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Abstract. Feistel network and its generalizations (GFN) are another
important building blocks for constructing hash functions, e.g., Simpira
v2, Areion, and the ISO standard Lesamnta-LW. The Meet-in-the-Middle
(MitM) is a general paradigm to build preimage and collision attacks
on hash functions, which has been automated in several papers. How-
ever, those automatic tools mostly focus on the hash function with
Substitution-Permutation network (SPN) as building blocks, and only
one for Feistel network by Schrottenloher and Stevens (at CRYPTO
2022).

In this paper, we introduce a new automatic model for MitM attacks
on Feistel networks by generalizing the traditional direct or indirect par-
tial matching strategies and also Sasaki’s multi-round matching strategy.
Besides, we find the equivalent transformations of Feistel and GFN can
significantly simplify the MILP model. Based on our automatic model,
we improve the preimage attacks on Feistel-SP-MMO, Simpira-2/-4-DM,
Areion-256/-512-DM by 1–2 rounds or significantly reduce the complex-
ities. Furthermore, we fill in the gap left by Schrottenloher and Stevens
at CRYPTO 2022 on the large branch (b > 4) Simpira-b’s attack and
propose the first 11-round attack on Simpira-6. Besides, we significantly
improve the collision attack on the ISO standard hash Lesamnta-LW by
increasing the attacked round number from previous 11 to ours 17 rounds.

Keywords: MitM · Automatic Tool · Feistel · Simpira v2 ·
Lesamnta-LW · Areion

1 Introduction

The cryptographic hash function is one of the most important primitives, play-
ing a vital role in digital signatures, message integrity, passwords, and proof-of-
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work, etc. The collision resistance, preimage resistance, and second-preimage resis-
tance are the three basic security requirements for cryptographic hash functions.
Besides the well-known SHA-3 [12], another crucial design strategy is to build hash
functions on block ciphers [38,43]. Typical examples are PGV-modes [43], Davies-
Meyer (DM), Matyas-Meyer-Oseas (MMO), and Miyaguchi-Preneel (MP), etc.,
instantiated with AES [19] or other AES-like constructions, e.g., Whirlpool [8],
Grøstl [28], ECHO [11], Haraka v2 [37]. Feistel network and generalized Feistel net-
work (GFN) are important designs for block ciphers and permutations. To share
the security proof and implementation benefit, building Feistel (or GFN) prim-
itives with AES round function becomes popular in research communities, e.g.,
Simpira v2 [29], Areion [35], and the ISO lightweight hash function standard
Lesamnta-LW [31], etc., which are the main targets of this paper.

The Meet-in-the-Middle (MitM) Attack is a time-memory trade-off crypt-
analysis technique introduced by Diffie and Hellman to attack block cipher [22].
At SAC 2008, Aumasson, Meier, and Mendel [4] proposed the MitM preimage
attacks on reduced MD5 and full 3-pass HAVAL. At ASIACRYPT 2008, Sasaki
and Aoki formally combined the MitM and local-collision techniques to attack
full 3, 4, and 5-pass HAVAL. Further, they proposed the splice-and-cut technique
[3] and the initial structure [49] to strengthen MitM attack and successfully broke
the preimage resistance of the full MD5. In the past decades, the MitM attack
has been widely applied to the cryptanalysis on block ciphers [14,25,34,41] and
hash functions [3,30,49]. Simultaneously, various techniques have been intro-
duced to improve the framework of MitM attack, such as internal state guess-
ing [25], splice-and-cut [3], initial structure [49], bicliques [13], 3-subset MitM
[14], indirect-partial matching [3,49], sieve-in-the-middle [17], match-box [27],
dissection [23], MitM with guess-and-determine [50], differential-aided MitM
[16,26,36], algebraic MitM [40], two-stage MitM [5], quantum MitM [51], etc.
Till now, the MitM attack and its variants have broken MD4 [30,39], MD5 [49],
KeeLoq [33], HAVAL [4,48], GOST [34], GEA-1/2 [1,10], etc.

Automatic Tools are significantly boosting the MitM attacks, recently. At
CRYPTO 2011 and 2016, several automatic tools [15,21] were proposed for MitM
attacks on AES. At FSE 2012, Wu et al. [53] introduced a search algorithm for
MitM attacks on Grøstl. In [45], Sasaki first programmed the MitM attack on
GIFT into a dedicated Mixed-Integer-Linear-Programming (MILP) model. At
EUROCRYPT 2021, Bao et al. [6] introduced the MILP-based automatic search
framework for MitM preimage attacks on AES-like hashing, whose compression
function is built from AES-like block cipher or permutation. At CRYPTO 2021,
Dong et al. [24] further extended Bao et al.’s model into key-recovery and colli-
sion attacks. At CRYPTO 2022, Schrottenloher and Stevens [51] simplified the
language of the automatic model and applied it in both classic and quantum
settings. Bao et al. [7] considered the MitM attack in view of the superposi-
tion states. At EUROCRYPT 2023, Qin et al. [44] proposed MitM attacks and
automatic tools on sponge-based hashing.
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Most state-of-the-art automatic tools of MitM attacks are about AES-like
substitution-permutation network (SPN) primitives [6,7,24]. For Feistel or GFN
constructions, most MitM cryptanalysis results are achieved by hand, such as the
attacks on MD-SHA hash functions [2,3,30,49]. At ACNS 2013, Sasaki et al. [47]
studied the preimage attacks on hash functions based on Feistel constructions
with substitution-permutation (SP) round function, i.e., Feistel-SP. At CRYPTO
2022, Schrottenloher and Stevens [51] introduced an efficient MitM automatic
tool including the first application to Feistel constructions, e.g., Simpira v2 [29].

Our Contributions

In this paper, we focus on building a new MILP-based MitM automatic tool on
hash functions with Feistel or GFN constructions.

For the first contribution, we first generalize the matching strategy for
MitM attack. The essential idea of MitM attack is to find two neutral states (rep-
resented by and bytes), which are computed along two independent paths
(‘forward’ and ‘backward’) that are then linked in the middle by deterministic
relations, i.e. the matching point. The deterministic relations are usually of the
form fB = gR, where fB and gR are determined by and , respectively. In
[3,49], the matching equation fB = gR is usually part of the full state, which
is then named as partial matching. If fB = gR is derived directly, then it is a
direct partial matching [3]. However, if fB = gR is computed by a linear transfor-
mation on the outputs of forward and backward computation, then it is named
as indirect partial matching [2,49]. For both direct and indirect partial match-
ing, the relation fB = gR is essential for MitM attacks. Almost all the recent
MitM attacks and automatic models [6,7,24,44] leverage these two traditional
matching strategies.

However, in this paper, we find the relations f ′
B = g′

B (or f ′
R = g′

R) can also
be used for matching, where f ′

B and g′
B are determined only by bytes. Together

with the direct and indirect partial matching strategies, we propose a generalized
matching strategy. After programming the new matching strategy into our MILP
model, we significantly reduce the 5-round preimage attack on Areion-256 from
2248 [35] to 2193, and improve the preimage attack on Simpira-2 from previous
5 rounds [51] to ours 7 rounds.

For the second contribution, We first generalize Sasaki’s multi-round
matching strategy for Feistel [47] into full-round matching. At ACNS 2013,
Sasaki [47] proposed a matching strategy for Feistel-SP and GFN. For the
Feistel-SP structure, it is hard to find any matching at first glance, but two-
byte matching obviously appeared after applying a linear transformation to 4
consecutive rounds. In this paper, we find Sasaki’s multi-round matching can
be further extended into full-round matching. Therefore, the states involved in
matching come from all round functions from the matching point to the initial
structure. The full-round matching strategy may discover more useful matching
equations than the multi-round matching. The reason is that in the multi-round
matching, the involved states are first computed along forward and backward
from the known bytes in the initial structure, and many bytes become unknown
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(i.e., depending on both and bytes, denoted as bytes), and then it is hard
to derive any matching equations through the bytes. In full-round matching,
matches are constructed by directly considering the fresh states from the initial
structure.

Since many internal states are considered in full-round matching, it becomes
hard to build MILP constraints for matching. To solve this problem, we find an
equivalent transformation of Feistel and GFN that can significantly simplify the
MILP programming of the full-round matching, where each byte of the full state
can be programmed individually to determine if it is a one-byte matching.

Based on the above techniques, the achievements in this paper are listed
below and also in Table 1.

– Based on the above techniques, we improve Sasaki’s 11-round MitM attack
[47] on Feistel-SP to ours 12 rounds with almost the same time complexity.

– We improve Schrottenloher and Stevens’s MitM preimage attacks at
CRYPTO 2022 [51] on Simpira v2 by improving the attack on Simpira-2
from 5 rounds [51] to ours 7 rounds, and improving the attack on Simpira-4
from 9 rounds [51] to ours 11 rounds. As stated by Schrottenloher and
Stevens [52, Appendix B7], they can not attack on Simpira-b versions with
b /∈ {2, 3, 4}. We first fill the gap by introducing the 11-round MitM attack
on Simpira-6.

– For the ISO standardized lightweight hash Lesamnta-LW [31], we significantly
improve the collision attack from the previous 11-round attack to ours 17-
round attack. Moreover, we also found a 20-round Lesamnta-LW MitM charac-
teristic with time 2124 which is better than the generic birthday bound 2128,
but it’s higher than the designers’ security claim against collision attack,
which is 2120.

– For the hash function Areion [35] proposed at TCHES 2023, we improve the
MitM preimage attack on Areion256-DM from the previous 5 rounds to ours
7 rounds, and improve the attack on Areion512-DM from previous 10 rounds
to ours 11 rounds. For the source code, please refer to

https://github.com/Hql-code/MitM-Feistel

Comparison to Schrottenloher and Stevens’s MitM Attack. At
CRYPTO 2022, Schrottenloher and Stevens [51] introduced automatic MitM
tools based on MILP, which are also applied to preimage attacks on Feistel con-
structions, i.e., Simpira v2 [29] and Sparkle [9]. Their model is a top-down
model with a greatly simplified attack representation excluding many details.
While our model in this paper follows the bottom-up approach, which has been
used by Bao et al. [6,7] and Dong et al. [24]. Therefore, our model inherits the
advantages of previous works [6,7,24], which is easy to understand and use by
only specifying the admissible coloring transitions at each stage and comput-
ing the parameters which give the time and memory complexities of the MitM
attack. On Simpira v2’s attacks [51], to simplify the model, the attacks are of
branch-level. However, in our model, all attacks are found at the byte-level, which

https://github.com/Hql-code/MitM-Feistel
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is more fine-grained. Combined with our new model on the matching strategy,
we can improve Schrottenloher and Stevens’ attacks on Simpira-2/-4 by up to
2 rounds. Also, we find an attack on 11-round Simpira-6, while Schrottenloher
and Stevens stated that their attack can not apply to it [52, Appendix B7].

Table 1. A Summary of the Attacks.

Target Attacks Settings Rounds Time Memory Generic Ref

Feistel-SP-128 Preimage Classical 11 2112 224 2128 [47]

Classical 12 2113 248 2128 Sect. 5

Simpira-2 Preimage Classical 5 2128 - 2256 [51]

Quantum 5 264 - 2128 [51]

Classical 7 2225 296 2256 Sect. 6.1

Simpira-4 Preimage Classical 9 2128 - 2256 [51]

Quantum 9 264 - 2128 [51]

Classical 11 2225 2160 2256 Sect. 6.2

Simpira-6 Preimage Classical 11 2193.6 2193 2256 Full Ver. [32]

Lesamnta-LW Collision Classical 11 297 296 2128 [31]

Classical 17 2113.58 2112 2128 Sect. 7

Classical 20 2124 2124 2128 Full Ver. [32]

Areion256-DM Preimage Classical 5 2248 28 2256 [35]

Classical 5 2193 288 2256 Sect. 8

Classical 7 2240 264 2256 Sect. 8

Areion512-DM Preimage Classical 10 2248 28 2256 [35]

Classical 11 2241 248 2256 Sect. 8

2 Preliminaries

In the section, we first introduce the main notations used in the following paper,
and briefly describe the Meet-in-the-Middle attack, the specification of AES,
(Generalized) Feistel Networks, Areion, Lesamnta-LW, and the idea of Sasaki’s
preimage attack on Feistel-SP.

2.1 Notations

A
(r)
SB : the internal state after operation SB in round r, r ≥ 0

A
(r)
SB [i] : the i-th byte of the internal state A

(r)
SB

, R : known byte with backward computation, (x, y) = (0, 1)
, B : known byte with forward computation, (x, y) = (1, 0)
, G : known byte with forward and backward computations, (x, y) = (1, 1)

, W : unknown byte in forward and backward computations, (x, y) = (0, 0)
λR : the byte number of the bytes in the starting state
λB : the byte number of the bytes in the starting state

DoF : degree of freedom in bytes
DoFR : the byte number of DoF of the neutral words
DoFB : the byte number of DoF of the neutral words
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lB : the byte number of consumed DoF of the bytes
lR : the byte number of consumed DoF of the bytes

DoM : the byte number of DoF of the matching point
EndB : the matching point determined by bytes
EndR : the matching point determined by bytes

2.2 The Meet-in-the-Middle Attack

Fig. 1. The closed computation path of the MitM attack

Since the pioneering works on preimage attacks on Merkle-Damg̊ard hash-
ing, e.g. MD4, MD5, and HAVAL [3,30,39,49], techniques such as splice-and-cut [3],
initial structure [49] and (indirect-) partial matching [2,49] have been invented
to significantly improve the MitM approach. In Fig. 1, the compression function
is divided at certain intermediate rounds (initial structure) into two chunks:

1. In the initial structure, a starting state is chosen with λR bytes and λB
bytes, which are also denoted as the initial degree of freedom (DoF) of and

bytes. The and bytes are then constrained linearly [46,47] or nonlinearly
[24] by lR and lB byte equations, so that the two chunks can be computed
independently on two distinct solution spaces of and derived by solving
the constraint equations. The two solution spaces are named as neutral space.
The DoFs of the or neutral space are denoted as DoFR or DoFB.

2. The two neutral spaces are computed along two independent paths (‘forward
chunk’ and ‘backward chunk’).

3. One chunk is computed across the first and last rounds via the feed-forward
mechanism of the hashing mode, and they end at a common intermediate
round (partial matching point) to derive the deterministic relation ‘EndB =
EndR’ for matching. The number of bytes for matching is denoted as the
degree of matching (DoM).

Thereafter, a closed computation path of the MitM attack is derived. After
setting up the configurations, the basic attack procedure goes as follows:

1. Choose constants for the initial structure.
2. For all 28·DoFR values of neutral space, compute backward from the initial

structure to the matching points EndR to generate a table LR[EndR].
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3. Similarly, build LB for 28·DoFB values of neutral space with forward com-
putation.

4. Check for the DoM bytes match on indices between LR and LB.
5. For the pairs surviving the partial match, check for a full-state match.
6. Steps 1–5 form one MitM episode that will be repeated until a full match is

found.

The attack complexity. An MitM episode is performed with time
28·max(DoFR,DoFB) + 28·(DoFR+DoFB−DoM). To find an h-bit target preimage,
2h−8·(DoFR+DoFB) MitM episodes are needed. The total time complexity of the
attack is:

2h−8·min(DoFR,DoFB,DoM). (1)

Nonlinearly Constrained Neutral Words [24]. In order to compute the
allowable values for the neutral words, one has to solve certain systems of equa-
tions. In previous MitM preimage attacks [46,50], the systems of equations are
usually linear, i.e., linearly constrained neutral words, which can be solved with
ease. At CRYPTO 2021, Dong et al. [24] found that the systems of equations
can be nonlinear, which can not be solved directly like linear system. Therefore,
Dong et al. proposed a table-based method to solve those nonlinearly constrained
neutral words. Suppose in the starting state, there are λR bytes and λB bytes,
and the number of nonlinear constraints are lR and lB for and bytes.

1. Fix the bytes for the initial structure,
2. For 2λR values, compute the lR bytes constraints (denoted as cR ∈ F

8·lR
2 ),

and store the λR bytes in table UR[cR],
3. For 2λB values, compute the lB bytes constraints (denoted as cB ∈ F

8·lB
2 ),

and store the λB bytes in table UB[cB].

Then, for given cR and cB, the values in UR[cR] and UB[cB] can be computed
independently (i.e., neutral) in one MitM episode. Therefore, we have DoFR =
λR − lR and DoFB = λB − lB. According to [24], both the time and memory
complexities of one precomputation are 2λR + 2λB . After the precomputation,
2lR+lB MitM episodes are produced.

Automated MitM Based MILP. At EUROCRYPT 2021, Bao et al. [6] pro-
posed the MILP-based automatic model for MitM preimage attacks on AES-like
hashing. At CRYPTO 2021, Dong et al. extended the model into key-recovery
and collision. At CRYPTO 2022, Bao et al. [7] proposed the superposition MitM
attack, i.e., the bytes and bytes are handled independently in linear oper-
ations. A similar idea has been proposed and called indirect-partial matching
in 2009 [2]. In the superposition MitM attack framework, each state involved
in a linear operation is separated into two virtual states, which are also called
superposition states. One state preserves the bytes, bytes, and bytes in the
original state, while the positions where bytes are located turn . The other
state can be obtained similarly but exchanging the and bytes. Therefore,
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two superposition states can be propagated equally and independently along the
forward or backward computation paths through linear operations. The initial
DoFs can be consumed in both directions. Then, two superposition states are
finally combined before the next nonlinear operation after a series of linear oper-
ations. The color patterns and how the states are separated and combined are
visualized in Fig. 2.

Fig. 2. Rules for separation and combination, where “∗” means any color

The rules MC-Rule and XOR-Rule are first introduced in [6] to model the
propagation rules of MixColumn and AddRoundKey in AES-like hashing. Since
λB bytes of the starting states are imposed lB constraints (similar to ), the
rules MC-Rule and XOR-Rule are required to describe how the impacts from the
neutral bytes in one chunk are limited on the opposite chunk. For more details
on the two basic rules, please refer to [6] and also Supplementary Material A in
our full version paper [32].

2.3 AES

To be concrete, we first recall the round function of AES-128 [19]. It operates
on a 16-byte state arranged into a 4 × 4 matrix and contains four operations
as illustrated in Fig. 3: SubBytes (SB), ShiftRows (SR), MixColumns (MC), and
AddRoundKey (AK). The MixColumns is to multiply an MDS matrix to each col-
umn of the state. Embedding a block cipher into the PGV hashing modes [43],
such as Davies-Meyer (DM, Fig. 4), Matyas-Meyer-Oseas (MMO, Fig. 5) and
Miyaguchi-Preneel (MP), is a common way to build the compression functions
for hashing.

Fig. 3. One round AES Fig. 4. DM Fig. 5. MMO
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2.4 (Generalized) Feistel Networks

Another widely used design approach is the Feistel network, which was first
used in DES [18], and the generalized Feistel network (GFN) [54]. When the
round function of Feistel adopts AddRoundKey (AK), SubBytes (SB), and a per-
mutation layer, i.e., SP round function, the Feistel is named as Feistel-SP. In this
paper, the permutation layer is a MixColumns (MC) with MDS, as shown in Fig. 6.
Figure 7 is an equivalent transformation of Fig. 6, where Ã(r) = MC−1(A(r)),
B̃(r) = MC−1(B(r)), Ã(r+1) = MC−1(A(r+1)), and B̃(r+1) = MC−1(B(r+1)). The
round function of GFN adopts multiple branches, e.g., the round function of
4-branch Simpira v2 in Fig. 8.

Fig. 6. One round Feistel-SP Fig. 7. Equivalent transform of Feistel-
SP

2.5 Simpira v2

Simpira v2 [29] is a family of cryptographic permutations that support inputs
of 128 × b bits, where b is the number of branches. When b = 1, Simpira v2
consists of 12 rounds AES with different constants. When b ≥ 2, Simpira v2
is a Generalized Feistel Structure (GFS) with the F -function that consists of
two rounds of AES. We denote Simpira v2 family members with b branches as
Simpira-b. The total number of rounds is 15 for b = 2, b = 4 and b = 6, 21 for
b = 3, and 18 for b = 8. Figure 8 shows the round function of Simpira-4.

Fig. 8. The round function of Simpira-4
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2.6 Areion

Areion [35] is a family of highly-efficient permutations based on AES instruction.
It consists of two versions with 256-bit and 512-bit, named as Areion-256 (the
round function is shown in Fig. 9) and Areion-512. Based on the two permuta-
tions, two hash functions with short input are designed with Davies-Meyer (DM)
construction, i.e., Areion256-DM and Areion512-DM, which are our targets.

2.7 Lesamnta-LW

Lesamnta-LW is a lightweight 256-bit hash function proposed by Hirose et al. in
2010 [31], which has been specified in ISO/IEC 29192-5:2016. Lesamnta-LW is
a Merkle-Damg̊ard iterated hash function [20,42]. Figure 11 shows a hash with
two message blocks, where the i-th compression function (CF) is CF(hi−1,mi) =
E(h0

i−1,mi‖h1
i−1) = hi, with h0

i−1, h1
i−1, mi ∈ F

128
2 , hi−1, hi ∈ F

256
2 , and hi−1 =

h0
i−1‖h1

i−1. The initial h0 is the initial vector and the last hN is the 256-bit digest.
The internal block cipher of CF is of 64 rounds with 256-bit plaintext and 32-bit
round keys. Our attack is independent of the key schedule which is omitted.
Figure 10 shows the round function, where mi = A(r)‖B(r), h1

i−1 = C(r)‖D(r).
Lesamnta-LW uses AES’s components, i.e., SB and MC, while P just permutes the
bytes. Lesamnta-LW claims at least 2120 security levels against both collision and
preimage attacks, and we target the MitM collision attack on Lesamnta-LW.

Fig. 9. One round Areion-256 Fig. 10. One round Lesamnta-LW

Fig. 11. Lesamnta-LW hash with two message blocks
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2.8 Sasaki’s Preimage Attack on Feistel-SP

At ACNS 2013, Sasaki [47] introduced the MitM preimage attacks on MMO
hashing mode with Feistel-SP block ciphers by omitting the last network twist.
In Fig. 12(a), A

(6)
AK and A

(7)
AK are chosen as the initial states with λR = 11 and

λB = 3. The just represents the linear combination of and bytes. From
B(7) to A(8), the consumed DoF of is lR = 8. Therefore, the remaining DoFs
of and are DoFR = 11 − 8 = 3 and DoFB = 3, respectively. In Fig. 12(b), by
assigning conditions k0 = k10 ⊕HA and k1 = k9 ⊕HB, we have A

(10)
MC = A

(0)
MC and

A
(9)
MC = A

(1)
MC . Therefore, A(2) = B(9) ⊕ HA and B(2) = A(9) ⊕ HB . In Fig. 12(c),

Sasaki applied a linear transformation in the computation from A
(3)
SB to A

(5)
SB to

derive a multi-round matching with DoM = 2 as shown in Fig. 13. The time
complexity is 28×(16−min{3,3,2}) = 2112.

Fig. 12. Sasaki’s attack
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Fig. 13. Matching in Sasaki’s attack

3 Generalization on Matching Strategy in MitM

In the matching point of the MitM attack, with forward and backward compu-
tations, if two matching states F+ and F− are determined only by the and ,
respectively, then, the relation F+ = F− acts as a direct partial matching. This
simple matching strategy is frequently used in previous works [46,49]. In ASI-
ACRYPT 2009, Aoki et al. introduced the indirect partial matching technique
[2], where F+ can be expressed as φB + φR, and F− = ΦB + ΦR. φB and ΦB are
determined by the and bytes. φR and ΦR are determined by the and
bytes. Therefore, the DoM-byte equation φB + ΦB = φR + ΦR can be built from
F+ = F−, which acts as the matching. In this paper, we denote EndB = φB+ΦB
and EndR = φR + ΦR.

In addition to the above two common matching strategies, we find that the
byte equation determined only by one of the two colors ( , ) can also be used
in the MitM attack. Taking the matching by combining MixColumn and XOR
operations at MixColumns and AddRoundKey for AES as an example as shown
in Fig. 14(a). Suppose from the matching states, there exist MR byte-equations
πR = 0, MB byte-equations πB = 0, and DoM byte-equations EndB = EndR,
where EndR and πR are determined by and , EndB and πB are determined
by and . Figure 14(b) is a commonly used matching strategy (indirect partial
matching) in previous MitM attacks [46,47], where there exists DoM = 1 byte
matching equation EndB = EndR. Figure 14(c) is the new matching strategy,
where there exists MR = 1 byte matching equation:

πR = 7α[0] ⊕ 11α[1] ⊕ 4α[3] ⊕ 3γ[0] ⊕ 3β[0] ⊕ β[1] ⊕ γ[1] = 0.

This matching method in Fig. 14(c) can not be included in any of the two
common matching strategies (direct or indirect partial matching), but can still
lead to valid MitM attacks. With the new matching strategy, we introduce the
new MitM procedures in the following:
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Fig. 14. Examples in Generalized Matching Strategy

1. Choose constants for the initial structure.
2. For all 28·DoFR values of neutral space, compute from the initial structure

to the matching points. If πR = 0 holds, store the DoFR bytes in table
LR[EndR].

3. For all 28·DoFB values of neutral space, compute from the initial structure
to the matching points. If πB = 0 holds, store the DoFB bytes in table
LB[EndB].

4. Check for the DoM bytes matching with EndR = EndB on indices between
LR and LB.

5. For the pairs surviving the partial matching, check for a full-state match.
6. Steps 1–5 form one MitM episode that will be repeated until a full match is

found.

The Complexity. In one MitM episode, the time complexities of Step 2 and
3 are 28·DoFR and 28·DoFB , respectively. The memory costs of Step 2 and 3 are
28(DoFR−MR) and 28(DoFB−MB). In Step 4 and 5, there expect 28(DoFR−MR) ·
28(DoFB−MB)−8·DoM surviving pairs to check for a full-state match. Therefore,
the time complexity of one MitM episode is

28·DoFR + 28·DoFB + 28(DoFR+DoFB−MR−MB−DoM).

For a given h-bit target, 2h−8(DoFR+DoFB) MitM episodes are needed to perform,
and the total time complexity is

2h−8·min(DoFR,DoFB,MR+MB+DoM). (2)

Remark 1. Compared with the attack framework proposed by Bao et al. [6],
steps 2–3 in our framework will first filter the states that do not satisfy the
matching equations containing only one color, and then store the remaining
states in tables. The overall memory is 28×min{DoFR−MR,DoFB−MB} which may
be lower than the main memory cost in [6], i.e. 28×min{DoFR,DoFB}.

Modelling the Matching Point. For a given byte in Fig. 14, we introduce
a Boolean variable ω, that ω = 1 means this byte is , otherwise ω = 0. ωα

i ,
ωβ

i , and ωγ
i indicate whether the i-th byte in α, β, and γ is white respectively,
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and ω
(β,γ)
i is defined by OR(ωβ

i , ωγ
i ), i.e., ω

(β,γ)
i = 1 if ωβ

i or ωγ
i is 1. Besides, an

auxiliary state χ is introduced in Fig. 14, where χ = β ⊕ γ. The rule to generate
χ follows the XOR-Rule in [6], (i.e. ⊕ = , ⊕ = , ⊕ = , etc.).
Moreover, we introduce 4 general variables nα

B, nα
R, nχ

B and nχ
R to count the

numbers of cells and cells or the number of cells and cells in α or χ. For
example, nα

B is the number of cells and cells in α. Another general variable nG
is introduced to count the total number of cells in α and χ. Suppose (xα

i , yα
i )

and (xχ
i , yχ

i ) denote the i-th cell in α and χ respectively, then we have
⎧
⎪⎪⎨

⎪⎪⎩

nα
B =

3∑

i=0

xα
i ;

nα
R =

3∑

i=0

yα
i ;

⎧
⎪⎪⎨

⎪⎪⎩

nχ
B =

3∑

i=0

xχ
i ;

nχ
R =

3∑

i=0

yχ
i ;

nG =
3∑

i=0

AND(xα
i , yα

i ) + AND(xχ
i , yχ

i ).

where AND(xi, yi) = 1 if and only if xi = yi = 1. To avoid double counting the
number of equations derived only by , let MG = max{0, nG −4} and exclude MG
equations from πR = 0. Then, the number of equations in πB = 0 and πR = 0
can be calculated by

MB = max {0, nα
B + nχ

B − 4} , MR = max {0, nα
R + nχ

R − MG − 4} . (3)

For the MC then XOR operations in Fig. 14, we can build 4 − ∑3
i=0(ω

(β,γ)
i + ωα

i )
linear equations which are determined by only known cells ( , , ). Therefore,
the number of byte equations EndB = EndR is equal to the total linear equations
minus MB and MR equations. We get

DoM = max

{

0, 4 −
3∑

i=0

(ω(β,γ)
i + ωα

i ) − MB − MR

}

. (4)

4 Automatic Model for Transformed Feistel Structure

In this section, we first generalize Sasaki’s multi-round matching strategy into
full-round matching. Then, we introduce an equivalent transformation of Feistel
and GFN, which is very friendly with the new proposed full-round matching
strategy. At last, we construct the MILP constraints to describe the attributes
propagation through transformed Feistel and how the full-round match is
deployed. Combining the equivalent transformation and full-round match, the
MILP model can be simplified and easy to program.

4.1 The Generalization of Sasaki’s Matching Strategy for Feistel

In [47], Sasaki proposed a matching strategy for Feistel with a linear transforma-
tion. As shown in Fig. 13, it is hard to see any matching in the original Fig. 13(a).
However, after a linear transformation in Fig. 13(b), the two-byte matching is
obviously obtained. Besides the attack on balanced Feistel-SP, Sasaki [47] also
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built MitM attacks on GFN with SP round function, where the matching point
covers 7 consecutive rounds. A similar linear transformation as in Fig. 13(b) is
also applied, but involves more internal states.

Inspired by Sasaki’s matching strategy [47], we generalize the matching
strategy to full-round matching, i.e., the matching can happen by writing
down the internal states involved from the matching point to the initial struc-
ture. For example, we can further extend Fig. 13(a) by replacing B(3) by
MC(A(7)

SB ) ⊕ B(7) ⊕ HA and replacing A(6) by B(7), where the internal states A
(7)
SB

and B(7) come from the initial structure. Therefore, Fig. 13 becomes Fig. 15. The
advantages of the generalized full-round matching are summarized below:

I Since the internal states from the initial structure preserve more useful infor-
mation than other internal states (there are usually no bytes in the initial
structure), a full-round matching may be more likely to produce a valid
match than a local-round matching (e.g., 3 or 4 rounds). An example is
found for Simpira-4 in Fig. 18, where the matching obviously exists for the
full-round case, but disappears for certain local-round case.

II Also a linear transformation is applied to Fig. 15(a) to obtain Fig. 15(b).
This is essential and can not be replaced by Bao et al.’s superposition MitM
technique [7]. If we apply the superposition MitM technique in Fig. 15(a),
A

(3)
SB will be separated into two states following the rules in Fig. 2, then one

of the two states will be all after MC. Therefore, an unknown state will be
XORed into the matching path, which leads to no matching at all.
If we apply a linear transformation to obtain Fig. 15(b), each byte of A

(3)
SB

will be involved in the matching path individually. For example, considering
the 4-th byte, there is a one-byte equation

MC−1
(
B(7)

)
[3] ⊕ A

(7)
SB [3] ⊕ A

(3)
SB [3] ⊕ A

(5)
SB [3] = MC−1

(
B(7) ⊕ HA

)
[3], (5)

which is obviously a matching equation (no byte is involved).
III The transformed structure in Fig. 15(b) is easy to program in the automatic

tool. As shown in Eq. (5), each byte can be individually considered, which is
very friendly than the untransformed case in Fig. 15(a). As a matter of fact,
this is very important when building the automatic tool, since for many
(generalized) Feistel networks, the situation is much more complex than
the very easy case for Feistel-SP. For example, in our 11-round attack on
Simpira-4 (Fig. 23), there are more states involved in matching than that in
Fig. 15(a). Therefore, if we do not apply the linear transformation, we have
to program many MC operations into a whole matching rule, which is very
complex or even infeasible for many ciphers like Simpira-4.
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Fig. 15. Full-match in Feistel-SP

We find that the transformation in Fig. 15(b) can be directly obtained if
we consider MitM attacks on an equivalent transformation of Feistel-SP, i.e.,
Fig. 6(b). To better understand this fact, we take the MILP-based MitM attack
on transformed Simpira-4 as an example in the following part.

4.2 MILP-Based MitM Attack on Transformed Feistel

As shown in Fig. 8, the output A(r+1) is equivalent to B(r) ⊕ MC(A(r)
SR2). With

a linear transformation on A(r+1), we have MC−1(A(r+1)) = MC−1(B(r)) ⊕ A
(r)
SR2.

Similarly, B(r+1), C(r+1) and D(r+1) can be handled in the same way. For the
sake of simplicity and intuition, we transform the Feistel network by putting
the last MixColumn operation first in each round like Fig. 6(b). Then the output
of each round is the state after the above linear transformation in the original
structure. Therefore, we propose the following property.

Property 1. Simpira-4 is equivalent to the permutation with a round function

R′
i = SR ◦ SB ◦ AC ◦ MC ◦ SR ◦ SB ◦ MC,

except for replacing the input
(
A(r), B(r), C(r),D(r)

)
by

(
Ã(r), B̃(r), C̃(r),

D̃(r)
)

=
(
MC−1(A(r)), MC−1(B(r)), MC−1(C(r)), MC−1(D(r))

)
, and the final output

becomes
(
Ã(r+1), B̃(r+1), C̃(r+1), D̃(r+1)

)
.

Following Property 1, we represent the 3-round transformed Simpira-4 in Fig. 16,
where Ã(r+1) = B̃(r) ⊕ Ã

(r)
SR2. In this way, Ã

(r)
MC1 = MC(Ã(r)) = A(r), then Ã

(r)
SR2 =

A
(r)
SR2. According to the predefined B̃(r) = MC−1(B(r)), Ã(r+1) is equivalent to

MC−1(B(r)) ⊕ A
(r)
SR2. Therefore, the output Ã(r+1) in the transformed Simpira-4

is actual the state MC−1(A(r+1)) in the original Simpira-4 (Fig. 8). This is also
true for B̃(r+1), C̃(r+1) and D̃(r+1).
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Fig. 16. Equivalent transform of Simpira-4

MILP Constraints for the Computation Paths. As shown in Fig. 16,
Ã

(r+1)
MC1 can be computed by MC

(
Ã

(r)
SR2 ⊕ B̃(r)

)
, where B̃(r) can be replaced by

MC−1
(
C̃

(r−1)
MC1

)
. Therefore, Ã

(r+1)
MC1 = MC

(
Ã

(r)
SR2

)
⊕ C̃

(r−1)
MC1 , which is also named

as MC-then-XOR-Rule. In fact, if we sequentially compute the colors of Ã
(r+1)
MC1

by computing B̃(r) = MC−1
(
C̃

(r−1)
MC1

)
and then Ã

(r+1)
MC1 = MC

(
Ã

(r)
SR2 ⊕ B̃(r)

)
, i.e.,

first apply MC-Rule, and then XOR-Rule, and then MC-Rule, we may lose many
possible and useful color schemes even in the most advanced superposition MitM
framework. An example is given in Fig. 17(a), when applying MC-Rule on the
superposition states of C̃

(r−1)
MC1 , it will lead to all cells. Subsequently, Ã

(r+1)
MC1 will

end up with a full column of cells. However, if we apply the MC-then-XOR-Rule
with superposition framework as shown in Fig. 17(b), three cells will be pre-
served by consuming three cells. This also fits our intuition, i.e. more linear
operations yield a higher possibility of generating unknown cells.
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Fig. 17. The advantage of modeling link by applying MC-then-XOR-Rule

MILP Constraints for the Full-Round Match. In Fig. 12(c), the ending
states are (A(4), B(4)) computed from two opposite directions. With a linear
transformation, two-byte partial matching is deduced as shown in Fig. 13. The
matching phase involves two rounds of forward and two rounds of backward,
respectively. So we denote such multi-round matching as (2+2)-round match.
Taking the transformed Simpira-4 as an example, assume that the output state
Ã(r+1) is chosen to be the ending states in Fig. 16. We have

Ã(r+1) = Ã
(r)
SR2 ⊕ B̃(r), where B̃(r) = MC−1

(
C̃

(r−1)
MC1

)
. (6)

As mentioned above, C̃
(r−1)
MC1 can be computed directly by MC

(
C̃

(r−2)
SR2

)
⊕ Ã

(r−3)
MC1

in the transformed Simpira-4 model. Hence, B̃(r) can be replaced by C̃
(r−2)
SR2 ⊕

MC−1
(
Ã

(r−3)
MC1

)
in Eq. (6). Immediately, Ã

(r−3)
MC1 can also be replaced in the same

way. Subsequently, this replacement is done round by round until the initial
structure to build the so-called full-round matching. Take our 11-round attack
(Fig. 23) on transformed Simpira-4 in Sect. 6.2 as an example. The ending state
D̃(2) is computed forward and backward to the initial structure. The shortest
round that a matching exists is the (6, 4)-round matching given in Fig. 18(a). If
a shorter round is considered for matching, e.g., (6, 2)-round in Fig. 18(b), there
will be no matching, since the state C̃

(3)
MC1 will be all . If we extend the (6, 4)-

round matching to the full-round matching, we get Fig. 18(c), where the two
states applied MC−1 in both directions will eventually converge to an identical
state C̃

(7)
MC1 in the initial structure. Figure 18(c) can also be displayed with the

following full-round matching Eq. (7):

MC−1
(
C̃

(7)
MC1

)
⊕Ã

(8)
SR2⊕C̃

(10)
SR2 ⊕Ã

(0)
SR2⊕C̃

(2)
SR2⊕Ã

(4)
SR2⊕C̃

(6)
SR2 = MC−1

(
C̃

(7)
MC1 ⊕ HB

)
, (7)

where MC−1
(
C̃

(7)
MC1

)
can be cancelled in both sides. The reason follows the fact

that the initial degrees of freedom of and cells will be consumed along the
forward or backward computation path. The number of cells only becomes
bigger through some linear or nonlinear operations. If the matching happens
within shorter rounds, there will only be more matching cases after elongation.
But on the contrary, while considering to find a shorter-round match from a
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longer one, there may be cases where the state in the shorter rounds will be
after applying linear operations.

Fig. 18. The (6,4)-round match in Simpira-4, and its impacts on the match after being
shortened or elongated

Following the above study, we only need to consider whether there exist
match cells in the full-round matching. The two states to perform MC−1 will
eventually converge into the starting states in the initial structure, or even can
be canceled in both matching directions as shown in Fig. 18(c). For the general
case, assume the matching phase consists of two starting states I1 and I2, e.g.,
in Fig. 18(c) I1 = I2 = C̃

(7)
MC1, and assume t internal states X1, X2, · · · , Xt

are involved in the full-round matching equation. Similar to Eq. (7), the generic
full-round matching equation can be written as

MC−1(I1) ⊕ X1 ⊕ · · · ⊕ Xt = MC−1(I2). (8)

The matching equation can be computed for each byte individually. In the i-th
column and j-th row (i, j = 0, 1, 2, 3), the byte matching equation is linearly
computed from Xk[4i + j] (k = 1, · · · , t) and I1[4i, 4i + 1, 4i + 2, 4i + 3] and
I2[4i, 4i + 1, 4i + 2, 4i + 3]. From our analysis on the generalization of matching
in Sect. 3, if all these involved bytes are not bytes, there will be valid matching
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for MitM attack. For j-th byte of Xk, we introduce a Boolean variable ωXk
j ,

where ωXk
j = 1 means this byte is , otherwise ωXk

j = 0. Let

ω4i+j = OR
(
ωX1
4i+j , · · · , ωXt

4i+j , ω
I1
4i , · · · , ωI1

4i+3, ω
I2
4i , · · · , ωI2

4i+3

)
.

If ω4i+j = 0, then we get one valid matching byte for MitM in the i-th column
and j-th row.

5 Meet-in-the-Middle Attack on Reduced Feistel-SP

With our new model, we find a 12-round preimage attack of Feistel-SP-MMO as
shown in Fig. 19, which improves Sasaki’s attack [47] by 1 round. The starting
states are Ã

(7)
MC and Ã

(8)
MC . The initial DoFs for and are λB = 14, λR = 2,

respectively.
From Ã

(9)
MC , Ã

(6)
MC and Ã

(5)
MC , we get 12 constraints on forward neutral words

and 0 constraints on backward neutral words, i.e. lB = 12, lR = 0. Then we have
DoFB = 2 and DoFR = 2. The matching points are Ã(5) and B̃(5). But only a
full-round match is found through B̃(5), which is

MC−1
(
Ã

(7)
MC

)
⊕ Ã

(8)
SB ⊕ MC−1(HA) ⊕ Ã

(3)
SB ⊕ Ã

(5)
SB ⊕ Ã

(7)
SB = MC−1

(
Ã

(8)
MC

)
, (9)

with Ã
(1)
SB = Ã

(10)
SB by assigning the same assumption to Sasaki’s attack [47],

i.e., k0 = k11 ⊕ HA and k1 = k10 ⊕ HB . From Eq. (9), 2 bytes degree of match
indexed by [6, 7] are derived, i.e. DoM = 2. The 12-round MitM attack is given in
Algorithm 1. The time complexity to precompute U is 28·λB = 2112. The memory
to store U is 28·(λB−8) = 248. The final time complexity is

264+48 + 28×(16−min{14−12, 2, 2}) ≈ 2113.

6 Meet-in-the-Middle Attack on Reduced Simpira V2

For Simpira v2 [29] with branch number b > 2, the designers suggested the
permutation-based hashing based on Davies-Meyer (DM) construction: π(x)⊕x,
where π is Simpira v2 permutation. For the common size of digest, i.e., 256
bits, the output of Simpira v2 has to be truncated. For a fair comparison with
Schrottenloher and Stevens’ attacks [51], we follow the same way of truncation
for Simpira v2. We introduce the first 7-round attack on Simpira-2 and 11-
round attack on Simpira-4. To fill a gap left by Schrottenloher and Stevens [51],
we introduce the first attack on reduced Simpira-6 in Supplementary Material
C in our full version paper [32]. We also give an experiment based on a new
7-round MitM characteristic of Simpira-2 in Supplementary Material F in [32].
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Fig. 19. MitM attack on 12-round Feistel-SP
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Algorithm 1: Preimage Attack on 12-round Feistel-SP

1 Set constraints on key schedule k0 = k11 ⊕ HA and k1 = k10 ⊕ HB

2 for gb ∈ F
64
2 /* MC(Ã

(8)
SB [0-5]||0||0) ⊕ Ã

(7)
MC = gb */

3 do

4 U ← [ ]

5 for vB ∈ F
6×8
2 in Ã

(8)
SB [0-5] do

6 Ã
(7)
MC ← MC(vB‖0‖0) ⊕ gb

7 Compute through AK and SB to get the values of cells in Ã
(7)
SB

8 c0‖c1 ← MC(Ã
(7)
SB )[6, 7] /* Ã

(6)
MC = MC(Ã

(7)
SB ) ⊕ Ã

(8)
MC */

9 Compute cells in Ã
(6)
SB

10 c2‖c3 ← MC(Ã
(6)
SB [0-5]‖0‖0)[6, 7] ⊕ Ã

(7)
MC [6, 7]

11 cB ← c0‖c1‖c2‖c3
12 U [cB] ← vB /* There are 216 elements in U [cB] given cB */

13 end

14 for cB ∈ F
4×8
2 do

15 L ← [ ]

16 for vB ∈ U [cB] do

17 Compute backward to the cells in Ã
(6)
MC . According to Fig. 19, derive 2 bytes

EndB for matching by

18

EndB ← MC
−1

(
Ã

(6)
MC [0 − 5]‖0‖0

)
[6, 7]

L[EndB] ← vB
19 end

20 for 28λR values vR of the bytes in Ã
(8)
MC , λR = 2 do

21 Compute backward to the cells in Ã
(5)
SB

22 Due to the predefined constraints on key schedule, there always be

Ã
(1)
MC = Ã

(10)
MC ⊕ HB and Ã

(2)
MC = Ã

(9)
MC ⊕ HA

23 With Ã
(1)
MC and Ã

(2)
MC , compute forward to the cells in Ã

(3)
SB

24 From Ã
(2)
MC , Ã

(3)
SB and Ã

(5)
SB [6, 7], derive 2 bytes EndR for matching by

EndR ← MC
−1

(
Ã

(2)
MC

)
[6, 7]⊕Ã

(3)
SB [6, 7]⊕Ã

(5)
SB [6, 7]⊕MC

−1
(
0‖0‖0‖0‖0‖Ã

(6)
MC [6, 7]

)
[6, 7]

25 for vB ∈ L[EndR] do

26 Reconstruct the (candidate) message X

27 if X is a preimage then

28 Output X and stop

29 end

30 end

31 end

32 end

33 end

6.1 Meet-in-the-Middle Attack on 7-Round Simpira-2

As shown in Fig. 20, we give a 7-round preimage attack on Simpira-2. The
starting states are Ã

(3)
MC1 and Ã

(4)
MC1, where λR = 4 and λB = 28. Along the forward

and backward computation paths, there are 0 constraints on and 20 constraints
on , i.e. lR = 0 and lB = 20 as shown in Fig. 21. Then, we have DoFR =
λR − lR = 4 and DoFB = λB − lB = 8. The matching points are Ã(2) and B̃(2)

and the full-round matching equation is (10). Due to MC−1(Ã(3)
MC1) appears in both
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directions, MC−1(Ã(3)
MC1) makes no contribution to the match and can be canceled

without influence as shown in Fig. 22.

Ã
(2)
SR2 ⊕ Ã

(4)
SR2 ⊕ Ã

(6)
SR2 ⊕ MC−1(HB) = Ã

(0)
SR2. (10)

Then, 4 bytes for matching in the Eq. (10) indexed by [3, 6, 9, 12] are only deter-
mined by the bytes, i.e. MR = 4. The detailed attack procedure is shown in
Algorithm 2. The time to construct U is 28·λB = 2224. The memory cost to store
U is 28·(λB−16) ≈ 296. According to Eq. (2), the overall time complexity to mount
a MitM attack is

2224 + 28×(32−min{8,4,4}) ≈ 2225.

The memory cost is about 296 to store hash table U .

Fig. 20. MitM attack on 7-round Simpira-2

6.2 Meet-in-the-Middle Attack on 11-Round Simpira-4

Figure 23 is an 11-round MitM characteristic of Simpira-4. Figure 28 given in
Supplementary Material B in our full version paper [32] is an alternative repre-
sentation of the MitM characteristic with MC-then-XOR-Rule in superposition
states. The starting states are Ã

(7)
MC1, C̃

(6)
MC1, Ã

(6)
MC1, and C̃

(7)
MC1. The initial DoFs for

and are λR = 24 and λB = 4, respectively. Along the forward and backward
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Fig. 21. The MC-then-XOR-Rule of Simpira-2 in superposition framework

Algorithm 2: Preimage Attack on 7-round Simpira-2

1 for gb ∈ F
128
2 do

2 U ← [ ]

3 for vB ∈ F
12×8
2 in Ã

(4)
MC1[0, 2-5, 7-10, 13-15] do

4 Compute the cells in Ã
(4)
SR2 from Ã

(4)
MC1

5 Let Ã
(4)
SR2[i] ← 0, where i ∈ [3, 6, 9, 12]

6 Compute Ã
(3)
MC1 by MC(Ã

(4)
SR2) ⊕ gb /* Left part of Fig. 21 */

7 Compute Ã
(3)
SR2 from Ã

(3)
MC1

8 c0‖c1‖c2‖c3 ← MC(Ã
(3)
SR2)[1, 6, 11, 12] /* Right part of Fig. 21 */

9 cB ← c0‖c1‖c2‖c3
10 U [cB] ← vB /* There are 28×8 elements U [cB] given cB */

11 end

12 for cB ∈ F
4×8
2 do

13 Set S to be an empty set to store the compatible values of

14 for 28λR values vR of the bytes in Ã
(4)
MC1, λR = 4 do

15 Compute to the cells in Ã
(0)
SR2, Ã

(2)
SR2, Ã

(4)
SR2 and Ã

(6)
SR2

16 As shown in Fig. 22, MR=4 bytes equations are derived by

(
Ã

(2)
SR2 ⊕ Ã

(4)
SR2 ⊕ Ã

(6)
SR2 ⊕ MC

−1(HB)
)

[3, 6, 9, 12] = Ã
(0)
SR2[3, 6, 9, 12]

Put the solution into S
17 end
18 for vB ∈ U [cB] do

19 Compute the cells in Ã
(3)
MC1 as Line 6 for vR ∈ S do

20 Reconstruct the (candidate) message X if X is a preimage then
21 Output X and stop
22 end

23 end

24 end

25 end

26 end
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Fig. 22. Full-round matching in 7-round Simpira-2

computation paths, there are a total of 20 constraints on and 0 constant con-
straints on , i.e., lR = 20 and lB = 0. Hence, we get DoFR = λR − lR = 4
and DoFB = λB − lB = 4. The matching points are (Ã(2), B̃(2), C̃(2), D̃(2)). The
full-matching equation is (11), where MC−1(C̃(7)

MC1) appears in both directions and
can be cancelled.

Ã
(8)
SR2 ⊕ C̃

(10)
SR2 ⊕ MC−1(HB) ⊕ Ã

(0)
SR2 = C̃

(6)
SR2 ⊕ Ã

(4)
SR2 ⊕ C̃

(2)
SR2. (11)

Then, 4 bytes in Eq. (11) indexed by [0, 7, 10, 13] are derived as the degree of
match, i.e. DoM = 4. The 11-round attack is given in Algorithm 3. The time to
construct V is 28·λR = 2192 and memory is 28·(λR−4) = 2160. We need to traverse
232 values of the in Ã

(6)
MC1, C̃

(6)
MC1 and C̃

(7)
MC1. Hence, the total time complexity can

be computed by 232 × 2192 + 28×(32−min{24−20,4,4}) ≈ 2225. The overall memory
is 2160 to store V .

7 Meet-in-the-Middle Attack on 17-Round Lesamnta-LW

We also apply our automated model to Lesamnta-LW [31]. Since the
Lesamnta-LW does not have the feed-forward mechanism, there are only two for-
ward chunks. We find a 17-round MitM characteristic for Lesamnta-LW without
linear transformation, which is shown in Fig. 24. The initial DoFs for and are
λB = 4, λR = 4, respectively. Without consuming DoF of / in the computation
from round 0 to round 17, there is DoFR = DoFB = 4. The matching happens
between D(17) and the targeted hash value, where DoM = 8. The attack proce-
dure is given in Algorithm4, where two message blocks (m1,m2) are needed as
shown in Fig. 11. In this attack, we only use the first column of D(17) for match-
ing. At first, we randomly fix the first 32-bit in D(17) as constant. Then, in one
MitM episode, we can get 232+32−32 = 232 (m1,m2) satisfying the 32-bit partial
target. When we find 2(256−32)/2 = 2112 different (m1,m2, h) with the same fixed
32-bit partial target, we can find a collision on the remaining (256 − 32) bits of
the full 256-bit target. The time complexity is 216+64 · (232 +232 +232) ≈ 2113.58.
The memory complexity is 2112. The same time and memory cost can also be
obtained when considering the linear transformation of collision.

Besides, we also found a 20-round MitM collision attack on Lesamnta-LW
when targeting the linear transformation of collision, the overall time complexity
is 2124 which is better than the generic birthday bound 2128. However, it’s not
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Fig. 23. MitM attack on 11-round Simpira-4
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Algorithm 3: Preimage Attack on 11-round Simpira-4

1 for Ã
(6)
MC1‖C̃

(6)
MC1 [1, 6, 11, 12]‖C̃

(7)
MC1 ∈ G /* |G| = 232 */

2 do
3 for gr ∈ F

32
2 do

4 V ← [ ]

5 for vR ∈ F
20×8
2 in Ã

(7)
MC1[0-2, 5-8, 10-13, 15] and C̃

(6)
MC1 [2-4, 7-9, 13, 14] do

6 Compute the cells in Ã
(7)
SR2 from Ã

(7)
MC1

7 Let Ã
(7)
SR2[i] ← 0, where i ∈ [1, 4, 11, 14]

8 C̃
(6)
MC1 [0, 5, 10, 15] ← MC(Ã

(7)
SR2)[0, 5, 10, 15] ⊕ gr

9 From Ã
(7)
MC1 and Ã

(6)
MC1, compute the cells in C̃

(5)
SR2

10 Let C̃
(5)
SR2 [i] ← 0, where i ∈ [1, 4, 11, 14]

11 c0‖c1‖c2‖c3 ←
(
MC(C̃

(5)
SR2) ⊕ C̃

(6)
MC1

)
[0, 5, 10, 15]

12 From the known values, compute the cells in C̃
(9)
SR2 , C̃

(4)
SR2 , Ã

(3)
SR2, and

let the remaining cells be 0

13 c4‖c5‖c6‖c7 ← MC
(
C̃

(9)
SR2

)
[0, 5, 10, 15]

14 c8‖c9‖c10‖c11 ← MC
(
C̃

(4)
SR2

)
[3, 4, 9, 14]

15 c12‖c13‖c14‖c15 ← MC
(
Ã

(3)
SR2

)
[0, 5, 10, 15]

16 cR ← c0‖c1‖ · · · ‖c14‖c15
17 V [cR] ← vR
18 end

19 for cR ← F
16×8
2 do

20 L ← [ ]
21 for vR ∈ V [cR] do

22 Compute the cells in C̃
(6)
SR2 . According to Fig. 18(c), derive 4

bytes EndR for matching by

EndR ←
(
C̃

(6)
SR2 ⊕ MC

−1(HB)
)

[0, 7, 10, 13]

L[EndR] ← vR
23 end

24 for 28λB values vB of the bytes in Ã
(7)
MC1, λB = 4 do

25 Compute backward to the cells in Ã
(4)
SR2 and C̃

(2)
SR2

26 Compute forward to the cells in Ã
(8)
SR2, C̃

(10)
SR2 and Ã

(0)
SR2

27 As in Fig. 18(c), 4 bytes EndB for matching are derived by

EndB ←
(
Ã

(8)
SR2 ⊕ C̃

(10)
SR2 ⊕ Ã

(0)
SR2 ⊕ C̃

(2)
SR2 ⊕ Ã

(4)
SR2

)
[0, 7, 10, 13]

for vR ∈ L[EndB] do
28 Reconstruct the (candidate) message X
29 if X is a preimage then
30 Output X and stop
31 end

32 end

33 end

34 end

35 end

36 end
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Fig. 24. MitM attack on 17-round Lesamnta-LW

better than the designers’ security claim against collision attack, which is 2120.
We still put the 20-round MitM characteristic in Supplementary Material D in
our full version paper [32] to clearly specify the superiority of our new model.

8 Meet-in-the-Middle Attack on Reduced Areion

Based on DM hashing mode, Isobe et al. [35] built hash functions Areion256-DM
and Areion512-DM. This section studies the MitM preimage attacks on these two
ciphers. However, in the left branch of Areion, there exist additional operations,
such as SR ◦ SB for Areion-256. If we just transform it like Simpira, the left
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Algorithm 4: Collision Attack on 17-round Lesamnta-LW

1 Fix the first 32 bits of D(17), i.e. 4 bytes of the first column
2 for 216 possible values of m1 do

3 for 264 possible values of B(0) in m2 /* The 128-bit message block is

placed in A(0) and B(0) */

4 do

5 for 28λR possible values of the bytes in A(0), λR = 4 do

6 Set the bytes in A(0) to 0

7 Compute forward to the bytes in D(17), and store in L1 indexed

by the first 32 bits of D(17)

8 end

9 for 28λB possible values of the bytes in A(0), λB = 4 do

10 Set the bytes in A(0) to 0

11 Compute forward to the bytes in D(17), and store in L2 indexed

by the first 32 bits of D(17)

12 end
13 for values matched between L1 and L2 do

14 Compute the 256-bit target h = (A(17), B(17), C(17), D(17)) from the
matched and bytes and store the (m1, m2, h) in L indexed by h

15 if the size of L is 2(256−32)/2 = 2112 then
16 Check L and return (m1, m2) and (m′

1, m
′
2) with the same h

17 end

18 end

19 end

20 end

branch still preserved additional operations so that the full-round matching (only
XORed states) cannot be applied. Therefore, we use the generalized matching
strategy proposed in Sect. 3 to detect matching equations at two consecutive
rounds, together with the superposition MitM technique.

8.1 Meet-in-the-Middle Attack on 5-Round Areion-256

By applying the automatic MitM attack, we find a 5-round preimage attack
on Areion-256 as shown in Fig. 25. The starting states are A(3) and B(3). The
initial DoFs for and are λR = 8 and λB = 23, respectively. The consuming
degrees for backward and forward are 0 and 15, i.e. lR = 0 and lB = 15. Then
we have DoFR = λR − lR = 8 and DoFB = λB − lB = 8. The matching happens
between A

(1,α)
SR2 and B(1) ⊕A(2), by combining MixColumn and XOR operations as

Fig. 14, where DoM = 6. According to Sect. 3, we get additional MR = 2 bytes
from the last column of B(1) ⊕ A(2), which are determined only by cells and
can also be used in matching phase.

The new 5-round attack on Areion-256 is given in Algorithm 7 in Sup-
plementary Material E in our full version paper [32]. The time to construct
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table U is 28·λB = 2184. Hence, we have the time complexity 28 · 2184 +
28×(32−min{23−15,8,8}) ≈ 2193. The overall memory complexity is 288 to store
U .

8.2 Meet-in-the-Middle Attack on 7-Round Areion-256

The attack figure and algorithm on 7-round Areion-256 are given in Fig. 34
and Algorithm 8 in Supplementary Material E in our full version paper [32]. The
starting states are A(4) and B(4). The initial DoFs for and are λR = 22 and
λB = 4, respectively. The consumed DoFs of and are lR = 20 and lB = 2, so
there is DoFR = DoFB = 2. The matching happens between A

(1,α)
SR2 and B(1) ⊕

A(2), by combining MixColumn and XOR operations as Fig. 14, where DoM = 2.
The time to construct table V is 28·λR = 2176 and memory is 28·(λR−14) = 264.
The overall time complexity is 248 · 2176 + 28×(32−min{22−20,4−2,2}) ≈ 2240. The
memory cost is 264 to store V .

8.3 Meet-in-the-Middle Attack on 11-Round Areion-512

The attack figure and algorithm on 11-round Areion-512 are given in Fig. 35,
36, and Algorithm 9 in Supplementary Material E in our full version paper [32].
The starting states are A(3), B(3), C(3) and D(3). The initial DoFs for and
are λR = 30, λB = 2, respectively. The consuming DoF of backward and forward
neutral words are lR = 28 and lB = 0. Then, we have DoFR = λR − lR = 2 and
DoFB = λB − lB = 2. The matching phase happens between C

(9,β)
SR and B(10)

through MixColumn, where DoM = 2. The time complexity to precompute V is
28·λR = 2240. The time complexity is 2240 + 28×(32−min{30−28, 2, 2}) ≈ 2241. The
overall memory complexity is 248 to store V .
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Fig. 25. MitM attack on 5-round Areion-256
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9 Conclusion

In this paper, we build a new Meet-in-the-Middle automatic tool for Feistel
networks. In our model, we generalize the traditional direct or indirect partial
matching strategies and also Sasaki’s multi-round matching strategy. We also
find some equivalent transformations of Feistel and GFN to significantly sim-
plify the MILP models. Applying our new models, we obtain improved preimage
attacks on Feistel-SP-MMO, Simpira-2/-4-DM,16 Areion-256/-512-DM and
the first 11-round attack on Simpira-6. Besides, we significantly improve the
collision attack on the ISO standard hash Lesamnta-LW by 6 rounds.
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