
Protostar: Generic Efficient
Accumulation/Folding for Special-Sound

Protocols

Benedikt Bünz1,2 and Binyi Chen1(B)

1 Espresso Systems, Middletown, USA
binyi@espressosys.com

2 New York University, New York, USA

Abstract. Accumulation is a simple yet powerful primitive that enables
incrementally verifiable computation (IVC) without the need for recur-
sive SNARKs. We provide a generic, efficient accumulation (or folding)
scheme for any (2k − 1)-move special-sound protocol with a verifier that
checks � degree-d equations. The accumulation verifier only performs
k + 2 elliptic curve multiplications and k + d + O(1) field/hash oper-
ations. Using the compiler from BCLMS21 (Crypto 21), this enables
building efficient IVC schemes where the recursive circuit only depends
on the number of rounds and the verifier degree of the underlying special-
sound protocol but not the proof size or the verifier time. We use our
generic accumulation compiler to build Protostar. Protostar is a
non-uniform IVC scheme for Plonk that supports high-degree gates and
(vector) lookups. The recursive circuit is dominated by 3 group scalar
multiplications and a hash of d∗ field elements, where d∗ is the degree of
the highest gate. The scheme does not require a trusted setup or pair-
ings, and the prover does not need to compute any FFTs. The prover in
each accumulation/IVC step is also only logarithmic in the number of
supported circuits and independent of the table size in the lookup.

1 Introduction

Incrementally Verifiable Computation [30] is a powerful primitive that enables
a possibly infinite computation to be run, such that the correctness of the state
of the computation can be verified at any point. IVC, and it’s generalization
to DAGs, PCD [12], have many applications, including distributed computation
[3,13], blockchains [5,18], verifiable delay functions [4], verifiable photo editing
[25], and SNARKs for machine-computations [2]. An IVC-based VDF construc-
tion is the current candidate VDF for Ethereum [19]. One of the most exciting
applications of IVC and PCD is the ZK-EVM. This is an effort to build a proof
system that can prove that Ethereum blocks, as they exist today, are valid [10].

Accumulation and Folding. Historically, IVC was built from recursive SNARKs,
proving that the previous computation step had a valid SNARK that proves
correctness up to that point. Recently, an exciting new approach was initiated

c© International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14439, pp. 77–110, 2023.
https://doi.org/10.1007/978-981-99-8724-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8724-5_3&domain=pdf
http://orcid.org/0000-0003-2082-4480
http://orcid.org/0000-0003-0835-9678
https://doi.org/10.1007/978-981-99-8724-5_3

78 B. Bünz and B. Chen

by Halo [6] and has led to a series of significant advances [8,9,22]. The idea
is related to batch verification. Instead of verifying a SNARK at every step
of the computation, we can instead accumulate the SNARK verification check
with previous checks. We define an accumulator1 such that we can combine
a new SNARK and an old accumulator into a new accumulator. Checking or
deciding the new accumulator implies that all previously accumulated SNARKs
were valid. Now the recursive statement just needs to ensure the accumulation
was performed correctly. Amazingly, this accumulation step can be significantly
cheaper than SNARK verification [6,9]. Even more surprising, this process does
not even require a SNARK but instead can be instantiated with a non-succinct
NARK [8], as long as there exists an efficient accumulation scheme for that
NARK. The most efficient accumulation (aka folding) scheme constructions yield
IVC constructions, where the recursive circuit is dominated by as few as 2 elliptic
curve scalar multiplications [8,22]. These constructions only require the discrete
logarithm assumption in the random oracle model and, unlike many efficient
SNARK-based IVCs, do not require a trusted setup, pairings, or FFTs. These
constructions build an accumulation scheme for one fixed (but universal) R1CS
language by taking a random linear combination between the accumulator and
a new proof. R1CS is a minimal expression of NP, defined by three matrices
A,B,C, that close resembles arithmetic circuits with addition and multiplica-
tion gates. However, it has limited flexibility, especially as the current construc-
tions require fixing R1CS matrices that are used for all computation steps. These
limitations are especially problematic for ZK-EVMs. In a ZK-EVM, each VM
instruction (OP-CODE) is encoded in a different circuit. Each circuit uses high-
degree gates, instead of just multiplication, and so-called lookup gates [16]. These
lookup gates enable looking up that a circuit value is in some table, simplifying
range proofs and bit-operations. These R1CS-based accumulation schemes con-
trast non-IVC SNARK developments, with an increased focus on high-degree
gate [11,16] and lookup support [15]. For lookups, a recent line of work has
shown that if the table can be pre-computed, we can perform n lookups in a
table of size T in time O(n log n), independent of T [14,27,33,34].

More Expressive Accumulation. There have been efforts to build accumulation
schemes that overcome the limitations of fixed R1CS. SuperNova [21] enables
selecting the appropriate R1CS instance at runtime without a recursive circuit
that is linear in all R1CS instances. The approach, however, still has limitations.
The recursive circuit still requires many (though a constant number of) hashes
and a hash-to-group gadget, and additionally, the accumulator, and thus the
final proof, is still linear in the total size of all instances.

Sangria [24] describes an accumulation scheme for a Plonk-like [16] constraint
system with degree-2 gates. It also proposes a solution for higher-degree gates
in the future work section but without security proof. Moreover, as the gate
degree d increases, the number of group operations in Sangria grows by a factor
of d, which cancels out the advantages of using the more expressive high-degree

1 Unrelated to set accumulators.

Protostar: Generic Efficient Accumulation/Folding 79

gates. Origami [35] recently introduced a folding scheme for lookups using a
product check and degree 7 polynomials. These accumulation schemes are built
from simple underlying protocols performing a linear combination between an
accumulator and a proof. However, the constructions seem ad hoc and need
individual security proof. This leads us to our main research questions:

Recipe for accumulation. Is there a general recipe for building accumulation
schemes? Can we formalize this recipe, simplifying the task of constructing
secure and efficient accumulation schemes?

Efficient accumulation for ZK-EVM. Can we build an accumulation/folding
scheme for a language that combines the benefits of the most advanced proof
systems today? Can we support multiple circuits, high-degree, and lookup
gates?

We answer both questions positively. Firstly we show a general compiler that
takes any (2k − 1)-move special-sound interactive argument for an NP-complete
relation RNP with an algebraic degree d verifier and construct an efficient IVC-
scheme from it. This is done in 4 simple steps.

1. We compress the prover message by committing to them in a homomorphic
commitment scheme.

2. Then we apply the Fiat-Shamir transform to yield a secure NARK. [1,31]
3. We build a simple and efficient accumulation scheme that samples a random

challenge α and takes a linear combination between the current accumulator
and the new NARK.

4. We apply the compiler by [8] to yield a secure IVC scheme.

The recursive circuit of this transformation is dominated by only d + k − 1
scalar multiplications in the additive group of the commitment scheme2 for a
protocol with k prover messages and a degree d verifier. For R1CS, where k =
1 and d = 2, this yields the same protocol and efficiency as Nova [22]. We
can further reduce the size of the recursive circuit to only k + 2 group scalar
multiplication, by compressing all verification equations using a random linear
combination.

Efficient Simple Protocols for Rmplkup. Equipped with this compiler, we design
Protostar, a simple and efficient IVC scheme for a highly expressive language
Rmplkup that supports multiple non-uniform circuits and enables high degree and
lookup gates. The schemes can be instantiated from any linearly homomorphic
vector commitment, e.g., the discrete logarithm-based Pedersen commitment
[26], and do not require a trusted setup or the computation of large FFTs. The
protocol has several advantages over prior schemes:

Non-uniform IVC without overhead. Each iteration has a program counter
pc that selects one out of I circuits. Part of the circuit constrains pc; e.g.,

2 When instantiated with elliptic curve Pedersen commitments, this translates to d +
k − 1 elliptic curve multiplications. This is usually the largest component of the
recursive statement.

80 B. Bünz and B. Chen

pc could depend on the iteration or indicate which instruction within a VM
is executed. The IVC-prover, including the recursive statement, only requires
one exponentiation per non-zero bit in the witness. The prover’s computation
is independent of I.

Flexible high degree gates. Our protocol supports Plonk-like constraint sys-
tems with degree d gates instead of just addition and multiplication. The
recursive statement consists of 3 group scalar multiplications and d + O(1)
hash and field operations. Unlike in traditional Plonk, there is no additional
cost for additional gate types (of degree less than d) and additional selectors.
This enables a high level of non-uniformity, even within a circuit.

Lookups, linear and independent of table size. Protostar supports
lookup gates that ensure a value is in some precomputed table T . In each
computation step, the prover commits to 2 vectors of length �lk, where �lk is
the number of lookups. The prover, in each step, is independent of the table
size (assuming free indexing in T). We also support tables that store tuples of
size v using 1 additional challenge computations within the recursive circuit.

Table 1. The comparison between IVCs.

Protostar HyperNova SuperNova

Language Degree d Plonk/CCS Degree d CCS R1CS (degree 2)

Non-uniform yes no yes

P native
|w|G

O(|w|d log2 d)F

|w|G
O(|w|d log2 d)F

|w|G

extra P native

w/ lookup
O(|�lk|)G O(T)F N/A

P recursive

3G

(d + O(1))H + Hin

(d + O(1))F

1G

d log nH + Hin

O(d log n)F

2G

Hin + O(1)H + 1HG

extra P recursive

w/ lookup
1H

O(log T)H

O(�lk log T)F
N/A

Our protocols are built of multiple small building blocks. In the protocol for
high-degree gates, the prover simply sends the witness, and the degree d veri-
fier checks the circuit with degree d gates. For lookup, we leverage an insight
by Haböck [17] on logarithmic derivates. This yields a protocol where a prover
performing �lk in a table of size T only needs to commit to two vectors of length
�lk, independent of T . This is the most efficient lookup protocol today. While
the verification is linear time, it is low degree (2) and thus compatible with our
generic compiler. Combining all these yields Protostar, a new IVC-scheme for
Rmplkup. We compare Protostar, with SuperNova [21] and HyperNova [20],
in Table 1 (for more detail see Corollary 1): P native is the running time of

Protostar: Generic Efficient Accumulation/Folding 81

the accumulation prover and P recursive refers to the cost of implementing the
accumulation verifier as a circuit. In the table, |w| is the number of non-zero
entries of the witness for circuit i, and �lk is the number of lookups in a table
of size T . G is the cost of a group scalar multiplication. F is the cost of a field
multiplication. dH denotes the cost of hashing d λ-bit numbers. We assume that
the cost scales linearly with the size of the input and output. In Protostar
d field elements are hashed once and in HyperNova d field elements are hashed
log(n) times. HG is the cost of a hash-to-group function. Hin is the cost of hashing
the public input and the accumulator instance. Note that the O(1)H in Super-
Nova’s recursive circuit involves constant number of hashes to the input of two
accumulator instances and one circuit verification key, by using multiset-based
offline memory checking in a circuit [28].

Concurrent Work. In a paper concurrent with this work, Kothapalli and
Setty [20] introduce an IVC for high degree relations. They use a generaliza-
tion of R1CS called customizable constraint systems (CCS) [29] that covers the
Plonkish relations. It also enables gates with a high additive fan-in. Protostar
also has no restriction to the fan-in an individual gate has, but we subsequently
showed that our compiler can also be directly applied to CCS (See full ver-
sion [7]). HyperNova is based on so-called multi-folding schemes. They also pro-
vide a lookup argument suitable for recursive arguments. However, they do not
explicitly explain how to integrate lookup to Plonk/CCS in their IVC scheme or
provide any explicit constructions for non-uniform computations. Their scheme
is built using sumchecks [23] and the resulting IVC recursive circuit is dominated
by 1 group scalar multiplication, d log n + �in hash operations and O(d log n+�in)
field multiplications where d is the custom gate degree, n is the number of gates
and �in is the public input length. In comparison, our IVC recursive circuit, even
with lookup and non-uniformity support, is only dominated by 3 group scalar
multiplications and O(�in + d) field/hash operations, entirely independent of n.
The 2 additional group operations compared to HyperNova are likely offset by
the additional lookup support [32] and the significantly fewer hashes and non-
native field operations (d vs. d log(n)). A detailed comparison is given in Table 1.

For a lookup relation with table size T and �lk lookup gates, their accu-
mulation/folding scheme leads to an accumulation prover whose work is domi-
nated by O(T) field operations and an accumulation verifier whose work is dom-
inated by O(�lk log T) field operations and O(log T) hashes. This is undesirable
when the table size T � �lk. In comparison, our scheme has prover complexity
O(�lk) and the verifier is only dominated by 3 group scalar multiplications, 2
hashes and 2 field multiplications. Moreover, the lookup support adds almost
no overhead to the IVC scheme for high-degree Plonk relations. In particular,
it adds no group scalar multiplications. Lastly, their lookup scheme does not
support vector-valued lookups, which is essential for applications like ZK-EVM
and encoding bit-wise operations in circuits.

82 B. Bünz and B. Chen

1.1 Technical Overview

Given an NP-complete relation R, we introduce a generic framework for con-
structing efficient incremental verifiable computation (IVC) schemes with predi-
cates expressed in R. For R being the non-uniform Plonkup circuit satisfiability
relation, we obtain an efficient (non-uniform) IVC scheme for proving correct
program executions on stateful machines (e.g., EVM). The framework starts by
designing a simple special-sound protocol Πsps for relation R, which is easy to
analyze. Next, we use a generic compiler to transform Πsps into a Non-interactive
Argument of Knowledge Scheme (NARK) whose verification predicate is easy
to accumulate/fold. Finally, we build an efficient accumulation/folding scheme
for the NARK verifier, and apply the generic compiler from [8] to obtain the
IVC/PCD scheme for relation R. We describe the workflow in Fig. 1.

Fig. 1. The workflow for building an IVC from a special sound protocol. We start
from a special-sound protocol Πsps for an NP-complete relation RNP, and transform
it to CV[Πsps] with a compressed verifier check. CV[Πsps] is converted to a NARK
FS[cm[CV[Πsps]]] via commit-and-open and the Fiat-Shamir transform. We then build
a generic accumulation scheme for the NARK and apply Theorem 1 from [8] to obtain
the IVC scheme. This last connection is dotted as it requires heuristically replacing
random oracles with cryptographic hash functions.

The paper begins by describing the compiler from special-sound protocols to
NARKs in Sect. 3, and presents an efficient accumulation scheme for the compiled
NARK verifier in Sect. 3.2. Next, we describe simple and efficient special-sound
protocols for Plonkup circuit-satisfiability relations and extend it to support
non-uniform computation in Sect. 5. Similarly, we extend the CCS relation [29]
to support non-uniform computation and lookup (see full version [7]). We give
an overview of our approach below.

Efficient IVCs from Special-Sound Protocols. Let Πsps be any multi-round
special-sound protocol for some relation R, in which the verifier is algebraic,
that is, the verifier algorithm only checks algebraic equations over the input
and the prover messages. E.g., the following naive protocol for the Hadamard
product relation over vectors a,b, c ∈ F

n is special-sound and has a degree-2
algebraic verifier: The prover simply sends the vectors a, b, c to the verifier,

Protostar: Generic Efficient Accumulation/Folding 83

and the verifier checks that ai · bi = ci for all i ∈ [n]. However, as shown in
the example, the prover message can be large in Πsps and the folding scheme
can be expensive if we directly accumulate the verifier predicate. Inspired by
the splitting accumulation scheme [8], to enable efficient accumulation/folding,
we split each prover message into a short instance and a large opening, where
the short instance is built from the homomorphic commitment to the prover
message. Next, we use the Fiat-Shamir transform to compile the protocol into a
NARK where the verifier challenges are generated from a random oracle.

Now we can view the NARK transcript as an accumulator (or a relaxed NP
instance-witness pair in the language of folding schemes), where the accumula-
tor instance consists of the prover message commitments and the verifier chal-
lenges; while the accumulator witness consists of the prover messages (i.e., the
opening to the commitments). Note we also need to introduce an error vec-
tor/commitment into the accumulator witness/instance to absorb the “noise”
that arises after each accumulation/folding step.

In the accumulation scheme, given two accumulators (or NARK proofs), the
prover folds the witnesses and the instances of both accumulators via a random
linear combination and generates a list of d “error-correcting terms” as accu-
mulation proof (d is the degree of the NARK verifier); the verifier only needs
to check that the folded accumulator instance is consistent with the accumu-
lation proof and the original instances being folded, both of which are small.
After finishing all the accumulation steps, a decider applies a final check to the
accumulator, scrutinizing that (i) the accumulator witness is consistent with the
commitments in the accumulator instance, and (ii) the “relaxed” NARK veri-
fier check still passes. Here by “relaxed” we mean that the algebraic equation
also involves the error vector in the accumulator. If the decider accepts, this
implies that all accumulated NARKs were valid and thus that all accumulated
statements are in R (and the prover knows witnesses for these statements).

Finally, given the accumulation scheme, if the relation R is NP-complete, we
can apply the compiler in [8] to obtain an efficient IVC scheme with predicates
expressed in R.

In Theorem 3, we show that for any (2k − 1)-move3 special-sound protocols
with degree-d verifiers, the resulting IVC recursive circuit only involves k +
d + O(1) hashes, k + 1 non-native field operations and k + d − 1 commitment
group scalar multiplications. We also introduce a generic approach for further
reducing the number of group operations to k + 2 in Sect. 3.3. This is favorable
for d ≥ 3. The idea is to compress all � degree d verification checks into a
single verification check using a random linear combination with powers of a
challenge β. This means that error-correcting terms are field elements and, thus,
can be sent directly without committing to them. The prover also sends a single
commitment to powers of β and powers of β

√
�. The verification equation uses one

power of β and one power of β
√

�, which increases the degree of the verification
check to d + 2. The verifier also checks the correctness of the powers of β using
2
√

� degree 2 checks.

3 k prover messages, k − 1 challenges.

84 B. Bünz and B. Chen

Special-Sound Protocols for (Non-uniform) Plonkup Relations. Given the generic
compiler above, our ultimate goal of constructing a (non-uniform) IVC scheme
for zkEVM becomes much easier. It is now sufficient to design a multi-round
special-sound protocol for the (non-uniform) Plonkup relation. We describe the
components of the special-sound protocol in Fig. 2. Note we also extend CCS
relation [29] to support lookup and non-uniform computation and build a special-
sound protocol for it (See Fig. 2). Recall that a Plonkup circuit-satisfiability rela-
tion consists of three modular relations, namely, (i) a high-degree gate relation
checking that each custom gate is satisfied; (ii) a permutation (wiring-identity)
relation checking that different gate values are consistent if the same wire con-
nects them, and (iii) a lookup relation checking that a subset of gate values
belongs to a preprocessed table. The special-sound protocols for the permuta-
tion and high-degree gate relations are trivial, where the prover directly sends
the witness to the verifier, and the verifier checks that the permutation/high-
degree gate relation holds. The degree of the permutation check is only 1, and
the degree of the gate-check is the highest degree in the custom gate formula.

Fig. 2. The special-sound protocols for Protostar and Protostarccs. The special-
sound protocol Πmplkup for the multi-circuit Plonkup relation Rmplkup consists of the
sub-protocols for permutation, high-degree custom gate, lookup, and circuit selection
relations. The special-sound protocol Πmccs+ for the extended CCS relation Rmccs+

consists of the sub-protocols for lookup, circuit selection, as well as the CCS rela-
tion [29]. From Πmplkup or Πmccs+, we can apply the workflow described in Fig. 1 to
obtain the IVC schemes Protostar or Protostarccs.

The special-sound protocol for the lookup relation RLK is more interesting
as the statement of the lookup relation is not algebraic. Inspired by the log-
derivative lookup scheme [17], in Sect. 4.3, we design a simple 3-move special-
sound protocol ΠLK for RLK, in which the verifier degree is only 2. A great
feature of ΠLK is that the number of non-zero elements in the prover messages
is only proportional to the number of lookups, but independent of the table size.
Thus the IVC prover complexity for computing the prover message commitments
is independent of the table size, which is advantageous when the table size is
much larger than the witness size. However, the prover work for computing the
error terms is not independent of the table size because the accumulator is not
sparse. Fortunately, we observe that the prover can efficiently update the error
term commitments without recomputing the error term vectors from scratch,

Protostar: Generic Efficient Accumulation/Folding 85

thus preserving the efficiency of the accumulation prover. Moreover, we extend
ΠLK in Sect. 4.3 to further support vector-valued lookup, where each table entry
is a vector of elements. This feature is useful in applications like zkEVM and for
simulating bit operations in circuits.

Given the special-sound protocols for permutation/high-degree gate/lookup
relations, the special-sound protocol Πplonkup for Plonkup is just a parallel com-
position of the three protocols. Furthermore, in Sect. 5, we apply a simple trick
to support non-uniform IVC. More precisely, let {Ci}I

i=1 be I different branch
circuits (e.g., the set of supported instructions in EVM), let pi := (pc, pi′) be
the public input where pc ∈ [I] is a program counter indicating which instruc-
tion/branch circuit is going to be executed in the next IVC step. Our goal is
to prove that (pi,w) is in the relation Rmplkup in the sense that Cpc(pi,w) = 0
for witness w. The relation statement can also add additional constraints on pc
depending on the applications. The special-sound protocol for Rmplkup is almost
identical to Πplonkup for the Plonkup relation, except that the prover further
sends a bool vector b ∈ F

I , and the verifier uses 2I degree 2 equations to check
that bpc = 1 and bi = 0∀i �= pc. Additionally, each algebraic equation G checked
in Πplonkup is replaced with

∑I
i=1 Gi · bi where Gi (1 ≤ i ≤ I) is the correspond-

ing gate in the i-th branch circuit. The resulting special-sound protocol has 3
moves, and the verifier degree is d+1, where d is the highest degree of the custom
gates. This means that the IVC scheme for the non-uniform Plonkup relation
adds negligible overhead to that for the Plonkup relation.

2 Preliminaries

The definitions of special-sound protocols and non-interactive arguments follow
from [1]. We defer the definition of Fiat-Shamir transform and commitment
schemes to the full version [7].

Lemma 1 (Fiat-Shamir transform of Special-sound Protocols [1]). The
Fiat-Shamir transform of a (α1, . . . , αμ)-out-of-N special-sound interactive proof
Π is knowledge sound with knowledge error

κfs(Q) = (Q + 1)κ

where κ = 1 −
∏

(1 − αi

N) is the knowledge error of the interactive proof Π.

2.1 Incremental Verifiable Computation (IVC)

We adapt and simplify the definition from [8,22].

Definition 1 (IVC). An incremental verifiable computation (IVC) scheme for
function predicates expressed in a circuit-satisfiability relation RNP is a tuple of
algorithms IVC = (PIVC,VIVC) with the following syntax and properties:

– PIVC(m, z0, zm, zm−1,wloc, πm−1]) → πm. The IVC prover PIVC takes as input
a program output zm at step m, local data wloc, initial input z0, previous
program output zm−1 and proof πm−1 and outputs a new IVC proof πm.

86 B. Bünz and B. Chen

– VIVC(m, z0, zm, πm) → b. The IVC verifier VIVC takes the initial input z0, the
output zm at step m, and an IVC proof πm, ‘accepts’ by outputting b = 0 and
‘rejects’ otherwise.

The scheme IVC has perfect adversarial completeness if for any func-
tion predicate φ expressible in RNP, and any, possibly adversarially created,
(m, z0, zm, , zm−1,wloc, πm−1) such that

φ(z0, zm, zm−1,wloc) ∧ (VIVC(m − 1, z0, zm−1, πm−1) = 0)

it holds that VIVC(m, z0, zm, πm) accepts for proof πm ← PIVC(m, z0, zm−1,
zm,wloc, πm−1).

The scheme IVC has knowledge soundness if for every expected polynomial-
time adversary P∗, there exists an expected polynomial-time extractor ExtP∗ such
that

Pr

⎡

⎣
VIVC(m, z0, z, πm) = 0∧

([∃i ∈ [m] ,¬φ(z0, zi, zi−1,wi)]
∨z �= zm)

∣
∣
∣
∣
[φ, (m, z0, z, πm)] ← P∗

[zi,wi]
m
i=1 ← ExtP∗

⎤

⎦ ≤ negl(λ) .

Here m is a constant.

Efficiency. The runtime of PIVC and VIVC as well as the size of πIVC only depend
on |φ| and are independent on the number of iterations.

Recently, [21] introduced the notion of non-uniform IVC, where the predicate
φ is selected from a fixed set of predicates at every step of the computation.
The selection depends on the current state of the computation. Non-uniform
IVC fits into our model by simply setting the predicate to be the union of all
predicates, including the selection circuit. The one key difference is an additional
efficiency requirement that the IVC prover in step i only depends on the size
of the predicate that is being executed in step i. Our Protostar construction
achieves this requirement.

2.2 Simple Accumulation

We take definitions and proofs from [8].

Definition 2 (Accumulation Scheme). An accumulation scheme for a
NARK (PNARK,VNARK) is a triple of algorithms acc = (Pacc,Vacc,D), all of which
have access to the same random oracle ρacc as well as ρNARK, the oracle for the
NARK. The algorithms have the following syntax and properties:

– Pacc(pi, π = (π.x, π.w), acc = (acc.x, acc.w)) → {acc′ = (acc′.x, acc′.w), pf}.
The accumulation prover Pacc takes as input a statement pi, NARK proof π,
and an accumulator acc and outputs a new accumulator acc′ and correction
terms pf.

Protostar: Generic Efficient Accumulation/Folding 87

– Vacc(pi, π.x, acc.x, acc′.x, pf) → v. The accumulation verifier takes as input
the statement pi, the instances of the NARK proof, the old and new accumu-
lator, the correction terms, and ‘accepts’ by outputting 0 and ‘rejects’ other-
wise.

– D(acc) → v. The decider on input acc ‘accepts’ by outputting 0 and ‘rejects’
otherwise.

An accumulation scheme has knowledge-soundness with knowledge error κ if
the RO-NARK (P′,V′) has knowledge error κ for the relation

Racc((pi, π.x, acc.x); (π.w, acc.w)) : (VNARK(pi, π) = 0 ∧ D(acc) = 0) ,

where P′ outputs acc′, pf and V′ on input ((pi, π.x, acc.x), (acc′, pf)) accepts if
D(acc′) and Vacc(pi, π.x, acc.x, acc′.x, pf) = 0.

The scheme has perfect completeness if the RO-NARK (P′,V′) has perfect
completeness for Racc.

Theorem 1 (IVC from accumulation [8]). Given a standard-model NARK
for circuit-satisfiability and a standard-model accumulation scheme (Definition
2) for that NARK, both with negligible knowledge error, there exists an efficient
transformation that outputs an IVC scheme (see Sect. 3.2 of [8]) for constant-
depth compliance predicates, assuming that the circuit complexity of the accu-
mulation verifier Vacc is sub-linear in its input.

Random Oracle. Note that both the NARK and accumulation scheme we con-
struct are in the random oracle model. However, Theorem 1 requires a NARK
and an accumulation scheme in the standard model. It remains an open problem
to construct such schemes. However, we can heuristically instantiate the random
oracle with a cryptographic hash function and assume that the resulting schemes
still have knowledge soundness.

Definition 3 (Fiat-Shamir Heuristic). The Fiat-Shamir Heuristic, relative
to a secure cryptographic hash function H, states that a random oracle NARK
with negligible knowledge error yields a NARK that has negligible knowledge error
in the standard (CRS) model if the random oracle is replaced with H.

Complexity. The IVC transformation from [8] recursively proves that the accu-
mulation was performed correctly. To do that, it implements Vacc as a circuit
and proves that the previous accumulation step was done correctly. Note that
this recursive circuit is independent of the size of π.w, acc.w and the runtime
of D. The IVC prover is linear in the size of the recursive circuit plus the size
of the IVC computation step expressed as a circuit. The final IVC verifier and
the IVC proof size are linear in these components. This can be reduced using an
additional SNARK as in [22].

88 B. Bünz and B. Chen

PCD. IVC can be generalized to arbitrary DAGs instead of just path graphs in a
primitive called proof-carrying data [3]. Accumulation schemes can be compiled
into full PCD if they support accumulating an arbitrary number of accumulators
and proofs [8,9]. For simplicity, we only build accumulation for one proof and
one accumulator, as well as for two accumulators. This enables PCD for DAGs
of degree two. By transforming higher degree graphs into degree two graphs (by
converting each degree d node into a log2(d) depth tree), we can achieve PCD
for these graphs.

Outsourcing the Decider. In the accumulation to IVC transformation, the IVC
proof is linear in the accumulator, and the IVC verifier runs the decider. The
accumulation schemes we construct are linear in the witness of a single com-
putation step. However, we can outsource the decider by providing a SNARK
that, given acc.x, proves knowledge of acc.w, such that D(acc) = 0. Nova [22]
constructs a custom, concretely efficient SNARK for their accumulation/folding
scheme.

3 Protocols

3.1 Special-Sound Protocols and Their Basic Transformations

In this section, we describe a class of special-sound protocols whose verifier is
algebraic. The protocol Πsps has 3 essential parameters k, d, � ∈ N, meaning that
Πsps is a (2k − 1)-move protocol with verifier degree d and output length � (i.e.
the verifier checks � degree d algebraic equations). In each round i (1 ≤ i ≤ k),
the prover Psps(pi,w, [mj , rj]i−1

j=1) generates the next message mi on input the
public input pi, the witness w, and the current transcript [mj , rj]i−1

j=1, and sends
mi to the verifier; the verifier replies with a random challenge ri ∈ F. After the
final message mk, the verifier computes the algebraic map Vsps and checks that
the output is a zero vector of length �. More precisely, deg(Vsps) = d, s.t.

Vsps(pi, [mi]ki=1, [ri]k−1
i=1) :=

d∑

j=0

f
Vsps

j (pi, [mi]ki=1, [ri]k−1
i=1) ,

where f
Vsps

j is a homogeneous degree-j algebraic map that outputs a vector of �
field elements.

Commit and Open. For a commitment scheme cm = (Setup,Commit), con-
sider the following relation RR

cm = (x;w,m ∈ M,m′ ∈ M) : {(x,w) ∈
R ∨ (Commit(m) = Commit(m′) ∧ m �= m′)}. The relation’s witness is either a
valid witness for R or a break of the commitment scheme cm. We now design
a special-sound protocol Πcm = (Pcm,Vcm) for RR

cm given Πsps = (Psps,Vsps), a
special-sound protocol for R. Pcm runs Psps to generate the ith message and then
commits to the message. Along with the final message, Pcm sends the opening
to the commitment. The verifier Vcm checks the correctness of the commitments
and runs Vsps on the commitment openings.

Protostar: Generic Efficient Accumulation/Folding 89

Lemma 2 (Πcm is (a1, . . . , aμ)-special-sound). Let Πsps be an (a1, . . . , aμ)-
out-of-N special-sound protocol for relation R, where the prover messages are all
in a set M. Let (Setup,Commit) be a binding commitment scheme for messages
in M. For ck ← Setupcm(1λ) let Rcm = (pi;w,m ∈ M,m′ ∈ M) : (pi;w) ∈
R ∨ (Commit(ck,m) = Commit(ck,m′) ∧ m �= m′). Then Πcm = cm[Πsps] is an
(a1, . . . , aμ)-out-of-N special-sound protocol for RR

cm.

We defer the proof to the full version [7].

Fiat-Shamir Transform. Let ρNARK be a random oracle. Let Πcm be the commit-
and-open protocol for the special-sound protocol Πsps = (Psps,Vsps). The Fiat-
Shamir Transform FS[Πcm] of the protocol Πcm is the following. The prover
generates the round challenges by computing ρNARK on input the challenge and
the prover message commitment in the previous round. The prover then sends
the proof as the list of prover messages and the corresponding commitments.
The verifier checks the proof by recomputing the challenges and runs the verifier
for Πcm. By Lemma 1, FS[Πcm] is knowledge sound if Πsps is special-sound.

3.2 Accumulation Scheme for VNARK

Let ρacc and ρNARK be two random oracles, and let VNARK be the verifier
of FS[Πcm] in Sect. 3.1, whose underlying special-sound protocol is Πsps =
(Psps,Vsps) for a relation R. We describe the accumulation scheme for VNARK.

The accumulated predicate. The predicate to be accumulated is the “relaxed”
verifier check of the NARK scheme FS[Πcm] for relation R. Namely, given public
input pi ∈ M�in , random challenges [ri]k−1

i=1 ∈ F
k−1, a NARK proof

π.x = [Ci]ki=1, π.w = [mi]ki=1

where [Ci]ki=1 ∈ Ck are commitments and [mi]ki=1 are prover messages in the
special-sound protocol Πsps, and a slack variable μ, the predicate checks that
(i) ri = ρNARK(ri−1, Ci) for all i ∈ [k − 1] (where r0 := ρNARK(pi)), (ii)
Commit(ck,mi) = Ci for all i ∈ [k], and (iii)

Vsps(pi, π.x, π.w, [ri]k−1
i=1 , μ) :=

d∑

j=0

μd−j · f
Vsps

j (pi, π.w, [ri]k−1
i=1) = e

where e = 0� and μ = 1 for the NARK verifier VNARK. Here f
Vsps

j is a degree-j
homogeneous algebraic map that outputs � field elements. Degree-j homogeneity
says that each monomial term of f

Vsps

j has degree exactly j.

Remark 1. Without loss of generality, we assume that the public input pi is of
constant size, as otherwise, we can set it as the hash of the original public input.

90 B. Bünz and B. Chen

Accumulator. The accumulator has the following format:

– Accumulator instance acc.x := {pi, [Ci]ki=1, [ri]k−1
i=1 , E, μ}, where pi ∈ M�in is

the accumulated public input, [Ci]ki=1 ∈ Ck are the accumulated commit-
ments, [ri]k−1

i=1 ∈ F
k−1 are the accumulated challenges, E ∈ C is the accumu-

lated commitment to the error terms, and μ ∈ F is a slack variable.
– Accumulator witness acc.w := {[mi]ki=1}, where [mi]ki=1 are the accumulated

prover messages.

Accumulation Prover. On input commitment key ck (which can be hardwired
in the prover’s algorithm), accumulator acc, an instance-proof pair (pi, π) where

acc := (acc.x = {pi′, [C ′
i]

k
i=1, [r

′
i]

k−1
i=1 , E, μ}, acc.w = {[m′

i]
k
i=1}) ,

π := (π.x = [Ci]ki=1, π.w = [mi]ki=1),

the accumulation prover Pacc works as in Fig. 3.

Accumulation Verifier. On input public input pi, NARK proof instance π.x,
accumulator instance acc.x, accumulation proof pf, and the updated accumulator
instance acc′.x := {pi′′, [C ′′

i]ki=1, [r
′′
i]ki=1, E

′, μ′}, the accumulation verifier Vacc

works as in Fig. 3.

Decider. On input the commitment key ck (which can be hardwired) and an
accumulator

acc = (acc.x = {pi, [Ci]ki=1, [ri]k−1
i=1 , E, μ}, acc.w = {[mi]ki=1}),

the decider does the checks described in Fig. 4.

Theorem 2. Let (PNARK,VNARK) be the RO-NARK defined in Sect. 3.1. Let
cm = (Setup,Commit) be a binding, homomorphic commitment scheme. Let ρacc
be another random oracle. The accumulation scheme (Pacc,Vacc,Dacc) for VNARK

satisfies perfect completeness and has knowledge error (Q + 1)d+1
|F| + negl(λ) as

defined in Definition 2, against any randomized polynomial-time Q-query adver-
sary.

Proof. Completeness: Consider any tuple ((pi, π), acc) ∈ Racc, that is,
VNARK(pi, π) and D(acc) both accept. Let (acc′, pf) denote the output of the accu-
mulation prover Pacc(ck, acc, (pi, π)). We argue that both the decider D(acc′) and
the accumulation verifier Vacc(pi, π.x, acc.x, pf, acc′.x) will accept, which finishes
the proof of perfect completeness by Definition 2.

Vacc accepts as Pacc and Vacc go through the same process of computing chal-
lenges [ri]k−1

i=1 and α, thus the linear combinations of acc.x and (pi, π.x; pf, [ri]k−1
i=1)

via α will be consistent.
We prove that D(acc′) accepts by scrutinizing the following decider checks.
The check acc′.Ci

?= Commit(ck, acc′.mi) succeeds for all i ∈ [k]. This is
because

acc′.{Ci,mi} = acc.{Ci,mi} + α · π.{Ci,mi}

Protostar: Generic Efficient Accumulation/Folding 91

Fig. 3. Accumulation Prover/Verifier for low-degree Fiat-Shamired NARKs

Fig. 4. Accumulation Decider for low-degree Fiat-Shamired NARKs

92 B. Bünz and B. Chen

for all i ∈ [k], where π.Ci = Commit(ck, π.mi) because VNARK(pi, π) accepts, and
acc.Ci = Commit(ck, acc.mi) because D(acc) accepts. Thus the check succeeds
by the homomorphism of the commitment scheme.

The decider computes e′ ←
∑d

j=0(acc
′.μ)d−jf

Vsps

j (acc′.{pi, [mi]ki=1, [ri]k−1
i=1 })

such that for e =
∑d

j=0 acc.μ
(d−j) · f

Vsps

j (acc.{pi, [mi]ki=1, [ri]k−1
i=1 }), it holds that

e′ = e +

d−1∑

j=1

αj · pf.ej

=
d∑

j=0

(α + acc.μ)d−j · f
Vsps

j (α · {pi, π.[mi]
k
i=1, [ri]

k−1
i=1 } + acc.{pi, [mi]

k
i=1, [ri]

k−1
i=1 }) .

By the definition of pf.ej and the homomorphism of the commitment scheme,
and because D(acc) accepts and checks E = Commit(ck, e), we have that E′ =
Commit(ck, e′).

Knowledge-Soundness: We show that the scheme has knowledge-soundness
by showing that there exists an underlying (d + 1)-special-sound protocol
and then applying the Fiat-Shamir transform to show that the accumula-
tion scheme is knowledge sound. Consider the public-coin interactive protocol
ΠI = (PI(pi, π, acc),VI(pi, π.x, acc.x)) where PI sends pf = [Ej]d−1

j=1 ∈ G
d−1 as

computed by Pacc to VI . The verifier sends a random challenge α ∈ F, and the
prover PI responds with acc′ as computed by Pacc. VI accepts if Dacc(acc′) = 0
and Vacc(pi, π.x, acc.x, pf, acc′.x) = 0 using the random challenge α, instead of a
Fiat-shamir challenge.

Claim 1: ΠI is (d + 1)-special-sound Consider the relation Racc where Racc is
defined in Definition 2. Consider d + 1 accepting transcripts for ΠI :

{Ti := (pi, π.x, acc.x; acc′
i, pfi)}d+1

i=1 .

We construct an extractor Extacc that extracts a witness for Racc(pi.π.x, acc.x)
given T .

For all i ∈ [d + 1],

(acc′
i) = (μ′

i, pi
′
i, [C

′
i,j]

k
j=1, [ri,j]k−1

j=1 , E′
i, [m

′
i,j]

k
j=1)

and pfi = pf = [Ej]d−1
j=1 .

Given that the transcripts are accepting, i.e. both Vacc and Dacc accept, we
have that Commit(ck, e′

i) = E′
i = acc.E +

∑d−1
j=1 αj

i Ej for all i ∈ [d + 1], whereas

e′
i :=

d∑

j=0

μ′
i
d−j

fR
j (π′

i, [m
′
i,j]

k
j=1, [ri,j]k−1

j=1) .

Using a Vandermonde matrix of the challenges α1, . . . , αd we can compute
e, [ej]d−1

j=1 such that Ej = Commit(ck, ej) and acc.E = Commit(ck, e) from the
equations above. Therefore we have that e′

i = e +
∑d−1

j=1 αj
iej for all i ∈ [d + 1].

Protostar: Generic Efficient Accumulation/Folding 93

Additionally using two challenges (α1, α2), Extacc can compute π.w =
[mj]kj=1 = [acc

′.m1,j−acc′.m2,j
α1−α2

]kj=1. It holds that acc.mj = acc′.m1,j−α1·π.mj∀j ∈
[k], such that π.Cj = Commit(ck, π.mj) and acc.Cj = Commit(ck, acc.mj). If for
any other challenge and any j, acc′.mj �= απ.mj +acc.mj , then this can be used
to compute a break of the commitment scheme cm. This happens with negligible
probability by assumption.

Otherwise, we have that
∑

j=0 μd−j
i fR

j (πj , [mi,j]ki=1, [ri,j]k−1
i=1)−ei = 0 for all

i ∈ [d + 1]. Together this implies that the degree d polynomial

p(X) =
d∑

j=0

(X + acc.μ)d−j · fVsps

j (X · pi+ acc.pi, [X ·mi + acc.mi]
k
i=1, [X · ri + acc.ri]

k−1
i=1)

− e−
d−1∑

j=1

ejXj , (1)

is zero on d+1 points (α1, . . . , αd+1), i.e. is zero everywhere. The constant term
of this polynomial is

d∑

j=0

acc.μd−j · f
Vsps

j (acc.pi, [acc.mi]ki=1, [acc.ri]k−1
i=1) − e .

It being 0 implies that D(acc) = 0. Additionally, the degree d term of the
polynomial is

d∑

j=0

f
Vsps

j (pi, [π.mi]ki=1, [π.ri]k−1
i=1) .

Together with Vacc checking that the challenges ri are computed correctly this
implies that VNARK(pi, π) = 0. Ext thus outputs a valid witness (π.w, acc.w) ∈
Racc(pi, π.x, acc.x) and thus ΠI is (d + 1)-special-sound. Using Lemma 1, we
have that ΠAS = FS[ΠI] is a NARK for Racc with knowledge soundness (Q +
1) · d+1

|F| + negl(λ). This implies that acc is an accumulation scheme with ((Q +
1) · d+1

|F| + negl(λ))-knowledge soundness. ��

3.3 Compressing Verification Checks for High-Degree Verifiers

Observe that the accumulation prover needs to perform Ω(d�) group operations
to commit to the d − 1 error vectors ej ∈ F

� (1 ≤ j < d); and the accumulation
verifier needs to check the combination of d error vector commitments. This can
be a bottleneck when the verifier degree d is high. In this circumstance, we can
optimize the accumulation complexity by transforming the underlying special-
sound protocol Πsps into a new special-sound protocol CV[Πsps] for the same
relation R. This optimization compresses the � degree-d equations checked by the
verifier into a single degree-(d + 2) equation using a random linear combination,
with the tradeoff of additionally checking 2

√
� degree-2 equations. We describe

the generic transformation below.

94 B. Bünz and B. Chen

Compressing Verification Checks. W.l.o.g. assume � is a perfect square, then we
can transform Πsps into a special-sound protocol CV[Πsps] where the Vsps reduces
from � degree-d checks to 1 degree-(d + 2) check and additionally 2

√
� degree-2

checks. Instead of checking the output of Vsps to be � zeroes, we take a random
linear combination of the � verification equations using powers of a challenge β.
For example, if the map is Vsps(x1, x2) := (Vsps,1(x1, x2),Vsps,2(x1, x2)) = (x1 +
x2, x1x2) we can set the new algebraic map as V′

sps(x1, x2, β) := Vsps,1(x1, x2)+β ·
Vsps,2(x1, x2) = (x1+x2)+βx1x2 for a random β. Doing this naively reduces the
output length to 1 but also requires the verifier to compute the appropriate pow-
ers of β. This would increase the degree by �, an undesirable tradeoff. To mitigate
this, we can have the prover precompute powers of β, i.e. β, β2, . . . , β� and send
them to the verifier. The verifier then only needs to check consistency between
the powers of β, which can be done using a degree 2 check, e.g. βi+1 = βi · β
and the degree d verification equation increases in degree by 1. This mitigates
the degree increase but requires the prover to send another message of length �.
To achieve a more optimal tradeoff, we write each i = j +k ·

√
� for j, k ∈ [1,

√
�].

The prover then sends
√

� powers of β and
√

� − 1 powers of β
√

�. From these,
each power of β from 1 to � can be recomputed using just one multiplication.
This results in the prover sending an additional message of length 2

√
�, the orig-

inal � verification checks being transformed into a single degree d + 2 check and
additionally 2

√
� degree 2 checks for the consistency of the powers of β.

Fig. 5. Compressed verification of Πsps.

Protostar: Generic Efficient Accumulation/Folding 95

We describe the transformed protocol in Fig. 5, where

V′
sps(pi, [mi]k+1

i=1 , ([ri]k−1
i=1 , β)) :=

√
�−1∑

i=0

√
�−1∑

j=0

βi · β′
j · Vsps,i+j

√
�(pi, [mi]ki=1, [ri]k−1

i=1)

=
�−1∑

j=0

βj · Vsps,j(pi, [mi]ki=1, [ri]k−1
i=1)

and Vsps,j(pi, [mi]ki=1, [ri]k−1
i=1) is the (j + 1)-th (0 ≤ j < �) equation checked by

Vsps. The transformed protocol is a (2k +1)-move special-sound protocol for the
same relation R. The transformed verifier now checks 1 degree-(d + 2) equation
and additionally 2

√
� degree-2 equations.

Lemma 3. Let Πsps be a (2k − 1)-move protocol for relation R with (a1, . . . ,
ak−1)-special-soundness, in which the verifier outputs � elements. The trans-
formed protocol CV[Πsps] of Πsps is (a1, . . . , , ak−1, �)-special-sound.

We defer the proof to the full version [7].

High-Low Degree Accumulation. After the transformation, the error vectors ej

(1 ≤ j ≤ d + 1) become single field elements, and we can use the trivial com-
mitment Ej := Commit(ck, ej) := ej without group operations. Additionally,
we can use a separate error vector e′ ∈ F

2
√

� to keep track of the error terms
for the 2

√
� degree-2 checks, and set E′ := Commit(ck, e′) ∈ G to be the cor-

responding error commitment. The accumulation prover only needs to perform
O(

√
�) additional group operations to commit mk+1 and e′, and compute the

coefficients of a degree-(d + 2) univariate polynomial, which is described as the
sum of O(�) polynomials. The accumulator instance needs to include one more
challenge β and two commitments (for mk+1 and e′). The accumulator verifier
needs to do only k + 2 (rather than k + d − 1) group scalar multiplications,
with the tradeoff of 1 more hash and O(d) more field operations. This high-low
degree accumulation is described in detail in the full version [7].

Theorem 3 (IVC for high-degree special-sound protocols). Let F be a
finite field, such that |F| ≥ 2λ and cm = (Setup,Commit) be a binding homomor-
phic commitment scheme for vectors in F. Let Πsps = (Psps,Vsps) be a special-
sound protocol for an NP-complete relation RNP with the following properties:

– It’s (2k − 1) move.
– It’s (a1, . . . , ak−1)-out-of-|F| special-sound. Such that the knowledge error κ =

1 −
∏k−1

i=1 (1 − ai

|F|) = negl(λ)
– The inputs are in F

�in

– The verifier is degree d = poly(λ) with output in F
�

Then, under the Fiat-Shamir heuristic for a cryptographic hash function
H (Definition 3), there exist two IVC schemes IVC = (PIVC,VIVC) and
IVCCV = (PCV,IVC,VCV,IVC) with predicates expressed in RNP with the following
efficiencies:

96 B. Bünz and B. Chen

No CV CV

PIVC native

∑k
i=1 |m∗

i | + (d − 1)�G

Psps + L(Vsps, d)

∑k
i=1 |m∗

i | + O(
√

�)G

Psps + L′(Vsps, d + 2)

PIVC recursive

k + d − 1G

k + �inF

(k + d + O(1))H + 1Hin

k + 2G

k + �in + d + 1F

(k + d + O(1))H + 1Hin

VIVC:
� +

∑k
i=1 |mi|G
Vsps

O(
√

�) +
∑k

i=1 |mi|G
O(�) + Vsps

|πIVC| :

k + �inF

k + 1G
∑k

i=1 |mi|

k + �in + 1F

k + 2G
∑k

i=1 |mi| + O(
√

�)

The first row displays the native operations of the IVC prover (i.e., the com-
plexity of running the accumulation prover). The second row describes the size
of the recursive statement representing the accumulation verifier for which PIVC

creates a proof. The third row is the computation of VIVC, and the last row is
the size of the proof. In the table, |mi| denotes the prover message length; |m∗

i |
is the number of non-zero elements in mi; G for rows 1–3 is the total length
of the messages committed using Commit. F are field operations. H denotes the
total input length to a cryptographic hash, and Hin is the hash to the public input
and accumulator instance. Psps (and Vsps) is the cost of running the prover (and
the algebraic verifier) of the special-sound protocol, respectively. L(Vsps, d) is the
cost of computing the coefficients of the degree d polynomial

e(X) :=
d∑

j=0

(μ + X)d−j · f
Vsps

j (acc + X · π) , (2)

and L′(Vsps, d + 2) is the cost of computing the coefficients of the degree d + 2
polynomial

e(X) :=

√
�−1∑

a=0

√
�−1∑

b=0

(X ·π.βa + acc.βa)(X ·π.β′
b + acc.β′

b)
d∑

j=0

(μ+X)d−j · fVsps

j,a+b
√

�
(acc+X ·π) ,

(3)
where all inputs are linear functions in a formal variable X4, and f

Vsps

j,i is the ith

(0 ≤ i ≤ � − 1) component of f
Vsps

j ’s output. For the proof size, G and F are the
number of commitments and field elements, respectively.

4 For example if fd =
∏d

i=1(ai + bi · X) then a naive algorithm takes O(d2) time but
using FFTs it can be computed in time O(d log2 d) [11].

Protostar: Generic Efficient Accumulation/Folding 97

Proof. The construction first defines the two NARKs

ΠNARK = (PNARK,VNARK) = FS[cm[Πsps]],

and
ΠNARK,CV = (PNARK,VNARK) = FS[cm[CV[Πsps]]].

Then we construct the accumulation scheme (Pacc,Vacc) = acc[ΠNARK] using the
accumulation scheme from Sect. 3.2 and (Pacc,HLVacc,HL) = accHL[ΠNARK,CV] using
the accumulation scheme described in Sect. 3.3. Then we apply the transforma-
tion from Theorem 1 to construct the IVC schemes IVC and IVCCV.

Security: By Lemmas 1, 2, we have that ΠNARK has (Q+1) ·
[
1−

∏k−1
i=1 (1− ai

|F|)
]

knowledge error for relation RRNP
cm for a polynomial-time Q-query RO-adversary.

Witnesses for RRNP
cm are either a witness for RNP or a break of the bind-

ing property of cm. Assuming that cm is a binding commitment scheme, the
probability that a polynomial time adversary and a polynomial time extrac-
tor can compute such a break is negl(λ). Thus ΠNARK has knowledge error
κ = (Q + 1) ·

[
1 −

∏k−1
i=1 (1 − ai

|F|)
]

+ negl(λ) for RNP. Analogously and using
Lemma 3, ΠNARK,CV has knowledge soundness with knowledge error κ′ =
(Q + 1) ·

[
1 − (1 − �

|F|)
∏k−1

i=1 (1 − ai

|F|)
]
+ negl(λ) for RNP. By assumption, κ and

κ′ are negligible in λ. Using Theorem 2 and the high-low degree accumulation
scheme described previously, we can construct accumulation schemes acc and
accCV for ΠNARK and ΠNARK,CV, respectively. The accumulation schemes have
negligible knowledge error as d = poly(λ). Under the Fiat-Shamir heuristic for
H we can turn the NARKs and the accumulation schemes into secure schemes
in the standard model.

By Theorem 1, this yields IVC and IVCCV, secure IVC schemes with predicates
expressed in RNP.

Efficiency: We first analyze the efficiency for IVC. The IVC-prover runs Psps to
compute all prover messages. It also commits to all the Psps messages using cm.
Finally, it needs to compute all error terms e1, . . . , ed−1 and commit to them.
The error terms are computed by symbolically evaluating the polynomial e(X) in
Eq. 3 with linear functions as inputs. The recursive circuit combines a new proof
π.x with an accumulator acc.x. The size of the accumulator instance is �in field
elements for the input, k − 1 field elements for the interactive-proof challenges,
1 field element for the accumulator challenge, and k commitments for the Psps

messages and d − 1 commitments for the error terms. The IVC verifier checks
the correctness of the commitments and runs Vsps.

For IVCCV, the prover needs to additionally commit to a message mk+1 with
length O(

√
�); the number of error terms also increases from d − 1 to d + 1.

Fortunately, the error terms are only one element in F, so we can use the identity
function as the trivial commitment scheme. Thus, there is no cost for committing
to the d+1 error terms when using CV. However, there is another separate error
term e′ ∈ F

2
√

� for the additional O(
√

�) degree-2 checks, thus the prover needs

98 B. Bünz and B. Chen

to commit to E′ = Commit(e′). The size of the accumulator instance is �in field
elements for the input, k field elements for the interactive-proof challenges, 1
field element for the accumulator challenge, k + 1 commitments for the prover
messages, d + 1 field elements for the error terms of the high-degree checks, and
1 commitment for the additional error term e′. ��

3.4 Computation of Error Terms

We now give an explicit algorithm for efficiently computing the error terms,
that is, computing the polynomial e(X) as defined in (3) (the degree of e(X) is
d′ = d+2). The algorithm has similarities with computing the round polynomials
in a single round of the sumcheck protocol [23].

1. For each i = 0 to d define

e(i)(X) :=

√
�−1∑

a=0

√
�−1∑

b=0

(X ·π.βa +acc.βa)(X ·π.β′
b +acc.β′

b) ·f
Vsps

i,a+b
√

�
(acc+X ·π)

(4)
2. Compute e(i)(j) for all j ∈ [0, i + 2]. Use these evaluations to interpolate

e(i)(X) using fast interpolation methods, e.g. an iFFT
3. Compute the coefficient form of e(X) =

∑d
i=0 e(i)(X) · (μ + X)d−i. This is

done by computing the coefficients of e(i)(X) · (μ + X)d−i for every i ∈ [0, d]
using FFTs, and recover e(X) using coefficient-wise addition. The complexity
is O(d2 log d).

In the worst case, this algorithm is equivalent to evaluating the circuit at d + 2
different inputs. However, it can perform much better in practice. The reason is
that many of the n gates may only be low degree. E.g. 90% of the gates are degree
1 or 2 addition and multiplication gates, and 10% are more high degree gates.
Then the prover only has to evaluate the 10% of the circuit at d + 2 points and
90% of the circuit only at 4 points. Note that the selector polynomials are static
in the classification of NP plonkup. This means that each gate has precisely
the degree of the active component. This stands in contrast to relations such as
high-degree Plonk, where the selectors are pre-processed, and the selectors are
preprocessed witnesses. In Plonk and related systems, each gate essentially has
the same degree.

Dealing with Branched Gates. In some scenarios, the NARK proof π has
the property that each gate f

Vsps

i,a+b
√

�
(acc+X ·π) in Formula 4 can be represented

as the sum of I parts where at most one part is related to π, that is, for some
gates g1, . . . , gI and some index pc ∈ [I],

f
Vsps

i,a+b
√

�
(acc + X · π) = gpc(acc + X · π) +

∑

j∈[I]\{pc}
gj(acc) .

Protostar: Generic Efficient Accumulation/Folding 99

In this case, for any gate f
Vsps

i,a+b
√

�
, we present a caching algorithm for evaluating

f
Vsps

i,a+b
√

�
(acc+k ·π) at all evaluation points k ∈ [0, i+2]. The complexity is only

proportional to the evaluation complexity of gpc rather than f
Vsps

i,a+b
√

�
.

1. For every j ∈ [I], initialize Uj := gj(acc), and store V :=
∑I

j=1 Uj .
2. Upon receiving a new NARK proof π during accumulation, for every k ∈

[0, i + 2], compute f
Vsps

i,a+b
√

�
(acc + k · π) = V + gpc(acc + k · π) − Upc.

3. After the accumulation, let α ∈ F be the folding challenge and let U ′
pc =

gpc(acc + α · π), update V ← V + U ′
pc − Upc and update Upc ← U ′

pc.

The algorithm is correct because V is always
∑

j∈[I] gj(acc) where acc is the
current accumulator.

4 Special-Sound Subprotocols for ProtoStar

In this section, we present special-sound protocols for permutation, high-degree
gate, circuit selection and lookup relations, which are the building blocks for
the (non-uniform) Plonkish circuit-satisfiability relations. We can build accumu-
lation schemes for (and thus IVCs from) these special-sound protocols via the
framework presented in Sect. 3.

4.1 Permutation Relation

Definition 4. Let σ : [n] → [n] be a permutation, the relation Rσ is the set of
tuples w ∈ F

n such that wi = wσ(i) for all i ∈ [n].

Special-sound protocol Πσ for permutation relation Rσ

Prover P(σ,w ∈ F
n) Verifier V(σ)

w

Check wi − wσ(i) = 0∀i ∈ [n]

Complexity. Πσ is a 1-move protocol (i.e. k = 1); the degree of the verifier is 1.

100 B. Bünz and B. Chen

4.2 High-Degree Custom Gate Relation

Definition 5. Given configuration CGATE := (n, c, d, [si ∈ F
n, Gi]mi=1) where n

is the number of gates, c is the arity per gate, d is the gate degree, [si]mi=1 are
the selector vectors, and [Gi]mi=1 are the gate formulas, the relation RGATE is
the set of tuples w ∈ F

cn such that
∑m

j=1 sj,i · Gj(wi,wi+n, . . . ,wi+(c−1)·n) = 0
for all i ∈ [n].

Special-sound protocol ΠGATE for relation RGATE

Prover P(CGATE,w ∈ F
cn) Verifier V(CGATE)

w

m∑

j=1

sj,i · Gj(wi,wi+n, . . . ,wi+(c−1)·n)

?
= 0∀i ∈ [n]

Complexity. ΠGATE is a 1-move protocol (i.e. k = 1) with verifier degree d.

4.3 Lookup Relation

Definition 6. Given configuration CLK := (T, �, t) where � is the number of
lookups and t ∈ F

T is the lookup table, the relation RLK is the set of tuples
w ∈ F

� such that wi ∈ t for all i ∈ [�].

We recall a useful lemma for lookup relation from [17], and present a special-
sound protocol for the lookup relation.

Lemma 4 (Lemma 5 of [17]). Let F be a field of characteristic p > max(�, T).
Given two sequences of field elements [wi]�i=1 and [ti]Ti=1, we have {wi} ⊆ {ti}
as sets (with multiples of values removed) if and only if there exists a sequence
[mi]Ti=1 of field elements such that

�∑

i=1

1
X + wi

=
T∑

i=1

mi

X + ti
. (5)

Protostar: Generic Efficient Accumulation/Folding 101

Special-sound protocol ΠLK for RLK

Prover P(CLK,w ∈ F
�) Verifier V(CLK)

Compute m ∈ F
T such that

mi :=
�∑

j=1

1(wj = ti)∀i ∈ [T] w,m

r r ←$F

Compute h ∈ F
�, g ∈ F

T

hi :=
1

wi + r
∀i ∈ [�]

gi :=
mi

ti + r
∀i ∈ [T] h,g

�∑

i=1

hi
?
=

T∑

i=1

gi

hi · (wi + r)
?
= 1∀i ∈ [�]

gi · (ti + r)
?
= mi∀i ∈ [T]

Achieving Perfect Completeness. Note that the protocol does not have perfect
completeness. If there exists an wi or ti such that wi + r = 0 ti + r = 0 then the
prover message is undefined. We can achieve perfect completeness by having the
verifier set hi = 0 or gi = 0 in this case and changing the verification equations
to

(wi + r) · (hi · (wi + r) − 1) = 0

and
(ti + r) · (gi · (ti + r) − mi) = 0 .

These checks ensure that either hi = 1
wi+r or wi + r = 0. The checks increase

the verifier degree to 3. Without these checks, the protocol has a negligible
completeness error of �+T

|F| . This completeness error can likely be ignored in
practice, and these checks do not need to be implemented. However, to achieve
the full definition of PCD (which has perfect completeness) and use Theorem 1
by [8], we require that all protocols have perfect completeness.

Complexity. ΠLK is a 3-move protocol (i.e. k = 2); the degree of the verifier is
2; the number of non-zero elements in the prover message is at most 4�.

Accumulation with O(�) Prover Complexity. The prover complexity of ΠLK is
due to the sparseness of g ∈ F

T and m ∈ F
T . However, there is no guarantee

that when building an accumulation scheme for ΠLK, the accumulated acc.g and
acc.m are sparse. This is an issue, as the prover needs to compute the error term
e1. If we expand the accumulation procedures, we see that the three verification

102 B. Bünz and B. Chen

checks lead to three components of the error term e1:

e(1)1 =

(
�∑

i=1

acc.hi −
T∑

i=1

acc.gi

)

+ μ

(
�∑

i=1

π.hi −
T∑

i=1

π.gi

)

∈ F

e(2)1 = acc.h ◦ (π.w + π.r · 1�) + π.h ◦ (acc.w + acc.r · 1�) − 2μ · 1� ∈ F
�

e(3)1 = acc.g ◦ (t + π.r · 1T) + π.g ◦ (μ · t + acc.r · 1T) − μ · π.m − acc.m ∈ F
T .

We examine all three components below.
For e(1)1 , we see that (

∑�
i=1 π.hi −

∑T
i=1 π.gi) = 0 by the assumption that

π is valid, and (
∑�

i=1 acc.hi −
∑T

i=1 acc.gi) = acc.e(1)/acc.μ (where acc.e(1) is
the first component of the error vector for acc). Thus e(1)1 = acc.e(1)/acc.μ. We
observe that since in IVC the accumulator acc.e(1) is initiated with 0, this implies
that for all iterations e(1)1 = 0.

For e(2)1 , it is computed from terms of size �, so can be computed in time
O(�).

For e(3)1 , note that acc.μ, acc.r and π.r are all scalars. Also note that the accu-
mulation prover only needs to compute the commitment E1 = Commit(ck, e1) =
Commit(ck, e(1)1) + Commit(ck, 0||e(2)1) + Commit(ck,0�+1||e(3)1), not the actual
vector e1. We will compute E

(3)
1 = Commit(ck, e(3)1) homomorphically from the

commitments below (dropping the zero padding for readability):

1. G = Commit(ck, π.g), G′ = Commit(ck, acc.g),
2. M = Commit(ck, π.m), M ′ = Commit(ck, acc.m),
3. GT = Commit(ck, π.g ◦ t), GT ′ = Commit(ck, acc.g ◦ t).

Given these commitments, we can compute

E
(3)
1 = GT ′ + π.r · G′ + acc.μ · GT + acc.r · G − acc.μ · M − M ′.

This reduces the problem to the problem of efficiently computing and updating
the commitments. G,M and GT are all commitments to �-sparse vectors, thus
can be efficiently computed. The prover can cache the commitments G′,M ′, and
GT ′ and efficiently update them during accumulation. That is G′′ ← G′ + αG,
M ′′ ← M ′ + αM and GT ′′ ← GT ′ + αGT . Additionally, we need to update the
accumulation witnesses: acc′.m ← acc.m + απ.m and acc′.g ← acc.g + απ.g.
Again because π.g, π.m are sparse this can be done in time O(�) independent of
T = |t|.

When ΠLK is used in composition with another special-sound protocol with
a higher degree d, the accumulation is made homogeneous using a (X + μ)d−2

factor when computing the error terms. The contribution to the error terms ei

(1 ≤ i ≤ d − 1) is still a linear function in acc.g, acc.m and acc.g ◦ t, and thus
can be computed homomorphically from commitments to these values.

Protostar: Generic Efficient Accumulation/Folding 103

Finally, we note that the algorithm above can be generalized to support
polynomial e(X) with more general formats and with higher degrees. We refer
to the full version [7] for more details.

Special-Soundness. We prove special-soundness for the perfect complete version
of ΠLK, the proof for ΠLK is almost identical (but even simpler).

Lemma 5. The perfect complete version of ΠLK is 2(� + T)-special-sound.

We defer the proof to the full version [7].

The Special-Sound Protocol for Plonkup. The special-sound protocol for the
Plonkup relation is the parallel composition of Πσ, ΠGATE and ΠLK. We refer
to the full version [7] for more detailed descriptions.

Vector-Valued Lookup. In some applications (e.g., simulating bit operations
in circuits), we need to support lookup for a vector, i.e., each table value is
a vector of field elements. In this section, we adapt the scheme in Sect. 4.3 to
support vector lookups.

Definition 7. Consider configuration CVLK := (T, �, v ∈ N, t) where � is the
number of lookups, and t ∈ (Fv)T is a lookup table in which the ith (1 ≤ i ≤ T)
entry is

ti := (ti,1, . . . , ti,v) ∈ F
v.

A sequence of vectors w ∈ (Fv)� is in relation RVLK if and only if for all i ∈ [�],

wi := (wi,1, . . . ,wi,v) ∈ t .

As noted in Sect. 3.4 of [17], we can extend Lemma 4 and replace Eq. 5 with

�∑

i=1

1
X + wi(Y)

=
T∑

i=1

mi

X + ti(Y)
(6)

where the polynomials are defined as

wi(Y) :=
v∑

j=1

wi,j · Y j−1, ti(Y) :=
v∑

j=1

ti,j · Y j−1,

which represent the witness vector wi ∈ F
v and the table vector ti ∈ F

v. We,
therefore, can describe a special-sound protocol for the vector lookup relation as
follows.

104 B. Bünz and B. Chen

Special-sound protocol Πv
VLK for RVLK

Prover P(CVLK,w ∈ (Fv)�) Verifier V(CVLK)

Compute m ∈ F
T such that

mi :=
�∑

j=1

1(wj = ti)∀i ∈ [T] w,m

β β ←$F

⊥

r r ←$F

Compute [βi = βi−1]vi=1

and h ∈ F
�, g ∈ F

T

hi :=
1

wi(β) + r
∀i ∈ [�]

gi :=
mi

ti(β) + r
∀i ∈ [T] [βi]

v
i=1,h,g

�∑

i=1

hi
?
=

T∑

i=1

gi

hi · [(v∑

j=1

wi,j · βj

)
+ r

] ?
= 1∀i ∈ [�]

gi · [(v∑

j=1

ti,j · βj

)
+ r

] ?
= mi∀i ∈ [T]

βi+1
?
= βi · β∀i ∈ [v − 1], β1

?
= 1

Achieving Perfect Completeness. We can use the same trick in Sect. 4.3 to achieve
perfect completeness for Πv

VLK. Namely, the verifier sets hi = 0 or gi = 0 when
wi(β) + r = 0 or ti(β) + r = 0 respectively. The verification equations become

(wi(β1, . . . , βv) + r) · (hi · (wi(β1, . . . , βv) + r) − 1) = 0

and
(ti(β1, . . . , βv) + r) · (gi · (ti(β1, . . . , βv) + r) − mi) = 0 ,

where wi(β1, . . . , βv) :=
(∑v

j=1 wi,j · βj

)
and ti(β1, . . . , βv) :=

(∑v
j=1 ti,j · βj

)
.

The degree of the verifier is 5. In practice, the negligible completeness error can
likely be ignored without implementing these checks.

Accumulation Complexity. ΠVLK is a 5-move protocol (i.e. k = 3) with the 2nd
prover message being empty; the degree of the verifier is 3; the number of non-
zero elements in the prover message is at most (v + 3)� + v. To ensure that the
accumulation procedure only requires O(v�) operations independent of T , we
can apply the same trick as in Sect. 4.3.

Special-Soundness. The perfect complete version of Πv
VLK is special-sound.

Protostar: Generic Efficient Accumulation/Folding 105

Lemma 6. For any v ∈ N, the perfect complete version of Πv
VLK is [1 + (v −

1) · (� + T − 1), 2(� + T)]-special-sound.

We defer the proof to the full version [7].

4.4 Circuit Selection

We provide a sub-protocol for showing that a vector has a single one-bit (and
zeros otherwise) at the location of a program counter pc. This is later used to
select the appropriate circuit.

Definition 8. For an integer n the relation Rselect is the set of tuples (b, pc) ∈
F

n × F such that bi = 0∀i ∈ [n] \ {pc} and if pc ∈ [n] then bpc = 1.

Special-sound protocol Πselect for circuit selecting relation Rselect

Prover P(b ∈ F
n, pc ∈ F) Verifier V

b, pc

bi · (pc − i)
?
= 0∀i ∈ [n]

bi · (bi − 1)
?
= 0∀i ∈ [n]

∑

i∈[n]

bi
?
= 1

Complexity and security. Πselect is a 1-move protocol (i.e. k = 1); the degree of
the verifier is 2.

The protocol trivially satisfies completeness. Note that the protocol is also
sound: the checks bi · (bi −1) = 0 ensure that the vector b is Boolean; the checks
bi · (pc − i) = 0 ensures that bi = 0 if i �= pc; finally, the last check guarantees
that bpc = 1 −

∑
i∈[n]\{pc} bi = 1 as bi = 0 for all i ∈ [n] \ {pc}.

5 Protostar

In this section, we describe Protostar, which is built using a special-sound
protocol for capturing non-uniform Plonkup circuit computations. In particular,
the relation is checking that one of the I circuits is satisfied, where the index
of the target circuit is determined by a part of the public input called program
counter pc. The non-uniform Plonkup circuit can add arbitrary constraints on
input pc.

For ease of exposition, we assume that the I circuits have the same number
of (i) gates n, (i) gate arity c, (ii) gate degree d, (iii) gate types m, (iv) public
inputs �in and (v) lookup gates �lk.

The scheme naturally extends when different branch circuits have different
parameters.

106 B. Bünz and B. Chen

Definition 9. Consider configuration Cmplkup :=
(
pp = [n, T, c, d,m, �in, �lk];

[Ci]Ii=1; t
)

where the ith (1 ≤ i ≤ I) branch circuit has configuration Ci :=
(pp, σi, [si,j , Gi,j]mj=1, Li), and t ∈ F

T is the global lookup table. For a public
input pi := (pc, pi′) ∈ F

�in where pc ∈ [I] is a program counter, we say that
(pi,w ∈ F

cn) is in the relation Rmplkup if and only if (pi,w) ∈ Rplonkup w.r.t.
circuit configuration (Cpc, t).

Protocol Πmplkup = 〈P(Cmplkup, pi,w),V(Cmplkup, pi = (pc ∈ [I], pi′))〉:
1. P sends V vector b = (0, . . . , 0, bpc = 1, 0, . . . , 0) ∈ F

I .

2. V checks that bi · (1 − bi)
?= 0 and bi · (i − pc) ?= 0 for all i ∈ [I], and

∑
i∈[I] bi

?= 1.
3. P sends vector m ∈ F

T such that mi :=
∑

j∈Lpc
1(wj = ti)∀i ∈ [T].

4. P sends V a sparse vector w∗ := (w(1), . . . ,w(I)) ∈ F
Icn where w(i) = 0cn

for all i ∈ [I] \ {pc} and w(pc) = w.
5. V checks that

Permutation check:
∑I

j=1 bj(w
(j)
i − w(j)

σj(i)
) ?= 0 for all i ∈ [cn].

Public input check:
∑I

j=1 bj · w(j)[1..�in]
?= pi.

Gate check: for all i ∈ [n], it holds that

I∑

j=1

bj · GTj,i

(
w(j)

i , . . . ,w(j)
i+cn−n

)
= 0

where GTj,i(x1, . . . , xc) :=
∑m

k=1 sj,k[i] · Gj,k(x1, . . . , xc).
6. V samples and sends P random challenge r ←$F.
7. P computes vectors h ∈ F

�lk , g ∈ F
T such that

hi :=
1

wLpc[i] + r
∀i ∈ [�lk], gi :=

mi

ti + r
∀i ∈ [T].

8. V checks that
∑�lk

i=1 hi
?=

∑T
i=1 gi and

I∑

j=1

bj ·
[
hi · (w(j)

Lj [i]
+ r)

]
?= 1 ∀i ∈ [�lk] ,

gi · (ti + r) ?= mi ∀i ∈ [T]

We present the special-sound protocol Πmplkup for the multi-circuit Plonkup
relation.

Remark 2. The public input check
∑I

j=1 bj · w(j)[1..�in]
?= pi is equivalent to

w[1..�in] = wpc[1..�in]
?= pi if the vector b passes the check at Step 2. Thus we

guarantee that w[1] = pc, and the circuit relation can add constraints on pc
depending on the applications.

Special-Soundness. We prove the special-soundness property of Πmplkup below.

Protostar: Generic Efficient Accumulation/Folding 107

Lemma 7. Πmplkup is 2(T + �lk)-special-sound.

We defer the proof to the full version [7].
We will now use Πmplkup and our compiler described in Theorem 3 to design

Protostar. Before that, we address two efficiency issues regarding supporting
multiple branch circuits and combining high-degree gates with sparse lookups.

Efficient Accumulation for Supporting Many Branch Circuits. Let I be the num-
ber of branch circuits. At first glance, the message w∗ has length O(In) and
seems the accumulation prover needs to take O(In) time to fold the witness.
Fortunately, the prover message w∗ := (w(1), . . . ,w(I)) ∈ F

Icn is sparse: only
the witness w(pc) for the single activated branch circuit Cpc is non-zero (where
w(pc) can be determined at runtime). Thus, using the commitment to acc.w∗

and the commitments homomorphism, the complexity for the prover to fold w∗

onto acc.w∗ is only O(n).
On the other hand, the accumulation prover also needs to compute the

error terms [ej]d−1
j=1 described at Step 2 of Fig. 3. Note that each gate check

can be split into I parts where at most one part is active, that is,
∑I

j=1 bj ·
GTj,i(w

(j)
i , . . . ,w(j)

i+cn−n) can be split into I branch gates where the j-th (1 ≤
j ≤ I) branch gate is bj ·GTj,i(w

(j)
i , . . . ,w(j)

i+cn−n). Thus we can use the caching
algorithm described in Sect. 3.4 to achieve O(d|Cpc|) computational complexity
rather than O(d(|C1| + · · · + |CI |)) where Ci (1 ≤ i ≤ I) is the evaluation cost of
the i-th branch circuit.

Next, we address the issue of combining the high-degree gate and sparse
lookup protocols with the generic transform CV in Sect. 3.3.

Efficient Accumulation of CV[Πmplkup]. CV[ΠGATE] reduces the number of
degree-d verification checks in ΠGATE from n to 1, with the tradeoff of O(

√
n)

additional degree-2 checks. In the resulting accumulation scheme, the error terms
for high-degree gates are, thus, only of length 1. This enables using the triv-
ial identity commitment for these error terms and thus reduces the number of
group operations by the accumulation verifier. Unfortunately, applying CV to
mplkup seems to have a major tradeoff. The number of verification checks is
n + �lk + T + c · n. This requires using a) CV[mplkup] and b) is not compos-
able with the sparseness optimizations for lookup described in Sect. 4.3. These
optimizations make the prover computation independent of T .

Fortunately, a closer look at the verification of mplkup reveals that only n of
these verification checks are of high degree d, namely the checks in ΠGATE. The
other checks are of degree 2 or lower. With a slight abuse of notation, we can
define CV[Πmplkup] as applying the generic transform CV only to the ΠGATE

part of Πmplkup. This means that there are d + 1 cross error vectors (each of
length 1) for the degree d + 2 check in CV[ΠGATE]; and 1 cross error vector of
length T +�lk+cn+O(

√
n) for the rest checks—namely the low-degree checks in

Πmplkup and the O(
√

n) degree-2 checks in CV[ΠGATE]. By leveraging the error
separation technique described in Sect. 3.3, we can use the identity function to
commit to the field elements and a vector commitment to commit to the long

108 B. Bünz and B. Chen

error term. Again we leverage homomorphism as described in Sect. 4.3 to make
the prover independent of T .

Corollary 1 (Protostar protocol). Consider the configuration

Cmplkup := (n, T, c, d,m, �in, �lk; [Ci]Ii=1; t).

Given a binding homomorphic commitment scheme cm = (Setup,Commit), and
under the Fiat-Shamir Heuristic (Definition 3) for a hash function H, there exists
an IVC scheme Protostar for Rmplkup relations with the following efficiencies
for m = 1 (i.e. each circuit has a single degree-d gate type), public input length
�in = 1: (we omit cost terms that are negligible compared to the dominant parts)

PProtostar

native

PProtostar

recursive
VProtostar |πProtostar|

O(|w|+ �lk)G

L′(Cpc, d + 2) + 2�lkF

3G

d + 4F

d + O(1)H + 1Hin

O(c · n + T + �lk)G

n +
∑I

i=1 Ci + T + �lkF
O(c · n + T + �lk)

Here |w| ≤ cn is the number of non-zero entries in the witness,
∑I

i=1 Ci

is the cost of evaluating all circuits on some random input, and L′(Cpc, d) is
the cost of computing the coefficients of the polynomial e(X) defined in Eq. 3
using techniques from Sect. 5.5 Hin is the cost of hashing the public input and the
(constant-sized) accumulator instance.

We defer the proof to the full version [7].

References

1. Attema, T., Fehr, S., Klooß, M.: Fiat-Shamir transformation of multi-round inter-
active proofs. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022, Part I. LNCS,
vol. 13747, pp. 113–142. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-22318-1 5

2. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part
II. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44381-1 16

3. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKS and proof-carrying data. In: Boneh, D., Roughgarden, T.,
Feigenbaum, J. (eds.) 45th ACM STOC, pp. 111–120. ACM Press (2013). https://
doi.org/10.1145/2488608.2488623

4. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp.
757–788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

5 As noted in Theorem 3, L′(Cpc, d + 2) is bounded by O(nd log2(d)).

https://doi.org/10.1007/978-3-031-22318-1_5
https://doi.org/10.1007/978-3-031-22318-1_5
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1145/2488608.2488623
https://doi.org/10.1007/978-3-319-96884-1_25

Protostar: Generic Efficient Accumulation/Folding 109

5. Bonneau, J., Meckler, I., Rao, V., Shapiro, E.: Coda: decentralized cryptocurrency
at scale. Cryptology ePrint Archive, Report 2020/352 (2020). https://eprint.iacr.
org/2020/352

6. Bowe, S., Grigg, J., Hopwood, D.: Halo: recursive proof composition without
a trusted setup. Cryptology ePrint Archive, Report 2019/1021 (2019). https://
eprint.iacr.org/2019/1021

7. Bünz, B., Chen, B.: Protostar: generic efficient accumulation/folding for special
sound protocols. In: Cryptology ePrint Archive (2023)

8. Bünz, B., Chiesa, A., Lin, W., Mishra, P., Spooner, N.: Proof-carrying data without
succinct arguments. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS,
vol. 12825, pp. 681–710. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-84242-0 24

9. Bünz, B., Chiesa, A., Mishra, P., Spooner, N.: Recursive proof composition from
accumulation schemes. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS,
vol. 12551, pp. 1–18. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64378-2 1

10. Buterin, V.: The different types of ZK EVM (2022). https://vitalik.ca/general/
2022/08/04/zkevm.html. Accessed 27 Apr 2023

11. Chen, B., Bünz, B., Boneh, D., Zhang, Z.: HyperPlonk: plonk with linear-
time prover and high-degree custom gates. Cryptology ePrint Archive, Report
2022/1355 (2022). https://eprint.iacr.org/2022/1355

12. Chiesa, A., Tromer, E.: Proof-carrying data and hearsay arguments from signature
cards. In: Chi-Chih, A. (ed.) ICS 2010, pp. 310–331. Yao, Tsinghua University Press
(2010)

13. Chiesa, A., Tromer, E., Virza, M.: Cluster computing in zero knowledge. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp.
371–403. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 13

14. Eagen, L., Fiore, D., Gabizon, A.: cq: cached quotients for fast lookups. Cryptology
ePrint Archive, Report 2022/1763 (2022). https://eprint.iacr.org/2022/1763

15. Gabizon, A., Williamson, Z.J.: plookup: a simplified polynomial protocol for lookup
tables. Cryptology ePrint Archive, Report 2020/315 (2020). https://eprint.iacr.
org/2020/315

16. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953 (2019). https://eprint.iacr.org/2019/953

17. Haböck, U.: Multivariate lookups based on logarithmic derivatives. Cryptology
ePrint Archive, Report 2022/1530 (2022). https://eprint.iacr.org/2022/1530

18. Kattis, A., Bonneau, J.: Proof of necessary work: succinct state verification with
fairness guarantees. Cryptology ePrint Archive, Report 2020/190 (2020). https://
eprint.iacr.org/2020/190

19. Khovratovich, D., Maller, M., Tiwari, P.R.: MinRoot: candidate sequential function
for ethereum VDF. Cryptology ePrint Archive, Report 2022/1626 (2022). https://
eprint.iacr.org/2022/1626

20. Kothapalli, A., Setty, S.: HyperNova: recursive arguments for customizable con-
straint systems. In: Cryptology ePrint Archive (2023)

21. Kothapalli, A., Setty, S.: SuperNova: proving universal machine executions without
universal circuits. Cryptology ePrint Archive, Report 2022/1758 (2022). https://
eprint.iacr.org/2022/1758

https://eprint.iacr.org/2020/352
https://eprint.iacr.org/2020/352
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1021
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-030-64378-2_1
https://vitalik.ca/general/2022/08/04/zkevm.html
https://vitalik.ca/general/2022/08/04/zkevm.html
https://eprint.iacr.org/2022/1355
https://doi.org/10.1007/978-3-662-46803-6_13
https://doi.org/10.1007/978-3-662-46803-6_13
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2022/1530
https://eprint.iacr.org/2020/190
https://eprint.iacr.org/2020/190
https://eprint.iacr.org/2022/1626
https://eprint.iacr.org/2022/1626
https://eprint.iacr.org/2022/1758
https://eprint.iacr.org/2022/1758

110 B. Bünz and B. Chen

22. Kothapalli, A., Setty, S., Tzialla, I.: Nova: recursive zero-knowledge arguments
from folding schemes. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV.
LNCS, vol. 13510, pp. 359–388. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-15985-5 13

23. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. In: 31st FOCS, pp. 2–10. IEEE Computer Society Press (1990).
https://doi.org/10.1109/FSCS.1990.89518

24. Mohnblatt, N.: Sangria: a folding scheme for PLONK (2023). https://github.com/
geometryresearch/technical notes/blob/main/sangria folding plonk.pdf. Accessed
27 Apr 2023

25. Naveh, A., Tromer, E.: PhotoProof: cryptographic image authentication for any
set of permissible transformations. In: 2016 IEEE Symposium on Security and
Privacy, pp. 255–271. IEEE Computer Society Press (2016). https://doi.org/10.
1109/SP.2016.23

26. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

27. Posen, J., Kattis, A.A.: Caulk+: table-independent lookup arguments. Cryptology
ePrint Archive, Report 2022/957 (2022). https://eprint.iacr.org/2022/957

28. Setty, S., Angel, S., Gupta, T., Lee, J.: Proving the correct execution of concurrent
services in zero-knowledge. In: 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 2018), pp. 339–356 (2018)

29. Setty, S., Thaler, J., Wahby, R.: Customizable constraint systems for succinct argu-
ments. Cryptology ePrint Archive (2023)

30. Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 1

31. Wikström, D.: Special soundness in the random oracle model. Cryptology ePrint
Archive, Report 2021/1265 (2021). https://eprint.iacr.org/2021/1265

32. Xiong, A.L., et al.: VERI-ZEXE: decentralized private computation with universal
setup. Cryptology ePrint Archive, Report 2022/802 (2022). https://eprint.iacr.org/
2022/802

33. Zapico, A., Buterin, V., Khovratovich, D., Maller, M., Nitulescu, A., Simkin, M.:
Caulk: lookup arguments in sublinear time. In: Yin, H., Stavrou, A., Cremers, C.,
Shi, E. (eds.) ACM CCS 2022, pp. 3121–3134. ACM Press (2022). https://doi.org/
10.1145/3548606.3560646

34. Zapico, A., Gabizon, A., Khovratovich, D., Maller, M., Ràfols, C.: Baloo: nearly
optimal lookup arguments. Cryptology ePrint Archive, Report 2022/1565 (2022).
https://eprint.iacr.org/2022/1565

35. Zhang, Y.X., Vark, A.: Origami - a folding scheme for Halo2 lookups (2023).
https://hackmd.io/@aardvark/rkHqa3NZ2. Accessed 12 July 2023

https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1109/FSCS.1990.89518
https://github.com/geometryresearch/technical_notes/blob/main/sangria_folding_plonk.pdf
https://github.com/geometryresearch/technical_notes/blob/main/sangria_folding_plonk.pdf
https://doi.org/10.1109/SP.2016.23
https://doi.org/10.1109/SP.2016.23
https://doi.org/10.1007/3-540-46766-1_9
https://eprint.iacr.org/2022/957
https://doi.org/10.1007/978-3-540-78524-8_1
https://eprint.iacr.org/2021/1265
https://eprint.iacr.org/2022/802
https://eprint.iacr.org/2022/802
https://doi.org/10.1145/3548606.3560646
https://doi.org/10.1145/3548606.3560646
https://eprint.iacr.org/2022/1565
https://hackmd.io/@aardvark/rkHqa3NZ2

	Protostar: Generic Efficient Accumulation/Folding for Special-Sound Protocols
	1 Introduction
	1.1 Technical Overview

	2 Preliminaries
	2.1 Incremental Verifiable Computation (IVC)
	2.2 Simple Accumulation

	3 Protocols
	3.1 Special-Sound Protocols and Their Basic Transformations
	3.2 Accumulation Scheme for Vnark
	3.3 Compressing Verification Checks for High-Degree Verifiers
	3.4 Computation of Error Terms

	4 Special-Sound Subprotocols for ProtoStar
	4.1 Permutation Relation
	4.2 High-Degree Custom Gate Relation
	4.3 Lookup Relation
	4.4 Circuit Selection

	5 Protostar
	References

