒ 1
] − Pr

[
GA

1 ⇒ 1
]∣∣ ≤ 2NqH′ · 2−s/2.

G2: The image set of G(pkj , ·) is restricted to be the set only containing
“good” randomnesses of pkj . Namely, for j ∈ [N ], we define the set

R′
bad(pkj , skj , r) := {R′ ∈ R′ | Dec(sk,Enc(pk, r;R′)) �= r}

which denotes the “bad” randomness with respect to (pkj , skj) and r.
And we similarly define the “good” randomness set as R′

good(pkj , skj , r) :=
R′\R′

bad(pkj , skj , r). and let g′
pkj

: M′ → R′ be a quantum-accessible ran-
dom oracle such that for any r ∈ M′, g′

pkj
(r) is sampled uniformly from

R′
good(pkj , skj , r).
We use Lemma 3 to bound the probability difference between G1 and G2.

The proof method here is similar to the one in [19, Theorem 2]. We define

δ(pkj , skj , r) := |R′
bad(pkj , skj , r)|/|R′|,

δ(pkj , skj) := max
r∈M′

δ(pkj , skj , r),
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and by these notations, if PKE is (1 − δ)-correct, then δ = E[δ(pkj , skj)] where
the expectation is taken over (pk, sk) ← KG.

Here we construct unbounded adversaries Bj for 1 ≤ j ≤ N that run in game
GDPBδ,b (b = 0 or b = 1). For any such j, Bj first generates (pki, ski, ki) for
i ∈ [N ] as in G1 and picks a random function f (domain and range will be clear
later), and then it sets λr := δ(pkj , skj , r) for all r ∈ M′ and outputs (λr)r∈M′ .

Then, Bj has quantum access to a function F (provided by GDPBδ,b). It sets
up the oracle G(pk, ·) such that

G′(pk, r) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Samp(R′
good(pk, sk, r); f(pk, r)) if pk ∈ {pk1, ..., pkj−1},

Samp(R′
good(pkj , skj , r); f(pkj , r)), if pk = pkj ∧ F(r) = 0

Samp(R′
bad(pkj , skj , r); f(pkj , r)), if pk = pkj ∧ F(r) = 1

g(pk, r), Otherwise

,

and uses such G′ to simulate G1 for A (namely, it replaces G(pkj , ·) by G′(pkj , ·),
and other oracles like H and Dec are the same as in G1) and outputs A’s final
output. Here Samp is a sampling process and f is used to generate randomness
for Samp (so that it can sample elements from a set uniformly at random). Since
Bj is unbounded, it can construct such f and Samp.

If Bj is playing GDPBδ,0, then F(r) always outputs 0, and then G′(pkj , r) =
g′
pkj

(r) in G2. If Bj is playing GDPBδ,1, then F(r) outputs 1 with probability
δ(pkj , skj , r) and then G′(pkj , r) is distributed identically with G(pkj , r) (and
g(pkj , r)) in G1.

We further let Hybj for 0 ≤ j ≤ N be a hybrid game which is almost
the same as G1 except that, for users j + 1 to N , we use g′

pkj+1
, . . . , g′

pkN
to

simulate G(pkj+1, ·), . . . ,G(pkN , ·), respectively. By definition, Hyb0 = G2 and
HybN = G1. By the construction of Bj , if Bj plays GDPBδ,1, then it simulates
Hybj−1 for A. If Bj plays GDPBδ,0, then it simulates Hybj for A. We can use Bj

for each j ∈ [N ] described above to bound the probabilities difference between
Hybj−1 and Hybj . Namely, using Lemma 3, we have

|Pr [
GA

1 ⇒ 1
] − Pr

[
GA

2 ⇒ 1
] | ≤ |Pr[HybA

N ⇒ 1] − Pr[HybA
0 ⇒ 1]|

≤
N∑

j=1

|Pr[HybA
j ⇒ 1] − Pr[HybA

j−1 ⇒ 1]|

≤
N∑

j=1

∣∣∣Pr[GDPBBj

δ,0 ⇒ 1] − Pr[GDPBBj

δ,1 ⇒ 1]
∣∣∣

≤ N · (δ + 8(qH + qG + 2qDec + S)2δ)

= 8N(1 + (qH + qG + 2qDec + S)2)δ

by Lemma 3 and Bj issuing (qH + qG +2qDec +S) queries to F. The additional δ
appears in the next to last equation is from the probability that a bad key pair
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with no good randomness [28,35]. For simplicity, we add the error bound δ here
and exclude the event that KG outputs such bad key pair.

G3: In this game, we start to get rid of the secret key by using the “encrypt-
then-hash” technique [19,21,34]. When A queries H(pk, r, e) where pk = pkj for
some j ∈ [N ] and e = Enc(pkj , r;G(pkj , r)), instead of returning h(pk, r, e), the
game returns hpkj

(e) (see Items 34 to 36). For consistency, we also change the
generation of challenge KEM keys (in Item 13) and Decmu (in Item 28), since
if e = Enc(pkj , r;G(pkj , r)) then H(pkj , r, e) = hpkj

(e).
We claim that A’s views in G2 and G3 are the same. This is because, starting

from G2, G(pkj , ·) always uses “good” randomness, which implies that the map
Enc(pkj , ·;G(pkj , ·)) is injective and thus H(pkj , ·,Enc(pkj , ·;G(pkj , ·))) behaves
as a random oracle. We have

Pr
[
GA

2 ⇒ 1
]
= Pr

[
GA

3 ⇒ 1
]
.

G4: We change Decmu such that, on query (j, e), it always returns hpkj
(e)

regardless of the validity of e (Item 29). We argue that this change does not
affect A’s view: On query (j, e), if e is a valid ciphertext with respect to pkj ,
then Decmu returns hpkj

(e) in both two games; If e is invalid (its decryption is ⊥
or it cannot pass the re-encryption checking), then in G3, Dec returns h′

pkj
(e),

which is an independently random key (h′
pkj

is an internal RO). Moreover, if e

is invalid, hpkj
(e) is also independently random by the definition of H (A cannot

learn hpkj
(e) from H when e is invalid). Therefore, when e is invalid with respect

to pkj , hpkj
(e) has the same distribution with h′

pkj
(e), which means that the

modification made by G4 does not change A’s view. We have

Pr
[
GA

3 ⇒ 1
]
= Pr

[
GA

4 ⇒ 1
]
.

G5: We switch back to using g to simulate G instead of using (g′
pk1

, ..., g′
pkN

).
Similar to the gamehop from G1 to G2, we have

∣∣Pr [
GA

4 ⇒ 1
] − Pr

[
GA

5 ⇒ 1
]∣∣ ≤ 8N(1 + (qH + qG + 2qDec + S)2)δ.

Observe that in G5, we do not need to use skj to simulate Decmu(j, ·) (where
j ∈ [N ]). From G6 to G8, we start to use the properties of parameter lossy
encryption PKE to finish the proof.

G6: We switch the parameter and public keys of PKE to the lossy mode,
namely, the parameter par in G6 is generated by LSetup (Item 02) and the
public keys in G6 are generated by LKG (Items 05 to 06).

We construct a reduction B against the parameter-key indistinguishability of
PKE in Fig. 8. B’s input (par, pk1, ..., pkN ) is from Setup and KG, then B perfectly
simulates G5 for A. If (par, pk1, ..., pkN ) is from LSetup and LKG, then B perfectly
simulates G6 for A. Moreover, B outputs A’s final output. So, we have

∣∣Pr [
GA

5 ⇒ 1
] − Pr

[
GA

6 ⇒ 1
]∣∣ ≤ Advind-par-keyPKE (B).
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Reduction B(par, pk1, ..., pkN )

01 for j ∈ [N ]
02 kj ← {0, 1}s

03 for i ∈ [S]
04 rj,i

$← M′

05 Rj,i := G(pkj , rj,i)
06 e := Enc(pkj , rj,i;Rj,i)
07 K := hpkj

(e)
08 e[j, i] := e
09 K[j, i] := K
10 pk[j] := pkj

11 b′ ← ADecmu,|H〉,|H′〉,|G〉(par,pk, e,K)
12 return b′

Oracle Decmu(j, e)

13 if e ∈ e: return ⊥
14 return K := hpkj

(e)

Oracle G(pk, r)

15 return g(pk, r)

Oracle H(pk, r, e)

16 if pk ∈ pk ∧ e = Enc(pk, r;G(pk, r))
17 return hpk(e)
18 return h(pk, r, e)

Oracle H′(pk, k, e)

19 return h′(pk, k, e)

Fig. 8. Adversary B in bounding G5 and G6.

G7: The randomness Rj,i of challenge ciphertext e[j, i] is generated by inde-
pendently uniform sampling from R′ instead of by using G (see Item 10).

In G6, we always have Rj,i = G(pkj , rj,i) for all (j, i) ∈ [N ] × [S], while in
G7, Rj,i’s are independent of G. Despite these rj,i’s and Rj,i’s, oracle G behaves
the same in G6 and G7. Let O0 be the oracle G in G6 and let O1 be the oracle
G in G7, then we have O0\S = O1\S, where S is defined as follows:

S := {(pk1, r1,1), (pk1, r1,2), ..., (pkj , rj,i), ..., (pkN , rN,S)}, and |S| = NS

We use Lemma 1 to bound the difference between G6 with G7. By this
lemma, there is an algorithm EXT captures the probability that A “learns”
rj,i ∈ S. However, this probability cannot be directly bounded since ej,i is still
related to rj,i. To deal with it, we use delayed analysis. Looking ahead, we will
firstly switch all challenge ciphertexts to other challenge ciphertexts that are
independent of rj,i’s (by using the lossiness of PKE) so that rj,i’s are indepen-
dently and uniformly random in A’s view, so we can bound the winning probabil-
ity of EXT and thus can bound |Pr [

GA
6 ⇒ 1

] − Pr
[
GA

7 ⇒ 1
] |. For readability,

we continue the proof of Theorem 2 and leave these arguments as a lemma which
will be proved later.

Lemma 14. With notations and assumptions from G6 and G7 in the proof of
Theorem 2, we have

|Pr [
GA

6 ⇒ 1
] − Pr

[
GA

7 ⇒ 1
] | ≤ 2(qG + qH + NS)

√
NS · εloPKE + NS/|M′|.

G8: We switch the parameter and public keys of PKE to the normal mode
(namely, parameter and public keys are generated by Setup and KG). Moreover,
we restrict the image of G(pkj , ·) to be the set only containing “good” random-
nesses of pkj (as we did in G2). Similar to the game hops from G5 to G6 and
from G1 to G2, there exists an adversary B such that
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|Pr [
GA

7 ⇒ 1
] − Pr

[
GA

8 ⇒ 1
] |

≤ Advind-par-keyPKE (B) + 8N(1 + (qH + qG + 2qDec + S)2)δ.

G9: We change the generation of challenge KEM keys Kj,i’s. In this game,
we generate Kj,i

$← K instead of Kj,i := hpkj
(ej,i) where ej,i = e[j, i]. Since

hpkj
’s are internal QROs, A cannot trivially detect this modification.
We claim that this modification does not change A’s view except with neg-

ligible probability. Here we firstly analyze the information about hpkj
(ej,i) for

(j, i) ∈ [N ] × [S] that A can learn from its oracle queries.

– Oracles G and H′: These two oracles do not reveal any information about
hpkj

(ej,i) since they are independent to each other in both G7 and G8.
– Oracle Dec: If A queries Decmu(j, ej,i) for (j, i) ∈ [N ] × [S], then by the

definitions of Decmu in G7 and G8, the oracle always returns ⊥; Otherwise,
Decmu returns a key that is independent to hpkj

(ej,1), ..., hpkj
(ej,S) (since hpkj

is a QRO). So, Dec does not reveal any information about hpkj
(ej,i).

– Oracle H: A learns hpkj
(ej,i) if it queries H(pkj , r, ej,i) such that ej,i =

Enc(pkj , r;R) where R = G(pkj , r). Since in G8, we already restricted
G(pkj , ·) to always output good randomess, Enc(pkj , ·;G(pkj , ·)) is injective
and ej,i = Enc(pkj , r;R) means that (r,R) = (rj,i, Rj,i). Since G(pkj , ·) is
random oracle and Rj,i is sampled at uniformly random from R′, we have

Pr
[
Rj,i = G(pkj , rj,i)

]
= 1/|R′|.

Since there are NS randomnesses, by a union bound, we have

|Pr [
GA

8 ⇒ 1
] − Pr

[
GA

9 ⇒ 1
] | ≤ NS/|R′|.

In G9, the KEM keys Kj,i’s are generated at independently and uniformly
random. We can undo the modifications made in G8, . . . ,G1 to achieve the game
MUC-IND-CCAA

KEM,1. We have

|Pr[GA
9 ⇒ 1] − Pr[MUC-IND-CCAA

KEM,1 ⇒ 1]|
≤ 24N(1 + (qH + qG + 2qDec + S)2)δ + 2NqH′ · 2−s/2

+ 2(qG + qH + NS)
√

NS · εloPKE + NS/|M′| + 2Advind-par-keyPKE (B).

Combining all the probability differences in the games sequence, we have

|Pr[MUC-IND-CCAA
KEM,0 ⇒ 1] − Pr[MUC-IND-CCAA

KEM,1 ⇒ 1]|
≤ 4Advind-par-keyPKE (B) + 48N(1 + (qH + qG + 2qDec + S)2)δ

+
NS + N2S2

|R′| + N2S2(
1

|M′| +
1

|K| +
1
2s

+ ηPKE)

+ 4(qG + qH + NS)
√

NS · εloPKE + NS/|M′| + 4NqH′ · 2−s/2,

as stated in Theorem 2.
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Game G′
7 and G′′

7

01 lpar ← LSetup(λ), par := lpar
02 for j ∈ [N ]
03 (lpkj , lskj) ← LKG(par)
04 (pkj , skj) := (lpkj , lskj)
05 for i ∈ [S]
06 rj,i

$← M′, Rj,i
$← R′

07 e := Enc(pkj , rj,i;Rj,i)
08 r′

j,i
$← M′, R′

j,i
$← R′ //G′′

7

09 e := Enc(pkj , r
′
j,i;R

′
j,i) //G′′

7

10 e[j, i] := e,K[j, i] := hpkj
(e)

11 pk[j] := pkj

12 (pk, r) ← EXTA,|G〉,Decmu,|H〉,|H′〉(par,pk, e,K)
13 return (pk, r)

Oracle H′(pk, k, e)

14 return h′(pk, k, e)

Oracle Decmu(j, e)

15 if e ∈ e[j, ·]
16 return ⊥
17 K := hpkj

(e)
18 return K

Oracle G(pk, r)

19 return g(pk, r)

Oracle H(pk, r, e)

20 if pk ∈ pk
21 ∧e = Enc(pk, r;G(pk, r))
22 return hpk(e)
23 return h(pk, r, e)

Fig. 9. Games G′
7 and G′′

7 in the proof of Lemma 14. Highlighted lines are only exe-
cuted in the corresponding games.

Proof (Lemma 14). In the gamehop from G6 to G7 in the proof of Theorem 2 in
Sect. 4.2, we argued that if A plays G6 then A is interacting with the oracle O0,
and if A plays G7 then A is interacting with oracle O1, where O0 is the oracle
G in G6, O1 is the oracle G in G7, O0\S = O1\S, and S is defined as follows:

S := {(pk1, r1,1), (pk1, r1,2), ..., (pkj , rj,i), ..., (pkN , rN,S)}.

We can view O0 and O1 as follows:

O0(pk, r) =

⎧
⎪⎨
⎪⎩

Rj,i, if ∃(j, i) ∈ [N ] × [S]
s.t. (pk, r) = (pkj,i, rj,i)

g(pk, r), Otherwise
, O1(pk, r) = g(pk, r).

Therefore, we can also view the game environment of G6 is the same as the one
of G7, except that the oracles G in these two games are different. That is, we can
view Rj,i’s in G6 are also generated by independently and uniformly sampling,
but then G is set up such that G(pkj , rj,i) := Rj,i. While in G7, we do not change
G. So, GA

6 is equivalent to A plays G7 but the oracle G it interacts with is O0.
And thus we have

|Pr [
GA

6 ⇒ 1
] − Pr

[
GA

7 ⇒ 1
] |

= |Pr [
1 ← AO0 : G7

] − Pr
[
1 ← AO1 : G7

] |.

Here we ignore other oracles that A can access, since such oracles, Dec,H′, and
H, are either independent of G or can be simulated by querying G.
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In G7, A issues at most (qG + qH) queries to G. By using Lemma 1, there
exists EXT such that

|Pr [
1 ← AO0 : G7

] − Pr
[
1 ← AO1 : G7

] |
≤ 2(qG + qH)

√
Pr[(pk, r) ∈ S : (pk, r) ← EXT in G′

7]

where G′
7 is defined in Fig. 9 and (pk, r) ∈ S means that there exists (j, i) ∈

[N ] × [S] such that (pk, r) = (pkj,i, rj,i) (i.e., EXT finds out one of rj,i’s in G′
7).

G′
7 has identical structure with G7, and the only difference is that G′

7 is defined
for EXT, since by definitions in Lemma 1, EXT plays the same game with A and
it randomly measures A’s QRO queries and outputs the measurement outcome.

Here we bound Pr[(pk, r) ∈ S : (pk, r) ← EXT in G′
7]. We use an auxiliary

game G′′
7 , which is almost the same as G′

7 except that the challenge ciphertexts
ej,i’s are generated using r′

j,i’s and R′
j,i’s, respectively, which are independent of

rj,i. By the lossiness of PKE and a simple hybrid argument, we have

|Pr[(pk, r) ∈ S : (pk, r) ← EXT in G′
7]

−Pr[(pk, r) ∈ S : (pk, r) ← EXT in G′′
7 ]| ≤ NS · εloPKE.

In G′′
7 , rj,i’s are independent of the view of A (and thus independent of EXT),

so we have
Pr[(pk, r) ∈ S : (pk, r) ← EXT in G′′

7 ] ≤ NS

|M′| .

Therefore, we have

|Pr [
GA

6 ⇒ 1
] − Pr

[
GA

7 ⇒ 1
] | ≤ 2(qG + qH)

√
NS · εloPKE + NS/|M′|,

as stated in Lemma 14.

5 Security Model for AKE

A two-message AKE protocol AKE consists of five algorithms Setup′,KG′, Init,
DerR, and DerI. The setup algorithm Setup′, on input security parameter 1λ,
outputs global AKE system parameters par′. For sake of simplicity, we ignore
the input λ and just write par′ ← Setup′. KG′ takes the system parameters par′

as input and outputs a key pair (pk′, sk′). A user in an AKE protocol runs KG′

to generate a long-term key pair for itself.
Algorithms Init,DerR, and DerI are used to establish AKE sessions between

users. Let Ui and Uj be two users with long-term key pairs (pk′
i, sk

′
i) and

(pk′
j , sk

′
j), respectively. Figure 10 shows how Ui, (as initiator) shares an AKE

session key with Uj (as responder). To initialize the session with Uj , Ui runs the
session initialization algorithm Init, which takes sk′

i, pk
′
j as inputs and outputs

a protocol message Mi and session state st, and then Ui sends Mi to Uj and
keeps st locally. On receiving Mi, Uj runs the responder’s derivation algorithm
DerR, which takes sk′

j , pk
′
i, and the received message Mi as inputs, to generate

a response Mj and a session key SKj . Uj sends Mj to Ui. Finally, on receiving
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Fig. 10. Illustration for a two-pass AKE protocol execution between user Ui and Uj .

Mj , Ui runs the initiator’s derivation algorithm DerI which inputs sk′
i, pk

′
j , the

received message Mj , and the local session state st generated before, to generate
a session key SKi. In two-message AKE protocols, the responder does not need
to save session state since it can compute the session key right after receiving
the initiator’s message.

AKE Security Model. Following [20], we define a game-based AKE security
model using pseudocode. This model is a weaker version of the weak-forward-
secrecy model in [20] that it does not consider the state-reveal attack and consid-
ers only one Test query. Our motivation of considering such a model is to focus
on the standard security for AKE, such as security against key-compromise-
impersonation (KCI) attacks and weak forward secrecy. With state reveals, our
security loss has an additional linear factor on the number of sessions, but no
square-root loss, which still improves the bound of Hövelmanns et al. [19]. We
stress that even in this weaker model the analysis of KEM-based AKE in the
QROM of Hövelmanns et al. still has a square-root-loss. For more details, please
refer to Remark 1. We move the full details of this model to our full version [31].

In this paper, we say AKE is wFS-KCI secure (weak-forward-secrecy against
key-compromise-impersonation attacks) if for all adversaries A, the advantage
AdvwFS-KCIAKE (A) is negligible.

6 Session-Tight AKE Protocol

Let KEM1 and KEM2 be two KEM schemes with KEM key spaces K1

and K2, respectively. We construct our two-message AKE protocol AKE =
(Setup′,KG′, Init,DerR,DerI) as shown in Fig. 11, where SK is the session key
space of AKE and H : {0, 1}∗ → SK is a hash function which is used to derive
the session key.

Theorem 3. Let N be the number of users and S be the number of total ses-
sions in game wFS-KCI. If KEM1 is a MC-IND-CCA secure KEM and KEM2 is
a MUC-IND-CCA secure KEM and H is modeled as a quantum random oracle,
then for any quantum adversary A against AKE, there exists quantum adver-
saries B1 and B2 such that the running time of B1 and B2 about that of A and
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Alg Setup′(λ)

01 par ← Setup1(λ)
02 p̃ar ← Setup2(λ)
03 return par′ := (par, p̃ar)

Alg KG′(par, p̃ar)

04 (pk, sk) ← KGen1(par)
05 return (pk, sk)

Alg DerR(skj , pki, (
˜pk, ctj))

06 Kj := Decaps1(skj , ctj)

07 (˜ct, ˜K) ← Encaps2(
˜pk)

08 (cti, Ki) ← Encaps1(pki)

09 ctxt := (pki, pkj ,
˜pk, cti, ctj , ˜ct)

10 SK := H(ctxt, Ki, Kj , ˜K)
11 return ((˜ct, cti), SK)

Alg Init(ski, pkj , (par, p̃ar))

12 (˜pk, ˜sk) ← KGen2(p̃ar)
13 (ctj , Kj) ← Encaps1(pkj)

14 st := (˜pk, ˜sk, ctj , Kj)

15 return ((˜pk, ctj), st)

Alg DerI(ski, pkj , (˜ct, cti), st)

16 let (˜pk, ˜sk, ctj , Kj) := st

17 ˜K := Decaps2(
˜sk, ˜ct)

18 Ki := Decaps1(ski, cti)

19 ctxt := (pki, pkj ,
˜pk, cti, ctj , ˜ct)

20 SK := H(ctxt, Ki, Kj , ˜K)
21 return SK

Fig. 11. Our AKE protocol AKE which is based on KEM schemes KEM1 = (Setup1,
KGen1,Encaps1,Decaps1) and KEM2 = (Setup2,KGen2,Encaps2,Decaps2).

AdvwFS-KCIAKE (A) ≤ NηKEM1 +
4qH

√
SN√|K1|

+
4qH

√
S√|K2|

+ 4 · AdvMUC-IND-CCA
KEM2

(B2) + 4N · AdvMC-IND-CCA
KEM1

(B1),

where qH is the number of queries to H and ηKEM1 is the public key collision
probability of KEM1.

Combining the results from this section with the results from Sects. 3.2, 3.3, 4.1
and 4.2, we obtain the following corollary

Corollary 2. There is an AKE scheme AKE, such that for any quantum adver-
sary A against AKE, there is an algorithm B such that the running time of B is
about that of A and

AdvwFS-KCIAKE (A) ≤ 16k · AdvLWEt,m,q,D
Z,s′′ (B)

+ 16N� · AdvLWEk′,m,q,D
Z,s (B) + negl(λ),

where k = Θ(λ), k′ = Θ(λ), � = Θ(λ), t = Θ(λ),m = o(λ2) and s, s′′ > denote
appropriate parameters and negl(λ) denotes a negligible statistical term.

Remark 1 (Session State Reveal). Our AKE model does not allow an adversary
to reveal session states as in [19]. Considering SessionStateReveal, our security
bound is no longer session-tight, since we cannot simulate the session states in
a session-tight manner, given only MC-CCA or MUC-CCA security. In order
to embed challenges, the security reduction has to guess which session will be
tested by adversaries in advance. Hence, the bound will be

εAKE ≤ Θ(NS) · Θ(λ) · εLWE,
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which does not contain square-root loss. It still improves the bound of Hövel-
manns et al. [19] which has square-root loss on εLWE (cf. Eq. (1)).

Proof (Theorem 3). First, we assume that all users in the AKE game have dif-
ferent key pairs and all the messages output by the oracles are different. This
will add ηKEM1 to the final bound. Since KEM1 and KEM2 are multi-challenge
IND-CCA and multi-user-challenge IND-CCA secure, respectively, the probabil-
ity that two different executions of Encaps1, KGen2, or Encaps2 have the same
output is negligible (and such probability is already considered in their multi-
user-challenge or multi-challenge definitions). So, assuming different executions
of SessionI and SessionR will output different protocol messages will not influ-
ence our final bound. Moreover, by this assumption, it is impossible for a session
to have more than one matching or partially matching session.

To bound AdvwFS-KCIAKE (A), we split up the event that the adversary wins into
four cases. Let Gx,b be a game that is the same as wFS-KCIAAKE,b(λ) except that
the test session sID∗ is of type (x) (for x ∈ {1, 2, 3, 4}, (cf. [31, Table 1]). That
is,

Pr [Gx,b ⇒ 1] = Pr
[
wFS-KCIAAKE,b(λ) ⇒ 1 ∧ sID∗ is of type (x)

]
,

and thus we have

AdvwFS-KCIAKE (A) =
∣∣∣Pr

[
wFS-KCIAAKE,0(λ) ⇒ 1

]
− Pr

[
wFS-KCIAAKE,1(λ) ⇒ 1

]∣∣∣

≤
4∑

x=1

|Pr [Gx,0 ⇒ 1] − Pr [Gx,1 ⇒ 1]| .

Now, we can construct a security reduction according to the type of sID∗.
Lemmata 15 and 16 bound |Pr [Gx,0 ⇒ 1] − Pr [Gx,1 ⇒ 1]| for x ∈ {1, 2, 3, 4}.
Lemma 15 will be proved later. The proof of Lemma 16 is postponed to our full
version [31].

Lemma 15. With notations and assumptions in the proof of Theorem 3, there
exists an adversary B2 such that its running time is about if A and

|Pr [
GA

1,0 ⇒ 1
] − Pr

[
GA

1,1 ⇒ 1
] | ≤ 2AdvMUC-IND-CCA

KEM2
(B2) +

2qH
√

S√|K2|
,

|Pr [
GA

2,0 ⇒ 1
] − Pr

[
GA

2,1 ⇒ 1
] | ≤ 2AdvMUC-IND-CCA

KEM2
(B2) +

2qH
√

S√|K2|
.

Lemma 16. With notations and assumptions in the proof of Theorem 3, there
exists an adversary B1 such that its running time is about if A and

Pr
[
GA

3,0 ⇒ 1
] − Pr

[
GA

3,1 ⇒ 1
] | ≤ 2NAdvMC-IND-CCA

KEM1
(B1) +

2qHN
√

S√|K1|
,

Pr
[
GA

4,0 ⇒ 1
] − Pr

[
GA

4,1 ⇒ 1
] | ≤ 2NAdvMC-IND-CCA

KEM1
(B1) +

2qHN
√

S√|K1|
.
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Combining these lemmas, we have

AdvwFS-KCIAKE (A) =
∣∣∣Pr

[
wFS-KCIAAKE,0 ⇒ 1

]
− Pr

[
wFS-KCIAAKE,1 ⇒ 1

]∣∣∣

≤ NηKEM1 +
4qHN

√
S√|K1|

+
4qH

√
S√|K2|

+ 4AdvMUC-IND-CCA
KEM2

(B2) + 4N · AdvMC-IND-CCA
KEM1

(B1)

as stated in Theorem 3.

Proof (Lemma 15). We bound type (1), i.e. |Pr [
GA

1,0 ⇒ 1
] − Pr

[
GA

1,1 ⇒ 1
] |.

The proof for type (2), i.e. |Pr [
GA

2,0 ⇒ 1
] − Pr

[
GA

2,1 ⇒ 1
] |, is identical as the

one of type (1). To prove the bound, we give a game sequence G1-0,b,G1-1,b, and
G1-2,b in Fig. 12. Game G1-0,b is the same as G1,b, and we have

Pr
[
GA

1,b ⇒ 1
]
= Pr

[
GA

1-0,b ⇒ 1
]

for both b ∈ {0, 1}.

Game G1−0,b-G1−2,b (b ∈ {0, 1})
01 L2 := ∅
02 cnt := 0, sID∗ := ∅
03 par ← Setup1(λ)
04 p̃ar ← Setup2(λ)
05 par′ := (par, p̃ar)
06 for t ∈ [N ] :
07 (pkt, skt) ← KGen1(par)
08 O1 := (SessionI,DerI,SessionR)
09 O2 := (Cor,Rev,Test)
10 b′ ← AO1,O2,|H〉(par′, (pkt)t∈[N])

11 if Fresh(sID∗) = 0 ∨ Valid(sID∗) = 0
12 ∧ sID∗ is not type (1).
13 return 0
14 return b′

Oracle DerI(sID,M)

15 if Used[sID] = 1 ∨ St[sID] = ⊥
16 ∨SK[sID] �= ⊥ : return ⊥
17 Used[sID] := 1, st := St[sID]
18 (i, j) := (Init[sID], Resp[sID])
19 let (˜ct, cti) := M

20 let ( ˜pk, ˜sk, ctj , Kj) := st

21 ˜K := Decaps2(
˜sk, ˜ct)

22 if ∃K s.t. ( ˜pk, ˜ct, K) ∈ L2
//G1−1,b-G1−2,b

23 ˜K := K //G1−1,b-G1−2,b

24 ctxt := (pki, pkj , ˜pk, cti, ctj , ˜ct)

25 SK := H(ctxt, Ki, Kj , ˜K)
26 (R[sID], SK[sID]) := (M, SK)
27 return 1

Oracle SessionI((i, j) ∈ [N ]2)

28 cnt := cnt + 1, sID := cnt
29 (Init[sID], Resp[sID]) := (i, j)
30 Type[sID] := “In”
31 ( ˜pk, ˜sk) ← KGen2(p̃ar)

32 L2 := L2 ∪ {( ˜pk, ⊥, ⊥)} //G1−1,b-G1−2,b

33 (ctj , Kj) ← Encaps1(pkj)

34 ( ˜pk, ˜sk) ← KGen2(p̃ar)

35 st := ( ˜pk, ˜sk, ctj , Kj),Mi := ( ˜pk, ctj)
36 (I[sID], St[sID]) := (Mi, st)
37 return (sID,Mi)

Oracle SessionR((i, j) ∈ [N ]2,M)

38 cnt := cnt + 1, sID := cnt
39 (Init[sID], Resp[sID]) := (i, j)
40 Type[sID] := “Re”
41 let ( ˜pk, ctj) := M

42 (˜ct, ˜K) ← Encaps2(
˜pk)

43 if ( ˜pk, ⊥, ⊥) ∈ L2 //G1−1,b-G1−2,b

44 ˜Kj ← K2 //G1−2,b

45 L2 := L2 ∪ {( ˜pk, ˜ct, ˜K)}
//G1−1,b-G1−2,b

46 Kj := Decaps1(skj , ctj)

47 ctxt := (pki, pkj , ˜pk, cti, ctj , ˜ct)

48 SK := H(ctxt, Ki, Kj , ˜K)

49 SK[sID] := SK,Mj := (˜ct, cti)
50 (I[sID], R[sID]) := (M,Mj)
51 return (sID,Mj)

Fig. 12. Games in proving Lemma 15. Oracles in O2 are the same as in wFS-KCIAKE,b.
The QRO H is simulated in the same way as in the proof of Theorem 2.
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G1-1,b: The game first initializes a list L2 that will be used to store triples
(p̃k, c̃t, K̃) of KEM2 generated in SessionI and SessionR. Specifically, it main-
tains L2 as follows:

– In SessionI(i, j), the game simulator records (p̃k,⊥,⊥) in L2.
– In SessionR(i, j, (p̃k, ctj)), the game simulator records the tuple (p̃k, c̃t, K̃) in

L2 if p̃k is generated from SessionI (i.e., generated by the game simulator).
– In DerI(sID, (c̃t, cti)), the game simulator gets the decryption of c̃t from L2

(without decrypting) if its corresponding KEM key is recorded in the list.

This modification does not change A’s view. If p̃k is generated from SessionI
and c̃t is generated from SessionR, then the game simulator knows the corre-
sponding KEM key of c̃t. L2 is used to record such KEM keys. Therefore, these
modifications are conceptual, we have

Pr
[
GA

1-0,b ⇒ 1
]
= Pr

[
GA

1-1,b ⇒ 1
]

for both b ∈ {0, 1}.

G1-2,b: We switch the KEM keys generated by KEM2 to be independently and
uniformly random. Namely, in SessionR(i, j, (p̃k, cti)), if p̃k is generated from
SessionI (i.e., (p̃k,⊥,⊥) ∈ L2), we sample K̃ uniformly at random. Intuitively,
this change will not influence the consistency of the computation of session keys,
since in G1,b, all KEM keys of KEM2 generated by the game can found in the
L2, and the adversary cannot get the corresponding s̃k.

More formally, we use MUC-IND-CCA security of KEM2 to argue that A can-
not detect this change. To this end, we construct a reduction (against KEM2),
which works as follows: It plays the MUC-IND-CCA game with S users and
S challenge ciphertexts per users (S is the number of session in the AKE
game). It embeds the challenge public keys in SessionI and embed the chal-
lenge ciphertexts in SessionR. This reduction B2 is formally given Fig. 13. The
triple recorded in L2 are all from the inputs of B2. When simulating DerI, if
(p̃k, c̃t, K̃) /∈ L2, then c̃t is not a challenge ciphertext respect to p̃k, and B2 can
query Decmu to decrypt c̃t. If B2 plays MUC-IND-CCAKEM2,0, then it perfectly
simulates G1-1,b, and if it plays MUC-IND-CCAKEM2,1, then it perfectly simulates
G1-2,b. Therefore, we have

|Pr [
GA

1-1,b ⇒ 1
] − Pr

[
GA

1-2,b ⇒ 1
] | ≤ AdvMUC-IND-CCA

KEM2
(B2).

We argue that G1-2,0 is equivalent to G1-2,1, except with a negligible prob-
ability. Let (pki, pkj , p̃k, cti, ctj , c̃t,Ki,Kj , K̃) be the hash input of sID∗. Since
sID∗ is of type (1), then by definition, sID∗ has a unique matching session, which
means that (p̃k, c̃t, K̃) is generated by the game and thus K̃ is independently
and uniformly random. Then, by Corollary 1, if A queries H at most qH times,
except with 2qH

√
S√

|K2| (there are at most S session keys), the session key of sID∗

generated in G1-2,0 is indistinguishable from the one in G1-2,1, i.e.

∣∣Pr [
GA

1-2,0 ⇒ 1
] − Pr

[
GA

1-2,1 ⇒ 1
]∣∣ ≤ 2qH

√
S√|K2|

,
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Reduction BDecmu
2 (p̃ar,pk, c,K)

01 L1 := ∅
02 cnt := 0, sID∗ := ⊥
03 par ← Setup1(λ), par′ := (par, p̃ar)

04 for t ∈ [N ] :
05 (pkt, skt) ← KGen1(par)
06 O1 := (SessionI,DerI,SessionR)
07 O2 := (Cor,Rev,Test)
08 b′ ← AO1,O2,|H〉(par′, (pkt)t∈[N ])
09 if Fresh(sID∗) = 0 ∨ Valid(sID∗) = 0
10 return 0
11 return b′

Oracle DerI(sID,M)

12 if Used[sID] = 1 ∨ St[sID] = ⊥
13 ∨SK[sID] �= ⊥ : return ⊥
14 Used[sID] := 1, st := St[sID]
15 (i, j) := (Init[sID], Resp[sID])
16 let (˜ct, cti) := M

17 let (˜pk, ⊥, ctj , Kj) := st

18 if ∃K s.t. (˜pk, ˜ct, K) ∈ L2

19 ˜K := K

20 else ˜K := Decmu(sID, ˜ct)

21 Ki := Decaps1(ski, cti)

22 ctxt := (pki, pkj ,
˜pk, cti, ctj , ˜ct)

23 SK := H(ctxt, Ki, Kj , ˜K)
24 (R[sID], SK[sID]) := (M, SK)
25 return 1

Oracle SessionI((i, j) ∈ [N ]2)

26 cnt := cnt+ 1, sID := cnt
27 (Init[sID], Resp[sID]) := (i, j)
28 Type[sID] := “In”

29 ˜pk := pk[sID]

30 L2 := L2 ∪ {(˜pk, ⊥, ⊥)}
31 (ctj , Kj) ← Encaps1(pkj)

32 st := (˜pk, ˜sk, ctj , Kj),Mi := (˜pk, ctj)
33 (I[sID], St[sID]) := (Mi, st)
34 return (sID,Mi)

Oracle SessionR((i, j) ∈ [N ]2,M)
35 cnt := cnt+ 1, sID := cnt
36 (Init[sID], Resp[sID]) := (i, j)
37 Type[sID] := “Re”
38 let (˜pk, ctj) := M

39 (˜ct, ˜K) ← Encaps2(
˜pk)

40 if (˜pk, ⊥, ⊥) ∈ L2

41 Let t ∈ [S] s.t. ˜pk = pk[t]

42 (˜ct, ˜K) := (c[t, sID],K[t, sID])

43 L2 := L2 ∪ {(˜pk, ˜ct, ˜K)}
44 Kj := Decaps1(skj , ctj)
45 (cti, Ki) ← Encaps1(pki)

46 ctxt := (pki, pkj ,
˜pk, cti, ctj , ˜ct)

47 SK := H(ctxt, Ki, Kj , ˜K)
48 SK[sID] := SK,Mj := (˜ct, cti)
49 (I[sID], R[sID]) := (M,Mj)
50 return (sID,Mj)

Fig. 13. The reduction in the proof of Lemma 15. The highlighted codes show how the
reduction embeds the challenges into the AKE sessions. Oracles O2 and H are simulated
in the same way with that in Fig. 12.

and in conclusion, we have

∣∣Pr [
GA

1,0 ⇒ 1
] − Pr

[
GA

1,1 ⇒ 1
]∣∣ ≤ 2AdvMUC-IND-CCA

KEM2
(B2) +

2qH
√

S√|K2|
.

The same arguments can be used to bound |Pr [
GA

2,0 ⇒ 1
] − Pr

[
GA

2,1 ⇒ 1
] |,

and we have

∣∣Pr [
GA

2,0 ⇒ 1
] − Pr

[
GA

2,1 ⇒ 1
]∣∣ ≤ 2AdvMUC-IND-CCA

KEM2
(B2) +

2qH
√

S√|K2|
.
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Abstract. Recently, in post-quantum cryptography migration, it has
been shown that an IND-1-CCA-secure key encapsulation mechanism
(KEM) is required for replacing an ephemeral Diffie-Hellman (DH) in
widely-used protocols, e.g., TLS, Signal, and Noise. IND-1-CCA secu-
rity is a notion similar to the traditional IND-CCA security except
that the adversary is restricted to one single decapsulation query. At
EUROCRYPT 2022, based on CPA-secure public-key encryption (PKE),
Huguenin-Dumittan and Vaudenay presented two IND-1-CCA KEM
constructions called TCH and TH , which are much more efficient than
the widely-used IND-CCA-secure Fujisaki-Okamoto (FO) KEMs. The
security of TCH was proved in both random oracle model (ROM) and
quantum random oracle model (QROM). However, the QROM proof of
TCH relies on an additional ciphertext expansion. While, the security of
TH was only proved in the ROM, and the QROM proof is left open.

In this paper, we prove the security of TH and TRH (an implicit vari-
ant of TH) in both ROM and QROM with much tighter reductions than
Huguenin-Dumittan and Vaudenay’s work. In particular, our QROM
proof will not lead to ciphertext expansion. Moreover, for TRH , TH

and TCH , we also show that a O(1/q) (O(1/q2), resp.) reduction loss
is unavoidable in the ROM (QROM, resp.), and thus claim that our
ROM proof is optimal in tightness. Finally, we make a comprehensive
comparison among the relative strengths of IND-1-CCA and IND-CCA
in the ROM and QROM.

Keywords: quantum random oracle model · key encapsulation
mechanism · 1CCA security · tightness · KEM-TLS
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With the gradual advancement of NIST post-quantum cryptography (PQC)
standardization, research on migration from the existing protocols to post-
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quantum protocols with new standardized algorithms has been a hot topic. For
ephemeral key establishment, one has to move the current Diffie-Hellman (DH)
key-exchange to post-quantum key encapsulation mechanisms (KEMs).

The security goal required for such a substitutive KEM has been thoroughly
analyzed for TLS 1.3 [15,21], KEM-TLS [37,38], Signal [9] and Noise [2]. In
general, the security of these DH-based protocols is proved based on the PRF-
ODH assumption [10]. But, when one uses KEM to replace DH, IND-1-CCA
security is required instead, see post-quantum TLS [15,21,37,38], post-quantum
Signal [9] and post-quantum Noise [2]. In addition, Huguenin-Dumittan and
Vaudenay [21] pointed out that IND-1-CCA KEMs are also used in Ratchet-
ing [4,25,32]. Roughly speaking, IND-1-CCA security says that the adversary
is required to distinguish an honestly generated key from a randomly generated
key by making at most a single decapsulation query.

IND-1-CCA security is obviously implied by IND-CCA security that has
been widely studied in [6,14,16,17,19,22–24,26,35]. In general, IND-CCA-secure
KEMs are obtained by applying Fujisaki-Okamoto-like (FO-like) transform to a
OW/IND-CPA-secure public-key encryption (PKE). In particular, all the KEM
candidates to be standardized and Round-4 KEM submissions [30] adopted
FO-like construction. The current implementations of KEM-TLS [37,38], post-
quantum TLS 1.3 [31] and post-quantum Noise framework [2] directly take
IND-CCA-secure KEMs as IND-1-CCA-secure KEMs. However, FO-like IND-
CCA-secure KEMs require re-encryption of the decrypted plaintext in decapsu-
lation, making it an expensive operation. For instance, as shown in [21], when
re-encryption is removed, there will be a 2.17X and 6.11X speedup over decap-
sulation in CRYSTALS-Kyber [8] and FrodoKEM [28] respectively. Moreover,
the re-encryption makes the KEM more vulnerable to side-channel attacks and
almost all the NIST-PQC Round-3 KEMs are affected, see [3,39]. Meanwhile, the
side-channel protection of re-encryption will significantly increase deployment
costs and thus complicate the integration of NIST-PQC KEMs [27]. Therefore,
designing a dedicated IND-1-CCA-secure KEM without re-encryption was taken
as an open problem raised by Schwabe, Stebila and Wiggers [37].

This problem was recently studied by Huguenin-Dumittan and Vaude-
nay [21]. They found that simple modification of the current FO-like KEMs can
achieve an IND-1-CCA-secure KEM without re-encryption. In detail, they pre-
sented two constructions. One construction (called TCH) is that an additional
hash value of message and ciphertext is appended to the original ciphertext
(usually called key-confirmation). The security of TCH was proved in the ran-
dom oracle model (ROM) with tightness εR ≈ O(1/q)εA, and in the quantum
random oracle model (QROM) with tightness εR ≈ O(1/q3)ε2A, where εR (εA,
resp.) is the advantage of the reduction R (adversary A, resp.) breaking the
security of the underlying PKE (the resulting KEM, resp.), and q is the number
of A’s queries to the random oracle (RO). Different from ROM, QROM allows
the adversary to make quantum queries to the RO. To prove the post-quantum
security of cryptosystem, one has to prove in the QROM [7]. Unfortunately,
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the QROM proof of TCH in [21] relies on key-confirmation (i.e., an additional
length-preserving hash is required)1, which will leads to a ciphertext expansion.

The second construction given in [21] is TH , where ciphertext c is obtained
by encrypting a randomly message m, the key is derived by H(m, c). In decap-
sulation, if m′ = Dec(sk, c) = ⊥, ⊥ is returned, otherwise H(m′, c) is returned,
where Dec is the decryption algorithm of PKE, and sk is the secret key. In fact,
TH is the same as U⊥ in [17]. Note that both TCH and TH do not require re-
encryption. But, compared with TCH , TH will not lead to ciphertext expansion.
However, Huguenin-Dumittan and Vaudenay [21] only gave the ROM proof of
TH with tightness εR ≈ O(1/q3)εA. The QROM proof is left open due to the
challenge that a lot of RO programming property is used2.

1.1 Our Contributions

Our contributions are as follows.

1. First, we prove the security of TH and its implicit variant TRH in both ROM
and QROM. TRH is the same as the TH except that in decapsulation a pseudo-
random value H(�, c) is returned instead of an explicit ⊥ for an invalid cipher-
text c such that Dec(sk, c) = ⊥. In particular, our QROM proof will not lead
to ciphertext expansion (Table 1). In the ROM, our reduction has tightness
εR ≈ O(1/q)εA, which is much tighter than εR ≈ O(1/q3)εA given by [21] for
TH . In the QROM, our reduction achieves tightness εR ≈ O(1/q2)ε2A, which
is tighter than εR ≈ O(1/q3)ε2A given by Huguenin-Dumittan and Vaudenay
in [21] for TCH (with ciphertext expansion).

2. Then, for TH , TRH and TCH , we show that if the underlying PKE meets mal-
leability property, a O(1/q) (O(1/q2), resp.) loss is unavoidable in the ROM
(QROM, resp.). That is, our ROM reduction is optimal in general. Roughly
speaking, the malleability property says that an adversary can efficiently
transform a ciphertext into another ciphertext which decrypts to a related
plaintext. In particular, such a malleability property is met by real-world PKE
schemes, e.g., ElGamal, FrodoKEM.PKE [28], CRYSTALS–Kyber.PKE [8],
etc.

1 The length-preserving property of the additional hash is implicitly required by the
QROM proof in [21] and will increase the ciphertext size by |ct| + |m|, where |ct|
is the PKE ciphertext size and |m| is the message size. Very recently, Huguenin-
Dumittan and Vaudenay [20] updated their ePrint version and presented a new
proof for TCH using the extractable RO technique [14] with improved bound εR ≈
O(1/q2)ε2A − O(q3/2n) − O(q/

√
2n) (n is the RO-output length), which removes the

length-preserving requirement. But, the additional key-confirmation is still required.
2 At EUROCRYPT 2022, Huguenin-Dumittan and Vaudenay [21] conjectured that the

popular compressed oracle technique proposed by Zhandry [42] might be of use in
the QROM proof. Surprisingly, in our QROM proof, only the other two well-known
techniques called one-way to hiding (O2H) [1,6] and measure-and-reprogram [12] are
used.
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3. Finally, we compare the relative strengths of IND-1-CCA and IND-CCA in
the ROM and QROM, see Fig. 1. For each pair of notions A, B ∈{IND-1-CCA
ROM, IND-CCA ROM, IND-1-CCA QROM, IND-CCA QROM}, we show
either an implication or a separation, so that no relation remains open.

Remark 1. Our construction TRH is essentially the construction U�⊥ in [17],
except that the secret seed s in decapsulation is replaced by a public value � (�
can be any fixed message). In fact, our proof can work for both secret seed and
public value thanks to the newly introduced decapsulation simulation technique,
while the current IND-CCA proofs for implicit FO-KEMs (e.g., see [17,22]) can
only work for secret seed. We choose to replace secret seed by public value since
it reduces the secret key size and makes the construction more concise. More-
over, from a high-assurance implementation (i.e., side-channel protected) point
of view, public value is also preferable to secure seed, see comments by Schneider
at NIST pqc-forum [36].

Table 1. Reduction tightness in the ROM/QROM.

Transformation Reduction
tightness

Ciphertext
expansion

Re-encryption ROM or
QROM

FO [17] εR ≈ εA N Y ROM

TCH [21] εR ≈ O(1/q)εA Y N ROM

TH [21] εR ≈ O(1/q3)εA N N ROM

Our TRH and TH εR ≈ O(1/q)εA N N ROM

FO [6,24] εR ≈ O(1/q)ε2A N Y QROM

TCH [21] εR ≈ O(1/q3)ε2A Y N QROM

Our TRH and TH εR ≈ O(1/q2)ε2A N N QROM

1.2 Practical Impact

An IND-1-CCA KEM is sufficient to replace Diffie-Hellman in the post-quantum
migration of the widely-deployed protocols, such as TLS 1.3, Signal and Noise.
Our results show that IND-1-CCA-secure KEMs can be constructed in the ROM
and QROM without re-encryption and cipher-expansion. Compared with IND-
CCA-secure KEMs based on FO transform, such as CRYSTALS-Kyber, the IND-
1-CCA-secure KEMs based on TH and TRH do not require the re-encryption in
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IND-1-CCA ROM

IND-CCA ROM

IND-1-CCA QROM

IND-CCA QROM

6.1

6.1

6.1

6.2
6.2

6.2

Fig. 1. The relations among notions of security for KEM. An arrow is an implication,
and there is a path from A to B if and and only A ⇒ B. The hatched arrows represent
separations actually we prove. The number on an hatched arrow refers to the theorem
in this paper which establishes this relationship.

decapsulation. The re-encryption is highly vulnerable to attacks and its side-
channel protection will significantly increase deployment costs. Thus, from a
practical point of view, removing the re-encryption of FO-like KEMs will improve
the performance of embedded side-channel secure implementations. Therefore,
according to our results, one can easily transform CRYSTALS-CKyber.PKE
into an IND-1-CCA-secure KEM without re-encryption and cipher-expansion,
and then establish post-quantum-secure variants of TLS 1.3, Signal and Noise
with better performance in the embedded implementation.

1.3 Open Problem

We prove a O(1/q) (O(1/q2), resp.) loss is unavoidable in the ROM (QROM,
resp.) for the IND-1-CCA KEMs in this paper and [21]. Our ROM proof essen-
tially matches this loss. However, our QROM tightness does not match O(1/q2).
Thus, a natural question is can our QROM reduction tightness be further
improved, or can one find a new attack that matches the QROM proof in this
paper.

1.4 Technique Overview

Construction and Reduction. Re-encryption is the core feature of FO-like
CCA-KEMs, which guarantees that only specific valid ciphertexts can be
correctly decapsulated, and thus makes the decapsulation simulation in the
ROM/QROM proof easy (see [6,14,16–19,22–24,35]). However, on the other
hand, as mentioned earlier, removing the re-encryption will bring a signifi-
cant speed boost in decapsulation [21,37] and reduce the risk of side-channel
attacks [3,39].

However, removing re-encryption makes the current decapsulation simulation
for FO-like CCA-KEMs incompatible with the KEMs in this paper and [21].
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So the key in the proof is the decapsulation simulation. We note that for a
valid ciphertext c̄ such that (Dec(sk, c̄) = m̄ �= ⊥)3, the decapsulation returns
H(m̄, c̄). Thus, if we reprogram H(m̄, c̄) to a random k̄, we can simulate the
decapsulation of c̄ using k̄ without knowledge of sk. To guarantee the consistency
between the outputs of H and the simulated decapsulation, one needs to correctly
guess when the adversary makes a query (m̄, c̄) to H, and perform a reprogram
at that time. In the ROM, a randomly guess is correct with probability 1/q.

In the QROM, due to adversary’s superposition RO-query, it is hard to define
when the adversary makes a query (m̄, c̄). Therefore, in the QROM, we argue in a
different way. We find that the consistency between H and the simulated decap-
sulation can be guaranteed if the predicate Decap(sk, c̄) = H(m̄, c̄) is satisfied.
Don, Fehr, Majenz, and Schaffner [12,13] showed that a random measure-and-
reprogram can keep the predicate satisfied with a high probability. However,
the measure-and-reprogram in [12,13] cannot be directly applied to our case.
This is due to the fact that the random measure in [12,13] is performed for all
the H-queries while in our case there is an implicit (classical) H-query used in
the real decapsulation that will be removed in the simulated decapsulation and
thus can not be measured. In this paper, extending the measure-and-reprogram
technique in [12,13], we derive a variant of measure-and-reprogram (see Lemma
3.1), which is suitable for our case. With this new measure-and-reprogram, the
QROM adversary can accept the simulation of both H and the decapsulation
oracle with probability at least O(1/q2).

When embedding the instance of the underlying security experiment into
the IND-1-CCA instance, we successfully embed an IND-CPA instance without
reduction loss in the ROM. While in [21] a OW-CPA instance is embedded with
a O(1/q) loss in the ROM. In the QROM, the instance embedding is very tricky.
We extend the double-sided O2H technique (see Lemma 2.3) to argue the QROM
instance embedding, more details please refer to the proof of Theorem 4.2.

We also remark that one can easily extend the results in this paper to the
IND-q-CCA KEM case for any arbitrary constant q. But, as aforementioned,
IND-1-CCA KEM is sufficient in practical protocols, e.g., TLS 1.3, KEM-TLS.

Attack and Tightness. Re-encryption in the FO-like KEMs will guarantee
that only the ciphertexts generated by derandomization are identified as valid.
That is, any ciphertext obtained by transforming another valid ciphertext can
be identified as invalid by re-encryption check. However, for the IND-1-CCA
KEMs in this paper and [21], the re-encryption check is removed. Thus, given
a challenge ciphertext c∗ ← Enc(pk,m∗) to distinguish K0 = H(m∗, c∗) from a
random K1, if an adversary B can efficiently transform c∗ into another ciphertext
c′ such that Dec(sk, c′) = f(m∗) for some specific function f (this property is
defined as malleability), then B can derive a hash value tag = Decap(sk, c′) =
H(f(m∗), c∗). Thus, B can search for m∗ such that tag = H(f(m∗), c∗) from
the message M by querying the random oracle H, and finally use H(m∗, c∗) to

3 In the full proof of TRH , the invalid case Dec(sk, c̄) = ⊥ is integrated into the valid
case Dec(sk, c̄) �= ⊥. while, the security of TH is directly reduced to the security of
TRH .
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distinguish K0 from K1. By detailed analysis, we show B can achieve advantage
at least O(q/2λ) in the ROM (O(q2/2λ) in the QROM). For a λ-bit secure
PKE, any PPT adversary breaks the security of PKE with advantage at most
O(1/2λ). Thus, we can claim that a O(1/q) (O(1/q2), resp.) loss is unavoidable
in the ROM (QROM, resp.) for the IND-1-CCA KEMs in this paper and [21].

Implication and Separation. By introducing a proof of quantum access to
random oracle given in [40], we construct a KEM that is provably IND-CCA-
secure (hence also IND-1-CCA secure) in the ROM, but cannot achieve IND-
1-CCA security (hence also IND-CCA security) in the QROM. In addition, we
show that applying our HRU to lattice-based PKE, e.g., FrodoPKE [28], can
derive an IND-1-CCA ROM (and also QROM) secure KEM. However, such a
KEM cannot achieve IND-CCA security in the ROM (hence QROM). The other
implication relations can be trivially obtained.

1.5 Related Work

The transformations in [21] and our paper are similar to U-transformation which
is originally proposed in [11] and converts a OW-PCA-secure/deterministic PKE
into an IND-CCA-secure KEM. The U-transformation has various variants,
including U⊥

m, U�⊥
m, HU⊥

m, HU⊥,QU⊥
m, QU�⊥

m, U⊥, U�⊥4. For QU⊥
m and QU�⊥

m,
Hofheinz, Hövelmanns and Kiltz [17] showed that the IND-CCA security of KEM
can be reduced to the OW-PCA security of PKE with tightness εR ≈ O(1/q2)ε2A.
The OW-PCA security is the same as the OW-CPA security except that the
adversary can additionally access a plaintext-checking oracle that judges whether
decryption of a given ciphertext is equal to a given plaintext. For implicit trans-
formations U�⊥

m and U�⊥, Jiang, Zhang, Chen, Wang and Ma [22] showed that the
IND-CCA security of KEM can be reduced to the quantum variant of OW-PCA
security of PKE or OW-CPA security of deterministic PKE (DPKE) with tight-
ness εR ≈ O(1/q2)ε2A, which is further improved to εR ≈ O(1/q)ε2A by Jiang,
Zhang and Ma [24], improved to εR ≈ ε2A by Bindel, Hamburg, Hövelmanns,
Hülsing and Persichetti [6], and improved to εR ≈ O(1/q)εA by Kuchta, Sakzad,
Stehlé, Steinfeld and Sun [26]. In particular, Saito, Xagawa, and Yamakawa [35]
gave a tight reduction for U�⊥

m from a newly introduced security (called disjoint
simulatability) of DPKE to the IND-CCA security of KEM. This tight result
was subsequently extended for the explicit HU⊥

m by Jiang, Zhang and Ma [23].
For HU⊥

m and HU⊥, Bindel, Hamburg, Hövelmanns, Hülsing and Persichetti [6]
showed that the same QROM results can be achieved as the implicit variants.
Recently, Don, Fehr, Majenz and Schaffner [14] first proved the QROM security
of U⊥

m
5. Note that all the U-transformations require re-encryption in decapsu-

4 The symbol ⊥ (�⊥) means explicit (implicit) rejection, m (without m) means
K = H(m) (K = H(m, c)), H (Q) means an additional (length-preserving) hash

value is appended into the ciphertext. In this paper, U⊥
m and U�⊥m are referred to

transformations with re-encryption in decapsulation.
5 Strictly speaking, they proved the security of FO⊥

m in the QROM. But, their proof
can be translated into a proof for U⊥

m.
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lation except U⊥ and U�⊥ (see [17,22]). However, the proofs for U⊥ and U�⊥

in [17,22] require the underlying PKE satisfies OW-PCA security, which is usu-
ally obtained by using de-randomization and re-encryption.

2 Preliminaries

Symbol Description. A security parameter is denoted by λ. The set {0, · · · , q}
is denoted by [q]. The abbreviation PPT stands for probabilistic polynomial time.
K, M, C and R are denoted as key space, message space, ciphertext space and
randomness space, respectively. Given a finite set X, we denote the sampling
of a uniformly random element x by x ←$ X. Denote the sampling from some
distribution D by x←D. x =?y is denoted as an integer that is 1 if x = y,
and otherwise 0. Pr[P : G] is the probability that the predicate P holds true
where free variables in P are assigned according to the program in G. Denote
deterministic (probabilistic, resp.) computation of an algorithm A on input x by
y = A(x) (y ← A(x), resp.). Let |X| be the cardinality of set X. AH (A|H〉, resp.)
means that algorithm A gets classical (quantum, resp.) access to the oracle H.
We present the cryptographic primitives in Supporting Material A.

2.1 Quantum Random Oracle Model

We refer the reader to [29] for basic of quantum computation. Random oracle
model (ROM) [5] is an idealized model, where a hash function is modeled as
a publicly accessible random oracle. Quantum adversary can off-line evaluate
the hash function on an arbitrary superposition of inputs. As a result, quantum
adversary should be allowed to query the random orale with quantum state. We
call this quantum random oracle model (QROM) [7].

2.2 One-Way to Hiding and Its Double-Sided Variant

Lemma 2.1 (One-way to hiding (O2H)[1, Theorem 3]). Let S ⊆ X be
random. Let G, H be oracles such that ∀x /∈ S. G(x) = H(x). Let z be a random
bitstring. (S,G,H, z may have arbitrary joint distribution.) Let A be quantum
oracle algorithm that makes at most q queries (not necessarily unitary). Let B|H〉

be an oracle algorithm that on input z does the following: pick i ∈ [q − 1], run
A|H〉(z) until (just before) the (i + 1)-th query, measure all query input registers
in the computational basis, output the set T of measurement outcomes. Then

∣
∣
∣Pr[1 ← A|H〉(Z)] − Pr[1 ← A|G〉(Z)]

∣
∣
∣ ≤ 2q

√

Pr[S ∩ T �= Ø : T ← B|H〉(z)].

Lemma 2.2 ((Adapted) Double-sided O2H [6, Lemma 5]). Let G, H :
X → Y be oracles such that ∀x �= x∗. G(x) = H(x). Let z be a random bitstring.
(x∗, G,H, z may have arbitrary joint distribution.) Let A be quantum oracle algo-
rithm that makes at most q queries (not necessarily unitary). Then, there is an
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another double-sided oracle algorithm B|G〉,|H〉(z) such that B runs in about the
same amount of time as A, and

∣
∣
∣Pr[1 ← A|H〉(z)] − Pr[1 ← A|G〉(z)]

∣
∣
∣ ≤ 2

√

Pr[x∗ = x′ : x′ ← B|G〉,|H〉(z)].

In particular, the double-sided oracle algorithm B|G〉,|H〉(z) runs A|H〉(z) and
A|G〉(z) in superposition, and the probability Pr[x∗ = x′ : x′ ← B|G〉,|H〉(z)] is
exactly ‖|ψq

H〉 − |ψq
G〉‖2 /4, where |ψq

H〉 (|ψq
G〉, resp.) is the final state of A|H〉(z)

(A|G〉(z), resp.).

2.3 Search in Double-Sided Oracle

In the proof of our main Theorem 4.2, we need to bound the advantage of
searching a reprogramming point in a double-sided oracle. Thus, we develop the
following lemma.

Lemma 2.3 (Search in Double-sided Oracle). Let G, H : X → Y be ora-
cles such that ∀x �= x∗ G(x) = H(x). Let z be a random bitstring. Let A be
quantum oracle algorithm that makes at most q queries (not necessarily uni-
tary). Let B|G〉,|H〉(z) be a double-sided oracle algorithm such that Pr[x∗ = x′ :
x′ ← B|G〉,|H〉(z)] = ‖|ψq

H〉 − |ψq
G〉‖2 /4, where |ψq

H〉 (|ψq
G〉, resp.) be the final

state of A|H〉(z) (A|G〉(z), resp.). Let C|H〉(z) be an oracle algorithm that picks
i ←$ {1, 2, . . . , q}, runs A|H〉(z) until (just before) the i-th query, measures the
query input registers in the computational basis, and outputs the measurement
outcome. Thus, we have

Pr[x∗ = x′ : x′ ← B|G〉,|H〉(z)] ≤ q2 Pr[x∗ = x′ : x′ ← C|H〉(z)].

In particular, if X = X1 × X2, x∗ = (x∗
1, x

∗
2), x∗

1 is uniform and independent of
H and z, then we further have Pr[x∗ = x′ : x′ ← B|G〉,|H〉(z)] ≤ q2/ |X1| .
Proof. Let |ψ0〉 be an initial state that depends on z (but not on G, H or x∗),
OH : |x, y〉 → |x, y⊕H(x)〉, and Ui is A’s state transition operation after the i-th
query. (And analogously for A|G〉.) We define |ψi

H〉 as UiOH · · · U1OH |ψ0〉, and
similarly |ψi

G〉. Thus, |ψq
H〉 (|ψq

G〉, resp.) be the final states of A|H〉(z) (A|G〉(z),
resp.). Let Px∗ = |x∗〉〈x∗|, Di =

∥
∥|ψi

H〉 − |ψi
G〉∥∥. Then, for i ≥ 1, we have

Di =
∥
∥UiOH |ψi−1

H 〉 − UiOG|ψi−1
G 〉∥∥

=
∥
∥OH |ψi−1

H 〉 − OG|ψi−1
H 〉 + OG|ψi−1

H 〉 − OG|ψi−1
G 〉∥∥

∗≤ ∥
∥(OH − OG)|ψi−1

H 〉∥∥ +
∥
∥OG(|ψi−1

H 〉 − ψi−1
G 〉)∥∥

∗∗= Di−1 +
∥
∥(OH − OG)Px∗ |ψi−1

H 〉∥∥
∗∗∗= Di−1 + 2

∥
∥Px∗ |ψi−1

H 〉∥∥ (1)

Here, the inequation (∗) uses the triangle inequality. The equation (∗∗) uses that
(OH − OG)Px∗ = OH − OG since G(x) = H(x) for ∀x �= x∗. The inequation
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(∗ ∗ ∗) uses the fact that (OH − OG) has operator norm ≤ 2. Note that D0 =
‖|ψ0〉 − |ψ0〉‖ = 0. From (1), we get Di ≤ Di−1 + 2

∥
∥Px∗ |ψi−1

H 〉∥∥. This implies
Dq ≤ 2

∑q−1
i=0

∥
∥Px∗ |ψi

H〉∥∥ . Using Jensen’s inequality, we get
∑q−1

i=0

∥
∥Px∗ |ψi

H〉∥∥ ≤
q

√
∑q−1

i=0 1/q
∥
∥Px∗ |ψi

H〉∥∥2
.

Note that Pr[x∗ = x′ : x′ ← C|H〉(z)] is
∑q−1

i=0 1/q
∥
∥Px∗ |ψi

H〉∥∥2. Thus, we
have Dq ≤ 2q

√

Pr[x∗ = x′ : x′ ← C|H〉(z)]. Since Pr[x∗ = x′ : x′ ← B|G〉,|H〉(z)]
is exactly ‖|ψq

H〉 − |ψq
G〉‖2 /4 = D2

q/4, we have Pr[x∗ = x′ : x′ ← B|G〉,|H〉(z)] ≤
q2 Pr[x∗ = x′ : x′ ← C|H〉(z)]. In particular, if X = X1 × X2, x∗ = (x∗

1, x
∗
2), x∗

1 is
uniform and independent of H and z, then Pr[x∗ = x′ : x′ ← C|H〉(z)] ≤ 1/ |X1| .
Thus, we have Pr[x∗ = x′ : x′ ← B|G〉,|H〉(z)] ≤ q2/ |X1| . ��

3 Extended Measure-and-Reprogram Technique

Measure-and-reprogram introduced by [12,13] shows how to reprogram the quan-
tum random oracle adaptively at one input. In detail, for any oracle algorithm
A|H〉 that makes at most q queries to H and outputs a pair (x, z) such that some
predicate V (x,H(x), z) is satisfied, the measure-and-reprogram technique shows
that there exists an another algorithm SA that simulates H, extracts x from AH

by randomly measuring one of A’s queries to H, and then reprograms H(x) to a
given value Θ so that z output by AH satisfies V (x,Θ, z) with a multiplicative
O(q2) loss in probability.

As we discussed in Sect. 1.4, the standard measure-and-reprogram technique
in [12,13] cannot be directly applied to our case. In the proof of our main The-
orem 4.2, an implicit classical H-query (this is exactly x) cannot be measured,
while the random measure in [12,13] is required to be performed for all the H-
queries. Thus, we extend the standard measure-and-reprogram technique and
give the following lemma.

Lemma 3.1 ((Single-classical-query) Measure-and-reprogram). Let
A|H〉 be an arbitrary oracle quantum algorithm that makes q queries to a uni-
formly random H : X → Y, and outputs some classical x ∈ X and a (possibly
quantum) output z. In particular, A’s i∗-th query input state is exactly |x〉 (this
is a classical state and identical with the x output by A|H〉).

Let SA(Θ) be an oracle algorithm that randomly picks a pair (i, b0) ∈ ([q −
1] \ {i∗ − 1} × {0, 1}) ∪ {(q, 0)}, runs A|Hi∗

i 〉 to output z, where Hi∗
i is an oracle

that returns Θ for A’s i∗-th H-query, measures A’s (i + 1)-th H-query input to
obtain x, returns A’s l-th H-query using H for l < (i + 1 + b0) and l �= i∗, and
returns A’s l-th H-query using HxΘ (HxΘ(x) = Θ and HxΘ(x′) = H(x′) for all
x′ �= x) for l ≥ (i + 1 + b0) and l �= i∗.

Let SA
1 (Θ) be an oracle algorithm that randomly picks a pair (j, b1) ∈

({i∗, · · · , q − 1} × {0, 1}) ∪ {(q, 0)} ∪ {(i∗ − 1, 1)}, runs A|Hj〉 to output z, where
Hj is an oracle that measures A’s (j + 1)-th H-query input to obtain x, returns
A’s l-th H-query using H for l < (j + 1 + b1), and returns A’s l-th H-query
using HxΘ for l ≥ (j + 1 + b1).
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Thus, for any x0 ∈ X, i∗ ∈ {1, · · · , q} and any predicate V :

Pr
H

[x = x0 ∧ V (x,H(x), z) = 1 : (x, z) ← A|H〉] ≤ 2(2q − 1)2 Pr
H,Θ

[x = x0 ∧ V (x,

Θ, z) = 1 : (x, z) ← SA] + 8q2 Pr
H,Θ

[x = x0 ∧ V (x,Θ, z) = 1 : (x, z) ← SA
1 ],

where the subscript {H,Θ} in PrH and PrH,Θ denotes that the probability is
averaged over a random choice of H and Θ. Moreover, if V = V1 ∧ V2 such
that V1(x, y, z) = 1 iff y is returned for A’s i∗-th query, then

∑
x0 PrH,Θ[x =

x0 ∧ V (x,Θ, z) = 1 : (x, z) ← SA
1 ] ≤ 1

|Y| .

Proof. Let |φ0〉 be an initial state that is independent of H and Θ6. OH : |x, y〉 →
|x, y ⊕ H(x)〉. Let Ai be A’s state transition operation after the i-th H-query
(i ∈ {1, · · · , q}).

We set AH
i→j = AjOH · · · Ai+1OH for 0 ≤ i < j ≤ q and AH

i→j = I for i ≥ j.
Let |φH

i 〉 = AH
0→i|φ0〉 be the state of A right before the (i + 1)-th query. The

final state |φH
q 〉 is considered to be a state over registers X, Z and E.

Let quantum predicate V be a family of projections {Πx,Θ}x,Θ with x ∈ X
and Θ ∈ Y. Set GΘ

x = |x〉〈x| ⊗ Πx,Θ, where X = |x〉〈x| acts on register X, and
Πx,Θ acts on register Z.

Then, we have

Pr[x = x0 ∧ V (x,H(x), z) = 1 : (x, z) ← A|H〉] =
∥
∥
∥GH(x0)

x0
|φH

q 〉
∥
∥
∥

2

.

Since HxΘ(x′) = H(x′) for all x′ �= x, we have (AHxΘ
i+1→q)(A

H
i→i+1)(I −

X)|φH
i 〉 = (AHxΘ

i→q )(I − X)|φH
i 〉. Thus, (AHxΘ

i+1→q)|φH
i+1〉

= (AHxΘ
i+1→q)(A

H
i→i+1)(I − X)|φH

i 〉 + (AHxΘ
i+1→q)(A

H
i→i+1)X|φH

i 〉
= (AHxΘ

i→q )(I − X)|φH
i 〉 + (AHxΘ

i+1→q)(A
H
i→i+1)X|φH

i 〉
= (AHxΘ

i→q )|φH
i 〉 − (AHxΘ

i→q )X|φH
i 〉 + (AHxΘ

i+1→q)(A
H
i→i+1)X|φH

i 〉.

Applying GΘ
x and using the triangle equality, we have

∥
∥
∥GΘ

x (AHxΘ
i→q )|φH

i 〉
∥
∥
∥ ≤

∥
∥
∥GΘ

x (AHxΘ
i+1→q)|φH

i+1〉
∥
∥
∥ +

∥
∥
∥GΘ

x (AHxΘ
i→q )X|φH

i 〉
∥
∥
∥ +

∥
∥
∥GΘ

x (AHxΘ
i+1→q)(A

H
i→i+1)X|φH

i 〉
∥
∥
∥ .

Summing up the above inequality over i = 0, · · · , q − 1, we get

∥
∥GΘ

x |φHxΘ
q 〉∥∥ ≤ ∥

∥GΘ
x |φH

q 〉∥∥ +
∑

0≤i<q,b∈{0,1}

∥
∥
∥GΘ

x (AHxΘ

i+b→q)(A
H
i→i+b)X|φH

i 〉
∥
∥
∥ (2)

6 This initial state can be seen as an additional input to A. In [12, Theorem 2], it is
also implicitly required that the initial state is independent of H and Θ.
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Note that A’s i∗-th query is classical and the query input is |x〉. Then,
X|φH

(i∗−1)〉 = |φH
(i∗−1)〉. Thus, there is a specific term

∥
∥
∥GΘ

x (AHxΘ

(i∗−1)→q)X|φH
(i∗−1)〉

∥
∥
∥ =

∥
∥
∥GΘ

x (AHxΘ

(i∗−1)→q)|φH
(i∗−1)〉

∥
∥
∥ (3)

on the right hand side of inequality (2).
Set BH

j→k = Ai∗+kOH · · · Ai∗+j+1OH for k ≥ (j + 1) (BH
j→k = I for k ≤ j.),

|ψ0〉 = (AHxΘ

(i∗−1)→i∗) |φH
(i∗−1)〉, and |ψH

j 〉 = BH
0→j |ψ0〉. Then,

∥
∥
∥GΘ

x (AHxΘ

(i∗−1)→q)|φH
(i∗−1)〉

∥
∥
∥ =

∥
∥
∥GΘ

x |ψHxΘ
q−i∗〉

∥
∥
∥ =

∥
∥
∥GΘ

x BHxΘ

0→(q−i∗)|ψ0〉
∥
∥
∥ .

Since HxΘ(x′) = H(x′) for all x′ �= x, we have

(BH
j→(j+1))(I − X)|ψH

j 〉 = (BHxΘ

j→(j+1))(I − X)|ψH
j 〉.

Thus, we can write (BHxΘ

j+1→(q−i∗))|ψH
j+1〉

= (BHxΘ

j+1→(q−i∗))(B
H
j→j+1)(I − X)|ψH

j 〉 + (BHxΘ

j+1→(q−i∗))(B
H
j→j+1)X|ψH

j 〉
= (BHxΘ

j→(q−i∗))(I − X)|ψH
j 〉 + (BHxΘ

j+1→(q−i∗))(B
H
j→j+1)X|ψH

j 〉
= (BHxΘ

j→(q−i∗))|ψH
j 〉 − (BHxΘ

j→(q−i∗))X|ψH
j 〉 + (BHxΘ

j+1→(q−i∗))(B
H
j→j+1)X|ψH

j 〉.

Rearranging terms, applying GΘ
x and using the triangle equality, we have

∥
∥
∥GΘ

x (BHxΘ

j→(q−i∗))|ψH
j 〉

∥
∥
∥ ≤

∥
∥
∥GΘ

x (BHxΘ

j+1→(q−i∗))|ψH
j+1〉

∥
∥
∥ +

∥
∥
∥GΘ

x (BHxΘ

j→(q−i∗))X|ψH
j 〉

∥
∥
∥ +

∥
∥
∥GΘ

x (BHxΘ

j+1→(q−i∗))(B
H
j→j+1)X|ψH

j 〉
∥
∥
∥ .

Summing up the inequality over j = 0, · · · , q − i∗ − 1, we get
∥
∥
∥GΘ

x (AHxΘ

(i∗−1)→q)|φH
(i∗−1)〉

∥
∥
∥ =

∥
∥
∥GΘ

x BHxΘ

0→(q−i∗)|ψ0〉
∥
∥
∥ ≤ ∥

∥GΘ
x |ψH

q−i∗〉∥∥ +
∑

0≤j<(q−i∗),b∈{0,1}

∥
∥
∥GΘ

x (BHxΘ

j+b→(q−i∗))(B
H
j→j+b)X|ψH

j 〉
∥
∥
∥ (4)

According to equalities (2), (3) and (4), we get
∥
∥GΘ

x |φHxΘ
q 〉∥∥ ≤ Term0 + Term1, (5)
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Term0 =
∑

0≤i<(i∗−1)
b0∈{0,1}

∥∥∥GΘ
x (A

HxΘ
i+b0→q)(A

H
i→i+b0

)X|φH
i 〉

∥∥∥ +
∥∥∥GΘ

x (A
HxΘ
(i∗−1)→q

)X|φH
(i∗−1)〉

∥∥∥

=
∑

0≤i<(i∗−1),b0∈{0,1}

∥∥∥GΘ
x (A

HxΘ
i+b0→q)(A

H
i→i+b0

)X|φH
i 〉

∥∥∥

+
∥∥GΘ

x |ψH
q−i∗ 〉

∥∥ +
∑

0≤j<(q−i∗),b0∈{0,1}

∥∥∥GΘ
x (B

HxΘ
j+b0→(q−i∗))(B

H
j→j+b0

)X|ψH
j 〉

∥∥∥

=
∑

0≤i<(i∗−1),b0∈{0,1}

∥∥∥GΘ
x (A

HxΘ
i+b0→q)(A

H
i→i+b0

)X|φH
i 〉

∥∥∥

+
∥∥∥GΘ

x (AH
i∗→q)(A

HxΘ
(i∗−1)→i∗)|φH

(i∗−1)〉
∥∥∥

+
∑

i∗≤i<q
b0∈{0,1}

∥∥∥GΘ
x (A

HxΘ
(i+b0)→q

)(AH
i→(i+b0)

)X(AH
i∗→i)(A

HxΘ
(i∗−1)→i∗)|φH

(i∗−1)〉
∥∥∥

Term1 =
∥∥GΘ

x |φH
q 〉

∥∥ +
∑

i∗≤i<q
b1∈{0,1}

∥∥∥GΘ
x (A

HxΘ
i+b1→q)(A

H
i→i+b1

)X|φH
i 〉

∥∥∥

+
∥∥∥GΘ

x (A
HxΘ
i∗→q)(A

H
(i∗−1)→i∗)X|φH

(i∗−1)〉
∥∥∥ .

According to inequality (5), we have

∥
∥GΘ

x |φHxΘ
q 〉∥∥2 ≤ 2Term02 + 2Term12.

Since GΘ
x = GΘ

x X, we get GΘ
x (AH

i∗→q)(A
HxΘ

(i∗−1)→i∗)|φH
(i∗−1)〉 = GΘ

x (AHxΘ

(i+b0)→q)

(AH
i→(i+b0)

)X(AH
i∗→i)(A

HxΘ

(i∗−1)→i∗)|φH
(i∗−1)〉 with i = q and b0 = 0 and GΘ

x |φH
q 〉 =

GΘ
x X|φH

q 〉 = GΘ
x (AHxΘ

i+b1→q)(A
H
i→i+b1

)X|φH
i 〉 with i = q and b1 = 0. Then, using

Jensen’s inequality, we have

Term02 ≤ (2q − 1)(
∑

0≤i<(i∗−1),b0∈{0,1}

∥
∥
∥GΘ

x (AHxΘ

i+b0→q)(A
H
i→i+b0)X|φH

i 〉
∥
∥
∥

2

+
∥
∥
∥GΘ

x (AH
i∗→q)(A

HxΘ

(i∗−1)→i∗)|φH
(i∗−1)〉

∥
∥
∥

2

+
∑

i∗≤i<q
b0∈{0,1}

∥
∥
∥GΘ

x (AHxΘ

(i+b0)→q)(A
H
i→(i+b0)

)X(AH
i∗→i)(A

HxΘ

(i∗−1)→i∗)|φH
(i∗−1)〉

∥
∥
∥

2

)

= (2q − 1)2Ei,b0

[∥
∥δi<(i∗−1)T0

∥
∥
2 + ‖δi≥i∗T1‖2

]

,

where T0 = (GΘ
x (AHxΘ

i+b0→q)(A
H
i→i+b0

)X|φH
i 〉), T1 = GΘ

x (AHxΘ

(i+b0)→q)(A
H
i→(i+b0)

)

X(AH
i∗→i)(A

HxΘ

(i∗−1)→i∗)|φH
(i∗−1)〉, δi<(i∗−1) = 1 if i < (i∗ − 1) otherwise 0, δi≥i∗ =

1 if i ≥ i∗ otherwise 0, the expectation in Term02 is over uniform (i, b0) ∈
([q − 1] \ {i∗ − 1} × {0, 1}) ∪ {(q, 0)}.
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Thus, the probability of S outputting (x, z) such that V (x,Θ, z) = 1 is
exactly Ei,b0

[∥
∥δi<(i∗−1)T0

∥
∥
2 + ‖δi≥i∗T1‖2

]

.
Likewise, using Jensen’s inequality, we get

Term12 ≤ (2q − 2i∗ + 2)(
∥
∥
∥GΘ

x |φH
q 〉

∥
∥
∥

2
+

∑

i∗≤i<q
b1∈{0,1}

∥
∥
∥GΘ

x (A
HxΘ
i+b1→q)(A

H
i→i+b1

)X|φH
i 〉

∥
∥
∥

2

+
∥
∥
∥GΘ

x (A
HxΘ
i∗→q)(A

H
(i∗−1)→i∗)X|φH

(i∗−1)〉
∥
∥
∥

2
)

= (2q − 2i∗ + 2)2Ej,b1

[∥
∥
∥GΘ

x (A
HxΘ
j+b1→q)(A

H
j→j+b1

)X|φH
j 〉

∥
∥
∥

2
]

where the expectation in Term12 is over uniform (j, b1) ∈ ({i∗, · · · , q − 1} ×
{0, 1}) ∪ {(q, 0)} ∪ {(i∗ − 1, 1)}.

Thus, the probability of S1 outputting (x, z) such that V (x,Θ, z) = 1 is

exactly Ej,b1

[∥
∥
∥GΘ

x (AHxΘ

j+b1→q)(A
H
j→j+b1

)X|φH
j 〉

∥
∥
∥

2
]

.

Since the initial state is independent of H and Θ, we have

PrH,Θ[
∥
∥GΘ

x |φHxΘ
q 〉∥∥2] = PrH,Θ[

∥
∥
∥G

H(x)
x |φH

q 〉
∥
∥
∥

2

]. Thus, for any x0 ∈ X and predi-
cate V , we have

Pr
H

[x = x0 ∧ V (x,H(x), z) = 1 : (x, z) ← A|H〉] ≤ 2(2q − 1)2 Pr
H,Θ

[x = x0 ∧ V (x,

Θ, z) = 1 : (x, z) ← SA] + 8q2 Pr
H,Θ

[x = x0 ∧ V (x,Θ, z) = 1 : (x, z) ← SA
1 ],

as desired. Set V1(x, y, z) = 1 iff y is returned for A’s i∗-th query. When V =
V1 ∧ V2, we get

∑

x0 Pr
H,Θ

[x = x0 ∧ V (x,Θ, z) = 1 : (x, z) ← SA
1 ] ≤ Pr[H(x) = Θ] =

1
|Y| .

4 IND-1-CCA-secure KEM Without Re-encryption
and Ciphertext Expansion

To a public-key encryption PKE′=(Gen′, Enc′, Dec′) and a random oracle
H (H : M × C → K), we associate KEMH = TH [PKE′,H] and KEMRH =
TRH [PKE′,H] as in Fig. 2. The only difference between KEMH and KEMRH is
the return value for invalid ciphertexts. In detail, when a ciphertext decrypts to
⊥, such a ciphertext will decapsulate to ⊥ in KEMH , and to H(�, c) in KEMRH .
Here, � can be any fixed public value. In the following, Theorems 4.1 and 4.2
show the IND-1-CCA security of KEMRH in the (Q)ROM. In particular, The-
orems 4.1 and 4.2 works for both � ∈ M and � /∈ M. Then, we will show that
the IND-1-CCA security of KEMH can be reduced to the IND-1-CCA security
of KEMRH by Theorem 4.3.

Theorem 4.1 (ROM security of TRH). If PKE′ is δ-correct, for any adver-
sary B against the IND-1-CCA security of KEMRH = TRH [PKE′,H] in Fig. 2,
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Gen

1 : (pk, sk) ← Gen′

2 : return (pk, sk)

Encaps(pk)

1 : m ←$ M
2 : c ← Enc′(pk, m)

3 : K := H(m, c)

4 : return (K, c)

Decaps(sk, c)

1 : m′ := Dec′(sk, c)

2 : if m′ =⊥
3 : return ⊥ //TH

4 : return K := H(�, c) //TRH

5 : else return K := H(m′, c)

Fig. 2. KEMH = TH [PKE′, H] and KEMRH = TRH [PKE′, H]

issuing at most a single (classical) query to the decapsulation oracle Decaps and
at most qH queries to the random oracle H, there exists a OW-CPA adversary A
and an IND-CPA adversary D against PKE′ such that Time(A) ≈ Time(D) ≈
Time(B) + O(q2H) and

AdvIND-1-CCA
KEMRH

(B) ≤ qH(qH + 1)AdvOW−CPA
PKE′ (A) (6)

AdvIND-1-CCA
KEMRH

(B) ≤ 2(qH + 1)AdvIND−CPA
PKE′ (D) + 2qH(qH + 1)/ |M| .

If the PKE is deterministic, the bound (6) can be improved as

AdvIND-1-CCA
KEMRH

(B) ≤ (qH + 1)AdvOW−CPA
PKE′ (A) + δ,

where Time(A) ≈ Time(B) + O(q2H) + O(qH · Time(Enc′)).

Proof. Let B be an adversary against the IND-CCA security of KEMRH , issu-
ing (exactly) one classical query to Decaps (by introducing a dummy query if
necessary), and at most qH queries (excluding the queries implicitly made in
Decaps) to H. Let ΩH be the sets of all functions H : M × C → K. Consider
the games in Fig. 3.

Game G0. This is exactly the IND-1-CCA game, thus
∣
∣Pr[GB

0 ⇒ 1] − 1/2
∣
∣ =

AdvIND-1-CCA
KEMRH

(B).

Game G1. In game G1, k∗
0 := H(m∗, c∗) is replaced by k∗

0 ←$ K. Thus, in G1,
the bit b is independent of B’s view, thus Pr[GB

1 ⇒ 1] = 1/2. Define Query as
the event that (m∗, c∗) is queried to H. Then, G1 is identical with G0 in B’s
view unless the event Query happens. Thus, we have

AdvIND-1-CCA
KEMRH

(B) =
∣
∣Pr[GB

0 ⇒ 1] − Pr[GB
1 ⇒ 1]

∣
∣ ≤ Pr[Query : G1].

Game G2. In game G2, we make two changes. First, we modify the Decaps
oracle, and replace K := H(m̄, c̄) by K := k̄. Second, we reprogram the random
oracle H conditional a uniform i over [qH ]. In particular, reprogram H to Hi

1

(given by Fig. 3) when B makes the (i + 1)-th H-query (0 ≤ i ≤ (qH − 1)),
and then answer B with Hi

1 for B’s j-th query (j ≥ (i + 1)). Let (mi, ci) be B’s
i-th H-query input. Hi

1(m, c) returns k̄ when (m, c) = (mi+1, ci+1) and H1(m, c)
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otherwise. Let (i∗ + 1) be the number of B’s first query to H with (m̄, c̄), where
i∗ ∈ [qH − 1]. We also denote i∗ = qH as the event that B makes no query to H
with (m̄, c̄). Note that G2 has the same distribution as G1 in B’s view when the
event i∗ = i happens. Thus, we have

Pr[Query : G1] ≤ (qH + 1)Pr[Query : G2].

Let (pk, sk) ← Gen′, m∗ ←$ M, c∗ ← Enc(pk,m∗). Then, we construct an
adversary A′(pk, c∗) that simulates B’s view as in game G2 and returns B’s
H-query list H-List, see Fig. 4. Note that a qH -wise independent function is
perfectly indistinguishable from a true random function for any distinguisher
that makes at most qH queries [41]. Thus, the probability of the H-List returned
by A′ contains (m∗, c∗) is exactly Pr[Query : G2].

Now, we construct an adversary A against the OW-CPA security of the
underlying PKE. If the underlying PKE is probabilistic, A runs A′, and ran-
domly selects one message in H-List as a return. Then, we have AdvOW−CPA

PKE′ (A) ≥
1/qH Pr[Query : G2]. Therefore, for probabilistic PKE, we have

AdvIND-1-CCA
KEMRH

(B) ≤ qH(qH + 1)AdvOW−CPA
PKE′ (A).

Next, we consider the case of the deterministic PKE.

GAMES G0 − G2 and GA
1 − GA

2

1 : (pk, sk) ← Gen′, j = 0, i ←$ [qH ]

2 : Query = false , H1 ←$ ΩH

3 : k̄, k∗
1 ←$ K, b ←$ {0, 1}

4 : m∗ ←$ M, c∗ ← Enc(pk, m∗)

5 : if COLL return ⊥//GA
1 − GA

2

6 : k∗
0 = H(m∗, c∗) //G0

7 : k∗
0 ←$ K//G1 − G2, G

A
1 − GA

2

8 : b′ ← BH,Decaps(pk, c∗, k∗
b )

9 : return b′ =?b

Hi
1(m, c)

1 : if (m, c) = (mi+1, ci+1)

2 : return k̄

3 : else return H1(m, c)

H(m, c)

1 : if (m, c) = (m∗, c∗)

2 : Query = true

3 : if j ≥ i return Hi
1(m, c) //G2, G

A
2

4 : j = j + 1 //G2, G
A
2

5 : return H1(m, c)

Decaps (sk, c̄ �= c∗)

1 : if more than 1 query return ⊥
2 : return K := k̄ //G2, G

A
2

3 : m′ := Dec′(sk, c̄)

4 : if m′ =⊥ do m̄ = �

5 : else do m̄ = m′

6 : return K := H(m̄, c̄)

Fig. 3. Games for the proof of Theorem 4.1

Game GA
1 . Define COLL as the event that there is a messages m �= m∗ such

that Enc′(pk,m) = c∗ = Enc′(pk,m∗). GA
1 is the same as G1 except that ⊥ is
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A′(pk, c∗)

1 : k∗, k̄ ←$ K, j = 0, i ←$ [qH ]

2 : Pick a qH -wise functions H1

3 : b′ ← BH,Decaps(pk, c∗, k∗)

4 : return H-List

Hi
1(m, c)

1 : if (m, c) = (mi+1, ci+1) return k̄

2 : else return H1(m, c)

H(m, c)

1 : if i = qH return H1(m, c)

2 : if j ≥ i return Hi
1(m, c)

3 : j = j + 1

4 : return H1(m, c)

Decaps (c̄ �= c∗)

1 : return k̄

Fig. 4. Adversary A′ for the proof of Theorem 4.1

returned if COLL happens. Note that G1 and GA
1 have the same distribution

when COLL doe not happen (implied by the δ-correctness). Thus, we have

Pr[Query : G1] ≤ Pr[Query : GA
1 ] + δ.

Game GA
2 . GA

2 is the same as GA
1 except that oracles Decaps and H are modified

as in G2. Then, arguing in the same way as in G2, we have

Pr[Query : GA
1 ] ≤ (qH + 1)Pr[Query : GA

2 ].

Now, we construct an adversary A against deterministic PKE. A runs A′,
selects a (m′, c′) from H-List such that c′ = c∗ and Enc(pk,m′) = c∗, and
returns m′. Note that if COLL does not happen, A returns m∗ with probability
Pr[Query : GA

2 ]. Thus, AdvOW−CPA
PKE′ (A) ≥ Pr[Query : GA

2 ]. Therefore, putting
the inequalities together, we have

AdvIND-1-CCA
KEMRH

(B) ≤ (qH + 1)AdvOW−CPA
PKE′ (A) + δ.

When the underlying PKE satisfies IND-CPA security, we can construct an
IND-CPA adversary D, and derive a tighter bound. In particular, D(pk) samples
two uniform messages m∗

0 and m∗
1 from M, i.e., m∗

0,m
∗
1 ←$ M. The IND-CPA

challenger chooses a bit b, generates the challenge ciphertext c∗ ← Enc(pk,m∗
b)

and sends c∗ to D. Then, D runs A′(pk, c∗), get B’s H-List. If (m∗
b′ , ∗) is

in H-List and (m∗
1−b′ , ∗) is not in H-List, D returns b′. For other cases, D

returns a uniform b′, i.e., b′ ←$ {0, 1}. Let BAD be the event that B queries
(m∗

1−b, ∗) (that is, (m∗
1−b, ∗) is in H-List). Note that m∗

1−b is uniformly dis-
tributed and independent from B’s view. Thus, the events BAD and Query
are independent, and Pr[BAD] ≤ qH/ |M|. Note that if BAD does not hap-
pen, then D makes a correct guess of b with probability 1 when Query hap-
pens, and with probability 1/2 when Query does not happen. Thus, we have
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AdvIND−CPA
PKE′ (D) = |Pr[b′ = b] − 1/2|

= |Pr[b′ = b ∧ BAD] + Pr[b′ = b ∧ ¬BAD] − 1/2(Pr[BAD] + Pr[¬BAD])|
≥ |Pr[b′ = b ∧ ¬BAD] − 1/2Pr[¬BAD]| − Pr[BAD] |Pr[b′ = b|BAD] − 1/2|
≥ |Pr[b′ = b ∧ ¬BAD] − 1/2Pr[¬BAD]| − 1/2Pr[BAD]
= |Pr[b′ = b ∧ ¬BAD ∧ Query] − 1/2Pr[¬BAD ∧ Query]| − 1/2Pr[BAD]
= 1/2Pr[¬BAD ∧ Query] − 1/2Pr[BAD]
≥ 1/2Pr[Query] − Pr[BAD]
≥ 1/2Pr[Query] − qH/ |M| = 1/2Pr[Query : G2] − qH/ |M| .
Putting the bounds together, we have

AdvIND-1-CCA
KEMRH

(B) ≤ 2(qH + 1)AdvIND−CPA
PKE′ (D) + 2qH(qH + 1)/ |M| .

��
Theorem 4.2 (QROM security of TRH). If PKE′ is δ-correct, for any
adversary B against the IND-1-CCA security of KEMRH = TRH [PKE′,H] in
Fig. 2, issuing at most one single (classical) query to the decapsulation oracle
Decaps and at most qH queries to the quantum random oracle H, there exists
a OW-CPA adversary A and an IND-CPA adversary D against PKE′ such that
Time(A) ≈ Time(D) ≈ Time(B) + O(q2H) and

AdvIND-1-CCA
KEMRH

(B) ≤ 6(qH + 1)2
√

AdvOW−CPA
PKE′ (A) + 1/ |K|.

AdvIND-1-CCA
KEMRH

(B) ≤ 6(qH + 1)
√

4AdvIND−CPA
PKE′ (D) + 2(qH + 1)2/ |M| + 1/ |K|.

If the PKE is deterministic, the bound can be improved as

AdvIND-1-CCA
KEMRH

(B) ≤ 6(qH + 1)
√

AdvOW-CPA
PKE′ (A) + 1/ |K| + δ,

where Time(A) ≈ Time(B) + O(q2H) + O(qH · Time(Enc′)).

Proof Sketch: Our proof mainly consists of two steps. One is the underlying
security game embedding via replacing the real key H(m∗, c∗) with a random
key (i.e., reprogramming H). We argue the impact of such a reprogramming
by different O2H variants. When the underlying PKE is OW-CPA-secure, we
follow previous proofs for U�⊥ in [6,22], and use general O2H (Lemma 2.1) for
probabilistic PKE and double-sided O2H (Lemma 2.2) for deterministic PKE.
When the underlying PKE is IND-CPA-secure, we also adopt double-sided O2H
(Lemma 2.2) to argue the reprogramming impact. Since the embedded IND-CPA
game is decisional, an additional game that searches a reprogramming point in
double-sided oracle is introduced and we use Lemma 2.3 to argue this advantage.
The other is simulation of the Decaps oracle. As discussed in Sect. 1.4, we
adopt a new Decaps simulation that directly replaces the output H(m̄, c̄) with a
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random key k̄. Intuitionally, this simulation is perfect if H(m̄, c̄) is reprogrammed
to be k̄ when the adversary first makes a query (m̄, c̄). However, in the QROM,
it is hard to define the first time to query (m̄, c̄). Thus, in the QROM, we
argue this in a different way. We find the simulation is perfect if the predicate
Decaps(sk, c̄) = H(m̄, c̄) is satisfied. Since in the simulation of Decaps, an
implicit (classical) H-query (m̄, c̄) made in the real implementation is removed
and thus this specific query can not be measured. Therefore, we use a refined
optional-query measure-and-reprogram technique in Lemma 3.1 to argue the
simulation impact.

GAMES G0 − G2

1 : (pk, sk) ← Gen′, H ←$ ΩH

2 : k, k∗
1 ←$ K, b ←$ {0, 1}

3 : m∗ ←$ M, c∗ ← Enc(pk, m∗)

4 : k∗
0 = H(m∗, c∗) //G0 − G1

5 : k∗
0 ←$ K //G2

6 : b′ ← B|H〉,Decaps(pk, c∗, k∗
b ) //G0, G2

7 : b′ ← B|H′〉,Decaps(pk, c∗, k∗
b ) //G1

8 : return b′ =?b

Decaps (sk, c̄ �= c∗) //G0 − G2

1 : m′ := Dec′(sk, c̄)

2 : if more than 1 query return ⊥
3 : if m′ =⊥ do m̄ = �

4 : else do m̄ = m′

5 : return K := H(m̄, c̄)
H ′(m, c)

1 : if (m, c) = (m∗, c∗) return k

2 : return H(m, c)

Fig. 5. Games G0–G2 for the proof of Theorem 4.2

Proof. Let ΩH be the sets of all functions H : M × C → K. Let B be an IND-
CCA adversary against KEMRH , issuing a single classical query to Decaps (if
none, introduce a dummy one), and at most qH quantum queries (excluding the
queries implicitly made in Decaps) to H. Consider the games in Fig. 5.

Game G0. Since game G0 is exactly the IND-1-CCA game,
∣
∣Pr[GB

0 ⇒ 1] − 1/2
∣
∣ = AdvIND-1-CCA

KEMRH
(B).

Game G1. In game G1, the random oracle H accessed by B is replaced by an
oracle H ′ given by Fig. 5. It is easy to see that G1 can be rewritten as game G2.

Game G2. The game G2 is the same as game G0 except that k∗
0 := H(m∗, c∗)

is replaced by k∗
0 ←$ K. Thus, in G2, the bit b is independent of B’s view, thus

Pr[GB
2 ⇒ 1] = 1/2. Note that games G1 and G2 have the same distribution.

Thus, Pr[GB
1 ⇒ 1] = Pr[GB

2 ⇒ 1] = 1/2. Therefore, we have

AdvIND-1-CCA
KEMRH

(B) =
∣
∣Pr[GB

0 ⇒ 1] − Pr[GB
1 ⇒ 1]

∣
∣ . (7)
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Lemma 4.1. There exists an adversary A against the OW-CPA of probabilistic
PKE′ such that Time(A) ≈ Time(B) + O(q2H)and AdvIND-1-CCA

KEMRH
(B) ≤ 6(qH +

1)2
√

AdvOW−CPA
PKE′ (A) + 1/ |K|.

The proof of Lemma 4.1. Define games G3A and G4A as in Fig. 6.
Let z1 = (pk, sk, c∗, k∗

b , b). Let AO (O ∈ H,H ′) be an oracle algorithm
that runs B|O〉,Decaps(pk, c∗, k∗

b ) to obtain b′, and returns b′ =?b. Thus, we have
Pr[GB

0 ⇒ 1] = Pr[1 ← A|H〉(z1)] and Pr[GB
1 ⇒ 1] = Pr[1 ← A|H′〉(z1)]. Let

B(z1) be an algorithm that randomly samples j ∈ [qH −1], runs A|H′〉 until (just
before) the (j+1)-th query (In game G3A, H ′ is rewritten to be H), measures the
query input registers in the computational basis, and outputs measurement out-
comes. Thus, we have Pr[GB

3A ⇒ 1] = Pr[(m∗, ∗) ← B|H〉(z1)] ≥ Pr[(m∗, c∗) ←
B|H〉(z1)]. Therefore, according to Lemma 2.1, we have

∣
∣Pr[GB

0 ⇒ 1] − Pr[GB
1 ⇒ 1]

∣
∣ ≤ 2(qH + 1)

√

Pr[GB
3A ⇒ 1].

Let C|H〉 be an oracle algorithm that samples pk, sk, k∗, j,m∗, c∗, and runs
B|H〉,Decaps as in game G3A. Let c̄ be B’s query to the Decaps oracle. Let m̄ = �
if m̄′ = ⊥, and m̄ = m̄′ if m̄′ �= ⊥, where m̄′ = Dec′(sk, c̄). Let x = (m̄, c̄),
y = H(x), and z = (z1, z2, z3) = (Decaps(sk, c̄),m∗,m′). C outputs (x, z). Let
V1(x, y, z) = (y =?z1) and V2 = (z2 =?z3). Instantiating the predicate V in
Lemma 3.1 by V = V1 ∧ V2. Note that in G3A the return of the Decaps oracle
is exactly H(x). That is, V1 = 1 is always satisfied. Thus, we have Pr[GB

3A ⇒
1] =

∑
x0PrH [x = x0 ∧ V (x,H(x), z) = 1 : (x, z) ← C|H〉].

Note that C needs to implicitly query H(m̄, c̄) to simulate the Decaps ora-
cle. That is, C makes qH +1 H-queries in total. In the following, unless otherwise
specified, the H-queries we mentioned does not include this implicit H-query.
Let SC(Θ) be an oracle algorithm that always returns Θ for C’s implicit classical
H-query H(m̄, c̄). S samples a uniform (i, b) ←$ ([qH − 1] × {0, 1}) ∪ {(qH , 0)},
runs C|H〉 until the C’s (i + 1)-th query (excluding the implicit H-query), mea-
sures the query input registers to obtain x, continues to run C|H〉 until the
(i+b+1)-th H-query, reprogram H to HxΘ (HxΘ(x) = Θ and HxΘ(x′) = H(x′)
for all x′ �= x), and runs A|HxΘ〉 until the end to output z. Let x = (m̄, c̄),
y = Θ, and z = (z1, z2, z3) = (Decaps(sk, c̄),m∗,m′). SC outputs (x, z). Note
that V1(x, y, z) = (y =?z1) = 1 for SC . Sample Θ = k̄ ←$ K and H ←$ ΩH .
Then, SC(Θ) perfectly simulates game G4A and we have Pr[GB

4A ⇒ 1] =
∑

x0PrH,Θ[x = x0 ∧ V (x,Θ, z) = 1 : (x, z) ← SC ].
According to Lemma 3.1,

∑
x0 PrH [x = x0 ∧ V (x,H(x), z) = 1 : (x, z) ←

C|H〉] ≤ 2(2qH +1)2
∑

x0PrH,Θ[x = x0 ∧ V (x,Θ, z) = 1 : (x, z) ← SC ]+8(qH +
1)2 1

|K| . Therefore, we get

Pr[GB
3A ⇒ 1] ≤ 8(qH + 1)2(Pr[GB

4A ⇒ 1] + 1/|K|).

Now, we can construct a OW-CPA adversary A(pk, c∗) against PKE′, where
(pk, sk) ← Gen′,m∗ ←$ M, c∗ ← Enc(pk,m∗). A samples k∗, k̄, j, i, b as in game
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GAMES G3A − G4A

1 : (pk, sk) ← Gen′, H ←$ ΩH , k∗, k̄ ←$ K, m∗ ←$ M, c∗ ← Enc(pk, m∗)

2 : l = 0, j ←$ [qH − 1], (i, b) ←$ ([qH − 1] × {0, 1}) ∪ {(qH , 0)}
3 : Run B|H〉,Decaps(pk, c∗, k∗) until the (j+1)-th query |ψ〉 //G3A

4 : Run B|Hi
1〉,Decaps(pk, c∗, k∗) until the (j+1)-th query state|ψ〉 //G4A

5 : (m′, c′) ← M |ψ〉
// Make a standard measure M on B’s (j + 1)-th query input register

6 : return m∗ =?m′

Decaps (sk, c̄ �= c∗) //G3A − G4A

1 : if more than 1 query return ⊥
2 : return k̄ //G4A

3 : m̄′ := Dec′(sk, c̄)

4 : if m̄′ =⊥ do m̄ = �

5 : else do m̄ = m̄′

6 : return K := H(m̄, c̄)

Hi
1(m, c)

1 : if l ≥ (i + b) ∧ (m, c) = (mi+1, ci+1)

// (mi+1, ci+1) is the measurement outcome

// on B’s (i + 1)-th query input register

2 : return k̄

3 : else return H(m, c)

4 : l = l + 1

Fig. 6. Games G3A-G4A for the proof of Lemma 4.1

G4A, picks a 2qH -wise independent function H (undistinguishable from a ran-
dom function for a qH -query adversary according to [41, Theorem 6.1]), runs
B|Hi

1〉,Decaps(pk, c∗, k∗) (the simulations of Hi
1,Decaps are the same as the ones

in game G4A) until the (j+1)-th query, measures B’s query input register to
obtain (m′, c′), finally outputs m′ as a return. It is obvious that the advantage
of A against the OW-CPA security of PKE′ is exactly Pr[GB

4A ⇒ 1]. Putting
everything together, we have

AdvIND-1-CCA
KEMRH

(B) ≤ 6(qH + 1)2
√

AdvOW−CPA
PKE′ (A) + 1/ |K|.

Lemma 4.2. There exists an adversary A against the OW-CPA security of
deterministic PKE′ such that Time(A) ≈ Time(B)+O(q2H)+O(qH ·Time(Enc′))

and AdvIND-1-CCA
KEMRH

(B) ≤ 6(qH + 1)
√

AdvOW-CPA
PKE′ (A) + 1/ |K| + δ.

The proof of Lemma 4.2. Define games G3B , G4B and G5B as in Fig. 7.
Let z1 = (pk, sk, c∗, k∗

0), where (pk, sk) ← Gen′, k∗
0 ←$ K, m∗ ←$ M, and c∗ ←

Enc(pk,m∗). Sample G ←$ ΩH . Let G′ be an oracle such that G′(m∗, c∗) = k∗
0 ,

and G′(x) = G(x) for x �= (m∗, c∗). Let A|O〉(z1) (O ∈ G,G′) be an oracle
algorithm that first samples k∗

1 ←$ K, b ←$ {0, 1}, then runs B|O〉,Decaps(pk, c∗, k∗
b )

to obtain b′ (simulating Decaps as in games G0 and G1), finally returns b′ =?b.
Thus, we have Pr[GB

0 ⇒ 1] = Pr[1 ← A|G′〉(z1)] and Pr[GB
1 ⇒ 1] = Pr[1 ←

A|G〉(z1)].
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Lemma 2.2 states that there exists an oracle algorithm B̄|G〉,|G′〉(z1) such
that |Pr[1 ← A|G〉(z1)] − Pr[1 ← A|G′〉(z1)| ≤ 2

√

Pr[(m∗, c∗) ← B̄|G〉,|G′〉(z1)].
Define game G3B as in Fig. 7, where B̂ is the same as B̄ except that B̂ simulates
B’s Decaps query using a given Decaps oracle (implemented as in G0 and G1).
Thus, it is obvious that Pr[(m∗, c∗) ← B̄|G〉,|G′〉(z1)] ≤ Pr[GB̂

3B ⇒ 1]. Thus, we
have

AdvIND-1-CCA
KEMRH

(B) ≤ 2
√

Pr[GB̂
3B ⇒ 1].

Game G4B is identical to game G3B except the simulation of G′. In game G4B ,
the judgement condition (m, c) = (m∗, c∗) is replaced by c = c∗ ∧Enc′(pk,m) =
c∗ without knowledge of m∗. Define COLL as an event that there is a message
m �= m∗ such that Enc′(pk,m) = c∗ = Enc′(pk,m∗). Note that if COLL does
not happen (implied by the injectivity of DPKE), then G4B and G3B have the
same distribution. Thus, we have

∣
∣
∣Pr[GB̂

3B ⇒ 1] − Pr[GB̂
4B ⇒ 1]

∣
∣
∣ ≤ δ.

Fig. 7. Games G3B − G5B for the proof of Lemma 4.2
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In game G5B , Decaps is modified to output a random Θ = k̄ for the single
query c̄, and the random oracle G is correspondingly reprogrammed conditioned
on (i, b), where (i, b) ←$ ([qH − 1] × {0, 1}) ∪ {(qH , 0)}. Using Lemma 3.1 in the
same way as in Lemma 4.1, we have

Pr[GB̂
4B ⇒ 1] ≤ 8(qH + 1)2(Pr[GB̂

5B ⇒ 1] + 1/ |K|).
Now, we can construct a OW-CPA adversary A(pk, c∗) against deterministic

PKE′, where (pk, sk) ← Gen′,m∗ ←$ M, c∗ ← Enc(pk,m∗). A samples k∗
0 , k̄, i, b

as in game G5B , picks a 2qH -wise function G, runs B̂|Gi
1〉,|G′〉,Decaps(pk, c∗, k∗)

(the simulations of Gi
1, G

′,Decaps are the same as in game G5B) to obtain
(m′, c′), finally outputs m′ as a return. It is obvious that the advantage of A
against the OW-CPA security of deterministic PKE′ is exactly Pr[GB̂

5B ⇒ 1].
Thus, we have

AdvIND-1-CCA
KEMRH

(B) ≤ 2
√

8(qH + 1)2(AdvOW-CPA
PKE′ (A) + 1/ |K|) + δ

≤ 6(qH + 1)
√

AdvOW-CPA
PKE′ (A) + 1/ |K| + δ.

Lemma 4.3. There exists an adversary D against the IND-CPA secu-
rity of probabilistic PKE′ such that Time(D) ≈ Time(B) + O(q2H) and

AdvIND-1-CCA
KEMRH

(B) ≤ 6(qH + 1)
√

4AdvIND−CPA
PKE′ (D) + 2(qH + 1)2/ |M| + 1/ |K|.

The proof of Lemma 4.3. Define games G3C − G6C as in Fig. 8.
Let z1 = (pk, sk, c∗, k∗

0), where (pk, sk) ← Gen′, k∗
0 ←$ K, m∗

0,m
∗
1 ←$ M,

b̄ ←$ {0, 1} and c∗ ← Enc(pk,m∗̄
b
). Sample G ←$ ΩH . Let G′ be an oracle such

that G′(m∗̄
b
, c∗) = k∗

0 , and G′(x) = G(x) for x �= (m∗̄
b
, c∗). Let A|O〉(z1) (O ∈

G,G′) be an oracle algorithm that first samples k∗
1 ←$ K, b̃ ←$ {0, 1}, then runs

B|O〉,Decaps(pk, c∗, k∗
b̃
) to obtain b̃′ (simulating Decaps as in games G0 and G1),

finally returns b̃′ =?b̃. Thus, we have Pr[GB
0 ⇒ 1] = Pr[1 ← A|G′〉(z1)] and

Pr[GB
1 ⇒ 1] = Pr[1 ← A|G〉(z1)].

Lemma 2.1 states that there exists an oracle algorithm B̄|G〉,|G′〉(z1) such

that |Pr[1 ← A|G〉(z1)] − Pr[1 ← A|G′〉(z1)| ≤ 2
√

Pr[(m∗̄
b
, c∗) ← B̄|G〉,|G′〉(z1)].

Define game G3C as in Fig. 8, where B̂ is the same as B̄ except that B̂ simulates
B’s Decaps query using a given Decaps oracle (implemented as in G0 and G1).
Thus, it is obvious that Pr[(m∗̄

b
, c∗) ← B̄|G〉,|G′〉(z1)] ≤ Pr[GB̂

3C ⇒ 1]. Thus, we
have

AdvIND-1-CCA
KEMRH

(B) ≤ 2
√

Pr[GB̂
3C ⇒ 1].

In game G4C , Decaps is modified to output a random Θ = k̄ for the single
query c̄, and the random oracle H is correspondingly reprogrammed conditioned
on (i, b), where (i, b) ←$ ([qH − 1] × {0, 1}) ∪ {(qH , 0)}. Then, using Lemma 3.1
in the same way as in Lemma 4.1, we have

Pr[GB̂
3C ⇒ 1] ≤ 8(qH + 1)2(Pr[GB̂

4C ⇒ 1] + 1/ |K|).
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GAMES G3C − G6C

1 : (pk, sk) ← Gen′, G ←$ ΩH , l = 0, (i, b) ←$ ([qH − 1] × {0, 1}) ∪ {(qH , 0)}
2 : k∗

0 , k̄ ←$ K, b̄ ←$ {0, 1}, m∗
0, m

∗
1 ←$ M, c∗ ← Enc(pk, m∗̄

b)

3 : (m′, c′) ← B̂|G〉,|G′〉,Decaps(pk, c∗, k∗
0) //G3C

4 : (m′, c′) ← B̂|Gi
1〉,|G′〉,Decaps(pk, c∗, k∗

0) //G4C − G6C

5 : return (m∗̄
b , c

∗) =?(m′, c′)//G3C − G4C

6 : return (m∗
1−b̄, c

∗) =?(m′, c′)//G5C

7 : if (m∗
0, c

∗) = (m′, c′) then b̃′ = 0 else then b̃′ = 1//G6C

8 : return b̃′ =?b̄//G6C

Decaps (sk, c̄ �= c∗) //G3C − G6C

1 : if more than 1 query return ⊥
2 : return k̄ //G4C − G6C

3 : m̄′ := Dec′(sk, c̄)

4 : if m̄′ =⊥ do m̄ = �

5 : else do m̄ = m̄′

6 : return K := G(m̄, c̄)

Gi
1(m, c)

1 : if l ≥ (i + b) ∧ (m, c) = (mi+1, ci+1)

// (mi+1, ci+1) is the measurement outcome

// on B’s (i + 1)-th query input register

2 : return k̄

3 : else return G(m, c)

4 : l = l + 1
G′(m, c)

1 : if (m, c) = (m∗̄
b , c

∗) //G3C − G4C

2 : if (m, c) = (m∗
1−b̄, c

∗) //G5C

3 : if (m, c) = (m∗
0, c

∗) //G6C

4 : return k∗
0//G3C − G6C

5 : return G(m, c)//G3C

6 : return Gi
1(m, c)//G4C − G6C

Fig. 8. Games G3C-G6C for the proof of Lemma 4.3

Game G5C is identical to game G4C except that G′(m∗̄
b
, c∗) = k∗

0 is replaced
by G′(m∗

1−b̄
, c∗) = k∗

0 , and correspondingly (m∗
1−b̄

, c∗) =?(m′, c′) is returned
instead of (m∗̄

b
, c∗) =?(m′, c′).

Note that game G4C conditioned on b̄ = 1 has the same output distribution
as game G4C conditioned on b̄ = 0. Thus, we have Pr[GB̂

4C ⇒ 1 : b̄ = 0] =
Pr[GB̂

4C ⇒ 1 : b̄ = 1] = Pr[GB̂
4C ⇒ 1]/2. Analogously, we have Pr[GB̂

5C ⇒ 1 : b̄ =
1] = Pr[GB̂

5C ⇒ 1]/2. Note that m∗
1−b̄

is independent of pk, c∗, k∗
0 and G. Thus,

according to Lemma 2.3, we have

Pr[GB̂
5C ⇒ 1 : b̄ = 1] ≤ (qH + 1)2/ |M| .
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Define game G6C as in Fig. 8. Thus, Pr[GB̂
6C ⇒ 1]

= 1/2Pr[(m∗
0, c

∗) = (m′, c′) : b̄ = 0] + 1/2Pr[(m∗
0, c

∗) �= (m′, c′) : b̄ = 1]
= 1/2Pr[(m∗

0, c
∗) = (m′, c′) : b̄ = 0] + 1/2 − 1/2Pr[(m∗

0, c
∗) = (m′, c′) : b̄ = 1]

= 1/2 + 1/2Pr[GB̂
4C ⇒ 1 : b̄ = 0] − 1/2Pr[GB̂

5C ⇒ 1 : b̄ = 1]

= 1/2 + 1/4(Pr[GB̂
4C ⇒ 1] − Pr[GB̂

5C ⇒ 1])

Now, we can construct an IND-CPA adversary D(pk) against PKE′, where
(pk, sk) ← Gen′. D samples m∗

0,m
∗
1 ←$ M, receives challenge ciphertext c∗ ←

Enc(pk,m∗̄
b
) (b̄ ←$ {0, 1}), samples k∗

0 , k̄, i, b as in game G6C , picks a 2qH -wise
independent function H, runs B̂|Gi

1〉,|G′〉,Decaps(pk, c∗, k∗
0) (the simulations of

Gi
1, G

′,Decaps are the same as in game G6C) to obtain (m′, c′), finally out-
puts 0 if (m∗

0, c
∗) = (m′, c′), and returns 1 otherwise. Thus, apparently,

∣
∣
∣Pr[GB̂

6C ⇒ 1] − 1/2
∣
∣
∣ = AdvIND−CPA

PKE′ (D)

Putting everything together, we have

AdvIND-1-CCA
KEMRH

(B) ≤ 2
√

8(qH + 1)2(4AdvIND−CPA
PKE′ (D) + 2(qH + 1)2/ |M| + 1/ |K|)

≤ 6(qH + 1)
√

4AdvIND−CPA
PKE′ (D) + 2(qH + 1)2/ |M| + 1/ |K|.

��
Theorem 4.3. (TH → TRH). For any adversary B′ against the IND-1-CCA
security of KEMH = TH [PKE′,H], issuing qH queries to the random oracle H,
there exists an IND-1-CCA adversary B against KEMRH = TRH [PKE′,H]7 that
makes qH + 1 queries to H such that Time(B′) ≈ Time(B) and

AdvIND-1-CCA
KEMH

(B′) ≤ AdvIND-1-CCA
KEMRH

(B) + εcoll,

where εcoll is an advantage bound of an algorithm searching a collision of the
random oracle H with qH queries. In particular, εcoll = q2H/ |K| in the ROM,
and εcoll = q3H/ |K| in the QROM [42, Corollary 2].

Proof. Let B′H,DecapsTH (pk, c∗, k∗
b ) be an adversary against the IND-1-CCA secu-

rity of TH [PKE′,H]. Construct an adversary BH,DecapsTRH (pk, c∗, k∗
b ) that runs

B′H,Decaps′
(pk, c∗, k∗

b ), and returns B′’s return. The oracle Decaps′ is simulated
by querying DecapsTRH

. In detail, Decaps′(c̄) returns ⊥ if DecapsTRH
(c̄) =

H(�, c̄). For other cases, Decaps′(c̄) just returns DecapsRH(c̄). Note that
when DecapsTH

(c̄) = ⊥, Decaps′(c̄) returns ⊥ with probability 1. When
DecapsTH

(c̄) �= ⊥, Pr[DecapsRH(c̄) = H(�, c̄)] ≤ εcoll since � /∈ M. Thus
Decaps′(c̄) returns DecapsH(c̄) with probability at least (1 − εcoll). That is,
for any c̄, DecapsTH

(c̄) = Decaps′(c̄) with probability at least 1 − εcoll. Thus,
we have AdvIND-1-CCA

KEM (B′) ≤ AdvIND-1-CCA
KEM (B) + εcoll.

7 In Theorem 4.3, the return value � for invalid ciphertext in decapsulation of KEMRH

is required not in message space (i.e., � /∈ M).
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Remark 2. The proof of Theorem 4.3 requires � /∈ M. Theorems 4.1 and 4.2
for KEMRH works for both � ∈ M and � /∈ M. Thus, combing Theo-
rems 4.1, 4.2, 4.3, we can directly obtain the (Q)ROM security proofs of
KEMH = TH [PKE′,H] with the same tightness as KEMRH = TRH [PKE′,H].

5 Tightness of the Reductions

In this section, we will show that for KEM = TRH [PKE′,H], a O(q)-ROM-loss
(and q2-loss) is unavoidable in general.

Theorem 5.1. Let PKE′ = (Gen′, Enc′,Dec′) be a PKE with malleabil-
ity property. Let M = {0, 1}n be the message space of PKE′. Then, there
exists a ROM (QROM, resp.) adversary B against the IND-1-CCA security
of KEM = TRH [PKE′,H] such that the advantage AdvIND-1-CCA

KEM (B) is about
(1/e) q

|M| ((q + 1)2/|M|, resp.), where q is the number of queries to H such that

1/
√|M| ≤ sin( π

6q+3 ) and q ≤ |K| (K is the key space).

Proof. Let (pk, sk) ← Gen′, m∗ ←$ M, c∗ ← Enc(pk,m∗), k∗
0 = H(m∗, c∗),

k∗
1 ←$ K, and b ←$ {0, 1}. Since PKE′ satisfies the malleability property, there

exists an algorithm B̄ that on input (pk, c∗) outputs (f, c′) such that (1) f(m∗) =
Dec(sk, c′) �= ⊥; (2)f(m̃) �= Dec(sk, c′) for any m̃ ∈ M and m̃ �= m.

Define the function gH
c,k : M → {0, 1} as

gH
c,k(m) =

{
1 H(f(m), c) = k
0 Otherwise

First, we consider the ROM case. Let BH,Decaps(pk, c∗, k∗
b ) be a ROM adver-

sary as follows.

1. Run B̄ to obtain (f, c′);
2. Query the Decaps oracle with c′ and obtain k′;
3. Randomly pick m1, . . . ,mq from M, and compute gH

c′,k′(mi) for each i ∈
{1, . . . , q} by querying H;

4. If there exists an mi such that gH
c′,k′(mi) = 1, return 1 − (H(mi, c

∗) =?k∗
b ),

else return ⊥.

Note that gH
c′,k′(m∗) = 1 with probability 1, and gH

c′,k′(m̃) = 1 with negligible
probability 1/ |K| for m̃ �= m∗. We also note that Pr[m∗ ∈ {m1, . . . ,mq}] = q

M .
Thus, the ROM advantage of B is at least q

M (1 − 1/ |K|)q−1 � (1/e) q
M since

q ≤ |K|.
Next, we consider the QROM case. Let B|H〉,Decaps(pk, c∗, k∗

b ) be a QROM
adversary as follows.

1. Run B̄ to obtain (f, c′);
2. Query the Decaps oracle with c′ and obtain k′;
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3. Use Grover’s algorithm for q steps to try to find m∗. In details, apply
Grover iteration q time on initial state HGate⊗n|0n〉 and make a stan-
dard measurement to derive m̄, where Grover iteration is composed of ora-
cle query Og that turns |m〉 into (−1)gH

c′,k′ (m)|m〉, and diffusion operator
U = HGate⊗n(2|0n〉〈0n| − In)HGate⊗n;

4. Return 1−(H(m̄, c∗) =?k∗
b ), where m̄ is the outcome obtained using Grover’s

algorithm in step 3.

Note that gH
c′,k′(m∗) = 1 with probability 1, and gH

c′,k′(m̃) = 1 with negligible
probability 1/ |K| for m̃ �= m∗. Let p0 = Pr[gH

c′,k′(m) = 1 : m ∈ M] ≥ 1/ |M|.
By q Grover iterations (requiring q quantum queries to H), the probability p1
of finding m∗ is sin2((2q + 1)θ), where sin2(θ) = p0.

When 1/
√|M| ≤ sin( π

6q+3 ), we have (2q + 1)θ ≤ π/3. Thus, we have

sin((2q + 1)θ) ≥ sin(θ) +
2q · θ

2
≥ (q + 1) sin(θ).

Therefore, we have p1 = sin2((2q + 1)θ) ≥ (q+1)2

|M| . Note that when m∗ is
obtained, one can derive b∗ with probability 1 by querying H(m̄, c∗). Thus, the
QROM advantage of B is at least (q+1)2

|M| . ��

Remark 3. Most IND-CPA-secure PKEs has malleability property, e.g., ElGa-
mal, FrodoKEM.PKE [28], Kyber.PKE [8], etc. Moreover, malleability property
is inherent for a homomorphic PKE. Let PKE = (Gen,Enc,Dec) be homo-
morphic in addition. That is, Enc(pk,m1 + m2) = Enc(pk,m1) + Enc(pk,m2).
Then, we can construct algorithm B̄(pk, c∗) (c∗ ← Enc(pk,m∗)) that randomly
picks m ∈ M, computes c′ = c∗ + Enc(pk,m), and defines f(x) = x + m. Note
that f(m∗) = Dec(sk, c′) and f(m̃) �= Dec(sk, c′) for m̃ �= m(We assume the
PKE has perfect correctness for simplicity). Thus, the homomorphic property of
a PKE implies the malleability property in this paper.

Remark 4. For a λ-bit IND-CPA-secure malleable public-key encryption PKE′

with message space M = 2λ we require that any PPT adversary breaks the
security of PKE′ with advantage at most 1

2λ . For example, such a PKE′ can be
constructed based on the LWE assumption by a suitable parameter selection [34].
Theorem 5.1 shows that a ROM (QROM, resp.) adversary against the IND-1-
CCA security of KEM = TRH [PKE′,H] can achieve advantage at least (1/e) q

2λ

( (q+1)2

2λ , resp.), where q is the number of adversary’s queries to H. That is, a
O(1/q) (O(1/q2), resp.) loss is unavoidable in the ROM (QROM, resp.) for TRH .

Remark 5. We remark that the output of decapsulation for an invalid ciphertext
c is irrelevant to the attack given in Theorem 5.1. Thus, the aforementioned
tightness results can also be applied to TH . We also remark that such a tightness
result can also be extended to the IND-1-CCA KEM construction TCH given
in [21], where there is tag tag = H ′(m∗, c∗

0) in the ciphertext (c∗
0 ← Enc(pk,m∗)),

and the key is computed by K = H(m∗). The idea is that the adversary against
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KEM can first search m∗ such that tag = H ′(m∗, c∗
0) by querying H ′, and then

query H with m∗, thus break the key indistinguishability. Following the same
analysis in Theorem 5.1, one can easily derive the same tightness result for TCH .

6 Relations Among Notions of CCA Security for KEM

In this section, we will compare the relative strengths of notions of IND-1-CCA
security and IND-CCA security in ROM and QROM. In detail, we works out
the relations among four notions. For each pair of notions A,B ∈ { IND-1-CCA
ROM, IND-1-CCA QROM, IND-CCA ROM, IND-CCA QROM }, we show one
of the following:

– A ⇒ B: A proof that if a KEM meets the notion of security A then it also
meets the notion of security B.

– A � B: There is a KEM construction that provably meets the notion of
security A but does not meet the notion of security B.

First, according to the security definitions, one can trivially derive the rela-
tions IND-CCA QROM ⇒ IND-1-CCA QROM ⇒ IND-1-CCA ROM, and IND-
CCA QROM ⇒ IND-CCA ROM ⇒ IND-1-CCA ROM. Next, we show the other
nontrivial relations.

Theorem 6.1. If the LWE assumption (Definition B.1) holds, then we
have IND-1-CCA ROM� IND-1-CCA QROM, IND-CCA ROM�IND-1-CCA
QROM and IND-CCA ROM �IND-CCA QROM.

Proof. First, if the LWE assumption holds, we can have a KEM=(Gen,Encaps,
Decaps) that satisfies the IND-CCA ROM security. For example, FrodoKEM [28]
is such a KEM whose IND-CCA ROM security can be reduced to the LWE
assumption. Let PoQRO=(Setup, Prove, V erify) (Definition C.1) be a proof
of quantum access to random oracle H, whose existence is based on the LWE
assumption, see Lemma C.1. Here, H is independent of the KEM.

Construct a new KEM′=(Gen′, Encaps′,Decaps′) as in Fig. 9. Note that any
efficient ROM adversary cannot find a c2 such that V erifyH(sk2, c2) = 1 (other-
wise the soundness of the PoQRO is broken). Thus, for an efficient ROM adver-
sary, querying oracle Decaps′ is equivalent to querying oracle Decaps. Thus,
KEM′ also meets the IND-CCA ROM security.

Meanwhile, a QROM adversary can find a c2 such that V erifyH(sk2, c2) = 1.
Thus, by querying oracle Decaps′ (only one time), a QROM adversary can obtain
sk1, hence break the IND-CCA security of KEM′. Therefore, KEM′ does not
meet the IND-1-CCA QROM security (and also IND-CCA QROM security).
Since KEM meets the IND-CCA ROM security, KEM is also IND-1-CCA-secure
in the ROM. Hence, we have IND-1-CCA ROM�IND-1-CCA QROM, IND-CCA
ROM�IND-1-CCA QROM and IND-CCA ROM�IND-CCA QROM. ��
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Gen′

1 : (pk1, sk1) ← Gen

2 : (pk2, sk2) ← Setup

3 : pk = (pk1, pk2)

4 : sk = (sk1, sk2)

5 : return (pk, sk)

Encaps′(pk)

1 : parse pk = (pk1, pk2)

2 : (K, c1) ←$ Encaps(pk1)

3 : c = (c1, ⊥)

4 : return (K, c)

Decaps′(sk, c)

1 : parse sk = (sk1, sk2)

2 : parse c = (c1, c2)

3 : if V erifyH(sk2, c2) = 1

4 : return sk1

5 : return Decaps(sk1, c1)

Fig. 9. Separation instance KEM′ for Theorem 6.1.

Theorem 6.2. If the LWE assumption holds, then we have IND-1-CCA ROM
�IND-CCA ROM, IND-1-CCA QROM�IND-CCA QROM, and IND-1-CCA
QROM�IND-CCA ROM.

Proof. Let (Gen,Enc,Dec) be the key-generation, encryption and decryp-
tion algorithms of FrodoPKE [28], whose IND-CPA security can be reduced
to the LWE assumption. Then, according to Theorems 4.1 and 4.2,
KEM=TRH [FrodoPKE,H] is IND-1-CCA secure in both ROM and QROM. Note
that such a KEM is essentially a FO-KEM without re-encryption. Qin et al. [33]
had shown such a KEM is vulnerable to key-mismatch attacks that can recover
the secret key with only polynomial queries to the decapsulation oracle. That
is, KEM=TRH [FrodoPKE,H] is not IND-CCA-secure in ROM (and QROM).
Hence, we have IND-1-CCA ROM�IND-CCA ROM, IND-1-CCA QROM�

IND-CCA QROM, and IND-1-CCA QROM �IND-CCA ROM. ��
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A Supporting Material: Cryptographic Primitives

Definition A.1 (Public-key encryption). A public-key encryption (PKE)
scheme PKE consists of a triple of polynomial time (in the security parameter
λ) algorithms and a finite message space M. (1) Gen(1λ) → (pk, sk): the key
generation algorithm, is a probabilistic algorithm which on input 1λ outputs a
public/secret key-pair (pk, sk). Usually, for brevity, we will omit the input of
Gen. (2) Enc(pk,m) → c: the encryption algorithm Enc, on input pk and a
message m ∈ M, outputs a ciphertext c ← Enc(pk,m). (3) Dec(sk, c) → m: the
decryption algorithm Dec, is a deterministic algorithm which on input sk and a
ciphertext c outputs a message m := Dec(sk, c) or a rejection symbol ⊥/∈ M.
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Definition A.2 (Correctness [17]).A PKE is δ-correct if E[max
m∈M

Pr[Dec(sk, c)

�= m : c ← Enc(pk,m)]] ≤ δ, where the expectation is taken over (pk, sk) ← Gen.
We say a PKE is perfectly correct if δ = 0.

Note that this definition works for a deterministic or randomized PKE, but for
a deterministic PKE8 the term max

m∈M
Pr[Dec(sk, c) �= m : c = Enc(pk,m)] is

either 0 or 1 for each keypair (pk, sk).

Definition A.3 (Injectivity of DPKE [6]). A deterministic PKE (DPKE)
is ε-injective if Pr[Enc(pk, ∗) is not injective : (pk, sk) ← Gen] ≤ ε.

Remark 6. we observe that if DPKE is δ-correct, then DPKE is injective with
probability ≥ 1 − δ. That is, for DPKE, δ-correctness implies δ-injectivity.

Definition A.4 (OW-CPA-secure PKE). Let PKE = (Gen,Enc,Dec) be a
public-key encryption scheme with message space M. Define OW − CPA game
of PKE as in Fig. 10. Define the OW − CPA advantage function of an adversary
A against PKE as AdvOW-CPA

PKE (A) := Pr[OW-CPAA
PKE = 1].

Game OW-CPA

1 : (pk, sk) ← Gen, m∗ $← M
2 : c∗ ← Enc(pk, m∗), m′ ← A(pk, c∗)

3 : return m′ =?m∗

Game IND-CPA

1 : (pk, sk) ← Gen, b ←$ {0, 1}
2 : (m0, m1)←A(pk)

3 : c∗ ← Enc(pk, mb), b′ ← A(pk, c∗)

4 : return b′ =?b

Fig. 10. Game OW-CPA and game IND-CPA for PKE.

Definition A.5 (IND-CPA-secure PKE). Let PKE = (Gen,Enc,Dec) be a
PKE scheme. Define IND − CPA game of PKE as in Fig. 10, where m0 and m1

have the same length. Define the IND − CPA advantage function of an adversary
A against PKE as AdvIND-CPA

PKE (A) := |Pr[IND-CPAA
PKE = 1] − 1/2|.

Malleability. In this paper, we say a PKE = (Gen,Enc,Dec) has a malleability
property if for any (pk, sk) generated by Gen, any m ∈ M, and c ← Enc(pk,m),
there exists an algorithm B that on input (pk, c) outputs (f, c′) such that (1)
f(m) = Dec(sk, c′) (Dec(sk, c′) �= ⊥) (2) f(m̃) �= Dec(sk, c′) for any m̃ ∈ M
and m̃ �= m.

Definition A.6 (Key encapsulation). A key encapsulation mechanism KEM
consists of three algorithms. (1) Gen(1λ) → (pk, sk): the key generation algo-
rithm Gen outputs a key pair (pk, sk). Usually, for brevity, we will omit the
8 A PKE is deterministic if Enc is deterministic.
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input of Gen. (2) Encaps(pk) → (K, c): the encapsulation algorithm Encaps,
on input pk, outputs a tuple (K, c), where K ∈ K and ciphertext c is said to be
an encapsulation of the key K. (3) Decaps(sk, c) → K: the deterministic decap-
sulation algorithm Decaps, on input sk and an encapsulation c, outputs either
a key K := Decaps(sk, c) ∈ K or a rejection symbol ⊥/∈ K.

Definition A.7 (IND-CCA-secure KEM). We define the IND − CCA game
as in Fig. 11 and the advantage function of an adversary A against KEM as
AdvIND-CCA

KEM (A) :=
∣
∣Pr[IND-CCAA

KEM = 1] − 1/2
∣
∣ .

Game IND-CCA

1 : (pk, sk) ← Gen, b
$← {0, 1}

2 : (K∗
0 , c∗) ← Encaps(pk), K∗

1
$← K

3 : b′ ← ADecaps(pk, c∗, K∗
b )

4 : return b′ =?b

Decaps(sk, c)

1 : if c = c∗return ⊥
2 : else return

3 : K := Decaps(sk, c)

Fig. 11. IND-CCA game for KEM.

B Supporting Material: Learning with Error (LWE)

Definition B.1. Let n,m, q be positive integers, and let χ be a distribution
over Z. The (decision) LWE problem is to distinguish between the distributions
(A,As+ e(modq)) and (A,u), where A ←$ Z

n×m
q , s ←$ Z

n
q , e ← χm, u ←$ Z

m
q .

In this paper, we refer the LWE assumption to that no quantum polynomial-time
algorithm can solve the LWE problem with more than a negligible advantage.

C Supporting Material: Proof of Quantum Access
to Random Oracle (PoQRO)

Definition C.1 ([40]). A (non-interactive) proof of quantum access to a ran-
dom oracle (PoQRO) consists of the following three algorithms. (1) Setup(1λ):
This is a classical algorithm that takes the security parameter 1λ as input and
outputs a public key pk and a secret key sk. (2) Prove|H〉(pk): This is a quantum
algorithm that takes a public key pk as input and given quantum access to a ran-
dom oracle H, and outputs a proof π9. (3) V erifyH(sk, π): This is a classical
algorithm that takes a secret key sk and a proof π as input and given classical

9 Here, π is a classical value, and not a quantum state.
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access to a random oracle H, and outputs 1 indicating acceptance or 0 indicating
rejection. PoQRO is required to satisfy the following properties.

Correctness. We have Pr[V erifyH(sk, π) = 0 : (pk, sk) ← Setep(1λ), π ←
Prove|H〉(pk)] ≤ negl(λ).

Soundness. For any quantum polynomial-time adversary A that is given a
classical oracle access to H, we have Pr[V erifyH(sk, π) = 1 : Setep(1λ), π ←
AH(pk)] ≤ negl(λ).

Lemma C.1 ([40, Theorem 3.3]). If the LWE assumption holds, then there
exists a PoQRO.
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