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Abstract. At ASIACRYPT 2022, Benedikt, Fischlin, and Huppert pro-
posed the quantum herding attacks on iterative hash functions for the
first time. Their attack needs exponential quantum random access mem-
ory (qRAM), more precisely 20.43n quantum accessible classical memory
(QRACM). As the existence of large qRAM is questionable, Benedikt
et al. leave an open question on building low-qRAM quantum herding
attacks.

In this paper, we answer this open question by building a quantum
herding attack, where the time complexity is slightly increased from
Benedikt et al.’s 20.43n to ours 20.46n, but it does not need qRAM any-
more (abbreviated as no-qRAM). Besides, we also introduce various low-
qRAM or no-qRAM quantum attacks on hash concatenation combiner,
hash XOR combiner, Hash-Twice, and Zipper hash functions.

Keywords: Quantum computation · qRAM · Herding Attack · Hash
Combiner

1 Introduction

Shor’s seminal work [59] shows that sufficiently large quantum computers allow
factorization of large numbers and computation of discrete logarithms in poly-
nomial time, potentially dooming many public-key schemes in use today. To
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meet the challenges posed by quantum computers, the public-key cryptogra-
phy community and standardization organizations have invested a lot of effort
in the research of post-quantum public-key schemes. In particular, NIST has
initiated a process to solicit, evaluate, and standardize one or more quantum-
resistant public-key cryptography algorithms [55]. For symmetric cryptography,
the community has also recently witnessed many important quantum cryptanal-
ysis results [15–17,25,38,41,48] since the initial work of Kuwakado and Morii,
who showed that the classically provably secure Even-Mansour cipher and the
three-round Feistel network can be broken in polynomial time with the help
of quantum computers [46,47]. Most of these attacks that enjoy exponential
speedup rely on Simon’s algorithm [60] to find a key-dependent hidden period
where access to a quantum superposition oracle of key primitives is necessary.
This is a fairly strong (computation) model, and its actual relevance is some-
times questioned [13]. Therefore, a more complex attack still makes sense if it
does not require online queries to the superposition oracles of the keyed primi-
tives [13,14,18,35,57].

For keyless primitives, especially hash functions, quantum attacks are easier
to launch, since there is no need for online queries and all computations can be
done offline. The classical algorithm finds collisions of n-bit output hash functions
with time complexity O(2n/2). In the quantum setting, the BHT algorithm [20]
finds collisions with a query complexity of O(2n/3) if O(2n/3) quantum random
access memory (qRAM) is available. However, it is generally acknowledged that
the difficulty of fabricating large qRAMs is enormous [31,32]. So quantum algo-
rithms (even has relatively high time complexity) using less or no qRAM is desir-
able. At ASIACRYPT 2017, Chailloux, Naya-Plasencia and Schrottenloher first
overcome the O(2n/2) classical bound without using qRAM [21]. The time com-
plexity of the algorithm is O(22n/5), and the classical memory is O(2n/5). Also,
a quantum algorithm for the generalized birthday problem (or the k-XOR prob-
lem) in settings with and without large qRAM can be found in [33,53]. Besides
the generic attacks on hash functions, the first dedicated quantum attack on hash
functions was presented at EUROCRYPT 2020 by Hosoyamada and Sasaki [36],
showing quantum attacks on AES-MMO and Whirlpool by exploring differen-
tials whose probability is too low to be useful in the classical setting. Later,
refined collision and preimage attacks on hash functions have been presented
subsequently by Dong et al. [26–28], Flórez Gutiérrez et al. [29], Hosoyamada
and Sasaki [37], Schrottenloher and Stevens [58].

The Merkle-Damg̊ard construction [22,52] is a popular way to build hash
functions, where a single compression function is iteratively called to extend the
input domain from a fixed length to arbitrary length and the digest length is usu-
ally the same as that of the internal state. However, some widely deployed hash
function standards (such as MD5 and SHA-1) based Merkle-Damg̊ard construc-
tion have been broken [61–63]. Besides, Kelsey and Schneier [43] have demon-
strated a generic second-preimage attack against all hash functions based on
the classical Merkle-Damg̊ard construction, when the challenge message is long.
At CRYPTO 2004, Joux [40] introduced multi-collision attacks on iterated hash
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functions. At EUROCRYPT 2006, Kelsey and Kohno introduced the herding
attack (also known as nostradamus attack) [42], in which the adversary commits
to a hash value T of an iterated hash function H, such that when later given a
message prefix P , the adversary is able to find a suitable “suffix explanation” S
with H(P‖S) = T .

In order to obtain a more secure hash function, and to ensure compatibility,
researchers and developers try to combine the output of two (or more) indepen-
dent hash functions to provide better security in case one or even both hash
functions are weak. Practical examples can be found in TLS [23] and SSL [30].
There are several common hash combiners, such as concatenation combiner [56],
XOR combiner, Hash-Twice [3], and Zipper hash [50]. However, the security of
these hash combiners has also been challenged. At CRYPTO 2004, Joux [40]
revealed that the concatenation combiner provides at most n/2-bit security for
collision resistance and n-bit security for preimage resistance. Leurent and Wang
[49] and Dinur [24] showed that the combiners may be weaker than each hash
function. Besides, various cryptanalysis results [2–4,6,8,51] have been achieved
on the hash combiners.

At ASIACRYPT 2022, Benedikt, Fischlin, and Huppert [9] considered quan-
tum nostradamus attacks on iterative hash functions for the first time, and
realized attacks of complexity O(23n/7). The attack requires exponentially large
qRAM, which is inherited from the BHT algorithm [20]. Since fabricating large
qRAMs is difficult to realize [31,32], Benedikt et al. [9] left open questions for
building low-qRAM quantum herding attack. In 2022, Bao et al. [7] built a low-
qRAM quantum herding attack based Chailloux et al.’s multi-target preimage
algorithm [21]. However, we find their algorithm is flawed and incorrect when
building diamond structure for herding1. Therefore, the question is still open.
Besides the quantum herding attack, Bao et al. also gave some quantum attacks
on hash XOR and concatenation combiners, including collision, preimage, and
herding attacks [7].

Our Contributions

In this paper, for the first contribution, we answer the open question by
Benedikt et al. [9] to build the first valid low-qRAM quantum herding attack
on iterated hash functions. We first convert Benedikt et al.’s quantum diamond-
building algorithm (it needs exponential qRAM, i.e., 23n/7 quantum accessible
classical memory (QRACM)) into an algorithm that does not need qRAM any-
more. The new algorithm is highly based on Chailloux et al.’s collision finding
algorithm [21] with various adaptions. In our herding attack, we choose the leaves
of the diamond structure to be prefixed with r-bit zeros, then apply Chailloux et
al.’s collision finding to find the linking message S such that H(P‖S) hits one of
the leaves of the diamond structure. Note a previous work by Bao et al. [7] also
built a quantum herding attack. However, in their attack, the Chailloux et al.’s

1 Please find the detailed comments on Bao et al’s attacks in Appendix A and B.
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multi-target preimage algorithm [21] is applied, which can not take the advan-
tage of the ability that attacker can choose the prefixed leaves of the diamond
structure.

As the Second Contribution, for the quantum preimage attack on hash XOR
combiners, we introduce an efficient low-qRAM quantum algorithm to build
Leurent and Wang’s interchange structure [49]. Then, based on Schrottenloher
and Stevens’s quantum Meet-in-the-Middle attack [58], or Ambainis’ element dis-
tinctness algorithm [1], or Jaques and Schrottenloher’s golden collision finding
algorithm [39], we propose three different low-qRAM quantum preimage attacks
on hash XOR combiner. Especially, our attack based on Jaques and Schrottenlo-
her’s method [39] reduces the 20.143n qubits of previous attack [7] to ours 20.013n

qubits, without quantum accessible quantum memory (QRAQM). Moreover, the
time complexity is also reduced from previous 20.495n to ours 20.493n.

For hash concatenation combiner, we introduce a no-qRAM quantum colli-
sion attack and a no-qRAM quantum herding attack. In [7], both attacks need
20.143n qubits or 20.333n QRAQM . However, our attacks do not need qRAM and
the number of qubits needed is also of polynomial size. We also introduce quan-
tum herding attacks on other important hash combiners, including Hash-Twice,
and Zipper hash function, by exploiting their different features. All the attacks
are summarized in Table 1.

Table 1. A Summary of the Attacks. QRACM: quantum accessible classical mem-
ory, QRAQM: quantum accessible quantum memory, cRAM: classical random access
memory

Target Attacks Settings Time Qubits QRACM QRAQM cRAM Generic Ref.

H Herding Classical 20.67n - – – 20.67n – [42]

Quantum 20.43n O(n) 20.43n – – – [9]

Quantum 20.46n O(n) – – 20.23n – Sect. 4

H1 ⊕ H2 Preimage Classical 20.83n - - - 20.33n 2n [49]

Classical 20.67n – – - – 2n [24]

Classical 20.612n – – – 20.61n 2n [6]

Quantum 20.476n O(n) - 20.333n - 20.5n [7]

Quantum 20.495n 20.143n 20.033n – 20.2n 20.5n [7]

Quantum 20.493n 20.013n 20.047n – 20.2n 20.5n Sect. 5.3

Quantum 20.485n O(n) 20.057n 20.0285n 20.2n 20.5n Sect. 5.3

Quantum 20.485n O(n) 20.043n 20.0285n 20.2n 20.5n Sect. 5.3

H1‖H2 Collision Classical 20.5n – – – – 2n [40]

Quantum 20.333n O(n) – 20.333n – 20.67n [7]

Quantum 20.43n 20.143n – – 20.2n 20.67n [7]

Quantum 20.4n O(n) – – 20.2n 20.67n Sect. 6

Herding Classical 20.67n – – – 20.33n – [3]

Quantum 20.444n O(n) – 20.333n – – [7]

Quantum 20.49n 20.143n - - 20.2n - [7]

Quantum 20.467n O(n) – – 20.2n – Sect. 7

Hash-Twice Herding Classical 20.667n - - - 20.33n – [3]

Quantum 20.467n O(n) – – 20.2n - Sect. 8

Zipper Herding Classical 20.667n – – – 20.33n – [3]

Quantum 20.467n O(n) – – 20.2n - Sect. 9
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2 Preliminaries

2.1 Quantum Computation and Quantum RAM

The state of the n-qubit quantum system can be described as the unit vector {|i〉 :
0 ≤ i < 2n} in C

2n

under the orthogonal basis. Quantum algorithms are typically
implemented by manipulating the state of an n-qubit system through a series of
unitary transformations and measurements, where all unitary transformations
can be implemented as a series quantum gates in quantum circuit models [54].
The efficiency of a quantum algorithm is quantified based on the number of
quantum gates used.

Superposition Oracles for Classical Circuit. Let the quantum oracle of a
function f : Fm

2 �→ F
n
2 be the unitary operator Uf that Uf |x〉 |y〉 = |x〉 |y ⊕ f(x)〉

with x ∈ F
m
2 and y ∈ F

n
2 . When Uf acts on superposition states, we have

Uf

⎛
⎝ ∑

x∈F
n
2

ai |x〉 |y〉
⎞
⎠ =

∑
x∈F

n
2

ai |x〉 |y ⊕ f(x)〉 . (1)

Variations on Grover’s Algorithm. The task is to find the labeled element
from the set X. Suppose we denote the subset of labeled elements by M ⊂ X and
know the fraction of the labeled elements ε = |M |/|X|. The classical algorithm
to solve this problem needs O(1/ε) iterations. A quantum algorithm can be
expressed as a function of two parameters.

– Setup operation, i.e., sampling a uniform element from X. Denote the cost
(execution time) of Setup as |Setup|RT .

– Checking operation, i.e. checking if an element is labeled. Denote the cost
(execution time) of Checking as |Checking|RT .

Grover’s algorithm [34] is a quantum search process for finding the labeled ele-
ments, whose complexity is a function of the quantum Setup cost |Setup|RT of
construction of uniform superposition of all elements from X, and the quan-
tum Checking cost |Checking|RT . The time complexity of Grover’s algorithm is√

1/ε · (|Setup|RT + |Checking|RT ). Assuming the Setup and Checking steps are
simple, Grover’s algorithm can find the element x ∈ M at a cost of O(

√
1/ε).

Grover’s algorithm can also be described as a special case of quantum ampli-
tude amplification (QAA), which is a quantum algorithm introduced by Bras-
sard, Høyer, Mosca, and Tapp [19]. Intuitively, assuming there exists an quan-
tum algorithm A to produce a superposition of the good subspace and the bad
subspace of X. Let a be the initial success probability that the measurement
of A |0〉 is good. Let B be a function that classifies the outcomes of A as either
good or bad state. Quantum Amplitude Amplification (QAA) technique achieves
the same result as Grover’s algorithm with a quadratic improvement. The time
complexity of QAA is about

√
1/a · (|A|RT + |B|RT ). (2)
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Quantum Random Access Memories (qRAM) can be conceptualized as
the quantum counterpart of classical random access memory (RAM). In the clas-
sic setup, RAM facilitates access (read and write operations) to memory elements
in time O(1) regardless of storage size. Following [45,58], qRAM comes in two
flavors: Quantum Accessible Classical Memory (QRACM), which enables access
to classical data in quantum superposition; and Quantum Accessible Quantum
Memory (QRAQM), where data is stored in quantum memory. Consider a sce-
nario where we intend to store a list of data, denoted as D = (x0, x1, · · · , x2k−1),
with each xi representing an n-bit data. In this context, the qRAM for accessing
the data D is established as a quantum gate. This qRAM is defined through a
unitary operator UqRAM (D), which is expressed as follows:

UqRAM (D) : |i〉 |x0, x1, · · · , x2k−1〉 |y〉 → |i〉 |x0, x1, · · · , x2k−1〉 |y ⊕ xi〉 ,

Here, i takes values from the set {0, 1}k, and y represents an n-bit value. In both
QRACM and QRAQM, we assume that this gate costs O(1). For QRACM, i is
superposed but the xi are classical; For QRAQM, both i and xi are superposed.
For example, the BHT collision finding algorithm [20] requires QRACM, the
quantum element distinctness [1] and quantum meet-in-the-middle attack [58]
require QRAQM. Obviously, QRAQM is the strongest quantum memory model.

For the time being, it is unknown how a working qRAM (at least for
large qRAMs) can be built. Nevertheless, this disappointing fact does not stop
researchers from working in a model where large qRAMs are available, in the
same spirit that people started to work on classical and quantum algorithms long
before a classical or quantum computer had been built. From another perspec-
tive, the absence of large qRAMs makes it quite meaningful to conduct research
in an attempt to reduce or even avoid the use of qRAM in quantum algorithms.

Quantum Element Distinctness Problem

Problem 1. Given a set S = {x1, x2, · · · , xN}, does it exist i, j such that 1 ≤ i <
j ≤ N and xi = xj? If yes, return i, j.

In 2007, Ambainis proposed the quantum walk algorithm for the element dis-
tinctness problem [1] and achieved time complexity of O(N2/3) with O(N2/3)
QRAQM. At SAC 2020, Jaques and Schrottenloher [39] solved the element dis-
tinctness problem (or golden collision problem by [39]) in the plain quantum
circuit model (i.e., the computation is a sequence of basic quantum gates applied
to a pool of qubits) in time complexity of O(N6/7) with O(N2/7) qubits without
qRAM.

CNS Collision Finding Algorithm [21]. At ASIACRYPT 2017, Chailloux,
Naya-Plasencia and Schrottenloher [21] introduced the first quantum collision
finding algorithm without any qRAM. Their algorithm is denoted as CNS algo-
rithm in this paper. The time complexity of the algorithm is O(22n/5), with a
classical memory of O(2n/5). The CNS algorithm is based on a quantum mem-
bership algorithm.
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Definition 1. Given a set L of 2k n-bit strings, a classical membership oracle
is a function fL that computes: fL(x) = 1 if x ∈ L and 0 otherwise.

A quantum membership oracle for L is an operator OL that computes fL:

OL(|x〉 |b〉) = |x〉 |b ⊕ fL(x)〉 .

When the set L of size 2k is stored in some classical memory, Chailloux et
al. implement the quantum operator OL with n2k simple operations and 2n +
1 qubits. Since in the following, the time complexity is number of queries of
the compression functions of hash function, the n2k simple operations are then
recorded as O(2k) time complexity. The CNS collision finding algorithm can be
divided into two parts, i.e., the precomputing part and the matching part.

Precomputing Part: Given a hash function h that h(m) = T , the CNS algo-
rithm first builds a table L of size 2k, where the r-bit most significant bits
(MSB) of all x ∈ L are zero, and store L in a classical memory. The way to
build L is to perform 2k times of Grover’s algorithm with time complexity of
2k × 2r/2 = 2k+r/2.

The Matching Part: Apply the QAA algorithm. In the setup phase A, the
Grover’s algorithm is applied to produce a superposition of m, where the r-bit
MSBs of m are zero. The time of the setup phase is |A|RT = 2r/2. Then, in the
checking phase B, a quantum membership algorithm is applied to classify that if
m is in L or not. |B|RT = 2k. Since the initial probability, that the measurement
of A |0〉 is good, is a = 2k

2n−r (since only the last n − r bits should be matched).
According to Eq. (2), time complexity of this part is

√
2n−r

2k
· (2r/2 + 2k). (3)

Totally, the time of the CNS algorithm is
√

2n−r

2k
· (2r/2 + 2k) + 2k+r/2. (4)

By assigning r = 2k = 2n/5, the complexity given in Eq. (4) will be optimal,
which is O(22n/5). The number of qubits used is O(n). The classical memory is
2n/5 to store L.

In this paper, the CNS algorithm is frequently used. In several applications
of our paper, only the Matching Part of the CNS algorithm is used with a
given L, while L may be built in a different way than the Precomputing Part
and thus have a different complexity than 2k+r/2. For example, in our quantum
herding attack in Sect. 4, the time to build L is the time to build the diamond
structure. Therefore, the time complexity of the Matching Part should be
weighed against the different time complexity of constructing L. To use the
CNS algorithm more flexibly, we define the Matching Part as CNSh(m,L) in
Definition 2 for a given table L and h in the following.
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Definition 2. Let CNSh(m,L) be the matching part of CNS algorithm, which
finds m so that h(m) ∈ L. Given the table L of size 2k stored in classi-
cal memory, whose elements are prefixed with r-bit zeros, the time complexity

|CNSh(m,L)|RT =
√

2n−r

2k · (2r/2 + 2k).

Quantum Meet-in-the-Middle Algorithm. At CRYPTO 2022, Schrotten-
loher and Stevens [58] applied the quantum two-list merging algorithm to build
the quantum MitM attack: For a given global guess G ∈ F

g
2, two small lists are

computed and merged to on the fly. Suppose the two small lists are L1 and L2,
the goal is to determine if there are elements x ∈ L1 and y ∈ L2 such that x = y
(called a solution). Let Omerge be the unitary operator that

Omerge(|G〉 |b〉) = |G〉 |b ⊕ f(G)〉 ,where f(G) =
{

1 if a solution occurs
0 otherwise . (5)

Lemma 1. [58] Assume that there exists an implementation of Omerge with time
complexity T . Then there is a quantum MitM attack with time complexity:

(
π

4
2g/2 + 1) × T. (6)

The T is roughly estimated by

min(|L1|, |L2|) +
√

max(|Lmerge|, |L1|, |L2|)), (7)

where Lmerge is the merged list. The QRAQM needed is of size min(|L1|, |L2|).

2.2 Iterated Hash Constructions

Iterated hash functions H(IV,M) = T commonly first pad and split the message
M into message blocks of fixed length, i.e., M = m1‖m2‖ · · · ‖mL. The message
blocks are processed sequentially and iteratively by the compression function h,
i.e., xi = h(xi−1,mi), where x0 = IV is a public value, T = xL is the n-bit
digest, the chaining value xi ∈ F

n
2 . Two commonly used iterated hash construc-

tions are the Merkle-Damg̊ard construction [22,52] and the HAIFA construction
[11]. In this paper, we only consider the Merkle-Damg̊ard construction and its
extensions.

The concatenation combiner H1(IV1,M)‖H2(IV2,M) = T1‖T2 is one of the
most studied hash combiner, which is first described by Preneel in 1993 [56]. In
2004, Joux [40] described the multi-collision attack on the 2n-bit output hash
combiner with 2n/2 time complexity for collision attack and 2n time complex-
ity for preimage attack. Besides the concatenation combiner, there are other
constructions:

– The XOR hash combiner H1(IV1,M) ⊕ H2(IV2,M) = T .
– Hash-Twice is originally defined in [3]: H2(H1(IV,M),M) = T shown in

Fig. 1.
– Zipper hash [50] is defined as H2(H1(IV,M),

←
M) = T shown in Fig. 2.
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Fig. 1. Hash-Twice Construction

Fig. 2. Zipper Hash Construction

3 Basic Techniques and Their Quantum Versions

In this section, we give brief introductions of Joux’s multi-collision technique,
diamond structure (DS) and their quantum versions.

3.1 Joux’s Multi-collision

At CRYPTO 2004, Joux [40] introduced an efficient method to build multi-
collision on iterated hash functions. As shown in Fig. 3, started from x0, the
attacker performs t birthday attacks to find t collisions. Based on the message
blocks m1,m2, · · · mt and m′

1,m
′
2, · · · m′

t, the attacker can build 2t collision mes-
sage pairs (denoted as 2t-MMC), e.g., (m1‖m′

2‖ · · · ‖mt,m
′
1‖m2‖ · · · ‖m′

t, ). The
time complexity to build the 2t collision message pairs is t · 2n/2. In quantum
setting, Bao et al. [7] first applied CNS’s algorithm to build Joux’s multi-collision,
where one collision is built in time 22n/5. Therefore, the time to build 2t-MMC is
t · 22n/5. The quantum attack only uses a classical memory 2n/5.

Fig. 3. Joux’s multi-collision [40]

3.2 Diamond Structure and Its New Quantum Algorithm
in no-QRAM setting

Kelsey and Kohno in [42] invented the diamond structure. Similar to Joux’s
multi-collisions and Kelsey and Schneier’s expandable message [43], diamond



12 X. Dong et al.

is also a kind of multi-collision. The difference is that, instead of mapping a
single starting state to a final state in the form of sequential chain like Joux’s
multi-collisions, a 2t-diamond maps a set of 2t leaf states to a common root
state as shown in Fig. 4. In classical setting, several improvements [12,44] on
building diamond structure have been proposed. The time complexity to build
a 2t-diamond is

√
t · 2

n+t
2 evaluations of the compression function of the hash

function. Based on the diamond structure, Kelsey and Kohno [42] introduced the
herding attack with time complexity

√
t ·2n+t

2 +2n−t, which achieve the optimal
O(22n/3) when t = n/3. The memory complexity is bounded by building 2t-
diamond, which is O(2(n+t)/2) = O(22n/3) [12,42].

Fig. 4. 23-diamond [7]

Bao et al. [7] initially introduced the quantum diamond structure algorithm
for both qRAM and no-qRAM scenarios. However, when we tried to replicate
their algorithm, we find their no-qRAM algorithm is incorrect and for more
details please refer AppendixA.

Later, at ASIACRYPT 2022, Benedikt, Fischlin, Huppert [9] presented a
quantum diamond structure algorithm utilizing exponential QRACM, resulting
in a time complexity of t1/3 · 2(n+2t)/3. Consider a level s of the 2t-diamond
structure and try to connect 2s nodes {xs,1, · · · , xs,2s} in a pairwise manner.
Benedikt et al. split the 2s nodes into a upper and a lower half of 2s−1 nodes
each. For the upper half, they compute a list Y of 2l hash evaluations h(mj , xs,i)
with i = 1, · · · , 2s−1, which equally spread out over the 2s−1 nodes. Hence, for
each node, there are 2l

2s−1 hash evaluations. Store Y in QRACM, and apply
Grover’s algorithm to connect the first value xs,2s−1+1 of the lower half to some
of these 2l values with some message block m′. Once a connection message is
found, remove the partner node from the upper half and all of its 2l/2s−1 entries
from Y . Then, add this amount of new values, again equally spread out over
the remaining 2s−1 − 1 values paired up, to fill the list Y up to 2l elements
again. Then connect the second node xs,2s−1+2 to Y . Continue till all 2s nodes
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are connected, then proceed with the next level s − 1 until the entire tree is
built. Benedikt et al. choose l = n+2s

3 to achieve optimal complexity to build the
2t-diamond structure, where s ≤ t. Therefore, the size of Y is about 2l = 2

n+2t
3 .

To build the quantum herding attack with a 2t-diamond structure, Benedikt
et al. applied the BHT algorithm to find the Mlink (as shown in Fig. 6). The
overall complexity of the herding attack includes the complexity of building
2t-diamond structure and finding the Mlink, which is roughly O(2(n+2t)/3 +
2(n−t)/2). The optimal complexity is achieved when t = n/7, i.e., the optimal
time complexity is O(23n/7) with QRACM of size O(2(n+2t)/3) = O(23n/7) to
store Y when building 2t-diamond structure.

Fig. 5. Building diamond

A New no-QRAM Quantum Algorithm to Build the Diamond Struc-
ture. In this section, we introduce a quantum algorithm to build the diamond
structure in no-qRAM setting based on Benedikt et al.’s [9] method and CNS
collision finding algorithm [21]. As shown in Fig. 5, again consider a level s of the
2t-diamond structure and try to connect 2s nodes {xs,1, · · · , xs,2s} in a pairwise
manner.

1. Begin with 2t leaf nodes that share a common suffix of r0 0s for the purpose
of connection2.

2 Leaf nodes with r0 0s suffix are used for the following herding attack in Sect. 4, and
are not relevant to this diamond building algorithm. After a diamond is built whose
leaves are suffixed with r00, we can apply the CNS algorithm (see Definition 2) to
find a linking message whose digest collides to one of those leaves. Similar techniques
for constructing distinguished points (e.g., leaves suffixed with r00) are often used
in cryptanalysis, e.g., the quantum collision or preimage finding algorithm [5,10,21],
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2. Let’s consider a specific level s ≤ t of the tree where we aim to connect
the 2s nodes {xs,1, . . . , xs,2s} pairwise. Divide the 2s nodes into two halves,
the upper half with 2s−1 nodes {xs,1, · · · , xs,2s−1} and the lower half with
2s−1 nodes {xs,2s−1+1, xs,2s−1+2, · · · , xs,2s}. For the upper half, compute a
list Y of 2l hash values h(mj , xs,i) with i = 1, · · · , 2s−1, where the r1 MSBs
of h(mj , xs,i) are zero. The 2l hash values equally spread out over the 2s−1

nodes, with 2l

2s−1 hash values for each node. Here, similar to CNS algorithm
in Sect. 2.1 to build L whose elements are prefixed with r-bit zero, we also
apply Grover’s algorithm to build Y . For each node xs,i with i = 1, · · · , 2s−1,
run Grover’s algorithm to find mj so that the r1 MSBs of h(mj , xs,i) are zero.
The time to find one mj is 2r1/2. In order to find 2l

2s−1 such mj for node xs,i,
we apply 2l

2s−1 times of Grover’s algorithm. Therefore, to build Y , the total
time complexity is

2l × 2r1/2 = 2l+
r1
2 . (8)

3. Store Y in a classical memory with 2l elements (h(mj , xs,i),mj , xs,i) indexed
by h(mj , xs,i). For the first node xs,2s−1+1 of the lower half, apply CNS algo-
rithm in Sect. 2.1 to find a message block m′ so that h(m′, xs,2s−1+1) hits one
of the entries of Y . According to Definition 2, apply CNSh(m′, Y ) to find such
m′, whose time complexity is

√
2n−r1

2l
· (2r1/2 + 2l). (9)

4. After m′ is found, delete the partner node and all of its 2l/2s−1 entries from
Y . Add 2l/2s−1 new values for Y with similar ways to Step 2 to fill Y up to 2l

elements again. Now each node of the upper half corresponds to 2l/(2s−1 − 1)
elements. Delete the first node xs,2s−1+1 from lower half. The time complexity
to fill Y again is

2l/2s−1 × 2r1/2 = 2l−s+1+
r1
2 . (10)

5. Repeat Step 3 and Step 4 until the lower half is empty. That means all the
nodes of the layer of level s have been connected pairwise.

To build the layer of level s in Step 2, 2s nodes are divided into the upper half
and the lower half, each with 2s−1 nodes. We are going to connect all the 2s−1

nodes in the lower half to the upper half. In step 3, the CNS algorithm (i.e.,
CNSh(m′, Y )) is applied to connect one node of the lower half (e.g., the first
node xs,2s−1+1) to one node of the upper half by hitting one of the elements in
Y . In Step 4, after the i-th node xs,2s−1+i (i = 1, · · · , 2s−1 − 1) in the lower
half has been connected to Y , 2l

2s−1−(i−1) elements will be deleted from Y , and
therefore, the same amount of new elements should be generated to fill up Y to

quantum k-XOR algorithm [33,53], and many classical attacks e.g. [24], to name
a few. However, our Algorithm 1 is the first to apply this technique to quantum
herding attack.
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2l again, whose time complexity is

2l

2s−1 − (i − 1)
× 2r1/2. (11)

Since we have to connect all nodes in the lower half to the upper half, the
elements in Y must be repeatedly deleted and filled up Y to 2l for all i =
1, 2, 3, . . . , 2(s−1) − 1. For each i, the time to fill up Y is estimated by Eq. (11).
Note that for the last node, i.e., the i = 2s−1-th node xs,2s in the lower half,
we only need to apply the CNS algorithm to find a match in Y to connect the
last node to the upper half, and we do not need to fill up Y again after that.
Therefore, we got the component of summation in Eq. (12). Since Step 3 will be
repeated for each node of the lower half, hence, CNSh(m′, Y ) will be repeated
for 2s−1 times. Therefore, the total time complexity to build the layer of level s
is

Ts = 2l×2r1/2+2s−1 ·
√

2n−r1

2l
·(2r1/2+2l)+

2s−1−1∑
i=1

2l

2s−1 − (i − 1)
×2r1/2. (12)

To build the 2t-diamond structure which includes t layers, the total time is

1∑
s=t

Ts. (13)

We could calculate

Ts = 2s−1 ·
√

2n−r1

2l
·(2r1/2+2l)+2l ·2r1/2 ·

2s−1∑
j=1

1

j
= 2s−1 ·

√
2n−r1

2l
·(2r1/2+2l)+O(s·2l+r1/2)

using
∑q

j=1
1
j ≤ ln q + c for the harmonic series. Then Ts could be minimized

to O(s1/5 · 2(2n+4s+4)/5) by setting r1 = 2l and l = n+2s+2−2 log2 s
5 .

The final complexity is obtained from summing over all t levels:

t∑
s=1

O(s1/5 · 2(2n+4 s+4)/5) ≤ O(2(2n+4+log2 t)/5 ·
t∑

s=1

2
4 s
5 )

= O(2(2n+4+log2 t)/5 · 2
4t
5 )

= O(2(2n+4t+4+log2 t)/5),

which is about O(2(2n+4t)/5). The classical memory is dominated by O(2(n+2t)/5)
to store Y for the first layer. The number of qubits is O(n).

4 Herding Attack in Quantum Settings with no-QRAM

The herding attack on iterated hash function is first given by Kelsey and Kohno
[42]. In the attack, the adversary chooses a public hash value hT , and then, she



16 X. Dong et al.

is challenged with a prefix P . Her goal is to find a suffix S such that hT =
H(P‖S). At ASIACRYPT 2022, Benedikt, Fischlin, and Huppert [9] presented
the quantum herding attack with 3

√
n ·23n/7 on iterated hash function with n-bit

digest based on BHT algorithm. Their quantum attack also needs exponential
qRAM inherited from the BHT algorithm [20], i.e., 23n/7 QRACM. Therefore
they left an open question on how to devise quantum herding attacks with low-
qRAM. In this section, we answer the open question positively. As shown in
Fig. 6, our herding attack consists in four steps:

Fig. 6. Herding Attack on Iterated Hash Function [7]

– Step 1 is to build a 2k-diamond structure. In classical herding attack by
Kelsey and Kohno [42] and the quantum one by Benedikt et al. [9], the leaves
xi (1 ≤ i ≤ 2k) are randomly chosen. In our quantum attack, the r most
significant bits (MSB) of xi are zero. Store the leaves in D with classical
memory

– Step 2 and Step 3 is to find a single block message Mlink such that h(P‖Mlink)
collides with some value xj ∈ D.

– Step 4 is to produce the message M = P‖Mlink‖Mj , where Mj is a sequence
of message blocks linking xj to hT with the diamond structure.

Our quantum herding attack is given in Algorithm 1.

Complexity. The time complexity to build the 2k diamond structure is k1/5 ·
2(2n+4k)/5 with a classical memory k3/5 · 2(n+2k)/5. The time complexity of
the setup phase is 2r/2 with Grover algorithm. According to the quantum
membership algorithm [21], the time complexity to implement Ofh

L
is 2k. For

(m,h(x̄,m)) ∈ Sh
r , fh

L(m) = 1 holds with probability of 2k−(n−r). There-
fore, about 2

n−r−k
2 calls of A, A†, Ofh

L
, O†

fh
L

are needed to produce the cor-
rect Mlink = m. Hence, the time complexity to find the Mlink in Line 8 is
2

n−r−k
2 (2r/2 + 2k) with a classical memory 2k to store L. Hence, the total time

complexity is
2

n−r−k
2 (2r/2 + 2k) + k1/5 · 2(2n+4k)/5. (15)

The classical memory complexity is bounded by the construction of the diamond
structure, i.e., k3/5 · 2(n+2k)/5.
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Algorithm 1: Herding Attack on Iterated Hash Function without qRAM

1 Off-line precomputation: Precompute the diamond structure using CNS

quantum collision algorithm. Collect 2k starting chaining values
D = {x1, x2, · · · , x2k}, where the r MSBs of xi ∈ F

n
2 are zero. The root is

denoted as hT and publish hT .
2 On-line precomputation:
3 begin
4 Receive the challenged prefix P and compute the chaining value after

absorbing the message P : x̄ = H̄(IV, P ).
5 /* Finding the linking message Mlink by applying variant of CNS

collision-finding algorithm: */

6 Store D = {x1, x2, · · · , x2k} in a classical memory L.
7 Define

Sh
r := {(m, h(x̄, m)) : ∃z ∈ {0, 1}n−r, h(x̄, m) = 0 · · · 0

︸ ︷︷ ︸

r times

‖z, z ∈ {0, 1}n−r},

where h is the compression function with n-bit chaining value x̄. Let
fh
L(m) := 1 if ∃x′ ∈ L, h(x̄, m) = x′, and fh

L(m) := 0 otherwise.
8 Apply quantum amplification algorithm:
9 begin

10 The setup A is the construction of |φ〉 := 1√
|Sh

r |
∑

m∈Sh
r

|m, h(x̄, m)〉.

11 The projector is a quantum oracle query to Ofh
L

meaning that

Ofh
L
(|m, h(x̄, m)〉|b〉) = |m, h(x̄, m)〉|b ⊕ Ofh

L
(m)〉. (14)

12 end
13 Let Mlink = m and produce the message: M = P‖Mlink‖Mj , where Mj is a

sequence of message blocks linking xj to hT following the diamond structure
built before.

14 end

The Best-Case Complexity. The optimal complexity is to balance the three
formulas, i.e., n−k

2 , n−r+k
2 , and 2n+4k

5 . When k = n/13 and r = 2n/13, the
optimal complexity is achieved which results in O(26n/13) = O(20.46n) time
complexity and O(23n/13) = O(20.23n) classical memory.

Remark. Bao et al. [7] also proposed a no-qRAM herding attack based on a
flawed method of building the diamond structure as shown in Sect. 3.2. After
correcting with our right algorithm in Sect. 3.2, Bao et al.’s no-qRAM herding
attack needs a time complexity of O(214n/29) = O(20.48n) with a classical mem-
ory O(27n/29) = O(20.24n), which is inferior to our attacks. For more details,
please refer to Appendix B.
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5 Interchange Structure and Preimage Attack on XOR
Combiners

5.1 Basic Interchange Structure Technique [49]

At EUROCRYPT 2015, Leurent and Wang [49] invented the interchange struc-
ture (IS), which is used to devise a preimage attack on the XOR combiner,
i.e., H1(IV1,M) ⊕ H2(IV2,M) = T . The interchange structure contains a set
of messages MIS and two sets of states A and B, so that for any state pair
(Ai, Bj |Ai ∈ A, Bj ∈ B), the attacker can pick a message M ∈ MIS such that
Ai = H1(IV1,M) and Bj = H2(IV2,M). Suppose there is a 2k-interchange struc-
ture (the sizes of A and B are both 2k). In order to reach the target value T , they
select a random block m, and evaluate L1 = {A′

i = h1(Ai,m), i = 1 · · · 2k} and
L2 = {B′

j = T ⊕ h2(Bj ,m), j = 1 · · · 2k}, where h1 and h2 are the compression
functions. If there is a match between the two lists L1 and L2, then

h1(Ai,m) = T ⊕ h2(Bj ,m) ⇔ H1(IV1,M‖m) ⊕ H2(IV1,M‖m) = T. (16)

The above technique is exactly a Meet-in-the-Middle approach. For a given m, it
produce the preimage with probability 22k−n with time complexity 2k. Therefore,
to find the preimage, 2n−2k m should be exhausted with a time complexity of
2n−2k × 2k = 2n−k.

To build a 2k-interchange structure (the sizes of A and B are both 2k), the
classical time complexity is Õ(22k+n/2) in [49].

5.2 Low qRAM Quantum Version of Interchange Structure

For the hash XOR combiners H1(IV1,M)⊕H2(IV2,M) = T , the basic technique
to build interchange structure is to build a single switch, which allows to jump
from an already reachable pair of chains (ai, bk) to (aj , bk) as shown in Fig. 7(a).

Fig. 7. Interchange structure and its building block [7]
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Algorithm 2: Building a Single Switch in Quantum Settings with Low
qRAM
1 Use the quantum Joux’s multi-collision algorithm to build a set MMC of 2t

messages for h∗
2 that link the starting state bk to the same state b′

k, i.e.,
∀M ∈ MMC, h

∗
2(bk, M) = b′

k. The number of message blocks of M is t. Denote
the i-th collision message blocks in Joux’s multi-collision are (m0

i , m
1
i ),

1 ≤ i ≤ t, which are stored in QRACM L1, whose size is about O(t · n).
2 Given |l1, l2, ..., lt〉 1 ≤ i ≤ t and li ∈ {0, 1}, Of is the quantum oracle that

computes Of (|l1, l2, ..., lt〉|0〉) = |l1, l2, ..., lt〉|ml1
1 , ml2

2 , ..., mlt
t 〉 by accessing

QRACM L1. Therefore, we can obtain the superposition of Eq. (18)
a) Apply Hadamard H to the first t qubits of |0〉, we get

∑

l1,l2,...,lt∈{0,1}
|l1, l2, ..., lt〉|0〉. (17)

b) Apply Of to the superposition, we get

|φ〉 =
∑

l1,l2,...,lt∈{0,1}
|l1, l2, ..., lt〉|ml1

1 , ml2
2 , ..., mlt

t 〉. (18)

3 // the following lines are the CNS collision finding algorithm [21]

4 Select 2x (x ≤ t) M ∈ MMC, where the r MSBs of a′
j = h∗

1(aj , M) are zero. Store
(a′

j , M) in classical memory L2, whose size is about 2x. Apply Grover algorithm

to produce L2 (combining with Eq. (18)) with complexity of 2x · 2r/2 = 2x+r/2.

5 Let M = (ml1
1 , ml2

2 , ..., mlt
t ) ∈ MMC, and define g

h∗
1

L2
(M) := 1 if

a′
i = h∗

1(ai, M) ∈ L2, and g
h∗
1

L2
(M) := 0 otherwise. // quantum membership

checking

6 Define

S
h∗
1

r := {M : ∃z ∈ {0, 1}n−r, h∗
1(ai, M) = 0 · · · 0

︸ ︷︷ ︸

r times

‖z, z ∈ {0, 1}n−r, M ∈ MMC}.

7 Apply quantum amplification algorithm (QAA) to determine the collision.

a) The setup phase of QAA is to compute the following superposition together with
Eq. (18)

|φr〉 :=
1

√

|Sh∗
1

r |

∑

M∈S
h∗
1

r

|M〉 (19)

b) The projector of the QAA is applying quantum oracle O
g

h∗
1

L2

, let

M = (ml1
1 , ml2

2 , ..., mlt
t ),

O
g

h∗
1

L2

|M〉|y〉 = |M〉|y ⊕ g
h∗
1

L2
(M)〉 (20)
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As shown in Fig. 7(a), given the multi-collision set MMC of size 2t, ∀M ∈ MMC,
h∗
2(bk,M) = b′

k. The single switch algorithm (Alg. 2) is to find a pair M̂, M̂ ′ ∈
MMC, such that h∗

1(aj , M̂) = h∗
1(ai, M̂

′).

Complexity of Algorithm 2:

– In Line 1, the time to build 2t-MMC is t ·22n/5, with classical memory 2n/5 by
applying CNS algorithm directly.

– In Line 4, with the superposition in Eq. (18), Grover algorithm is applied to
determine a M = (ml1

1 ,ml2
2 , ...,mlt

t ), such that the r MSBs of h∗
1(aj ,M) are

zero, whose time complexity is 2r/2. To find 2x such M , the time complexity
is 2x+r/2. A classical memory of size 2x is needed to store L2.

– In Line 7 a), the setup phase is to produce the superposition of |φr〉, whose
time complexity is about 2r/2.
In Line 7 b), the projector is a quantum membership checking, whose time
complexity is about 2x. To ensure that there is at least one collision, we have
2t−r × 2x ≥ 2n−r, i.e., t + x ≥ n. The total time complexity is

2
n−r−x

2 · (2r/2 + 2x) + 2x+r/2 + t · 22n/5. (21)

When x = r
2 = n

5 and t = 4n
5 , we get the optimal time complexity, i.e.,

O(4n5 ·22n/5). The QRACM to store L1 is of polynomial size, which is O(t ·n).
The classical memory used to store L2 and in Line 1 is O(2n/5).

Comparison Between Our Herding Attack and the Interchange Struc-
ture Building Algorithm. The highlevel framework for herding attack (Algo-
rithm 1) and the interchange structure (Algorithm 2) is different, but they both
apply variants of CNS collision finding algorithm [21]. As shown in Sect. 2.1 of
our paper, the original full CNS algorithm is divided into two parts: the Pre-
computing Part to prepare L and the Matching Part to find collision with
L. For our herding attack, we mainly modify the Precomputing Part of the
original CNS to prepare the diamond whose leaf nodes are then stored in L. For
interchange structure, we mainly modify the Matching Part. It is because dif-
ferent from original CNS algorithm whose messages to collide with L are chosen
freely, and thus an easy Hadamard transform applied to |0〉⊗n is enough to get
the quantum superposition of the messages. However, in our attack (Algorithm
2), the messages have to be chosen from the set MMC built by Joux’s multi-
collision algorithm. Hence, the superposition of those messages is not trivial to
obtain. To deal with it, we introduce an efficient way to build this superposition
and make the attack successful.

5.3 Preimage Attack on XOR Combiners with Low qRAM

In classical setting, Leurent and Wang [49] built preimage attack on the XOR
combiner with an Meet-in-the-Middle approach. Leurent and Wang first built a
2k-interchange structure (the sizes of A and B are both 2k) as shown in Sect. 5.1.
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In this section, in quantum setting, we perform three quantum attacks on XOR
combiners based on three different quantum algorithms.

Attack based on Schrottenloher-Stevens’ Quantum MitM Attack [58].
As shown in Sect. 5.1, the sizes of L1 and L2 should be equal in Leurent and
Wang’s classical attack to achieve the optimal time complexity. However, in
quantum MitM attack, according to Eq. (7), L1 and L2 should be of different
sizes. According to (16), the matching bits are n bits, therefore, the size of Lmerge

that contains messages satisfy (16) is very small when compared to L1 and L2.
Actually, we only find one preimage, so that |Lmerge| is about 1. Without loss of
generality, we assume |L1| is bigger. Then (7) is simplified as

|L2| +
√

|L1|. (22)

To reach an optimal balance, we choose |L1| = 22k and |L2| = 2k, so that
the complexity of the quantum merging algorithm is O(2k). We denote this
kind of interchange structure as (22k, 2k)-interchange structure, which is built
by applying 23k − 1 quantum single switches (Algorithm 2) as the following:

1. Build a single switch from (a0, b0) to each of (a0, bj) j = 0, ..., 2k − 1,
2. For each j, build switches from (a0, bj) to all (ai, bj) for all i = 0, ..., 22k − 1,
3. To reach the chain (ai, bj) from (a0, b0), we first find the switch to jump from

(a0, b0) to (a0, bj) in the first step, then find the switch to jump from (a0, bj)
to (ai, bj) in the second step (see Fig. 7(b)).

The time complexity is O(4n5 · 23k+2n/5) with O(2n/5) classical memory to build
the (22k, 2k)-interchange structure.

According to Lemma 1, we first guess the message block m ∈ F
g
2, and compute

the two lists L1 and L2 with |L1| = 22k and |L2| = 2k, then build the Omerge with
complexity O(2k) according to Eq. (22). To find at least one preimage, we have
2g+k+2k = 2n, so that g = n − 3k. According to Eq. (6), the time complexity
of the quantum MitM attack is about 2

n−3k
2 × 2k = 2

n−k
2 . During the quantum

MitM attack, the (22k, 2k)-interchange structure precomputed should be stored
in QRACM, and L2 should be stored in QRAQM. Therefore, the qRAM needed
is 22kQRACM+2kQRAQM.

The overall time complexity, including the time to build (22k, 2k)-interchange
structure and the quantum MitM attack, is 4n

5 · 23k+2n/5 + 2
n−k

2 . The optimal
complexity is 217n/35 = 20.485n by setting k = n/35. The classical memory is
O(2n/5). The qRAM is 20.0571nQRACM+20.0285nQRAQM.

We would like to thank one of the reviewers from ASIACRYPT 2023
for pointing out an error in the preliminary version of the attack based on
Schrottenloher-Stevens’ method [58], and also thank him for inspiring the fol-
lowing two attacks.

Attack Based on Ambainis’ Element Distinctness Algorithm [1]. To
apply Ambainis’ algorithm, a (2k, 2k)-interchange structure is first prepared and
stored in QRACM of size about 2k. For a guessed message block m ∈ F

g
2, we build



22 X. Dong et al.

two lists L1 and L2 of equal size 2k, then apply Ambainis’ quantum element dis-
tinctness algorithm to detect the collision with the time complexity of 22(k+1)/3

and 22(k+1)/3 QRAQM. When applying Grover’s algorithm on m ∈ F
g
2, the over-

all time complexity (including the time to build (2k, 2k)-interchange structure)
to find the preimage of XOR combiner is 4n

5 · 22k+2n/5 + 2(n−2k)/2+2(k+1)/3 ≈
2(2k+2n/5)+2(n/2−k/3). The optimal time complexity is achieved when k = 3n/70,
i.e., the time is 2(17n/35) = 2(0.485n), with 22(k+1)/3 = 20.0285n QRAQM,
2k = 20.043n QRACM, and 2n/5 classical memory.

Attack Based on Jaques-Schrottenloher’s Golden Collision Find-
ing Algorithm [39]. To apply Jaques-Schrottenloher’s algorithm, a (2k, 2k)-
interchange structure is first prepared and stored in QRACM of size about 2k.
In [7], Bao et al. applied Jaques and Schrottenloher’s method [39] to find the
collision between L1 and L2. Here we also apply this method in our attack.
Note that Jaques and Schrottenloher found the single collision in a set of size N
with N6/7 time complexity and N2/7 qubits, without QRAQM. Therefore, with
a (2k, 2k)-interchange structure, the time complexity of our preimage attack
on XOR combiner is 2(2k+2n/5) + 2(n−2k)/2+6(k+1)/7 ≈ 22k+2n/5 + 2n/2−k/7

with 22k/7 qubits, and 20.2n classical memory. The optimal time complexity
is achieved when k = 7n/150, where the time complexity is 237n/75 = 20.493n,
with 2n/75 = 20.0133n qubits, 2k = 20.047n QRACM, and 20.2n classical memory.

In the no-QRAQM scenario, when compared our attack with the attack by
Bao et al. [7], the time complexity is reduced from 20.495n to 20.493n, and the
number of qubits is significantly reduced from 20.143n to our 20.0133n.

6 Collision Attack on Concatenation Combiners
in Quantum Settings

For a hash concatenation combiner H1(IV1,M)‖H2(IV2,M) = T1‖T2, the colli-
sion attack is to find two distinct M and M ′, so that H1(IV1,M)‖H2(IV2,M) =
H1(IV1,M

′)‖H2(IV2,M
′). Classically, based Joux’s multi-collision method [40],

the collision attack can be built in O(2n/2). Here, we introduce a new quantum
collision attack on the hash combiners in Algorithm 3.

Complexity of Algorithm 3. Algorithm 3 is quite similar to Algorithm 2.
When we let t = n, x = 2n/5, r = 22n/5, the attack is optimal. The time
complexity is n · 22n/5 with a classical memory of 2n/5 and polynomial number
of qubits.
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Algorithm 3: Collision attack on Concatenation combiners in Quantum
Settings with Low qRAM
1 Use the quantum Joux’s multi-collision algorithm to build a set MMC of 2t

messages for H2 that link the starting state IV2 to the same state T2, i.e.,
∀M ∈ MMC, H2(IV2, M) = T2. The block length of M is t. Denote the i-th
collision message blocks in Joux’s multi-collision are (m0

i , m
1
i ), 1 ≤ i ≤ t. Store

(m0
i , m

1
i ) in QRACM L1 (to be used in the construction of superposition),

whose size is about O(t · n).
2 Given |l1, l2, ..., lt〉 1 ≤ i ≤ t and li ∈ {0, 1}, Of is the quantum oracle that

computes Of (|l1, l2, ..., lt〉|0〉) = |l1, l2, ..., lt〉|ml1
1 , ml2

2 , ..., mlt
t 〉 by accessing

QRACM L1. Therefore, we can obtain the superposition of Eq. (24)
a) Apply Hadamard H to the first t qubits of |0〉, we get

∑

l1,l2,...,lt∈{0,1}
|l1, l2, ..., lt〉|0〉. (23)

b) Apply Of to the superposition, we get

|φ〉 =
∑

l1,l2,...,lt∈{0,1}
|l1, l2, ..., lt〉|ml1

1 , ml2
2 , ..., mlt

t 〉. (24)

3 Select 2x (x ≤ t) M ∈ MMC, where the r MSBs of T1 = H1(IV1, M) are zero.
Store (T1, M) in classical memory L2, whose size is about 2x. L2 is produced by
applying Grover algorithm and combining with Eq. (24). The time complexity is
2x · 2r/2 = 2x+r/2.

4 Let M = (ml1
1 , ml2

2 , ..., mlt
t ) ∈ MMC, and define gH1

L2
(M) := 1 if

y = H1(IV1, M) ∈ L2, and gH1
L2

(M) := 0 otherwise. /* The quantum

membership algorithm. */

5 Define

SH1
r := {M : ∃z ∈ {0, 1}n−r, H1(IV1, M) = 0 · · · 0

︸ ︷︷ ︸

r times

‖z, z ∈ {0, 1}n−r, M ∈ MMC}.

6 /* Run a variant of CNS algorithm. Apply quantum amplification

algorithm (QAA). */

7 The setup phase of QAA is the construction

|φr〉 :=
1

√

|SH1
r |

∑

x∈S
H1
r

|M〉 (25)

8 The projector of the QAA is applying quantum oracle O
g

H1
L2

, let

M = (ml1
1 , ml2

2 , ..., mlt
t ),

O
g

H1
L2

|M〉|y〉 = |M〉|y ⊕ gH1
L2

(M)〉 (26)
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7 Herding Attack on Concatenation Combiners
in Quantum Setting

Fig. 8. Herding Attack on Concatenation Combiners in quantum settings [7]

The herding attack on concatenation combiners in quantum settings is given
in Fig. 8 and Algorithm 4. In the off-line precomputation phase (Line 2 to 6), two
diamond structures MDS1 and MDS2 are built, two Joux’s multi-collisions MMCs

and MMC�
are built. The root node of MDS1 is xT . The 2t-Joux’s multi-collision

MMCs links xT to xM0 . Then the 2k· 4n
5 -Joux’s multi-collision MMC�

is built to
link xM0 and T1. After that, 2k-diamond MDS2 is built. Here, we only apply the
CNS collision finding algorithm to build the diamond without using the method
given in Sect. 3.2. This is because, in the diamond building algorithm given in
Sect. 3.2, one has to frequently apply Grover’s algorithm to find message blocks
to fill up Y to 2l. For herding attack on MD hash (Algorithm 1), the message
blocks are freely chosen. Therefore, the superposition of the message for Grover’s
algorithm is easy to generate, and a trivial Hadamard transformation on |0〉⊗n

is enough. However, when building the 2k-diamond MDS2, those message blocks
have to be selected from a prefixed message set constructed by Joux’s multi-
collision algorithm, i.e., MMC�

. To frequently build the superposition of messages
from MMC�

for applying Grover’s algorithm is not easy. Therefore, we use the
trivial method that only uses CNS collision finding algorithm here. Since there
are 2k − 1 collisions in a 2k-diamond, 2k − 1 times of CNS algorithm are needed
to build the diamond. To build the 2k-diamond MDS1, we can freely use diamond
building algorithm in Sect. 3.2 or apply CNS algorithm trivially, since the time
to build MMC�

already bound the complexity, we just choose CNS algorithm
trivially to build MDS1 without increasing the overall complexity. Similar reason
also prevents us from applying diamond building algorithm given in Sect. 3.2 to
Algorithm 5.
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Algorithm 4: Quantum Herding Attack on Concatenation Combiners with
low qRAM

1 Off-line precomputation:
2 begin

3 Build a diamond MDS1 for H1, which starts from 2k states D1 = {xi}2k

1 ,
where the r MSBs of xi ∈ F

n
2 are zero. To build MDS1, we do not use the

method given in Section 3.2, but only use CNS algorithm to build each
collision until the root xT is derived. Totally, 2k−1 + 2k−2 + · · · + 1 = 2k − 1
times of CNS are applied with time complexity 2k+2n/5 and memory
complexity of 2n/5. The root is xT . From the hash value xT , build a
2t-Joux’s multi-collision MMCs , in which all messages map xT to a state

xM0 . Continue to build a 2k· 4n
5 -Joux’s multi-collision MMC� (consists of k

fragments and each fragment is of length 4n/5) on H1 from the starting
state xM0 and mapping to the state T1. Denote the terminal states of each
of the k fragments of MMC� by xMi for i from 1 to k (note that xMk = T1).

4 Build a diamond MDS2 for H2, which starts from 2k states D2 = {yi}2k

1 ,
where the r MSBs of yi ∈ F

n
2 are zero.. The messages used to building MDS2

are all chosen from the set MMC� . For example, the messages mapping the
first layer of 2k states to the 2k−1 states in MDS2 are chosen from the set of
24n/5 messages in the first fragment of MMC� mapping xM0 to xM1 . To build
MDS2, we do not use the method given in Section 3.2, but only apply 2k − 1
times CNS algorithm variant given by Algorithm 2 to find 2k − 1 collisions
in MMC� . Note that Algorithm 2 is exactly the method to find two messages
from a set of multi-collisions that make two states collides (as shown in
Figure 7(a)). The time to build MDS2 is O(2k+2n/5) with a classical memory
2n/5.

5 Commit T1‖T2 to the public.

6 end
7 On-line phase:
8 begin
9 Receive the challenged prefix P and compute the internal chaining value

xP = h∗
1(IV1, P ) and yP = h∗

2(IV2, P ).
10 /* Finding the linking message m∗ by applying variant of CNS

collision-finding algorithm: */

11 Store D1 in a classical memory L1.
12 Apply Line 6 to 12 of Algorithm 1 to determine linking message m∗ that

maps xP to one of the leaf state xj of MDS1, and retrieve the message S1

that link the leaf xj to the root xT .
13 Compute yT = h∗

2(IV2, P‖m∗‖S1).
14 /* Finding the linking message S2 by applying variant of CNS

collision-finding algorithm: */

15 Store D2 in a classical memory L2.
16 Apply CNS algorithm variant given by Algorithm 2 to find S2 ∈ MMCs ,

which maps yT to one of the leaf state yj of MDS2, and retrieve the message
S3 that link the leaf yj to the root T2.

17 M = P‖m∗‖S1‖S2‖S3 is the returned message.

18 end
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Algorithm 5: Quantum Herding attack on Zipper Hash with Low qRAM
1 Off-line phase: begin

2 Build a 2k· 4n
5 -Joux’s multi-collision MMC1 (consists of k fragments and each

fragment is of length 4n/5) that link IV and xM0 . Denote the terminal
states of each of the k fragments of MMC1 by xMi for i from k − 1 to 0.

3 Build 2t-Joux’s multi-collision MMC2 from xM0 to x̄.

4 Build MDS, which starts from 2k leaf states D = {yi}2k

1 to the root state hT ,
where the r MSBs of yi ∈ F

n
2 are zero. Similar to Line 4 of Algorithm 4, we

apply 2k − 1 times of Algorithm 2 to build MDS, which needs 2k+2n/5 time
and 2n/5 memory.

5 Commit hT .

6 end
7 On-line phase: begin

8 Given the suffix S, compute ȳ = h∗
2(h

∗
1(x̄, S),

←
S ).

9 Apply the variant of CNS to find the m∗ ∈ MMC2 to connect ȳ with the yj

one of the leaf states of MDS, and retrieve the corresponding message
S1 ∈ MMC2.

10 Output the message S1‖m∗‖S.

11 end

Complexity of Algorithm 4.

– In the off-line precompuation phase (Line 2 to 6), the time complexity to
build MDS1, MMCs

, MMC�
, and MDS2 is

2k+2n/5 + t · 22n/5 + 4nk/5 · 22n/5 + 2k+2n/5 ≈ 2k+2n/5,

where t = O(n).
– In the online phase (Line 8 to 18), the time to find m∗ and S2 are both

2
n−r−k

2 (2r/2 + 2k).

Therefore, the overall optimal time complexity of Algorithm 4 is O(27n/15) by
balancing the off-line and on-line computation phases and assigning k = n/15,
r = 2k, and t = n. The memory cost is dominated by building Joux’s multi-
collision with CNS, i.e., O(2n/5) classical memory.

8 Quantum Herding Attack on Hash-Twice

The attack on Hash-Twice shares the fundamental ideas of the attack on the
concatenation combiners, as depicted in Fig. 9. The attacker selects T2 as their
commitment and subsequently faces a challenge involving an unknown prefix
P . The attack is the same to the attack on concatenation combiner. Please see
Algorithm 4 for details. The only difference is that the IV2 is replaced by T1.
Therefore, the overall optimal time complexity is also O(27n/15) with a classical
memory of O(2n/5).
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9 Quantum Herding Attack on Zipper Hash

As stated by Andreeva et al. [3], the traditional herding attack with a prefix P
can not be applied to Zipper Hash. Therefore, Andreeva et al. [3] gave a variant
of the herding attack, where the challenge is placed at the end: as shown in
Fig. 10, the adversary commits to a hash value hT , then she is challenged with
a suffix S, and has to produce S1‖m∗ such that H(IV, S1‖m∗‖S) = hT . The
complexity of Andreeva et al.’s classical attack is O(22n/3).

In this section, we introduce a quantum version Andreeva et al.’s attack in
Algorithm 5. The complexity of the off-line phase dominated by building MDS,
which is about O(2k+2n/5). The on-line phase is 2

n−r−k
2 · (2r/2 + 2k) with t = n.

Let k = n
15 , r = 2k, the optimal complexity is achieved to be 27n/15. The memory

is 2n/5.

Fig. 9. Herding attack on Hash-Twice

Fig. 10. Herding attack on Zipper Hash
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Conclusion

This paper evaluated the quantum attacks on iterated hash functions and various
important hash combiners. Most of the attacks do not need qRAM anymore, and
the quantum preimage attack on hash XOR combiner is improved by significantly
reducing the number of qubits from previous 20.143n to the current 20.013n. Since
the existence of large qRAM is still questionable, building quantum attacks with
low-qRAM is of more practical relevance. Since for hash functions, the attackers
do not need online superposition queries, quantum attacks on hash functions
are more friendly than on other keyed primitives like block ciphers. Therefore,
exploring the quantum attacks on hash functions is of more practical relevance.
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A On Bao et al.’s Diamond Structure Building Algorithm

In [7, Section 3.3], the authors proposed a quantum algorithm for building dia-
mond structure with exponential large QRAQM in their Algorithm 2. After that,
they try to study the no-qRAM version. However, they only give the following
sentences for their no-qRAM algorithm [7, Page 12]:

“In Scenario R2, the time complexity to find a collision is of (2(n−t))2/5

computations. Therefore, building a 2t-diamond structure requires O(t(2/3)·
2t · 2(2(n−t)/5)) = O(t2/3 · 2(2n+3t)/5) computations, with O(t2/3 · 2t ·
2(n−t)/5) = O(t2/3 · 2(n+4t)/5) classical memory. (see [7, Page 12])”

The authors do not give concrete steps for this no-qRAM algorithm. After
communicating with the authors, we know that they just estimated the time
complexity by replacing the Grover’s algorithm with CNS algorithm [21] and
use classical memory to store the data instead of qRAM. They do not give the
concrete steps at all.

However, the conversion is not trivial as estimated by the authors of [7]. In
fact, we use almost two pages in Sect. 3.2 to reveal the no-qRAM algorithm.
When we try to rebuild the steps with CNS collision algorithm [21] for building
diamond, we find the final time complexity is 2(2n+4t)/5, which is different from
the time 2(2n+3t)/5 claimed in [7]. Then, we communicated with the authors of
[7] again, and they admitted our steps and time evaluation are correct.
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Since the authors of [7] do not publish or give us their concrete steps for their
claimed no-qRAM algorithm, we can not check which step is possibly wrong or
which step leads to the different complexities. Since the herding attack is based
on diamond structure, Bao et al’s [7] herding attack in no-qRAM setting is also
flawed.

B On Bao et al.’s Quantum Herding Attack

In the original estimation by Bao et al. [7, Section 4.3], the overall time com-
plexity of the no-qRAM herding attack is about 2((2n+3k)/5) + 2(n/2−k/6), where
2((2n+3k)/5) is the time to build a 2k-diamond, and the time 2(n/2−k/6) is to find
the linking message Mlink to the diamond based on Chailloux et al.’s multi-target
preimage algorithm [21]. After tradeoff between the two, it achieves optimal when
k = 3n/23, which results in the overall time complexity 2(11n/23) = 2(0.478n),
classical memory 2(7n/23) = 2(0.304n). Even if we compare our no-qRAM herding
attack in Sect. 4 (i.e., time 20.46n, classical memory 20.23n) with this original
complexity estimation of [7], the improvement of our attack is obvious.

However, the algorithm of building diamond structure of [7] is flawed as
shown in Appendix A. Their herding attack based on diamond is also wrong. In
fact, the time 2((2n+3k)/5) will be 2((2n+4k)/5) when using our correct diamond
building algorithm given in Sect. 3.2. Therefore, the complexity of Bao et al.’s
no-qRAM herding attack becomes 2((2n+4k)/5) + 2(n/2−k/6) time and 2(n+2k)/5

classical memory, which achieves optimal when k = 3n/29, that results in time
2(14n/29) = 2(0.4827n), classical memory 2(7n/29) = 2(0.24n). When compared with
this corrected Bao et al.’s attack, our attack in Sect. 4 (time=20.46n, classical
memory=20.23n) is still better obviously.
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