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Abstract. This paper shows how to achieve a quantum speed-up for
multidimensional (zero correlation) linear distinguishers. A previous
work by Kaplan et al. has already shown a quantum quadratic speed-
up for one-dimensional linear distinguishers. However, classical linear
cryptanalysis often exploits multidimensional approximations to achieve
more efficient attacks, and in fact it is highly non-trivial whether Kaplan
et al.’s technique can be extended into the multidimensional case. To
remedy this, we investigate a new quantum technique to speed-up multi-
dimensional linear distinguishers. Firstly, we observe that there is a close
relationship between the subroutine of Simon’s algorithm and linear cor-
relations via Fourier transform. Specifically, a slightly modified version
of Simon’s subroutine, which we call Correlation Extraction Algorithm
(CEA), can be used to speed-up multidimensional linear distinguish-
ers. CEA also leads to a speed-up for multidimensional zero correlation
distinguishers, as well as some integral distinguishers through the corre-
spondence of zero correlation and integral properties shown by Bogdanov
et al. and Sun et al. Furthermore, we observe possibility of a more than
quadratic speed-ups for some special types of integral distinguishers when
multiple integral properties exist. Especially, we show a single-query dis-
tinguisher on a 4-bit cell SPN cipher with the same integral property as
2.5-round AES. Our attacks are the first to observe such a speed-up for
classical cryptanalytic techniques without relying on hidden periods or
shifts. By replacing the Hadamard transform in CEA with the general
quantum Fourier transform, our technique also speeds-up generalized
linear distinguishers on an arbitrary finite abelian group.

Keywords: symmetric-key cryptography · quantum cryptanalysis ·
linear cryptanalysis · integral cryptanalysis · more-than-quadratic
speed-up

1 Introduction

Research in the past decade has revealed possible quantum attacks on symmet-
ric cryptosystems are not limited to the exhaustive key search with Grover’s
algorithm [30] or the collision search by the BHT algorithm [19]. A notable
line of research is the one initiated by Kuwakado and Morii showing that
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Simon’s algorithm breaks lots of classically secure schemes in polynomial
time [13,42,45,46]. Other previous works show how to speed-up classical crypt-
analytic techniques such as differential and linear cryptanalysis, MITM, and
integral attacks [15,37,43]. Some recent papers study dedicated quantum colli-
sion attacks on concrete hash functions such as SHA-2 and SHA-3 [28,31,38,39].

In this paper, we investigate the possibility to achieve more quantum speed-
up for major classical cryptanalytic techniques than previous works.

Q1 and Q2. For quantum cryptanalysis on symmetric cryptosystems, there are
two attack models called Q1 and Q2 [43]. The Q1 model assumes the existence
of a quantum computer but oracles of keyed functions are classical1, whereas Q2
assumes that oracles are also quantum2. For instance, a Q2 attack on a cipher
is allowed to query quantum superposition of messages to the encryption oracle.
Such an attack is called a Quantum Chosen-Plaintext Attack (QCPA). This
paper studies attacks in the Q2 model.

Significance of Studying Q2 Attacks. The Q1 model is more realistic than Q2 in
that oracles in Q1 are the same as classical ones, and thus Q1 attacks become
real threats as soon as a large-scale fault-tolerant quantum computer is available.
Still, studying Q2 attacks is important for the following two reasons. First, a new
non-trivial Q1 attack may be found based on Q2 attacks. For instance, the so-
called offline Simon’s algorithm by Bonnetain et al. [12], which is a Q1 attack,
is developed by modifying the Q2 attack by Leander and May [47]. Second, Q2
attacks can be converted into Q1 attacks when the key length is sufficiently
long: Let EK be an n-bit block cipher with k-bit keys. Suppose that k > 2n,
and that there is a Q2 attack on EK with time complexity T < 2k/2. Now,
assume we are in the Q1 model and run the following attack. First, query all
the (classical) inputs to EK , storing the results in a qRAM. Second, simulate
the quantum oracle of EK by accessing the qRAM, and execute the Q2 attack
with the simulated oracle. This is a valid Q1 attack since the resulting complexity
T ′ = max{T, 2n} is less than 2k/2, the complexity of the exhaustive key-search by
Grover’s algorithm. Even if k ≤ 2n, some Q2 attacks may similarly be converted
into Q1 if quantum queries are required only on some small portion of inputs.

Quantum Speed-Up for Linear Cryptanalysis. Linear cryptanalysis [49] is
one of the most fundamental techniques in symmetric cryptanalysis. Kaplan et
al. [43] has already shown a quadratic quantum speed-up for linear attacks. How-
ever, their distinguisher uses only one-dimensional linear approximations, while
classical attacks often exploit multidimensional linear approximations to reduce
complexity [32–34]. In fact, it is unclear whether Kaplan et al.’s distinguisher
1 Note that attacks that gather encrypted data now and execute quantum algorithms

later (after the realization of a large-scale quantum computer) are also in Q1.
2 When attack targets are primitives without secret keys, e.g. hash functions, it is

reasonable to assume attackers can compute all functions in quantum superposition.
Namely, attacks are always Q2, or there is no distinction between Q1 and Q2.



Quantum Speed-Up for Multi-Dim. (ZC) Linear Distinguishers 313

can be sped-up further even if multiple linear approximations are available, due
to the following reason.

Kaplan et al.’s distinguisher relies on the quantum counting algorithm [18],
which (approximately) counts the number of x satisfying F (x) = 1 for an (effi-
ciently computable) Boolean function F . Since classical one-dimensional linear
distinguishers work just by counting the number of messages satisfying a linear
approximation, such F is naturally defined in the one-dimensional case, and the
quantum counting algorithm can be applied.

Meanwhile, classical multidimensional linear distinguishers are based on
sophisticated statistical tests exploiting a relationship between capacity and a
sum of squared correlations in a clever way. It is highly unclear whether there
exists an efficiently computable Boolean function F such that just counting the
number of x satisfying F (x) = 1 corresponds to performing such statistical tests.

Thus it is natural to ask whether there exists another quantum technique for
linear distinguishers running faster than Kaplan et al.’s when a multidimensional
linear approximation is available.

Multidimensional linear cryptanalysis has many variants including (multidi-
mensional) zero correlation linear cryptanalysis [9] and generalized linear crypt-
analysis on an arbitrary finite abelian group [4]. However, no previous work has
shown quantum speed-up for them. A technique speeding-up multidimensional
linear distinguishers may lead to a speed-up for such variants, which is of another
interest. It may also lead to a speed-up for some integral distinguishers, because
a class of multidimensional zero correlation linear distinguishers corresponds to
integral distinguishers based on balanced functions, as shown by Bogdanov et
al. and Sun et al. [8,56].

Quadratic Barrier. Due to Grover’s generic quadratic speed-up for exhaustive
search, the only way to break more rounds in the quantum setting, especially for
key-recovery and distinguishing attacks, is to achieve a super-quadratic speed-
up3. Hence, such a speed-up is one of the main goals in quantum cryptanalysis
on symmetric-key cryptosystems.

Some previous works have already achieved such a speed-up, even in the Q1
model [16], but the types of techniques are limited. All of them exploit algebraic
structures such as hidden periods or shifts of target ciphers by using Simon’s
algorithm or a related algorithm solving an algebraic problem.
3 The reason of this is as follows: Consider attacks on a k-bit-key block cipher. Assume

that, in the classical setting, we know a valid dedicated attack (i.e., an attack faster
than 2k) on r rounds of the cipher, but know only an invalid attack (i.e., attack
requiring time more than 2k) for (r + 1)-rounds. Especially, r rounds of the cipher
are classically broken but (r + 1) rounds are not. Let Tc be the classical complexity
of the invalid (r + 1)-round attack. Since this attack is classically invalid, Tc > 2k

holds. Suppose we achieve some quantum speed-up for the (r+1)-round attack and
the resulting complexity is Tq. Then, since the generic complexity of key-recovery
is

√
2k in the quantum setting (by the Grover search), the attack after quantum

speed-up is valid (i.e., Tq <
√
2k and (r+1) rounds are broken) only if the speed-up

is more-than-quadratic and Tq <
√

Tc holds.
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Moreover, few previous works have succeeded to achieve a more than
quadratic speed-up on classical cryptanalytic techniques such as differential, lin-
ear, or integral cryptanalysis. The only one exception is the quantum versions
of (advanced) slide attacks [14,42], but they also rely on special algebraic struc-
tures like hidden periods. Whether a more than quadratic speed-up is possible
for other major classical techniques (without relying on periods or shifts) has
been an important open problem for years.

1.1 Our Contributions

This paper shows that quantum speed-up for multidimensional (zero correlation)
linear and integral distinguisher can be achieved by using a modified version of
the subroutine of Simon’s algorithm, without exploiting hidden periods or shifts.
Especially, we show that some special versions of integral distinguishers achieve
a more-than-quadratic speed-up.

First, we observe that Simon’s algorithm has a close relationship with lin-
ear correlations of functions via Fourier transform. Simon’s algorithm iterates a
subroutine, which is composed of the Hadamard transform and an oracle query
to the target function. We find that, with a slight modification made, the sub-
routine outputs a pair of linear masks of the target function with probability
proportional to the squared linear correlation. Since it extracts linear correla-
tions of a function into quantum amplitude, we call the subroutine after the
modification the correlation extraction algorithm, or CEA for short.

Second, we show that multidimensional linear distinguishers can be sped-up
by combining CEA and the Quantum Amplitude Amplification (QAA) tech-
nique. As an application example, we show that the multidimensional distin-
guishers on FEA-1 and FEA-2 by Beyne [6] can be sped-up from O(2(r/4−3/4)n)
and O(2(r/6−3/4)n) to O(2(r/8−1/4)n) and O(2(r/12−1/4)n), respectively, when
messages are n bits and the number of rounds is r.

Then we show that CEA also leads to a speed-up for multidimensional zero
correlation linear distinguishers. Our technique leads to quantum distinguishers
on 5-round balanced Feistel running in time O(2n/2) when round functions are
bijections and the entire width of the cipher is n, and distinguishers on Type-
I/II generalized Feistel structures. (See Table 2 of this paper’s full version [36]
for details.)

Finally, we show a speed-up for integral distinguishers. The speed-up is
obtained via the correspondence of integral and zero correlation properties
observed by Bogdanov et al. and Sun et al. [8,56], and applicable when integral
properties are based on balanced functions. Especially, we observe the possibility
of a more than quadratic speed-up when there are multiple integral properties on
mutually orthogonal subspaces, which appear in some SPN ciphers such as the
3.5-round AES. As a notable example, we show that a toy 4-bit-cell SPN cipher
having the same integral property as the 2.5-round AES is distinguished only by
a single quantum query. Such a single-query attack is almost impossible in the
classical setting (unless another weakness exists), and the example illustrates a
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new type of qualitative difference between classical and quantum computation
that has not been observed before4.

Note that all of our attacks do not require the target cipher to have algebraic
structures such as hidden periods or shifts. It is somewhat surprising that (a
modified) Simon’s algorithm, which was primarily developed to solve an algebraic
problem of hidden periods, leads to non-trivial speed-ups for various classical
attacks not relying on hidden periods nor shifts.

Our technique extends to generalized linear distinguishers on arbitrary finite
abelian groups [4] by replacing the Hadamard transform in CEA with the general
Quantum Fourier Transform (QFT). As an application, we show a speed-up for
the distinguisher by Beyne [6] on the FF3-1 structure. The amount of speed-up
is the same as that for FEA-1.

A drawback of our technique is that it cannot be applied to integral distin-
guishers based on zero-sum properties, although zero-sum properties are usually
used to extend distinguishers into key-recovery attacks on more rounds. Espe-
cially, it does not directly lead to breaking more rounds than classical attacks.
Still, we believe that our techniques are novel and general, and will inspire other
new types of quantum attacks in both of the Q1 and Q2 models.

1.2 Related Works

Quantum speed-up for integral attacks has already been studied in, e.g., [15],
but zero-sum properties are used and the distinguisher part itself is not sped-up.
A recent work by Shi et al. [54] also studies zero correlation linear attacks in
the quantum setting, but it mainly focuses on how to find zero correlation linear
approximations by using quantum computers, and does not have much overlap
with our results.

Schrottenloher’s Key-Recovery Attack. Another recent concurrent and indepen-
dent work by Schrottenloher [53] showed how to obtain quantum speed-up for
linear key-recovery attacks.

Classical linear distinguishers are often combined with efficient key-recovery
attacks using the FFT [22,29,57]. What Schrottenloher did is to combine such
classical techniques with the QFT. Computing convolution of some Boolean
functions related to linear approximations in quantum superposition, Schrotten-
loher’s algorithm produces some quantum superposition of subkey candidates in
such a way that the quantum amplitude are proportional to their experimental
correlations. Then the amplitude of the right key is amplified by QAA.

Note that our main interest is to achieve a speed-up for multidimensional
(zero correlation) linear distinguishers. Schrottenloher’s work [53] also deals with
multiple linear approximations, but the existence of multiple approximations
improves only precision of attack by a constant factor, and essentially does not

4 Bonnetain showed a single query attack on the one-time pad encryption scheme by
making quantum registers for messages and ciphertexts disentangled [11], but the
attack target and technique are quite different from ours.
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contribute much to reducing the time complexity. Additionally, zero correlation
linear or integral attacks are not studied in [53].

One would expect that a more speed-up for key-recovery is obtained by com-
bining our technique and Schrottenloher’s. Still, the mechanism of the two tech-
niques is quite different (Schrottenloher uses the QFT to compute convolution
in superposition to obtain a superposition of key candidates, while we use it to
extract correlations of multidimensional linear approximations), and so far we
do not have any idea on how to combine them. Studying theoretical connection
between them and reducing the time complexity of key-recovery exploiting (zero
correlation) multidimensional linear approximations is definitely an important
and interesting future work.

1.3 Organization

Section 2 introduces basic notions and facts. Section 3 reviews classical (multi-
dimensional) linear distinguishers and Kaplan et al.’s quantum one-dimensional
linear distinguisher. Section 4 studies relationships between the Simon’s subrou-
tine and linear correlations, and introduces CEA. Sections 5, 6, and 7 show how to
achieve a quantum speed-up with CEA for multidimensional linear, zero correla-
tion multidimensional linear, and integral distinguishers, respectively. Section 8
shows the extension to generalized linear distinguishers on an arbitrary finite
abelian group. Section 9 concludes the paper.

2 Preliminaries

F2 denotes the Galois field of order two. We identify the set of n-bit strings
{0, 1}n and the n-dimensional F2-vector space F

n
2 . Especially, by “bit string” we

denote an element of Fn
2 for some n. By ei we denote the n-bit string (for some

n) of which the i-th bit is 1 and other bits are 0. x ⊕ y denotes the addition
of x and y in F

n
2 , and x||y denotes the concatenation as bit strings. For a bit

string x ∈ F
n
2 , we denote the i-th bit (from the left) by xi. Namely we represent

x as x = x1|| · · · ||xn. For x, y ∈ F
n
2 , the dot product of x and y is defined by

x · y := (x1 · y1) ⊕ · · · ⊕ (xn · yn). For a vector space V ⊂ F
n
2 (resp., vector x),

V ⊥ (resp., x⊥) denotes the subspace that is composed of y satisfying y · x = 0
for all x ∈ V (resp., y satisfying y · x = 0). For two vector spaces V1, V2 ⊂ F

n
2 ,

we write V1 ⊥ V2 if v1 · v2 = 0 for all v1 ∈ V1 and v2 ∈ V2. The event that a
(classical or quantum) algorithm A outputs a classical bit string x is denoted
by x ← A. For a bit string x ∈ F

n
2 (resp., function f : Fm

2 → F
n
2 ), by msbu[x]

(resp., msbu[f ]) we denote the most significant u bits of x (resp., the function
that returns msbu[f(x)] for each input x). The notations lsbu[x] and lsbu[f ] are
similarly defined for least significant u bits. For a distribution D and a real
value Xw depending on a parameter w, Ew∼D[Xw] denotes the expected value
of Xw when w is sampled according to D. It is also denoted by Ew[Xw] or just
E[Xw] if the distribution is clear from the context. Similar notations are used for
variance and the probability of an event. For a unitary operator U , its adjoint is
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denoted by U∗. In cryptanalysis of a block cipher E, we regard the unit of time
as the time to encrypt a message by E. We assume that readers are familiar with
Pearson’s chi-squared test of goodness-of-fit. For those who are not, we provide
a brief overview about the relationship between the test and distinguishers in
Section A of the full version of this paper [36].

2.1 Linear Approximations and Correlations

The (one-dimensional) linear approximation of a function f : Fm
2 → F

n
2 for an

input mask α ∈ F
m
2 and output mask β ∈ F

n
2 is the Boolean function defined by

x 	→ (α ·x)⊕ (β ·f(x)). The correlation Cor(f ;α, β) of this linear approximation
is defined by Cor(f ;α, β) := Prx [α · x = β · f(x)] − Prx [α · x 
= β · f(x)]. It is
well-known that the linear correlation satisfies

Cor(f ;α, β) =
∑

x∈F
m
2

(−1)α·x⊕β·f(x)

2m
. (1)

In addition, we need the following claim for analysis of attacks.

Claim 1 (Distribution of capacity of a random permutation). Let V ⊂
F

n
2 ×F

n
2 be a vector space and S be an arbitrary basis of V . Then, for a randomly

chosen permutation P , the value 2n · ∑(α,β)∈V −{0} Cor(P ;α, β)2 approximately
follows the χ2 distribution with 2v − 2u − 2w + 1 degrees of freedom. Here, v :=
dim(V ), u := dim(V ∩ F

n
2 × {0n}) and w := dim(V ∩ {0n} × F

n
2 ).

This claim is conjectured in [2]. We do not have a formal proof, but explain why
the claim is plausible in Section D of the full version of this paper [36].

2.2 Balanced Function and Zero-Sum Property

Integral cryptanalysis [44], which was initially proposed as a dedicated attack
on the block cipher SQUARE [24], exploits the zero-sum property of (a part of)
ciphers. Here, we say that a function f : Fm

2 → F
n
2 has the zero-sum property

if
∑

x f(x) = 0. Moreover, we say that a function f is balanced if |f−1(y)| =
|f−1(y′)| holds for any y, y′ in the range of f . A balanced function has the zero-
sum property but the converse does not necessarily hold. In some previous works,
the zero-sum property is called “balanced property”, but this paper uses the term
“balanced” only when referring to a balanced function in the above sense.

2.3 Quantum Computation

We assume that the readers are familiar with quantum computation and lin-
ear algebra (see, e.g., [52] for basics of quantum computation). We adopt the
standard quantum circuit model and do not take the cost of quantum error cor-
rection into account. Im denotes the identity operator on an m-qubit system and
H denotes the (1-qubit) Hadamard transform. For a function f : Fm

2 → F
n
2 , Uf
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denotes the unitary operator defined by Uf : |x〉 |y〉 	→ |x〉 |y ⊕ f(x)〉 . Namely,
Uf is the quantum oracle of f . All quantum attacks in this paper are Quantum
Chosen-Plaintext Attacks (QCPAs, in the Q2 model), and the quantum encryp-
tion oracle UEK

of a target cipher EK is assumed to be available. If EK is a
tweakable block cipher, adversaries query tweaks also in quantum superposition.

Quantum Amplitude Amplification. Here we recall the Quantum Ampli-
tude Amplification (QAA) technique [18], which is a generalization of Grover’s
algorithm [30]. Let f : F

m
2 → F2 be a Boolean function, U be a unitary

operator acting on an m-qubit system, and p denote the probability that we
observe a bit string x satisfying f(x) = 1 when the state U |0m〉 is measured
by the computational basis. In addition, let Sf and S0 be the unitary opera-
tors acting on an m-qubit quantum system defined by Sf |x〉 = (−1)f(x) |x〉 and
S0 |x〉 = (−1)δ0m,x |x〉, where δ0m,x is Kronecker’s delta.

Proposition 1 (Quantum amplitude amplification). In the above setting,
let Q(U, f) := −US0U

∗Sf . When the state Q(U, f)iU |0m〉 is measured by the
computational basis for some i > 0, an outcome x satisfying f(x) = 1 is obtained
with probability sin2((2i+1) · arcsin(

√
p)). Especially, such an x is obtained with

probability at least max{p, 1 − p} by setting i =
⌈
π/4 arcsin(

√
p)

⌉
.

Grover’s algorithm is obtained when U = H⊗m. Here, p = |f−1(1)|/2m and an
x ∈ f−1(1) is found by applying Q(H⊗m, f) at most

√
2m/|f−1(1)| times.

Applications to Distinguishers. A typical task in cryptanalysis is to distinguish
two distributions of functions. That is, under the assumption that a function f
is chosen from a distribution D1 or D2, an adversary tries to judge which dis-
tribution f is chosen from. For linear distinguishers, D1 (resp., D2) corresponds
to a linear approximation of a real block cipher (resp., a random permutation).

A counterpart of such a task in the quantum setting is to distinguish two
distributions of unitary operators. That is, under the assumption that a unitary
operator U is chosen according to a distribution D1 or D2, an adversary tries to
judge which distribution U is chosen from5.

QAA can be used to solve such a task. Assume that an adversary has access
to not only U but U∗, and that U acts on an n-qubit system6. Moreover, suppose
that we know a Boolean function F : Fn

2 → F2 satisfying the following conditions.

(1) If U is chosen from D1, then the probability pU := Pr
[
x

measure←−−−−− U |0n〉 :

F (x) = 1
]

is relatively high on average.
(2) If U is chosen from D2, then pU is relatively low on average.

5 A typical example is that D1 corresponds to the quantum encryption oracle UEK of
a block cipher EK while D2 to the oracle UP of a random permutation P (choosing
K or P randomly corresponds to sampling according to D1 or D2).

6 If U is the quantum oracle Uf of a function f , then U∗
f = Uf holds. Especially, an

access to U = Uf automatically means an access to U∗.
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Specifically, assume we know a value t satisfying EU∼D1 [pU ] ≥ t � EU∼D2 [pU ] .
Then we can distinguish D1 and D2 by using QAA on U and F : If U is chosen
from D1, then QAA with O(

√
t−1) applications of U , U∗, and SF will find x

satisfying F (x) = 1 because pU ≥ t. If U is chosen from D2, such QAA will not
find x because t � pU and the number of iterations is not large enough.

More precisely, since we know only the lower bound of EU∼D1 [pU ], we run
multiple instances of QAAs with the number of iteration randomized as follows.

QAA for Distinguisher (QD)

1. For j = 1, . . . , s, do:

(a) Choose i from the set of integers from 0 to
⌊

1

sin(2·arcsin(
√

t))

⌋
uniformly

at random.
(b) Apply Q(U,F )iU to |0n〉 and measure the entire state by the computa-

tional basis, and let x be the outcome.
(c) Compute F (x). If F (x) = 1, return 1 and abort.

2. Return 0.

Here, s is a positive integer constant chosen depending on applications. We
denote the above algorithm by QD.

The idea of randomly choosing the number of iteration is just a straight-
forward adaptation of previous works on Grover’s algorithm and QAA without
knowing initial success probability [17,18].

Proposition 2. With the above setting and notions, suppose 1/4 > t > 0. Then,
QD applies U , U∗, and SF at most s( 1√

t
+ 1) times and (1) returns 1 with

probability at least (1− (34 )s) ·PrU∼D1 [1/4 > pU ≥ t] if U is chosen according to
D1 and (2) returns 1 with probability at most s · (16t′

t + 20t′√
t
) + PrU∼D2 [t

′ < pU ]

for any t′ > 0 satisfying 4
√

t′/t + 2
√

t′ < π/2 if U is chosen according to D2.

The interpretation of the proposition is as follows. Suppose that pU is distributed
around t (resp., t′) if U is chosen according to D1 (resp., D2), and 1/4 > t � t′

holds. For a sufficiently large constant s (e.g., s = 3), the proposition guarantees
that QD returns 1 with probability ≥ 1/2 (resp., only with a negligibly small
probability) when U is chosen according to D1 (resp., D2). Hence D1 is distin-
guished from D2. The proof of Proposition 2 is a straightforward application of
some lemmas in previous works [17,18], though, we provide a proof in Section B
of the full version of this paper [36] for completeness.

Simon’s Algorithm. Simon’s quantum algorithm [55] finds a period of a peri-
odic function. More precisely, it solves the following problem.

Problem 1. Let s ∈ F
m
2 be a (secret) constant, and f : Fm

2 → F
n
2 be a function

satisfying the following properties C1 and C2.

C1. f(x ⊕ s) = f(x) for all x. Namely, f is a periodic function with period s.
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C2. f(x) 
= f(y) if x 
= y and x ⊕ s 
= y.

Given the (quantum) oracle of f , find s.
The classical complexity to solve the problem is Θ(2m/2) but Simon’s algo-

rithm, which runs as follows, solves it in polynomial time with high probability.

1. For i = 1, 2, . . . , 2m, execute the following subroutine (a)–(e).
(a) Prepare the initial state |0m〉 |0n〉.
(b) Apply the m-qubit Hadamard transform H⊗m on the first m qubits.
(c) Apply Uf on the state (i.e., make a quantum query to f).
(d) Apply the H⊗m ⊗ In on the state.
(e) Measure the first m qubits by the computational basis, discard the

remaining n-qubits, and return the observed m-bit string (denoted by
αi).

2. If dim(Span
F2

(α1, . . . , α2m)) = m − 1, compute and output the unique s′ ∈
F

m
2 \{0m} such that s′ ·αi = 0 for i = 1, . . . , 2m. If dim(Span

F2
(α1, . . . , α2m))


= m − 1, output ⊥.

Simon showed that each αi is uniformly distributed over the subspace {v ∈
F

m
2 |v · s = 0}, and thus the algorithm returns the period s with high probability.

We refer to the subroutine (a)–(e) as Simon’s subroutine.
Many papers (e.g., [42,45,46]) showed polynomial-time quantum attacks on

symmetric cryptosystems by using Simon’s algorithm. In fact only C1 is satisfied
in those applications and C2 is not necessarily satisfied. Still, C1 guarantees that
the subroutine (a)–(e) always returns an αi satisfying αi · s = 0 [42].

3 Classical and Kaplan et al.’s Linear Distinguishers

Here we review classical (multidimensional) linear distinguishers and Kaplan et
al.’s quantum one-dimensional linear distinguisher [43].

3.1 Classical One-Dimensional Linear Distinguisher

The linear correlation Cor(P ;α, β) of an n-bit random permutation P approx-
imately follows the normal distribution N (0, 2−n) for an arbitrary mask (α, β)
with α, β 
= 0n [26]. Thus, if the correlation Cor(EK ;α, β) for a block cipher
EK with α, β 
= 0n significantly deviates from the segment [−2−n/2, 2−n/2], then
EK can be distinguished by collecting a list L = {(P1, C1), . . . , (PN , CN )} for
random P1, . . . , PN , and checking if the estimated empirical correlation

Ĉor(EK ;α, β) =
#{(P,C) ∈ L|α · P = β · C} − #{(P,C) ∈ L|α · P 
= β · C}

N

is far from [−2−n/2, 2−n/2]. The attack succeeds with a high probability if N �
Cor(EK ;α, β)−2.
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3.2 Classical Multidimensional Linear Distinguishers

A natural idea to enhance the power of linear distinguishers is to utilize multiple
linear approximations. Some early works indeed show such attacks, assuming the
existence of statistically independent multiple approximations [7,41]. However,
the assumption does not necessarily hold in general [50]. Instead, Hermelin et
al. [35] proposed to use multidimensional linear approximations, i.e., sets of linear
approximations of which the input-output masks form a vector space.

Specifically, let f : Fm
2 → F

n
2 be a function, V ⊂ F

m
2 × F

n
2 be a set of input-

output masks for f that is a vector space, and S := {(α1, β1), . . . , (α�, β�)} be a
basis of V . Then the multidimensional linear approximation of f (w.r.t. (V, S))
is defined as the function Linf

S : Fm
2 → F

�
2 such that

Linf
S(x) = (α1 · x ⊕ β1 · f(x), . . . , α� · x ⊕ β� · f(x)).

Define a distribution pf
S on F

�
2 by pf

S(z) := Pr
[
x

$←− F
m
2 : Linf

S(x) = z
]
.

Below we denote the zero vector (0m, 0n) by 0. We say that the input and
output masks are linearly independent if V = V1 × V2 holds for some V1 ⊂ F

m
2

and V2 ⊂ F
n
2 . Moreover, we say that the input and output masks are linearly

completely dependent if there exists a basis {(αi, βi)}1≤i≤dim(V ) of V such that
both of {αi}1≤i≤dim(V ) and {βi}1≤i≤dim(V ) are linearly independent in F

n
2 .

The advantage of considering a set of masks forming a vector space is that
we can utilize a link of the sum of the squared correlations to the capacity of
pf

S and Pearson’s chi-squared test: Here, the capacity of a probability function
(distribution) p over F

�
2 is the value defined7 by

Cap(p) := 2�
∑

z∈F
�
2

(p(z) − 2−�)2.

The important well-known fact is that

Cap(pf
S) =

∑

(α,β)∈V −{0}
Cor(f ;α, β)2 (2)

holds for the multidimensional approximation of f . Moreover, suppose a list
of random input-output pairs L = {(P1, C1), . . . , (PN , CN )} is given. Then
the capacity Cap(p̂f

S) of the estimated empirical distribution p̂f
S (defined by

p̂f
S(z) := #{(P,C)∈L|Linf

S(P )=z}
N ) multiplied by N is equal to the test statistic of

the Pearson’s chi-squared goodness-of-fit test (for testing the goodness-of-fit of
pf

S and the uniform distribution on F
�
2).

The idea of multidimensional linear distinguishers for a block cipher EK is
that the distribution pEK

S is far from uniform if the right hand side of Eq. (2) with
f = EK is sufficiently large for random K, and thus EK can be distinguished

7 In fact this is the χ2-divergence between p and the uniform distribution over F�
2. We

use the term capacity following previous works on linear cryptanalysis.
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from random by checking whether the test statistic of the Pearson’s chi-squared
test is larger than a certain threshold. Specifically, given a list of (real) random
plaintext-ciphertext pairs L = {(P1, C1), . . . , (PN , CN )}, we count num(z) :=
{(Pi, Ci) ∈ L|LinEK

S (Pi) = z} for each z, and compute the test statistic
χ2
real := N2�

∑
z(num(z)/N −2−�)2 = N ·Cap(p̂EK

S ). Then χ2
real is approximately

distributed around (2� − 1) + N
∑

(α,β)∈V −{0} Cor(EK ;α, β)2. If the plaintext-
ciphertext pairs are generated from a random permutation, then num(z) approx-
imately follows the uniform distribution. Thus, the similarly computed statistic
χ2
ideal approximately follows the χ2 distribution with (2� − 1) degrees of free-

dom (denoted by χ2
2�−1), of which the standard deviation is

√
2(2� − 1). Hence

EK can be distinguished from a random permutation with a constant advantage
when8 N �

√
2�/

∑
(α,β)∈V −{0} Cor(EK ;α, β)2 =

√
2�/Cap(pEK

S ), by checking
whether the test statistic is larger than (2� − 1) +

√
2(2� − 1) or not.

Some Remarks. The arguments in the above paragraph are mainly based on
[6, Section 4.3]. Strictly speaking, the statistic in the ideal world χ2

ideal does not
follow χ2

2�−1 actually because the squared correlation Cor(P ;α, β)2 is not zero
on average even for a random permutation P for α, β 
= 0n. Still, the difference
of χ2

ideal and χ2
2�−1 is very small compared to the difference of χ2

real and χ2
2�−1,

and it is usually (and implicitly) assumed that the above arguments heuristically
work in practice. Meanwhile, zero-correlation linear cryptanalysis does exploit
such small difference, which we will explain later.

Some early works showed that distinguishers based on the Log Likelihood
Ratio (LLR) test [3,32,33] requires only O(1/Cap(pEK

S )) data instead of O(
√

2�/

Cap(pEK

S )) of the χ2-test-based distinguishers, and the LLR-test-based distin-
guishers perform better. However, the LLR test requires accurate knowledge on
key-dependent distributions of multidimensional linear approximations, which is
not often the case as pointed out by Cho [21].

3.3 Kaplan et al.’s Quantum One-Dimensional Linear Distinguisher

Kaplan et al. [43] observed that a quadratic quantum speed-up can be obtained
for linear distinguishers by using the quantum counting algorithm [18].

Roughly speaking, the quantum counting algorithm achieves a quadratic
speed-up to solve the problem of estimating M := #{x|F (x) = 1} for a Boolean
function F . Making O(q) quantum queries to F , it returns an approximation M̃

of M satisfying |M̃ − M | ≤ O

(√
M(2n−M)

q + 2n

q2

)
.

Now, suppose that there exists a linear approximation of an n-bit block cipher
EK satisfying c := |Cor(EK ;α, β)| � 2−n/2 for a random key K, and let F be
8 The squared correlation and capacity can significantly change depending on keys in

general, but they are often estimated by their averages under the assumption that
they concentrate around the mean. As the first step of achieving quantum speed-up
for multidimensional linear attacks, we also assume this. An in-depth study about
the key-dependence of complexity is an important future work.
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the Boolean function such that F (x) = 1 iff α · x ⊕ β · EK(x) = 0. Then, EK

can be distinguished by estimating M = #{x|F (x) = 1} and checking whether
|M − 2n

2 | � 2n/2. Using the quantum counting algorithm, one can obtain an
estimation of M̃ with sufficient precision for distinguisher (|M̃ − M | ≤ M

a for
a small integer a > 0) in time O(1/c). Compared to the classical complexity of
O(1/c2), a quadratic speed-up is achieved.

Extension to Multidimensional Linear Distinguishers? After seeing
Kaplan et al.’s work, it is natural to ask whether their technique can be extended
to multidimensional linear distinguishers. However, to apply the quantum count-
ing algorithm to solve a problem, one has to construct an efficiently computable
Boolean function F in such a way that counting the number of x satisfying
F (x) = 1 solves the problem. In the one-dimensional case F is obtained in a
quite natural way as explained above, but in the multidimensional case essen-
tially we have to construct F in such a way to achieve a quadratic speed-up
for Pearson’s chi-squared test applied to the distribution pEK

S . It seems highly
unclear whether such F exists, and thus we seek for another technique.

4 New Observation on Simon’s Algorithm

As explained in Sect. 2, the subroutine of Simon’s algorithm uses only the quan-
tum oracle of a target function and the Hadamard transform, which is the Fourier
transform over the group (Z/2Z)n. Meanwhile, a well-know fact is that lin-
ear correlations have strong relationships with Fourier transform. This section
shows that a slightly modified version of Simon’s subroutine, which we call CEA,
returns input and output masks of a function with a probability proportional to
the linear correlations. Later we show that CEA can be utilized to obtain speed-
up for various techniques including multidimensional linear distinguishers. Since
F

n
2 is isomorphic to (Z/2Z)n as Abelian groups, in what follows we identify F

n
2

with (Z/2Z)n.

4.1 Fourier Transform

First, we recall the Fourier transform (over (Z/2Z)n) and its relationship with
linear cryptanalysis and quantum computation. The Fourier transform of a
function F : F

n
2 → C is the function FF : F

n
2 → C defined by FF (x) :=∑

y∈F
n
2

(−1)x·yF (y)√
2n

.

Relationship with Linear Correlations. It is well-known that the linear cor-
relation of an arbitrary function f is obtained by applying the Fourier transform
on a function naturally defined from f [23,58].

For arbitrary function f : Fm
2 → F

n
2 , let femb : Fm

2 × F
n
2 → C be the function

defined by femb(x, y) = 1 if f(x) = y and femb(x, y) = 0 otherwise9. Then some
straightforward calculation shows
9 “emb” is an abbreviation of “embedding”.
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Ffemb(α, β) =
√

2m−n · Cor(f ;α, β). (3)

Relationship with Quantum Computation. The relationship with quantum
computation is quite clear. The Fourier transform on F

n
2 exactly corresponds

to the Hadamard operator H⊗n. For instance, let ψ : F
n
2 → C and |ψ〉 :=∑

x∈F
n
2

ψ(x) |x〉. Then

H⊗n |ψ〉 =
∑

y∈F
n
2

Fψ(y) |y〉 (4)

holds. (Note that this property holds regardless of the norm of |ψ〉.) In fact this
is one of the most important sources of quantum speed-up: While the classical
FFT requires time O(n2n) to compute the Fourier transform of a function, an
application of the Hadamard transform to a quantum state requires time O(1).

4.2 Extracting Correlations by (Modified) Simon’s Subroutine

Here we show that Simon’s subroutine with a slight modification returns input
and output masks for linear approximations with high correlation. We call the
resulting algorithm Correlation Extraction Algorithm (CEA) because it extracts
linear correlations into the quantum amplitude of a state, and we denote it by
CEAf when applied to a function f . Specifically, the algorithm runs as follows.

Algorithm CEAf

(a) Prepare the initial state |0m〉 |0n〉.
(b) Apply the m-qubit Hadamard transform H⊗m on the first m qubits.
(c) Apply Uf on the state (i.e., make a quantum query to f).
(d) Apply the (m + n)-qubit Hadamard transform H⊗(m+n) on the state.
(e) Measure the entire (m + n) qubits by the computational basis and return

the observed (m + n)-bit string α||β (α ∈ F
m
2 and β ∈ F

n
2 ).

The underlines indicate the parts modified from the original Simon’s subroutine
on p.9. CEAf is different from the original Simon’s subroutine only in that CEAf

does not discard the last n qubits and measure them after applying H⊗n.
Note that this change does not affect the distribution of α in Step (e). Espe-

cially, α is just uniformly distributed over the subspace {v ∈ F
m
2 |v · s = 0} if

f satisfies the conditions of Problem 1. Thus there is nothing new if we focus
only on α. However, we observe that CEAf shows an interesting link to linear
correlations when β is taken into account, as in the following proposition.

Proposition 3. The quantum state of CEAf before the final measurement is

∑

α∈F
m
2 ,β∈F

n
2

Cor(f ;α, β)√
2n

|α〉 |β〉 . (5)
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In particular, for any subset S ⊂ {0, 1}m × {0, 1}n,

Pr
[
(α, β) ← CEAf : (α, β) ∈ S

]
=

∑

(α,β)∈S

Cor(f ;α, β)2

2n
(6)

holds.

Proof. The quantum state of CEAf before the final measurement is

H⊗(m+n)Uf

(
H⊗m ⊗ In

) |0m〉 |0n〉 = H⊗(m+n)Uf

∑

x∈F
m
2

1√
2m

|x〉 |0n〉

= H⊗(m+n)
∑

x∈F
m
2

1√
2m

|x〉 |f(x)〉

Def. of femb= H⊗(m+n)
∑

x∈F
m
2 ,y∈F

n
2

femb(x, y)√
2m

|x〉 |y〉

Eq. (4)
=

∑

α∈F
m
2 ,β∈F

n
2

Ffemb(α, β)√
2m

|α〉 |β〉

Eq. (3)
=

∑

α∈F
m
2 ,β∈F

n
2

Cor(f ;α, β)√
2n

|α〉 |β〉 .

Hence we have Eq. (5). Eq. (6) immediately follows from Eq. (5). ��

Some Remarks. CEA is quite close to the Bernstein-Vazirani algorithm [5]
when n = 1 and some previous works [20,59] already observes similar relation-
ships between linear correlations and the Bernstein-Vazirani algorithm. Still,
analysis in the previous works is done only in the case of n = 1. To obtain
speed-up for multidimensional (zero correlation) linear and integral distinguish-
ers, our analysis for general n involving both input and output masks is essential.
Furthermore, we observe that a similar relationship holds for generalized linear
correlations over an arbitrary finite abelian group and the general quantum
Fourier transformation. See Sect. 8 for details.

5 Speed-Up for Multidimensional Linear Distinguishers

By using the CEA in the previous section, here we show quantum linear distin-
guishers achieving a bigger speed-up than Kaplan et al.’s when a multidimen-
sional linear approximation with high correlations exists. Recall that what the
algorithm CEAf does is to apply the unitary operator H⊗(m+n)Uf (H⊗m ⊗ In)
on |0m〉 |0n〉 and measure the entire state by the computational basis. By abuse
of notation, let CEAf also denote the operator H⊗(m+n)Uf (H⊗m ⊗ In) itself.
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We show three distinguishers10 A1, A2, and A3. A1 is a general distinguisher
applicable to arbitrary multidimensional linear approximations. A2 (resp., A3) is
applicable only when the input and output masks are linearly independent (resp.,
completely dependent). Here are some remarks on notations and assumptions.

– We assume that
∑

(α,β)∈V −{0} Cor(EK ;α, β)2 ≥ c holds with a high proba-
bility for some c > 0, and that we know the value of c. O denotes the given
oracle, which is either EK for a random K or a random permutation P .

– (Notations for A2) When the input and output masks are linearly indepen-
dent, i.e., V = V1 × V2 holds for some subspaces V1, V2 ⊂ F

n
2 , we denote

dim(V1) and dim(V2) by u and w, respectively. In addition, S1 := {α1, . . . , αu}
and S2 := {β1, . . . , βw} denotes basis of V1 and V2. Without loss of generality,
we assume V2 = {β||0n−w|β ∈ F

w
2 } and βi = ei

11. Especially, we regard V as
a subspace of Fn

2 × F
w
2 .

– (Notations for A3) When the input and output masks are linearly completely
dependent, we fix a basis S := {(αi, βi)}1≤i≤dim(V ) of V such that both of
{αi}1≤i≤dim(V ) and {βi}1≤i≤dim(V ) are linearly independent in F

n
2 . W.l.o.g.,

we assume βi = ei
12. Especially, we regard V as a subspace of Fn

2 × F
dim(V )
2 .

Distinguishers A1, A2, and A3. All the three distinguishers are obtained by
applying the algorithm QD of Proposition 2. The difference between the distin-
guishers is the choice of the parameters s and t, the unitary operator U , and the
Boolean function13 F , which is as follows.

A1 (general case): (s, t) := (3, c/2n) and U := CEAO. F is the Boolean function
of which the domain is F

n
2 × F

n
2 and F (α, β) = 1 iff (α, β) ∈ V − {0}.

A2 (linearly independent masks): (s, t) := (3, c/2w) and U := CEAmsbw[O].
F is the Boolean function of which the domain is F

n
2 × F

w
2 and F (α, β) = 1

iff (α, β) ∈ V − {0}.
A3 (linearly completely dependent masks): (s, t) := (3, c/2dim(V )) and

U := CEAmsbdim(V )[O]. F is the Boolean function of which the domain is
F

n
2 × F

dim(V )
2 and F (α, β) = 1 iff (α, β) ∈ V − {0}.

Here, sampling a unitary U according to D1 (resp., D2) in Proposition 2 corre-
sponds to sampling a random key K for a real cipher (resp., choosing an ideally
random permutation P ).
10 The three distinguishers might be unified into a single one by restricting inputs and

outputs appropriately. Still we focus on these cases because the three distinguishers
are enough for the examples of interest shown later, and to avoid unnecessarily
complex analysis.

11 Let M be an arbitrary full-rank n × n matrix over F2 satisfying MT ei = βi. Then
we have βi · EK(x) = (MT ei) · EK(x) = ei · M(EK(x)), and thus distinguishing EK

by using output mask βi is equivalent to distinguishing M ◦ EK by using output
mask ei. Since EK can be distinguished from a random permutation P iff M ◦ EK

can be distinguished, we can assume them without loss of generality.
12 The reasoning is almost the same as before.
13 See Section F of the full version [36] on how to efficiently compute F on a quantum

circuit..
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Analysis. If input and output masks are linearly independent, A2 distinguishes
EK and P in time O(

√
2w/c) roughly due to the following reasoning. If the oracle

given to A2 is EK , the probability that we observe (α, β) ∈ F−1(1) when mea-
suring CEAmsbw[EK ] |0n〉 |0w〉 is approximately lower bounded by c/2w. Hence,
QAA on CEAmsbw[EK ] and F with O(

√
2w/c) iterations returns (α, β) ∈ F−1(1)

(i.e., A2 returns 1) with high probability. On the other hand, if the oracle given
to A2 is a random permutation P , from Claim 1 it follows that the probability
that we observe (α, β) ∈ F−1(1) when measuring CEAmsbw[P ] |0n〉 |0w〉 is approx-
imately upper bounded by 2dim(V )/2n+w. Especially, the probability that QAA
on CEAmsbw[P ] and F with O(

√
2w/c) iterations returns (α, β) ∈ F−1(1) (i.e.,

A2 returns 1) is negligibly small. For similar reasons, A1 and A3 distinguish EK

and P in time O(
√

2n/c) and O(
√

2dim(V )/c), respectively.
More precisely, define parameters ci, pbi, and Ti for i = 1, 2, 3 as follows.

– c1 := c3 = 2−n, c2 := 2−n−w+dim(V ).
– pb1 := 2dim(V )+7(n+1)

22n·c + 2− dim(V )+1 · n−2, pb2 := 2dim(V )+7(n+1)
2n+w·c + 2− dim(V )+1 ·

n−2, and pb3 := 27(n+1)
2n·c + 2− dim(V )+1 · n−2.

– T1 := 6
√

2n/c, T2 := 6
√

2w/c, and T3 := 6
√

2dim(V )/c.

Then the following proposition holds.

Proposition 4. Let i = 1, 2, or 3. Suppose that c � ci, and that 1/4 >∑
(α,β)∈V −{0} Cor(EK ;α, β)2 ≥ c holds with a constant probability p when K

is randomly chosen. If Ai runs relative to the real cipher EK , then the probabil-
ity that Ai outputs 1 is at least p/2. If Ai runs relative to a random permutation
P , then the probability that Ai outputs 1 is approximately upper bounded by pbi.
In addition, the time complexity of Ai is at most Ti. (The probabilities are taken
not only over the randomness of Ai but also over the randomness of choices of
K or P .)

This proposition can be proven by applying Proposition 2 and Claim 1 in a
straightforward manner. Still, we provide a proof in Section C of the full ver-
sion [36] for completeness.

Some Remarks. The speed-ups in this section are not always quadratic. Still,
a quadratic speed-up is obtained in the specific case when input-output masks
are linearly independent and u = w (by applying A2). In this case, the classical
complexity is about 2�/2/(capacity) = 2w/(capacity) because � = dim(V ) =
dim(V1) + dim(V2) = u + w = 2w. Meanwhile, if A2 is applied14, the complexity
drops to about

√
2w/(capacity). For other cases, the speed-up is not quadratic

in general, except for the one-dimensional case.
In the one-dimensional case, the asymptotic complexity of our technique is

the same as Kaplan et al.’s, but the non-asymptotic complexity become smaller
in a specific situation. For example, suppose that we have a one-dimensional

14 A1 is also applicable here but performs worse than A2.
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linear approximation of a cipher, and the absolute value of the linear correlation
is concentrated in a very narrow range around a known value c > 0. Then,
some analysis shows that the combination of CEA and QAA distinguishes the
cipher by making (

√
2π) · (1/c) queries to the oracle. (This is faster than A3

in Proposition 4. Here, we consider to run QAA only once, whereas A3 runs
QAA multiple times. A single run of QAA is sufficient here since the variance of
the correlation is assumed to be small.) Meanwhile, Kaplan et al.’s distinguisher
requires about (2

√
2π) · (1/c) queries. (See Appendix E of the full version [36]

for details.) Thus our attack is about 2 times faster in this situation. For general
cases where the variance of the correlation may be large, we do not observe
evident difference between ours and Kaplan et al.’s because we have to run
QAA multiple times (as A3 does).

So far we have discussed how to distinguish block ciphers from random per-
mutations, but we expect the above distinguishers are also applicable to distin-
guish keyed functions from random functions of n-bit inputs, without changing
the asymptotic complexity (in the same way as classical linear distinguishers
work not only for permutations but Below we give some application examples,
but they are essentially distinguishers on keyed functions from random functions,
rather than block ciphers from random permutations.

5.1 Application Example: FEA-1 and FEA-2 Structures

FEA is a Korean standard (TTAK.KO-12.0275) for format preserving encryp-
tion [48], which has two variants named FEA-1 and FEA-2. Both variants adopt
tweakable Feistel structures. Here we study linear distinguishers on these struc-
tures when round functions are ideally random.

The FEA-1 and FEA-2 structures look like Fig. 1. As in usual Feistel struc-
tures, plaintexts are divided into two parts. We focus on the case when the
widths of the two branches are equal. A tweak T is also divided into two parts,
denoted by TL and TR, and processed in an alternate manner. In FEA-1, the
i-th round function takes TL (resp., TR) when i ≡ 1 (resp., i ≡ 0) mod 2. In
FEA-2, the i-th round function takes TL (resp., TR) when i ≡ 2 (resp., i ≡ 0)
mod 3. The (3j + 1)-th round function of FEA-1 does not take any tweak (or
equivalently, take a constant value instead). For simplicity, we assume the tweak
length is sufficiently large.

At CRYPTO 2021, Beyne showed multidimensional linear distinguishers on
these structures [6]. The multidimensional linear approximation15 for FEA-1
is a vector space V of completely linearly dependent input-output masks with
dim(V ) = n/2 (when n is the block size of Feistel), and the sum of the squared
correlations

∑
(α,β)∈V Cor(α, β)2 is equal to 2n(1−r/4). Meanwhile, the approx-

imation for FEA-2 is a vector space V ′ of linearly independent input-output
masks with dim(V ) = dim(V ′

2) = n/2 (here, we assume V ′ is decomposed as
V ′ = V ′

1 × V ′
2), and the sum of the squared correlation is equal to 2n(1−r/6).

15 See the original paper [6] on details of linear approximations. What is significant here
is only the dimensions of the approximations and the sum of the squared correlations.
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Fig. 1. The FEA-1 structure (left) and FEA-2 structure (right).

The classical distinguishing complexity is O(2(r/4−3/4)n) for FEA-1 (resp.,
O(2(r/6−3/4)n) for FEA-2). By applying our quantum distinguishers above, the
complexity is reduced to O(2(r/8−1/4)n) (resp., O(2(r/12−1/4)n)).

Remark 1. In [6], linear distinguishers are extended to message recovery attacks
and key recovery attacks. Our distinguishers could also be extended to message
or key recovery attacks in the quantum setting by just guessing the secret infor-
mation with the Grover search, though, non-trivial extension of interest (beyond
just applying Grover) would require another new idea and not be straightfor-
ward.

6 Speed-Up for Zero Correlation Linear Distinguishers

This section shows how CEA can be used to speed-up (multidimensional) zero
correlation linear distinguishers [9]. We first recall the basic ideas of attacks in
the classical setting.

6.1 Classical Zero Correlation Linear Distinguishers

Unlike linear cryptanalysis, zero correlation linear cryptanalysis exploits linear
approximations of which the correlation is exactly zero.

For instance, let EK be an n-bit block cipher and suppose Cor(EK ;α, β) = 0
holds for some input and output masks α, β 
= 0n. Then, (Cor(P ;α, β))2 for
a random permutation P is distributed around 2−n and non-zero with high
probability. Hence we can distinguish EK from P if we have sufficiently many
(≈ 2n) plaintext-ciphertext pairs by checking whether the estimated empirical
correlation is zero or not.

This idea naturally extends to attacks exploiting multidimensional linear
approximations of correlation zero (below we follow the notations of Sect. 3.2).
Again, let EK be an n-bit block cipher and V ⊂ F

n
2 × F

n
2 be a vector

space such that Cor(EK ;α, β) = 0 for all (α, β) ∈ V . Moreover, let S be
an arbitrary basis of V . Then the distribution pEK

S over F
dim(V )
2 defined by

pEK

S (z) := Prx

[
Linf

S(x) = z
]

exactly matches the uniform distribution. On the
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other hand, the distribution pP
S similarly defined for a random permutation P

is slightly different from the uniform distribution. Hence EK and P can be dis-
tinguished by using suitable statistical tests. Indeed, Bogdanov et al. [8] showed
that EK can be distinguished in time O(2n/

√
2dim(V )) in such a setting16.

Remark 2. In the special case where the input-output masks are independent
and V = V1 × V2 holds, we can achieve the time complexity O(2n/2dim(V1))
instead of O(2n/

√
2dim(V )) by using the link between zero correlation linear

cryptanalysis and integral cryptanalysis, which we will elaborate in Sect. 7.

6.2 Quantum Speed-Up by CEA

Next, we study how to speed-up (multidimensional) zero correlation linear dis-
tinguishers by using CEA and QAA.

As well as linear distinguishers in Sect. 3.2, we introduce three distinguishers
which we denote by B1, B2, and B3. B1 is a general distinguisher applicable to
arbitrary multidimensional linear approximations. B2 (resp., B3) is applicable
when the input and output masks are linearly independent (resp., completely
dependent).

In what follows, we assume that Cor(EK ;α, β)2 = 0 holds for all (α, β) ∈
V − {0}. O denotes the oracle, which is either EK for a random K or a random
permutation P . For notations related to B2 and B3, we use the same ones as
those for A2 and A3 introduced on p.16.

Distinguisher B1 (General Case). When nothing can be assumed on linear depen-
dence of masks, a natural way to mount a distinguisher by using QAA and CEA
is to run the following procedure.

1. Let F : F
n
2 × F

n
2 → F2 be the Boolean function such that F (α, β) = 1 iff

(α, β) ∈ V − {0}.
2. Apply QAA on CEAO and F with the number of iterations �π

4

√
22n−dim(V )�.

Namely, let the unitary operator Q(CEAO, F )iCEAO act on |0n〉 |0n〉 with
i = �π

4

√
22n−dim(V )�. Then, measure the resulting state by the computational

basis and let (α, β) be the observed bit string.
3. If F (α, β) = 0, return 1. Otherwise, return 0.

Some analysis shows that this algorithm distinguishes EK and P with high prob-
ability. However, the running time of B1 is O(

√
22n−dim(V )) = O(2n/

√
2dim(V )),

which is the same as the complexity of the classical distinguisher. Namely, B1

does not obtain any speed-up from classical attacks. Meanwhile, we can obtain
some quantum speed-up when input-output masks are linearly independent or
linearly completely dependent, which we explain below.

16 Bogdanov and Wang showed a similar result assuming that many statistically inde-
pendent linear approximations exist [10], but the assumption often does not hold.
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Remark 3. B1 runs QAA only once, unlike QD of Proposition 2 (or its appli-
cations A1-A3) running QAA multiple times. This is because the probability
Pr[F (α, β) = 1] is exactly zero when (α, β) is obtained by measuring the state
CEAEK |0n〉 |0n〉, and thus we can achieve a sufficiently high advantage with a
single run of QAA.

Distinguishers B2 and B3. Here we show distinguishers B2 and B3 for linearly
independent and completely dependent masks, respectively17.

B2 is obtained by modifying the unitary operators and the number of itera-
tions for QAA in B1. Specifically, we change

1. the unitary operator for QAA of B1 from CEAO to CEAmsbw[O], and
2. the number of iterations from �π

4

√
22n−dim(V )� to �π

4

√
2n+w−dim(V )� = �π

4√
2n−u�.

B3 is obtained just by changing the parameter w appeared in B2 to dim(V ).
B2 distinguishes EK and P with high probability, roughly for the following

reason: If the oracle given to B2 is EK , B2 always returns 1. If the oracle given to
B2 is a random permutation P , Claim 1 guarantees18 that the probability that we
observe (α, β) ∈ F−1(1) when measuring CEAmsbw[P ] |0n〉 |0w〉 is approximately
equal to 2dim(V )/2n+w = 2u−n. Hence the QAA with O(

√
2n−u) iterations in

Step 2 of B2 returns (α, β) ∈ F−1(1) with high probability, and B2 returns 0.
Thus B2 distinguishes EK and P . Especially, B2 achieves a quadratic speed-up
in the special case where w = 1 (see Remark 2). Similarly, B3 distinguishes EK

in time O(
√

2n). More precisely, the following proposition holds.

Proposition 5. If B2 (resp., B3) runs relative to EK , then B2 (resp., B3) always
outputs 1. If B2 (resp., B3) runs relative to a random permutation P , then the
probability that B2 (resp., B3) outputs 0 is approximately lower bounded by 1

2 ·(
1 − 2− dim(V )+1

)
. In addition, the running time of B2 (resp., B3) is at most

2�π
4

√
2n−u� + 1 (resp., 2�π

4

√
2n� + 1) encryptions by EK . (The probabilities are

taken not only over the randomness of B2 or B3 but also over the randomness
of choices of K or P .)

A proof of the proposition is given in Section G of the full version [36].

6.3 Applications

Both of B2 and B3 have various immediate applications. For instance, Bogdanov
and Rijmen showed multidimensional zero correlation linear approximations on
the 5-round balanced Feistel structure, 18-round 4-branch Type-I generalized
Feistel structure, and 9-round 4-branch Type-II generalized Feistel structure (see
Fig. 2 and Table 1 of the full version [36]) when round functions are bijections.
The input-output masks of the linear approximations are linearly completely

17 Recall that we use the same notations as those for A2 and A3. See p.16 for details.
18 Note that 2n · ∑

(α,β)∈V −{0} Cor(P ;α, β)2 in Claim 1 is equal to 2n · Cap(pP
S ).
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dependent. Thus B3 distinguishes these constructions in time O(2n/2) (when
inputs and outputs are n bits). In fact the linear approximations on the 4-branch
Type-I/II generalized Feistel structures can be extended to k-branch structures
for general19 k in a straightforward manner, and B3 distinguishes (k2 + k − 2)-
round (resp., (2k+1)-round) k-branch Type-I (resp., Type-II) generalized Feistel
structure in time O(2n/2).

Fig. 2. One round of Balanced and (4-branch) generalized Feistel structures. What we
assume is only that P and P ′ are bijections. Our attacks work regardless of whether
P (and P ′) for different rounds are independent or not.

Table 1. Input-output mask patterns for balanced and generalized Feistel structures.
α ∈ F

n/2
2 and β ∈ F

n− n
k are non-zero values. “0” for generalized Feistel structures

denotes 0n/k ∈ F
n/k
2 .

Balanced k-branch Type-I k-branch Type-II

(α||0n/2, 0n/2||α) (β||0|| · · · ||0, 0||β||0|| · · · ||0 (α||0|| · · · ||0, 0|| · · · ||0||β)

Note that the numbers of rounds we attack here are larger than those broken
by previous polynomial time attacks using Simon’s algorithm in a black-box way.
The number of rounds of balanced (resp., k-branch Type-I and Type-II) Feistel
broken by previous polynomial time attacks is 4 [40] (resp., k2 − k + 1 [51] and
k + 1 [27]). See also Table 2 of the full version [36].

In fact, the complexity of our distinguishers may also be achieved just by
speeding-up a one-dimensional zero-correlation linear distinguisher with simpler
techniques. Still, to the authors’ best knowledge, we are the first to point out
the existence of attacks with such complexity.

There also exist lots of other previous works showing zero correlation approx-
imations [1,8–10,56] and our B2 or B3 can be applied to all of them in principle.
The amount of quantum speed-up compared to classical distinguishers depends
on linear approximations, and we can achieve at most quadratic speed-up.

7 Speed-Up for Integral Distinguishers

This section shows applications of CEA to integral cryptanalysis. As shown by
Bogdanov et al. [8] and Sun et al. [56], balanced property of a cipher is equivalent
19 k must be even for Type-II structures.
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to multidimensional zero correlation linear properties of which the input-output
masks are linearly independent. Specifically, the following proposition holds20.

Proposition 6 ([8,56]). Let F : Fm
2 → F

n
2 be a function. Let V1 ⊂ F

m
2 , V2 ⊂

F
n
2 be sub-vector spaces, and V := V1 × V2. Then the following conditions are

equivalent.

1. V is the set of input-output masks of a multidimensional zero correlation
linear approximation of F , i.e., Cor(F ;α, β) = 0 for all (α, β) ∈ V − {0}.

2. The function G : x 	→ β · F (x ⊕ λ) is balanced over V ⊥
1 for all λ ∈ F

m
2 and

β ∈ V2 − {0}.
Remark 4. Note that this equivalence holds only for balanced property but not
for zero-sum property. Our quantum attacks below also rely on the above equiv-
alence. Especially, the attacks are applicable only if a balanced property exists.

Recall that the distinguisher B2 (Proposition 5) is applicable when a multi-
dimensional zero correlation linear approximation exists and the input-output
masks are linearly independent. Together with Proposition 6, this implies the
following proposition.

Proposition 7. Let EK be an n-bit block cipher. Suppose some output bits of
EK are balanced over a vector space V ⊂ F

n
2 . (W.l.o.g., we assume the most

significant w bits are balanced, and let V ′ := {x||0n−w |x ∈ F
w
2 }.) Then, by

applying B2 on the zero correlation multidimensional linear approximations of
V ⊥ ×V ′, we can distinguish EK from P with time and query complexity at most
2�π

4

√
2dim(V )� + 1. B2 always outputs 1 if the given encryption oracle is the real

cipher EK . If the oracle is a random permutation P , then B2 outputs 0 with
probability at least 1

2

(
1 − 2− dim(V )+1

)
.

This proposition shows that we can obtain (almost) quadratic speed-up for inte-
gral distinguisher because the complexity of B2 is ≈ 1.6

√
2dim(V ) while the com-

plexity of the classical integral distinguisher is 2dim(V ).
Still, this is at most quadratic speed-up. At first glance, achieving a more

than quadratic speed-up seems impossible for integral distinguishers. However,
we see possibility of a more than quadratic speed-up in some situations.

7.1 Possibility of More Than Quadratic Speed-Up

Roughly speaking, if a part of the outputs of a cipher (e.g., a specific byte of
ciphertexts) is balanced on multiple mutually orthogonal vector spaces included
in the input space, there exists possibility to achieve a more than quadratic
quantum speed-up by using CEA.

Specifically, let EK : Fn
2 → F

n
2 be a block cipher, and suppose there exist

sub-vector spaces V1, . . . , Vs ⊂ F
m
2 satisfying the following conditions.

20 This equivalence was first shown by [8] and later refined by [56]. [56] proves the
equivalence only in the special case dim(V2) = 1 but it immediately implies the
equivalence for dim(V2) > 1.
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1. V1, . . . , Vs are mutually orthogonal, i.e., Vi ⊥ Vj for i 
= j.
2. There exists some d ≤ n/2 and dim(Vi) = d holds for all i.
3. A part of the outputs of EK is balanced on Vi⊕λ for all 1 ≤ i ≤ s and arbitrary

λ ∈ F
m
2 . (For ease of explanation, below we assume the most significant w

bits of outputs of EK are balanced.)

Then, by Proposition 6 we have Cor(msbw[EK ];α, β) = 0 if α ∈ (V1)⊥ ∪ · · · ∪
(Vs)⊥ − {0} and (α, β) 
= (0, 0). This means

Pr
K

[
(α, β) ← CEAmsbw[EK ] : α ⊥ Vi for some i and α 
= 0 and β 
= 0

]
= 0.

Meanwhile, for a random permutation P we have

Pr
P

[
(α, β) ← CEAmsbw [P ] : α ⊥ Vi for some i and α �= 0 and β �= 0

]

(∗)
=

∑

α�=0,β �=0
α⊥Vi for some i

EP

[
Cor(msbw[P ];α, β)2

2w

]

=
∑

α�=0,β �=0
α⊥Vi for some i

lsbn−w[β]=0

EP

[
Cor(P ;α, β)2

2w

]
(∗∗)
=

∑

α�=0,β �=0
α⊥Vi for some i

lsbn−w[β]=0

1

2w(2n − 1)

= # {α ∈ F
n
2 − {0} |α ⊥ Vi for some i} · # {β ∈ F

n
2 − {0} |lsbn−w[β] = 0}
2w(2n − 1)

≥
⎛

⎝
∑

1≤i≤s

|V ⊥
i | −

∑

1≤i<j≤s

|V ⊥
i ∩ V ⊥

j | − 1

⎞

⎠ · 2w − 1

2w(2n − 1)

Vi⊥Vj for i�=j

≥
(
s2n−d − s22n−2d − 1

)
· 2w − 1

2w(2n − 1)
≈ s

2d
.

Here, (∗) (resp., (∗∗)) follows from Proposition 3 (resp., Proposition 11 of the
full version [36]).

Therefore, EK can be distinguished from P in time about π
2

√
2d/s by

applying QAA on CEAmsbw[EK ] (or CEAmsbw[P ]) and the Boolean function
F : F

n
2 × F

w
2 → F2 such that F (α, β) = 1 iff α ⊥ Vi for some i = 1, . . . , s

and α 
= 0 and β 
= 0.
This can lead to a more than quadratic speed-up compared to the correspond-

ing classical integral distinguisher (when s ≥ 4) because the classical complexity
is 2d: Even if we have such multiple spaces V1, . . . , Vs, what we can do in the
classical setting is just to choose a single space Vi and check whether (a part of)
EK is balanced on that space, unless some additional properties can be assumed.

Application Examples. To see how the above distinguisher can be applied
to concrete ciphers, let us recall the 3.5-round integral property of AES for
an example [25]. If a tuple of certain four cells of inputs take all values while
others being constant, we can make a single column after the first round take
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all values while others remain constant, and each cell after 3.5 rounds balanced
(see Fig. 3). Since there are four choices on which tuple of four cells to activate
(i.e., which column after the first round to activate), we are in the situation of
the distinguisher explained above with d = 32 and s = 4 (Vi corresponds to a
tuple of four active cells of inputs).

Fig. 3. The integral property of the 2.5-round AES. Cells with filled circles are those
taking all values and others are constants. “×224” indicates that 224 sets of the same
active cell pattern shown in the figure is observed.

In fact this example itself is not so significant because more efficient distin-
guishers exist: If a tuple of four cells of inputs take all values like Fig. 3, actually
a certain tuple of four cells of outputs take all values. This means that the inte-
gral property specifies a 32-bit permutation between part of inputs and outputs.
Hence the 3.5-round AES is distinguished by checking if this part contains a
collision in time ≈ 3

√
232 with the BHT algorithm [19].

Still, we observe an interesting attack when s is relatively large. For instance,
suppose s = 2d holds. This situation happens if, e.g., EK is a 4-bit cell SPN
cipher with the same integral property as the 2.5-round AES (the latter 2.5
round of Fig. 3). Then Pr [F (α, β) = 1] ≈ s/2d = 1 holds when (α, β) is obtained
by measuring CEAmsbw[P ], while the probability is always zero for the real cipher
EK . Thus we can distinguish EK only with a single quantum query, which
apparently exhibits a more than quadratic speed-up.

The margin compared to the square-root of the classical complexity is not
large, but this example is important in that a new-type example illustrating a
qualitative difference between classical and quantum computation is achieved by
using a classical cryptanalytic technique.

8 Extension to Generalized Linear Distinguishers

Linear cryptanalysis is useful when group operations are done in Z
n
2 , but some

ciphers use other group operations such as modular additions (i.e., additions in
Z/2n

Z), where generalized linear cryptanalysis on arbitrary finite groups [4] is
more useful. Generalized linear cryptanalysis uses group characters instead of bit
masks, but we observe again there exists a close relationship between (general-
ized) correlations and quantum computation via Fourier transform. This section
shows how the technique of Sect. 5 extends to generalized linear distinguishers.
In this section, the symbol “⊕” denotes the direct sum of groups.
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8.1 Fourier Transform on Arbitrary Finite Abelian Group

Let G be an arbitrary finite abelian group. Then, by the Chinese remainder
theorem, there is a group isomorphism from G to Z/N1Z⊕· · ·⊕Z/NmZ for some
positive integers N1, . . . , Nm. We fix an isomorphism and identify the two groups.
Recall that a character of a finite abelian group G is a group homomorphism
φ : G → C

×. The set of characters of G is denoted by Ĝ, which forms a group by
point-wise multiplication. It is well-known that Ĝ is isomorphic to G as a group.

Specifically, for each w = (w1, . . . , wm) ∈ G, the function

chw : (x1, . . . , xm) 	→ exp
(

2πi
x1w1

N1

)
· · · exp

(
2πi

xmwm

Nm

)

is a character of G. In fact the map w 	→ chw defines a group isomorphism from
G to Ĝ. We identify G with Ĝ by this isomorphism.

Let G be a finite abelian group and F : G → C be a function. Then, the
Fourier transform of F over G is a function FGF : G → C defined by

FGF (w) :=
∑

x∈G

1√|G| · chw(x) · F (x).

The inverse transform of FG, denoted by F∗
G, is given by F∗

GF (x) =
∑

w∈G
1√
|G| ·

chx(w) · F (w).
We naturally identify a function from G to C (resp., the set of the functions

from G to C) with a vector in the |G|-dimensional vector space C
|G| (resp., the

vector space C
|G|). Moreover, we assume that C|G| is endowed with the standard

Hermitian inner product. Then FG can be regarded as a unitary operator.

8.2 Linear Correlations

Let G,H be finite abelian groups and f : G → H be a function. For α ∈ G and
β ∈ H, the (generalized) linear correlation Cor(f ;α, β) is defined as

Cor(f ;α, β) :=
∑

x∈G

1
|G|chβ(f(x)) · chα(x).

We call α (resp., β) an input mask (resp., output mask).
Let femb : G ⊕ H → C be the function defined by femb(x, y) = 1 if y = f(x)

and femb(x, y) = 0 if y 
= f(x). Then, some straightforward calculation shows
that

((F∗
G ⊗ FH) femb) (α, β) =

√
|G|/|H| · Cor(f ;α, β) (7)

holds. (This corresponds to Eq. (3) for the linear cryptanalysis over (Z/2Z)⊕n.)
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8.3 Extension of CEA

For an arbitrary finite abelian group G, we assume that elements of G are appro-
priately encoded into n-bit strings for some n s.t. |G| ≤ 2n. Let ψ : G → C be
a function satisfying

∑
x∈G |ψ(x)|2 = 1, and |ψ〉 :=

∑
x ψ(x) |x〉. Recall that the

Quantum Fourier Transform (QFT) over an abelian group G, denoted by QFTG,
is defined by

QFTG |ψ〉 =
∑

x

(F∗
Gψ)(x) |x〉 . (8)

With these notations, the extension of CEA on a function f : G → H (G and
H are finite abelian groups) is obtained by replacing the Hadamard transform
in CEA with the QFT (or its inverse) over G and H. Specifically, the extended
algorithm runs as follows.

Extended Version of CEA

(a) Prepare the initial state |0G〉 |0H〉.
(b) Apply QFTG on the first (left) register.
(c) Apply Uf on the state (i.e., make a quantum query to f).
(d) Apply QFTG ⊗ QFT∗

H on the state.
(e) Measure the entire state by the computational basis and return the observed

result (α, β) ∈ G ⊕ H.

We also use the symbol CEAf to denote the extended algorithm.
The following proposition is an extension of Proposition 3.

Proposition 8. The quantum state of CEAf before the final measurement is

∑

α∈G,β∈H

Cor(f ;α, β)√|H| |α〉 |β〉 . (9)

In particular, for any subset S ⊂ G ⊕ H,

Pr
[
(α, β) ← CEAf : (α, β) ∈ S

]
=

∑

(α,β)∈S

Cor(f ;α, β)2

|H| (10)

holds.
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Proof. The quantum state of CEAf before the final measurement is

(QFTG ⊗ QFT∗
H)Uf (QFTG ⊗ In) |0G〉 |0H〉

= (QFTG ⊗ QFT∗
H)Uf

∑

x∈G

1√|G| |x〉 |0H〉

= (QFTG ⊗ QFT∗
H)

∑

x∈G

1√|G| |x〉 |f(x)〉

Def. of femb= (QFTG ⊗ QFT∗
H)

∑

x∈G,y∈H

femb(x, y)√|G| |x〉 |y〉

Def. of QFT
=

∑

α∈G,β∈H

((F∗
G ⊗ FH)femb)(α, β)√|G| |α〉 |β〉

Eq. (7)
=

∑

α∈G,β∈H

Cor(f ;α, β)√|H| |α〉 |β〉 .

Hence we have Eq. (9). Equation (10) immediately follows from Eq. (9). ��

8.4 Quantum Speed-Up for Generalized Linear Distinguishers

Let f : G → H be a function, where G and H are finite abelian groups. Here we
define linearly independent masks and linearly completely dependent masks.

1. Suppose G and H are decomposed as G = G1 ⊕G2 and H = H1 ⊕H2. Then,
we say the set G1⊕H1(⊂ G⊕H) is a set of linearly independent input-output
masks.

2. Suppose again the decomposition G = G1⊕G2 and H = H1⊕H2, and assume
that there is a group isomorphism φ : G1 → H1. Then we say that the set
{(g, φ(g))|g ∈ G1} is a set of linearly completely dependent input-output
masks.

We show distinguishers when input-output masks are linearly independent or
completely dependent, which correspond to A2 and A3 in Sect. 5. We provide
only rough ideas and heuristic estimations, and omit detailed analysis.

Distinguisher for Linearly Independent Input-Output Masks. Suppose
fK : G → H is a keyed function, G and H are decomposed as G = G1 ⊕ G2,
H = H1 ⊕ H2, and

∑
α∈G1,β∈H1

Cor(fK ;α, β)2/|H1| � 1
|G2| holds. Let f

(1)
K :

G → H1 be the projection of fK onto H1, and F : G1 ⊕ H1 → {0, 1} be the
Boolean function such that F (α, β) = 1 iff (α, β) ∈ G1 ⊕ H1. Then,

preal := Pr
[
(α, β) ← CEAf

(1)
K : F (α, β) = 1

]
=

∑

(α,β)∈G1⊕H1

Cor(fK ;α, β)2

|H1|
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follows from Proposition 8. Meanwhile, for a random function RF : G → H,

pideal := Pr
[
(α, β) ← CEARF(1)

: F (α, β) = 1
]

=
∑

(α,β)∈G1⊕H1

Cor(RF;α, β)2

|H1|

≈
∑

(α,β)∈G1⊕H1

1
|G| · 1

|H1| =
1

|G2| .

(We heuristically assume the third equality approximately holds due to [6, The-
orem 3.2].) Since preal � pideal by assumption, we can distinguish fK from RF by
applying the QAA on CEAf

(1)
K (or CEARF(1)

) and F with O(
√

1/preal) iterations.

Distinguisher for Linearly Completely Dependent Input-Output
Masks. Again, let fK : G → H be a keyed function, G and H are decomposed
as G = G1 ⊕ G2, H = H1 ⊕ H2. Moreover, assume there is a group isomorphism
φ : G1 → H1 and

∑
α∈G1

Cor(fK ;α, φ(α))2/|H1| � 1
|G| holds. Let F : G1 ⊕

H1 → {0, 1} be the binary function such that F (α, β) = 1 iff α ∈ G1 and
β = φ(α). Then, from Proposition 8,

preal := Pr
[
(α, β) ← CEAf

(1)
K : F (α, β) = 1

]
=

∑

α∈G1

Cor(fK ;α, φ(α))2

|H1|

follows. On the other hand, for a random function RF : G → H we have

pideal := Pr
[
(α, β) ← CEARF(1)

: F (α, β) = 1
]

=
∑

α∈G1

Cor(RF;α, φ(α))2

|H1|

≈
∑

α∈G1

1
|G| · 1

|H1| =
1

|G| .

Since preal � pideal holds by assumption, we can distinguish fK from RF by
applying the QAA on CEAf

(1)
K (or CEARF(1)

) and F with O(
√

1/preal) iterations.

Application to the FF3-1 Structure. Beyne [6] showed generalized linear
distinguishers on the FF3-1 structure in addition to linear distinguishers on FEA.
The FF3-1 structure is almost the same as the FEA-1 structure (see Fig. 1), but
the XOR operations in FEA-1 are replaced with modular additions in FF3-1.
Thus, generalized linear distinguisher is more suitable for the FF3-1 structure.

The (generalized) linear approximation for FF3-1 in [6] is similar to the
multidimensional linear approximation for FEA-1, but underlying groups are
different from Z

n
2 . In fact, firstly a keyed function FK : Z/2n/2

Z ⊕ Z
t
2 →

Z/2n/2
Z is built from the FF3-1 structure by fixing some inputs (here, input

means plaintext and tweak) and truncating some outputs, and the distin-
guisher is applied FK . The set (sub-group) of input-output masks is given
by

{
((α, 0), α) ∈ (Z/2n/2

Z ⊕ Z
t
2) ⊕ Z/2n/2

Z
∣∣α ∈ Z/2n/2

Z
}
. In particular, the
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input-output masks are linearly completely dependent. The corresponding sum
of the squared correlation is estimated as

∑
α∈Z/2n/2Z Cor(FK ; (α, 0), α)2 ≈

2−n(r/4−1), and the classical distinguishing complexity is O(2(r/4−3/4)n).
On the other hand, if we apply the quantum distinguisher explained above,

we achieve the complexity O(2(r/8−1/4)n).

9 Concluding Remarks

This paper showed a quantum speed-up for the multidimensional (zero corre-
lation) linear distinguishers for the first time in such a way to exploit multidi-
mensional approximation in a non-trivial way. Firstly, we observed that there
is a close relationship between the subroutine of Simon’s algorithm and linear
correlations of functions via Fourier transform. Specifically, a slightly modified
version of the subroutine, which we call CEA, returns input and output linear
masks of a target function with probability proportional to the squared linear
correlation. Combining CEA with QAA, we achieved a quantum speed-up for
multidimensional linear distinguishers. It is interesting that, only with a slight
modification made, the subroutine of Simon’s algorithm can be used to speed-up
such a statistical attack. Our technique is naturally extended to generalized lin-
ear distinguishers on arbitrary finite abelian groups by replacing the Hadamard
transform in CEA with general QFT. We also showed that CEA similarly speeds-
up multidimensional zero correlation linear distinguishers, as well as some inte-
gral distinguishers via the correspondence shown by Bogdanov et al. and Sun et
al [8,56]. Especially, we observe that a more than quadratic speed-up is possible
if an integral property holds on multiple mutually orthogonal vector spaces of
the same dimension, and even a single-query distinguisher for a toy example of
a 4-bit cell SPN cipher with the same integral property as the 2.5-round AES.

Future Directions. An important future work is to investigate how to extend
our technique to key-recovery attacks, or combine it with Schrottenloher’s [53].

All the distinguishers in this paper can be extended to key-recovery attacks
just by guessing sub-keys of additional rounds using Grover’s algorithm. Suppose
we would like to recover the key of an (r + r′)-round cipher and there is a
(quantum) r-round distinguisher on the cipher running in time T . In addition,
assume that we can apply the distinguisher on the intermediate r rounds if we
know a k-bit subkey K ′ in the remaining r′-rounds. Then, roughly speaking,
by just guessing the subkey K ′ with the Grover search while checking if a key-
guess is correct with the distinguisher, we achieve an (r + r′)-round quantum
key-recovery attack of time complexity O(T · 2k/2).

Still this idea is too naive, compared to classical key-recovery attacks using
sophisticated techniques such as the FFT [22,29,57]. As mentioned in Sect. 1.2,
the recent work by Schrottenloher [53] has shown how to combine such key-
recovery techniques using the FFT with the QFT, taking multiple linear approx-
imations into account. However, in Schrottenloher’s attack, multiple approxima-
tions contribute to only the precision of the attack by a constant factor, and does
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not contribute much to reducing time complexity. It is definitely an important
and interesting future work to investigate theoretical relationships between our
technique with Schrottenloher’s and study how to reduce the time complexity of
key-recovery exploiting multidimensional approximations.

Another important future work is to study quantum speed-up for integral
distinguishers based on zero-sum properties. As mentioned before, our quantum
integral distinguishers are applicable only if the distinguishers are based on a
balanced functions and not a zero-sum property. However, distinguishers based
on zero-sum properties often break more rounds than those on balanced func-
tions, especially when extended to key-recovery attacks. Since multiple integral
properties sometimes could lead to a more than quadratic speed-up, a quantum
attack breaking more rounds of a cipher than classical attacks may be found by
investigating this direction.

It would be also of interest to investigate how the super-quadratic speed-up
in Sect. 7.1 can be reproduced more broadly. We observe that the following two
things are essential in achieving that speed-up: (i) There exist multiple prop-
erties that are similar to each other, but only one of them can be exploited at
a time in the classical setting. (For the 2.5-round integral property of AES-like
ciphers, there are 16 choices on which input cell to activate, but the existence of
multiple choices is not exploited in the classical distinguisher.) (ii) The proper-
ties are translated/embedded into quantum amplitude in some sense (by using
CEA, through the correspondence between integral and zero-correlation linear
properties). So, if we find some classical properties satisfying (i) and a quan-
tum technique enabling (ii), we might be able to reproduce similar quantum
speed-ups, not only for linear/integral distinguishers but also for some other
techniques.
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