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Abstract. The Higher-order Differential-Linear (HDL) attack was
introduced by Biham et al. at FSE 2005, where a linear approxima-
tion was appended to a Higher-order Differential (HD) transition. It
is a natural generalization of the Differential-Linear (DL) attack. Due
to some practical restrictions, however, HDL cryptanalysis has unfor-
tunately attracted much less attention compared to its DL counterpart
since its proposal.

In this paper, we revisit HD/HDL cryptanalysis from an algebraic
perspective and provide two novel tools for detecting possible HD/HDL
distinguishers, including: (a) Higher-order Algebraic Transitional Form
(HATF) for probabilistic HD/HDL attacks; (b) Differential Supporting
Function (DSF) for deterministic HD attacks. In general, the HATF can
estimate the biases of �th-order HDL approximations with complexity

O(2�+d2�

) where d is the algebraic degree of the function studied. If the
function is quadratic, the complexity can be further reduced to O(23.8�).
HATF is therefore very useful in HDL cryptanalysis for ciphers with
quadratic round functions, such as Ascon and Xoodyak. DSF provides
a convenient way to find good linearizations on the input of a permuta-
tion, which facilitates the search for HD distinguishers.

Unsurprisingly, HD/HDL attacks have the potential to be more
effective than their simpler differential/DL counterparts. Using HATF,
we found many HDL approximations for round-reduced Ascon and
Xoodyak initializations, with significantly larger biases than DL ones.
For instance, there are deterministic 2nd-order/4th-order HDL approx-
imations for Ascon/Xoodyak initializations, respectively (which is
believed to be impossible in the simple DL case). We derived highly
biased HDL approximations for 5-round Ascon up to 8th order, which
improves the complexity of the distinguishing attack on 5-round Ascon
from 216 to 212 calls. We also proposed HDL approximations for 6-
round Ascon and 5-round Xoodyak (under the single-key model), which
couldn’t be reached with simple DL so far. For key recovery, HDL attacks
are also more efficient than DL attacks, thanks to the larger biases of
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HDL approximations. Additionally, HATF works well for DL (1st-order
HDL) attacks and some well-known DL biases of Ascon and Xoodyak
that could only be obtained experimentally before can now be predicted
theoretically.

With DSF, we propose a new distinguishing attack on 8-round Ascon
permutation, with a complexity of 248. Also, we provide a new zero-sum
distinguisher for the full 12-round Ascon permutation with 255 time/-
data complexity. We highlight that our cryptanalyses do not threaten
the security of Ascon or Xoodyak.

Keywords: Higher-Order Differential · Higher-Order
Differential-Linear · Ascon · Xoodyak

1 Introduction

1.1 Differential-Linear Cryptanalysis

Differential and linear cryptanalysis have been the fundamental methods for eval-
uating the security of a cipher [5,22]. Nowadays, all new schemes are requested
to claim resistance against these two attacks. However, resistance against the
plain differential and linear cryptanalysis does not necessarily lead to resistance
against their variants. For example, despite its security proof against differential
attacks, the cipher Coconut98 [28] is vulnerable to boomerang and Differential-
Linear (DL) cryptanalysis [3,29] which are two variants of the differential and
linear attacks, leveraging a combined strategy.

Differential-linear cryptanalysis was proposed by Langford and Hellman in
1994 [18]. For a cipher E, let C = E(P ) and C ′ = E(P ′). Given a difference-
mask pair (ΔI , λO), the bias q′ of a DL approximation can be derived from the
following equation

Pr[λO · (C ⊕ C ′) = 0 | P ⊕ P ′ = ΔI ] =
1
2

+ q′.

Similar to the case of linear cryptanalysis, if the bias |q′| is significantly larger
than 0, we can distinguish the cipher from a random permutation.

There are mainly two types of methods to estimate q′ in the literature. In
the classical DL cryptanalysis [3,18], a cipher E is decomposed into two sub-
ciphers as E = E1 ◦ E0, where a differential ΔI

p−→ ΔO for E0 and a linear
approximation λI

q−→ λO for E1 are considered. The DL bias q′ can be estimated
by q′ = (−1)ΔO·λI 2pq2 under some independence assumptions.

As pointed out in [3], experiments are required to verify the estimated bias
when possible because the underlying assumptions may fail. There are two main
refined methods of classical DL attacks. One is from Blondeau et al. [6], where
an accurate formula for q′ is given under the sole assumption that E0 and E1 are
independent. The other, proposed by Bar-On et al. [1] at EUROCRYPT 2019, is
called the Differential-Linear Connectivity Table (DLCT) which overcomes the
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independence problem between E0 and E1. The drawback of the first method
is that it is computationally impossible to apply the formula for practical use-
cases, while the second method only works when a large-enough DLCT can be
built efficiently.

A new method to estimate q′ from an algebraic perspective has been proposed
by Liu et al. [20] at CRYPTO 2021. If we define a Boolean function according
to λO as fλO

: F
n
2 → F2, fλO

(u) = λO · u and let f = fλO
◦ E, the bias of

λO · (C ⊕ C ′) is equivalent to the bias of the following Boolean function

DΔI
f(P ) = f(P ) ⊕ f(P ⊕ ΔI). (1)

Then, they introduced another function with an auxiliary variable x ∈ F2 as

fΔI
(P, x) = f(P ⊕ xΔI), (2)

where xΔI ∈ F
n
2 means that x is multiplied with each coordinate of ΔI , i.e.,

xΔI = (xΔI [0], . . . , xΔI [n − 1]). Given a Boolean function g(a0, a1, . . . , an−1)
with n variables and for a certain variable ai (aj for j �= i are viewed as param-
eters), we can write g as g = g′′ai ⊕ g′ with g′ and g′′ being independent of ai

and where the partial derivative of g with respect to ai is the polynomial g′′,
denoted by Dai

g. Liu et al. gave the following observation linking Eqs. 1 and
2 (Eq. 3, as proposed in [20], was initially presented based on intuition, with
the underlying rationale not explicitly discussed. A comprehensive explanation
and detailed insight into the reasoning behind this formula will be provided in
Sect. 3),

f ′′ = DxfΔI
= DΔI

f, (3)

where DxfΔI
is the partial derivative of fΔI

with respect to x. That is to say,
considering Eqs. 1, 2, 3, in order to evaluate the bias of λO · (C ⊕ C ′), we only
need to evaluate the bias of the Boolean function DxfΔI

. This estimation from
an algebraic perspective does not require any assumption in theory. However,
it is extremely difficult to derive DxfΔI

or evaluate its bias. To overcome this
obstacle, Liu et al. introduced the so-called Algebraic Transitional Forms (ATF)1

technique to construct a transitional expression of DxfΔI
. Then, the bias is

estimated from this transitional expression.

1.2 Higher-Order Differential(-Linear) Cryptanalysis

Inspired by the boomerang and DL cryptanalysis, other combined attacks were
studied by Biham, Dunkelman, and Keller [4]. These combined attacks include
the differential-bilinear, Higher-order Differential-Linear (HDL), boomerang-
linear attack, etc.

The Higher-order Differential (HD) was for the first time introduced by Lai
in 1994 [30] and later studied by Knudsen [16]. It is a natural generalization of
1 In [20], there is another terminology DATF when ATF is used to construct transi-

tional expressions for fΔ. In this paper, we directly use ATF for all kinds of Boolean
functions no matter whether we target f or fΔ.
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the differential attack that takes advantage of having access to more plaintexts.
Given an �th-order difference ΔI = (Δ0,Δ1, . . . ,Δ�−1) where Δ0,Δ1, . . . ,Δ�−1

are linearly independent, the �th derivative of a (partial) cipher E with respect
to ΔI studies the probability

p = Pr

⎡
⎣ ⊕

x∈X⊕L(ΔI)

E(x) = ΔO

⎤
⎦ ,

where L(ΔI) is the linear span of (Δ0,Δ1, . . . ,Δ�−1), the � dimensional affine
space X ⊕ L(Δ) is called the input set with respect to Δ, and ΔO is called the
output difference.

As the name higher-order differential-linear suggests, HDL cryptanalysis [4]
studies the bias concerning an �th-order input difference ΔI and an output
mask λO. The bias ε of an HDL approximation is derived from the following
formulation:

Pr

⎡
⎣λO ·

⎛
⎝ ⊕

x∈X⊕L(ΔI)

E(x)

⎞
⎠ = 0

⎤
⎦ =

1
2

+ ε.

Akin to the first kind of method to evaluate the bias in DL cryptanalysis, Biham
et al. [4] gave an analysis based on viewing E as two sub-ciphers E = E1 ◦ E0.
Suppose that we know an �th derivative with probability p for E0 and that E1 has
a linear approximation with bias equal to q, then the overall bias ε is estimated
as ε = 22

�−1pq2
�

. However, currently there is no effective method to trace the
propagation of an HD or calculate its probability yet. Thus, Biham et al. had to
restrain themselves to the integral property for E0, which leads to p = 1. The
integral property usually requires a large � to attack an interesting number of
rounds, but if |q| �= 1

2 , ε will become extremely close to zero. As a result, we can
only get an interesting HDL distinguisher when there is a linear approximation
with bias ± 1

2 for E1. In practice, some ciphers such as IDEA [17] allow weak-
key linear approximations with bias 1

2 , which makes them vulnerable to HDL
attacks [2,4].

1.3 Motivation and Contributions

Considering that DL attacks are efficient for many important primitives,
such as Ascon [12] (recent winner of the NIST lightweight competition) and
Xoodyak [9], we are naturally interested in whether the HDL attack could
achieve even better performance. However, as we mentioned, we did not have
any tool to study the probabilistic HD distinguishers and they were far less
practical than their DL counterparts. How to handle the probabilistic HD/HDL
cryptanalysis remains an open problem.

Recently, an algebraic perspective on DL attacks [20] opened up a new road to
study the differential/DL attacks and achieved better precision for some impor-
tant ciphers such as Ascon [12]. However, we note that their method is based on
some intuitive observations and is limited to the first-order case. In this paper,
we generalize and refine this algebraic method to higher-order cases.
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Our Contributions. In this paper, we revisit the HD/HDL cryptanalysis of
a Boolean function from an algebraic perspective, which provides novel meth-
ods to study HD and HDL cryptanalysis. Two tools for HD/HDL cryptanalysis
are proposed based on this new perspective, one is the Higher-order Algebraic
Transitional Form (HATF), which is used to detect probabilistic HDL approxi-
mations. The other is the Differential Supporting Function (DSF), which is useful
to find deterministic HD distinguishers.

Table 1. Approximation Biases of the DL and HDL approximations for Ascon,
Xoodyak and Xoodoo. The column of Expr. shows the experimental biases.

Primitive Round Order Bias Method Reference

Expr. Theory

Ascon Init. 4 1st 2−2 2−20 Classical [11]

2−5 DLCT [1]

2−2.365 ATF [20]

2−2.09 HATF Section 5.1

2nd 2−1 2−1 HATF Section 5.1

5 1st 2−9 – Experimental [11]

2−10 HATF Section 5.1

2nd 2−6.60 2−7.05 HATF Section 5.1

8th 2−3.35 2−4.73 HATF Section 5.1

6 3rd 2−22† 2−25.97† HATF Section 5.1

Xoodyak Init. 4 1st 2−9.7 – Experimental [13]

2−9.67 HATF Section 6.1

−2−5.36‡ – Experimental [13]

−2−6.0 HATF Section 6.1

2nd 2−5.72 2−5.72 HATF Section 6.1

4th 2−1 2−1 HATF Section 6.1

5 2nd – 2−45 HATF Section 6.1

Xoodoo 4 - 2−1 2−1 Rot. DL [21]

4th 2−1 2−1 HATF Section 6.1

5 3rd 2−8.79 2−8.96 HATF Section 6.1

†This bias holds when 24 conditions are satisfied.
‡In [13], this 4-round DL distinguisher was extended to 5 rounds in a natural way, with
an additional cost of 2−4.

Higher-Order Algebraic Transitional Form (HATF). By transforming
the input set of a Boolean function f from an � dimensional affine space to an
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� dimensional linear space, we can transform a general HD attack to a stan-
dard integral/cube attack. The HD/HDL approximations are then the biases of
the coefficient of the maxterm in f with the transformed inputs. Since almost
all modern ciphers are built in a composite way, we can obtain the HD/HDL
expressions in the form of a composite vectorial Boolean function, which is easier
to study.

HATF is a way to estimate the biases of HDL approximations of ciphers
(concretely, they are the expected biases among all input variabels). It is a two-
step process: (a) constructing the composite formula of an HD/HDL expression
for a cipher; (b) calculating the biases of state bits iteratively. The complexity
of HATF is O(2�+d2�

) in general cases where � is the HD/HDL order and d is
the algebraic degree of the round function. However, for ciphers with quadratic
round functions, the complexity is O(23.8�). Thus, HATF is a very useful tool
to study the HDL approximations of some permutation-based ciphers such as
Ascon and Xoodyak.

Using HATF, we detected many highly biased HDL approximations for
round-reduced Ascon, Xoodyak and Xoodoo. For example, we propose deter-
ministic HDL approximations for both Ascon and Xoodyak on 4 rounds. For
5-round Ascon, we give HDL approximations up to the 8th order. Based on
these, we have improved the distinguishing attacks for 4- and 5-round Ascon
and Xoodyak (see Table 2).

We can improve the precision of HATF with a so-called partitioning technique
as compared to all previous detection tools for DL (first-order HDL) attacks.
For instance, HATF estimates the bias of the well-studied 4-round Ascon’s DL
approximation as 2−2.09 (the experimental results is 2−2), which is better than
previous tools such as the DLCT [1] (2−5) or the ATF [20] (2−2.36). Also, for the
first time we give the theoretical bias for the 5-round Ascon’s DL approximation:
the bias is estimated as 2−10 while the experimental value is 2−9, no previous
tool could predict this bias. For Xoodyak, HATF also gives precise theoretical
predictions for two DL approximations found by experiments [13]. These results
are shown in Table 1.

In addition, by injecting some conditions into HATF, we obtained the best
key-recovery attack on 5-round Ascon with time/data complexity of 222, which
is 16 times faster than the DL attacks [20] and 4 times faster than the condi-
tional cube attacks [19]. For 4-round Xoodyak, the HDL attack is 4 times more
efficient than the DL attack [13]. A summary of these key-recovery attacks is
given in Table 2.

Finally, we make clear that HATF cannot give any lower or upper bound for
HDL approximation biases in theory. However, empirically, it is quite precise to
predict biased bits, as we show in our experiments. In cases where the reported
bias is high, we note that it was always the case that the experimental bias
was also observed as high (we have not seen any counterexample for this). We
provide data and discuss the precision of HATF in the full version of this paper
based on HDL cryptanalysis of Ascon.
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Differential Supporting Function (DSF). Instead of using the degree evalu-
ation of a cipher to derive deterministic HD distinguishers, we can evaluate the
algebraic degree of its DSF. As we will see, the DSF is parameterized by the input
value and the (higher-order) difference. Thus, a proper choice of the parameters
could significantly reduce its algebraic degree, leading to a greater chance of
detecting a deterministic HD distinguisher for the DSF. After that, we can con-
veniently transform it into an HD distinguisher for the original cipher. With this
technique, we improve the best-known distinguishing attacks on round-reduced
Ascon permutation [12]. A 46th-order HD will lead to a zero output difference
(in 64 bits) for 8 rounds, i.e., 246 plaintexts are enough to distinguish an 8-round
Ascon permutation from a random permutation (the previous best-known dis-
tinguisher requires 2130 computations [26]). With a similar method applied to
the inverse Ascon permutation, we constructed a zero-sum distinguisher for a
full 12-round Ascon permutation requiring only 255 calls while the previous best
zero-sum distinguisher costs 2130 calls. These distinguishers are demonstrated in
Table 3.

Table 2. Summary of DL-like attacks on the Ascon and Xoodyak initializations.
Cond. is short for conditional.

Type Rnd Data(log) Time (log) Method Reference

Ascon Initialization

Distinguisher 4 5 5 DL [11]

2 2 2nd HDL Section 5.1

5 18 18 DL [11]

12 12 8th HDL Section 5.1

Key-Recovery 5 36 36 DL [11]

31.44 31.44 DL [25]

26 26 Cond. DL [20]

24 24 Cond. Cube [19]

22 22 Cond. HDL Section 5.2

Best 7 77 103 Cond. Cube [19]

7 64 123 Cube [23]

Xoodyak Initialization

Key-Recovery 4 23 23 DL [13]

21 21 Cond. HDL Section 6.2

5 22 22 DL† [13]

70 70 Cond. HDL Section 6.2

Best 6 43.8 43.8 Cond. Cube [31]

† This attack is under the related-key model because they obtained the 5-round
DL approximation by extending a 4-round one. Our attack is a single-key one,
which means we have to choose the input differences from the beginning of 5
rounds.
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Table 3. Summary of zero-sum attacks on Ascon permutation. We verified them up
to 7 rounds by experiments.

Type Rnd Data(log) Time (log) Method Reference

From Start 8 130 130 Integral [26]

48 48 HD Section 7

Best 11 315 315 Integral [26]

Inside out 12 130 130 Zero-Sum‡ [26]

55 55 Zero-Sum Full Version [14]

‡Their zero-sum distinguisher can be further extended to a zero-sum partition
distinguisher, while ours cannot.

We emphasize that these results do not threaten the security of the Ascon
and Xoodyak AEAD schemes.

Source Code. We implemented the HATF algorithms in C++ and DSF in
Python, the source codes are provided in the git repository https://github.com/
hukaisdu/HDL.git.

Outline. In Sect. 2, we briefly recall the main concepts of the HD and an alge-
braic perspective on the differential attack, and other useful background knowl-
edge used in this paper. In Sect. 3, we provide an algebraic perspective on the
HD/HDL. The HATF technique is introduced in Sect. 4. In the following sec-
tions, we describe the HDL attacks on Ascon and Xoodyak. In Sect. 7, we give
the theory and results of DSF. Section 8 concludes this paper.

2 Preliminaries

2.1 Notations

We use italic lower-case letters such as x to represent elements in F
n
2 , n ≥ 1.

The jth bit of x is denoted by x[j], 0 ≤ j < n, where x[0] is the most
significant (the leftmost) bit. The vectors of � elements in F

n
2 are denoted

by x = (x0, x1, . . . , x�−1) ∈ (Fn
2 )�, the ith element of x is denoted by xi

(the jth bit of xi is then denoted by xi[j]). Given x ∈ F2 and Δ ∈ F
n
2 ,

xΔ = (Δ[0]x,Δ[1]x, . . . ,Δ[n − 1]x). For a, b ∈ F
n
2 , a||b ∈ F

2n
2 represents the

concatenation of a and b, a · b stands for the product as a · b =
⊕

0≤i<n a[i]b[i].
In this paper, x = (x0, x1, . . . , xn−1) ∈ F

n
2 is usually used as symbolic vari-

ables. Given u ∈ F
n
2 , xu is a monomial of x as xu =

∏
i x

u[i]
i . For a vectorial

Boolean function E : Fn
2 → F

n
2 , we use the E[0], E[1], . . . , E[n − 1] to represent

the Boolean functions of its bits.

https://github.com/hukaisdu/HDL.git
https://github.com/hukaisdu/HDL.git
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2.2 Boolean Function

An n-variable Boolean function is a mapping from F
n
2 to F2, which can be

uniquely written as its Algebraic Normal Form (ANF) as a multivariate poly-
nomial over F2 as (note the input x ∈ F

n
2 of this Boolean function is written as

x ∈ (F2)n to stress that the input can be seen as n bit variables)

f(x) = f(x0, x1, . . . , xn−1) =
⊕
u∈F

n
2

auxu =
⊕
u∈F

n
2

au

n−1∏
i=0

x
u[i]
i , au ∈ F2.

The algebraic degree of f , denoted by deg(f) is defined as maxau �=0{wt(u)}
for all u ∈ F

n
2 in the above formula. The monomial x0x1 · · · xn−1 is called the

maxterm of f , denoted by π(x). The coefficient of a monomial xu of f is denoted
by Coe (f,xu). Each output bit of a cryptographic primitive can be written as
a Boolean function of its public variables (such as plaintexts, initial values (IV),
or nonces) and secret variables such as the key bits.

The bias and correlation are two ways of measuring the unbalancedness of an
n-variable Boolean function f . The bias ε is defined as ε = 1

2n |{f(x) = 0}|− 1
2 =

Pr[f = 0] − 1
2 while the correlation c = 1

2n

∑
x∈F

n
2
(−1)f(x). Actually, c = 2ε. In

this paper, we will only use the bias ε to measure the unbalancedness.

2.3 Algebraic Perspective on DL

In [20], Liu et al. introduced a new algebraic method for the differential and
DL cryptanalysis as we have already mentioned in Sect. 1. Recalling Eq. 1, the
bias of a DL approximation is related to the differential bias of the Boolean
function f = fλO

◦ E. Thus, to study the DL attack it is enough to focus on the
differential property of a sole Boolean function. As explained in Sect. 1, Liu et
al. proposed Eq. 3 (f ′′ = DxfΔI

= DΔI
f) based on some intuitive observations,

but no formal proof nor clear motivation was given in their article. In the next
section, we will make it clearer when introducing our algebraic perspective on
the �th-order HD.

Basic Idea of Algebraic Transitional Forms. Eq. 3 tells us that if we can
(a) calculate the ANF of DxfΔ, (b) evaluate the bias of DxfΔ, then we can
directly know the bias of the output difference. Unfortunately, both tasks are
computationally infeasible for modern cryptographic primitives. To overcome
these two obstacles, Liu et al. introduced the ATF of the exact ANF of fΔ. ATF
of a Boolean function f is a composite representation of f , denoted by A. From
A(fΔ), we obtain a simpler expression of DxfΔ, say DxA(fΔ), whose bias will
be regarded as an estimation of the real bias.

The core of ATF technique is to substitute some parts of a Boolean function
with new variables to simplify its form. Finally, DxA(fΔ) will be a simple formula
of intermediate variables (some are variables introduced for substitution). The
bias of DxA(fΔ) is relatively easier to calculate.
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In [20], Liu et al. proposed two methods to estimate the bias of DxA(fΔ).
Both methods are based on the following Lemma,

Lemma 1. ( [20]). Given a Boolean function f : F
n
2 → F

n
2 and n input bits

x0, x1, . . . , xn−1 with biases ε0, ε1, . . . , εn−1 respectively. Under the assumption
that all inputs are independent, the bias of f is

Bias(f) =
∑

x0,x1,...,xn−1
s.t.f(x0,...,xn−1)=0

n−1∏
i=0

(
1
2

+ (−1)xiεi

)
− 1

2
. (4)

Equation 4 is derived from such an idea: the event of f = 0 happens means
any of the input that makes f = 0 happens. The bias of xi is εi, so it happens
with probability of 1

2 +εi when xi = 0 or 1
2 −εi when xi = 1. Equation 4 follows.

When using Eq. 4, we need to find out all inputs that make f = 0. Thus the
complexity to calculate the bias of f is about O(2n).

In the basic method, Liu et al. assume that all inputs of DxA(fΔ) are uni-
formly random (i.e., the biases of all inputs are exactly 0), the bias of DxA(fΔ) is
computed according to Lemma 1. The improved method is similar to the basic
one, but the bias of the intermediate variables will be calculated in advance.
Thus, the precision can be improved.

3 HD/HDL Cryptanalysis from an Algebraic Perspective

In this section, we give the theory about the �th derivative of a Boolean function f
from an algebraic perspective. This is a general case of the algebraic perspective
on DL proposed in [20]. It is well known that the cube/integral attacks are
special cases of HD attacks with all � linearly-independent differences being unit
vectors. The expression of the HD derivative of f in this case is the coefficient of
the so-called cube term [10]. The theory in this section answers such a question:
given any � linear-independent differences, what is the expression of the HD
derivative of f?

Given a Boolean function f : F
n
2 → F2 and an �th-order input difference

Δ = (Δ0,Δ1, . . . ,Δ�−1) ∈ (Fn
2 )�, the input set is X ⊕ L(Δ) for a certain input

X ∈ F
n
2 . The �th derivative of f is calculated as

DΔf(X) =
⊕

a∈X⊕L(Δ)

f(a).

Note that A
� = X ⊕ L(Δ) is an �-dimensional affine space, so we can link A

�

to any another �-dimensional affine space (A�)′ by a bijective mapping M that
sends (A�)′ to A

�. Not surprisingly, we tend to choose the simplest �-dimensional
affine space, i.e., the �-dimensional linear space F

�
2. One choice of M can be

M : F�
2 → A

�

(x0, x1, . . . , x�−1) 	→ X ⊕ x0Δ0 ⊕ x1Δ1 ⊕ · · · ⊕ x�−1Δ�−1 � X ⊕ xΔ
(5)
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We define a new function fΔ from f with the transformed input set as2:

fΔ : F�
2 → F2, x 	→ f(X ⊕ xΔ).

If we let DxfΔ represent the coefficient of the maxterm in fΔ , i.e., DxfΔ =
Coe (f (X ⊕ xΔ), π(x)) (recall that the maxterm is π(x) =

∏�−1
i=0 xi), we can

give the following formal proposition,

Proposition 1 (Algebraic-Perspective on HD/HDL). Given f : Fn
2 → F2

and an �th-order difference Δ ∈ (Fn
2 )�, DΔf = DxfΔ .

Proof. With M as given in Eq. 5, for any X we have

DΔf(X) =
⊕

a∈X⊕L(Δ)

f(a) =
⊕

x∈F
�
2

f(M(x)) =
⊕

x∈F
�
2

f(X ⊕ xΔ).

From the perspective of the Möbius transform, the sum over all x ∈ F
�
2 is the

coefficient of π(x), i.e.,
⊕

x∈F
�
2

f(X ⊕ xΔ) = Coe (f(X ⊕ xΔ), π(x)) = DxfΔ .


�

4 Estimating HDL Approximation Biases Using HATF

On the basis of Sect. 3, we propose a technique to measure the bias of a prob-
abilistic HDL approximation. The basic idea is inspired by the ATF technique
introduced by Liu et al. for the DL cryptanalysis [20]: we construct a composite
representation of the HDL approximation, then estimate the bias according to
the composite representation. In Sect. 4.1, we construct the HATF for a cipher
E, which is a composite representation of the �th derivative of E. In Sect. 4.2,
we estimate the bias of the �th-order HDL based on HATF under some reason-
able assumptions. In Sect. 4.4, the partitioning technique is introduced to further
improve the precision of the HATF method.

4.1 Construction of the HATF

According to Proposition 1, if for a Boolean function f , we have the ability to
calculate the bias of DxfΔ = Coe (f(X ⊕ xΔ), π(x)), then we will also have the
bias of DΔf . However, DxfΔ is too complicated to derive, let alone calculate
its bias. Considering that almost all modern ciphers are constructed as a com-
position of small functions whose ANFs are available, we can represent DxfΔ

in a composite way. Based on the composite representation, it becomes possible
to estimate its bias under some assumptions.
2 Note that fΔ is a Boolean function of x = (x0, x1, . . . , x�−1), X and Δ are regarded

as parameters.
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Suppose that an R-round cipher E : Fn
2 → F

n
2 is represented as the following

composition,

E = ER−1 ◦ ER−2 ◦ · · · ◦ E0, Er : Fn
2 → F

n
2 , (6)

then, according to Proposition 1, to calculate the �th-order differential of E with
the input difference Δ = (Δ0,Δ1, . . . ,Δ�−1), we can calculate DxE (X ⊕ xΔ) .
Here E is a vectorial Boolean function as E = (E[0], E[1], . . . , E[n − 1]), so
DxE (X ⊕ xΔ) = (DxE[0] (X ⊕ xΔ) , . . . , DxE[n − 1] (X ⊕ xΔ)).

In the following, we will write X ⊕ xΔ in a more general form. Let ei be the
unit vector with only the ith bit being 1 and 0 be the vector with all elements
being zero, then

αu =

⎧
⎪⎨
⎪⎩

X, if u = 0

Δi, if u = ei

0, otherwise
,

then X⊕xΔ = X⊕x0Δ0⊕x1Δ1⊕· · ·⊕x�−1Δ�−1 can be written in an equivalent
form as

X ⊕ xΔ =
⊕

u∈F
�
2

αuxu, αu ∈ F
n
2 .

x = (x0, x1, . . . , x�−1) are � symbolic variables in this representation. Hence, the
input and output of Er are both polynomials of x as follows,

⊕

u∈F
�
2

α(r+1)
u xu = Er

⎛
⎝⊕

u∈F
�
2

α(r)
u xu

⎞
⎠ , α(r+1)

u , α(r)
u ∈ F

n
2 .

Since α
(r+1)
u is a vectorial Boolean function with all α

(r)
u as input, we derive a

new vectorial Boolean function from Er:

E�
r : (Fn

2 )2
� → (Fn

2 )2
�

,
(
α(r)

u , u ∈ F
�
2

)
	→

(
α(r+1)

u , u ∈ F
�
2

)
,

where

α(r+1)
u = fu

(
α(r)

u , u ∈ F
n
2

)
= Coe

⎛
⎝Er

⎛
⎝ ⊕

u∈F
n
2

α(r)
u xu

⎞
⎠,xu

⎞
⎠ .

Connecting all E�
r , 0 ≤ r < R, we derive from E a composite function E� (an

example is illustrated in Fig. 1):

E� = E�
R−1 ◦ E�

R−2 ◦ · · · ◦ E�
0, E�

r : (Fn
2 )2

� → (Fn
2 )2

�

. (7)

Definition 1. (�th Higher-order Algebraic Transitional Form (�th HA-
TF)). The composite function in Eq. 7 above is called the �th Higher-order Alge-
braic Transitional Form (�th HATF) of E. If the order information is clear from
the context, we will omit the superscript � for convenience.



Revisiting Higher-Order Differential-Linear Attacks 417

Fig. 1. An illustration of E� when � = 2 (2nd HATF). The input is X ⊕x0Δ0 ⊕x1Δ1 =

α
(0)
00 ⊕ α

(0)
01 x0 ⊕ α

(0)
10 x1. The outputs of the ith round of E� are the constant monomial

and coefficients of x0, x1, x0x1. Finally, the R-round HDL bias is just the bias of α
(R)
11 .

Algorithm 1. Construction of the HATF E� from a cipher E

Input: 1. the ANFs of components of E = ER−1 ◦ · · · ◦ E0,
2. the order �,
3. the block size n,
4. an �th-order difference (Δ0, . . . , Δ�−1),
5. an input value X

Output: the �th-order HATF E� = E�
R−1 ◦ · · · ◦ E�

0

1: Let α
(0)
0 = X, α

(0)
ei = Δi, Δ

(0)
u = 0 for all wt(u) ≥ 2

2: for 0 ≤ r < R do
3: for 0 ≤ i < n do

4: Calculate f = Er[i]
(⊕

u∈F
n
2

α
(r)
u xu

)

5: for 0 ≤ u < 2� do
6: Calculate α

(r+1)
u [i] = Coe (f, xu)

7: end for
8: end for
9: end for

10: return α
(r)
u for all 1 ≤ r ≤ R and u ∈ F

n
2 , which are actually E�

Algorithm 1 shows the detailed process of constructing a HATF. The
time complexity of Algorithm 1 is dominated by line 4, i.e., calculating
Er[i]

(⊕
u∈F

n
2

αuxu
)
. If deg(Er) = d, then the complexity of calculating Er[i] is

dominated by the calculation of all the d-degree monomials in Er[i]. For each d-
degree monomial, we need to multiply d bits of

⊕
u∈F

n
2

αuxu. The complexity of
computing a d-degree monomial is about 2d� multiplications and 2d� additions.
Suppose there are t d-degree monomials in Er[i], the time complexity of com-
puting all d-degree monomials is about C1 = 2 · t · 2d�. Then the complexity of
computing an R-round cipher is approximately Ch = 2·R·n·t·2d� multiplications
or additions. For a specific cipher, the round R, block size n, algebraic degree d
and the number of d-degree monomials are all constants, thus the complexity of
constructing the HATF is O(2d�).
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The main part of memory complexity is to store α
(r)
u [i] for every round (line 6

in Algorithm 1). In each α
(r)
u [i], there are at most 2� terms, so the memory cost

is bounded by O(22�).
Next, we introduce a useful property of HATF as Proposition 2.

Proposition 2. Let E� in Eq. 7 be the HATF of E in Eq. 6. For each 0 ≤ r < R,
the algebraic degree of E�

r is equal to the algebraic degree of Er.

Proof. Let deg(Er) = d and consider the output of E�
r . Since

α(r+1)
u = Coe

⎛
⎝Er

⎛
⎝ ⊕

u∈F
n
2

α(r)
u xu

⎞
⎠,xu

⎞
⎠ ,

each bit of α
(r+1)
u xu is obtained by multiplying at most d different bits of⊕

u∈F
�
2
α
(r)
u xu. Therefore, the algebraic degree of α

(r+1)
u is at most d. Finally,

when u = 0, α
(r+1)
0 is just the output of Er(α

(r)
0 ), so deg(E�

r) = deg(Er). 
�

4.2 Estimation of the HDL Bias Based on HATF

Suppose we have obtained the �th HATF of a cipher E = ER−1◦· · ·◦E0 according
to Algorithm 1. The biases of the �th-order HD/HDL approximations of all the
output bits of E are biases of α

(R)
1 (where 1 is the �-bit vector with all elements

being 1). From the HATF of E, we know the composite form of α
(R)
1 is as follows,

(
α(0)

u , u ∈ F
n
2

) E0−→
(
α(1)

u , u ∈ F
n
2

) E1−→ · · · ER−2−−−→
(
α(R−1)

u , u ∈ F
n
2

) ER−1−−−→ α
(R)
1 .

Besides, the bias of a
(0)
u , u ∈ F

n
2 is available since they are the input values by

adversaries (under a chosen-plaintext attack)3.
Under the assumption that all the bits of α

(r)
u , u ∈ F

n
2 are independent, the

bias of α
(r+1)
u , u ∈ F

n
2 can be estimated according to Lemma 1. Therefore, we

can calculate the bias of α
(R)
1 from α

(0)
u , u ∈ F

n
2 iteratively.

The detailed process is shown in Algorithm 2 with blue words. According to
Lemma 1, the time complexity of computing the bias of a Boolean function is
exponentially related to the number of variables. For a fixed round r and index
i, α

(r+1)
1 [i] has the most number of variables as compared to α

(r+1)
u , u �= 1. If

the algebraic degree of α
(r+1)
1 [i] is d, then the number of variables in it is at

most d× 2�, and the numbers of variables in other α
(r)
u [i], u �= 1 are significantly

smaller. Therefore the time complexity of line 5 in Algorithm 2 is about 2d×2�

.
The whole complexity is then approximately R · n · 2� · 2d×2�

, which can be
bounded by O(2�+d×2�

). The memory complexity is negligible.

3 In all attacks of this paper, we simply use uniform α
(0)
u , i.e., the input values do not

have biases.
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Algorithm 2. Estimate the bias of α
(R)
1

Input: 1. the HATF E� = E�
R−1 ◦ · · · ◦ E�

0,

2. the bias of α
(0)
u [i] for all 0 ≤ i < n and u ∈ F

n
2

Output: the �th-order HATF E� = E�
R−1 ◦ · · · ◦ E�

0

1: for 1 ≤ r < R do
2: for 0 ≤ i < n do
3: for 0 ≤ u < 2� do
4: /* For general cases */

5: Compute the bias of α
(r)
u [i] using Lemma 1

6: /* For quadratic cases */

7: Find M so that α
(r)
u [i] = g ◦ M−1 (Lemma 2)

8: Compute the bias of M−1
(
α
(r)
u , u ∈ F

n
2

)
(Piling-up lemma [22])

9: Compute the bias of α
(r)
u [i] with g ◦ M−1 (Lemma 3)

10: end for
11: end for
12: end for
13: return the bias of α

(R)
1 [i] for 0 ≤ i < n

Reducing the Complexity for Quadratic Boolean Functions. Since the
complexity of estimating the bias from HATF is O(2�+d×2�

), even a small order
will result in high complexity. In the following, we show that for ciphers whose
round functions are quadratic, the complexity can be reduced from O(2�+d×2�

)
to O(23.8�).

Note that a Boolean function is quadratic if its algebraic degree is 2. A
disjoint quadratic Boolean function is defined as follows,

Definition 2 (Disjoint quadratic Boolean function). A quadratic Boolean
function is disjoint if all its quadratic monomials do not share any common
variables.

Any quadratic Boolean functions can be decomposed into a disjoint form [15,
P438]. In [24], Shi et al. applied this method to cryptanalysis of Morus. We omit
the detailed algorithm here and only give a small example to show its core idea.

Example 1. Let f = x0x1 ⊕ x0x2 ⊕ x1x2. It is not disjoint, but we can convert
it to a disjoint Boolean function with the following steps:

1. f = x0x1 ⊕ x0x2 ⊕ x1x2 = x0(x1 ⊕ x2) ⊕ x1x2, we first let x′
1 = x1 ⊕ x2 to

obtain g = x0x
′
1 + (x′

1 ⊕ x2)x2 = x0x
′
1 ⊕ x′

1x2 ⊕ x2.
2. g = x′

1(x0 ⊕ x2) + x2, we then let x′
0 = x0 ⊕ x2 and obtain g = x′

1x
′
0 ⊕ x2,

then g is a disjoint quadratic Boolean function.

During the process, we do linear variable substitutions with x′
1 = x1 ⊕ x2 and

x′
0 = x0 ⊕ x2. For sake of convenience, we let x′

2 = x2, so g = f(M [x0, x1, x2]t)

where M =

⎡
⎣

1 0 1
0 1 1
0 0 1

⎤
⎦. Equivalently, f = g ◦ M−1.
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We write this method as a lemma for a convenient citation.

Lemma 2. ( [15]). A quadratic Boolean function f : Fn
2 → F

n
2 can be converted

into a disjoint Boolean function g : Fn
2 → F

n
2 with g = f ◦M where M ∈ F

n×n
2 is

an invertible matrix. The time complexity is O(n3.8) and the memory complexity
is Ω(n2).

The bias of a disjoint quadratic Boolean function can be computed with ease,
as shown in Lemma 3.

Lemma 3. Let g : Fn
2 → F2 be a disjoint quadratic Boolean function as

g = g0 ⊕ g1 ⊕ · · · ⊕ gT−1

where all gi, 0 ≤ i < T do not share common variables, and the biases of all
input variables of g are available. Then we can compute the bias of each gi using
Lemma 1 with small complexities. Finally, the bias of g can be computed with
the piling-up lemma with biases of all gi.

According to Proposition 2, when a cipher uses quadratic round functions,
the round functions of its HATF is also quadratic. For calculating the bias of
α
(r+1)
u [i] (line 5 of Algorithm 2) from α

(r)
u , we first find an invertible matrix

M such that g = α
(r+1)
u [i] ◦ M is disjoint according to Lemma 2. Equivalently,

α
(r+1)
u [i] = g ◦ M−1(α(r)

u , u ∈ F
n
2 ).4 Based on the biases of α

(r)
u , the bias of

M−1
(
α
(r)
u , u ∈ F

n
2

)
can be calculated using the piling-up lemma. Applying the

disjoint Boolean function g to the output of M−1
(
α
(r)
u , u ∈ F

n
2

)
, the bias of

α
(r+1)
u [i] can be obtained according to Lemma 3.

The process is also given in Algorithm 2, but with red words. The complexity
is dominated by line 7, i.e., converting α

(r+1)
u [i] to a disjoint quadratic form.

Since the number of variables in α
(r+1)
u [i] is at most 2 × 2� (we are working on

quadratic functions), the time complexity of line 7 is O(23.8�), and the memory
complexity is Ω(22�).

Considering both Algorithms 1 and 2, the time complexity of computing the
biases of the �th HDL approximations is O(2�+d×2�

) in general case, and O(23.8�)
for ciphers with quadratic round functions. The memory complexity is Ω(22�).

4.3 Discussion on the Assumption of Independence and Precision

HATF works on the assumption that all bits of α
(r)
u , 0 ≤ r < R, u ∈ F

n
2 are

independent. If we directly use Algorithm 1 to construct the HATF, many related
α
(r+1)
u [i] will be regarded as independent variables (line 6 of Algorithm 1), which

makes our assumption less valid. Thus, we need to avoid such cases as much as
possible. Methods that we use to avoid these related variables are introduced as
follows, both of which are concerned about line 6 only

4 Note that not all bits in α
(r)
u , u ∈ F

n
2 are input of g ◦ M−1. We write it in this way

for convenience.
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1. When deg(α(r+1)
u [i]) ≤ 1, we do not introduce a new variable α

(r+1)
u [i] to

substitute Coe (f,xu), because variables in linear expressions are easier to
be related with other variables. In this case, the following computation will
depend on Coe (f,xu) directly rather than α

(r+1)
u [i].

2. We use a dictionary Q to store each variable substitution as

Q[Coe (f,xu)] = α(r+1)
u [i],

then if Coe (f,xu) or Coe (f,xu)⊕1 has been in Q, we do not need to introduce
new variables, α

(r+1)
u [i] or α

(r+1)
u [i] ⊕ 1 can be reused.

By these two methods, we can avoid most simple related-bit cases. Other
kinds of relations are relatively more complicated and are not considered in this
paper. We hope that those bits with complicated relationships can be approxi-
mately treated as independent bits.

In terms of the time/memory complexities, the first method increases the
number of variables linearly but does not affect its order of magnitude; the sec-
ond method saves the number of new variables, so it actually reduces the com-
plexity of Algorithm 2. Hence, the time/memory complexities of HATF remain
unchanged up to the O/Ω notations.

4.4 Improving the Precision with Partitioning Technique

As the order and rounds increase, the HATF systems become more and more
complicated. The precision of HATF for complicated Boolean functions accord-
ing to Lemma 1 or Lemma 3 drops accordingly. To mitigate the imprecision, we
partition the whole input space (in the HDL distinguishers, the input includes
both the public and secret variables) into several smaller equal-size subsets.
Given a cipher E, suppose we have partitioned the whole input S into κ disjoint
subsets as S = S0 + S1 + · · · + Sκ−1 (we use “+” to stress that Si are disjoint)
where Si, 0 ≤ i < κ have the same size. The bias of Coe (E ,π(x)) is the average
value among the S. Note that Coe (E ,π(x)) is a Boolean function of values in S
(recall Sect. 4.1). Let |Si| = w for 0 ≤ i < κ and |S| = κw, we have

Bias (Coe (E , π(x))) =
#{Coe (E , π(x)) (s) = 0 : s ∈ S}

κw
− 1

2

=

∑κ−1
i=0 #{Coe (ESi , π(x)) (s′) = 0 : s′ ∈ Si}

κw
− 1

2

=
1

κ

κ−1∑
i=0

#{Coe (ESi , π(x)) (s′) = 0 : s′ ∈ Si}
w

− 1

2

=
1

κ

κ−1∑
i=0

(
#{Coe (ESi , π(x)) (s′) = 0 : s′ ∈ Si}

w
− 1

2

)

=
1

κ

κ−1∑
i=0

(Bias (Coe (ESi , π(x)))) ,

(8)

where ESi
is the HATF of E with the subset Si as the input. As a result, for

each of these subsets, we first apply our HATF technique to evaluate the bias
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for each Si, then calculate the average bias among all these Si. The partition
simplifies the ANFs of E�, so for each subset, the precision can be improved.
The methods of partitioning the input are chosen in different ways for different
ciphers, which will be described in our applications.

4.5 Conditional HDL Cryptanalysis by Injecting Conditions

In [20], to improve the biases of DL approximations, Liu et al. imposed some
conditions to the first R0 rounds in the ATF. The basic principle is to zero the
differences in the first R0 rounds as much as possible. In our HDL attacks based
on HATF, we can also use this method to obtain a set of conditions to improve
the HDL biases.

In the construction of the first R0-round HATF, we put the first non-constant
α
(r)
u , r ≤ r0, u �= 0 into a set I as ideal generators. Next, we reduce all the α

(r)
u

over the ideal generated from I, denoted by “mod I”. If a certain α
(r)
u cannot

be reduced to a constant, we will add this α
(r)
u into I and use the updated I

to reduce the remaining non-constant α
(r)
u . Finally, all α

(r)
u , u �= 0, r ≤ r0 are

usually reduced to constants, and a system of equations S = {f = 0 | f ∈ I}
is obtained. When the conditions in I are satisfied, the HDL distinguisher will
have a significantly higher bias. By checking these conditions, we can recover the
secret keys. These conditions are also used for partitioning the input space.

5 Applications to Ascon Initialization

Ascon, designed by Dobraunig, Eichlseder, Mendel, and Schläffer, is a family of
AEAD and hash algorithms [12]. It has been selected as the winner in the NIST
Lightweight Cryptography competition. Due to page limits, the description of
the Ascon AEAD and its permutation is provided in [14], we also recommend
that readers refer to [12] for the whole specification.

Notations used for describing the Ascon initialization. For the Ascon
initialization, the 320-bit output state after r rounds is denoted by

S(r) = S(r)[0]‖S(r)[1]‖S(r)[2]‖S(r)[3]‖S(r)[4],

where S(r)[i] is the ith word (the ith row) of S(r); S(0) is the input of the whole
permutation. The jth bit of S(r)[i] is denoted by S(r)[i][j] where 0 ≤ i < 5, 0 ≤
j < 64. S(r)[0][0] is the leftmost bit of the first row of the state matrix S(r). Let
pC , pS , pL represent the operations of addition of constants, substitution layer,
linear diffusion layer, respectively. Then S(r) = (pL ◦pS ◦pC)r(S(0)). The adver-
sary can only access the first word of the output state for Ascon-128, and the
first two words for Ascon-128a (our cryptanalysis focuses on Ascon-128, so it
is also applicable to Ascon-128a). Since the linear layer is applied to each row,
we do not consider the linear layer of the last round.

Since pS is quadratic, the time complexity for an �th-order HDL cryptanalysis
of Ascon is O(23.8�). To apply the HATF technique, we need to decompose the
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R-round Ascon initialization into several small parts. In this paper, we take the
same method to cut the Ascon functions as [20]5. Firstly, we divide the Sbox of
Ascon into two parts, pSL

and pSN
. The first part of the Sbox, pSL

, is a linear
operation

x0 = x0 ⊕ x4; x4 = x4 ⊕ x3; x2 = x2 ⊕ x1;

where (x0, x1, x2, x3, x4) is the input of pSL
. The round function of the Ascon

permutation is then divided into two parts, pA = pSL
◦ pPC

and pB = pL ◦ pSN
.

In Algorithm 1, we let E(0) = pA, and E(r) = pA ◦ pB for 1 ≤ r < R, and
E(R) = pSN

. Thus R-round Ascon is represented as

E = pSN
◦ (pA ◦ pB)R−1 ◦ pA

The 128-bit key and 128-bit nonce are set to 256 binary variables, the IV is set
to the constant specified in [12].

When applying the �th-order HDL distinguishing attack on the Ascon ini-
tialization, we choose Δj , 0 ≤ j < � as the � linearly-independent differences,
where Δj is active in the two nonce bits of the same Sbox, i.e., S(0)[3][ij ] and
S(0)[4][ij ] (0 ≤ ij < 64). (We also tested other kinds of differences, but this
setting brings the best results.) Then the input difference can be denoted by
an �-tuple, denoted by Δ(i0, i1, . . . , i�−1). To simplify the ANFs, we by default
always set S(0)[3][ij ] = S(0)[4][ij ] = 0. For R-round outputs, we consider the
single-bit bias of the first word, i.e., S(R)[0][i], 0 ≤ i < 64. We choose such
input differences because the input of Ascon comes into Sboxes directly and
our choices of input can simplify the ANFs.

5.1 HDL Distinguishers for Ascon

Application 1: Revisiting the first-order DL distinguishers for 4- and
5-round Ascon. Our first application is to revisit two DL distinguishers on
the 4- and 5-round initialization of Ascon. These two DL distinguishers were
first found by the designers in [11] with experiments. The input difference was
set as Δ(0). Although the classical DL attack theory predicted that the 4-round
distinguisher has a bias of 2−20, experiments showed that its real bias is about
2−2 which is significantly higher. Later, at EUROCRYPT 2019, Bar-On et al. [1]
revisited this distinguisher and used the Differential-Linear Connectivity Table
(DLCT) technique to give a higher theoretical estimation of 2−5. Recently, at
CRYPTO 2021, Liu et al. used the ATF to improve the theoretical bias to 2−2.36,
which is the most precise value before this paper. However, none of the three
methods can find any 5-round DL distinguisher.

Our HATF technique is a higher-order extension of the ATF technique, so it
is also applicable to the first-order DL attack. With the partitioning technique,
we achieved better estimation. Setting the input difference as Δ(0), the two key
bits in the same Sbox, i.e., S(0)[1][0] and S(0)[2][0], are chosen to partition the
5 Our experiments show such cutting can lead to slightly better results compared to

the cutting method according to the rounds, in the case of HATF.
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input space. Let S(0)[1][0]||S(0)[2][0] be 00, 01, 10 and 10, we partition the input
subspace to 4 equal-size subspaces. The bias of S(4)[0][54] is then

Bias(S(4)[0][54]) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2−2.678, when (S(0)[1][0], S(0)[2][0]) = 00

2−2.678, when (S(0)[1][0], S(0)[2][0]) = 01

2−1.678, when (S(0)[1][0], S(0)[2][0]) = 10

2−1.678, when (S(0)[1][0], S(0)[2][0]) = 11

According to the partitioning technique and Eq. 8,

Bias(S(4)[0][54]) = 2−2(2−2.678 + 2−2.678 + 2−1.678 + 2−1.678) ≈ 2−2.09.

This theoretical bias is again closer to the experimental bias 2−2.
For 5-round Ascon, the known DL distinguisher is also with the input dif-

ference Δ(0), the bias of S(5)[0][47] is about 2−9.6 With the above partition,
the bias from the HATF is always 0, hence we need to partition the space into
smaller ones to detect the bias. According to Sect. 4.5, we can derive a set of 7
conditions that affect the bias significantly. Since the 7 conditions are all bal-
anced Boolean functions, by assigning all possible values to them (every Boolean
function then has two statuses: true or false), we can partition the whole space
into 128 subspaces7. Computing HATF for every individual subspace, we obtain
the average bias of approximately 2−10. This is the first theoretical method that
can predict this 5-round DL bias.

Application 2: 2nd-order HDL distinguisher for 4-round Ascon. Our
second application is the 2nd-order DL distinguisher for 4-round Ascon ini-
tialization. We exhaustively search through all possible Δ(0, i), 1 ≤ i < 64 as
our 2nd-order differences, all such differences lead to highly biased 4-round out-
put bits. Especially, when (i, j) = (0, 60), the bias of S(4)[0][50] is 1

2 , i.e., this
is a deterministic 2nd-order DL bias. With 226 randomly chosen samples, this
deterministic distinguisher is fully verified. We plot the theoretical and exper-
imental biases of the 64 bits of S(4)[0] as shown in Fig. 2a, and the concrete
data is provided in the full version. The theoretical biases are very close to the
experimental ones. According to these 2nd-order HDL biases, one sample, i.e.,
22 chosen nonces is enough to distinguish the 4-round initialization.

Application 3: 2nd-order HDL distinguisher for 5-round Ascon. In our
2nd-order HDL distinguishing attack on the 5-round Ascon initialization, we
also exhausted all possible Δ(0, i), 1 ≤ i < 64 differences and checked every single
bit output of S(5)[0], the most significant bias is S(5)[0][50] when (i, j) = (0, 3)
which is predicted to be 2−7.05 by HATF. We use 226 samples to check this bias
and find that it should be 2−6.60 approximately, which is slightly larger but still
considerably close to our prediction.
6 Under the default setting that S(0)[3][0] = S(0)[4][0], see [11] for more information

about this DL distinguisher.
7 We also encourage readers to read our code to further understand how we use these

conditions: https://github.com/hukaisdu/HDL/blob/main/HATF/ascon.cpp.

https://github.com/hukaisdu/HDL/blob/main/HATF/ascon.cpp
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Fig. 2. Theoretical and experimental biases for 4-round and 5-round Ascon

Application 4: 8th-order HDL distinguisher for 5-round Ascon. Gen-
erally speaking, as the order increases, the biases become more and more sig-
nificant according to HATF. Here we give the results of the 8th-order HDL
distinguishing attack on the 5-round Ascon initialization. We randomly select
8 indexes (i0, i1, . . . , i7) = (0, 8, 9, 13, 14, 26, 43, 60) as the 8th-order input dif-
ferences Δ(0, 8, 9, 13, 14, 26, 43, 60). The 16 key bits in the same Sboxes with
the input differences are used to partition the input space into 216 subspaces.
Applying HATF to each of the subspaces, and calculating the average bias,
we find all single bits are highly biased. For example, HATF predicts that
Bias(S(5)[0][50]) = 2−4.73. With 222 samples, experiments show that this bias
is about 2−3.35. The average bias over the 64 output bits is predicted as 2−6.34,
and the experimental result is 2−4.11. The theoretical and experimental biases
of all 64 bits of S(5)[0] are shown in Fig. 2b, the concrete biases are provided in
the full version.

We use this 8th-order HDL approximation to mount the best distinguishing
attack on 5-round Ascon. Suppose that we encrypt N samples, we can observe
64N output bits in total. Regarding each bit of S(5)[0] as a Bernoulli experiment
with expectation of 1

2 + 2−4.11, The number of occurrences of 0 conforms to the
binomial distribution B(64N, 1

2+2−4.11), which can be approximated by a normal
distribution N (35.71N, 15.79N) for a convenient analysis. In a random case, the
number of occurrences of 0 conforms to another binomial distribution B(64N, 1

2 ),
which can be approximated by N (32N, 16N). The method to distinguish two
normal distributions has been well-known in cryptanalysis, which is summarized
in our full vesion. Setting that the probabilities for Type-I and Type-II errors
to be α0 = α1 = 0.05, i.e., we require 95% success rate, we have N ≈ 33.65, i.e.,
we need to check about 801 output bits. The threshold is τ ≈ 424. The time
complexity is about 211.65.

We can mount a distinguishing attack as follows,
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1. Encrypt a total of 13 samples, for the previous 12 samples, we count the
number of occurrences of 0 in all 64 bits of S(5)[0]; for the 13th sample, we
only count the number of occurrences of 0 in S(5)[0][j], 0 ≤ j < 33. As a
whole, we count 801 bits. Denote the number of occurrences of 0 by T ,

2. If T ≥ 423, the target is the 5-round Ascon initialization; otherwise, the
target is a random function.

We did 1000 experiments, and about 900 experiments were successful. The reason
for the gap between the theoretical and experimental success rates might be that
the independent assumptions are not always true.

5.2 Conditional HDL Attack for Ascon

Application 5: 2nd-order HDL key-recovery attack on 5-round Ascon.
Thanks to the higher bias of the HDL approximations, generally speaking, we
can mount key-recovery attacks more efficiently than DL attacks. In this paper,
we use several 2nd-order HDL approximations to recover the secret keys from
5-round Ascon, which is the most efficient attack for 5-round Ascon thus far.
The idea of this key-recovery attack is similar to the conditional DL attacks
introduced in [20]. When applying the HATF, we inject the conditions for the
first two rounds according to Sect. 4.5. By exhausting all possible 2nd-order dif-
ferences Δ(i, j), all of them lead to at least one highly biased bit. The two most
significant ones are listed as follows (readers can use our code to generate all of
them),

1. When Δ(i, j) = Δ(i′, i′ + 9), 0 ≤ i′ < 64, under 14 conditions,
Bias(S(5)[0][27 + i′]) = 0.375,

2. When Δ(i, j) = Δ(i′, i′ + 24), 0 ≤ i′ < 64, under 16 conditions,
Bias(S(5)[0][51 + i′]) = 0.313.

Experiments with 226 samples have fully verified these biased bits. With these
two 2nd-order approximations, we can do the key-recovery attack with about
222 computations. Since this attack is similar to the key-recovery attack on
Xoodyak, we provide all the details in the full version of this paper.

Application 6: 3rd-order HDL approximation for 6-round Ascon. At
the end of this section, we present a conditional 3rd-order HDL approximation
for 6-round Ascon initialization. In [20], Liu et al. showed that there are no
conditional DL approximations for 6-round Ascon initialization. As the order
increases, it is not surprising that there are truly some HDL approximations
for 6 (or even more) rounds. However, from the 5-round to the 6-round, the
complexity required to find a highly biased approximation become significantly
larger. In our conditional 3rd-order HDL approximation, we inject 24 conditions
into the first two rounds of the HATF. The input difference is Δ(0, 30, 61), the
bias occurs in S(6)[0][34] and is predicted as 2−25.97. It is difficult to verify this
bias with experiments directly. However, since S(6)[0][34] is the output bit of
the Sbox in the 6th round, we can verify the bias of bits in S(5). According
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to the linear approximation table (LAT) of Ascon’s Sbox, there is a mask
propagation 0x3 → 0x10 with a bias of −2−2. Thus, S(5)[3][34]⊕S(5)[4][34] (the
two bits are inputs of the Sbox related to S(6)[0][34]) may have a high bias.
We use 230 samples to test it, the bias of S(5)[3][34] ⊕ S(5)[4][34] is about 2−14.
Considering the piling-up lemma [22] and we have 8 approximations, the bias
of S(6)[0][34] should be around 2−22. It means that the 6-round conditional 3rd

HDL approximation is true.

6 Applications to Xoodyak Initialization and Xoodoo

Xoodyak is a cryptographic primitive for hashing, authenticated encryption,
and MAC computation, and is one of the ten finalists of the NIST LWC com-
petition [9]. Xoodyak uses Xoodoo as its underlying cryptographic permuta-
tion, which is a family of 384-bit to 384-bit permutations [8]. The 384-bit state of
Xoodoo is arranged into a 4×3×32 cube and a state bit is denoted by S[x][y][z].
When x and z are fixed, the three bits of S[x][·][z] are called a column; when y
is fixed, the 128 bits of S[·][y][·] are called a plane. The input and output states
of the rth round are denoted by S(r−1) and S(r), respectively. The initial state
is then denoted by S(0). One round of Xoodoo consists of five operations as
ρeast ◦ χ ◦ ι ◦ ρwest ◦ θ.

θ : S[x][y][z] = S[x][y][z] ⊕
⊕

y

S[x − 1][y][z − 5] ⊕
⊕

y

S[x − 1][y][z − 14]

ρwest : S[x][1][z] = S[x − 1][1][z], S[x][2][z] = S[x][2][z − 11]
ι : S[0][0] = S[0][0] ⊕ RCi

χ : S[x][y][z] = S[x][y][z] ⊕ ((S[x][y + 1][z] ⊕ 1) · S[x][y + 2][z])
ρeast : S[x][1][z] = S[x][1][z − 1], S[x][2][z] = S[x − 2][2][z − 8]

RCi in the ι operation is the i-round constant, which can be found in [8]. Note
that χ is a quadratic function. Xoodyak AEAD supports three methods to
handle the nonces. This paper focuses on the third method’s initialization. In
this mode, the 128-bit state of S(0)[x][0][z], 0 ≤ x < 4, 0 ≤ z < 32 are initialized
by an 128-bit key, denoted by ki where i = z + 32x, and the remaining 256 bits
of S(0)[x][y][z], 0 ≤ x < 4, 1 ≤ y < 3, 0 ≤ z < 32 by a 256-bit nonce, denoted by
ui where i = z + 32(x + 4(y − 1)). Then, Xoodoo is applied to the initialized
state, and the first 192 bits are visible and XORed to the first block of the
plaintext. The following HDL approximations for Xoodyak and Xoodoo are
found mainly by trying all low-weight difference-mask pairs.

6.1 HDL Distinguishers for Xoodyak and Xoodoo

Application 1: Revisiting the DL Distinguishers for 4-round Xoodyak.
In [13], Dunkelman and Weizman gave the first DL attacks on 4-round Xoodyak
under the single-key model and on 5-round Xoodyak under the related-key
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model. The two distinguishers used in the attacks are detected by experiments.
HATF with the partitioning technique can easily give the theoretical biases for
the two distinguishers.

For the 4 rounds, the input difference is in (u0, u128) (i.e., S(0)[0][1][0] and
S(0)[0][2][0]), and the output bit of S(4)[0][1][15] has a bias of about 2−9.7. Apply-
ing our HATF technique to the 4-round Xoodyak, we first obtain a set of 4
conditions that are injected into the first round to zero all the differences after
the first round according to Sect. 4.5. These 4 conditions are listed as follows,

u102 = k11 ⊕ k102 ⊕ k125 ⊕ u125 ⊕ u230 ⊕ u253

u70 = k70 ⊕ k93 ⊕ u93 ⊕ u107 ⊕ u198 ⊕ u221 ⊕ 1
u7 = k7 ⊕ k16 ⊕ u16 ⊕ u135 ⊕ u144 ⊕ u181

u18 = k18 ⊕ k27 ⊕ k32 ⊕ u27 ⊕ u146 ⊕ u155 ⊕ 1

Since these 4 conditions are all linear and independent, they can partition the
whole input space into 16 subspaces by assigning all possible values to them.
After applying the first-order HATF technique, the bias of S(4)[0][1][15] is

Bias(S(4)[0][1][15]) = 2−9.67,

which is very close to the experimental results.
In the related-key DL attack on the 5-round Xoodyak, Dunkelman and

Weizman used another 4-round DL distinguisher where the input difference is in
(k0, u128) (i.e., S(0)[0][0][0] and S(0)[0][2][0]) and the output bias of S(4)[0][0][0]
is about −2−5.36 [13]. Again, this distinguisher was obtained by experiments. To
apply HATF to it, we also obtain 4 equations by injecting conditions into the
first round,

u103 = k103 ⊕ k112 ⊕ u112 ⊕ u149 ⊕ u231 ⊕ u240 ⊕ 1
u70 = k70 ⊕ k93 ⊕ u93 ⊕ u107 ⊕ u198 ⊕ u221 ⊕ 1

u102 = k11 ⊕ k102 ⊕ k125 ⊕ u125 ⊕ u230 ⊕ u253

u82 = k82 ⊕ k91 ⊕ u91 ⊕ u96 ⊕ u210 ⊕ u219

Another time, we obtain 16 subspaces. After applying the first-order HATF
technique to each subspace, the bias of S(4)[0][0][0] is

Bias(S(4)[0][0][0]) = −2−6,

which is very close to the experimental results.

Application 2: 2nd-order HDL distinguisher for 4-round Xoo-
dyak. In our 2nd-order distinguisher, we choose the two differences as Δ0 that
is active in (u0, u128), Δ1 that is active in (u47, u175). After 4-round Xoodyak
initialization, our HATF technique shows that the bias of S(4)[0][0][12] is about
0.019 ≈ 2−5.72. Experiments with 226 randomly-selected samples show the real
bias is also approximately 2−5.72.
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Application 3: 4th-order HDL distinguisher for 4-round Xoodyak.
Unlike Ascon, the nonlinear function of Xoodoo (χ) is after the linear oper-
ation. Hence if we select low-weight input differences before θ, the input dif-
ferences into χ are complicated. Thus, we also tried selecting low-weight dif-
ferences before χ, then we can compute the actual differences back through
(θ◦ρwest ◦ ι)−1. In our 4th-order distinguisher, we choose four differences such as
(Let S be the input state): Δ0 is active in (S[0][0][0], S[0][2][0]), Δ1 is active in
(S[2][0][7], S[2][2][7]), Δ2 is active in (S[2][0][15], S[2][2][15]), and Δ3 is active in
(S[3][0][27], S[3][2][27]). After 3.5 rounds of Xoodyak initialization (ρeast ◦ χ of
the first round and the remaining three full rounds), our HATF technique shows
that the bias of S(4)[0][1][1] is 2−1. Thus, when the input difference of the 4-round
Xoodyak is then (θ◦ρwest ◦ι)−1(Δ0,Δ1,Δ2,Δ3), the bias of S(4)[0][1][1] is 2−1.
Note that (θ ◦ ρwest ◦ ι)−1(Δ0,Δ1,Δ2,Δ3) will be active in all three planes, so
this HDL distinguisher is under the related-key model.

Application 4: 2nd-order HDL distinguisher for 5-round Xoodyak.
It becomes very difficult to detect useful HDL approximations for 5-round
Xoodyak under the single-key model, we exhaust all possible 2nd-order dif-
ferences that are active in (u0, u128) and (uj , uj+128). If we do not inject any
conditions, the biases of all output bits from HATF are all 0. Hence, we first
inject 8 conditions according to Sect. 4.5. When the input difference is active in
(u0, u128) and (u34, u162), the highest bias occurs in S(5)[0][0][20] which is 2−37.
We then tried all 256 possibilities of the 8 conditions and found the average bias
to be 2−45.

Application 5: 2nd- and 3rd-order HDL distinguishers for 4- and 5-
round Xoodoo. Besides Xoodyak, Xoodoo also plays an important role in
other schemes such as Xoofff [8]. Thus, it is also interesting to see if there are
some HDL distinguishers for Xoodoo. Since Xoodoo is a public permutation,
we do not need to consider the linear layers before the first nonlinear operations
in the first round. Let S be the input state of the first χ. First, we let the 288
bits in S[x], 1 ≤ x < 4 be zero. Next, for the remaining 96 bits in S[0], we set
S[0][0][z] = S[0][2][z] and S[0][1][z] = 0 for 0 ≤ z < 32. For the �th-order HDL
attack, we choose the input differences Δ(i0, i1, . . . , i�−1) that have 2� active bits
of S[0][0][ij ] and S[0][2][ij ].

For 4-round Xoodoo, we choose the input difference as Δ(0, 20), the bias of
S[0][0][0] after 4 rounds would be 1

2 . For 5-round Xoodoo, we choose the input
difference as Δ(0, 13, 14), and the bias of S[1][1][28] is 2−8.96. We experimentally
verified these two approximations, and found the 4-round distinguisher is truly
deterministic and the 5-round 3rd-order HDL approximation has a bias of about
2−8.79 which is very close to our prediction. The big gap of biases between
Xoodyak and Xoodoo implies the Xoodyak gains some strength against HDL
attacks by arranging χ after θ and ρwest.
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6.2 HDL Key-Recovery Attacks for Xoodyak

Application 6: 2nd-order HDL key-recovery attack on 4-roundXoodyak.
In our 2nd-order key-recovery attack, we choose the two differences as Δ0 is active
in (u0, u128), Δ1 is active in (u72, u200). We inject 8 conditions in the first round
to cancel the differences. After 4-round Xoodyak initialization, our HATF tech-
nique shows that the bias of S(4)[0][0][14] is about 0.141 when all the conditions
are satisfied. Experiments with 226 randomly-selected samples show that the real
bias is also 0.141 (up to 3 digits precision). The 8 conditions are listed as follows,

x7 = k7 ⊕ k16 ⊕ x16 ⊕ x135 ⊕ x144 ⊕ x181, x70 = k70 ⊕ k93 ⊕ x93 ⊕ x107 ⊕ x198 ⊕ x221 ⊕ 1

x5 = k5 ⊕ k14 ⊕ x14 ⊕ x51 ⊕ x133 ⊕ x142 ⊕ 1, x67 = k67 ⊕ k90 ⊕ k104 ⊕ x90 ⊕ x195 ⊕ x218 ⊕ 1

x18 = k18 ⊕ k27 ⊕ k32 ⊕ x27 ⊕ x146 ⊕ x155 ⊕ 1, x102 = k11 ⊕ k102 ⊕ k125 ⊕ x125 ⊕ x230 ⊕ x253

x37 = k37 ⊕ k46 ⊕ k83 ⊕ x46 ⊕ x165 ⊕ x174, x88 = k79 ⊕ k88 ⊕ x79 ⊕ x207 ⊕ x216 ⊕ x253

If not all the 8 conditions hold, the bias of S(4)[0][0][14] is at most 0.07. Thus,
doing statistical tests can find the correct assignment of the 8 variables on the
left side, and then 8 bits of key information. Firstly, we fixed all the nonce
variables on the right side as 0, then we try all possible 28 values of the nonce
bits on the left. The values making S(4)[0][0][14] most biased is the values of the
key expressions in each condition. According to the method distinguishing two
normal distributions, the complexity is about 29. Thus, the time/data complexity
for recovering 8 bits of key information in the above conditions is about 28+9 =
217. We experimentally tested this attack, and among 100 experiments, we can
recover the correct key 96 times. Due to the rotational-variance property of
Xoodoo, recovering all 128-bit keys needs about 221 computations. This is about
4 times faster than the DL attacks in [13].

Application 7: Theoretical 3rd-order HDL key-recovery attack on 5-
round Xoodyak under the single-key model. In [13], a related-key DL
attack on 5-round Ascon was given by Dunkelman and Weizman. The authors
built this related-key DL approximation from a 4-round one (the second DL
approximation in Application 1 of this section). Until now, the conditional cube
attack is still the only attack that can reach 5 rounds under the single-key
model [31]. In this section, we give a 3rd-order HDL attack on 5-round Xoodyak
under the single-key model.

We choose the 3rd-order difference as (Δ0,Δ1,Δ2) where Δ0 is active in
(u0, u128), Δ1 is active in (u9, u137), and Δ2 is active in (u36, u164). We inject 12
conditions into the first round, then after 5 full rounds, the bias of S(5)[0][0][29]
is predicted as 2−30.72. The 12 conditions are all linear and provided in the full
version. We assume that if not all 12 conditions are true, the bias of S(5)[0][29]
is close to 0. Thus, a statistical test with approximately 264 samples is enough
to distinguish them. Then we can use a similar strategy as the 4-round attack
to recover 12 bits of key information. The complexity is about 12 × 264 ≈ 268.
We can repeat this process for 5 other positions by rotation to recover 60 more
bits of key information, the remaining keys can be searched by force. The whole
time/data complex of recovering all key bits is about 270.2.
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7 HD Cryptanalysis Based on DSF Degree Estimation

According to Sect. 3, f ◦M plays an important role in (higher-order) differential
cryptanalysis, thus we call it differential supporting function and give it a formal
definition.

Definition 3. (Differential Supporting Function (DSF)). Given a Boolean
function f : F

n
2 → F2 and an �th-order difference Δ = (Δ0,Δ1, . . . ,Δ�−1) ∈

(Fn
2 )�, the composite Boolean function

DSF�
f,X,Δ (x) = f ◦ M(x) = f(X ⊕ xΔ),x = (x0, x1, . . . , x�−1)

is called the �th-order differential supporting function (DSF) of f with respect to
(X,Δ). When the order � is clear from context, we will ignore it in the notation,
i.e., DSFf,X,Δ (x).

The DSF provides a convenient way to find good affine space for the input
that reduces the algebraic degree of the target cipher. In this paper, we take the
Ascon permutation as an example to show the usage of the DSF. Until now, all
attacks on the Ascon permutation with complexity less than or equal 264 can
only reach 7 rounds. The only integral distinguishers given by Todo [26] require
more than 2130 calls to attack 8 and more rounds, already higher than Ascon’s
claimed security level (2128 calls). By analyzing the degree evolution of the DSF,
we present a new HD distinguisher for 8 rounds requiring only 246 complexity.

Basic Idea. Note that in the Definition 3, x are variables while X and Δ are
parameters (here the term “parameters” means X and Δ should be fixed as a
constant). Hence, different X and Δ will lead to different DSF. So it is possible
to find some proper (X,Δ) that reduce the algebraic degree of the DSF. More
specifically, deg(DSFf,X,Δ ) may be reduced to some values smaller than the
order �. In this case, we derive an integral property for DSFf,X,Δ . Applying
the inverse of M, we immediately derive an �th-order difference yielding the
following property, i.e.,

DΔf(X) =
⊕

x∈F
�
2

DSFf,X,Δ (x) = 0.

To estimate the degree upper bound of a DSF, we cut a Boolean function
into two phases as follows,

DSFf,X,Δ (x) = f(X ⊕ xΔ) = f1 ◦ f0(X ⊕ xΔ).

We let f0 be simple so that we can compute out its exact ANFs as well as
the exact degrees of the output of f0(X ⊕ xΔ). Next, we update the obtained
degrees by f1 to obtain the degree upper bounds of the whole DSFf,X,Δ .

In terms of the r-round Ascon permutation, we choose its first r0 = 2.5
rounds as f0 for it achieves a balance between efficiency and precision8. The
8 A larger r0 will make the estimation of deg(DSFf,X,Δ ) more precise but more time-

consuming to compute the ANFs, while a smaller r0 may undermine the precision.
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remaining (r − 2.5)-round permutation is seen as f1, the degree update of f1

can be done by methods such as the division properties [26,27] or any other
suitable methods. In this paper, we use the method of the degree matrix to
update the algebraic degree of f1:

Definition 4 (Degree Matrix of S(r)). The algebraic degrees or their upper
bounds of the bits in the state S(r) are called a degree matrix of S(r), denoted by

DM(S(r)) =
(
deg(S(r)[i][j]), 0 ≤ i < 5, 0 ≤ j < 64

)
.

Given the degree matrix of S(r), we can quickly calculate the degree matrix
of S(r+1) considering the ANFs of the pS and pL (see our full version). Our
experiments show that the degree matrix method is not worse than the division
property to calculate the upper bound on the algebraic degree of DSFf,X,Δ for
the case of Ascon permutation9. The only challenge now is to find a desirable
combination of (X,Δ).

Heuristic Method of Choosing (X,Δ). To find a proper (X,Δ), a naive idea
is to exhaust all possible values of (X,Δ), but the search space is clearly too
large. For Ascon, we use the same notations as we do in Sect. 5. Considering
the first operation of the Ascon permutation without pC (we can safely ignore
the first pC operation since we target the permutation) is pS which consists of 64
parallel small Sboxes. If we consider independent �′th-order differences for each
Sbox S, in total we are considering an (� = 64�′)th-order differences for the whole
permutation. Our experiments show �′ = 1 will achieve the best performance.
This is not surprising, since �′ = 1 means that we put one variable in each Sbox
to linearize all Sboxes, similar ideas were already mentioned in some previous
works such as [7]. With �′ = 1, our 64th-order input difference is then denoted
by Δ = (Δ0,Δ1, . . . ,Δ63). Thus, we write pS(X ⊕ xΔ) as follows:

pS(X ⊕ xΔ) = S(X0 ⊕ x0Δ
′
0)||S(X1 ⊕ x1Δ

′
1)|| · · · ||S(X63 ⊕ x63Δ

′
63),

where X = X0||X1|| · · · ||X63 and Δi = 0|| · · · ||Δ′
i|| · · · ||0 for 0 ≤ i < 64.

To further reduce the search space, we restrict the 64 Xi’s and 64 Δ′
i’s to

be equal respectively, i.e., (Xi,Δ
′
i) = (X̄, Δ̄) for 0 ≤ i < 64. Therefore, we only

need to consider 25 possibilities for X̄ and 31 possibilities for Δ̄ (excluding the
trivial case Δ̄ = 0). The total search space is reduced to 32 × 31 = 992 different
cases.

For each (X̄, Δ̄) ∈ F
5
2 ×F

5
2\{0}, we calculate the ANFs of f0(X ⊕xΔ), then

derive the degree matrix of its output. After that we update the degree matrix
according to [14] to calculate the degree matrix of S(r) (for r ≥ 4) which is the
degree upper bound of the corresponding DSF. If the degree of a certain DSF

9 Note that the degree matrix method only happens to be as good as the division
property in this specific case. We choose the degree matrix method simply because
it can be more easily integrated into our algorithm. In general case, the division
property has overwhelming advantages in accuracy and versatility.
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Table 4. Upper bounds on the algebraic degree of the DSF of the Ascon permutation
with (X, Δ) in Eq. 9. We experimentally verified all algebraic degrees up to 7 rounds.

Round r Upper bounds on the algebraic degree

S(r)[0] S(r)[1] S(r)[2] S(r)[3] S(r)[4]

4 3 3 2 2 3

5 6 5 5 6 6

6 11 11 12 12 11

7 23 24 23 23 22

8 47 47 45 46 47

is smaller than 64, we find useful 64th HD distinguishers for r-round Ascon
permutation.

We found dozens of useful HD distinguishers with orders lower than 64 for
up to 8 rounds. Among them, there are 8 optimal combinations of (X̄, Δ̄) that
make the algebraic degree of the third word of S(8) be only 45. They are

(X̄, Δ̄) ∈
{

(0x6, 0x13), (0xa, 0x13), (0xc, 0x17), (0xf, 0x18),
(0x15, 0x13), (0x17, 0x18), (0x19, 0x13), (0x1b, 0x17)

}
. (9)

In Table 4, we list all the upper bounds on degrees of the DSF up to 8-round
Ascon permutation with respect to (X,Δ) in Eq. 9. As is seen, for 7 rounds, the
degree upper bound of S(7) is only 24, so 225 chosen texts are enough to enforce
the zero output difference. For the 8-round output, the algebraic degree is at
most 47. Therefore if we choose 248 plaintexts in any 48-dimensional affine space
defined by values in Eq. 9, the summation of all ciphertexts will be zero. Given a
random permutation, the probability that the summation of such 248 ciphertexts
will be zero is 2−320. Thus, 248 chosen plaintexts are enough to distinguish the
8-round Ascon permutation from a random permutation.

8 Conclusion and Discussion

In this paper, we revisited the HD/HDL cryptanalysis from an algebraic perspec-
tive. HATF and DSF are two tools for probabilistic and deterministic HDL/HD
cryptanalysis, respectively. Improved results for Ascon and Xoodyak, as well
as Xoodoo are obtained from the two tools. We believe that the HDL crypt-
analysis has more potential than expected, and deserves more attention.

In terms of HATF, it is the first theoretical tool for nondeterministic HDL
cryptanalysis. It can predict the biases of an �th-order HDL approximations with
a time complexity of O(2�+d2�) for ciphers with d-degree round functions. For
ciphers with quadratic round functions, the time complexity can be reduced to
O(23.8�). Thus, HATF is very useful for HDL cryptanalysis of permutation-based
ciphers such as Ascon and Xoodyak. The precision of HATF is supported
by experiments (see [14]). When HATF predicts a biased bit, it is of a great
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probability that it is biased as far as our experiments show. Finally, we make it
clear again that HATF does not guarantee any lower or upper bounds on the
bias of a HDL approximation. Whenever possible, the theoretical results should
be verified with experiments.

For DSF, it provides an intuitive method for detecting HD distinguishers
for permutations. With proper choices of (X,Δ), the algebraic degree of a DSF
might drop drastically. Therefore, we have a greater opportunity to find better
HD distinguishers rather than to analyze the original Boolean function.

We have shown that a proper partitioning of the input space can improve the
precision of HATF, how to find better or even optimal partitioning methods?
Can we use the HDL cryptanalysis to propose best key-recovery attacks on some
ciphers in terms of rounds? For DSF, our method to choose (X,Δ) is intuitive
and actually considers only a small percentage of candidates, can we find better
(X,Δ) leading to better HD distinguishers for Ascon permutation? These are
interesting questions worth exploring that we leave as future work.
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