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Preface

The 29th Annual International Conference on the Theory and Application of Cryptology
and Information Security (Asiacrypt 2023) was held in Guangzhou, China, onDecember
4–8, 2023.The conference covered all technical aspects of cryptology, andwas sponsored
by the International Association for Cryptologic Research (IACR).

We received an Asiacrypt record of 376 paper submissions from all over the world,
and the Program Committee (PC) selected 106 papers for publication in the proceedings
of the conference. Due to this large number of papers, the Asiacrypt 2023 program had
3 tracks.

The two program chairs were supported by the great help and excellent advice of six
area chairs, selected to cover themain topic areas of the conference. The area chairs were
Kai-Min Chung for Information-Theoretic and Complexity-Theoretic Cryptography,
Tanja Lange for Efficient and Secure Implementations, Shengli Liu for Public-Key
Cryptography Algorithms and Protocols, Khoa Nguyen for Multi-Party Computation
and Zero-Knowledge, Duong Hieu Phan for Public-Key Primitives with Advanced
Functionalities, and Yu Sasaki for Symmetric-Key Cryptology. Each of the area chairs
helped to lead discussions together with the PC members assigned as paper discussion
lead. Area chairs also helped to decide on the submissions that should be accepted from
their respective areas. We are very grateful for the invaluable contribution provided by
the area chairs.

To review and evaluate the submissions, while keeping the load per PC member
manageable, we selected a record size PC consisting of 105 leading experts from all
over the world, in all six topic areas of cryptology. The two program chairs were not
allowed to submit a paper, and PC members were limited to submit one single-author
paper, or at most two co-authored papers, or at most three co-authored papers all with
students. Each non-PC submission was reviewed by at least three reviewers consisting of
either PC members or their external sub-reviewers, while each PC member submission
received at least four reviews. The strong conflict of interest rules imposed by IACR
ensure that papers are not handled by PC members with a close working relationship
with the authors. There were approximately 420 external reviewers, whose input was
critical to the selection of papers. Submissions were anonymous and their length was
limited to 30 pages excluding the bibliography and supplementary materials.

The review process was conducted using double-blind peer review. The conference
operated a two-round review system with a rebuttal phase. After the reviews and first
round discussions the PC selected 244 submissions to proceed to the second round and
the authors were then invited to participate in an interactive rebuttal phase with the
reviewers to clarify questions and concerns. The remaining 131 papers were rejected,
including one desk reject. The second round involved extensive discussions by the PC
members. After several weeks of additional discussions, the committee selected the final
106 papers to appear in these proceedings.



vi Preface

The eight volumes of the conference proceedings contain the revised versions of the
106 papers that were selected. The final revised versions of papers were not reviewed
again and the authors are responsible for their contents.

The PC nominated and voted for two papers to receive the Best Paper Awards,
and one paper to receive the Best Early Career Paper Award. The Best Paper Awards
went to Thomas Espitau, Alexandre Wallet and Yang Yu for their paper “On Gaussian
Sampling, Smoothing Parameter and Application to Signatures”, and to Kaijie Jiang,
Anyu Wang, Hengyi Luo, Guoxiao Liu, Yang Yu, and Xiaoyun Wang for their paper
“Exploiting the Symmetry of Zn: Randomization and the Automorphism Problem”. The
Best Early Career Paper Award went to Maxime Plancon for the paper “Exploiting
Algebraic Structure in Probing Security”. The authors of those three papers were invited
to submit extended versions of their papers to the Journal of Cryptology. In addition,
the program of Asiacrypt 2023 also included two invited plenary talks, also nominated
and voted by the PC: one talk was given by Mehdi Tibouchi and the other by Xiaoyun
Wang. The conference also featured a rump session chaired by Kang Yang and Yu Yu
which contained short presentations on the latest research results of the field.

Numerous people contributed to the success of Asiacrypt 2023. We would like to
thank all the authors, including those whose submissions were not accepted, for submit-
ting their research results to the conference. We are very grateful to the area chairs, PC
members and external reviewers for contributing their knowledge and expertise, and for
the tremendous amount of work that was done with reading papers and contributing to
the discussions. We are greatly indebted to Jian Weng and Fangguo Zhang, the General
Chairs, for their efforts in organizing the event and to KevinMcCurley and KayMcKelly
for their help with the website and review system. We thank the Asiacrypt 2023 advi-
sory committee members Bart Preneel, Huaxiong Wang, Kai-Min Chung, Yu Sasaki,
Dongdai Lin, Shweta Agrawal and Michel Abdalla for their valuable suggestions. We
are also grateful for the helpful advice and organization material provided to us by the
Eurocrypt 2023 PC co-chairs Carmit Hazay and Martijn Stam and Crypto 2023 PC co-
chairs Helena Handschuh and Anna Lysyanskaya. We also thank the team at Springer
for handling the publication of these conference proceedings.

December 2023 Jian Guo
Ron Steinfeld
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Fiat-Shamir Security of FRI and Related
SNARKs

Alexander R. Block1,2(B) , Albert Garreta3, Jonathan Katz2 ,
Justin Thaler1,5, Pratyush Ranjan Tiwari4, and Michał Zając3

1 Georgetown University, Washington, D.C., USA
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3 Nethermind, London, UK
{albert,michal}@nethermind.io

4 Johns Hopkins University, Baltimore, USA
pratyush@cs.jhu.edu

5 A16z Crypto Research, Menlo Park, USA

Abstract. We establish new results on the Fiat-Shamir (FS) security
of several protocols that are widely used in practice, and we provide
general tools for establishing similar results for others. More precisely,
we: (1) prove the FS security of the FRI and batched FRI protocols;
(2) analyze a general class of protocols, which we call δ-correlated, that
use low-degree proximity testing as a subroutine (this includes many
“Plonk-like” protocols (e.g., Plonky2 and Redshift), ethSTARK, RISC
Zero, etc.); and (3) prove FS security of the aforementioned “Plonk-like”
protocols, and sketch how to prove the same for the others.

We obtain our first result by analyzing the round-by-round (RBR)
soundness and RBR knowledge soundness of FRI. For the second result,
we prove that if a δ-correlated protocol is RBR (knowledge) sound under
the assumption that adversaries always send low-degree polynomials,
then it is RBR (knowledge) sound in general. Equipped with this tool, we
prove our third result by formally showing that “Plonk-like” protocols are
RBR (knowledge) sound under the assumption that adversaries always
send low-degree polynomials. We then outline analogous arguments for
the remainder of the aforementioned protocols.

To the best of our knowledge, ours is the first formal analysis of the
Fiat-Shamir security of FRI and widely deployed protocols that invoke
it.

1 Introduction

Succinct Non-interactive ARguments of Knowledge (SNARKs) and their zero-
knowledge variants (zkSNARKs) are a thriving field of study both in theory and
practice. Allowing for fast verification of complex statements made by untrusted
parties, zkSNARKs have now been deployed in a myriad of applications. A popu-
lar paradigm for constructing (zk)SNARKs is via the following two-step process:
c© International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14439, pp. 3–40, 2023.
https://doi.org/10.1007/978-981-99-8724-5_1
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(1) construct a public-coin1 interactive protocol; and (2) remove all interaction
using the Fiat-Shamir (FS) transformation [31], adding zero-knowledge as nec-
essary.

Non-interactivity is essential in many applications of zkSNARKs. In general,
interactive protocols are not publicly verifiable and hence cannot be used in
settings where anyone in the world should be able to verify the proof. There
are various proposals (e.g., [5]) to render interactive protocols publicly verifi-
able using so-called randomness beacons [61] (i.e., publicly verifiable sources of
random bits, such as contents blockchain block headers) and the transaction-
ordering functionality offered by public blockchains (which enable the public to
verify that the prover sent a message before it knew what the verifier’s response
to that message would be). However, to the best of our knowledge, such propos-
als have not been deployed at scale. They are also fraught with performance and
security considerations; for example, blockchain headers are at least somewhat
biasable [17,57], and splitting an interactive proof across many blockchain blocks
can substantially increase latency and fees.

Regardless, the Fiat-Shamir transformation is pervasive and has been used
extensively in a variety of schemes beyond zkSNARKs, e.g., signature schemes
and non-interactive zero-knowledge [31,54,58], inspiring a rich line of research
into understanding both its applicability and pitfalls. The FS transformation is
typically modeled and analyzed in the random oracle model (ROM) for security
proofs. When using FS in practice, one then assumes that a suitable concrete
hash function (e.g., SHA256) is an adequate replacement for said random oracle.

However, there are surprisingly many open problems regarding specific appli-
cations of the FS transformation. In particular, the FS transformation is not
secure in general [3,13,36], even in the random oracle model, when applied to
many-round protocols. Specifically, its use can lead to a loss in the number of “bits
of security” that is linear in the number of rounds r of the protocol to which it is
applied. Here, the number of bits of security roughly refers to the logarithm of
the amount of work an attacker has to do to succeed with probability close to 1.

Accordingly, the FS transformation is often applied to many-round protocols
without formal security proofs for the resulting SNARKs’ security. That is, the
security analysis of these protocols is often provided only for their interactive
versions. Without further analysis, the security (measured in bits) lost via the FS
transformation may be a factor equal to the number of rounds of the protocol.
Even a 30% loss in security would be devastating in practical deployments (e.g.,
reducing the number of bits of security from 100 down to 70), and (more than)
such a loss can occur even when Fiat-Shamir is applied to protocols with just
two rounds. There are also some works that claim FS-security of their protocols,
but in fact show this only under the assumption that certain many-round sub-
protocols used in the overall protocol are FS-secure [25,26,44].

1 A protocol is public-coin if all messages sent by the verifier are sampled uniformly at
random from a challenge space and are independent of all prior prover and verifier
messages.
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In this work, we fill this gap in these security analyses and provide general
tools for doing so for certain varieties of protocols. Specifically, we show that for
the protocols we are interested in, the security of the FS-transformed protocol
resembles the security of the interactive one (pre-FS) (or more precisely, what is
currently known about the interactive security). This adds to a recent fruitful
line of work has introduced many tools to understand FS security of many-
round protocols. These include the notions of state-restoration soundness [9],
round-by-round soundness [22], and (generalized) special soundness [2,28,72].
Nonetheless, in the literature on SNARKs, relatively few protocols are known to
be FS-secure, despite the above tools existing. These include the GKR protocol
[22,37] (or more generally, anything based on the sum-check protocol [49]), the
GMW protocol and other natural classes of “commit-and-open” protocols [41],
and any protocol satisfying the notion of (generalized) special soundness [2],
which includes IPA/Bulletproofs [18,20]. Bulletproofs [18,20] and Sonic [50] have
separately been shown to be FS-secure in the algebraic group model [35].

In this introduction, we informally refer to protocols that experience little-to-
no loss in the number of bits of security when the FS transformation is applied
in the random oracle model as FS-secure.

1.1 Our Results

We formally analyze and prove FS-security of the FRI protocol [4] and of some
protocols that have wide use in practice which use low-degree proximity test-
ing as a subroutine. For the latter, we build a general tool that allows us to
prove FS-security of a certain type of protocol, which we call a δ-correlated IOP,
by analyzing its round-by-round soundness assuming an adversary sends low-
degree polynomials. We formally apply this tool to “Plonk-like” protocols such
as Plonky2 [60], and we outline how the tool can be used on other constructions
such as ethSTARK [65]. In particular, we either formally prove or we outline
a proof that the security of all these protocols, after applying the Fiat-Shamir
transformation, (nearly) matches what is known about its security when run
interactively.

As mentioned, we focus on these protocols due to their current popularity.
For example, FRI is currently used in various Layer-2 Ethereum projects [59,66]
to help secure hundreds of millions of dollars of assets [46]. Some projects are
deploying FRI with (at most) 80-bits (dYdX) or 96-bits (those using the SHARP
prover) of interactive security before the FS transformation is applied [6,65,66].
More precisely, the best known attacks on these interactive protocols have success
probability 2−80 or 2−96. These attacks are conjectured to be optimal [65], though
only partial results in this direction are known [6]. Similarly, Plonk-like protocols
are utilized in a variety of blockchain networks and Layer 2 Ethereum projects
(e.g., [30,51,55,56,67]),

When it comes to the FRI protocol, we do not address the gaps between
the conjectured and known soundness of the interactive protocol. We merely
analyze the security of the FS-compiled protocol as a function of the security of
the interactive protocol.



6 A. R. Block et al.

1.2 Technical Details

In a nutshell, we formally establish the round-by-round (knowledge) soundness
[22] of both FRI and several protocols that rely on a form of low-degree proximity
testing. For analyzing round-by-round (RBR) soundness, there is a protocol
state that can either be “doomed” or not. The state of the protocol starts off as
doomed whenever a prover falsely claims that an input is valid. If at the end of
interaction the state is doomed, the verifier rejects. The protocol is said to be
RBR sound if, whenever the state is doomed, the protocol is still doomed in the
next round of interaction, except with negligible probability, no matter what a
prover does. RBR knowledge soundness is a similar notion, except that in this
case, the protocol always starts off in a doomed state, and after each round,
except with negligible probability, it remains doomed unless the prover knows a
valid witness; see Sect. 2.1 for more discussion.

By establishing the round-by-round (knowledge) soundness of these proto-
cols, we can then leverage the so-called BCS transformation [9], which (infor-
mally) compiles any interactive protocol2 into a (zk)SNARK via (a variant
of) the Fiat-Shamir transformation in the random oracle model. Applying the
BCS transformation on a round-by-round (knowledge) sound protocol preserves
(knowledge) soundness (yielding a SNARK) [25,26].3 In fact, round-by-round
soundness of the interactive protocol was even shown to imply that the BCS-
transformed SNARK is secure against quantum adversaries [25]. Thus, we estab-
lish the Fiat-Shamir security of both FRI and the rest of protocols via proving
their round-by-round (knowledge) soundness.

Round-by-Round Soundness of FRI. The FRI protocol [4], which stands
for Fast Reed-Solomon Interactive Oracle Proof of Proximity is a logarithmic
round interactive oracle proof. Briefly, an interactive oracle proof (IOP) [9] is an
interactive protocol where the verifier is given oracle (i.e., query) access to the
(long) prover messages, and an IOP of Proximity (IOPP) is an IOP for proving
proximity of a function to some pre-specified linear error-correcting code [4].
The FRI protocol proves that a function is close to the space of Reed-Solomon
codewords [62] of a certain degree over some pre-specified domain over a finite
field. This protocol is both of theoretical and practical interest. On the theory
side, FRI gives a polylogarithmic-size proof for proving the proximity of messages
to some pre-specified Reed-Solomon code, which is an important primitive in
many proof systems [4]. On the practical side, FRI is used as a sub-protocol
in the design and construction of many SNARKs and has the benefit of being
plausibly post-quantum secure due to its avoidance of elliptic curve cryptography
(and in fact, it follows from our results that FRI, when run non-interactively via
Fiat-Shamir, is unconditionally secure in the quantum random oracle model).

2 More formally, the BCS transformation is applied to interactive oracle proofs [9].
3 Actually, [9,25] prove this for state-restoration soundness; however, subsequent works

observed that round-by-round soundness is an upper bound on state-restoration
soundness [22,25,26,44].
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Despite intense interest from both theorists and practitioners, we are unaware
of any formal security proof for FRI under Fiat-Shamir.

Theorem 1 (Informally Stated; see Theorem 6). For finite field F, evalu-
ation domain L ⊂ F of size 2n, constants ρ ∈ (0, 1), δ ∈ (0, 1 −

√

ρ), and positive
integer �, the FRI protocol has round-by-round (knowledge) soundness error

εFRI
rbr (F, ρ, δ, n, �) = max{O(22n/(ρ3/2 |F|)), (1 − δ)�}.

Establishing the round-by-round (knowledge) soundness of FRI is a crucial first
step to establishing the Fiat-Shamir security of FRI. In particular, given the
round-by-round soundness of FRI, we can now apply the BCS transformation
[9] to obtain a secure non-interactive argument in the random oracle model using
FRI.

Corollary 1 (Informally Stated; see Corollary 4). For finite field F, eval-
uation domain L ⊂ F of size 2n, constants ρ ∈ (0, 1), δ ∈ (0, 1−

√

ρ), and positive
integer �, given a random oracle with κ-bits of output and query bound Q ≥ 1,
compiling FRI with the BCS transformation yields a non-interactive argument
in the random oracle model with adaptive soundness error and knowledge error

εFRI
fs (F, ρ, δ, n, �,Q, κ) = QεFRI

rbr (F, ρ, δ, n, �) +O(Q2
/2κ).

Moreover, the transformed non-interactive argument has adaptive soundness
error and knowledge error Θ(Q · εFRI

fs (F, ρ, δ, n, �,Q)) against O(Q)-query quantum
adversaries.

Extension to Batched FRI. In practice, it is common to run a Batched FRI proto-
col, which allows a prover to simultaneously prove the δ-correlated agreement4
of t functions f1, . . . , ft by running the FRI protocol on the batched function
G =

∑
i αi fi for randomly sampled αi provided by the verifier. We extend our

analysis of FRI to this version of Batched FRI and establish its round-by-round
(knowledge) soundness.

Theorem 2 (Informally Stated, see Theorem 7). For finite field F, evalu-
ation domain L ⊂ F of size 2n, constants ρ ∈ (0, 1), δ ∈ (0, 1 −

√

ρ), and positive
integers �, t, the Batched FRI protocol has round-by-round (knowledge) soundness
error

εbFRI
rbr (F, ρ, δ, n, �, t) = max{O((22n)/(ρ3/2 |F|)), (1 − δ)�}.

As before, establishing round-by-round soundness allows us to securely apply
the BCS transformation, obtaining a non-interactive argument in the random
oracle model.

4 Informally, functions have δ-correlated agreement if they are all δ-close to some pre-
specified Reed-Solomon code and all have the same agreement set; see [14] for full
details.
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Corollary 2 (Informally Stated; see Corollary 5). For finite field F, eval-
uation domain L ⊂ F of size 2n, constants ρ ∈ (0, 1), δ ∈ (0, 1−

√

ρ), and positive
integers �, t, given a random oracle with κ-bits of output and query bound Q ≥ 1,
compiling Batched FRI with the BCS transformation yields a non-interactive
argument in the random oracle model with adaptive soundness error and knowl-
edge error

εbFRI
fs (F, ρ, δ, n, �, t,Q, κ) = Q · εbFRI

rbr (F, ρ, δ, n, �, t) +O(Q2
/2κ).

Moreover, the transformed non-interactive argument has adaptive soundness
error and knowledge error Θ(Q ·εbFRI

fs (F, ρ, δ, n, �, t,Q, κ)) against O(Q)-query quan-
tum adversaries.

To the best of our knowledge, our results are the first to establish the security
of non-interactive analogs of FRI and Batched FRI in the random oracle model.

A Variant of Batched FRI. To save on communication costs, a variant of
Batched FRI is sometimes used, where the batched function G has the form
G =

∑
i α

i−1 fi for challenge α randomly sampled and sent by the verifier. In both
the context of regular soundness and round-by-round soundness, this version
of Batched FRI incurs some soundness loss proportional to t. In particular, in
Theorem 2, the round-by-round soundness error for this Batched FRI protocol
is εbFRI

rbr (F, ρ, δ, n, �, t) = max{O((22n · t)/(ρ3/2 |F|)), (1 − δ)�}; see [14] for complete
details.

Round-by-Round Soundness Error versus Standard Soundness Error of FRI.
Ben-Sasson et al. [6] give the best known provable soundness bounds for
(Batched) FRI; in fact, we leverage many tools from their results to show
our round-by-round soundness bounds. Roughly speaking, [6] show that the
soundness error of (Batched) FRI is ε1 + ε2 + ε3, where ε1 = O(22n/(ρ3/2 |F|)),
ε2 = O((2n · n

√

ρ)/|F|), and ε3 = (1 − δ)� . Then our RBR soundness bound for
(Batched) FRI is given by max{ε1, ε3}.

Round-by-Round Knowledge Error. Both FRI and Batched FRI additionally
have round-by-round knowledge error [25,26,44] identical to the round-by-round
soundness errors given in Theorems 1 and 2. The BCS transformation preserves
this type of knowledge soundness, yielding a SNARK. See Sect. 2.1 for more
discussion.

A General Tool for Proving RBR (Knowledge) Soundness. We go on
to analyze proof systems that rely on the FRI protocol as a subroutine. To this
end, we introduce a family of IOPs which we call δ-correlated IOPs, where δ ≥ 0
is a parameter. This family encompasses all of the aforementioned protocols. In
a nutshell, we say an IOP is δ-correlated if the prover is supposed to send oracles
to maps that are δ-close to low-degree polynomials in a correlated manner. Cor-
relation here means that the domain where these maps agree with low-degree
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polynomials is the same among all the maps. In a δ-correlated IOP, during the
verification phase, the verifier: (1) checks some algebraic equalities involving
some evaluations of these maps; and (2) verifies that all the received oracles
correspond indeed to δ-correlated maps (we assume the verifier has another ora-
cle to perform this check). When δ = 0, a δ-correlated IOPs can be seen as a
subclass of RS-encoded IOPs [8,26]. See [14] for a more in-depth comparison.

This points to a “recipe” for building a particular family of SNARKs: first,
construct a δ-correlated IOP; then, instantiate the check for δ-correlation using
an interactive protocol, e.g., Batched FRI [6]. This produces an IOP as a result.
Finally, use the aforementioned BCS transformation on this IOP to produce a
succinct non-interactive argument. If this argument is knowledge sound, one has
obtained a SNARK. Figure 1 summarizes this construction. It is immediate to
see that the previously mentioned protocols (Plonky2, RISC Zero, ethSTARKs,
etc.) are actual instantiations of this construction.

Fig. 1. A recipe for building a succinct non-interactive argument.

We then provide general results for proving that the resulting succinct non-
interactive argument is knowledge sound. Precisely, we prove the following:

1. RBR soundness of Batched FRI. As a general result, we prove that
the (Batched) FRI protocol is RBR sound and RBR knowledge sound. We
remark that Batched FRI can be used for checking δ-correlated agreement of
a collection of maps [6].

2. From RBR knowledge when the adversary sends low degree poly-
nomials, to general RBR knowledge. Consider a δ-correlated IOP Π,
and suppose attackers always send oracles to low degree polynomials. We
prove that if Π is RBR (knowledge) sound under this assumption, then it is
also RBR (knowledge) sound in general, and that the soundness error only
increases by a (relatively) small factor.

3. From a RBR knowledge sound δ-correlated IOP to a RBR knowl-
edge sound IOP. Again let Π be a δ-correlated IOP. By using an interactive
protocol ΠCA to check for δ-correlation, Π can be turned into a regular IOP
Πcompiled. We prove that this compilation preserves RBR (knowledge) sound-
ness, assuming ΠCA is RBR sound (not necessarily RBR knowledge sound).

4. From a RBR knowledge sound IOP to a SNARK. We then apply the
BCS compilation results from [9] to obtain a SNARK.

In conclusion, we show that given any succinct non-interactive argument con-
structed as in Fig. 1 (using Batched FRI to check for δ-correlation), one can
show its knowledge soundness simply by proving RBR knowledge soundness
of the underlying δ-correlated IOP under the assumption that the adversary is
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constrained to sending oracles to low-degree polynomials. The latter can greatly
simplify the analysis since it allows one to work with the simplicity of IOPs (as
opposed to arguments) and the convenient properties of polynomials.

Thus, our methods not only allow us to prove FS-security, they also remove
the complexity of dealing with maps that are close to low-degree polynomials
when using FRI within a protocol. This allows us to analyze the interactive
version of these protocols in a similar way as when one studies Polynomial IOPs
[21], where, by definition, soundness is only considered for adversaries that send
low-degree polynomials.

According to our formalism, a δ-correlated IOP where we constrain adver-
saries to always send low-degree polynomials is in fact a 0-correlated IOP. Then,
Item (2) above can be seen as a result that relates the RBR knowledge soundness
of a δ-correlated IOP for δ = 0 and for δ > 0. Overall, our security results can
be organized and depicted as in Fig. 2; also see Theorem 3.

Fig. 2. Another recipe for building a SNARG/SNARK.

Theorem 3 (Informally Stated, see Theorem 8). Let ΠO

δ be a δ-correlated
IOP, where O is an oracle for δ-correlated agreement. Let 0 < ρ, η ≤ 1 and
δ = 1 −

√

ρ − η. Assume Π0 has RBR knowledge soundness with error ε. Then
Πδ has RBR knowledge soundness with error ε/(2√ρη).

Moreover, if Π′ is an IOP for testing δ-correlated agreement in a Reed-
Solomon code with RBR soundness error ε′, then the protocol Πcompiled obtained
by replacing O in Πδ with Π′ has RBR knowledge soundness with error εcompiled =

max{ε/(2
√

ρη), ε′}. Finally, given a random oracle with κ-bits of output and
query bound Q ≥ 1, compiling Πcompiled with the BCS transformation yields a
succinct non-interactive argument in the random oracle model with knowledge
error Q ·max{ε/(2

√

ρη), ε′} +O(Q2
/2κ).

Remark 1. As we mentioned, the notion of δ-correlated IOP is closely related to
that of RS-encoded IOP from [8,26]. The works of [8,26] also provide a method
for compiling a RBR (knowledge) sound RS-encoded IOP into RBR (knowledge
sound IOPs); e.g., see [26, Theorem 8.2]. However, our result allows to use a
proximity parameter up to the Johnson bound, i.e., we can select δ = 1−

√

ρ− η
for any arbitrarily small η > 0, while the compilation results from [8,26] constrain
δ to be within the unique decoding radius δ < 1−ρ

2 . On the other hand, in some
sense, RS-encoded IOPs encompass a wider class of protocols than δ-correlated
ones. See [14] for further discussion.
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Remark 2. Many security analyses of SNARKs obtained by combining Plonk-like
protocols with so-called KZG polynomial commitments [43] can assume that an
adversary always sends oracles to polynomials of appropriate degree. Intuitively,
this is due to the fact that the KZG polynomial commitment scheme ensures
that a committed function is indeed a polynomial of appropriate degree.

However, in our scenario, due to the usage of the FRI protocol instead of
KZG, adversaries are only constrained to sending (oracles to) maps that are
close to polynomials of appropriate degree. This makes the soundness analysis
of our protocols more subtle. Indeed, as we mentioned, besides showing that FRI
itself is RBR sound, most of our work is concerned with reducing the analysis
to the case when the adversary actually sends oracles to polynomials of the
appropriate degree.

Round-by-Round Soundness of Specific δ-Correlated Proof Systems.
We can apply all the tools developed so far to specific protocols whose construc-
tion follows the outline from Figs. 1 and 2. In short, these are protocols obtained
by compiling a δ-correlated IOP into a succinct non-interactive argument via
a protocol for δ-correlated agreement and the BCS transformation. Thanks to
Theorems 2 and 3, we can prove the knowledge soundness of these protocols
just by proving that the corresponding 0-correlated IOP has RBR knowledge
soundness. Recall that in a 0-correlated IOP, the adversary is assumed to always
send oracles to low-degree polynomials.

Some of the protocols that fit into this framework are many “Plonk-like” proof
systems that use FRI instead of the KZG polynomial commitment scheme; e.g.,
Plonky2 [60], Redshift [44], and RISC Zero [68]. Here we use the term “Plonk-
like” to loosely refer to protocols that use an interactive permutation argument
[15,19,47,48,73] as a subroutine (we use the term “Plonk-like” because the Plonk
SNARK [34] helped popularize the use of this permutation-checking procedure).
Other protocols that fit in our framework but are not “Plonk-like” are ethSTARK
or DEEP-ALI [10].

We focus our attention mostly on Plonky2 since we believe that, among
all these protocols in 0-correlated IOP form, Plonky2 is the most involved to
analyze. Indeed, Plonky2 was designed to be used over a small field (the 64-bit
so-called Goldilocks field). Because of this, some checks are repeated in parallel
in order to increase its security. The task of correctly designing these parallel
repetitions is subtle, and indeed in the full version of our work [14], we describe
an (arguably more natural) variation of Plonky2 with dramatically less security
than Plonky2 itself. To the best of our knowledge, this variation is not used in
practice—we are highlighting it here to illustrate a potential pitfall to be avoided.

Accordingly, we rigorously define a general “Plonk-like” δ-correlated IOP,
which captures many “Plonk-like” protocols that rely on the FRI protocol. We
denote this δ-correlated IOP by OPlonky(δ). We then formally prove that when
δ = 0 (i.e., when adversaries are constrained to sending low-degree polynomi-
als), OPlonky(0) has RBR soundness and knowledge soundness. Together with
our general results and our results on batched FRI, this proves in particular
that the SNARK version of Plonky2 is indeed knowledge sound (as well as all
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other “Plonk-like” protocols of the form OPlonky(δ)). Adapting Theorem 3 to
our abstraction OPlonky, we obtain the following result.

Theorem 4 (Informally Stated, see Lemmas 1 and 3). Let F be a finite
field and K be a finite extension of F and let D ⊆ F be an evaluation domain for
maps. Let P = {P1, . . . , Pk} be a list of 2r+�-variate circuit constraint polynomials
over F for k, r, � ≥ 1. For parameters n, t, u ≥ 1, s = 	r/u
, and m ≥ 3, ρ =

(n + 1)/|D| ∈ (0, 1), η ∈ (0,
√

ρ/2m) and δ = 1 −

√

ρ − η, the protocol OPlonkyO,
when the verifier is given an oracle O for δ-correlated agreement in the Reed-
Solomon code RS[F,D, n + 1], has round-by-round soundness error

ε
OPlonky,O
rbr

(F,K,D, n, k, r, s, t, u, d, ρ, η)

=
1

2η
√

ρ
·max

{

O

((
n(r + u)

|F|

) t )

,O

((
k + st
|F|

) t )

,
n ·max{u + 1, d}

|K \ D|

}

,

where d = maxi{deg(Pi)} and D is an evaluation domain for RS codes. Moreover,
when δ = 0 then we have

ε
OPlonky,O
rbr

(F,K,D, n, k, r, s, t, u, d, ρ, η)

= max
{

O

((
n(r + u)

|F|

) t )

,O

((
k + st
|F|

) t )

,
n ·max{u + 1, d}

|K \ D|

}

.

Remark 3. The parameter t in Theorem 4 controls the number of times certain
checks in OPlonky are performed “in parallel”. In most Plonk-like protocols, one
uses t = 1 and a large field F to ensure an adequate security level. However,
some projects (e.g., Plonky2) currently feature a 64-bit field F, and use t = 2 to
increase security.

We show in this paper that, if done properly, the resulting FS-transformed
protocol does achieve the targeted security level. However, in the full version of
our work [14], we explain that this result is surprisingly subtle: certain natu-
ral ways of implementing the t-fold repetition actually result in RBR security
(and, correspondingly, the post-FS security [2]) that is much lower than the one
attained in Theorem 4. While (to our knowledge) all existing projects do imple-
ment the t-fold repetition properly so as to ensure FS-security, we highlight this
subtlety so that protocol designers continue to avoid this potential pitfall.

We can instantiate the oracle O in Theorem 4 with Batched FRI and obtain
the following result.

Theorem 5 (Informally Stated, see Theorem 9). Let F be a finite field,
K be a finite extension of F, and D ⊂ F

∗. Let P = {P1, . . . , Pk} be a list of
2r + �-variate circuit constraint polynomials over F for k, r, �, n ≥ 1. For integer
u ≥ 1, s = 	r/u
, and parameters ρ, η > 0, δ = 1 −

√

ρ − η, and N, q ≥ 1, the
protocol OPlonky composed with Batched FRI (replacing O) has round-by-round
soundness error:

ε
OPlonky
rbr

(F,K,D, n, k, r, s, t, u, d, ρ, η, N, q)

= max{εOPlonky,O
rbr

(F,K,D, n, k, r, s, t, u, d, ρ, η), εbFRI
rbr (F,D, ρ, δ, N, q)},
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where d = maxi{deg(Pi)}.

Given the above protocol is a round-by-round sound IOP, as in Theorem 3,
we can now apply the BCS transformation to obtain a secure non-interactive
argument in the random oracle model.

Corollary 3 (Informally Stated; see [14]). Let F be a finite field, K be a finite
extension of F, and D ⊂ F

∗. Let P = {P1, . . . , Pk} be a list of 2r +�-variate circuit
constraint polynomials over F for k, r, �, n ≥ 1. For integers u, t ≥ 1, s = 	r/u
,
and parameters ρ, η > 0, δ = 1 −

√

ρ − η, and N, q ≥ 1, given a random oracle
with κ-bits of output and a query bound Q ≥ 1, using the BCS transformation to
compile OPlonky composed with Batched FRI yields a non-interactive argument
in the random oracle model with adaptive soundness error and knowledge error

ε
OPlonky
fs

(F,K,D, n, k, r, s, t, u, d, ρ, η, N, q, κ,Q)

= QεOPlonky
rbr

(F,K,D, n, k, r, s, t, u, d, ρ, η, N, q) +O(Q2
/2κ),

where d = maxi{deg(Pi)}. Moreover, the the transformed non-interactive argu-
ment has adaptive soundness error and knowledge error

Θ(Q · ε
OPlonky
fs

(F,K,D, n, k, r, s, t, u, d, ρ, η, N, q, κ,Q))

versus O(Q)-query quantum adversaries.

Remark 4. We stress that the above theorems do not imply anything for the
original work of Plonk [34], or any other Plonk variants that utilize the so-called
KZG polynomial commitment scheme [43] as their low-degree test. The tools we
leverage to show Fiat-Shamir security of our protocols rely on the low-degree
test also being an IOP or an IOP of Proximity, which the KZG scheme is not.
While it is likely one can extend our analysis to handle using the KZG scheme,
we do not explore that direction in this work.

RISC Zero and ethSTARK. When it comes to RISC Zero and ethSTARK, we
sketch why their 0-correlated formulations have RBR knowledge soundness, as
opposed to fully formally proving these facts. We do that due to brevity (since
formally describing these protocols is a lengthy task), and because proving that
these 0-correlated IOPs are RBR knowledge sound is a relatively straightforward
task, as our analysis of OPlonky indicates. Moreover, RISC Zero’s whitepaper is
in draft form at the moment of writing [68]. We hope practitioners can follow
the techniques and ideas exposed in this paper to prove in a relatively simple
way that their SNARKs are indeed FS-secure.

1.3 Additional Related Work

The Fiat-Shamir (FS) transform [31] has been studied and used extensively to
remove interaction from interactive protocols. While it is known that the FS
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transformation is secure when applied to sound protocols with a constant num-
ber of rounds in the random oracle model (ROM) [1,31,58], it is well-known
that there exist protocols that are secure under FS in the ROM but insecure for
any concrete instantiation of the random oracle [3,13,36]. Furthermore, several
natural classes of secure interactive protocols are rendered insecure when apply-
ing FS (e.g., sequential repetition of a protocol and parallel repetition of certain
protocols) [2,22,72], and real-world implementations of FS are often done incor-
rectly, leading to vulnerabilities [12,29]. Despite this, FS is widely deployed and
is a critical component in the majority of SNARG and SNARK constructions.

Recent work has extensively studied which protocols can be securely instan-
tiated under Fiat-Shamir (either in the ROM or using suitable hash-function
families). As mentioned before, the general tools of state-restoration soundness
[9], round-by-round soundness [22], and special soundness [2,28,72] have been
introduced as soundness notions that “behave nicely” under Fiat-Shamir. Prior to
these tools, a variety of works [23,40,42] circumvented the impossibility results of
[13] by utilizing stronger hardness assumptions to construct Fiat-Shamir com-
patible hash function families. Another line of work [7,16,27,37,63,64,69,71]
follows the frameworks of Kilian [45] and Micali [53] to compile interactive ora-
cle proofs [9] into efficient arguments and SNARKs via collision-resistant hash
functions [9,45] or in the random oracle model [9,53].

1.4 Organization

In Sect. 2, we give an overview of our main technical results. Section 3 presents
our main results in full detail. Section 4 discusses some future directions. Due to
space constraints, most technical details are deferred to the full version of our
paper [14].

2 Technical Overview

Our main technical contributions are three-fold. First, we formally prove the
round-by-round (knowledge) soundness of the FRI protocol. Second, we build a
general tool for proving round-by-round (knowledge) soundness of δ-correlated
IOPs. Third, we give a δ-correlated IOP called OPlonky, prove its round-by-
round (knowledge) soundness, and showcase how it captures many “Plonk-like”
protocols used in practice. Additionally, we sketch how to extend the OPlonky
analysis to the ethSTARK protocol. In Sect. 2.1, we briefly discuss round-by-
round soundness and its relation to Fiat-Shamir; in Sect. 2.2, we give an overview
of the round-by-round soundness of FRI and Batched FRI; in Sect. 2.3, we intro-
duce the concept of δ-correlated IOP and prove our general results about them;
in Sect. 2.4, we give an overview of the round-by-round (knowledge) soundness
of OPlonky; in Sect. 2.5, we discuss how a similar analysis can be done for the
ethSTARK protocol.
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2.1 Round-by-Round Soundness and Fiat-Shamir

Our tool of choice for establishing Fiat-Shamir security is round-by-round sound-
ness [22]. Informally, a public-coin interactive protocol for a language L is round-
by-round sound (RBR sound) if at any point during the execution of the protocol,
the protocol is in a well-defined state (depending on the protocol execution so
far) and some of these states are “doomed”, where being “doomed” means that
no matter what message the prover sends, with overwhelming probability over
the verifier messages, the protocol remains “doomed”. A bit more formally, RBR
soundness error ε states that: (1) if x � L the initial state of the protocol is
“doomed”; (2) if the protocol is in a “doomed” state during any non-final round
of the protocol, then for any message sent by the prover, the protocol remains
doomed with probability at least 1 − ε over the verifier messages; and (3) if the
protocol terminates in a “doomed” state, then the verifier rejects. Chiesa et al.
[25] extend RBR soundness to RBR knowledge soundness, which roughly says
that if (1) the protocol is in a “doomed” state during any round of interaction,
and (2) every prover message can force the protocol to leave this “doomed” state
with probability at least εk (over the verifier randomness), then an extractor
can efficiently extract a witness (with probability 1) simply by examining the
current protocol state and the prover’s next message.

Canetti et al. [22] introduced RBR soundness as a tool for showing Fiat-
Shamir security of interactive proofs [38] when used in conjunction with a suit-
able family of correlation intractable hash functions [24]. In particular, random
oracles are correlation intractable when the set of “doomed” states of a protocol
is sufficiently sparse; i.e., for small enough RBR soundness error. RBR sound-
ness readily extends to the language of interactive oracle proofs (IOPs) [9], and
hence the Fiat-Shamir compiler result of [22] readily extends to IOPs, and can
be readily adapted to the random oracle model as well. However, applying this
compiler to IOPs directly introduces some undesirable effects: the constructed
non-interactive argument would have proof lengths proportional to the length of
the oracle sent by the prover since the compiler of [22] does not compress prover
messages in any way. This leads to long proofs and verification times, negating
any succinct verification the IOP may have had. Moreover, the transformation of
[22] says nothing about the knowledge soundness of the resulting non-interactive
argument, even in the random oracle model.

While it is likely that, in the random oracle model, one could argue that the
transformation of [22] retains knowledge soundness if the underlying IOP is RBR
knowledge sound, we do not prove this fact; moreover, the loss of verifier succinct-
ness is still an issue even if knowledge soundness is retained. Thus to circumvent
the above issues, we utilize the BCS transformation [9] for IOPs. Informally, the
BCS transformation first compresses oracles sent by the prover using a Merkle
tree [52] and then replaces any queries made by the verifier to prover oracles with
additional rounds of interaction where the verifier asks the prover its queries, and
the prover responds with said queries and Merkle authentication paths to verify
consistency. It was shown that if an IOP is round-by-round sound then apply-
ing BCS to this IOP gives a SNARK in the random oracle model [25,26]. Thus
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showing the RBR soundness of FRI and OPlonkyallows us to readily show Fiat-
Shamir security of these protocols under the BCS transformation in the random
oracle model, yielding our results. Thus in what follows, we give a high-level
overview of the round-by-round soundness proofs for both FRI and OPlonky.

2.2 Round-by-Round Soundness of FRI

We give a high-level sketch of the round-by-round soundness of FRI in this
section; for full details, see [14]. As previously stated, FRI is an interactive oracle
proof of proximity for testing whether or not a polynomial specified by a prover
is “close to” a particular space of Reed-Solomon codewords. More formally, for
finite field F, multiplicative subgroup L0 ⊂ F

∗ of size N = 2n, and degree bound
d0 = 2k for k ∈ N, RS := RS[F, L0, d0] ⊂ F

N is the set of all polynomials f : L0 → F

of degree at most d0 − 1, and the FRI protocol allows for a prover to succinctly
prove to a verifier that a function G0 : L0 → F is within some proximity bound
δ of the RS code. That is, if a verifier accepts the interaction, then the verifier
is convinced that there exists f ∈ RS such that Δ(G0, f ) < δN, where Δ is the
Hamming distance between G0 and f (when viewing them as vectors in F

N ). We
say that such a G0 is δ-close to RS; otherwise, we say that G0 is δ-far from RS
(i.e., Δ(G0, f ) ≥ δN for all f ∈ RS).

To achieve succinct verification, the FRI protocol first interactively com-
presses G0 during a folding phase,5 which proceeds as follows. First, the prover
sends oracle G0 to the verifier. Next, the verifier samples x0 ∈ F uniformly at ran-
dom and sends it to the prover. Now the prover defines new oracle G1 : L1 → F

over the new domain L1 = (L0)2 := {z2 : z ∈ L0} of size N/2, where for any s ∈ L1,
if s′, s′′ ∈ L0 are the square roots of s, then we have

G1(s) = (x0 − s′)(s′′ − s′)−1G0(s
′′

) + (x0 − s′′)(s′ − s′′)−1G0(s
′

). (1)

Given G1, the prover and verifier now recursively engage in the above folding
procedure with the function G1, where the claim is that G1 is δ-close to a new
Reed-Solomon code RS[F, L1, d1] for d1 = d0/2; this recursion continues log(d0) =
k times which results in prover oracles G0,G1, . . . ,Gk−1 and verifier challenges
x0, x1, . . . , xk−1.

After the folding phase, the prover and verifier now engage in the query
phase. During this phase, the prover sends a constant value Gk ∈ F to the
verifier, and the verifier samples a uniformly random challenge s0 ∈ L0 tto check
the consistency of all pairs of functions Gi−1,Gi for i ∈ {1, . . . , k} as follows. The
verifier first checks consistency of G0 and G1 using Eq. (1); in particular, if we
set s1 = (s0)2 and let t0 be the other square root of s1 (i.e., (t0)2 = s1 and t0 � s0),
the verifier checks that G1(s1) is consistent with G0(s0) and G0(t0) via Eq. (1).
This check is then performed for every pair of functions Gi−1 and Gi via Eq. (1)
using challenge xi−1 and Gi(si), Gi−1(si−1), and Gi−1(ti−1), where si = (si−1)2 and
ti−1 � si−1 is the other square root of si. The verifier accepts if and only if all of
5 [4] refers to this as the commit phase. We view the term “folding phase” as more

appropriate given the nature of the compression.
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these checks pass. More generally, the verifier performs the above query phase
(in parallel) � ≥ 1 times and outputs accept if and only if all checks pass.

To show RBR soundness of FRI, we first turn to the prior soundness analyses
of FRI. Suppose that G0 is δ-far from RS[F, L0, d0], then it turns out a malicious
prover has two strategies for fooling the verifier: (1) “luck out” in the sense that
for x0

$
← F sent by the verifier, the new function G1 is δ-close to RS[F, L1, d1]; or

(2) send some G′

1 � G1 that is δ-close to RS[F, L1, d1]. Intuitively, strategy (2)
never increases the probability the prover can fool the verifier since even though
G′

1 is closer to the Reed-Solomon codespace, this improvement is offset by the
fact that G1 and G′

1 will differ at many different points. Thus the optimal prover
strategy is to simply behave honestly by sending the correct function during
every round using Eq. (1), and hoping to “luck out” from the verifier challenge
during that round.

FRI Round-by-Round Soundness Overview. We adapt the above intuition
for the RBR soundness of FRI. Let P∗ be our (possibly malicious) prover. Let
ε1 be the probability that P∗ “lucks out” as described above. First, since G0

is assumed to be δ-far, and moreover G0 is honestly sent to the verifier, the
protocol, begins in a doomed state. Then if the verifier sends x0 such that P∗

“lucks out” and the function G1 is δ-close, then we say the protocol is no longer
in a doomed state. This happens with probability at most ε1.

Building on this, suppose the partial transcript so far consists of (G0, x0) and
suppose that this state is doomed; that is, both G0 and G1 are δ-far functions.
Now the prover P∗ may send some function G′

1 that may or may not be equal
to G1 (as given in Eq. (1)), and then the verifier responds with challenge x1.
However, as described before, sending G′

1 � G1 doesn’t increase the probability
that the prover fools the verifier, and we want the RBR soundness analysis to
reflect this as well. Thus we say that the current state of the protocol, given
by (G0, x0,G′

1, x1) is not doomed if and only if G′

1 = G1 and P∗ “lucks out” with
the function G2 (again defined via Eq. (1) using x1 and G1). In other words, the
protocol remains in a doomed state if: (1) G′

1 � G1; or G2 is δ-far (i.e., the prover
didn’t “luck out”). Thus the protocol leaves its doomed state with probability
at most ε1. This analysis generalizes to all rounds of the folding phase: given
any partial transcript (G0, x0,G′

1, x1, . . . ,G
′

i−1, xi−1) that is in a doomed state, if
P∗ sends function G′

i and the verifier sends challenge xi, then the protocol is no
longer doomed if and only if (1) the prover “lucked out” and Gi+1 is δ-close; and
(2) all G′

j = G j for j ∈ {1, . . . , i−1}. And again, the protocol is no longer doomed
with probability at most ε1.

To complete the analysis, we now consider the final round of the protocol,
which consists of the query phase. Suppose that the partial transcript for this
round is given by (G0, x0,G′

1, x1, . . . ,G
′

k−1
, xk−1) and suppose the protocol is in a

doomed state. At this point, P∗’s hands are tied: it must send a constant Gk ∈ F

to the verifier, and the verifier then uniformly samples s(1)0 , . . . , s
(�)
0 ∈ L0 and

performs its checks. Thus, the only way the protocol can leave the doomed state
is if all of these checks pass; in particular, if a single check fails then the protocol



18 A. R. Block et al.

remains doomed (and, in fact, the verifier rejects). Let ε2 denote the probability
that a single verifier check passes; that is, a single chain of checks depending
on s(1)0 passes (i.e., computing the squares and square roots at every level, and
checking consistency across all levels with this check). Then the probability P∗

can leave the doomed state is exactly ε2; extending this to � checks (which are
performed uniformly and independently at random) gives us that the protocol
leaves the doomed state with probability at most ε�2. Considering the folding
and query phases, the discussion above shows that the FRI protocol has RBR
soundness error εFRI

rbr = max{ε1, ε�2}.

Batched FRI Round-by-Round Soundness Overview. Extending the
above analysis to Batched FRI is straightforward. Briefly, Batched FRI invokes
FRI on a random linear combination of t functions f1, . . . , ft : L0 → F. In more
detail, first the prover sends oracles f1, . . . , ft to the verifier, then the verifier
responds with random challenges α1, . . . , αt . The prover and verifier then engage
in the FRI protocol using function G0 =

∑
i αi fi.6 Finally, Batched FRI modifies

the query phase of FRI to also check consistency between fi and G0 exactly via
the equation G0 =

∑
i αi fi. Key to Batched FRI is that if all fi are δ-close to

RS[F, L0, d0], then G0 is also δ-close, and if even one fj is δ-far, then with high
probability G0 is also δ-far.

The RBR soundness analysis of Batched FRI proceeds as follows. Let P∗ again
denote our (possibly malicious) prover. The protocol begins in a doomed state;
namely, there exists at least one fj that is δ-far from RS[F, L0, d0]. Then P∗ hon-
estly sends f1, . . . , ft to the verifier,7 and the verifier responds with α1, . . . , αt ∈ F

sampled uniformly and independently at random. Let εt be the probability that
G0 is δ-close given that there exists at least one fj that is δ-far, where the proba-
bility is taken over α1, . . . , αt . Then we say the protocol is no longer in a doomed
state if and only if G0 is δ-close; thus during this round, P∗ can leave the doomed
state with probability at most εt . Now suppose that ( f0, . . . , ft, α1, . . . , αt ) is the
current protocol state and that this state is doomed. The prover and verifier now
engage in FRI using some function G′

0 constructed by P∗ as input. The observa-
tion here is that we can now invoke the RBR soundness analysis of FRI directly,
with the following slight change for the first round of FRI. Suppose P∗ sends G′

0

to the verifier and the verifier responds with x0. Then the protocol is no longer
in a doomed state if and only if G′

0 = G0 and G1 is δ-close, where G1 is defined
via Eq. (1) with respect to the correct function G0. In particular, the intuition
behind the prover’s strategy remains the same: if P∗ sends some other G′

0 � G0,
then the verifier is more likely to detect this change when checking consistency
of G′

0 and f1, . . . , ft , so P∗ can only leaved the doomed state of the protocol if it
behaves honestly and “lucks out” with verifier challenge x0. Finally, we remark

6 In practice to save on communication, only a single α is sent and the linear combi-
nation is computed with αi = αi−1, at the cost of an increased soundness error; see
[14] for details.

7 This is necessary, if a malicious prover is allowed to send dishonest f ∗1 , . . . , f
∗

t such
that all are δ-close, then the protocol reduces to the honest prover analysis.
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that the final round (i.e., the query phase) of Batched FRI with the additional
checks between f1, . . . , ft and G′

0 has the same RBR soundness error ε2 as with
FRI. Thus the RBR soundness error of Batched FRI is εbFRI

rbr = max{εt, ε1, ε�2},
where � is the number of times the query phase is repeated.

Instantiating ε1, ε2, and ε3. For the query phase, the best one can hope for
is ε2 = (1 − δ) [4,6,11,70]; for the folding phase, there is a long line of work
done towards improving the bounds on ε1 [4,6,11]. In our work, we utilize the
best known provable bounds on ε1 given by Ben-Sasson et al. [6], and note that
any improvements for ε1 directly improve the round-by-round soundness error of
FRI. In particular, we have ε1 = O(22n/(ρ · |F|)), where ρ = d0/|L0 | and |L0 | = 2n.
This yields our stated round-by-round soundness error in Theorem 1. Finally, [6]
also show that εt = ε1 for Batched FRI, which gives us Batched FRI round-by-
round soundness error εbFRI

rbr = max{ε1, ε�2}, yielding our stated round-by-round
soundness error in Theorem 2. See [14] for a complete discussion and proof of
the round-by-round soundness of FRI and Batched FRI.

FRI Round-by-Round Knowledge Overview. Recall that a protocol has
RBR knowledge error εk if for any “doomed” state of the protocol, if every mes-
sage the prover can send will put the protocol in a non-“doomed” state with
probability at least εk over the verifier randomness, then an extractor can effi-
ciently recover a witness (with probability 1) when given the current protocol
state and the prover’s next message. In the context of FRI, RBR knowledge
soundness means we can extract a δ-close function G, and for Batched FRI we
can extract t functions f1, . . . , ft that are all δ-close. For both FRI and Batched
FRI, it turns out we obtain RBR knowledge soundness more or less for free.
Recall that both protocols have RBR soundness error max{ε1, ε�2} from our dis-
cussion above. Then we claim that these protocols both have RBR knowledge
error exactly εk = max{ε1, ε�2}.

We give an efficient extractor for the RBR knowledge soundness of FRI.
First consider any intermediate round i of the folding phase of FRI (the analysis
for Batched FRI is identical). Then the current protocol state is doomed and
is given by the transcript (G0, x0,G′

1, x1, . . . ,G
′

i−1, xi−1). Suppose that for any
function G′

i sent by the prover, for xi
$
← F sampled by the verifier, the protocol

state (G0, x0,G′

1, x1, . . . ,G
′

i, xi) is not doomed with probability at least εk. In
particular, this happens with probability at least ε1 = O(22n/(ρ|F|)). Then our
extractor, given (G0, x0,G′

1, x1, . . . ,G
′

i) simply reads and outputs the oracle G0.
For the query phase, the analysis is identical: let the current protocol state be
doomed for transcript (G0, x0,G′

1, x1, . . . ,G
′

k−1
, xk−1). Suppose for every Gk ∈ F

sent by the prover and verifier challenges s0,1, . . . , s0,�
$
← L0, the protocol state

(G0, x0,G′

1, x1, . . . ,Gk, (s0, j)j≤�) is not doomed with probability at least εk. In
particular, this happens with probability at least ε�2 = (1−δ)� . Then our extractor
again simply reads and outputs oracle G0.

Now why should we expect G0 to be a δ-close function? It turns out that
by the choices of ε1 and ε2, if all prover messages can leave the doomed state
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with the above probabilities, it unconditionally implies that G0 must be δ-close
in both cases, a result shown by [6]. First, for any round of the folding, the
function G′

i can leave the doomed set if and only if G′

i = Gi (i.e., it is computed
as an honest prover would compute it) and Gi+1 is δ-close. If Gi+1 is δ-close with
probability greater than ε1 over the verifier randomness, then it unconditionally
implies that Gi must have been δ-close as well [6]. This then recursively applies
to Gi−1, and so on, finally yielding that G0 must have been δ-close as well. [6]
show that a similar result must hold for the query phase: if all verifier checks
pass with probability at least ε�2 during the query phase for any Gk ∈ F sent by
the prover, then G0 must be δ-close as well. Thus the RBR knowledge error of
FRI is identical to the RBR soundness error. Finally, the above analysis proceeds
identically for Batched FRI as well; i.e., if during any round of folding or batching
phase the prover can leave with probability at least ε1, then it unconditionally
implies that f1, . . . , ft must be δ-close functions. The Batched FRI query phase
is analogous.

2.3 Correlated IOPs and Round-by-Round Knowledge Soundness

To conduct our security analysis beyond FRI, we formulate an abstract type of
IOP which we call a δ-correlated IOP. This is a notion related and inspired by
that of Reed-Solomon Encoded IOPs [8,26] (see [14] for further comparison). In
a nutshell, when δ = 0, a 0-correlated IOP is an IOP where:

– The verifier has access to an oracle O that, given any number of maps
f1, . . . , fk : D → F, determines whether each of the fi is the evaluation map
of a polynomial of degree at most d, for any d < |D|. Here D is a subset of F,
called evaluation domain.
In other words, O determines whether the maps (or words) fi belong to the
Reed-Solomon code RS[F,D, d + 1].

– During the interactive phase, the prover sends oracle access to some maps
g1, . . . , gm : D → F (across several rounds of interaction).

– In the last round of interaction, the verifier sends a field element z ∈ K \D to
the prover, and the prover replies with values

{
gi(ki, jz) | i ∈ [m], j ∈ [ni]

}
(2)

where ki, j are some pre-defined field elements and ni ≥ 1 are predefined
positive integers. Here K is either F or a field extension of F. Importantly,
each map gi appears at least once in the list Eq. (2).

– To decide whether to reject or accept the prover’s proof, the verifier:
• Check 1. Asserts that the values

{
gi(ki, jz) | i ∈ [m], j ∈ [ni]

}
satisfy cer-

tain polynomial equations.
• Check 2. Uses its oracle O to check that the following maps belong to

RS[F,D, d]:

quotients :=
{
(gi(X) − gi(ki, jz))/(X − z) | i ∈ [m], j ∈ [ni]

}
. (3)
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When δ > 0, a δ-correlated IOP has the exact same form as above, except that
now O is an oracle for checking δ-correlated agreement in RS[F,D, d + 1] for any
d < |D|. A sequence of maps g1, . . . , gm : D → F has δ-correlated agreement if
there exists a subset S ⊆ D and polynomials q1, . . . , qm of degree ≤ d such that
gi coincides with qi on S, for all i ∈ [m], and |S | ≥ (1 − δ)|D|.

These type of IOP’s are interesting to us because several modern IOP’s can
be understood as being built on top of a 0-correlated or δ-correlated IOP for
δ > 0, e.g., all Plonk-like protocols that use FRI instead of KZG [34,44,60],
ethSTARK (or DEEP-ALI) [10,65], RISC Zero [68], etc.

We prove the following results about δ-correlated IOPs:

– Result 1. If a 0-correlated IOP Π0 has round-by-round (RBR) soundness or
knowledge ε, then replacing δ = 0 by a larger δ > 0 results in a δ-correlated
IOP with RBR soundness or knowledge �ε, where � is certain constant related
to list decodability of Reed-Solomon (RS) codes. Namely, � is the maximum
number of distinct RS codewords that can be δ-close to any given word.
Here, by “replacing δ = 0 by a larger δ > 0” we refer to the δ-correlated IOP
that results from taking Π0 and replacing the verifier’s oracle for checking
membership to RS[F,D, d + 1] (so, checking 0-correlated agreement) by an
oracle that checks for δ-correlated agreement in RS[F,D, d + 1].

– Result 2. Given a δ-correlated IOP Π with RBR soundness or knowledge ε,
and given a IOP or IOP of Proximity ΠCA for checking δ-correlated agree-
ment, we can construct a new IOP (in the standard sense, i.e., an “uncorre-
lated IOP”), denoted by Πcompiled, by replacing the oracle O with the protocol
ΠCA. We show that if ΠCA has RBR soundness εCA, then Πcompiled has RBR
(knowledge) soundness max{ε, εCA}. Notice that, for RBR knowledge sound-
ness, we don’t need ΠCA to have RBR knowledge soundness. It suffices for Π
to have RBR knowledge soundness, and for ΠCA to be RBR sound.

First, we explain how these results can be applied to existing protocols, then
give a high-level overview of their proofs.

Using the Above Results. Given these results, one strategy for proving that an
IOP Π has RBR (knowledge) soundness is to first try to formulate the IOP as a
δ-correlated IOP that has been compiled with the method described above, then
prove that the corresponding 0-correlated IOP has RBR (knowledge) soundness.
Once this is done, our results provide RBR (knowledge) soundness error bounds
for the initial IOP Π. Figure 2 gives an overview of this methodology.

The latter task can be a significant simplification in comparison to analyzing
the initial IOP Π directly. This is because when δ = 0, the verifier in Π has
an oracle for checking that the maps from the verifier’s Check 2 are low-degree
polynomials. This effectively forces the prover to send (oracles to) low-degree
polynomials throughout the interaction and to provide correct openings in its
last message. As a consequence, and roughly speaking, our methods allows to
study the IOP as if it was a Polynomial IOP (PIOP), with the Batched FRI
protocol acting as a Polynomial Commitment Scheme (PCS) used to compile
the PIOP into an interactive argument. However, note that FRI cannot be used
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as a PCS (unless δ lies in the unique decoding radius) since it only guarantees
δ-closeness to low-degree polynomials.

Later, we show how these methods can be used on “Plonk-like” protocols,
and briefly discuss how to use them on other protocols such as ethSTARK and
RISC Zero.

Proof Sketch of Result 1. Let δ > 0, let Πδ be a δ-correlated IOP, and let Π0

be the same IOP except that the verifier has access to an oracle for 0-correlated
agreement instead of δ-correlated agreement (equivalently, it has an oracle for
checking membership to RS[F,D, d ′ + 1] for any d ′ < |D|). Suppose Π0 is RBR
(knowledge) sound with error ε. We first focus on RBR soundness and discuss
RBR knowledge soundness later. Let τ be a partial transcript produced during
some rounds of interaction between the prover and the verifier from Πδ . For
ease of presentation, assume the prover sends maps to the verifier, as opposed
to sending oracle access to these maps. Let g1, . . . , gk be all prover’s maps in
τ and write τ = τ(g1, . . . , gk) to denote that τ contains such maps. Let τ′ =

τ′(g′1, . . . , g
′

k
) be another partial transcript. We informally say τ′ is a low-degree

partial transcript if all of the maps g′1, . . . , g
′

k
are codewords from RS[F,D, d + 1].

We also say τ′ has δ-correlated agreement with τ if there is S ⊆ D such that gi
coincides with g′i on S for all i ∈ [k] and |S | ≥ (1 − δ)|D|. Then we say that τ is
“doomed” in Πδ if and only if one of the following holds:

– All low-degree partial transcripts τ′ that are δ-correlated with τ are doomed
in Π0.

– τ is a complete transcript and Check 2 of the verifier fails, i.e., the maps
quotients from Eq. (3) do not have δ-correlated agreement in RS[F,D, d + 1].

This defines the doomed states for Πδ , i.e., the doomed states are those where
the partial transcript so far is doomed.

Now it remains to be shown that Πδ has RBR (knowledge) soundness error
ε/(2

√

ρη) with respect to these doomed states. In what follows, we say that a
partial transcript is doomed in Πδ or doomed in Π0 depending on whether it is
doomed with respect to the doomed states of Πδ or Π0. By a i-round partial
transcript we mean a partial transcript where both prover and verifier have sent
i messages each.

Let τ be a i-partial transcript after that is doomed in Πδ . By definition, all
low-degree partial transcripts that are δ-correlated with τ are doomed in Π0. Let
m be a prover’s message for round i + 1. We want to show that the probability
that (τ,m, c) is not doomed in Πδ is at most ε/(2√ρη), where the probability
is taken over the verifier’s (i + 1)-th message c. Assume (τ,m, c) is not doomed
in Πδ for some c. Then, by definition of the doomed states of Πδ , there is a
low-degre partial transcript ν that is δ-correlated with (τ,m, c) and that is not
doomed in Π0. This transcript must have the form ν = (τ′,m′, c), where τ′ is a
i-round low-degree partial transcript that is δ-correlated with τ. In particular,
τ′ is doomed in Π0.

Since Π0 is RBR sound with error ε, the fraction of challenges c such that τ′
is doomed in Π0 but (τ′,m′, c) is not is at most ε. Thus the fraction of challenges
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c such that τ is doomed in Πδ but (τ,m, c) is not doomed in Πδ is at most
�ε, where � is the number of i-round low-degree partial transcripts τ′ that are
δ-correlated with τ. Using a lemma from [65], we can bound � by 1/(2

√

ρη).
It remains to argue that doomed complete transcripts are rejected by the

verifier. Let τ = τ(g1, . . . , gm) be a doomed complete partial transcript and let
quotients be as in Eq. (3). If the maps quotients do not have δ-correlated agree-
ment in RS[F,D, d], then the verifier rejects and we are done. Hence assume
they do have δ-correlated agreement. Thus, for each i ∈ [m] and j ∈ [ni] we
have that (gi(X) − gi(ki, jz))/(X − ki, jz) agrees with a polynomial qi, j(X) on a set S
(this set is the same for all i, j). In other words, gi(X) agrees with the polynomial
ui, j(X) := qi, j(X)(X−ki, jz)+gi(ki, jz) on S. Moreover, both gi and ui, j take the same
value on X = ki, jz, i.e., gi(ki, jz) = ui, j(ki, jz). Additionally, we have |S | > (1−δ)|D|,
and by how δ is chosen, (1 − δ)|D| ≥ d + 1. This makes ui, j(X) the same for all
j ∈ [ni]; thus, we denote any ui, j(X) simply as ui(X).

We have seen so far that gi(X) agrees with the polynomial ui(X) on S, for
all i ∈ [m], and that gi(ki, jz) = ui(ki, jz), for all i, j. Thus τ′ = τ(u1, . . . , um) is
a low-degree partial transcript that is δ-correlated with τ. Since τ is a doomed
transcript and quotients have δ-correlated agreement in RS[F,D, d], we must have
that τ′ is doomed in Π0. Note that τ′ is a complete transcript, and so Π0’s verifier
rejects it. Clearly, τ′ passes the 0-correlated agreement check of Π0’s verifier.
Hence the first check of the verifier fails, i.e., the values {ui(ki, jz) | i ∈ [m], j ∈ [ni]}
do not satisfy some required polynomial identities. However, these values coincide
with {gi(ki, jz) | i ∈ [m], j ∈ [ni]}, and so the verifier of Πδ rejects τ for the same
reason: the values do not satisfy the appropriate polynomial equations. This
proves that Πδ has the claimed RBR soundness error.

The proof that Πδ has RBR knowledge soundness uses similar ideas. Pre-
cisely, suppose τ is a i-round partial transcript that is doomed in Πδ . Let m be a
prover’s (i + 1)-th round message and assume the probability (over the verifier’s
(i + 1)-th challenge c) that (τ,m, c) is not doomed is larger than ε/(2√ρη). Since,
as we argued, there are at most 1/(2

√

ρη) i-round low-degree partial transcripts
τ′ that are δ-correlated with τ, there must exist at least one such transcript τ′
that is doomed in Π0 such that (τ′,m′, c) is not doomed in Π0 with probability
larger than ε. Then we can use the RBR knowledge soundness of Π0 to extract
a valid witness from τ′. We can build an extractor that, given τ, computes all
low-degree partial transcripts τ′ that are δ-correlated with τ. This can be done
in polynomial time using a method from [65]. Then for each such τ′, the new
extractor uses the extractor of Π0 on τ′, until a valid witness is found.

Proof Sketch of Result 2. The second general result stated above can be proved
as follows: define a partial transcript τ for Πcompiled to be doomed if one of the
following hold:

1. τ is a partial transcript for Π and τ is a doomed state in Π.
2. τ is a partial transcript of the form τ = (τ1, τ2), where τ1 is a complete

transcript of Π, and τ2 is a (possibly empty) partial transcript corresponding
to some rounds of ΠCA, and either
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(a) τ2 is a doomed state in ΠCA, or
(b) the verifier VΠ from Π would reject τ1 due to Check 1 not passing.

We then prove that Πcompiled is RBR (knowledge) sound with respect to these
doomed states and with error max{ε, εCA}. As before, we discuss first RBR
soundness then RBR knowledge.

The key observation is that if τ is a doomed partial transcript of Type 1
above, then it remains doomed in the next round except with probability ε
due to the RBR soundness of Π. A similar argument can be used for a partial
transcript of Type 2 of the form τ = (τ1, τ2), with τ2 � ∅. The most noteworthy
case is when τ is of Type 2 and of the form τ = (τ1, ∅), i.e., the case when τ is
exactly a complete transcript for Π. In this case, since τ is doomed, the verifier
VΠ in Π would reject τ. Hence τ fails either Check 1 or Check 2 of VΠ. In the first
case, the probability of leaving the doomed state in Πcompiled is 0 since any partial
transcript τ′ = (τ′1, τ

′

2) of Type 2 such that τ′1 fails Check 1 of VΠ is doomed by
definition. In the latter case, ΠCA is executed with input a set of words that do
not have δ-correlated agreement. As such, ΠCA starts off in a doomed state and
so the probability that the state is not doomed in the next round of interaction
is at most εCA. This shows that Πcompiled is RBR sound with error max{ε, εCA}.

For RBR knowledge soundness, we make the following observations. First, we
define doomed states for Πcompiled as before, using the doomed states given by the
RBR knowledge (as opposed to RBR soundness) for Π, and the doomed states
given by the RBR soundness for ΠCA. Now, let τ be a doomed partial transcript
for Πcompiled. Assume the probability θ that τ stops being doomed at the next
round is larger than max{εk, εCA}, where εk is the RBR knowledge error of Π.
Then, if τ is of Type 1, we can use the extractor given by the RBR knowledge
of Π to obtain a valid witness from τ. On the other hand, if θ > max{εk, εCA}

then τ = (τ1, τ2) cannot be of Type 2 because:

– If τ2 is a doomed state in ΠCA, then by definition of RBR soundness, the
probability that τ2 is not doomed in the next round of ΠCA is at most εCA.

– If τ1 would be rejected by Π’s verifier due to Check 1 failing, then the partial
transcript will be doomed at the next round because of the same reason, and
so in this case τ has probability 0 of not being doomed in the next round.

In other words, doomed partial transcripts of Type 2 are always doomed at the
next round, except with probability at most max{εk, εCA}. Thus, we do not need
to describe an extractor for this type of partial transcripts.

Remark 5. This approach yields better RBR soundness bounds than some prior
known methods. For example, in [44] the authors introduce RedShift, a Plonk-
like IOP. The authors obtain a RBR knowledge error (modulo FRI) for RedShift
which has a factor of the form, roughly, �m, where � is the aforementioned “max-
imum list decoding set size”, and m is the number of oracles sent by the prover
during the interactive phase. For RedShift, m is set to 6, but similar (though not
fully identical) protocols such as Plonky2 [60] use m ≥ 130. On the contrary, as
we mention later in this paper, with our method the factor �m would be reduced
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to �. We remark again that [44] also does not obtain FS security of their protocol,
as that work does not analyze the FS security of FRI.

In Sect. 2.5 we also point out that, when applied to the ethSTARK protocol,
our approach leads to better knowledge soundness error than the one in [65]
(this improvement was already demonstrated in [39]).

2.4 Round-by-Round Knowledge of Plonk-Like Protocols

We generalize and abstract Plonk-like protocols as a correlated IOP, which we
call OPlonky, where again by “Plonk-like” we specifically mean the interactive
oracle proof abstractions underlying the protocols related to and built upon
the (IOP underlying the) Plonk SNARK. The abstraction is inspired mostly by
Plonky2 [60], which we believe to be one of the most general Plonk-like IOP’s
currently published.

The protocol OPlonky is an IOP for a Plonk-like relation RROPlonky (related to
[32]), which generalizes arithmetic circuit satisfiability and seamlessly supports
custom gates. Simplifying greatly, an instance of RROPlonky is characterized by
some multivariate polynomial equations P1 = 0, . . . , Pk = 0, two integers n, r
representing the dimensions of a matrix (usually called execution trace), and a
permutation σ : [n] × [r] → [n] × [r]. An input and witness pair (x,w) satisfies
such an instance if w is a n × r matrix of field elements, x is a vector of field
elements, and

– The values in each row wi of w satisfy P1(wi) = . . . = Pk(wi) = 0.
– Certain pre-specified cells in w have the values x.
– The entries in w satisfy the copy constraints induced by σ. More precisely,

w
(i, j) = wσ(i, j) for all i, j ∈ [n] × [r].

The IOP OPlonky proceeds in the following 4-round process. For the sake of
presentation, we provide a greatly simplified exposition.

1. Round 1. The prover sends r polynomials a1(X), . . . , ar (X) of degree < n to
the verifier as oracles. Each of these polynomials is the result of interpolating
the columns of w over a multiplicative subgroup H of F or order n. The verifier
then replies with some random challenges.

2. Round 2. The prover uses the verifier randomness from the prior round,
to construct and send oracle access to so-called permutation polynomials
π1(X), . . . , πs(X) of degree less than n. These polynomials will later be used
to (again roughly) check that the copy constraints are satisfied. The verifier
responds with a random challenge α.

3. Round 3. At this point, the goal of the prover is to convince the verifier
that the polynomials Q j := Pj(a1(X), . . . , ar (X)) and certain polynomials of the
form δi(X) := Ri(π1(X), . . . , πs(X)) vanish on H, where the Ri is some multi-
variate polynomial. To this end, the prover batches these constraints together
by computing

d(X) = Q1(X) + αQ2(X) + . . . + α
k−1Qk(X) + α

kδ1(X) + . . . + α
k+s−1δs(X) (4)
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and proving that d(X) vanishes in H. To do so, the prover sends the ver-
ifier oracle access to the polynomial q(X) := d(X)/ZH (X), where ZH (X)
is the vanishing polynomial of H. The verifier replies with a random field
element z.

4. Round 4. The prover replies with the values (ai(z))i, (πj(z))j and q(z).
5. Verification phase. The verifier performs two assertions. It accepts the

proof if and only if both of them return true.
– Assert whether q(z)ZH (z) = d(z), where the value d(z) is obtained by

replacing X by z in Eq. (4), and querying the oracles to ai(X), πj(X) for
all i ∈ [r] and j ∈ [s].

– Use an oracle to assert whether the following set of words has δ-correlated
agreement in some Reed-Solomon code:

{
q(X) − q(z)

X − z
,

(
ai(X) − q(z)

X − z

)

i

,

(
πj(X) − q(z)

X − z

)

j

}

.

It is apparent from the description above that OPlonky is indeed a δ-correlated
IOP.

When compiled with the Batched FRI protocol, OPlonkycompiled becomes
almost identical to Plonky2’s IOP [60] with some similarities to Redshift [44].
Alternatively, OPlonky could also be compiled somehow with the KZG commit-
ment scheme (which, in a sense, can act as a protocol for 0-correlated agreement).
This would yield generalized versions of the original Plonk protocol and its vari-
ations (e.g., TurboPlonk). We leave this as future work.

Round-by-Round Soundness of OPlonky. With the above observations in
mind, we then go on to show that OPlonky with δ = 0 has RBR soundness
and knowledge. We now provide an intuitive idea of the proof, focusing on RBR
soundness. To do so, we use the simplified description of OPlonky provided above.
As such, our analysis and resulting error bounds are also simplified.

We let OPlonkyO denote the OPlonky protocol where the verifier has oracle
access to 0-correlated agreement oracle O. To prove that OPlonkyO has RBR
(knowledge) soundness, we need to define a set of “doomed states” the protocol
can be in. As a general rule, we will always set the state to “doomed” if the prover
has sent the verifier an oracle to a map that is not a polynomial of appropriate
degree. As argued in Sect. 2.3, in this scenario it is impossible for a malicious
prover to “recover” and eventually convince the verifier, since the verifier will
detect the dishonesty when using O in its Check 2. Moreover, by similar reasons,
we can also assume that the prover provides correct openings as its last message.

Next we describe the rest of scenarios in which we set the state to “doomed”
and analyze the probabilities of “recovering”, i.e., of not being in a doomed set
in the next round. We proceed in a round-by-round fashion.

– Given an input x for the relation RROPlonky, if x is not in the language LRROPlonky

induced by RROPlonky, we set the state to “doomed”.
– Now assume that at the end of round 1, it is not possible for the prover to

compute polynomials π1(X), . . . , πs(X) of degree < n such that all the polyno-
mials δi(X) vanish on H. Then we set the state to “doomed”. We see that if
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the state was doomed before round 1, then the chances of receiving verifier
randomness such that the state is not doomed at the end of round 1 are,
roughly, rn/|F|. This probability comes from the soundness of permutation
checking procedure used in Plonk and many other protocols.

– Now suppose that at the end of round 2, the polynomial d(X) does not vanish
on ZH (X). Then we set the state to “doomed”. In this case, the probability of
starting round 2 in a doomed state and finishing it in a non-doomed state is
at most, roughly, (k+ s)/|F|. This is deduced by taking an arbitrary x ∈ H and
looking at the equality d(x) = 0 as a polynomial equation on α. This equation
either has degree ≈ k + s (on α), or it is identically zero. However, we see that
if round 2 started in a doomed state, then R(x) = 0 is not identically zero for
at least one x ∈ H. Hence, there are at most ≈ k + s distinct values of α such
that d(x) = 0 for all x ∈ H.

– Finally, suppose that at the end of round 3, one has q(z)ZH (z) � d(z). Then we
set the state to “doomed”. In this case, the probability of ending round 3 in
a non-doomed state if the state was previously doomed is at most, roughly,
maxj{deg Pj} · n/|F|.8 This is because either q(X)ZH (X) − d(X) is the zero
polynomial (as it should be), or it is a polynomial of degree maxj{deg Pj}n
and z is a root of it. We then see that if the protocol is in a doomed state
when round 3 starts, then q(X)ZH (X) − d(X) is a nonzero polynomial. Notice
as well that if the protocol ends in a doomed state as per our definition, then
the verifier rejects.

The above argument, at a high-level, establishes the round-by-round security of
the 0-correlated hIOP OPlonkyO ; complete details are given in the full version
of our work [14].

Round-by-Round Knowledge of RISC Zero. RISC Zero [68] is similar to the
Plonky2 protocol. More precisely, and modulo technicalities, it can be thought
of as being built on top of OPlonky with the addition that RISC Zero implements
a lookup argument [33] in the same round as the permutation check is performed.
We believe that similar methods as the ones presented in the previous section
can be used to establish the RBR knowledge soundness of RISC Zero, and thus,
the knowledge soundness of the Fiat-Shamir transformed version of RISC Zero.
Since RISC Zero’s whitepaper is in draft form at the moment of writing, we
leave formally proving this claim as an open task.

2.5 Round-by-Round Knowledge of EthSTARK

We begin by discussing the ethSTARK protocol ΠethSTARK [65], which is a close
variation of the DEEP-ALI protocol [10]. We briefly provide a rough overview
of the protocol; see [65] for complete details.

8 This is not entirely accurate; for precise bounds, see Theorem 8.
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Description of the Protocol. In ΠethSTARK, the honest prover first sends oracle
access to a list of degree ≤ d polynomials f1, . . . , fm that interpolate the columns
of a so-called Algebraic Intermediate Representation (AIR) instance over a mul-
tiplicative subgroup H of a field F (simply put, these polynomials encode the
witness). Supposedly, these polynomials are such that certain maps of the form

[Qi(X, f1(gi,1X), . . . , fm(gi,mX))]/ZHi (X), i ∈ I, (5)

are low-degree polynomials. Here, each Qi(X,Y1, . . . ,Ym) is a pre-specified (m+1)-
variate polynomial; the gi, j ’s are field elements; ZHi (X) is the vanishing polyno-
mial of a subgroup Hi of H; and I is a list of indices.

The verifier replies with 2|I | random elements r1, r ′1, . . . , r |I |, r
′

|I |
from a field

extension K of F. As its second message, the honest prover sends oracle access
to low-degree polynomials q1(X), . . . , qk(X) such that

∑

i∈I

(ri + r ′i X
ci
)[Qi(X, f1(gi,1X), . . . , fm(gi,mX))]/ZHi (X) =

k∑

j=1

X j−1qj(X
k
), (6)

where the ci’s are pre-agreed positive integers such that that each summand
on the left-hand side of Eq. (6) has the same degree, and k is a conveniently
pre-agreed positive integer. The reason why the prover sends k polynomials
q1(X), . . . , qk(X) instead of just one polynomial q(X) that equals the left-hand
side of Eq. (6) is because the degree of q(X) would be “too large”, and hence it
is “split” into low-degree polynomials.

The verifier replies with a field element z uniformly sampled in a large subset
S of K. The honest prover replies with evaluations

{
f1(gi, jz), . . . , fm(gi, jz), q1(z), . . . , qk(z) | i ∈ I, j ∈ [m]} . (7)

Then, the verifier checks that Eq. (6) holds after replacing X by z (using the
purported evaluations in Eq. (7)), and it engages with the prover in the Batched
FRI protocol to verify that the following maps have δ-correlated agreement in
some Reed-Solomon code:

{
fj(X) − fj(gi, jz)

X − gi, jz
| i ∈ I, j ∈ [m]

}⋃ {
qt (X) − qt (z)

X − z
| t ∈ [k]

}

. (8)

RBR Knowledge Soundness of the ethSTARK Protocol. It is clear that ΠethSTARK

is the compilation of a δ-correlated IOP using the Batched FRI protocol for δ-
correlated agreement. Thus, one can prove that ΠethSTARK has RBR (knowledge)
soundness by showing that the underlying δ-correlated IOP has RBR (knowl-
edge) soundness when δ = 0. Once this is done, we obtain as a consequence
that compiling ΠethSTARK with Merkle tree commitments and the Fiat-Shamir
transformation (i.e., the BCS transform) yields a knowledge sound succinct non-
interactive argument, i.e., a SNARK. Here, the “underlying δ-correlated IOP”
is precisely the protocol ΠethSTARK without applying Batched FRI. Instead, we
assume the verifier has an oracle that allows for checking δ-correlated agreement
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of the maps that are batched together in Batched FRI. These are the quotient
polynomials in Eq. (8).

As we mentioned, due to our results (Theorem 3), it suffices to analyze RBR
knowledge soundness when δ = 0. This corresponds to the case when the verifier
has an oracle for checking that the maps of Eq. (8) are low-degree polynomials.
Note that if the maps in Eq. (8) have 0-correlated agreement, then so do all the
(oracles to) maps sent by the adversary during the protocol execution. This is
because if a map of the form (h(X) − y)/(X − z) for constants y, z agree with a
polynomial q(X) on a set S, then h(X) agrees with the polynomial q(X)(X − z)+ y

on the same set S. Moreover, for any map h(X) sent by the prover there is a map
of the form (h(X) − y)/(X − z) in the list of Eq. (8). Hence we only need consider
adversaries that send (oracles to) low-degree polynomials. Moreover, the check
for 0-correlated agreement also forces the prover to provide correct openings for
Eq. (7).

We say that a 1-round partial transcript is doomed if the left-hand side of
Eq. (6) is not a polynomial of appropriate degree. We say that a 2-round partial
transcript is doomed if Eq. (6) does not hold for the received challenge z. Clearly,
if a 1-round partial transcript is doomed, then a 2-round partial transcript is
doomed except with probability d ′/|S |, where d ′ is the degree of the polynomial
equation obtained from Eq. (6) after multiplying it by ZH (X) on each side.
Moreover, any doomed 2-round partial transcript is eventually rejected by the
verifier, no matter how it is completed, since Eq. (6) does not hold for X = z.
Finally, if f1(X), . . . , fm(X) do not “encode a valid witness”, then by how the AIRs
are constructed, not all maps in Eq. (5) are polynomials of appropriate degree.
Then we claim there are at most |K|

2 |I |−1 tuples (r1, r ′1, . . . , r |I |, r
′

|I |
) such that the

right-hand side of Eq. (6) is a polynomial of appropriate degree. If the claim is
true, then an incorrect initial message f1(X), . . . , fm(X) leads to a doomed state
after Round 1 except with probability 1/|K|. To prove the claim, consider the
expression

∑

i∈I

(ri + r ′i X
ci
)Qi(X, f1(gi,1X), . . . , fm(gi,mX))(ZH (X)/ZHi (X)) (9)

where we view ZH (X)/ZHi (X) as a polynomial since ZHi (X) divides ZH (X). Then
the right-hand side of Eq. (6) is a polynomial of appropriate degree if and only
if Eq. (9) vanishes on H. The latter means that for each x ∈ H, the elements
(r1, r ′1, . . . , r |I |, r

′

|I |
) form a solution to the equation

∑

i∈I

(ri + r ′i x
ci
)Qi(x, f1(gi,1x), . . . , fm(gi,mx))(ZH (x)/ZHi (x)) = 0

on the variables {ri, r ′i | i ∈ I}. Unless the right-hand side of the equation is
identically zero, there are at most |K|

2 |I |−1 such solutions. On the other hand, if
for all x ∈ H the right-hand side of the equation was identically zero, then each
of the maps Eq. (5) would be polynomials of appropriate degree (recall that the
adversary is constrained to sending low-degree polynomials), contradicting the
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assumption that f1(X), . . . , fm(X) encode an incorrect witness. This proves the
claim.

It follows that, in its 0-correlated form, ΠethSTARK has RBR (knowl-
edge) soundness error ε0 := max{1/|K|, d ′/|S |}. Then, due to the results from
Sects. 2.2 and 2.3, ΠethSTARK (as an IOP) has RBR (knowledge) soundness
ε := max{�/|K|, �d ′/|S |, εbFRI

rbr }, where � = 1/(2
√

ρη) (here ρ and η are parame-
ters related to the RS codes used within the protocol), and εbFRI

rbr is the RBR
soundness error of batched FRI.

Remark 6. This analysis can slightly improve the knowledge soundness error for
ΠethSTARK when compared with [65]. This improvement is already demonstrated
in [39]. Using the notation of [65, Theorem 4], the improved knowledge soundness
error is

(�/|K|) + � · (dmax + 2h + a)/(|K| − a · |D| − |H0 |) + εFRI.

The improvement here is in having the factor � in the second summand, instead
of �2.

2.6 From Round-by-Round Soundness to Fiat-Shamir Security

As stated in Sect. 2.1, we utilize the BCS transformation for IOPs due to Ben-
Sasson et al. [9] to compile our round-by-round sound IOPs into secure non-
interactive protocols in the random oracle model. At a high level, the transfor-
mation works by first compressing oracles sent by the prover with a Merkle tree
[52]; i.e., instead of sending oracle f to the verifier, the prover sends Mf , where
Mf is the root of the Merkle tree with leaves corresponding to evaluations of f
(in some canonical way). Then whenever the verifier would query oracle f at
position i, instead the prover provides the verifier with pair ( f (i), πi), where πi
is the Merkle authentication path for proving that f (i) is consistent with Mf .
Finally, once the IOP is transformed in this way, it is then compressed using
Fiat-Shamir to obtain a non-interactive protocol.

Ben-Sasson et al. showed that applying the BCS transformation to an IOP
yields a secure non-interactive protocol in the random oracle model if the IOP
satisfied a notion of soundness called state-restoration soundness, which roughly
says that the IOP remains secure even if the prover is allows to rewind the
verifier to any prior state at most b times for some upper bound b ≥ 1; see
[9] for full details. However, it is known that round-by-round soundness is an
upper bound on state-restoration soundness: in particular, if a protocol has state-
restoration soundness error εsr(b) and round-by-round soundness error εrbr, then
εsr(b) ≤ bεrbr [25,26,44]. Moreover, Chiesa et al. [25,26] showed that if an IOP is
both round-by-round sound and round-by-round knowledge sound, then the BCS
transformed IOP is both (adaptively) sound and (adaptively) knowledge sound
versus both classical and quantum adversaries in the random oracle model.

Applying BCS to FRI and Batched FRI directly gives us a SNARK in the
random oracle model, establishing the Fiat-Shamir security for FRI and Batched
FRI (i.e., Corollary 2). Similarly, for OPlonkyO , we replace the δ-correlated oracle
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O with the Batched FRI protocol, leveraging our δ-correlated IOP techniques
to obtain a round-by-round sound IOP. Then again applying BCS to OPlonky
composed with Batched FRI gives us a SNARK in the random oracle model,
establishing the Fiat-Shamir security of OPlonky composed with Batched FRI
(i.e., Corollary 3). Finally, our results allow us to obtain FS security for a variety
of Plonk-like protocols; see [14] for details.

3 Our Results

In this section, we formally state all of our results. Due to space constraints, the
discussion and proofs for these results can be found in the full version of our
work [14].

3.1 Round-by-Round Soundness of FRI and Batched FRI

We formally present the FRI IOPP algorithm in Algorithm 1. The following
theorem captures the round-by-round soundness of FRI.

Theorem 6. Let F be a finite field, L0 ⊂ F
∗ be a smooth multiplicative subgroup

of size 2n, d0 = 2k , ρ = d0/|L0 | = 2−(n−k), and � ∈ Z
+. For any integer m ≥ 3,

η ∈ (0,
√

ρ/(2m)), δ ∈ (0, 1 −
√

ρ − η), and function G0 : L0 → F that is δ-far from
RS[F, L0, d0], Algorithm 1 has round-by-round soundness error

εFRI
rbr := εFRI

rbr (F, L0, ρ, δ,m, �) = max{[(m + 1/2)7 |L0 |2]/[3ρ3/2 · |F|], (1 − δ)�}.

We extend the above theorem to the Batched FRI protocol, a variant of
Algorithm 1 where the prover first sends t oracles f1, . . . , ft to the verifier, and
the verifier replies with α1, . . . , αt

$
← F. The prover and verifier then engage in

the FRI protocol for polynomial G0 =
∑

i αi fi. The following theorem captures
the RBR soundness of Batched FRI.

Theorem 7. Let F be a finite field, L0 ⊂ F
∗ be a smooth multiplicative subgroup

of size 2n, d0 = 2k , ρ = d0/|L0 | = 2−(n−k), and � ∈ Z
+. For any integer m ≥ 3,

η ∈ (0,
√

ρ/(2m)), δ ∈ (0, 1−
√

ρ−η), and functions f (0)1 , . . . , f
(0)
t : L0 → F for t ≥ 2

such that at least one f (0)i that is δ-far from RS(0), the Batched FRI protocol has
round-by-round soundness error

εbFRI
rbr := εbFRI

rbr (F, L0, ρ, δ,m, �, t) = max{[(m + 1/2)7 |L0 |2]/[3ρ3/2 · |F|], (1 − δ)�}.

Fiat-Shamir Security of FRI and Batched FRI. Given the BCS transformation
[9] (also see [14]), we can apply the BCS transformation to transform both FRI
and Batched FRI into SNARKs in the random oracle model. The following
corollaries capture this result.

Corollary 4 (FS Security of FRI). Let F be a finite field, L0 ⊂ F
∗ be a

smooth multiplicative subgroup of size 2n, d0 = 2k , ρ = d0/|L0 | = 2−(n−k), and
� ∈ Z

+. For any integer m ≥ 3, η ∈ (0,
√

ρ/(2m)), δ ∈ (0, 1 −

√

ρ − η), random
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oracle H : {0, 1}∗ → {0, 1}κ , query bound Q ∈ N, and function G0 : L0 → F that
is δ-far from RS[F, L0, d0], compiling Algorithm 1 with the BCS transformation
[9] gives a non-interactive random oracle proof with adaptive soundness error
and knowledge error

εFRI
fs := εFRI

fs (F, L0, ρ, δ,m, �,Q, κ) = Q · εFRI
rbr (F, L0, ρ, δ,m, �) + (3(Q2 + 1)/2κ).

Moreover, if γ := γ(F, L0, ρ, δ, �) denotes the length of a FRI proof for parame-
ters F, L0, ρ, δ, �, then the above non-interactive random oracle proof has adaptive
soundness error and knowledge error

εFRI
fs−q := εFRI

fs−q(F, L0, ρ, δ,m, �,Q, κ) = Θ(Q · εFRI
fs (F, L0, ρ, δ,m, �,Q, κ))

against quantum adversaries that can make at most Q −O(� · log(γ)) queries.

Corollary 5 (FS Security of Batched FRI). Let F be a finite field, L0 ⊂ F
∗

be a smooth multiplicative subgroup of size 2n, d0 = 2k , ρ = d0/|L0 | = 2−(n−k), and
� ∈ Z

+. For any integer m ≥ 3, η ∈ (0,
√

ρ/(2m)), δ ∈ (0, 1−
√

ρ−η), random oracle
H : {0, 1}∗ → {0, 1}κ, query bound Q ∈ N, and functions f (0)1 , . . . , f

(0)
t : L0 → F

for t ≥ 2 such that at least one f (0)i is δ-far from RS[F, L0, d0], compiling Batched
FRI with the BCS transformation [9] gives a non-interactive random oracle proof
with adaptive soundness error and knowledge error

εbFRI
fs := εbFRI

fs (F, L0, ρ, δ,m, �, t,Q, κ) = QεbFRI
rbr (F, L0, ρ, δ,m, �, t) + (3(Q2 + 1)/2κ).

Moreover, if γ := γ(F, L0, ρ, δ, �, t) denotes the length of a Batched FRI proof for
parameters F, L0, ρ, δ, �, t, then the above non-interactive random oracle proof has
adaptive soundness error and knowledge error

εbFRI
fs−q := εbFRI

fs−q (F, L0, ρ, δ, �, t,Q, κ) = Θ(Q · εbFRI
fs (F, L0, ρ, δ, �, t,Q, κ))

against quantum adversaries that can make at most Q −O(� · log(γ)) queries.

Remark 7. A variety of works (e.g., [6,65]) make conjectures about the security
of the FRI and Batched FRI protocols. We similarly adapt our above results
when assuming these conjectured security bounds; see [14] for full details.

3.2 Correlated IOPs

A key technical tool we introduce is the notion of a δ-correlated (holographic)
interactive oracle proof, or δ-correlated hIOP in short. A δ-correlated hIOP is
an hIOP for indexed (F,H, d)-polynomial oracle relations, where we fix some
0 ≤ δ < 1 and assume the verifier has an oracle OCoAgg(δ) for the correlated
agreement relation CoAgg(δ) (see [14] for complete details). Furthermore, we
assume that the final offline verification process consists of: (1) checking that
the oracles sent by the prover satisfy a certain polynomial equation on a random
point z (not necessarily from H); and (2) using OCoAgg(δ) to check that the
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maps corresponding to certain oracles have correlated agreement in RS[F,H, d]
(see [14] for details). We denote such a protocol as ΠOCoAgg(δ).

Given a δ-correlated hIOP, our first main result is showing that given a
round-by-round sound 0-correlated hIOP, when replacing the oracle OCoAgg(0)
with another suitable IOP, results in a new hIOP that is also round-by-round
sound.

Theorem 8. Let ΠOCoAgg(0) = (Ind,P,VOCoAgg(0)
) be a μ-round 0-correlated hIOP

for an indexed (F,D, d)-polynomial oracle relation R. Let 0 < δ < 1 −
√

ρ, where
ρ = d/|D|, and let ΠCA be a IOPP for δ-correlated agreement in RS[F,D, d]. Let
η > 0 be such that δ = 1 −

√

ρ − η. Assume ΠCA is RBR sound with error εCA.
Then:

– Suppose thatΠOCoAgg(0) is RBR sound with error εrbr−s. Then there exists a hIOP
Π for R with RBR soundness error ε′(i) := max

{
εrbr−s(i)(2η

√

ρ), εCA(iCA)
}
,

where iCA = (F,D, d, δ, N), and N is the number of words whose δ-correlated
agreement is checked in the last verification check of ΠOCoAgg(δ).

– Suppose μ(i,x) ≥ 1 for all i,x and ΠOCoAgg(0) has RBR knowledge error εrbr−k,
then Π has RBR knowledge error max

{
εrbr−k(i)/(2η

√

ρ), εCA(iCA)
}
, where iCA

has the same meaning as in above.

The proof of the above theorem relies on two technical lemmas. The first
lemma states that if you have a round-by-round sound 0-correlated hIOP when
given access to OCoAgg(0), then when given access to OCoAgg(δ) for δ > 0, the
same hIOP is now δ-correlated and is round-by-round sound (with some loss in
the soundness error).

Lemma 1. Let ΠOCoAgg(0) = (Ind,P,VOCoAgg(0)
) be a μ-round 0-correlated hIOP

for an indexed (F,D, d)-polynomial oracle relation R. Let δ = 1 −
√

ρ − η. Then:

– Suppose that ΠOCoAgg(0) is RBR sound with error εrbr−s. Then ΠOCoAgg(δ) has
RBR soundness error εrbr−s(i)/(2η

√

ρ).
– Suppose that ΠOCoAgg(0) has RBR knowledge with error εrbr−k. Then ΠOCoAgg(δ)

has RBR knowledge error εrbr−k(i)/(2η
√

ρ),

The second lemma then states that when one replaces the oracle OCoAgg(δ)
in the above hIOP with another round-by-round sound IOP for δ-correlated
agreement, then the resulting composed protocol remains round-by-round sound.

Lemma 2. Assume the notation and hypotheses of Theorem 8. Then there exists
a hIOP Πcompiled for R with the following properties:

– Suppose ΠOCoAgg(δ) has RBR soundness error εrbr−s,δ. Then Πcompiled has RBR
soundness error max

{
εrbr−s,δ(i), εCA(iCA)

}
.

– Suppose ΠOCoAgg(δ) has RBR knowledge soundness error εrbr−k,δ. Then
Πcompiled has RBR knowledge soundness error max

{
εrbr−k,δ(i), εCA(iCA)

}
.
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3.3 A Plonk-Like Protocol Abstraction OPlonky

Building upon the δ-correlated hIOP framework, we introduce a δ-correlated
hIOP we call OPlonky, which abstracts the polynomial IOPs underlying many
of the variants of Plonk. This generalization is inspired in part by Plonky2
[60]. Our main technical result is establishing the round-by-round soundness of
OPlonky(0) := OPlonkyOCoAgg(0), where we assume the verifier has oracle access
to the 0-correlated agreement oracle OCoAgg(0).

Lemma 3. The 0-correlated agreement encoded hIOP OPlonky(0) has RBR
soundness and RBR knowledge error ε(i) := maxi∈[3] {εi(i)}, where

ε1(i) := ([3n(r′ + u)]/|F|)t , ε2(i) := ([|P| + (s + 2)t − 1]/|F|)t ,
ε3(i) := max{deg(Pj)j∈[ |P |]

, u + 1} · (n/|K \ D|)

for all index i = (P,Q,H, σ,PI, r, r′, �, t), any potential input x, and n = |H |.

Given the above lemma and our δ-correlated hIOP results, we obtain our
main theorem for OPlonky: compiling OPlonkyOCoAgg(δ) with the Batched FRI
protocol.

Theorem 9. Let F be a finite field, D ⊆ F
∗ a smooth multiplicative subgroup of

F of order 2n, and H a subgroup of D of order n. Let m ≥ 3, δ = 1 −
√

ρ − η for
some η ∈ (0,

√

ρ/2m), and let Plonky2hIOP be the hIOP obtained from OPlonky(δ)
after compiling it with the Batched FRI protocol (see [14]). Then Plonky2hIOP
is RBR sound and has RBR knowledge. For each i = (P,Q,H, σ,PI, r, r′, �, t) and
all q ≥ 1, the error in both cases is given by

ε
OPlonky
rbr

(i, q) =max{
(
εi(i)/(2η

√

ρ)
)

i∈[3] , ε
bFRI
rbr (F,D, ρ, δ, N, q)},

where N is the total number of codewords that are batched together in the batched
FRI protocol, εbFRI

rbr is the RBR soundness error of εbFRI
rbr (which equals its RBR

knowledge error, see [14]) and

ε1(i) := ([3n(r′ + u)]/|F|)t , ε2(i) := ([|P| + (s + 2)t − 1]/|F|)t ,

ε3(i) := max{deg(Pj)j∈[ |P |]

, u + 1}(n/|K \ D|).
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Algorithm 1: FRI-IOPP

Input: Finite field F, smooth multiplicative subgroup L0 ⊂ F
∗ of size 2n, degree

bound d0 = 2k , and � ∈ N.
P has function G0 : L0 → F and V has oracle (G0(z))z∈L0 .
Output: The verifier V outputs accept or reject.

1 foreach i ∈ [k] do // Fold Phase

2 V sends xi−1
$
← F to P.

3 P and V set di := di−1/2 and Li := {z2 : z ∈ Li−1}.
4 P computes unique bi-variate polynomial Qi−1(X,Y ) such that

1. degX (Qi−1) = 1;
2. degY (Qi−1) < di ; and
3. Gi−1(r) = Qi−1(r, r2) for all r ∈ Li−1.

5 P defines Gi(Y ) := Qi−1(xi−1,Y ).
6 if i = k then P sends Gk = C ∈ F to V .
7 else P sends oracle (Gi(z))z∈Li to V .

8 forall j ∈ [�] do // Query Phase; processed in parallel

9 V samples s0, j
$
← L0.

10 foreach i ∈ [k] do
11 V computes si, j = (si−1, j )2 and s′i−1, j � si−1, j such that (s′i−1, j )

2 = si, j .
12 V queries and obtains qi−1, j = Gi−1(si−1, j ) and q′i−1, j = Gi−1(s′i−1, j ).

13 V computes linear polynomial Q̃i−1, j (X) via Lagrange interpolation on
the set {(si−1, j, qi−1, j ), (s′i−1, j, q

′

i−1, j )}.

14 V checks that Gi(si, j ) = Q̃i−1, j (xi−1) by querying Gi .
15 if Gi(si, j ) � Q̃i−1, j (xi−1) then V outputs reject.

16 V outputs accept.

4 Conclusions and Open Problems

In this work, we formalized the FS-security of FRI and related SNARKs, partic-
ularly Plonk-like protocols captured by δ-correlated IOPs. Our results on Plonk-
like protocols cover multiple variants, some of which are already in production.
There are other protocols that are amenable to our general framework for corre-
lated IOP’s, e.g., ethSTARK [65] and RISC Zero [68]. We leave it as future work
to perform a RBR soundness/knowledge and FS analysis of these protocols.

Our generalization OPlonky of IOPs using Plonk-like arithmetization along
with a protocol for low-degree testing (specifically, FRI) does not address KZG-
based Plonk-like schemes. Compiling a 0-correlated IOP with RBR soundness
and knowledge using other commitment schemes and the FS-security of such
schemes remain open problems.

Acknowledgements. Alexander R. Block was supported by DARPA under Con-
tract Nos. HR00112020022 and HR00112020025. Albert Garreta and Michał Zając
were supported by Ethereum Foundation grant FY23-0885. Work of Jonathan Katz



36 A. R. Block et al.

was supported by NSF award CNS-2154705 and by DARPA under Contract No.
HR00112020025. Work of Justin Thaler was supported by NSF CAREER award CCF-
1845125 and by DARPA under Contract No. HR00112020022. Pratyush Ranjan Tiwari
was supported by NSF award CNS-1814919 and a Google Security and Privacy research
award to Matthew Green. The views, opinions, findings, conclusions, and/or recommen-
dations expressed in this material are those of the authors and should not be interpreted
as reflecting the position or policy of DARPA or the United States Government, and
no official endorsement should be inferred.

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-
natures via the Fiat-Shamir transform: minimizing assumptions for security and
forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 418–433. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-
7_28

2. Attema, T., Fehr, S., Klooß, M.: Fiat-Shamir transformation of multi-round inter-
active proofs. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022, Part I. LNCS,
vol. 13747, pp. 113–142. Springer, Heidelberg (2022). https://doi.org/10.1007/978-
3-031-22318-1_5

3. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd FOCS,
pp. 106–115. IEEE Computer Society Press (2001). https://doi.org/10.1109/SFCS.
2001.959885

4. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast reed-solomon interac-
tive oracle proofs of proximity. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D.,
Sannella, D. (eds.) ICALP 2018. LIPIcs, vol. 107, pp. 14:1–14:17. Schloss Dagstuhl
(2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.14

5. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/046 (2018). https://eprint.iacr.org/2018/046

6. Ben-Sasson, E., Carmon, D., Ishai, Y., Kopparty, S., Saraf, S.: Proximity gaps for
reed-solomon codes. Cryptology ePrint Archive, Paper 2020/654 (2020). https://
eprint.iacr.org/2020/654, full version of the same work published at FOCS 2020.
https://doi.org/10.1109/FOCS46700.2020.00088

7. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from RAMs
to delegatable succinct constraint satisfaction problems: extended abstract. In:
Kleinberg, R.D. (ed.) ITCS 2013, pp. 401–414. ACM (2013). https://doi.org/10.
1145/2422436.2422481

8. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.:
Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17653-2_4

9. Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M.,
Smith, A. (eds.) TCC 2016, Part II. LNCS, vol. 9986, pp. 31–60. Springer, Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-53644-5_2

10. Ben-Sasson, E., Goldberg, L., Kopparty, S., Saraf, S.: DEEP-FRI: sampling outside
the box improves soundness. In: Vidick, T. (ed.) ITCS 2020, vol. 151, pp. 5:1–5:32.
LIPIcs (2020). https://doi.org/10.4230/LIPIcs.ITCS.2020.5

https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/978-3-031-22318-1_5
https://doi.org/10.1007/978-3-031-22318-1_5
https://doi.org/10.1109/SFCS.2001.959885
https://doi.org/10.1109/SFCS.2001.959885
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2020/654
https://eprint.iacr.org/2020/654
https://doi.org/10.1109/FOCS46700.2020.00088
https://doi.org/10.1145/2422436.2422481
https://doi.org/10.1145/2422436.2422481
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.4230/LIPIcs.ITCS.2020.5


Fiat-Shamir Security of FRI and Related SNARKs 37

11. Ben-Sasson, E., Kopparty, S., Saraf, S.: Worst-case to average case reductions for
the distance to a code. In: Servedio, R.A. (ed.) 33rd Computational Complexity
Conference, CCC 2018, 22–24 June 2018, San Diego, CA, USA. LIPIcs, vol. 102,
pp. 24:1–24:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018). https://
doi.org/10.4230/LIPIcs.CCC.2018.24

12. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of
the Fiat-Shamir heuristic and applications to Helios. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4_38

13. Bitansky, N., et al.: Why “Fiat-Shamir for proofs” lacks a proof. In: Sahai, A. (ed.)
TCC 2013. LNCS, vol. 7785, pp. 182–201. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36594-2_11

14. Block, A.R., Garreta, A., Katz, J., Thaler, J., Tiwari, P.R., Zając, M.: Fiat-Shamir
security of FRI and related snarks. Cryptology ePrint Archive, Paper 2023/1071
(2023). https://eprint.iacr.org/2023/1071

15. Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the correctness
of memories. Algorithmica 12, 225–244 (1994)

16. Blumberg, A.J., Thaler, J., Vu, V., Walfish, M.: Verifiable computation using mul-
tiple provers. Cryptology ePrint Archive, Report 2014/846 (2014). https://eprint.
iacr.org/2014/846

17. Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness source.
IACR Cryptology ePrint Archive, p. 1015 (2015)

18. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge
arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12

19. Bootle, J., Cerulli, A., Groth, J., Jakobsen, S., Maller, M.: Arya: nearly linear-time
zero-knowledge proofs for correct program execution. In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 595–626. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03326-2_20

20. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, pp. 315–334. IEEE Computer Society Press (2018). https://
doi.org/10.1109/SP.2018.00020

21. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp.
677–706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_24

22. Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: Charikar, M., Cohen,
E. (eds.) 51st ACM STOC, pp. 1082–1090. ACM Press (2019). https://doi.org/10.
1145/3313276.3316380

23. Canetti, R., Chen, Y., Reyzin, L., Rothblum, R.D.: Fiat-Shamir and correlation
intractability from strong KDM-secure Encryption. In: Nielsen, J.B., Rijmen, V.
(eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 91–122. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78381-9_4

24. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004). https://doi.org/10.1145/1008731.1008734

25. Chiesa, A., Manohar, P., Spooner, N.: Succinct arguments in the quantum ran-
dom oracle model. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS,
vol. 11892, pp. 1–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
36033-7_1

https://doi.org/10.4230/LIPIcs.CCC.2018.24
https://doi.org/10.4230/LIPIcs.CCC.2018.24
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/978-3-642-36594-2_11
https://doi.org/10.1007/978-3-642-36594-2_11
https://eprint.iacr.org/2023/1071
https://eprint.iacr.org/2014/846
https://eprint.iacr.org/2014/846
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-030-03326-2_20
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1007/978-3-319-78381-9_4
https://doi.org/10.1145/1008731.1008734
https://doi.org/10.1007/978-3-030-36033-7_1
https://doi.org/10.1007/978-3-030-36033-7_1


38 A. R. Block et al.

26. Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recur-
sive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020,
Part I. LNCS, vol. 12105, pp. 769–793. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-45721-1_27

27. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with
streaming interactive proofs. In: Goldwasser, S. (ed.) ITCS 2012, pp. 90–112. ACM
(2012). https://doi.org/10.1145/2090236.2090245

28. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5_19

29. Dao, Q., Miller, J., Wright, O., Grubbs, P.: Weak fiat-shamir attacks on modern
proof systems. Cryptology ePrint Archive, Paper 2023/691 (2023). https://eprint.
iacr.org/2023/691

30. Dusk Network: Plonkup. https://github.com/dusk-network/plonkup. Accessed 24
May 2023

31. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

32. Gabizon, A., Williamson, Z.J.: The turbo-plonk program syntax for specifying
snark programs. https://docs.zkproof.org/pages/standards/accepted-workshop3/
proposal-turbo_plonk.pdf. Accessed 23 May 2023

33. Gabizon, A., Williamson, Z.J.: plookup: a simplified polynomial protocol for lookup
tables. Cryptology ePrint Archive, Paper 2020/315 (2020). https://eprint.iacr.org/
2020/315

34. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology
ePrint Archive, Report 2019/953 (2019). https://eprint.iacr.org/2019/953

35. Ghoshal, A., Tessaro, S.: Tight state-restoration soundness in the algebraic group
model. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part III. LNCS, vol. 12827,
pp. 64–93. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_3

36. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In:
44th FOCS, pp. 102–115. IEEE Computer Society Press (2003). https://doi.org/
10.1109/SFCS.2003.1238185

37. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 113–
122. ACM Press (2008). https://doi.org/10.1145/1374376.1374396

38. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989). https://doi.org/10.1137/
0218012

39. Haböck, U.: A summary on the FRI low degree test. Cryptology ePrint Archive,
Report 2022/1216 (2022). https://eprint.iacr.org/2022/1216

40. Holmgren, J., Lombardi, A.: Cryptographic hashing from strong one-way functions
(or: one-way product functions and their applications). In: Thorup, M. (ed.) 59th
FOCS, pp. 850–858. IEEE Computer Society Press (2018). https://doi.org/10.
1109/FOCS.2018.00085

41. Holmgren, J., Lombardi, A., Rothblum, R.D.: Fiat-Shamir via list-recoverable
codes (or: parallel repetition of GMW is not zero-knowledge). In: Khuller, S.,
Williams, V.V. (eds.) 53rd ACM STOC, pp. 750–760. ACM Press (2021). https://
doi.org/10.1145/3406325.3451116

https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1007/978-3-030-45721-1_27
https://doi.org/10.1145/2090236.2090245
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://eprint.iacr.org/2023/691
https://eprint.iacr.org/2023/691
https://github.com/dusk-network/plonkup
https://doi.org/10.1007/3-540-47721-7_12
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-030-84252-9_3
https://doi.org/10.1109/SFCS.2003.1238185
https://doi.org/10.1109/SFCS.2003.1238185
https://doi.org/10.1145/1374376.1374396
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://eprint.iacr.org/2022/1216
https://doi.org/10.1109/FOCS.2018.00085
https://doi.org/10.1109/FOCS.2018.00085
https://doi.org/10.1145/3406325.3451116
https://doi.org/10.1145/3406325.3451116


Fiat-Shamir Security of FRI and Related SNARKs 39

42. Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the security
of Fiat-Shamir for proofs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II.
LNCS, vol. 10402, pp. 224–251. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63715-0_8

43. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8_11

44. Kattis, A.A., Panarin, K., Vlasov, A.: RedShift: transparent SNARKs from list
polynomial commitments. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM
CCS 2022, pp. 1725–1737. ACM Press (2022). https://doi.org/10.1145/3548606.
3560657

45. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended
abstract). In: 24th ACM STOC, pp. 723–732. ACM Press (1992). https://doi.org/
10.1145/129712.129782

46. L2BEAT: L2BEAT total value locked. https://l2beat.com/scaling/tvl. Accessed 22
May 2023

47. Lipton, R.J.: Fingerprinting sets. Princeton University, Department of Computer
Science (1989)

48. Lipton, R.J.: Efficient checking of computations. In: Choffrut, C., Lengauer, T.
(eds.) STACS 1990. LNCS, vol. 415, pp. 207–215. Springer, Heidelberg (1990).
https://doi.org/10.1007/3-540-52282-4_44

49. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM 39(4), 859–868 (1992). https://doi.org/10.1145/146585.
146605

50. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge
SNARKs from linear-size universal and updatable structured reference strings. In:
Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 2111–2128.
ACM Press (2019). https://doi.org/10.1145/3319535.3339817

51. Matter Labs: zksync 2.0: Hello ethereum! https://blog.matter-labs.io/zksync-2-0-
hello-ethereum-ca48588de179. Accessed 24 May 2023

52. Merkle, R.: Secrecy, authentication, and public key systems (1979)
53. Micali, S.: CS proofs (extended abstracts). In: 35th FOCS, pp. 436–453. IEEE

Computer Society Press (1994). https://doi.org/10.1109/SFCS.1994.365746
54. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298

(2000). https://doi.org/10.1137/S0097539795284959
55. Mina: Mina book: Background on plonk. https://o1-labs.github.io/proof-systems/

plonk/overview.html. Accessed 24 May 2023
56. =nil; Foundation: Circuit definition library for =nil; foundation’s cryptography

suite. https://github.com/NilFoundation/zkllvm-blueprint. Accessed 24 May 2023
57. Pierrot, C., Wesolowski, B.: Malleability of the blockchain’s entropy. Cryptogr.

Commun. 10(1), 211–233 (2018)
58. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.

(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-68339-9_33

59. Polygon Labs: FRI verification procedures. https://wiki.polygon.technology/docs/
miden/user_docs/stdlib/crypto/fri/. Accessed 23 May 2023

60. Polygon Zero Team: Plonky2: Fast recursive arguments with plonk and FRI.
https://github.com/mir-protocol/plonky2/tree/main/plonky2

61. Rabin, M.O.: Transaction protection by beacons. J. Comput. Syst. Sci. 27(2), 256–
267 (1983). https://doi.org/10.1016/0022-0000(83)90042-9

https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-319-63715-0_8
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1145/3548606.3560657
https://doi.org/10.1145/3548606.3560657
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://l2beat.com/scaling/tvl
https://doi.org/10.1007/3-540-52282-4_44
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/146585.146605
https://doi.org/10.1145/3319535.3339817
https://blog.matter-labs.io/zksync-2-0-hello-ethereum-ca48588de179
https://blog.matter-labs.io/zksync-2-0-hello-ethereum-ca48588de179
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1137/S0097539795284959
https://o1-labs.github.io/proof-systems/plonk/overview.html
https://o1-labs.github.io/proof-systems/plonk/overview.html
https://github.com/NilFoundation/zkllvm-blueprint
https://doi.org/10.1007/3-540-68339-9_33
https://wiki.polygon.technology/docs/miden/user_docs/stdlib/crypto/fri/
https://wiki.polygon.technology/docs/miden/user_docs/stdlib/crypto/fri/
https://github.com/mir-protocol/plonky2/tree/main/plonky2
https://doi.org/10.1016/0022-0000(83)90042-9


40 A. R. Block et al.

62. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind.
Appl. Math. 8(2), 300–304 (1960). https://doi.org/10.1137/0108018

63. Ron-Zewi, N., Rothblum, R.D.: Local proofs approaching the witness length
[extended abstract]. In: 61st FOCS, pp. 846–857. IEEE Computer Society Press
(2020). https://doi.org/10.1109/FOCS46700.2020.00083

64. Setty, S.: Spartan: efficient and general-purpose zkSNARKs without trusted setup.
In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS, vol.
12172, pp. 704–737. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
56877-1_25

65. StarkWare: ethstark documentation. Cryptology ePrint Archive, Paper 2021/582
(2021). https://eprint.iacr.org/2021/582

66. StarkWare Industries: Starkex documentation: Customers and their deployment
contract addresses. https://docs.starkware.co/starkex/deployments-addresses.
html. Accessed 22 May 2023

67. Succinct Labs: gnark-plonky2-verifier. https://github.com/succinctlabs/gnark-
plonky2-verifier. Accessed 24 May 2023

68. Team, R.Z.: RISC zero’s proof system for a zkVM (2023). https://github.com/
risc0/risc0. github repository

69. Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 71–89. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_5

70. Thaler, J.: Proofs, arguments, and zero-knowledge (2022). https://people.cs.
georgetown.edu/jthaler/ProofsArgsAndZK.html

71. Wahby, R.S., Tzialla, I., shelat, a., Thaler, J., Walfish, M.: Doubly-efficient
zkSNARKs without trusted setup. In: 2018 IEEE Symposium on Security and
Privacy, pp. 926–943. IEEE Computer Society Press (2018). https://doi.org/10.
1109/SP.2018.00060

72. Wikström, D.: Special soundness in the random oracle model. Cryptology ePrint
Archive, Report 2021/1265 (2021). https://eprint.iacr.org/2021/1265

73. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vRAM:
faster verifiable ram with program-independent preprocessing. In: 2018 IEEE Sym-
posium on Security and Privacy (SP), pp. 908–925. IEEE (2018)

https://doi.org/10.1137/0108018
https://doi.org/10.1109/FOCS46700.2020.00083
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://eprint.iacr.org/2021/582
https://docs.starkware.co/starkex/deployments-addresses.html
https://docs.starkware.co/starkex/deployments-addresses.html
https://github.com/succinctlabs/gnark-plonky2-verifier
https://github.com/succinctlabs/gnark-plonky2-verifier
https://github.com/risc0/risc0
https://github.com/risc0/risc0
https://doi.org/10.1007/978-3-642-40084-1_5
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1109/SP.2018.00060
https://eprint.iacr.org/2021/1265


On Black-Box Knowledge-Sound
Commit-And-Prove SNARKs

Helger Lipmaa(B)

University of Tartu, Tartu, Estonia
helger.lipmaa@gmail.com

Abstract. Gentry and Wichs proved that adaptively sound SNARGs
for hard languages need non-falsifiable assumptions. Lipmaa and Pavlyk
claimed Gentry-Wichs is tight by constructing a non-adaptively sound
zk-SNARG FANA for NP from falsifiable assumptions. We show that
FANA is flawed. We define and construct a fully algebraic F -position-
binding vector commitment scheme VCF. We construct a concretely effi-
cient commit-and-prove zk-SNARK Punic, a version of FANA with an
additional VCF commitment to the witness. Punic satisfies semi-adaptive
black-box G-knowledge-soundness, a new natural knowledge-soundness
notion for commit-and-prove SNARKs. We use a new proof technique
to achieve global consistency using a functional somewhere-extractable
commitment scheme to extract vector commitment’s local proofs.

Keywords: Commit-and-prove · falsifiable assumptions ·
Gentry-Wichs · non-adaptive soundness · QA-NIZK · vector
commitment · zk-SNARK

1 Introduction

Gentry and Wichs [24] proved non-falsifiable assumptions are needed to construct
(even non-zero-knowledge) adaptively sound SNARGs (succinct non-interactive
arguments, [23,28,29,43,44,50]) for hard languages under black-box reductions.
Their impossibility result balances the following four properties of NIZKs: (1)
Succinctness: Non-succinct NIZKs are not suitable for many applications. (2)
Falsifiability: an assumption or a primitive is falsifiable if one can efficiently
decide whether the adversary broke it. Non-falsifiable assumptions are highly
controversial. (3) Adaptive soundness: the SNARG is sound even if the malicious
prover can choose the statement x after seeing the CRS. Non-adaptive soundness
guarantees security only if x is independent of the CRS. (4) Many applications
need SNARGs for hard languages (i.e., languages with hard subset membership
problem) like circuit satisfiability.

Assuming black-box reductions, Gentry-Wichs is known to be tight in
three aspects: (1) non-succinct falsifiable assumption-based adaptively sound
NIZKs are known for NP [18], (2) falsifiable assumption-based adaptively sound
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SNARGs are known for P [37], and (3) non-falsifiable assumption-based adap-
tively sound zk-SNARKs are known for NP [28].

It has been a major open problem whether Gentry-Wichs is tight in the fourth
aspect; that is, whether falsifiable assumption-based non-adaptively sound (even
non-zero knowledge) SNARGs for hard languages exist. Intuitively, it is easier
to achieve non-adaptive than adaptive black-box knowledge soundness since, in
the former case, the extractor has additional power. Namely, it can rewind the
prover to the point after the prover chose the statement, sample a new CRS,
and thus obtain many arguments of the same statement under different CRSs.

Sahai and Waters built a non-adaptively sound zk-SNARG for NP [52]
using iO, one-way functions, and succinct punctured PRFs. One can use sub-
exponential but falsifiable assumptions to instantiate iO [34]. However, their
SNARG has exponential security loss in witness length [35]. Since the reduction
can decide the language, their SNARG bypasses the Gentry-Wichs impossibility
result (and can achieve adaptive security by complexity leveraging, [35]). Hence,
constructing non-adaptively sound SNARGs for NP remains open after [52]. Jain
and Jin [35] proposed a SNARG that overcomes this limitation, but only for a
subclass of languages in NP ∩ co-NP with a “PV proof of disjointness”.

Lipmaa and Pavlyk [46] proposed FANA, an efficient (and polynomial-time
challenger) falsifiable assumption-based non-adaptively sound zk-SNARG for
NP. FANA is based on two earlier constructions, DGPRS of [16] and FLPS [17].
DGPRS and FLPS are adaptively sound commit-and-prove (C&P) SNARGs for
NP. Since they have non-succinct commitments, Gentry-Wichs does not apply.

By leveraging continuous leakage-resilient one-way functions (that exist
under the discrete logarithm assumption [4]), Campanelli et al. [10] proved that
non-adaptive black-box extractable SNARKs (succinct non-interactive argu-
ments of knowledge, i.e., knowledge-sound arguments) for NP do not exist. Recall
that extraction is black-box if it extracts a witness from a prover only using its
input/output interface, without knowledge about its internal state or code. Note
that [10] does not contradict [46] who construct a SNARG.

Our First Contribution. We show that FANA’s security proof is flawed, and
FANA is not a non-adaptively SNARG.1 The main reason why FANA’s proof
breaks down is that, differently from DGPRS and FLPS, FANA is not a C&P
SNARG. On the other hand, DGPRS and FLPS rely on a perfectly binding
(non-succinct) commitment scheme, i.e., they are not SNARGs.

Main Question. In Table 1, we summarize the state of the art: on top
of [10,24] proved that falsifiable assumption-based non-adaptively knowledge-
sound SNARKs for NP do not exist, while [46] (that is insecure) and [52]
(with an exponential security loss) constructed falsifiable assumption-based non-
adaptively sound SNARGs for NP. This leaves two open questions: Can one con-
struct falsifiable assumption-based (1) non-adaptively sound SNARGs, and (2)
SNARKs for NP under a different adaptivity notion?
1 [53] noted that FANA is insecure (and referred to a private conversation with the

authors of [46]), but they did not explain why. We will provide full details.
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Table 1. The known possibility and impossibility results for falsifiable assumption-
based SNAR(G|K)s for hard languages.

Adaptivity/Knowledge SNARG SNARK

Adaptive ✗ [24] ✗ [24]
Non-adaptive //✓/////[46] (✓ with exp. security loss [52]) ✗ [10]
Semi-adaptive ✓ This work ✓ This work

We do not know how to answer (1), i.e., formally settle the tightness of
Gentry-Wichs. Instead, the current paper aims to find a solution in the latter
direction. There, one has the following natural question: For what notion of
adaptivity can one construct falsifiable assumption-based black-box knowledge-
sound SNARKs for NP? Moreover, can this be done efficiently?

Our (Four More) Contributions. Second, definition. We define semi-adaptive
black-box knowledge-soundness, a natural security notion for falsifiable
assumption-based C&P SNARKs. In a black-box knowledge-sound C&P
SNARK, one can black-box extract partial witnesses by rerunning the adver-
sary on a fixed commitment key and commitment C (to the witness) but many
CRSs. One can recover the full witness from many succinct arguments and thus
overcome an information-theoretical barrier plaguing SNARKs. This is similar
to using rewinding in interactive zero-knowledge proofs; indeed, the definition
is related to that of witness-extended emulation [42]. Crucially, having a C&P
SNARK (i.e., a fixed commitment key and a commitment) lets us avoid the
impossibility result of [10]. We emphasize that finding a correct definition is one
of the most critical tasks in cryptographic research.

Third, modular proof. We prove black-box knowledge-soundness in two
steps, as standard in the interactive arguments but unlike [16,17,46]. First, we
define semi-adaptive computational special soundness, a variant of special sound-
ness [14]. We prove that every semi-adaptively computationally special sound
and CRS-indistinguishable C&P zk-SNARK is also semi-adaptively black-box
knowledge sound. Thus, we only need to prove the former two properties.

Fourth, the proof technique. We use a perfectly hiding vector commitment
scheme VC [11,33,41] to create C. Since VC is perfectly hiding, one cannot
black-box extract from C. Instead, we use a functional somewhere-extractable
(FSE) commitment scheme [17] to black-box extract a partial witness (VC’s local
opening and proof) from a FSE commitment. We then combine many partial
witnesses into a full witness. We define and construct fully algebraic F -position-
binding vector commitment schemes that allow such extractions.

Fifth, construction. We construct a C&P zk-SNARK Punic that fixes FANA
by (re)adding a language parameter lp = ck and a succinct (in our case, vec-
tor) commitment C to (x,w). We prove Punic is semi-adaptively computation-
ally special-sound and CRS-indistinguishable and thus semi-adaptively black-
box knowledge-sound. Since one of our primary goals is efficiency, the special



44 H. Lipmaa

soundness of Punic is based on non-standard yet non-interactive and known
falsifiable assumptions.

On Tightness of Gentry-Wichs. The current work opens a novel approach to
studying the tightness of Gentry-Wichs in the context of C&P SNARKs. Table 1
summarizes the known results. We emphasize that it is unknown whether one
can construct falsifiable assumption-based non-adaptively sound SNARGs for
NP with polynomial security loss. We leave it as the open question to state
a precise version of Gentry-Wichs for both C&P and non-C&P SNARGs and
SNARKs. In particular, is there a separation between SNARGs and black-box
knowledge-sound SNARKs?

2 Technical Overview

We will start this section with an overview of DGPRS, FLPS, and FANA. After
that, we describe our contributions in more detail.

2.1 Background

In C&P SNARGs and SNARKs, the CRS includes a commitment key (Γ.ck,
also called a language parameter lp, [36]), and the statement includes a Γ -
commitment C. Here, Γ is an extractable commitment scheme. Most of the effi-
cient SNARKs (e.g., [9,12,23,29,47,50]) are C&P SNARKs although usually not
stated as such; in their knowledge-soundness proof, one uses knowledge assump-
tions to non-black-box extract the full witness from C. Different definitions of
C&P SNARGs allow or do not allow dependencies between the commitment key,
the language, and the CRS. The definition of C&P QA-SNARG (quasi-adaptive
SNARG2, [16,36]) explicitly requires that one first fixes lp = Γ.ck, defining (for
some relation R) the language

Llp = {(C,x) : (∃w, r) (C = Γ.Com(Γ.ck, (x,w); r) ∧ (x,w) ∈ R)} ,

then a CRS crs that may depend on lp (and thus Llp). Only after that does the
prover choose a statement (C,x). Quasi-adaptive soundness is defined for this
temporal order: for any honestly generated lp (that fixes Llp) and crs (that can
depend on lp and thus Llp), it must be hard to generate (C,x, π), such that the
verifier accepts (C,x, π) but (C,x) /∈ Llp.

DGPRS [16] and FLPS [17] are pairing-based C&P QA-SNARGs for cer-
tain constraint systems. DGPRS and FLPS use a perfectly binding commitment
scheme Γ and two more building blocks:

2 The initial QA-NIZK constructions were for linear subspaces [36,40]. They (and the
bilateral linear subspace QA-SNARG, used in [16,17] and the current paper) have a
language parameter that is not a commitment key. We use the acronym QA-SNARG
since it fits our framework better.
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(1) a succinct functional somewhere-extractable (FSE, [17]) commitment scheme
to commit to (x,w). FSE satisfies the following property: for a small locality
parameter q, one can invisibly reprogram FSE’s commitment key FSE.ck so
that one can later black-box “somewhere-extract” the desired q linear combi-
nations of the coefficients of [x,w]1.3

(2) a succinct bilateral subspace QA-SNARG argument BLS [25] to prove that
a tuple of commitments belongs to a specific subspace (e.g., Γ -commitments
and FSE-commitments are to the same (x,w)).

DGPRS and FLPS are falsifiable assumption-based, quasi-adaptively sound, for
hard languages, and have a succinct argument. This does not contradict Gentry-
Wichs since their statement contains a non-succinct commitment C from which
the reduction can black-box extract the witness. (See the full version [45].)

Consider their soundness proof to understand why DGPRS and FLPS are
quasi-adaptively sound. Assume that an adversary A broke the quasi-adaptive
soundness by outputting an accepting (C,x, π). Thus, either (1) C is not a
commitment to (x,w) for any w, or (2) at least one constraint is unsatisfied
(C commits to (x,w) for some w, but w is not a correct witness for x ∈ Llp).
DGPRS and FLPS define two reductions B1 and B2. B1 is a reduction to the
BLS security, guaranteeing in particular that (1) cannot happen.

Let us focus on B2. B2 samples a constraint number � ←$ [1, n], where n is
the number of constraints in the underlying constraint system. B2 reprograms
the CRS to depend on � while lp = Γ.ck stays unchanged. It follows from the
properties of FSE that the CRS hides �. After obtaining (C,x) from A, B2 black-
box extracts from the perfectly binding commitment C all variables, involved
in the �th constraint. B2 guesses that the �th constraint is unsatisfied and then
uses the extracted values to check whether its guess is correct. If the guess
is incorrect (i.e., the �th constraint is satisfied), then B2 aborts. Since C is
perfectly binding, the adversary’s witness w is fixed by C. Thus, the index of
the unsatisfied constraint does not depend on �. (If the adversary can open C
to a different message after the CRS reprogramming, one can distinguish the
CRSs. The latter is intractable because of the properties of FSE, [16,17].)

Since the index of the unsatisfied constraint does not depend on B2’s guess
�, B2 aborts with probability ≤ 1 − 1/n. In the case of non-abortion, B2 uses
FSE’s somewhere-extractor to black-box extract a succinct partial witness [p�]1
from a succinct FSE commitment (also output by A). Here, [p�]1 is sufficient to
verify whether the �th constraint of the constraint system is satisfied. The BLS
argument (via reduction B1) guarantees that the values extracted from C are
consistent with [p�]1. B2 then uses [p�]1 to break a falsifiable assumption.

FANA. Lipmaa and Pavlyk [46] improve on DGPRS and FLPS in several ways.
Their non-C&P zk-SNARG FANA handles the standard R1CS constraint sys-
tem [23] instead of SSP and SAP used in DGPRS and FLPS, has soundness
based on a more plausible falsifiable assumption QALINRES, and is subversion
3 We use the standard additive bracket notation for pairings. For example, for s ∈ Zp,
[s]1 = s[1]1 ∈ G1. See Sect. 3.
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zero-knowledge [1–3,6,19] (zero-knowledge even when lp and crs are maliciously
constructed). [46] claims that FANA is non-adaptively sound and thus Gentry-
Wichs is tight. We only focus on the last claim.

FANA omits ck and the commitment C. FANA’s security reduction black-box
extracts partial witnesses [p�]1 from the FSE commitment. As in DGPRS and
FLPS, extraction is done after reprogramming the CRS. To ensure that [p�]1
does not covertly depend on �, [46] reverts to non-adaptivity, assuming that the
statement x (recall that there is no commitment C) is fixed before the CRS is
created. [46] argues that since x does not depend on crs, neither does the index
� of an unsatisfied constraint; hence, a slight modification of the quasi-adaptive
soundness proof of [16,17] goes through.

2.2 FANA Is Not Sound

FANA’s soundness proof states that since the statement x is fixed, the unsatisfied
constraint number � does not depend on the CRS. Next, we will explain why one
cannot assume that the number � of the (possibly only) unsatisfied constraint
did not change after the CRS reprogramming.

If C is a perfectly binding commitment as in DGPRS and FLPS, then one
can use the properties of FSE to guarantee that one cannot open C to a different
value after the CRS reprogramming. Using a succinct FSE commitment as in
FANA, the committed message can change with each CRS reprogramming. So,
one cannot ensure that the partial witnesses are consistent. More precisely, one
cannot break a falsifiable assumption with a black-box reduction if the partial
witnesses are inconsistent (a non-black-box reduction might still be possible).
FANA’s security proof does not guarantee that the adversary uses the same
full witness w after each reprogramming; in particular, there is no guarantee
that � did not change. If � changed, one could not argue that the non-abortion
probability in the soundness reduction is at least 1/n. Indeed, this probability
might be zero when the adversary leaves some constraint unsatisfied, but the
number of this constraint depends on the CRS in a non-trivial manner.

2.3 Semi-adaptive Black-Box Knowledge-Soundness

An argument system is black-box knowledge-sound if, for every PPT prover,
there exists a black-box PPT extractor Extks such that if the prover convinces
the verifier to accept a statement x with a non-negligible probability, then Extks
extracts a witness w for the validity of x. In an adaptively sound SNARG, since
the prover’s message is much shorter than the witness, one cannot black-box
extract a witness from a single argument. An alternative approach is to extract
a witness directly from the code of the prover. In all existing solutions, such
non-black-box extraction is enabled by non-falsifiable knowledge assumptions.

One can achieve black-box extractable interactive succinct arguments by
allowing rewinding the prover to earlier rounds. Rewinding gives the extractor
power to run the prover with different verifier’s randomnesses � and thus obtain
many succinct arguments π�. From π�, the extractor can “somewhere extract” a



On Black-Box Knowledge-Sound Commit-And-Prove SNARKs 47

partial witness p�. If the total length of different arguments is larger than the
witness length, one does not have the information-theoretic barrier anymore and
can thus potentially compute w from {p�} and thus black-box extract w.

In the interactive case, one usually splits this procedure into two parts: the
rewinding step to obtain many transcripts tr� (that, in particular, contain π�)
and the gluing step that inputs the transcripts and outputs the full witness w.
One formalizes the second step by defining special soundness [14] and saying
that the argument is special-sound if the second step succeeds. The first step
essentially reduces knowledge-soundness to special soundness. We use the same
two-step methodology, albeit for non-interactive semi-adaptive arguments.

In adaptively sound SNARGs, the prover can be rewound to the point before
it creates the argument π. The extractor will not have more power since π is not
rerandomized by the verifier. In non-adaptively sound SNARGs, one can rewind
to the point before the CRS was created. One can then use a new randomness
� to create a new CRS crs� and obtain a new succinct argument π�. From
π�, the extractor can “somewhere extract” a partial witness p�. Similarly to the
interactive case, one can thus breach the information-theoretic barrier. However,
a malicious prover can compute each argument using a different witness; this is
one intuition behind the impossibility result of [10] that falsifiable assumption-
based non-adaptively knowledge-sound SNARKs for NP are impossible.

Local and Global Consistency. If the underlying language is a constraint system,
one can think of � := S as a set of constraints and p� = pS a partial witness
that satisfies all constraints in the set S. If this holds for every (small) S, the
SNARG satisfies local consistency [37]. For global consistency, one would like
the partial witness pS to be consistent with some full witness w, pS(S) = w|S .
In particular, all partial witnesses should be mutually consistent. ([37] does not
satisfy global consistency.) We will give more details in Sect. 5.1.

Semi-adaptive Black-Box Knowledge-Soundness. Non-adaptively sound
SNARKs can be seen as two-message protocols, where the first message is the
CRS, and the second message is the argument. A logical approach to overcome
their impossibility result while still staying in the realm of black-box extraction
is to increase the number of rewinding points (or messages). C&P SNARKs are
a natural way of doing that: they can be seen as four-message protocols, where
the first message is a commitment key (also known as the language parameter),
the second message is a commitment C and a statement x, the third message
is a CRS, and the fourth message is an argument. However, the CRS does not
depend on the second message; moreover, the same CRS can be used in differ-
ent SNARKs by different provers. Thus, semi-adaptivity can be seen as a trust
assumption that (C,x) does not depend on the CRS. We use the name semi-
adaptive since the adversary is allowed to output the statement after seeing ck
(the first half of the trusted parameters) and before seeing crs (another half).
See Fig. 1.

Again, the extractor can repeatedly use a new � to create a new CRS crs� and
obtain a succinct argument π�. From π�, the extractor can “somewhere extract”
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Fig. 1. C&P SNARKs: temporal dependencies. In the case of quasi-adaptive and semi-
adaptive soundness, lp = ck also fixes the language Llp. Here, x∗ = (C,x), where C
is a commitment. Non-adaptive soundness differs since x is created before any trusted
parameters (ck or crs), which means that x cannot contain a commitment.

a partial witness p�. In our soundness proof, we do not rewind the creation of
ck. The difference with the non-adaptive case is that we have the commitment C
that must be the same in different rewindings. So, all partial witnesses must be
consistent with C. If they are also consistent with each other, we can compute a
full witness w that is consistent with all partial witnesses and thus satisfies all
constraints. Semi-adaptive knowledge-soundness states that this must always be
possible. In the soundness proof of the new SNARK, we construct a reduction
that works if this is false (i.e., two partial witnesses are not mutually consistent).

Definition. We define a new security notion for C&P SNARKs, semi-adaptive
black-box G-knowledge-soundness that insists that one can efficiently construct
G(w) given oracle access to the prover that outputs arguments corresponding
to the fixed ck, C, x but different CRSs. Its definition is inspired by non-
adaptive black-box knowledge-soundness in [10] and witness-extended emulation
(WEE, [42]). In particular, if an adversary outputs a single accepting transcript,
the black-box extractor outputs both the accepting transcript (from the correct
distribution) and G(w) with a similar probability. Here, G is a permutation
that plays a similar role to G in Groth-Sahai proofs [31] (that are usually G-
extractable) and G-unforgeable signature schemes [5]. In our new SNARK for
R1CS, G(s) := [sy]1 for a trapdoor y. When handling SSP [15] (Boolean circuits)
instead of R1CS, one can set G(s) = s.

Applications of Semi-adaptivity. As argued above, black-box G-knowledge-
soundness is a natural security notion that seems to be the best one can do
in the context of SNARKs, given the impossibility results of [10,24]. It is a semi-
adaptive version of the non-adaptive black-box knowledge-soundness of [10].

Semi-adaptive knowledge-sound SNARKs have natural applications. Con-
sider, for example, e-voting for national institutions like the parliament, where
the (universal and updatable) commitment key is made public before elections.
The commitment key might be used in other applications and thus has to be
created highly securely. In a concrete election, the voters can first commit to
their ballot, the trusted third parties can create a non-universal CRS (that may
depend on the ballot structure and say the number of voters), and then each voter
can construct an argument, proving that the ballot is correct. When using our
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results, the SNARK relies on falsifiable assumptions. Using weak assumptions is
vital for national security. Proving all NP statements is essential in the case of
complex ballot structures. Practical efficiency, as provided by Punic, is essential
for the SNARK to be used at all. Creating the CRS after the commitment phase
seems a natural compromise to achieve all the other properties.

CRS-Indistinguishability. To prove black-box knowledge-soundness, we need
that any adversary that makes the verifier accept with a non-negligible prob-
ability must succeed with non-negligible probability for every argument � to
Kcrs. Only then will Extks be able to retrieve all partial witnesses needed to out-
put G(w). To tackle this, it suffices to assume that the CRSs, corresponding to
any two values of �, are indistinguishable.

Special Soundness. We define semi-adaptive computational (k,G)-special sound-
ness, stating that there exists a black-box PPT extractor Extss, such that if an
adversary outputs k consistent transcripts tr� = (C,x, crs�, td�, π�) with pairwise
distinct �, then Extss outputs G(w). We prove that any semi-adaptively com-
putationally (k,G)-special-sound and CRS-indistinguishable C&P zk-SNARK is
semi-adaptively black-box G-knowledge-sound. Thus, it suffices to prove that a
zk-SNARK satisfies the first two properties.

2.4 New SNARK

Construction. Since FANA only uses FSE commitments (with commitment keys
reprogrammed by the reduction), it is not semi-adaptively sound. We construct
Punic, a falsifiable assumption-based semi-adaptively sound C&P SNARK with
a succinct commitment. Punic is CRS-indistinguishable and semi-adaptively
black-box G-knowledge-sound for G(s) := [sy]1, where y is a trapdoor. G involves
scalar multiplication since the extractor retrieves a group element and the DL
is hard; we need y due to using FSE and VCF. Moreover, G is needed since we
deal with R1CS (i.e., arithmetic circuits). As we note in Sect. 2.6, in the case of
SSP [15] (Boolean circuits), G can be the identity map.

Punic is a variant of FANA, to which we add a language parameter lp (vector
commitment scheme’s commitment key) and a vector commitment [C]1 to the
witness. Alternatively, Punic is an (optimized) variant of FLPS that replaces the
perfectly-binding commitment scheme with a well-chosen vector commitment
scheme VCF. Our completeness, zero-knowledge, and CRS-indistinguishability
proofs are relatively straightforward. We will next explain the soundness proof.

Soundness Proof. Recall that it suffices to prove special soundness. In the special
soundness proof, we fix lp = VCF.ck, where VCF is a new vector commitment
scheme, described later. In [16,17], one fixes the adversary’s statement (a vector
commitment [C]1 to (x,w), and an R1CS statement x). Then, the reduction
B samples � ←$ [1, n], reprograms the CRS accordingly, runs the soundness
adversary A once, and guesses the �th constraint is violated. If the guess is wrong,
B aborts. This guarantees local consistency (for every �, a partial witness exists
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that satisfies the �th constraint). [16,17] guarantee soundness (the existence of a
full witness w, consistent with each partial witness) by using a perfectly binding
commitment to (x,w) and checking its consistency with partial witnesses.

We use a different proof strategy since we do not have a perfectly binding
commitment. Our special soundness reduction B inputs n transcripts tr�. For
each �, B uses FSE to black-box extract a partial witness G(p�) allowing to check
whether the �th constraint is satisfied. For this, B reprograms FSE’s commitment
key, which is part of Punic’s CRS. The verification equation ascertains that
G(p�) is consistent with the value committed to by [C]1.

More precisely, we construct a special soundness extractor Extss that com-
putes G(w) given partial witnesses G(p�) output by the FSE black-box some-
where extractor. When Extss fails, we construct three reductions, two of which
are inspired by the reductions in [16,17,46] (we briefly described them above).
The third reduction works when for each �, p� satisfies the �th constraint, but
Extss fails to output G(w) where w satisfies all constraints. Then, at least two
partial witnesses (say, pi and pj) must be inconsistent.

The crux of our solution is using FSE to black-box extract well-defined infor-
mation, allowing us to build a reduction out of this inconsistency. Let N(�) be
the set of witness coefficients used in the �th constraint. For all k ∈ N(�), we
use FSE to black-box extract VCF’s local opening and local proof for the kth
coefficient of the full witness. We need a vector commitment scheme precisely
for the existence of local proofs. Since we black-box extract both local openings
and local proofs by using FSE, VCF needs to satisfy two novel requirements:

(a) full algebraicity: one can compute the vector commitment, the local open-
ing (the claimed vector coefficient), and the local proof from (x,w) and the
commitment randomizer by using linear maps,

(b) F -position-binding: position-binding even for an adversary who, instead of
coordinates η �= η′, outputs F (η) �= F (η′), for a permutation F . We need it
since FSE is F -extractable, allowing one to extract only F (η) := [η]1.

In the �th loop of the reduction, we reprogram the CRS so that we can black-box
extract (G(η�

k), [ϕ
�
k]1) for k ∈ N(�). Here, G(η�

k) = [η�
ky]1 and [ϕ�

k]1 are the local
opening and the local proof of the full witness w� the adversary used in the �th
iteration. If pi �= pj for some i, j, then we extract two openings (G(ηi

k), [ϕ
i
k]1)

and (G(ηj
k), [ϕ

j
k]1), such that ηi

k �= ηj
k, breaking G/F -position-binding. Assuming

F -position-binding, all extracted partial witnesses are consistent. Using a greedy
algorithm, we efficiently compute G(w) from {G(p�)}. QED.

This is a novel proof technique for handling the case when partial witnesses
exist. We hope it will find other applications like in SNARGs for P or batch
arguments for NP [13,27,37]. A drawback is that we must extract all coefficients
at a constraint, so each R1CS constraint must have a small locality. Any R1CS
instance can be modified to be such by introducing new constraints using stan-
dard techniques. Such a restriction is well-known and used in several efficient
zk-SNARKs, [21,51]. [37] used 3CNF (with locality three) for a similar reason.

Punic’s black-box G-knowledge-soundness relies on several falsifiable bilinear
group assumptions, of which QALINRES [46] is the most complicated. As proven
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in [46], QALINRES is secure in the algebraic group model (AGM [20]); for
completeness, we reprove this result.

On No-Signaling. Obtaining global consistency efficiently from local consistency
is a major open problem in constructing falsifiable assumption-based SNARGs.
One approach [13,27,37,38] is to use no-signaling PCPs and commitments. How-
ever, this approach usually works only for memory-bound computations; one has
to use additional techniques in the general case. Our approach to achieving global
consistency has direct advantages compared to no-signaling commitments. See
the full version [45] for a discussion.

2.5 Fully Algebraic F -Position-Binding Vector Commitment

Punic uses a vector commitment scheme VCF. To use FSE to black-box extract
VCF’s local openings and local proofs, VCF must be fully algebraic and F -
position-binding. Both properties seem novel for vector commitment schemes,
though they are similar to known requirements on other primitives (e.g., alge-
braic commitments and F -unforgeable signature schemes [5]).

VCF is based on the CDHK vector commitment scheme [8]. We show CDHK
is fully-algebraic but not F -position-binding. We introduce a new trapdoor y
(explaining the choice of G) and a knowledge component without making VCF
less efficient. VCF remains fully algebraic. We prove VCF is F -position-binding
under a new but standard-looking assumption VCSDH (Vector Commitment
Strong Diffie-Hellman). We reduce VCSDH to QALINRES.

We hope the new notion of fully-algebraic and/or F -position-binding vector
commitments will have independent applications.

2.6 Efficiency

We explicitly strived to make Punic concretely efficient. Its prover computation is
dominated by Θ(n) group operations, and the argument size and verifier compu-
tation are Θλ(1) with small constants. Notably, using vector commitments allows
us (differently from [10,52]) to avoid heavy machinery like FHE, hash trees, iO,
PCP, and SNARK recursion. In our application, efficiency is difficult to achieve:
having larger argument sizes, one can black-box extract more information at a
time, making achieving global consistency less difficult. (See comparison with
no-signaling commitments in the full version [45].)

With some loss in efficiency, one can construct a semi-adaptively sound
SNARK based on weaker assumptions. One can use (1) better-known
somewhere-extractable commitments [32] known to exist under various assump-
tions instead of FSE commitments and (2) hash trees instead of the new vector
commitment scheme. On the other hand, we do not know how to instantiate
linear subspace arguments efficiently on general assumptions.

Kilian. In the full version [45], we discuss a solution based on Kilian’s seminal
interactive zero-knowledge argument. We will leave generalizations for future
work.
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3 Preliminaries

Let p be a large prime. Denote F := Zp. For a ∈ F
m and S ⊆ [1,m], let

a|S := (ai)i∈S . For two vectors a and b, let a ◦ b be their Hadamard product,
with (a ◦ b)i = aibi. For a matrix A = (Aij), Ai denotes its ith row and A(j)

denotes its jth column. Let colspace(A) be the column space of A.
PPT denotes probabilistic polynomial-time; λ ∈ N is the security parameter.

We assume all adversaries are stateful, i.e., keep up a state between different
executions. For an algorithm A, range(A) is the range of A, i.e., the set of
valid outputs of A, RNDλ(A) denotes the random tape of A (for given λ), and
r ←$ RNDλ(A) denotes the uniformly random choice of r from RNDλ(A). By
s ← A(x; r) we denote the fact that A, given an input x and a randomizer r,
outputs s. Let negl(λ) be an arbitrary negligible function, and poly(λ) be an
arbitrary polynomial function. We write a ≈λ b if |a − b| ≤ negl(λ).

Assume n | (p−1) is a power of two. Let ω be the nth primitive root of unity
modulo p and let H := 〈ω〉 = {ωi−1}n

i=1 be a subgroup of F
∗. Let ZH(X) :=∏n

i=1(X − ωi−1) = Xn − 1 be the unique degree n monic polynomial, such
that ZH(ωi−1) = 0 for all i ∈ [1, n]. For i ∈ [1, n], let 
i(X) be the ith Lagrange
polynomial, that is, the unique degree-(n−1) polynomial, such that 
i(ωi−1) = 1
and 
i(ωj−1) = 0 for i �= j. Then, 
i(X) = (Xn − 1)ωi−1/

(
n(X − ωi−1)

)
.

Cryptography. A bilinear group generator Pgen(1λ) returns (p,G1,G2,GT , ê,
[1]1, [1]2), where G1, G2, and GT are additive cyclic (thus, abelian) groups of
prime order p, ê : G1 ×G2 → GT is an efficient non-degenerate bilinear pairing,
and [1]γ is a fixed generator of Gγ . While [1]γ is a part of p, for the sake of
clarity, we often give it as an explicit input to different algorithms. We assume
n | (p − 1), where n is a large deterministically fixed upper bound on the size of
the statements that one handles in this bilinear group. The bilinear pairing is of
Type-3; that is, there is no efficient isomorphism between G1 and G2. We use the
standard bracket notation: for γ ∈ {1, 2, T}, we write [a]γ to denote a[1]γ . We
denote ê([a]1, [b]2) by [a]1 • [b]2. We mix freely bracket and matrix notation, e.g.,
AB = C iff [A]1•[B]2 = [C]T . We denote [A]2•[B]1 := [AB]T = ([B]ᵀ1•[A]ᵀ2)

ᵀ.
Let γ ∈ {1, 2}. DDHGγ

(Decisional Diffie-Hellman) holds relative to Pgen,
if for all PPT A, AdvddhPgen,Gγ ,A(λ) :=

Pr
[A(p, [x, y, xy + βz]γ) = β | p ← Pgen(1λ);x, y, z ←$ F;β ←$ {0, 1}] ≈λ

1
2 .

Let κ∗, κ ∈ N+, with κ∗ ≥ κ, be small constants. A PPT-sampleable distribution
Dκ∗,κ is a matrix distribution if it samples matrices A ∈ F

κ∗×κ of full rank κ.
Dκ∗,κ is robust [36] if it samples matrices A whose upper κ × κ submatrix Ā is
invertible. Denote the lower (κ∗−κ)×κ submatrix of A by A. Let Dκ := Dκ+1,κ.
Dκ∗,κ-SKerMDH (Split Kernel Diffie-Hellman, [25]) holds relative to Pgen, if for
all PPT A, Advskermdh

Pgen,Gγ ,Dκ∗,κ,A(λ) :=

Pr
[

Aᵀ(x1 − x2) = 0κ ∧
x1 − x2 �= 0κ∗

p ← Pgen(1λ);A ←$ Dκ∗,κ;
([x1]1, [x2]2) ← A(p, [A]1, [A]2)

]

≈λ 0 .
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The QALINRES Assumption. The new zk-SNARK relies on the n-
Quadratic Arithmetic Linear Residuosity (n-QALINRES) assumption from [46].

Definition 1. n-Quadratic Arithmetic Linear Residuosity (n-QALINRES,
[46]) holds relative to Pgen, if for all PPT A, AdvQALINRES

Pgen,n,A (λ) :=

Pr

⎡
⎢⎢⎢⎢⎣

π =
(
j, [a, η̂a, ϕa, c, η̂c, ϕc, h]1, [b, η̂b, ϕb]2

) ∧
a = ϕa(x − ωj−1) + η̂a/y ∧
b = ϕb(x − ωj−1) + η̂b/y ∧
c = ϕc(x − ωj−1) + η̂c/y ∧
ab − c = hZH(x) ∧ η̂aη̂b �= η̂cy

p ← Pgen(1λ);
x ←$ F \ H; y ←$ F

∗;
ck ← ([(xi)ni=0, y]γ)

2
γ=1;

π ← A(ck)

⎤
⎥⎥⎥⎥⎦

≈λ 0 .

QALINRES was introduced in [46] as a more realistic version of TSDH-like
assumptions used in [16,17]. In particular, it does not rely on A outputting
elements of GT . See [46] and the full version [45] for a discussion. QALINRES
is not publicly verifiable, but it has an efficient challenger.

Lipmaa and Pavlyk [46] proved that QALINRES is secure in the AGM under
the PDL assumption. Since [46] does not include this proof, we reprove it in the
full version [45]. We stress that while the AGM is an idealized model that can
be used to prove non-falsifiable assumptions, QALINRES itself is a falsifiable
assumption. QALINRES is non-interactive. Moreover, QALINRES is a “Maurer-
game” [54], and thus the specific AGM criticisms of [54,55] do not apply to it.

3.1 Underlying Commitment Schemes

We use several commitment schemes. Each commitment scheme has PPT algo-
rithms Pgen : 1λ �→ p (for parameter generation), Kck : (p, n) �→ (ck, td) (for key
generation; here, n is the vector length) and Com : (ck,μ; r) �→ (C,D) (for com-
mitment; D is the decommitment information). Let M be the message space, C
the commitment space, and R the randomizer space. To simplify notation, we
always assume ck implicitly contains p.

Vector Commitment. Let D be a domain. A vector commitment scheme Γ =
(Pgen,Kck,Com, LOpen, LVer) is a commitment scheme, with M = Dn for n ≤
poly(λ), that has two additional algorithms [11,33,41]:

Local opening: for p ∈ Pgen(1λ), ck ∈ Kck(p, n), commitment C ∈ C, index j ∈
[1, n], and decommitment information D, LOpen(ck, C, j,D) returns (η, ϕ),
where η (local opening) is a candidate for μj and ϕ is a local proof.

Local verification: for p ∈ Pgen(1λ), ck ∈ Kck(p, n), commitment C ∈ C, index
j ∈ [1, n], candidate value η for μj , and local proof ϕ, LVer(ck, C, j, η, ϕ)
returns either 0 or 1.

Γ must be complete according to the natural definition (LVer(p, ck, C, j, η, ϕ) = 1
for (η, ϕ) ← LOpen(ck, C, j,D) and (C,D) ← Com(ck,μ; r)). Γ must satisfy the
following security properties.
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Fig. 2. The position-binding vector commitment scheme CDHK.

Position-binding: for all λ, PPT A, and n ∈ poly(λ), AdvposbPgen,n,Γ,A(λ) :=

Pr

⎡

⎣
η0 �= η1 ∧
LVer(ck, C, j, η0, ϕ0) = 1∧
LVer(ck, C, j, η1, ϕ1) = 1

p ← Pgen(1λ);
(ck, td) ← Kck(p, n);
(C, j, η0, η1, ϕ0, ϕ1) ← A(ck)

⎤

⎦ ≈λ 0 .

Perfect zero-knowledge: there exists a PPT simulator Sim, such that for all λ,
all p ← Pgen(1λ), all (ck, td) ← Kck(p, n), all μ ∈ Dn, and any poly-size set
{ji ∈ [1, n]}i, the distributions δ0 and δ1 are identical, where

δ0 := {(ck, C, {LOpen(ck, C, ji, D)}) : r ←$ RNDλ(Com); (C, D) ← Com(ck, μ; r)} ,

δ1 := {(ck, Sim(ck, td, {ji}, {μji}))} .

Modeled after the seminal KZG polynomial commitment scheme [39], Camenisch
et al. [8] proposed a vector commitment scheme. Let D = F, M = Dn, C = Gγ

for γ ∈ {1, 2}, and R = F. In Fig. 2, we depict a simplified version CDHK of their
scheme. CDHK is position-binding under the standard n-SDH assumption [7].
Straightforwardly, CDHK satisfies perfect zero-knowledge.

FSE Commitment. Let F : M → C be a (one-way, p-dependent) permuta-
tion. Let F be a function family, where f ∈ F inputs a vector μ and outputs
an element of C. A functional4 somewhere F -extractable (F -FSE) commitment
scheme [17] Γ = (Pgen,Kck,Com, swExt) for F allows one to commit to a vector
μ, s.t. for any q ≤ n, (1) the commitment key ck depends on q and a function
tuple f1, . . . , fq ∈ F , (2) commitment keys corresponding to different function
tuples are computationally indistinguishable, and (3) given the extraction key,
one can extract from the commitment the vector (F (f1(μ)), . . . , F (fq(μ))).

4 Defined as functional somewhere statistically binding (SSB) commitment in [17];
generalizes SSB hashes [32,48]. In SSB hashes, F is the family of point functions,
and q is always equal to one. On the other hand, we do not need the local opening
property, thus obtaining better efficiency. Since extractability is essential, we call
them functional SE. DGPRS and FLPS predate [13]. SE commitments have been
used to build SNARGs for P and batch-arguments for NP [13,27].
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More precisely, an F -FSE commitment scheme Γ = (Pgen,Kck,Com, swExt)
for a function family F consists of the following (P)PT algorithms.

Parameter generation: Pgen(1λ) returns p (e.g., the group description).
Commitment key generation: for parameters p, a positive integer n ≤

poly(λ), a locality parameter q ∈ [1, n], and a tuple S = (f1, . . . , f|S|) ⊆ F
with |S| ≤ q, Kck(p, n, q,S) outputs a commitment key ck and an extraction
key td = ek. We assume ck and ek implicitly specify p.

Commitment: for a commitment key ck, a message μ ∈ Mn, and a randomizer
r ∈ R, Com(ck,μ; r) outputs a commitment C ∈ C.

Somewhere (black-box) extraction: for p ∈ Pgen(1λ), a positive integer
n ≤ poly(λ), a locality parameter q ∈ [1, n], a tuple S = (f1, . . . , f|S|) ⊆ F
with 1 ≤ |S| ≤ q, (ck, ek) ∈ Kck(p, n, q,S), and C ∈ C, swExt(ek, C) returns a
tuple

(
F (f1(μ)), . . . , F (f|S|(μ))

) ∈ M|S|.

For S = (f1, . . . , f|S|) ⊆ F and a vector μ, denote fS(μ) = (f1(μ), . . . , f|S|(μ)).
An F -FSE commitment scheme Γ for the function family F can satisfy the

following security requirements.

Function-Set Hiding: for all λ, PPT A, n ∈ poly(λ), and q ∈ [1, n],
AdvfshPgen,Γ,n,q,A(λ) := 2 · |εfsh − 1/2| ≈λ 0, where εfsh :=

Pr
[

β′ = β ∧ S0,S1 ⊆ F
∧ |S0|, |S1| ≤ q

p ← Pgen(1λ); (S0,S1) ← A(p, n, q);β ←$ {0, 1};
(ck, td) ← Kck(p, n, q,Sβ);β′ ← A(ck)

]

.

Intuitively, ck reveals computationally no information about S.

Almost Everywhere Perfectly Hiding (AEPH): for all λ, unbounded A, n ∈
poly(λ), and q ∈ [1, n], AdvaephΓ,n,q,A(λ) := 2 · |εaeph − 1/2| = 0, where εaeph :=

Pr

⎡

⎢
⎢
⎣

β′ = β ∧ S ⊆ F
∧ |S| ≤ q ∧
fS(μ0) = fS(μ1)

p ← Pgen(1λ);S ← A(p, n, q);
(ck, td) ← Kck(p, n, q,S); (μ0,μ1) ← A(ck);
β ←$ {0, 1}; r ←$ R; (C,D) ← Com(ck,μβ ; r);
β′ ← A(C)

⎤

⎥
⎥
⎦ .

Intuitively, given ck, that depends on S, the commitment hides perfectly the
values of μj for j �∈ S.

Somewhere F-Extractability: for all λ, p ∈ Pgen(1λ), n ∈ poly(λ), q ∈ [1, n],
S = (f1, . . . , f|S|) ⊆ F with |S| ≤ q, (ck, ek) ← Kck(p, n, q,S), and PPT A,

Pr
[

swExt(ek, C) �= (
F (f1(μ)), . . . , F (f|S|(μ))

) (μ, r) ← A(ck);
(C,D) ← Com(ck,μ; r)

]

= 0 .

I.e., given ck, that depends on S, and an extraction key, one can black-box
extract F (fS(μ)). ([17] called this property somewhere perfect F -extractability.)
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Fig. 3. The [·]γ-FSE commitment scheme FSEγ for linear maps in Gγ .

Construction. Fix γ ∈ {1, 2}. Let F : a �→ [a]γ . In Fig. 3, we depict the FSE
scheme of [17] for the family of all linear maps. It represents q linear maps by
[M ]γ ∈ G

q×n
γ , where each row contains coefficients of one map. Clearly, [c]γ ←

Com(ck,μ; r) is equal to ck( μ
r ) = R[M ′]γ( μ

r ) =
[

RM μ
R(�ᵀμ+r)

]

γ
.

Fact 1 ([17]). Fix q < n = poly(λ). The scheme in Fig. 3 is (i) function-set hid-
ing relative to Pgen under DDHGγ

: for each PPT A, there exists a PPT B, such
that AdvfshPgen,Γ,n,q,A(λ) ≤ �log2(q + 1)� · Advddh

Gγ ,Pgen,B(λ). (ii) almost everywhere
perfectly-hiding, (iii) somewhere F -extractable for F = [·]γ .

3.2 QA-NIZK

A QA-NIZK argument system [36] Π has public parameters lp (a language
parameter, like a commitment key) and crs (a language-dependent common ref-
erence string). Π proves membership in the language Llp defined by a relation
Rlp = {(x,w)}. Both are determined by lp ←$ Dpar (sampled by PPT Klp), where
Dpar is a public distribution. Dpar is witness-sampleable [36] if there exists a PPT
algorithm Klt that samples (lp, lt) such that lp is distributed according to Dpar,
and lp ∈? range(Dpar) can be efficiently verified given lt.

A QA-NIZK for Rpar is a tuple of PPT algorithms Π = (Pgen,Klp,Kcrs,
P,V,Sim). In the case of witness-sampleable languages, Klp is replaced by
Klt. Pgen is the parameter generation algorithm, Klp is the language parame-
ter generation algorithm, Klt is the corresponding generation algorithm in the
witness-sampleable case that creates lp and lt, Kcrs is the CRS generation algo-
rithm, P is the prover, V is the verifier, and Sim is the simulator. We assume
that lp contains p. Sim is a single algorithm that works for each relation in
Rpar := {Rlp}lp∈range(Dpar).

Π can satisfy the following security notions.

Perfect Completeness: for all λ and PPT A,

Pr

⎡

⎣ V(lp, crs,x, π) = 0∧
(x,w) ∈ Rlp

p ← Pgen(1λ); lp ← Klp(p);
(crs, td) ←$ Kcrs(lp); (x,w) ← A(lp, crs);
π ← P(lp, crs,x,w)

⎤

⎦ = 0 .
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Computational Quasi-Adaptive Strong Soundness: defined only if lp is witness-
sampleable. For any PPT A, AdvstrsoundPgen,Dpar,BLS,A(λ) :=

Pr
[
V(lp, crs,x, π) = 1∧
(¬∃w)(x,w) ∈ Rlp

p ← Pgen(1λ); (lp, lt) ← Klt(p);
(crs, td) ←$ Kcrs(lp); (x, π) ← A(lp, lt, crs)

]

≈λ 0 .

Perfect Zero Knowledge: for all unbounded A, |εzk
1 − εzk

2 | = 0, where εzk
β :=

Pr
[AOβ(·,·)(lp, crs) = 1 p ← Pgen(1λ); lp ← Klp(p); (crs, td) ←$ Kcrs(lp)

]
.

Here, A is given an oracle access to Oβ(·, ·), where O0(x,w) returns 0 (reject) if
(x,w) �∈ Rlp, and otherwise it returns P(lp, crs,x,w). Similarly, O1(x,w) returns
0 if (x,w) �∈ Rlp, and otherwise it returns Sim(lp, crs, td,x).

C&P QA-SNARGs. A QA-NIZK is succinct (succinct non-interactive argument,
QA-SNARG) if the argument length is sublinear in poly(λ) · (|x| + |w|). It is
commit-and-prove (C&P) if lp is a commitment key and the statement contains
an extractable commitment (to a witness) under this commitment key.

Gentry-Wichs Impossibility Result. Gentry and Wichs [24] proved that if an
NP language L has a sub-exponentially (resp., exponentially) hard subset-
membership problem and Π is a complete SNARG in the CRS model with
|π| ≤ poly(λ) · (|x| + |w|)o(1) (resp., |π| ≤ poly(λ) · (|x| + |w|)c + o(|x| + |w|)
for some constant c < 1) for L, then there is a black-box reduction from the
adaptive soundness of Π to a falsifiable assumption X only when X is false. [10]
clarifies why linear subspace QA-SNARGs do not contradict Gentry-Wichs. In
the full version [45], we explain how this relates to the current work.

Bilateral Subspace QA-SNARG. Denote [M ]∗ := ([M1]1, [M2]2). A bilateral
subspace argument system, with lp = [M ]∗ ∈ G

n1×m
1 × G

n2×m
2 , allows to prove

that ([c1]1, [c2]2) ∈ Llp, where

Llp := {([c1]1, [c2]2) ∈ G
n1
1 × G

n2
2 : (∃w ∈ F

m)( c1c2 ) =
(

M 1
M 2

)
w} ,

that is, ( c1c2 ) ∈ colspace
(

M 1
M 2

)
. Note that it does not have the C&P property,

unless [M ]∗ is a commitment key.
For the sake of completeness, in the full version [45], we depict the González-

Hevia-Ràfols bilateral subspace QA-SNARG argument system BLS for Llp. Lip-
maa and Pavlyk [46] generalized a theorem by González and Ràfols [25] to any
nγ × m matrices M

γ
(even if m > nγ), given that rank

(
M 1
M 2

)
< n1 + n2. This

generalization is important for us since in Punic (see Eq. (4)), m > n1, n2.

Fact 2 ([25,46]). Fix λ, n1, n2, m. Let κ = 2. Let Dpar be a matrix distribution
on [M ]∗ ∈ G

n1×m
1 × G

n2×m
2 , such that rank

(
M 1
M 2

)
< n1 + n2. Then (1) BLS

is perfectly complete and perfectly zero-knowledge. (2) Assume Dpar is witness-
sampleable and Dκ is robust. If Dκ-SKerMDH holds relative to Pgen then BLS
is computationally quasi-adaptively strongly sound.
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We need κ = 2 since SKerMDH does not hold for κ = 1 [25]. The prover’s work
is dominated by 2mκ scalar multiplications, the verifier’s work is dominated by
(n1 + n2 + 2κ)κ pairings, and π consists of 2κ group elements.

4 New Vector Commitment Scheme

We need a pairing-based vector commitment scheme VCF that is fully-algebraic
and F -position-binding. Since we use the [17]’s FSE to black-box extract VCF’s
local openings and local proofs, both novel requirements are needed. W.l.o.g.,
we consider commitment schemes with an output from G1.

4.1 Definitions

Fully-Algebraic. Recall that a commitment scheme is algebraic if
Com(ck,μ; r) = [M∗]1( μ

r ) for a matrix [M∗]1 efficiently computable from ck.

Definition 2. A vector commitment scheme is fully-algebraic, if C :=
Com(ck,μ; r) = [M∗]1( μ

r ), [η]1 = [Mη
j ]1(

μ
r ), and [ϕ]1 = [Mϕ

j ]1( μ
r ), where

[η, ϕ]1 = LOpen(ck, C, j, (μ, r)), for some public matrices [M∗]1, [Mη
j ]1, and

[Mϕ
j ]1 that can be efficiently computed from ck and (in the last two cases) j.

Let ej be the jth unit vector. Clearly, [η]1 = [μj ]1 = [eᵀ
j ‖0]1 · ( μ

r ) holds for any
vector commitment scheme. Thus, the existence of Mη

j is trivial and one needs
to only show Com(ck,μ; r) = [M∗]1( μ

r ) and [ϕ]1 = [Mϕ
j ]1( μ

r ).
The vector commitment scheme of Catalano and Fiore [11] is fully algebraic,

but it has a commitment key of Θ(n2) group elements and is thus inefficient.
The more efficient vector commitment scheme of Libert et al. [33,41] is not fully
algebraic. The CDHK [8] vector commitment scheme is efficient and algebraic
but not known to be fully algebraic. In Sect. 4.2, we show that CDHK is fully
algebraic. However, it does not satisfy the following requirement.

F -Position-Binding. In Punic, we use FSE to black-box extract F (η) = F (μj)
for a one-way permutation F . Thus, we need the vector commitment scheme to
be position-binding even if the position-binding adversary outputs F (η) instead
of η. This is similar to how F -unforgeable signature schemes [5] is defined when
the adversary outputs F (μ) instead of the message μ. F -position-binding suffices
in our case since in the soundness proof of Punic, we are not interested in the
value of η but only in testing whether two local openings are equal. Since F is a
permutation, such testing can be performed on F (η) and F (η′).

Definition 3. An F -position-binding vector commitment scheme is a commit-
ment scheme that has the following additional algorithms:

Local F -opening: for p ∈ Pgen(1λ), ck ∈ Kck(p, n), a commitment
C ∈ C, a coordinate j ∈ [1, n], and a decommitment information D,
LOpenF (ck, C, j,D) returns (F (η), ϕ), where η is a local opening (a candi-
date value of μj) and ϕ is a local proof.
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Local F -verification: for p ∈ Pgen(1λ), ck ∈ Kck(p, n), a commitment C ∈ C,
a coordinate j ∈ [1, n], a local opening F (η), and a local proof ϕ, LVerF (ck,
C, j, F (η), ϕ) returns either 0 or 1.

It must be complete and satisfy the following security notion:

F -position-binding: for all λ, PPT A, and n ∈ poly(λ), AdvfposbPgen,F,n,Γ,A(λ) :=

Pr

⎡

⎣
η0 �= η1 ∧
LVerF (ck, C, j, F (η0), ϕ0) = 1∧
LVerF (ck, C, j, F (η1), ϕ1) = 1

p ← Pgen(1λ); (ck, td) ← Kck(p, n);
(C, j, F (η0), F (η1), ϕ0, ϕ1) ← A(ck)

⎤

⎦

is negligible.

We will omit the subscript F when it is clear from the context. In Punic, F is
such that the FSE commitment scheme is somewhere F -extractable. In the case
of the FSE commitment scheme of [17], F = [·]1 or F = [·]2.

Fig. 4. The new [·]γ-position-binding vector commitment scheme VCFγ .

4.2 Construction

CDHK is clearly algebraic. We will show that it is fully algebraic by showing
that [ϕ(x)]1 can be computed by using a linear map.

For a polynomial f(X) ∈ F[X] and an integer j ∈ [1, n], let Qf,j(X) be the
quotient of (f(X) − f(ωj−1))/(X − ωj−1). Clearly, degQf,j = deg f − 1.

Lemma 1. Fix j ∈ [1, n]. For C(X) =
∑n

i=1 μi
i(X) + rZH(X) ∈ F[X],
QC,j(X) = C(X)−C(ωj−1)

X−ωj−1 . Then, [QC,j(x)]1 = [ck�,j(x)]1 ·( μ
r ), where ck�,j(X) :=

(Q�1,j(X), . . . , Q�n,j(X), QZH,j(X)). Thus, CDHK is fully-algebraic.
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Proof. Clearly, QC,j(X) = (C(X) − C(ωj−1))/(X − ωj−1) is equal to
(
∑n

i=1 μi
i(X) + rZH(X) − μj)/(X − ωj−1). Since
∑n

i=1 μi
i(ωj−1) = μj and
ZH(ωj−1) = 0, QC,j(X) =

∑n
i=1 μiQ�i,j(X) + rQZH,j(X) = ck�,j(X) · ( μ

r ). ��
Making CDHK [·]γ -Position-Binding. One can easily break [·]γ-position-
binding of CDHK (see Fig. 2) by outputting ([C]γ , j, [η, η′]γ , [ϕ,ϕ′]γ), where
[C]γ = [x − ωj−1]γ , [η]γ = [0]γ , [η′]γ = [x − ωj−1]γ , [ϕ]γ = [1]γ , and [ϕ′]γ = [0]γ .
Clearly, C − η = ϕ(x − ωj−1) and C − η′ = ϕ′(x − ωj−1).

We avoid such attacks by guaranteeing that [η, η′]γ do not depend on x.
We achieve this by making the local opening depend on a new trapdoor y and
not adding [xiy]γ to ck for i > 0. (However, [y]1, [y]2, [y, xy]3−γ must be in
ck for VCF to be publicly verifiable.) Importantly, the communication does not
increase. In Fig. 4, we depict the new vector commitment scheme VCFγ . Clearly,
C(x) = (x − ωj−1)ϕ(x) + η̂/y since the remainder of 
i(X)/(X − ωj−1) is 1 if
i = j and 0, otherwise. The local opening is Gγ(μj) = Gγ(η) for Gγ(s) := [sy]γ .

The soundness proofs (but not the constructions) of QA-SNARGs of [16,17]
use implicitly a version of VCF but without defining the used primitive as a
vector commitment scheme or writing down the needed security properties. Their
implicit vector commitment scheme is less efficient, requiring the local opening
to output both μj [1]γ and μj [y]γ . Their constructions also use a perfectly-hiding
commitment scheme, while we use only VCF.

Private-Verifiability. Punic uses both VCF1 and VCF2. We need to use the
same trapdoor in both cases, and thus want to have the same ck when defining
VCFγ . Thus, although this is not necessary for VCFγ itself, we add [(xi)ni=0]3−γ

to the commitment key. However, we cannot add [xy]γ to ck since that would
break VCF’s security. To overcome this, one possibility is to reuse the trapdoor
x but have separate trapdoors y1 and y2 in VCF1 and VCF2. We opted for a
simpler possibility: since in Punic, VCFγ does not have to be publicly verifiable,
one can omit [xy]γ (only used in verification) from ck. This allows us to reuse
the same trapdoor y in both VCF1 and VCF2. From now on, we will always use
the privately verifiable version of VCFγ with ck ← ([(xi)ni=0, y]γ , [(xi)ni=0, y]3−γ).

4.3 Security Analysis

VCFγ is clearly perfectly zero-knowledge. From a position-binding collision
([C(x)]γ , j, [η̂, η̂′]γ , [ϕ,ϕ′]γ) with η̂ �= η̂′, we get [η̂′− η̂]γ • [1]3−γ = [ϕ−ϕ′]γ • [(x−
ωj−1)y]3−γ and thus [ϕ−ϕ′]γ = 1

(x−ωj−1)y [η̂
′ − η̂]γ . We define a new assumption

n-VCSDH that states that it is difficult to output [ϕ − ϕ′]γ and [η̂′ − η̂]γ �= [0]γ
that satisfy the above equation.

Definition 4. n-Vector-Commitment Strong Diffie-Hellman (n-VCSDH) holds
relative to Pgen in Gγ , if for all PPT A, AdvVCSDH

Pgen,γ,n,A(λ) :=

Pr

⎡

⎣ η̂ �= 0∧
[ϕ]γ = 1

(x−ωj−1)y [η̂]γ

p ← Pgen(1λ);x ←$ F \ H; y ←$ F∗;
ck ← ([(xi)ni=0, y]1, [(x

i)ni=0, y]2);
(j, [η̂, ϕ]γ) ← A(ck)

⎤

⎦ ≈λ 0 .
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The following lemma is straightforward.

Lemma 2. Privately-verifiable VCF1 is [·]γ-position-binding iff n-VCSDH holds
relative to Pgen.

VCSDH is similar to known SDH-like [7] assumptions like RSDH [26].
VCSDH is privately-verifiable but clearly falsifiable. It is intuitively secure since
[η̂]γ cannot depend on xy, and thus ϕ(x, y) is not a polynomial. Next, prove that
VCSDH follows from QALINRES, which was proven in [46] to be secure in the
AGM, [20]. Thus, VCSDH is secure in the AGM and falsifiable. Punic relies on
QALINRES and not on VCSDH directly.

Lemma 3. Fix n = poly(λ). If n-QALINRES holds, then n-VCSDH holds.

See the full version [45] for the proof.
QALINRES can restated as an algebraic security property of privately-

verifiable VCFγ , observing that say a = ϕa(x − ωj−1) + η̂a/y iff VCF1.LVer(ck,
[a]1, j, [η̂a]1, [ϕa]1). Privately-verifiable VCF1 and VCF2 share the commitment
key; this is possible since we do not require QALINRES to be publicly-verifiable.

4.4 Committing to Linear Maps

We need the following result. See the full version [45] for the proof.

Lemma 4. Let VCF1 be as in Fig. 4 Let μ ∈ F
m and U ∈ F

n×m.
Let uj(X) :=

∑n
i=1 Uij
i(X) be the interpolating vector of U (j), cku :=

(u1(x)‖ . . . ‖um(x)‖ZH(x)) = ck� · (U 0
0 0 ), [cke,j ]1 := G(eᵀ

j ‖0), and cku,j :=
(Qu1,j(x)‖ . . . ‖Qum,j(x)‖QZH,j(x)). Then, [C(x)]1 ← Com(ck,Uμ; r) and
(G(η), [ϕ]1) ← LOpen(ck, [C(x)]1, j,D = (Uμ, r)) are linear maps of ( μ

r ):

[C(x)]1 = [cku]1 · ( μ
r ) , G(η) = G(cke,j) · ( μ

r ) , [ϕ]1 = [cku,j ]1 · ( μ
r ) .

Thus, one can compute the commitment to Uμ and its local proof as [cku]1( μ
r )

and [cku,j ]1( μ
r ) given public matrices that depend on x, U , and j.

5 New C&P Zk-SNARK Security Notions

The new C&P zk-SNARK satisfies a novel soundness notion, semi-adaptive
black-box G-knowledge-soundness. As motivated in Sect. 2.3, semi-adaptivity is
a natural version of non-adaptivity for C&P SNARKs. Black-box G-knowledge-
soundness is stronger than local consistency (Kalai et al., [37]). Semi-adaptive
black-box G-knowledge-soundness is a semi-adaptive variant of the non-adaptive
black-box knowledge-soundness of [10]. Moreover, we need Punic to be CRS-
indistinguishable. Next, we define the new security notions.
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5.1 R1CS and R1CSf

Let n be the number of constraints, m be the number of variables, and
mx < m be the number of public inputs and outputs. Let U ,V ,W ∈ F

n×m

be instance-dependent matrices and let ( x
w ) ∈ F

m. An R1CS [23] instance
J = (F,mx,U ,V ,W ) defines the following relation5:

RJ = {(x,w) : x ∈ F
mx ∧ w ∈ F

m−mx ∧ U( x
w ) ◦ V ( x

w ) = W ( x
w )} . (1)

We say (x,w) satisfies J if (x,w) ∈ RJ. Crucially, one can check that (x,w) ∈
RJ by checking a conjugation of local constraints. For a constraint � ∈ [1, n],

NJ(�) := {j : U�j �= 0 ∨ V�j �= 0 ∨ W�j �= 0}

(the �th neighborhood) is the set of variables in the neighborhood of the con-
straint �. We usually omit the subscript J. W.l.o.g., assume that the set of
neighborhoods covers the whole range [1,m]. Otherwise, some variables are not
used in the instance and can thus be omitted. For f ≥ 1, let R1CSf be the
language of instances J, such that |N(�)| ≤ f for all �.

Fix � ∈ [1, n]. Let p� : N(�) → F be an assignment of variables from N(�).
We say that (x,p�) locally satisfies the instance J iff

(1) p� agrees with the statement x: (∀j ∈ ([1,mx] ∩ N(�)))p�(j) = xj , and
(2) p� satisfies the �th constraint:

(
∑

j∈N(�) U�jp
�(j)) · (∑j∈N(�) V�jp

�(j)) =
∑

j∈N(�) W�jp
�(j) .

If only 1 holds, we say that p� satisfies the �th constraint. If both 1 and 2 hold,
we write (x,p�) ∈ R�

loc,J, where R�
loc,J :=

{ (x,p�)
((∀j ∈ ([1, mx ] ∩ N(�)))p�(j) = xj) ∧(
(
∑

j∈N(�) U�jp
�(j)) · (∑j∈N(�) V�jp

�(j)) = (
∑

j∈N(�) W�jp
�(j))

) } . (2)

Note that the second element of (x,w) ∈ RJ is a full witness while the second
element of (x,p�) ∈ R�

loc,J is a partial witness. Moreover, one can use pairings
to check (x,p�) ∈? R�

loc,J even if only given (x, [p�]1).
For i, j ∈ [1, n], we define the consistency predicate

Cons(pi,pj) := (∀k ∈ (N(i) ∩ N(j)))pi(k) = pj(k) ,

Remark 1. Fix x. Clearly, there exists a full witness w ∈ RJ that satisfies all
constraints and agrees with all partial assignments p� if

(1) for each constraint �, (x,p�) is locally satisfied,
(2) for all constraints i, j, Cons(pi,pj) = true.

5 (U , V , W ) is a part of the instance and thus our SNARKs are non-universal. The
most efficient known universal SNARKs [30] in the standard model (without random
oracles) have quadratic size CRS and are thus too inefficient for practice.
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Fix a commitment scheme and instance J. We assume the statement is x† :=
(C,x) and the witness is w† := (rC ,w), where C is a commitment and rC is a
commitment randomness. For a fixed lp = ck, we define

Rlp := {((C,x), (rC ,w)) : C = Com (( x
w ); rC) ∧ (x,w) ∈ RJ}

to be the relation Rlp from Sect. 3.2.

5.2 Security Definitions

We redefine C&P zk-SNARKs for R1CSf allowing Kcrs to depend on a constraint
number �, where an honest execution sets � ← 0 while the reductions use non-
zero �’s. (An alternative approach is to define two different Kcrs’s.) Fix a (vector)
commitment scheme Γ . Then, lp = ck is a commitment key. We also assume that
there exists a black-box somewhere-extractor Extks.

The modified (QA-)SNARK security definitions follow. We highlight the
changes to the definition in Sect. 3.2. We require that completeness holds for
all choices of � while zero-knowledge holds for the value of �, � = 0, used in the
honest case. Computational zero-knowledge for any � follows from this and the
CRS-indistinguishability. The latter (see Definition 5) guarantees that the CRSs
corresponding to different constraints are computationally indistinguishable.
Perfect Completeness: for all λ, PPT A, and � ∈ [1, n],

Pr

⎡
⎢⎢⎣
V(lp, crs, x† , π) = 0
∧ (x,w) ∈ RJ

p ← Pgen(1λ); lp ← Klp(p);
(crs, td) ←$ Kcrs(lp, RJ , �);
(x,w, rC ) ← A(lp, crs);C ← Com(( x

w ); rC);

x† ← (C,x);w† ← (rC ,w);π ← P(lp, crs, x† ,w†)

⎤
⎥⎥⎦ = 0 .

Perfect Zero Knowledge: for all unbounded A, |εzk
1 − εzk

2 | = 0, where εzk
β :=

Pr
[AOβ(·,·)(lp, crs) = 1 p ← Pgen(1λ); lp ← Klp(p); (crs, td) ←$ Kcrs(lp,RJ, 0)

]
.

A is given an oracle access to Oβ(·, ·), where O0(x†,w†) returns 0 if (x†,w†) /∈
Rlp; otherwise, it returns P(lp, crs, x†,w†). Similarly, O1(x†,w†) returns 0 if
(x†,w†) /∈ Rlp; otherwise, it returns Sim(lp, crs, td, x†).

We define a new knowledge soundness notion that has two aspects. First,
semi-adaptivity. In the quasi-adaptive case, the statement can depend on lp and
crs, while in the semi-adaptive case, it can only depend on lp. Second, in local
consistency [27,37,49] it is required that, given crs� ←$ Kcrs(lp,RJ, �), one can
black-box somewhere-extract a partial witness that satisfies the �th constraint.
We strengthen this by requiring one to black-box extract a full witness that
satisfies all constraints.

Definition 5 is inspired by non-adaptive black-box knowledge-soundness
in [10] and witness-extended emulation (WEE, [42]). Let G be a permutation.
Definition 5 formalizes our expected ability to black-box extract G(w), where
w satisfies all constraints, by running the adversary with many different CRSs
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crs�, where crs� is output by Kcrs(lp,RJ, �), and then gluing the adversary’s out-
puts to G(w). We relate the probability that an adversary outputs an accepting
transcript to the probability that the black-box extractor outputs an accepting
transcript together with G(w). For falsifiability, we require that one can test
whether (x,w) /∈ RJ when only given (x, G(w)). This holds in our applications.

Definition 5 (Semi-Adaptive Black-Box G-Knowledge-Soundness). Let
J be an R1CS instance with n = n(λ) constraints. There exists a black-box
expected (deterministic) PT extractor Extks, such that for all non-uniform PPT
A1, D and DPT A2, AdvbbksPgen,G,Π,Extks,A(λ) := |ε2(λ) − ε1(λ)| ≈λ 0, where

ε1(λ) := Pr

⎡
⎣ D(lp, tr) = 1

p ← Pgen(1λ); lp ← Klp(p);
((C,x), st) ← A1(lp, RJ); (crs, td) ←$ Kcrs(lp, RJ, 0);
π ← A2(st, crs); tr ← (C,x, crs, π)

⎤
⎦ ,

ε2(λ) := Pr

⎡
⎢⎢⎣

D(lp, tr) = 1∧(
V(ck, tr) = 1 ⇒
(x,w) /∈ RJ

)
p ← Pgen(1λ); lp ← Klp(p);
((C,x), st) ← A1(lp, RJ);

(crs, π, G(w)) ← Ext
A2(st,·)
ks (lp, RJ, C,x, st);

tr ← (C,x, crs, π)

⎤
⎥⎥⎦ .

Extks is an oracle machine that makes an expected polynomial number of (adap-
tive or non-adaptive) queries. Before each query, Extks chooses � ∈ [1, n] and
samples (crs�, td�) ←$ Kcrs(lp,RJ, �). Extks then calls A2(st, crs�), obtaining some
(possibly invalid) argument π� (st is not updated between A2 queries).

We allow Extks to use the same � several times, but each time, Extks can use a dif-
ferent crs. In this case, π� depends on crs� and not only �, but we will mostly ignore
this detail. Let Q be the set of �-s, actually used by Extks. A C&P zk-SNARK is a
C&P SA-SNARK (semi-adaptive SNARK) if it meets Definition 5.

Comparison to WEE. Compared to standard WEE [42], there are several differ-
ences. We can think of a semi-adaptive SNARG as a three-round protocol with a
trusted setup, where the CRS is the verifier’s second message. However, (1) the
CRS is not public-coin, and (2) the CRS does not depend on the first message
— it instead depends on the constraint number �. Thus, our soundness notion
and proof differ from the classical WEE ones. We use the name of black-box
knowledge-soundness, although WEE might be more apt.

Comparison to [13]. In the context of (non-C&P) SNARGs for NP, Choudhuri et
al. [13] define semi-adaptivity differently. Choudhuri et al. do not consider C&P
arguments, but they allow for CRS reprogramming. In their semi-adaptivity
game, the adversary first maliciously chooses the constraint �, the CRS is pro-
grammed to use �, and finally, the adversary outputs a statement and an argu-
ment. In our case, � must stay hidden from the adversary; hence, we introduce
the requirement of CRS-indistinguishability.

On G in G-Knowledge-Soundness. Since the lack of a trapdoor prevents one
from efficiently computing w from G(w), G-knowledge-soundness is a standard
notion in many pairing-based schemes like Groth-Sahai. See [5,22] for further
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discussions. Since we work in the pairing-based setting, we set G(s) := [sy]1 (we
need y for compatibility with VCF). Involving [·]1 is a usual restriction in the
pairing-based setting due to the hardness of the discrete logarithm.

A C&P SA-SNARK must satisfy one more requirement. Extks in Definition
5 can query A2 with CRSs corresponding to different constraints �. The adver-
sary’s success is the difference between the probabilities of acceptance and extrac-
tion. In our case, it is crucial that if the adversary succeeds with a non-negligible
probability, it does so for any � ∈ Q. Otherwise, the extractor might “miss” two
inconsistent partial witnesses. We solve this by requiring CRS indistinguishabil-
ity: CRSs for different � are computationally indistinguishable. If that holds, the
acceptance probability is roughly the same for different �; hence, if the verifier
accepts with a non-negligible probability, it does so for every �. Crucially, the
values extracted by the FSE somewhere-extractor when using different �’s do
not have to be consistent; the reduction Bfposb (see Sect. 6) handles this case.

Definition 6 (CRS-Indistinguishability). For all λ, PPT A, and � ∈ [1, n],
AdvcrsindPgen,�,Π,A(λ) :=

Pr
[

β′ = β
p ← Pgen(1λ); lp ← Klp(p);β ←$ {0, 1};
(crs, td) ←$ Kcrs(lp,RJ, β · �);β′ ← A(lp, crs)

]

≈λ
1
2 .

Special Soundness. We define a tailored special soundness [14] notion,
semi-adaptive computational (k,G)-special soundness. Defining special sound-
ness is a common step for interactive arguments but novel for non-interactive
ones. We prove that any semi-adaptively computationally (n,G)-specially-sound
and CRS-indistinguishable QA-SNARG Π is semi-adaptively black-box G-
knowledge-sound. As typical in similar reductions, the knowledge-soundness
extractor is only expected PPT. Later, we prove that the new zk-SNARK Punic
is semi-adaptively computationally (n,G)-specially-sound under three (strict)
PPT computational assumptions.

Definition 7 (Semi-adaptive Computational (k,G)-Special Soundness).
Fix k ∈ poly(λ). There exists a black-box PPT extractor Extss, such that for any
PPT adversary Ass, Adv

specsound
Pgen,G,Π,k,Extss,Ass

(λ) :=

Pr

⎡
⎢⎢⎢⎢⎣

tr = (trj)kj=1 ∧

∀j ∈ [1, k].

⎛
⎝

trj = (C,x, crsj , tdj , πj)
∧ (crsj , tdj) ←$ Kcrs(lp, RJ, �

j)
∧V(lp, crsj , (C,x), πj) = 1

⎞
⎠

∧ (∀i �= j.�i �= �j
) ∧ (x,w) /∈ RJ

p ← Pgen(1λ);
lp ← Klp(p);
tr ← Ass(lp, RJ);
G(w) ← Extss(lp, tr)

⎤
⎥⎥⎥⎥⎦

≈λ 0 .

Intuitively, Definition 7 states that if Ass produces an accepting admissible k-
tuple tr (meaning that tr satisfies all conditions on the left-hand side), then one
can—except with a negligible probability—black-box extract G(w), such that
(x,w) ∈ RJ. The transcripts include trapdoors, needed in the special soundness
proof of Punic. We assume that tdj contains �j .
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The following result is related to yet different from classical reductions of
WEE to special soundness. Note that Ass in the full version [45] works in expected
PPT. One can use Markov’s inequality to make Ass to be strict PPT but with
some loss in the probability. The latter technique is standard, and we will not
elaborate on it. See the full version [45] for the proof of Theorem 1.

Theorem 1. Let G be a permutation. If Π is semi-adaptively computationally
(n,G)-special-sound and CRS-indistinguishable, then it is semi-adaptively black-
box G-knowledge-sound for any family of instances J = J(λ) with n = n(λ)
constraints. More precisely, there exists a black-box expected PPT extractor Extks
and an expected PPT adversary Ass, such that for any PPT Extss and Aks =
(A1,A2), AdvbbksPgen,G,Π,Extks,Aks

(λ) ≤ AdvspecsoundPgen,G,Π,n,Extss,Ass
(λ).

6 New C&P SA-SNARK Punic

Next, we propose a C&P SA-SNARK Punic for R1CSf by following ideas
from [16,17,46]. We will use a new proof technique based on fully algebraic
F -position-binding vector commitments and new security notions.

6.1 Intuition

We construct a C&P SA-SNARK Punic for R1CSf for a small constant f. Let
lp = VCF.ck and (x, y) be the VCF trapdoor key. The prover’s statement is
([C(x)]1,x), where [C(x)]1 is a succinct VCF commitment to z = ( x

w ). Notably,
(honest) crs is independent of the statement. Thus, crs can be created before the
statement; we only prove soundness if the statement does not depend on crs.

The argument π includes three VCF commitments ([a(x), c(x)]1 and [b(x)]2
to Uz, Wz, and V z) and a group element [h(x)]1. Here, h(X) = (a(X)b(X) −
c(X))/ZH(X). Intuitively, [h(x)]1 is the randomizer of the VCF commitment
[a(x)b(x) − c(x)]1, Many non-universal zk-SNARKs, e.g. [23,29,50], have com-
mitments [a(x), c(x)]1 and [b(x)]2 and possibly the proof element [h(x)]1. Our
novelty is using VCF, a vector commitment. Following [16,17], we prove that
the commitments are correct (in particular, they commit to the correct public
input) by using a BLS argument BLS.π that we add to Punic’s argument.

The black-box extractor in our soundness proof extracts the local proofs
corresponding to these three vector commitments. We follow [16,17] and add to
the argument two FSE commitments [d(x)]1 and [e(x)]2 that allow us to black-
box somewhere-extract one partial witness. For black-box extraction to succeed,
the length of FSE commitments needs to be at least f group elements.

Soundness Proof. Following the discussion of Sect. 5.2, we aim for Punic to
be semi-adaptively [·]1-knowledge-sound—a different soundness notion than
in [16,17]. Since we proved in Theorem 1 that this notion follows from spe-
cial soundness, we will explain next how we prove special soundness. This helps
to motivate the choice of primitives (VCF, FSE, and BLS).
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In the honest case, [C]1 is a VCF commitment to a statement-witness pair.
We construct a special soundness extractor Extss (see the full version [45]).
We also construct three reductions that work when the extractor Extss fails.
These three reductions each call Extss to obtain a tuple of admissible tran-
scripts tr. Let G(s) := [sy]1 to be G1 from Sect. 4.2. Denote G(p�) :=
G(p�(N(�))). Each reduction loops over � ∈ [1, n]. For each � ∈ [1, n], some
of the reductions use FSE to black-box somewhere-extract G(p�) = G(η|N(�))
together with [ϕ|N(�)]1. Here, η|N(�) is an assignment of variables from N(�),
[ϕ|N(�)]1 is a tuple of VCF local proofs for every coefficient in N(�), and
LVer(VCF1.ck, [C(x)]1, k,G(ηk), [ϕk]1) = 1 for all k ∈ N(�). (We extract more
values, but they are immaterial for this subsection.)

The first reduction Bbls (see the full version [45]) is to the security of BLS.
Bbls guarantees three things: (1) the adversary uses the correct statement x,
(2) commitments like [a(x)]1 in the argument (see Fig. 5) are correctly formed,
and (3) the extracted variables contain correctly computed local openings and
local proofs of the vector commitment. Assuming that (1–3) holds, the second
reduction Bqal (see the full version [45]) handles the case when there exists a �
such that p� does not satisfy the �th coefficient. By the first two reductions,
we obtain a guarantee for local consistency: for all �, (x,p�) locally satisfies the
instance. The first two reductions are related to the reductions in [16,17], see
the full version [45] for more.

The third reduction Bfposb (see the full version [45]) handles the case when
partial witnesses exist, but Extks fails to black-box extract a full witness satisfying
all constraints. By Remark 1, then there must exist two indices i �= j, such that:

(1) pi satisfies the ith constraint and pj satisfies the jth constraint.
(2) Cons(pi,pj) = false; that is, (∃k ∈ (N(i) ∩ N(j)))pi(k) �= pj(k).

Given all extracted G(p�)-s, Bfposb can efficiently recover i, j, k. Bfposb returns
the position k and two different local openings ηi

k �= ηj
k of [C(x)]1 with local

proofs ϕi
k and ϕj

k. Thus, Bfposb breaks the [·]1-position-binding property.
Recall that FSE can black-box somewhere-extract group elements. Moreover,

the extracted group elements must be linear maps of z, that is, of the form [M ]γz
for some public matrix [M ]γ . Thus, the vector commitment scheme must be F -
position-binding and fully-algebraic, which motivates the use of VCF.

In the �th iteration, we need to black-box extract η�
k and ϕ�

k for all k ∈ N(�).
Since the length of an FSE commitment depends on the number of extracted
values, we must limit the maximum number of such coefficients for the sake of
efficiency. Thus, we can only handle R1CSf for a small f.

We need protection against adversaries who make the verifier accept only
for specific values of �, which makes it impossible to construct p� for all �. As
explained in Sect. 5.2, it suffices to prove that Punic is CRS-indistinguishable.

See comparison with no-signaling commitments in the full version [45].
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6.2 Description of Punic

Prerequisites. Punic uses VCF in G1 and G2 to commit. We use its local opening
only in the soundness proof and not in the construction. Punic also uses FSE
and BLS. Punic handles R1CSf, where f ∈ N is a small integer. Zk-SNARG(K)s
for similarly restricted constraint systems are well-known; see, e.g., [21,37,51].
Using small f only affects the efficiency: the restriction on f is like to bounding
the fan-in and fan-out in arithmetic circuits; it is easy to transform arithmetic
circuits to circuits with bounded fan-in and fan-out efficiently.

Since we need to black-box extract the neighborhood of any given constraint,
FSE has larger locality parameters than [16,17,46]. We set

q1 = 2 + 2f and q2 := 2 . (3)

We explain this choice in the soundness proof, see Sect. 7. We use qγ as the
locality parameter for FSEγ .

Description. In Fig. 5, we depict Punic for an R1CSf instance J. The language
parameter lp is the commitment key of VCF. For � ∈ [0, n] (in the honest case,
� = 0), Punic’s CRS crs ←$ Kcrs(lp,RJ, �) contains instance-dependent val-
ues BLS.lp and BLS.crs (BLS’s language parameter and CRS). Furthermore,
BLS.lp = [M ]∗ contains as submatrices FSE commitment keys, together with
commitment keys like cku required to locally open linear maps (see Lemma 4).

The FSE commitment keys are created as in Fig. 3 from �-dependent extrac-
tion matrices [E�

1]1 and [E�
2]2. Here, [E0

1]1 = [0q1×(m+3)]1 and [E0
2]2 =

[0q2×(m+1)]2. In the knowledge-soundness proof, we invoke Kcrs with a non-zero
� ∈ [1, n]. If � �= 0, then each row of [E�

1]1/[E
�
2]2 contains an extraction key used

in the soundness proof to black-box extract local openings and local proofs. We
describe the algorithm for creating [E�

1]1/[E
�
2]2 in Fig. 7. (We postpone it to

Sect. 7 since the case � �= 0 is only used in the soundness proof.) Similarly, [M ]∗
is created by using the algorithm in Fig. 6. In Figs. 6 and 7, the first row (small,
blue font) denotes the elements of the vector that the matrices will be multiplied
with. “Empty” entries mean zeros. We explain the construction of these matrices
in Sect. 7.1.

Efficiency. Clearly, FSE1.ck ∈ G
(q1+1)×(m+3)
1 and FSE2.ck ∈ G

(q2+1)×(m+2)
2 .

Using 
̂i(X) instead of 
i(X) helps us to prove efficiently that the prover used
the correct R1CSf statement (z1, . . . , zmx)

ᵀ = x. Assuming we have an instance
of R1CSf for f = o(|w|), the Punic argument π is succinct, consisting of 7 + 2f
elements of G1 and 5 elements of G2. Choosing a larger f potentially decreases
the number of constraints, while a smaller f decreases the argument size.

SSP. In the full version [45], we note that Punic can be simplified significantly
by targeting SSP [15] instead of R1CS [23].



On Black-Box Knowledge-Sound Commit-And-Prove SNARKs 69

Fig. 5. New semi-adaptively black-box [·]1-knowledge-sound C&P SA-SNARK Punic.
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Fig. 6. Algorithm CreateM(lp, RJ,FSE1.ck,FSE2.ck).

Fig. 7. Algorithm CreateE(lp, RJ, �), where � ∈ [0, n].

7 Security of Punic

We postpone the following two proofs to the full version [45].

Theorem 2. (1) Punic is perfectly complete. (2) If VCF1 and VCF2 are per-
fectly zero-knowledge, BLS is perfectly zero-knowledge, and FSE1 and FSE2 are
almost everywhere perfectly-hiding then Punic is perfectly zero-knowledge.
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Theorem 3. Let m, q1, and q2 be as above. If FSEγ is function-set hiding for
γ ∈ {1, 2}, then Punic is CRS-indistinguishable. More precisely, there exist
PPT B1 and B2, such that for every PPT A and �, AdvcrsindPgen,�,Punic,A(λ) ≤
AdvfshPgen,FSE1,m+3,q1,B1

(λ) + AdvfshPgen,FSE2,m+1,q2,B2
(λ).

7.1 Semi-adaptive Computational (n, G)-Special-Soundness

On Mγ . For BLS.lp = [M ]∗ defined as in Eq. (4), we use BLS to show that

BLS.x := ([C∗(x), a(x), c(x), d(x)]1, [b(x), e(x)]2)ᵀ ∈ colspace
(

[M 1]1
[M 2]2

)
. (5)

Equation (5) holds iff there exists BLS.w = (z = ( x
w ), rC , ra, rb, rc, rd, re), such

that (here, [C(x)]1 follows from [C∗(x)]1)

[C∗(x)]1 = VCF1.ck ·
(

0
w
rC

)
,

[C(x)]1 = VCF1.ck · ( z
rC

) = VCF1.Com(VCF1.ck, z, rC) ,

[a(x)]1 = VCF1.ck · (
U z
ra

)
= VCF1.Com(VCF1.ck,Uz; ra) ,

[c(x)]1 = VCF1.ck · (
W z
rc

)
= VCF1.Com(VCF1.ck,Wz; rc) ,

[d(x)]1 = FSE1.ck · (zᵀ, rC , ra, rc, rd)ᵀ

= FSE1.Com(FSE1.ck, (zᵀ, rC , ra, rc)ᵀ; rd) ,

[b(x)]2 = VCF2.ck · (
V z
rb

)
= VCF2.Com(VCF2.ck,V z; rb) ,

[e(x)]2 = FSE2.ck · (zᵀ, rb, re)ᵀ = FSE2.Com(FSE2.ck, ( z
rb
); re) .

(6)

By Fact 2, for BLS to be strongly sound, we need the distribution of [M ]∗ to
be witness-sampleable; this is clearly the case. We also need that rank

(
M 1
M 2

)
<

n1 + n2. This is fine since BLS.w always exists when n1 + n2 = rank
(

M 1
M 2

)
.

On Eγ . Assume � �= 0, (crs�, td�) ←$ Kcrs(lp,RJ, �), and that P computes the
argument π� honestly by using an �-dependent full witness w� and randomizers
like r�

a . (BLS will guarantee the latter.) Then, FSE1.swExt(FSE1.ek, [d(x)]1) and
FSE2.swExt(FSE2.ek, [e(x)]2) output

⎛

⎝
G(η�)⎡

⎣
ϕ�

ϕ�
a

ϕ�
c

⎤
⎦

1

⎞

⎠ ← [E�
1]1 ·

(
z�

r�
C

r�
a

r�
c

)

and
(

G2(η
�
b )

[ϕ�
b ]2

)
← [E�

2]2 ·
(

z�

r�
b

)
, (8)

where G2(X) := [Xy]2. From Lemma 1, the security of BLS, and Eq. (7) it
follows G(η�|N(�)) = G(p�|N(�)) is a tuple of local openings and ϕ� = (ϕ�

j )|N(�)

is the corresponding tuple of local proofs, with

(G(η�
j ), [ϕ

�
j ]1) = VCF1.LOpen(ck, [C(x)]1, j,D = (z�, r�))

for some z� and r�. (Recall that dependency from y is required to construct
a reduction to [·]1-position-binding.) Define G(η�

a ) ← ∑
j∈N(�) U�jG(η�

j ) and
G(η�

c ) ← ∑
j∈N(�) W�jG(η�

j ). Equations (7) and (8) and Lemma 4 imply that

(G(η�
a ), [ϕ

�
a ]1) = VCF1.LOpen(ck, [a(x)]1, j,D = (Uz�, r�

a ))
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and (G(η�
c ), [ϕ

�
c ]1) = VCF1.LOpen(ck, [c(x)]1, j,D = (Wz�, r�

c )). Note that we
black-box extract [ϕ�

b]2 by using FSE.
For � ∈ [0, n], let D�

par be the distribution of [M ]∗ in Eq. (4). We postpone
the special soundness proof to the full version [45].

Theorem 4. Let n be the number of R1CSf constraints. Assume FSEγ is some-
where [·]γ-extractable for γ ∈ {1, 2}, BLS is quasi-adaptively strongly sound for
D�

par where � ∈ [1, n], VCF1 is [·]1-position-binding, and n-QALINRES holds.
Then, Punic is semi-adaptively computationally (n,G)-special-sound. More pre-
cisely, there exist an expected PPT Extss and PPT Bfposb, Bqal, and B�

bls for
� ∈ [1, n], such that for any PPT Ass,

AdvspecsoundPgen,G,Punic,n,Extss,Ass
(λ) ≤∑n

�=1 Adv
strsound
Pgen,D�

par,BLS,B�
bls
(λ)+

AdvfposbPgen,[·]1,n,VCF1,Bfposb
(λ) + AdvQALINRES

Pgen,n,Bqal
(λ) .
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Abstract. Accumulation is a simple yet powerful primitive that enables
incrementally verifiable computation (IVC) without the need for recur-
sive SNARKs. We provide a generic, efficient accumulation (or folding)
scheme for any (2k − 1)-move special-sound protocol with a verifier that
checks � degree-d equations. The accumulation verifier only performs
k + 2 elliptic curve multiplications and k + d + O(1) field/hash oper-
ations. Using the compiler from BCLMS21 (Crypto 21), this enables
building efficient IVC schemes where the recursive circuit only depends
on the number of rounds and the verifier degree of the underlying special-
sound protocol but not the proof size or the verifier time. We use our
generic accumulation compiler to build Protostar. Protostar is a
non-uniform IVC scheme for Plonk that supports high-degree gates and
(vector) lookups. The recursive circuit is dominated by 3 group scalar
multiplications and a hash of d∗ field elements, where d∗ is the degree of
the highest gate. The scheme does not require a trusted setup or pair-
ings, and the prover does not need to compute any FFTs. The prover in
each accumulation/IVC step is also only logarithmic in the number of
supported circuits and independent of the table size in the lookup.

1 Introduction

Incrementally Verifiable Computation [30] is a powerful primitive that enables
a possibly infinite computation to be run, such that the correctness of the state
of the computation can be verified at any point. IVC, and it’s generalization
to DAGs, PCD [12], have many applications, including distributed computation
[3,13], blockchains [5,18], verifiable delay functions [4], verifiable photo editing
[25], and SNARKs for machine-computations [2]. An IVC-based VDF construc-
tion is the current candidate VDF for Ethereum [19]. One of the most exciting
applications of IVC and PCD is the ZK-EVM. This is an effort to build a proof
system that can prove that Ethereum blocks, as they exist today, are valid [10].

Accumulation and Folding. Historically, IVC was built from recursive SNARKs,
proving that the previous computation step had a valid SNARK that proves
correctness up to that point. Recently, an exciting new approach was initiated
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by Halo [6] and has led to a series of significant advances [8,9,22]. The idea
is related to batch verification. Instead of verifying a SNARK at every step
of the computation, we can instead accumulate the SNARK verification check
with previous checks. We define an accumulator1 such that we can combine
a new SNARK and an old accumulator into a new accumulator. Checking or
deciding the new accumulator implies that all previously accumulated SNARKs
were valid. Now the recursive statement just needs to ensure the accumulation
was performed correctly. Amazingly, this accumulation step can be significantly
cheaper than SNARK verification [6,9]. Even more surprising, this process does
not even require a SNARK but instead can be instantiated with a non-succinct
NARK [8], as long as there exists an efficient accumulation scheme for that
NARK. The most efficient accumulation (aka folding) scheme constructions yield
IVC constructions, where the recursive circuit is dominated by as few as 2 elliptic
curve scalar multiplications [8,22]. These constructions only require the discrete
logarithm assumption in the random oracle model and, unlike many efficient
SNARK-based IVCs, do not require a trusted setup, pairings, or FFTs. These
constructions build an accumulation scheme for one fixed (but universal) R1CS
language by taking a random linear combination between the accumulator and
a new proof. R1CS is a minimal expression of NP, defined by three matrices
A,B,C, that close resembles arithmetic circuits with addition and multiplica-
tion gates. However, it has limited flexibility, especially as the current construc-
tions require fixing R1CS matrices that are used for all computation steps. These
limitations are especially problematic for ZK-EVMs. In a ZK-EVM, each VM
instruction (OP-CODE) is encoded in a different circuit. Each circuit uses high-
degree gates, instead of just multiplication, and so-called lookup gates [16]. These
lookup gates enable looking up that a circuit value is in some table, simplifying
range proofs and bit-operations. These R1CS-based accumulation schemes con-
trast non-IVC SNARK developments, with an increased focus on high-degree
gate [11,16] and lookup support [15]. For lookups, a recent line of work has
shown that if the table can be pre-computed, we can perform n lookups in a
table of size T in time O(n log n), independent of T [14,27,33,34].

More Expressive Accumulation. There have been efforts to build accumulation
schemes that overcome the limitations of fixed R1CS. SuperNova [21] enables
selecting the appropriate R1CS instance at runtime without a recursive circuit
that is linear in all R1CS instances. The approach, however, still has limitations.
The recursive circuit still requires many (though a constant number of) hashes
and a hash-to-group gadget, and additionally, the accumulator, and thus the
final proof, is still linear in the total size of all instances.

Sangria [24] describes an accumulation scheme for a Plonk-like [16] constraint
system with degree-2 gates. It also proposes a solution for higher-degree gates
in the future work section but without security proof. Moreover, as the gate
degree d increases, the number of group operations in Sangria grows by a factor
of d, which cancels out the advantages of using the more expressive high-degree

1 Unrelated to set accumulators.
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gates. Origami [35] recently introduced a folding scheme for lookups using a
product check and degree 7 polynomials. These accumulation schemes are built
from simple underlying protocols performing a linear combination between an
accumulator and a proof. However, the constructions seem ad hoc and need
individual security proof. This leads us to our main research questions:

Recipe for accumulation. Is there a general recipe for building accumulation
schemes? Can we formalize this recipe, simplifying the task of constructing
secure and efficient accumulation schemes?

Efficient accumulation for ZK-EVM. Can we build an accumulation/folding
scheme for a language that combines the benefits of the most advanced proof
systems today? Can we support multiple circuits, high-degree, and lookup
gates?

We answer both questions positively. Firstly we show a general compiler that
takes any (2k − 1)-move special-sound interactive argument for an NP-complete
relation RNP with an algebraic degree d verifier and construct an efficient IVC-
scheme from it. This is done in 4 simple steps.

1. We compress the prover message by committing to them in a homomorphic
commitment scheme.

2. Then we apply the Fiat-Shamir transform to yield a secure NARK. [1,31]
3. We build a simple and efficient accumulation scheme that samples a random

challenge α and takes a linear combination between the current accumulator
and the new NARK.

4. We apply the compiler by [8] to yield a secure IVC scheme.

The recursive circuit of this transformation is dominated by only d + k − 1
scalar multiplications in the additive group of the commitment scheme2 for a
protocol with k prover messages and a degree d verifier. For R1CS, where k =
1 and d = 2, this yields the same protocol and efficiency as Nova [22]. We
can further reduce the size of the recursive circuit to only k + 2 group scalar
multiplication, by compressing all verification equations using a random linear
combination.

Efficient Simple Protocols for Rmplkup. Equipped with this compiler, we design
Protostar, a simple and efficient IVC scheme for a highly expressive language
Rmplkup that supports multiple non-uniform circuits and enables high degree and
lookup gates. The schemes can be instantiated from any linearly homomorphic
vector commitment, e.g., the discrete logarithm-based Pedersen commitment
[26], and do not require a trusted setup or the computation of large FFTs. The
protocol has several advantages over prior schemes:

Non-uniform IVC without overhead. Each iteration has a program counter
pc that selects one out of I circuits. Part of the circuit constrains pc; e.g.,

2 When instantiated with elliptic curve Pedersen commitments, this translates to d +
k − 1 elliptic curve multiplications. This is usually the largest component of the
recursive statement.
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pc could depend on the iteration or indicate which instruction within a VM
is executed. The IVC-prover, including the recursive statement, only requires
one exponentiation per non-zero bit in the witness. The prover’s computation
is independent of I.

Flexible high degree gates. Our protocol supports Plonk-like constraint sys-
tems with degree d gates instead of just addition and multiplication. The
recursive statement consists of 3 group scalar multiplications and d + O(1)
hash and field operations. Unlike in traditional Plonk, there is no additional
cost for additional gate types (of degree less than d) and additional selectors.
This enables a high level of non-uniformity, even within a circuit.

Lookups, linear and independent of table size. Protostar supports
lookup gates that ensure a value is in some precomputed table T . In each
computation step, the prover commits to 2 vectors of length �lk, where �lk is
the number of lookups. The prover, in each step, is independent of the table
size (assuming free indexing in T ). We also support tables that store tuples of
size v using 1 additional challenge computations within the recursive circuit.

Table 1. The comparison between IVCs.

Protostar HyperNova SuperNova

Language Degree d Plonk/CCS Degree d CCS R1CS (degree 2)

Non-uniform yes no yes

P native
|w|G

O(|w|d log2 d)F

|w|G
O(|w|d log2 d)F

|w|G

extra P native

w/ lookup
O(|�lk|)G O(T )F N/A

P recursive

3G

(d + O(1))H + Hin

(d + O(1))F

1G

d log nH + Hin

O(d log n)F

2G

Hin + O(1)H + 1HG

extra P recursive

w/ lookup
1H

O(log T )H

O(�lk log T )F
N/A

Our protocols are built of multiple small building blocks. In the protocol for
high-degree gates, the prover simply sends the witness, and the degree d veri-
fier checks the circuit with degree d gates. For lookup, we leverage an insight
by Haböck [17] on logarithmic derivates. This yields a protocol where a prover
performing �lk in a table of size T only needs to commit to two vectors of length
�lk, independent of T . This is the most efficient lookup protocol today. While
the verification is linear time, it is low degree (2) and thus compatible with our
generic compiler. Combining all these yields Protostar, a new IVC-scheme for
Rmplkup. We compare Protostar, with SuperNova [21] and HyperNova [20],
in Table 1 (for more detail see Corollary 1): P native is the running time of
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the accumulation prover and P recursive refers to the cost of implementing the
accumulation verifier as a circuit. In the table, |w| is the number of non-zero
entries of the witness for circuit i, and �lk is the number of lookups in a table
of size T . G is the cost of a group scalar multiplication. F is the cost of a field
multiplication. dH denotes the cost of hashing d λ-bit numbers. We assume that
the cost scales linearly with the size of the input and output. In Protostar
d field elements are hashed once and in HyperNova d field elements are hashed
log(n) times. HG is the cost of a hash-to-group function. Hin is the cost of hashing
the public input and the accumulator instance. Note that the O(1)H in Super-
Nova’s recursive circuit involves constant number of hashes to the input of two
accumulator instances and one circuit verification key, by using multiset-based
offline memory checking in a circuit [28].

Concurrent Work. In a paper concurrent with this work, Kothapalli and
Setty [20] introduce an IVC for high degree relations. They use a generaliza-
tion of R1CS called customizable constraint systems (CCS) [29] that covers the
Plonkish relations. It also enables gates with a high additive fan-in. Protostar
also has no restriction to the fan-in an individual gate has, but we subsequently
showed that our compiler can also be directly applied to CCS (See full ver-
sion [7]). HyperNova is based on so-called multi-folding schemes. They also pro-
vide a lookup argument suitable for recursive arguments. However, they do not
explicitly explain how to integrate lookup to Plonk/CCS in their IVC scheme or
provide any explicit constructions for non-uniform computations. Their scheme
is built using sumchecks [23] and the resulting IVC recursive circuit is dominated
by 1 group scalar multiplication, d log n + �in hash operations and O(d log n+�in)
field multiplications where d is the custom gate degree, n is the number of gates
and �in is the public input length. In comparison, our IVC recursive circuit, even
with lookup and non-uniformity support, is only dominated by 3 group scalar
multiplications and O(�in + d) field/hash operations, entirely independent of n.
The 2 additional group operations compared to HyperNova are likely offset by
the additional lookup support [32] and the significantly fewer hashes and non-
native field operations (d vs. d log(n)). A detailed comparison is given in Table 1.

For a lookup relation with table size T and �lk lookup gates, their accu-
mulation/folding scheme leads to an accumulation prover whose work is domi-
nated by O(T ) field operations and an accumulation verifier whose work is dom-
inated by O(�lk log T ) field operations and O(log T ) hashes. This is undesirable
when the table size T � �lk. In comparison, our scheme has prover complexity
O(�lk) and the verifier is only dominated by 3 group scalar multiplications, 2
hashes and 2 field multiplications. Moreover, the lookup support adds almost
no overhead to the IVC scheme for high-degree Plonk relations. In particular,
it adds no group scalar multiplications. Lastly, their lookup scheme does not
support vector-valued lookups, which is essential for applications like ZK-EVM
and encoding bit-wise operations in circuits.
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1.1 Technical Overview

Given an NP-complete relation R, we introduce a generic framework for con-
structing efficient incremental verifiable computation (IVC) schemes with predi-
cates expressed in R. For R being the non-uniform Plonkup circuit satisfiability
relation, we obtain an efficient (non-uniform) IVC scheme for proving correct
program executions on stateful machines (e.g., EVM). The framework starts by
designing a simple special-sound protocol Πsps for relation R, which is easy to
analyze. Next, we use a generic compiler to transform Πsps into a Non-interactive
Argument of Knowledge Scheme (NARK) whose verification predicate is easy
to accumulate/fold. Finally, we build an efficient accumulation/folding scheme
for the NARK verifier, and apply the generic compiler from [8] to obtain the
IVC/PCD scheme for relation R. We describe the workflow in Fig. 1.

Fig. 1. The workflow for building an IVC from a special sound protocol. We start
from a special-sound protocol Πsps for an NP-complete relation RNP, and transform
it to CV[Πsps] with a compressed verifier check. CV[Πsps] is converted to a NARK
FS[cm[CV[Πsps]]] via commit-and-open and the Fiat-Shamir transform. We then build
a generic accumulation scheme for the NARK and apply Theorem 1 from [8] to obtain
the IVC scheme. This last connection is dotted as it requires heuristically replacing
random oracles with cryptographic hash functions.

The paper begins by describing the compiler from special-sound protocols to
NARKs in Sect. 3, and presents an efficient accumulation scheme for the compiled
NARK verifier in Sect. 3.2. Next, we describe simple and efficient special-sound
protocols for Plonkup circuit-satisfiability relations and extend it to support
non-uniform computation in Sect. 5. Similarly, we extend the CCS relation [29]
to support non-uniform computation and lookup (see full version [7]). We give
an overview of our approach below.

Efficient IVCs from Special-Sound Protocols. Let Πsps be any multi-round
special-sound protocol for some relation R, in which the verifier is algebraic,
that is, the verifier algorithm only checks algebraic equations over the input
and the prover messages. E.g., the following naive protocol for the Hadamard
product relation over vectors a,b, c ∈ F

n is special-sound and has a degree-2
algebraic verifier: The prover simply sends the vectors a, b, c to the verifier,



Protostar: Generic Efficient Accumulation/Folding 83

and the verifier checks that ai · bi = ci for all i ∈ [n]. However, as shown in
the example, the prover message can be large in Πsps and the folding scheme
can be expensive if we directly accumulate the verifier predicate. Inspired by
the splitting accumulation scheme [8], to enable efficient accumulation/folding,
we split each prover message into a short instance and a large opening, where
the short instance is built from the homomorphic commitment to the prover
message. Next, we use the Fiat-Shamir transform to compile the protocol into a
NARK where the verifier challenges are generated from a random oracle.

Now we can view the NARK transcript as an accumulator (or a relaxed NP
instance-witness pair in the language of folding schemes), where the accumula-
tor instance consists of the prover message commitments and the verifier chal-
lenges; while the accumulator witness consists of the prover messages (i.e., the
opening to the commitments). Note we also need to introduce an error vec-
tor/commitment into the accumulator witness/instance to absorb the “noise”
that arises after each accumulation/folding step.

In the accumulation scheme, given two accumulators (or NARK proofs), the
prover folds the witnesses and the instances of both accumulators via a random
linear combination and generates a list of d “error-correcting terms” as accu-
mulation proof (d is the degree of the NARK verifier); the verifier only needs
to check that the folded accumulator instance is consistent with the accumu-
lation proof and the original instances being folded, both of which are small.
After finishing all the accumulation steps, a decider applies a final check to the
accumulator, scrutinizing that (i) the accumulator witness is consistent with the
commitments in the accumulator instance, and (ii) the “relaxed” NARK veri-
fier check still passes. Here by “relaxed” we mean that the algebraic equation
also involves the error vector in the accumulator. If the decider accepts, this
implies that all accumulated NARKs were valid and thus that all accumulated
statements are in R (and the prover knows witnesses for these statements).

Finally, given the accumulation scheme, if the relation R is NP-complete, we
can apply the compiler in [8] to obtain an efficient IVC scheme with predicates
expressed in R.

In Theorem 3, we show that for any (2k − 1)-move3 special-sound protocols
with degree-d verifiers, the resulting IVC recursive circuit only involves k +
d + O(1) hashes, k + 1 non-native field operations and k + d − 1 commitment
group scalar multiplications. We also introduce a generic approach for further
reducing the number of group operations to k + 2 in Sect. 3.3. This is favorable
for d ≥ 3. The idea is to compress all � degree d verification checks into a
single verification check using a random linear combination with powers of a
challenge β. This means that error-correcting terms are field elements and, thus,
can be sent directly without committing to them. The prover also sends a single
commitment to powers of β and powers of β

√
�. The verification equation uses one

power of β and one power of β
√

�, which increases the degree of the verification
check to d + 2. The verifier also checks the correctness of the powers of β using
2
√

� degree 2 checks.

3 k prover messages, k − 1 challenges.
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Special-Sound Protocols for (Non-uniform) Plonkup Relations. Given the generic
compiler above, our ultimate goal of constructing a (non-uniform) IVC scheme
for zkEVM becomes much easier. It is now sufficient to design a multi-round
special-sound protocol for the (non-uniform) Plonkup relation. We describe the
components of the special-sound protocol in Fig. 2. Note we also extend CCS
relation [29] to support lookup and non-uniform computation and build a special-
sound protocol for it (See Fig. 2). Recall that a Plonkup circuit-satisfiability rela-
tion consists of three modular relations, namely, (i) a high-degree gate relation
checking that each custom gate is satisfied; (ii) a permutation (wiring-identity)
relation checking that different gate values are consistent if the same wire con-
nects them, and (iii) a lookup relation checking that a subset of gate values
belongs to a preprocessed table. The special-sound protocols for the permuta-
tion and high-degree gate relations are trivial, where the prover directly sends
the witness to the verifier, and the verifier checks that the permutation/high-
degree gate relation holds. The degree of the permutation check is only 1, and
the degree of the gate-check is the highest degree in the custom gate formula.

Fig. 2. The special-sound protocols for Protostar and Protostarccs. The special-
sound protocol Πmplkup for the multi-circuit Plonkup relation Rmplkup consists of the
sub-protocols for permutation, high-degree custom gate, lookup, and circuit selection
relations. The special-sound protocol Πmccs+ for the extended CCS relation Rmccs+

consists of the sub-protocols for lookup, circuit selection, as well as the CCS rela-
tion [29]. From Πmplkup or Πmccs+, we can apply the workflow described in Fig. 1 to
obtain the IVC schemes Protostar or Protostarccs.

The special-sound protocol for the lookup relation RLK is more interesting
as the statement of the lookup relation is not algebraic. Inspired by the log-
derivative lookup scheme [17], in Sect. 4.3, we design a simple 3-move special-
sound protocol ΠLK for RLK, in which the verifier degree is only 2. A great
feature of ΠLK is that the number of non-zero elements in the prover messages
is only proportional to the number of lookups, but independent of the table size.
Thus the IVC prover complexity for computing the prover message commitments
is independent of the table size, which is advantageous when the table size is
much larger than the witness size. However, the prover work for computing the
error terms is not independent of the table size because the accumulator is not
sparse. Fortunately, we observe that the prover can efficiently update the error
term commitments without recomputing the error term vectors from scratch,
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thus preserving the efficiency of the accumulation prover. Moreover, we extend
ΠLK in Sect. 4.3 to further support vector-valued lookup, where each table entry
is a vector of elements. This feature is useful in applications like zkEVM and for
simulating bit operations in circuits.

Given the special-sound protocols for permutation/high-degree gate/lookup
relations, the special-sound protocol Πplonkup for Plonkup is just a parallel com-
position of the three protocols. Furthermore, in Sect. 5, we apply a simple trick
to support non-uniform IVC. More precisely, let {Ci}I

i=1 be I different branch
circuits (e.g., the set of supported instructions in EVM), let pi := (pc, pi′) be
the public input where pc ∈ [I] is a program counter indicating which instruc-
tion/branch circuit is going to be executed in the next IVC step. Our goal is
to prove that (pi,w) is in the relation Rmplkup in the sense that Cpc(pi,w) = 0
for witness w. The relation statement can also add additional constraints on pc
depending on the applications. The special-sound protocol for Rmplkup is almost
identical to Πplonkup for the Plonkup relation, except that the prover further
sends a bool vector b ∈ F

I , and the verifier uses 2I degree 2 equations to check
that bpc = 1 and bi = 0∀i �= pc. Additionally, each algebraic equation G checked
in Πplonkup is replaced with

∑I
i=1 Gi · bi where Gi (1 ≤ i ≤ I) is the correspond-

ing gate in the i-th branch circuit. The resulting special-sound protocol has 3
moves, and the verifier degree is d+1, where d is the highest degree of the custom
gates. This means that the IVC scheme for the non-uniform Plonkup relation
adds negligible overhead to that for the Plonkup relation.

2 Preliminaries

The definitions of special-sound protocols and non-interactive arguments follow
from [1]. We defer the definition of Fiat-Shamir transform and commitment
schemes to the full version [7].

Lemma 1 (Fiat-Shamir transform of Special-sound Protocols [1]). The
Fiat-Shamir transform of a (α1, . . . , αμ)-out-of-N special-sound interactive proof
Π is knowledge sound with knowledge error

κfs(Q) = (Q + 1)κ

where κ = 1 −
∏

(1 − αi

N ) is the knowledge error of the interactive proof Π.

2.1 Incremental Verifiable Computation (IVC)

We adapt and simplify the definition from [8,22].

Definition 1 (IVC). An incremental verifiable computation (IVC) scheme for
function predicates expressed in a circuit-satisfiability relation RNP is a tuple of
algorithms IVC = (PIVC,VIVC) with the following syntax and properties:

– PIVC(m, z0, zm, zm−1,wloc, πm−1]) → πm. The IVC prover PIVC takes as input
a program output zm at step m, local data wloc, initial input z0, previous
program output zm−1 and proof πm−1 and outputs a new IVC proof πm.
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– VIVC(m, z0, zm, πm) → b. The IVC verifier VIVC takes the initial input z0, the
output zm at step m, and an IVC proof πm, ‘accepts’ by outputting b = 0 and
‘rejects’ otherwise.

The scheme IVC has perfect adversarial completeness if for any func-
tion predicate φ expressible in RNP, and any, possibly adversarially created,
(m, z0, zm, , zm−1,wloc, πm−1) such that

φ(z0, zm, zm−1,wloc) ∧ (VIVC(m − 1, z0, zm−1, πm−1) = 0)

it holds that VIVC(m, z0, zm, πm) accepts for proof πm ← PIVC(m, z0, zm−1,
zm,wloc, πm−1).

The scheme IVC has knowledge soundness if for every expected polynomial-
time adversary P∗, there exists an expected polynomial-time extractor ExtP∗ such
that

Pr

⎡

⎣
VIVC(m, z0, z, πm) = 0∧

([∃i ∈ [m] ,¬φ(z0, zi, zi−1,wi)]
∨z �= zm)

∣
∣
∣
∣
[φ, (m, z0, z, πm)] ← P∗

[zi,wi]
m
i=1 ← ExtP∗

⎤

⎦ ≤ negl(λ) .

Here m is a constant.

Efficiency. The runtime of PIVC and VIVC as well as the size of πIVC only depend
on |φ| and are independent on the number of iterations.

Recently, [21] introduced the notion of non-uniform IVC, where the predicate
φ is selected from a fixed set of predicates at every step of the computation.
The selection depends on the current state of the computation. Non-uniform
IVC fits into our model by simply setting the predicate to be the union of all
predicates, including the selection circuit. The one key difference is an additional
efficiency requirement that the IVC prover in step i only depends on the size
of the predicate that is being executed in step i. Our Protostar construction
achieves this requirement.

2.2 Simple Accumulation

We take definitions and proofs from [8].

Definition 2 (Accumulation Scheme). An accumulation scheme for a
NARK (PNARK,VNARK) is a triple of algorithms acc = (Pacc,Vacc,D), all of which
have access to the same random oracle ρacc as well as ρNARK, the oracle for the
NARK. The algorithms have the following syntax and properties:

– Pacc(pi, π = (π.x, π.w), acc = (acc.x, acc.w)) → {acc′ = (acc′.x, acc′.w), pf}.
The accumulation prover Pacc takes as input a statement pi, NARK proof π,
and an accumulator acc and outputs a new accumulator acc′ and correction
terms pf.
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– Vacc(pi, π.x, acc.x, acc′.x, pf) → v. The accumulation verifier takes as input
the statement pi, the instances of the NARK proof, the old and new accumu-
lator, the correction terms, and ‘accepts’ by outputting 0 and ‘rejects’ other-
wise.

– D(acc) → v. The decider on input acc ‘accepts’ by outputting 0 and ‘rejects’
otherwise.

An accumulation scheme has knowledge-soundness with knowledge error κ if
the RO-NARK (P′,V′) has knowledge error κ for the relation

Racc((pi, π.x, acc.x); (π.w, acc.w)) : (VNARK(pi, π) = 0 ∧ D(acc) = 0) ,

where P′ outputs acc′, pf and V′ on input ((pi, π.x, acc.x), (acc′, pf)) accepts if
D(acc′) and Vacc(pi, π.x, acc.x, acc′.x, pf) = 0.

The scheme has perfect completeness if the RO-NARK (P′,V′) has perfect
completeness for Racc.

Theorem 1 (IVC from accumulation [8]). Given a standard-model NARK
for circuit-satisfiability and a standard-model accumulation scheme (Definition
2) for that NARK, both with negligible knowledge error, there exists an efficient
transformation that outputs an IVC scheme (see Sect. 3.2 of [8]) for constant-
depth compliance predicates, assuming that the circuit complexity of the accu-
mulation verifier Vacc is sub-linear in its input.

Random Oracle. Note that both the NARK and accumulation scheme we con-
struct are in the random oracle model. However, Theorem 1 requires a NARK
and an accumulation scheme in the standard model. It remains an open problem
to construct such schemes. However, we can heuristically instantiate the random
oracle with a cryptographic hash function and assume that the resulting schemes
still have knowledge soundness.

Definition 3 (Fiat-Shamir Heuristic). The Fiat-Shamir Heuristic, relative
to a secure cryptographic hash function H, states that a random oracle NARK
with negligible knowledge error yields a NARK that has negligible knowledge error
in the standard (CRS) model if the random oracle is replaced with H.

Complexity. The IVC transformation from [8] recursively proves that the accu-
mulation was performed correctly. To do that, it implements Vacc as a circuit
and proves that the previous accumulation step was done correctly. Note that
this recursive circuit is independent of the size of π.w, acc.w and the runtime
of D. The IVC prover is linear in the size of the recursive circuit plus the size
of the IVC computation step expressed as a circuit. The final IVC verifier and
the IVC proof size are linear in these components. This can be reduced using an
additional SNARK as in [22].
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PCD. IVC can be generalized to arbitrary DAGs instead of just path graphs in a
primitive called proof-carrying data [3]. Accumulation schemes can be compiled
into full PCD if they support accumulating an arbitrary number of accumulators
and proofs [8,9]. For simplicity, we only build accumulation for one proof and
one accumulator, as well as for two accumulators. This enables PCD for DAGs
of degree two. By transforming higher degree graphs into degree two graphs (by
converting each degree d node into a log2(d) depth tree), we can achieve PCD
for these graphs.

Outsourcing the Decider. In the accumulation to IVC transformation, the IVC
proof is linear in the accumulator, and the IVC verifier runs the decider. The
accumulation schemes we construct are linear in the witness of a single com-
putation step. However, we can outsource the decider by providing a SNARK
that, given acc.x, proves knowledge of acc.w, such that D(acc) = 0. Nova [22]
constructs a custom, concretely efficient SNARK for their accumulation/folding
scheme.

3 Protocols

3.1 Special-Sound Protocols and Their Basic Transformations

In this section, we describe a class of special-sound protocols whose verifier is
algebraic. The protocol Πsps has 3 essential parameters k, d, � ∈ N, meaning that
Πsps is a (2k − 1)-move protocol with verifier degree d and output length � (i.e.
the verifier checks � degree d algebraic equations). In each round i (1 ≤ i ≤ k),
the prover Psps(pi,w, [mj , rj ]i−1

j=1) generates the next message mi on input the
public input pi, the witness w, and the current transcript [mj , rj ]i−1

j=1, and sends
mi to the verifier; the verifier replies with a random challenge ri ∈ F. After the
final message mk, the verifier computes the algebraic map Vsps and checks that
the output is a zero vector of length �. More precisely, deg(Vsps) = d, s.t.

Vsps(pi, [mi]ki=1, [ri]k−1
i=1 ) :=

d∑

j=0

f
Vsps

j (pi, [mi]ki=1, [ri]k−1
i=1 ) ,

where f
Vsps

j is a homogeneous degree-j algebraic map that outputs a vector of �
field elements.

Commit and Open. For a commitment scheme cm = (Setup,Commit), con-
sider the following relation RR

cm = (x;w,m ∈ M,m′ ∈ M) : {(x,w) ∈
R ∨ (Commit(m) = Commit(m′) ∧ m �= m′)}. The relation’s witness is either a
valid witness for R or a break of the commitment scheme cm. We now design
a special-sound protocol Πcm = (Pcm,Vcm) for RR

cm given Πsps = (Psps,Vsps), a
special-sound protocol for R. Pcm runs Psps to generate the ith message and then
commits to the message. Along with the final message, Pcm sends the opening
to the commitment. The verifier Vcm checks the correctness of the commitments
and runs Vsps on the commitment openings.
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Lemma 2 (Πcm is (a1, . . . , aμ)-special-sound). Let Πsps be an (a1, . . . , aμ)-
out-of-N special-sound protocol for relation R, where the prover messages are all
in a set M. Let (Setup,Commit) be a binding commitment scheme for messages
in M. For ck ← Setupcm(1λ) let Rcm = (pi;w,m ∈ M,m′ ∈ M) : (pi;w) ∈
R ∨ (Commit(ck,m) = Commit(ck,m′) ∧ m �= m′). Then Πcm = cm[Πsps] is an
(a1, . . . , aμ)-out-of-N special-sound protocol for RR

cm.

We defer the proof to the full version [7].

Fiat-Shamir Transform. Let ρNARK be a random oracle. Let Πcm be the commit-
and-open protocol for the special-sound protocol Πsps = (Psps,Vsps). The Fiat-
Shamir Transform FS[Πcm] of the protocol Πcm is the following. The prover
generates the round challenges by computing ρNARK on input the challenge and
the prover message commitment in the previous round. The prover then sends
the proof as the list of prover messages and the corresponding commitments.
The verifier checks the proof by recomputing the challenges and runs the verifier
for Πcm. By Lemma 1, FS[Πcm] is knowledge sound if Πsps is special-sound.

3.2 Accumulation Scheme for VNARK

Let ρacc and ρNARK be two random oracles, and let VNARK be the verifier
of FS[Πcm] in Sect. 3.1, whose underlying special-sound protocol is Πsps =
(Psps,Vsps) for a relation R. We describe the accumulation scheme for VNARK.

The accumulated predicate. The predicate to be accumulated is the “relaxed”
verifier check of the NARK scheme FS[Πcm] for relation R. Namely, given public
input pi ∈ M�in , random challenges [ri]k−1

i=1 ∈ F
k−1, a NARK proof

π.x = [Ci]ki=1, π.w = [mi]ki=1

where [Ci]ki=1 ∈ Ck are commitments and [mi]ki=1 are prover messages in the
special-sound protocol Πsps, and a slack variable μ, the predicate checks that
(i) ri = ρNARK(ri−1, Ci) for all i ∈ [k − 1] (where r0 := ρNARK(pi)), (ii)
Commit(ck,mi) = Ci for all i ∈ [k], and (iii)

Vsps(pi, π.x, π.w, [ri]k−1
i=1 , μ) :=

d∑

j=0

μd−j · f
Vsps

j (pi, π.w, [ri]k−1
i=1 ) = e

where e = 0� and μ = 1 for the NARK verifier VNARK. Here f
Vsps

j is a degree-j
homogeneous algebraic map that outputs � field elements. Degree-j homogeneity
says that each monomial term of f

Vsps

j has degree exactly j.

Remark 1. Without loss of generality, we assume that the public input pi is of
constant size, as otherwise, we can set it as the hash of the original public input.
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Accumulator. The accumulator has the following format:

– Accumulator instance acc.x := {pi, [Ci]ki=1, [ri]k−1
i=1 , E, μ}, where pi ∈ M�in is

the accumulated public input, [Ci]ki=1 ∈ Ck are the accumulated commit-
ments, [ri]k−1

i=1 ∈ F
k−1 are the accumulated challenges, E ∈ C is the accumu-

lated commitment to the error terms, and μ ∈ F is a slack variable.
– Accumulator witness acc.w := {[mi]ki=1}, where [mi]ki=1 are the accumulated

prover messages.

Accumulation Prover. On input commitment key ck (which can be hardwired
in the prover’s algorithm), accumulator acc, an instance-proof pair (pi, π) where

acc := (acc.x = {pi′, [C ′
i]

k
i=1, [r

′
i]

k−1
i=1 , E, μ}, acc.w = {[m′

i]
k
i=1}) ,

π := (π.x = [Ci]ki=1, π.w = [mi]ki=1),

the accumulation prover Pacc works as in Fig. 3.

Accumulation Verifier. On input public input pi, NARK proof instance π.x,
accumulator instance acc.x, accumulation proof pf, and the updated accumulator
instance acc′.x := {pi′′, [C ′′

i ]ki=1, [r
′′
i ]ki=1, E

′, μ′}, the accumulation verifier Vacc

works as in Fig. 3.

Decider. On input the commitment key ck (which can be hardwired) and an
accumulator

acc = (acc.x = {pi, [Ci]ki=1, [ri]k−1
i=1 , E, μ}, acc.w = {[mi]ki=1}),

the decider does the checks described in Fig. 4.

Theorem 2. Let (PNARK,VNARK) be the RO-NARK defined in Sect. 3.1. Let
cm = (Setup,Commit) be a binding, homomorphic commitment scheme. Let ρacc
be another random oracle. The accumulation scheme (Pacc,Vacc,Dacc) for VNARK

satisfies perfect completeness and has knowledge error (Q + 1)d+1
|F| + negl(λ) as

defined in Definition 2, against any randomized polynomial-time Q-query adver-
sary.

Proof. Completeness: Consider any tuple ((pi, π), acc) ∈ Racc, that is,
VNARK(pi, π) and D(acc) both accept. Let (acc′, pf) denote the output of the accu-
mulation prover Pacc(ck, acc, (pi, π)). We argue that both the decider D(acc′) and
the accumulation verifier Vacc(pi, π.x, acc.x, pf, acc′.x) will accept, which finishes
the proof of perfect completeness by Definition 2.

Vacc accepts as Pacc and Vacc go through the same process of computing chal-
lenges [ri]k−1

i=1 and α, thus the linear combinations of acc.x and (pi, π.x; pf, [ri]k−1
i=1 )

via α will be consistent.
We prove that D(acc′) accepts by scrutinizing the following decider checks.
The check acc′.Ci

?= Commit(ck, acc′.mi) succeeds for all i ∈ [k]. This is
because

acc′.{Ci,mi} = acc.{Ci,mi} + α · π.{Ci,mi}
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Fig. 3. Accumulation Prover/Verifier for low-degree Fiat-Shamired NARKs

Fig. 4. Accumulation Decider for low-degree Fiat-Shamired NARKs
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for all i ∈ [k], where π.Ci = Commit(ck, π.mi) because VNARK(pi, π) accepts, and
acc.Ci = Commit(ck, acc.mi) because D(acc) accepts. Thus the check succeeds
by the homomorphism of the commitment scheme.

The decider computes e′ ←
∑d

j=0(acc
′.μ)d−jf

Vsps

j (acc′.{pi, [mi]ki=1, [ri]k−1
i=1 })

such that for e =
∑d

j=0 acc.μ
(d−j) · f

Vsps

j (acc.{pi, [mi]ki=1, [ri]k−1
i=1 }), it holds that

e′ = e +

d−1∑

j=1

αj · pf.ej

=
d∑

j=0

(α + acc.μ)d−j · f
Vsps

j (α · {pi, π.[mi]
k
i=1, [ri]

k−1
i=1 } + acc.{pi, [mi]

k
i=1, [ri]

k−1
i=1 }) .

By the definition of pf.ej and the homomorphism of the commitment scheme,
and because D(acc) accepts and checks E = Commit(ck, e), we have that E′ =
Commit(ck, e′).

Knowledge-Soundness: We show that the scheme has knowledge-soundness
by showing that there exists an underlying (d + 1)-special-sound protocol
and then applying the Fiat-Shamir transform to show that the accumula-
tion scheme is knowledge sound. Consider the public-coin interactive protocol
ΠI = (PI(pi, π, acc),VI(pi, π.x, acc.x)) where PI sends pf = [Ej ]d−1

j=1 ∈ G
d−1 as

computed by Pacc to VI . The verifier sends a random challenge α ∈ F, and the
prover PI responds with acc′ as computed by Pacc. VI accepts if Dacc(acc′) = 0
and Vacc(pi, π.x, acc.x, pf, acc′.x) = 0 using the random challenge α, instead of a
Fiat-shamir challenge.

Claim 1: ΠI is (d + 1)-special-sound Consider the relation Racc where Racc is
defined in Definition 2. Consider d + 1 accepting transcripts for ΠI :

{Ti := (pi, π.x, acc.x; acc′
i, pfi)}d+1

i=1 .

We construct an extractor Extacc that extracts a witness for Racc(pi.π.x, acc.x)
given T .

For all i ∈ [d + 1],

(acc′
i) = (μ′

i, pi
′
i, [C

′
i,j ]

k
j=1, [ri,j ]k−1

j=1 , E′
i, [m

′
i,j ]

k
j=1)

and pfi = pf = [Ej ]d−1
j=1 .

Given that the transcripts are accepting, i.e. both Vacc and Dacc accept, we
have that Commit(ck, e′

i) = E′
i = acc.E +

∑d−1
j=1 αj

i Ej for all i ∈ [d + 1], whereas

e′
i :=

d∑

j=0

μ′
i
d−j

fR
j (π′

i, [m
′
i,j ]

k
j=1, [ri,j ]k−1

j=1 ) .

Using a Vandermonde matrix of the challenges α1, . . . , αd we can compute
e, [ej ]d−1

j=1 such that Ej = Commit(ck, ej) and acc.E = Commit(ck, e) from the
equations above. Therefore we have that e′

i = e +
∑d−1

j=1 αj
iej for all i ∈ [d + 1].
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Additionally using two challenges (α1, α2), Extacc can compute π.w =
[mj ]kj=1 = [ acc

′.m1,j−acc′.m2,j
α1−α2

]kj=1. It holds that acc.mj = acc′.m1,j−α1·π.mj∀j ∈
[k], such that π.Cj = Commit(ck, π.mj) and acc.Cj = Commit(ck, acc.mj). If for
any other challenge and any j, acc′.mj �= απ.mj +acc.mj , then this can be used
to compute a break of the commitment scheme cm. This happens with negligible
probability by assumption.

Otherwise, we have that
∑

j=0 μd−j
i fR

j (πj , [mi,j ]ki=1, [ri,j ]k−1
i=1 )−ei = 0 for all

i ∈ [d + 1]. Together this implies that the degree d polynomial

p(X) =
d∑

j=0

(X + acc.μ)d−j · fVsps

j (X · pi+ acc.pi, [X ·mi + acc.mi]
k
i=1, [X · ri + acc.ri]

k−1
i=1 )

− e−
d−1∑

j=1

ejXj , (1)

is zero on d+1 points (α1, . . . , αd+1), i.e. is zero everywhere. The constant term
of this polynomial is

d∑

j=0

acc.μd−j · f
Vsps

j (acc.pi, [acc.mi]ki=1, [acc.ri]k−1
i=1 ) − e .

It being 0 implies that D(acc) = 0. Additionally, the degree d term of the
polynomial is

d∑

j=0

f
Vsps

j (pi, [π.mi]ki=1, [π.ri]k−1
i=1 ) .

Together with Vacc checking that the challenges ri are computed correctly this
implies that VNARK(pi, π) = 0. Ext thus outputs a valid witness (π.w, acc.w) ∈
Racc(pi, π.x, acc.x) and thus ΠI is (d + 1)-special-sound. Using Lemma 1, we
have that ΠAS = FS[ΠI ] is a NARK for Racc with knowledge soundness (Q +
1) · d+1

|F| + negl(λ). This implies that acc is an accumulation scheme with ((Q +
1) · d+1

|F| + negl(λ))-knowledge soundness. ��

3.3 Compressing Verification Checks for High-Degree Verifiers

Observe that the accumulation prover needs to perform Ω(d�) group operations
to commit to the d − 1 error vectors ej ∈ F

� (1 ≤ j < d); and the accumulation
verifier needs to check the combination of d error vector commitments. This can
be a bottleneck when the verifier degree d is high. In this circumstance, we can
optimize the accumulation complexity by transforming the underlying special-
sound protocol Πsps into a new special-sound protocol CV[Πsps] for the same
relation R. This optimization compresses the � degree-d equations checked by the
verifier into a single degree-(d + 2) equation using a random linear combination,
with the tradeoff of additionally checking 2

√
� degree-2 equations. We describe

the generic transformation below.
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Compressing Verification Checks. W.l.o.g. assume � is a perfect square, then we
can transform Πsps into a special-sound protocol CV[Πsps] where the Vsps reduces
from � degree-d checks to 1 degree-(d + 2) check and additionally 2

√
� degree-2

checks. Instead of checking the output of Vsps to be � zeroes, we take a random
linear combination of the � verification equations using powers of a challenge β.
For example, if the map is Vsps(x1, x2) := (Vsps,1(x1, x2),Vsps,2(x1, x2)) = (x1 +
x2, x1x2) we can set the new algebraic map as V′

sps(x1, x2, β) := Vsps,1(x1, x2)+β ·
Vsps,2(x1, x2) = (x1+x2)+βx1x2 for a random β. Doing this naively reduces the
output length to 1 but also requires the verifier to compute the appropriate pow-
ers of β. This would increase the degree by �, an undesirable tradeoff. To mitigate
this, we can have the prover precompute powers of β, i.e. β, β2, . . . , β� and send
them to the verifier. The verifier then only needs to check consistency between
the powers of β, which can be done using a degree 2 check, e.g. βi+1 = βi · β
and the degree d verification equation increases in degree by 1. This mitigates
the degree increase but requires the prover to send another message of length �.
To achieve a more optimal tradeoff, we write each i = j +k ·

√
� for j, k ∈ [1,

√
�].

The prover then sends
√

� powers of β and
√

� − 1 powers of β
√

�. From these,
each power of β from 1 to � can be recomputed using just one multiplication.
This results in the prover sending an additional message of length 2

√
�, the orig-

inal � verification checks being transformed into a single degree d + 2 check and
additionally 2

√
� degree 2 checks for the consistency of the powers of β.

Fig. 5. Compressed verification of Πsps.
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We describe the transformed protocol in Fig. 5, where

V′
sps(pi, [mi]k+1

i=1 , ([ri]k−1
i=1 , β)) :=

√
�−1∑

i=0

√
�−1∑

j=0

βi · β′
j · Vsps,i+j

√
�(pi, [mi]ki=1, [ri]k−1

i=1 )

=
�−1∑

j=0

βj · Vsps,j(pi, [mi]ki=1, [ri]k−1
i=1 )

and Vsps,j(pi, [mi]ki=1, [ri]k−1
i=1 ) is the (j + 1)-th (0 ≤ j < �) equation checked by

Vsps. The transformed protocol is a (2k +1)-move special-sound protocol for the
same relation R. The transformed verifier now checks 1 degree-(d + 2) equation
and additionally 2

√
� degree-2 equations.

Lemma 3. Let Πsps be a (2k − 1)-move protocol for relation R with (a1, . . . ,
ak−1)-special-soundness, in which the verifier outputs � elements. The trans-
formed protocol CV[Πsps] of Πsps is (a1, . . . , , ak−1, �)-special-sound.

We defer the proof to the full version [7].

High-Low Degree Accumulation. After the transformation, the error vectors ej

(1 ≤ j ≤ d + 1) become single field elements, and we can use the trivial com-
mitment Ej := Commit(ck, ej) := ej without group operations. Additionally,
we can use a separate error vector e′ ∈ F

2
√

� to keep track of the error terms
for the 2

√
� degree-2 checks, and set E′ := Commit(ck, e′) ∈ G to be the cor-

responding error commitment. The accumulation prover only needs to perform
O(

√
�) additional group operations to commit mk+1 and e′, and compute the

coefficients of a degree-(d + 2) univariate polynomial, which is described as the
sum of O(�) polynomials. The accumulator instance needs to include one more
challenge β and two commitments (for mk+1 and e′). The accumulator verifier
needs to do only k + 2 (rather than k + d − 1) group scalar multiplications,
with the tradeoff of 1 more hash and O(d) more field operations. This high-low
degree accumulation is described in detail in the full version [7].

Theorem 3 (IVC for high-degree special-sound protocols). Let F be a
finite field, such that |F| ≥ 2λ and cm = (Setup,Commit) be a binding homomor-
phic commitment scheme for vectors in F. Let Πsps = (Psps,Vsps) be a special-
sound protocol for an NP-complete relation RNP with the following properties:

– It’s (2k − 1) move.
– It’s (a1, . . . , ak−1)-out-of-|F| special-sound. Such that the knowledge error κ =

1 −
∏k−1

i=1 (1 − ai

|F| ) = negl(λ)
– The inputs are in F

�in

– The verifier is degree d = poly(λ) with output in F
�

Then, under the Fiat-Shamir heuristic for a cryptographic hash function
H (Definition 3), there exist two IVC schemes IVC = (PIVC,VIVC) and
IVCCV = (PCV,IVC,VCV,IVC) with predicates expressed in RNP with the following
efficiencies:
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No CV CV

PIVC native

∑k
i=1 |m∗

i | + (d − 1)�G

Psps + L(Vsps, d)

∑k
i=1 |m∗

i | + O(
√

�)G

Psps + L′(Vsps, d + 2)

PIVC recursive

k + d − 1G

k + �inF

(k + d + O(1))H + 1Hin

k + 2G

k + �in + d + 1F

(k + d + O(1))H + 1Hin

VIVC:
� +

∑k
i=1 |mi|G
Vsps

O(
√

�) +
∑k

i=1 |mi|G
O(�) + Vsps

|πIVC| :

k + �inF

k + 1G
∑k

i=1 |mi|

k + �in + 1F

k + 2G
∑k

i=1 |mi| + O(
√

�)

The first row displays the native operations of the IVC prover (i.e., the com-
plexity of running the accumulation prover). The second row describes the size
of the recursive statement representing the accumulation verifier for which PIVC

creates a proof. The third row is the computation of VIVC, and the last row is
the size of the proof. In the table, |mi| denotes the prover message length; |m∗

i |
is the number of non-zero elements in mi; G for rows 1–3 is the total length
of the messages committed using Commit. F are field operations. H denotes the
total input length to a cryptographic hash, and Hin is the hash to the public input
and accumulator instance. Psps (and Vsps) is the cost of running the prover (and
the algebraic verifier) of the special-sound protocol, respectively. L(Vsps, d) is the
cost of computing the coefficients of the degree d polynomial

e(X) :=
d∑

j=0

(μ + X)d−j · f
Vsps

j (acc + X · π) , (2)

and L′(Vsps, d + 2) is the cost of computing the coefficients of the degree d + 2
polynomial

e(X) :=

√
�−1∑

a=0

√
�−1∑

b=0

(X ·π.βa + acc.βa)(X ·π.β′
b + acc.β′

b)
d∑

j=0

(μ+X)d−j · fVsps

j,a+b
√

�
(acc+X ·π) ,

(3)
where all inputs are linear functions in a formal variable X4, and f

Vsps

j,i is the ith

(0 ≤ i ≤ � − 1) component of f
Vsps

j ’s output. For the proof size, G and F are the
number of commitments and field elements, respectively.

4 For example if fd =
∏d

i=1(ai + bi · X) then a naive algorithm takes O(d2) time but
using FFTs it can be computed in time O(d log2 d) [11].
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Proof. The construction first defines the two NARKs

ΠNARK = (PNARK,VNARK) = FS[cm[Πsps]],

and
ΠNARK,CV = (PNARK,VNARK) = FS[cm[CV[Πsps]]].

Then we construct the accumulation scheme (Pacc,Vacc) = acc[ΠNARK] using the
accumulation scheme from Sect. 3.2 and (Pacc,HLVacc,HL) = accHL[ΠNARK,CV] using
the accumulation scheme described in Sect. 3.3. Then we apply the transforma-
tion from Theorem 1 to construct the IVC schemes IVC and IVCCV.

Security: By Lemmas 1, 2, we have that ΠNARK has (Q+1) ·
[
1−

∏k−1
i=1 (1− ai

|F| )
]

knowledge error for relation RRNP
cm for a polynomial-time Q-query RO-adversary.

Witnesses for RRNP
cm are either a witness for RNP or a break of the bind-

ing property of cm. Assuming that cm is a binding commitment scheme, the
probability that a polynomial time adversary and a polynomial time extrac-
tor can compute such a break is negl(λ). Thus ΠNARK has knowledge error
κ = (Q + 1) ·

[
1 −

∏k−1
i=1 (1 − ai

|F| )
]

+ negl(λ) for RNP. Analogously and using
Lemma 3, ΠNARK,CV has knowledge soundness with knowledge error κ′ =
(Q + 1) ·

[
1 − (1 − �

|F| )
∏k−1

i=1 (1 − ai

|F| )
]
+ negl(λ) for RNP. By assumption, κ and

κ′ are negligible in λ. Using Theorem 2 and the high-low degree accumulation
scheme described previously, we can construct accumulation schemes acc and
accCV for ΠNARK and ΠNARK,CV, respectively. The accumulation schemes have
negligible knowledge error as d = poly(λ). Under the Fiat-Shamir heuristic for
H we can turn the NARKs and the accumulation schemes into secure schemes
in the standard model.

By Theorem 1, this yields IVC and IVCCV, secure IVC schemes with predicates
expressed in RNP.

Efficiency: We first analyze the efficiency for IVC. The IVC-prover runs Psps to
compute all prover messages. It also commits to all the Psps messages using cm.
Finally, it needs to compute all error terms e1, . . . , ed−1 and commit to them.
The error terms are computed by symbolically evaluating the polynomial e(X) in
Eq. 3 with linear functions as inputs. The recursive circuit combines a new proof
π.x with an accumulator acc.x. The size of the accumulator instance is �in field
elements for the input, k − 1 field elements for the interactive-proof challenges,
1 field element for the accumulator challenge, and k commitments for the Psps

messages and d − 1 commitments for the error terms. The IVC verifier checks
the correctness of the commitments and runs Vsps.

For IVCCV, the prover needs to additionally commit to a message mk+1 with
length O(

√
�); the number of error terms also increases from d − 1 to d + 1.

Fortunately, the error terms are only one element in F, so we can use the identity
function as the trivial commitment scheme. Thus, there is no cost for committing
to the d+1 error terms when using CV. However, there is another separate error
term e′ ∈ F

2
√

� for the additional O(
√

�) degree-2 checks, thus the prover needs
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to commit to E′ = Commit(e′). The size of the accumulator instance is �in field
elements for the input, k field elements for the interactive-proof challenges, 1
field element for the accumulator challenge, k + 1 commitments for the prover
messages, d + 1 field elements for the error terms of the high-degree checks, and
1 commitment for the additional error term e′. ��

3.4 Computation of Error Terms

We now give an explicit algorithm for efficiently computing the error terms,
that is, computing the polynomial e(X) as defined in (3) (the degree of e(X) is
d′ = d+2). The algorithm has similarities with computing the round polynomials
in a single round of the sumcheck protocol [23].

1. For each i = 0 to d define

e(i)(X) :=

√
�−1∑

a=0

√
�−1∑

b=0

(X ·π.βa +acc.βa)(X ·π.β′
b +acc.β′

b) ·f
Vsps

i,a+b
√

�
(acc+X ·π)

(4)
2. Compute e(i)(j) for all j ∈ [0, i + 2]. Use these evaluations to interpolate

e(i)(X) using fast interpolation methods, e.g. an iFFT
3. Compute the coefficient form of e(X) =

∑d
i=0 e(i)(X) · (μ + X)d−i. This is

done by computing the coefficients of e(i)(X) · (μ + X)d−i for every i ∈ [0, d]
using FFTs, and recover e(X) using coefficient-wise addition. The complexity
is O(d2 log d).

In the worst case, this algorithm is equivalent to evaluating the circuit at d + 2
different inputs. However, it can perform much better in practice. The reason is
that many of the n gates may only be low degree. E.g. 90% of the gates are degree
1 or 2 addition and multiplication gates, and 10% are more high degree gates.
Then the prover only has to evaluate the 10% of the circuit at d + 2 points and
90% of the circuit only at 4 points. Note that the selector polynomials are static
in the classification of NP plonkup. This means that each gate has precisely
the degree of the active component. This stands in contrast to relations such as
high-degree Plonk, where the selectors are pre-processed, and the selectors are
preprocessed witnesses. In Plonk and related systems, each gate essentially has
the same degree.

Dealing with Branched Gates. In some scenarios, the NARK proof π has
the property that each gate f

Vsps

i,a+b
√

�
(acc+X ·π) in Formula 4 can be represented

as the sum of I parts where at most one part is related to π, that is, for some
gates g1, . . . , gI and some index pc ∈ [I],

f
Vsps

i,a+b
√

�
(acc + X · π) = gpc(acc + X · π) +

∑

j∈[I]\{pc}
gj(acc) .
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In this case, for any gate f
Vsps

i,a+b
√

�
, we present a caching algorithm for evaluating

f
Vsps

i,a+b
√

�
(acc+k ·π) at all evaluation points k ∈ [0, i+2]. The complexity is only

proportional to the evaluation complexity of gpc rather than f
Vsps

i,a+b
√

�
.

1. For every j ∈ [I], initialize Uj := gj(acc), and store V :=
∑I

j=1 Uj .
2. Upon receiving a new NARK proof π during accumulation, for every k ∈

[0, i + 2], compute f
Vsps

i,a+b
√

�
(acc + k · π) = V + gpc(acc + k · π) − Upc.

3. After the accumulation, let α ∈ F be the folding challenge and let U ′
pc =

gpc(acc + α · π), update V ← V + U ′
pc − Upc and update Upc ← U ′

pc.

The algorithm is correct because V is always
∑

j∈[I] gj(acc) where acc is the
current accumulator.

4 Special-Sound Subprotocols for ProtoStar

In this section, we present special-sound protocols for permutation, high-degree
gate, circuit selection and lookup relations, which are the building blocks for
the (non-uniform) Plonkish circuit-satisfiability relations. We can build accumu-
lation schemes for (and thus IVCs from) these special-sound protocols via the
framework presented in Sect. 3.

4.1 Permutation Relation

Definition 4. Let σ : [n] → [n] be a permutation, the relation Rσ is the set of
tuples w ∈ F

n such that wi = wσ(i) for all i ∈ [n].

Special-sound protocol Πσ for permutation relation Rσ

Prover P(σ,w ∈ F
n) Verifier V(σ)

w

Check wi − wσ(i) = 0∀i ∈ [n]

Complexity. Πσ is a 1-move protocol (i.e. k = 1); the degree of the verifier is 1.
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4.2 High-Degree Custom Gate Relation

Definition 5. Given configuration CGATE := (n, c, d, [si ∈ F
n, Gi]mi=1) where n

is the number of gates, c is the arity per gate, d is the gate degree, [si]mi=1 are
the selector vectors, and [Gi]mi=1 are the gate formulas, the relation RGATE is
the set of tuples w ∈ F

cn such that
∑m

j=1 sj,i · Gj(wi,wi+n, . . . ,wi+(c−1)·n) = 0
for all i ∈ [n].

Special-sound protocol ΠGATE for relation RGATE

Prover P(CGATE,w ∈ F
cn) Verifier V(CGATE)

w

m∑

j=1

sj,i · Gj(wi,wi+n, . . . ,wi+(c−1)·n)

?
= 0∀i ∈ [n]

Complexity. ΠGATE is a 1-move protocol (i.e. k = 1) with verifier degree d.

4.3 Lookup Relation

Definition 6. Given configuration CLK := (T, �, t) where � is the number of
lookups and t ∈ F

T is the lookup table, the relation RLK is the set of tuples
w ∈ F

� such that wi ∈ t for all i ∈ [�].

We recall a useful lemma for lookup relation from [17], and present a special-
sound protocol for the lookup relation.

Lemma 4 (Lemma 5 of [17]). Let F be a field of characteristic p > max(�, T ).
Given two sequences of field elements [wi]�i=1 and [ti]Ti=1, we have {wi} ⊆ {ti}
as sets (with multiples of values removed) if and only if there exists a sequence
[mi]Ti=1 of field elements such that

�∑

i=1

1
X + wi

=
T∑

i=1

mi

X + ti
. (5)
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Special-sound protocol ΠLK for RLK

Prover P(CLK,w ∈ F
�) Verifier V(CLK)

Compute m ∈ F
T such that

mi :=
�∑

j=1

1(wj = ti)∀i ∈ [T ] w,m

r r ←$F

Compute h ∈ F
�, g ∈ F

T

hi :=
1

wi + r
∀i ∈ [�]

gi :=
mi

ti + r
∀i ∈ [T ] h,g

�∑

i=1

hi
?
=

T∑

i=1

gi

hi · (wi + r)
?
= 1∀i ∈ [�]

gi · (ti + r)
?
= mi∀i ∈ [T ]

Achieving Perfect Completeness. Note that the protocol does not have perfect
completeness. If there exists an wi or ti such that wi + r = 0 ti + r = 0 then the
prover message is undefined. We can achieve perfect completeness by having the
verifier set hi = 0 or gi = 0 in this case and changing the verification equations
to

(wi + r) · (hi · (wi + r) − 1) = 0

and
(ti + r) · (gi · (ti + r) − mi) = 0 .

These checks ensure that either hi = 1
wi+r or wi + r = 0. The checks increase

the verifier degree to 3. Without these checks, the protocol has a negligible
completeness error of �+T

|F| . This completeness error can likely be ignored in
practice, and these checks do not need to be implemented. However, to achieve
the full definition of PCD (which has perfect completeness) and use Theorem 1
by [8], we require that all protocols have perfect completeness.

Complexity. ΠLK is a 3-move protocol (i.e. k = 2); the degree of the verifier is
2; the number of non-zero elements in the prover message is at most 4�.

Accumulation with O(�) Prover Complexity. The prover complexity of ΠLK is
due to the sparseness of g ∈ F

T and m ∈ F
T . However, there is no guarantee

that when building an accumulation scheme for ΠLK, the accumulated acc.g and
acc.m are sparse. This is an issue, as the prover needs to compute the error term
e1. If we expand the accumulation procedures, we see that the three verification
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checks lead to three components of the error term e1:

e(1)1 =

(
�∑

i=1

acc.hi −
T∑

i=1

acc.gi

)

+ μ

(
�∑

i=1

π.hi −
T∑

i=1

π.gi

)

∈ F

e(2)1 = acc.h ◦ (π.w + π.r · 1�) + π.h ◦ (acc.w + acc.r · 1�) − 2μ · 1� ∈ F
�

e(3)1 = acc.g ◦ (t + π.r · 1T ) + π.g ◦ (μ · t + acc.r · 1T ) − μ · π.m − acc.m ∈ F
T .

We examine all three components below.
For e(1)1 , we see that (

∑�
i=1 π.hi −

∑T
i=1 π.gi) = 0 by the assumption that

π is valid, and (
∑�

i=1 acc.hi −
∑T

i=1 acc.gi) = acc.e(1)/acc.μ (where acc.e(1) is
the first component of the error vector for acc). Thus e(1)1 = acc.e(1)/acc.μ. We
observe that since in IVC the accumulator acc.e(1) is initiated with 0, this implies
that for all iterations e(1)1 = 0.

For e(2)1 , it is computed from terms of size �, so can be computed in time
O(�).

For e(3)1 , note that acc.μ, acc.r and π.r are all scalars. Also note that the accu-
mulation prover only needs to compute the commitment E1 = Commit(ck, e1) =
Commit(ck, e(1)1 ) + Commit(ck, 0||e(2)1 ) + Commit(ck,0�+1||e(3)1 ), not the actual
vector e1. We will compute E

(3)
1 = Commit(ck, e(3)1 ) homomorphically from the

commitments below (dropping the zero padding for readability):

1. G = Commit(ck, π.g), G′ = Commit(ck, acc.g),
2. M = Commit(ck, π.m), M ′ = Commit(ck, acc.m),
3. GT = Commit(ck, π.g ◦ t), GT ′ = Commit(ck, acc.g ◦ t).

Given these commitments, we can compute

E
(3)
1 = GT ′ + π.r · G′ + acc.μ · GT + acc.r · G − acc.μ · M − M ′.

This reduces the problem to the problem of efficiently computing and updating
the commitments. G,M and GT are all commitments to �-sparse vectors, thus
can be efficiently computed. The prover can cache the commitments G′,M ′, and
GT ′ and efficiently update them during accumulation. That is G′′ ← G′ + αG,
M ′′ ← M ′ + αM and GT ′′ ← GT ′ + αGT . Additionally, we need to update the
accumulation witnesses: acc′.m ← acc.m + απ.m and acc′.g ← acc.g + απ.g.
Again because π.g, π.m are sparse this can be done in time O(�) independent of
T = |t|.

When ΠLK is used in composition with another special-sound protocol with
a higher degree d, the accumulation is made homogeneous using a (X + μ)d−2

factor when computing the error terms. The contribution to the error terms ei

(1 ≤ i ≤ d − 1) is still a linear function in acc.g, acc.m and acc.g ◦ t, and thus
can be computed homomorphically from commitments to these values.
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Finally, we note that the algorithm above can be generalized to support
polynomial e(X) with more general formats and with higher degrees. We refer
to the full version [7] for more details.

Special-Soundness. We prove special-soundness for the perfect complete version
of ΠLK, the proof for ΠLK is almost identical (but even simpler).

Lemma 5. The perfect complete version of ΠLK is 2(� + T )-special-sound.

We defer the proof to the full version [7].

The Special-Sound Protocol for Plonkup. The special-sound protocol for the
Plonkup relation is the parallel composition of Πσ, ΠGATE and ΠLK. We refer
to the full version [7] for more detailed descriptions.

Vector-Valued Lookup. In some applications (e.g., simulating bit operations
in circuits), we need to support lookup for a vector, i.e., each table value is
a vector of field elements. In this section, we adapt the scheme in Sect. 4.3 to
support vector lookups.

Definition 7. Consider configuration CVLK := (T, �, v ∈ N, t) where � is the
number of lookups, and t ∈ (Fv)T is a lookup table in which the ith (1 ≤ i ≤ T )
entry is

ti := (ti,1, . . . , ti,v) ∈ F
v.

A sequence of vectors w ∈ (Fv)� is in relation RVLK if and only if for all i ∈ [�],

wi := (wi,1, . . . ,wi,v) ∈ t .

As noted in Sect. 3.4 of [17], we can extend Lemma 4 and replace Eq. 5 with

�∑

i=1

1
X + wi(Y )

=
T∑

i=1

mi

X + ti(Y )
(6)

where the polynomials are defined as

wi(Y ) :=
v∑

j=1

wi,j · Y j−1, ti(Y ) :=
v∑

j=1

ti,j · Y j−1,

which represent the witness vector wi ∈ F
v and the table vector ti ∈ F

v. We,
therefore, can describe a special-sound protocol for the vector lookup relation as
follows.
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Special-sound protocol Πv
VLK for RVLK

Prover P(CVLK,w ∈ (Fv)�) Verifier V(CVLK)

Compute m ∈ F
T such that

mi :=
�∑

j=1

1(wj = ti)∀i ∈ [T ] w,m

β β ←$F

⊥

r r ←$F

Compute [βi = βi−1]vi=1

and h ∈ F
�, g ∈ F

T

hi :=
1

wi(β) + r
∀i ∈ [�]

gi :=
mi

ti(β) + r
∀i ∈ [T ] [βi]

v
i=1,h,g

�∑

i=1

hi
?
=

T∑

i=1

gi

hi · [( v∑

j=1

wi,j · βj

)
+ r

] ?
= 1∀i ∈ [�]

gi · [( v∑

j=1

ti,j · βj

)
+ r

] ?
= mi∀i ∈ [T ]

βi+1
?
= βi · β∀i ∈ [v − 1], β1

?
= 1

Achieving Perfect Completeness. We can use the same trick in Sect. 4.3 to achieve
perfect completeness for Πv

VLK. Namely, the verifier sets hi = 0 or gi = 0 when
wi(β) + r = 0 or ti(β) + r = 0 respectively. The verification equations become

(wi(β1, . . . , βv) + r) · (hi · (wi(β1, . . . , βv) + r) − 1) = 0

and
(ti(β1, . . . , βv) + r) · (gi · (ti(β1, . . . , βv) + r) − mi) = 0 ,

where wi(β1, . . . , βv) :=
(∑v

j=1 wi,j · βj

)
and ti(β1, . . . , βv) :=

(∑v
j=1 ti,j · βj

)
.

The degree of the verifier is 5. In practice, the negligible completeness error can
likely be ignored without implementing these checks.

Accumulation Complexity. ΠVLK is a 5-move protocol (i.e. k = 3) with the 2nd
prover message being empty; the degree of the verifier is 3; the number of non-
zero elements in the prover message is at most (v + 3)� + v. To ensure that the
accumulation procedure only requires O(v�) operations independent of T , we
can apply the same trick as in Sect. 4.3.

Special-Soundness. The perfect complete version of Πv
VLK is special-sound.
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Lemma 6. For any v ∈ N, the perfect complete version of Πv
VLK is [1 + (v −

1) · (� + T − 1), 2(� + T )]-special-sound.

We defer the proof to the full version [7].

4.4 Circuit Selection

We provide a sub-protocol for showing that a vector has a single one-bit (and
zeros otherwise) at the location of a program counter pc. This is later used to
select the appropriate circuit.

Definition 8. For an integer n the relation Rselect is the set of tuples (b, pc) ∈
F

n × F such that bi = 0∀i ∈ [n] \ {pc} and if pc ∈ [n] then bpc = 1.

Special-sound protocol Πselect for circuit selecting relation Rselect

Prover P(b ∈ F
n, pc ∈ F) Verifier V

b, pc

bi · (pc − i)
?
= 0∀i ∈ [n]

bi · (bi − 1)
?
= 0∀i ∈ [n]

∑

i∈[n]

bi
?
= 1

Complexity and security. Πselect is a 1-move protocol (i.e. k = 1); the degree of
the verifier is 2.

The protocol trivially satisfies completeness. Note that the protocol is also
sound: the checks bi · (bi −1) = 0 ensure that the vector b is Boolean; the checks
bi · (pc − i) = 0 ensures that bi = 0 if i �= pc; finally, the last check guarantees
that bpc = 1 −

∑
i∈[n]\{pc} bi = 1 as bi = 0 for all i ∈ [n] \ {pc}.

5 Protostar

In this section, we describe Protostar, which is built using a special-sound
protocol for capturing non-uniform Plonkup circuit computations. In particular,
the relation is checking that one of the I circuits is satisfied, where the index
of the target circuit is determined by a part of the public input called program
counter pc. The non-uniform Plonkup circuit can add arbitrary constraints on
input pc.

For ease of exposition, we assume that the I circuits have the same number
of (i) gates n, (i) gate arity c, (ii) gate degree d, (iii) gate types m, (iv) public
inputs �in and (v) lookup gates �lk.

The scheme naturally extends when different branch circuits have different
parameters.
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Definition 9. Consider configuration Cmplkup :=
(
pp = [n, T, c, d,m, �in, �lk];

[Ci]Ii=1; t
)

where the ith (1 ≤ i ≤ I) branch circuit has configuration Ci :=
(pp, σi, [si,j , Gi,j ]mj=1, Li), and t ∈ F

T is the global lookup table. For a public
input pi := (pc, pi′) ∈ F

�in where pc ∈ [I] is a program counter, we say that
(pi,w ∈ F

cn) is in the relation Rmplkup if and only if (pi,w) ∈ Rplonkup w.r.t.
circuit configuration (Cpc, t).

Protocol Πmplkup = 〈P(Cmplkup, pi,w),V(Cmplkup, pi = (pc ∈ [I], pi′))〉:
1. P sends V vector b = (0, . . . , 0, bpc = 1, 0, . . . , 0) ∈ F

I .

2. V checks that bi · (1 − bi)
?= 0 and bi · (i − pc) ?= 0 for all i ∈ [I], and

∑
i∈[I] bi

?= 1.
3. P sends vector m ∈ F

T such that mi :=
∑

j∈Lpc
1(wj = ti)∀i ∈ [T ].

4. P sends V a sparse vector w∗ := (w(1), . . . ,w(I)) ∈ F
Icn where w(i) = 0cn

for all i ∈ [I] \ {pc} and w(pc) = w.
5. V checks that

Permutation check:
∑I

j=1 bj(w
(j)
i − w(j)

σj(i)
) ?= 0 for all i ∈ [cn].

Public input check:
∑I

j=1 bj · w(j)[1..�in]
?= pi.

Gate check: for all i ∈ [n], it holds that

I∑

j=1

bj · GTj,i

(
w(j)

i , . . . ,w(j)
i+cn−n

)
= 0

where GTj,i(x1, . . . , xc) :=
∑m

k=1 sj,k[i] · Gj,k(x1, . . . , xc).
6. V samples and sends P random challenge r ←$F.
7. P computes vectors h ∈ F

�lk , g ∈ F
T such that

hi :=
1

wLpc[i] + r
∀i ∈ [�lk], gi :=

mi

ti + r
∀i ∈ [T ].

8. V checks that
∑�lk

i=1 hi
?=

∑T
i=1 gi and

I∑

j=1

bj ·
[
hi · (w(j)

Lj [i]
+ r)

]
?= 1 ∀i ∈ [�lk] ,

gi · (ti + r) ?= mi ∀i ∈ [T ]

We present the special-sound protocol Πmplkup for the multi-circuit Plonkup
relation.

Remark 2. The public input check
∑I

j=1 bj · w(j)[1..�in]
?= pi is equivalent to

w[1..�in] = wpc[1..�in]
?= pi if the vector b passes the check at Step 2. Thus we

guarantee that w[1] = pc, and the circuit relation can add constraints on pc
depending on the applications.

Special-Soundness. We prove the special-soundness property of Πmplkup below.
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Lemma 7. Πmplkup is 2(T + �lk)-special-sound.

We defer the proof to the full version [7].
We will now use Πmplkup and our compiler described in Theorem 3 to design

Protostar. Before that, we address two efficiency issues regarding supporting
multiple branch circuits and combining high-degree gates with sparse lookups.

Efficient Accumulation for Supporting Many Branch Circuits. Let I be the num-
ber of branch circuits. At first glance, the message w∗ has length O(In) and
seems the accumulation prover needs to take O(In) time to fold the witness.
Fortunately, the prover message w∗ := (w(1), . . . ,w(I)) ∈ F

Icn is sparse: only
the witness w(pc) for the single activated branch circuit Cpc is non-zero (where
w(pc) can be determined at runtime). Thus, using the commitment to acc.w∗

and the commitments homomorphism, the complexity for the prover to fold w∗

onto acc.w∗ is only O(n).
On the other hand, the accumulation prover also needs to compute the

error terms [ej ]d−1
j=1 described at Step 2 of Fig. 3. Note that each gate check

can be split into I parts where at most one part is active, that is,
∑I

j=1 bj ·
GTj,i(w

(j)
i , . . . ,w(j)

i+cn−n) can be split into I branch gates where the j-th (1 ≤
j ≤ I) branch gate is bj ·GTj,i(w

(j)
i , . . . ,w(j)

i+cn−n). Thus we can use the caching
algorithm described in Sect. 3.4 to achieve O(d|Cpc|) computational complexity
rather than O(d(|C1| + · · · + |CI |)) where Ci (1 ≤ i ≤ I) is the evaluation cost of
the i-th branch circuit.

Next, we address the issue of combining the high-degree gate and sparse
lookup protocols with the generic transform CV in Sect. 3.3.

Efficient Accumulation of CV[Πmplkup]. CV[ΠGATE] reduces the number of
degree-d verification checks in ΠGATE from n to 1, with the tradeoff of O(

√
n)

additional degree-2 checks. In the resulting accumulation scheme, the error terms
for high-degree gates are, thus, only of length 1. This enables using the triv-
ial identity commitment for these error terms and thus reduces the number of
group operations by the accumulation verifier. Unfortunately, applying CV to
mplkup seems to have a major tradeoff. The number of verification checks is
n + �lk + T + c · n. This requires using a) CV[mplkup] and b) is not compos-
able with the sparseness optimizations for lookup described in Sect. 4.3. These
optimizations make the prover computation independent of T .

Fortunately, a closer look at the verification of mplkup reveals that only n of
these verification checks are of high degree d, namely the checks in ΠGATE. The
other checks are of degree 2 or lower. With a slight abuse of notation, we can
define CV[Πmplkup] as applying the generic transform CV only to the ΠGATE

part of Πmplkup. This means that there are d + 1 cross error vectors (each of
length 1) for the degree d + 2 check in CV[ΠGATE]; and 1 cross error vector of
length T +�lk+cn+O(

√
n) for the rest checks—namely the low-degree checks in

Πmplkup and the O(
√

n) degree-2 checks in CV[ΠGATE]. By leveraging the error
separation technique described in Sect. 3.3, we can use the identity function to
commit to the field elements and a vector commitment to commit to the long
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error term. Again we leverage homomorphism as described in Sect. 4.3 to make
the prover independent of T .

Corollary 1 (Protostar protocol). Consider the configuration

Cmplkup := (n, T, c, d,m, �in, �lk; [Ci]Ii=1; t).

Given a binding homomorphic commitment scheme cm = (Setup,Commit), and
under the Fiat-Shamir Heuristic (Definition 3) for a hash function H, there exists
an IVC scheme Protostar for Rmplkup relations with the following efficiencies
for m = 1 (i.e. each circuit has a single degree-d gate type), public input length
�in = 1: (we omit cost terms that are negligible compared to the dominant parts)

PProtostar

native

PProtostar

recursive
VProtostar |πProtostar|

O(|w|+ �lk)G

L′(Cpc, d + 2) + 2�lkF

3G

d + 4F

d + O(1)H + 1Hin

O(c · n + T + �lk)G

n +
∑I

i=1 Ci + T + �lkF
O(c · n + T + �lk)

Here |w| ≤ cn is the number of non-zero entries in the witness,
∑I

i=1 Ci

is the cost of evaluating all circuits on some random input, and L′(Cpc, d) is
the cost of computing the coefficients of the polynomial e(X) defined in Eq. 3
using techniques from Sect. 5.5 Hin is the cost of hashing the public input and the
(constant-sized) accumulator instance.

We defer the proof to the full version [7].
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Abstract. Zero-Knowledge Virtual Machines (ZKVMs) have gained
traction in recent years due to their potential applications in a vari-
ety of areas, particularly blockchain ecosystems. Despite tremendous
progress on ZKVMs in the industry, no formal definitions or security
proofs have been established in the literature. Due to this lack of for-
malization, existing protocols exhibit significant discrepancies in terms
of problem definitions and performance metrics, making it difficult to
analyze and compare these advancements, or to trust the security of the
increasingly complex ZKVM implementations.

In this work, we focus on random-access memory, an influential and
expensive component of ZKVMs. Specifically, we investigate the state-of-
the-art protocols for validating the correct functioning of memory, which
we refer to as the memory consistency checks. Isolating these checks from
the rest of the system allows us to formalize their definition and secu-
rity notion. Furthermore, we summarize the state-of-the-art construc-
tions using the Polynomial IOP model and formally prove their secu-
rity. Observing that the bottleneck of existing designs lies in sorting the
entire memory trace, we break away from this paradigm and propose a
novel memory consistency check, dubbed Permem. Permem bypasses this
bottleneck by introducing a technique called the address cycle method,
which requires fewer building blocks and—after instantiating the build-
ing blocks with state-of-the-art constructions—fewer online polynomial
oracles and evaluation queries. In addition, we propose gcq, a new con-
struction for the lookup argument—a key building block of the memory
consistency check, which costs fewer online polynomial oracles than the
state-of-the-art construction cq.

Keywords: Proof System · SNARK · ZKVM · Random Access
Memory

1 Introduction

Zero-Knowledge Virtual Machine (ZKVM) [zkS22,TV22,Pol22,Scr22,Mid22,
Ris22,GPR21] is a type of program execution system that can produce a proof
c© International Association for Cryptologic Research 2023
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of the validity of the execution without revealing any secret inputs. These
proofs can be verified quickly without re-executing the program. ZKVMs are
considered more user-friendly than traditional circuit-based SNARKs [Gro16,
CHM+20,GWC19] for programmers, because ZKVMs support instruction-based
programs that can be easily constructed from high-level languages. Some
ZKVMs [zkS22,Pol22,Scr22], often referred to as zkEVMs, are designed to be
compatible with the Ethereum Virtual Machine (EVM), and have the potential
to improve the scalability and privacy of Ethereum, a decentralized platform
with the second-largest market value as of 2023, the time of this writing. Other
ZKVMs support various types of machine architectures, such as RISC-V [Ris22]
for wider applications, or SNARK-friendly machines [TV22,Scr22,GPR21] for
increased efficiency.

Constructing a ZKVM involves designing protocols for checking the consis-
tent functioning of all its components, including the instruction fetcher, register
file, arithmetic logic unit, and memory. The most technically challenging pro-
tocol among them is the memory consistency check (MCC), whose complexity
roots in the history-dependent nature of memory: the output of memory access
depends on the entire history of its inputs. This characteristic causes the MCC
to be more resource-intensive than other protocols. Consequently, many ZKVM
projects such as Scroll [Scr22] and Triton VM [TV22] devoted continuing efforts
to optimizing the MCC.

However, there is an absence of literature discussing recent advances in MCC,
as the constructions have mostly been developed in a haphazard manner and
tightly connected to their engineering projects. This leads to a lack of agree-
ment on the formal definition of the security goals, the context of protocol design,
and the performance metrics, rendering it challenging to analyze and compare
different constructions. Furthermore, it is uncertain whether they contain vul-
nerabilities due to their lack of formal security analysis. Although there is a
family of related works investigating RAM-based SNARKs [BCGT13,BCG+13,
BCTV13,BBC+17,BBHR18,BCG+18], recent implementations adopt a richer
and more advanced family of new techniques not covered in this literature. To
address the above issues, it is crucial to formalize the problem of MCC and to
conduct a systematic examination of existing solutions, which can help deepen
our understanding of the problem, eliminate potential security risks, and identify
and address the performance bottleneck.

1.1 Our Contributions

This work offers a formal analysis of the MCCs employed in popular ZKVMs in
the industry and improves their performance via a new design method and a new
building block. Specifically, we provide a formal definition of MCC and its secu-
rity, formulated within the Polynomial IOP (PIOP) model [BFS20], which is a
widely used SNARK construction model in the literature [GWC19,CHM+20,
CBBZ22,SZ22,ZSZ+22]. We also extract and formalize the underlying tech-
niques of existing MCCs in PIOPs and prove their security. Inspired by our
formalization, we propose (1) a more efficient construction method called the
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Table 1. Comparing the MCCs, our Permem achieves the largest memory size with
fewer building blocks and online polynomials outside of the building blocks. The pro-
tocols are sorted by the address space, from the most limited contiguous memory to
the largest full space read-write memory. “Sort.” stands for the sorting paradigm, and
“AC.” stands for the address cycle method, which is extracted from Arya [BCG+18]
and formalized in this paper. The constant c ≥ 1 is a user-selected integer, but c = 1
usually suffices as F’s size is usually 256-bit or larger. N is the number of execution
steps, which is usually orders of magnitude less than 232. Perm. is the number of
permutation arguments. Lookup is the number of lookup arguments (one “Double”
lookup argument achieves the same result as two “Single” lookup arguments with
smaller amortized cost). Poly. is the number of polynomial oracles sent to the veri-
fier online excluding those in the building blocks. Queries is the number of evaluation
queries issued by the verifier excluding those in the building blocks.

Protocol Method Address Space Writable Build blocks Poly. Queries

Perm. Lookup

Cairo [GPR21] Sort. Contiguous × 1 0 4 0

AryaMem (opti-
mized
based
on [BCG+18])

AC. [1..N ] � 2 1 Single 4 0

Miden [Mid22] etc. Sort. 32k-bit � 1 2k Double 7 + 2k 0

Triton [TV22] Sort. F
c � 1 1 Single 10 + c 2

Permem AC. F
c � 1 1 Single 6 + c 2

address cycle method, which instantiates into a novel MCC named Permem, and
(2) a new lookup argument called gcq. Our main contributions are as follows.

– We formally define the notion memory consistency check and its security
(Sect. 3), and formalize the state-of-the-art constructions in PIOPs with secu-
rity proofs under our definition (Sect. 4). Specifically, observing that all these
constructions follow a common pattern, which we refer to as the sorting
paradigm, we identify the key subprotocol (sorting check) that differentiates
these constructions. We summarize all the sorting checks into three PIOPs,
each for a different memory model, respectively: (a) contiguous read-only
memory (Sect. 4.1), used by Cairo [GPR21]; (b) memory with 32- or 256-
bit addresses (Sect. 4.2), used by Miden [Mid22], RiscZero [Ris22], and all
zkEVMs; and (c) memory with the full address space, i.e., F

c for c ≥ 1
(Sect. 4.3), used by Triton VM [TV22], which supports memory spaces larger
than 32- or even 256-bit address with less cost.

– Next, observing the bottleneck of the sorting paradigm, we introduce a
more efficient method for constructing MCCs, named address cycle method
(Sect. 5.1). We extract the address-shifting permutation of Arya [BCG+18], a
zero-knowledge proof for TinyRAM [BCG+13], and develop it into a method
for constructing MCCs. This general method reduces the MCC construction
into designing a distinctness check, which is to prove that all entries in a
vector are distinct. This reduction not only simplifies the design workflow
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Table 2. Comparing the MCCs with different instantiations of the lookup argument,
our new lookup argument gcq reduces the number of polynomials and queries by ≈ 3
compared to the state-of-the-art construction cq (the rows without the gcq mark). Here
double-gcq is the batched version of gcq with smaller amortized costs. The protocols
are sorted by the address space (column A. Space), from the most limited contiguous
memory to the largest full space read-write memory. The star “*” means the double-
gcq is alternatively constructed where the grand-sum vector ũ is split (see Sect. 6 for
details). N is the number of executed steps of the machine. Deg. is the maximal degree
of the polynomial oracles sent from the prover. Poly. is the number of polynomial
oracles sent to the verifier online. Queries is the number of evaluation queries. Dist.
is the number of distinct evaluation points.

Protocol A. Space Deg. Poly. Queries Dist.

Cairo [GPR21] Contiguous N 5 8 2

AryaMem (optimized based on [BCG+18]) [1..N ] 2N 13 20 2

AryaMem (gcq) [1..N ] 2N 10 18 2

Miden etc. [Mid22,Scr22,Pol22,Ris22,zkS22] 32k-bit 2N 14 + 4k 20 + 5k 2

Miden etc. (double-gcq) 32k-bit 5N 12 + 3k 19 + 4k 2

Miden etc. (double-gcq*) 32k-bit 3N 12 + 4k 19 + 5k 2

Triton [TV22] F 2N 18 26 3

Triton (gcq) F 2N 15 24 3

Permem F 2N 15 23 3

Permem (gcq) F 2N 12 21 3

but also improves the performance of MCC. Using our method, we propose
a new MCC, called Permem (Sect. 5.1); it supports the full address space as
Triton VM does, by extracting the core of the contiguity check of Triton
VM and formalizing it into a distinctness check, which may also be useful in
constructing PIOPs other than MCC. As shown in Table 1 and 2, Permem
costs fewer building blocks, thus fewer online polynomial oracles and evalu-
ation queries compared to Triton VM and 32k-bit ZKVMs. Note that, as it
is hard to compare Permem directly with Arya, which is constructed in the
ILC model [BCG+17], we adapt the memory component of Arya in the PIOP
model, named AryaMem, and include it in our tables along with the recent
ZKVMs.

– Finally, we propose a novel lookup argument, which is an essential building
block for most MCCs and is widely used in SNARKs [PFM+22,ABST22,
CBBZ22]. We name it gcq for grand-sum version of cq [EFG22]. The key idea
behind gcq is to replace the univariate sumcheck of cq with the grand-sum
check; this technique is simple but effective, because the grand-sum check fits
perfectly in the context of cq, especially when cq is used in MCC. Table 2 and 3
show that when the lookup argument is instantiated with gcq, the MCCs use
fewer online polynomial oracles and evaluation queries (by 2 to 10), and has
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Table 3. Comparing the MCCs with the PIOP instantiated with KZG [KZG10], our
new lookup argument gcq reduces the proof sizes by 2 ∼ 10 group and field elements,
and the prover costs by 2 ∼ 10 FFTs/MSMs, compared to the state-of-the-art con-
struction cq (the rows without the gcq mark). Here double-gcq is the batched version of
gcq with smaller amortized costs. The protocols are sorted by the address space, from
the most limited contiguous memory to the largest full space read-write memory. The
star “*” means the double-gcq is alternatively constructed where the grand-sum vector
ũ is split (see Sect. 6 for details). N is the number of executed steps of the machine.
The prover is dominated by FFT (O(N log N)), MSM (O(N · λ/ log N)), and MPE
(multi-point evaluation, O(S log2 S)), where the unit is field operations, and S is the
number of addresses touched by the program in the execution. In practice, S is usually
at least an order of magnitude smaller than N . For all protocols, the cost of the verifier
is dominated by one pairing, which is omitted from the table.

Protocol Address
Space

SRS Proof Prover

G1 G2 G1 F FFT MSM MPE

Cairo [GPR21] Contiguous N 2 7 8 5 7 0

AryaMem (opti-
mized
based
on [BCG+18])

[1..N ] 2N 2 15 20 13 15 0

AryaMem (gcq) [1..N ] 2N 2 12 18 10 12 0

Miden [Mid22] etc 32k-bit 2N 2 16 + 4k 20 + 5k 14 + 4k 16 + 4k 0

Miden etc.
(double-gcq)

32k-bit 5N 2 14 + 3k 19 + 4k 12 + 3k 14 + 3k 0

Miden etc.
(double-gcq*)

32k-bit 3N 2 14 + 4k 19 + 5k 12 + 4k 14 + 4k 0

Triton [TV22] F 2N 2 21 26 18 21 1

Triton (gcq) F 2N 2 18 24 15 18 1

Permem F 2N 2 18 23 15 18 1

Permem (gcq) F 2N 2 15 21 12 15 1

smaller proof sizes (by 2 to 10 group and field elements), compared to using
the state-of-the-art construction cq1.

1.2 Technical Overview

To better understand the protocols presented in this work, we provide an
overview of the underlying intuitions. We start by introducing the necessary
background concepts.

1 Strictly speaking, the corresponding PIOP protocol behind cq is without the KZG-
specific optimizations.
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PIOP. Almost all SNARKs, including ZKVMs, follow the PIOP pipeline, which
designs a PIOP and then compiles it into a non-interactive scheme via cryp-
tographic tools [BFS20]. A PIOP is an interactive protocol between two par-
ties, the prover and the verifier. The prover is able to send polynomials, e.g.,
f(X) ∈ F[X], which may be much larger than the verifier’s storage. The ver-
ifier, however, only has oracle access to f(X), meaning it is able to query for
y = f(z) for any given z ∈ F. This oracle access allows the verifier to check if
the polynomials satisfy certain relations, using the Swartz-Zippel Lemma. For
example, by checking f(z) + g(z) = h(z) for uniformly random z, the verifier
ensures f(X) + g(X) = h(X).

PIOPs can also be used to verify relations between vectors besides poly-
nomials, by exploiting the natural transformations between polynomials and
vectors. One popular transformation is the polynomial interpolation over a spe-
cific domain D of size N = 2μ. With this correspondence, the verifier can ver-
ify a vector equation, e.g., a + b ◦ c = 0, where “◦” is the entrywise product
between vectors. This vector equation is equivalent to the polynomial equation
fa(X) + fb(X) · fc(X) = q(X) · Z(X) for some quotient polynomial q(X), where
Z(X) :=

∏
x∈D

(X −x) is the vanishing polynomial over D. Apart from the above
vector equations, the verifiers can also check more complex relations such as:

– The permutation relation [GWC19], which states that two vectors are per-
mutations of each other. For example, a = (1, 2, 2, 3)T and b = (2, 3, 1, 2)T,
denoted by a ∼ b for convenience.

– The lookup relation [GW20], which states that all the elements in one vector
are contained in the other vector. For example, a = (1, 2, 2, 3)T and b =
(1, 2, 3, 4)T, denoted by a ⊂ b for convenience.

The protocols for checking these relations are referred to as permutation argu-
ments [GWC19] and lookup arguments [GW20], respectively. These arguments
can be extended to apply to tuples of vectors, also referred to as tables. For
example, (a,b, c) ∼ (a′,b′, c′) ∈ F

N×3 means these two tables have the same
multiset of rows in potentially different orders, i.e., the multisets of tuples
{(a[i],b[i], c[i])}N

i=1 and {(a′
[i],b

′
[i], c

′
[i])}N

i=1 are equal to each other.
A PIOP can be compiled into a SNARK by standard techniques [BFS20],

i.e., instantiating the polynomial oracles with cryptographic constructions such
as polynomial commitment scheme (PCS) [KZG10]. The performance of the
resulting SNARK is determined by that of the PIOP in various aspects.

Next, we present a high-level overview of ZKVMs and our systemization over
the current state of MCCs.

Workflow of ZKVM. On input x, a machine M executes for T steps and produces
an output y := M(x). For simplicity, throughout this work, we assume T = N ,
the size of interpolation domain D

2. Assume the machine has m field elements as

2 For example, the machine can be designed such that executing the last instruction
(e.g., a STOP instruction) does not change the state of the machine, so that this
instruction can be repeated as many times as needed until T reaches N .



Polynomial IOPs for Memory Consistency Checks 117

the internal state. The execution trace of the machine is a table (v(1), · · · , v(m)) ∈
F

T×m where the t-th row represents the state values at step t. Given the pair
x and y, proving that y = M(x) is equivalent to proving the existence of an
execution trace that is consistent with x, y and the architecture of the machine.
Since we are in the PIOP model, the prover, after executing the program, may
directly send the execution trace to the verifier, without exhausting the verifier’s
storage and computational resources.

After sending the execution trace, the prover tries to convince the verifier that
these vectors are consistent with the machine. In practice, the machine is broken
down into smaller components, such as instruction fetching, decoding, arithmetic
logic unit, and memory access. Each component’s consistency is formalized using
building blocks including vector equations, permutation relation, and lookup
relation. We focus on the memory component, whose checking protocol is the
most challenging to design for reasons that will be explained later.

Memory Consistency Check. Although the memory is typically modeled as a
dictionary that maps from the address space to the value space, we describe its
functionality via an alternative approach that matches our definition of memory
consistency. This model involves three variables op[t], addr[t], val[t] representing
the operator, the address, and the value, respectively. For step t from 1 to N ,
the machine computes two state variables op[t] and addr[t] from the current
instruction or other internal states of the machine. The variable op[t] is either
Read or Write, which are constant field elements specified by the machine. The
machine then computes another variable val[t] as follows:

– If op[t] = Read, find the maximal t′ < t such that addr[t′] = addr[t], then set
val[t] = val[t′]. If no satisfying t′ is found, set val[t] arbitrarily.

– If op[t] = Write, compute val[t] from the other internal states of the machine by
a specified procedure. However, to decouple the memory from this potentially
complex procedure, we consider val[t] to be an arbitrary value set by the
machine executor.

Given the traces of these variables, namely the vectors op, addr, val of size N ,
the memory consistency check should ensure that they represent a consistent
execution trace of the memory, where the consistency can be informally defined
as follows: for every t, val[t] is honestly computed from op[t], addr[1], · · · , addr[t],
val[1], · · · , val[t−1] by the above procedure.

Among all the components of the machine, memory is the only one that is
history-dependent3: the next state depends on the entire history of the machine
states, instead of only on the previous state. This characteristic complicates the
consistency checking protocol for the following reason. Without history depen-
dency, the consistency of the entire trace can be decomposed into a sequence
3 Except for some special-purpose components designed particularly for ZKVMs, e.g.,

the hash table in Triton VM and some builtins in Cairo, that are not in a traditional
CPU architecture. The stack in stack-based architectures like EVM can be considered
as a simpler version of random-access memory, whose consistency checks are similar
to those for memories.
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of local relations between adjacent rows in the trace. These local relations can
be captured by one or more low-degree multivariate polynomials that verify the
transition between adjacent states. The number of variables in these polynomi-
als has only the size of two states. This allows efficient verification using the
vector equation checks. However, if the current state of the machine depends
on the entire history, capturing the relations between dependent states would
require multivariate polynomials with O(N) variables, which renders the vector
equation check infeasible.

The Sorting Paradigm. The reason for memory consistency being history-
dependent is that different memory addresses are accessed in an interleaved
manner. This observation inspires the idea of sorting the memory execution
trace by address. After sorting the table (op, addr, val) into (õp, ãddr, ṽal) using
the column ãddr as the key, accesses to identical addresses are grouped together,
and as a result, ṽal[t] depends only on õp[t], ãddr[t], ãddr[t−1] and ṽal[t−1].

The above idea is formalized as the sorting paradigm, which captures the
MCCs in all ZKVMs as of 2023, the time of this writing. This paradigm is
described by the following procedure:

1. The prover sorts op, addr, val by the entries in addr and obtains õp, ãddr, ṽal.
These sorted vectors are sent to the verifier.

2. The verifier confirms that op, addr, val and õp, ãddr, ṽal are permutations of
each other.

3. The verifier ensures the expected local property of the sorted memory trace
using one or more vector equations.

4. The final step varies in different ZKVMs, but all involve proving that õp,

ãddr, ṽal is the sorting of op, addr, val by addr.

In current ZKVMs, step 4—the sorting check—is accomplished using one of
the following three protocols, each for a different memory model:

1. Contiguous read-only memory. This model requires that the values in the
vector addr span a contiguous region in F and that op[t] is always Read. With

these requirements, ãddr[t−1] ≤ ãddr[t] is equivalent to ãddr[t] − ãddr[t−1] ∈
{0, 1}, which is captured by the vector equation (ãddr[t]−ãddr[t−1])·(ãddr[t]−
ãddr[t−1] − 1) = 0.

2. Read-write memory with 32k-bit addresses. For this memory model, the con-
straint ãddr[t−1] ≤ ãddr[t] is checked by a 32k-bit range check over the vector

ãddr
←1 − ãddr, where ãddr

←1
is the cyclic left-shifting of ãddr by one posi-

tion.
3. Read-write memory with full address space: Fc for c ≥ 1. Since the case c > 1

can be reduced to c = 1 by random linear combination, we proceed assuming
that c = 1. The statement that ãddr is sorted is proved by the contiguity
check, designed by Triton VM [TV22], explained as follows. Given the vector
ãddr, initialize the polynomial f(X) = X − ãddr[1], then for each t from 2 to
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N , if ãddr[t] �= ãddr[t−1], multiply f(X) by X − ãddr[t], otherwise do nothing.
Obviously, the vector ãddr is contiguous (which means repeated elements fall
in contiguous regions; this is equivalent to ãddr being sorted by some custom
order over F) if and only if no monomial X−ãddr[t] is multiplied to f(X) more
than once, if and only if f(X) has no multiple roots. The prover sends the
polynomial f(X) to the verifier, who checks that f(X) is correctly computed
and that gcd(f(X),Df(X)) = 1, where Df(X) is the formal derivative of
f(X).

For read-write memories, there is an additional issue: as addr may contain
duplicate elements, multiple permutations exist for sorting the memory execution
trace. However, the sorting technique works only if the permutation is the unique
one that preserves the order of rows with identical addresses as in the original
table. This unique permutation is referred to as the canonical sorting. To ensure
that the sorting is canonical, the following modifications should be applied to
the second and third protocols: the memory execution trace is sorted together
with the incrementing vector incs = (1, 2, · · · , N). The verifier then ensures
that if ãddr[t] = ãddr[t−1], the difference ĩncs[t] − ĩncs[t−1] must be in the range
1, 2, · · · , N , by a lookup relation.

Our Improvement: Address Cycle Method. Note that in the sorting paradigm, the
prover sends at least four vectors to the verifier, each for a column in the sorted
memory trace. This is somewhat wasteful because, compared to the unsorted
memory trace, the additional information conveyed in these four vectors is no
more than a single permutation. We propose an alternative way that saves these
costs. Instead of reordering the memory execution trace, we redefine the meaning
of adjacency such that identical addresses become adjacent under this new defi-
nition. This insight is extracted from Arya [BCG+18], a zero-knowledge protocol
for TinyRAM [BCG+13]. We name this technique the address cycle method.

This method involves defining a permutation σ over the index set {1, · · · , N}.
The permutation σ maps each index t to the previous time when addr[t] was
accessed, i.e. σ(t) = max{j < t|addr[j] = addr[t]}, if such maximal value is well-
defined. If otherwise, this maximal value does not exist, i.e., addr[t] is accessed
for the first time, σ(t) maps it to the last time the same address was accessed, i.e.,
in this case, σ(t) = max{j ≤ N |addr[j] = addr[t]}. This way, for each distinct
address, all the positions where it appears are linked into a cycle by σ. Obviously,
addr is invariant under the permutation σ.

Now we observe the behavior of val as it is permuted by σ. By definition, if the
memory trace is consistent, then val is almost invariant under the permutation.
Specifically, val[σ(t)] = val[t] for every t except for those with op[t] = Write or
addr[t] is accessed the first time.

It turns out that the aforementioned behaviors of addr and val when per-
muted by σ suffice to guarantee memory consistency, as shown in Theorem 7.
To summarize, the MCC can be accomplished by proving the existence of a
permutation σ with the following properties:
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1. There exists a vector first ∈ {0, 1}N such that t > σ(t) for every t except for
those t where first[t] = 1.

2. addr is invariant under σ and val is almost invariant: val[σ(t)] = val[t] for
every t except for those with op[t] = Write or first[t] = 1.

3. For every address a, all the positions where a appears in addr fall in the same
cycle of σ.

The first two properties are simple to check, as they are captured by vector
equations, permutation relations, and lookup relations. See Sect. 5.1 for details.
Checking the last property is the most challenging part of this method. We
proved in Lemma 3 (Sect. 5.1) that this property can be ensured by showing
that the elements {addr[t]|1 ≤ t ≤ N,first[t] = 1} are distinct. Therefore, our
address cycle method reduces the MCC problem to the distinctness check prob-
lem, which is the key component of different constructions. Here we present two
constructions for this component.

1. Permem. We note that the contiguity check of Triton VM can be generalized
into a distinctness check that does not pose any restriction on the address
space. This distinctness check protocol produces a new MCC with full address
space, i.e., A = F

c for any c ≥ 1. We name this new MCC Permem.
2. AryaMem. For a clear comparison between Permem and Arya, which is orig-

inally described in the ILC model [BCG+17], we adapt the memory com-
ponent of Arya into a PIOP, called AryaMem, which is optimized with the
standard PIOP techniques. We remark that the memory component of the
original Arya does not strictly follow the pattern of our address cycle method,
whereas AryaMem is adapted to follow this method strictly. In particular, in
Arya, the last property of σ is not verified via distinctness check, but instead
by a protocol called blookup, which is constructed with two lookup arguments.
We replace this blookup protocol with a distinctness check, which is much sim-
pler thanks to Arya’s limited memory address space (the set {1, 2, · · · ,M} for
M ≈ N). Specifically, to prove that addr satisfies the distinctness condition,
it suffices to show that there exists a vector that is both a permutation of
(1, 2, · · · ,M) and is identical to addr in places where first[t] = 1. This can be
implemented using a single permutation argument.

Lookup Argument. The lookup argument is an influential building block in most
MCCs. We construct a new lookup argument, named gcq for grand-sum version
of cq [EFG22], based on the logarithmic derivative technique. The insight of
logarithmic derivative is that every element in A = {a1, · · · , an} appears in B =
{b1, · · · , bn} if and only if

∑(
1

X−ai
− mi

X−bi

)
= 0, where mi ≥ 0 is the number of

times bi appears in A. Proving that this sum is zero is the core of the logarithmic
derivative technique. In cq, this is accomplished by the popular univariate sum-
check protocol [BCR+19], which is also extensively used in building general-
purpose SNARKs [BCR+19,CHM+20,COS20,RZ21].

However, we notice that a simpler technique, called grand-sum check,
has multiple benefits which are, somewhat surprisingly, undervalued in the
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literature4. Compared to the univariate sumcheck, the grand-sum check has the
following three advantages: (1) it works in both monomial basis and Lagrange
basis; (2) it does not require an individual degree bound of the PIOP; and (3)
most importantly, the grand-sum check contributes (almost) no additional cost
at all, in terms of the number of online polynomials and evaluation queries, which
is explained as follows. Note that: (1) for any vector u, the vector u←1−u+s·e1 is
guaranteed to have sum s, where u←1 is u circularly left-shifted by one position;
and (2) for any vector v, we can always find ṽ such that v = ṽ←1 − ṽ+s ·e1, e.g.,
ṽ := (v1, v1 + v2, · · · ,

∑
vi), the grand-sum vector of v. Therefore, the prover

could have directly sent ṽ, without sending v in the first place, and the verifier
simulates the polynomial oracle for v using that of ṽ wherever v appears.

Although the grand-sum check has some disadvantages compared to the uni-
variate check, which may partially explain the rare usage of grand-sum check,
these disadvantages are avoided in the context of MCCs:

– Grand-sum check involves shifting the vector ṽ by one position, which requires
simulating the polynomial oracle fṽ(ωX), causing one additional distinct eval-
uation point ωz in the PIOP. However, this is not a problem in MCC, as ωz
is already required by the permutation check.

– It is unclear how to exploit the KZG-specific optimizations in grand-sum
check, which is interesting for future research. In particular, cq exploits these
techniques to allow the prover cost to depend only on the size N of the execu-
tion trace and independent of the lookup table size. However, in Permem, the
lookup table also has size N , rendering the table-size-independence unneces-
sary.

– The grand-sum check does not look intuitive when the polynomial oracle
fv(X) has a degree greater than N , in which case the simulation additionally
involves the quotient polynomial q(X). However, the grand-sum check still
saves one polynomial oracle compared to the univariate sumcheck in this
scenario. Moreover, in cq or gcq, the target polynomials of the sumcheck
have degrees bounded by the domain size, so the quotient polynomials are
unnecessary.

For the above reasons, grand-sum check fits perfectly in MCC, especially in our
Permem. Table 2 shows that the MCCs use three fewer online polynomials and
two fewer evaluation queries by replacing cq (that uses univariate sum-check)
with gcq (that uses grand-sum check).

Zero knowledge. We will not address the zero-knowledge aspect in this work
for the following two reasons. First, despite the “ZK” in the name, ZKVMs
are more valued for their succinctness than their zero-knowledge property. This
preference is evident from the fact that currently ZKVMs are mainly used in
zkRollups [zkS22,Azt22,Pol22,Loo22], which prioritize scalability over privacy.

4 It is indeed used in some works, but very rarely, e.g., in Flookup [GK22]. It is used
only in a small component of Flookup, where univariate sumcheck is unusable.
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Second, zero-knowledge can be achieved as an added property in SNARKs using
standard techniques such as adding a masking polynomial δ(X) · Z(X) to the
interpolated polynomials, where δ(X) is a uniformly random small polynomial.
It is unnecessary to repeat these standard techniques, so we omit them for clarity
and simplicity.

1.3 Related Works

Although there is a lack of literature discussing the recent developments in
ZKVMs [zkS22,TV22,Pol22,Scr22,Mid22,Ris22,GPR21], these ZKVMs are the
result of more than ten years of progress in the field of verifiable computa-
tions (VC) [GGP10]. VC constructions can be categorized based on their model
of computation, primarily the circuit model and the RAM model. Circuit-
based VCs, particularly SNARKs, have gained greater attention and undergone
active research since 2018 [PHGR13,Gro16,CHM+20,GWC19,Set20,XZZ+19,
BDFG20,BBB+18,Eag22,SL20,BFS20,ZSZ+22,SZ22,ZXZS20,BFH+20,
COS20,BCR+19,WTS+18]. Nonetheless, they have a significant drawback as
circuits are inconvenient to program for, especially when branching and loops
are involved.

Although RAM-based VCs potentially support more intuitive programming
interfaces like high-level programming languages, they are more inefficient than
the circuit-based ones, with MCC being a major bottleneck. The Merkle-tree-
based memory check [BFR+13] is barely practical, and outperformed by the sort-
ing technique, which is initially based on routing networks [BCGT13,BCG+13,
BCTV13,BBC+17,BBHR18] and later adopts the more efficient permuta-
tion argument developed in circuit-based SNARKs [GWC19], as in [ZGK+18,
BCG+18]. Many works only support memory space as small as {1, · · · ,M} for
M = O(T ), and those supporting 32-bit memory addresses tend to be quite
slow.

The recent rapid development of ZKVMs has been largely aided by the intro-
duction of lookup arguments [GW20,ZBK+22,PK22,GK22,ZGK+22,EFG22,
Hab22,CBBZ22,SLST23], which have significantly boosted the efficiency of 32-
and 64-bit MCCs. However, 256-bit memory checks remain very expensive. Tri-
ton VM [TV22] mitigates this issue by its MCC with full address space, which is
sufficiently large to cover the functionality of 256-bit memory. Our new protocol,
Permem, further reduces the number of online polynomials of Triton VM.

Recent lookup arguments based on logarithmic derivatives [Hab22,EFG22,
SLST23] are a promising new approach, offering both high performance and
appealing properties such as homomorphic additions. Our new lookup argument
gcq improves the state-of-the-art construction cq, costing fewer online polyno-
mials and evaluation queries.

2 Preliminaries

Let λ be the security parameter. For n ∈ N, [n] denotes the set {1, 2, · · · , n}.
For i ≤ j, [i..j] denotes {i, · · · , j}. Throughout the paper, we use a unique finite
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field F = Fp where p is a prime of O(λ) bits. When the context is clear, we
use integers and field elements interchangeably, so the sets [n], [i..j] may also
represent the corresponding F elements after reducing modulo p. For algorithm
A, A → c means the algorithm outputs c.

An indexed relation R is a set of triples (i,x,w), where i is called the index,
x is the instance, and w is the witness. The language induced from R is L(R) :=
{(i,x) : ∃ w, s.t. (i,x,w) ∈ R}.

2.1 Vectors and Polynomials

A vector of length N over F is denoted by v ∈ F
N . The length of v is |v|. The

i-th entry of the vector v is denoted by v[i]. The subvector of v from index i
to j is denoted by v[i..j]. Let Elems(v) be the set of distinct elements in v, and
MultiElems(v) be the multiset of the elements in v. We write a ∈ v if a ∈ Elems(v)
and u ⊂ v if Elems(u) ⊆ Elems(v). We say u and v are permutations of each other
if MultiElems(u) = MultiElems(v). For permutation σ over [N ] and v ∈ F

N ,
define σ(v) := (v[σ(t)])N

t=1. For vectors u, v with |u| = |v|, u◦v is their Hadamard
product (entry-wise product). u‖v is the concatenation of two vectors. v←k :=
v[k+1..N ]‖v[1..k] is the circular shift of v by k positions to the left or −k positions
to the right if k < 0. Let v1, · · · , vc ∈ F

N , then the tuple (v1, · · · , vc) is a table
with N rows and c columns. The notations for tables, including σ(v1, · · · , vc),
(a1, · · · , ac) ∈ (v1, · · · , vc) and (u1, · · · ,uc) ⊂ (v1, · · · , vc), are defined similarly
as for vectors. Particularly, let Rows(v1, · · · , vc) denote the set of distinct tuples
{(a1, · · · , ac) ∈ (v1, · · · , vc)}, and MultiRows(v1, · · · , vc) be the multiset of the
tuples {(a1, · · · , ac) ∈ (v1, · · · , vc)}.

For any constant C ∈ F, let CN be a shorthand of the size-N vector consisting
of only C. In particular, 0N , 1N are the vectors consisting of N zeros or ones.
Let eN

i := 0i−1‖1‖0N−i be the i-th unit vector. The superscript may be omitted
if the length is clear from the context.

Let f(X) ∈ F[X] denote a polynomial over F. We call a subset D ⊂ F

a domain. Given a domain D of size N where the elements are ordered by
a1, · · · , aN , let f(D) be the vector (f(a1), · · · , f(aN )). Given a vector v of
size |D|, we can find at least one polynomial fv(X) such that fv(D) = v, and
call it an interpolation of v over D. We usually take D = {1, ω, · · · , ωN−1}
where ω is the N -th root of unity. In this setting, the polynomial interpola-
tion of ei is fei

(X) = ωi−1·(XN −1)
N ·(X−ωi−1) and can be evaluated by O(log(N)) field

operations. The identity polynomial fid(X) := X corresponds to the vector
id := (1, ω, · · · , ωN−1).

2.2 Interactive Proof System

An interactive proof system [GMR85] is a protocol between two parties, the
prover P and the verifier V. The prover tries to convince the verifier of a statement
(i,x) ∈ L. In this work, we consider arguments of knowledge with preprocessing.
That is, before the protocol starts, the index i is preprocessed offline by the
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indexer I, which produces helpful information for both the prover and the verifier,
such that the verifier does not need to learn the entire index, but only the
preprocessed information.

Definition 1 (Preprocessing Proof System). A preprocessing proof system
for indexed relation R is a triple of PPT algorithms (I,P,V). For any triple
(i,x,w), the indexer I takes as input i, and outputs iP and iV . The prover P
takes as input iP ,x,w, and the verifier V takes as input iV ,x, and they interact
with each other. At the end of the interaction, the verifier outputs b ∈ {0, 1},
indicating if it accepts (b = 1) or rejects (b = 0). Denote this procedure by
〈I(i),P(x,w),V(x)〉 → b.

The protocols should satisfy the following properties:

– Completeness. For any (i, x, w) ∈ R,

Pr[b = 0|〈I(i),P(x,w),V(x)〉 → b] ≤ ec

where ec is a negligible value called the completeness error. If ec is zero, then
we say this protocol has perfect completeness.

– Soundness. For any (i,x) �∈ L(R) and unbounded algorithm P∗,

Pr[b = 1|〈I(i),P∗,V(x)〉 → b] ≤ es

where es is a negligible value called the soundness error. If es is zero, then we
say this protocol has perfect soundness.

Moreover, a proof system may also enjoy other properties:

– public coin, if all the verifier messages are fresh random coins;
– statistical honest-verifier zero-knowledge, if there exists a simulator S such

that for any (i,x,w) ∈ R and any unbounded distinguisher D

|Pr[D(View(i,x,w))] − Pr[D(S(i,x))]| = negl

where View(i,x,w) is the view of the verifier during the execution.
– succinctness, if the verification time and/or the online communication cost is

sublinear with respect to the size of the witness;
– proof (resp. argument5) of knowledge, if for any i and (resp. PPT) prover
P∗, there exists a PPT extractor E, which has access to the same input and
random tape of P∗, such that for any efficient adversary A

Pr[b = 1 ∧ (i,x,w) �∈ R|A → x, 〈I(i),P∗,V(x)〉 → b,EP∗
(i) → w] ≤ es.

A public coin argument of knowledge can be transformed into a non-
interactive argument of knowledge via the Fiat-Shamir heuristic [FS86]. If the
protocol is also succinct (and zero-knowledge), then the resulting non-interactive
scheme is called a SNARK (or zkSNARK).
5 If soundness holds only against a polynomial-bounded prover, then we say this pro-

tocol is an argument.



Polynomial IOPs for Memory Consistency Checks 125

2.3 Polynomial IOP

A Polynomial Interactive Oracle Proof (PIOP) [BFS20] is a type of interactive
proof system where the prover’s messages sent to the verifier are restricted to be
polynomial oracles or field elements. PIOPs can be converted into conventional
interactive proofs through cryptographic compilers [BFS20] based on polynomial
comitments [KZG10,BFS20].

Definition 2 (Polynomial IOP). Given a finite field F, a preprocessing PIOP
of degree bound D for indexed relation R is a triple of PPT algorithms (I,P,V)
such that:

– (I,P,V) is a public coin preprocessing interactive proof system for R with
completeness error ec and soundness error es;

– I,P sends polynomials fi(X) ∈ F[X] of degree at most D to V;
– V sends challenges αk ∈ F to P;
– V is an oracle machine with access to a list of oracles, which contains one

oracle for each polynomial received from I and P;
– on receiving a query z ∈ F, the oracle for fi(X) responds with fi(z).

Having oracle access to f(X) gives the verifier the ability to evaluate f(X)
at arbitrary point z without learning the content of f(X) itself. Moreover, given
oracle access to f(X) and g(X), the verifier also gains the ability to evaluate
other polynomials, e.g., a · f(X) + b · g(X) and f(c · X). We say the verifier
simulates the oracle access to these polynomials. The verifier may also simulate
the oracle access to polynomials that admit fast evaluation. For example, the
constant polynomial f(X) = C, the identity polynomial fid(X) = X, and the
polynomial ωi−1·(XN −1)

N ·(X−ωi−1) , i.e., the polynomial obtained from interpolating ei over
D.

We adopt the following notations for describing a PIOP:

– “I sends f(X)” means the indexer sends f(X) to the prover and the oracle
access of f(X) to the verifier, and “P sends f(X)” means the prover sends
the oracle access of f(X) to the verifier.

– “V samples α
$← F” implies that V sends a uniformly random α to P.

– “V checks f(z) ·g(z) = h(z)” (or similar equations) means the verifier queries
the oracles for f(X), g(X), h(X) at point z, receives yf , yg, yh respectively,
and checks if yf · yg = yh.

2.4 PIOP for Vector Languages

Exploiting the polynomial interpolation, we may describe a PIOP as if the parties
are communicating with vectors instead of polynomials. We adopt the following
change of notations for ease of description:

– We say “I sends v” or “P sends v” in place of “I sends fv(X)” or “P sends
fv(X)”, where fv(X) is an interpolation of v over D.
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– Vector expressions stand for polynomials: u ◦ v for fu(X) · fv(X), a · u + b · v
for a · fu(X) + b · fv(X), and v←k for fv(ωkX).

– We say “V checks u+v◦w←k = 0” (or other vector equations) when the verifier
samples z ∈ F uniformly, the prover sends q(X) = fu(X)+fv(X)·fw(ω

kX)
Z(X) , and

the verifier checks fu(z)+fv(z) ·fw(ωkz) = q(z) ·Z(z), where Z(X) = XN −1
is the vanishing polynomial over D. When a protocol contains more than one
such checks, say Fi = 0 for i from 1 to m, where Fi is a vector expression,
the verifier samples β ∈ F and checks

∑m
i=1 βi−1Fi = 0 instead. By Schwartz-

Zippel Lemma, this check incurs a soundness error of (d + m − 1)/|F|, where
d is the degree of the polynomial divided by Z(X).

Although a PIOP may involve polynomial oracles in its execution, the parties
of a PIOP cannot take polynomial oracles as inputs, because the relation R is
not well-defined when oracles are involved. However, in constructing a PIOP,
we frequently encounter situations where it would be convenient to design a
building-block subprotocol for proving statements that involve polynomial ora-
cles, e.g., “given the oracle access to f(X) that was previously sent from the
prover, f(X) satisfies certain property”. In fact, all the PIOPs presented in this
work are such subprotocols, including the MCC, which works as a building block
of the entire ZKVM protocol. To formally define such subprotocols in the PIOP
model, we introduce the notion vector languages.

Definition 3 (Vector Language). Let m,N be positive integers. A vector
language R of width m and length N is a set of vector tuples, where each tuple
contains m vectors and each vector has length N .

Definition 4 (PIOP for Vector Language). Let R be a vector language
of width m and length N . We say a PIOP Π = (I,P,V) is a PIOP for R if
I takes inputs the description of R, and for any vectors v1, · · · , vm, P takes
inputs v1, · · · , vm, and V has oracle access to fv1(X), · · · , fvm

(X) at the start.
The PIOP is complete if for any tuple (v1, · · · , vm) ∈ R, V accepts except with
probability at most ec. The PIOP is sound if for any (v1, · · · , vm) �∈ R, V accepts
with probability no more than es.

2.5 Building Blocks

MCCs have two key building blocks: the permutation argument and the
lookup argument. Given u1, · · · ,um and v1, · · · , vm, the permutation argu-
ment [GWC19] (also referred to as the multi-set check [CBBZ22]) allows the
verifier to check that the tables (u1, · · · ,um) and (v1, · · · , vm) have the same
multi-set of rows, potentially in different orders. Formally, a permutation argu-
ment is a PIOP, referred to as Perm, for the vector language

RPerm :=
{

({ui ∈ F
N}m

i=1, {vi ∈ F
N}m

i=1)
∣
∣
∣
∣
MultiRows(u1, · · · ,um) =
MultiRows(v1, · · · , vm)

}

with completeness error ec,Perm and soundness error es,Perm. PLONK [GWC19]
provides an example construction of the permutation argument. The idea of the
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PLONK construction is to prove that for given random values α0, · · · , αm, the
two grand products

∏
i(α0+α1·u1,[i]+· · ·+αm·um,[i]) and

∏
i(α0+α1·v1,[i]+· · ·+

αm·vm,[i]) are equal. We denote the vectors satisfying the permutation relation by
(u1, · · · ,um) ∼ (v1, · · · , vm), and we say “V checks (u1, · · · ,um) ∼ (v1, · · · , vm)”
when the parties run the Perm protocol with inputs u1, · · · , um, v1, · · · , vm.

The lookup argument [GW20] allows the verifier to confirm that the set
of rows of the table (u1, · · · ,um) is contained in the set of rows of the table
(v1, · · · , vm). In ZKVM design, it is often necessary to prove this relationship
for only a selected subset of the rows in (u1, · · · ,um). To deal with this, we mod-
ify the traditional lookup relation by introducing a selector vector b with values
of either 0 or 1. This selector vector is used to specify the positions of the rows
to be selected. Formally, for any table (u1, · · · ,um) and vector b ∈ {0, 1}N , let
Rowsb(u1, · · · ,um) denote the set of tuples {(u1,[j], · · · ,um,[j])|j ∈ [N ],b[j] = 1}.
Then a lookup argument is a PIOP for the vector language

RLookup :=
{({ui ∈ F

N}m
i=1, {vi ∈ F

N}m
i=1,

b ∈ {0, 1}N

) ∣
∣
∣
∣
Rowsb(u1, · · · ,um) ⊆
Rows(v1, · · · , vm)

}

with completeness error ec,Lookup and soundness error es,Lookup. We denote the
vectors satisfying the lookup relation by (u1, · · · ,um) ⊂b (v1, · · · , vm), and we
say “V checks (u1, · · · ,um) ⊂b (v1, · · · , vm)” when the parties run the Lookup
protocol with inputs u1, · · · , um, v1, · · · , vm, b. We omit b when b = 1.

Although existing lookup argument constructions [GW20,ZBK+22,PK22,
GK22,ZGK+22,EFG22,Hab22,CBBZ22,SLST23] do not involve the selector
vector b, they can be adapted to take b into consideration. We will present
our construction in Sect. 5.2.

A widely used application of the lookup argument is the range check, partic-
ularly 32-bit range checks in ZKVMs. Formally, a 32-bit range check is a PIOP,
referred to as Range32, for the vector language

RR32 =
{
(v ∈ F

N ,b ∈ {0, 1}N )|∀t ∈ [N ],b[t] = 0 ∨ v[t] ∈ [0..232 − 1]
}

with completeness error ec,Range32 and soundness error es,Range32.

3 The Memory Consistency Check Problem

We start from defining the problem of memory consistency check (MCC). We
call a table (op, addr, val) ∈ F

N×3 a consistent memory trace if the value val[t]
for each row with op[t] = Read is equal to the value associated with the address
addr[t] the last time it was accessed. This concept is formalized in Definition 5,
where we set Read = 0 and Write = 1 for simplicity and without loss of generality.

Definition 5 (Memory Consistency Check). Let N be an integer and A ⊂
F. A memory consistency check for memory address space A is a PIOP Π =
(I,P,V) for the following vector language:

RA
Mem :=

⎧
⎨

⎩

op ∈ {0, 1}N ,
addr ∈ AN ,
val ∈ F

N

∣
∣
∣
∣
∣
∣

∀t ∈ [N ], either op[t] = 1 or
prev(t; addr) =⊥ or
val[t] = val[prev(t;addr)]

⎫
⎬

⎭
where
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prev(t; addr) :=
{

max J :=
{
t′

∣
∣t′ < t ∧ addr[t′] = addr[t]

}
, if J �= ∅

⊥, otherwise .

We may write prev(t) instead of prev(t; addr) for simplicity when the choice
of addr is unambiguous. Intuitively, prev(t) maps t to the previous time t′ when
the same address appeared. The memory consistency requires that val[t] is equal
to val[t′], unless the current instruction is writing (op[t] = 1) or this address was
never accessed before (t′ =⊥).

Next, we will explain the mainstream approach for constructing MCCs, which
is referred to as the sorting paradigm and is used in all of the ZKVM projects
discussed in this work.

4 The Sorting Paradigm

The main challenge in MCCs is handling the history-dependency of the memory:
the value retrieved from a memory operation is dependent on previous oper-
ations that may be far ahead. A natural solution to this challenge is to sort
the table (op, addr, val) to group related operations together. To avoid affecting
the consistency of this trace, the sorting should satisfy the following criterion:
it should never swap the order between two rows with the same address. The
sortings that follow this criterion are formalized by the following definitions. See
the full version of this paper for the more formal definitions.

Definition 6 (Sorting, Informal). A sorting of table (v(1), · · · , v(m)) ∈
F

N×m by keys v(k1), · · · , v(k�) is another table (ṽ(1), · · · , ṽ(m)) ∈ F
N×m that is a

permutation of the original table such that the rows in the table (ṽ(k1), · · · , ṽ(k�))
are sorted lexigraphically.

Definition 7 (Canonical Sorting, Informal). The canonical sorting of table
(v(1), · · · , v(m)) ∈ F

N×m by keys v(k1), · · · , v(k�) is one of its sorting (ṽ(1), · · · ,

ṽ(m)) ∈ F
N×m such that for any two rows with identical keys, these two rows are

ordered respecting their orders in the original table.

With the above definition of sorted tables, we now describe how to sort
the memory trace. Let �addr be any total order over the address space A and
RA

CN(�addr) denote the vector language that consists of all the vector tuples (op,

addr, val, õp, ãddr, ṽal) such that (õp, ãddr, ṽal) is the canonical sorting of
(op, addr, val) by the key addr with total order �addr. Let RA

CN(addr) be the
union of all these vector languages, i.e., RA

CN(addr) :=
⋃

�addr
RA

CN(�addr). The
following theorem is the central idea behind the sorting technique for MCCs.

Theorem 1. Given any A ⊂ F and tuple ((op, addr, val), (õp, ãddr, ṽal)) ∈
RA

CN(addr), (op, addr, val) ∈ RA
Mem if and only if (õp, ãddr, ṽal) ∈ RA

Mem.

Proof (Sketch). The conclusion follows from the fact that any canonical sorting
can be obtained by repeatedly swapping rows with different keys, i.e., addr[t],
and that such swaps do not affect the membership of RA

Mem. The full proof is
left to the full version.
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Based on Theorem 1, Algorithm 1 shows the common workflow of all the
MCCs using the sorting technique, where the CSortA protocol is decided by the
concrete constructions. We call this workflow the sorting paradigm. In Algo-
rithm 1, we use the following trick for proving a statement of the form “if
r = 0 ∧ s = t then u = v”. We note that this statement is equivalent to “∃a, b
such that a · r + b · (s− t) = u−v”. We use this trick to prove the statement that
whenever op is 0 for reading and the sorted address matches with the previous
one, then the value should also match.

Theorem 2. If CSortA is a PIOP for the vector language RA
CN(�addr) with com-

pleteness error ec and soundness error es, where �addr is any total order over A,
then the CSortMCCA protocol in Algorithm 1 is an MCC for A with completeness
error ec and soundness error es + (2N + 1)/|F|.

For the proof please refer to the full version of this paper.
In the following subsections, we will introduce three different constructions

of the CSort protocol, each for a different memory model.

Algorithm 1. Sorting Paradigm
procedure CSortMCCA(op, addr, val)

P sends õp, ˜addr, ˜val, the canonical sorting of (op, addr, val);

P sends a, b such that ∀t ∈ [N − 1], a[t] · õp[t+1] + b[t] · ( ˜addr[t+1] − ˜addr[t]) =

˜val[t+1] − ˜val[t];
V checks op ◦ op = op;

V checks (id − 1) ◦ (a ◦ õp←1
+ b ◦ ( ˜addr

←1 − ˜addr) − (˜val
←1 − ˜val)) = 0 where

id = {1, ω, · · · , ωN−1} is the evaluation of f(X) := X over D;

P and V run the CSortA protocol with inputs op, addr, val, õp, ˜addr, ˜val.

4.1 Contiguous Read-Only Memory

We start from the simplest case—the contiguous read-only memory setting,
which is adopted by Cairo [GPR21]. In this setting, there is no writing oper-
ation, which means op is restricted to be the zero vector, hence “read-only”.
Moreover, all accessed memory addresses form a contiguous region, which means
Elems(addr) = {s, s + 1, · · · , s + S − 1} for some s ∈ F and S ∈ N. Formally,
all valid execution traces for contiguous read-only memory constitute the vector
language

RCROM :=
{
(addr, val)

∣
∣ (0, addr, val) ∈ RF

Mem, addr ∈ RCONT

}

where RCONT =
{
addr

∣
∣∃s ∈ F, S ∈ [N ],Elems(addr) = {s + i}S−1

i=0

}
.

Contiguous read-only memories are more restricted and have fewer capabil-
ities compared to read-write memories, thus the programming process is more
challenging for programmers. On the positive side, the contiguous read-only
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memory model enables a much simpler protocol for checking memory consis-
tency. Being read-only, the vectors op, õp and a are eliminated from Algo-
rithm 1, and every sorting of (0, addr, val) is the canonical sorting. By conti-
guity, ãddr satisfies that adjacent addresses differ by at most one. These obser-
vations lead to Algorithm 2. In this protocol, the vector equation checked by
the verifier ensures that ãddr[t] − ãddr[t+1] is either 0 or 1, except for the edge
case t = N , which is eliminated by multiplying the vector id − ωN−1 · 1 =
(1 − ωN−1, ω − ωN−1, · · · , ωN−1 − ωN−1), which is zero only at t = N .

Algorithm 2. Canonical Sort for Contiguous Read-Only Memory

procedure CROMSort(addr, val, ˜addr, ˜val)

V checks (addr, val) ∼ ( ˜addr, ˜val);

V checks (id − ωN−1 · 1) ◦ ( ˜addr
←1 − ˜addr) ◦ ( ˜addr

←1 − ˜addr − 1) = 0.

Theorem 3. Assuming the input vectors satisfy ∀t ∈ [N − 1], ãddr[t] �=
ãddr[t+1] ∨ ṽal[t] = ṽal[t+1], then the CROMSort protocol in Algorithm 2 is a
PIOP for the vector language

RCROM
CN :=

{

(addr, val, ãddr, ṽal)
∣
∣
∣
∣
addr ∈ RCONT

(0, addr, val, 0, ãddr, ṽal) ∈ RA
CN(�addr)

}

with completeness error ec,Perm and soundness error es,Perm+2N/|F|, where �addr

is the total order over Elems(addr) = {s+i}S
i=1 such that s+i �addr s+j ⇔ i ≤ j

for every pair of (i, j) ∈ [0..S − 1]2.

The proof is left to the full version.
Next, we handle the most popular case where the memory is writable and

the memory address space is the set of 32-bit integers.

4.2 Read-Write Memory with 32-Bit Addresses

We explain how to construct CSort when A = [0..232 − 1]. This 32-bit address
space is adopted by Miden [Mid22] and 32-bit RiscZero [Ris22]. The techniques
can also be extended to 64- and 256-bit address spaces; the later is used in
zkEVMs, e.g., Scroll [Scr22], Polygon Hermez [Pol22], zkSync [zkS22].

In the 32-bit randomly accessible memory, the differences between adjacent
entries in the sorted addresses ãddr are no longer restricted to {0, 1}, but fall in
a larger range, namely [0..232 − 1]. Therefore, the boolean check in Algorithm 2
is replaced with the 32-bit range check. Moreover, without the read-only setting,
the canonicity of the sorting is no longer automatically guaranteed. Instead, the
prover sorts the memory trace together with the vector incs = (1, 2, · · · , N) and
the verifier ensures the sorted vector ĩncs satisfies certain properties, as detailed
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in Algorithm 3. In this protocol, the vectors inv and diff are used to indicate the
positions where ãddr[t+1] differs from ãddr[t], i.e. ãddr[t+1] − ãddr[t] is invertible.
The second Range32 in Algorithm 3 uses the tricks from Hermez and Miden,
which applies the 32-bit range check simultaneously to two vectors, exploiting
the fact that we only need to ensure ĩncs[t+1]− ĩncs[t] ∈ [0, 232) for diff [t] = 0 and
ãddr[t+1] − ãddr[t] ∈ [0, 232) for diff [t] = 1. The masking vector 1 − eN excludes
the case t = N from the range check.

Theorem 4. The RW32Sort protocol in Algorithm 3 is a PIOP for the vector
language R[0..232−1]

CN (�addr) with completeness error ec,Perm + 2 · ec,Range32 and
soundness error (2N + 1)/|F| + es,Perm + 2 · es,Range32, where �addr is the natural
order over integers.

The proof is left to the full version.
The above protocol can be extended to 32k-bit address space for arbitrary k,

as long as |F| > 232k+1. In practice, we are interested in cases where k = 1, 2, 4
and 8. However, the cost also grows linearly with k, particularly the number of
online polynomial oracles and queries. In comparison, an MCC protocol with the
full address space, i.e., A = F, provides a sufficiently large space with a smaller
cost. We introduce the related techniques next.

Algorithm 3. Canonical Sort for 32-bit Read-Write Memory

procedure RW32Sort(op, addr, val, õp, ˜addr, ˜val)
I sends incs = (1, 2, · · · , N);

P sends ˜incs satisfying (incs, op, addr, val) ∼ (˜incs, õp, ˜addr, ˜val);

P sends inv such that for every t ∈ [N ], inv[t] = 0 if ˜addr[t+1] = ˜addr[t], and

inv[t] = ( ˜addr[t+1] − ˜addr[t])
−1 elsewhere, where ˜addr[N+1] is treated as ˜addr[1];

P sends diff such that for every t ∈ [N ], diff [t] = 0 if ˜addr[t+1] = ˜addr[t], and

diff [t] = 1 elsewhere, where ˜addr[N+1] is treated as ˜addr[1];

V checks (incs, op, addr, val) ∼ (˜incs, õp, ˜addr, ˜val);

V checks ( ˜addr
←1 − ˜addr)◦ inv = diff and diff ◦( ˜addr

←1 − ˜addr) = ˜addr
←1 − ˜addr;

P and V run the Range32 protocol with inputs addr, 1;

P and V run the Range32 protocol with inputs (1 − diff) ◦ (˜incs
←1 − ˜incs) + diff ◦

( ˜addr
←1 − ˜addr) and 1 − eN .

4.3 Read-Write Memory with the Full Address Space

We present the canonical sorting extracted from Triton VM [TV22], which, at the
time of writing, is the only ZKVM that adopts the setting with both full address
space (i.e., A = F) and a read-write memory. This address space covers the
functionalities of both 64-bit and 256-bit memories6. In cases where |F| < 2256,
6 Unless for extremely special cases where the program relies on the memory check to

decide whether to abort or not.



132 Y. Zhang et al.

one can use two or more field elements as a memory address, making A = F
c

for c > 1, and linearly combine the c address traces with random challenges
supplied by the verifier. Each extra address trace enlarges the memory space by
a factor of |F| with the cost of only one online polynomial oracle. For simplicity,
we assume c = 1 in the rest of this section.

When A = F, the greatest challenge is to define a total order over Elems(addr)
that is efficiently verifiable, since Elems(addr) is neither contiguous nor restricted
to a small subset. Triton VM overcomes this issue by designing a new technique
for showing that ãddr is sorted by any total order, which we summarize in
Algorithm 4. Algorithm 4 is slightly different from that of Triton VM, dropping
the engineering-related details. Moreover, we extract the core of the Triton VM
memory protocol, the contiguity check, and generalize and reformulate it as the
distinctness check, which will also be used in our construction in the next section.

The contiguity check of Triton VM relies on the following lemma, which
presents an equivalent condition for a vector being sorted.

Lemma 1. Given any vector v ∈ F
N , the following two statements are equiva-

lent:

1. There exists a total order “�” over F such that v is sorted by “�”.
2. There exists a vector b ∈ {0, 1}N such that

– b[1] = 1, and for every t ∈ [N − 1], either v[t] = v[t+1] or b[t+1] = 1;
– the elements {v[t]|t ∈ [N ],b[t] = 1} are distinct.

The proof is left to the full version.
Lemma 1 reduces the problem of proving that v is sorted to proving that the

elements in certain positions of v are distinct, where the positions are specified
by b. This problem is then handled by the following lemma.

Lemma 2 (Proposition 6.6 of [Mig92]). Let F be a finite field and f(X) =
∑d

i=0 fiX
i ∈ F[X]. Then f(X) is squarefree if and only if gcd(f(X),Df(X)) =

1, where Df(X) is the shorthand for formal derivative of f(X), i.e., Df(X) :=
d(f(X))

dX =
∑d−1

i=0 (i + 1)fi+1X
i.

Lemma 2 inspires the protocol DstFull in Algorithm 4, which proves that
given b ∈ {0, 1}N , the elements {v[i]|i ∈ [N ],b[i] = 1} are distinct. This protocol
exploits the formulae of logarithmic derivative Df(X) = f(X) · D(log(f(X)))
and D(log

∏
i(X − vi)) =

∑
i

1
X−vi

from calculus. The vectors f and u in this
protocol are constructed so that their last entries are exactly f(β) and g(β)/f(β),
respectively. Based on the DstFull protocol, we construct the FullSort protocol,
as presented in Algorithm 4.

Theorem 5. The DstFull protocol in Algorithm 4 is a PIOP for the vector lan-
guage

RDistinct :=
{
(v ∈ F

N , b ∈ {0, 1}N )
∣
∣ ∀(i, j) ∈ [N ]2, (b[i], b[j]) �= (1, 1) ∨ v[i] �= v[j]

}

with completeness error ec,DstFull = N/|F| and soundness error es,DstFull = (4N +
D + 4)/|F| where D is the degree bound of PIOP.
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The proof is left to the full version.

Theorem 6. The FullSort protocol in Algorithm 4 is a PIOP for the relation
RF

CN(addr) with completeness error ec,Perm + ec,Lookup + ec,DstFull and soundness
error (2N + 1)/|F| + es,Perm + es,Lookup + es,DstFull.

The proof is left to the full version.

5 Permem: New Construction with the Full Address
Space

Inspired by our systemization of existing protocols, we propose several ways
to optimizing the performance of previous works. First, observing the bottle-
neck of the sorting paradigm, in which the sorted vectors inevitably cost four
online polynomials, we propose an alternative method for addressing the history-
dependency of memory, called address cycle method, that avoids these costs.
Then, using this method, we propose Permem, a more efficient MCC that sup-
ports the full memory address space. Finally, observing the significant impact
of lookup arguments on the efficiency of MCCs, which is also an independently
important target of research [GW20,ZBK+22,PK22], we propose a more efficient
lookup argument gcq.

5.1 Address Cycle Method and Permem

As an alternative to the sorting paradigm, we propose a new method for address-
ing the history-dependency issue of MCC, which we call the address cycle
method. This method is extracted from Arya [BCG+18]. Using this method,
we construct a new MCC protocol, named Permem.

The insight behind the address cycle method is the following observation
on the definition of RMem. The consistency of the memory trace op, addr, val is
equivalent to a series of equality checks over elements in val, where these equality
checks are determined by op and addr. The equality checks can be accomplished
using the technique of PLONK [GWC19] that checks if val remains invariant
under some permutation σ. However, unlike in PLONK, the permutation σ here
is kept secret from the verifier. As a result, the prover must demonstrate, in the
online phase, that the committed permutation is consistent with op and addr.

Multiple permutations exist that capture the equality checks induced by
RMem. We choose the following one that is conceptually simpler.

Definition 8 (Previous Access Permutation). The previous access per-
mutation of addr ∈ F

N is the permutation over [N ] defined by

σaddr(t) =
{
prev(t; addr), if prev(t; addr) �=⊥
max{j ∈ [N ]|addr[j] = addr[t]}, otherwise ,

where prev(t; addr) is defined as in Definition 5.
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Algorithm 4. Canonical Sort for Full Address Space
procedure DstFull(v, b)

P locally computes f(X) =
∏

i∈[N ],b[i]=1(X − v[i]), g(X) = Df(X);

P sends s(X), t(X) such that s(X)f(X) + t(X)g(X) = 1 computed as follows:
V Let {r1, · · · , rk} = {v[i]|i ∈ [N ], b[i] = 1};
V Compute ti = 1/g(ri) for i ∈ [k] by multi-point evaluation and batched inver-

sion;
V Interpolate t(X) such that t(ri) = ti, and compute s(X) = 1−t(X)g(X)

f(X)
;

V samples β
$← F and queries for s(β), t(β);

P sends f, u where f [i] =

{

(β − v[1]) · b[1] + 1 − b[1], i = 1
f [i−1] · (

(β − v[i]) · b[i] + 1 − b[i]

)

, i > 1
and u[i] =

{

b[1]
β−v[1]

, for i = 1 or u[i−1] +
b[i]

β−v[i]
, for i > 1 ;

V checks b ◦ b = b and (f ◦ (s(β) · 1 + t(β) · u) − 1) ◦ eN = 0;
V checks e1 ◦ ((β − v) ◦ b + 1 − b − f) = 0;
V checks (id − 1) ◦ (

f←−1 ◦ ((β − v) ◦ b + 1 − b) − f
)

= 0;
V checks (id − 1) ◦ ((u − u←−1) ◦ (β − v) − b) = 0.

procedure FullSort(op, addr, val, õp, ˜addr, ˜val)
I sends incs = (1, 2, · · · , N);

P sends ˜incs as in Algorithm 3 and b computed from ˜addr as in Lemma 1;

V checks b ◦ e1 = e1 and ( ˜addr − ˜addr
←−1

) ◦ (1 − b) = 0;

V checks (incs, op, addr, val) ∼ (˜incs, õp, ˜addr, ˜val) and ˜incs − ˜incs
←−1 ⊂1−b incs;

P and V run the DstFull protocol with inputs ˜addr, b.

Given this permutation, (op, addr, val) ∈ RMem is equivalent to the following
statement: the vector σaddr(val) − val should be zero except at positions where
prev(t; addr) �=⊥ or op[t] = 1, as demonstrated in the following theorem.

Theorem 7. Given op ∈ {0, 1}N , addr ∈ AN , val ∈ F
N . Let first ∈ {0, 1}N be

defined as first[t] = 1 if and only if addr[t] �∈ addr[1..t−1]. Then (op, addr, val) ∈
RA

Mem if and only if (σaddr(val) − val) ◦ (1 − first) ◦ (1 − op) = 0, where σaddr is
the previous access permutation of addr.

Proof. Note that first[t] = 1 is equivalent to prev(t; addr) =⊥. Then according
to definitions of RA

Mem and σaddr, (op, addr, val) ∈ RA
Mem if and only if for every

t ∈ [N ], first[t] = 1 or op[t] = 1 or val[t] = val[σaddr(t)], which is equivalent to the
claimed vector equation.

The following lemma shows the properties of σaddr with which the prover can
prove to the verifier that a committed permutation is indeed σaddr. Theorem 7
and Lemma 3 together leads to our new MCC, which we call the address cycle
method, in Algorithm 5, where the Distinct protocol is yet to instantiate. Note
that the notation “⊂1−first” flips “⊂first” in the sense that the lookup check is
only applied to the subset of positions where first[i] = 0 instead of first[i] = 1.



Polynomial IOPs for Memory Consistency Checks 135

Lemma 3. Given addr ∈ F
N , the previous access permutation σaddr of addr

is the unique permutation over [N ] that satisfies the following properties: (a)
σaddr(addr) = addr; and (b) for any pair t �= t′ such that σaddr(t) ≥ t and
σaddr(t′) ≥ t′, addr[t] �= addr[t′].

The proof is left to the full version.

Theorem 8. Let A ⊂ F be the set of addresses. Assume that DistinctA is a
PIOP for the vector language

RDistinct,A :=
{

(v ∈ F
N ,b ∈ {0, 1}N )

∣
∣
∣
∣
∀(i, j) ∈ [N ]2, if b[i] = b[j] = 1
then (v[i], v[j]) ∈ A2 ∧ v[i] �= v[j]

}

with completeness error ec,Distinct and soundness error es,Distinct, then the
ACMCCA protocol in Algorithm 5 is a PIOP for RA

Mem with completeness error
ec,Perm+ec,Lookup+ec,Distinct and soundness error (3N+1)/|F|+es,Perm+es,Lookup+
es,Distinct.

The proof is left to the full version.
We then provide two instantiations of the address cycle method.

Full Memory Address Space. Note that RDistinct,A in Theorem 8 becomes the
same as RDistinct in Theorem 5 when A = F. Therefore, the DstFull protocol in
Algorithm 4 satisfies the requirement of DistinctF. Placing this protocol directly
into the address cycle method produces a new MCC which we name Permem.

Linear-Size Memory Address Space. When the memory address space A is the set
[M ] for memory size M ≈ N , as in Arya, there exists a simpler and more efficient
construction of DistinctA, denoted by DistLinear. Combining this distinctness
check with the address cycle method gives us AryaMem, which roughly follows
the same pattern as the memory component of Arya but adopts many PIOP-
specific techniques. See the DistLinear protocol in the full version.

Algorithm 5. Address Cycle Method
procedure ACMCCA(op, addr, val)

I sends incs = (1, 2, · · · , N);
P computes σaddr as in Definition 8;
P sends σaddr := (σaddr(1), · · · , σaddr(N));
P sends sval := σaddr(val) (which is (val[σaddr(1)], · · · , val[σaddr(N)]))
P sends first where first[t] = 1 if addr[t] 
∈ addr[1..t−1], otherwise first[t] = 0;
V checks (σaddr, addr, sval) ∼ (incs, addr, val) and incs − σaddr ⊂1−first incs;
V checks op ◦ op = op and (1 − first) ◦ (1 − op) ◦ (sval − val) = 0;
P and V run the DistinctA protocol (Theorem 8), with inputs addr and first.
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5.2 Grand-Sum-Based Lookup Argument

Observing that the lookup argument presents an influential factor in the effi-
ciency of most MCCs, we provide gcq, in Algorithm 6, a novel lookup argument
with improved performance. Our protocol takes inspiration from cq [EFG22] and
differs from cq by replacing the univariate sumcheck with the grand-sum check,
resulting in a smaller number of online polynomials. Our protocol assumes that
the invoker will ensure that the input vector b is a boolean vector, as is the case
in the MCCs. Our protocol exploits the following technique from the grand-sum
check: a vector a satisfies

∑N
i=1 a[i] = 0 if and only if there exists vector c such

that a = c→1 − c. Therefore, we can simply eliminate a from the protocol, and
simulate it using c→1 − c wherever a is needed.

Theorem 9. Assume that b ∈ {0, 1}N is guaranteed. The single-gcq protocol in
Algorithm 6 is a PIOP for R(m=1)

Lookup (defined in Sect. 2.5) with completeness error
2N/|F| and soundness error 7N/|F|. The gcq protocol is a PIOP for RLookup with
completeness error 2N/|F| and soundness error (m + 8N)/|F|.

The proof is left to the full version.

Algorithm 6. Lookup Argument
procedure gcq(u1, · · · , um, v1, · · · , vm, b)

V samples α
$← F;

P and V run the single-gcq protocol with inputs
∑m

i=1 αi−1ui,
∑m

i=1 αi−1vi, b.

procedure single-gcq(u, v, b)
P sends m = (mi)

N
i=1 where mi = |{j ∈ [N ]|u[j] = v[i], b[j] = 1}|;

V samples β
$← F;

P sends c :=
(

∑i
j=1

(

b[j]
u[j]+β

− m[j]
v[j]+β

))N

i=1
;

V checks (u + β) ◦ (v + β) ◦ (c − c←−1) = b ◦ (v + β) − m ◦ (u + β).

Our protocol can be extended to achieve smaller amortized costs for k lookup
arguments with the same superset v. Specifically, the extended version requires
�k+1

2 � online polynomial oracles, compared to 2k for näıvely invoking single-gcq
by k times. The example for k = 2, called double-gcq, is presented in the full
version. We write “V checks (u‖u′) ⊂b‖b′ v” when the parties run the double
lookup argument. An immediate application is the Range32 protocol for the
32-bit range check, which can be directly extended to 64- or 256-bit ranges.

6 Efficiency Analysis

We evaluate and compare the performance of the different MCCs. We measure
their performance based on two factors: the number of times building blocks
Perm and Lookup are used, and the number of online polynomial oracles and
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evaluation queries outside of these building blocks. A summary of these costs is
presented in Table 1.

For more concrete comparisons, we instantiate the permutation argument
with the construction from PLONK [GWC19], and the lookup argument with
two constructions respectively: the state-of-the-art construction cq [EFG22] and
our gcq. See the full version of this paper for the PIOP version of cq after applying
the standard optimization techniques and adding the masking vector b. We also
analyze the performance of the 32k-bit memory with a different tradeoff between
the maximal degree and the number of online polynomials. This alternative
approach is characterized by not merging the grand-sum vectors in double-gcq.
The concrete performance results are summarized in Table 2.

We present in Table 3 the estimated proof sizes and the costs of the prover and
the verifier after instantiating the PIOP with the KZG polynomial commitment
scheme. These numbers are the costs of the memory consistency checks when
they are compiled into a SNARK as a standalone PIOP. They can only partially
reflect the additional costs these protocols contribute to the entire ZKVM, as
batching is extensively used in the compilation. Specifically, MCC can share
the verifier-sampled evaluation point z with the other parts, and the proof for
opening polynomial commitments can be batched with those for the rest of
the PIOP, just like other building blocks like permutation/lookup arguments.
Therefore, the additional cost brought by MCC in practice would be smaller
than the numbers shown in Table 3.

Comparison Among Prior MCCs. As Table 2 shows, the simplest memory model,
contiguous read-only memory, has the most efficient MCC protocols with either
instantiation of the building blocks. For non-contiguous read-write memories,
the Triton VM MCC requires roughly the same number of online polynomial
oracles and evaluation queries as the check for 32-bit memory. However, for 256-
bit memory, the Triton VM check costs approximately 20 to 30 fewer online
polynomial oracles and evaluation queries. Although AryaMem has the fewest
polynomials and queries, its memory space is also the most limited among the
read-write memories.

Performance of Permem. Our new protocol costs three fewer online oracles and
three fewer evaluation queries compared to Triton VM. Both Permem and Tri-
ton VM cost one more distinct evaluation point—the β in the DstFull protocol
(Algorithm 4), compared to all other works. This additional evaluation point
and the O(S · log2 S) complexity of multi-point evaluation seems inevitable for
achieving the full address space.

Compared to all existing works with read-write memories, Permem is outper-
formed only by AryaMem, which is also based on the address cycle method. In
detail, Permem costs three more polynomials and two more evaluation queries,
in exchange for the larger memory address space.

Comparison between Lookup Arguments. When used in MCCs, our new lookup
argument gcq reduces the number of online polynomial oracles by 2 to 10 and the
number of online queries by 1 to 9, compared to the state-of-the-art construction
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cq. In particular, the performance of the MCCs with the full address space has
overall improvements when instantiated with gcq.

7 Conclusion

In this work, we have analyzed the current methods for performing MCCs, a
crucial and expensive component in ZKVMs, and formalized all of them as vari-
ants of the sorting paradigm. Our study provides a comprehensive overview of
the various techniques used to build MCCs. Inspired by the techniques cov-
ered in this systemization, we suggest improvements to existing protocols in two
aspects: a novel MCC protocol Permem that costs fewer building blocks, and a
new lookup argument also with improved efficiency.

We hope that our work will inspire further research that explores new com-
binations of these techniques or improves existing components. In particular, for
full address space, the DstFull protocol presents a bottleneck in terms of perfor-
mance. It requires four online polynomials, one distinct evaluation point, and
has a prover cost of O(S log2 S). Improving its performance or eliminating the
dependence on this protocol would be a valuable avenue for future work.
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Abstract. Obtaining three round zero-knowledge from standard cryp-
tographic assumptions has remained a challenging open problem. Mean-
while, there has been exciting progress in realizing useful relaxations such
as weak zero-knowledge, strong witness indistinguishability and witness
hiding in two or three rounds. In particular, known realizations from
generic assumptions obtain: (1) security against adaptive verifiers assum-
ing fully homomorphic encryption among other standard assumptions
(Bitansky et. al., STOC 2019), and (2) security against non-adaptive
verifiers in the distributional setting from oblivious transfer (Jain et. al.,
Crypto 2017).

This work builds three round weak zero-knowledge for NP in the non-
adaptive setting from doubly-enhanced injective trapdoor functions. We
obtain this result by developing a new distinguisher-dependent simula-
tion technique that makes crucial use of the Goldreich-Levin list decoding
algorithm, and may be of independent interest.

Keywords: Distinguisher · Simulation · Zero-knowledge ·
Goldreich-Levin

1 Introduction

Zero-knowledge (ZK) proofs are among the most widely used cryptographic prim-
itives, with a rich history of study. In particular there has been significant recent
interest in understanding the round complexity of zero-knowledge and its vari-
ants.

Zero-knowledge protocols are typically defined via the simulation paradigm.
A simulator Sim is a polynomial-time algorithm that mimics the interaction
of an adversarial verifier V∗ with an honest prover P. Sim has access to the
verifier V∗ and knows the statement, i.e., x ∈ L, for an instance x of an NP
language L. Importantly, the simulator does not have access to any other “secret”
information, including the (typically hard to find) NP witness for x.

The goal of the simulator is to generate a simulated view for the verifier
V∗, given only the information that x ∈ L, such that this is indistinguishable
c© International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14439, pp. 142–173, 2023.
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from the view that the verifier would have obtained in its real interaction with
the honest prover P. Informally, a protocol is zero-knowledge (ZK) iff there
exists a simulator Sim that with access to V∗ generates a view, which fools all
distinguishers D∗ that may be trying to distinguish a simulated view from a real
one.

Weak Zero-knowledge [10]. The definition of weak zero-knowledge (WZK)
relaxes ZK by reversing the order of quantifiers: it requires that for every verifier-
distinguisher pair (V∗,D∗), there exists a simulator Sim that fools this pair.
This removes the need for a universal simulator that fools all distinguishers. In
applications, this reversal of quantifiers does not necessarily incur a large privacy
cost: e.g., this still guarantees that no (V∗,D∗) can recover the NP witness, or
any predicate of the NP witness. In fact, it also implies the following relaxations.

– Witness Hiding [12] loosely guarantees that a malicious verifier cannot
recover a witness from a proof unless the witness can be efficiently computed
from the statement alone.

– Strong Witness Indistinguishability (Strong WI) [13] requires that for
two indistinguishable statement distributions D0,D1, a proof (or argument)
for statement d0 ← D0 must be indistinguishable from a proof (or argument)
for statement d1 ← D1.

– Witness indistinguishability (WI) [12] ensures that proofs of the same
statement generated using different witnesses are indistinguishable. WI does
not hold for statements sampled from different distributions, and is meaning-
less for statements that have a unique witness associated with them.

Prior Techniques to Realize Weak ZK. Unlike zero-knowledge, weak ZK
(and therefore all the other relaxations it implies) has been shown to be achievable
in three rounds assuming the existence of unleveled fully-homomorphic encryp-
tion [4]. In a more relaxed “non-adaptive” setting, where the instance is sam-
pled from an entropic distribution only after the verifier’s challenge is fixed,
three round weak ZK (and similarly, all other relaxations) can be obtained
from weaker assumptions: namely any statistically sender-private (SSP) oblivious
transfer. This type of OT can be instantiated from algebraic assumptions such as
DDH [1,22], QR, N th residuosity [18], LWE [5], and most recently even LPN [3].
Similarly, while the primary contribution of [4] is to remove the non-adaptivity
requirement via fully homomorphic encryption, a pared-down version of their
protocol yields weak ZK in the non-adaptive setting from random self-reducible
public-key encryption (which can also be viewed as a type of homomorphism) as
opposed to OT. Finally, a recent work [6] obtains a realization of distinguisher-
dependent simulation under the specific assumption that factoring is hard.

At a high level, all the above works build strategies that enable a sim-
ulator to learn a trapdoor by making repeated queries to a distinguisher,
called distinguisher-dependent simulation. This technique has subsequently had
had applications to non-malleable cryptography [21] and MPC [2], to low-
communication laconic protocols [7] and new types of oblivious transfer [8,20].
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Despite its applicability, we lack an understanding of the generic assumptions
under which this technique is instantiable.

This work: Non-adaptive Distinguisher-Dependent Simulation from
Doubly-Enhanced Injective TDFs. This work focuses on improving
our understanding of the generic assumptions that can be used to realize
distinguisher-dependent simulation. In particular, while existing realizations
from generic assumptions require schemes with homomorphic capabilities, we
ask whether there are other classes of generic assumptions that imply three-
round weak zero-knowledge protocols.

We obtain a positive answer to this question, obtaining non-adaptive weak
ZK/strong witness indistinguishable/witness hiding arguments assuming the
existence of enhanced, injective trapdoor functions and two-message witness
indistinguishable arguments. The latter can themselves be based on doubly-
enhanced injective trapdoor functions (with efficiently verifiable keys) [9] or an
array of assumptions such as (subexponentially hard versions of) DDH, QR,
N th residuosity, LWE. Under the same assumptions, we also obtain three round
arguments of knowledge that satisfy weak zero-knowledge, strong witness indis-
tinguishability and witness hiding properties in the non-adaptive setting. Even
in the non-adaptive setting, these systems are already known to have several
applications, including to multiparty computation [19] and non-malleable com-
mitments [21].

2 Our Techniques

The starting point of our work is the following template for distinguisher-
dependent simulation, that abstracts out and generalizes ideas underlying exist-
ing frameworks.

A Template for Distinguisher-Dependent Simulation: Encrypted
Proofs. Suppose a prover P wants to convince a verifier V that an instance
x ∈ L, for some NP language L.

– The verifier V will first sample a puzzle together with a corresponding solution
– which we will call the secret. V will send the puzzle to the prover P, while
keeping the secret hidden.

– Given a verifier message containing the puzzle, P will encrypt its proof in
such a way that anyone that holds the secret corresponding to this puzzle can
decrypt and check the proof.

For security, we will require that:

– Any proof encrypted to a puzzle cannot be decrypted without knowledge of
the corresponding secret, and

– Given a random puzzle, its corresponding secret is hard to find.

The first requirement on knowledge can be made more precise: consider any
distinguisher D∗ that distinguishes between encrypted proofs generated by an
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honest prover, and proofs sampled (efficiently) by a simulator from a public
distribution. Then it should be possible to extract a secret from this distinguisher
by building an efficient search algorithm S∗. In more detail, S∗ on input a random
puzzle should be able to use D∗ to efficiently find the secret for V∗’s puzzle.

Finally, using known techniques [11], this protocol can be designed to allow
a simulator to easily generate simulated views once it knows the secret. In sum-
mary, for any D∗, either

– Proofs sampled by Sim from a public distribution already fool D∗, and if not,
then

– Sim can use the search algorithm S∗ (which itself runs the verifier, and the
distinguisher D∗) to extract a secret that will enable Sim to fool D∗.

What are some generic assumptions under which this template can be instan-
tiated? To begin with, we observe that the template does appear necessitate
(a form of) public-key encryption. Injective trapdoor functions are among the
weakest generic primitives that are known to imply public-key encryption. In
this work, we will aim to understand whether this template can be instantiated
from trapdoored variants of injective one-way functions. Before studying this
question, a few remarks about prior works are in order.

First, we note that in retrospect, prior works [4,6,19] can be viewed as instan-
tiations of the generic template above under very specific homomorphic-style
assumptions. For example, the protocol in [19] uses two-round oblivious transfer
(OT) to ensure that a verifier obtains one out of two possible challenge openings
for a Σ−protocol1. At a very high level, the simulation technique in [19] builds
on the fact that (1) either simulated “garbage” Σ−protocol openings will already
fool a distinguisher, or (2) if the distinguisher is able to meaningfully recover one
(and only one, due to OT security) out of two Σ−protocol openings, then a simu-
lator can find which of the two is being recovered by running such a distinguisher
repeatedly, and this information can then be used to complete simulation. The
work of [4] instead relies on random-self-reducible encryption towards a simi-
lar end: namely, (1) either a distinguisher cannot distinguish encryptions of 0
from encryptions of 1, or (2) if the distinguisher is able to distinguish between
these encryptions, then it can be used to decrypt a specific challenge cipher-
text, thereby helping the simulator find a trapdoor. As such, while the generic
template discussed above itself does not appear to necessitate any homomorphic
properties, these prior instantiations [4,19] require certain flavors of homomor-
phism (e.g., oblivious transfer is roughly equivalent to homomorphic encryption
for certain linear functions) to reduce solving specific instances to solving random
instances of a similar problem.

In contrast, in this work, we aim to add to the class of assumptions yielding
distinguisher-dependent simulation, by relying new types of generic assumptions
which do not a-prior satisfy self-reducibility or homomorphic properties. This
requires us to rely on other mechanisms for search-to-decision: in particular, we

1 This basic protocol is repeated in parallel in [19] to reduce soundness error.
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develop new techniques that build on the Goldreich-Levin algorithm to enable
distinguisher-dependent simulation.

Towards Distinguisher-Dependent Simulation from Trapdoor One-
way Functions. The Goldreich-Levin list decoding theorem provides a natural
search to decision strategy for encryption schemes: it guarantees that any adver-
sary that has better than negligible advantage in predicting the hardcore bit
〈a, s〉 for fixed secret a and random s, can be used to find a with overwhelming
probability.

Our first idea is to encrypt proofs in the template discussed above, via
Goldreich-Levin hardcore bits. Let us imagine that the prover (in an as-yet
unspecified manner) generates an initial proof π attesting to the fact that x is
in L. Each bit πi of π will be encrypted by XOR-ing it with Goldreich-Levin
hardcore bits, i.e., the prover will send for each i, the ciphertext

cti = f(ai), πi ⊕ 〈ai, si〉, si

for ai, si ← {0, 1}κ, and where f denotes an (injective) one-way function. Any
D∗ that distinguishes honestly generated encrypted proofs from encryptions of
junk values implies a search algorithm S∗ that inverts f . However, there is no
way for an honest verifier to decrypt and check the proof π.

To remedy this, we set f to be a family of trapdoored functions, where the
verifier samples the function family and the corresponding trapdoor. Namely,
our protocol is modified so that the verifier samples

(pk, sk) ← KeyGen(1κ)

obtained by running the key generation algorithm for a trapdoor (injective) one-
way function family, and sends pk to the prover. Next, the prover computes

cti = fpk(ai), πi ⊕ 〈ai, si〉, si

and the verifier decrypts these ciphertexts to obtain π given the corresponding
secret key sk.

Now, given any D∗ that distinguishes ciphertexts that encrypt well-formed
proofs from ciphertexts that encrypt 0, it becomes possible to extract inverses
a1, . . . an of the one-way function outputs f(a1), . . . f(an) contained in the cipher-
texts.

We can label these values (a1, . . . an) as the secret, and use these to provide
an alternative path to simulation. Namely, we will modify the proof itself (also
simplifying it along the way to use only one a value) so that the verifier sends
the prover a public key pk as before. Next, the prover computes

ct = (y1, y2) for y1 = fpk(a), y2 = 0 ⊕ 〈a, s〉, s
as an encryption of 0, and additionally computes a witness indistinguishable
(WI) proof attesting to the fact that

“either x ∈ L, or ct encrypts 1, or the prover knows an inverse ′a′ of y1”
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The verifier accepts this proof if the WI proof accepts, and also ct decrypts to 0
(the verifier can decrypt ct since it knows the trapdoor for the one-way function).

Fixing Soundness via Coin-Tossing and Enhanced TDFs. To ensure that
the prover cannot get away with generating accepting proofs for x �∈ L, we must
ensure that the prover actually does not know the inverse a of y1. This is not
true for the protocol described so far – in particular, the prover can always first
sample a, then sample y1 as fpk(a). To prevent this, we modify the protocol to
perform a coin-toss between the prover and verifier, namely, P first commits to
randomness r0, then V sends randomness r1, and finally P outputs a WI proof
attesting to the fact that

“either x ∈ L, or ct encrypts 1, or the prover knows an inverse ′a′ of r0 ⊕ r1”

With this modification, it becomes possible to show that r0 ⊕ r1 appears suf-
ficiently random to the prover, and the prover is unable to find an inverse of
r0 ⊕r1. However, to allow simulation to go through, we still need such an inverse
to exist for most choices of r0 ⊕ r1, which may not be true if we simply treat
r0 ⊕ r1 as an element of the co-domain.

As such, instead of requiring the prover to find an inverse a of r0 ⊕ r1, we
will have the prover use randomness r = r0 ⊕ r1 to sample an element y1 from
the image of the trapdoor function, and the WI proof will ask to find an inverse
a of y1. That is, the prover (as before) computes

ct = (y1, y2) for y1 = fpk(a), y2 = 0 ⊕ 〈a, s〉, s

as an encryption of 0, and computes a witness indistinguishable (WI) proof
attesting to the updated statement

“either x ∈ L, or ct encrypts 1,
or the prover knows an inverse ′a′ of y1 for y1 sampled from the image using

randomness r0 ⊕ r1”

As before, the verifier accepts this proof if the WI accepts, and also ct decrypts
to 0 (the verifier can decrypt ct since it has a trapdoor for the one-way function).

With this modification, we are able to prove soundness assuming that it
is hard to invert such a y1, even given the randomness r used to sample y1

(a trapdoor function satisfying this property is called an enhanced trapdoor
function [16]).

Building a Distinguisher-Dependent Simulator. A simulator Sim given a
statement x (and without knowing a witness w for x ∈ L), has the following
options:

– Generate ct as an encryption of 1, and use this as witness for the WI proof. If
D∗ cannot distinguish such a ciphertext from an honestly generated ciphertext
(encrypting 0), then this option succeeds and the simulator’s job is done.
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– On the other hand, suppose the first option fails because D∗ distinguishes a
ciphertext encrypting 1 from the honestly generated one (encrypting 0). Then
the Goldreich-Levin theorem suggests that D∗ can be used by Sim to compute
inverses. In particular Sim can generate ct = (y′

1, y
′
2) for y′

1 = r0⊕r1, and then
use D∗ to find its inverse a. This also requires Sim to sample other instance-
witness pairs from the distribution on its own, which is why our techniques
are limited to the non-adaptive setting. Finally, Sim can use a extracted above
as a witness for the WI proof, thereby successfully completing simulation.

A Technical Subtlety. We discuss one additional technical subtlety that
requires us to further modify the protocol sketched above. First, the definition
of enhanced trapdoor function families guarantees that honestly sampled keys
(pk, sk) lead to invertible distributions on y. But a malicious verifier may sample
pk for which y values sampled as above do not have an inverse. This would cause
the simulation strategy described above to break down.

We address this issue by relying on two-round witness indistinguishable (WI)
arguments. In particular, the protocol above is modified to have the verifier gen-
erate two sets of keys (pk1, sk1) and (pk2, sk2) and prove (via a WI argument)
that one of these pairs is well-formed, and will necessarily lead to invertible sam-
ples. We show that the resulting protocol is both simulatable and an argument
of knowledge by combining all the techniques discussed above with the two-key
technique [23].

This completes an overview of our protocol, where we assumed the existence
of (1) enhanced trapdoor functions and (2) two-round witness indistinguishable
arguments. For the sake of brevity, we swept some additional technical details
under the rug; we point the reader to Sect. 4 for a more detailed description of
our protocol. We conclude this section with a couple of natural problems that
would be useful to address in future research.

Open Problems and Directions for Future Work. A natural open prob-
lem given our work and prior works, is to understand whether distinguisher-
dependent simulation can be realized based on any public-key encryption scheme.
Second, in light of the generic template discussed earlier in the overview, it is rea-
sonable to wonder whether distinguisher-dependent simulation can be realized in
minicrypt, or if public-key encryption is necessary. We conjecture that two-round
proofs with distinguisher-dependent simulation imply public-key cryptography,
but leave a formal exploration of this question for future work. As these ques-
tions demonstrate, there remain gaps in our understanding of what assumptions
are necessary and sufficient for (non-trivial) distinguisher-dependent protocols
in two or three rounds. Nevertheless, we believe that demonstrating the utility
of the Goldreich-Levin search-to-decision reduction as is done in this work may
be a useful step towards answering some of these questions.

3 Preliminaries

Notation. Given an NP relation R, we denote the NP language associated with
it as LR := {x : ∃w such that R(x,w) = 1}.
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3.1 Goldreich-Levin List Decoding

In what follows, we recall the Goldreich-Levin Theorem [15], borrowing some
text verbatim from [17].

Definition 1 (Goldreich-Levin Bit Prediction Algorithm [15]). Fix ε >
0 and a secret x ∈ {0, 1}κ. A probabilistic Goldreich-Levin prediction algorithm
GL.Pred for secret x with advantage ε takes input r ∈ {0, 1}κ and outputs a value
in {0, 1} such that:

Pr
r

R←−{0,1}κ

[GL.Pred(r) = 〈x, r〉] ≥ 1/2 + ε

where probability is taken over r and the randomness of GL.Pred.

Theorem 1 (Goldreich-Levin Theorem [15]). For any given ε > 0 and any
polynomial-time computable function f : {0, 1}κ → {0, 1}poly(κ), there exists an
algorithm GL.Inv that runs in time poly(1/ε, κ) with the following property.

Let GL.Pred be a Goldreich-Levin prediction algorithm for secret x with
advantage ε (Definition 1). Then GL.Inv, given oracle access to GL.Pred, queries
the oracle at most poly(1/ε, κ) times and outputs x with probability 1 − 2−Ω(κ).
That is,

Pr[GL.InvGL.Pred(f(x)) = x] ≥ 1 − negl(κ)

where probability is taken over the randomness of GL.Inv.

3.2 Building Blocks

Definition 2 (Enhanced trapdoor injective one-way functions [14]). A
family of enhanced trapdoor injective one-way functions is a collection of injective
functions fα : {Dα → Rα} such that:

– Syntax. There exist randomized PPT algorithms:
• I such that I(1n) → (α, τ) where α is the index of the injective function

fα, and τ is a corresponding trapdoor for the function.
We will denote by I1(·) the function that runs I(·) and only outputs the
first coordinate α, and by I2(·) the function that runs I(·) and only outputs
the second coordinate τ .

• SD that on input α outputs an element from the domain Dα of the func-
tion fα.

• SR that on input α outputs an element from the range Rα of fα.
– Enhancement. For every α ∈ Supp(I1), the distributions SR(α) and

fα(SD(α)) are computationally indistinguishable.
– Efficiency. There exists a deterministic polynomial-time algorithm F such

that for all α ← I1(1κ), and for all x ∈ Dα, F (α, x) = fα(x).
– Trapdoor Inversion. There exists a deterministic polynomial-time algo-

rithm B such that for all (α, τ) ← I(1κ), and for all y ∈ Rα, B(τ, y) outputs
an x such that fα(x) = y.
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– Security (Hardness of Inversion). This guarantees that samples output
by the range sampler SR are hard to invert, even given the randomness used
to sample them.

Pr

⎡
⎢⎢⎣fα(x′) = y

∣∣∣∣∣∣∣∣

α ← I1(1n)
r

R←− {0, 1}∗

y ← SR(α; r)
x′ ← A(α, r)

⎤
⎥⎥⎦ ≤ negl(n)

We note that these types of definitions have previously naturally arisen in
the study of oblivious transfer and non-interactive zero-knowledge, where some-
times a strengthening to permutations is considered. It is shown in [16] that
natural versions of the RSA and Rabin collections of trapdoor functions satisfy
the definition above, and in fact also yield doubly enhanced trapdoor permu-
tations. In this work, we will not require permutations, and can work with the
weaker definition above (this weakening has also been considered previously, e.g.,
in [16]).

Definition 3 (Perfectly Binding Non-Interactive Bit-Commitments).
A perfectly binding non-interactive bit-commitment scheme consists of a PPT
algorithm com such that:

– Perfect Binding: For all κ ∈ N, ∀r0, r1 ∈ {0, 1}κ, and ∀b0, b1 ∈ {0, 1}:

(com(b0; r0) = com(b1; r1)) =⇒ (b0 = b1)

– Computational Hiding: For all non-uniform PPT adversaries A, there
exists a negligible function μ such that for all κ ∈ N:

Pr
r

R←−{0,1}κ,b
R←−{0,1}

[b′ = b |b′ ← A(1κ, com(b; r)) ] ≤ 1
2

+ μ(κ)

Bit commitments can be used to commit to strings of length poly(κ) by sepa-
rately committing to each bit of the string. This preserves perfect binding and
computational hiding.

Furthermore, perfectly binding non-interactive bit-commitments can be
based on any injective one-way trapdoor function family, simply by masking
the input with the Goldreich-Levin hardcore bit of the function.

3.3 Proof Systems

In this section, we recall definitions of proof systems, including delayed-input
protocols and weak-zero knowledge following [19].

Definition 4 (Delayed-Input Interactive Protocols [19]). An n-round
delayed-input interactive protocol (P, V ) for deciding a language L associated
with the relation RL is an interactive protocol for the same where:
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– To prove x ∈ L, the prover and the verifier initially receive the size of the
instance and execute the first n − 1 rounds of the protocol.

– At the start of the last round, the prover receives (x,w) ∈ RL and the verifier
receives x. They then execute the last round of the protocol.

Definition 5 (Delayed-Input Interactive Arguments [19]). An n-round
delayed-input interactive argument (P, V ) for deciding a language L associated
with the relation RL is an interactive protocol such that it satisfies the following:

– Completeness: For all (x,w) ∈ RL,

Pr[〈P, V 〉(x,w) = 1] ≥ 1 − negl(κ)

where probability is taken over the randomness of P and V .
– Adaptive Soundness: For every κ, for every PPT P ∗ that chooses an

x ∈ {0, 1}κ \ L adaptively after the first n − 1 rounds of the protocol,

Pr[〈P ∗, V 〉(x) = 1] ≤ negl(κ)

where probability is taken over the randomness of P ∗ and V .

Definition 6 (Witness Indistinguishability [19]). An n-round delayed-
input interactive argument (P, V ) for deciding a language L associated with the
relation RL is said to be witness-indistinguishable if for every non-uniform PPT
verifier V ∗ and all (x,w1, w2) where w1, w2 ∈ RL(x), the following ensembles
are computationally indistinguishable:

{〈P, V ∗〉(x,w1)} and {〈P, V ∗〉(x,w2)}
Two-round witness indistinguishable arguments can be based on the existence
of doubly-enhanced injective trapdoor functions [9,16].

Definition 7 (Argument of Knowledge). A delayed-input interactive argu-
ment is an argument of knowledge if there exists a polynomial time extractor E
such that for any polynomial-size prover P ∗, there exists a negligible μ such that
for any security parameter κ ∈ N,

Pr
[

V (x; τ) = 1∧
w /∈ RL(x)

∣∣∣∣
(x, τ) ← 〈P ∗, V 〉
w ← EP ∗

(x, τ)

]
≤ μ(κ).

A witness indistinguishable argument of knowledge is a proof system that
satisfies both the witness indistinguishability and the argument of knowledge
properties above. We now define what it means for an argument of knowledge
to satisfy reusable witness indistinguishability.

Definition 8 (Reusable Witness Indistinguishable Argument of
Knowledge [19]). An n-round delayed input interactive argument of knowl-
edge (P, V ) for a language L is Reusable Witness Indistinguishable if for all
PPT V ∗, all k = poly(κ), Pr[b = b′] ≤ 1/2 + negl(κ) for the following game.
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– (P, V ∗) initially receive the size of the instance and execute the first n − 1
rounds.

– V ∗ then outputs (x1, w1), (x2, w2), ..., (xk−1, wk−1).
– P generates the nth message of the delayed-input witness indistinguishable

argument of knowledge for the instances (x1, x2, ..., xk−1) using the witnesses
(w1, w2, ...wk−1) and sends them to V ∗.

– V ∗ outputs (xk, wk
1 , wk

2 ).
– P samples a single bit b and generates the nth message of the delayed-input

WIAoK for the instance xk using witness wk
b .

– V ∗ outputs b′.

Reusable WI arguments of knowledge can be based on the existence of two-round
witness indistinguishable arguments (ZAPs), as shown in [19].

Definition 9 (Non-adaptive Distributional ε-Weak Zero Knowl-
edge [19]). A delayed-input interactive argument (P, V ) for a language L is
said to be distributional ε-weak zero knowledge against non-adaptive verifiers if
there exists a simulator S, which is an oracle-aided machine that runs in time
poly(κ, ε) such that for every efficiently sampleable distribution (Xκ,Wκ) on RL,
i.e., Supp(Xκ,Wκ) = {(x,w) : x ∈ L ∩ {0, 1}κ

, w ∈ RL(x)}, every non-adaptive
polynomial-size verifier V ∗, every polynomial-size distinguisher D, and every
ε = 1/poly(κ),

∣∣∣∣∣ Pr
(x,w)←(Xκ,Wκ)

[D(x,ViewV ∗ [〈P, V ∗〉(x,w)]) = 1
]−

Pr
(x,w)←(Xκ,Wκ)

[D(x,SV ∗,D(x)) = 1
]
∣∣∣∣∣ ≤ ε(κ),

where the probability is over the random choices of (x,w) as well as the random
coins of the parties.

4 Construction

In this section, we describe our protocol. We will use the following ingredients.

– Let f be a family of enhanced one-way trapdoor functions according to Defi-
nition 2, and denote the index sampler, domain and range samplers, function
description and inversion function respectively by (I = (I1, I2), SD, SR, F,B).

– Let com be a non-interactive, statistically binding, computationally hiding
commitment scheme (Definition 3).

– Let ZAP = (ZAP1,ZAP2,ZAPverify) denote the verifier and prover next-
message functions, and the verification algorithm respectively for a two-round
witness indistinguishable argument (Definition 6) for NP. This will be used
to prove membership in the language Lzap defined below.
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– Let WI = (WI1,WI2,WI3,WIverify) denote the prover, verifier, and prover next-
message functions, and the verification algorithm respectively for a 3-round
delayed-input reusable witness indistinguishable argument of knowledge (Def-
inition 8) for NP. This will be used to prove membership in the language Lwi

defined below.

We fix the following predicates for notational convenience.

– Intuitively, the first predicate φchal takes in two tuples (yd, ikd, chald) for d ∈
{0, 1}, and ensures that for each d, chald “encrypts” bd where b0 �= b1, i.e.
chald is of the form F (ikd, yd), bd ⊕ 〈yd, rd〉, rd. That is,

φchal(y0, y1, ik0, ik1, chal0, chal1) = 1

⇐⇒ ∃r̃0, r̃1, b0, b1 s.t.

⎛
⎝

chal0 = [F (ik0, y0), b0, r̃0] ∧
chal1 = [F (ik1, y1), b1, r̃1] ∧
b0 ⊕ b1 = 〈y0, r̃0〉 ⊕ 〈y1, r̃1〉 ⊕ 1

⎞
⎠

– The second predicate φinv on input a commitment c and strings r0, r1, s checks
that c is a commitment to r0 with randomness s; and that its remaining input
z is an inverse of r0 ⊕ r1 with respect to atleast one of its two input index
keys ik0, ik1. Formally,

φinv(r0, s, z, r1, ik0, ik1, c) = 1

⇐⇒ (c = com(r0; s)) ∧
(

F (ik0, z) = SR(ik0; r0 ⊕ r1) ∨
F (ik1, z) = SR(ik1; r0 ⊕ r1)

)

We also define the following two languages.

– Let Lzap be a language with corresponding relation RLzap defined as:

RLzap(xzap, rzap) = 1 ⇐⇒ (x0 = I1(rzap)) ∨ (x1 = I1(rzap))

where xzap is parsed as (x0, x1).
– Let Lwi be a language with corresponding relation RLwi defined as:

RLwi(xwi, wwi) = 1 ⇐⇒
⎛
⎝

(x,w) ∈ RL ∨
φchal(y0, y1, ik0, ik1, chal0, chal1) ∨
φinv(r0, s, z, r1, ik0, ik1, c)

⎞
⎠

where L is a given language, xwi is parsed as (x, chal0, chal1, ik0, ik1, r1, c) and
wwi is parsed as (w, y0, y1, r0, s, z).

5 Proof of Security

In this section, we prove the following theorem.

Theorem 2. Assuming the existence of enhanced injective trapdoor functions
satisfying Definition 2 and two-round witness indistinguishable arguments sat-
isfying Definition 6, the protocol in Fig. 1 satisfies non-adaptive distributional
ε-weak zero knowledge.
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Fig. 1. A Non-adaptive Distributional ε-weak Zero Knowledge Argument

5.1 Simulator

For language L with corresponding NP relation RL, an efficiently sampleable
distribution (Xκ,Wκ) on RL, an adversarial verifier A, a distinguisher D, and
an ε = 1/poly(κ), we describe the following poly(κ, ε) time simulator S, where
ε′ := ε/7. The simulator is described in stages below.

Initialization:
In this section the simulator behaviour is identical to an honest prover.

– Receive x as input.
– Sample r0

R←− {0, 1}κ, s
R←− {0, 1}κ, rwi

R←− {0, 1}κ

– Compute c = com(r0; s), zap1 ← ZAP1(1κ), wi1
R←− WI1(1κ; rwi)
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Fig. 2. Predicting the hardcore bit for γ w.r.t. ikb. Intuitively, m1 and m2 represent
the first two messages of an execution of the protocol from Fig. 1, and Q is the state of
the verifier A from the protocol just before A receives the third message, after having
received m1 and sent m2. rwi is interpreted as the randomness used to generate the first
WI message wi1. Pred uses the distinguisher D to guess the Goldreich-Levin hardcore
bit for challenge γ for input r, w.r.t. ikb.

– Send m1 = (c, zap1,wi1) to a freshly initialised instance of the adversary A.
– Receive m2, parsed as (r1, ik0, ik1,wi2, zap2).
– Verify that ZAPverify(zap1, zap2) accepts. Output verifier view if verification

fails.

Let Q be the state of the adversary after the above. Define Q := (rwi,m1,m2, Q).

Key Check Stage:
The simulator will perform a test on both index keys in order to choose one to use
for inversion. The test aims to choose a key ik such that D does not distinguish
between a challenge ciphertext generated by calling fik on the output of SD(ik) or
one generated by SR(ik).

– Compute b
R←− ik-checkQ (from Fig. 4) , where b ∈ {0, 1,⊥}

– If b = ⊥, return ⊥
– Else, continue onto the next stage.
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Fig. 3. Inverting the trapdoor one-way function using Pred and Goldreich-Levin.

Inversion Stage:
The simulator will try to use the adversarial verifier and distinguisher to compute
q′ such that fikb

(q′) = (SR(ikb; r0 ⊕ r1)), where b is the output of ik-check in the
previous stage.

– Run Inv(SR(ikb; r0 ⊕ r1),Q, b, ε′/2) (from Fig. 3).
– If Inv succeeds and outputs some q′ and proceed to the Success Stage.
– If Inv fails, proceed to Failure Stage.

Failure Stage:
If Inv fails to invert during the Inversion Stage, then intuitively the distinguisher
output does not depend on the Goldreich-Levin hardcore bit in the challenge with
sufficient probability. This can be used to produce a transcript using the second
branch of WI, by modifying the challenge. This requires knowledge of the inverse
of the challenge. Since the inverse is not known for the previous challenge, a
new challenge that fails inversion must be found.

For each i ∈ [κ/ε′]:

– Rewind the adversary to state Q (unless already in state Q).
– Sample q̃i

R←− SD(ikb)
– Run Inv(fikb

(q̃i),Q, b, ε′/2).
– If Inv fails:

• Rewind the adversary to state Q.
• Sample r̃0, r̃1

R←− {0, 1}κ, q1−b
R←− SD(ik1−b).

• Compute chalb = [F (ikb, q̃i), 〈q̃i, r̃b〉 ⊕ 1, r̃b].
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Fig. 4. Checking index keys: ik-check interacts with a copy of the adversarial verifier
A initialised to state Q. Intuitively, the algorithm compares (for some fixed index key)
the distribution resulting from generating a domain element via SD and applying f ,
with the distribution resulting from generating a range element via SR. If the index
key is honestly generated, both distributions should be close. ik-check performs this
comparison for both index keys the verifier A supplies in m2. A key passes the check
if both distributions appear sufficiently close, and ik-check can only output a key (or a
bit indicating a key) that passes the check.

• Compute chal1−b = [F (ik1−b, q1−b), 〈q1−b, r̃1−b〉, r̃1−b]
• Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (⊥, q̃i, q1−b,⊥,⊥,⊥).
• Compute wi3 ← WI3(rwi,wi2, xwi, wwi).
• Send m3 := (x, chal0, chal1,wi3) to the verifier.
• Output the view of the verifier for the current session, i.e. for m1,m2,m3,

and halt execution.
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Output ⊥
Success Stage:
If Inv successfully inverts, we can use the output q′ to produce a transcript using
the third branch of wi3. To do so, the simulator searches for a new challenge that
also successfully inverts.

For each i ∈ [κ/ε′]:

– Rewind the adversary to state Q (unless already in state Q).
– Sample q̃i

R←− SD(ikb)
– Run Inv(fikb

(q̃i),Q, b, ε′/2).
– If Inv succeeds:

• Rewind the adversary to state Q.
• Sample r̃0, r̃1

R←− {0, 1}κ, q1−b
R←− SD(ik1−b).

• Compute chalb = [F (ikb, q̃i), 〈q̃i, r̃b〉, r̃b]
• Compute chal1−b = [F (ik1−b, q1−b), 〈q1−b, r̃1−b〉, r̃1−b]
• Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (⊥,⊥,⊥, r0, s, q

′)
• Compute wi3 ← WI3(rwi,wi2, xwi, wwi).
• Send m3 = (x, chal0, chal1,wi3).
• Output the view of the verifier for the current session, i.e. for m1,m2,m3,

and halt execution.

Output ⊥

5.2 Proof of Theorem 2

Proof. Given the simulator described above, we will now prove the main theo-
rem by contradiction: suppose there exists a distinguisher D that along with an
adversarial verifier A distinguishes between experiments where the prover gener-
ates a proof using witness w versus an experiment where the proof is simulated,
with advantage greater than ε, where ε = 1/poly(κ). We define ε′ := ε/7 and
consider a sequence of eight hybrid experiments, indexed by error parameter ε′

where the first hybrid corresponds to the honest execution and the final hybrid
corresponds to the simulated execution. D must necessarily distinguish some two
consecutive hybrids in the sequence with advantage greater than ε′ = ε/7. This
leads to a contradiction, because we prove that the advantage of the distinguisher
D for any two consecutive hybrids is always less than ε′.

In what follows, we let the random variable D(Hε′
i ) denote the output of the

distinguisher upon receiving as input the view of the verifier in hybrid Hε′
i .

Hybrid Hε′
0 :

This hybrid outputs the view of the verifier A when it interacts with an honest
prover that generates a proof for x using witness w. The hybrid interacts with
A acting as a prover for the protocol in the following manner:

– Sample x,w
R←− Xκ,Wκ.
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– Sample r0
R←− {0, 1}κ, s

R←− {0, 1}κ, rwi
R←− {0, 1}κ

– Compute c = com(r0; s), zap1 ← ZAP1(1κ), wi1
R←− WI1(1κ; rwi)

– Send m1 = (c, zap1,wi1) to a freshly initialised instance of the adversary A.
– Receive m2, parsed as (r1, ik0, ik1,wi2, zap2).
– Verify that ZAPverify(zap1, zap2) accepts. Output ⊥ if verification fails.

– Sample q0
R←− SD(ik0), q1

R←− SD(ik1)
– Sample r̃0, r̃1

R←− {0, 1}κ

– Compute chal0 = [F (ik0, q0), 〈q0, r̃0〉, r̃0] and chal1 = [F (ik1, q1), 〈q1, r̃1〉, r̃1]
– Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
– Compute wi3 ← WI3(rwi,wi2, xwi, wwi)
– Send m3 = (x, chal0, chal1,wi3).
– Output the view of the verifier for the current session, i.e. for m1,m2,m3,

and halt execution.

Hybrid Hε′
1 :

This hybrid differs from Hε′
0 in that it runs an additional algorithm ik-check

once just after receiving the verifier’s message. If ik-check outputs ⊥, the hybrid
aborts, else, it continues as in Hε′

0 .

Interacting with A as a prover for the protocol, Hε′
1 performs the following:

– Sample x,w
R←− Xκ,Wκ.

– Sample r0
R←− {0, 1}κ, s

R←− {0, 1}κ, rwi
R←− {0, 1}κ

– Compute c = com(r0; s), zap1 ← ZAP1(1κ), wi1
R←− WI1(1κ; rwi)

– Send m1 = (c, zap1,wi1) to a freshly initialised instance of the adversary A.
– Receive m2, parsed as (r1, ik0, ik1,wi2, zap2).
– Verify that ZAPverify(zap1, zap2) accepts. Output ⊥ if verification fails. Let

the state of A at this point be Q.
–

Define Q := (rwi,m1,m2, Q) and compute b
R←− ik-checkQ, where b ∈ {0, 1,⊥}

– If b = ⊥, return ⊥
– Sample q0

R←− SD(ik0), q1
R←− SD(ik1)

– Sample r̃0, r̃1
R←− {0, 1}κ

– Compute chal0 = [F (ik0, q0), 〈q0, r̃0〉, r̃0] and chal1 = [F (ik1, q1), 〈q1, r̃1〉, r̃1]
– Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
– Compute wi3 ← WI3(rwi,wi2, xwi, wwi)
– Send m3 = (x, chal0, chal1,wi3).
– Output the view of the verifier for the current session, i.e. for m1,m2,m3,

and halt execution.

Lemma 1.
∣∣∣Pr[D(Hε′

0 ) = 1] − Pr[D(Hε′
1 ) = 1]

∣∣∣ ≤ ε′
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Proof. (Overview) Note that the hybrids differ only if ik-check outputs b = ⊥,
and are identical conditioned on b ∈ {0, 1}. Therefore, the probability of distin-
guishing the hybrids is bounded by the probability of b = ⊥. We show that this
probability is negligible in the full version of this paper, and omit the proof here
due to space. Intuitively, this is because ik-check tests whether samples obtained
by fik(SD(ik)) and SR(ik) are indistinguishable to the adversary. ZAP ensures
that with high probability atleast one of the index keys is sampled correctly, and
by the enhancement property the samples will be indistinguishable. Therefore
with high probability atleast one key will pass the test.

Hybrid Hε′
2 :

This hybrid differs from Hε′
1 in that it runs Inv(fikb

(qb),Q, b, ε′/2) just before
computing m3 and ignores the output, here represented as following the same
steps independent of the output.

Interacting with A as a prover for the protocol, Hε′
2 performs the following:

– Sample x,w
R←− Xκ,Wκ.

– Sample r0
R←− {0, 1}κ, s

R←− {0, 1}κ, rwi
R←− {0, 1}κ

– Compute c = com(r0; s), zap1 ← ZAP1(1κ), wi1
R←− WI1(1κ; rwi)

– Send m1 = (c, zap1,wi1) to a freshly initialised instance of the adversary A.
– Receive m2, parsed as (r1, ik0, ik1,wi2, zap2).
– Verify that ZAPverify(zap1, zap2) accepts. Output ⊥ if verification fails. Let

the state of A at this point be Q.
– Define Q := (rwi,m1,m2, Q) and compute b

R←− ik-checkQ, where b ∈ {0, 1,⊥}
– If b = ⊥, return ⊥
– Sample q0

R←− SD(ik0), q1
R←− SD(ik1)

– Run Inv(fikb
(qb),Q, b, ε′/2)

– If Inv succeeds and outputs q′ :

• Sample r̃0, r̃1
R←− {0, 1}κ

• Compute chal0 = [F (ik0, q0), 〈q0, r̃0〉, r̃0] and chal1 = [F (ik1, q1), 〈q1,
r̃1〉, r̃1]

• Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
• Compute wi3 ← WI3(rwi,wi2, xwi, wwi)
• Send m3 = (x, chal0, chal1,wi3).
• Output the view of the verifier for the current session, i.e. for m1,m2,m3,

and halt execution.
– If Inv fails:

• Sample r̃0, r̃1
R←− {0, 1}κ

• Compute chal0 = [F (ik0, q0), 〈q0, r̃0〉, r̃0] and chal1 = [F (ik1, q1), 〈q1,
r̃1〉, r̃1]

• Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
• Compute wi3 ← WI3(rwi,wi2, xwi, wwi)
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• Send m3 = (x, chal0, chal1,wi3).
• Output the view of the verifier for the current session, i.e. for m1,m2,m3,

and halt execution.

Lemma 2.
∣∣∣Pr[D(Hε′

1 ) = 1] − Pr[D(Hε′
2 ) = 1]

∣∣∣ = 0

Proof. The distributions of m1,m2,m3 in Hε′
1 and Hε′

2 are identical because
the output Inv is effectively ignored, therefore the adversary’s view is identically
distributed between both hybrids.

Hybrid Hε′
3 :

This hybrid differs from Hε′
2 in that instead of computing the protocol execution

using the same qb for which Inv was called, it attempts to sample some q̃ identi-
cally distributed to qb given the output of Inv, and completes protocol execution
using q̃ if it succeeds.

Interacting with A as a prover for the protocol, Hε′
3 performs the following:

– Sample x,w
R←− Xκ,Wκ.

– Sample r0
R←− {0, 1}κ, s

R←− {0, 1}κ, rwi
R←− {0, 1}κ

– Compute c = com(r0; s), zap1 ← ZAP1(1κ), wi1
R←− WI1(1κ; rwi)

– Send m1 = (c, zap1,wi1) to a freshly initialised instance of the adversary A.
– Receive m2, parsed as (r1, ik0, ik1,wi2, zap2).
– Verify that ZAPverify(zap1, zap2) accepts. Output ⊥ if verification fails. Let

the state of A at this point be Q.
– Define Q := (rwi,m1,m2, Q) and compute b

R←− ik-checkQ, where b ∈ {0, 1,⊥}
– If b = ⊥, return ⊥
– Sample q0

R←− SD(ik0), q1
R←− SD(ik1)

– Run Inv(fikb
(qb),Q, b, ε′/2)

– If Inv succeeds and outputs q′, for each i ∈ [κ/ε′]:
• Rewind the adversary to state Q (unless already in state Q).

• Sample q̃i
R←− SD(ikb)

• Run Inv(fikb
(q̃i),Q, b, ε′/2).

• If Inv succeeds:
∗ Rewind the adversary to state Q.

∗ Sample r̃0, r̃1
R←− {0, 1}κ, q1−b

R←− SD(ik1−b).

∗ Compute chalb = [F (ikb, q̃i), 〈q̃i, r̃b〉, r̃b]

∗ Compute chal1−b = [F (ik1−b, q1−b), 〈q1−b, r̃1−b〉, r̃1−b]
∗ Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
∗ Compute wi3 ← WI3(rwi,wi2, xwi, wwi)
∗ Send m3 = (x, chal0, chal1,wi3).
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∗ Output the view of the verifier for the current session, i.e. for
m1,m2,m3, and halt execution.

– Else if Inv fails, for each i ∈ [κ/ε′]:
• Rewind the adversary to state Q (unless already in state Q).

• Sample q̃i
R←− SD(ikb)

• Run Inv(fikb
(q̃i),Q, b, ε′/2).

• If Inv fails:
∗ Rewind the adversary to state Q.

∗ Sample r̃0, r̃1
R←− {0, 1}κ, q1−b

R←− SD(ik1−b).

∗ Compute chalb = [F (ikb, q̃i), 〈q̃i, r̃b〉, r̃b]

∗ Compute chal1−b = [F (ik1−b, q1−b), 〈q1−b, r̃1−b〉, r̃1−b]
∗ Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
∗ Compute wi3 ← WI3(rwi,wi2, xwi, wwi)
∗ Send m3 = (x, chal0, chal1,wi3).
∗ Output the view of the verifier for the current session, i.e. for
m1,m2,m3, and halt execution.

– Output ⊥
Lemma 3.

∣∣∣Pr[D(Hε′
2 ) = 1] − Pr[D(Hε′

3 ) = 1]
∣∣∣ ≤ ε′

Proof. Note that conditioned on successfully finding an appropriate q̃, the adver-
sary’s view is identically distributed in both hybrids. The hybrid distinguishing
probability is therefore bounded by the probability of failing to find q̃.
For a fixed (Q, b), let p be defined as follows:

p(Q, b) = Pr
q̃

R←−SD(ikb)

[Inv(fikb
(q̃),Q, b, ε′/2) succeeds]

We omit the parameters in the remaining discussion. Summing the probabilities
of failing to find q̃:

∣∣∣Pr[D(Hε′
2 ) = 1] − Pr[D(Hε′

3 ) = 1]
∣∣∣ ≤ p(1 − p)κ/ε′

+ (1 − p)pκ/ε′

If p ≤ ε′/2, then:

p(1 − p)κ/ε′
+ (1 − p)pκ/ε′ ≤ ε′/2 + (1 − p)pκ/ε′ ≤ ε′/2 + (ε′/2)κ/ε′ ≤ ε′

If p > ε′/2, then:

p(1 − p)κ/ε′
+ (1 − p)pκ/ε′ ≤

(
1 − ε′

2

)κ/ε′

+ (ε′/2)κ/ε′

By the Taylor series expansion, we have:

log
(

1 − ε′

2

)
/ε′ ≤ −1

2
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which imples (
1 − ε′

2

)κ/ε′

= e
κ
ε′ log

(

1− ε′
2

)

≤ 1
eκ/2

Since ε′ = 1/poly(κ), for sufficiently large κ :

(
1 − ε′

2

)κ/ε′

+ (ε′/2)κ/ε′ ≤ 1
eκ/2

+ ε′/2 ≤ ε′

This completes the proof.

Hybrid Hε′
4 :

This hybrid differs from Hε′
3 in that the adversary flips the hardcore bit for chalb

in the case where Inv fails.
Interacting with A as a prover for the protocol, Hε′

4 performs the following:

– Sample x,w
R←− Xκ,Wκ.

– Sample r0
R←− {0, 1}κ, s

R←− {0, 1}κ, rwi
R←− {0, 1}κ

– Compute c = com(r0; s), zap1 ← ZAP1(1κ), wi1
R←− WI1(1κ; rwi)

– Send m1 = (c, zap1,wi1) to a freshly initialised instance of the adversary A.
– Receive m2, parsed as (r1, ik0, ik1,wi2, zap2).
– Verify that ZAPverify(zap1, zap2) accepts. Output ⊥ if verification fails. Let

the state of A at this point be Q.
– Define Q := (rwi,m1,m2, Q) and compute b

R←− ik-checkQ, where b ∈ {0, 1,⊥}
– If b = ⊥, return ⊥
– Sample q0

R←− SD(ik0), q1
R←− SD(ik1)

– Run Inv(fikb
(qb),Q, b, ε′/2)

– If Inv succeeds and outputs q′, for each i ∈ [κ/ε′]:
• Rewind the adversary to state Q (unless already in state Q).
• Sample q̃i

R←− SD(ikb)
• Run Inv(fikb

(q̃i),Q, b, ε′/2).
• If Inv succeeds:

∗ Rewind the adversary to state Q.
∗ Sample r̃0, r̃1

R←− {0, 1}κ, q1−b
R←− SD(ik1−b).

∗ Compute chalb = [F (ikb, q̃i), 〈q̃i, r̃b〉, r̃b]
∗ Compute chal1−b = [F (ik1−b, q1−b), 〈q1−b, r̃1−b〉, r̃1−b]
∗ Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
∗ Compute wi3 ← WI3(rwi,wi2, xwi, wwi)
∗ Send m3 = (x, chal0, chal1,wi3).
∗ Output the view of the verifier for the current session, i.e. for
m1,m2,m3, and halt execution.

– Else if Inv fails, for each i ∈ [κ/ε′]:
• Rewind the adversary to state Q (unless already in state Q).
• Sample q̃i

R←− SD(ikb)
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• Run Inv(fikb
(q̃i),Q, b, ε′/2).

• If Inv fails:
∗ Rewind the adversary to state Q.
∗ Sample r̃0, r̃1

R←− {0, 1}κ, q1−b
R←− SD(ik1−b).

∗ Compute chalb =
[
F (ikb, q̃i), 〈q̃i, r̃b〉 ⊕ 1 , r̃b

]

∗ Compute chal1−b = [F (ik1−b, q1−b), 〈q1−b, r̃1−b〉, r̃1−b]
∗ Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
∗ Compute wi3 ← WI3(rwi,wi2, xwi, wwi)
∗ Send m3 = (x, chal0, chal1,wi3).
∗ Output the view of the verifier for the current session, i.e. for
m1,m2,m3, and halt execution.

– Output ⊥

Lemma 4.
∣∣∣Pr[D(Hε′

3 ) = 1] − Pr[D(Hε′
4 ) = 1]

∣∣∣ ≤ ε′

Proof. (Overview) Due to lack of space, we defer the proof to the full version.
Intuitively, since the inversion algorithm fails for q̃i, the distinguisher does not
distinguish between correct and incorrect hardcore bits. Since the only difference
between hybrids is the hardcore bit, we show it is safe to send incorrect bits.

Hybrid Hε′
5 :

This hybrid differs from Hε′
4 in that the adversary attempts to invert a randomly

sampled SR(ikb) instead of fikb
(qb). Since this change means that qb is unused,

it is no longer sampled. Interacting with A as a prover for the protocol, Hε′
5

performs the following:

– Sample x,w
R←− Xκ,Wκ.

– Sample r0
R←− {0, 1}κ, s

R←− {0, 1}κ, compute c = com(r0; s), compute the
first message zap1 of a ZAP, the first message wi1 of a WI, and send m1 =
(c, zap1,wi1) to the adversary.

– Receive m2, parsed as (r1, ik0, ik1,wi2, zap2).
– Verify that ZAPverify(zap1, zap2) accepts. Output ⊥ if verification fails. Let

the state of A at this point be Q.
– Define Q := (rwi,m1,m2, Q) and compute b

R←− ik-checkQ, where b ∈ {0, 1,⊥}
– If b = ⊥, return ⊥
– Sample qb

R←− SD(ikb)

– Run Inv( SR(ikb; r̂) ,Q, b, ε′/2) for r̂
R←− {0, 1}κ .

– If Inv succeeds and outputs q′, for each i ∈ [κ/ε′]:
• Rewind the adversary to state Q (unless already in state Q).
• Sample q̃i

R←− SD(ikb)
• Run Inv(fikb

(q̃i),Q, b, ε′/2).
• If Inv succeeds:

∗ Rewind the adversary to state Q.
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∗ Sample r̃0, r̃1
R←− {0, 1}κ, q1−b

R←− SD(ik1−b).
∗ Compute chalb = [F (ikb, q̃i), 〈q̃i, r̃b〉, r̃b]
∗ Compute chal1−b = [F (ik1−b, q1−b), 〈q1−b, r̃1−b〉, r̃1−b]
∗ Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
∗ Compute wi3 ← WI3(rwi,wi2, xwi, wwi)
∗ Send m3 = (x, chal0, chal1,wi3).
∗ Output the view of the verifier for the current session, i.e. for
m1,m2,m3, and halt execution.

– Else if Inv fails, for each i ∈ [κ/ε′]:
• Rewind the adversary to state Q (unless already in state Q).
• Sample q̃i

R←− SD(ikb)
• Run Inv(fikb

(q̃i),Q, b, ε′/2).
• If Inv fails:

∗ Rewind the adversary to state Q.
∗ Sample r̃0, r̃1

R←− {0, 1}κ, q1−b
R←− SD(ik1−b).

∗ Compute chalb = [F (ikb, q̃i), 〈q̃i, r̃b〉 ⊕ 1, r̃b]
∗ Compute chal1−b = [F (ik1−b, q1−b), 〈q1−b, r̃1−b〉, r̃1−b]
∗ Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
∗ Compute wi3 ← WI3(rwi,wi2, xwi, wwi)
∗ Send m3 = (x, chal0, chal1,wi3).
∗ Output the view of the verifier for the current session, i.e. for
m1,m2,m3, and halt execution.

– Output ⊥

Lemma 5.
∣∣∣Pr[D(Hε′

4 ) = 1] − Pr[D(Hε′
5 ) = 1]

∣∣∣ ≤ ε′

Proof. Note that the behaviour of both hybrids for a given outcome of the
first Inv call (success or failure) is identical. If a difference arises, it must be
in the probability of Inv succeeding. Fix any Q := (rwi,m1,m2, Q), where m1 is
parsed as (c, zap1,wi1) and m2 is parsed as (r1, ik1, ik2,wi2, zap2). Define predi-
cates p0, p1, and p as:

p0(b) = Pr [Inv(fikb
(qb),Q, b, ε′/2) succeeds.]

p1(b) = Pr [Inv(SR(ikb),Q, b, ε′/2) succeeds.]

p(b) = |p0(b) − p1(b)|
Further, define p as zero whenever b = ⊥. If we let Pr [b] be the probability that
ik-checkQ outputs b in either hybrid:

∣∣∣Pr[D(Hε′
4 ) = 1] − Pr[D(Hε′

5 ) = 1]
∣∣∣ ≤ max

Q

(∑
b

Pr [b] ∗ p(b)

)

where we consider b ∈ {0, 1} since p is zero if b = ⊥. Let {Xi}i∈[n′] be n′ iid
random variables that take values ∈ {0, 1}, and Pr[Xi = 1] = p1(m1,m2, Q, b).
Similarly, let {Yi}i∈[n′] be n′ iid random variables that take values ∈ {0, 1},
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and Pr[Yi = 1] = p0(m1,m2, Q, b). Let Z =
∑

i∈[n′] Xi − Yi. Then Pr[Z ≤
t] = Pr [ikb passes key-check]. Since (m1,m2, Q, b) are fixed for the following
discussion, we omit the parameters from p0, p1, p. Note that E[Z] = pn′ and
V ar[Z] = n′(V ar[X] + V ar[Y ]) = n′p1(1 − p1) + n′p0(1 − p0) ≤ 2n′.

Now, consider the case when p ≥ ε′/2. By applying Chebyshev’s Inequality to Z
we obtain:

Pr
[
Z ≤ E[Z] − k

√
V ar[Z]

]
≤ 1/k2

E[Z] = n′p and V ar[Z] ≤ 2n′, therefore:

Pr
[
Z ≤ n′p − k

√
2n′

]
≤ 1/k2

Since p ≥ ε′/2:
Pr

[
Z ≤ n′ε′/2 − k

√
2n′

]
≤ 1/k2

Setting k = n′ε′/
√

32n′:

Pr [Z ≤ n′ε′/4] = Pr [Z ≤ t] ≤ 32
n′(ε′)2

Since n′ = (4/ε′)3:
Pr [Z ≤ t] ≤ ε′/2

Pr [ikb passes key-check] ≤ ε′/2

We use this result to show that the hybrid distinguishing probability is also
bounded by ε′. If p(b) ≥ ε′/2, then probability of ikb passing the check is no more
than ε′/2, which implies that Pr[b] ≤ ε′/2. Therefore, Pr[b] ∗ p(b) ≤ ε′/2, which
in turn implies

∑
b Pr [b] ∗ p(b) ≤ ε′. This completes the proof.

Hybrid Hε′
6 :

This hybrid differs from Hε′
5 in that the adversary uses r0 ⊕ r1 instead of fresh

randomness to sample from SR(ikb).

Interacting with A as a prover for the protocol, Hε′
6 performs the following:

– Sample x,w
R←− Xκ,Wκ.

– Sample r0
R←− {0, 1}κ, s

R←− {0, 1}κ, rwi
R←− {0, 1}κ

– Compute c = com(r0; s), zap1 ← ZAP1(1κ), wi1
R←− WI1(1κ; rwi)

– Send m1 = (c, zap1,wi1) to a freshly initialised instance of the adversary A.
– Receive m2, parsed as (r1, ik0, ik1,wi2, zap2).
– Verify that ZAPverify(zap1, zap2) accepts. Output ⊥ if verification fails. Let

the state of A at this point be Q.
– Define Q := (rwi,m1,m2, Q) and compute b

R←− ik-checkQ, where b ∈ {0, 1,⊥}
– If b = ⊥, return ⊥
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– Sample qb
R←− SD(ikb)

– Run Inv( SR(ikb; r0 ⊕ r1) ,Q, b, ε′/2).
– If Inv succeeds and outputs q′, for each i ∈ [κ/ε′]:

• Rewind the adversary to state Q (unless already in state Q).
• Sample q̃i

R←− SD(ikb)
• Run Inv(fikb

(q̃i),Q, b, ε′/2).
• If Inv succeeds:

∗ Rewind the adversary to state Q.
∗ Sample r̃0, r̃1

R←− {0, 1}κ, q1−b
R←− SD(ik1−b).

∗ Compute chalb = [F (ikb, q̃i), 〈q̃i, r̃b〉, r̃b]
∗ Compute chal1−b = [F (ik1−b, q1−b), 〈q1−b, r̃1−b〉, r̃1−b]
∗ Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
∗ Compute wi3 ← WI3(rwi,wi2, xwi, wwi)
∗ Send m3 = (x, chal0, chal1,wi3).
∗ Output the view of the verifier for the current session, i.e. for
m1,m2,m3, and halt execution.

– Else if Inv fails, for each i ∈ [κ/ε′]:
• Rewind the adversary to state Q (unless already in state Q).
• Sample q̃i

R←− SD(ikb)
• Run Inv(fikb

(q̃i),Q, b, ε′/2).
• If Inv fails:

∗ Rewind the adversary to state Q.
∗ Sample r̃0, r̃1

R←− {0, 1}κ, q1−b
R←− SD(ik1−b).

∗ Compute chalb = [F (ikb, q̃i), 〈q̃i, r̃b〉 ⊕ 1, r̃b]
∗ Compute chal1−b = [F (ik1−b, q1−b), 〈q1−b, r̃1−b〉, r̃1−b]
∗ Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
∗ Compute wi3 ← WI3(rwi,wi2, xwi, wwi)
∗ Send m3 = (x, chal0, chal1,wi3).
∗ Output the view of the verifier for the current session, i.e. for
m1,m2,m3, and halt execution.

– Output ⊥
Lemma 6.

∣∣∣Pr[D(Hε′
5 ) = 1] − Pr[D(Hε′

6 ) = 1]
∣∣∣ ≤ ε′

Proof. (Overview) Due to lack of space, we defer the proof to the full version.
Intuitively, we switch from inverting a uniformly random string to inverting
r0 ⊕ r1. Since r0 is also sampled uniformly, the adversary’s view is identical
apart from the commitment to r0 in the first round. We therefore show that
an adversary that distinguishes the hybrids must be breaking the hiding of the
commitment scheme.

Hybrid Hε′
7 :

This hybrid differs from Hε′
6 in that the hybrid uses the q′ obtained by Inv to

compute wi3 by the third branch in the success case.

Interacting with A as a prover for the protocol, Hε′
7 performs the following:
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– Sample x,w
R←− Xκ,Wκ.

– Sample r0
R←− {0, 1}κ, s

R←− {0, 1}κ, rwi
R←− {0, 1}κ

– Compute c = com(r0; s), zap1 ← ZAP1(1κ), wi1
R←− WI1(1κ; rwi)

– Send m1 = (c, zap1,wi1) to a freshly initialised instance of the adversary A.
– Receive m2, parsed as (r1, ik0, ik1,wi2, zap2).
– Verify that ZAPverify(zap1, zap2) accepts. Output ⊥ if verification fails. Let

the state of A at this point be Q.
– Define Q := (rwi,m1,m2, Q) and compute b

R←− ik-checkQ, where b ∈ {0, 1,⊥}
– If b = ⊥, return ⊥
– Sample qb

R←− SD(ikb)
– Run Inv(SR(ikb; r1 ⊕ r2),Q, b, ε′/2).
– If Inv succeeds and outputs q′, for each i ∈ [κ/ε′]:

• Rewind the adversary to state Q (unless already in state Q).
• Sample q̃i

R←− SD(ikb)
• Run Inv(fikb

(q̃i),Q, b, ε′/2).
• If Inv succeeds:

∗ Rewind the adversary to state Q.
∗ Sample r̃0, r̃1

R←− {0, 1}κ, q1−b
R←− SD(ik1−b).

∗ Compute chalb = [F (ikb, q̃i), 〈q̃i, r̃b〉, r̃b]
∗ Compute chal1−b = [F (ik1−b, q1−b), 〈q1−b, r̃1−b〉, r̃1−b]
∗ Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and
wwi := (⊥,⊥,⊥, r0, s, q

′)
∗ Compute wi3 ← WI3(rwi,wi2, xwi, wwi)
∗ Send m3 = (x, chal0, chal1,wi3).
∗ Output the view of the verifier for the current session, i.e. for
m1,m2,m3, and halt execution.

– Else if Inv fails, for each i ∈ [κ/ε′]:
• Rewind the adversary to state Q (unless already in state Q).
• Sample q̃i

R←− SD(ikb)
• Run Inv(fikb

(q̃i),Q, b, ε′/2).
• If Inv fails:

∗ Rewind the adversary to state Q.
∗ Sample r̃0, r̃1

R←− {0, 1}κ, q1−b
R←− SD(ik1−b).

∗ Compute chalb = [F (ikb, q̃i), 〈q̃i, r̃b〉 ⊕ 1, r̃b]
∗ Compute chal1−b = [F (ik1−b, q1−b), 〈q1−b, r̃1−b〉, r̃1−b]
∗ Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
∗ Compute wi3 ← WI3(rwi,wi2, xwi, wwi)
∗ Send m3 = (x, chal0, chal1,wi3).
∗ Output the view of the verifier for the current session, i.e. for
m1,m2,m3, and halt execution.

– Output ⊥

Lemma 7.
∣∣∣Pr[D(Hε′

6 ) = 1] − Pr[D(Hε′
7 ) = 1]

∣∣∣ ≤ ε′
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Proof.

Pr
rwi

R←−{0,1}κ,bwi
R←−{0,1}

R1,R2,R3,WI3

⎡
⎢⎢⎢⎢⎣

b′ = bwi

∣∣∣∣∣∣∣∣∣∣

wi1 ← WI1(1κ; rwi)
wi2, {xwi,i, wwi,i}i, τ ← R1(wi1)

{wi3,i}i ← {WI3(rwi,wi2, xwi,i, wwi,i)}i

(xwi, w0, w1) ← R2({wi3,i}i, τ)
b′ ← R3(WI3(rwi,wi2, xwi, wbwi))

⎤
⎥⎥⎥⎥⎦

≥ 1
2

+
ε′

2

Apart from the final construction of wi3, WI3 is always called during a call to
Pred, which in turn is called during a call to Inv. This means that WI3 is called
for some x′

wi := (x′, chal0, chal1, ik0, ik1, r1, c) and w′
wi := (w′,⊥5). Here, x′ and

w′ are chosen randomly each time, while ik0, ik1, r1 and c are fixed by m1 and
m2 before any WI3 call is made. Only the distributions of chal0 and chal1 change
between Pred calls. For any fixed b, the distributions of chal will be independent
of the output of any Pred call. The only interdependence will be dependence on
the bit b. This can be remedied by choosing two sets of inputs, one for b = 0
and one for b = 1. The outputs of one set may be later discarded depending on
the value of b. Therefore, all inputs may be chosen together immediately after
receiving m2. We represent this set of WI3 inputs as Swi := {xwii , wwi,i}i∈[poly(κ)].

We build a reduction R that interacts with an external challenger for WI by
running Hε′

6 with the following modifications:

1. Instead of computing the first message of WI, receive wi1 from the external
challenger.

2. Send wi2 parsed from m2 to the external verifier.
3. Choose the set Swi as specified above and send to the external verifier imme-

diately after sending wi2.
4. Receive Pwi := {wi3,i}i∈[poly(κ)] from the challenger immediately after sending

Swi, consisting of third WI messages for each (xwi,i, wwi,i) pair in Swi.
5. Proceed with hybrid execution until just before wi3 is computed, replacing

every WI3 call with its corresponding wi3,i.
6. Compute wwi as in Hε′

6 and label it w0.
7. Compute wwi as in Hε′

7 and label it w1.
8. Send (xwi, w0, w1) to the external challenger and receive wi3 as response.
9. Continue with hybrid execution using wi3 received from the challenger.

10. If the distinguisher returns 1, output 1. If not, or if any step fails, output 0.

The view of the adversarial verifier A in R is identical to the view in Hε′
6

when bwi = 0 and the view in Hε′
7 when bwi = 1. If we denote the event that R

outputs b′ = bwi as R succeeding:

Pr[R succeeds|bwi = 1] = Pr[D(Hε′
7 ) = 1]

Pr[R succeeds|bwi = 0] = Pr[D(Hε′
6 ) �= 1] = 1 − Pr[D(Hε′

6 ) = 1]

Since bwi is chosen uniformly:

Pr[R succeeds] =
1
2

(
1 +

(
Pr[D(Hε′

7 ) = 1] − Pr[D(Hε′
6 ) = 1]

))
≥ 1

2
+

ε′

2
which contradicts the security of wi since ε′/2 is non-negligible.
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Hybrid Hε′
8 :

This hybrid differs from Hε′
7 in that the hybrid uses the q̃ for which Inv fails to

compute wi3 via the third branch in the failure case.

Interacting with A as a prover for the protocol, Hε′
8 performs the following:

– Sample x,w
R←− Xκ,Wκ.

– Sample r0
R←− {0, 1}κ, s

R←− {0, 1}κ, rwi
R←− {0, 1}κ

– Compute c = com(r0; s), zap1 ← ZAP1(1κ), wi1
R←− WI1(1κ; rwi)

– Send m1 = (c, zap1,wi1) to a freshly initialised instance of the adversary A.
– Receive m2, parsed as (r1, ik0, ik1,wi2, zap2).
– Verify that ZAPverify(zap1, zap2) accepts. Output ⊥ if verification fails. Let

the state of A at this point be Q.
– Define Q := (rwi,m1,m2, Q) and compute b

R←− ik-checkQ, where b ∈ {0, 1,⊥}
– If b = ⊥, return ⊥
– Sample qb

R←− SD(ikb)
– Run Inv(SR(ikb; r1 ⊕ r2),Q, b, ε′/2).
– If Inv succeeds and outputs q′, for each i ∈ [κ/ε′]:

• Rewind the adversary to state Q (unless already in state Q).
• Sample q̃i

R←− SD(ikb)
• Run Inv(fikb

(q̃i),Q, b, ε′/2).
• If Inv succeeds:

∗ Rewind the adversary to state Q.
∗ Sample r̃0, r̃1

R←− {0, 1}κ, q1−b
R←− SD(ik1−b).

∗ Compute chalb = [F (ikb, q̃i), 〈q̃i, r̃b〉, r̃b]
∗ Compute chal1−b = [F (ik1−b, q1−b), 〈q1−b, r̃1−b〉, r̃1−b]
∗ Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (⊥,⊥,⊥, r0, s, q

′)
∗ Compute wi3 ← WI3(rwi,wi2, xwi, wwi)
∗ Send m3 = (x, chal0, chal1,wi3).
∗ Output the view of the verifier for the current session, i.e. for
m1,m2,m3, and halt execution.

– Else if Inv fails, for each i ∈ [κ/ε′]:
• Rewind the adversary to state Q (unless already in state Q).
• Sample q̃i

R←− SD(ikb)
• Run Inv(fikb

(q̃i),Q, b, ε′/2).
• If Inv fails:

∗ Rewind the adversary to state Q.
∗ Sample r̃0, r̃1

R←− {0, 1}κ, q1−b
R←− SD(ik1−b).

∗ Compute chalb = [F (ikb, q̃i), 〈q̃i, r̃b〉 ⊕ 1, r̃b]
∗ Compute chal1−b = [F (ik1−b, q1−b), 〈q1−b, r̃1−b〉, r̃1−b]
∗ Set xwi := (x, chal0, chal1, ik0, ik1, r1, c)
∗ If b = 0:

· Set wwi := (⊥, q̃i, q1−b,⊥,⊥,⊥)
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∗ If b = 1:
· Set wwi := (⊥, q1−b, q̃i,⊥,⊥,⊥)

∗ Compute wi3 ← WI3(rwi,wi2, xwi, wwi)
∗ Send m3 = (x, chal0, chal1,wi3).
∗ Output the view of the verifier for the current session, i.e. for
m1,m2,m3, and halt execution.

– Output ⊥

Lemma 8.
∣∣∣Pr[D(Hε′

8 ) = 1] − Pr[D(Hε′
7 ) = 1]

∣∣∣ ≤ ε′

Proof. The proof proceeds identically to the proof of Lemma 7, except that in
R, w0 is computed as wi3 in Hε′

7 instead of as in Hε′
6 and w1 is computed as wi3

in Hε′
8 instead of as in Hε′

7 .

The view of the adversary in the final hybrid Hε′
8 is identically distributed to

the simulated view of the adversary. Since D is unable to distinguish any two
consecutive hybrids with probability greater than ε′, it cannot distinguish the
view of the adversary in an honest execution from the simulated view with
probability greater than ε.

5.3 Argument of Knowledge Property

Theorem 3. Assuming enhanced injective trapdoor functions secure against
PPT adversaries, the protocol in Fig. 1 is an argument of knowledge.

Proof. (Overview) Due to lack of space, we defer the proof to the full version.
Intuitively, the extractor uses the argument of knowledge property of WI to
extract a witness. Since an honest verifier will check challenge bits, this will
either yield a witness for x ∈ L or an inverse of r0 ⊕ r1, which we show implies
breaking one-wayness of f . One subtlety is that the inverse may be with respect
to either index key. We show that we may obtain an inverse with respect to the
desired index key by swapping the order of keys, which is undetectable by the
witness indistinguishability of ZAP.

Acknowledgments. D. Khurana and K. Tomer were supported in part by NSF
CAREER CNS-2238718, DARPA SIEVE and a gift from Visa Research. This mate-
rial is based upon work supported by the Defense Advanced Research Projects Agency
through Award HR00112020024. G. Malavolta was funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strat-
egy - EXC 2092 CASA - 390781972.



172 D. Khurana et al.

References

1. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital
goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (May (2001)

2. Badrinarayanan, S., Goyal, V., Jain, A., Khurana, D., Sahai, A.: Round optimal
concurrent MPC via strong simulation. IACR Cryptology ePrint Archive 2017,
597 (2017)

3. Bitansky, N., Freizeit, S.: Statistically sender-private OT from LPN and deran-
domization. CRYPTO (2022)

4. Bitansky, N., Khurana, D., Paneth, O.: Weak zero-knowledge beyond the black-box
barrier. SIAM J. Comput. Special Sect. STOC 2019, pp. STOC19-156-STOC19-199
(2022)
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Abstract. In this work, we propose a simple framework of construct-
ing efficient non-interactive zero-knowledge proof (NIZK) systems for all
NP. Compared to the state-of-the-art construction by Groth, Ostrovsky,
and Sahai (J. ACM, 2012), our resulting NIZK system reduces the proof
size and proving and verification cost without any trade-off, i.e., neither
increasing computation cost, CRS size nor resorting to stronger assump-
tions.

Furthermore, we extend our framework to construct a batch argument
(BARG) system for all NP. Our construction remarkably improves the effi-
ciency of BARG by Waters and Wu (Crypto 2022) without any trade-off.

Keywords: Non-interactive zero-knowledge · batch argument · NP
language · pairing-based cryptography

1 Introduction

1.1 Motivation

Zero-knowledge proof systems introduced by Goldwasser, Micali, and Rackoff
[25] allow a prover to convince a verifier for the validity of an NP statement,
without revealing anything beyond that. As its round-optimal variant, non-
interactive zero-knowledge proof (NIZK) allows a prover to convince the veri-
fier by sending out a single message. Due to this nice property, NIZK is a very
interesting topic in both practical and theoretical cryptography, and it has been
used as an important building block for countless cryptographic primitives and
protocols.
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NIZKs for all NP were firstly proposed in [7,19] based on the quadratic
residuosity assumption and the existence of trapdoor permutation. While these
results demonstrate the feasibility of NIZKs for NP under standard assumptions,
they are not very efficient.

For better efficiency, Groth, Ostrovsky, and Sahai [29] proposed a framework
of efficient pairing-based constructions (GOS-NIZK). It provides constructions
with prime-order and composite-order pairings. Their security is based on the
Decisional Linear (DLIN) assumption and the subgroup decision assumption,
depending on which pairing group they are constructed in. Their constructions
have tight security and compact common reference strings (CRS), namely, a
CRS contains a constant number of group elements. Moreover, they achieve per-
fect soundness and computationally zero-knowledge, or computational soundness
and perfect zero-knowledge, depending on the CRS. This is referred to as the
dual-mode property. Perfect soundness and perfect zero-knowledge can provide
“everlasting security” and are interesting for certain applications. For instance, a
NIZK with perfect soundness always rejects an invalid proof and can protect mes-
sages that are valuable for a limited time and can be published or deleted later.
Additionally, the dual mode with perfect zero-knowledge continuously protects
secrets and prevents adversaries from breaking soundness at the time where an
honest proof is generated, thereby ensuring security by letting the system reject
users who have timed out when attempting to generate proofs.

To further improve the efficiency of GOS-NIZK, a sequence of works have
been proposed. These works either restrict to algebraic languages (e.g., [15,30,
33,34,39]) or base their security on non-falsifiable assumptions (e.g., [17,23,26,
28,40]). In this paper, we are interested in constructions based on standard
assumptions in pairing groups. By “standard assumptions”, we refer to static
and falsifiable assumptions, such as the (Matrix) Diffie-Hellman assumption [18].
The reason of using standard assumptions is that they are well-studied and
provide more reliable security guarantee. Recently, a notable work by Katsumata
et al. [37,38] (KNYY) shortened the proof size of pairing-based NIZKs for all
NP based on standard assumptions. Their proof size is additive, e.g., s + poly(λ)
rather than s ·poly(λ) as in GOS-NIZK, where s is the number of gates. However,
its security is based on a particular computational Diffie-Hellman assumption,
CDH∗, which is the CDH assumption in a subgroup of Z

∗
p (where prime p is

the group order).1 As noted by the authors themselves, it is unclear how to
instantiate their construction under the standard CDH assumption in a pairing
group. Also, their construction suffers from non-compact CRSs and significant
security loss, and lacks both perfect zero-knowledge and perfect soundness.

Summing up the above discussion, we ask the following question:

Is it possible to improve the efficiency of GOS-NIZK without any trade-off?

Non-interactive batch arguments. Another line of research focuses on non-
interactive batch arguments (BARG), which are sound proof systems amortizing
1 This particular assumption was not included in their proceeding version [37], but in

their later full version [38].
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Table 1. Comparison of pairing-based NIZKs for all NP under standard assumptions.
GOS12 is the original GOS-NIZK which is only with symmetric pairings, and GOS12∗

is its variant with asymmetric pairings (see Appendix A). t and s are the number of
wires and gates in the statement circuit respectively. In column “Sound.” (respectively,
“ZK”), comp. and perf. mean computation and perfect soundness (respectively, zero-
knowledge) respectively. In columns “Prov. Cost”, “Ver. Cost” we measure the num-
bers of exponentiations and pairings for the proving and verification cost respectively
(since they dominate the overall performance of proving and verification). “Assump.”
means the underlying assumption.

Scheme Sound. ZK CRS Size Proof Size Prov. Cost Ver. Cost Assump.
GOS12 [29] comp. perf. 5|G| (9t + 6s)|G| 15t + 12s 18(s + t) DLIN
(sym. pair.) perf. comp.
GOS12∗ comp. perf. 4|G1| + 4|G2| (6t + 4s)|G1| +

(6t + 6s)|G2|
18t + 16s 12(s + t) SXDH

(asym. pair.) perf. comp.

Ours comp. perf. 4|G1| + 4|G2| (2t + 8s)|G1| +
10s|G2|

2t + 30s 24s SXDH

perf. comp.

the cost of verification across multiple statements. Specifically, a BARG allows a
prover to generate a proof of the validity of multiple statements where the proof
size scales sublinearly with the number of statements.

Up until now most works are devoted to constructions in idealized mod-
els [2,11,12,28,42,46] or non-standard assumptions [3–6,8,16,23,27,36,41,44].
Recently, Choudhuri et al. [13,14] proposed a construction under both quadratic
residue and the subexponentially hard Diffie-Hellman assumption and a construc-
tion under the learning with errors assumption. Subsequently, a breakthrough
work by Waters and Wu [48] proposed the first BARG (WW-BARG) for all
NP over prime-order bilinear maps under the matrix Diffie-Hellman (MDDH)
assumption [18]. They also gave a composite-order group version under the sub-
group decision assumption. The proof sizes of both constructions are independent
of the number of statements. As applications of WW-BARG, they proposed the
first succinct non-interactive argument (SNARG) for P with sublinear-sized CRS
and the first aggregated signature from standard assumptions over bilinear maps.
A recent work by Kalai et al. [35] shows a bootstrapping technique that can gen-
erally convert BARGs into ones where CRSs grow polylogarithmically with the
number of statements. As a trade-off, the proof sizes grow polylogarithmically
as well.

Due to the versatility of BARGs over bilinear maps, it is natural to ask the
same question on GOS-NIZK mentioned above for the state-of-the-art BARG by
Waters and Wu, i.e. whether we can improve its efficiency without any trade-off.
Such an improvement will immediately yields a more efficient BARGs with short
CRSs via the bootstrapping technique by Kalai et al. [35].
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1.2 Our Contributions

Improvement on GOS-NIZK without Trade-Off. In this work, we improve
the efficiency of GOS-NIZK with asymmetric Type-3 pairings by proposing a new
and simple framework of constructing efficient NIZKs for NP. We consider Type-
3 pairings, since it is the most efficient one among all different types of pairings
[20]. Moreover, cryptanalysis [31,32] against symmetric pairing groups with small
characteristic curves motivate cryptographic schemes in Type-3 pairings (for
instance, [1,10]).

We note that the original GOS-NIZK was proposed with symmetric pairings
under the decisional linear (DLIN) assumption. For a fair comparison with our
scheme, we give its variant in the asymmetric pairing explicitly in Appendix
A. In the rest of this section, we refer GOS-NIZK to be the one in the Type-3
setting, unless stated otherwise.

By instantiating our scheme based on the SXDH assumption, our resulting
NIZK proofs consist of 2t + 8s group elements in G1 and 10s elements in G2,
where t and s respectively denote the numbers of wires and gates of the statement
circuit (the statement represented by fan-in-2 and unbounded fan-out NAND
gates). We denote this as (2t + 8s, 10s). Notice that for each multiple fan-out
gate, we only increment the count of wires t by 1 for its output wires, since
all output wires of the gate are assigned the same value and serves as input
wires for multiple other gates. For proving and verification, we use 2t + 30s
exponentiations and 24s pairings respectively. We note that any circuit can be
converted to one with only NAND gates.2 For GOS-NIZK, its proof size, proving
cost, and verification cost are (6t + 4s, 6t + 6s), 18t + 16s exponentiations, and
12(t+s) pairings respectively, which are strictly larger than ours. This is because
t is larger (or even much larger in many cases) than s, since each gate has at
least 1 output wire. Indeed, t−s corresponds to the number of input wires (with
no gates outputting them) and it cannot be very small. Otherwise, the witness
will be very short and an adversary can guess it with large probability. As an
instance, for a statement circuit consisting only of fan-in-2 and fan-out-1 gates,
we have t = 2s (without counting the final ouput wire) since each time when
adding a gate from the bottom to the top in a circuit, s and t increase by 1
and 2 respectively. In this case, our scheme uses (12s, 10s) group elements in the
proof, 34s exponentiations for proving, and 24s pairings for verification, which
is much more efficient than GOS-NIZK using (16s, 18s) elements in a proof, 52s
exponentiations for proving, and 36s pairings for verification.

2 Notice that this conversion does not affect the fairness of the comparison. The reason
is that in an original statement circuit consisting of AND, OR, and NOT gates, each
AND or OR gate can be represented as the combination of one NAND gate and several
NOT gates, while NOT gates are “free” in the sense that they do not increase the
proof size in both the GOS-NIZK and ours. Indeed, converting the statement circuits
into ones consisting only of NAND gates is unnecessary in practice. This conversion
is just used for conceptual simplicity, as we will discuss at the end of Sect. 3. The
same arguments can be made for the BARGs mentioned later.
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In Table 1, we give comparison of the security quality, CRS size, proof size,
proving and verification cost, and the underlying assumptions of our NIZK and
the ones by GOS. For being general, we present the schemes and proofs in the
technical part with the MDDH assumption [18], which is an algebraic generaliza-
tion of the DLIN and SXDH assumptions. The security of all the instantiations
are tight. For the experimental results on the cost and proof size, which are
consistent with our comparison in Table 1, we refer the reader to Sect. 5.

Table 2. Comparison of pairing-based BARGs for all NP. WW22 is WW-BARG in the
asymmetric pairing, and WW22∗ is its symmetric pairing version. m denotes the num-
ber of statement instances. t and s denote the number of wires and gates in the relation
circuit respectively. We assume that all provers take as input m statements. All the
instantiations satisfy somewhere argument of knowledge. In columns “Prov. Cost”,
“Ver. Cost”, we measure the numbers of multiplications and pairings for the prov-
ing and verification cost respectively (since they dominate the overall performance of
proving and verification). “Assump.” means the underlying assumption.

Scheme CRS Size Proof Size Prov. Cost Ver. Cost Assump.
WW22 [48] (4 + 2m2)|G1|+ (4t + 4s)|G1| +

(4t + 4s)|G2|
4m2t + 4m(m − 1)s 24t + 32s SXDH

(asym. pair.) (4 + 2m2)|G2|
WW22∗ [48] (1 + m2)|G| (2t + s)|G| m2t + m(m−1)

2 s 2t + 3s Subgroup
(sym. pair.) decision
Ours (4 + 2m2)|G1|+ (2t + 6s)|G1| +

(2t + 6s)|G2|
4mt + 6m(m − 1)s 40s SXDH

(asym. pair.) (4 + 2m2)|G2|
Ours (1 + m2)|G| (t + 2s)|G| mt + m(m − 1)s 4s Subgroup
(sym. pair.) decision

Given that our construction improves the proving and verification costs of
state-of-the-art constructions without any trade-off, it is recommended that any
applications of GOS-NIZK utilize our construction as a drop-in replacement.
Shorter proofs are always better, particularly in distributed settings. In such
scenarios, proofs may need to be stored permanently and can significantly impact
bandwidth usage. Therefore, even a constant rate of communication cost holds
significant importance. This is exemplified by ZKB++ [9], which successfully
reduces the proof size of ZKBoo [24] in the random oracle model by a factor of
2. Also, similar to GOS-NIZK, via the generic construction in [29], our NIZK
can be converted into a (more efficient) non-interactive zap, which has witness-
indistinguishability and uses no CRS. As far as we know, this is the most efficient
non-interactive zap based on standard assumptions by now. It provides perfect
subversion-resistance and is important for distributed systems where trusted
CRS is not desirable. Moreover, it can be converted into a leakage-resilient NIZK
via the generic construction by Garg-Jain-Sahai [21], which in turn implies a
(more efficient) fully leakage-resilient signature.
Extension to BARG. We further extend our framework to improve the effi-
ciency of WW-BARG without making compromises. Similar to our NIZK, we
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present our BARG with the MDDH assumptions. Under the SXDH assumption,
we obtain a BARG with each proof consisting of (6s + 2t, 6s + 2t) elements. It
is shorter than that in WW-BARG with (4s + 4t, 4s + 4t) elements. Transplant-
ing our BARG into composite-order bilinear groups derives a BARG with the
proof size 2s + t, while the proof size of the composite-order construction by
Waters and Wu is 2t + s. Moreover, our proving and verifying costs are less than
WW-BARG in both the prime-order and composite-order groups.

In Table 2, we give comparison of our constructions and the ones by Waters
and Wu. All the instantiations in the table satisfy the (tight) security of some-
where extractability argument of knowledge (see Definition 7), which in turn
implies non-adaptive soundness, namely, soundness for statements independent
of the CRS. For the experimental results on the cost and proof size, which are
consistent with our comparison in Table 2, we refer the reader to Sect. 5.

Similar to our NIZK construction, we recommend using our BARG construc-
tion as a drop-in replacement for WW-BARG in any of its applications. For
instance, it provides the most efficient SNARG for P with optimal succinctness
on CRS and proof sizes, through conversions by Waters-Wu and Kalai et al. [35].

1.3 Technical Overview

Let C(x, ·) be a statement circuit represented by NAND gates, where x is the
statement hardwired in C. We briefly recall that, in the GOS-NIZK, to prove
the existence of a witness w such that C(x,w) = 1, a prover first extends the
witness to contain the bits for all wires of C(x, ·). Then it hides all bits in w with
an additively homomorphic commitment and makes the commitment for the
final output wire a fixed one corresponding to 1. In this way anyone can check
it. Since for each gate G� = (d1, d2, d3), ((wd1 ,wd2),wd3) is a valid input/output
tuple if and only if

wd1 + wd2 + 2wd3 − 2 ∈ {0, 1}. (1)

Here by G� = (d1, d2, d3) we mean that the left and right input wires of the gate
G� are indexed as d1 and d2 respectively, while the output wire of G� is indexed
as d3. The prover can use an OR-proof system to prove that the plaintexts of all
the commitments satisfy such a relation. Additionally, the prover has to prove
the validity of each wire, namely, each commitment commits to a bit (rather
than some other value).

Our approach of NIZK for all NP. In our construction, we also commit to
the value of each wire and prove that the committed values are valid for each
gate. Different to the GOS-NIZK, we adopt the following consistency relation to
improve the efficiency:

(−1 + wd1 + wd3 = 0 ∧ −1 + wd2 = 0) ∨ (−1 + wd3 = 0 ∧ wd2 = 0). (2)

One can check that when the computations are over GF (2), Relation (2) holds
if and only if the input/output pair is binary. Only proving this relation of
committed values for each gate can be done by using a simple OR-proof, and
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this indeed yields shorter proof size in total, compared with the GOS-NIZK.
However, when considering a large field, only satisfying this relation may seem
meaningless. Specifically, when wd2 = 1, wd1 and wd3 might be large numbers
with sum “happening to be” 1, and when wd2 = 0, the situation seems worse:
there is no restriction on wd1 at all. Hence, without proving the wires are binary,
a valid proof for such a relation does not necessarily mean the validity of a
statement. A natural approach is to additionally generate proofs of wire validity
for wd1 ,wd3 ∈ {0, 1}. However, this results in longer proofs than the GOS-NIZK.
To overcome this, we develop a new method for soundness without additional
wire validity checking procedure.

A new witness-extraction strategy. To maintain both security and efficiency,
we propose a new witness-extraction strategy for proving soundness, which does
not require additional wire validity checks when adopting Relation (2). Specifi-
cally, this strategy helps us extract a witness from any valid proof only proving
that committed values satisfy Relation (2) for each gate. The strategy uses two
phases.

In the first phase, given a valid proof, we use a trapdoor to decrypt all
commitments. The decryption result for the final output wire must be 1, and
those for other wires could be any value (not necessarily in {0, 1}). The soundness
of the underlying OR-proof system only guarantees that all the decryption results
satisfy Relation (2) for each gate.

In the next phase, we start to pick up useful values from the decryption
results. This procedure starts from the final output wire to the input wires. Let
((wd1 ,wd2),wd3) be the decryption results for the final gate Gt. We must have
wd3 = 1, and wd2 ∈ {0, 1} according to Relation (2). If wd2 = 1, wd1 = 0 must
hold, and we set ((wd1 ,wd2),wd3) as the input/output values for Gt. The problem
is that when wd2 = 0, wd1 could be any large value. Our trick is not to assign
any number to this wire and leave it blank for now. The point is that no matter
which in {0, 1} will be assigned to the left-input wire, as long as wd2 = 0 and
wd3 = 1, ((wd1 ,wd2),wd3) will be a valid pair for Gt. Next, for each gate where
we have previously assigned a value in {0, 1} to its output wire, we assign values
to its input-wire(s) in a similar way. By doing this recursively from the bottom
to the top of the circuit, we eventually obtain values for part of the input wires
of the whole statement circuit. Now notice that these values will lead the circuit
to output 1 anyway, no matter what the rest of the input wires (left as blank)
will be. By setting these rest of the input wires as, say 0, we obtain a value
witness.

For better understanding, we give an example of the witness-extraction pro-
cedure for the statement circuit in Fig. 1. In the decryption result of a valid proof,
the final output must be 1, and the right inputs of all gates must be in {0, 1}
according to Relation (2). Without loss of generality, we assume that the right
inputs of (G1, G2, G4, G5) are (0, 1, 1, 0) respectively. Here we do not care about
the right input of G3 since it does not affect the final output as we will see. Then
we extract the witness from the bottom to the top. For G5, we leave its left input
as blank. Then for G4, its left input must be 1 according to Relation (2). Next,
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according to the same rule, we leave the left input of G1 as blank and set the left
input of G2 as 0. One can see that by now, we have found a path (remarked as
red wires in Fig. 1) leading the whole circuit to output 1. By setting the rest of
the input wires assigned ⊥ as 0, we immediately obtain a valid witness, which is
000001. One can check that it leads the circuit to output 1. For the full details,
we refer the reader to Sect. 3.

Fig. 1. An instance of the witness-extraction procedure. Without loss of generality, all
the gates {Gi}i∈[5] in the statement circuit are set as NAND gates. The procedure
starts from the bottom to the top. By setting the (blue) input wires assigned ⊥ as 0,
we extract a valid witness 000001 leading the circuit to output 1. (Color figure online)

Extension to batch argument for all NP. We now explain how to combine
our witness-extraction strategy with the WW-BARG proposed by Waters and
Wu in [48] to achieve a BARG with shorter proofs.

To prove the existence of witnesses (wi)i∈[m] such that C(xi,wi) = 1 for m
statements xi, WW-BARG first extends each (xi,wi) to (wi,j)j∈[t] containing bits
of all wires in the circuit C. Then it commits to (wi,j)i∈[m] with an additively
homomorphic (de-randomized) vector commitment for each wire. Next it gener-
ates succinct proofs of wire validity and gate consistency, i.e., for all i ∈ [m], it
proves that wi,j ∈ {0, 1} for each j ∈ [t] and 1 − wi,d1wi,d2 = wi,d3 for each gate
G� = (d1, d2, d3). The final proof size is independent of m.

Alternatively, if we can prove gate consistency with respect to Relation (2) as
in the case of NIZK, then we can adopt our aforementioned witness-extraction
strategy to avoid generating proofs of wire validity and achieve soundness with
shorter proofs. However, we do not have an explicit “batch OR-proof” for doing
this. To overcome this, we observe that WW-BARG essentially provides us with a
way to prove wi,1wi,2 = 0 for all i ∈ [m] given two commitments to (wi,1)i∈[m] and
(wi,2)i∈[m] respectively. Then for each gate G� = (d1, d2, d3), we let the prover
homomorphically evaluate commitments to (1−wi,d1−wi,d3)i∈[m], (1−wi,d3)i∈[m],
and (1 −wi,d2)i∈[m] respectively, and extend WW-BARG to adopt the following
relation for consistency checks:

(1 − wi,d1 − wi,d3)wi,d2 = 0 ∧ (1 − wi,d3)(1 − wi,d2) = 0. (3)

One can check that Relation (3) implies

(1 − wi,d3 = 0 ∧ wi,d2 = 0) ∨ (1 − wi,d1 − wi,d3 = 0 ∧ 1 − wi,d2 = 0),
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which is equivalent to Relation (2), or

wi,d1 = 0 ∧ 1 − wi,d3 = 0.

Then for any valid proof, we can extract the extended witness from the bottom
to the top of the circuit in a similar way to the witness-extraction strategy for our
NIZK. Here, a main difference is that there is a new case wi,d1 = 0∧1−wi,d3 = 0
captured by Relation (3) but not captured by Relation (2). When this happens,
we just leave wi,d2 blank and continue to extract values for the gate outputting
wi,d1 . We refer the readers to Sect. 4 for the detailed construction and security
analysis, which reflects a bulk of our main technical contribution.

2 Preliminaries

Notations. We use x $← S to denote the process of sampling an element x
from set S uniformly at random. All our algorithms are probabilistic polynomial
time unless we stated otherwise. If A is a probabilistic algorithm, then we write
a $← A(b) to denote the random variable that outputted by A on input b. By
negl(·) we mean an unspecified negligible function.

2.1 Pairing Groups and Matrix Diffie-Hellman Assumptions

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input 1λ

returns a description G := (G1,G2,GT , p, P1, P2, e) of asymmetric pairing groups
where G1, G2, GT are cyclic groups of order p for a λ-bit prime p, P1 and P2 are
generators of G1 and G2, respectively, and e : G1 × G2 → GT is an efficiently
computable (non-degenerate) bilinear map. Define PT := e(P1, P2), which is a
generator in GT . Unless stated otherwise, we consider Type III pairings, where
G1 �= G2 and there is no efficient homomorphism between them.

We use implicit representation of group elements as in [18]. For s ∈ {1, 2, T}
and a ∈ Zp define [a]s = aPs ∈ Gs as the implicit representation of a in Gs.
Similarly, for a matrix A = (aij) ∈ Z

n×m
p we define [A]s as the implicit repre-

sentation of A in Gs. Span(A) := {Ar|r ∈ Z
m
p } ⊂ Z

n
p denotes the linear span

of A, and similarly Span([A]s) := {[Ar]s|r ∈ Z
m
p } ⊂ G

n
s . Note that it is efficient

to compute [AB]s given ([A]s, B) or (A, [B]s) with matching dimensions. We
define [A]1 ◦ [B]2 := e([A]1, [B]2) = [AB]T , which can be efficiently computed
given [A]1 and [B]2.

Next we recall the definition of the Matrix Decisional Diffie-Hellman (MDDH)
[18] and related assumptions [43].

Definition 1 (Matrix distribution). Let k, � ∈ N with � > k. We call D�,k

a matrix distribution if it outputs matrices in Z
�×k
p of full rank k in polynomial

time. By Dk we denote Dk+1,k.

For a matrix A $← D�,k, we define the set of kernel matrices of A as

ker(A) := {A⊥ ∈ Z
�×(�−k)
p | (A⊥)� · A = 0 ∈ Z

(�−k)×k
p and A has rank (� − k)}.
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Given a matrix A over Z
�×k
p , it is efficient to sample an A⊥ from ker(A).

The D�,k-Matrix Diffie-Hellman problem is to distinguish the two distribu-
tions ([A], [Aw]) and ([A], [u]) where A $← D�,k, w $← Z

k
p and u $← Z

�
p.

Definition 2 (D�,k-matrix decisional Diffie-Hellman assumption [18]).
Let D�,k be a matrix distribution and s ∈ {1, 2, T}. We say that the D�,k-Matrix
Diffie-Hellman (D�,k-MDDH) is hard relative to GGen in group Gs if for all PPT
adversaries A, it holds that

| Pr[1 $← A(G, [A]s,[Aw]s)] − Pr[1 $← A(G, [A]s, [u]s)]| ≤ negl(λ),

where G $← GGen(par), A $← D�,k, w $← Z
k
p and u $← Z

�
p.

2.2 Non-Interactive Zero-Knowledge Proof

Let λ ∈ N be the security parameter determining a public parameter par. We
define NIZK as follows.

Definition 3 (Non-interactive zero-knowledge proof [30]). A non-inter-
active zero-knowledge proof (NIZK) for a family of languages {Lpar} consists of
three PPT algorithms NIZK = (NGen,NProve,NVer) such that:

– NGen(1λ, par) returns a common reference string crs.
– NProve(crs,C, x,w) returns a proof π.
– NVer(crs,C, x, π) returns 1 (accept) or 0 (reject). Here, NVer is deterministic.

Completeness is satisfied if for all (C, x) ∈ Lpar and all w such that C(x,w) = 1,
all crs ∈ NGen(1λ, par), and all π ∈ NProve(crs, x,w), we have NVer(crs, x, π) = 1.

Definition 4 (Composable zero-knowledge). A NIZK NIZK = (NGen,
NProve,NVer) is said to satsify composable zero-knowledge if there exist a sim-
ulator consisting of two PPT algorithms (NTGen,NSim) such that

– NTGen(1λ, par) returns crs and a trapdoor td,
– NSim(crs, td,C, x) returns a proof π,

and for any PPT adversary A, we have

| Pr[1 $← A(crs)|crs $← NGen(1λ, par)]
− Pr[1 $← A(crs)|(crs, td) $← NTGen(1λ, par)]| ≤ negl(λ),

and for all (x,w) such that C(x,w) = 1, the following distributions are identical.

π $← NProve(crs,C, x,w) and π $← NSim(crs, td,C, x),

where (crs, td) $← NTGen(1λ, par).

Definition 5 (Perfect soundness). A NIZK NIZK = (NGen, NProve, NVer)
is said to satisfy perfect soundness if for all x /∈ Lpar, all crs ∈ NGen(1λ, par),
and all π, we have NVer(crs,C, x, π) = 0.
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Witness-extractor. One can easily see that for any statement, if there exists a
(possibly inefficient) witness-extractor that can extract a valid witness from any
valid proof passing the verification, then perfect soundness is satisfied.
Dual mode. A NIZK defined as above satisfies computational zero-knowledge
and perfect soundness. By generating CRSs with NTGen instead of NGen, we
immediately achieve its dual mode with perfect zero-knowledge but computa-
tional soundness.

2.3 Batch Argument
Let λ ∈ N be the security parameter determining a public parameter par. We
define batch argument as follows.
Definition 6 (Batch argument). A batch argument (BARG) for a family of
languages {Lpar} consists of three PPT algorithms BARG = (BGen,BProve,BVer)
such that
– BGen(1λ, par, 1m) returns a common reference string crs.
– BProve(crs,C, (xi)i∈[m], (wi)i∈[m]) returns a proof π.
– BVer(crs,C, (xi)i∈[m], π) returns 1 (accept) or 0 (reject). Here, BVer is deter-

ministic.
Completeness is satisfied if for all λ, m ∈ N, all (C, (xi)i∈[m]) ∈ Lpar, all

(wi)i∈[m]) such that C(xi,wi) = 1 for all i ∈ [m], all crs ∈ BGen(1λ, par, 1m), and
all π ∈ BProve(crs,C, (xi)i∈[m], (wi)i∈[m]), we have BVer(crs,C, (xi)i∈[m], π) = 1.
Definition 7 (Somewhere argument of knowledge). A BARG BARG =
(BGen,BProve,BVer) for {Lpar} is said to be a somewhere argument of knowledge
if there exist two PPT algorithms (BTGen,BExt) such that
– BTGen(1λ, par, 1m, i∗) returns a common reference string crs and a trapdoor

td,
– BExt(td,C, (xi)i∈[m], π) returns a witness w∗. Here, BExt is deterministic,

and (BTGen,BExt) satisfy the following two properties.
CRS indistinguishability: for all λ, m ∈ N, all i∗ ∈ [m], and all PPT adver-

sary A, we have
| Pr[1 $← A(crs)|crs $← BGen(1λ, par, 1m)]
− Pr[1 $← A(crs)|(crs, td) $← BTGen(1λ, par, 1m, i∗)]| ≤ negl(λ).

Somewhere extractability in trapdoor mode: for all polynomial m = m(λ),
all i∗ ∈ [m], and all adversary A, we have

Pr[BVer(crs∗,C, (xi)i∈[m], π) = 1 ∧ C(xi∗ ,wi∗) �= 1|
(crs∗, td) $← BTGen(1λ, par, 1m, i∗), (C, (xi)i∈[m], π) $← A(crs∗),

wi∗ $← BExt(td,C, (xi)i∈[m], π)] ≤ negl(λ).

As noted in [48], somewhere extractability implies non-adaptive soundness,
i.e., soundness for statements independent of the CRS (see [48] for the formal
definition), by a standard hybrid argument.3
3 A security loss of O(m) occurs in the hybrid argument.
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Definition 8 (Succinctness). A batch argument BARG = (BGen,BProve,
BVer) for {Lpar} is said to satisfy succinctness if there exists a fixed polyno-
mial poly(·, ·, ·) such that for all λ, m ∈ N, all crs ∈ BGen(1λ, par, 1m), and all
(C : {0, 1}n × {0, 1}h → {0, 1}, (xi)i∈[m]) ∈ Lpar, the following properties hold:

Succinct proofs: all π ∈ BProve(crs,C, (xi)i∈[m], (wi)i∈[m]) where C(xi,wi) = 1
for all i ∈ [m] satisfies |π| ≤ poly(λ, log m, s).

Succinct CRS: all crs ∈ Gen(1λ, par, 1m) satisfies |crs| ≤ poly(λ, m, n) +
poly(λ, log m, s).

Succinct verification: BVer runs in time poly(λ, m, n) + poly(λ, log m, s).
Above by s we denote the number of gates in C.

3 Simple NIZK from OR-Proof

In this section, we recall an efficient instantiation of OR-proof and give a new
framework for converting an OR-proof into an efficient NIZK for circuit satisfi-
ability in NP.

3.1 NIZK for OR-Language

We now recall the OR-proof system based on the MDDH assumptions presented
in [39,45] and implicitly given in [29]. As far as we know, this is the most efficient
OR-proof by now in the standard model.

For the language

Lor[A]1 = {(C[A]1 , ([x0]1, [x1]1))|∃w ∈ Z
t
p : C[A]1([x0, x1]1, w) = 1},

where [A]1 ∈ G
n×t
1 is public and C[A]1 is a Boolean circuit on input ([x0, x1]1, w)

outputting 1 iff [x0]1 = [A]1w ∨ [x1]1 = [A]1w, the OR-proof system ORNIZK
with each public parameter containing par = (G $← GGen(1λ)) is defined as in
Fig. 2.

Lemma 1. If the Dk-MDDH assumption holds in the group G2, then the proof
system ORNIZK = (NGenor,NTGenor,NProveor, NVeror,NSimor) is a NIZK with
perfect completeness, perfect soundness, and composable zero-knowledge. For any
adversary A against the composable zero-knowledge of ORNIZK, there exists a
tight reduction algorithm breaking the MDDH assumption by using A in a black-
box way with security loss O(1).

We refer the reader to [39,45] for the detailed proof.

3.2 Our NIZK for NP

Before giving our NIZK for NP, we first introduce the notion of circuit satisfia-
bility.
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Fig. 2. Construction of ORNIZK = (NGenor,NProveor,NVeror) with the simulator
(NTGenor,NSimor).

Definition 9 (Circuit satisfiability). Let λ be the security parameter. The
circuit satisfiability language is defined as

LCSAT
λ = {(C, x)|∃w ∈ {0, 1}h : C(x,w) = 1},

where C : {0, 1}n × {0, 1}h → {0, 1} is any Boolean circuit with polynomial size
in λ and x ∈ {0, 1}n is the instance. Without loss of generality, we assume that
C consists only of fan-in-2 NAND gates.

Let λ be the security parameter and par = G be the public parameter, where
G = (G1,G2,GT , p, [1]1, [1]2, e) $← GGen(1λ). Let ORNIZK = (NGenor,NProveor,
NVeror) be an OR-proof with the simulator (NTGenor,NSimor), where each public
parameter is comprised of G. Let Lor[M′]1 be the following language it supports.

Lor[M′]1 = {(C[M′]1 , ([x0]1, [x1]1))|∃w ∈ Z
2k
p : C[M′]1(([x0]1, [x1]1), w) = 1},

where C[M′]1 : G
2k+2
1 × G

2k+2
1 × Z

2k
p → {0, 1} is a Boolean circuit on input

((x0, x1), w) outputting 1 iff [x0]1 = [M′]1w∨[x1]1 = [M′]1w for M′ =
(

M 0
0 M

)
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and M ∈ Dk. We give our NIZK for LCSAT
λ in Fig. 3. Roughly, we first extend

the witness to all wires, commit to all the values, and use the OR-proof to prove
that committed values satisfy Relation (2) (see Sect. 1.3) for each gate.4

Fig. 3. Definition of NIZK = (NGen,NProve,NVer). By G� = (d1, d2, d3) we mean that
the left and right input wires of the gate G� are indexed as d1 and d2 respectively, while
the output wire of G� is indexed as d3. Notice that for each multiple fan-out gate, we
only increment the count of wires t by 1 for its output wires and generate only one
commitment for these wires, since all output wires of the gate are assigned the same
value and serves as input wires for multiple other gates. The same argument is also
made for all other proof systems given later.

Theorem 1 (Completeness). If ORNIZK is complete, then NIZK is complete.

Proof. Let wd1 and wd2 be the input bits of a NAND gate, and wd3 be the true
output. We must have

(−1 + wd1 + wd3 = 0 ∧ −1 + wd2 = 0) or (−1 + wd3 = 0 ∧ wd2 = 0).
4 Notice that we do not define the commitment and its properties in advance since

we use a concrete construction based on the MDDH assumption in a non-black-box
way.
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Let cmd1 = [Mrd1+zwd1 ]1 and cmd2 = [Mrd2+zwd2 ]1 be the input commitments
and cmd3 = [Mrd3 + zwd3 ]1 be the output commitment. We have

x�,1 =
(−[z]1 + cmd1 + cmd3

−[z]1 + cmd2

)
= [M′]1

(
rd1 + rd3

rd2

)
+

(
[z]1(−1 + wd1 + wd3)

[z]1(−1 + wd2)

)

= [M′]1
(

rd1 + rd3

rd2

)

or x�,2 =
(−[z]1 + cmd3

cmd2

)
= [M′]1

(
rd3

rd2

)
+

(
[z]1(−1 + wd3)

[z]1wd2

)
= [M′]1

(
rd3

rd2

)
.

Therefore, we have x�,1 ∈ Span([M′]1) if wd2 = 1 and x�,2 ∈ Span([M′]1) other-
wise. Then the completeness of NIZK follows from the completeness of ORNIZK,
completing the proof of Theorem 1. �
Theorem 2 (Composable zero-knowledge). Under the Dk-MDDH assump-
tion, if ORNIZK satisfies composable zero-knowledge, then NIZK satisfies com-
posable zero-knowledge.

Fig. 4. Definition of the simulator (NTGen,NSim).

Proof. We define the simulator (NTGen,NSim) as in Fig. 4.
First we note that the distribution of z $← Z

k+1
p \Span(M) is 1/p-statistically

close to the uniform distribution over Z
k+1
p . Then the indistinguishability of

CRSs generated by NGen(1λ, par) and NTGen(1λ, par) follows immediately from
the Dk-MDDH assumption and the composable zero-knowledge of ORNIZK
(which says that crsor generated by NGenor and NTGenor are computationally
close).
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Next we define a modified prover NProve′, which is exactly the same as
NProve except that for each NAND gate, π� is generated as

π�
$← NSimor(crsor, tdor,C[M′]1 , (x�,1, x�,2)).

The following distributions are identical due to the composable zero-knowledge
of ORNIZK.

Π $← NProve(CRS,C, x,w) and Π $← NProve′(CRS,C, x,w)

for (CRS,TD) $← NTGen(1λ, par) and any (x,w) such that C(x,w) = 1.
Moreover, since the distribution of cmi = [Mri]1 is identical to that of cmi =

[Mri + zwi]1 for ri
$← Z

λ
p when z ∈ Span(M), the distributions of

Π $← NProve′(CRS,C, x,w) and Π $← NSim(CRS,TD,C, x),

where (CRS,TD) $← NTGen(1λ, par) and C(x,w) = 1, are identical as well,
completing the proof of Theorem 2. �
Theorem 3 (Soundness). If ORNIZK is perfectly sound, then NIZK is per-
fectly sound.

Proof. To prove perfect soundness, we just have to show that we can extract a
valid witness from any proof passing the verification. Let k be the vector in the
kernel of M such that k�z = 1, which must exist when z /∈ Span(M). We define
an extractor as in Fig. 5. For any valid statement/proof pair (x, Π), we argue
that the extractor must be able to extract a valid witness w for x as below.

Due to the perfect soundness of ORNIZK, for each NAND gate with input
commitments (cmd1 , cmd2) and an output commitment cmd3 in a valid proof, we
have

x�,1 =
(−[z]1 + cmd1 + cmd3

−[z]1 + cmd2

)
∈ Span([M′]1)

or x�,2 =
(−[z]1 + cmd3

cmd2

)
∈ Span([M′]1).

Then we have

k�(−[z]1 + cmd1 + cmd3) = −[1]1 + k�cmd1 + k�cmd3 = [0]1
∧k�(−[z]1 + cmd2) = −[1]1 + k�cmd2 = [0]1

Fig. 5. Definition of ExtNIZK. FNIZK is the recursion algorithm defined as in Fig. 6.
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Fig. 6. Definition of FNIZK. Parentl (repsectively, Parentr) denotes the gate whose output
is the left (respectively, right) input to G�.

or k�(−[z]1 + cmd3) = −[1]1 + k�cmd3 = [0]1 ∧ k�cmd2 = [0]1.

Moreover, we must have k�cmt = k�[z]1 = [1]1 for the output wire. As a result,
for a valid proof, FNIZK (see Fig. 6) will never abort during the execution of
ExtNIZK, and running FNIZK recursively will result in bits for input wires leading
the statement circuit to output 1. Notice that after running FNIZK(k,C, Gt, Π),
there might be some input wires assigned ⊥. However, these wires do not affect
the final output and we can just assign 0 to them.

As a result, we can extract the bits for all wires consisting of valid
input/output pairs for all NAND gates and leading the statement circuit to
output 1. Therefore, for all proofs passing the verification, there must exist
a valid witness for the statement x, i.e., x ∈ LCSAT

λ , completing the proof of
Theorem 3.5 �

Remark on the representation of circuits. We represent the circuits by
NAND gates only for conceptual simplicity. In practice, this conversion is unnec-
essary. For any original circuit represented as AND, OR, NOT gates, the NOT
gates are free, and by slightly changing Relation 2 on Page 6, we can directly
adopt the OR-proof for AND and OR gates. Concretely, for AND gates, we prove
(wd1 − wd3 = 0 ∧ −1 + wd2 = 0) ∨ (wd3 = 0 ∧ wd2 = 0), and for OR gates, we
prove (wd1 −wd3 = 0∧wd2 = 0) ∨ (wd3 = 1∧wd2 = 1). Then our new technique
saves overhead for AND and OR gates with our witness-extraction strategy in
the same way as for NAND-gates. The same argument can also be made for our
BARG given later.

Instantiation of our NIZK. By instantiating the OR-proof system as in
Sect. 3.1 under the SXDH assumption, each proof of our NIZK consists of (2t+8s)
5 One can see that our construction is also a NIZK proof of knowledge, i.e., we can

generate the extraction key k along with a binding CRS and use it to extract a valid
witness from any valid proof.
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elements in G1 and 10s elements in G2, where t and s are the number of wires and
gates in the statement circuit respectively. Compared to the GOS-NIZK given
in Appendix A, which requires (6t + 4s) elements in G1 and (6t + 6s) elements
in G2 for each proof, our proof size is strictly smaller since t must be larger than
s in any circuit. Moreover, the numbers of exponentiations and pairing products
required in our proving and verification procedures are only 2t + 30s and 24s
respectively, while those in the GOS-NIZK are 18t+16s and 12(s+t). Notice that
when adopting the OR-proof in our construction, the statement M′ determining
the language has half of the entries being [0]1. We do not count exponentiations
of these entries and pairing products between these entries and other elements
in verification, since the computing results can always be fixed as [0]1 or [0]T .
More instantiations. By instantiating the underlying OR-proof system based
on the Extended-Kernel Matrix Diffie-Hellman assumption, which holds uncon-
ditionally in the generic group model and implied by the discrete logarithm
assumption in the algebraic group model, as in Fig. 6 of [15], we can further
reduce the OR-proof size used by our construction by 5 elements in G2, com-
pared to our SXDH based instantiation (see Table 1). While this also works for
the GOS-NIZK in Appendix A, its OR-proof size can only be reduced by 3
elements in G2.
Extension to non-interactive zaps. In [29], Groth, Sahai, and Ostrovsky
gave a generic conversion from any NIZK with verifiable correlated key genera-
tion into a non-interactive zap, i.e., non-interactive witness-indistinguishability
proof systems in the plain model. To date, this is the only known non-interactive
zap for NP based on standard assumptions. Here, verifiable correlated key gener-
ation refers to the ability to efficiently generate two correlated common reference
strings (CRSs) along with one trapdoor. One CRS is binding, meaning it provides
perfect soundness, while the other CRS is hiding, meaning it offers perfect zero-
knowledge and corresponds to the trapdoor. It is crucial that a PPT adversary
cannot distinguish which CRS is hiding when given both of them. Additionally,
it is required that a verification algorithm exist such that honestly sampled CRS
pairs always pass verification, and for any CRS pair that passes verification, one
of them must be binding. We refer the reader to [29] for a detailed description
of the conversion method, while we argue that our NIZK proof system satisfies
the requirements for verifiable correlated key generation as outlined above. Con-
sequently, it can be converted into a non-interactive zap, thereby improve the
construction in [29] without any trade-offs. As far as we know, this results in the
most efficient non-interactive zap based on standard assumptions.

To show that our NIZK has verifiable correlated key generation, we first
recall that in both our NIZK and the GOS-NIZK, each CRS essentially consists
of a CRS from the underlying NIZK and a key for a homomorphic commitment.
Since both parts have the same distribution, we can combine them into a single
tuple (par, [M]1, [zbind]1), where par = (G $← GGen(1λ)), M $← Dk, and zbind

$←
Z

k+1
p \Span(M), without compromising security. In the hiding mode, we replace

zbind with zhide = Mu where u $← Z
k
p. We can further change the distribution

of zbind to that of zhide + f , where f is some fixed vector outside Span(M). One
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can easily see that changed zbind remains binding due to non-linearility and
composable zero-knowledge still holds due to the MDDH assumption. Then we
can set the correlated CRSs as (par, [M, zbind]1) and (par, [M, zhide = zbind − f ]1)
and set u as the trapdoor. Due to the MDDH assumption, any PPT adversary
cannot tell which one is hiding. The verification algorithm given the two CRSs
checks the validity of par and [M]1 and whether zbind + zhide = f holds. For
any two CRS (par, [M, z0]1) and (par, [M, z1]1) passing the verification, we must
have either [z0]1 /∈ Span([M]1) or [z1]1 /∈ Span([M]1), i.e., one of them must be
binding. Therefore, our NIZK proof system, as well as the GOS-NIZK in the
asymmetric pairing setting, has verifiable correlated key generation.

4 Batch Argument for NP

In this section, we extend our framework for NIZK to give an efficient construc-
tion of BARG for batch circuit satisfiability in NP.

Definition 10 (Batch circuit satisfiability). Let λ be the security parame-
ter. The batch circuit satisfiability language for an integer m ∈ N is defined as
follows.

LBatchCSAT
λ ={(C, (xi)i∈[m])|∀i ∈ [m] : ∃wi ∈ {0, 1}h : C(xi,wi) = 1},

where C : {0, 1}n × {0, 1}h → {0, 1} is any Boolean circuit with polynomial size
in λ and x1, · · · , xm ∈ {0, 1}n are the statements. Without loss of generality, we
assume that C consists only of fan-in-2 NAND gates.

Let par = G be the public parameter, where G = (G1,G2,
GT , p, [1]1, [1]2, e) $← GGen(1λ). We give our BARG for LBatchCSAT

λ in Fig. 7.

Theorem 4 (Completeness). BARG is complete.

Proof. Validity of statement. Since the first n wires corresponds to the
statement, for honestly generated ([ud]1 =

∑
i∈[m]

wi,d[ai]1)d∈[t] and ([u∗
d]1 =

∑
i∈[m]

xi,d[ai]1)d∈[n], we must have xi,d = wi,d for all i ∈ [m] and d ∈ [n]. Hence,

we have [ud]1 = [u∗
d]1 for all d ∈ [n]. Similarly, we have [ûd]2 = [û∗

d]2 for all
d ∈ [n]. Moreover, when the witnesses are valid, we must have wi,t = 1 for
all i ∈ [m] for the output wire. Hence, we have [ut]1 = [

∑
i∈[m]

ai]1 = [a]1 and

[ût]2 = [
∑

i∈[m]
âi]2 = [â]2.

Validity of gate computation. For witnesses (wi)i∈[m], for each gate G� =
(d1, d2, d3), we have (−1 + wi,d1 + wi,d3 = 0 ∧ −1 + wi,d2 = 0) or (−1 + wi,d3 =
0 ∧ wi,d2 = 0) for all i ∈ [m], which in turn implies

(−1 + wi,d1 + wi,d3)wi,d2 = 0 and (−1 + wi,d3)(−1 + wi,d2) = 0.
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Fig. 7. Definition of BARG = (BGen,BProve,BVer).
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Moreover, for the CRS, we have

Bi,jM̂� + MB̂�
i,j = M(αiα̂

�
j + Ri,j)M̂� − MRi,jM̂� = Mαiα̂

�
j M̂� = aiâ�

j .

Then for ((ud, ûd)d∈[t], ([V�,i, W�]1, [V̂�,i, Ŵ�]2)�∈[s],i∈[2]) in a valid proof, we
have

(a − ud1 − ud3)û�
d2 =

∑
i∈[m]

(1 − wi,d1 − wi,d3)ai

∑
i∈[m]

wi,d2 â�
i

=
( ∑

i∈[m]

(1 − wi,d1 − wi,d3)wi,d2aiâ�
i

︸ ︷︷ ︸
=0

+
∑
i�=j

(1 − wi,d1 − wi,d3)wj,d2aiâ�
j

)

=
∑
i�=j

(1 − wi,d1 − wi,d3)wj,d2 (Bi,jM̂� + MB̂�
i,j)︸ ︷︷ ︸

=aiâ�
j

= MV̂�
�,1 + V�,1M̂�,

ud2 â� − (ud1 + ud3)û�
d2

=
∑

i∈[m]

wi,d2ai

∑
i∈[m]

â�
i −

∑
i∈[m]

(wi,d1 + wi,d3)ai

∑
i∈[m]

wi,d2 â�
i

=
( ∑

i∈[m]

(1 − wi,d1 − wi,d3)wi,d2aiâ�
i

︸ ︷︷ ︸
=0

+
∑
i�=j

(
wi,d2 − (wi,d1 + wi,d3)wj,d2

)
aiâ�

j

)

=
∑
i�=j

(
wi,d2 − (wi,d1 + wi,d3)wj,d2

)
(Bi,jM̂� + MB̂�

i,j)︸ ︷︷ ︸
=aiâ�

j

= MV̂�
�,2 + V�,2M̂�,

(a − ud3)(â� − û�
d2)

=
∑

i∈[m]

(1 − wi,d3)ai

∑
i∈[m]

(1 − wi,d2)â�
i

=
( ∑

i∈[m]

(1 − wi,d3)(1 − wi,d2)aiâ�
i

︸ ︷︷ ︸
=0

+
∑
i�=j

(1 − wi,d3)(1 − wj,d2)aiâ�
j

)

=
∑
i�=j

(1 − wi,d3)(1 − wj,d2) (Bi,jM̂� + MB̂�
i,j)︸ ︷︷ ︸

=aiâ�
j

= MŴ�
� + W�M̂�.

This completes the proof of completeness. �
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Theorem 5 (Succinctness). BARG is succinct.

Proof. For our BARG in Fig. 7, we check the succinctness as follows.

Proof size. Each proof π consists of t(k + 1) + 3s(k + 1)k group elements in
each of G1 and G2, where each group element can be represented in poly(λ) bits
and k is constant. Since t = poly(s), we have |π| = poly(λ, s).

CRS size. Each CRS crs consists of the group description and (k + 1)k + (m +
1)(k + 1) + m(m − 1)/2 · (k + 1)k = O(k2m2) elements in each of G1 and G2.
Thus we have |crs| = m2 · poly(λ).

Verification key. Each verification key vk output by GenVK consists of n(k +1)
elements in each of G1 and G2. Thus we have |vk| = n · poly(λ).

Verification key generation time. GenVK performs 2mn(k + 1) group oper-
ations, which requires poly(λ, m, n) time.

Online verification time. The OnlineVer consists of 3 steps in total, where the
running time of each step is bounded by nk ·poly(λ), k ·poly(λ), and sk3 ·poly(λ)
respectively. Since n = poly(s), the total running time is bounded by poly(s, λ)

Putting all the above together, Theorem 5 immediately follows. �
Theorem 6 (Somewhere argument of knowledge). Under the Dk-MDDH
assumption, BARG is a somewhere argument of knowledge.

Proof. We define the trapdoor setup and extraction algorithms as in Fig. 8.

CRS indistinguishability. We prove the CRS indistinguishability by defining
a sequence of intermediate games.

Let A be any PPT adversary against the CRS indistinguishability of BARG
for some index i∗ ∈ [m]. It receives a CRS crs generated by the challenger CH
in each game as defined in Fig. 10.

Game G0 and G1. Game G0 is the game where CH on receiving the index i∗

from the adversary returns crs generated as crs $← BGen(1λ, par, 1m) to A. Game
G1 is exactly the same as G0 except that Bi,j and B̂i,j are generated in a different
way. �
Lemma 2. Pr[GA

0 ⇒ 1] = Pr[GA
1 ⇒ 1].

Proof. For j �= i∗, the distributions of Bi,j in Games G0 and G1 are identical,
since

M(αiα̂
�
j + Ri,j) = (Mαi)α̂�

j + MRi,j = aiα̂
�
j + MRi,j .

For j = i∗, in G0, we have Bi,j = M(αiα̂
�
j + Ri,j) and

B̂i,j = −M̂R�
i,j = M̂(αiα̂

�
j )� − M̂(Ri,j + αiα̂

�
j )� = âjα�

i − M̂(Ri,j + αiα̂
�
j ).

Since the distribution of Ri,j + αiα̂
�
j is uniformly distributed, the distribution

of Bi,j and B̂i,j is identical to that in G1, completing this part of proof. �
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Fig. 8. Definition of (BTGen,ExtBARG). FBARG is the recursion algorithm defined as in
Fig. 9.

Fig. 9. Definition of FBARG. Parentl (repsectively, Parentr) denotes the gate whose out-
put is the left (respectively, right) input to G�.

Game G2. G2 is the same as G1 except that ai∗ is randomly sampled outside
the span of M.

Lemma 3. There exists an adversary B1 breaking the Dk-MDDH assumption in
G1 with probability at least | Pr[GA

2 ⇒ 1] − Pr[GA
1 ⇒ 1]| − 1/p.
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Fig. 10. Challenger CH in the intermediate games.

Proof. We build B1 as follows.
B1 runs in exactly the same way as the challenger of G1 except that instead

of generating [ai∗ ]1 by itself, it takes as input [ai∗ ]1 generated as ai∗ $← Z
k+1
p

or ai∗ = Mαi∗ where αi∗ $← Z
k
p from its own challenger. When A outputs

β ∈ {0, 1}, B1 outputs β as well.
If ai∗ is generated as ai∗ = Mαi∗ where αi∗ $← Z

k
p, the view of A is the same

as its view in G1. Otherwise, the view of A is 1/p-statistically close to its view in
G2. Hence, the probability that B1 breaks the Dk-MDDH assumption is at least
| Pr[GA

2 ⇒ 1] − Pr[GA
1 ⇒ 1]| − 1/p, completing this part of proof. �

Game G3. G3 is the game CH returns crs generated by BTGen(1λ, par, 1m, i∗). It
is exactly the same as G2 except that âi∗ is randomly sampled outside the span
of M̂.

Lemma 4. There exists an adversary B2 breaking the Dk-MDDH assumption in
G2 with probability at least | Pr[GA

3 ⇒ 1] − Pr[GA
2 ⇒ 1]| − 1/p.

Proof. We build B2 as follows.
B2 runs in exactly the same way as the challenger of G2 except that instead

of generating [âi∗ ]2 by itself, it takes as input [âi∗ ]2 generated as âi∗ $← Z
k+1
p

or âi∗ = M̂α̂i∗ where α̂i∗ $← Z
k
p from its own challenger. When A outputs

β ∈ {0, 1}, B2 outputs β as well.
If âi∗ is generated as âi∗ = M̂α̂i∗ where α̂i∗ $← Z

k
p, the view of A is the

same as its view in G2. Otherwise, the view of A is 1/p-statistically close to G3.
Hence, the probability that B2 breaks the k-MDDH assumption is | Pr[GA

3 ⇒
1] − Pr[GA

2 ⇒ 1]| − 1/p, completing this part of proof. �
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Putting all the above together, the CRS indistinguishability of BARG imme-
diately follows.

Somewhere extractability in the trapdoor mode. We now argue that
for any valid statement/proof pair ((xi)i∈[m], Π), the extractor must be able to
extract a valid witness wi∗ for xi∗ .

For each NAND gate G� with commitments (udi
, ûdi

)i∈[3] and proof (([V�,i]1,

[V̂�,i]2)i∈[2], [W�, Ŵ�]1), we have

[a − ud1 − ud3 ]1 ◦ [û�
d2 ]2 = [M]1 ◦ [V̂�

�,1]2 + [V�,1]1 ◦ [M̂�]2,

[ud2 ]1 ◦ [â�]2 − [ud1 + ud3 ]1 ◦ [û�
d2 ]2 = [M]1 ◦ [V̂�

�,2]2 + [V�,2]1 ◦ [M̂�]2,

[a − ud3 ]1 ◦ [â� − û�
d2 ]2 = [M]1 ◦ [Ŵ�

�,1]2 + [W�,1]1 ◦ [M̂�]2.

Recall that τ is the trapdoor in Fig. 8, and let τ̂ be the vector in the kernel
of M̂ such that τ̂�âi∗ = 1, which must exist when âi∗ /∈ Span(M̂). Since τ�a =
τ̂�â = 1 and τ�M = τ̂�M̂, where τ is the trapdoor in Fig. 8, the above equations
imply

[1 − τ�ud1 − τ�ud3 ]1 ◦ [û�
d2 τ̂ ]2 = [0]T (4)

[τ�ud2 ]1 ◦ [1]2 − [τ�ud1 + τ�ud3 ]1 ◦ [û�
d2 τ̂ ]2 = [0]T , (5)

[1 − τ�ud3 ]1 ◦ [1 − û�
d2 τ̂ ]2 = [0]T . (6)

The quotient of the Eqs. (4) and (5) yields [τ�ud2 ]T = [û�
d2

τ̂ ]T . Then, combining
Eqs. (4) and (6) yields 1 − τ�ud1 − τ�ud3 = 0 ∧ 1 − τ�ud2 = 0 or 1 − τ�ud3 =
0 ∧ τ�ud2 = 0 or 1 − τ�ud1 − τ�ud3 = 0 ∧ 1 − τ�ud3 = 0, i.e., 1 − τ�ud3 =
0 ∧ τ�ud1 = 0. Moreover, we must have τ�udt

= τ�[a]1 = [1]1 for the output
wire. As a result, for a valid proof, FBARG (see Fig. 9) will never abort during
the execution of ExtBARG, and running FBARG recursively will result in bits for
input wires leading the statement circuit to output 1. Notice that after running
FBARG(td,C, Gt, Π), there might be some input wires assigned with ⊥. However,
these wires do not affect the final output and can be assigned with 0.

As a result, we can extract the bits for all wires consisting of valid
input/output pairs for all NAND gates and leading the statement circuit to
output 1, completing the proof of perfect soundness.

Putting all the above together, Theorem 6 immediately follows. �
Proof size and proving and online verification cost. By instantiating our
construction under the SXDH assumption, each proof of our BARG consists of
(2t+6s) elements in both G1 and G2, where t and s are the numbers of wires and
gates in the statement circuit respectively. The proof size is strictly smaller than
that of WW-BARG, which require (4t + 4s) elements in both G1 and G2. More-
over, the proving and online verification procedures in our construction require
only 4mt+6m(m−1)s multiplications and 40s pairing products respectively. In
contrast, those in WW-BARG require 4m2t + 4m(m − 1)s multiplications and
24t + 32s pairing products (after merging items with multiplication in G1 and
G2).
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Construction in the symmetric pairing. Transplanting our construction to
the setting of symmetric composite-order pairing groups yields a BARG under
the subgroup decision assumption. Compared to the WW-BARG, we reduce
the proof size by (2t + s) − (t + 2s) = t − s group elements in G. Also, the
number of multiplications and pairing products required in the proving and
online verification procedures are reduced by m(m − 1)t − (m(m − 1)/2)s and
(2t + 3s) − 4s = 2t − s respectively. We refer the reader to the full paper for the
construction and security proof.

Bootstrapping to reduce CRS size. Similar to WW-BARG, by using the
bootstrapping technique in [48], we can reduce the CRS size of our BARG to mc ·
poly(λ, s) for any c > 0. As a trade-off, the proof size will be dependent on log(m).
A recent work by Kalai et al. [35] shows a general construction to convert BARGs
into ones having both CRSs and proofs of size poly(λ, log m, s). Instantiating
the underlying BARG with ours immediately an efficient construction with both
succinct CRSs and succinct proofs.

5 Experimental Performance

In this section, we experimentally evaluate the proving cost, verification cost,
and the proof size of our NIZK and BARG for NP and compare them with GOS-
NIZK and WW-BARG respectively. We focus on SXDH based implementations
in asymmetric Type-3 pairings, since it is the most efficient one amongst all dif-
ferent types of pairings as mentioned in the introduction. The GOS-NIZK and
WW-BARG are implemented by ourselves since the open sourced implementa-
tions are not available.

We implement NIZK and BARG schemes in C++ atop pairing-friendly curve
bls12-381 in the mcl library [47]. Parameters of all schemes are set to achieve
128-bit security level. All experiments are carried on a Macbook Pro with Intel
i5-7360U CPU (2.30 GHz) and 16 GB, where a single exponentiation and pairing
respectively take about 0.08 ms and 0.8 ms.

In Tables 3 and 4, we present experimental results regarding the proving
and verification costs and the proof sizes of our NIZK and GOS-NIZK. The
comparisons are carried out for both schemes under different ratios between the
number of gates and wires, namely 2.00, 1.50, and 1.06. We also evaluated their
performance across statement circuit sizes ranging from 28 to 212. Our prover is
1.52×, 1.32×, and 1.11× faster than GOS-NIZK when the ratios are 2.00, 1.50,
and 1.06 respectively. For the same ratios, our verifier is 1.44×, 1.21×, and 1.02×
faster. Additionally, our proof sizes are 1.62×, 1.38×, and 1.16× smaller. One can
see that our scheme outperforms GOS-NIZK in every aspect, and the significance
of our improvement increases as the ratio becomes larger. Additionally, we note
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Table 3. Comparison of the proving and verification cost (in seconds) between GOS-
NIZK and our NIZK.

Scheme Ratio Proving Cost (seconds) Verification Cost (seconds)
28 29 210 211 212 28 29 210 211 212

GOS12 [29] 2.00 1.38 2.69 5.39 10.81 21.72 12.55 25.80 50.57 101.11 201.95
Ours 0.87 1.82 3.51 6.99 14.37 8.68 17.38 37.23 70.04 138.70
GOS12 [29] 1.50 1.17 2.23 4.55 9.27 17.87 10.61 21.15 42.28 84.91 168.13
Ours 0.85 1.69 3.49 6.74 13.75 8.61 17.27 34.74 68.60 141.79
GOS12 [29] 1.06 0.91 1.83 3.65 7.32 14.65 8.61 17.25 34.49 69.01 138.28
Ours 0.83 1.65 3.30 6.64 13.25 8.58 17.12 34.81 68.53 137.28

Table 4. Comparison of the proof size (in MB) between GOS-NIZK and our NIZK.

Scheme Proof Size (MB) Proof Size (MB) Proof Size (MB)
(Ratio: 2.00) (Ratio: 1.50) (Ratio: 1.06)
28 29 210 211 212 28 29 210 211 212 28 29 210 211 212

GOS12 [29] 0.61 1.22 2.44 4.87 9.75 0.50 1.01 2.01 4.03 8.06 0.41 0.82 1.64 3.29 6.58
Ours 0.37 0.75 1.50 3.00 6.00 0.36 0.73 1.45 2.90 5.81 0.35 0.70 1.41 2.82 5.65

that the ratio tends to be 2 (i.e., its upper bound) when most gates do not share
common input wires, and the ratio tends to be close to 1 (i.e., its lower bound)
when most gates share common input wires, which may happen when most gates
have multiple fan-out and the witness size is very small. Similar same argument
can also be made for our BARG.

In Tables 5 and 6, we present experimental results regarding the proving and
verification costs and the proof sizes of our BARG and WW-BARG when proving
50 and 100 statements. The comparisons are carried out for both schemes under
different ratios between the number of gates and wires, namely 2.00, 1.50, and
1.06. We also evaluated their performance across statement circuit sizes ranging
from 28 to 212. For proving 100 statement instances, our prover is 2.27×, 1.63×,
and 1.35× faster than WW-BARG when the ratios are 2.00, 1.50, and 1.06
respectively. For the same ratios, the verifier is 2.70×, 2.35×, and 1.92× faster.
For proving 50 statement instances with respect to these ratios, our prover is
2.13×, 1.51×, and 1.28× faster, and our verifier is 2.63×, 2.27×, and 1.94× faster.
Additionally, our proof sizes are 1.20×, 1.11×, and 1.02× smaller, regardless of
the number of statement instances. As a result, our scheme outperforms WW-
BARG in every aspect.
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Table 5. Comparison of the proving and verification costs (in seconds) between WW-
BARG and our BARG. “stats.” means statement instances.

Scheme Ratio Proving Cost (seconds) Verification Cost (seconds)
28 29 210 211 212 28 29 210 211 212

WW22 [48] 2.00 2.50 4.64 9.93 18.36 37.44 15.69 30.23 65.45 123.66 255.95
(100 stats.)
Ours 1.07 2.02 4.10 8.00 16.91 5.90 11.61 23.38 46.41 94.46
(100 stats.)
WW22 [48] 2.00 0.61 1.22 2.46 4.71 9.74 16.43 31.16 62.21 118.37 253.20
(50 stats.)
Ours 0.29 0.55 1.20 2.05 4.67 5.68 11.44 23.40 46.56 95.28
(50 stats.)
WW22 [48] 1.50 1.51 3.11 6.06 12.61 25.43 13.38 26.69 52.00 108.68 212.98
(100 stats.)
Ours 1.02 1.87 4.09 7.56 16.57 5.95 11.20 22.94 44.92 92.28
(100 stats.)
WW22 [48] 1.50 0.39 0.82 1.56 3.39 6.49 12.56 26.17 52.23 108.45 211.41
(50 stats.)
Ours 0.26 0.57 1.03 2.23 4.30 6.25 11.90 23.27 46.47 93.22
(50 stats.)
WW22 [48] 1.06 1.84 3.80 7.67 14.80 30.73 15.27 30.21 62.68 119.36 248.12
(100 stats.)
Ours 1.00 1.99 3.82 8.53 15.95 5.81 12.19 23.11 46.63 96.11
(100 stats.)
WW22 [48] 1.06 0.42 0.67 1.30 2.61 5.40 11.51 22.91 43.82 94.81 182.75
(50 stats.)
Ours 0.25 0.50 1.13 2.08 4.13 6.16 11.86 23.97 47.32 93.92
(50 stats.)

Table 6. Comparison of the proof size (in MB) between WW-BARG and our BARG.
“stats.” means statement instances.

Scheme Proof Size (MB) Proof Size (MB) Proof Size (MB)
(Ratio: 2.00) (Ratio: 1.50) (Ratio: 1.06)
28 29 210 211 212 28 29 210 211 212 28 29 210 211 212

WW22 [48] 0.42 0.84 1.69 3.37 6.75 0.35 0.70 1.41 2.81 5.62 0.29 0.58 1.16 2.32 4.64
(100 stats.)
Ours 0.35 0.70 1.41 2.81 5.62 0.32 0.63 1.26 2.53 5.06 0.28 0.57 1.14 2.28 4.57
(100 stats.)
WW22 [48] 0.42 0.84 1.69 3.37 6.75 0.35 0.70 1.41 2.81 5.62 0.29 0.58 1.16 2.32 4.64
(50 stats.)
Ours 0.35 0.70 1.41 2.81 5.62 0.32 0.63 1.26 2.53 5.06 0.28 0.57 1.14 2.28 4.57
(50 stats.)
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Appendix

A GOS-NIZK in the Asymmetric Pairing Setting

The original GOS-NIZK [29] was proposed in the symmetric pairing setting. In
this section, we give the GOS-NIZK in the asymmetric pairing setting. It was
previously indicated by [22,45] but has never been treated explicitly.

Let λ be the security parameter and par = G be the public parameter, where
G = (G1,G2,GT , p, [1]1, [1]2, e) $← GGen(1λ), and ORNIZK = (NGenor,NProveor,
NVeror) be a NIZK with the simulator (NTGenor,NSimor). Let Lor[M]1 be the fol-
lowing language it supports.

Lor[M]1 = {(C[M]1 , ([x0]1, [x1]1))|∃w ∈ Z
2k
p : C[M]1(([x0]1, [x1]1), w) = 1},

where C[M]1 : G
k+1
1 × G

k+1
1 × Z

k
p → {0, 1} is a Boolean circuit on input

((x0, x1), w) outputting 1 iff [x0]1 = [M]1w ∨ [x1]1 = [M]1w for M ∈ Dk.
We give the NIZK NIZK∗ in Fig. 11.

Theorem 7 (Completeness). If ORNIZK is complete, then NIZK∗ is com-
plete.

Proof. Let wd1 and wd2 be the input bits of a NAND gate, and wd3 be the true
output. We must have wd1 +wd2 + 2wd3 − 2 ∈ {0, 1}. Let cmd1 = [Mrd1 + zwd1 ]1
and cmd2 = [Mrd2+zwd2 ]1 be the input commitments and cmd3 = [Mrd3+zwd3 ]1
be the output commitment. We have

x� = cmd1 + cmd2 + 2cmd3 − [z · 2]1
= [M]1(rd1 + rd2 + 2rd3) + [z]1(wd1 + wd2 + 2wd3 − 2).

Therefore, for all � ∈ [s], we must have x� ∈ Span([M]1) or x� −[z]1 ∈ Span([M]1).
Moreover, for all i ∈ [t], we have cmi ∈ Span([M]1) or cmi − [z]1 ∈ Span([M]1).
Then the completeness of NIZK follows from the completeness of ORNIZK, com-
pleting the proof of Theorem 7. �
Theorem 8 (Composable zero-knowledge). Under the Dk-MDDH assump-
tion, if ORNIZK is a NIZK with composable zero-knowledge, then NIZK is a NIZK
with composable zero-knowledge.
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Fig. 11. Definition of NIZK∗ = (NGen∗,NProve∗,NVer∗).

Proof. We define the simulator (NTGen∗,NSim∗) as in Fig. 12.
First we note that the distribution of z $← Z

k+1
p \Span(M) is 1/p-statistically

close to the uniform distribution over Z
k+1
p . Then the indistinguishability of

CRSs generated by NGen∗ and NTGen∗ follows immediately from the Dk-MDDH
assumption and the composable zero-knowledge of ORNIZK (which says that crsor
generated by NGenor(1λ, par) and NTGenor(1λ, par) are computationally close).

Next we define a modified prover NProve∗′, which is exactly the same as
NProve∗ except that π̂i is generated as

π̂i
$← NSimor(crsor, tdor,C[M]1 , (cmi, cmi − [z]1))

for i ∈ [t], and for each NAND gate π� is generated as

π�
$← NSimor(crsor, tdor,C[M]1 , (x�, x� − [z]1)).

The following distributions are identical due to the composable zero-knowledge
of ORNIZK.

Π $← NProve∗(CRS,C, x,w) and Π $← NProve∗′(CRS,C, x,w)

for (CRS,TD) $← NTGen∗(1λ, par) and any (x,w) such that C(x,w) = 1.
Moreover, since the distribution of cmi = [Mri]1 is identical to that of cmi =

[Mri + zwi]1 for ri
$← Z

λ
p when z ∈ Span(M), the distributions of

Π $← NProve∗′(CRS,C, x,w) and Π $← NSim∗(CRS,TD,C, x),
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Fig. 12. Definition of the simulator (NTGen∗,NSim∗).

where (CRS,TD) $← NTGen∗(1λ, par) and C(x,w) = 1, are identical as well,
completing the proof of Theorem 8. �
Theorem 9 (Soundness). If ORNIZK is perfectly sound, then NIZK∗ is per-
fectly sound.

Proof. Due to the perfect soundness of ORNIZK, for each NAND gate with input
commitments (cmd1 , cmd2) and an output commitment cmd3 in a valid proof, we
have cmd ∈ Span([M]1) or cmd − [z]1 ∈ Span([M]1) for d ∈ {d1, d2, d3}, and

x� = (cmd1 + cmd2 + cmd3 − [z · 2]1) ∈ Span([M]1)

or x� = (cmd1 + cmd2 + cmd3 − [z · 2]1) − [z]1 ∈ Span([M]1).

Let k be the vector in the kernel of M such that k�z = 1, which must exist
when z /∈ Span(M). We have k�cmd1 , k�cmd2 , k�cmd3 ∈ {[0]1, [1]1} and

k�cmd1 + k�cmd2 + k�cmd3 − [2]1 ∈ {[0]1, [1]1}.

As a result, we can extract the bits for all wires consisting of valid
input/output pairs for all NAND gates and leading the statement circuit to
output 1, completing the proof of Theorem 9. �

Instantiation of the OR-proof system. The underlying OR-proof system
can be instantiated as in [22,45] (see Sect. 3.1 for the instantiation). Under the
SXDH assumption, each CRS consists of 4 elements in G2 and each proof consists
of 4 and 6 elements in G1 and G2 respectively. In this case, the proof size of the
resulting NIZK consists of 6t+4s elements in G1 and 6t+6s elements in G2, where
t and s are the number of wires and gates in the statement circuit respectively.
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1 Introduction

Zero-knowledge proofs (ZKPs), introduced by Goldwasser, Micali and Rack-
off [GMR85], allow a prover to convince a verifier that a statement is true
without revealing any further information. Goldreich, Micali, and Wigder-
son [GMW86] further showed that ZKP exists for every NP language, mak-
ing it an extremely powerful tool in modern cryptography. Since its intro-
duction in the mid 1980s, ZKPs have been used as an instrumental building
block in a myriad of cryptographic protocols/schemes like identification proto-
cols [FFS87], digital signatures [BCC+16,Sch91], CCA-secure public-key encryp-
tion [NY90,Sah99], anonymous credentials [CL01], voting [CF85], maliciously
secure multi-party computation [GMW87], and privacy-preserving cryptocur-
rency [GK15,BCG+14].

In the realm of ZKPs1, there are three types of statements. The first is alge-
braic statements, which are defined by relations over algebraic groups like prime-
order groups and RSA-type groups, such as knowledge of discrete logarithm or
modular root. The second is non-algebraic statements, which are expressed by
arithmetic/boolean circuits, such as knowledge of preimage of SHA256 or knowl-
edge of plaintext of AES encryption. The third is composite statements that mix
algebraic and non-algebraic statements, e.g. the value w committed by Com also
satisfies C(w) = 1, where the predicate C represents an arithmetic/boolean
circuit. Below we briefly survey ZKPs for the three types of statements.

ZKPs for Non-algebraic Statements. Since boolean/arithmetic circuits can
describe arbitrary computations, ZKPs for non-algebraic statements are usually
referred to as general-purpose. The last decade has seen tremendous progress in
designing and implementing efficient general-purpose ZKPs (see [Tha22] for a
comprehensive survey). These efforts can be roughly divided into four categories
according to the underlying machinery.

The first is built upon probabilistic checkable proof (PCP). Following the
seminal works of Kilian [Kil92] and Micali [Mic94] based on classical PCPs,
recent works [AHIV17,BBHR18,BCR+19,ZXZS20,COS20,Set20] begin to build
general-purpose ZKP from interactive variants of PCP, first in the model of
interactive PCP [KR08] and then in the more general model of interactive ora-
cle proofs [BCS16,RRR16]. ZKPs of this category have the advantages of not
relying on public-key cryptography, not requiring trusted setup, and offering
conjectured post-quantum security. The second is based on linear PCP, initi-
ated by Ishai, Kushilevitz, and Ostrovsky [IKO07], and followed by a sequence
of works [Gro10,Lip12,GGPR13,Gro16,MBKM19,CHM+20]. ZKPs of this cat-
egory are featured with constant size proofs and fast verification, but they are
quite slow on the prover side and require long and “toxic” common reference
string. The third is based on inner product arguments. Initial work [Gro09]
of this line has square root size proof and linear verification time. Followup
works [BCC+16,BBB+18] managed to achieve logarithmic size proof, and the

1 For the sake of convenience, we will not distinguish between computational and
information-theoretic soundness, and thus refer to both proofs and arguments as
“proofs”.
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verification cost is finally reduced to logarithmic complexity [Lee21]. The fourth
is based on garbled circuits. The original protocol due to Jawurek, Kerschbaum
and Orlandi [JKO13] is secret-coin in nature. Recently, Cui and Zhang [CZ21]
showed how to tweak the JKO protocol to public-coin. ZKPs of this category
require linear prover time, proof size and verification time.

ZKPs for Algebraic Statements. Almost exclusively, the most common and
efficient ZKPs for algebraic statements fall into a class known as Sigma protocols,
introduced by Cramer [Cra96]. Let L be an NP language associated with relation
R, i.e., L = {x | ∃w s.t. R(x,w) = 1}. A Sigma (Σ) protocol for L is a 3-move
public coin interactive proof system that allows a prover to convince a verifier
that he knows a witness w of a public instance x without disclosing w. The
Greek letter Σ visualizes the 3-move structure (commit, challenge and response).
The prover sends an initial message a called a commitment to the verifier, the
verifier replies with a uniformly and independently random chosen challenge e
from some finite challenge space, and the prover answers with a response z as
the final message. Finally, the verifier decides whether to accept or reject the
statement based on the transcript (a, e, z).

Sigma protocols are very appealing due to many attractive properties. First,
Sigma protocols are extremely efficient for algebraic statements. They yield short
proof sizes, only require a constant number of public-key operations and do not
need trusted common reference string generation. Although seemingly specific,
Sigma protocols for algebraic statements cover a wide variety of tasks arise from
practice such as proving the knowledge of discrete logarithm/modular root, a
tuple is of the Diffie-Hellman type, an ElGamal/Paillier encryption is to a cer-
tain value, and many more. Second, Sigma protocols are closed under parallel
composition, and thus it is possible to efficiently combine several simple Sigma
protocols to prove compound statements. This further increases the usability
of Sigma protocols. Third, the so-called special soundness make Sigma proto-
cols easy to work with by providing a simple way to establish proof of knowl-
edge property. Moreover, Sigma protocols can be made non-interactive using
the Fiat-Shamir heuristic [FS86]. The above properties make Sigma protocols
an incredibly powerful tool for various cryptographic tasks.

In contrast to the state of affairs of general-purpose ZKP, though Sigma pro-
tocols have been intensively studied in the last four decades, few attentions are
paid to generic constructions. This is probably because that the design of Sigma
protocols is relatively easier than that of general-purpose ZKPs. Sigma protocols
in the literature such as the classic Schnorr [Sch91], Batching Schnorr [GLSY04],
Guillou-Quisquater [GQ88], and Okamato protocol [Oka92] are ingenious but
hand-crafted, and they came with a separate proof. It is curious to know whether
there exists a common design principal.

ZKPs for Composite Statements. A composite statement is one that con-
tains both algebraic and non-algebraic statements, e.g., x is a Pederden commit-
ment to w such that SHA256(w) = y. As noted in [CGM16,AGM18,BHH+19],
ZKPs for composite statements have various applications, such as proof of sol-
vency for Bitcoin exchanges, anonymous credentials based on RSA and (EC-
)DSA signatures, and 2PC with authenticated inputs.
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To prove composite statements, a näıve approach is transforming composite
statements into a single form, namely either algebraic or non-algebraic form,
and then using only Sigma protocols or general-purpose ZKPs to prove it. In
one direction, one could turn the non-algebraic statements expressed as a circuit
into algebraic statements by expressing each gate of the circuit as an algebraic
relation between input and output, and then use Sigma protocols to prove these
relations. However, it would cost several public-key operations and group ele-
ments per gate, which is prohibitively expensive when the circuit is large. As
noted by [AGM18], in case of hash functions and block-ciphers, it costs tens
of thousands of exponentiations and group elements when proving the associ-
ated algebraic relations of the circuits. In the other direction, one could turn
the algebraic statements into non-algebraic statements and then use general-
purpose ZKPs to prove it. But this results in a substantial increase in the size of
the statements. For example, the circuit for computing a single exponentiation
could be of thousands or millions of gates depending on the group size. This in
turn increases the overheads of both prover’s/verifier’s work and proof size. As
mentioned before, the computation cost and proof size of all transparent general-
purpose ZKPs grow with the circuit size. General-purpose ZKPs based on linear
PCP offer efficient verification and constant proof size, while the prover’s work
is still heavy and they require a trusted setup.

A better approach, employed by most of prior works on this direction, is that:
using Sigma protocols to prove the algebraic part, using off-the-shelf efficient
general-purpose ZKPs to prove the non-algebraic part, then additionally design-
ing customized protocols as a “glue” to link the two parts. “Glue” proofs play a
crucial role in this approach. Without “glue” proofs, a cheating prover can eas-
ily generate proofs of the two parts using inconsistent witnesses (e.g., a cheating
prover may give a proof π1 for proving knowledge of w1 such that Com(w1) = x
and a proof π2 for proving knowledge of w2 such that SHA256(w2) = y where
w1 �= w2). The resulting proof systems will inherit the advantages and disad-
vantages of the underlying general-purpose ZKPs. For instance, [CGM16] pre-
sented two tailor-made “glue” proofs to link Sigma protocols with the JKO
protocol [JKO13], yielding ZKPs which have a fast prover and verifier while
they are private-coin inherently; [AGM18,CFQ19,ABC+22] each gave a generic
construction of “glue” proofs to link Sigma protocols with ZKPs based on lin-
ear PCP, yielding proofs which are featured with constant size proofs and fast
verification, but they are quite slow on the prover side and require a trusted
setup; [BHH+19] customized two “glue” proofs to link Sigma protocols with
the ZKBoo [GMO16]/ZKB++ [CDG+17] protocols, yielding transparent ZKPs
which have a fast prover, but the proof size is linear in the circuit size.

However, this approach servers from two main drawbacks. First, “glue”
proofs inevitably introduce additional overheads in both computation cost and
proof size to enforce the witness consistency. Second, “glue” proofs must be
tailored in a specific way to align with the general-purpose ZKPs, limiting
the space of possible general-purpose ZKPs we can use. Particularly, “glue”
proofs in [BHH+19] are tailored for the ZKBoo [GMO16]/ZKB++ [CDG+17]
and they could not be applied to other similar proof systems like
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Ligero [AHIV17]/Ligero++ [BFH+20]. The authors left a more efficient and
compact ZKP for composite statements using Ligero/Ligero++ as an open prob-
lem2. Therefore, an intriguing question is that whether the seemingly indispens-
able “glue” proofs are necessary when designing ZKPs for composite statements.

The above discussion motivates the main questions that we study in this
paper:

Is there a generic framework of Sigma protocols?
Can this framework help to give a generic construction of efficient ZKPs for

composite statements without “glue” proofs?

1.1 Our Contributions

In this work, we positively answer the above two questions and summarize our
contributions as below.

1.1.1 A Framework of Sigma Protocols for Algebraic Statements
We present a framework of Sigma protocols for algebraic statements from ver-
ifiable secret sharing (VSS) schemes. Our framework not only neatly explains
existing classic Sigma protocols including the Schnorr, Batching Schnorr, GQ,
and Okamoto protocols, but also provides a unified paradigm of designing Sigma
protocols for proving knowledge of openings of algebraic commitments.

MPC-in-the-head paradigm revisit. Ishai et al. [IKOS07] showed how to
build general-purpose ZKPs by using MPC in a black-box manner. In a nut-
shell, to prove the knowledge of w such that C(y, w) = 1 for a circuit C and
a value y, their construction proceeds as below: the prover simulate an execu-
tion of an n-party secure-computation protocol Πf that evaluates the function
fy(w1, . . . , wn) which outputs “1” iff C(y, w) = 1 with w = w1 ⊕ · · · ⊕ wn, and
commit the views of the parties in the protocol. The verifier then picks and asks
a random subset of those parties, and the prover opens the corresponding views.
The verifier finally accepts if the opened views all output “1” and are consis-
tent with each other. Their approach, known as MPC-in-the-head, presents a
generic connection between ZKP and MPC, and gives rise to a rich line of trans-
parent general-purpose ZKPs with continually improved performance, includ-
ing ZKBoo [GMO16], ZKB++ [CDG+17], KKW [KKW18], Ligero [AHIV17],
Ligero++ [BFH+20] and more, forming a promising subclass of general-purpose
ZKPs based on PCP machinery. Interestingly, we find that the ZKPs from the
MPC-in-the-head paradigm also follow the commit-challenge-response pattern.
In light of this observation, the MPC-in-the-head paradigm actually gives a
generic construction of Sigma protocols for non-algebraic statements. This sug-
gests that when seeking for a generic framework of Sigma protocols for algebraic
statements, one may start from some lite machinery than MPC.
2 Actually, it is hard to give a more efficient ZKP for composite statement using

Ligero/Ligero++ than those using ZKBoo/ZKB++, since the former two protocols
reduce the proof size, at the cost of increasing the computation.
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VSS-in-the-Head. An (n, tp, tf )-verifiable secret sharing (VSS) scheme allows
a dealer to distribute a secret s among n participants, in such a way that no
group of up to tp participants could learn anything about s, any group of at
least tf participants could recover the secret, and the cheating behaviors of both
the dealer and the participants can be detected. VSS is an essential building
block employed for numerous MPC protocols with malicious players [GMW87,
BGW88,CCD88,RB89]. Based on the above reasoning, VSS is arguably the right
backbone of Sigma protocols for algebraic statements.

A Refined Definition of VSS. In this work, we restrict ourselves to non-
interactive VSS schemes. For simplicity, we will omit non-interactive hereafter
when the context is clear. Before describing the framework, we first give a refined
definition of VSS, which differs from the original definition proposed by Feld-
man [Fel87] in both syntax and security properties. In terms of syntax, there are
two primary differences as below: (1) The secret is committed rather than being
encrypted, such relaxation makes our definition more general; (2) The sharing
algorithm is asked to additionally output authentication information, denoted
by aut, which essentially commits to the sharing method (e.g., in the case of
Feldman’s VSS scheme, it is a vector of commitments to the polynomial’s coef-
ficients), and will later be used to check the validity of each share. This kind
of information does not appear in the original definition. In terms of security
properties, there are two differences as follows: (1) For correctness, the secrets
recovered by different groups of participants are not stipulated to be consistent
as in [Fel87], instead the recovered secrets are required to be an opening of the
commitment. This property is crucial in this work and is actually met by many
existing VSS schemes, but it has never been formally defined; (2) For privacy,
we provide a simulation-based definition instead of a game-based one, making
it more convenient to use in the context of ZKP and MPC. See Sect. 3.1 for the
details of the refined definition.

Sigma Protocols from VSS. Having settled on a satisfactory definition of
VSS, we are ready to describe the framework of Sigma protocols for algebraic
statements-“given a commitment x, prove the knowledge of an opening (s, r)
such that Com(s; r) = x”. Our framework is built upon (n, tp, tf )-VSS schemes
with respect to Com. Roughly speaking, in the commit phase, the prover shares
the witness (s, r) into n pieces of shares v1, . . . , vn “in his head” and generates
the associated authentication information aut, then sends aut to the verifier.
In the challenge phase, the verifier picks a random subset I from the challenge
space [n], where |I| ≤ tp, and acts as the set of participants in I to query their
private shares. In the response phase, the prover answers with corresponding
shares (vi)i∈I . Finally, the verifier decides to accept or reject the statement by
checking whether each vi is a valid share for participant Pi. For the security
of the resulting Sigma protocols, the special soundness property follows from
the correctness of VSS and the special honest verifier zero-knowledge property
follows from the privacy of VSS.

The above framework from VSS encompasses almost all the classic Sigma
protocols for proving knowledge of openings of algebraic commitments. As a
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concrete example, we show how to derive the celebrated Schnnor protocol from
our framework. The start point is the Feldman’s (n, tp, tf )-VSS scheme [Fel87]
where tf = tp +1: to distribute a secret s ∈ Fp among n participants P1, . . . , Pn,
the dealer first computes a commitment c = gs to secret s, chooses a tp-degree
polynomial f(x) = a0 +a1x+ · · ·+atp

xtp where a0, . . . , atp−1
R←− Fp and atp

= s
(the coefficients of the polynomial could be viewed as the compact description of
the sharing method), and sets the private share vi for Pi as f(i), then generates
the commitment of the randomnesses as the authentication information, i.e.,
aut = (c0, . . . , ctp−1) where cj = gaj for 0 ≤ j ≤ tp − 1. The dealer then
broadcasts c and aut, and sends vi to Pi in private. Upon receiving the share,
each participant checks the validity of the share with respect to c and aut, and
rejects if it is invalid. The secret s can be recovered by pooling more than tp
valid shares. By setting the number of participants n to p (the size of the field
Fp), the privacy threshold tp to 1, we immediately recover the classic Schnorr
protocol. More examples can be found in Sect. 4.

1.1.2 A Framework of ZKPs for Composite Statements
To demonstrate the usefulness of our framework, we show its application in
designing ZKPs for composite statements. Among various types of composite
statements, commit-and-prove, i.e., a committed value w satisfies a circuit C, is
the most common one. According to [CGM16,BHH+19], it is an building block
for some other types. Therefore, we restrict ourselves to the commit-and-prove
type.

In this work, we show that by reusing the witness sharing process, Sigma
protocols from VSS and ZKPs following MPC-in-the-head paradigm can be com-
bined seamlessly, yielding a generic construction of ZKPs for composite state-
ments without “glue” proofs. Our generic construction enjoys two benefits: (i)
eliminating the cost introduced by “glue” proofs; (ii) expanding the space of
possible general-purpose ZKPs that we can use.

Enforcing Consistency via Witness Sharing Reusing. As mentioned
before, ZKPs from MPC bear strong resemblance with Sigma protocols, as both
of them follow the same commit-challenge-response pattern. This implies that
ZKPs from MPC might be easily coupled with Sigma protocols from VSS to
prove composite statements. However, if we combine them as the mainstream
approach, “glue” proofs are still necessary. A key observation is that ZKPs from
MPC and Sigma protocols from VSS not only follow the same pattern but also
share a common witness sharing procedure: at the very beginning, the provers
share the witnesses into n shares in their heads; in the challenge phase, the
verifiers ask to reveal a subset of witness shares; in the response phase, the
provers reply with corresponding shares (albeit in ZKPs from MPC, the shares
are included as a part of parties’ views), and finally the verifiers use the received
shares to check the verification equations. This suggests that when combining
Sigma protocols from VSS and ZKPs from MPC to prove composite statements,
the witness sharing procedure of them are able to be reused. More precisely, the
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prover shares the witness only once, the verifier picks and asks only one chal-
lenge I, and then the prover responds with only one subset of shares, whereas
the verifier accepts if and only if the shares pass verifications of both algebraic
and non-algebraic parts. Such “reusing” enforces the prover to use a consistent
witness without any additional “glue” proofs. From the perspective of security
proof, one can construct an extractor Ext of ZKPs for composite statements
by invoking extractors ExtΣ of Sigma protocols from VSS and ExtZKP of ZKPs
from MPC as subroutines, both of which run the same recovering algorithm
on the same input, and thus output the same witness satisfying both algebraic
and non-algebraic statements. When implementing the above high-level idea, we
encounter the following two main technical obstacles.

A Generalization of MPC-in-the-Head Paradigm. One obstacle comes
from the MPC-in-the-Head Paradigm. Recall that the secret sharing mechanism
in the original ZKPs from MPC [IKOS07] sticks to the XOR-based secret sharing
(SS) schemes, which is a special case of (n, n−1, n)-SS, making it hard to interact
with (n, tp, tf )-VSS schemes. To address this issue, we generalize the MPC-in-
the-head paradigm by extending the XOR-based SS scheme to the (n, tp, tf )-SS
schemes. Specifically, in the commit phase the prover P shares the witness w
into n shares w1, . . . , wn by running SS.Share(w), which does not fix to picking
n shares satisfying w = w1 ⊕ · · · ⊕ wn. This, in turn, requires an MPC protocol
Π that evaluates n-party function f satisfying fy(w1, . . . , wn) = 1 iff C(y, ·) = 1
on input w = SS.Recover(w1, . . . , wn). The proof of knowledge property is not
explicitly given in [IKOS07]. In this work, we rigorously prove this property,
which is crucial for our construction of ZKPs for composite statements and
might be of independent interest.

Separable VSS Schemes. The other obstacle is that the relationship between
VSS and SS is unclear, making it difficult to reuse the common witness sharing
procedure. To overcome this obstruction, we introduce a mild property called
separability for VSS which has been satisfied by many existing VSS schemes.
Roughly speaking, we say a VSS scheme satisfies separability if its procedure
of generating shares (v1, . . . , vn) and authentication information aut could be
separated. Particularly, we say a VSS scheme aligns with an SS scheme if it
generates the shares as per this SS scheme. Such delicate dissection allows us to
distill the common secret sharing mechanism used in Sigma protocols from VSS
and ZKPs from MPC, paving the way to implement the witness sharing reusing
technique.

An Efficient Instantiation. We instantiate above framework of ZKPs for com-
posite statements by choosing Ligero++ [BFH+20] as the underlying general-
purpose ZKPs and designing a Sigma protocol from VSS which aligns with the
SS component underlying Ligero++. The resulting protocol requires no trusted
setup and no “glue” proofs, and achieves a tradeoff between proof size and run-
ning time. Concretely, the proof size is polylogarithmic to the circuit size and
the number of expensive public-key operations required by prover and verifier is
independent of the circuit size. See Sect. 6.2 for a detailed efficiency analysis.
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Table 1 shows a brief comparison between closely related works. Among
them, the protocols in [BHH+19] and [BBB+18] are the only two that are both
public-coin and transparent. Compared to [BHH+19], our instantiation achieves
asymptotically smaller proof size, thus settling the open problem in [BHH+19]:
whether a more compact ZKP for composite statements can be constructed
by using Ligero/Ligero++. Though the work [BBB+18] also proposed a proof
system that achieves succinct proof size, the prover’s work is still expensive.
As noted in [Tha22, Section 19.3.2], for circuits with small size, O(|C| log(|C|))
field operations are likely to be faster than O(|C|) group operations. Thus, our
instantiation is likely to have better prover performance when the circuit size is
small.

Table 1. Comparisons among ZKPs for composite statements

Protocols Prover time Verifier time Proof size

[CGM16] Constr.1 � O(|w|) pub O(|C|) sym O(|w|) pub O(|C|) sym O(|C| + |w|)
[CGM16] Constr.2 � O(λ) pub O(|C| + |w|λ) sym O(λ) pub O(|C| + |w|λ) sym O(|C| + |w|λ)

[BBB+18] O(|C|) pub O( |C|
log(|C|) ) pub O(log(|C|))

[AGM18]† O(|C| + λ) pub O(|w| + λ) pub O(1)

[BHH+19] O((|w| + λ) pub O(|C| · λ) sym O((|w| + λ) pub O(|C| · λ) sym O(|C|λ + |w|)
[CFQ19] LegoAC1† O(|C|) pub O(|C| log(|C|)) sym O(|w|) pub O(1)

[ABC+22]† O(|C| + |w|) pub O(|w|) pub O(log(|w|))
This work O(λ) pubO(|C| log(|C|)) sym O( (|w|+λ)2

log(|w|+λ)
) pub O(|C|) sym O(polylog(|C|) + λ)

� Means being private-coin. † Means requiring a trusted setup. We use pub to indicate
a public-key operation, sym to a symmetric-key operation. We denote by |C| the circuit
size, by |w| the witness length, by λ the security parameter.

1.2 Related Work

Sigma Protocols. The notion was first proposed by Cramer [Cra96] as an
abstraction of Schnorr protocol [Sch91] for proving knowledge of discrete loga-
rithm and Guillou-Quisquater protocol [GQ88] for proving knowledge of modular
root. Since its introduction, Sigma protocols have received much attention due
to their simplicity and high efficiency, and a great deal of works have focused
on improving the efficiency or extending the functionality of Sigma protocols.
For example, Beullens [Beu20] introduced a new notion called sigma protocols
with helper, referring to the Sigma protocols where the prover and the verifier
are assisted by a trusted third party, and further improved the efficiency of sev-
eral Sigma protocols using the new notion. Cramer, Damg̊ard and Schoenmakers
(CDS) [CDS94] applied the secret sharing technique to construct proofs of par-
tial knowledge, i.e., given n statements x1, . . . , xn, convincing the verifier that
the prover knows a witness w for at least one of the statements. Our framework
seems like a dual construction of theirs. In their construction, the prover shares
the challenge e rather than the witness w, while in ours, the prover shares the
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witness w instead of the challenge e. In any case, we both showed that (verifi-
able) secret sharing is an important technique for constructing Sigma protocols.
Abe et al. [AAB+20] then improved the CDS technique by letting the prover
hash the shares before using them as challenges, resulting in several significant
benefits. Abe et al. [AAB+21] also introduced a model of monotone computa-
tion called acyclicity program (ACP), and proposed an alternative method for
proving partial knowledge based on the ACP.

However, few works study the common design principal of Sigma protocols.
To our knowledge, [Mau15] is the only work on this direction. In [Mau15], Mau-
rer proposed a template for building Sigma protocols for algebraic statements
that can be captured by preimage of a group homomorphism. Despite a large
number of classic Sigma protocols can be explained by this template, it still has
deficiencies in generality and utility. First, Maurer’s template is tied to group
homomorphism, and is less flexible cause it imposes fixed formats on three move
messages. For instance, it fails to encompass the variant Schnorr and the batch-
ing Schnorr protocol introduced in [GLSY04] where the initial message is not
computed using the same homomorphism as the statement. Second, Maurer’s
template does not establish connection between Sigma protocols and other cryp-
tographic primitives. The shed light on the machinery of Sigma protocols is still
unclear.

ZKPs for Composite Statements. This line of research started with the work
of Chase et al. [CGM16]. They gave two efficient ZKPs for proving composite
statement, of which the number of expensive public-key operations is indepen-
dent of the size of the circuit C. However, both of the two constructions are
based on the general-purpose ZKPs from garbled circuits proposed by [JKO13],
which makes the protocols interactive inherently. Agrawal et al. [AGM18] fur-
ther presented non-interactive protocols, which use the QAP-based succinct
non-interactive arguments of knowledge (SNARK) to prove the non-algebraic
part of the statement. Their protocols take advantage of having a small proof
size and fast verification time, while require a trusted setup for generating
the structured common reference string (CRS). Backes et al. [BHH+19] pre-
sented non-interactive protocols which require no trusted setup, and have effi-
cient prover and verifier running time. However, their protocol makes use of
the ZKBoo [GMO16]/ZKB++ [CDG+17] protocols which follow the MPC-in-
the-head paradigm to prove the non-algebraic statement, thus resulting in a
large proof size that is linear to |C|. Campanelli et al. [CFQ19] proposed a
framework of ZKPs for composite statements utilizing pairing-based general-
purpose ZKPs, achieving succinct proof size while all the instantiations they
given require a trusted setup. Among these instantiations, the one reported
in Table 1 has the shortest proof size and the most efficient verifier. Recently,
Aranha et al. [ABC+22] proposed a general method of compiling Algebraic Holo-
graphic Proofs into ZKPs for composite statements, whose proof size is logarith-
mic to the number of commitments in the statements while also requiring a
trusted setup. See Table 1 for a brief comparison between these works.
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All the works above used customized “glue” proofs for proving consistency,
which severely limit the space of general-purpose ZKPs that can be used and
also causes additional overheads in both computation and communication. Aside
from the works mentioned above, general-purpose ZKPs based on inner product
arguments, such as [BBB+18,HKR19] are able to be combined with Pedersen
commitments without any “glue” proofs. However, the algebraic parts of them
are fixed to Pedersen commitments with some certain constraints, making the
construction semi-generic. For example, the algebraic part of [BBB+18] is fixed
to |w| Pedersen commitments, each of which commits to an entry of the wit-
ness w. Once the algebraic part changes to a single vector commitment to w,
an additional “glue” proof is required. What’s more, the prover’s work is still
expensive, since the number of public-key operations required by the prover is
linear to the circuit size. To our knowledge, there is no generic construction of
ZKPs for composite statements that is without “glue” proofs.

2 Preliminaries

Notations. For an integer n, we use [n] to denote the set {1, . . . , n}. For a set
X and integer t, we use |X| to denote the size of X, use Xt to indicate the set
consisting of all t-sized subsets of X, and use x

R←− X to denote sampling x uni-
formly at random from X. We use the abbreviation PPT to indicate probabilistic
polynomial-time. We denote a negligible function in λ by negl(λ).

2.1 Commitment Schemes

We first recall the definition of commitment schemes.

Definition 1 (Commitment Schemes). A commitment scheme is a triple of
polynomial time algorithms as below:

– Setup(1λ): on input a security parameter λ, outputs the public commitment
key pp, which includes the descriptions of the message space M , randomness
space R, and commitment space C.

– Com(m; r): on input a message m ∈ M and a randomness r ∈ R, outputs a
commitment c.

– Verify(c,m, r): on input a commitment c ∈ C, a message m ∈ M and a
randomness r ∈ R, outputs “1” if Com(m; r) = c and “0” otherwise.

Additionally, we require the following properties of a commitment scheme.

Correctness. For any pp ← Setup(1λ), any m ∈ M and any r ∈ R, it holds
that Verify(Com(m; r),m, r) = 1.

Hiding. A commitment Com(m; r) should reveal no information about m. For-
mally, it is computationally (resp. statistically) hiding if for any PPT (resp.
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unbounded) adversary A, it holds that:

Pr

⎡
⎢⎢⎣b′ = b :

pp ← Setup(1λ);
(m0,m1) ← A(pp);
b

R←− {0, 1}, r
R←− R, c ← Com(mb; r);

b′ ← A(c);

⎤
⎥⎥⎦ ≤ 1

2
+ negl(λ).

For commitment schemes with deterministic Com algorithm, namely the ran-
domness is null, we consider a weaker security notion called one-way hiding,
which can be defined similarly as above. Roughly speaking, we say a commitment
scheme is one-way hiding if the adversary only takes a negligible probability to
open a randomly chosen commitment.

Binding. A commitment can not be opened to two different messages. For-
mally, it is computationally (resp. statistically) binding if for any PPT (resp.
unbounded) adversary A, it holds that:

Pr
[

m0 �= m1∧
Com(m0; r0) = Com(m1; r1)

: pp ← Setup(1λ);
(m0, r0,m1, r1) ← A(pp);

]
≤ negl(λ).

2.2 Sigma Protocols

Let L be an NP language and R be the associated binary relation. We say an
instance x lies in L if and only if there exists a witness w such that (x,w) ∈ R.
Consider following three-move interaction between two PPT algorithms P and
V : (1) Commit: P sends an initial message to V ; (2) Challenge: V sends a
challenge e to P ; (3) Response: P replies with a response z. A formal definition
of Sigma protocols is presented as below.

Definition 2 (Sigma Protocols). A Sigma protocol for a relation R is a
three-move public-coin protocol with above communication pattern and satisfies
the following three properties:

Completeness. If P and V follow the protocol on input x and private input w
to P where (x,w) ∈ R, then V always accepts the transcript.

n-Special soundness. There exists a PPT extraction algorithm Ext that on
input any instance x and any n accepting transcripts (a, e1, z1), . . . , (a, en, zn)
for x where all ei’s are distinct, outputs a witness w for x.

Special honest-verifier zero-knowledge (SHVZK). There exists a PPT
simulator Sim that on input any instance x and any challenge e, generates a
transcript (a, e, z) such that the triple is distributed identically to an accepting
transcript generated by a real protocol run between the honest P (x,w) and
V (x).

Lemma 1 ([ACK21,GMO16]). Let n be a positive integer bounded by a poly-
nomial and 〈P, V 〉 be a Sigma protocol with n-special soundness. If the verifier
V samples the challenge uniformly at random from the challenge space C, then
〈P, V 〉 is knowledge sound with knowledge error bounded by (n − 1)/|C|.
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2.3 Secure Multiparty Computation

A multiparty computation (MPC) protocol allows n parties P1, . . . , Pn to jointly
compute an n-party function f over their inputs while maintaining the privacy
of their inputs. For a set of parties I ⊆ [n], we denote by fI the outputs of
parties in I after the joint computation of f . Let viewi be the view of Pi during
the execution of an MPC protocol, including its private input, randomness and
the received messages. Below, we recall some important definitions and lemmas
of MPC protocols from [IKOS07].

Definition 3 (Consistent Views). We say a pair of views (viewi, viewj) are
consistent, with respect to the protocol Π and some public input x, if the outgoing
messages implicit in viewi, x are identical to the incoming messages reported in
viewj and vice versa.

Lemma 2 (Local vs. Global Consistency). Let Π be an n-party protocol, x
be a public input and view1, . . . , viewn be n (possible incorrect) views. Then all
pairs of views are consistent with respect to Π and x if and only if there exists
an honest execution of Π with public input x (and some choice of private inputs
and random inputs).

In the semi-honest model, the security of an MPC protocol can be divided
into the following two requirements.

Definition 4 (Correctness). An MPC protocol Π realizes an n-party func-
tionality f(x,w1, . . . , wn) with perfect correctness, if for all inputs x,w1, . . . , wn,
the probability that the outputs of some players are different from the output of
f is 0.

Definition 5 (t-privacy). Let 1 ≤ t < n. We say an MPC protocol Π real-
izes an n-party functionality f with perfect t-privacy, if there exists a PPT
simulator Sim such that for any inputs x,w1, . . . , wn, and any set of parties
I ⊂ [n] where |I| ≤ t, the joint view of parties in I is distributed identically to
Sim(I, x, (wi)i∈I , fI(x,w1, . . . , wn)).

2.4 (Verifiable) Secret Sharing

A secret sharing (SS) scheme [Sha79] among a dealer and n participants
P1, . . . , Pn consists of two phases, called Sharing and Reconstruction. In the
Sharing phase, the dealer shares a secret s (either a single value or a vector)
among n participants, in such a way that no unauthorized subsets of participants
can learn anything about the secret, while any authorized subsets of participants
can recover the secret in the Reconstruction phase. The formal definition is as
below.

Definition 6 (Secret Sharing). A secret sharing scheme consists of three
polynomial-time algorithms as follows:
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– Setup(1λ): on input a security parameter λ, outputs the system parameters
pp, including descriptions of secret space M , share space S, the number of
participants n, the privacy threshold tp and the fault-tolerance threshold tf ,
where all the three parameters n, tp and tf are positive integers and hold that
n ≥ tf > tp.

– Share(s): on input the secret s ∈ M , outputs n shares (si)i∈[n] ∈ Sn.
– Recover(I, (si)i∈I): on input a set of participants I ⊆ [n] and a vector of

shares (si)i∈I where si ∈ S, outputs a secret s ∈ M or a special reject symbol
⊥ denoting failure.

An SS scheme should satisfy the following two properties:

tf -Correctness. In Reconstruction phase, any group of at least tf participants
can recover the secret. Formally, for any pp ← Setup(1λ) where pp include
the fault-tolerance threshold tf , any secret s ∈ M , any (si)i∈[n] ← Share(s)
and any subset I ⊆ [n] where |I| ≥ tf , it holds that Recover(I, (si)i∈I) = s.

tp-Privacy. In Sharing phase, the joint view of at most tp participants reveals
nothing about the secret. Formally, for any pp ← Setup(1λ) where pp include
the privacy threshold tp, any s ∈ M and any set I ⊂ [n] where |I| ≤ tp, there
exists a simulator Sim such that the distributions of the outputs of Sim(I) and
(si)i∈I that generated by a real execution of Share(s) are identical.

Verifiable Secret Sharing. Note that a secret sharing scheme only consid-
ers semi-honest dealer and participants, while in many applications, a scheme
which is able to prevent malicious behaviours from them is needed. Thereby,
Chor et al. [CGMA85] put forward a stronger notion called verifiable secret
sharing (VSS) schemes, where each participant is able to check the validity of
the received share, such that the behavior of delivering invalid shares will be
detected. Feldman [Fel87] further introduced the concept of non-interactive VSS
schemes, where each participant could check the validity of his own share without
interaction between other participants.

3 A Framework of Sigma Protocols from VSS

3.1 A Refined Definition of VSS Schemes

Before describing the framework, we first give a refined definition of VSS, adapted
from the definition in [Fel87].

Definition 7 (Verifiable Secret Sharing). A verifiable secret sharing
scheme consists of following four algorithms:

– Setup(1λ): on input the security parameter λ, outputs system parameters pp,
including descriptions of secret space M , share space S, randomness space
R (if there is any), commitment space C, the number of participants n, the
privacy threshold tp and the fault-tolerance threshold tf , where all the three
parameters n, tp and tf are positive integers and hold that n ≥ tf > tp.
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– Share(s): on input a secret s ∈ M , outputs a commitment c ∈ C, n shares
(vi)i∈[n] ∈ Sn and the authentication information aut. For ease of exposition,
we describe the process by two algorithms:

c ← Com(s; r),
((vi)i∈[n], aut) ← Share∗(s, r),

where the randomness r could be null in some settings.
– Check(i, vi, c, aut): on input Pi’s index i and share vi, a commitment c and

the authentication information aut, outputs “1” iff vi is valid for Pi w.r.t. c
and aut; outputs “0”, otherwise.

– Recover(I, (vi)i∈I): on input a set of participants I ⊆ [n] and a vector of
shares (vi)i∈I where vi ∈ S, outputs a secret s ∈ M and a randomness r ∈ R
(if there is any), or a special reject symbol ⊥ denoting failure.

A VSS scheme should satisfy following three properties:

Acceptance. If the dealer honestly shares the secret, then all honest participants
who receive correct shares will output “accept” in the end of Sharing phase.
Formally, for any pp ← Setup(1λ), s ∈ M , (c, (vi)i∈[n], aut) ← Share(s), it holds
that Check(i, vi, c, aut) = 1 for all 1 ≤ i ≤ n.

tf -Correctness. Any group with at least tf honest participants who output
“accept” at the end of Sharing phase can recover a secret via algorithm Recover
and the reconstructed secret must be an opening of the public commitment. For-
mally, for any pp ← Setup(1λ) where pp include the fault-tolerance threshold tf ,
any c ∈ C, any aut and any vector of shares (vi)i∈I ∈ S|I| where I ⊆ [n] and
|I| ≥ tf , if for all 1 ≤ j ≤ m, it holds that Check(i, vi, c, aut) = 1, then for
(s, r) ← Recover(I, (vi)i∈I), it satisfies Com(s; r) = c.

tp-Privacy. The joint view of tp or less participants reveals nothing about the
secret except a commitment to it. Formally, for any pp ← Setup(1λ) where pp
include the privacy threshold tp, any s ∈ M , any c ← Com(s; r) and any set
I ⊂ [n] where |I| ≤ tp, there exists a simulator Sim such that the distributions
of the output of Sim(c, I) and ((vi)i∈I , aut) that generated by the real execution
of Share∗(s, r) are identical.

For notation convenience, we denote (n, tp, tf )-(V)SS by (verifiable) secret
sharing schemes with number of participants n, privacy threshold tp and fault-
tolerance threshold tf . Particularly, we say a verifiable secret sharing scheme
VSS is with respect to a commitment scheme Com, if VSS.Share runs Com.Com
as a subroutine to commit to the secret.

A Dissection of Share∗ Algorithm. In conventional syntax of VSS, Share∗

algorithm outputs all shares (v1, ..., vn) in one shot, where n denotes the max-
imum number of possible participants. Such syntax is fine when n is polyno-
mial in λ. But, it is problematic when n is superpolynomial3 in λ because
3 The value n could even be exponential in security parameter λ (e.g. the size of a

finite field).
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Share∗ algorithm becomes inefficient. To fix this issue, we further dissect Share∗

algorithm as below:

(i) Share-in-Mind(s, r): on input a secret s and a randomness r, outputs a com-
pact description of the sharing method SHcpt and the associated authenti-
cation information aut. Both of their sizes are no larger than poly(λ).

(ii) Distribute(s, r, SHcpt, i): on input the secret s, the randomness r, the com-
pact description of the sharing method SHcpt and an index i, generates share
vi for participant Pi as per the prefixed sharing method. This step is analo-
gous to the private key extraction algorithm in identity-based cryptography,
which generates the private keys for users on-the-fly upon request.

Evidently, our refined syntax can precisely captures all VSS schemes, while the
conventional syntax is only suitable for VSS schemes with polynomial size n.

Flexible Design of VSS. The VSS schemes can be designed in a flexible man-
ner. For example, when the secret s is a vector, the commitment c could either
be a single vector commitment committing to the multiple entries of the secret
at once (e.g., using Pedersen vector commitment [Ped91,BBB+18]), or a vector
of commitments committing to each entry of the secret (e.g., the VSS scheme in
Sect. 4.2). Meanwhile, the shares vi’s could either be packed shares of the mul-
tiple entries of s (e.g., being generated by using packed Shamir’s secret sharing
scheme [FY92] as the VSS scheme in Sect. 4.2), or be a collection of separate
shares of each entry of the secret. Moreover, the authentication information aut
could be viewed as a commitment to the sharing procedure, which possibly are
in the form of polynomial commitments, non-interactive zero-knowledge proofs
or something else.

3.2 The Framework of Sigma Protocols

Having settled a satisfactory definition of VSS, we are ready to describe our
framework of Sigma protocols. Let Com = (Setup,Com,Verify) be an algebraic
commitment scheme, and VSS = (Setup,Share,Check,Recover) be an (n, tp, tf )-
VSS scheme w.r.t Com. The framework of Sigma protocols for relation RCom =
{(x; s, r) : Com(s; r) = x} proceeds as below (see Fig. 1 for a pictorial view).

– Commit: the prover P runs ((vi)i∈[n], aut) ← VSS.Share∗(s, r) “in his head”,
and then sends the authentication information aut to the verifier V ;

– Challenge: V chooses a random set of participants I ⊂ [n] subject to |I| = tp,
and queries P for corresponding shares;

– Response: P replies with the shares (vi)i∈I .

Finally, V verifies whether (vi)i∈I are valid shares for (Pi)i∈I w.r.t. aut and
x, and outputs accept iff Check(i, vi, x, aut) = 1 for all i ∈ I.

Theorem 1. Suppose VSS is an (n, tp, tf )-VSS scheme where tf log tf =
O(log λ), then the protocol described in Fig. 1 is a Sigma protocol for NP relation
RCom with

((
tf −1

tp

)
+ 1

)
-special soundness.
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Com(s; r) = x

P (x; s, r) V (x)

((vi)i∈[n], aut) ← VSS.Share∗(s, r)
aut

I
R←− [n]tp

I

(vi)i∈I
accept iff ∀i ∈ I,

VSS.Check(i, vi, x, aut) = 1

Fig. 1. A framework of Sigma protocols for algebraic commitments

Proof. We separately argue its completeness, special soundness and SHVZK.

Completeness. This follows readily from the acceptance property of the under-
lying VSS schemes.

Special Soundness. We argue this by constructing a PPT extractor Ext as
below. For notation convenience, let k =

(
tf −1

tp

)
+1. Since tf log tf = O(log λ), k

is bounded by poly(λ). Given any k accepting transcripts (aut, Ij , (vi)i∈Ij
)j∈[k],

where |Ij | = tp and Ij �= Ij′ for all j �= j′, first note that, there exist at least
tf distinct indices i1, . . . , itf

∈ [n] along with corresponding shares vi1 , . . . , vitf

(which are possibly not unique) subject to VSS.Check(ij , vij
, x, aut) = 1 for all

j ∈ [tf ]. This is because if not, then there must be a (tf − 1)-sized set T , such
that all Ij ’s are subsets of T . Since the total number of tp-sized subsets of T
is

(
tf −1

tp

)
<

(
tf −1

tp

)
+ 1, there must exist two sets Ij = Ij′ where j �= j′ by the

pigeonhole principle. This contradicts to the hypothesis that Ij �= Ij′ for all
j �= j′. Thus, Ext can extract a witness simply through running VSS.Recover
on input (ij)j∈[tf ], (vij

)j∈[tf ] and taking the output (s, r) as its own output. By
the correctness of VSS scheme, the reconstructed witness (s, r) must hold that
Verify(x, s, r) = 1. This implies that the soundness error of the Sigma protocol
in Fig. 1 is

(
tf −1

tp

)
/
(

n
tp

)
, which is no greater than (tf/n)tp .

SHVZK. We prove the SHVZK property by constructing a simulator Sim as
below. Given the statement x and a challenge I ∈ [n]tp

, the simulator Sim invokes
the simulator of VSS scheme SimVSS on input (x, I) and outputs the same as
SimVSS does, which includes the joint views of parties in I, namely the shares
(vi)i∈I and the authentication information aut. Based on the tp-privacy of VSS
scheme, the simulated transcript is distributed identically to real one.
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A More Detailed Framework. In the light of the dissection of Share∗ algo-
rithm in Sect. 3.1, the framework of Sigma protocols from VSS could also be dis-
sected. Specifically, in the Commit phase, P runs the algorithm (SHcpt, aut) ←
VSS.Share-in-Mind(s, r) and sends aut to V . In the Challenge phase, V chooses
and sends random set I ⊂ [n] as before. In the Response phase, P runs
vi ← VSS.Distribute(s, r, SHcpt, i) for all i ∈ I. In fact, this framework could
yield more efficient Sigma protocols, since the prover only needs to compute the
requested shares, not all the shares. Sigma protocols in Sects. 4.2 to 4.4 all follow
this framework.

Parameters Selection. The three parameters n, tp, tf of the underlying VSS
schemes could be any positive integers subject to |F| ≥ n ≥ tf > tp where F

is the field to which parameters n, tp, tf belong. However, there are two caveats
that warrant attention:

1. When n is superpolynomial in the security parameter λ, the Sigma protocols
from such VSS schemes follow the detailed version of the framework. This is
because, the underlying Share∗ algorithm in this case must be dissected for
efficiency reasons.

2. If the soundness error (tf/n)tp in a single execution of the protocol is not
negligible in the security parameter λ, one should repeat the protocol in
parallel to amplify soundness. To achieve soundness error of 2−λ, one should
set the repetition number ρ = λ

tp(log n−log tf )
.

Size of I. For the sake of simplicity, we set the size of I to tp, which is equal to
the privacy threshold of the VSS scheme. Actually, it is possible to set the size
of I to be an arbitrary positive number k smaller than tp, thus leading to Sigma
protocols with

((
tf −1

k

)
+ 1

)
-special soundness. This can be proved similarly as

in the proof of Theorem 1.

4 Instantiations of Our Framework

In this section, we demonstrate the generality of our framework by recovering
the classic Schnorr [Sch91], Batching Schnorr [GLSY04], Okamoto [Oka92] and
GQ [GQ88] protocols from corresponding VSS schemes.

4.1 Proof of Knowledge of a Discrete Logarithm

Let G be a cyclic group with generator g and prime order p, define Com(s) = gs.
Given a commitment x ∈ G, we show how to prove knowledge of s such that
gs = x. In Sect. 1.1.1, we have showed how to recover the classic Schnorr protocol
from Feldman’s VSS scheme. Below, we present another Sigma protocol from the
following additive VSS scheme.

– Setup(1λ): runs (G, p, g) ← GroupGen(1λ), sets the total number of partici-
pants n ≤ p, the privacy threshold tp = n−1 and the fault-tolerance threshold
tf = n, outputs pp = ((G, p, g), n, tp, tf ).
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– Share(s): computes commitment c = gs, picks s1, . . . , sn
R←− Zp subject to

s =
∑n

i=1 si mod p, then sets Pi’s share vi = si and aut = (c1, . . . , cn−1)
where ci = gsi for i ∈ [n − 1], outputs the vector (c, (vi)i∈[n], aut).

– Check(i, vi, c, aut): parses aut = (c1, . . . , cn−1), if i ∈ [1, n − 1], then outputs
“1” iff gvi = ci and outputs “0” otherwise; if i = n, then outputs “1” if
gvi = c/

∏n−1
j=1 cj and “0” otherwise.

– Recover(I, (vi)i∈I): outputs s =
∑

i∈I vi mod p.

Theorem 2. The above VSS scheme satisfies acceptance, n-correctness and (n−
1)-privacy properties.

By plugging the above VSS scheme into our framework, we obtain a variant
of Schnorr protocol for proving knowledge of a discrete logarithm (as depicted
in Fig. 2).

x = gs

P (x; s) V (x)

s1, . . . , sn
R←− Zp

s.t. s =
∑n

i=1 si mod p
for i ∈ [n − 1], ci = gsi

aut = (c1, . . . , cn−1)

I
R←− [n]n−1

I

(si)i∈I
accept iff for i ∈ I,

if i ∈ [1, n − 1], gsi = ci,
if i = n, gsi = x/

∏n−1
j=1 cj

Fig. 2. A Sigma protocol for proving knowledge of a discrete logarithm

4.2 Proof of Knowledge of Several Discrete Logarithms

Define Com(s) = (gsj )j∈{1,...,|s|}. Given a vector of commitments x = (xj)j∈[�],
we show how to prove knowledge of s = (sj)j∈[�] such that gsj = xj for all j ∈ [�].
Consider following VSS scheme:

– Setup(1λ): runs (G, p, g) ← GroupGen(1λ), picks a positive number � ∈ Z
∗
p,

sets the total number of participants n ≤ p and the privacy threshold tp and
the fault-tolerance threshold tf = tp + �, outputs pp = ((G, p, g), n, tp, tf , �).

– Share(s): on input the secret s = (sj)j∈[�], runs following three algorithms
and outputs (c, SHcpt, aut):
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• Com(s): computes cj = gsj for j ∈ [�], outputs c = (cj)j∈[�] ∈ G
�;

• Share-in-Mind(s): selects a1, . . . , atp

R←− Z
∗
p, defines a polynomial A(x) =∑tp+�

j=1 aj · xj−1 where atp+j = sj for all j ∈ [�], sets SHcpt = (aj)j∈[tp]

and aut = (c̃j)j∈[tp] where c̃j = gaj for j ∈ [tp], outputs (SHcpt, aut);
• Distribute(s, SHcpt, i): parses s = (sj)j∈[�] and SHcpt = (aj)j∈[tp], sets

atp+j = sj for j ∈ [�], computes vi =
∑tp+�

j=1 aj · ij−1 mod p, outputs vi.
(This algorithm is run upon request.)

– Check(i, vi, c, aut): parses c = (cj)j∈[�] and aut = (c̃j)j∈[tp], outputs “1” if it

holds that gvi =
(∏tp

j=1 c̃ij−1

j

)
·
(∏�

j=1 citp+j−1

j

)
and “0” otherwise.

– Rec(I, (vi)i∈I): computes a polynomial A(x) such that A(i) = vi for all i ∈ I,
sets sj be the (tp + j)-th coefficient of A, outputs (sj)j∈[�].

Theorem 3. Above VSS scheme satisfies acceptance, (tp + �)-correctness and
tp-privacy.

By plugging the above VSS scheme into our framework, we obtain a Sigma
protocol for proving knowledge of several discrete logarithms (as depicted in
Fig. 3). By setting parameters n = p and tp = 1, we recover the Batching Schnorr
protocol [GLSY04].

x1 = gs1 , . . . , x� = gs�

P ((xj)j∈[�]; (sj)j∈[�]) V ((xj)j∈[�])

a1, . . . , atp

R←− Z
∗
p

for j ∈ [tp], c̃i = gai

aut = (c̃j)j∈[tp]

I
R←− [n]tp

I

for i ∈ I,

vi =
tp∑

j=1

aj · ij−1 +
�∑

j=1

sj · itp+j−1

(vi)i∈I accept iff for i ∈ I,

gvi =
tp∏

j=1

c̃ij−1

j ·
�∏

j=1

xitp+j−1

j

Fig. 3. A Sigma protocol for proving knowledge of several discrete logarithms

4.3 Proof of Knowledge of a Representation

Define Com(s; r) = gshr where g, h are two different generators of group G.
Given a commitment x, we show how to prove knowledge of (s, r) such that
gshr = x from the Pedersen’s VSS scheme [Ped91] as below:
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– Setup(1λ): runs (G, p, g, h) ← GroupGen(1λ), sets the total number of par-
ticipants n ≤ p, the privacy threshold tp and the fault-tolerance threshold
tf = tp + 1, outputs pp = ((G, p, g, h), n, tp, tf ).

– Share(s): on input the secret s, runs following three algorithms and outputs
(c, SHcpt, aut):

• Com(s; r): picks a random element r
R←− Z

∗
p, outputs c = gshr;

• Share-in-Mind(s, r): picks two random tp-degree polynomials A(x) =∑tp

i=0 ai · xi and B(x) =
∑tp

i=0 bi · xi subject to atp
= s and btp

= r,
computes cj = gaj hbj for 0 ≤ j ≤ tp − 1, sets SHcpt = (aj , bj)0≤j≤tp−1

and aut = (cj)0≤j≤tp−1, outputs (SHcpt, aut);
• Distribute(s, r, SHcpt, i): parses SHcpt = (aj , bj)0≤j≤tp−1, sets atp

= s

and btp
= r, computes si =

∑tp

j=0 aj · ij mod p and ri =
∑tp

j=0 bj · ij

mod p, outputs vi = (si, ri). (This algorithm is run upon request.)
– Check(i, vi, c, aut): parses vi = (si, ri) and aut = (cj)0≤j≤tp−1, outputs “1” if

gsihri = citp · ∏tp−1
j=0 cij

j and “0” otherwise.
– Recover(I, (vi)i∈I): parses vi = (si, ri), constructs two polynomials A(x),

B(x) such that A(i) = si and B(i) = ri for all i ∈ I, sets s be the coef-
ficient of the tp-degree term of A and r be that of B, outputs (s, r).

Theorem 4. Pedersen’s VSS scheme satisfies acceptance, (tp + 1)-correctness
and tp-privacy.

By plugging the above VSS scheme into our framework, we obtain a Sigma
protocol for proving knowledge of a representation (as depicted in Fig. 4). By
setting parameters n = p and tp = 1, we recover the classic Okamoto proto-
col [Oka92].

x = gshr

P (x; s, r) V (x)

a0, . . . , atp−1
R←− Z

∗
p;

b0, . . . , btp−1
R←− Z

∗
p;

for 0 ≤ j ≤ tp − 1, cj = gaj hbj

aut = (cj)0≤j≤tp−1

I
R←− [n]tp

I

for i ∈ I, compute
si = s · itp +

∑tp−1
j=0 aj · ij mod p

ri = r · itp +
∑tp−1

j=0 bj · ij mod p

(si, ri)i∈I accept iff ∀i ∈ I,

gsihri = xitp · ∏tp−1
j=0 cij

j

Fig. 4. A Sigma protocol for proving knowledge of a representation
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4.4 Proof of Knowledge of An eth Root

Let GenRSA be a PPT algorithm that on input security parameter λ, outputs
an RSA public key (N, e), where e is prime. Given an x ∈ Z

∗
N , we show how to

prove knowledge of s such that x = se mod N from following VSS scheme:

– Setup(1λ): runs (N ; e) ← GenRSA(1λ), where e is prime, sets the total number
of participants n ≤ e, and sets the privacy threshold tp = 1 and the fault-
tolerance threshold tf = 2, outputs pp = ((N, e), n, tp, tf ).

– Share(s): on input a secret s ∈ Z
∗
N , runs following three algorithms and

outputs (c, SHcpt, aut):
• Com(s): computes the commitment c = se mod N , outputs c;
• Share-in-Mind(s): picks a random element a ∈ Z

∗
N , defines a function

f(x) = a · sx mod N , sets SHcpt = a, computes aut = ae mod N ,
outputs (SHcpt, aut);

• Distribute(s, SHcpt, i): parses SHcpt = a, computes si = a · si mod N ,
outputs vi = si. (This algorithm is run upon request.)

– Check(i, vi, c, aut): outputs “1” if ve
i = aut · ci mod N and “0” otherwise.

– Recover(I, (vi)i∈I , c): if |I| < 2 outputs ⊥; else, runs the extended Euclidean
algorithm yields integers α, β ∈ Z

∗
N such that α · e+β · (i2 − i1) = 1, outputs

s = cα(vi2/vi1)
β mod N .

Theorem 5. The above VSS scheme satisfies acceptance, 2-correctness and 1-
privacy properties.

By plugging the above VSS scheme into our framework, we obtain a Sigma
protocol for proving knowledge of an e-th root (as depicted in Fig. 5). By setting
the parameter n = e, we recover the classic GQ protocol [GQ88].

x = se mod N

P (x; s) V (x)

a
R←− Z

∗
N

aut = ae mod N

aut

i
R←− [n]

i

vi = a · si mod N
vi accept iff

ve
i = aut · xi mod N

Fig. 5. A Sigma protocol for proving knowledge of an e-th root
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5 A Framework of ZKPs for Composite Statements

In this section, we are going to show the application of the Sigma protocols from
VSS in giving a generic construction of efficient ZKPs for composite statements.
In this work, we focus on a common form of composite statement where given a
commitment x and a value y, the prover wants to prove the knowledge of (s, r)
such that Com(s; r) = x∧C(s) = y, where C is an arithmetic/boolean circuit. In
a nutshell, we use Sigma protocols from VSS to prove the algebraic parts, use ZK
protocols from MPC to prove the non-algebraic parts, and enforce consistency
between the witnesses used in two parts via witness sharing reusing.

5.1 A Generalization of MPC-in-the-Head Paradigm

Before designing the framework of ZKPs for composite statements, we first gen-
eralize the MPC-in-the-head paradigm introduced by Ishai et al. [IKOS07] via
extending the XOR-based secret sharing scheme to an (n, tp, tf )-SS scheme. Pre-
cisely, to construct a ZK protocol for NP relation RC = {(y; s) : C(s) = y}
using MPC-in-the-head technique, we need three building blocks: a secret shar-
ing scheme, an MPC protocol and a commitment scheme.

Let SS = (Setup,Share,Recover) be an (n, tssp , tf )-secret sharing scheme,

Ĉom = (Setup,Com,Verify) be a commitment scheme and Πf be a tmpc
p -private

n-party protocol that realizes a n-party function f , where f(y, s1, . . . , sn) = 1
if and only if C(Recover([n], (si)i∈[n])) = y, and integers tmpc

p < tssp . Then, ZK
protocols following MPC-in-the-head paradigm proceeds as below (as depicted
in Fig. 6):

– Commit: the prover P shares the witness s into n shares s1, . . . , sn by run-
ning SS.Share(s), then runs MPC protocol Πf “in his head” with shares
s1, . . . , sn as input of n virtual parties, then commits to each party’s share si

and view viewi (without loss of generality, we separate Pi’s input si from his
view viewi and concatenate them with notation ||), and sends the n commit-
ments to V ;

– Challenge: V picks a random tmpc
p -sized subset I of [n] and sends it to P ;

– Response: P opens corresponding commitments through revealing corre-
sponding shares and views to V .

Finally, V outputs “accept” iff the three conditions listed hereunder hold:
1. the commitments are successfully opened;
2. all the outputs of participants in I are “1”, which are determined by their

inputs si and views viewi;
3. all the opened views are consistent with each other with respect to y and Πf .

Theorem 6. Let n > 2, tssp ≥ tmpc
p , tmpc

p · log n = O(log λ), and RC , f be as
above. Suppose SS is an (n, tssp , tf )-secret sharing scheme, the MPC protocol Πf

realizes the n-party functionality f with correctness and tmpc
p -privacy and Ĉom

is a commitment scheme, then the protocol in Fig. 6, is a Sigma protocol for
relation RC with

((
n−2
tmpc
p

)
+ 2

(
n−2

tmpc
p −1

)
+ 1

)
-special soundness.
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C(s) = y

P (y; s) V (y)

(si)i∈[n] ← SS.Share(s)
(si||viewi)i∈[n] ← Πf(y,s1,...,sn)

∀i ∈ [n], ci ← Ĉom.Com(si||viewi)

c1 . . . , cn

I
R←− [n]tmpc

p

I

(si||viewi)i∈I accept iff ∀i ∈ I

Ĉom.Verify(ci, si||viewi) = 1
Πfy (Pi, si||viewi) = 1

si||viewi is consistent with others

Fig. 6. ZKP from MPC-in-the-head paradigm

5.2 Separable VSS Schemes

As discussed in Sect. 1, in order to combine Sigma protocols from VSS and ZK
protocols from MPC seamlessly, we are interested in VSS schemes which satisfy a
mild property called Separability. Since the parameter n in the MPC-in-the-head
paradigm is bounded by poly(λ), we consider the separability of VSS schemes
simply using the syntax in Definition 7. Informally, for a VSS scheme, we say it
satisfies Separability if the following two conditions hold:

1. The algorithm Share∗(s, r) could be separated into two sub-algorithms, one for
generating the shares (vi)i∈[n] and the other for generating the authentication
information aut. Particularly, the shares (vi)i∈[n] are generated as per some
secret sharing schemes and aut is generated by committing to the sharing
method (i.e., the shares (vi)i∈[n] in the syntax in Definition 7 or the compact
description of the sharing method SHcpt in the dissected version).

2. If the randomness r is not a dummy value, then each share vi could be divided
into two values si and ri, where the former is a share of the secret s and
the later is a share of the randomness r. That is, s and r are secret-shared
separately.

Below, we formally define the Separability property.
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Definition 8 (Separability). For an (n, tp, tf )-VSS scheme VSS, we say it
satisfies separability if there is an (n, tp, tf )-SS scheme SS and an algorithm
AutGen such that the algorithms VSS.Share∗ and VSS.Recover can be separated
as below:

VSS.Share∗(s, r) : (si)i∈[n] ← SS.Share(s)
(ri)i∈[n] ← SS.Share(r)
aut ← AutGen((si, ri)i∈[n])
return ((si, ri)i∈[n], aut)

VSS.Recover(I, (vi)i∈I) : ∀1 ≤ j ≤ |I|, parse vi = (si, ri)
s ← SS.Recover(I, (si)i∈[n])
r ← SS.Recover(I, (ri)i∈[n])
return (s, r)

If r is null, then only the s will be secret-shared and recovered.

Particularly, we say a VSS scheme aligns with an SS scheme if it generates
the shares as per this SS scheme.

Remark 1. More generally, in such separable VSS schemes, the SS schemes used
to share secret s and randomness r could be different in some settings.

5.3 Generic Construction of ZKPs for Composite Statements

Now, we proceed to describe the generic construction of ZKPs for composite
statements. Formally, let Com be an algebraic commitment algorithm and C be
an arbitrary circuit, we give a zero-knowledge proof for relation:

Rcs = {(x, y; s, r) : Com(s; r) = x ∧ C(s) = y}.

Let ΠMPC
C be a Sigma protocol for {(y; s) : C(s) = y} from MPC as depicted

in Fig. 6 and using building blocks: an (n, tssp , tf )-SS scheme SS, a commitment

scheme Ĉom, and a tmpc
p -private n-party protocol Πf . Let ΠVSS

Com be a Sigma
protocol for {(x; s, r) : Com(s; r) = x} following the framework as in Fig. 1 and
using building blocks: an (n, tvssp , tf )-VSS scheme VSS w.r.t. Com and SS. Below,
we show how to obtain a ZK protocol ΠCom,C for composite statements through
combining ΠMPC

C and ΠVSS
Com, which is also a Sigma protocol. The full protocol

is presented in Fig. 7 and the overlap between ΠMPC
C and ΠVSS

Com are highlighted
in rectangles.

– Commit: P proceeds as in ΠVSS
Com, running algorithm ((si, ri)i∈[n], aut) ←

VSS.Share∗(s, r), which can be separated into three algorithms (si)i∈[n] ←
SS.Share(s), (ri)i∈[n] ← SS.Share(r) and aut ← AutGen((si, ri)i∈[n]). Then,
P proceeds as in ΠMPC

C while reusing the shares (si)i∈[n]. Next, P sends
c1, . . . , cn and aut to V .

– Challenge: V picks a random tmpc-sized subset I of [n] as in ΠMPC
C .
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– Response: P responds with participants’ inputs and views (si||viewi)i∈I as
in ΠMPC

C and shares of randomness (ri)i∈I as in ΠVSS
Com.

Finally, V outputs “accept” iff (si||viewi)i∈I pass the verification of ΠMPC
C

and (si, ri)i∈I pass the verification of ΠVSS
Com.

Com(s; r) = x ∧ C(s) = y

P (x, y; s, r) V (x, y)

(si)i∈[n] ← SS.Share(s)

(ri)i∈[n] ← SS.Share(r)
aut ← AutGen((si, ri)i∈[n])

(si||viewi)i∈[n] ← Πf(y,s1,...,sn)

∀i ∈ [n], ci ← Ĉom.Com(si||viewi)

c1 . . . , cn, aut

I
R←− [n]tmpc

p

I

(ri, si ||viewi)i∈I
accept iff ∀i ∈ I,

Ĉom.Verify(ci, si||viewi) = 1
Πf (Pi, si||viewi) = 1

si||viewi is consistent with others
VSS.Check(i, (si, ri), x, aut) = 1

Fig. 7. A ZKP for composite statements

Theorem 7. Let n > 2, tssp ≥ tmpc
p , tmpc

p · log n = O(log λ). Suppose the protocol

ΠMPC
C constructed as in Fig. 6 using building blocks SS, Ĉom and Πf as above, is

a Sigma protocol for relation {(y; s) : C(s) = y} with
((

n−2
tmpc
p

)
+ 2

(
n−2

tmpc
p −1

)
+ 1

)
-

special soundness, protocol ΠVSS
Com constructed as in Fig. 1 using building block

VSS which is with respect to Com and aligns with SS, is a Sigma protocol for
relation {(x; s, r) : Com(s; r) = x}, then the protocol ΠCom,C constructed as in

Fig. 7 is a Sigma protocol for Rcs with
((

n−2
tmpc
p

)
+ 2

(
n−2

tmpc
p −1

)
+ 1

)
-special sound-

ness.

Remark 2 (Key element required for combining). In order to get better efficiency,
some practical protocols in the MPC-in-the-head paradigm slightly deviate from
the template in Sect. 5.1, depending on the concrete MPC protocols they used.
For example, the KKW protocol [KKW18] utilizes an MPC protocol designed
in the preprocessing model and the Ligero [AHIV17]/Ligero++ [BFH+20] pro-
tocols make use of a particular type of MPC protocols in the malicious model.
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Nevertheless, they all retain the secret sharing procedure (though different secret
sharing schemes are employed), which is the key element that is required for
combining with our Sigma protocols framework in Sect. 3.2.

6 An Instantiation of ZKP for Composite Statements

In this section, we give a ZK protocol for composite statements by instantiating
the underlying MPC-in-the-head protocol with Ligero++ [BFH+20]. Let Fp be
a large prime field and C : F

m
p → Fp be an arithmetic circuit. We show how to

prove following composite statements: given a vector of Pedersen commitments
x = (x1, . . . , xm), the prover wants to convince the verifier that he knows the
witness (s, r) ∈ F

m
p × F

m
p such that C(s) = 1 ∧ xi = gsihri for 1 ≤ i ≤ m.

As we have noticed, in order to construct a ZK protocol for composite state-
ments using Ligero++, the key point is giving a VSS scheme that aligns with
the SS scheme used by Ligero++, and then constructing a Sigma protocol from
it.

6.1 Review of Ligero++

We briefly recall the Ligero++ protocol and analyze the SS scheme it uses.
(Notably, Ligero++ uses the same SS scheme as Ligero [AHIV17].) At a high
level, to prove knowledge of s = (si)i∈[m] ∈ F

m
p such that C(s) = 1, the Ligero++

prover first generates an extended witness which contains the circuit input s
and the outputs of |C| gates, then arranges the extended witness in a matrix of
size C

polylog|C| × polylog|C| (where the first m entries are (si)i∈[m]) and encodes
each row using Reed-Solomon (RS) Code. The verifier challenges the prover to
reveal the linear combinations of the rows of the codeword matrix, and checks
its consistency through invoking inner-product argument (IPA) protocols on t̃
randomly picked columns. As mentioned in [BFH+20], to remain zero-knowledge
during the consistency check, it is desirable to either utilize zero-knowledge IPA
protocols or make the encoding randomized. For further consideration, we use a
randomized RS encoding to ensure zero knowledge. The formal definition of RS
code is presented below.

Definition 9 (Reed-Solomon Code). For positive integers n, k, a finite field
F, and a vector η = (η1, . . . , ηn) of distinct elements of F, the code RSF,n,k,η is the
[n, k, n−k+1] linear code over F that consists of all n-tuples (P (η1), . . . , P (ηn))
where P is a polynomial of degree < k over F.

Definition 10 (Encoded message). Let L = RSF,n,k,η be an RS code and
ζ = (ζ1, . . . , ζ�) be a vector of distinct elements of F for � ≤ k. For a codeword
u = (u1, . . . , un) ∈ L, we say it encodes (or rather, can be decodes to) the message
(Pu(ζ1), . . . , Pu(ζ�)), where Pu is the polynomial (of degree < k) corresponding
to u.
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Encoding and Sharing. We can simply make the RS code RSF,n,k,η randomized
via increasing the degree of polynomials by t̃ where t̃ < k, and it is evident
that the randomized RS code RSF,n,k,η can be viewed as the (variant) packed
Shamir’s SS scheme [FY92] with number of participants n, privacy threshold
tp = t̃ and the fault-tolerance tf = k. That is, encoding a message is equivalent to
sharing the message: to encode (resp., share) a message (si)i∈[�] using randomized
RSF,n,k,η (resp., packed Shamir’s SS scheme), one first selects t̃ random elements
α1, . . . , α˜t ∈ F where � + t̃ = k and generates a polynomial P (x) with degree
< � + t̃ such that P (ζi) = si for all i ∈ [�] and P (ζ�+i) = αi for all i ∈ [t̃],
then sets the codeword (resp., shares) to be (P (η1), . . . , P (ηn)). Therefore, the
codeword matrix aforementioned is also the shares matrix.

Modifications to Ligero++. As mentioned before, the Ligero++ protocol
does not strictly conform to the generalized MPC-in-the-head paradigm in
Sect. 5.1, due to the different MPC model it used. There are two main differences
that could pose challenges in combining Ligero++ with Sigma protocols. First,
the witness to be shared is an expanded version that encompasses the input of
circuit and the outputs of all circuit gates, rather than only the input itself, mak-
ing the shares opened later be an expanded version as well. Second, the t̃ random
columns of shares matrix will not be opened directly due to the invocation of
IPA protocols, causing obstructions of reusing witness shares. Fortunately, both
of them can be overcame with a few modifications to Ligero++: dividing the
shares matrix into two vertically concatenated sub-matrices and handling them
differently when in the consistency check. Specifically, the two sub-matrices and
their respective handling methods are as follows:

– The first sub-matrix is the first m/� rows of the shares matrix (WLOG., we
assume m = c · � for some integer c > 0), which in fact is the shares of circuit
input s. When in the consistency check, the prover opens its t̃ entries directly
to the verifier and the verifier computes the inner product of these entries
with random vectors directly. Thereby, the shares of circuit input s could
be reused later. Since the encoding is randomized, the openings leak nothing
about the witness.

– The second sub-matrix is the remaining rows of the shares matrix, which are
the shares of outputs of gates. When in the consistency check, the prover
inputs its t̃ entries on IPA protocols as originally while the inner product
checked in IPA protocols should be modified according to the opened entries
of the first sub-matrix.

By doing so, the shares of inputs s and shares of gates’ outputs are separated.
Moreover, it makes witness shares reusing available while maintaining the advan-
tage of utilizing IPA technique.

6.2 A Sigma Protocol for Pedersen Commitments

Having specified the SS scheme that Ligero++ employs, we are now ready to
present a VSS scheme that aligns with this SS scheme and later give a corre-
sponding Sigma protocol from it.
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Since the parameter n in the SS scheme used by Ligero++ is bounded by
poly(λ), we describe the VSS scheme simply using the syntax in Definition 7.
The VSS scheme consists following four algorithms:

– Setup(1λ): runs (G, p, g, h) ← GroupGen(1λ), sets the total number of partic-
ipants n, the privacy threshold tp, the fault-tolerance threshold tf = � + tp,
picks two disjoint vectors ζ = (ζj)j∈[�+tp] ∈ F

�+tp
p and η = (ηi)i∈[n] ∈ F

n
p , and

both ζ, η contain distinct elements, outputs pp = ((G, p, g, h), n, tp, tf , �, ζ,η).
– Share(s): on input a vector of secret s = (sj)j∈[�] ∈ F

�
p, runs following two

algorithms and outputs (c, (vi)i∈[n], aut):
• Com(s; r): selects a vector of randomness r = (rj)j∈[�]

R←− F
�
p, outputs a

vector of commitments c = (cj)j∈[�], where cj = gsj hrj for all j ∈ [�].
• Share∗(s, r): chooses two random vectors (αj)j∈[tp], (βj)j∈[tp]

R←− F
tp
p ,

interpolates two polynomials A(x) and B(x) such that

∀1 ≤ j ≤ �, A(ζj) = sj , B(ζj) = rj ; (1)
∀� + 1 ≤ j ≤ � + tp, A(ζj) = αj−�, B(ζj) = βj−�,

outputs shares (vi)i∈[n] where vi = (A(ηi), B(ηi)) for all i ∈ [n] and
aut = (c̃j)j∈[tp] where c̃j = gαj hβj for all j ∈ [tp].

– Check(i, vi, c, aut): parses vi = (vi1, vi2) and aut = (c̃j)j∈[tp], computes hk =(∏�
j=1 c

δk,j

j

)
·
(∏tp

j=1 c̃
δk,�+j

j

)
for k ∈ [�+tp], where the matrix (δk,j)1≤k,j≤�+tp

is equal to V(ζ)−1, outputs “1” if gvi1hvi2 =
∏�+tp

k=1 h
ηk−1

i

k and “0” otherwise.
– Recover(I, (vi)i∈I): parses vi = (vi1, vi2), uses Lagrange Interpolation to com-

pute polynomials A(x) and B(x) such that A(ηi) = vi1 and B(ηi) = vi2 for
all i ∈ I, outputs (s, r) where (sj , rj) = (A(ζj), B(ζj)) for j ∈ [�].

Theorem 8. The VSS scheme described above satisfies acceptance, (� + tp)-
correctness and tp-privacy.

By plugging the above VSS scheme into the framework in Sect. 1.1.1, we
obtain a Sigma protocol (as depicted in Fig. 8) for proving knowledge of openings
of several Pedersen commitments.

Parameters Selection. In order to combine with Ligero++, some of the pub-
lic parameters of above VSS scheme, including p, n, tp, �, ζ and η, should
be in line with that of Ligero++. Since Ligero++ performs interpolation and
evaluation using fast Fourier transform (FFT), above VSS scheme should be
implemented using elliptic curves whose scalar fields Fp are FFT-friendly. One
can refer to [AHG22] for a suitable elliptic curve.

Security Analysis. Based on Lemma 1, Theorem 1 and Theorem 8, it is
straightforward that the protocol in Fig. 8 is a Sigma protocol with soundness
error

(
tf −1

tp

)
/
(

n
tp

)
. When setting n = c · tf for some constant c ≥ 1, we must

set tp = λ/ log c to achieve a soundness error of 2−λ without repetition. Since
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x1 = gs1hr1 , . . . , x� = gs�hr�

P ((xj)j∈[�]; (sj , rj)j∈[�]) V ((xj)j∈[�])

(αj)j∈[tp], (βj)j∈[tp]
R←− F

tp
p

compute A(x), B(x) as in (1)
∀ i ∈ [n]: si = A(ηi), ri = B(ηi)

∀ j ∈ [tp], c̃j = gαj hβj

aut = (c̃j)j∈[tp]

I
R←− [n]tpI

(si, ri)i∈I (δk,j)1≤k,j≤�+tp = V(ζ)−1

∀k ∈ [� + tp],

hk =
∏�

j=1 x
δk,j

j · ∏�+tp

j=�+1 c̃
δk,j

j−�

accept iff ∀i ∈ I,

gsihri =
∏�+tp

k=1 h
ηk−1

i
k

Fig. 8. A Sigma protocol for Pedersen commitments

(
tf −1

tp

)
/
(

n
tp

)
is smaller than the soundness error of Ligero++, the soundness error

of ZK protocols for composite statements, obtained by combining Sigma proto-
cols in Fig. 8 and Ligero++, is dominated by the soundness error of Ligero++.

Efficiency Analysis. Let λ be the security parameter, �G be the length of a
group element, �F be the length of a field element and � = |x| be the number of
commitments in the statement. Fix parameters n, tp, tf where n = c · tf for some
constant c ≥ 1 and tf = � + tp. Then, the proof size is tp · �G + 2tp · �F), which
asymptotically is O(λ). The prover’s work includes the computations of ck’s,
which need O(tp) group operations; interpolation and evaluation of polynomials,
which need O((� + tp) · log(� + tp) field operations by using FFT. The verifier’s
work includes the computations of matrix (δk,j), which need O((� + tp)2) field
operations; the computations of hk’s, which need O(�+tp) multi-exponentiations
of size � + tp; and the computations in the verification equations, which need
O(tp) multi-exponentiations of size � + tp. (Pippenger’s [Pip80] algorithm could
be used to accelerate the computations of multi-exponentiations.)

Having given the Sigma protocol for Pedersen commitments, it is not difficult
to combine it with the Ligero++ protocol and get a ZK protocol for composite
statements, following the method in Sect. 5.3, and we omit the details in this
paper. The efficiency of the final ZK protocol reported in Table 1 is obtained
by directly summing the costs of Ligero++ and above Sigma protocol. Since
the underlying SS components are identical in Ligero and Ligero++, the Sigma
protocol could also be combined with Ligero seamlessly by choosing appropriate
parameters. This will lead to a faster prover while a larger proof size.
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7 Conclusion

Sigma protocols are the most efficient ZKPs for proving knowledge of open-
ings of algebraic commitments, which are defined as relations over algebraic
groups. They have now become an important building block for a variety of cryp-
tosystems. In this work, we presented a framework of Sigma protocols for alge-
braic statements from verifiable secret sharing schemes. This framework neatly
explains the design principal underlying those classic Sigma protocols, includ-
ing the Schnorr, Batching Schnorr, GQ and Okamoto protocol. In addition, it
gives a generic construction of Sigma protocols for proving knowledge of alge-
braic commitments, thus being able to lead to new Sigma protocols that were
not previously known. Furthermore, we also showed its application in designing
ZKPs for composite statements. By using the witness sharing reusing technique,
we combined the Sigma protocols from VSS and general-purpose ZKPs follow-
ing MPC-in-the-head paradigm seamlessly, yielding a generic construction of
ZKPs for composite statements which enjoys the advantages of requiring no
“glue” proofs. Through instantiating the underlying general-purpose ZKPs with
Ligero++ and tailoring a corresponding Sigma protocol, we obtain a concrete
ZKP for composite statements, which achieves a tradeoff between running time
and proof size, thus resolving the open problem left by Backes et al. (PKC 2019).
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Abstract. We introduce a new primitive called anonymous counting
tokens (ACTs) which allows clients to obtain blind signatures or MACs
(aka tokens) on messages of their choice, while at the same time enabling
issuers to enforce rate limits on the number of tokens that a client can
obtain for each message. Our constructions enforce that each client will
be able to obtain only one token per message and we show a generic trans-
formation to support other rate limiting as well. We achieve this new
property while maintaining the unforgeability and unlinkability prop-
erties required for anonymous tokens schemes. We present four ACT
constructions with various trade-offs for their efficiency and underlying
security assumptions. One construction uses factorization-based primi-
tives and a cyclic group. It is secure in the random oracle model under
the q-DDHI assumption (in a cyclic group) and the DCR assumption.
Our three other constructions use bilinear maps: one is secure in the
standard model under q-DDHI and SXDH, one is secure in the random
oracle model under SXDH, and the most efficient of the three is secure
in the random oracle model and generic bilinear group model.

1 Introduction

Counting unique users can be a useful signal for different applications to measure
service usage and user interest. In many contexts, however, the content for which
we want to measure interest may be sensitive, so we would like to guarantee
anonymity for the user while still providing accurate counts. The anonymity
property becomes challenging when untrustworthy users may try to inflate the
counts. As a concrete example, we consider the k-anonymity server developed
in the context of Privacy Sandbox [Gra22]. The goal of this server is to count
how many users have joined different user interest groups. Users should not
be linkable to any specific interest groups. At the same time, it is important
to obtain an accurate count of the number of users in each interest group. In
particular, each user should not be counted multiple times. In addition, users
should be allowed to join as many interest groups as they wish.

There is seemingly a tension between the desirable anonymity that does not
allow mapping the count contribution to the user identity and the ability to
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bound contributions from each user. Multiparty computation (MPC) [Ode09]
and in particular secure aggregation constructions [BIK+17,BBG+20] enable
computing aggregates over user inputs while maintaining privacy for concrete
contributions. However, these solutions do not allow users to be anonymous
while at the same time limiting the rate of their input contributions.

Anonymous credential tools such as blind signatures [Cha82] and anonymous
tokens [DGS+18,KLOR20,SS22] provide capabilities to convey trust across dif-
ferent contexts while providing anonymity. In the setting of anonymous tokens,
during token issuance, the user identity is known to an issuer who can provide
a token that encodes a limited amount of information. The token is associated
with a user-provided message or a random message that the issuer should not
learn. In our initial example of counting the number of users in each interest
group, the message would be the interest group name. The token can later be
redeemed in a different context where the user is anonymous. At redemption, the
message is revealed. In order to be able to use these tokens to count the number
of users in each interest group, it is crucial that each user can only contribute a
single token. In other words, anonymous tokens redemption (or issuance) should
be restricted (or rate limited) to a single token per user and per message. More
generally, anonymous tokens allowing redemption of a small fixed number of
tokens per user and per message can be considered.

A recent IETF draft proposed by four large tech companies (Google, Apple,
Cloudflare, Fastly) [HIP+22] is highlighting two other applications of such rate-
limited or counting tokens: rate-limiting anonymous tokens per website (or “ori-
gin”) to avoid abuse, and implementing metered paywall for a given website. In
both cases, anonymous tokens need to be associated with the website, and rate
limits need to be applied per message. The IETF draft proposes a solution that
relies on two non-colluding servers: an attester and an issuer. The attester sees
the information used for rate limiting in the clear (that is the “origin” or web-
site in the applications above). Instead, if we were able to design an anonymous
token scheme restricting each user to only receive a small number of tokens per
(hidden, underlying) message, we could provide a solution for the IETF draft
applications without the need for two separate servers.

The challenge in designing the rate-limiting capability on the private message
authenticated in anonymous tokens lies in the following fact: users should be
able to obtain blind tokens for many messages (e.g., be able to contribute to the
counts for many different user interest groups in the first example, or visiting
many different paywall-metered websites in the last example). And all these
messages should remain hidden from the issuer. Only violations of the rate-
limiting rules should be detectable before such tokens are redeemed. At the
same time, different users should be able to obtain anonymous tokens for the
same message, as many users will join the same interest group or visit the same
website. Therefore tokens for the same message from different users need to
be distinct. In particular, tokens cannot computed deterministically from the
message (as it is the case in Privacy Pass [DGS+18]).

We note that anonymous tokens with public or private metadata such
as [SS22,CDV23] do not help building the applications above. Indeed, in these
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schemes the metadata needs to be revealed to the issuer in order for the issuer
to be able to apply rate limits. In the interest group example, this means the
issuer would know which interest group a user is joining.

Contributions. In this paper we propose a new notion of anonymous tokens
which we call anonymous counting tokens (ACTs). This primitive offers an addi-
tional rate-limiting property that guarantees that no user will be able to redeem
with the same verifier more than one token for the same message. Conceptually
there are two approaches to enforcing the rate-limiting property in the anony-
mous token functionality. This can be done either at issuance by enabling the
issuer to detect repeated token requests for the same message from the same user,
or at redemption by enabling the verifier to identify if two tokens for the same
message were issued to the same user. With the first approach, the challenge is
to preserve the blind property of the requests as long as there are no repeating
message requests, and to reveal only the one bit information whether a message
in a request has been queried before. With the second approach, the challenge is
to enable the verifier to detect when the two tokens for the same message were
issued to the same user while preserving the unlinkability property.

We present two conceptual approaches for building ACTs. One enables rate
limiting at issuance and one enables it at redemption. Both of them assume that
each user registers a public key with the issuer and this public key enables the
rate limiting of one token per message per user. Recall that at issuance, users
identify themselves to the issuer and can thus be associated to their registered
public keys. Note that such registration is necessary: if there was no registration
mechanism, tokens would information theoretically be completely independent of
the user identity and it would be impossible to ensure a given user does not create
and redeem two tokens for the same message (unless tokens are deterministic
functions of messages in which case the issuer could know when two different
users ask the same message, which in turn would break unlinkability).

Our first construction uses a PRF evaluation as the token issuance mecha-
nism. This mechanism has been leveraged in previous anonymous token construc-
tions [DGS+18,KLOR20,SS22]. Our first construction is in the random oracle
model (ROM) and relies on the q-Decisional Diffie-Hellman Inversion assumption
(q-DDHI) assumption in a group of prime order.

Our second set of constructions leverages the notion of equivalence class
signatures (EQS) [FG18,FHS19] to construct an ACT scheme. Existing EQS
schemes rely on bilinear maps. We present three instantiations of our EQS-
based ACT construction. The first one is in the standard model and assumes the
SXDH and q-DDHI assumptions over bilinear groups to support short O(log λ)
messages (λ is the security parameter). The second instantiation is proven in the
ROM under just the SXDH assumption and supports any length of message. The
last instantiation uses much stronger security assumptions: it is only proven in
the ROM and generic bilinear group model (GBGM) but achieves significantly
shorter tokens. Our three instantiations are based on two generic transforms
of EQS into ACT, however, our third instantiation is an optimization whose
security is proven directly in the ROM and GBGM and does not directly follow
from the security of the generic transform.
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Tables 1 and 2 summarize the communication costs and assumptions trade-
offs of our constructions. Our four constructions are the four first constructions
of anonymous counting tokens: there are no prior such constructions. We provide
four different constructions as parties implementing anonymous counting tokens
may have different preferences for cryptographic assumptions and tools used in
the constructions. For example, in enterprise products (targeted by the IETF
draft [HIP+22]), adding pairing-based libraries can be quite challenging due to
non-technical reasons (e.g., audit requirements, complex approval process, etc.).

Table 1 and 2 also contain comparisons to selected related works which do
not achieve the anonymous counting tokens property. We include them for an
informative comparison of what it takes to add the additional properties we need.
Privacy Pass [DGS+18] achieves unforgeability and unlinkability, but has no
notion of an underlying message on which rate limiting can be done. [TCR+22]
extends Privacy Pass to support public metadata, which can be viewed as a
message. However, the public metadata is revealed to both the issuer and the
verifier and thus cannot be used in our context. [FHS19] enables multi-show
anonymous credentials, a very different primitive that allows a user to get a
credential on a set of messages, but without blind issuance. The credential can
be redeemed multiple times while remaining unlinkable with the issuance and
the other redemptions. Several of our constructions can be seen as extensions
of [FHS19] to support blind issuance and a throttling mechanism, so we include
it to give a sense of the extra cost incurred for these additional properties. We
note that the costs in Table 2 for [FHS19] are for a single message or attribute,
but their scheme supports vectors of messages/attributes.

Table 1. Summary of our constructions and selected previous work

Cons. PubV Assumptions |msg| Extra

4.1 × ROM + DCR + q-DDHI any counting

5.1 � SXDH + 2|msg|-DDHIG1 O(log(λ)) counting

5.2 � ROM + SXDH any counting

6.1 � ROM + GBGM any counting

[DGS+18] × ElGamal-OMD n/a n/a

[TCR+22] × ROM + OM-Gap-SDHI any public metadata

[FHS19] � ROM + GBGM any multi-show
Extra properties are properties beyond anonymous token base properties. Our
constructions are the only anonymous counting tokens. See text for detail.
PubV refers to public verifiability (i.e., whether anyone can verify a token
from the public parameters).
Assumptions: DCR=decisional composite residuosity assumption, SXDH =
symmetric external decisional Diffie-Hellman assumption, q-DDHI = deci-
sional Diffie-Hellman inversion assumption (q is the number of signature
queries made by the adversary), ROM = random oracle model, GBGM =
generic bilinear group model, all of our constructions but the first one use
pairings. ElGamal-OMD = ElGamal One-More-Decryption assumption. OM-
Gap-SDHI = (m,n) One-More-Gap-Strong Diffie-Hellman Inversion assump-
tion.

1.1 Technical Approach

Next, we overview the main technical challenges and ideas for our constructions.
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Table 2. Performance of our constructions and selected previous work

Cons |blindRequest| |blindToken| |tok|
4.1 5 × Ped + 4 × CS + 12 ×

Zp + 11 × ZN

1 × Ped + 1 × Zp + 3 × ZN 1 × G

5.1 7 × G1 + 6 × G2 5 × G1 + 1 × G2 23 × G1 + 12 × G2

5.2 2 × Zp + 3 × G1 5 × G1 + 1 × G2 23 × G1 + 12 × G2

6.1 2 × Zp + 2 × G1 2 × G1 + 1 × G2 3 × G1 + 1 × G2

[DGS+18] 1 × G 1 × G + 2 × Zp λ

[TCR+22] 1 × G + 1 × Zp 1 × G + 2 × Zp 1 × G

[FHS19] Zp + G1 2 × G1 + G2 3 × G1 + G2 + 2 × Zp

Only our four constructions are anonymous counting tokens. The other constructions are
just for reference and do not achieve the counting property. See text for detail.
Constructions 5.1 and 5.2 (long version) are instantiated using the EQS construction from
Sect. 6.1., full version [BRS23], and the element M′

1 and M′
3 are not included in tok as they

can be recomputed.
G denotes a cyclic group (and by extension a group element from G) with order p, G1

and G2 are asymmetric bilinear maps groups, CS is a Camenish-Shoup ciphertext, Ped is a
Pedersen commitment on a strong RSA group.
Using Edwards25519 [BDL+12] for G, 1 × G = 32 bytes. Using BLS12-381 [Bow17] as
bilinear group, 1 × G1 = 48 bytes, 1 × G2 = 96 bytes. For both Edwards25519 and BLS12-
381, 1 × Zp = 32 bytes. Using the NIST recommendation [Bar16] for 128-bit safe-RSA
modulus (that is 3072 bits), 1×Ped = 384 bytes and 1×CS = 1, 536 bytes. N refers to this
RSA modulus, and log(N) = 3072 bits.

ACT from PRF. We start with our first construction. It follows the idea of
previous anonymous tokens schemes to make the tokens be PRF evaluations
under the issuer’s secret key. A first construction attempt might be to make
the anonymous tokens deterministic. This is what Privacy Pass [DGS+18] does,
where tokens are PRF evaluations of the users’ messages. This, however, is possi-
ble in Privacy Pass only because the tokens there do not correspond to messages
that have meaning for the application and instead are sampled at random for
every token issuance. For our ACT scheme, we need the user to be able to choose
the message. If the tokens are a deterministic function of the message alone (and
not of the user identity), then the issuer will know when two users ask for the
same message which would violate the unlinkability. Thus, we need to have a
randomized issuance algorithm.

To give insight into our construction, we start with an overview of some
unsuccessful ideas for building anonymous counting tokens from the randomized
version of the Okamoto-Schnorr Privacy Pass tokens introduced by Kreuter et
al. [KLOR20]. Contrary to Privacy Pass, tokens generated by these schemes are
randomized (and not deterministic). Like in Privacy Pass, the client sends the
following blinded request to the issuer: r ·H(msg), where r is chosen a random in
Zp by the client and where H is a hash function into a cyclic group G of order p
(where DDH is hard). H is modeled as a random oracle in the proof and we use
the additive notation for G.

A first idea to construct an ACT is to have each client always use the same
fixed randomness r to blind their requests. This would allow the issuer to detect
when the same user makes two requests for the same message. We would argue
the unlinkability of the requests by remarking those can also be seen as PRF
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evaluations using the key r, which is only known by the client. The client could
provide the issuer with a commitment to this PRF key r (as part of the regis-
tration process). And the client would then prove the correctness of the message
included in each blinded request with respect to the committed key, using a
zero-knowledge proof.

This idea would actually work. Unfortunately, the resulting protocol would
be quite inefficient as the zero-knowledge proof made by the client requires prov-
ing the correct evaluation of the hash function H. We note that the Pedersen
hash (H(m) = m1G1 + · · · + mnGn, where mi is the i-th bit of the message
m and Gi is a generator of G) has good algebraic properties which may allow
for an efficient zero-knowledge proof. However, it cannot be used in this set-
ting since its linear properties enable an attack on the rate limiting as follows:
H(1||0|| . . . ||0)+H(0||1||0|| . . . ||0) = H(1||1||0|| . . . ||0), which allows to get a fresh
token on 1||1||0|| . . . ||0 by querying messages 1||0|| . . . ||0 and 0||1|| . . . ||0.

Another option could be to use SNARK/STARK/Bulletproofs-friendly hash
functions such as MiMC [AGR+16] and Poseidon [GKR+21]. However, this
would first introduce the new non-standard assumptions that are used for the
security of these hash functions. Additionally, depending on the proof system
used, there will be a need for more assumptions (for example non-falsifiable
assumptions for SNARKs). Furthermore, those proof techniques are generic and
use circuits. This significantly increases the prover’s complexity (which is used
in the token request that is computed by weak user devices, in many cases).
Furthermore, the proof needs to prove not only correct hash evaluation, but
also mapping to the elliptic curve, and exponentiation/scalar multiplication.
The Poseidon costs in Sect. 6 of [GKR+21] report around 40ms for a SNARK
just proving correct Poseidon hash evaluation: the subsequent scalar multipli-
cation would at least double this time to > 80ms. These costs appeared to
be much higher than our approach. In addition, without a trusted setup, only
STARKs and Bulletproofs can be used and they are about 10x more expensive
than SNARKs for Poseidon evaluation.

Yet another tempting way to get an efficient scheme would be to only require
the client to prove the blinded request is of the form r ·T for some group element
T, and not proving knowledge of msg such that T = H(msg). We may think
we can argue unforgeability since the client will only be able to extract a valid
signature if they know a correct hash preimage of T (due to the form of the
tokens in [KLOR20]).

While the above reasoning does guarantee the regular unforgeability property,
it fails to protect against the adversary being able to obtain two tokens for the
same value, which is required by ACT. The issue stems from the fact that the
resulting tokens are of the form xH(msg) + yS where (x, y) is the secret key of
the issuer and S is a random element that comes with the token. Now, we can
observe that the token is additively homomorphic with respect to the hash of the
message. With this observation, an attacker can obtain a token for message msg
without directly asking for it, by additively sharing H(msg) as A+B = H(msg).
Then the client can request two tokens, sending blind requests rA and rB. The
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client can prove correctness for its requests as long as it does not have to prove
knowledge of hash preimages of A and B. Then, using the additive properties
of the tokens, it can recover a token for H(msg) which will be different from any
previous token issued directly for that value.

Thus, we adopt a different pseudorandom function which has a structure that
facilitates composition with sigma protocols for proof of correctness of evaluation
(in particular, it does not involve a hash function). This is the Dodis-Yampolskiy
verifiable pseudorandom function [DY05]. We instantiate it in a single group as
a PRF without public verifiability, as in the work of Miao et al. [MPR+20].
However, this on its own does not solve the question of the randomized issuance
algorithm. One option is to add to the message a random value, which changes for
every issuance, and make the token the PRF evaluation under the issuer’s key on
the message plus randomness. To ensure the rate limiting we will use a different
PRF which the user evaluates only on the message under its registered key
and provides this to the issuer during issuance to prove non-repeating message
requests.

The way we choose to combine message and randomness as input for the PRF
evaluation (to generate the token) leverages the function F(sk = (u, y),msg; r) =
(msg+u+ r ·y), which is used by Boneh and Boyen to construct short signatures
without random oracle [BB04]. In the proof of their construction, they show
how this function no longer has the limitation to short messages of the Dodis-
Yampolskiy’s variant as long as r is chosen at random and can be controlled by
the reduction.

We further observe that the randomness r for the issuance needs to be chosen
jointly by the client and the issuer. If the client can choose the randomness on its
own, then it can force homomorphism of the tokens, which could create forgery
issues similar to the one discussed above. If the issuer controls the randomness,
then this becomes an easy fingerprinting mechanism, which violates unlinka-
bility. While we can generate the randomness with an interactive coin-tossing
protocol, we observe that the issuer’s randomness does not need to be private
with respect to the client since we just want to enforce that the randomness is
chosen honestly. Thus, we apply the Fiat-Shamir transformation to generate the
issuer’s randomness in a non-interactive manner [FS87,AFK22].

ACT from EQS. The second general construction approach for ACT that
we present views the tokens as signatures with certain homomorphic properties
which allow the client to adapt a signature for a message �M to a signature of a
transformed message �M′ = f(�M). The set of allowed transformation f is limited
and fixed. In particular, equivalence class (EQS) signatures [FG18,FHS19] enable
the client to sign vectors of messages and the adaptation functionality allows the
client to transform the signature into a signature of a new vector that is in the
linear span of the signed message. This transformation is used as part of the
blinding and unblinding operations in previous anonymous tokens and blind
signatures constructions.

Taking this approach, of course, creates challenges for the rate-limiting prop-
erty. Seemingly a client might be able to create multiple tokens from the same
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initial signature. To prevent this we need to embed the rate-limiting check but
this time during redemption. This can be achieved similarly to the above con-
struction using a PRF evaluation on the message with a key that each user
commits with the issuer. The challenge when doing this check during redemp-
tion is to remove the link to the client identity while maintaining the ability to
verify that the PRF value was generated by a key registered by a real client.

Our approach to satisfy the above requirements is to have the client embed
a PRF evaluation on the message under their registered key in the blind signa-
ture request. We show how we can do this using two different PRF constructions
PRF(u,msg) = u · H(msg) and PRF(u,msg) = (msg + u)−1 · G (the latter being
the Dodis-Yampolskiy PRF). In the first case, unlike our first PRF-based ACT
construction, we are able to use a random-oracle-based PRF without having to
proof correct evaluation (in zero-knowledge) of the hash function H. Concretely,
the EQS construction allows us to sign vectors of messages. And we sign a vector
of the form μ · (G,H(msg), u · H(msg)). Thus, the client just needs to prove the
DDH relation between (H(msg), u ·H(msg)) and the registered client key (G, u ·G).
Combining the unforgeability of EQS (for messages that are not a multiple of a
signed message) with a check by the verifier that the first message in the redeemed
token signature is G, we can guarantee that the client can create only one valid
token from each blinded response it gets from the issuer. In the second case (i.e.,
the Dodis-Yampolskiy PRF case), the client can directly efficiently prove that the
message in its blinded request is of the form μ · (G, (msg + u) · G,msg · G).

The above two constructions are generic transformations from any EQS to
ACT. Instantiating them yields multiple concrete efficient ACT constructions
under various security assumptions. In particular, we obtain an ACT construc-
tion with security in the standard model based on the SXDH and q-DDHI
assumption, using the Dodis-Yampolskiy PRF construction together with the
following EQS construction. The EQS signature is a normal signature. The adap-
tation of the signature of a message �M to a message �M′ = ρ�M is a ZK proof of
knowledge of a valid signature on �M and of a scalar ρ such that �M′ = ρ�M.
For the concrete efficient instantiation of this EQS construction we use the
efficient Jutla-Roy structure-preserving signatures [JR17] together with Groth-
Sahai zero-knowledge proofs [GS08,EG14]. This construction has a restriction
that it can support only short messages of length O(log λ) because the Dodis-
Yampolskiy function is an adaptively secure PRF only over polynomial-size
domains. The message length restriction can be solved by hashing the mes-
sage using a hash function modeled as a random oracle. Hashing the message
this way makes Dodis-Yampolskiy adaptively secure because, instead of hav-
ing to guess the message forged by the adversary, the reduction just needs to
guess which random oracle query will be used for the forgery. However, if we
are willing to use the random oracle model, our second generic transformation
(based on the random-oracle-based PRF PRF(u,msg) = u ·H(msg) instead of the
Dodis-Yampolskiy PRF) is more efficient.

Finally, we present an optimized ACT construction with security in the
generic bilinear group model (GBGM) and random oracle model (ROM). Con-
ceptually this construction can be viewed as an optimization of the instantiation
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of our ACT from EQS which relies on u ·H(msg) as PRF and uses the EQS from
Fuchsbauer et al. [FHS19] and Fiat-Shamir transforms of Sigma protocols as ZK
proofs. We prove the resulting scheme directly in the ROM and GBGM.

Other Related Work. We remark that the EQS scheme from [FHS19] has been
used in [HS21] to construct anonymous credentials that are also “tag-based” and
“aggregatable”. However, we do not know how to use these extra properties to
construct anonymous counting tokens, because, like metadata, the tag has to be
known by the issuer, which would break unlinkability.

1.2 Organization of the Paper

After recalling preliminaries in Sect. 2, we define formally the notion of ACT in
Sect. 3. We then present our construction of anonymous counting tokens (ACT)
from Oblivious PRF in Sect. 4 and our two generic transforms of ACT from
equivalence-class signature schemes (EQS) in Sect. 5. Combined with the EQS
schemes in the full version of the paper [BRS23], these two generic transforms
yield our concrete constructions of ACT from EQS that do not rely on the generic
bilinear group model (GBGM). In Sect. 6 we show that an optimization of the
second transform from Sect. 5 can be instantiated very efficiently in the GBGM.

2 Preliminaries

We denote by λ the security parameter. PPT means probabilistic polynomial
time. negl(λ) indicates a quantity negligible in the security parameter, that is,
for any positive integer k and for any large enough λ, negl(λ) ≤ 1/λk.

2.1 Cyclic Groups, Bilinear Groups, and Associated Assumptions

Our constructions make use of cyclic groups and bilinear groups. We denote by
G the generator of a cyclic group G of prime order p. We use additive notation.
We denote by G

∗ the set G \ {0}.
A bilinear group is a set of three groups (G1,G2,GT ), all of order p with

generators (G1,G2,GT ), so that there exists an efficient bilinear map e : G1 ×
G2 → GT (called a pairing) such that e(G1,G2) = GT . The target group GT is
also denoted additively and we use • to denote the pairing operation: e(G1,G2) =
G1 • G2.

The symmetric external Diffie-Hellman (SXDH) assumption in a bilinear
group (G1,G2,GT ) states that the decisional Diffie-Hellman (DDH) assumption
holds in G1 and G2. The DDH assumption in G states that PPT adversaries A:

∣
∣
∣Pr [x, y ← Zp, A(G, xG, yG, (xy) · G) = 1]

− Pr [x, y, z ← Zp, A(G, xG, yG, z · G) = 1]
∣
∣
∣ ≤ negl(λ).
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The q-decisional Diffie-Hellman inversion (q-DDHI) assumption in the group
G states that for any PPT adversaries A:

∣
∣
∣Pr [x ← Zp, A(G, xG, . . . , xqG, (1/x) · G) = 1]

− Pr [x, y ← Zp, A(G, xG, . . . , xqG, y · G) = 1]
∣
∣
∣ ≤ negl(λ).

2.2 Pseudorandom Function

A pseudorandom function PRF : K × X → Y is a function such that
∣
∣
∣Pr

[

K←$K, APRF(K,·)(1λ) = 1
]

− Pr
[

AO(·)(1λ) = 1
] ∣
∣
∣ ≤ negl(λ)

where O : X → Y is a random oracle.
We need to consider a stronger definition where A is also given some public

information pkK derived from K←$K, e.g., pkK = K · G where G is a generator
of a cyclic group:

∣
∣
∣Pr

[

K←$K, APRF(K,·)(pkK) = 1
]

− Pr
[

K←$K, AO(·)(pkK) = 1
] ∣
∣
∣ ≤ negl(λ)

(1)
Finally, we also consider a selective version where A must make all its query

to its oracle PRF/O before receiving any answer and before seeing pkK.

Dodis-Yampolskiy Pseudorandom Function. The Dodis-Yampolskiy func-
tion [BB04,DY05] is defined by FDY(u,msg) = 1

u+msgG, with key K = u. We recall
the following two lemmas that follow from the proof of weakly unforgeable sig-
nature scheme in Boneh-Boyen [BB04] and the pseudorandomness of the VRF
in Dodis-Yampolskiy [DY05].1

Lemma 2.1. If the q-DDHI assumption holds in group G with generator G, the
function FDY(u,msg) = (u +msg)−1 · G is a selectively pseudorandom function
(when the adversary can make up to q queries), even when the adversaries sees
pku = u · G after its selective queries.

Using the same idea as in [DY05], we also get the following lemma:

Lemma 2.2. If the 2α-DDHI assumption holds in group G with generator G,
the function FDY(u,msg) = (u + msg)−1 · G is pseudorandom function when
msg ∈ {0, 1}α, even when the adversaries sees pku = u · G (see Eq. (1)).
1 Contrary to [BB04], we use a decisional assumption instead of the computational

q-SDH because we want pseudorandomness and not unpredictability. Contrary
to [DY05], we have the PRF value in G1 instead of GT and our assumption is thus q-
DDHI instead of q-DBDHI, and we do not need to have a bilinear map. Appendix A
of Miao et al. [MPR+20] shows the proof under q-DDHI. The only difference with
our case is that we allow the adversary to see pk = u · G, which can easily be simu-
lated the same way as in [DY05]. Simulating pk = u · G is why we rely on q-DDHI
instead of just (q − 1)-DDHI as would [MPR+20] require.
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In particular, the Dodis-Yampolskiy PRF is pseudorandom under a stan-
dard assumption for input message sizes that are logarithmic in the security
parameter.

2.3 Camenisch-Shoup Encryption

The homomorphic encryption introduced by Camenisch and Shoup [CS03] is an
additively homomorphic encryption. It additionally supports verifiable decryp-
tion, which enables a party holding the decryption key to prove the correctness
of the decryption of a given ciphertext. Here, we define the encryption and
decryption algorithms. We use the verifiable decryption proofs implicitly in our
constructions. We use the additive notation for the CS algorithms except for
decryption. That is, we write the multiplicative group Z

∗
N2 additively, except in

the description of the decryption algorithm. Later, in our constructions, we will
refer only to the decryption algorithm by name and never use the multiplicative
notation.

– CS.Gen(1λ): Generate two �-bit primes p′ and q′ such that p = 2p′ + 1 and
q = 2q′ + 1 are primes and set N = pq. Choose random R←$Z∗

N2 and set
G = 2NR be a 2N -th residue.2 Choose random x←$Z�N/4� and set Y = xG.
Set H = 1 + N mod N2, PK ← (N,G,Y,H) and SK ← x. Remark that H is
a generator of the subgroup of order N of Z∗

N2 .
– CS.Enc(PK,m ∈ Zn): Output (rG,mH+rY) ∈ Z

∗
N2 ×Z

∗
N2 where r ←$Z�N/4�.

– CS.Dec(SK, ct = (u, e)): Output m = ( e
ux −1) mod N2

N (in multiplicative nota-
tion).

2.4 Non-interactive Zero-Knowledge Argument of Knowledge

A (non-interactive) zero-knowledge argument has the following algorithms:

– crs ← ZK.Setup(R): generates public parameters (common random string)
ZK.crs for the prove relationship R. (We assume R implicitly defines the
security parameter λ).

– π ← ZK.Prove(R, crs, φ, w): generates a proof π that the prover knows a
witness w such that the input statement φ satisfies the relation R(φ,w).

– false/true ← ZK.Verify(R, crs, φ, π): verifies the correctness of the proof for
a statement φ.

Relation R and CRS ZK.crs are omitted when clear from the context (or not
used). To simplify notation, we also often write:

ZK{∃w : φ} or ZK{ Kw : φ}

2 Recall this is using additive notation for Z
∗
N2 . In usual multiplicative notation, this

corresponds to: G = R2N mod N2.
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instead of ZK.Prove(R, crs, φ, w). “ K” is used instead of “∃” when the ZK argu-
ment is an argument of knowledge and satisfies computational knowledge sound-
ness. We abuse notation and do not explicitly include as part of the witness
random coins of algorithms in the statement. For example, we may write:

ZK{∃x : c = Enc(pk, x), com = Commit(prm, x)}

without making explicit the randomness used by the encryption and commitment
algorithms.

For some of the ZK arguments in this work, completeness holds for a smaller
language than soundness. In that case, the notation above corresponds to the
soundness language. The language for completeness is implicitly defined by the
way the statement is constructed. See the full version [BRS23] for complete ZK
properties..

In our construction we use Sigma protocols [Cra97,CDS94] and Groth-Sahai
proofs [GS08], which we defined in detail in the full version [BRS23].

2.5 Commitment Schemes

We define commitment schemes as a pair of two algorithms COM = (COM.Setup,
Commit) where Setup(1λ) outputs (public) commitment parameters prm, and
Commit(prm,msg; t) returns a commitment com of message msg using random-
ness t. Public parameters are often omitted when clear from the context.

Pedersen Commitments. We will use the Pedersen commitment scheme when
we need binding and hiding properties. We use Pedersen commitment over a
group G where the Strong RSA assumption [BP97,FO97] holds. This will be
needed since, in some cases, the committed values come from groups of different
orders. The parameters for the commitment are group generators G,H ∈ Z

∗
N ,

where N is a Strong RSA modulus. As for Camenisch-Shoup (Sect. 2.3), we use
the additive notation for Z

∗
N instead of the multiplication notation. The com-

mitment of a value x is of the form Commit(x; r) = xG+ rH where r ←$Z�N/4�.
The binding property of the commitment scheme requires that the prover does
not know the discrete log relation between the generators G and H.

Extractable Commitments. These are commitments that have an
extractable mode in which the commitment parameters are generated together
with a trapdoor trap. There exists an extractor E which can extract the com-
mitted value m ← E(trap,Commit(m)) using the trapdoor trap. We will use the
Camenisch-Shoup encryption as an extractable commitment where in the nor-
mal mode, the secret key (i.e. the discrete log of Y) is not known, while in the
trapdoor mode, the secret key is the trapdoor.

2.6 Equivalence-Class Signature Schemes (EQS)

Equivalence class signatures (EQS) [FHS19] are signatures for equivalence classes
where a signature for a representative of the equivalence class can be transformed
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into a signature for any other representative in the same class using only public
parameters. The EQS schemes that we use allow signing messages that are vec-
tors of group elements �M ∈ G

∗�
1 and provide the following signature adaptation

property: a signature for �M can be adapted into signatures of any multiple μ�M,
for μ ∈ Z

∗
p. We exclude the 0 element for all coordinates of �M as well as for μ to

match [FHS19].
As in [FG18], we use a slightly weaker definition than the original EQS notion:

we allow the adapted signatures to be of a different format than the original
signatures. The original signatures are called pre-signatures. We also only require
computational signature adaptation instead of perfect signature adaptation: an
adversary cannot computationally distinguish an (adapted) signature on the
same message computed from two different pre-signatures, even if the adversary
generated the secret key. We also allow for a common reference string (that is
generated by a trusted party).

EQS. An equivalence class signature scheme consists of the following algorithms:

– crs ← EQS.Setup(PG): on input a bilinear group PG, generate a CRS crs.
– (pk, sk) ← EQS.KGen(crs): on input a CRS crs generates secret and public

keys which define pre-signature space R and signature space S.
– ρ ← EQS.Sign(crs, sk, �M ∈ G

∗�
1 ): generates a pre-signature ρ for the represen-

tative �M = �mG1 ∈ G
∗�
1 of the class Span(�M) = Span(�m) · G1.

– σ ← EQS.Adapt(crs, pk, �M ∈ G
∗�
1 , ρ ∈ R, μ ∈ Z

∗
p): transforms a pre-signature

ρ for a representative �M into a signature for �M′ = μ · �M.
– false/true ← EQS.Verify(crs, pk, �M′ ∈ G

∗�
1 , σ ∈ S): verifies signature σ for

representative �M′ using the public key pk.

When clear from the context, crs is omitted. Compared with [FG18],
EQS.Adapt also takes as input �M (wlog since �M could also be included in ρ).

Perfect Correctness. An EQS is correct if, for any honestly generated pre-
signature, any resulting adapted signature verifies. That is, for any �M ∈ G

∗�
1

and μ ∈ Z
∗
p:

crs ← EQS.Setup(PG), (pk, sk) ← EQS.KGen(crs),

ρ ← EQS.Sign(crs, sk, �M), σ ← EQS.Adapt(crs, pk, �M, ρ, μ)

we have:
true = EQS.Verify(crs, pk, μ · �M, σ).

Existential Unforgeability. We recall the notion of existential unforgeability
under chosen-message attacks from [FHS19].

Definition 2.3. An EQS scheme EQS = (Setup,KGen,Sign,Adapt,Verify) sat-
isfies existential unforgeability under chosen-message attacks (EUF-CMA) if for
all PPT adversaries A:
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Fig. 1. EUF-CMA and signature adaptation security game for EQS

Adveuf-cma
EQS,A (λ) := Pr[EUF-CMAA(λ) = 1] = negl(λ),

where EUF-CMAA(λ) is defined in Fig. 1.

Fuchsbauer and Gay introduced a weaker EUF-CoMA notion in [FG18]. This
notion requires the adversary in the security game to provide the discrete loga-
rithms of all group elements. In our first construction of ACT from EQS (Con-
struction 5.1), we could use this weak EUF-CoMA definition if we add a ZK proof
of knowledge of the discrete logarithms of the message elements. However, such
proof is very expensive (unless using Fiat-Shamir in the generic group model or
the algebraic group model, but such proofs are much harder since extraction in
the GGM or the AGM requires careful consideration of how the proof of the full
scheme works).

Signature Adaptation. An EQS satisfies signature adaptation if a malicious
signer cannot distinguish between two signatures on the same message �M′ ∈ G

∗�
1

adapted from two pre-signatures on two potentially different messages. Contrary
to [FHS19], we allow signature adaptation to hold only computationally. We also
implicitly assume that EQS.Adapt fails if the pre-signature ρ is invalid, which
is why we don’t have a verification algorithm for ρ. More formally, we define
signature adaptation as follows.

Definition 2.4. An EQS scheme EQS = (Setup,KGen,Sign,Adapt,Verify) sat-
isfies signature adaptation if for all PPT adversaries A:

Advsig-adpEQS,A (λ) := |Pr[SIG-ADPA(λ) = 1] − 1/2| = negl(λ),

where the game SIG-ADPA(λ) is defined in Fig. 1.
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3 Definitions

In this section, we define anonymous counting tokens (ACTs) with public (respec-
tively private) key verifiability. The private key verifiability version includes the
grey-background text, while the public verifiability version does not.

Definition 3.1 (ACT). An anonymous counting token (ACT) scheme with
private key verifiability consists of the following algorithms:

– (pprmS, privprmS) ← ACT.GenParam(1λ): generates parameters for the ACT
scheme. These are parameters that will be reused throughout the execution of
token issuance. Outputs private parameters privprmS for the token issuer and
public parameters pprmS for the ACT scheme.

– (pprmC, privprmC) ← ACT.ClientRegister(pprmS): on input the public param-
eters for the ACT scheme, this algorithm generates private parameters
privprmC for the client and public parameters pprmC.

– (blindRequest, randmsg) ← ACT.Request(pprmS, privprmC,msg): on input the
public parameters pprmS for the ACT scheme, the private parameters for a
client pprmC and a message msg, generate a blinded token issuance request
blindRequest and state information randmsg.

– (blindToken, tag ) ← ACT.Sign(privprmS, pprmC, blindRequest) on input the
private parameters for the issuer server privprmS, the public parameters for the
client pprmC and the blinded request blindRequest, generate a blinded token.
There is an optional output tag which the issuer can use for throttling one
token per message per client.

– (msg, tok) ← ACT.Unblind(pprmS, privprmC, blindToken, randmsg): on inputs
the public parameters pprmS for the ACT scheme and the private parame-
ters for a client pprmC and a blind token blindToken and randomness randmsg

used to blind the request for the message, generate the unblinded token tok for
message msg).

– (bit, tag ) ← ACT.Verify(vrfyprm,msg, tok): on input the verification param-
eters for the ACT scheme vrfyprm := (pprmS, privprmS), which consist of the
public parameters pprmS for the ACT scheme, the private parameter for the
issuer server privprmS, a message msg and a token tok, output verification bit
bit. There is an optional output tag which the issuer can use for throttling
one token per message per client.

Figure 2 presents the interactions between a client and an issuer server during
token issuance and verification using the algorithms of the ACT scheme. The
client has the public parameters of the scheme and the server has the public
keys C registered by clients as well as a set of tags T which it uses to throttle
issuance at a single token per message per client. In order for the server to be
able to enforce that each client gets at most one token per message, the server
will obtain a tag that allows it to detect when the same client tries to obtain
more than one token per message. This tag will be related to the message and
the client’s registered key but will only reveal whether more than one token per
message is obtained/used by the same client. An ACT construction may enforce
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Fig. 2. Token issuance and verification for ACT (Definition 3.1).

the throttling property either at issuance (i.e., the client cannot obtain a second
token for the same message) or during verification where a client cannot redeem
more than one token for the same message. For each of our constructions, we
will specify which of the two functionalities it provides.

ACT Correctness. An ACT scheme is correct if any honestly generated token
verifies. That is for any sets of issuer’s and client’s parameters

(pprmS, privprmS) ← ACT.GenParam(λ),
(pprmC, privprmC) ← ACT.ClientRegister(pprmS),

and any message msg, the following holds

(blindRequest, randmsg) ← ACT.Request(pprmS, privprmC,msg)
blindToken ← ACT.Sign(privprmS, pprmC, blindRequest)
(msg, tok) ← ACT.Unblind(pprmS, privprmC, blindToken, randmsg)
true ← ACT.Verify(vrfyprm,msg, tok).

3.1 Security Properties

Unforgeability. The first security property is unforgeability, which guarantees
that an adversary cannot generate tokens for more messages than the ones it
has requested signatures and it also cannot generate more than one signature
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for a message per registered client key. This holds even when the adversary can
register public parameters for many clients.

Definition 3.2 (Unforgeability). An anonymous counting token scheme
ACT is unforgeable if for any PPT adversary A and any max(T) ≥ 0, max(R) ≥
0 (the maximum number of queries):

Advomuf
ACT,A(λ) := Pr

[

OMUFACT,A(λ) = 1
]

= negl(λ).

where OMUFACT,A(λ) is defined in Fig. 3.

Fig. 3. Unforgeability game for an ACT scheme. The appropriate boxed instructions
are included depending on whether rate limiting is done at issuance (boxed instructions
in Sign) or at redemption (boxed instruction in main game).

Unlinkability. The next ACT property is unlinkability which guarantees that
even the issuer cannot link client token requests with redeemed tokens, except if
it can trivially do so. Definition relies on UNLINKACT,A(λ) is defined in Fig. 4.

The high-level idea of the game is the following. The adversary plays the role
of the issuer, can register as many clients as it wants in via the GetPrm oracle,
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and can ask those clients to generate blind token requests for messages of its
choice via the Request oracle. It needs to be distinguish blind token requests bT
for two different client/message pairs (oracle Chlissue); or it needs to distinguish
redeemed/unblind tokens for the same message but two different issuance ses-
sions (oracle Chlredeem). As the adversary can always provide wrong blindToken
(as issuer), in that latter, we request that ACT.Unblind succeeds on both the
blind tokens provided by the adversary.

Our unlinkability notion assumes that the issuer parameters pprmS and
privprmS are honestly generated. We informally discuss how to remove this
requirement in each of our constructions.

Definition 3.3 (Unlinkability). An anonymous token scheme ACT is unlink-
able if for any PPT adversary A:

AdvUNLINK
ACT,A (λ) := |2Pr

[

UNLINKACT,A(λ) = 1
]

− 1| = negl(λ),

where UNLINKACT,A(λ) is defined in Fig. 4.

Fig. 4. Unlinkability game for an ACT scheme, where A has access to oracles O =
GetPrm(·),Request(·),Chlissue(·),Chlredeem(·)
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4 Anonymous Counting Tokens from Oblivious PRF

In this section, we present our first anonymous counting tokens construction
which leverages oblivious pseudorandom functions. We make use of the extended
Boneh-Boyen PRF function F(sk = (u, y),msg, r) = (msg+u+r ·y)−1 ·G where G
is a generator of a group G, which was used by Boneh and Boyen [BB04] to con-
struct short signatures without oracles. The Dodis-Yampolskiy function [DY05]
FDY(u,msg) = (msg + u)−1 · G can be viewed as a special case of this function
where the key y is set to zero. For our construction and proofs, we need the
property that F is pseudorandom when evaluated on adversarially chosen mes-
sages and on randomness that is sampled uniformly at random. We prove the
properties for this function in the full version of the paper [BRS23].

We will need to evaluate obliviously the function F(sk = (u, y),msg, r) =
(msg + u + r · y)−1 · G: one party has the secret key sk while the other
party has a message (msg, r) as input. We call the resulting protocol a ver-
ifiable oblivious pseudorandom function (VOPRF). The VOPRF algorithms
VOPRF = (VOPRF.GenParam,VOPRF.EncodeMsg,VOPRF.Eval,VOPRF.Decode)
are informally defined as follow. Given public parameters and assuming inputs
are committed, we consider the following protocol: the client runs EncodeMsg
with a message (msg, r) and gets back a digest, the server runs Eval on digest (and
the server’s key) to get a blinded PRF value. The client can then run Decode
to obtain the output F(msg, r) on the message msg. Informally, the VOPRF
security property (that we will be proving in the ACT proof) states that this
protocol is a maliciously secure computation protocol, where the client receives
the output F(msg, r) and the server learns nothing.

We are constructing a VOPRF in Sect. 4.2. We also present a stand-alone
definition in the full version of the paper [BRS23]. The VOPRF primitive is
introduced mostly for readability. It is used as part of the final ACT protocol,
where we implicitly assume inputs and keys to be previously committed. We
do not prove separate properties for it but we prove directly the ACT security
properties.

4.1 ACT Construction

Assuming we have a VOPRF (with the right properties) for the extended Boneh-
Boyen PRF function F(sk = (u, y),msg, r) = (msg+ u+ r · y)−1 ·G, we construct
an ACT from this VOPRF.

Constructions 4.1 (ACT from VOPRF). Let G be a cyclic group of prime
order p with generator G, VOPRF = (VOPRF.GenParam,VOPRF.EncodeMsg,
VOPRF.Eval,VOPRF.Decode) be the verifiable oblivious pseudorandom function
defined in Construction 4.2, COMPed = (COMPed.Setup,CommitPed) be the Ped-
ersen commitment scheme over a strong-RSA group (a hiding and binding com-
mitment scheme), COMExt = (COMExt.Setup,CommitExt) be an extractable com-
mitment scheme defined as the CS encryption scheme (see Sect. 2.5), FDY be the
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Dodis-Yampolskiy (selective) PRF over G,3 and ZK be a sound zero-knowledge
argument scheme. We construct an anonymous counting token scheme ACT as
follows:

ACT.GenParam(1λ): Generate

1. (PKVOPRF,SKVOPRF) ← VOPRF.GenParam(1λ). Note that PKVOPRF contains
(public) parameters prmExt for the extractable commitment scheme and
prmPed for the Perdersen hiding and binding commitment.

Output: pprmS ← PKVOPRF

privprmS ← SKVOPRF

ACT.ClientRegister(pprmS): Generate

1. a Dodis-Yampolskiy PRF key uC ←$Zp,
2. a commitment comuC ← CommitPed(uC; tuC)

Output: pprmC ← comuC

privprmC ← uC

ACT.TokenRequest(pprmS, privprmC,msg):

1. Compute a commitment to the message commsg ← CommitExt(H(msg); rmsg).
2. Compute

– Dodis-Yampolskiy PRF evaluation v ← FDY(uC,H(msg)).
– Proof of correct PRF evaluation

πv : ZK{∃h, uC, tmsg, tuC : v = FDY(uC, h),
commsg = CommitExt(h; tmsg), comuC = CommitPed(uC; tuC)}

3. Generate a random rC and commitment comrC ← CommitExt(rC; trC).
4. Hash the transcript to get random value rS ← H(trnc) where

trnc = (pprmS, comuC , commsg, v, comrC).

5. Compute r ← rC + rS, commit comr ← CommitPed(r; tr) and generate a proof:

πr : ZK{∃ rC, trC , tr : r = rC + rS,

comrC = CommitExt(rC, trC), comr = CommitPed(r; tr)}.

(The above 3 steps are used to create a random value r that neither the issuer
nor the client control as explained in Section 1.1.)

3 This PRF is used for the rate limitation of the client. VOPRF does not evaluate this
PRF but rather evaluates F defined in Sect. 4.
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6. Compute first OPRF message on input msg with randomness r

(VOPRF., ,VOPRF.digest) ← VOPRF.EncodeMsg(PKVOPRF, (H(msg), r), (tmsg, tr)).

Output: blindRequest ← (commsg, v, πv, comrC , comr, πr,VOPRF.digest)
randmsg ← (msg, r,VOPRF.)

ACT.Sign(privprmS, pprmC, blindRequest)

1. Parse blindRequest = (commsg, v, πv, comrC , comr, πr,VOPRF.digest).
2. Parse privprmS = skOPRF.
3. Compute rS ← H(trnc) as in ACT.Request.
4. Verify the proofs πv and πr and abort if any of them doesn’t verify.
5. Compute the second message of the VOPRF evaluation

blindPRF ← VOPRF.Eval(skVOPRF,VOPRF.digest).

Output: blindToken ← blindPRF

tag ← v

ACT.Unblind(pprmS, privprmC, blindToken, randmsg)

1. Parse blindToken = blindPRF.
2. Parse randmsg = (msg, r,VOPRF.).
3. Decode the returned token (implicitly verifying its correctness):

τ ← VOPRF.Decode(VOPRF., blindPRF).

4. Set the signature tok ← (r, τ)

Output: (msg, tok)

ACT.Verify(pprmS, privprm,msg, tok)

1. Parse privprmS = skVOPRF and tok = (r, τ). Set bit ← false.
2. If F(skVOPRF,H(msg), r) = τ , set bit ← true.

Output: bit
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4.2 Verifiable Oblivious Pseudorandom Function Construction

Next, we present our construction of a verifiable oblivious pseudorandom func-
tion which closely follows the construction of distributed oblivious PRF of Miao
et al. [MPR+20]. The main difference is that [MPR+20] relies on the selec-
tive pseudorandom property of the Dodis-Yampolskiy function while we use the
extended Boneh-Boyen PRF function F(sk = (u, y),msg, r) = (msg+u+r·y)−1·G.

Constructions 4.2. Let COMPed be the Pedersen commitment scheme, CS be
the Camenisch-Shoup encryption scheme, and COMExt be extractable commit-
ment instantiated as CS encryption (but with a different public key, whose secret
key is known by the issuer, contrary to the secret key of COMExt). We assume
for simplicity that we use the same modulus N for CS, COMExt, and COMPed.
We construct an VOPRF (VOPRF.GenParam, VOPRF.EncodeMsg,VOPRF.Eval,
VOPRF.Decode) as follows:

VOPRF.GenParam(1λ):

1. Generate CS parameters (pkCS ← (N,GCS,YCS,HCS), skCS ← x) ← CS.Gen
(1λ).

2. Generate extractable commitment parameters prmExt ← COMExt.Setup(1λ).
3. Generate Pedersen commitment parameters prmPed ← COMPed.Setup(1λ). We

use the same modulus N for the two commitment schemes and the CS scheme
above.

4. Sample random keys u, y←$Z|G| for the function F .
5. Encrypt ctu ← CS.Enc(pkCS, u) = (ru·GCS, u·HCS+ru·YCS) where ru ←$Z�N/4�.
6. Encrypt cty ← CS.Enc(pkCS, y) = (ry ·GCS, y·HCS+ry ·YCS) where ry ←$Z�N/4�.

Output: pprmS ← (pkCS, prmPed, prmExt, ctu, cty)
privprmS ← (u, y, skCS)

VOPRF.EncodeMsg(pprmS, (msg, r) ∈ Z
2
|G|, (tmsg, tr)):4

1. Commit commsg ← CommitExt(msg; tmsg), comr ← CommitPed(r; tr).
2. Sample a←$Zp and b←$Zp2·2λ .
3. Compute commitments with randomness ta, tb, tr ←$Z�N/4�

coma ← CommitExt(a; ta), comb ← CommitPed(b; tb),
comr ← CommitPed(r; tr).

4. Let α = a · msg, γ = a · r. Compute commitments:

comα ← CommitPed(α, tα), comα ← CommitPed(γ, tγ)

5. Compute encryption of β = a ·msg+ a · (u+ r · y) + b · p (implicitly defined):

ctβ = CS.Enc(pkCS, β) = Enc(pkCS, a · msg + b · p) + a · ctu + a · r · cty.
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6. Generate a ZK proof

π = ZK{∃ a, b,msg, r, α, γ, ta, tb, tmsg, tr, tα, tγ s.t. :
ctβ = Enc(pkCS, a · msg + b · p) + a · ctu + a · r · cty,
coma = CommitExt(a; ta), comb = CommitPed(b; tb),
comr = CommitPed(r; tr), commsg = CommitExt(msg; tmsg),
comα = CommitPed(a · msg; tα), comγ = CommitPed(a · r; tγ),

a < p · 22λ+1, α < p · 22λ+1, r < p · 22λ+1, b < p2 · 23λ+1}.

Output: digest ← (ctβ , coma, comb, commsg, comr, comα, comγ , π)
state ← (a, b)

VOPRF.Eval(privprmS, digest):

1. Parse digest ← (ct, π). If π does not verify, abort.
2. Compute β ← CS.Dec(skCS, ct). If β ≥ p32λ+1, abort.
3. Compute commitment comβ = CommitPed(β; rβ) where rβ ←$Z�N/4�.
4. Set F = β−1 · G.
5. Generate a ZK proof

π = ZK{β, rβ , skCS s.t. : ct = (G′, β · HCS + skCS · G′),YCS = skCS · GCS,

comβ = CommitPed(β; rβ),F = β−1 · G, β < p3 · 23λ+1}.

Output: blindPRF ← (F, comβ , π)

VOPRF.Decode(, blindPRF):

1. Parse blindPRF = (F, comβ , π),= (a, b).
2. If π does not verify, abort.
3. Set F′ = a · F.

Output: τ ← F′

Security Proof. We start with the intuition for our security proof. The first
observation is that in the case of a single client, an ACT forgery corresponds to
generating a new evaluation of the PRF F on a message that has not been
queried. To formalize this, we leverage the result of Miao et al. [MPR+20,
Theorem B.1] which constructs a distributed oblivious PRF evaluation pro-
tocol with malicious security on committed inputs for the Dodis-Yampolskiy
4 Note that when called from the ACT, msg will actually be a hash of some message
H(msg).
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PRF. Their result essentially shows that the VOPRF Construction 4.2 with
FDY(u,msg) = (u+msg)−1 ·G is a secure two-party computation protocol where
the client obtains PRF(u,msg) and the server has no output. This means that if
we instantiated the ACT construction with this VOPRF construction, then the
ACT scheme will be unforgeable for a single client who chooses its messages
selectively. Then, we show how we can reduce the unforgeability of the ACT con-
struction with PRF FDY(u, y,msg, r) = (u+msg+ r · y)−1 · G to the single client
unforgeability of the ACT with the Dodis-Yampolskiy PRF. This reduction will
follow the ideas of the reduction from unforgeability to weak unforgeability for
the Boneh-Boyen signatures [BB04].

The unlinkability of the scheme follows from the selective pseudorandom
property of the Dodis-Yampolskiy PRF. It indeed shows that the unlinkability
adversary only obtains pseudorandom tokens that do not reveal any informa-
tion about the underlying input messages. We provide all proof details and a
concrete instantiation with efficiency cost estimates in the full version of the
paper [BRS23].

5 ACTs from Equivalence-Class Signature

In this section, we present ACT constructions from equivalence-class signatures
(EQS). Note that these constructions will have the functionality where the rate-
limiting of a single token per message per client will be enforced during token
redemption. In particular, the ACT verification will output the verification bit
of the validity of the token and a tag that is a pseudorandom value derived
from the client’s key and the message. The issuer can compare this tag against
its database of redeemed message tags and reject the token if this value occurs
there. However, this latter rate-limiting step is not part of the ACT verification
algorithm itself.

We present two ACT constructions which differ in the type of PRF used
to enforce the rate-limiting property. The first one is based on the Dodis-
Yampolskiy PRF and can be instantiated in the standard model but is limited to
messages of size logarithmic in the security parameter. The second one has two
versions: the long version is provably secure in the random oracle model, while
the short version is provably secure in the generic bilinear group and random
oracle model when instantiated with a specific scheme.

5.1 ACT from EQS and Dodis-Yampolskiy PRF for Small Messages

We start with an ACT construction from EQS and the Dodis-Yampolskiy PRF.

Constructions 5.1 (ACT from EQS and Dodis-Yampolskiy). Let EQS =
(EQS.Setup,EQS.KGen,EQS.Sign,EQS.Adapt,EQS.Verify) be an equivalence-
class signature scheme over a bilinear group PG = (G1,G2,GT ). We use the
Dodis-Yampolskiy pseudorandom function FDY(u, x) = (u + x)−1 · G1 over the
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cyclic group G1. We assume messages msg are in a subset of Z∗
p of size polyno-

mial in the security parameter λ. An anonymous counting token construction
ACT consists of the following algorithms:

ACT.GenParam(1λ): Generate

1. a bilinear group PG ← GGen(1λ) and an extra random generator G′
1 ∈ G1

2. ZK argument CRS ZK.crs ← ZK.Setup(R) where R is implicitly defined in
ACT.Request (ZK.crs is used implicitly when generating and verifying ZK
proofs),

3. EQS CRS crs ← EQS.Setup(PG), and EQS keys (pk, sk) ← EQS.KGen(crs).

Output: pprmS ← (ZK.crs, crs, pk)
privprmS ← (pprmS, sk).

ACT.ClientRegister(pprmS):

1. Generate a Dodis-Yampolskiy PRF key uC ←$Zp,
2. Set UC = uC · G1.

Output: pprmC ← UC

privprmC ← uC

ACT.TokenRequest(pprmS, privprmC, msg ∈ Z
∗
p):

1. Generate a random value μ←$Z∗
p.

2. Set �M ← (M1 = μ−1 · G1, M2 = μ−1 · FDY(uC,msg), M3 = (μ−1msg) · G′
1).

3. Generate a proof π�M:

π�M : ZK
{

∃ μ−1, uC ∈ Zp : M′
1 = μ−1 · G1, M′

2 = μ−1(uC +msg)−1 · G1,

M3 = (μ−1msg) · G1, UC = uC · G1

}

Output: blindRequest ← (�M, π�M)

randmsg ← (msg, �M, μ)

ACT.Sign(privprmS, pprmC, blindRequest)

1. Parse blindRequest = (�M, π�M).
2. If verification of π�M fails, abort.
3. Run ρ ← EQS.Sign(crs, sk, �M).

Output: blindToken ← ρ
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ACT.Unblind(pprmS, privprmC, blindToken, randmsg)

1. Parse randmsg = (msg, �M, μ), blindToken = ρ.
2. Set �M′ ← (G1, FDY(uC,msg), msg · G′

1).
3. Compute σ ← EQS.Adapt(crs, pk, �M, ρ, μ).
4. If σ =⊥, abort.

Output:
(

msg, tok ← (�M′, σ)
)

ACT.Verify(pprmS, privprm,msg, tok)

1. Set bit ← true.
2. Parse tok = (�M′ = (M′

1,M
′
2,M

′
3), σ).

3. If M′
1 	= G1 or M′

3 	= msg · G′
1, set bit ← false.

4. If false = EQS.Verify(pk, �M′, σ), set bit ← false.

Output: (bit, M2)

Perfect correctness is straightforward.
We provide the unforgeability and unlinkability proofs in the full version

[BRS23]. We note that unforgeability does not rely on the pseudorandomness of
the Dodis-Yampolskiy PRF.

Parameter Generation for Unlinkability. Unlinkability assumes that the
ACT parameters are generated honestly and the issuer only sees the secret key.
To alleviate this requirement, we can instead work in the CRS model, where
the ZK and EQS CRS are put in the CRS and generated by a trusted party.
The EQS signature adaptation holds even for maliciously generated pk, but our
unlinkability proof uses sk. Therefore, we would also need that the issuer includes
in pprmS a zero-knowledge proof of knowledge of the EQS secret key sk for the
unlinkability proof above to go through. This can be done efficiently using either
Groth-Sahai proofs or Fiat-Shamir proofs.

The same discussion applies to Construction 5.2.

Instantiation. The construction in Construction 5.1 can be instantiated in
the standard model using the EQS from Sect. 6.1. in the full version of the
paper [BRS23] and using Groth-Sahai proofs for the ZK argument. Following
the notations from [EG14], the Groth-Sahai proof will need to make (with the
cost in the number of group elements):
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– 3 × scaG2 for the commitments to μ−1, uC, and msg
� cost = 6 × G2

– 4 × MConstG2 to prove the following 4 equations:

M′
1 • G2 = G1 • (μ−1 · G2) M′

2 • (uC · G2) +M′
2 • (msg · G2) = G1 • (μ−1 · G2)

M′
3 • G2 = M′

1 • (msg · G2) UC • G2 = G1 • (uC · G2)

� cost = 4 × G1

5.2 ACT from EQS and a Random-Oracle-Based PRF

The second ACT construction from EQS leverages the PRF in the RO model
PRF(K, x) = K · H(x) where H : {0, 1}∗ → G1 is a hash function that can
be modeled as a random oracle. This PRF was folklore and has been formally
defined in [NPR99].

The ACT construction is similar to Construction 5.1 but the message �M
generated by ACT.Request is generated as:

�M ←
(

M1 = μ−1 · G1, M2 = μ−1 · uC · H(msg), M3 = μ−1 · H(msg)
)

instead of

�M ←
(

M1 = μ−1 · G1, M2 = μ−1 · (uC +msg)−1 · G1, M3 = (μ−1msg) · G1

)

.

Note that in both cases M2 = PRF(uC,msg), but with a different PRF. Impor-
tantly the statements proven by the ZK proof in this new construction do not
need to evaluate the hash function H, so they can be still efficiently instantiated
with Fiat-Shamir or Groth-Sahai.

We present two versions: the long version uses dimension-3 vectors �M and
includes M1 (like the Dodis-Yampolkiy-based construction), while the short ver-
sion uses dimension-2 vectors without M1. The short version is not proven
unforgeable but we show that a specific instantiation of it is unforgeable in
Sect. 6, in the generic (bilinear) group model.

Constructions 5.2 (ACT from EQS and Random Oracle (long and
short versions)). Let (EQS.Setup,EQS.KGen,EQS.Sign,EQS.Adapt,EQS.
Verify) be an equivalence-class signature scheme. An anonymous counting token
construction ACT consists of the following algorithms:

ACT.GenParam(1λ): Generate

1. a bilinear group PG ← GGen(1λ),
2. ZK argument CRS ZK.crs ← ZK.Setup(R) where R is implicitly define in

ACT.Request (ZK.crs is used implicitly when generating and verifying ZK
proofs),
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3. EQS CRS crs ← EQS.Setup(PG), and EQS keys (pk, sk) ← KGen(crs).

Output: pprmS ← (ZK.crs, crs, pk)
privprmS ← (pprmS, sk).

ACT.ClientRegister(pprmS):

1. Generate a PRF key uC ←$Zp.
2. Set UC = uC · G1.

Output: pprmC ← UC

privprmC ← uC

ACT.TokenRequest(pprmS, privprmC,msg):

1. Generate a random value μ←$Z∗
p.

2. Compute M′
3 ← H(msg) and M′

2 ← uC · H(msg).
3. Set �M ← (M1 = μ−1 · G1, M2 = μ−1 · M′

2, M3 = μ−1 · M′
3).

4. Generate a proof π�M:

π�M : ZK
{

∃uC ∈ Zp : M2 = uC · M3 and UC = uC · G1)
}

Output: blindRequest ← (�M, π�M)

randmsg ← (msg, �M, μ)

ACT.Sign(privprmS, pprmC, blindRequest)

1. Parse blindRequest = (�M, π�M).
2. If verification of π�M fails, abort.
3. Run ρ ← EQS.Sign(crs, sk, �M).

Output: blindToken ← ρ

ACT.Unblind(pprmS, privprmC, blindToken, randmsg)

1. Parse randmsg = (msg, �M, μ), blindToken = ρ.
2. Set �M′ ← (G1, uC · H(msg), H(msg)).
3. Compute σ ← EQS.Adapt(crs, pk, �M, ρ, μ).
4. If σ =⊥, abort.

Output:
(

msg, tok ← (�M′, σ)
)
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ACT.Verify(pprmS, privprm,msg, tok)

1. Set bit ← true.
2. Parse tok = (�M′ = (M′

1,M
′
2,M

′
3), σ).

3. If M′
1 	= G1 or M′

3 	= H(msg), set bit ← false.
4. If false = EQS.Verify(crs, pk, �M′, σ), set bit ← false.

Output: (bit, M2)

Perfect correctness is straightforward. We provide the unforgeability and
unlinkability proofs in the full version of the paper [BRS23].

Instantiation. The long version of Construction 5.2 can be instantiated in the
random oracle model using the EQS from Sect. 6.1. in the full version of the
paper [BRS23] and using a Fiat-Shamir proof for the ZK argument.

Concretely, the Fiat-Shamir proof needs to prove that logG1
(UC) = logM3

(M2)
and consists of the following:

– Generate random scalar v ←$Z∗
p.

– Compute the Fiat-Shamir commitments: V ← v · G1, W ← v · M3.
– Derive the Fiat-Shamir challenge: c ← H′(UC, �M, V,W ), where H′ : {0, 1}∗ →
Zp is a hash function that will be modeled as a random oracle.

– Compute the Fiat-Shamir response: ξ ← v + c · uC.
– Set the proof to be: π�M ← (ξ, c) ∈ Z

2
p.5

The proof is verified by computing V ′ ← ξ ·G1 − c ·UC and W ′ ← ξ ·M3 − c ·M2,
and then checking whether c = H′(UC, �M, V ′,W ′).

6 ACTs in the Generic Bilinear Group Model

In this section, we show that the short variant of Construction 5.2 is unforgeable
in the generic bilinear group model and random oracle model, when implemented
with the EQS scheme from [FHS19] and Fiat-Shamir for equality of discrete
logarithms for the ZK proof in ACT.Sign (as in the instantiation in Sect. 5.2). It
achieves better concrete efficiency than all our other constructions at the cost of
security holding in the generic bilinear group model (GBGM).

For the sake of completeness, we describe the full protocol below.

5 Actually the challenge c can be reduced to λ bits while keeping the security of the
Fiat-Shamir transform.
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Constructions 6.1 (ACT in GBGM). Let PG = (G1,G2,GT ) be a bilinear
group, H : {0, 1}∗ → G1 and H′ : {0, 1}∗ → Zp be two hash functions that will be
modeled as two random oracles. In this construction, we denote elements from
G2 with a hat, e.g., X̂2, matching notation from [FHS19] (except the generators
G1 and G2). Vectors �M have two elements indexed 2 and to match Construction
5.2. Recall that GT is also written additively and that we use • to denote the
pairing operation e(X, Ŷ) = X • Ŷ. An anonymous counting token construction
ACT consists of the following algorithms:

ACT.GenParam(1λ): Generate

1. a bilinear group PG ← GGen(1λ)
2. EQS secret key sk = (x2, x3)←$ (Z∗

p)
2

3. EQS public key pk ← (X̂2 ← x2 · G2, X̂3 ← x3 · G2)

Output: pprmS ← pk,

privprmS ← sk.

ACT.ClientRegister(pprmS):

1. Generate a PRF key uC ←$Zp,
2. Set UC ← uC · G1

Output: pprmC ← UC

privprmC ← uC

ACT.TokenRequest(pprmS, privprmC,msg):

1. Generate random scalars v, μ←$Z∗
p.

2. Compute M′
3 ← H(msg) and M′

2 ← uC · H(msg).
3. Set �M ← (M2 = μ−1M′

2, M3 = μ−1M′
3)

4. Compute the Fiat-Shamir commitments: V = v · G1, W = v · M3.
5. Derive the Fiat-Shamir challenge: c ← H′(UC, �M, V,W ).
6. Compute the Fiat-Shamir response: ξ ← v + c · uC.
7. Set the proof to be: π�M ← (ξ, c).

Output: blindRequest ← (�M, π�M)

randmsg ← (msg, �M, μ)

ACT.Sign(privprmS, pprmC, blindRequest)

1. Parse blindRequest = (�M, π�M = (ξ, c)).
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2. Verify the ZK proof π�M: namely compute V ′ ← ξG1 − cUC, W ′ ← ξM3 − cM2,
and abort if c 	= H′(UC, �M,V′,W′).

3. Generate a random y ←R Z
∗
p.

4. Compute the EQS signature: Z ← y · (x2 · M2 + x3 · M3), Y ← y−1 · G1, and
Ŷ ← y−1 · G2.

Output: blindToken ← ρ = (Z,Y, Ŷ)

ACT.Unblind(pprmS, privprmC, blindToken, randmsg)

1. Parse randmsg = (msg, �M, μ), blindToken = ρ = (Z,Y, Ŷ).
2. Generate a random scalar ψ ←$Z∗

p.
3. Compute σ ← (Z′ ← μψZ, Y′ ← ψ−1Y, Ŷ′ ← ψ−1Ŷ)
4. Set �M′ ← (uC · H(msg), H(msg)).
5. Abort if M′

2 • X̂2 +M′
3 • X̂3 	= Z • Ŷ or if Y • G2 	= G1 • Ŷ or Y = 0 or Ŷ = 0.

Output:
(

msg, tok ← (M′
2, σ ← (Z′,Y′, Ŷ′))

)

ACT.Verify(pprmS, privprm,msg, tok)

1. Parse tok = (M′
2, σ = (Z′,Y′, Ŷ′)).

2. Compute M′
3 ← H(msg).

3. Set bit ← true.
4. If M′

2 • X̂2 +M′
3 • X̂3 	= Z • Ŷ or Y • G2 	= G1 • Ŷ or Y = 0 or Ŷ = 0, set

bit ← false.

Output: (bit, tag ← M′
2).

Correctness and unlinkability follow from correctness and unlinkability of
Construction 5.2. See the full version of the paper [BRS23] for the proof of
unforgeability.
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Abstract. Motivated by applications in anonymous reputation systems
and blockchain governance, we initiate the study of predicate aggregate
signatures (PAS), which is a new primitive that enables users to sign
multiple messages, and these individual signatures can be aggregated by
a combiner, preserving the anonymity of the signers. The resulting PAS
discloses only a brief description of signers for each message and provides
assurance that both the signers and their description satisfy the specified
public predicate.

We formally define PAS and give a construction framework to yield a
logarithmic size signature, and further reduce the verification time also
to logarithmic. We also give several instantiations for several concrete
predicates that may be of independent interest.

To showcase its power, we also demonstrate its applications to mul-
tiple settings including multi-signatures, aggregate signatures, threshold
signatures, (threshold) ring signatures, attribute-based signatures, etc,
and advance the state of the art in all of them.

1 Introduction

Anonymous reputation systems are widely used in many applications. For exam-
ple, on online platforms, for Internet peers to jointly establish accumulated rat-
ings on the merchants/service providers or certain products, so that users that
are not familiar with them, can have some context to make a better choice. Since
the main necessary information is the accumulated rating, ensuring anonymity
plays a crucial role to allow users to participate in the reputation systems. More
specifically, in YouTube, each user registers at YouTube, and then gives his rat-
ing on each content as an “I like it” (like +1) or not, then there will be an
accumulated content score shown in the platform. The accumulated score not
only serves as a succinct representation/description, but also hides the identities
of the voters. To reduce the reliance on fully trusting the platform, other impor-
tant requirements are that the accumulated score should be publicly verifiable,
so that users may have stronger confidence that the score is not manipulated by
the platform; furthermore, in the anonymous setting, one potential threat arises
when a malicious platform attempts to manipulate the ratings by repeatedly
counting one user’s vote for many times. Therefore, additional measures must
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J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14439, pp. 279–312, 2023.
https://doi.org/10.1007/978-981-99-8724-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8724-5_9&domain=pdf
https://doi.org/10.1007/978-981-99-8724-5_9


280 T. Qiu and Q. Tang

be taken to assure the verifier that each voter’s contribution to the accumulated
score is limited to a single vote.1

Naturally, individual votes can be realized via digital signatures from legit-
imate users (e.g., registered identities). To obtain a succinct accumulated score
k, say up-votes, we would like to aggregate the corresponding identities and sig-
natures to be a short “proof”. The proof needs to ensure that indeed there are
at least k signatures on “I like it” from k distinct identities.

The one-user-one-vote requirement above can be seen as a special policy
that was put on the identities of those signatures. In broader applications, there
could be more complex voting policies that could be expressed as a predicate on
the voter identities. For example, in blockchain governance (e.g., Decentralized
autonomous organizations (DAOs) [4]), decisions could be made by the whole
community whose accounts hold sufficient amount of tokens. The final decision
needs to be attested with a short proof that the voting result is indeed following
the governing policy, and the proof would be stored onchain. Voting processes in
DAOs offer a remarkable degree of flexibility and customization. These processes
can be tailored and programmed to accommodate a wide range of requirements
and preferences. For example, quadratic voting [1,2] allows the voter have bud-
gets of credits which are converted to counted votes according to their square
root. Delegated voting [5] allows users to delegate their voting power to trusted
individuals or entities. Property-based voting [3] differentiates signers based on
the properties of their non-fungible tokens used in voting.
Introducing Predicate Aggregate Signatures. Motivated by above appli-
cations and many other relevant ones, in this paper, we are studying a general
problem for aggregating signatures and keys on multiple messages, while ensuring
that the signers satisfy some public predicate without disclosing their identities.
We call such a cryptographic primitive predicate aggregate signatures, PAS for
short.

More specifically, let us consider a set of users denoted as U = {ui}i∈[n] and
a collection of messages M = {mj}j∈[k] drawn from a predefined message space.
Users choose the messages to sign. There is also a combiner, who aggregates
the corresponding signatures and signer identities/public keys into one succinct
certificate/proof/signature and shows a description Δ of signers (like the num-
ber) on each message. The signature also confirms the legitimacy of both the
signers and signatures, ensuring that the signers and the description adhere to
a particular public predicate P , i.e., P (S1, . . . , Sk,Δ) = 1, where each Si ⊆ U is
a subset of users.

For example, in the anonymous reputation system, the rate-once policy
requires that each signer can only sign once at most. It means there is no dupli-
cate signer in each subset, and all subsets are disjoint, i.e., Si ∩ Sj = ∅ for
any i �= j. Another example is the onchain voting system with special policy.

1 There are also other types of rating systems, such as Uber/Airbnb, that are based
on accumulation on each transaction, so each user may rate on the same service
provider more than once. We only consider the common version as a motivational
example for our primitive.
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Besides showing the number of voters, the property policy [3] requires that some
of the voters have special properties. By representing the property via index, the
combiner can assure the policy is satisfied by proving that some voters’ indices
belong to a specific range, e.g., there is at least one voter in the subset who is a
senior member with an index smaller than 50.
Inefficiencies of Existing Primitives. Despite that there are many relevant
research on signature aggregation, anonymous authentication, and others, none
of them gives a PAS in a satisfying way (as shown in Table 1). We first give a
simple categorization of existing relevant primitives, and briefly describe insuf-
ficiency of each type, and defer a more detailed comparison to the full version.
Besides that most of the primitives do not support a general policy validation
on the signers, each of them lack some other critical properties. Jumping ahead,
we will show that some of concrete instantiations of our PAS directly advance
the state of the art of several of those well-studied primitives, see Table 2.

Table 1. Comparisons of relevant primitives.

Primitives Trans. setup Flexi. thld. Agg across msgsa Anony. Signer Policy

Thld Sig. [37] × × × � ×
Multi-Sig [13] � � × × ×
Agg-Sig. [14] � � � × ×
Graded Sig. [10,28] � � × � ×
Compact Cert. [33] � � × × ×
Thld-ring Sig. [18] � × × � ×
Attri-based Sig. [32] × × × � �b

Our PAS � � � � �
a Agg across msgs means signatures can be compressed among different messages.
b The predicate in this setting is applied to one single user’s attribute set, while we
consider predicate across multiple users.

Signature Aggregations. Multi-signatures [13], aggregate signatures [14], thresh-
old signatures [37] and several other relevant ones allow one to compress signa-
tures from different users. Besides they usually have no anonymity guarantee, the
former two have to explicitly provide the signer identities/public keys thus the
total proof size and verification cost still remains at least linear to the threshold
(which is usually linear to the total number of users); threshold signature, on
the other hand, can have one single public key for verification, but via a trusted
setup, when its threshold is fixed, and it does not support signature aggregation
across multiple messages. Multi-key homomorphic signatures [29] evaluates the
messages signed by different users but it does not protect the privacy of signers.
All signers’ identities are public which is not suitable for our anonymous setting.
Anonymous Primitives. Anonymity oriented signatures such as ring signatures
[17,35] and the linkable [31] and threshold versions [18], usually do not require
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the identities of the ring being aggregated, and often with a fixed thresh-
old. Scored anonymous credential [21] is used for privacy-preserving reputation
enforcement. The user’s reputation is decided by some service provider. While we
are considering the reputation voting setting where a set of users rate a product
by signing.

Attribute-based signatures (ABS) [32] allow a user to attest that his
attributes satisfy certain predicate. Anonymity can be implicitly ensured if two
users have the same attribute set. However, ABS requires a trusted key genera-
tion center, it does not consider signature aggregations, or policies across multi-
ple users. In our context, each user independently generates their own keys, and
our goal is to have the flexibility to aggregate signatures and apply predicates
across multiple users.
Generic Constructions. Generic zk-SNARKs could certainly provide a path for
feasibility. By collecting numerous signatures from signers, the combiner can
create a zk-SNARK proof that guarantees the existence of sufficient valid partial
signatures satisfying the public predicate, while concealing the signers’ identities
and revealing only the counts. However, the generation of zk-SNARK proofs
remains prohibitively expensive, and it relies on trusted setups and unfalsifiable
assumptions. Some recent efforts have focused on constructing dynamic threshold
signatures2 [22,27] directly in the AGM model [26], whose actual security is not
well-understood, and may have subtle vulnerabilities [38]. While we focus on
building the PAS on classical and more standard assumptions.

1.1 Our Contributions

In this article, we formulate, construct and analyze the new primitive of predicate
aggregate signatures to address remaining issues.
Formulating PAS. We give a formal definition and security models for predicate
aggregate signatures.

As mentioned above, it allows registered users (public keys, identities known
and made public) to sign on multiple messages and these signatures can be
aggregated by a combiner who hides these signers’ identities. The final signature
only reveals a description of signers and guarantees that the signers and this
description satisfy the public predicate.3

We formally define the security model of predicate aggregate signatures. It
enjoys the following features simultaneously which advances existing primitives.

2 They are a kind of special threshold signature that supports the dynamic choice of
thresholds for each time of signature generation.

3 In later, we would use the dynamic threshold as an example of the description. It
reveals the number of users who have signed on the message. We choose it as the
example for three reasons: (1) For a simpler presentation that shows how we can get
our final construction step by step; (2) the dynamic threshold is a natural feature of
our motivated anonymous reputation system; (3) the dynamic threshold aggregate
signature itself might be of independent interests, and indeed it already advances
the state of the art of several relevant signatures.
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– Transparent setup: users generate pk, sk on their own, and a setup algorithm
only publishes public parameters for the system.

– Signer anonymity: the adversary (not the combiner) cannot get any informa-
tion about each individual signer identity/public key (e.g., whether he signed
on a particular message) except the public description from the final signa-
ture, even if the adversary corrupts all users, including the target himself.

– Unforgeability: the adversary cannot convince the verifier, if it does not collect
enough signatures, or the predicate is not satisfied. To facilitate such a notion,
we generalize the classical proof of knowledge, and define a signer identity
extractor.

Efficient Constructions from Standard Assumptions. We proceed in sev-
eral steps towards the full construction, with concrete efficient instantiations.
Our starting point is the BLS aggregate signature [14]. It allows the combiner
to aggregate a set of partial signatures on multiple messages.
Transparent Setup. First of all, each user generates his secret-public key pair
(ski = xi, pki = gxi), and registers pki. To avoid the known rogue-key attacks
[14], we first let each user run proof of knowledge of xi during the registration.
The system simply includes pk1, . . . , pkn and some common parameter g1, . . . , gn

as public parameters and makes them available to everyone.
Succinct Size Solution. We start with the core building block of dynamic thresh-
old aggregate signature. This can be considered as the special case where the
predicate only requires the threshold counting is correct.

An intuitive idea is letting the combiner do more work: not only the par-
tial signatures are aggregated, but their respective public keys are also com-
pressed into a compact version. To protect signer anonymity, it also adds some
blind factors to the compressed public keys and signatures. However, anonymity
introduces a concern regarding the correctness of compressed public keys. Specif-
ically, there is no guarantee that these compressed public keys are part of the
legitimate/registered public key set.

Therefore, the combiner needs to produce an additional proof for the mem-
bership relation and duplication checks (that there are indeed t signatures from
t distinct signing keys). A näıve attempt for the latter would be proving pairwise
difference on all the compressed signing keys, which will yield a quadratic size
proof. Some techniques in relevant primitives such as graded signatures [28] and
signature of reputation [10] got around the challenge and sorted the public keys
first, to do a sequential proof that pki �= pki+1, which can push down the proof
size to be linear. However, that is still quite cumbersome.

Alternatively, we observe that instead of proving relations among signer keys
directly, we may leverage the published public keys in the public parameter.
First, we can represent the included keys as a binary vector b = (b1, ..., bn), i.e.,
bi = 1, if pki is in (has signed on the message), and 0 otherwise, and commit b
in a succinct way (via vector commitment). Then we can prove an alternative
statement that the committed vector is indeed binary. Now the Hamming weight
of this vector will be corresponding to the threshold. Two remaining parts: (i)
each bit value is assigned correctly; (ii) Hamming weight is correctly computed.
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For (i), observe that when each pki is directly taken in as part of the system
parameter, the “aggregated public keys” ̂pk = Πipkbi

i can be seemed as another
“commitment” to the binary vector. We can establish the validity of the bit
assignment by demonstrating that the previously committed binary vector is
identical to the one contained in ̂pk. While for (ii), Hamming weight can again
be derived directly from inner product of the bit vector and all 1 vector, and
proven using the efficient inner product argument from Bulletproofs [19].

Now we have a construction framework from the inner product argument
and “binary” proof (that proves a committed vector is binary), which can be
instantiated via Bulletproofs [19], yielding a signature of logarithmic size relative
to the number of all users.

In the multiple (say k) messages setting, signers are divided into multiple
sets depending on the message they have signed. A natural method is running
the above proof generation for k times, so the total communication cost would
have a multiplicative factor of k. Fortunately, by exploring the above technique
further, we can generate a proof for k values on the knowledge of n-length binary
vectors. In this way, these k proofs can be aggregated into one single proof for
a (k · n)-length binary vector. As a result, we achieve a communication cost of
O(k + log n + log k), comprising k aggregated public keys and additional proofs
of size O(log n + log k).
Reduce Verification Time. However, the above signature still requires a linear
verification time (for example, even reading in all the public keys). To also reduce
verification time, we propose a new proof system for the inner product and binary
relations with structured parameters, that can reduce the verification time also
to logarithmic.

There were previous efforts improving verification cost [23,30], in [23],
the authors achieve logarithmic size and logarithmic verification time for
inner product argument and range proof using structured reference string
with highly correlated parameters in the form of g, gx1 , gx2 , . . . , gxlog n , gx1·x2 ,
gx1·x3 , gx2·x3 , gx1·x2·x3 . . ., that separates the parameter into two parts: linear
proving parameter and logarithmic verification parameter.

Unfortunately, as we would like a transparent setup, and public keys are gen-
erated by users themselves randomly, and then included as the public parameter,
which clearly inconsistent with these structured parameters.

To work around this, we need to redesign the parameter generation and the
statement for the proof. Besides the binary vector, we also commit the public
keys via structure preserving commitment of [6] (also called AFGHO commit-
ment). Introducing structured parameters into it is still compatible with the
random generated public keys. Given these two commitments, we can prove
another element is the inner pairing product of the two committed vectors. We
observe that demonstrating the well-formedness of the aggregated public key is
equivalent to proving that its bilinear map is equal to the inner pairing prod-
uct between a binary vector and all public keys. Now we prove the validity of
̂pk by directly leveraging inner product argument between two committed vec-
tors. One of these vectors is a binary vector, whose correctness is guaranteed by
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a binary proof, while the other comprises all the public keys. By adjusting the
AFGHO commitment with structured parameters, these proofs achieve efficiency
with logarithmic communication costs and verification times. We refer detailed
description in Sect. 4.1.
Achieve Anonymity. In the anonymous setting with a blind factor r, where
̂pk = Πipkbi

i · g̃r, several challenges arise when applying the previous method.
These challenges include proving the last position of the binary vector is 1 and
handling commitments of public keys together with the random factor g̃r. These
challenges are exacerbated by the anonymity requirements. See Sect. 4.1 for
detailed discussion.

To mitigate these issues, a new approach is proposed. First, b and r are
committed separately using distinct commitment keys, and proofs are generated
for each. Then, by combining these two commitments, we can prove the presence
of both a binary vector and a blind factor in specific positions. Subsequently, an
inner pairing product argument is applied to these vectors, ensuring the well-
formedness of the blinded aggregated public key.
Generic Predicate. Then to lift the construction to support any arithmetic predi-
cate on the signer identities, we observe that both techniques for the core building
block is via Fiat-Shamir transformation on Σ-protocols. We can add the extra
proof of predicate satisfaction similarly via Bulletproof with our optimized ver-
ification time, then use the classical And proof to bind them. The final proof is
with logarithmic size and verification time, while its security can be based on
the standard SXDH assumption.
Efficient Instantiations for Concrete Predicates. As discussed above, such a spe-
cial PAS with dynamic threshold already gives a better construction of multiple
relevant signatures, as shown in Table 2.

We also give a concrete construction for the concrete predicate that all signer
sets are also disjoint (that denotes the rate-once policy in the motivational appli-
cation of anonymous reputation system).

It is a challenging task for the combiner to demonstrate the disjoint nature of
all of these subsets of signers. In general, it would require comparing every pair
of them and proving that they are indeed disjoint. However, this approach would
necessitate a quadratic number of comparisons, leading to additional significant
communication and computation cost.

It is worth noting that the binary feature can also be utilized in this case.
Specifically, each public key subset can be represented as a binary vector. The
addition of two binary vectors corresponds to the union of the corresponding
subsets, including duplicate elements if any. In case the resulting sum vector
remains binary, it implies that there are no duplicate elements in the union set,
thereby indicating that the two sets are disjoint. By extending this approach to
the k -subsets scenario, where we add all these binary vectors, we can demonstrate
that all of the public key subsets are indeed disjoint.
Applications and Extensions. Our PAS (including the building block alone)
implies many interesting primitives such as threshold signature, aggregate sig-
nature, multi-signature, ring signature, threshold ring signature, etc; more
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importantly, our efficient construction with different instantiations of concrete
predicates, can improve the state of the art of all those primitives. More specif-
ically, when using our dynamic threshold aggregate signature, we can directly
yield the first multi-signature, aggregate signature, graded signature and thresh-
old signature with both O(log n) communication and verification cost, while
the state-of-the-art construction of them (from standard assumptions except
zk-SNARKs or AGM directly) are all having linear costs. See Table 2.

Table 2. Advancing relevant primitives. (In the comparison, we restrict only to the
single message case in our PAS. If there are k messages to be signed, all others have a
multiplicative factor k, while we only have an additive factor.)

Primitives Commun. Cost Verify Cost. Generation Cost.

Multi-Sig. [13] O(n)a O(n) O(n)

Agg-Sig. [14] O(n)a O(n) O(n)

Graded Sig. [10,28] O(n) O(n) O(n)

Thld-ring Sig. [7] O(log n) O(n) O(n)

Using our PAS� O(log n) O(log n) O(n)
a Although their signatures can be aggregated, the signers’ identities
should also be transmitted which leads to linear communication cost,
except recent ones [22,27] that rely on zk-SNARKs or AGMs directly.
� The last row means using our PAS with dynamic threshold as Δ, it
implies the above primitives and advances their performance.

For multiple users and multiple messages, the combiner generates a PAS with
threshold tj for each mj . It implies the aggregate signature and hides the signers’
identities. For multiple users and one message, a PAS with threshold t implies
that t different signers have signed on the message. It implies the threshold
signature with transparent setup and dynamic threshold t and threshold ring
signature with threshold t. It also naturally implies the multi-signature with t
signers and the graded signature which indicates there are t different signers.
When there is only one signer and one message, it implies the ring signature and
attribute-based signature. The signer himself works as the combiner and shows
the threshold is 1 with the proof of satisfying the predicate. It is equivalent to
validating the signer’s attribute. More details can be found in Sect. 6.
Anonymous Reputation Systems. Recent works on the anonymous reputation
systems [11,12,24] achieve full anonymity at the cost of linear communication
cost and quadratic verification complexity. We allow the combiner to know the
signer identities and let the number of signers be the description. It generates a
PAS which reveals the reputation states and its size is just logarithmic and can
be verified in logarithmic time.
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Onchain Voting System. Certain voting policies necessitate that voters possess
a particular property [3], and it can be denoted by their identity index. For
instance, within an organization, senior members are associated with indices
smaller than a threshold. The combiner’s task is to demonstrate that among the
signers, there is at least one whose index is lower than a specified threshold. In
our design, relying on the binary vector, the combiner only needs to prove the
existence of a single position in the vector where the value is 1 and the position
is smaller than a specified threshold.
Extensions. We can also easily support further advanced properties such as
dynamic join, weighted, accountability and more.

– New users can seamlessly join the system without causing any disruptions to
existing users. The process of joining is transparent and does not have any
adverse effects on other users. It just involves changing a single global public
key in a publicly verifiable way.

– In the PAS scheme, each user can associate their public key with a weight and
the Δ is defined as the total weight of the signers. As a result, when generating
the PAS signature, it discloses the total weight of the signers involved. So our
PAS also supports the weight aggregation feature like [20,22,33].

– Our PAS can be extended to support the accountability by adding an extra
identities encryption layer. It is similar with the method of TAPS [15].

2 Preliminary

We use bold letter for vector, for example a = (a1, ..., an) ∈ Z
n
q . We use ◦ to

denote the Hadamard product: a ◦ b = (a1 · b1, ..., an · bn) for a, b ∈ Z
n
q . We

use [k] to denote the integers in {1, 2, ..., k}. On input the security parameter
1λ, a group generator G.Gen(1λ) produces public parameters G.pp = (q,G, g),
where q is a prime of length λ, and G is a cyclic group of order q with
generator g. Similarly, a bilinear group generator BG.Gen(1λ) produces pub-
lic parameters BG.pp = (q,G1,G2,GT , g, g̃, e) where G1 = 〈g〉,G2 = 〈g̃〉,GT

are groups of order q. The map e : G1 × G2 → GT defines gT = e(g, g̃), the
map is bilinear, (for all a, b ∈ Zq, e(ga, g̃b) = e(g, g̃)ab) and non-degenerate
(for all generators g of G1, g̃ of G2, GT = 〈e(g, g̃)〉). We assume G1 �= G2

and we are working on Type III groups [6] who do not have efficiently com-
putable homomorphisms between G1 and G2. We use [a]1, [b]2, [c]T denotes the
element ga, g̃b, gc

T in G1,G2,GT respectively. We use [x]1 denotes the vector
(gx1 , ..., gxn) ∈ G

n
1 for x = (x1, ..., xn) ∈ Z

n
q . We write all groups additively, e.g.,

[a]1 + [b]1 = [a + b]1 denotes ga · gb = ga+b, b · [a]1 = [ab]1 denotes (ga)b = gab,
[x]1 + [y]1 = [x+ y]1 denotes (gx1 , ..., gxn) ◦ (gy1 , ..., gyn) = (gx1+y1 , ..., gxn+yn),
[x]1 ◦y = (gx1y1 , ..., gxnyn), [x]y1 =

∑n
i=1 yi · [xi]1 = Πn

i=1g
xiyi . For a, b ∈ Z

n
q , let

〈a, b〉 :=
∑n

i=1 ai · bi denote the inner product between a, b. For [a]1 ∈ G
n
1 and

[b]2 ∈ G
n
2 , let 〈[a]1, [b]2〉 := e([a]1, [b]2) =

∑n
i=1 e([ai]1, [bi]2) denote the inner

pairing product between [a]1, [b]2. Given a vector v = (v1, ..., vn) with even n,
we denote v� = (v1, ..., vn/2) and vr = (vn/2+1, ..., vn). For k ∈ Z

∗
q we use kn to

denote the vector containing the first n powers of k, i.e., kn = (1, k, k2, ..., kn−1).
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2.1 Assumptions

Definition 1 (DDH assumption). Let (q,G, g) ← G.Gen(1λ) be a group gen-
erator. The DDH assumption holds for G.Gen if the following distributions are
indistinguishable: (g, ga, gb, gab : a, b←$Zq) and (g, ga, gb, gc : a, b, c←$Zq)

Definition 2 (DLOG assumption). Let (q,G, g) ← G.Gen(1λ) be a group
generator. The DLOG assumption holds for G.Gen if for all PPT adversary A
we have: Pr[A(q,G, g,X) = x|(q,G, g) ← G.Gen(1λ), x←$Zq,X = gx] ≤ negl(λ)

Definition 3 (SXDH assumption [6]). Let (q,G1,G2,GT , e, g, g̃) ←
BG.Gen(1λ) be a bilinear group generator. The SXDH assumption holds for
BG.Gen if DDH assumption holds for G1 and G2.

Definition 4 (co-CDH assumption [14]). Let (q,G1,G2,GT , e, g, g̃) ←
BG.Gen(1λ) be a bilinear group generator. The co-CDH assumption holds for
BG.Gen if for all PPT A, given [a]1, [b]2 where a, b←$Zq, the probability that A
can produce [ab]1 is negligible.

Definition 5 (DPair assumption [6]). Let (q,G1,G2,GT , e, g, g̃) ←
BG.Gen(1λ) be a bilinear group generator, n = poly(λ). The double-pairing
(DPair) assumption holds for BG.Gen if for all PPT adversary A, given
[r]1 ←$G1, the probability that A can produce [a]2, [b]2 ∈ G2 s.t. e([r]1, [a]2) +
e(g, [b]2) = [0]T and a, b �= 0 is negligible.

Definition 6 (ML-Find-Rep assumption [23]). Let (q,G, g) ← G.Gen(1λ)
be a group generator, n = poly(λ) which a power of 2, ν = log n. The ML-
Find-Rep assumption holds for G.Gen if for all PPT adversary A we have:
Pr[A(q,G, [r],X) → a ∈ Z

n
q s.t. [r]a = [0] ∧a �= 0|(q,G, g) ← G.Gen(1λ), (x1, ...,

xν)←$Z
ν
q , r = (1, x1, x2, x1x2, ..., x1 · · · xν)] ≤ negl(λ).

Definition 7 (DPair-ML assumption). Let (q,G1,G2,GT , e, g, g̃) ←
BG.Gen(1λ) be a bilinear group generator, n = poly(λ) which a power of 2.
The DPair-ML assumption holds for BG.Gen if for all PPT adversary A, given
[r]1 ∈ G

n
1 , where r = (1, x1, x2, x1x2, ..., x1 · · · xν) for (x1, ..., xν)←$Z

ν
q , the

probability that A can produce [s]2 ∈ G
n
2 s.t. e([r]1, [s]2) = [0]T is negligible.

The DPair-ML assumption is implied by the SXDH assumption and ML-
Find-Rep assumption.

2.2 Cryptographic Primitives

Due to space constraints, we introduce some cryptographic primitives here briefly
and defer the detailed preliminaries to the full version.
Commitment. A commitment scheme allows one to commit to a chosen value
secretly, with the ability to only open to the same committed value later. A
commitment scheme Πcmt consists of the following PPT algorithms:
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Setup(1λ) → pp: generates the public parameter pp.
Com(m; r) → com: generates the commitment for the message m using the
randomness r.
Hiding. A commitment scheme is said to be hiding if the commitment does not
reveal any information about the committed value.
Binding. A commitment scheme is said to be binding if a commitment can only
be opened to one value.
Additively Homomorphic. A commitment is additively homomorphic if for any
values m1,m2 and randomness r1, r2: Com(m1; r1) + Com(m2; r2) = Com(m1 +
m2; r1 + r2).
Pedersen Commitment. For messages m ∈ Z

n
q and any i ∈ {1, 2, T}, the

Pedersen commitment is defined by:
Setup(1λ) → pp: g←$G

n
i , h ←$Gi.

Com(m; r) → com: Com(m; r) = gm · hr ∈ Gi where r ←$Zp.
The Pedersen commitment is additively homomorphic, perfectly hiding and

computationally binding under the DLOG assumption.
AFGHO Commitment. Abe et al. [6] defined a structure preserving commit-
ment to group elements. In this case we have the message space G

n
2 :

Setup(1λ) → pp: Run (q,G1,G2,GT , e, g, g̃) ← G(1λ), the commitment key
ck1 := g←$G

n
1 .

Com(m; r) → com: for [m]2 ∈ G
n
2 , Com([m]2; [r]2) = 〈ck1, [m]2〉 + e(g, [r]2)

where [r]2 ←$G2.
To commit to messages in G1, we can just interchange the role of G1 and G2

in the above construction with ck2 ∈ G
n
2 .

The AFGHO commitment is additively homomorphic, perfectly hiding and
computationally binding under the SXDH assumption.
Structured AFGHO. Based on the updatable common reference string tech-
nique of Daza et al. [23], we give the modified AFGHO commitment with struc-
tured commitment keys ck1, ck2 which are generated as below.

(pp, [r]1 ∈ G1,ck1 = [r]1 ∈ G
n
1 , vk1 = [x]2 ∈ G

ν
2) ∈ L1

Com ⇔
[r1]1 = [r]1 ∧ ∀i ∈ [ν],∀j ∈ [2i−1], [r2i−1+j ]1 = xi[rj ]1

(pp, [s]2 ∈ G2,ck2 = [s]2 ∈ G
n
2 , vk2 = [y]1 ∈ G

ν
1) ∈ L2

Com ⇔
[s1]2 = [s]2 ∧ ∀i ∈ [ν],∀j ∈ [2i−1], [s2i−1+j ]2 = yi[sj ]2

where r, xi ←$Zq and s, yi ←$Zq for all i ∈ [ν].
The structured AFGHO commitment is additively homomorphic, perfectly

hiding and computationally binding under the SXDH and DPair-ML assump-
tions.
Zero-Knowledge Arguments of Knowledge (ZKAoK). A zero-knowledge
argument of knowledge is a cryptographic protocol involving two parties: a prover
and a verifier. In this protocol, the prover’s objective is to provide convincing



290 T. Qiu and Q. Tang

proof to the verifier that a certain statement is true, without revealing any
information about the underlying witness.

It consists of three PPT algorithms Setup, P, and V. The setup algorithm
outputs a common reference string σ on inputting a security parameter λ. The
prover P and the verifier V are interactive algorithms. As the output of this
protocol, we use the notation 〈P,V〉 = b, where b = 1 if V accepts and b = 0 if
V rejects. The proof is public coin if an honest verifier generates his responses
to P uniformly.
Argument of Knowledge. (Setup,P,V) is called an argument of knowledge for
the relation R if it satisfies the following two definitions.
Perfect Completeness. The prover can persuade the verifier if it possesses a
witness that attests to the truth of the statement.
Computational Witness-Extended Emulation. Whenever an adversary that pro-
duces an acceptable argument with some probability, there exist an emulator
who can produce a similar argument with the same probability and provide
a witness w simultaneously. It implies soundness which asserts that no PPT
adversary can persuade the verifier when the statement is false. It also assures
knowledge soundness which guarantees the existence of an extractor capable of
producing a valid witness for the statement.
Honest-Verifier Special Zero-Knowledge (HVSZK). Given the verifier’s challenge
values, it is possible to simulate the entire argument without witness efficiently.
BLS Aggregate Signature. We briefly review the BLS signature scheme and
its signature aggregation mechanism [14]. Given an efficiently computable non-
degenerate pairing e : G1 ×G2 → GT in groups G1,G2,GT of prime order q. Let
g and g̃ be generators of G1 and G2 respectively, a hash function H : M → G1:

– KeyGen(): the user chooses sk ←$Zq, outputs (pk, sk) for pk ← g̃sk ∈ G2.
– Sign(sk,m): output σ ← H(m)sk ∈ G1.
– Vrfy(pk,m, σ): output 1 if e(σ, g̃) = e(H(m), pk), otherwise, output 0.
– Signature Aggregation: Given triples (pki,mi, σi) for i ∈ [n], anyone can

aggregate the signatures σ1, ..., σn into a single group element σ̂ ← Πi∈[n]σi ∈
G1. Verification can be done by checking that if

e(σ̂, g̃) = e(H(m1), pk1) · · · e(H(mn), pkn).

For all same messages it just needs to check if e(σ̂, g̃) = e(H(m1),Πn
i=1pki).

It is unforgeable under the co-CDH assumption.

The Rogue Public-Key Attack and Defense. Note that the aggregate public key
Πn

i=1pki suffers the rogue public-key attack [9]. To prevent it, we use the Proof-
of-Possession (PoP) mechanism [34] in the registered key model. In this approach,
each party is required to provide a proof that they possess the private key corre-
sponding to their public key. This proof can be included during the setup phase
and ensures that only legitimate key owners can participate. In this paper, we
implicitly assume the presence of PoP proofs for the public keys.
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3 Predicate Aggregate Signatures

In this section, we formalize the predicate aggregate signatures and establish
the security model for this concept. Predicate aggregate signatures enable users
to sign multiple messages according to some predefined public policy, and these
individual signatures can be aggregated by a combiner, preserving the anonymity
of the signers. The resulting aggregate signature discloses only a brief description
of the involved signers (e.g., count of signers for each message, total weight of
signers, etc.) and provides assurance that these signers and the description satisfy
the specified policy denoted by a public predicate function.

This notion addresses the need for efficient and privacy-preserving signature
schemes that allow for the signing of multiple messages while ensuring adherence
to a given predicate. The security model encompasses the privacy of signers and
the unforgeability of the predicate aggregate signature.

3.1 Syntax

In general, there are three parties in the system: signers who sign on the mes-
sage; the combiner, who generates a predicate aggregate signature with a public
description of the involved signers and proves that these signers and the descrip-
tion satisfy a public predicate; the verifier who verifies the correctness of the
predicate aggregate signature.

• Setup(1λ) : On the security parameter λ, the system public parameters pp
are generated. The message space is set as M = {mj}j∈[k]. There is a public
policy Ω which decides the computation rule of the signers description Δ and
the predicate function PΩ.
It also includes the key generation of users. Each user ui generates his secret
key ski and public key pki pair and broadcasts the public key. The combiner
(or any other parties) collects the public keys and publishes the aggregation
key ak and verification key vk which contains PΩ.

• ParSign(ski,mj) : For a message mj chosen from M , the user i signs on it
using his secret key ski and sends (pki,mj , σij) to the combiner.

• ParVrfy(pk,mj , σ) : On receiving (pki,mj , σ), anyone can verify it.
• Combine(ak, {Sj}j∈[k],{{σij}i∈Sj

}j∈[k], {mj}j∈[k]) : When receiving sets of
signatures {{σij}i∈Sj

}j∈[k] on the message mj from different signers w.r.t.
index sets {Sj}j∈[k] (called signer sets) where each Sj ⊆ [n], the combiner
generates a signature Σ for the message set M = {mj}j∈[k] with corre-
sponding description Δ of these signer sets. It also proves that the signer
sets and Δ satisfy the public predicate PΩ decided by some policy Ω, i.e.,
PΩ(S1, ..., Sk,Δ) = 1.

• Verify(vk,M,Δ,Σ) : Given the verification key vk, messages M = {mj}j∈[k],
description Δ, the PAS signature Σ, anyone can check the validness by run-
ning Verify(vk,M,Δ,Σ) and outputs one bit b ∈ {0, 1} indicating if it is
valid.
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Remark 1 Δ is the description of signers in S1, ..., Sk whose partial signatures
are used to generate the final PAS signature. It is computed via a deterministic
function F specified in the policy Ω from the signer sets: Δ = F (S1, ..., Sk). Note
that it cannot display the signer identities plainly, since it ruins the anonymity
directly. Although it is computed deterministically, in many cases, it leaks very
little information about the signers. For example, it could be the size of each
signer set, the combined weight of signers within each signer set, or simply
demonstrating that the number exceeds a certain minimum threshold.

Remark 2 PΩ is the predicate decided by the public policy Ω which takes the
signer sets and a description as input. PΩ(S1, ..., Sk,Δ) = 1 indicates that
S1, ..., Sk,Δ satisfy the rule according to Ω.

3.2 Model

Correctness. If enough valid signatures under different public keys are used
to produce the signature Σ on the messages mj for j ∈ [k], the description Δ
and the signer sets satisfy the public predicate PΩ(S1, ..., Sk, Ω) = 1, then the
verification for (M,Δ,Σ) always outputs 1.
Anonymity. The signer identities are hidden from the public. The PAS signa-
ture only discloses a description of the signer sets and whether they satisfy the
predicate according to the public policy. Given any two valid signatures Σ0, Σ1

with the same descriptions and predicates from different signer sets on the same
messages set M , they are indistinguishable even to some of these signers.
Unforgeability. The adversary cannot generate a valid signature on multiple
messages if it does not have enough signatures from different signers on each
message, or the signer sets and the description do not satisfy the predicate.
Oracles. We define the following oracles to model the adversary’s ability. There
is an honest user table HU, a corrupted user table CU and a queried message
table QM which are initialized as empty.

– add(i): Add a new user ui to the system. If i has not been queried before, run
the key generation algorithm (pk∗, sk∗) ← KeyGen, set (pki, ski) = (pk∗, sk∗)
and output pki. Add (ui, pki, ski) to the honest user table HU.

– corrupt(pki): Corrupt an honest user in the system. If pki ∈ HU, output ski,
delete (ui, pki, ski) from HU and add (ui, pki, ski) to CU.

– sign(pki,m): If pki /∈ HU, ignore it. Otherwise, run σ ← ParSign(ski,m) and
add (pki,m) to QM, output σ.

Anonymity. This property ensures that signer identities are hidden from the
public. Only the combiner knows the signer identities. Others just know the
description of the signers and the signer sets with the description satisfy the
public predicate. Formally speaking, given any two valid signatures Σ0, Σ1 from
different signer sets on the same messages M with the same description Δ and
both satisfy the predicate, nobody can distinguish them except the combiner.
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In the anonymity definition, even the signers will not be able to distinguish two
PAS signatures for the maliciously chosen messages with same thresholds. The
anonymity experiment Expanony between an adversary A and a challenger C is
formalized as follows.

– A receives the public parameters including the description function F and
public predicate PΩ specified by the policy Ω.

– A adds users to the system, it can query signatures of any signers on any
messages and even corrupt all users. The global aggregation key ak and ver-
ification key vk are setup and given to A.

– A chooses a set of messages M = {mj}j∈[k], and two sets of index sets
S0 = {S0

j }j∈[k] and S1 = {S1
j }j∈[k] where each S0

j , S1
j ⊆ [n]. Then it gen-

erates partial signatures σu,j ← ParSign(sku,mj), σv,j ← ParSign(skv,mj)
for all j ∈ [k], u ∈ S0 and v ∈ S1 and let D0 = {{σu,j}u∈S0}j∈[k],D1 =
{{σv,j}v∈S1}j∈[k]. It sends (M,S0, S1,D0,D1) to C.

– C computes Δ0 = F (S0), Δ1 = F (S1) and checks these partial signatures. It
aborts, if there exists any invalid partial signature or S0 = S1 or Δ0 �= Δ1 or
PΩ(S0,Δ0) �= 1 or PΩ(S1,Δ1) �= 1. Otherwise, continue.

– C randomly chooses one bit b ← {0, 1} and sends A a predicate aggre-
gate signature Σ with M generated from signatures of Db by running
Σ ← Combine(ak, Sb,Db,M).

– A outputs a guess b′.
– Outputs 1 if b′ == b, otherwise, outputs 0.

Definition 8 A predicate aggregate signature is anonymous if any PPT adver-
sary in the Expanony can only guess the bit correctly with probability negligibly
close to 1

2 , i.e., |Pr[Expanony(A, λ) = 1] − 1
2 | ≤ negl(λ).

Unforgeability. This property ensures that given the public policy, any adver-
sary cannot generate a valid signature on multiple messages if it does not have
enough signatures on the messages or the signer sets and their description do
not satisfy the predicate.

It contains two properties: (1). A can not produce a valid PAS signature
which contains an honest signer who has never signed on that message. (2).
All signer sets w.r.t. the messages must adhere to the specified predicate. It is
infeasible for A to generate a valid PAS signature with a signer sets description
but the signer sets and the description are unsatisfied for the predicate.

Note that due to the anonymity requirement, the signer identities are hidden
and only their description is shown. So it is hard to decide whether A has broken
the predicate satisfaction property. To address this dilemma, we introduce an
extractor E that has the ability to reveal the signers’ identities for each message
from the predicate aggregate signature. It is inspired by the knowledge extractor
for the knowledge soundness in zero-knowledge proof of knowledge.

Formally speaking, the unforgeability experiment Expunforge works as follows:

– A receives the public parameters and the public predicate.
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– A can add users to the system then gets the aggregation key ak and verifica-
tion key vk.

– A is an adaptive adversary, it can interact with E via querying oracles. It can
then query signatures of any signers on any messages and corrupt users.

– A outputs a tuple (M,Δ,Σ).
– On a valid (M,Δ,Σ), E outputs the signers’ identities S1, ..., Sk.

A wins and the experiment outputs 1 only if (M,Δ,Σ) is valid w.r.t. vk and
at least one of the following conditions is satisfied:

– ∃ ij ∈ Sj , such that ij ∈ HU and (pkij
,mj) /∈ QM;

– PΩ(S1, ..., Sk,Δ) �= 1.

The first condition means A has never queried the corrupt oracle on pkij
or sign

oracle on (pkij
,mj). It models that A generates a valid PAS signature without

enough valid partial signatures.

Definition 9 A predicate aggregate signature is unforgeable if any PPT adver-
sary in the above experiment can only win with negligible probability, i.e.,
Pr[Expunforge(A, λ) = 1] ≤negl(λ).

4 Constructions

In this section, we give the construction of the predicate aggregate signature.
Formally speaking, the combiner aims to prove the knowledge of signatures and
signers satisfying the following relation:

RPAS = {pk1, . . . , pkn,m1, . . . , mk, Ω,Δ; {σi1}i∈S1 , . . . , {σik}i∈Sk
:

ParVrfy(pki,mj , σij) = 1 ∀i ∈ Sj , j ∈ [k];
Sj ⊆ [n],∀j ∈ [k];PΩ(S1, ..., Sk,Δ) = 1}

where pk1, . . . , pkn are all the public keys, m1, . . . , mk are the candidate mes-
sages, Sj contains the indices of users who have signed on the message mj , σij

is the signature from user i on message mj . PΩ is the predicate function decided
by the public policy Ω.

The predicate function can be very simple that outputs 1 as long as the
description Δ is correct and there is no other requirements on the policy. For
any general policy that can be described by an arithmetic circuit, the predicate
can be converted into a circuit and proved using the efficient zero-knowledge
argument for arbitrary arithmetic circuits which have been studied in [16,19,23].

In this section, we mainly consider the anonymous reputation system with
the rate-once policy as a non-trivial example. Here the description is the number
of signers in each subset (Δ = {tj}j∈[k] where tj = |Sj |) and all users can only
sign once even for different messages. It means the signer sets for all messages
are disjoint. We define the public predicate as follows:

PΩ(S1, ..., Sk,Δ) =

⎧

⎨

⎩

1, if Δ = {tj}j∈[k], Sj ⊆ [n], |Sj | = tj ,∀j ∈ [k];
∧Sj0 ∩ Sj1 = ∅, ∀j0, j1 ∈ [k], j0 �= j1

0, otherwise.
(1)
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4.1 Construction Overview

Our starting point is the pairing-based BLS aggregate signature (see Sect. 2.2).
Let n be the number of users in the system. On receiving a set of partial signa-
tures σij on each message mj ∈ M from signer i ∈ [n], the combiner generates
the aggregate signature σ̂ and publishes it with the index set Sj ∈ [n] of signers
on message mj for verification. The verifier computes the verification key for mj

w.r.t. Sj : ̂pkj = Πi∈Sj
pki for j ∈ [k]. Subsequently, it verifies the validity of σ̂.

An intuitive idea is letting the combiner also compress the public keys into
a compact version which can be used for verifying the aggregated signature. To
protect the privacy of signers, it also adds blind factors to the compressed public
keys and respective aggregated signatures. The crux of our construction now
revolves around proving the correctness of the compressed public keys without
using linear descriptions while still enabling duplication checks.

We start from the single message case. Given all the public keys pk =
(pk1, ..., pkn) ∈ G

n
2 and a set S ⊆ [n], let pkS = {pki}i∈S ⊆ {pki}i∈[n] to

denote a subset of all public keys w.r.t. S. The blinded aggregation of public
keys of pkS is: ̂pkS = Πi∈Spki · g̃rS where rS is the blind factor. Note that S
determines a binary vector bS = (b1, ..., bn), bi = 1 if i ∈ S, otherwise, bi = 0.

The combiner (or prover P) computes a commitment B on bS and proves
that the committed bS is a binary vector whose Hamming weight is t. Then P
proves that ̂pkS can be expressed in the form of pkv · g̃r where v is same as the
bS in B and it knows the blind factor r. It means that ̂pkS contains t different
signers. Combined with an aggregate signature σ̂ and a message m, the valid
tuple ( ̂pkS ,m, σ̂), the verifier can be convinced that the message has been signed
by t different users.

For multiple messages m1, ...,mk case, the index set of signers who have
signed on mj is Sj and their aggregated public keys are ̂pkj for j ∈ [k]. Here P
proves the knowledge of corresponding binary vectors bj whose Hamming weight
is tj and the knowledge of blind factor rj and the signer sets S = {S1, ..., Sk}
and thresholds T = {t1, ..., tk} satisfy the public predicate PΩ .

Considering the rate-once policy in the anonymous reputation system as
a concrete example, the predicate is denoted by PΩ(S, T ) := |Sj | = tj ,∀j ∈
[k]∧Sj0∩Sj1 = ∅, ∀j0, j1 ∈ [k], j0 �= j1. Due to the binary feature, we observe that
proving subsets disjoint can be achieved by demonstrating that the summation
of all binary vectors is still binary with a Hamming weight t =

∑

j∈[k] tj .
In summary, we formulate this process in the following relation:

R1 = {{ ̂pkj ,mj , tj}k
j=1, σ̂; b1, . . . , bk, r1, ..., rk :

e(σ̂, g̃) = e(H(m1), ̂pk1) · · · e(H(mk), ̂pkk)

∧ ̂pkj = pkbj · g̃rj ∧ bj ∈ {0, 1}n ∧ tj = 〈1n, bj〉,∀j ∈ [k]

∧ b = Σj∈[k]bj ∈ {0, 1}n}

(2)

Strawman Scheme from Bulletproofs. In general, the public keys are group
elements. It can be integrated with the public parameters of Bulletproofs which
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are also group elements. Then we use Pederson commitment to commit the
binary vector and prove the correctness of the aggregated public keys. The com-
biner has ̂pk = Πn

i=1pkbi
i · gr and generates B = Πn

i=1g
bi
i · hr. It generates binary

proof on B with parameter (g1, ..., gn, h) and another binary proof on B · ̂pk with
parameter (g1 · pk1, ..., gn · pkn, h · g). It implies that ̂pk shares the same binary
vector and randomness in B, so it is well-formed. Here the binary proof can be
constructed from Bulletproofs [19] with logarithmic size. The final construction
comes with almost the same cost.

For multiple k messages case, instead of generating k individual proofs, we
generate a proof for k values on the knowledge of n-length binary vectors. It
aggregates k proofs into one proof of a kn-length binary vector (k · n bits) via
a random challenge value z and Schwartz-Zippel lemma. It is similar with the
aggregated range proofs of Sec. 4.3 in [19]. As a result, we achieve a communi-
cation cost of O(k + log n + log k) which is just logarithmic to the parameter n.
However, the verification time scales linearly with the total bit length, denoted as
O(k ·n). This places a significant burden on the verifier, prompting us to explore
more efficient construction methods that offer sublinear verification times.
Construction with Logarithmic Verifier. Daza et al. [23] improves Bullet-
proofs to achieve both logarithmic size and verification time. But it cannot be
applied to our setting in the same way as above. Since it relies on structured
parameters which are incompatible with the randomly chosen public keys. Inte-
grating the public keys with these parameters would violate their structure and
render the technique useless.
Plain Case Without Anonymity. We start from the single message case without
anonymity. We assume that the proof of possession has been done to prove the
knowledge of secret key for each public key. We aim to prove that a given ̂pk ∈ G2

can be expressed in the form of pkb where b is a binary vector. Note that the
pairing e(g,pkb) =

∑n
i=1 e(g, pkbi

i ) =
∑n

i=1 e([bi]1, pki) = 〈[b]1,pk〉. Instead of
directly proving the form of ̂pk, we compute the map e(g, ̂pk) at first. By the
bilinear property, it is sufficient to prove that the map result is also an inner
pairing product between [b]1 and pk. To this end, we leverage an inner pairing
product (IPP) argument. It asserts that a given element in GT is the inner
pairing product between two vectors in G

n
1 and G

n
2 which are committed with

AFGHO commitments. By imposing a specific structure on the commitment key
(similar to [23], as we introduced in Sect. 2.2), the verification time is reduced
to logarithmic in relation to n.

The remaining issue is proving the form of these two committed vectors. pk
are public, so the commitment can be verified publicly. For [b]1, we develop a
binary proof in which the verification time is also logarithmic to n. It proves
the committed vector consists of elements which is either [0]1 or [1]1. Thus,
b ∈ {0, 1}n.
Anonymous Case. Now we consider the anonymous setting with a blind factor r:
̂pk = pkb · g̃r and e(g, ̂pk) = 〈([b]1, g), (pk, g̃r)〉. When we attempt to follow the
above method, some issues happen. The combiner needs to take additional work
on proving: (i) the last position of the binary vector is 1; (ii) the public keys are
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committed together with a random element g̃r and he knows r. The first task
requires another invocation of binary proof and it is unclear how to prove the
discrete logarithm of a committed group element without leaking r or g̃r.

By the bilinear property, we also have e(g, ̂pk) = 〈([b]1, gr), (pk, g̃)〉. Even
though the latter vector (pk, g̃) is publicly known, the situation remains chal-
lenging because the binary proof mechanism does not inherently support proving
the presence of a random value within the vector. Another observation is that
e(g, ̂pk) = 〈[b]1,pk〉 + r · eT . One may consider to extract r · eT and prove the
knowledge of r. But it would leak b and violate the anonymity.

To mitigate these issues, we commit b and r with different commitment keys
and generate the proofs for them separately. Afterward, by combining these
two commitments, we can ascertain the presence of both a binary vector and
a blind factor in designated positions. Then we can apply the inner pairing
product argument on these vectors and proves the well-formedness of the blinded
aggregated public key.

For k messages setting with k aggregated public keys, the aggregation tech-
nology on kn-length binary vector can also be applied as we outlined in the
strawman scheme.

In the next section, we introduce our inner pairing product argument and
binary proof with logarithmic communication cost and logarithmic verification
time. They can be rendered non-interactive by applying the Fiat-Shamir heuris-
tic [25]. In Sect. 4.3, we present our PAS signature scheme with the rate-once
policy in the anonymous reputation system.

4.2 Succinct Proofs with Logarithmic Verifier

Inner Pairing Product Argument. We consider an argument for inner pair-
ing product between two vectors vi ∈ G

n
i committed with structured AFGHO

commitments with generators (ck3−i, eH) ∈ G
n
i × GT for i ∈ {1, 2} where

eH = e(gH , g̃), gH ←$G1. In this section, we assume that the dimension n is
a power of 2. If necessary, it is straightforward to add padding to the inputs to
ensure this condition is met. Formally, we define a language:

(pp, P,C1, C2, [r]1, ck1, vk1,[s]2, ck2, vk2, eH) ∈ LIPP ⇔
([r]1, ck1, vk1) ∈ L1

Com ∧ ([s]2, ck2, vk2) ∈ L2
Com∧

∃v1 ∈ G
n
1 ,v2 ∈ G

n
2 , rC1 , rC2 , rP ∈ Zq :

C1 = 〈v1, ck2〉 + rC1 · eH ∧ C2 = 〈ck1,v2〉 + rC2 · eH∧
P = 〈v1,v2〉 + rP · eH

Common input: (pp, [r]1, [s]2, vk1, vk2, eH), P, C1, C2 ∈ GT

P input: (ck1, ck2), v1 ∈ G
n
1 ,v2 ∈ G

n
2 , rC1 , rC2 , rP ∈ Zq

Statement: (pp, P,C1, C2, [r]1, ck1, vk1, [s]2, ck2, vk2, eH) ∈ LIPP

P and V proceed the protocol ΠIPP as follows:
If n = 1:

C1 = e(v1, ck2) + rC1 · eH , C2 = e(ck1, v2) + rC2 · eH , P = e(v1, v2) + rP · eH
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- P samples s1 ←$G1, s2 ←$G2, rD1 , rD2 , rT1 , rT2 ←$Zq and computes:
D1 = e(s1, ck2) + rD1 · eH ,D2 = e(ck1, s2) + rD2 · eH

T1 = e(s1, v2) + e(v1, s2) + rT1 · eH , T2 = e(s1, s2) + rT2 · eH

- P sends D1,D2, T1, T2 to V
- V replies with c←$Z

∗
q

- P computes and sends:
u1 = v1 + c · s1, u2 = v2 + c · s2,
r1 = rC1 + c · rD1 , r2 = rC2 + c · rD2 , r3 = rP + c · rT1 + c2 · rT2

- V accepts if:
C1 + c · D1 = e(u1, ck2) + r1 · eH∧
C2 + c · D2 = e(ck1, u2) + r2 · eH∧
P + c · T1 + c2 · T2 = e(u1, u2) + r3 · eH

Else n > 1, the reduce procedure:
- P samples r1�, r2�, rP�, r1r, r2r, rPr ←$Zq and computes:
C1� ← 〈v1�, ck2r〉 + r1� · eH , C2� ← 〈ck1r,v2�〉 + r2� · eH ,
P� ← 〈v1r,v2�〉 + rP� · eH ,
C1r ← 〈v1r, ck2�〉 + r1r · eH , C2r ← 〈ck1�,v2r〉 + r2r · eH ,
Pr ← 〈v1�,v2r〉 + rPr · eH

- P sends C1�, C2�, P�, C1r, C2r, Pr

- V replies with c←$Z
∗
q

- P computes:
v′
1 ← v1�c + v1rc

−1 ∈ G
n′
1 , v′

2 ← v2�c
−1 + v2rc ∈ G

n′
2 ,

r′
C1

= rC1 + r1� · c2 + r1r · c−2, r′
C2

= rC2 + r2� · c−2 + r2r · c2,
r′
P = rP + rP� · c−2 + rPr · c2

ck′
1 = cck1� + c−1ck1r, ck′

2 = c−1ck2� + cck2r,
[r′]1 ← {ck′

1}1, [s′]2 ← {ck′
2}1 (picks the first elements of ck′

1, ck
′
2)

- P sends [r′]1, [s′]2 to V.
- V checks the following equations and aborts if any fails:

e([r′]1 − c[r]1, [1]2) = e(c−1[r]1, [xν ]2), e([1]1, [s′]2 − c−1[s]2) = e([yν ]1, c[s]2)

Update vk′
1 = [x′]2 ← ([xi]2)i∈[ν−1] and vk′

2 = [y′]1 ← ([yi]1)i∈[ν−1]

- Both compute
C ′

1 ← c2C1� + C1 + c−2C1r, C ′
2 ← c−2C2� + C2 + c2C2r,

P ′ = c−2P� + P + c2Pr,
- The reduced statement is (pp, P ′, C ′

1, C
′
2, [r

′]1, ck′
1, vk

′
1, [s

′]2, ck′
2, vk

′
2, gH ,

eH) ∈ LIPP with the new witnesses (v′
1,v

′
2, r

′
1, r

′
2, r

′
P ).

Theorem 1 The protocol presented is a Public Coin, HVSZK, interactive argu-
ment of knowledge for the relation LIPP with O(log n) round complexity, O(n)
prover complexity, and O(log n) communication and verification complexity
under the SXDH and DPair-ML assumptions.

The proof for Theorem 1 follows a similar structure to those found in [19,
23,30]. Due to page constraints, we refer readers to the full version for detailed
elaboration.
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Binary Proofs with Logarithmic Verifier. We consider an argument for a
binary vector b = (b1, . . . , bn) ∈ {0, 1}n with Hamming weight t. This binary
vector is equivalent to a vector v ∈ G

n
1 where each element is either [0]1 or [1]1,

and the number of [1]1 is precisely t. Formally, we define a language:

(C, [r]2, ck2, vk2, eH , t) ∈ LBin ⇔
([r]2, ck2, vk2) ∈ L1

Com∧
∃b ∈ {0, 1}n, rC ∈ Zq, s.t. :
C = 〈[b]1, ck2〉 + rC · eH ∧ 〈1n, b〉 = tj ,

P proves that 〈1n, b〉 = t∧ b ◦ b′ = 0n ∧ b′ = b−1n. Using random y, τ ∈ Z
∗
q

from V, these constraints can be re-written as:

〈b − τ · 1n,yn ◦ (b′ + τ · 1n + τ2 · 1n)〉 = τ2 · t + δ(y, τ)

where δ(y, τ) = (τ − τ2) · 〈1n,yn〉 − τ3〈1n,1n〉 ∈ Zq. Thus the binary proof can
be reduced to one inner pairing product argument. Concretely, P and V engage
in the following protocol ΠBin:

- On input b ∈ {0, 1}n, P computes:
b′ = b − 1n, [b]1 ∈ G

n
1 and [b′]2 ∈ G

n
2 , rB1 , rB2 ←$Zq,

commits to [b]1 and [b′]2:
C = B1 = 〈[b]1, ck2〉 + rB1 · eH , B2 = 〈ck1, [b′]2〉 + rB2 · eH ,
chooses blinding vectors and commits them:
u1,u2 ←$Z

n
q , rU1 , rU2 ←$Zq,

U1 = 〈[u1]1, ck2〉 + rU1 · eH , U2 = 〈ck1, [u2]2〉 + rU2 · eH ,
sends B1, B2, U1, U2 to V
- V sends challenges y, τ ←$Z

∗
q to P

- P computes ck′
1 ← ck1 ◦ y−n,

define the following polynomials:

l(X) = b − τ · 1n + u1 · X ∈ Z
n
q [X]

r(X) = yn ◦ (b′ + τ · 1n + u2 · X) + τ2 · 1n ∈ Z
n
q [X]

p(X) = 〈l(X), r(X)〉 = p0 + p1 · X + p2 · X2 ∈ Z
n
q [X]

Next, P needs to convince V that p0 = t · τ2 + δ(y, τ).
- P chooses φ1, φ2 ←$Z

∗
q and computes:

P1 = p1 · e(g, g̃) + φ1 · eH , P2 = p2 · e(g, g̃) + φ2 · eH

- P sends P1, P2 ∈ GT to V
- V sends x←$Z

∗
q to P

- P computes:
[l]1 = [l(x)]1 = [b − τ · 1n + u1 · x]1 ∈ G

n
1 ,

[r]2 = [r(x)]2 = [yn ◦ (b′ + τ · 1n + u2 · x) + τ2 · 1n]2 ∈ G
n
2

P = 〈[l]1, [r]2〉 ∈ GT , φx = φ2 · x2 + φ1 · x ∈ Zq

μ1 = rB1 + rU1 · x, μ2 = rB2 + rU2 · x ∈ Zq

P sends [l]1, [r]2, P, φx, μ1, μ2 to V
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V computes ck′
1 in the same way and computes:

Q1 = B1+x·U1−τ ·〈[1]1, ck2〉, Q2 = B2+x·U2+τ ·〈ck′
1, [y

n]2〉+τ2 ·〈ck′
1, [1

n]2〉
checks whether

P + φx · eH
?= (t · τ2 + δ(y, τ)) · e(g, g̃) + x · P1 + x2 · P2

Q1
?= 〈[l]1, ck2〉 + μ1 · eH , Q2

?= 〈ck′
1, [r]2〉 + μ2 · eH

Note that the communication and verification cost are linear to n. To reduce
them, P does not send [l]1, [r]2 directly, and V just computes vk′

1 ← vk1◦ȳ, where
ȳ = (1, y−1, · · · , y−2ν−1

), rather than ck′
1. To make sure V still can compute Q2,

P computes Y = 〈ck′
1, [y

n]2〉 = 〈ck1, [1n]2〉 and Γ = 〈ck′
1, [1

n]2〉.
P sends Γ to V and proves its correctness as follows:
Let Γν = Γ, ck′

1ν = ck′
1, for i = ν − 1 to 1:

P sends Mi = ck′12i

1i ∈ G1, where ck′
1i ∈ G

2i

1 is the left half of ck′
1(i+1);

V aborts if e(Mi, ([1]2 + vk′
1(i+1))) �= Γi+1,

where vk′
1(i+1) is the i + 1-th element of vk′

1,
otherwise let Γi = e(Mi, [1]2) and continue;

After ν − 1 steps without abort, V can be convinced that Γ is correct:
Γ = 〈ck′

1, [1
n]2〉 and its computation time is O(ν) = O(log n).

Thus, V can compute Q2 = B2 + x · U2 + τ · Y + τ2 · Γ in O(log n) time.
Thereafter, P runs the inner pairing product argument protocol ΠIPP with

V: LIPP(pp, P,Q1, Q2, [r]1, ck′
1, vk

′
1, [s]2, ck2, vk2)

Theorem 2 The binary proof has perfect completeness, HVSZK and computa-
tional witness extended emulation under the SXDH and DPair-ML assumptions.

Proof The binary proof is a special case of the aggregated binary proof in The-
orem 3 with k = 1. It can be regarded as a corollary of Theorem 3.

Aggregated Binary Proofs. The prover is similar to the prover for a binary
proof with k·n bits except the following modifications. Without loss of generality,
we assume that k · n is still a power of 2. It proves that the committed values
are k · n bits and they are the concatenation of k blocks. The number of 1’s
in the j-th block is tj : b = (b1|| · · · ||bk) for all j ∈ [k] where bj ∈ {0, 1}n and
〈1n, bj〉 = tj . Formally, we define a language:

(C, [r]2, ck2, vk2, eH , {tj}j∈[k]) ∈ LaBin ⇔
([r]2, ck2, vk2) ∈ L1

Com∧
∃b ∈ {0, 1}n, rC ∈ Zq, s.t. :
C = 〈[b]1, ck2〉 + rC · eH ∧ 〈1n, bj〉 = tj ,∀j ∈ [k].

We convert b to [b]1 ∈ G
kn
1 , and commit it into B = 〈[b]1, ck2〉+rB ·eH where

rB ←$Zq and all tj are public. The protocol in the former section is modified as
follows:

l(X) = b − τ · 1k·n + u1 · X ∈ Z
k·n
q [X]
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r(X) = yk·n ◦ (b′ +τ ·1k·n +u2 ·X)+
k

∑

j=1

τ j+1 · (0(j−1)·n||1n||0(k−j)·n) ∈ Z
k·n
q [X]

δ(y, τ) = (τ − τ2) · 〈1k·n,yk·n〉 − ∑k
j=1 τ j+2 · 〈1n,1n〉

The verification check needs to include each tj :

P + φx · eH = ((
k

∑

j=1

(tj · τ j+1) + δ(y, τ)) · e(g, g̃) + x · P1 + x2 · P2

Q2 needs to be updated to

Q2 = B2 + x · U2 + τ · Y +
k

∑

j=1

τ (j+1) · 〈ck′
1j , [1

n]2〉

where ck′
1j consists of the ((j − 1) · n + 1)-th element to the (j · n)-th element of

ck′
1.

Theorem 3 The aggregated binary proof has perfect completeness, HVSZK
and computational witness extended emulation under the SXDH and DPair-ML
assumptions.

The proof is analogous to that of the Range proof in [19], Appendix C. Due
to page limitations, we defer the formal proof to the full version.

4.3 Efficient Construction from BLS Signatures

• Setup(1λ) In this phase, the system parameters are generated, especially, the
common reference string. On input the security parameter 1λ, it produces
the public parameters for the BLS scheme ppbls = {G1,G2,GT , e(·, ·),H1(·)}.
Here G1,G2 are asymmetric groups, e : G1 × G2 → GT is the Type III
bilinear pairing operation, and H1 : {0, 1}∗ → G1 is the hash function. H2 :
{0, 1}∗ → Zq is another hash function. Let k be the number of potential
messages, n be the maximum number of users. W.l.o.g., we assume they are
power of 2. The setup algorithm additionally outputs the structured common
reference string crs = (ppcom, [r]1, ck1, vk1, [s]2, ck2, vk2) as we described in
Sect. 2.2. Note that ck1 = (ck11|| · · · ||ckj

1|| · · · ||ckk
1 || · · · ||ck2k

1 ) ∈ G
2kn
1 , ckj

1

denotes the ((j − 1)n + 1)-th element to the jn-th element of ck1. ck2 =
(ck12|| · · · ||ckk

2 || · · · ||ck2k
2 ) ∈ G

2kn
2 . Especially, let ck′

1 = (ck11|| · · · ||ckk
1) ∈ G

kn
1 ,

ck′
2 = (ck12|| · · · ||ckk

2) ∈ G
kn
2 and we use ck∗

1, ck
∗
2 to denote the first element of

ckk+1
1 , ckk+1

2 respectively. Output pp = (ppbls, crs,H2).
Each user generates his secret key ski ←$Zq and public key pki = [ski]2 ∈ G2

and broadcasts the public key with proof of knowledge of secret key.
The combiner or any other parties collects the public keys pk = (pk1, ..., pkn)
and publishes the commitments of them as K1 = 〈ck11,pk〉, ...,Kk = 〈ckk

1 ,pk〉.
It also publish the aggregation key ak = (pp,pk) and the verification key
vk = (ppcom, ppbls, [r]1, vk1, [s]2, vk2,K1, ...,Kk)
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• ParSign(mj , ski) For a message mj chosen from the message space M, the
user ui signs on it using his secret key ski and sends (pki,mj , σij) to the
combiner where σij = H(mj)ski .

• ParVrfy(pki,mj , σij) On receiving (pki,mj , σij), the combiner verifies it.
Output 1 if e(H(mj), pki) = e(σij , g̃), otherwise output 0.

• Combine(ak, {pki,mj , σij}j∈[k]) When collecting a set of {pki,mj , σi}, the
combiner verifies them one by one. If all of them are valid, the combiner does
as follows:

– Let Sj ⊆ [n] be the indices of signers who have signed on mj , set bj =
(b1j , ..., bnj) ∈ {0, 1}n, such that bij = 1 if i ∈ Sj , otherwise, bij = 0 and
tj =

∑n
i=1 bij ;

– Let b = (b1|| · · · ||bk), compute the commitment to [b]1 ∈ G
kn
1 :

B = 〈[b]1, ck′
2〉 + rB · eH where rB ←$Zq and generate the binary proof

πaBin from ΠaBin w.r.t. the language LaBin(C, [r]2, ck′
2, vk

′
2, eH , {tj}j∈[k]);

– For j = 1 to k, mj ∈ M , choose rj ←$Zq, compute sub-aggregated public
keys ̂pkj = Πi∈Sj

pki · g̃rj = Πn
i=1pk

bij

i · g̃rj = pkbj · g̃rj and sub-aggregated
signatures σ̂j = Πi∈Sj

σi · H(mj)rj ;

– For the k sub-aggregated public keys ̂pkj , compute ̂PK = Πk
j=1

̂pk
z(j−1)

j =
pkb1 · pkzb2 · · ·pkzk−1bk · g̃r∗

= (pk||pkz|| · · · ||pkzk−1
)(b1||···||bk) · g̃r∗

,
where z = H2({ ̂pkj , σ̂j}j∈[k], B, πaBin) and r∗ =

∑k
j=1 rj · zj−1.

– Compute X = r∗ · e(g, ck∗
2)+ rX · eH and generate πpok (via the Schnorr’s

protocol [36]) to prove the knowledge of r∗ and rX ;
– Compute Q = B +X = 〈[b]1, ck′

2〉+ e(gr∗
, ck∗

2)+ (rB + rX) · eH , it means
Q = 〈([b]1, gr∗

), (ck′
2, ck

∗
2)〉 + (rB + rX) · eH ∈ GT , so we know Q is the

commitment of a binary vector and a randomness;
– Compute K = 〈(ck′

1, ck
∗
1), (pk

zk

, g̃)〉, E = 〈[b]1,pkzk〉 + r∗ · e(g, g̃) ∈ GT ,
where pkzk

= (pk||pkz||...||pkzk−1
) ∈ G

kn
2 ;

– Based on E,Q,K, generates πIPP from ΠIPP w.r.t. the language LIPP(E,Q,
K, ck1, vk1, ck2, vk2, eH) to prove that E is the inner pairing product of
vectors v1,v2 which are committed in Q and K: E = 〈v1,v2〉 + rE · eH ,
where v1 = (gb1 , ..., gbkn , gr∗

, [0]1, ..., [0]1) ∈ G
2kn
1 and bi ∈ {0, 1}, r∗ ∈ Zq

which has been proved via πaBin and πpok, v2 = (pkzk

, g̃, [0]2, ..., [0]2) ∈
G

2kn
2 which is public.4

– Generate the proof πdisj to prove all signer sets are disjoint: Sj0 ∩ Sj1 =
∅,∀j0, j1 ∈ [k], j0 �= j1. It requires the combiner additionally prove that
̂PK

′
=

∏k
j=1

̂pkj can be expressed in the form of pkb′ · g̃r′
using the same

method as above, where r′ =
∑k

j=1 rj , b′ =
∑k

j=1 bj is also a binary
vector with

∑

j∈[k] tj ones.

– Output the signature Σ ← ({ ̂pkj , σ̂j}j∈[k], B, z,X, πaBin, πpok, πIPP, πdisj)
with the thresholds T = {tj}j∈[k] as Δ.

4 We pad ‘zeros’ in v1, v2 since the dimension of commitment keys for LIPP is 2kn,
which is a power of 2.



Predicate Aggregate Signatures and Applications 303

• Verify(vk,M, T,Σ) Parse Σ = ({ ̂pkj , σ̂j}j∈[k], B, z,X, πaBin, πpok, πIPP, πdisj),
T = {tj}j∈[k], compute:
z′ = H2({ ̂pkj , σ̂j}j∈[k], B, πaBin), σ̂ =

∏

j∈[k] σ̂j , Q = B + X,

K = K1 + · · · + Kz′j−1

j + · · · + Kz′k−1

k + e(ck∗
1, g̃),

̂PK =
∏k

j=1
̂pk

z′(j−1)

j , E = e(g, ̂PK), ̂PK
′
=

∏k
j=1

̂pkj , t̂ =
∑

j∈[k] tj .
Accept if all the following conditions are satisfied:

– z′ = z;
– Vrfy({ ̂pkj ,mj}j∈[k], σ̂) = 1;
– πaBin is valid w.r.t. B, T ;
– πpok is valid w.r.t. X;
– πIPP is valid w.r.t. Q,K,E;
– πdisj are valid w.r.t. ̂PK

′
, t̂.

General Predicate Satisfiability Proofs. In our specific setting, where we
aim to prove the predicate regarding the relations among signer sets, we focus
on the committed binary vector. It serves as the representation of signers for
different messages and plays a crucial role in our proof construction.

Recall that Daza et al. [23] proves that the committed vectors satisfy some
circuits. By following the protocol of zero-knowledge SNARK for circuit satisfi-
ability in [23] but with AFGHO commitment (which is also homomorphic same
as the Pedersen commitment), we can obtain a circuit satisfiability proof that
is compatible with our previous inner pairing product and binary proofs. Both
communication cost and verification complexity are logarithmic to the size of
the circuit.

5 Analysis

5.1 Performance Analysis

We first analyze the performance related to the inner pairing product and binary
proofs. The inner pairing product and binary proof protocols require ν = log(k·n)
rounds, where each round involves communication and computations. In each
round, the size of the witness is halved. It leads to a communication complexity
of O(ν) since the communication cost is constant in each round. The prover’s
computation complexity in round i is O(2ν−i+1). As a result, the overall prover
complexity is O(2ν) since ν rounds are performed. On the other hand, the veri-
fier’s computation cost remains constant at O(1) since it only needs to perform
a fixed number of operations in each round. Consequently, the verifier’s overall
complexity is O(ν). For the predicate satisfaction proof with generic arithmetic
circuit, the communication cost and verification complexity are logarithmic to
the size of the circuit, which is O(log |C|). The prover’s computation complexity
is O(|C|).

In the Combine phase, the combiner needs to verify the partial signatures,
generate the sub-aggregated public keys and sub-aggregated signatures and
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the computation cost is O(n). The final signature contains additional aggre-
gated public keys and signatures and thresholds w.r.t. each message. It leads to
O(k) communication cost. On the final signature, the verifier checks the sub-
aggregated signatures with the respective message and sub-aggregated public
key. It involves the O(k) computation complexity. Then it verifies the correct-
ness of these sub-aggregated public keys by checking these proofs.

In summary, the communication cost is O(k + ν + log |C|) = O(k + log k +
log n + log |C|), the prover complexity is O(2ν + |C|) = O(k · n + |C|), and the
verifier complexity is O(ν + log |C|) = O(log k + log n + log |C|). For the special
case of rate-once policy, the communication cost is O(k+log k+log n), the prover
complexity is O(k · n), and the verifier complexity is O(k + log k + log n).

5.2 Security Analysis

Theorem 4 (Anonymity) The predicate aggregate signature is anonymous in
the random oracle model under the SXDH assumption.

Proof. Based on the rate-once policy in the anonymous reputation system, the
predicate has been explained in Eq. (1) and the description Δ is defined as
Δ = T = {tj}j∈[k]. In the anonymous experiment, Δ0 = T0,Δ1 = T1 and
it is required that T0 = T1 for the challenge sets S0, S1. Given the signature
Σ = ({ ̂pkj , σ̂j}j∈[k], B, z,X, πaBin, πpok, πIPP, πdisj), and thresholds T = {tj}j∈[k].
Note that T,K leak nothing since they are the same in both challenges with
identity sets S0, S1. We design the hybrid games as follows:

– Greal : This game is the same as the experiment, challenger chooses b ←$ {0, 1}
and generates the signature Σb honestly under the identities in Sb.

– G1 : This game is similar with G0 except that the proofs πaBin, πpok, πIPP, πdisj

are simulated without witness.
– G2 : This game is similar with G1 except that the sub-aggregated public keys

and signatures are generated randomly without using b as follows: for j ∈ [k],
choose uj ←$Zq and set ̂pk

′
j = g̃uj ∈ G2 and σ̂′

j = H(mj)uj ∈ G1 such that

e(H(mj), ̂pk
′
j) = e(σ̂′

j , g̃).
– G3: This game is similar with G2 except that B,X are also chosen randomly

independently: B′,X ′ ←$GT . Note that the proofs πaBin, πpok, πIPP, πdisj are
simulated without using witnesses. They can still be verified.

Compare G1 with Greal, the only difference is that these proofs are simulated.
Since these proofs are zero-knowledge under the SXDH assumptions in the ran-
dom oracle model, the probability of distinguishing G1 from Greal is negligible.
We have that |Pr[Greal(A, λ) = 1] − Pr[G1(A, λ) = 1]| ≤ negl(λ).

Compare G2 with G1, in G1, ̂pkj = Πi∈Sb
j
pki · g̃rj , σ̂j = Πi∈Sbσi ·

H(mj)rj where rj ←$Zq, so they are uniformly random and each pair satis-
fies e(H(mj), ̂pkj) = e(σ̂j , g̃). In G1, ̂pk

′
j and σ̂′

j are also random elements

in G1,G2 respectively, and satisfy the same kinds of relation. ̂PK
′

is gener-
ated from these random ̂pk

′
j and z, so is E′. Thus ({ ̂pkj , σ̂j}j∈[k], z, ̂pk, E) and
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({ ̂pk
′
j , σ̂

′
j}j∈[k], z

′, ̂PK
′
, E′) have the same distribution. The probability that they

can be distinguished is 0. We have that |Pr[G1(A, λ) = 1]−Pr[G2(A, λ) = 1]| = 0.
Compare G3 with G2, in G2, B is the structured AFGHO commitment of

[b]1, X is the Pedersen commitment of r∗. Since these commitments are perfect
hiding, they are indistinguishable from the random B′,X ′ in G3. We have that
|Pr[G2(A, λ) = 1] − Pr[G3(A, λ) = 1]| = 0.

In G3, A’s view is independent of b. Thus, A just outputs a random guess b̂
in G3, so its advantage is 0: Pr[G3(A, λ) = 1] − 1/2 = 0. In summary, we have

|Pr[Expanony(A, λ) = 1] − 1/2| = |Pr[Greal(A, λ) = 1] − 1/2|
≤|Pr[Greal(A, λ) = 1] − Pr[G1(A, λ) = 1]| + |Pr[G1(A, λ) = 1] − Pr[G2(A, λ) = 1]|

+ |Pr[G2(A, λ) = 1] − Pr[G3(A, λ) = 1]| + |Pr[G3(A, λ) = 1] − 1/2| ≤ negl(λ)

Theorem 5 (Unforgeability) The predicate aggregate signature is unforgeable
in the random oracle model under the co-CDH, SXDH and DPair-ML assump-
tions.

Proof. First of all, we assume that the proof of possession has been done to
prove the knowledge of secret key for each public key. Based on the rate-once
policy in the anonymous reputation system, the predicate has been explained as
in Eq. (1). So in the unforgeability experiment, the adversary A wins if for the
extracted identities sets S1, ..., Sk, at least one of the following happens:

1. ∃ ij ∈ Sj , such that A has never queried the corrupt oracle on pkij
or sign

oracle on (pkij
,mj);

2. ∃ j ∈ [k], s.t. tj �= |Sj |;
3. ∃ ij ∈ Sj and it appears more than once in Sj ;
4. ∃ Si and Sj which overlap: Si ∩ Sj �= ∅.

We reduce the security of our scheme to the security of the underlying BLS
signature which is unforgeable under co-CDH assumption, and non-interactive
ZKAoK which is sound and knowledge sound under SXDH and DPair-ML
assumptions. We elaborate it case by case.

Extract the Identities and Randomness : A outputs a non-trivial PAS forgery
Σ = ({ ̂pkj , σ̂j}j∈[k], B, z,X, πaBin, πpok, πIPP, πdisj) on message set M = {mj}k

j=1

with threshold T = {tj}k
j=1. Due to the witness extended emulation of ΠaBin,ΠIPP

and the knowledge soundness of Πpok, there exists an extractor E who can extract
the signer identities bj , rj such that ̂pkj = pkbj · g̃rj as follows.

E can run the extractor χaBin for πaBin to extract the committed elements
[b]1 ∈ G

kn
1 and randomness rB ∈ Zq s.t. B = 〈[b]1, ck2〉 + rB · eH and b ∈

{0, 1}kn. E can rewind A on different z. For each z, E runs the extractor χpok

for πpok to extract the committed element r∗ ∈ Zq and randomness rX ∈ Zq

s.t. X = r∗ · e(g, ck∗
2) + rX · eH and runs the extractor χIPP for πIPP to extract

the committed elements v1 ∈ G
2kn
1 ,v2 ∈ G

2kn
2 and randomness rQ, rK , rE ∈ Zq
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s.t. E = 〈v1,v2〉 + rE · eH , Q = 〈v1, (ck2, ck∗
2)〉 + rQ · eH , K = 〈(ck1, ck∗

1),v2〉 +
rK · eH . We know that v1 = ([b]1, [r∗]1, [0]1, ..., [0]1), v2 = (pkzk

, g̃, [0]2, ..., [0]2).
Otherwise, it breaks the DPair-ML assumption. So E = 〈v1,v2〉 + rE · eH =

e(g, ̂G)+ e(gH , g̃rE ), where ̂G = pkzkb · g̃r∗
. We also have ̂PK =

∏k
j=1

̂pk
z(j−1)

j ∈
G2 s.t. E = e(g, ̂PK). It means that ̂PK = ̂G and rE = 0, otherwise, it breaks the
DPair assumption by finding a non-trivial pair (N1, N2) = ( ̂G/̂PK, g̃re) ∈ G

2
2 s.t.

e(g,N1)+e(gH , N2) = [0]T . Thus ̂PK can be expressed in the form of pkzkb · g̃r∗
.

Repeating this for k different challenges z with the randomness r∗, we can
compute rj for j ∈ [k] s.t. r∗ =

∑k
j=1 rj · zj−1 for each challenge and each sub-

aggregated public key ̂pkj is in the form of pkbj · g̃rj by Schwartz-Zippel lemma,
where bj is the j-th block in the extracted b.
(1) Suppose that P1=Pr[A wins and violates condition 1] is non-negligible. We
prove that if A wins, we can use it in a black-box manner to construct an attacker
B to break the unforgeability of the underlying BLS signature. B receives the
BLS parameter ppbls and the target BLS public key pk∗. It can also query the
BLS signing oracle Signbls(·) on pk∗ and any message. B can emulate the exper-
iment for A as follows.

Setup: B generates crs and sets pp = (ppbls, crs). B chooses an index î ←$ [n] and
sets pkî = pk∗. For other i ∈ [n], i �= î, it generates the secret keys ski ←$Zq and
sets public keys pki = [ski]2 ∈ G2. B sends pp and all public keys to A.

Emulate Corrupt and Sign oracles: For corruption oracle corrupt(·): if A cor-
rupts pkî, B aborts. Otherwise, for other identity corruption, B responds with
the secret key ski. Note that A is not allowed to corrupt all public keys.

For signing oracle sign(·, ·): if A queries on (pkî,m), B forwards m to its
Signbls oracle and replies A with the signature it received. Otherwise, for other
signer identities, B generates the signature on the message using secret key ski.

Breaking BLS Unforgeability : A outputs a non-trivial PAS forgery Σ on message
set M = {mj}k

j=1 with threshold T = {tj}k
j=1. By the knowledge soundness,

B can works like E as above to extract the signer identities bj , rj such that
̂pkj = pkbj · g̃rj . Based on each bj , we obtain the identity subset Sj = {i|bji =
1, bji ∈ bj} for j = 1 to k and S = ∪k

j=1Sj . Note that the non-triviality of the
forgery implies that S includes at least one honest signer, who A did not corrupt.
Otherwise, it proceeds as follows. B aborts if the target identity î is not included
in S or î ∈ Sj w.r.t. a message mj but A has queried sign oracle on (pkî,mj).
Otherwise, B can locate the identity subset Sĵ w.r.t. the message mĵ in which

the target identity î ∈ Sĵ and ̂pkĵ = pkb ĵ · g̃rĵ . Given σ̂j , the randomness rj and
all other identities ij ∈ Sĵ , ij �= î, B can computes their signatures σij

on the
message mĵ and gets σi∗

j
= σ̂/(

∏

i∈S∗
j \{i∗

j } σi ·H(mĵ)
rj ) which is a valid signature

of the target identity on mĵ that A has never queried. So it is a successful BLS
forgery and B wins.
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Success Probability : Let εA be the probability with which A outputs a valid
forgery. It is easy to see that B breaks the unforgeability of BLS signature if it
does not abort. We compute the lower bound of the probability with which B
does not abort. Firstly, since î is chosen uniformly at random, A does not corrupt
pkî with probability at least 1/n. Let δ be the probability with which B extracts
the witness successfully. Then the probability that î ∈ I is at least 1/n. Let qH

be the number of queries on the random oracle, qS be the number of queries on
the signing oracle, the probability that A has never queried on (pkî,mĵ) is at
least (1 − 1

n·qH
) · (1 − 1

n·qH−1 ) · · · (1 − 1
n·qH−qS

) = n·qH−qS−1
n·qH

. Finally, we obtain
the success probability of B is εB ≥ εA · n·qH−qS−1

n3·qH
. Due to the unforgeability of

the BLS signature, εB is negligible, so εA is also negligible.

(2) Suppose that P2=Pr[A wins and violates condition 2] is non-negligible. It
implies that A generates a valid binary proof for tj with an incorrect witness
whose Hamming weight is not tj . It contradicts with the statement of πaBin

which breaks the soundness of the underlying ZKAoK.
(3) Suppose that P3=Pr[A wins and violates condition 3] is non-negligible. It

implies that A generates a valid binary proof with an incorrect witness
which contains a number larger than 1. It also contradicts to the statement
of πaBin, so the soundness is broken.

(4) Suppose that P4=Pr[A wins and violates condition 4] is non-negligible. It
implies that A generates a valid binary proof for the sum of commitments
with an incorrect witness which contains a number larger than 1. It contra-
dicts to the statement of πdisj.

In summary, Pr[Expunforge(A, λ) = 1] = P1 + P2 + P3 + P4 ≤ negl(λ).

6 Applications and Extensions

Our PAS can be used to construct many other types of signatures by invok-
ing the Combine algorithm as a blackbox to compress the final signature. Let-
ting dynamic threshold be the specific description and predicate function only
requires the correctness of the threshold, our efficient scheme for single mes-
sage also improves their state-of-the-art works in terms of trust model (relies on
trusted party or non-standard assumptions) and efficiency as shown in Table 2.
We explain them as follows.

(1) Our PAS implies threshold signatures with transparent setup5 Each signer
generates their public key and secret key by themselves. Some of them sign
on the same message and send to the combiner. Taking the valid partial

5 Our dynamic threshold aggregate signature with transparent setup also offers a solu-
tion for multiverse threshold signature (MTS) [8]. For any subset of users interested
in forming a universe with a specific threshold, the aggregation and verification keys
can be computed from their public keys. Then run the Combine algorithm to get a
PAS signature with the number of signers.
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signatures as input, the combiner runs the Combine algorithm to generate
the final PAS signature with a threshold t. The verifier can be convinced
that there are t different signers sign on this message.

(2) We get a multi-signature by letting everyone sign on the same message,
aggregation is done via the Combine algorithm and the predicate only
requires that the threshold number is correct.

(3) We get an aggregate signature which hides the signer identities from PAS,
where aggregation is done via Combine algorithm and the predicate function
is specified according to the concrete rule.

(4) We get a graded signature by letting everyone sign on the same mes-
sage, aggregation is done via the Combine algorithm and the predicate only
requires that the number of signers is correct. It ensures each of them can
sign only once without leaking their identities.

(5) We get a threshold ring signature with prefixed threshold t by setting there is
a single message and the predicate function always outputs 1 and modifying
the verification algorithm a bit. Via the Combine algorithm, a PAS signature
is produced. Now besides verifying whether it is valid, the verifier also checks
whether the number of signers in PAS is larger than t. If yes, it is a valid
threshold ring signature, otherwise not. When t is 1, it is a ring signature.

Anonymous Reputation System. An anonymous reputation system enables
users to rate products they have purchased. The primary security guarantee
offered by such systems is privacy, allowing users to write reviews anonymously
for any purchased products. However, to prevent abuse or misuse, a rate-once
policy is implemented. This means that if a user attempts to write multiple
reviews for the same product, their reviews will become publicly traceable or
linked. It requires the final signature is linear to the number of signer and the
verification time is quadratic. Recent works on the anonymous reputation sys-
tems [11,12,24] achieve full anonymity at the cost of linear communication cost
and quadratic verification complexity.

We consider a relaxed but reasonable setting where a combiner is allowed to
know the signers’ identities. It can be the shopping website who knows the user
accounts when they login. But it cannot manipulate the final result even colludes
with some of users. It cannot violate the rate-once policy and cannot generate
review on behalf of other honest users. Malicious users and combiner cannot
rate more than once or forge any other honest user’s signature. The combiner
produces a PAS in which the thresholds disclose the reputation states, and both
the size and the verification time are logarithmic in the number of all users.
Onchain Voting System. In more extensive scenarios, there might exist more
intricate voting policies that can be defined as conditions based on the iden-
tities of the voters. For instance, in blockchain governance, such as Decentral-
ized Autonomous Organizations (DAOs), determinations might be reached by
the entire community, provided their accounts possess a significant number of
tokens. Certain policies necessitate that voters possess a particular property [3],
and it can be denoted by their identity index. For instance, within an orga-
nization, senior members are associated with indices smaller than a threshold.
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The combiner’s task is to demonstrate that among the signers, there is at least
one whose index is lower than a specified threshold. In our design, relying on
the binary vector, the combiner only needs to establish the existence of a single
position in the vector where the value is 1 and the position is smaller than a
specified threshold.

6.1 Extensions

Dynamic Join. New users can seamlessly join the system without causing any
disruptions to existing users. The process of joining is transparent and does not
have any adverse effects on other users. A new user broadcasts his public key
with PoP for registration. On verifying its validness, the combiner updates its
aggregation key by adding this public key. Other honest verifier can also update
the verification key by including the new public key in the commitment of all
public keys. These updates are publicly verifiable and incur only a constant cost.
Weight Aggregation. In the PAS scheme, each user can associate themselves with
an additional weight. This weight represents their significance or influence within
the system. The weight vector w is public where each weight value wi binds with
a public key pki. In the Combine algorithm, the combiner additionally computes
the sum of weights W = 〈b,w〉 as the description Δ. As a result, when the PAS
generates a signature, it discloses the total weight of the signers involved. So our
PAS also supports the weight aggregation like [20,22,33].
Accountability. Our PAS focuses on the privacy of signers, and it can be extended
to support the accountability by adding an extra identities encryption layer.
This approach bears similarity to the method employed in TAPS [15]. In this
extended system, the description pertains to the minimum threshold required for
the number of signers. The combiner also encrypts both the count of signers and
their identities. The predicate function ensures that they are correctly encrypted
under the specified public key, and that the size of the signer set surpasses the
minimum threshold.

6.2 Open Problems

More Efficient Scheme. Although our construction achieves logarithmic verifi-
cation time, the verifier needs to do the pairing operation in each round which
is expensive. Is it possible to design a more efficient PAS scheme in which the
verifier only needs to preform constant number of pairing operations and loga-
rithmic group operations? One possible direction is studying the technology in
Dory [30]. We leave it to the future work.
Multiple Layers Combination. In the current setting, our primary objectives
include ensuring signer anonymity, improving efficiency, and accommodating
diverse predicate requirements for the signers of different messages, which are
orthogonal to aggregate multiple (already aggregated) signatures and proofs on
different messages. Considering the “more layers combination” feature together
with our goals presents challenges, and at this stage, it is unclear how to achieve
it, which would be a very interesting open question for future study.
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Abstract. This paper introduces Bicameral and Auditably Private Sig-
natures (BAPS) – a new privacy-preserving signature system with several
novel features. In a BAPS system, given a certified attribute x and a cer-
tified policy P , a signer can issue a publicly verifiable signature Σ on a
message m as long as (m,x) satisfies P . A noteworthy characteristic of
BAPS is that both attribute x and policy P are kept hidden from the ver-
ifier, yet the latter is convinced that these objects were certified by an
attribute-issuing authority and a policy-issuing authority, respectively.
By considering bicameral certification authorities and requiring privacy
for both attributes and policies, BAPS generalizes the spirit of exist-
ing advanced signature primitives with fine-grained controls on sign-
ing capabilities (e.g., attribute-based signatures, predicate signatures,
policy-based signatures). Furthermore, BAPS provides an appealing fea-
ture named auditable privacy, allowing the signer of Σ to verifiably dis-
close various pieces of partial information about P and x when asked
by auditor(s)/court(s) at later times. Auditable privacy is intrinsically
different from and can be complementary to the notion of accountable
privacy traditionally incorporated in traceable anonymous systems such
as group signatures. Equipped with these distinguished features, BAPS
can potentially address interesting application scenarios for which exist-
ing primitives do not offer a direct solution.

We provide rigorous security definitions for BAPS, following a “sim-
ext” approach. We then demonstrate a generic construction based on
commonly used cryptographic building blocks, which employs a sign-
then-commit-then-prove design. Finally, we present a concrete instantia-
tion of BAPS, that is proven secure in the random oracle model under lat-
tice assumptions. The scheme can handle arbitrary policies represented
by polynomial-size Boolean circuits and can address quadratic disclos-
ing functions. In the construction process, we develop a new technical
building block that could be of independent interest: a zero-knowledge
argument system allowing to prove the satisfiability of a certified-and-
hidden Boolean circuit on certified-and-committed inputs.
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1 Introduction

A prominent line of privacy-preserving cryptography research is dedicated to the
development of advanced multi-user signature systems with fine-grained controls
over the signability of messages. Those controls are often based on authorities’
policies, and/or users’ attributes. Examples of these advanced systems include
attribute-based signatures (ABS) [37], policy-based signatures (PBS) [2], func-
tional signatures (FS) [8], predicate signatures (PS) [1] and multimodal private
signatures (MPS) [39]. In ABS, a user with a certified-and-private attribute x
can sign any message with respect to a public policy P if P (x) = 1. PS offers a
setting dual to ABS, where policies are certified-and-private while attributes are
public. In PBS and FS: (i) policies/functions are also certified-and-private; (ii)
one can sign messages satisfying some policy or in the range of some function;
yet (iii) the notion of attributes is not considered. MPS utilizes both policies
and attributes, but policies have to be public. All these systems share a com-
mon feature: each of them employs a single certification authority: either an
attribute-issuing authority as in ABS/MPS, or a policy-issuing authority as in
PBS/FS/PS. Furthermore, the question of simultaneously protecting the privacy
of both policies and attributes was not considered.

Another active body of work in privacy-preserving signatures focuses on devel-
oping methods for realizing signers’ accountability. Let us name that desirable
feature accountable privacy. Among the earliest and most well-known accountably
private systems are group signatures [11], in which a designated authority can
trace the signer of any valid signature. Subsequent works have refined the tracing
function in various directions: “who can trace” [26,43], “whether to trace” [27,45],
“when to trace” [9,19], and more recently, “what can be traced” [32,39]. Never-
theless, all these systems share a common characteristic: the signer has no control
over which private information can be learned by others (either the public or the
tracing authorities) after outputting signatures.

Motivations. This work aims to address the limitations of the advanced signa-
ture primitives mentioned above. Let us start with several motivating examples.

Consider a conference that implements a double-blind reviewing process and
that allows authors to declare Conflicts of Interest (CoI) with reviewers accord-
ing to some certified policies. For instance, the IACR has different policies to
determine CoI1, that can be used for IACR conferences. While such a CoI decla-
ration system seems to work well over the years, there has not been implemented
any privacy-preserving mechanism:

(i) For preventing false declarations by dishonest authors (who could attempt
to avoid having their papers reviewed by some non-conflicting reviewers);

1 https://www.iacr.org/docs/conflicts.pdf.

https://www.iacr.org/docs/conflicts.pdf
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(ii) For the author to provide more information on a declared CoI, should the
need arise at a later point while retaining the author’s privacy.

Let us attempt to address the issue (i) by employing ABS/MPS for CoI dec-
larations. Then, while authors’ attributes (e.g., lists of advisors, advisees, recent
affiliations, recent co-authors, and family members) are protected, the underlying
policies are not. It could seriously violate authors’ privacy, e.g., the disclosure
of an advisor-advisee relationship could likely reveal side-channel information
about the author. On the other hand, if one employs PBS/FS/PS, then the
policies can be kept private, but the attributes are not protected.

Let us also try to address the issue (ii) by employing a group-signature-like
system. In this case, the traditional method is to force the author to encrypt the
relevant attributes, so that an authority can recover via decryption. The problem
here is the encrypted attributes can already be learned by the authority at the
submission time, regardless of whether there will be a need to justify the declared
CoIs during the reviewing process.

We can observe that existing systems cannot offer satisfactory solutions
because they do not simultaneously protect policies and attributes, and the
notion of accountable privacy typically requires some escrow of private informa-
tion. This inspires us to investigate a new privacy-preserving signature primitive
that overcomes these limitations. How about the following arrangements?

Assume that the policies are publicly certified by some authority (e.g., the
IACR). Assume further that authors have their attributes certified by some other
authority. Then, when authors submit a paper, they can check whether the paper
has a CoI with a given reviewer and generate a publicly verifiable signature if
that is the case. Here, if the signature does not reveal any information about the
underlying policy and attribute, then we have a solution for issue (i).

Next, suppose that the PC Chair wants to know some information about the
circumstances of a given CoI. Depending on the context, the required information
could be about which policy was activated, the list of advisees, or a recent
affiliation of the author. Here, a mechanism allowing the disclosure of the exact
piece of information requested by the Chair would help resolve the issue (ii).

Let us consider a further example. Suppose an author would like to apply
for a visa so that they can travel to the conference. In the application process,
the author submits their certified attributes (which could include financial data,
criminal records, health examinations, travel records, etc.) and the associated
certificates to the visa department. Suppose that the latter has several confi-
dential policies for visa acceptance/rejection, which are certified by some higher
authority. Now, assume that there is some concern about the transparency of
the decision-making process. In this situation, the privacy-preserving system
we have just discussed can allow the visa department to verifiably disclose to
a judge certain partial information about the underlying policy and attribute,
e.g., whether the policy considers the applicant’s race, or the criminal records of
the applicant while retaining the privacy of non-disclosed information.

More generally, many decisions regarding crucial issues, such as welfare and
financial aid, employment offers, scholarship/citizenship grants, and tax audits,
are taken based on organizational policies that should not be known by outsiders.
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In these scenarios, the policies could be certified by some authority A, while the
users’ attributes could be certified by some other authority B. To show that a
correct decision has been made [28], the decision-makers would need a mechanism
allowing them to sign some message m and demonstrate that a private attribute
x certified by B does satisfy a private policy P certified by A. Furthermore, for
auditability purposes, it would be highly desirable if the system also allows the
decision-makers to verifiably disclose the precise pieces of information about x
and P requested by the auditors.

Our Contributions. We introduce “Bicameral and Auditably Private Signa-
tures” (BAPS) as a new privacy-preserving signature primitive aiming to address
(i) the problem of simultaneously protecting policies and attributes and (ii) the
problem of secure disclosures of private information after signing. Let us first
highlight several key features of BAPS.

Bicamerality. The system is “bicameral” in the sense that it involves two cer-
tification authorities, namely, attribute-issuing and policy-issuing ones, that are
responsible for certifying users’ attributes and organizations’ policies, respec-
tively. As discussed above, having two separate certification authorities is a
commonly seen situation in practice.

More concretely, in a BAPS system, the attribute-issuing authority, given its
master secret key mskX, can issue a signing key skx for attribute x. Similarly,
the policy-issuing authority can use its master secret key mskP to generate a cer-
tificate CertP for policy P . Note that, although the certification procedures of x
and P are analogous, the treatments of “signing key” skx and “certificate” CertP
could be largely different in practice. The former typically should be kept pri-
vate, unless its owner would like to have some other party to sign on their behalf.
The latter normally can be made publicly available, e.g., in a list {(Pi,CertPi

)}i

on an organization’s website, except when the policies of the organization must
be kept confidential. In our example about CoI declarations, we consider private
(x, skx) and public {(Pi,CertPi

)}i. Meanwhile, the example with visa applica-
tions assumes that the applicant submits their credentials (x, skx) to the visa
department – which keeps their policies private. In any application scenario, the
signer needs to know both pairs (x, skx) and (P,CertP ).

Signability and Privacy. To sign a message m, in addition to the pairs (x, skx)
and (P,CertP ), the signer needs to possess a witness w such that P (m,x, w) =
1. Here, similar to [2,32,39], witness w can be viewed as a piece of context-
dependent information which intuitively serves as evidence why m is signable
with respect to x and P . Note that our notion of “signability” is more general
and does capture that of attribute-based signatures [37] (where P takes only
attribute x as its sole input) and policy-based signatures [2,12] (where users’
attributes are not considered in the syntax and P depends on (m,w) only).

If signing is successful, the signer obtains a signature Σ that is publicly
verifiable. In addition, the signer stores a private clue c associated with (m,Σ),
which later can be utilized for auditing purposes – should the need arise.

We demand a strong privacy property for BAPS: a valid message-signature
pair (m,Σ) must not leak any information about the underlying policy P and
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attribute x (apart from the fact that P (m,x, w) = 1 for some w). This should
hold even if both authorities are fully corrupted.

Disclosures and Auditable Privacy. When asked to disclose certain partial
information of P and/or x according to a disclosing function F (which is chosen
by a court or an auditor among a public list of admitted functions), the signer of a
pair (m,Σ) uses the associated clue c to generate a publicly verifiable testimony-
attestation pair (t, a). Here, the attestation intuitively demonstrates that the
value of the testimony is exactly determined as t = F (P, x), where (P,x) is
precisely the policy-attribute pair underlying the message-signature pair (m,Σ).
Such a disclosure process can be done multiple times with respect to different
disclosing functions.

Here, we demand a noteworthy property for BAPS: auditable privacy. It says
that no additional information about P or x can be learned from the pair (t, a)
beyond the fact that F (P,x) = t. In other words, it guarantees the “residual”
privacy of P and x after (potentially many) disclosures of their partial informa-
tion. It should hold against corrupted authorities and can even be defined in the
strong, statistical sense.

As a summary, by considering bicameral authorities and requiring privacy for
both attributes and policies, BAPS generalizes the spirit of existing advanced
signature primitives with fine-grained controls on signing capabilities. More-
over, the property of auditable privacy is sharply different from and can be
complementary to the notion of accountable privacy in group signatures [11]
and variants [26,27,32,39,43,45], which demands that each signature contains a
fixed piece of signer’s information that can be recovered by a designated party.
Equipped with these distinguished features, BAPS can potentially address appli-
cation scenarios for which existing primitives do not offer a direct solution.

Formalizing Security Requirements for BAPS. Let us next discuss our
formalizations of security for BAPS, which is a non-trivial process on its own.

We first tried to define privacy and auditable privacy for BAPS using an
indistinguishability-based approach. However, with that approach, we could not
manage to quantify the amount of information leaked by the disclosure processes.
In fact, we need to ensure that no extra information about P and x is leaked,
apart from the pieces of information carried by the testimonies outputted by the
signer. We then observe that this requirement is quite similar to those in the
contexts of zero-knowledge proofs [20], and functional encryption [5], where a
simulation-based approach has been employed and proven successful. We thus
adopt such an approach, which allows us to formalize privacy and auditable
privacy via a unified notion of simulatability. It essentially says that the setup,
signing, and disclosing processes of BAPS can be efficiently simulated in a way
(statistically) indistinguishable from the real algorithms.

We next aim at formalizing other expected security properties of BAPS. On
the one hand, we would like to ensure that, even if both authorities are corrupted,
any valid signature Σ on any message m should be associated with some policy
P , some attribute x and some witness w such that P (m,x, w) = 1. Also, if
Judge(m,Σ,F, t, a) = 1, then it should hold that t = F (P,x).
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On the other hand, we also need to protect the security of each of the author-
ities, which can be divided into two orthogonal properties. Specifically, it should
be infeasible to generate any valid signature, if

– One does not possess a legitimate signing key skx for some attribute x, even
if one corrupted the policy-issuing authority;

– One does not possess a legitimate certificate CertP for some policy P , even if
one corrupted the attribute-issuing authority.

The major technical challenge in formalizing these expected security proper-
ties is that BAPS does not readily provide a rigorous mechanism to determine
whether a valid message-signature pair (m,Σ) is actually associated with some
P , x and w such that P (m,x, w) = 1. Therefore, for definitional purposes, we
would need to introduce an extractable mode that allows us to extract addi-
tional information from (m,Σ) so that we can meaningfully explain whether
and how a violation of security has occurred. As a result, we come up with a
notion called intractability, which nicely captures and unifies the said properties.
This is partially inspired by the “sim-ext” spirit [10], which was also employed
in the context of PBS [2].

We would like to remark that our formalizations of BAPS yield a proper
generalization of the PBS primitive [2]. Indeed, to obtain a PBS, one can simply
remove from a BAPS the treatments of attributes and attribute-issuing author-
ity, as well as the disclosure process. Simulatability and extractability of the
resulting PBS, as defined by Bellare and Fuchsbauer [2], directly follow from
those of the original BAPS. Recall that PBS is already an exceedingly powerful
primitive on its own: it was shown to imply group signatures [3], attribute-based
signatures [37], simulation-sound extractable NIZKs [21], and others.

Generic Constructions. Our next step is to demonstrate the feasibility of
constructing secure BAPS systems from standard assumptions. Specifically, we
present a generic construction that employs several commonly used crypto-
graphic building blocks: two signature schemes, a commitment scheme, and two
non-interactive zero-knowledge (NIZK) argument systems for some NP-relations.
The correctness and security properties of the construction directly follow from
those of the employed building blocks.

On the one hand, the two signature systems and the two NIZK systems are
used in a relatively standard manner. The former systems are governed by the
two authorities and are used for issuing attribute keys and policy certificates. The
latter systems are utilized when generating and verifying BAPS signatures and
attestations. On the other hand, our implementation of the commitment scheme
is worth highlighting. We commit to policy P and attribute x as comP and comx,
respectively, and treat them as a bridge connecting the signing and disclosing
phases. The binding of the commitment scheme ensures that the pair (P,x)
involved in the disclosure(s) of a BAPS signature Σ is the same as the pair used
for generating Σ. Furthermore, its hiding property guarantees that no additional
information about (P,x) can be learned from comP and comx. Note that in
existing group-signature-like systems, a public-key encryption scheme is typically
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used to disclose some private information of the signer to a designated opening
authority. Due to the existence of a decryption key (which is owned by the
opening authority, and recoverable by an unbounded adversary), the accountable
privacy property in these systems is only achieved in the computational sense.
Here, in contrast, auditable privacy in the statistical sense is achievable if the
commitment is statistically hiding.

In more detail, in the construction, a signature Σ on message m contains the
commitments comP and comx as well as a NIZK argument Π demonstrating
that the committed values P,x were properly certified by the authorities, and
that P (m,x, w) = 1 for some witness w known by the signer. Verification of Σ is
simply the verification of Π. The clue – which will be used for later disclosures
– consists of x, P , and the two randomnesses.

When asked to disclose certain partial information of x and/or P according
to a disclosing function F , the signer of a message-signature pair (m,Σ), who
possesses the corresponding clue, first computes t = F (P,x) and then proves
that t is well-formed w.r.t. the values P and x committed in the signature.

We remark that our design approach, which we term sign-then-commit-then-
prove, effectively differs from the sign-then-encrypt-then-prove paradigm tradi-
tionally used for achieving accountable privacy in group-signature-like systems.
The advantage of our approach is that the signer can preserve full privacy of
the committed values (especially if the underlying commitment scheme is statis-
tically hiding) while maintaining the capability of proving additional relations
about the committed values at later times.

Our construction can serve as a proof of concept for designing secure BAPS
systems based on standard assumptions in a modular manner. In particular, it
can be realized in the standard model from pairings and from lattices, using the
techniques for obtaining NIZKs for NP by Groth-Ostrovsky-Sahai [22] and by
Peikert-Shiehian [41] (in conjunction with a lattice-based compiler by Libert et
al. [31]), respectively.

A Lattice-Based Instantiation for Arbitrary Policies. Although via tech-
niques of [31,41] it is feasible to instantiate BAPS in the standard model under
lattice-based (and hence, quantum-safe) assumptions, such construction would
expectedly be extremely inefficient. Our goal here is to build a concrete lattice-
based BAPS that has better efficiency than the generic approach, and that can
handle expressive classes of policies, e.g., polynomial-size Boolean circuits. We
stress that the lattice-based BAPS scheme we provide in this paper merely serves
as an illustration of how to concretely instantiate the aforementioned generic
construction. It is not practical, and moreover, we do not view it as the main
contribution of the paper.

At a high level, our lattice-based BAPS scheme follows the sign-then-commit-
then-prove design approach of the generic construction discussed above. How-
ever, when it comes to middle-level techniques, we do introduce several novel
aspects regarding the evaluation of policies in zero-knowledge and the instanti-
ation of disclosing functions via multivariate quadratic functions.
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More specifically, for both authorities, we implement the Ducas-Micciancio
signature [13], which has a short public key and has a companion zero-knowledge
argument of a valid message-signature pair [35]. As for commitment schemes, we
employ several adaptations of the ideal-lattice-based scheme by Kawachi, Tanaka
and Xagawa [25], which are used not only to commit to P and x, but also various
different objects appearing in the scheme execution. Last but not least, we need
expressive zero-knowledge argument systems that can handle relatively sophisti-
cated statements, in particular, those that capture the satisfiability of a Boolean
circuit whose description is hidden, yet certified via the Ducas-Micciancio signa-
ture. To this end, we adopt a framework proposed in [30] for interactive Stern-
like argument systems [44] and employ several dedicated techniques for handling
the required relations. We remark that our choice of Stern-like protocols as the
ZK tools has its own advantages and disadvantages. On the upside, these tools
work smoothly with the statements to be proven. First, they can be directly
applied to interrelated equations involving two moduli q1 = 2 (representing
the evaluation processes of Boolean circuits as well as disclosing functions) and
q2 = 3k for some positive integer k (representing relations capturing the Ducas-
Micciancio signature verification process). Second, Stern-like protocols normally
provide statistical ZK, which is crucial in attaining the desirable feature of sta-
tistical privacy for the resulting lattice-based BAPS scheme. Therefore, these
zero-knowledge protocols are quite suitable for our illustration purpose. On the
downside, because of the need to repeat Stern-like protocols many times to make
their soundness errors negligibly small, these tools are much less efficient than
the state-of-the-art Schnorr-like ZK proof/argument systems, such as [6,7,14–
16,23,36,46]. While we have not been able to provide an efficient lattice-based
BAPS (see more elaborations in the discussions on open questions at the end of
this section), we nevertheless expect that, in the near future, practically usable
lattice-based BAPS systems, if any, would likely be developed based on these
state-of-the-art tools.

The major technical challenge of the construction is to prove in zero-
knowledge the satisfiability of a certified-and-hidden Boolean circuit P on some
input (m,x, w), where x is also certified and hidden.

Evaluating Circuits in ZK with “Imaginary Buckets”. To the best of
our knowledge, there has not been much work related to proving circuit sat-
isfiability where both the circuit and input are certified and private. Ling et
al. [33] proposed a code-based protocol for the restricted class of symmetric
Boolean functions. Libert et al. [29] suggested a lattice-based protocol for func-
tions in NC1, represented by branching programs. In Libert et al.’s protocol, the
prover commits to the inputs, builds a Merkle hash tree on top of the commit-
ments, and fetches the inputs to the branching program by following the tree
paths corresponding to the program’s binary representation. We observe that
the ideas from [29] might potentially be extended to handle Boolean circuits.
However, the expected complexity of each tree-based retrieval step would be
O(log(K + N) · λ · log λ), where λ is the security parameter, K is the bit-size of
the inputs and N is the circuit size.
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We, therefore, take a conceptually different approach with expected complex-
ity O(

√
K + N + λ · log λ). This would yield some valuable improvement when

K + N is a small polynomial in λ, e.g., K + N = o(λ3).
Consider a circuit P whose topology is determined by two functions g, h :

[0, N − 1] → [0,K + N − 2]. Namely, if the inputs to P are s0, s1, . . . , sK−1 and
the N gate outputs are ordered as sK , . . . , sK+N−1, then we have

sK+i = sg(i) NAND sh(i), ∀i = 0, . . . , N − 1.

At each step in the circuit evaluation process, we need to fetch the values of sg(i)

and sh(i). The problem is that not only these values but also both the indices
g(i) and h(i) are committed. Hence, we would need a mechanism to retrieve
these values properly. Our approach employs a “bucket-based” retrieval process,
the high-level ideas of which are as follows.

We divide the bits of s0, . . . , sK+N−2 into ρ buckets s0, . . . , sρ−1, each of
which is ρ-bit long. (Here, for simplicity, we assume K + N − 1 = ρ2.) Next, we
commit to each bucket, obtaining ρ commitments: com0, . . . , comρ−1. To fetch
the correct inputs to the gates, we will examine the binary representations of
g, h, and follow them to search for the buckets where the correct inputs are
committed, then identify the exact locations of the inputs within the found
buckets. Such a process only requires O(ρ) steps, and thus, yields complexity
O(

√
K + N). We provide more detailed explanations in Sect. 4.

Handling quadratic disclosing functions. For disclosures, we consider mul-
tivariate quadratic functions. In this setting, the testimony t = F (P,x) is a
multidimensional vector, each coordinate of which has the form

∑

i,j∈[1,k̄]

αi,j · (bi · bj) +
∑

�∈[1,k̄]

β� · b� mod 2,

where αi,j ’s, β�’s are public bits and bi’s the bits determining policy P and
attribute x. This definition is thus quite general and captures arbitrary linear and
quadratic relations with respect to the bits of (P,x). By setting the coefficients
appropriately, one indeed can enforce the disclosures of any bits of (P,x), or any
bit-products, or any linear and/or quadratic combinations of the bits.

To prove the well-formedness of t = F (P,x), we will need to demonstrate in
zero-knowledge the correct evaluations of many equations of the above form. This
sub-task also requires several non-trivial steps, since the bits bi’s are involved
not only in these linear and quadratic relations but also simultaneously satisfy
various other relations, e.g., they were hashed, signed, and committed.

Open Questions. As the first work that introduces BAPS, we do not (and
cannot) attempt to address all the issues around this new primitive. We pay
more attention to laying the foundations for BAPS, and we view the problem of
constructing a scheme with practical efficiency and/or with additional features
as fascinating open questions for future investigations. In the following, we will
briefly discuss several questions that we are particularly interested in.
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– Developing practically usable lattice-based BAPS schemes. While
the state-of-the-art ZK proof/argument systems from lattice assumptions and
for lattice relations, such as [6,14–16,23,36], have already come close to prac-
ticality, the problem of applying these protocols in an efficiency-preserving
manner to mixed relations like “correct evaluation of a certified-and-hidden
Boolean circuit on a certified-and-hidden input” (which are helpful for devel-
oping BAPS) is still less well-studied. Additionally, these protocols typically
only satisfy computational ZK, which could be an obstacle if one insists on
achieving statistically private BAPS. Nevertheless, we do hope that some
reasonably practical lattice-based BAPS schemes can be developed based on
these tools in the near future, especially if one only targets computational
privacy and would like to consider only some restricted classes of policies,
e.g., those defined by inner-product-like relations.

– Designing efficient BAPS without NIZK. As we have discussed, a major
barrier to constructing efficient BAPS systems is the need for NIZK systems
that can handle relatively sophisticated statements. While the use of NIZKs
seems unavoidable, as a BAPS satisfying our stringent security definitions
does imply a PBS [2] – which in turn implies NIZK, it might be possible
to circumvent this barrier by considering some relaxed security requirements
for BAPS. A similar line of research was conducted with respect to group
signatures [24].

– BAPS with additional functionalities. One interesting question along
this line of research is to enable efficient user revocations, preventing
revoked users from generating valid signatures while ensuring small compu-
tation/communication overheads for non-revoked users. Another appealing
question is to conceptualize and realize systems that simultaneously offer
both accountable privacy and auditable privacy.

Organization. The rest of the paper is organized as follows. In Sect. 2, we
present our definitions of BAPS, describe its syntax, and formalize its security
requirements. Section 3 then provides a generic construction of BAPS satisfying
our model, based on commonly used cryptographic building blocks. In Sect. 4,
we describe our lattice-based construction of BAPS. Due to space restriction, the
detailed descriptions of the zero-knowledge protocols used in our lattice-based
BAPS scheme and some security analyses are deferred to the full version [40].

2 Bicameral and Auditably Private Signatures

Any Bicameral and Auditably Private Signature (BAPS) system is associated with
a message space M, an attribute space X , a witness space W, a disclosing space
DS, a family P := {P : M × X × W −→ {0, 1}} of policies, and a family
F := {F : P × X → DS} of disclosing functions.

A BAPS system is set up by a trusted party, whose jobs include generating
public parameters and creating secret keys for the bicameral authorities, namely,
the attribute-issuing authority and the policy-issuing authority. Policies (of orga-
nizations) and attributes (of users) are authorized and added to the system by
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the corresponding authorities. A signer, given a certified attribute x ∈ X and a
certified policy P ∈ P, can issue a publicly verifiable signature Σ on a message
m ∈ M if the signer possesses a witness w such that P (m,x, w) = 1. Here, sim-
ilar to [2,32,39], witness w can be viewed as a context-dependent string which
serves as evidence why m is signable with respect to x and P . In addition, the
signer stores a private clue c associated with (m,Σ), which later can be utilized
for auditing purposes – should the need arise.

When asked (e.g., by a court or an auditor) to disclose certain partial informa-
tion of P and/or x according to a disclosing function F ∈ F , the signer of a pair
(m,Σ) uses the associated clue c to generate a publicly verifiable testimony-
attestation pair (t, a). Here, the attestation intuitively demonstrates that the
value of the testimony is exactly determined as t = F (P,x) ∈ DS, where (P,x) is
precisely the policy-attribute pair underlying the message-signature pair (m,Σ).
Such a disclosure process can be done multiple times with respect to different
disclosing functions in F .

2.1 Syntax of BAPS

A BAPS system associated with (M,X ,W,DS,P,F) is a tuple of polynomial-
time algorithms (Setup,Attribute-Iss,Policy-Iss,Sign,Verify,Disclose, Judge), defi-
ned as follows.

Setup(1λ): On input a security parameter λ, it outputs (PP,mskX,mskP), where:
– PP denotes the public parameters which include, among others, the

descriptions of M, X , W, DS, P, F ;
– mskX is the master attribute key and mskP is the master policy key.

All the subsequent algorithms take PP as an implicit input.
Attribute-Iss(mskX,x): The attribute-issuing algorithm takes as inputs the key

mskX and an attribute x ∈ X . It outputs a signing key skx for x.
Policy-Iss(mskP, P ): The policy-issuing algorithm takes as inputs the key mskP

and a policy P ∈ P. It outputs a certificate CertP for P .
Sign(x, skx, P,CertP ,m,w): The signing algorithm takes as inputs a signing key

skx for an attribute x, a certificate CertP for a policy P , a message m ∈ M
and a witness w. It outputs either a signature Σ together with a clue c, or
the symbol ⊥ indicating failure.

Verify(m,Σ): On input a message-signature pair (m,Σ), the verification algo-
rithm outputs 1 or 0, indicating the (in)validity of the signature Σ on m.

Disclose((m,Σ), c, F ): On input a message-signature pair (m,Σ), a clue c and
a disclosing function F ∈ F , the disclosing algorithm outputs a testimony t
together with an attestation a.

Judge((m,Σ), F, (t, a)): On input a message-signature pair (m,Σ), a disclosing
function F and a testimony-attestation pair (t, a), this judging algorithm
outputs 1 or 0, indicating the (in)validity of the disclosure.
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2.2 Correctness and Security of BAPS

Correctness. Intuitively, the correctness of BAPS guarantees that honestly
generated message-signature pairs are accepted by Verify, that faithfully gener-
ated testimony-attestation pairs are accepted by Judge, and that the testimony
associated with F, P,x must precisely be t = F (P, x). Formally, a BAPS scheme
is correct if for any P ∈ P, x ∈ X , m ∈ M and w ∈ W such that P (m,x, w) = 1,
and for any F ∈ F , it holds that

Pr

⎡
⎢⎢⎢⎢⎣
Verify(m, Σ) = 1,
t = F (P, x),
Judge(m, Σ, F, t, a) = 1

∣∣∣∣∣∣∣∣∣∣

(PP,mskX,mskP) ← Setup(1λ),
skx ← Attribute-Iss(mskX,x),
CertP ← Policy-Iss(mskP, P ),
(Σ, c) ← Sign(x, skx, P,CertP , m, w),
(t, a) ← Disclose((m, Σ), c, F )

⎤
⎥⎥⎥⎥⎦

= 1 − negl(λ).

Security. We will first discuss the security features that any BAPS is expected
to satisfy, and then present the formal definitions that capture these features.

We expect that a secure BAPS should provide the following guarantees.

– Justifiability of signatures: Any valid signature Σ on any message m should be
associated with some policy P , some attribute x and some witness w such
that P (m,x, w) = 1. This must hold even if both authorities are corrupted.

– Necessity of possessing attribute keys: Without possessing a legitimate signing
key skx for some attribute x, it should be infeasible to generate any valid sig-
nature. This property captures the security of the attribute-issuing authority,
and it must hold even when the policy-issuing authority is corrupted.

– Necessity of possessing policy certificates: Without possessing a legitimate cer-
tificate CertP for some policy P , it would be infeasible to generate any valid
signature. This property is orthogonal to the preceding one: it captures the
security of the policy-issuing authority in the presence of a potentially cor-
rupted attribute-issuing authority.

– Auditability: If Judge(m,Σ,F, t, a) = 1, then it should hold that t = F (P,x),
where P and x are the policy and attribute underlying the message-signature
pair (m,Σ). This property ensures the infeasibility of misleading disclosure
results, and it must hold even if both authorities are corrupted.

– Privacy: This property guarantees that a valid message-signature pair (m,Σ)
does not leak any information about the underlying policy P and attribute
x (apart from the fact that P (m,x, w) = 1 for some w). Privacy should hold
when both authorities are corrupted. Moreover, it can even be defined in
the statistical sense (similar to ring signatures [4] and attribute-based signa-
tures [37]).

– Auditable Privacy: This property says that no additional information about
P or x can be learned from the disclosure result (t, a) beyond the fact that
F (P,x) = t. In other words, it guarantees the “residual” privacy of P and
x after (potentially many) disclosures of their partial information. It should
hold against corrupted authorities and can even be defined in the strong,
statistical sense.
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While other security features are somewhat reminiscent of similar properties
in existing privacy-preserving signature primitives [8,11,26,27,32,39,42,43,45],
auditable privacy is a distinguished property of BAPS. It allows the signer to flex-
ibly and securely disclose selected pieces of private information when asked by
different auditors. This property is sharply different from the notion of account-
able privacy in group signatures [11] and variants [26,27,32,39,43,45], which
demands that each signature contains a fixed piece of information about the
signer that can be recovered by a designated party.

How to formalize Privacy and Auditable Privacy? In our first attempt to
define privacy and auditable privacy for BAPS, we follow an indistinguishability-
based approach. Specifically, the adversary provides a message m, two policies
P0, P1, two attributes x0,x1, and two corresponding witnesses w0, w1 such that m
is signable under both pairs (P0,x0, w0) and (P1,x1, w1), i.e., P0(m,x0, w0) = 1
and P1(m,x1, w1) = 1. The challenger then chooses a random bit b and generates
a challenge signature Σ∗ on m using (Pb,xb, wb,CertPb

, skxb
). Ideally, we would

like to consider a strong adversary who can fully corrupt both authorities and
can adaptively query the disclosing oracle with respect to the challenge message-
signature pair (m,Σ∗) and any disclosing function F of its choice. However, if
the adversary queries the disclosing algorithm for some F such that F (P0,x0) �=
F (P1,x1), then it can easily guess the bit b. Hence, for the definition to be
satisfiable, we must restrict the adversary’s choice of (P0,x0, w0) and (P1,x1, w1)
and require that F (P0,x0) = F (P1,x1) for all F for which the adversary queries
the disclosing algorithm.

Unfortunately, even with the above restriction, the indistinguishability-based
approach might still be inadequate in capturing the expected notion of privacy.
Suppose that the system only allows a single disclosing function, which is the
identity function F (P,x) = (P,x). Then, to prevent the adversary from trivially
winning, we must either demand that (P0,x0) = (P1,x1) or totally prohibit
disclosing queries with respect to the challenge message-signature pair.

We then take a step back and note that our major goal here is to ensure
that, apart from the testimonies of the form t = F (P,x), no additional knowledge
about P and x is leaked. This requirement is quite similar to those in the contexts
of zero-knowledge proofs [20], and functional encryption [5], where a simulation-
based approach has been employed and widely accepted. We, therefore, adopt
this approach, which allows us to formalize privacy and auditable privacy via a
unified notion: simulatability.

Simulatability. We formalize this simulation-based notion by requiring the exis-
tence of three auxiliary algorithms SimSetup, SimSign, and SimDisclose.

SimSetup(1λ): On input λ, this algorithm outputs public parameters PP, keys
mskX,mskP for two authorities, together with a trapdoor tr.

SimSign(tr,m, P,x, w): This algorithm takes as inputs the trapdoor tr, and a
message m, a policy P , an attribute x, and a witness w. If P (m,x, w) = 0,
it returns 0. Otherwise, it returns a simulated signature. Note that a signing
key skx or a certificate CertP is not needed here.
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SimDisclose(m,Σ, tr, P,x, F ): This algorithm takes as inputs a valid message-
signature pair (m,Σ), the trapdoor tr, a policy-attribute pair (P,x), and a
disclosing function F . It returns (t, a) as an output.

Intuitively, the simulatability of BAPS guarantees that the outputs of the above
algorithms are indistinguishable from those of the real algorithms. This notion
is modeled via experiment ExpsimA (λ) in Fig. 1 and is formally defined below.

1 b
$←− {0, 1}, i ← 0, j ← 0, k ← 0;

2 (PP0,msk0X,msk0P, tr) ← SimSetup(1λ); (PP1,msk1X,msk1P) ← Setup(1λ);

3 st = (PPb,mskb
X,mskb

P).

4 b′ ← AOsor
PolicyKey,Osor

AttributeKey,Osor
Sign,Osor

Disclose(st);
5 If b = b′, return 1; otherwise return 0.

Osor
Sign(i

∗, j∗, m, w)

If i∗ /∈ [1, i] or j∗ /∈ [1, j], return ⊥;
Let P = LP [i∗][0] and x = LX [j∗][0];
If P (m,x, w) = 0, return ⊥;
k ← k + 1;
Σ∗0 ← SimSign(tr, m, P,x, w);
Let CertP = LP [i∗][1] and skx = LX [j∗][1];
(Σ∗1, c1) ← Sign(x, skx, P,CertP , m, w);
LS [k][0] = (P,x); LS [k][1] = c1;
LS [k][2] = (m, Σ∗b);
Return Σ∗b.

Osor
PolicyKey(P )

i ← i + 1;
Cert0P ← Policy-Iss(msk0P, P );
Cert1P ← Policy-Iss(msk1P, P );
LP [i][0] = P , LP [i][1] = Cert1P ;
Return CertbP .

Osor
Disclose(m, Σ, F )

Check if ∃ k� such that LS [k∗][2] = (m, Σ);
If k� does not exist, return ⊥;
Let (P,x) = LS [k∗][0]; c1 = LS [k∗][1];
(t0, a0) ← SimDisclose(m, Σ, tr, (P,x), F );
(t1, a1) ← Disclose(m, Σ, c1, F );
Return (tb, ab).

Osor
AttributeKey(x)

j ← j + 1;
sk0x ← Attribute-Iss(msk0X,x);
sk1x ← Attribute-Iss(msk1X,x);
LX [j][0] = x, LX [j][1] = sk1x;
Return skb

x.

Fig. 1. Experiment ExpsimA (λ)

Definition 1 (Simulatability). A BAPS scheme is said to satisfy simu-
latability if the advantage of A involved in experiment ExpsimA (λ), defined as
AdvsimA (λ) = |Pr[Expsim

A (λ) = 1]−1/2|, is negl(λ). We say that the BAPS scheme
is computationally simulatable if the advantage of any PPT algorithm A is neg-
ligible in λ. It is statistically simulatable if the advantage of any algorithm A is
negligible and perfectly simulatable if the advantage of any algorithm A is zero.

We next aim at formalizing other expected security properties of BAPS, i.e.,
justifiability of signatures, auditability, necessity of possessing attribute keys,
and policy certificates. This turns out to be a non-trivial task. The major reason
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is that the syntax of BAPS does not provide a rigorous mechanism to determine
whether a valid message-signature pair (m,Σ) is actually associated with some
P , x and w such that P (m,x, w) = 1. Therefore, for definitional purposes,
we would need to introduce some auxiliary procedure that allows us to extract
additional information from (m,Σ), e.g., some P , some x, and some w, so that we
can meaningfully explain whether and how a violation of security has occurred.
In addition, such extraction should be possible even in the simulated setting.
Thus, we further assume the existence of algorithm Extract defined below.

Extract(tr,m,Σ): Given the trapdoor tr and a valid message-signature pair
(m,Σ), it returns a tuple (P,x, w) ∈ P × X × W.

Equipped with such an extractable mode, we are now ready to formalize the
expected properties. For the sake of simpler terminology, we will consider the
following three notions:

– Soundness ensures that the extracted tuple (P,x, w) satisfies P (m,x, w) =
1 and t = F (P,x), for any testimony t outputted by a disclosing process
involving function F . Note that soundness captures both “justifiability of
signatures” and “auditability”.

– Unforgeability-I addresses the “necessity of possessing attribute keys” and aims
to protect the attribute-issuing authority.

– Unforgeability-II addresses the “necessity of possessing policy certificates” and
aims to protect the policy-issuing authority.

We then define extractability as the notion unifying soundness, unforgeability-
I, and unforgeability-II. This is a reminiscence of the “sim-ext” spirit [10], which
was also employed in the context of policy-based signatures [2].

Extractability. We model the three requirements of extractability in Fig. 2
using three experiments Expsound

A (λ), ExpUf-I
A (λ), ExpUf-II

A (λ). All experiments
are run between a challenger C and an adversary A.

Definition 2 (Extractability). A BAPS scheme is said to satisfy the
extractability property if there exists an additional algorithm Extract (as defined
above) in the simulated setup, and for any PPT adversary A involved in the
experiments Expsound

A (λ), ExpUf-I
A (λ), ExpUf-II

A (λ), one has

AdvsoundA (λ) = Pr[ExpsoundA (λ) = 1] ∈ negl(λ);
AdvUf-IA (λ) = Pr[ExpUf-I

A (λ) = 1] ∈ negl(λ);
AdvUf-IIA (λ) = Pr[ExpUf-IIA (λ) = 1] ∈ negl(λ).

The experiment Expsound
A (λ) operates in two stages which first defines an

extractable mode of the scheme allowing to extract a policy P ∗, an attribute
x∗, and a witness w∗ from any valid message-signature pair (m,Σ). Such an
extraction then enables evaluating the value P ∗(m,x∗, w∗) a posteriori. The
adversary wins the experiment if the evaluated value is 0, indicating that m
is not signable with respect to P ∗ and x∗. It proceeds to the second stage
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1 (PP,mskX,mskP, tr) ← SimSetup(1λ); k ← 0;

2 st = (PP,mskX,mskP); (m, Σ) ← A(st);

3 st = (PP,mskP); (m, Σ) ← AOAttriKey,OSign,ODis(st);

4 st = (PP,mskX); (m, Σ) ← AOPolicyKey,OSign,ODis(st);

5 If (m, Σ) = LS [k�][1] for k� ∈ [1, k] or Verify(PP, m, Σ) = 0, return 0.
6 (P ∗,x∗, w∗) ← Extract(tr, m, Σ);

7 If P ∗(m,x∗, w∗) = 0, return 1.

8 If x∗ /∈ QX , return 1. If P ∗ /∈ QP , return 1.

9

(F, t, a) ← A(st);
If (m, Σ, F, t, a) ∈ QD or Judge(PP, m, Σ, F, t, a) = 0, return 0.
If t �= F (P ∗,x∗), return 1.

10 Return 0.

OAttriKey(x)

skx ← Attribute-Iss(mskX,x);
QX ← QX ∪ {x}
Return skx.

OSign(m, P,x, w)

If P (m,x, w) = 0, return ⊥;
k ← k + 1;
Σ ← SimSign(tr, m, P,x, w);
LS [k][0] = (P,x), LS [k][1] = (m, Σ);
Return Σ.

OPolicyKey(P )

CertP ← Policy-Iss(mskP, P );
QP ← QP ∪ {P};
Return CertP .

ODis(m, Σ, F )

Check if ∃ k� ∈ [1, k] such that
LS [k�][1] = (m, Σ);

If k� does not exist, return ⊥;
Let (P,x) = LS [k�][0];
(t, a) ← SimDisclose(m, Σ, tr, P,x, F );
QD ← QD ∪ {(m, Σ, F, t, a)};
Return (t, a).

Fig. 2. Experiments Expsound
A (λ) (excluding dotted and double solid

boxes), ExpUf-I
A (λ) (excluding solid and double solid boxes), and

ExpUf-II
A (λ) (excluding the solid and dotted boxes).

only if P ∗(m,x∗, w∗) = 1, i.e., the adversary did not win in the first stage.
The aim of the adversary in the second stage is to output a disclosing func-
tion F and a Judge-accepted testimony-attestation pair (t, a) corresponding to
(m,Σ) outputted in the first stage such that t �= F (P ∗,x∗). To define soundness
in the strongest sense, both authorities’ keys are exposed to the adversary. A
BAPS system satisfies soundness if the winning probability of the adversary in
Expsound

A (λ) is negligible in λ. Said otherwise, even with the help of both fully
corrupted authorities, no signer can fool the system by producing valid signatures
on non-signable messages or creating a testimony accompanied by an accepted
attestation that does not respect the underlying disclosing value F (P ∗,x∗).

Both experiments ExpUf-I
A (λ), ExpUf-II

A (λ) function in the extractable setting.
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– Unforgeability-I is similar to the unforgeability/type-1 unforgeability notion
of ABS [37]/MPS [39]. It protects the security of the attribute-issuing author-
ity. In the experiment, the adversary fully corrupts the policy-issuing author-
ity and can learn their signing keys on attributes of its choices via OAttriKey.
The adversary also makes signing queries by submitting (m,P,x, w) to OSign.
We stress that the signing key of x may not be revealed to the adversary. Its
goal is to output a valid pair (m,Σ) such that the extraction points to an
attribute of which it has not previously learned the signing key.

– Unforgeability-II captures the spirit of the unforgeability/extractability
notion in FS [8]/PS [1]/PBS [2]. This notion is orthogonal to unforgeability-I
and protects the security of the policy-issuing authority. In the experiment,
the adversary has access to various oracles and intends to output a valid pair
(m,Σ) that is extracted to a policy P ∗ /∈ QP .

3 A Generic Construction for BAPS

We now present a generic construction of BAPS for arbitrary policies and arbi-
trary disclosing functions. The construction satisfies the correctness and the
security requirements defined Sect. 2.2. It employs several commonly used cryp-
tographic building blocks: two signature schemes, a commitment scheme, and
two non-interactive zero-knowledge (NIZK) argument systems for some NP-
relations. As a remark, we require that the employed NIZK systems satisfy the
simulation-sound extractability property [21]. We note that it could be possible
to replace these building blocks with a combination of ordinary NIZK systems,
(lossy) public-key encryption, and one-time signatures (similar to a construction
in [2]). The resulting construction, however, would be syntactically much more
complicated while relying on essentially the same high-level ideas.

We will give a technical overview of the construction in Sect. 3.1, describe it
in detail in Sect. 3.2, and provide its analyses in Sect. 3.3.

3.1 Technical Overview

The construction employs the following cryptographic building blocks.

– Two secure signature schemes

SX = (SX.Kg,SX.Sign,SX.Ver), SP = (SP.Kg,SP.Sign,SP.Ver);

– A secure commitment scheme COM = (C.Setup,C.Com,C.Open);
– Two simulation-sound extractable NIZK systems

NIZKS = (ZKS.Setup,ZKS.SimSetup,ZKS.Prove,ZKS.Ver,ZKS.Sim,ZKS.Extr),

NIZKD = (ZKD.Setup,ZKD.SimSetup,ZKD.Prove,ZKD.Ver,ZKD.Sim,ZKD.Extr),

for the NP-relations RS and RD, respectively, defined below.
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The attribute-issuing authority is associated with a signing-verification key-
pair (mskX, vkX) for SX. A signing key skx for attribute x is defined as a signature
of the authority on “message” x. Similarly, the policy-issuing authority is asso-
ciated with a signing-verification key-pair (mskP, vkP) for SP. A certificate CertP
for policy P is then a signature of the authority on “message” P .

To sign a message m with respect to policy P , attribute x and witness w,
the signer first checks whether P (m,x, w) = 1, and aborts if this is not the case.
Next, the signer commits to P and x as comP and comx, respectively. Then,
it proves that (i) m is signable, i.e., P (m,x, w) = 1; (ii) each of P and x is
properly certified by the respective authority; and (iii) comP and comx are valid
commitments to P and x, respectively. Specifically, the signer generates a NIZK
argument Π for the following relation

RS :=
{ (

(m, vkX, vkP, ppC, comx, comP ), (x, skx, P,CertP , w, rcom,x, rcom,P )
)

:
(
P (m,x, w) = 1

)
∧
(
SX.Ver(vkX,x, skx) = 1

)
∧
(
SP.Ver(vkP, P,CertP ) = 1

)

∧
(
C.Open(ppC, comx,x, rcom,x) = 1

)
∧
(
C.Open(ppC, comP , P, rcom,P ) = 1

)}
.

The signature Σ then contains the commitments comP and comx as well as
the argument Π. Verification of Σ is simply the verification of Π. The clue –
which will be used for later disclosures – consists of x, P and the randomnesses
rcom,x and rcom,P .

We remark that the design approach being used here, which we term sign-
then-commit-then-prove, is effectively different from the sign-then-encrypt-then-
prove paradigm traditionally used for achieving accountable privacy in group-
signature-like systems. The advantage of our approach is that the signer can
preserve full privacy of the committed values (especially if the underlying com-
mitment scheme is statistically hiding) while maintaining the capability of prov-
ing additional relations about the committed values at later times.

When asked to disclose certain partial information of x and/or P according
to a disclosing function F ∈ F , the signer of a message-signature pair (m,Σ),
who possesses the corresponding clue c = (x, P, rcom,P , rcom,x), first computes
t = F (P,x) and then proves that t is well-formed with respect to the values P
and x committed in the signature. Specifically, it generates a NIZK argument a
for the following relation:

RD :=
{ (

F, t, comx, comP , ppC), (x, P, rcom,x, rcom,P )
)

:
(
t = F (P,x)

)

∧
(
C.Open(ppC, comx,x, rcom,x) = 1

)
∧
(
C.Open(ppC, comP , P, rcom,P ) = 1

)}
.

To determine the validity of a testimony-attestation pair (t, a) outputted by
the disclosing algorithm, one simply verifies the NIZK argument a.

The correctness and security properties of the construction tightly follow from
those of the employed building blocks. In particular, the scheme is (statistically)
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simulatable as long as NIZKS and NIZKD are (statistically) zero-knowledge
and COM is (statistically) hiding. Its extractability, on the other hand, relies
on the unforgeability of SX and SP, the simulation-sound extractability of the
NIZK systems and the binding property of COM.

3.2 Description

In the description of the generic construction, we do not specify the choice of
system parameters (M,X ,W,DS,P,F). We do not make any restriction on the
policies in P nor the disclosing functions in F . We, however, note that these
system parameters should be compatible with those of the building blocks SX

and SP, NIZKS and NIZKD, and COM.

Setup(1λ): This algorithm performs the following steps:
1. Run (mskP, vkP) ← SP.Kg(1λ) and (mskX, vkX) ← SX.Kg(1λ) to obtain

signing-verification key pairs for the policy-issuing authority and the
attribute-issuing authority, respectively.

2. Run ZKS.Setup(1λ) and ZKD.Setup(1λ) to obtain crsS and crsD for the
argument systems NIZKS and NIZKD, respectively.

3. Generate public parameters ppC ← C.Setup(1λ) for COM.
Let PP := (crsS, crsD, ppC, vkP, vkX) and output (PP,mskP,mskX).

Attribute-Iss(mskX,x): Generate a signing key skx for attribute x as

skx ← SX.Sign(mskX,x).

Policy-Iss(mskP, P ): Generate a certificate CertP for policy P as

CertP ← SP.Sign(mskP, P ).

Sign(x, skx, P,CertP ,m,w): If P (m,x, w) = 0, the signing algorithm returns ⊥.
Otherwise, it proceeds as follows.
1. Commit to x as comx = C.Com(ppC,x, rcom,x), and commit to P as

comP = Com(ppC, P, rcom,P ). Here, rcom,x and rcom,P are the commitment
randomness.

2. Generate a NIZK argument Π to prove the knowledge of a tuple η =
(x, skx, P,CertP , w, rcom,x, rcom,P ) such that the following conditions hold.
(a) The message m is signable with respect to policy P , attribute x and

witness w, i.e., P (m,x, w) = 1.
(b) comx and comP are valid commitments to x and P , respectively, i.e.,

C.Open(ppC, comx,x, rcom,x) = 1; C.Open(ppC, comP , P, rcom,P ) = 1.

(c) (x, skx) is a valid (attribute, signing key) pair, i.e.,

SX.Ver(vkX,x, skx) = 1.

(d) (P,CertP ) is a valid (attribute, certificate) pair, i.e.,

SP.Ver(vkP, P,CertP ) = 1.
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This is done by running

Π ← ZKS.Prove
(
crsS, (m, vkX, vkP, ppC, comx, comP ), η

)

to prove that
(

(m, vkX, vkP, ppC, comx, comP ), η
)

∈ RS.
3. Let Σ = (comx, comP ,Π); clue = (x, P, rcom,x, rcom,P ), return (Σ, clue).

Verify(m,Σ): Parse Σ = (comx, comP ,Π). Then return the bit

b′ ← ZKS.Ver
(
crsS, (m, vkX, vkP, ppC, comx, comP ),Π

)
.

Disclose(m,Σ, clue, F ): On input a valid message-signature pair (m,Σ), where
Σ = (comx, comP ,Π), a clue clue = (x, P, rcom,x, rcom,P ), and a disclosing
function F ∈ F , this algorithm proceeds as follows.
1. Compute t = F (P,x).
2. Generate a NIZK argument a to show the possession of the tuple clue =

(x, P, rcom,x, rcom,P ) such that the following conditions hold.
(i) The value t is honestly computed, i.e., t = F (P,x).
(ii) comx and comP are valid commitments to x and P , respectively, i.e.,

C.Open(ppC, comx,x, rcom,x) = 1; C.Open(ppC, comP , P, rcom,P ) = 1.

This is done by running

a ← ZKD.Prove(crsD, (F, t, comx, comP , ppC), clue)

to prove that ((F, t, comx, comP , ppC), clue) ∈ RD.
3. Return (t, a) as a testimony-attestation pair.

Judge(m,Σ,F, t, a): If Verify(m,Σ) = 0, return 0. Otherwise, parse Σ as Σ =
(comx, comP ,Π) and return b′′ ← ZKD.Ver(crsD, (F, t, comx, comP , ppC), a).

3.3 Analyses

Correctness. The correctness of the presented BAPS scheme follows directly
from the correctness/completeness of the employed ingredients.

The correctness of the commitment scheme COM ensures that

C.Open(ppC, comx,x, rcom,x) = 1, C.Open(ppC, comP , P, rcom,P ) = 1.

Also, it follows from the correctness of signature schemes SX and SP that

SX.Ver(vkX,x, skx) = 1, SP.Ver(vkP, P,CertP ) = 1.

An honest signer thus can obtain a witness η = (x, skx, P,CertP , w, rcom,x, rcom,P )
such that

(
(m, vkX, vkP, ppC, comx, comP ), η

)
∈ RS. Then, thanks to the com-

pleteness of NIZKS, an honestly generated proof Π will be accepted by ZKS.Ver.
In other words, algorithm Verify returns 1 with overwhelming probability.

Next, if algorithm Disclose is run honestly, then one has that t = F (P,x) and
that clue = (x, P, rcom,x, rcom,P ) satisfies ((F, t, comx, comP , ppC), clue) ∈ RD. As
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a result, algorithm ZKD.Ver returns 1 with overwhelming probability, thanks to
the completeness of NIZKD, and so does algorithm Judge.

Security. We will prove that the proposed generic construction satisfies sim-
ulatability and extractability as defined in Sect. 2.2. First, we would need to
construct the following auxiliary algorithms.

SimSetup(1λ): The changes compared to the real Setup algorithm are as follows.
– At Step 2, the common reference strings and associated trapdoors are

generated via simulated algorithms (crsS, trS) ← ZKS.SimSetup(1λ) for
NIZKS and (crsD, trD) ← ZKD.SimSetup(1λ) for NIZKD.

– The algorithm outputs tr := (trS, trD) in addition to (PP,mskX,mskP).
SimSign(tr,m, P,x,w): If P (m,x, w) = 0, the algorithm returns 0. Otherwise, it

uses trapdoor tr = (trS, trD) to simulate a signature on m as follows.
1. Compute comx and comP as commitments to all-zero strings. Namely,

comx = C.Com(ppC,0, rcom,x) and comP = C.Com(ppC,0, rcom,P ).
2. Simulate the NIZK argument Π using trS via

Π ← ZKS.Sim(crsS, trS, (m, vkX, vkP, ppC, comx, comP )).

3. Output the simulated signature Σ = (comx, comP ,Π).
SimDisclose(m,Σ, tr, P,x, F ): If Verify(m,Σ) = 0, then the algorithm returns ⊥.

Otherwise, let tr = (trS, trD) and parse Σ = (comx, comP ,Π). The disclosure
process is then simulated via the following steps.
1. Compute t = F (P,x).
2. Simulate the NIZK argument a using trD via

a ← ZKD.Sim(crsD, trD, (F, t, comx, comP , ppC)).

3. Output the simulated testimony-attestation pair (t, a).

Extract(tr,m,Σ): Let tr = (trS and parse Σ = (comx, comP ,Π).
The algorithm uses trS to extract

η′ ← ZKS.Extr(crsS, trS, (m, vkX, vkP, ppC, comx, comP ),Π),

where η′ = (x′, sk′, P ′,Cert′, w′, r′
com,x, r′

com,P ). It then returns (P ′,x′, w′).

With the above auxiliary algorithms, we are ready to show that our generic
construction satisfies simulatability and extractability.

Theorem 1. Assume that the two NIZK systems for RS and RD are statistical
zero-knowledge and the commitment scheme COM is statistically hiding. Then
the proposed BAPS scheme is statistically simulatable.

Proof. We prove the theorem via a sequence of games that are statistically indis-
tinguishable, where the first is the experiment Expsim

A (λ) with b set to 1 while
the last is Expsim

A (λ) with b set to 0. In the process, we rely on the statistical
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zero-knowledge property of the NIZK systems NIZKS and NIZKD, and the
statistical hiding property of COM.

Game 0: We start with Expsim|b=1
A (λ). In the experiment, the challenger runs the

setup algorithm (PP1,msk1X,msk1P) ← Setup(1λ), and returns (PP1,msk1X,msk1P)
to A. Regarding all the queries made by A, the challenger replies them honestly.
In particular, signature queries and disclosing queries are replied by running
Sign(x, skx, P,CertP ,m,w) and Disclose(m,Σ, c1, F ), respectively. The adversary
can make a polynomial number of queries and outputs a bit b′ eventually.

Game 1: This game introduces the following changes to Game 0. At Step 2
of the Setup algorithm, the challenger runs (crsS, trS) ← ZKS.SimSetup(1λ) for
NIZKS and (crsD, trD) ← ZKD.SimSetup(1λ) for NIZKD. It then outputs tr =
(trS, trD) in addition to st = (PP1,msk1X,msk1P). Similar to Game 0, only st is
given to the adversary. All the queries are replied exactly the same as in Game 0.
These changes are indistinguishable to the adversary due to the statistical zero-
knowledge property of NIZKS and NIZKD.

Game 2: This game is similar to Game 1 except that, in calls to the Osor
sign

oracle, the challenger commits to x and P honestly, but then simulates the proof
Π instead of generating it faithfully. Simulating the proof is possible since the
challenger has the trapdoor trS. Due to the statistical zero-knowledge property
of NIZKS, this game is statistically indistinguishable from Game 1.

Game 3: This game modifies Game 2 as follows. When A queries the Osor
Disclose

oracle, the challenger computes t = F (P,x) faithfully. Then the challenger sim-
ulates the proof a without employing the witness clue = (x, P, rcom,x, rcom,P ),
i.e., a ← ZKD.Sim(crsD, trD, (F, t, comx, comP , ppC)). Due to the statistical ZK
property of NIZKD, this game is statistically indistinguishable from Game 2.

Game 4: In this game, we make a modification regarding the queries Osor
sign

again. Instead of committing to real x and P , we commit to the all-zero string.
Specifically, comx and comP are all commitment to the all-zero string and the
proof Π is generated as ZKS.Sim(crsS, trS, (m, vkX, vkP, ppC, comx, comP )). Due
to the statistical hiding property of COM, the views of the adversary in Game 3
and Game 4 are statistically close.

Finally, observe that Game 4 is identical to the experiment Expsim
A (λ) with

b set to 0. As a result, we can deduce that the two experiments Expsim|b=1
A (λ)

and Expsim|b=0
A (λ) are statistically indistinguishable. This further implies that

the advantage of A in guessing the bit b in experiment Expsim
A (λ) is at most

negligible in λ. This completes the proof. 	


Theorem 2. The proposed BAPS scheme is extractable if the two underlying
NIZK systems satisfy simulation-sound extractability, COM is computationally
binding, and the two signature schemes are EUF-CMA secure.

Proof. To show our generic construction is extractable, we have to prove that
the advantages of any PPT adversary A in experiments Expsound

A (λ), ExpUf-I
A (λ),

and ExpUf-II
A (λ) are negligible in λ. Let us first consider experiment Expsound

A (λ).
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Soundness. Suppose A wins experiment Expsound
A (λ), in which the challenger C

possess a trapdoor tr = (trS, trD). Then the experiment returns 1 either at Line
7 or Line 9 in Fig. 2. Let (m,Σ) be the output of A. Hence, Verify(m,Σ) = 1.
At this point, the challenger runs Extract(tr,m,Σ). In particular, C runs

η′ ← ZKS.Extr(crsS, trS, (m, vkX, vkP, ppC, comx, comP ),Π),

where Σ = (comx, comP ,Π) and η′ = (x′, sk′, w′, P ′,Cert′, r′
com,x, r′

com,P ). If the
experiment returns 1 at Line 7, implying P ′(m,x′, w′) = 0. This, however, will
break the simulation-soundness of NIZKS. Thus, the probability of outputting
1 at Line 7 is at most negligible in λ. Hence, A can only win the experiment by
exploiting the condition of Line 9 in Fig. 2.

Let (F, t, a) be the output of A in this second stage. Then (m,Σ,F, t, a) /∈ QD

and Judge(PP,m,Σ, F, t, a) = 1. Now, using trD, the challenger runs

η̃ ← ZKD.Extr(crsD, trD, (F, t, comx, comP , ppC), a),

where η̃ = (x̃, P̃ , r̃com,x, r̃com,P ). On the one hand, the assumption that A wins
the experiment in the second stage implies that t �= F (P ′,x′). On the other
hand, t = F (P̃ , x̃) by the simulation soundness of NIZKD. This implies that
(P ′,x′) �= (P̃ , x̃), which in turn violates the binding property of COM. The rea-
son is that comx and comP are valid commitments to (x′, P ′) and (x̃, P̃ ) due to
the simulation soundness of NIZKS and NIZKD, respectively. Therefore, the
probability of outputting 1 at Line 9 is also negligible in λ. Thus the probabil-
ity of A winning Expsound

A (λ) is negligible in λ, assuming the simulation-sound
extractability of two NIZK systems and the binding property of COM.

Unforgeability-I. Let us now consider the experiment ExpUf-I
A (λ) and let ε1 be

the advantage of A. Our goal is to construct a PPT adversary B breaking the
EUF-CMA security of the signature scheme SX. Given a verification key vk from
the challenger in experiment Expuf

SX,B(λ), B first performs the following steps.

– Run (mskP, vkP) ← SP.Kg(1λ). Set vkX = vk.
– Run (crsS, trS) ← ZKS.SimSetup(1λ) and (crsD, trD) ← ZKS.SimSetup(1λ).
– Run ppC ← C.Setup(1)λ.

Set PP := (crsS, crsD, ppC, vkP, vkX) and tr = (trS, trD). Then B triggers A by
sending (PP, mskP) to A as described in ExpUf-I

BAPS,A(λ) in Fig. 2. When A queries
oracle OAttriKey with an attribute x, B queries its own challenger in experiment
Expuf

SX,B(λ), obtaining skx, which is then passed to A. Observe that B can also
easily answer all the queries to the oracles OSign and ODis since B holds trapdoors
trS and trD. Thus, B can simulate A’s views in experiment ExpUf-I

BAPS,A(λ).
Eventually, A outputs a forgery (m,Σ). Suppose A wins the experiment

ExpUf-I
BAPS,A(λ). We will show how B employs such a forgery for BAPS to find a

forgery for SX. Since A wins, then (m,Σ) is a valid message-signature pair and
is never obtained from the oracle OSign query. Now B can run Extract(tr,m,Σ),
obtaining a tuple η′ = (x′, sk′, w′, P ′,Cert′, r′

com,x, r′
com,P ). With overwhelm-

ing probability, P ′(m,x′, w′) = 1 and SX.Ver(vkX,x′, sk′) = 1, thanks to the
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simulation-soundness of the NIZKS system. The fact that A wins the experi-
ment implies that x′ /∈ QX . In other words, B never queries its challenger on x′.
Thus (x′, sk′) is a valid forgery of SX. Therefore, if ε1 is non-negligible in λ, B is
able to find a valid forgery of the SX scheme with non-negligible probability as
well. Due to the security of the SX scheme, ε1 is negligible.

The proof of Unforgeability-II is similar to that of Unforgeability-I and
is deferred to the full version of the paper [40]. 	


4 A Lattice-Based BAPS Scheme

We now present a concrete construction of BAPS, that is proven secure under
lattice-based assumptions in the random oracle model. The scheme can address
arbitrary policies, represented as polynomial-size Boolean circuits. Furthermore,
it can handle those disclosing functions which can be expressed as quadratic
functions of the bits of P and x.

Policies as Boolean Circuits. Let integers n, q, k1, k2, k3,K,N be system
parameters. Set K = k1+k2+k3, δP = �log(K +N −2)�+1, and k̄ = 2NδP+k1.
Our construction is associated with message space M = {0, 1}k1 , attribute space
X = {0, 1}k2 , witness space W = {0, 1}k3 , disclosing space DS = {0, 1}k̄, and
arbitrary polynomial-size policies P = {P : {0, 1}K → {0, 1}}. In particular,
P ∈ P has K-bit inputs and N NAND gates, and whose topology is determined
by two functions g, h : [0, N −1] → [0,K +N −2]. Namely, if the inputs to P are
s0, s1, . . . , sK−1 and the N gate outputs are ordered as sK , . . . , sK+N−1, then

sK+i = sg(i) NAND sh(i), ∀i = 0, . . . , N − 1.

Since the construction requires signing, committing, and proving relations
about policies, we first need an effective method for policy representation. To this
end, by running the decomposition function [34] on g(i), h(i) for all i ∈ [0, N −1],
we obtain idecP(g(i)) = (gi,0, . . . , gi,δP−1)� and idecP(h(i)) = (hi,0, . . . , hi,δP−1)�

for i ∈ [0, N −1]. Then we consider the following representation of the circuit P :

zP = (g0,0, g0,1, . . . , g0,δP−1, . . . , gN−1,0, gN−1,1, . . . , gN−1,δP−1,

h0,0, h0,1, . . . , h0,δP−1, . . . , hN−1,0, hN−1,1, . . . , hN−1,δP−1)� ∈ {0, 1}2NδP . (1)

Quadratic Disclosing functions. We consider a collection F = {F : P ×X →
{0, 1}k̄} containing polynomially many disclosing functions F , each of which is
determined by two matrices G1 ∈ {0, 1}k̄×k̄2

,G2 ∈ {0, 1}k̄×k̄, and defined as

F (P,x) = G1 · (b ⊗Kron b) + G2 · b mod 2, with b = (z�
P | x�)� ∈ {0, 1}k̄.

Here, b ⊗Kron b ∈ {0, 1}k̄2
denotes the Kronecker product, i.e., a flattening

of the tensor product b ⊗ b ∈ {0, 1}k̄×k̄. According to this definition of F , each
coordinate of the vector t = F (P,x) ∈ {0, 1}k̄ has the form

∑

i,j∈[1,k̄]

αi,j · (bi · bj) +
∑

�∈[1,k̄]

β� · b� mod 2,



Bicameral and Auditably Private Signatures 337

where αi,j ’s, β�’s are entries of G1,G2 and bi’s are coordinates of b – which are
essentially the bits determining policy P and attribute x. This definition is thus
quite general and captures arbitrary linear and quadratic relations with respect
to the bits of (P,x). By setting matrices G1 and G2 appropriately, one can
enforce the disclosures of any bits of (P,x), or any bit-products, or any linear
and/or quadratic combinations of the bits.

4.1 Technical Overview

At a high level, our lattice-based BAPS scheme follows the sign-then-commit-
then-prove design approach of the generic construction in Sect. 3. However, when
it comes to middle-level techniques, we do introduce several adjustments.

– Policies, which often have long representations, are hashed before being signed
by the policy-issuing authority.

– We handle the problem of evaluating P (m,x, w) in ZK via several involved
sub-protocols, interconnected via the use of some extra commitments.

More concretely, we make use of the following ideal-lattice-based ingredients.
Detailed descriptions can be found in the full version [40].

– A variant of the Ducas-Micciancio (DM) signature scheme [13], which is adap-
tively secure in the standard model. It is used to instantiate the signature
systems for both authorities, i.e., SX and SP. The scheme is carefully cho-
sen among existing tools because it has asymptotically shortest keys among
schemes known to admit a concrete ZK argument of a valid message-signature
pair [35].

– A secure hash function family HmP
, which is adapted from [38] and which

will be used to hash the binary representations of policies.
– Two commitment families CMTρ′,m and CMT�,m, that are adapted from [25]

and that will be used to commit to various objects.
– We also need two simulation-sound extractable NIZK systems that can handle

linear and quadratic relations w.r.t. two moduli q and 2, and should be com-
patible with the DM signature scheme. To this end, we employ a framework
proposed in [30] for interactive Stern-like argument systems [44], and then
apply the Fiat-Shamir transform [18] to obtain the desired properties [17].
These two systems internally employ a string commitment scheme CMT [25]
and a hash function HFS.

Proving in ZK that P (m,x, w) = 1. The major technical challenge that we
have to overcome is to prove in ZK that a hidden-and-certified policy P evaluates
to 1 on a public message m, a hidden-and-certified attribute x, and a hidden
witness w. To demonstrate our techniques, we define some notations.

Let s0, s1, . . . , sK−1 be the input bits of a policy P represented by a Boolean
circuit consisting of N NAND gates, whose topology is determined by functions
g and h. The task is to prove that the NAND gates are computed faithfully, i.e.,
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sK ⊕ sg(0) · sh(0) = 1 mod 2;
sK+1 ⊕ sg(1) · sh(1) = 1 mod 2;
. . . . . .

sK+N−2 ⊕ sg(N−2) · sh(N−2) = 1 mod 2;
sg(N−1) · sh(N−1) = 0 mod 2,

(2)

where sK+i is the output while sg(i), sh(i) are the two inputs of the i-th NAND
gates for i ∈ [0, N −1]. To compute sK+i as in (2), we have to retrieve the values
sg(i), sh(i), which are either the inputs to P or some intermediate values. Most
importantly, we must show that the retrieval process is honestly performed.

To this end, a first idea, inspired by [29], is to perform a dichotomic search
on s = (s0, s1, . . . , sK−1, sK , . . . , sK+N−2) ∈ {0, 1}K+N−1. The expected com-
plexity for a single search is O(log(K + N) · λ · log λ) with λ being the security
parameter. We however take a different approach and perform a “bucket” search.
The expected complexity for a single search is O(

√
K + N + λ · log λ). The new

complexity is smaller if K + N is a small polynomial (say o(λ3)) in λ.
The high-level idea of our “bucket” search is as follows. We divide s into

ρ chunks s0, . . . , sρ−1, each of which is ρ-bit long2. Next, we commit to each
chunk, obtaining ρ commitments: com0, . . . , comρ−1. Note that idecP(g(i)) =
(gi,0, . . . , gi,δP−1)� is the binary representation of g(i). Let ag,i and bg,i be the
integers whose binary representation are the first δP/2 bits and second δP/2
bits of idecP(g(i)), respectively. Then the bit sg(i) is committed in the ag,i-
th “bucket”, i.e., comag,i

, and it is the bg,i-th bit (the index starts from 0)
within this bucket. To search sg(i), we then prove the knowledge of a bit yi

satisfying the statement “yi is the bg,i-th bit within the ag,i-th bucket”. Due to
the correctness of the proof system, yi = sg(i). Said otherwise, we can provably
perform a “bucket” search for yi = sg(i).

We stress that the above retrieval process would not have protected P com-
pletely if m were not committed. This is because if one sees a bit of m used in
computing (2), then some partial information about P could be leaked. Thus,
we commit to m even though it is public. To show the publicity of m, we output
the commitment randomnesses in the final signature Σ.

Proving in ZK that t = F (P,x). Another challenge we have to tackle is to
show the correctness of disclosing value t = F (P,x), where F is a multivariate
quadratic function – as mentioned above. Although this task is not as sophis-
ticated as the one for hidden circuits, it also requires several non-trivial steps,
among which is a sub-protocol for demonstrating the well-formedness of a Kno-
necker product b ⊗Kron b, where the bits of b simultaneously satisfy various
other relations, e.g., they were hashed, signed and committed.

4.2 Scheme Description

We now describe our lattice-based BAPS scheme in detail.

2 For simplicity, assume that K + N − 1 = 2δP for an even integer δP. Then ρ = 2δP/2.
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Setup(1λ): Given the security parameter 1λ, it generates parameters as follows.
– Let n = O(λ) be a power of 2, let q = 3k, and f(X) = Xn + 1 be a

irreducible polynomial. Define rings R = Z[X]/(f(X)) and Rq = R/(qR).
– Let k1 = k1(λ), k′

2 = k′
2(λ), k3 = k3(λ) be positive integers. The message

space is M = {0, 1}k1 , the attribute space is X = {0, 1}k2 with k2 = n·k′
2,

and the witness space is W = {0, 1}k3 . Define K = k1 + k2 + k3.
– Lets P = {P : {0, 1}K → {0, 1}}, where each P is a Boolean circuit

containing N NAND gates, and is uniquely determined by two functions
g, h : [0, N − 1] → [0,K + N − 2]. Let δP = �log(K + N − 2)� + 1.

– Let mP = �(2NδP/n)�. Generate a random matrix Ahp
$←− (Rq)1×mP ,

which determines a hash function in the family HmP
and which will be

used to hash the description of policies.
– Let κ = ω(log λ) and HFS : {0, 1}∗ → {0, 1}κ be a collision-resistant hash

function, which will be modelled as a random oracle.
– Let CMT be a computationally binding and statistically hiding string

commitment scheme (adapted from [25]) that will be used in our zero-
knowledge argument system.

– Initialize SX := 0, SP := 0. Set c, α0, d, c1, . . . , cd,m,m,  and generate
a verification-signing key-pair (vkP,mskP) for the DM signature scheme.
Denote vkP as

AP,FP,0 ∈ (Rq)
1×m, {AP,[i]}d

i=0 ∈ (R1×k
q )d+1,FP,FP,1 ∈ (Rq)

1×�, uP ∈ Rq,

and signing key mskP as RP ∈ (Rq)m×k. Looking ahead, this key pair is
used to sign hashes of the description of policies.

– We also generate another verification key and signing key pair to sign
the attributes. Let vkX be

AX,FX,0 ∈ (Rq)
1×m, {AX,[i]}d

i=0 ∈ (R1×k
q )d+1,FX,FX,1 ∈ (Rq)

1×�, uX ∈ Rq,

and its corresponding signing key mskX as RX ∈ (Rq)m×k.
– For simplicity, let us assume that K + N − 1 is a perfect square and let

ρ =
√

K + N − 1 be its square root. We also assume that ρ is a multiple
of n such that {0, 1}ρ ⊂ (Rq)ρ′

with ρ′ = ρ
n . Sample A0

$←− (Rq)1×ρ′
and

A1
$←− (Rq)1×m from the commitment scheme CMTρ′,m. Here A0,A1 are

used to commit ρ-bit strings.
– Sample Ac

$←− (Rq)1×�. This matrix Ac together with A1 will be used to
commit to n-bit strings.

Set the master policy key as mskP = RP ∈ (Rq)m×k and master attribute
key as mskX = RX ∈ (Rq)m×k.

Attribute-Iss(mskX,x): Given mskX and x ∈ {0, 1}nk′
2 ⊂ (Rq)k′

2 , this algorithm
computes the tag tx = (t0, . . . , tcd−1)� ∈ Td such that SX =

∑cd−1
j=0 2cd−1−jtj

and then updates SX to SX + 1. It then runs the DM signing algorithm,
obtaining a signature skx = (tx, rx,vx) ∈ {0, 1}cd × Rm × Rm+k such that:
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⎧
⎪⎨

⎪⎩

[ AX | AX,[0] +
∑d

j=1 AX,[i] · tx,[i]] · vx = yx;
yx = uX + FX · rdec( FX,0 · rx + FX,1 · x );
‖rx‖∞ ≤ β; ‖vx‖∞ ≤ β.

(3)

Here, rdec is a function that decomposes a ring vector to a vector of appro-
priate length over {−1, 0, 1}. (See the full version [40] for formal description.)

Policy-Iss(mskP, P ): Given mskP = RP and a policy P , this algorithm generates
certificate CertP in the following manner.

– Let the binary representation of the policy P be zP ∈ {0, 1}2NδP ⊂
(Rq)mP , as defined in (1).

– Compute a hash of policy P as hP = Ahp · zP ∈ Rq.
– Use the key RP to generate a signature CertP = (tP , rP ,vP ) ∈ {0, 1}cd ×

Rm × Rm+k on hP such that:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[ AP | AP,[0] +
∑d

j=1 AP,[i] · tP,[i] ] · vP = yP ;
yP = uP + FP · rdec( FP,0 · rP + FP,1 · hP );
hP = rdec( Ahp · zP ) ∈ {−1, 0, 1}n�;
‖rP ‖∞ ≤ β; ‖vP ‖∞ ≤ β.

(4)

Sign(x, skx,m,w, P,CertP ): If P (m,x, w) = 0, the signing algorithm returns ⊥.
Otherwise, proceed as follows. Let m ∈ {0, 1}k1 , x ∈ {0, 1}nk′

2 ⊂ (Rq)k′
2 ,

w ∈ {0, 1}k3 . Parse skx = (tx, rx,vx) and CertP = (tP , rP ,vP ).
– First, we rename some inputs to facilitate the presentation. Denote m =

(s0, . . . , sk1−1)� ∈ {0, 1}k1 , x = (sk1 , . . . , sk1+k2−1)� ∈ {0, 1}k2 , and
w = (sk1+k2 , . . . , sK−1)� ∈ {0, 1}k3 . Let the intermediate wires in the
circuit P be sK , . . . , sK+N−2 and the output wire be sK+N−1. Recall
that we assume K + N − 1 = ρ2.

– Next, we will divide the secret bits of s = (s0, . . . , sK+N−2) ∈ {0, 1}ρ2

into ρ-bit chunks and commit to each of the ρ chunks. To do so, for
i ∈ [0, ρ − 1], let si = (si·ρ, si·ρ+1, . . . , si·ρ+ρ−1)�, sample randomness

rcom,i
$←− {0, 1}nm and compute comi = A0 · si + A1 · rcom,i ∈ Rq.

Without loss of generality, assume k1 = μ1ρ, k2 = μ2ρ for some
integers μ1, μ2. Thus, com0, . . . , comμ1−1 are commitments to m and
comμ1 , . . . , comμ1+μ2−1 are commitments to x. It is worth noting that
we still commit to m even though m is public. This is essential in prov-
ing P (m,x, w) = 1 without revealing P . To demonstrate that m is public,
we will reveal the underlying commitment randomness in the resulting
signature.

– Third, we will commit to the hash of the policy description. Let zP ⊆
(Rq)mP be the representation of P . Compute hP = Ahp · zP ∈ Rq and

hP = rdec(hP ) ∈ {−1, 0, 1}n�. We then sample randomness rcom,P
$←−

{0, 1}nm and let comP = Ac · hP + A1 · rcom,P be a commitment of P .



Bicameral and Auditably Private Signatures 341

For notational purposes, define

selse = (sk1+k2 , sk1+k2+1, . . . , sK+N−2)� ∈ {0, 1}K+N−1−k1−k2 ,

comm = (com�
0 | · · · | com�

μ1−1)
� ∈ Rμ1

q ,

comx = (com�
μ1

| · · · | com�
μ1+μ2−1)

� ∈ Rμ2
q ,

comelse = (com�
μ1+μ2

| · · · | com�
ρ−1)

� ∈ Rρ−μ1−μ2
q ,

rcom,m = (r�
com,0 | · · · | r�

com,μ1−1)
� ∈ {0, 1}nmμ1 ,

rcom,x = (r�
com,μ1

| · · · | r�
com,μ1+μ2−1)

� ∈ {0, 1}nmμ2 ,

rcom,else = (r�
com,μ1+μ2

| · · · | r�
com,ρ−1)

� ∈ {0, 1}nm(ρ−μ1−μ2).

Once the commitment process is done, this algorithm then generates a NIZK
argument demonstrating the knowledge of

η = (x, skx, zP ,hP ,CertP , w, sK , . . . , sK+N−2, rcom,x, rcom,else, rcom,P )

such that the following conditions hold.
(a) The message is signable with respect to policy P , attribute x, and witness

w, i.e., P (m,x, w) = 1, or equivalently, equations (2) hold.
(b) comx and comelse are valid commitments to x and selse with random-

nesses rcom,x and rcom,else, respectively. In addition, comP is a valid com-
mitment to hP with randomness rcom,P . In other words, the following
equations are satisfied.

{
comi = A0 · si + A1 · rcom,i, ∀i ∈ [μ1, ρ − 1]
comP = Ac · hP + A1 · rcom,P .

(5)

(c) skx is a valid signing key for attribute x, i.e., (x, skx) satisfies (3).
(d) CertP is a valid certificate for policy P , i.e., (zP ,hP ,CertP ) satisfies (4).
This is done via a dedicated Stern-like argument (details are in the full ver-
sion [40]). The protocol is repeated κ = ω(log λ) times to achieve negligible
soundness error and made non-interactive [18]. Let the resultant proof be

Π =
(

{COMi}κ−1
i=0 , {CHi}κ−1

i=0 , {RSPi}κ−1
i=0

)
, (6)

where (CH0, . . . ,CHκ−1)� = HFS({COMi}κ−1
i=0 , ξ) and ξ is of the form

( m, vkX, vkP, Ahp, Ac, A0, A1, comm, comx, comelse, comP , rcom,m ). (7)

Return the signature as Σ = (comm, comx, comelse, comP , rcom,m, Π) and
the clue as clue = (x, P, rcom,x, rcom,P ). Note that all the commitments
are needed for the verification of Π. Also, as m is public, the randomnesses
rcom,m are included in Σ.

Verify(m,Σ): This algorithm verifies the validity of the signature Σ as follows.
– Let m = (s0, . . . , sk1−1)� ∈ {0, 1}k1 and si = (si·ρ, si·ρ+1, . . . , si·ρ+ρ−1)�

for i ∈ [0, μ1 − 1].



342 K. Nguyen et al.

– Parse Σ = (comm, comx, comelse, comP , rcom,m,Π), where Π is as in (6),
comm = (com�

0 | · · · | com�
μ1−1)

�, and rcom,m = (r�
com,0 | · · · |

r�
com,μ1−1)

�.
– Return 1 if and only if the following conditions are satisfied.

(i) (CH0, . . . ,CHκ−1)� = HFS({COMi}κ−1
i=0 , ξ) with ξ as in (7).

(ii) For all i ∈ [0, μ1 − 1], comi = A0 · si + A1 · rcom,i.
(iii) For all j ∈ [0, κ − 1], response RSPj is valid with respect to commit-

ment COMj and the challenge CHj .
Disclose(m,Σ, clue, F ): This algorithm computes a testimony-attestation pair as

follows.
– Let x = (sk1 , . . . , sk1+k2−1)� ∈ {0, 1}k2 , and for i ∈ [μ1, μ1 + μ2 − 1], let

si = (si·ρ, si·ρ+1, . . . , si·ρ+ρ−1)�.
– Parse Σ = (comm, comx, comelse, comP , rcom,m,Π), where Π is as in (6),

comx = (com�
μ1

| · · · |com�
μ1+μ2−1)

�, rcom,x = (r�
com,μ1

| · · · |r�
com,μ1+μ2−1)

�.
Return 0 if Verify(m,Σ) = 0.

– Parse clue = (x, P, rcom,x, rcom,P ).
– Let the binary representation of P be zP ∈ {0, 1}2NδP , and F be deter-

mined by two matrices G1 ∈ {0, 1}k̄×k̄2
and G2 ∈ {0, 1}k̄×k̄. Next, denote

b = (z�
P | x�)� and then compute the testimony as

t = G1 · (b ⊗Kron b) + G2 · b mod 2.

– Generate a NIZK argument of knowledge of clue such that the following
conditions hold.
(i) The testimony t is honestly computed, i.e., for b = (z�

P | x�)�,

t = F (P,x) = G1 · (b ⊗Kron b) + G2 · b mod 2.

(ii) comx and comP are valid commitments of x and P , i.e.,

comP = Ac · hP + A1 · rcom,P , with hP = rdec(Ahp · zP );
comi = A0 · si + A1 · rcom,i, ∀ i ∈ [μ1, μ1 + μ2 − 1].

This can be done by running a Stern-like argument on public input
ξD = (G1,G2, t, comx, comP ,Ahp,Ac,A0,A1) and secret input clue. The
protocol is conducted κ = ω(log λ) times in parallel to obtain negligi-
ble soundness error and then made non-interactive via the Fiat-Shamir
heuristic [18]. The resultant proof a is a triple of a form

a =
(
{COMD,i}κ−1

i=0 , {CHD,i}κ−1
i=0 , {RSPD,i}κ−1

i=0

)
, (8)

where (CHD,0, . . . ,CHD,κ−1)� = HFS({COMD,i}κ−1
i=0 , ξD).

– Return t and a.
Judge(m,Σ,F, t, a): If Verify(m,Σ) = 0, return 0. Otherwise, it proceeds to verify

the validity of a, which is quite similar to the verification of Π. Return 1 if
a is valid and 0 otherwise.
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4.3 Analyses

Correctness. The correctness of our construction relies on two facts: (i) The
employed Ducas-Micciancio signature scheme is correct with overwhelming prob-
ability; (ii) The two underlying zero-knowledge argument systems are perfectly
correct. Therefore, for any policy P , any attribute x, any message m such that
P (m,x, w) = 1 for some witness w, if a signer owns honestly-generated signing
key for x and certificate for P , and signs the message faithfully as in the Sign
algorithm, then the Verify algorithm outputs 1 with overwhelming probability. In
addition, clue contains P , x, and randomnesses for committing them. Therefore,
the testimony can be correctly computed as t = F (P,x) and the attestation a,
honestly generated with the knowledge of clue, will pass the Judge algorithm.

Asymptotic Efficiency. We analyze the efficiency of our construction w.r.t.
the security parameter λ, the number K of inputs in P , and the number N of
NAND gates in P .

– The public parameters are dominated by vkX, vkP,Ahp,Ac,A0,A1, which are
of O

(
N · log(K + N) · log λ + λ · (log λ)2

)
bits.

– The mskX and mskP have bit size O(λ · (log λ)3).
– The signature size is dominated by the size of Π, which has bit size κ ·O

(
L1 ·

log q + LP

)
= κ · O

(
λ · (log λ)5 + N

√
K + N log λ + N · λ · (log λ)2 + (K +

N) log λ + λ
√

K + N(log λ)2
)
.

– The size of attestation is κ · O
(

L2 · log q + LD

)
= κ · O

(
k2 · log λ + μ2λ ·

(log λ)2 + N2 · log2(K + N) + k2
2

)
.

Security. In the random oracle model, our construction satisfies simulatabil-
ity and extractability. In particular, the construction is simulatable based on the
facts that (i) the two underlying argument systems are statistical ZK and (ii) the
commitment schemes CMTρ′,m,CMT�,m are statistically hiding. Extractability
relies on (i) the computational soundness of the two underlying ZKAoK sys-
tems, (ii) the computational binding property of CMTρ′,m and CMT�,m, (iii)
EUF-CMA security of the Ducas-Micciancio signature scheme, and (iv) the col-
lision resistance of the hash function family HmP

. We summarize the security in
the following theorems and provide detailed proofs in the full version [40].

Theorem 3. Assume that the two underlying zero-knowledge argument systems
are statistical zero-knowledge and the commitment schemes CMTρ′,m,CMT�,m

are statistically hiding. Then the proposed BAPS scheme is simulatable.

Theorem 4. The proposed BAPS scheme is extractable if the two underly-
ing argument systems are computationally knowledge sound, the two commit-
ment schemes CMTρ′,m, CMT�,m are computationally binding, the DM signa-
ture scheme is EUF-CMA secure, and the hash function family HmP

is collision-
resistant.
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Abstract. Structure-preserving signatures (SPS) are an important
building block for privacy-preserving cryptographic primitives, such
as electronic cash, anonymous credentials, and delegatable anonymous
credentials. In this work, we introduce the first threshold structure-
preserving signature scheme (TSPS). This enables multiple parties to
jointly sign a message, resulting in a standard, single-party SPS signa-
ture, and can thus be used as a replacement for applications based on
SPS.

We begin by defining and constructing SPS for indexed messages,
which are messages defined relative to a unique index. We prove its
security in the random oracle model under a variant of the general-
ized Pointcheval-Sanders assumption (PS). Moreover, we generalize this
scheme to an indexed multi-message SPS for signing vectors of indexed
messages, which we prove secure under the same assumption. We then
formally define the notion of a TSPS and propose a construction based
on our indexed multi-message SPS. Our TSPS construction is fully non-
interactive, meaning that signers simply output partial signatures with-
out communicating with the other signers. Additionally, signatures are
short: they consist of 2 group elements and require 2 pairing product
equations to verify. We prove the security of our TSPS under the secu-
rity of our indexed multi-message SPS scheme. Finally, we show that our
TSPS may be used as a drop-in replacement for UC-secure Threshold-
Issuance Anonymous Credential (TIAC) schemes, such as Coconut, with-
out the overhead of the Fischlin transform.
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be shared among a set of parties [16,79] such that the task involving the key
can only be performed if some threshold of them collaborates. Threshold signa-
tures [35,80], threshold encryption [26,81], and threshold verifiable unpredictable
functions [61] enable distributed protocols, such as e-voting systems [30,31] and
multi-party computation [29,36].

Threshold signatures in particular have attracted significant interest recently,
in part because of advances in distributed ledger technologies, cryptocurrencies,
and decentralized identity management [25,33,40,68,69]. They are also the sub-
ject of current standardization efforts by NIST [20,21]. Signatures used by certifi-
cation authorities to issue credentials or to secure digital wallets make attractive
targets for misuse or forgery. To mitigate these risks, an (n, t)-threshold signa-
ture scheme distributes the signing key among n parties such that any quorum
of at least t signers can jointly generate a signature, but the scheme remains
secure as long as fewer than t key shares are known to the adversary.

A threshold signature that is fully non-interactive consists of a single round of
communication. On input the message, each signer computes its partial signature
independently of other signers, and aggregation of at least t partial signatures
results in a single signature representing the group. Interactive signing proto-
cols involving two or more rounds add complexity and are error prone [41,84].
Thus, fully non-interactive schemes are preferable, the canonical example being
threshold BLS [18,19].

Structure-Preserving Signatures. Structure-preserving signatures (SPS) [4]
are pairing-based signatures where the message, signature, and verification key
consist of source group elements only (in one or both source groups), and sig-
nature verification consists of group membership checks and pairing product
equations only. SPS have been studied extensively, with a main focus on short
signatures [5,7,52,54], lower bounds [1,5,6], and (tight) security under well-
known assumptions [2,8,51,62,63,65,72].

SPS are compatible with Groth-Sahai non-interactive zero-knowledge proofs
(NIZKs) [60] and, more generally, help to avoid the expensive extraction of expo-
nents in security proofs. This makes them attractive for the modular design of
protocols relying on signatures and NIZKs. Indeed, SPS have seen widespread
adoption in privacy-preserving applications, such as group signatures [4,72],
traceable signatures [3], blind signatures [4,47], attribute-based signatures [42],
malleable signatures [9], anonymous credentials [23,46,48], delegatable anony-
mous credentials [13,34], and anonymous e-cash [17].

For such signature-based applications, compromise of the signing key repre-
sents a single point of attack and failure. Replacing the use of SPS with TSPS
together with distributed key generation (DKG) would help to reduce the trust
in a single authority and increase the availability of the respective signing ser-
vice. While many of the aforementioned applications of SPS would benefit from
thresholdization, until now there was no known threshold construction of SPS
that could serve as their basis. We provide the first candidate TSPS scheme as
the main contribution of this work.



350 E. Crites et al.

Towards Constructing a Threshold SPS. Our goal is to construct threshold
SPS that are fully non-interactive, i.e., there is no coordination among signers.
This puts some requirements on the used SPS and in particular prevents the use
of nonlinear operations of the signing randomness and secret keys (cf. Sect. 2),
which existing SPS fail to satisfy. Thus, as a starting point for our TSPS, we
consider the pairing-based Pointcheval-Sanders signature scheme (PS) [76] (cf.
Sect. 3.2), as its randomness is simply a random base group element and it avoids
hashing during verification. We recall that the PS scheme is defined over an asym-
metric bilinear group (G1,G2,GT , p, e, g, ĝ) with signing key sk = (x, y) ∈ (Z∗

p)
2

and corresponding verification key vk = (ĝx, ĝy) ∈ G
2
2. The signing algorithm

takes as input a scalar message m ∈ Zp and outputs a signature

σ = (h, s) = (gr, hx+my) ∈ G
2
1 .

Importantly, the nonce r (or equivalently the base h) is sampled fresh for each
signature. This scheme fails to be an SPS because the message is not a group
element (or elements). Ghadafi [52] made the observation that a PS-like SPS
scheme can be constructed for a group element message (M1,M2) ∈ G1 ×G2 for
which there exists a scalar message m ∈ Zp such that M1 = gm and M2 = ĝm.
This is referred to as a Diffie-Hellman (DH) message. (cf. Sect. 1 for more on
this message space.) A Ghadafi SPS signature (cf. Sect. 3.2) has the form:

σ = (h, s, t) = (gr,Mr
1 , hxsy) ∈ G

3
1 .

Let us see how one might construct a threshold version of this scheme. Sup-
pose each signer possesses a share ski = (xi, yi) of the secret key sk = (x, y). A
first (non-interactive) attempt might have each signer output a partial signature
of the form:

σi = (hi, si, ti) = (gri ,Mri
1 , hxi

i syi

i ) ,

with aggregation of the third term having the form:

t =
∏

i∈T
tλi
i =

∏

i∈T
grixiλiMriyiλi

1 ,

where λi is the Lagrange coefficient for party i in the signing set T of size at
least t (the threshold). As with other existing SPS, this however does not allow
reconstruction via Lagrange interpolation because each term in the exponent is
multiplied by a distinct random integer ri. To overcome this, due to the specific
form of the signatures, the signers would have to agree on a common random
element h = gr. Indeed, this will be our approach to solve this issue.

A second (interactive) attempt might have each signer output randomness
shares hi = gri and corresponding si = Mri

1 in a first round of signing, followed
by a second round in which each signer computes aggregate values h = gr =∏

i∈T hi = g
∑

i∈T ri and s =
∏

i∈T si and outputs a partial signature of the
form:

σi = (h, s, ti = hxisyi) , (1)
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with aggregation of the third term having the form:

t =
∏

i∈T
tλi
i =

∏

i∈T
grxiλiMryiλi

1 .

This allows reconstruction via Lagrange interpolation. In terms of security, the
unforgeability of this threshold scheme may be reduced to the unforgeability of
single-party Ghadafi SPS signatures. However, the reduction needs to obtain the
corrupt hj , sj values before revealing honest values hi, si. The addition of a third
signing round could achieve this, whereby all values hi, si are committed to in
the first round as H(hi),H′(si), for H and H′ modeled as random oracles, and
then revealed in the second round. However, the reduction needs to obtain the
nonces rj of the corrupt parties, which may be extracted from zero-knowledge
proofs appending the outputs hi, si in round two. These additional rounds and
zero-knowledge proofs add significant overhead.

Our approach is clean and straightforward: we instead have signers obtain
shared randomness h = gr via a random oracle, yielding a fully non-interactive
scheme. But observe that if partial signatures have the form of Eq. (1), then s =
Mr

1 cannot be computed without knowledge of the discrete logarithm dlogh(M1).
Thus, we borrow techniques from Sonnino et al. [82] and Camenisch et al. [22],
which implicitly sign indexed Diffie-Hellman messages (id,M1,M2), a concept
we define and formalize rigorously in this work. Indexing can be understood as
requiring the existence of an injective function f that maps each scalar message
m ∈ Zp to an index id = f(m). We then have h = H(id), where H is modeled as
a random oracle, and M1 = H(id)m. Then each partial signature has the form:

σi = (h, si) = (H(id), hxiMyi

1 ),

and the aggregated signature has the form:

σ = (h, s) = (H(id), hxMy
1 ). (2)

This is exactly our TSPS construction, with the underlying SPS signature defined
by Eq. (2). We extend these techniques to vectors of indexed Diffie-Hellman mes-
sages (id, �M1, �M2), which allows additional elements to be signed, e.g., attributes
when used within anonymous credential systems [76,82]. It is important to note
that the index is not needed for verification (and therefore H(id) is not com-
puted), so our schemes are indeed structure preserving.

We define an appropriate notion of unforgeability for indexed messages: exis-
tential unforgeability under chosen indexed message attack (EUF-CiMA) and
prove the security of our constructions under this notion. We discuss various
ways of defining the index function, depending on the application. For example,
if privacy is not required and the message and public key are known, the index
function may simply be the identity function: id = f(m) = m, capturing the
intuitive notion that each nonce r is associated with a single scalar message m.
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Why Diffie-Hellman Messages? Diffie-Hellman messages can be traced back
to the introduction of automorphic signatures [45] and SPS [4], and have since
appeared in various other SPS constructions [52–55]. Their use is largely moti-
vated by an impossibility result by Abe et al. [5], which proves that any SPS in
the Type-III setting must have at least 3 group elements and 2 pairing product
equations in the verification. Furthermore, the result rules out unilateral signa-
tures (those containing elements from only one source group) meeting this lower
bound. However, if messages are in both source groups, it is possible to construct
a unilateral SPS meeting this lower bound. This is what Diffie-Hellman messages
and the Ghadafi construction [52] achieve. We follow the same approach to con-
struct efficient TSPS.

Constructing a TSPS over standard, unilateral message spaces remains an
interesting open problem. However, such a scheme would necessarily contain
more group elements in the signature and more pairing product equations to
verify, due to this impossibility result. This is an important consideration when
combining with Groth-Sahai NIZK proofs in applications, as the number of pair-
ings required for verification scales linearly with the number of source pairings.

1.1 Our Contributions

Our contributions can be summarized as follows:

– We formalize the concept of indexed message spaces and formally define the
notion of structure-preserving signatures (SPS) over indexed message spaces
and corresponding notion of security: existential unforgeability under chosen
indexed message attack (EUF-CiMA).

– We propose a concrete SPS construction over indexed Diffie-Hellman mes-
sages, called IM-SPS, and prove its EUF-CiMA security under a new variant
of the generalized Pointcheval-Sanders assumption. We reduce this assump-
tion to the hardness of the (2, 1)-discrete logarithm problem in the algebraic
group model (AGM).

– We provide an indexed multi-message SPS construction, called IMM-SPS,
which allows vectors of indexed Diffie-Hellman messages to be signed, and
prove its EUF-CiMA security under the same assumption.

– We introduce the notion of a threshold structure-preserving signature (TSPS)
scheme and propose a fully non-interactive TSPS based on our EUF-CiMA
secure SPS scheme. Signatures contain only 2 group elements and verification
consists of 2 pairing product equations. We prove the security of our TSPS
under the EUF-CiMA security of IMM-SPS.

– We discuss applications of our TSPS construction and, in particular, blind
signing of messages. This represents a core functionality in Threshold-Issuance
Anonymous Credential (TIAC) systems. We outline how our TSPS can be
used in TIAC systems as a drop-in replacement that avoids rewinding extrac-
tors for the required non-interactive zero-knowledge (NIZK) proofs.
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2 Related Work

We provide an overview of pairing-based non-interactive threshold signature
schemes in Table 1 and structure-preserving signature schemes (SPS) in Table 2
and discuss how these schemes fail to meet our requirements.

Table 1. Table of pairing-based non-interactive threshold signature schemes. iDH refers
to indexed Diffie-Hellman messages (Definition 7). �: Satisfied. ✗: Not satisfied.

Scheme Message Space Signature Size Structure Preserving

BLS [10,18] {0, 1}∗ 1G1 ✗

LJY ‡1 [70] {0, 1}∗ 2G1 ✗

LJY ‡2 [70] {0, 1}∗ 4G1 + 2G2 ✗

GJMMST [61] {0, 1}∗ 4G1 + 2G2 ✗

PS [82,83] Zp 2G1 ✗

Our TSPS iDH 2G1 �

Threshold Signatures. BLS [19] and its threshold version [10,18] are not
structure preserving, as they map bitstring messages {0, 1}∗ to the group using
a random oracle. Libert et al. [70] propose a secure non-interactive threshold
signature scheme based on linearly-homomorphic SPS (LHSPS) [71]. While this
construction meets many of our requirements, the resulting threshold signature
is not structure preserving. It either relies on random oracles to hash bitstring
messages to group elements (‡1 [70]) or, when avoiding random oracles, a bit-wise
encoding of the message is required (‡2 [70]). Gurkan et al. [61] propose a pairing-
based threshold Verifiable Unpredictable Function (VUF), which is essentially
a unique threshold signature [73]. However, their construction is not structure
preserving: it hashes bitstring messages to the group using a random oracle.
Sonnino et al. [82] and Tomescu et al. [83] present non-interactive threshold
versions of Pointcheval-Sanders (PS) signatures; however, verification takes place
over scalar vectors, and is thus not structure preserving. We note that signatures
for scalar vectors are intuitively closer to SPS than ones for bitstring messages,
as evidenced, for example, by Ghadafi’s scheme [52]. We do not know of a general
conversion technique, however.

Structure-Preserving Signatures. Most structure-preserving signatures in
the literature fail to be good candidates for thresholdization due to nonlinear
operations of signer-specific randomness and secret key elements, which are not
amenable to Lagrange interpolation (e.g., [4,5,7,11,54,58]). However, there are
two promising approaches: linearly-homomorphic SPS (LHSPS) [71] and the SPS
by Ghadafi [52]. The former is a one-time signature, meaning that a key pair
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can only sign a single message1. The SPS by Ghadafi [52] lends itself to thresh-
oldization, but it requires multiple communication rounds and incurs significant
overhead. (See Sect. 1 for a discussion of this approach.)

Table 2. Table of structure-preserving signature schemes (SPS). DH refers to Diffie-
Hellman messages (Definition 2), and iDH refers to indexed Diffie-Hellman messages
(Definition 7). Avoids Nonlinearity refers to operations of the signing randomness and
secret keys. �: Satisfied. ✗: Not satisfied.

Scheme Message Space Signature Size Avoids Nonlinearity

AFGHO [4] G1 5G1 + 2G2 ✗

AGHO [5] G1 ×G2 / G2 2G1 + 1G2 ✗

AGOT [7] G1 2G1 + 1G2 ✗

BFFSST [11] G2 1G1 + 2G2 ✗

Ghadafi [54] DH 2G1 ✗

Ghadafi [52] DH 3G1 ✗

Groth [58] G2 1G1 + 2G2 ✗

LPJY [71]∗ G1 2G1 �
Our SPS iDH 2G1 �

∗ One-time: a key pair can only sign a single message.

3 Preliminaries and Definitions

3.1 General

Let κ ∈ N denote the security parameter and 1κ its unary representation. Let
p be a κ-bit prime. For all positive polynomials f(κ), a function ν : N → R

+ is
called negligible if ∃ κ0 ∈ N such that ∀ κ > κ0 it holds that ν(κ) < 1/f(κ). We
denote by G

∗ the set G \ 1G, where 1G is the identity element of the group G.
We denote the group of integers mod p by Zp = Z/pZ, its multiplicative group
of units by Z

∗
p, and the polynomial ring over Zp by Zp[X]. For a group G of

order p with generator g, we denote the discrete logarithm m ∈ Zp of M ∈ G

base g by dlogg(M) (i.e., M = gm). We denote the set of integers {1, . . . , n}
by [1, n] and the vector A by �A. Let Y ←$ F (X) denote running probabilistic
algorithm F on input X and assigning its output to Y . Let x ←$Zp denote
sampling an element of Zp uniformly at random. All algorithms are randomized
unless expressly stated otherwise. PPT refers to probabilistic polynomial time.
We denote the output of a security game GGame between a challenger and a
PPT adversary A by GGame

A , where A wins the game if GGame
A = 1.

1 Note that the LHSPS in [71] is designed over symmetric bilinear groups with signa-
tures consisting of 3 group elements. The authors in [70] extend this LHSPS over
asymmetric bilinear groups with signatures of size 2.
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Definition 1 (Bilinear Group). A bilinear group generator BG(1κ) returns
a tuple (G1,G2,GT , p, e, g, ĝ) such that G1, G2 and GT are finite groups of the
same prime order p, g ∈ G1 and ĝ ∈ G2 are generators, and e : G1×G2 → GT is
an efficiently computable bilinear pairing, which satisfies the following properties:

1. e(g, ĝ) �= 1GT
(non-degeneracy).

2. ∀ a, b ∈ Zp, e(ga, ĝb) = e(g, ĝ)ab = e(gb, ĝa) (bilinearity).

We rely on bilinear groups G1 and G2 with no efficiently computable isomor-
phism between them [50], also called Type-III or asymmetric bilinear groups. To
date, they are the most efficient choice for relevant security levels.

Definition 2 (Diffie-Hellman Message Space [4,45]). Over an asymmetric
bilinear group (G1,G2,GT , p, e, g, ĝ), a pair (M1,M2) ∈ G1 × G2 belongs to the
Diffie-Hellman (DH) message space MDH if there exists m ∈ Zp such that M1 =
gm and M2 = ĝm.

One can efficiently verify whether (M1,M2) ∈ MDH by checking e(M1, ĝ) =
e(g,M2).

Definition 3 (Algebraic Group Model [49]). An adversary is algebraic if
for every group element h ∈ G = 〈g〉 that it outputs, it is required to output a
representation �h = (η0, η1, η2, . . . ) such that h = gη0

∏
gi

ηi , where g, g1, g2, · · · ∈
G are group elements that the adversary has seen thus far.

The original definition of the algebraic group model (AGM) [49] only captured
regular cyclic groups G = 〈g〉. Mizuide et al. [74] extended this definition to
include symmetric pairing groups (G1 = G2), such that the adversary is also
allowed to output target group elements (in GT ) and their representations.
Recently, Couteau and Hartmann [28] defined the Algebraic Asymmetric Bilin-
ear Group Model, which extends the AGM definition for asymmetric pairings by
allowing the adversary to output multiple elements from all three groups. The
definition can be found in the full version [32].

3.2 Schemes

Pointcheval-Sanders Signatures [76]. The PS signature scheme is defined
over the message space M of scalar messages m ∈ Zp and consists of the following
PPT algorithms:

– pp ← Setup(1κ): Output pp = (G1,G2,GT , p, e, g, ĝ) ← BG(1κ).
– (sk, vk) ← KGen(pp): Sample x, y ←$Z

∗
p and set sk = (sk1, sk2) = (x, y) and

vk = (vk1, vk2) = (ĝx, ĝy). Output (sk, vk).
– σ ← Sign(pp, sk,m): Sample r ←$Z

∗
p and compute σ = (h, s) = (gr, hx+my).

Output σ.
– 0/1 ← Verify(pp, vk,m, σ): If h ∈ G1, h �= 1G1 , and the pairing product equa-

tion e(h, vk1vk
m
2 ) = e(s, ĝ) holds, output 1 (accept); else, output 0 (reject).
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Pointcheval-Sanders signatures are EUF-CMA secure under the PS assumption
(Definition 5) [76].

Ghadafi SPS [52]. The Ghadafi structure-preserving signature scheme is
defined over the message space MDH of Diffie-Hellman pairs (M1,M2) ∈ G1×G2

such that e(M1, ĝ) = e(g,M2) and consists of the following PPT algorithms:

– pp ← Setup(1κ): Output pp = (G1,G2,GT , p, e, g, ĝ) ← BG(1κ).
– (sk, vk) ← KGen(pp): Sample x, y ←$Z

∗
p and set sk = (sk1, sk2) = (x, y) and

vk = (vk1, vk2) = (ĝx, ĝy). Output (sk, vk).
– σ ← Sign(pp, sk,M1,M2): Sample r ←$Z

∗
p and compute σ = (h, s, t) =

(gr,Mr
1 , hxsy). Output σ.

– 0/1 ← Verify(pp, vk, σ,M1,M2): If h, s, t ∈ G1, h �= 1G1 , and both pairing
product equations e(h,M2) = e(s, ĝ) and e(t, ĝ) = e(h, vk1)e(s, vk2) hold,
output 1 (accept); else, output 0 (reject).

The Ghadafi SPS is weakly EUF-CMA secure in the generic group model
(GGM) [52].

Shamir Secret Sharing [79]. An (n, t)-Shamir secret sharing divides a
secret s among n shareholders such that each subset of at least t sharehold-
ers can reconstruct s, but fewer than t cannot (and s remains information-
theoretically hidden). A dealer who knows the secret s forms a polynomial f(x)
of degree t with randomly chosen coefficients from Zp such that f(0) = s. The
dealer then securely provides each shareholder with si = f(i), i ∈ [1, n]. Let
�s ←$Share(s, p, n, t) denote the process of computing shares �s = (s1, . . . , sn)
of a secret s. Each subset T ⊂ [1, n] of size at least t can pool their shares
to reconstruct the secret s using Lagrange interpolation, as s = f(0) =∑

i∈T siλi, where λi =
∏

j∈T ,j �=i
j

j−i .

3.3 Assumptions

Definition 4 ((2, 1)-Discrete Logarithm Assumption [12]). Let pp =
(G1,G2,GT , p, e, g, ĝ) ← BG(1κ) be an asymmetric bilinear group. The (2, 1)-
discrete logarithm assumption holds with respect to BG if for all PPT adversaries
A, there exists a negligible function ν such that

Pr
[
z ←$Z

∗
p; (Z,Z ′, Ẑ) ← (gz, gz2

, ĝz); z′ ←$ A(pp, Z, Z ′, Ẑ) : z′ = z
]

< ν(κ) .

Definition 5 (PS Assumption [76]). Let the advantage of an adversary A
against the PS game GPS, as defined in Fig. 1, be as follows:

AdvPS
A (κ) = Pr

[
GPS

A = 1
]

.

The PS assumption holds if for all PPT adversaries A, there exists a negligible
function ν such that AdvPS

A (κ) < ν(κ).
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Fig. 1. Game defining the PS assumption.

The validity of the tuple (m∗, h∗, s∗) is decidable by checking e(s∗, ĝ) =
e(h∗, ĝx(ĝy)m∗

). The PS assumption is an interactive assumption defined by
Pointcheval and Sanders [76] to construct an efficient randomizable signature
and has been shown to hold in the GGM.

Kim et al. [66] introduced a generalized version of the PS assumption (GPS)
that splits the PS oracle OPS(·) into two oracles OGPS

0 (),OGPS
1 (·): the first sam-

ples h ←$G1, and the second takes h and m as input and generates the PS
value hx+my. Recently, Kim et al. [67] extended the GPS assumption (GPS2),
replacing field element inputs, such as m, with group element inputs. The GPS2

assumption holds under the (2, 1)-DL assumption (Definition 4) in the AGM.
Both the GPS and GPS2 assumptions can be found in the full version [32].

Owing to the fact that our SPS and TSPS constructions rely on a different
message space, we introduce an analogous generalized PS assumption (GPS3),
defined as follows.

Definition 6 (GPS3 Assumption). Let the advantage of an adversary A
against the GPS3 game GGPS3 , as defined in Fig. 2, be as follows:

AdvGPS3
A (κ) = Pr

[
GGPS3

A = 1
]

.

The GPS3 assumption holds if for all PPT adversaries A, there exists a negligible
function ν such that AdvGPS3

A (κ) < ν(κ).

We prove that this assumption holds in the AGM if the (2, 1)-DL problem is
hard (Theorem 1).
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Fig. 2. Game defining our GPS3 assumption. The additional element in the solid box
is required for blind signing only (cf. Sect. 6.1).

4 Indexed Message Structure-Preserving Signatures

In this section, we introduce the notion of structure-preserving signatures (SPS)
on indexed messages as well as a corresponding notion of security: unforgeability
against chosen indexed message attack (EUF-CiMA). We provide an indexed mes-
sage SPS construction, called IM-SPS, and prove its EUF-CiMA security under
the GPS3 assumption (Definition 6) in the random oracle model (ROM) (The-
orem 2). We also propose an indexed multi -message SPS construction, called
IMM-SPS, which allows vectors of indexed messages to be signed, and prove its
EUF-CiMA security under the same assumptions (Theorem 3). IMM-SPS are
useful for applications where additional elements, such as attributes, are signed.

Indexing can be understood as requiring the existence of an injective function
f that maps each message to an index. We model this by requiring that for all
index/message pairs in an indexed message space M, the following uniqueness
property holds: (id, M̃) ∈ M, (id′, M̃ ′) ∈ M, id = id′ ⇒ M̃ = M̃ ′. That
is, no two messages use the same index. We refer to index/message pairs as
M = (id, M̃).

Indexing is useful, as signatures can depend on the index; for example, in our
schemes, signing involves evaluating a hash-to-curve function H on the index to
obtain a base element h ← H(id). Verifying a message/signature pair does not
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require availability of the index, making it structure preserving. Consequently,
the verification message space M̃ is obtained from M by omitting the index.

For our schemes, we need to consider that in verification one can provide a
base element hr obtained by randomizing the original base element h. This is
due to the partial randomizability of the signatures. Thus, different messages
M̃, M̃ ′ may be valid representations for the same scalar message m. Conse-
quently, similar to SPS on equivalence classes (SPS-EQ) [48], the verification
message space M̃ is expanded to consider equivalent (randomized) messages:
M̃ = {M̃ | ∃ (·, M̃ ′) ∈ M , M̃ ∈ EQ(M̃ ′)}. The function EQ depends on the
concrete message space and determines the respective set of equivalent messages.

Next, we define the indexed Diffie-Hellman message space used by our IM-SPS
scheme (cf. Fig. 3 for its encoding function).

Definition 7 (Indexed Diffie-Hellman Message Space). Given an asym-
metric bilinear group (G1,G2,GT , p, e, g, ĝ) ← BG(1κ), an index set I, and a
random oracle H : I → G1, MH

iDH is an indexed Diffie-Hellman (DH) message
space if MH

iDH ⊂ {(id, M̃) | id ∈ I,m ∈ Zp, M̃ = (H(id)m, ĝm) ∈ G1 × G2}
and the following index uniqueness property holds: for all (id, M̃) ∈ MH

iDH,
(id′, M̃ ′) ∈ MH

iDH, id = id′ ⇒ M̃ = M̃ ′.
We define the equivalence class for each message M̃ = (M1,M2) ∈ M̃H

iDH as
EQiDH(M1,M2) = {(Mr

1 ,M2) | ∃ r ∈ Zp}.

Fig. 3. Encoding function of indexed Diffie-Hellman message space in the ROM.

The subset membership is efficiently decidable by checking e(M1, ĝ) =
e(h,M2) for h ← H(id). Note that, in addition, one needs to guarantee that
no two messages use the same index. This is the responsibility of the signer.2 As
mentioned above, messages M̃ lie in a different verification message space M̃H

iDH

that is uniquely determined by MH
iDH and EQiDH. Note that most M̃ ∈ M̃H

iDH

are not indexed Diffie-Hellman messages. In particular, when expanding the def-
inition of EQiDH, the verification message space is M̃H

iDH = {(Mr
1 ,M2) | ∃ r ∈

Zp , ∃ (·,M1,M2) ∈ MH
iDH}.

2 To highlight this responsibility, we enforce uniqueness both in the message space
and later on in Line 1 of the of OSign(·) oracle of Fig. 5.
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Fig. 4. From M̃ to M and back again: The first message component is randomizable;
the second fixes the index.

Does M̃ depend on id or does id depend on M̃? One might observe the
above apparent circularity with respect to the indexing technique. On the one
hand, we require existence of an injective function f that maps (M1,M2) to id.
On the other hand, M1 is computed as M1 = H(id)dlogĝ(M2). This circularity is
avoided by computing id from the partial message M2, or more commonly its
discrete logarithm m.

As illustrated in Fig. 4, the indexing function f assigns an index id to each
scalar message m ∈ Zp. Then, a hash-to-curve function H : {0, 1}∗ → G1 (mod-
eled as a random oracle) is used to generate a unique base element h. A source
group message (M1,M2) can then be obtained using h. In an indexed message
SPS, the signing algorithm takes as input the source group message together
with an index and generates the underlying signature with access to H. Note
that the index does not destroy the structure since the verifier does not need to
know id to verify a signature on message M̃ = (M1,M2).

Indexing Function Instantiations. Depending on the application, the index-
ing function f can be instantiated in different ways. For example, if messages and
signatures are allowed to be public, the indexing function can be instantiated by
using the scalar message m itself as the index: f(m) �→ m = id.

If message and signatures must be hidden, as in the case of applications to
anonymous credentials, one can take the approach of committing to the scalar
message and providing a proof of well-formedness of the commitment, as done by
Sonnino et al. [82]. As it is infeasible to open a well-formed commitment to two
different messages, this guarantees uniqueness of the index. Camenisch et al. [22]
take yet another approach for indexing messages: they assume the existence of
a pre-defined and publicly available indexing function. That is, there is a unique
index value for each message that is known to all signers. The corresponding base
element can be obtained by evaluating the hash-to-curve function at the given
index. As the authors note, if the size of the message space is polynomial and
known in advance, then this approach is secure, since it is equivalent to including
the base element in the public parameters. However, this is impractical for large
message spaces.

4.1 Definition of Unforgeability for Indexed Message SPS

We adapt the notion of EUF-CMA security for digital signatures (Definition 16)
to existential unforgeability against chosen indexed message attack (EUF-CiMA).
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There are two adjustments: (1) the adversary makes queries to the signing oracle
by providing index/message pairs, and (2) we expand the set of signed messages
QS = {(idi, M̃i)}i to the set of trivially forgeable messages QEQ = {EQ(M̃i)}i,
i.e., all equivalent messages in the verification message space, and use it in the
winning condition of the adversary.

Definition 8 (Existential Unforgeability under Chosen Indexed Mes-
sage Attack (EUF-CiMA)). A digital signature scheme over indexed mes-
sage space M is EUF-CiMA secure if for all PPT adversaries A playing game
GEUF-CiMA (Fig. 5), there exists a negligible function ν such that

AdvEUF-CiMA
A (κ) = Pr

[
GEUF-CiMA

A (1κ) = 1
]

≤ ν(κ).

Fig. 5. Game GEUF-CiMA
A (1κ).

4.2 Our Indexed Message SPS

In Fig. 6, we present our indexed message SPS construction IM-SPS over the
indexed Diffie-Hellman message space MH

iDH.

4.3 Security of IM-SPS

We prove that our proposed IM-SPS construction (Fig. 6) is EUF-CiMA secure
under the GPS3 assumption (Definition 6) in the random oracle model.

The GPS3 assumption underpins both the security of IM-SPS as well as
our indexed multi -message SPS construction IMM-SPS (Sect. 4.4). Our security
reductions from IM-SPS and IMM-SPS to GPS3 are tight. Furthermore, we show
the tight security of our TSPS (Sect. 5) under the security of IMM-SPS. Figure 7
defines a roadmap for our IM-SPS, IMM-SPS, and TSPS constructions and their
underlying assumptions. Thus, as a starting point, we reduce the GPS3 assump-
tion to the hardness of the (2, 1)-DL problem (Definition 4) in the algebraic
group model.
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Fig. 6. Our Indexed Message SPS Construction IM-SPS. The additional elements in

solid boxes are required for blind signing only (cf. Sect. 6.1).

Fig. 7. The proposed constructions and underlying assumptions.

Theorem 1. The GPS3 assumption (Definition 6) holds in the asymmetric
algebraic bilinear group model under the hardness of the (2, 1)-DL problem (Def-
inition 4).

The proof is provided in the full version [32].

Theorem 2. The indexed message SPS scheme IM-SPS (Fig. 6) is correct and
EUF-CiMA secure (Definition 8) under the GPS3 assumption (Definition 6) in
the random oracle model.

We first present an attack to motivate the need for uniqueness in the indexed
message space. Assume there were no uniqueness requirement, and suppose the
redundant check in Line 1 of the of OSign(·) oracle of Fig. 5 were not present.
Then, a forger could obtain two signatures s = hxMy

1 , s′ = hxM ′
1
y and compute

a forgery s∗ = s2/s′ = hx(M2
1 /M ′

1)
y.

Proof Outline. Let A be a PPT adversary against the EUF-CiMA security of
IM-SPS. We construct a PPT reduction B against the GPS3 assumption as fol-
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lows. When A queries the random oracle H on a fresh id, B queries its ora-
cle OGPS3

0 () to obtain a random base element h, which it stores and returns
to A. When A queries its signing oracle OSign(·) on (id,M1,M2), B looks up
h = H(id) and queries its oracle OGPS3

1 (·) on (h,M1,M2) to receive hxMy
1 .

Finally, B returns the signature σ = (h, hxMy
1 ) to A. B correctly simulates the

EUF-CiMA game, and the success probability of A and B is the same.

The attack above would violate the condition (h, �) /∈ Q1 in Line 3 of the
OGPS3

1 (·) oracle in Fig. 2. The full proof is provided in the full version [32].

4.4 Our Indexed Multi-message SPS

We extend our IM-SPS construction to an indexed multi -message SPS construc-
tion IMM-SPS, which allows vectors of indexed messages to be signed, and prove
its EUF-CiMA security. Extending the message space to allow vectors of any
length is desirable for applications in which several attributes may be signed.
The number of pairings required for verification scales linearly with the length
of the message vectors, but signatures remain constant sized (2 group elements).

Fig. 8. Encoding function of iDH multi-message space in the ROM.

We first generalize the notion of an indexed message space to the multi-
message setting. In Fig. 8, we present the encoding function MiDHH(id, �m) of a
multi-message variant of the indexed Diffie-Hellman message space that maps,
for any 	 > 1, 	-scalar message vectors �m = (m1, . . . ,m�) ∈ Z

�
p to 2	-source

group message vectors ( �M1, �M2) = ((M11, . . . ,M1�), (M21, . . . ,M2�)) ∈ G
�
1 × G

�
2

based on a given index id.

Definition 9 (Indexed Diffie-Hellman Multi-Message Space). Given an
asymmetric bilinear group (G1,G2,GT , p, e, g, ĝ) ← BG(1κ), an index set I, and
a random oracle H : I → G1, MH

MiDH is an indexed Diffie-Hellman (DH) message
space if MH

MiDH ⊂ {(id, M̃) | id ∈ I, �m ∈ Z
�
p, M̃ = MiDHH(id, �m)} and the

following index uniqueness property holds: for all (id, M̃) ∈ MH
MiDH, (id′, M̃ ′) ∈

MH
MiDH, id = id′ ⇒ M̃ = M̃ ′.
We define the equivalence class for each multi-message M̃ = ( �M1, �M2) ∈

M̃H
MiDH as EQMiDH( �M1, �M2) = {( �Mr

1 , �M2) | ∃ r ∈ Zp}.
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Fig. 9. Our Indexed Multi-Message SPS Construction IMM-SPS. The additional ele-

ments in solid boxes are required for blind signing only (cf. Section 6.1).

This generalization of the indexed Diffie-Hellman message space leads us to
an indexed multi-message SPS, described in Fig. 9.

Theorem 3. The indexed multi-message SPS scheme IMM-SPS (Fig. 9) is cor-
rect and EUF-CiMA secure (Definition 8) under the GPS3 assumption (Definition
6) in the random oracle model.

The proof is provided in the full version [32].

5 Threshold Structure-Preserving Signatures

We now define the syntax and security notions for non-interactive (n, t)-
Threshold Structure-Preserving Signatures (TSPS) for indexed message spaces.
We then propose an efficient instantiation for an indexed Diffie-Hellman multi-
message space. In an (n, t)-TSPS, the signing key is distributed among n parties,
and the generation of any signature requires the cooperation of a subset of at



Threshold Structure-Preserving Signatures 365

least t parties. We assume a centralized key generation algorithm for distribut-
ing the signing key, but a decentralized key generation protocol (DKG), such as
Pedersen’s DKG [75], may be used instead.

Definition 10 (Threshold Structure-Preserving Signature). For a given
security parameter κ and bilinear group BG, an (n, t)-TSPS over indexed message
space M consists of a tuple (Setup,KGen,ParSign,ParVerify,Reconst,Verify) of
PPT algorithms defined as follows:

– pp ← Setup(1κ): The setup algorithm takes the security parameter 1κ as input
and returns the public parameters pp.

– (�sk, �vk, vk) ← KGen(pp, 	, n, t): The key generation algorithm takes the public
parameters pp and length 	 along with two integers t, n ∈ poly(1κ) such that
1 ≤ t ≤ n as inputs. It returns two vectors of size n of signing/verification
keys �sk = (sk1, . . . , skn) and �vk = (vk1, . . . , vkn) such that each party Pi for
i ∈ [n] receives a pair (ski, vki) along with the global verification key vk.

– σi ← ParSign(pp, ski,M): The partial signing algorithm takes the public
parameters pp, a secret signing key ski, and a message M ∈ M as inputs
and returns a partial signature σi.

– 0/1 ← ParVerify(pp, vki, M̃ , σi): The partial verification algorithm is a deter-
ministic algorithm that takes the public parameters pp, a verification key vki,
message M̃ ∈ M̃, and a purported partial signature σi as inputs. If σi is a
valid partial signature, it returns 1 (accept); else, it returns 0 (reject).

– (σ,⊥) ← Reconst(pp, {i, σi}i∈T ): The reconstruction algorithm is a determin-
istic algorithm that takes public parameters pp and a set T of t partial signa-
tures {i, σi} with corresponding indices as inputs and returns an aggregated
signature σ or ⊥.

– 0/1 ← Verify(pp, vk, M̃ , σ): The verification algorithm is a deterministic algo-
rithm that takes the public parameters pp, the global verification key vk, a
message M̃ ∈ M̃, and a purported signature σ as inputs. If σ is a valid
signature, it returns 1 (accept); else, it returns 0 (reject).

Three main security properties for TSPS defined over indexed message spaces
are partial verification correctness, evaluation correctness, and threshold exis-
tential unforgeability against chosen indexed message attack (Threshold EUF-
CiMA). Intuitively, partial verification correctness means that any correctly gen-
erated partial signature via the ParSign algorithm passes the ParVerify verifica-
tion checks, and evaluation correctness means that the Reconst algorithm for a
set of well-formed partial signatures {i, σi}i∈T (meaning all with the same index,
on a message M) results in a valid aggregated signature σ.

Definition 11 (Partial Verification Correctness). An (n, t)-TSPS scheme
satisfies partial verification correctness if for all correctly indexed messages M ∈
M, pp ← Setup(1κ), (�sk, �vk, vk) ← KGen(pp, 	, n, t) and i ∈ [1, n] that

Pr
[
ParVerify(pp, vki, M̃ ,ParSign(pp, ski,M)) = 1

]
= 1 .
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Definition 12 (Evaluation Correctness). An (n, t)-TSPS scheme satisfies
evaluation correctness if for all correctly indexed messages M ∈ M, pp ←
Setup(1κ), (�sk, �vk, vk) ← KGen(pp, 	, n, t) and T ⊆ [1, n], |T | = t that

Pr
[
σ ← Reconst(pp, {i,ParSign(pp, ski,M)}i∈T ) : Verify(pp, vk, M̃ , σ) = 1

]
= 1.

Threshold Unforgeability. We next define the notion of threshold unforge-
ability for non-interactive (n, t)-TSPS schemes. The Threshold EUF-CiMA game
is defined formally in Fig. 10. Given a set of party indices P = {1, . . . , n}, we
assume that the adversary can corrupt up to t − 1 parties and that there is at
least one honest party. We denote the set of corrupt parties by C and the set of
honest parties by H = P \ C.

Fig. 10. Game GT-EUF-CiMA
A (1κ).

In the unforgeability game, the challenger generates public parameters pp
and returns them to the adversary. The adversary chooses the set of corrupted
participants C. The challenger then runs KGen to derive the global verification
key vk, the individual verification keys {vki}n

i=1, and the secret signing shares
{ski}n

i=1. It returns vk, {vki}n
i=1, and the set of corrupt signing shares {skj}j∈C to

the adversary. We assume the adversary maintains state before and after KGen.
After key generation, the adversary can request partial signatures on mes-

sages of its choosing from honest signers by querying oracle OPSign(·).
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Fig. 11. Our Threshold SPS Construction TSPS. The additional elements in

solid boxes are required for blind signing only (cf. Sect. 6.1).
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The adversary wins if it can produce a valid forgery (M̃∗, σ∗) with respect
to the global verification key vk representing the set of n signers, on a message
M̃∗ for which no equivalent M̃∗′

has been previously queried to OPSign(·).

Definition 13 (Threshold EUF-CiMA). A non-interactive (n, t)-TSPS
scheme over indexed message space M is Threshold EUF-CiMA secure if for
all PPT adversaries A playing game GT-EUF-CiMA (Fig. 10), there exists a neg-
ligible function ν such that

AdvT-EUF-CiMA
A (κ) = Pr

[
GT-EUF-CiMA

A (1κ) = 1
]

≤ ν(κ) .

5.1 Our Indexed Multi-message TSPS

In Fig. 11, we present our (n, t)-TSPS scheme TSPS over an indexed Diffie-
Hellman multi-message space MH

MiDH, as defined in Fig. 8.

5.2 Security of TSPS

Theorem 4. The indexed multi-message (n, t)-Threshold SPS scheme TSPS is
correct and Threshold EUF-CiMA secure (Definition 13) in the random oracle
model under the EUF-CiMA security of IMM-SPS (Theorem 3).

Proof. Correctness. We first show that the proposed TSPS satisfies partial
verification correctness (Definition 11), i.e., any correctly generated partial sig-
nature via the ParSign algorithm passes the ParVerify verification checks. Indeed,
for all i ∈ [1, n] and correctly indexed messages M = (id, �M1, �M2) ∈ MH

MiDH, we
have:

e(h, vki0)
�∏

j=1

e(M1j , vkij) = e(h, ĝxi )
�∏

j=1

e(M1j , ĝ
yij )e(hxi

�∏

j=1

M
yij

1j , ĝ) = e(si, ĝ) .

Next, we show that TSPS satisfies evaluation correctness (Definition 12);
that is, the Reconst algorithm for a set of partial signatures {i, σi}i∈T , T ⊆
[1, n], |T | = t, on a message M = (id, �M1, �M2) with the same h ← H(id) results
in a valid aggregated signature σ = (h, s). Indeed,

s =
∏

i∈T
s
λi
i =

∏

i∈T
(hski0

�∏

j=1

M
skij

1j )λi = h
∑

i∈T ski0λi

�∏

j=1

M
∑

i∈T skijλi

1j = hsk0

�∏

j=1

M
skj

1j

where λi is the Lagrange coefficient for party Pi with respect to the signing
set T . Next, we show that verification holds for the above aggregated signature
σ on message M̃ = ( �M1, �M2). Indeed, ∀ j ∈ [1, 	] we have that e(h,M2j) =
e(h, ĝmj ) = e(hmj , ĝ) = e(M1j , ĝ) and

e(h, vk0)
�∏

j=1

e(M1j , vkj) = e(h, ĝx)
�∏

j=1

e(M1j , ĝ
yj ) = e(hx

�∏

j=1

M
yj

1j , ĝ) = e(s, ĝ) .
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Note that successful partial signature verification using ParVerify and consis-
tency of h guarantee successful reconstruction.

Need for Uniqueness. The hypothetical attack described after Theorem 2 also
works with a partial signing oracle OPSign(·). Assume an (n, t)-TSPS with n > 2t,
and suppose there were no uniqueness requirement for the message space and
that the redundant check in Line 2 of the OPSign(·) oracle of Fig. 10 were not
present. Then, a forger could obtain 2t partial signatures to reconstruct signa-
tures s = hxMy

1 , s′ = hxM ′
1
y and compute a forgery s∗ = s2/s′ = hx(M2

1 /M ′
1)

y

that is a valid signature on fresh message M2
1 /M ′

1 .

Threshold EUF-CiMA. Our proof of security for TSPS resembles that of thresh-
old BLS in [18]. We wish to show that if there exists a PPT adversary A that
breaks the Threshold EUF-CiMA security (Fig. 10) of TSPS with non-negligible
probability, then we can construct a PPT adversary B that breaks the EUF-CiMA
security (Fig. 5) of the underlying IMM-SPS scheme (Fig. 6) with non-negligible
probability.

Suppose there exists such a PPT adversary A. Then, running A as a subrou-
tine, we construct a reduction B breaking the EUF-CiMA security of IMM-SPS
as follows.

The reduction B is responsible for simulating oracle responses for queries to
OPSign(·) and H. Let QH be the set of H queries id and their responses. B may
program the random oracle H. Let QS be the set of OPSign(·) queries (k, id, M̃)
and QEQ the set of equivalence classes of messages M̃ . B initializes QH,QS,QEQ

to the empty set.

Initialization. B takes as input public parameters pp ← (G1,G2,GT , p, e, g, ĝ)
and an IMM-SPS verification key vk′. In the EUF-CiMA game, B has access to
oracles O′

Sign(·) and H′. B uses vk′ = (vk′
00, vk

′
01, vk

′�
01, . . . , vk

′
0�, vk

′�
0�) as the TSPS

verification key vk = (vk00, vk01, vk�
01, . . . , vk0�, vk

�
0�).

Simulating Key Generation. B simulates the key generation algorithm as follows.

– B defines the pair of secret/verification keys of the corrupted parties Pi, i ∈ C,
as follows. Assume without loss of generality that |C| = t − 1. For all
i ∈ C, B samples random values xi0, yi1, . . . , yi� ←$ (Z∗

p)
�+1 and defines

party Pi’s secret key as ski ← (ski0, ski1, . . . , ski�) = (xi0, yi1, . . . , yi�) and
the corresponding verification key as vki ← (vki0, vki1, vk

�
i1, . . . , vki�, vk

�
i�) =

(ĝxi0 , ĝyi1 , gyi1 , . . . , ĝyi� , gyi�).
– To generate the verification key of the honest parties Pk, k ∈ H,H = [1, n] \ C,

B proceeds as follows:
1. For all i ∈ T̃ := C ∪{0}, it computes the Lagrange polynomials evaluated

at point k:

λ̃ki = LT̃
i (k) =

∏

j∈T̃ j �=i

(j − k)
(j − i)

. (3)

2. It takes the verification keys of corrupted parties {vki}i∈C and the global
verification key vk and then computes
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vkk = (vkk0, vkk1, vk
�
k1, . . . , vkk�, vk

�
k�)

=
(
vkλ̃k0

00

∏

i∈C
vkλ̃ki

i0 , vkλ̃k0
01

∏

i∈C
vkλ̃ki

i1 , vk�
01

λ̃k0
∏

i∈C
vk�

i1
λ̃ki , . . . ,

vkλ̃k0
0�

∏

i∈C
vkλ̃ki

i� , vk�
0�

λ̃k0
∏

i∈C
vk�

i�
λ̃ki

)
.

B returns the global verification key vk, �vk = (vk1, . . . , vkn), and secret keys
{skj}j∈C to A.

Simulating Random Oracle H(id): When A queries H on index id, if QH[id] =⊥,
then B queries H′(id), receives a base element h, and sets QH[id] ← h. B returns
QH[id] to A.

Simulating Signing Oracle OPSign(k, id, M̃): When A queries OPSign(·) on
(k, id, M̃) for honest party identifier k ∈ H and message M = (id, M̃) =
(id, �M1, �M2), if k /∈ H or (k, id, �) ∈ QS or (�, id, M̃ ′) ∈ QS, M̃

′ �= M̃ , B returns
⊥. Otherwise, B does the following:

1. B looks up h = QH[id], queries O′
Sign(id, �M1, �M2), and receives the signature

σ0 = (h, s0).
2. For all i ∈ C, B computes the partial signatures σi = (h, si) =

(h, hski0
∏�

j=1 M
skij

1j ), as it knows the secret keys of corrupted parties.
3. For all i ∈ T̃ = C ∪ {0}, B computes Lagrange coefficients λ̃ki as in Equation

(3).
4. B updates QS ← QS ∪ {(k, id, M̃)} and QEQ ← QEQ ∪ {EQ(M̃)}.
5. B computes (h, sk) = (h, sλ̃k0

0

∏
i∈C sλ̃ki

i ) and returns σk = (h, sk) to A.

Output. At the end of the game, A produces a valid forgery σ∗ = (h∗, s∗) on
message M̃∗ = ( �M∗

1 , �M∗
2 ), and B returns (M̃∗, σ∗) as its forgery.

B correctly simulates key generation and A’s hash and signing queries. Since
A’s forgery satisfies M̃∗ /∈ QEQ and Verify(pp, vk, M̃∗, σ∗) = 1, B’s winning
conditions are also satisfied and AdvT-EUF-CiMA

TSPS,A (κ) ≤ AdvEUF-CiMA
IMM-SPS,B(κ). ��

6 Applications to Threshold-Issuance Anonymous
Credentials

Threshold-Issuance Anonymous Credential (TIAC) systems are a prime use-
case of threshold SPS. TIAC systems, defined by Sonnino et al. [82], are used
in various applications [64,83]. A TIAC is an anonymous credential scheme that
enables a group of signers (or issuers) to jointly sign a blind message, i.e., issue a
credential, without learning the original message. The core ingredient is a blind
signing protocol for the used threshold signature scheme. Besides the threshold
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signature, this protocol relies on two main cryptographic primitives: NIZKs and
commitment schemes, defined in Appendix A.3 and Appendix A.2, respectively.

The TIAC protocol of [82], known as Coconut, lacks a rigorous security proof.
Recently, Rial and Piotrowska [77] conducted a security analysis that required
some modifications to the original Coconut scheme, resulting in Coconut++.
Coconut and Coconut++ are based on a threshold Pointcheval-Sanders signature
scheme that supports an efficient blind signing protocol.

6.1 Blind Signing for TSPS

In Fig. 12, we show that our TSPS construction also supports threshold blind
signing. In addition to the TSPS parameters, the public parameters pp now
contain the common reference string (CRS) of a NIZK and the public parameters
of a commitment scheme.

For intuition, we note that in PrepareBlindSign, the index is computed as
a commitment to �m, using the generalized Pedersen commitment scheme. The
single messages are also committed in a Pedersen commitment, where one com-
mitment parameter is computed on the fly via a random oracle as h = H(id).
The hiding property of commitments and the zero-knowledge property of NIZK
ensure the blindness.

We note that the construction in Fig. 12 follows the blind signing protocol
for Coconut++ closely, with only minor syntactical changes due to the indexed
DH message space (highlighted in the figure). Consequently, the validity of the
blinding operations readily follows from that of Coconut++. The key generation
phase is the same as in Fig. 11.

6.2 Removing Rewinding Extractors in TIAC

The TIAC constructions Coconut and Coconut++ combine threshold signatures
(with blind signing) with generalized Schnorr proofs [78] turned into extractable
(knowledge-sound) NIZK proofs via the Fiat-Shamir (FS) heuristic [43] in the
random oracle model. This, however, is problematic if used within the univer-
sal composability (UC) framework [24], as extractability for such NIZK proofs
requires rewinding. For instance, Coconut++ is modeled in the UC framework
but requires rewinding to prove that it realizes FAC [77, Theorem 3]. This, in
turn, makes the formal security guarantees in the UC framework questionable.

Fischlin’s framework [44], also in the random oracle model, is a well-known
technique to avoid rewinding. However, this adds significant overhead that neg-
atively affects its practical applicability. Groth-Sahai (GS) NIZK proofs [60] are
an efficient alternative NIZK proof system. GS proofs are secure in the stan-
dard model and support straight-line extraction of the witnesses, i.e., avoid
the rewinding required by the Fischlin transform. This makes them particu-
larly attractive if one is interested in achieving composable security, e.g., UC
security. We note that there are known transformations like [27,57,59] to make
GS proofs UC secure despite their malleability. However, GS proofs can only
extract group elements.
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Fig. 12. A Threshold Blind Signature with straight-line extraction. Grey (Color figure

online) boxes mark the changes from Coconut++. Algorithms and notation are defined
in Appendices A.2 to A.4.
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Towards achieving efficient straight-line extraction without the need of
rewinding, we propose to replace the blind issuance threshold Pointcheval-
Sanders signature of Coconut++ with our blind issuance TSPS. We make the
reasonable assumption that the scalar messages (attributes in the TIAC) come
from some polynomially bounded message space, e.g., in practice, attributes can
be encoded in small scalar values. This modification enables us to provide a
GS proof of a valid signature for the showing of a credential with non-revealed
messages. Noticing that GS NIZKs are commit-and-proof NIZKs, we can use
an additional Schnorr NIZK obtained via Fiat-Shamir to prove a predicate over
the scalar messages in the GS commitments. The interesting point is that the
latter NIZK only needs to be sound, but does not need to be extractable, as GS
commitments can be perfectly binding. Thus, we can avoid rewinding and, due
to the polynomially bounded message space, we can extract the scalar messages
(attributes in TIAC) efficiently from the straight-line extracted messages from
the commitments of the GS proof.

7 Conclusion and Open Problems

In this work, we introduce the notion of a threshold structure-preserving signa-
ture (TSPS) and present an efficient fully non-interactive TSPS construction.
We prove that the proposed TSPS is secure under a new variant of the general-
ized Pointcheval-Sanders (PS) assumption in the random oracle model. We have
shown that our TSPS can be used as a drop-in replacement in TIAC systems to
remove the need for rewinding extractors.

While we use a message indexing method in order to construct a non-
interactive scheme, a non-interactive TSPS without indexing is an interesting
open problem. Moreover, it is interesting to construct schemes that rely on
weaker assumptions and avoid the use of the random oracle model. When it
comes to the security model, the following two challenging problems remain open:
obtaining security under adaptive corruptions more tightly than via a guessing
argument from static corruptions, and achieving the strongest notion possible for
fully non-interactive schemes (TS-UF-1) [14]. In general, we believe this work can
open a new line of research for structure-preserving multi-party protocols, such
as threshold structure-preserving encryption. Moreover, we expect that TSPS
will have further applications beyond TIAC systems.
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A Additional Definitions and Assumptions

A.1 Digital Signatures

Definition 14 (Digital Signature). A digital signature scheme over message
space M is a tuple of the following polynomial-time algorithms:

– pp ← Setup(1κ): Setup is a probabilistic algorithm which takes as input the
security parameter 1κ and outputs the set of public parameters pp.

– (sk, vk) ← KGen(pp): Key generation is a probabilistic algorithm which takes
as input pp and outputs a pair of signing/verification keys (sk, vk).

– σ ← Sign(pp, sk,m): The signing algorithm takes as input pp, a secret signing
key sk, and a message m ∈ M, and outputs a signature σ.

– 0/1 ← Verify(pp, vk,m, σ): Verification is a deterministic algorithm which
takes as input pp, a public verification key vk, a message m ∈ M, and a
purported signature σ, and outputs either 0 (reject) or 1 (accept).

The primary security requirements for a digital signature scheme are correct-
ness and existential unforgeability against chosen message attack (EUF-CMA).

Definition 15 (Correctness). A digital signature is correct if we have:

Pr

[
∀ pp ← Setup(1κ), (sk, vk) ← KGen(pp),m ∈ M :
Verify (pp, vk,m,Sign(pp, sk,m)) = 1

]
≥ 1 − ν(κ) .

Definition 16 (Existential Unforgeability under Chosen Message
Attack (EUF-CMA)). A digital signature scheme over message space M is
EUF-CMA secure if for all PPT adversaries A playing game GEUF-CMA (Fig. 13),
there exists a negligible function ν such that

AdvEUF-CMA
A (κ) = Pr

[
GEUF-CMA

A (1κ) = 1
]

≤ ν(κ) .

Fig. 13. The EUF-CMA security game.
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A.2 Commitment Schemes

Definition 17 (Commitment Scheme). A commitment scheme over mes-
sage space M, opening space T , and commitment space C, consists of the fol-
lowing polynomial-time algorithms:

– ppc ← CSetup(1κ): Setup is a probabilistic algorithm which takes as input the
security parameter 1κ and outputs the set of public parameters ppc.

– cm ← Com(ppc,m, τ): The commitment algorithm takes as input ppc and a
message m ∈ M along with a trapdoor τ ∈ T , and outputs a commitment
cm ∈ C.

– 0/1 ← CVerify(ppc, cm,m′, τ ′): Verification is a deterministic algorithm which
takes as input ppc, a commitment cm ∈ C, a message m′ ∈ M, and an opening
value τ ′ ∈ T , and outputs either 0 (reject) or 1 (accept).

Informally, the primary security requirements for a commitment scheme are
correctness, hiding, and binding. Correctness ensures that correctly generated
commitments pass the verification phase. The hiding property guarantees that
the commitment does not reveal any information about the hidden value, while
binding ensures that a committer cannot open a commitment to two distinct
messages.

Pedersen Commitment Scheme [75]. Over a cyclic group G of prime order p
with generator g, the Pedersen commitment scheme allows to commit to a scalar
message m ∈ Zp and is perfectly hiding and computationally binding. It consists
of the following polynomial-time algorithms:

– ppc ← CSetup(1κ): Sample r ←$Zp and set G1 ← gr. Output ppc ← (G0 =
g,G1,M), where M = Zp.

– cm ← Com(ppc,m, τ): Compute cm ← Gτ
0G

m
1 . Output cm.

– 0/1 ← CVerify(ppc, cm,m′, τ ′): Compute cm′ ← Gτ ′

0 Gm′

1 . Return 1 if cm =
cm′ and 0 otherwise.

The Pedersen commitment scheme can be extended to allow commitment
to more than one message. More precisely, the message space can be M = Z

�
p,

where 	 is an upper bound for the number of committed scalar messages. The
extended Pedersen commitment scheme is as follows:

– ppc ← CSetup(1κ): Sample α1, . . . , α� ←$Zp and set Gj ← gαj for all j ∈ [1, 	].
Output (G0 = g,G1, . . . , G�,M), where M = Z

�
p.

– cm ← Com(ppc, �m, τ): For �m = (m1, . . . ,m�), compute cm ← Gτ
0

∏�
j=1 Gmi

i .
Output cm.

– 0/1 ← CVerify(ppc, cm, �m′, τ ′): Compute cm′ ← Gτ ′

0

∏�
j=1 G

m′
i

i . Return 1 if
cm = cm′ and 0 otherwise.
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A.3 Non-interactive Zero-Knowledge Proofs

Zero-knowledge proofs enable a prover to convince a skeptical verifier of the
validity of a statement without revealing any other information. Non-interactive
zero-knowledge proofs (NIZKs) [15,56] only require one round of communication.

Definition 18 (Non-interactive Zero-Knowledge Proof [56]). Consider
an NP-relation R defined over a language L = {x | ∃ w s.t. (x,w) ∈ R}, where
x and w denote statement and witness, respectively. A NIZK over the relation
RL consists of the following PPT algorithms:

– CRS ← Setup(1κ): The setup algorithm takes as input the security parameter
1κ and outputs a common reference string CRS.

– π ← Prove(CRS, x, w): The prove algorithm takes as input a CRS, a statement
x, and a witness w, and outputs a proof π.

– 0/1 ← Verify(CRS, x, π): The verification algorithm is a deterministic algo-
rithm that takes as input a CRS, a statement x, and a proof π, and outputs
either 0 (reject) or 1 (accept).

A NIZK proof system is said to be complete if all pairs of statements and wit-
nesses, (x,w) ∈ RL, pass verification. The zero-knowledge property guarantees
that the proof does not reveal any information about the witness w. The knowl-
edge soundness property guarantees that a malicious prover cannot convince the
verifier of a false statement unless he knows the witness.

A.4 Threshold Blind Signatures

Here we recall the definition of threshold blind signatures as stated in [82]. Let
pp be a given set of public parameters.

– (�vk, �sk, vk) ← TTPKeyGen(pp, 	, n, t): The probabilistic key generation algo-
rithm takes the public parameters pp and length 	 along with two integers
t, n ∈ poly(1κ) such that 1 ≤ t ≤ n as inputs. It returns two vectors of size n

of signing/verification keys �sk = (sk1, . . . , skn) and �vk = (vk1, . . . , vkn) such
that each party Pi for i ∈ [n] receives a pair (ski, vki) along with the global
verification key vk.

– (Ω, id, �cm, πs) ← PrepareBlindSign(pp, �m): This algorithm is run by the user
to blind the message �m under some random blinding factors Ω.

– (⊥, σ̄i) ← BlindSign(pp, ski, id, �cm, πs): The blind signing algorithm is run by
each signer with secret signing key ski to blindly sign the messages. It either
returns a blind partial signature σ̄i as output or responds with ⊥.

– (⊥, σ̄) ← AggCred(pp, {i, σ̄i}i∈T ): The reconstruction algorithm is run by the
user to aggregate the received partial signatures. If a sufficient number of
well-formed partial signatures are available, it returns an aggregated blind
signature; otherwise it returns ⊥.

– σ ← Unblind(pp, σ̄, Ω): The user who knows the blinding factors Ω runs this
algorithm to unblind the aggregated signature σ̄. It returns σ as output.
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Informally, a threshold blind signature scheme satisfies two main secu-
rity properties: one-more unforgeability and blindness. One-more unforgeability
requires an adversary to produce k + 1 valid signatures (representing a group of
signers) having only queried its signing oracle k times, guaranteeing that at least
one signature is a forgery. The blindness property guarantees that an adversarial
signer cannot learn meaningful information about the message �m.
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Abstract. Blind signatures serve as a foundational tool for privacy-
preserving applications and have recently seen renewed interest due
to new applications in blockchains and privacy-authentication tokens.
With this, constructing practical round-optimal (i.e., signing consists of
the minimum two rounds) blind signatures in the random oracle model
(ROM) has been an active area of research, where several impossibility
results indicate that either the ROM or a trusted setup is inherent.

In this work, we present two round-optimal blind signatures under
standard assumptions in the ROM with different approaches: one
achieves the smallest sum of the signature and communication sizes,
while the other achieves the smallest signature size. Both of our instantia-
tions are based on standard assumptions over asymmetric pairing groups,
i.e., CDH, DDH, and/or SXDH. Our first construction is a highly opti-
mized variant of the generic blind signature construction by Fischlin
(CRYPTO’06) and has signature and communication sizes 447 B and
303 B, respectively. We progressively weaken the building blocks required
by Fischlin and we result in the first blind signature where the sum of
the signature and communication sizes fit below 1 KB based on standard
assumptions. Our second construction is a semi-generic construction from
a specific class of randomizable signature schemes that admits an all-but-
one reduction. The signature size is only 96 B while the communication
size is 2.2 KB. This matches the previously known smallest signature size
while improving the communication size by several orders of magnitude.
Finally, both of our constructions rely on a (non-black box) fine-grained
analysis of the forking lemma that may be of independent interest.

1 Introduction

1.1 Background

Blind signature is an interactive signing protocol between a signer and a user
with advanced privacy guarantees. At the end of the protocol, the user obtains a
signature for his choice of message while the signer remains blind to the message
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she signed. To capture the standard notion of unforgeability, it is further required
that a user interacting with the signer at most �-times is not be able to produce
valid signatures on more than � distinct messages. The former and latter are
coined as the blindness and one-more unforgeability properties, respectively.

Chaum introduced the notion of blind signatures [22] and showed its applica-
tion to e-cash [22,24,48]. Since then, it has been an important building block for
other applications such as anonymous credentials [16,20], e-voting [23,32], direct
anonymous attestation [17], and in more recent years, it has seen a renewed
interest due to new applications in blockchains [19,57] and privacy-preserving
authentication tokens [37,55].
Round-Optimality. One of the main performance measures for blind signa-
tures is round-optimality, where the user and signer are required to only send
one message each to complete the signing protocol. While this is an ideal
feature for practical applications, unfortunately, there are a few impossibility
results [29,45,49] on constructing round-optimal blind signatures in the plain
model (i.e., without any trusted setup) from standard assumptions (e.g., non-
interactive assumptions and polynomial hardness). To circumvent this, cryptog-
raphers design round-optimal blind signatures by making a minimal relaxation of
relying on the random oracle model (ROM) or the trusted setup model. Consid-
ering that trusted setups are a large obstacle for real-world deployment, in this
work we focus on round-optimal blind signatures in the ROM under standard
assumption1. We refer the readers to the full version for an overview on round
optimal blind signatures under non-standard assumptions (e.g., interactive or
super polynomial hardness) or relying on stronger idealized models such as the
generic group model.
Practical Round-Optimal Blind Signatures. Constructing a practical
round-optimal blind signature has been an active area of research. In a semi-
nal work, Fischlin [28] proposed the first generic round-optimal blind signature
from standard building blocks. While the construction is simple, an efficient
instantiation remained elusive since it required a non-interactive zero-knowledge
(NIZK) proof for a relatively complex language.

Recently, in the lattice-setting, del Pino and Katsumata [25] showed a new
lattice-tailored technique to overcome the inefficiency of Fischlin’s generic con-
struction and proposed a round-optimal blind signature with signature and com-
munication sizes 100 KB and 850 KB.

A different approach that has recently accumulated attention is based on
the work by Pointcheval [50] that bootstraps a specific class of blind signature
schemes into a fully secure one (i.e., one-more unforgeable even if polynomially
many concurrent signing sessions are started). This approach has been improved
by Katz et al. [41] and Chairattana-Apirom et al. [21], and the very recent
work by Hanzlik et al. [36] optimized this approach leading to a round-optimal
blind signature based on the CDH assumption in the asymmetric pairing setting.

1 We note that all of our results favor well even when compared with schemes in the
trusted setup model.
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One of their parameter settings provides a short signature size of 5 KB with a
communication size 72 KB.

Finally, there are two constructions in the pairing setting with a trusted
setup which can be instantiated in the ROM under standard assumptions [2,
10]2. Blazy et al. [10] exploited the randomizability of Waters signature [56] and
constructed a blinded version of Waters signature consisting of mere 2 group
elements, i.e. 96 B. While it achieves the shortest signature size in the literature,
since the user has to prove some relation to his message in a bit-by-bit manner,
the communication scales linearly in the message length. For example for 256
bit messages, it requires more than 220 KB in communication. Abe et al. [2] use
structure-preserving signatures (SPS) and Groth-Ostrovsky-Sahai (GOS) proofs
[35] to instantiate the Fischlin blind signature with signatures of size 5.8 KB
with around 1 KB of communication.

While round-optimal blind signatures in the ROM are coming close to the
practical parameter regime, the signature and communication sizes are still
orders of magnitude larger compared to those relying on non-standard assump-
tions or strong idealized models such as blind RSA [7,22] or blind BLS [11]. Thus,
we continue the above line of research to answer the following question:

How efficient can round-optimal blind signatures in the ROM be under
standard assumptions?

1.2 Contributions

We present two round-optimal blind signatures based on standard group-based
assumptions in the asymmetric pairing setting. The efficiency is summarized in
Table 1, along with the assumptions we rely on. The first construction has signa-
ture and communication sizes 447 B and 303 B, respectively. It has the smallest
communication size among all prior schemes and is the first construction where
the sum of the signature and communication sizes fit below 1 KB. The second con-
struction has signature and communication sizes 96 B and 2.2 KB, respectively.
While it has a larger communication size compared to our first construction, the
signature only consists of 2 group elements, matching the previously shortest
by Blazy et al. [10] while simultaneously improving their communication size
by around two orders of magnitude. Both constructions have efficient partially
blind variants.

For our first construction, we revisit the generic blind signature construction
by Fischlin [27]. We progressively weaken the building blocks required by Fis-
chlin and show that the blind signature can be instantiated much more efficiently
in the ROM than previously thought by a careful choice of the building blocks.
At a high level, we show that the generic construction remains secure even if we

2 Both [2,10] require a trusted setup for a common reference string crs consisting of
random group elements. We can remove the trusted setup by using a random oracle
to sample crs.
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Table 1. Comparison of Round-Optimal Blind Signatures in the ROM

Reference Signature size Communication size Assumption

del Pino et al. [25] 100 KB 850 KB DSMR,MLWE,MSIS

Blazy et al. [10] 96 B 220 KB † SXDH,CDH

Abe et al. [2] 5.5 KB 1 KB SXDH

Hanzlik et al. [36]‡
5 KB 72 KB

CDH
9 KB 36 KB

Ours: Section 3 447 B 303 B SXDH

Ours: Section 4 96 B 2.2 KB DDH,CDH

All group-based assumptions are in the asymmetric paring setting, and MLWE and MSIS
denote the module version of the standard LWE and SIS, respectively. DSMR denotes
the decisional small matrix ratio problem, which can be viewed as the module variant
of the standard NTRU. (†): Communication of [10] scales linearly with the message size,
and is given here for 256 bit messages. (‡): [36] offers tradeoffs between signature and
communication sizes.

replace the public-key encryption scheme (PKE) and online-extractable NIZK3

with respectively a commitment scheme and a rewinding-extractable NIZK such
as those offered by the standard Fiat-Shamir transform [8,26,51]. While these
modifications may seem insignificant on the surface, it accumulates in a large
saving in the concrete signature and communication sizes. Moreover, our secu-
rity proof requires overcoming new technical hurdles incurred by the rewinding-
extraction and relies on a fined-grained analysis of a variant of the forking lemma.

For our second construction, we revisit the idea by Blazy et al. [10] relying
on randomizable signatures. However, our technique is not a simple application
of their idea as their construction relies on the specific structure of the Waters
signature in a non-black-box manner. Our new insight is that a specific class
of signature schemes with an all-but-one (ABO) reduction can be used in an
almost black-box manner to construct round-optimal blind signatures, where
ABO reductions are standard proof techniques to prove selective security of
public-key primitives (see references in [47] for examples). Interestingly, we can
cast the recent blind signature by del Pino and Katsumata [25] that stated to
use lattice-tailored techniques as one instantiation of our methodology.

In the instantiation of our second construction, we use the Boneh-Boyen sig-
nature [12] that comes with an ABO reduction along with an online-extractable
NIZK obtained via the Fiat-Shamir transform applied to Bulletproofs [18] and a
Σ-protocol for some ElGamal related statements. To the best of our knowledge,
this is the first time an NIZK that internally uses Bulletproofs was proven to be

3 This is a type of NIZK where the extractor can extract a witness from the proofs
output by the adversary in an on-the-fly manner.
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online-extractable in the ROM. Prior works either showed the non-interactive
version of Bulletproofs to achieve the weaker rewinding extractability [4,5] or
the stronger online simulation extractability by further assuming the algebraic
group model [33]. We believe the analysis of our online extractability to be novel
and may be of independent interest.

1.3 Technical Overview

We give an overview of our contributions.

Fischlin’s Round-Optimal Blind Signature. We review the generic con-
struction by Fischlin [27] as it serves as a starting point for both of our construc-
tions. The construction relies on a PKE, a signature scheme, and an NIZK. The
blind signature’s verification and signing keys (bvk, bsk) are identical to those
of the underlying signature scheme (vk, sk). For simplicity, we assume a perfect
correct PKE with uniform random encryption keys ek and that ek is provided to
all the players as an output of the random oracle. The user first sends an encryp-
tion c ← PKE(ek,m; r) of the message m. The signer then returns a signature
σ ← Sign(sk, c) on the ciphertext c. The user then encrypts ĉ ← PKE(ek, c‖r‖σ; r̂)
and generates an NIZK proof π of the following fact where (c, σ, r, r̂) is the wit-
ness: ĉ encrypts (c, r, σ) under r̂; c encrypts the message m under r; and σ is a
valid signature on c. The user outputs the blind signature σBS = (ĉ, π).

It is not hard to see that the scheme is blind under the IND-CPA security of the
PKE and the zero-knowledge property of the NIZK. The one-more unforgeability
proof is also straight-forward: The reduction will use the adversary A against the
one-more unforgeability game to break the euf-cma of the signature scheme. The
reduction first programs the random oracle so that it knows the corresponding
decryption key dk of the PKE. When A submits c to the blind signing oracle,
the reduction relays this to its signing oracle and returns A the signature σ
it obtains. Moreover, it makes a list L of decrypted messages m ← Dec(dk, c).
When A outputs the forgeries (σBS,i = (ĉi, πi),mi)i∈[�+1], it searches a mi such
that mi �∈ L, which is guaranteed to exist since there are at most � signing
queries. The reduction then decrypts (ci, ri, σi) ← Dec(dk, ĉi). Since the PKE is
perfectly correct and due to the soundness of the NIZK, ci could not have been
queried by A as otherwise mi ∈ L, and hence, (ci, σi) breaks euf-cma security.
Source of Inefficiency. There are two sources of inefficiency when trying to
instantiate this generic construction. One is the use of a layered encryption: the
NIZK needs to prove that c is a valid encryption of m on top of proving ĉ is a
valid encryption of (c, r, σ). This contrived structure was required to bootstrap
a sound NIZK to be online-extractable. Specifically, the one-more unforgeability
proof relied on the reduction being able to extract the (partial) witness (ci, ri, σi)
in an on-the-fly manner from the outer encryption ĉi explicitly included in the
blind signature. The other inefficiency stems from the heavy reliance on PKEs.
As far as the correctness is concerned, the PKE seems replaceable by a compu-
tationally binding commitment scheme. This would be ideal since commitment
schemes tend to be more size efficient than PKEs since decryptability is not
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required. 4 However, without a PKE, it is not clear how the above proof would
work.

First Construction. We explain our first construction, an optimized variant of
Fischlin’s generic construction.

Using Rewinding-Extractable NIZKs. The first step is to relax the online-
extractable NIZK with a (single-proof) rewinding-extractable NIZK. Such an
NIZK allows extracting a witness from a proof output by an adversary A by
rewinding A on a fixed random tape. NIZKs obtained by compiling a Σ-protocol
using the Fiat-Shamir transform is a representative example of an efficient
rewinding-extractable NIZK. The net effect of this modification is that we can
remove the layer of large encryption by ĉ, thus making the statement simpler
and allowing us to remove ĉ from σBS.

Let us check if this rewinding-extractable NIZK suffices in the above proof
of one-more unforgeability. At first glance, the proof does not seem to work due
to a subtle issue added by the rewinding extractor. Observe that the reduction
now needs to simulate A in the rewound execution as well. In particular, after
rewinding A, A may submit a new c′ to the blind signing oracle, which was not
queried in the initial execution. The reduction relays this c′ to its signing oracle
as in the first execution to simulate the signature σ′. As before, we can argue
that there exists a message mi in the forgeries output by A in the first execution
such that mi �∈ L, but we need to further argue that mi �∈ L′, where L′ is the list
of decrypted messages A submitted in the rewound execution. Namely, we need
to argue that mi /∈ L ∪ L′ for the reduction to break euf-cma security. However,
a naive counting argument as done before no longer works because |L ∪ L′| can
be large as 2�, exceeding the number of forgeries output by A, i.e., � + 1.

We can overcome this issue by taking a closer look at the internal of a par-
ticular class of rewinding-extractable NIZK. Specifically, throughout this paper,
we focus on NIZKs constructed by applying the Fiat-Shamir transform on a Σ-
protocol (or in more general a public-coin interactive protocol). A standard way
to argue rewinding-extractability of a Fiat-Shamir NIZK is by relying on the fork-
ing lemma [8,51], which states (informally) that if an event E happened in the
first run, then it will happen in the rewound round with non-negligible probabil-
ity. In the above context, we define E to be the event that the i-th message in A’s
forgeries satisfy mi �∈ L, where i is sampled uniformly random by the reduction
at the outset of the game. Here, note that E is well-defined since the reduction
can prepare the list L by decrypting A’s signing queries. The forking lemma then
guarantees that we also have mi �∈ L′ in the rewound execution.5 This slightly
more fine-grained analysis allows us to replace the online-extractable NIZK with
a rewinding-extractable NIZK.

4 Constructing an online extractable NIZK by adding a PKE on top of a sound NIZK
is a standard method.

5 For the keen readers, we note that we are guaranteed to have the same i-th message
in both executions since these values are fixed at the forking point due to how the
Fiat-Shamir transform works.
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Issue with Using Commitments. The next step is to relax the PKE by a (com-
putationally binding) commitment scheme. While the correctness and blindness
hold without any issue, the one-more unforgeability proof seems to require a
major reworking. The main reason is that without the reduction being able to
decrypt A’s signing queries c, we won’t be able to define the list L. In particular,
we can no longer define the event E, and hence, cannot invoke the forking lemma.
Thus, we are back to the situation where we cannot argue that the extracted wit-
ness (ci, ri, σi) from A’s forgeries, is a valid forgery against the euf-cma security
game. Even worse, A could potentially be breaking the computationally binding
property of the commitment scheme by finding two message-randomness pairs
(mi, ri) and (m′

i, r
′
i) such that they both commit to ci but mi �= m′

i. In such
a case, extracting from a single proof does not seem sufficient since a reduc-
tion would need at least two extracted witnesses to break the binding of the
commitment scheme.

To cope with the latter issue first, we extend the one-more unforgeability
proof to rely on a multi-proof rewinding-extractable NIZK. In general, multi-
proof rewinding-extractors run in exponential time in the number of proofs that
it needs to extract from [9,53]. However, in our situation, with a careful argument,
we can prove that our extractor runs in strict polynomial time since A provides
all the proofs to the extractor only at the end of the game. This is in contrast to
the settings considered in [9,53] where A can adaptively submit multiple proofs
to the extractor throughout the game.

We note that the assumption we require has not changed: a Σ-protocol for the
same relation as in the single-proof setting compiled into an NIZK via the Fiat-
Shamir transform. To prove multi-proof rewinding-extractability of this Fiat-
Shamir NIZK, we can no longer rely on the now standard general forking lemma
by Bellare and Neven [8] that divorces the probabilistic essence of the forking
lemma from any particular application context. A naive extension of the general
forking lemma to the multi-forking setting will incur an exponential loss in the
success probability. To provide a meaningful bound, we must take into account
the extra structure offered by the Fiat-Shamir transform, and thus our analysis is
akin to the more traditional forking lemma analysis by Pointcheval and Stern [51]
or by Micali and Reyzin [46]. To the best of our knowledge, we provide the first
formal analysis of the multi-proof rewinding-extractability of an NIZK obtained
by applying the Fiat-Shamir transform to a Σ-protocol. We believe this analysis
to be of independent interest.
Final Idea to Finish the Proof. Getting back to the proof of one-more
unforgeability, the reduction now executes the multi-proof rewinding-extractor
to extract all the witnesses (ci, ri, σi)i∈[�+1] from the forgeries. Relying on the
binding of the commitment scheme, we are guaranteed that all the commitment
ci’s are distinct. Moreover, since A only makes � blind signature queries in the
first execution, we further have that there exists at least one ci in the forgeries
which A did not submit in the first execution.

However, we are still stuck since it’s unclear how to argue that this particu-
lar ci was never queried by A in any of the rewound executions. Our next idea
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is to slightly strengthen the NIZK so that the proof π is statistically binding
to a portion of the witness that contains the commitments.6 We note that this
is still strictly weaker and more efficiently instantiable compared to an online-
extractable NIZK required by Fischlin’s construction since we do not require the
full list of witnesses to be efficiently extractable from the proofs in an online man-
ner. We use this property to implicitly fix the commitments (ci)i∈[�+1] included
in the forgeries after the end of the first execution of A. This will be the key
property to completing the proof.

The last idea is for the reduction to randomize what it queries to its sign-
ing oracle. For this, we further assume the commitment scheme is randomizable,
where we emphasize that this is done for ease of explanation and we do not
strictly require such an assumption (see remark 1). When A submits a commit-
ment c to the blind signing oracle, the reduction randomizes c to c′ using some
randomness rand and instead sends c′ to its signing oracle. It returns the signa-
ture σ and rand to A. A checks if c becomes randomized to c′ using rand and
if σ is a valid signature on c′. It then uses c′ instead of c to generate the blind
signature as before. The key observation is that the reduction is invoking its
signing oracle with randomness outside of A’s control. Since the commitments
(ci)i∈[�+1] were implicitly fixed at the end of the first execution, any randomized
c′ sampled in the subsequent rewound execution is independent of these commit-
ments. Hence, the probability that the reduction queries ci to the signing oracle
in any of the rewound execution is negligible, thus constituting a valid forgery
against the euf-cma security game as desired.
Instantiation. We instantiate the framework in the asymmetric pairing set-
ting, i.e. we have groups G1, G2, GT of prime order p, some fixed generators
g1 ∈ G1, g2 ∈ G2, and a pairing e : G1 × G2 �→ GT . For the commitment scheme,
we choose Pedersen commitments (CPed) of the form c = gm

1 ppr, as CPed is ran-
domizable and consists of a single group element. Note that the public parameter
pp ∈ G1 is generated via a random oracle. We then need to choose an appro-
priate signature scheme that allows signing CPed commitments. We choose SPS
as all components of the scheme are group elements, in particular, the message
space is G

�
1, where � is the message length. The most efficient choice in the stan-

dard model is [39] with signatures of size 335 Byte. Instead, we optimize KPW
signatures [43] to a signature size of 223 Byte (from originally 382 Byte). Our
optimized variant SKPW is no longer structure-preserving, as it consists of one
element τ in Zp, but suffices for our applications. We refer to the full version
for more details. Note that SKPW would be an inefficient choice in the original
Fischlin blind signature [28], as it requires encrypting the signature τ over Zp

to instantiate the online-extractable NIZK. In the pairing setting, this incurs an

6 At the Σ-protocol abstraction, we call this new property f -unique extraction. It
is a strictly weaker property than the unique response property considered in the
literature [27,54].
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overhead in proof size linear in the security parameter λ7. The benefit of using
our framework with the weaker rewinding-extractable NIZK is that we now only
need to prove knowledge of τ , and thus can get away without encrypting it.
Such an NIZK is possible with a single element in Zp based on a Schnorr-type
Σ-protocol (compiled with Fiat-Shamir). In the Σ-protocol, we further commit
to group elements (wi)i ∈ G

n
1 in the witness via ElGamal commitments (CEG)

of the form Ei = (wi ·ppri , gri
1 ), which the prover sends to the verifier in the first

flow. In particular, this ensures f -unique extraction, as Ei fixes the commitment
c ∈ {wi}i statistically. Naively, this approach requires 2n group elements, where
n is the number of group elements in the witness. Instead, we share the random-
ness among all commitments under different public parameters ppi generated
via a random oracle. The commitments remain secure but require only n + 1
group elements. In particular, we set Ei = (wi · pps

i ) and fix s via S = gs
1. Then,

we can open all commitments Ei in zero-knowledge with a single element in Zp,
as knowledge of s is sufficient to recover the witness wi from all Ei. Then, we
compile our Σ-protocol with Fiat-Shamir to obtain a rewinding-based NIZK. We
apply a well-known optimization to avoid sending some of the first flow α, and
include the hash value β ← H(x, α) in the proof explicitly. In total, compared to
sending the witness to the verifier in the clear, our NIZK only has an overhead
of 1 group element in G1 and 3 elements in Zp. The additional group element
is S. The three additional Zp elements are the hash value β, and values in the
third flow required for (i) showing knowledge of s and (ii) linearizing a quadratic
equation in the signature verification.

The instantiation of our framework achieves communication size of 303 Byte
and signature size of 447 Byte.

Second Construction. We explain our second construction relying on randomiz-
able signatures with an ABO reduction.
Getting Rid of NIZKs in the Signature. While the previous construction
provides a small sum of signature and communication sizes, one drawback is that
the blind signature has inherently a larger signature than those of the underlying
signature scheme. The source of this large blind signature stems from using an
NIZK to hide the underlying signature provided by the signer.

A natural approach used in the literature is to rely on techniques used to
construct randomizable signature schemes [10,30,31,42]. Informally, a randomiz-
able signature scheme allows to publicly randomize the signature σ on a message
m to a fresh signature σ′. Many standard group-based signature schemes (in the
standard model and ROM) are known to satisfy this property, e.g., [12,56]. A
failed attempt would be for the user to randomize the signature σ provided by
the signer and output the randomized σ′ as the blind signature. Clearly, this
is not secure since the user is not hiding the message m, that is, σ and σ′ are
linkable through m thus breaking blindness. An idea to fix this would be to let

7 For instance, with ElGamal, the message is encrypted in the exponent and decryp-
tion would require a discrete logarithm computation. Thus, the message is typically
encrypted bit-wise which incurs an overhead of log2(p).
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the user send a commitment c = Com(m; r) to the signer and the signature signs
the “message” c. However, unless the commitment c can be randomized consis-
tently with σ, we would still need to rely on an NIZK to hide c. This calls for a
signature scheme that is somehow compatible with commitments.
Signatures with All-But-One Reductions. Our main insight is that a spe-
cific class of signature schemes with an all-but-one (ABO) reduction is naturally
compatible with blind signatures. An ABO reduction is a standard proof tech-
nique to prove selective security of public key primitives, e.g., [3,13,34,52], where
a formal treatment can be found in [47]. In the context of signature schemes, this
is a proof technique that allows the reduction to embed the challenge message
m∗ (i.e., the signature for which the adversary forges) into the verification key.
The reduction can simulate any signatures on m �= m∗, and when the adversary
outputs a forgery on m∗, then the reduction can break some hard problems.

Let us now specify the class of signature scheme. We assume an addi-
tive homomorphic commitment scheme, that is, Com(m; r) + Com(m′; r′) =
Com(m + m′; r + r′). We then assume a signature scheme where the signing
algorithm Sig(sk,m) can be rewritten as ̂Sig(sk,Com(m; 0) + u), where u is
some fixed but random commitment included in the verification key. Namely,
Sig first commits to the message m using no randomness, adds u to it, and
proceeds with signing. Note that if u = Com(−m′; r′) for some (m′, r′), then
Com(m; 0) + u = Com(m − m′; r′). While contrived at first glance, this prop-
erty is naturally satisfied by many of the signature schemes that admit an ABO
reduction; the ABO reduction inherently requires embedding the challenge mes-
sage m∗ into the verification key in an unnoticeable manner and further implic-
itly requires message m submitted to the signing query to interact with the
“committed” m∗. Specifically, the former hints at a need for an (implicit) com-
mitment scheme and the later hints at the need for some operation between
the commitments. Finally, to be used in the security proof, we assume there
is a simulated signing algorithm ŜimSig along with a trapdoor td such that
ŜimSig(td,Com(m − m′; r′),m − m′, r′) = ̂Sig(sk,Com(m; 0) + u) if and only if
m �= m′, where recall u = Com(−m′; r′). Specifically, ŜimSig can produce a valid
signature if it knows the non-zero commitment message and randomness.

Let us explain the ABO reduction in slightly more detail. In the security proof,
the reduction guesses (or the adversary A submits) a challenge message m∗ that
A will forge on. It then sets up the verification key while replacing the random
commitment u to u = Com(−m∗; r∗) while also embedding a hard problem that
it needs to solve. Due to the hiding property of the commitment scheme, this
is unnoticeable from A. Then, instead of using the real signing algorithm ̂Sig,
the reduction uses the simulated signing algorithm ŜimSig. As long as m �= m∗,
ŜimSig(td,Com(m − m∗; r∗),m − m∗, r∗) outputs a valid signature, and hence,
can be used to simulate the signing oracle. Finally, given a forgery on m∗, the
reduction is set up so that it can break a hard problem.
Turning it into a Blind Signature. To turn this into a blind signature, the
key observation is that ̂Sig is agnostic to the committed message and random-
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ness of Com(m; 0) + u — these are only used during the security proof when
running ŜimSig. Concretely, a user of a blind signature can generate a valid
commitment Com(m; r), send it to the signer, and the signer can simply return
σr ← ̂Sig(sk,Com(m; r) + u). If the signature admits a way to map σr back to
a normal signature σ for m, then we can further rely on the randomizability of
the signature scheme to obtain a fresh signature σ′ on the message m.

The proof of one-more unforgeability of this abstract blind signature con-
struction is almost identical to the original ABO reduction with one exception.
For the reduction to invoke the simulated ŜimSig, recall it needs to know the
message and randomness of the commitment Com(m; r) + u. Hence, we modify
the user to add an online-extractable NIZK to prove the correctness of the com-
mitment Com(m; r) so that the reduction can extract (m, r). Here, we require
online-extractability rather than rewinding-extractability since otherwise, the
reduction will run exponentially in the number of singing queries [9,53]. Also,
this is why the communication size becomes larger compared with our first con-
struction. Finally, when the adversary outputs a forgery including m∗, the reduc-
tion can break a hard problem as before. Here, we note that we can simply hash
the messages m with a random oracle to obtain an adaptively secure scheme
using the ABO reduction.

Interestingly, while the recent lattice-based blind signature by del Pino and
Katsumata [25] stated to use lattice-tailored techniques to optimize Fischlin’s
generic construction, the construction and the proof of one-more unforgeability
follows our above template, where they use the Agrawal-Boneh-Boyen signa-
ture [3] admitting an ABO reduction. The only difference is that since lattices
do not have nice randomizable signatures, they still had to rely on an NIZK
for the final signature. While we focused on ABO reductions where only one
challenge message m∗ can be embedded in the verification key, the same idea
naturally extends to all-but-many reductions. The blind signature by Blazy et
al. [10] relying on the Waters signature can be viewed as one such instantiation.
Finally, while we believe we can make the above approach formal using the ABO
reduction terminology defined in [47], we focus on one class of instantiation in
the main body for better readability. Nonetheless, we believe the above abstract
construction will be useful when constructing round-optimal blind signatures
from other assumptions.
Instantiation. We instantiate the above framework with the Boneh-Boyen sig-
nature scheme SBB [12,14]. Recall that signatures of SBB on a message m ∈ Zp

are of the form σ = (sk · (um
1 ·h1)r, gr

1), where u1, h1 ∈ G1 are part of the verifica-
tion key, sk is the secret key and r ← Zp is sampled at random. We observe that
SBB is compatible with the Pedersen commitment scheme CPed with generators
u1 and g1. Roughly, the user commits to the message m via c = um

1 · gs
1
8, where

s ← Zp blinds the message, proves that she committed to m honestly with a
proof π generated via an appropriate online-extractable NIZK Π, and sends (c, π)

8 In the actual construction, we further hash m by a random oracle; this effectively
makes SBB adaptively secure.
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to the signer. The signer checks π and signs c via (μ0, μ1) ← (sk · (c · h1)r, gr
1).

Note that as c shares the structure um
1 with SBB signatures on message m, the

user can recompute a valid signature on m via σ ← (μ0 · μ−s
1 , μ1). Before pre-

senting σ to a verifier, the user rerandomizes σ to ensure blindness. We refer to
Sect. 4 for more details.

The main challenge is constructing an efficient online-extractable NIZK Π
for the relation Rbb = {(x,w) : c = um

1 · gs
1}, where x = (c, u1, g1) and w =

(m, s). As we require online-extraction, a simple Σ-protocol showing c = um
1 · gs

1

compiled via Fiat-Shamir is no longer sufficient as in our prior instantiation,
as the extractor needs to rewind the adversary in order to extract (m, s). For
example, we could instantiate Π with the (online-extractable) GOS proofs but
such a proof has a size of around 400 KB. Another well-known approach is to
additionally encrypt the witness (m, s) via a PKE and include the ciphertext
into the relation; recall this method was used when explaining the Fischlin blind
signature. The extractor can then use the secret key to decrypt the witnesses
online. While a common choice for the PKE would be ElGamal encryption, this
is insufficient since the extractor can only decrypt group elements gm

1 and gs
1 and

not the witness in Zp as required. To circumvent this, a common technique is
to instead encrypt the binary decompositions (mi, si)i∈[�2] of m, s, respectively,
with ElGamal, where �2 = log2(p). It then proves with a (non-online extractable)
NIZK that m =

∑�2
i=1 mi2i−1 and s =

∑�2
i=1 si2i−1 are valid openings of c, while

also proving that mi, si encrypted in the ElGamal ciphertexts are elements in
{0, 1}, where the latter can be done via the equivalent identity x·(1−x) = 0. The
extractor can now decrypt the ElGamal encryptions of mi to gmi

1 ∈ {g1, 1G1} and
efficiently decide whether mi is 0 or 1. Similarly, it can recover the decomposition
si. Unfortunately, this approach requires at least 2�2 ElGamal ciphertexts which
amount to 32 KB alone. In fact, the bit-by-bit encryption of the witness is also
the efficiency bottleneck of GOS proofs for Zp witnesses.

We refine the above approach in multiple ways to obtain concretely efficient
online-extractable NIZKs. Instead of using the binary decomposition, we observe
that the extractor can still recover x from gx

1 if x ∈ [0, B − 1] is short, i.e., B =
poly(λ). Thus, we let the prover encrypt the B-ary decompositions (mi, si)i∈[�] of
m and s, where � = logB(p). For example, setting B = 232 allows the extractor
to recover mi via a brute-force calculation of the discrete logarithm, and the
number of encryptions is reduced by a factor of 32. Concretely, we modify the
prover to prove that an ElGamal ciphertext encrypts (mi, si)i∈[�] such that (i)
each mi and si are in [0, B − 1], and (ii) m =

∑�
i=1 miB

i−1, s =
∑�

i=1 siB
i−1,

and c = um
1 · gs

1.
To instantiate our approach, we glue two different (non-online extractable)

NIZKs Πrp and Πped together, each being suitable to show relations (i) and (ii),
respectively. For the range relation (i), we appeal to the batched variant of
Bulletproofs [4] and turn it non-interactive with Fiat-Shamir. For the linear
relation (ii), we use a standard NIZK with an appropriate Σ-protocol compiled
with Fiat-Shamir. We further apply three optimizations to make this composition
of NIZKs more efficient:
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1. While Bulletproofs require committing to the decompositions (mi, si)i∈[�] in
Pedersen commitments, we use the shared structure of ElGamal ciphertexts
and Pedersen commitments to avoid sending additional Pedersen commit-
ments. This also makes the relation simpler since we do not have to prove
consistency between the committed components in the ElGamal ciphertext
and Pedersen commitment.

2. We use a more efficient discrete logarithm algorithm during extraction with
runtime O(

√
B), which allows us to choose more efficient parameters for the

same level of security. This further reduces the number of encryptions by a
factor 2.

3. We perform most of the proof in a more efficient elliptic curve ̂G of same order
p without pairing structure. As both the NIZKs Πrp and Πped are not reliant
on pairings, this reduces the size and efficiency of the NIZK considerably.

Proof of Instantiation. Finally, we analyze the security of the optimized online-
extractable NIZK Π obtained by gluing Πrp and Πped together. Correctness and
zero-knowledge are straightforward. Also, online-extraction seems immediate on
first sight. The extractor decrypts the decomposition, reconstructs the witness
(m, s), and checks whether c = um

1 gs
1. To show why it works, we rely on the

soundness of the range proof Πrp to guarantee that the committed values are
short. This allows the extractor to decrypt efficiently. Moreover, we rely on the
soundness of Πped to guarantee that the decrypted values form a proper B-ary
decompositions of an opening (m, s) of c. However, this high-level idea misses
many subtle issues.

First, Bulletproofs are not well-established in the non-interactive setting in
the ROM. While Attema et al. [5] show that special sound multi-round proof
systems are knowledge sound (or rewinding-extractable) when compiled via Fiat-
Shamir, Bulletproofs are only computationally special sound under the DLOG
assumption. An easy fix for this is to relax the relation of the extracted witness.
That is we use two different relations: one to be used by the prover and the
other to be used by the extractor. We define an extracted witness w to be in the
relaxed relation if either w is in the original relation or w is a DLOG solution
with respect to (part of) the statement. With this relaxation, the interactive
Bulletproofs becomes special sound for the relaxed relation since we can count
the extracted DLOG solution as a valid witness. Observing that the result of
[5] naturally translates to relaxed relations, we can conclude the non-interactive
Bulletproofs to be rewinding-extractable in the ROM.

The second subtlety is more technical. For the formal proof, when the adver-
sary submits a proof such that the online-extraction of Π fails, we must show
that the adversary is breaking either the soundness of the underlying NIZKs Πrp

or Πped. Recall that Πrp and Πped are glued together via the ElGamal cipher-
text (cf. item 1). Specifically, each witness w ∈ (mi, si)i∈[�] are encrypted as
c = (c0, c1) = (gwppr, gr) with randomness r ← Zp, and Πrp uses the partial
“Pedersen part” c0, while Πped uses the entire “ElGamal part” c. Thus one possi-
bility for the online-extraction of Π failing is when the adversary breaks the tie
between the two NIZKs by breaking the binding property of the Pedersen com-
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mitment. That is, if the adversary finds the DLOG between (g, pp), it can break
the consistency between the two NIZKs in such a way that online-extraction of
Π fails.

Put differently, to show that no adversary can trigger a proof for which the
online-extraction of Π fails, we must show (at the minimum) that we can use
such an adversary to extract a DLOG solution between (g, pp). This in particular
implies that we have to simultaneously extract the witness w0 of Πrp containing
one opening of c0 and the witness w1 of Πped containing the other opening of c0 in
order to break DLOG with respect to (g, pp), or equivalently to break the binding
property of the Pedersen commitment. The issue with this is that we cannot
conclude that both extractions succeed at the same time even if Πrp and Πped

individually satisfy the standard notion of rewinding-extractability. For instance,
using the standard notion of rewinding-extractability, we cannot exclude the case
where the adversary sets up the proofs π0, π1 of Πrp,Πped, respectively, in such
a way that if the extractor of Πrp succeeds, then the extractor of Πped fails. We
thus show in a careful non-black box analysis that the extraction of both proofs
succeeds at the same time with non-negligible probability. To the best of our
knowledge, this is the first time an NIZK that internally uses Bulletproofs is
proven to be online-extractable in the ROM. We believe that our new analysis
is of independent interest.

2 Preliminaries

Let λ ∈ N be the security parameter. We use standard notations for probability,
algortihms and distributions. Also, we use prime order groups G and pairing
groups (G1, G2, GT , e, g1, g2) of shared order p, with standard notation. We refer
to the full version for more details. We denote with [n] the set {1, . . . , n} for
n ∈ N. For any 
h = (h1, . . . , hq) and i ∈ [q], we denote 
h<i as (h1, . . . , hi−1) and

h≥i as (hi, . . . , hq), where 
h<1 denotes an empty vector. Moreover, for any two
vectors 
h, 
h′ of arbitrary length, we use 
h‖
h′ to denote the concatenation of the
two vectors. In particular, for any i ∈ [q] and 
h ∈ Hq, we have 
h = 
h<i‖
h≥i.

Instantiation. For our instantiations, we assume that the modulus p is of size
256 bit, and an element of G1, G2, GT is of size 382, 763, 4572 bit, respectively.
These are common sizes of standard BLS curves [6] with security parameter λ =
128, in particular BLS12-381 [15]. For groups that require no pairing operation,
we use a curve of order p and assume that elements are of size 256 bit. We
generally write ̂G for such groups.

Assumptions. In this paper, we use the following hardness assumptions. Let
G be an arbitrary group with generator g and (G1, G2, GT , e, g1, g2) ← PGen(1λ)
be a pairing description.

The discrete logarithm (DLOG) assumption in G states that it is hard to
compute the discrete logarithm x of some random h = gx ∈ G. The decisional
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Diffie-Hellman (DDH) assumption states that it is hard to distinguish tuples
(ga, gb, gab) from tuples (ga, gb, gc) with random a, b, c ← Zp. The symmetric
external Diffie-Hellman (SXDH) assumption holds if the DDH assumption holds
in G1 and in G2. Finally, the (asymmetric) computational Diffie-Hellman assump-
tion states that given (ga

1 , ga
2 , gb

1, g
b
2), it is hard to computes gab

1 .

Explaining Group Elements as Random Strings. Our frameworks gener-
ally require that public parameters pp (of commitment schemes) and common
random strings crs (of NIZKs) are random bit strings. For readability, we allow
that pp and crs contain random group elements g ← G for some group G. This
is without loss of generality, as using explainable sampling, we can explain these
elements as random strings. We refer to the full version for more details.

2.1 Cryptographic Primitives

We briefly recall the primitives we use throughout the article, and refer to the
full version for formal definitions.

Commitment Schemes. A commitment scheme C is a PPT algorithm C =
C.Commit such that

– C.Commit(pp,m; r): given the public parameters pp ∈ {0, 1}�C , message m
and randomness r, computes a commitment c, and outputs the pair (c, r),

where pp ∈ {0, 1}�C are uniform public parameters, r is the randomness and
c is the commitment. We do not explicitly define the opening algorithm since
we can use the commitment randomness r as the decommitment (or opening)
information and check if c = Commit(pp,m; r) holds to verify that c is a valid
commitment to message m.

We require the standard notions of correctness, hiding and binding. A com-
mitment scheme is correct if honest commitments c ← Commit(pp,m; r) always
verify, i.e., c = Commit(pp,m; r). It is hiding if it is hard to decide whether an
unopened commitment c commits to message m0 or m1, and it is binding if it is
hard to open commitments c to distinct messages.

We further say that c = Commit(pp,m; r) is rerandomizable, if it can be
rerandomized via c′ ← RerandCom(pp, c,Δr). We require that the new com-
mitment c′ has high min-entropy if Δr is a fresh random value, i.e., given c it
is statistically difficult to predict c′. Also, we assume that we can recover an
opening of c′ via r′ ← RerandRand(pp, c,m, r,Δr) if an initial opening (m, r)
of c and the rerandomization randomness Δr is known. That is, if compute
c′ = RerandCom(pp, c,Δr) and r′ ← RerandRand(pp, c,m, r,Δr), then it holds
that c′ = c′′, where (c′′, r′) = Com(pp,m; r′).

We note that any natural additive homomorphic commitment scheme satisfies
rerandomizability if we define RerandCom(pp, c,Δr) = c+Commit(pp, 0;Δr) = c′.
Observe that if c = Commit(pp,m; r), the rerandomziaed randomness is r′ =
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r +Δr since c′ = Commit(pp,m; r′) by the homomorphic property. Moreover, c′

has high min-entropy since Commit(pp, 0) has high min-entropy for most natural
commitment schemes. Finally, we note that while a computational variant of
the high min-entropy property suffices for our generic construction, we use the
statistical variant for simplicity and because our instantiation satisfies it.

Signature Schemes. We consider deterministic signature schemes; a scheme
where the randomness of the signing algorithm is derived from the secret key
and message. We can derandomize any signature scheme by using a pseu-
dorandom function for generating the randomness used in the signing algo-
rithm (see for example [40]). A signature scheme is a tuple of PPT algorithms
S = (KeyGen,Sign,Verify) such that

– KeyGen(1λ): generates a verification key vk and a signing key sk,
– Sign(sk,m): given a signing key sk and a message m ∈ Smsg, deterministically

outputs a signature σ,
– Verify(vk,m, σ): given a verification key vk and a signature σ on message m,

deterministically outputs a bit b ∈ {0, 1}.

Here, Smsg is the message space. We require the standard notion of correctness
and euf-cma security. A signature scheme is correct if honestly generated sig-
natures σ ← Sign(sk,m) verify correctly, i.e., Verify(vk,m, σ) = 1. It is euf-cma
secure if given some vk and access to a signature oracle Sign(sk, ·), it is hard
to output a valid signature σ for some message m that was never queried to
Sign(sk, ·).

Blind Signature Scheme. We recall the definition of round-optimal blind
signatures, and refer to the full version for more formal definitions of (partially)
blind signatures. A blind signature scheme is a tuple of PPT algorithms PBS =
(KeyGen,User,Signer,Derive,Verify) such that

– KeyGen(1λ): generates the verification key bvk and signing key bsk,
– User(bvk,m): given verification key bvk, and message m ∈ BSmsg, outputs a

first message ρ1 and a state st,
– Signer(bsk, ρ1): given signing key bsk, and first message ρ1, outputs a second

message ρ2,
– Derive(st, ρ2): given state st, and second message ρ2, outputs a signature σ,
– Verify(bvk,m, σ): given verification key bvk, and signature σ on message m ∈

BSmsg, outputs a bit b ∈ {0, 1}.

In the following, we assume the state is kept implicit in the following for better
readability. We consider the standard security notions for blind signatures [38].

A blind signature is correct, if for all messages m ∈ BSmsg, (bvk, bsk) ←
KeyGen(1λ), (ρ1, st) ← User(bvk,m), ρ2 ← Signer(bsk, ρ1), σ ← Derive(st, ρ2), it
holds that Verify(bvk,m, σ) = 1.

It is blind under malicious keys if a malicious signer cannot distinguish
whether it first signed m0 or m1, after engaging with a honest user in two signing
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sessions and being presented the obtained signatures on messages m0,m1 in a
fixed order. Here, the honest user permutes the order of the signing sessions at
random, and the verification key bvk is adversarially chosen.

It is one-more unforgeable if a malicious user that engages in at most QS

signing sessions with the signer, can output at most QS valid distinct signature-
message pairs.

Σ-Protocols. Let R be an NP relation with statements x and witnesses w. We
denote by LR = {x | ∃w s.t. (x,w) ∈ R} the language induced by R. A Σ-
protocol for an NP relation R for language LR is a tuple of PPT algorithms
Σ = (Init,Chall,Resp,Verify) such that

– Init(x,w): given a statement x ∈ LR, and a witness w such that (x,w) ∈ R,
outputs a first flow message (i.e., commitment) α and a state st, where we
assume st includes x,w,

– Chall(): samples a challenge β ← CH (without taking any input),
– Resp(st, β): given a state st and a challenge β ∈ CH, outputs a third flow

message (i.e., response) γ,
– Verify(x, α, β, γ): given a statement x ∈ LR, a commitment α, a challenge

β ∈ CH, and a response γ, outputs a bit b ∈ {0, 1}.

Here, CH denotes the challenge space. We call the tuple (α, β, γ) the transcript
and say that they are valid for x if Verify(x, α, β, γ) outputs 1. When the context
is clear, we simply say it is valid and omit x.

We recall the standard notions of correctness, high-min entropy, honest-
verifier zero-knowledge, and 2-special soundness. A Σ-protocol is correct, if for
all (x,w) ∈ R, if for any honestly generated transcripts (α, β, γ), the verifier
accepts, i.e., Verify(x, α, β, γ) = 1. It has high min-entropy if for all (x,w) ∈ R,
it is statistically hard to predict a honestly generated first flow α. It is honest-
verifier zero-knowledge (HVZK), if there exists a PPT zero-knowledge simulator
Sim such that the distributions of Sim(x, β) and the honestly generated tran-
script with Init initialized with (x,w) are computationally indistinguishable for
any x ∈ LR, and β ∈ CH, where the honest execution is conditioned on β being
used as the challenge. Finally, it is 2-special sound, if there exists a determin-
istic PPT extractor Ext such that given two valid transcripts {(α, βb, γb)}b∈[2]

for statement x with β1 �= β2, along with x, outputs a witness w such that
(x,w) ∈ R.

Note that in the above, two valid transcripts for x, with the same first flow
message and different challenges, imply that statement x is in LR. That is, we
do not guarantee x to lie in LR when invoking Ext. While subtle, this allows
us to invoke Ext properly within the security proof even if the reduction cannot
decide if the statement x output by the adversary indeed lies in LR.

In the following, we propose a new notion of f-unique extraction. The notion
is similar to the unique response property [27,54] which requires that given
an incomplete transcript (α, β), there is at most one response γ such that the
transcript τ = (α, β, γ) is valid. We relax this in two ways. First, we require
that given a transcript τ and another challenge β′, it is impossible to find two
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different responses γ0, γ1, such w0 �= w1, where wb is the witness extracted from
τ and τb = (α, β′, γb). We further relax this by only requiring this property for
a portion of the witness, defined by a function f , i.e., we require f(w0) �= f(w1)
instead of w0 �= w1.

While it may seem like an unnatural property, this is satisfied by many nat-
ural Σ-protocols. In particular, if the first flow α contains a perfectly bind-
ing commitment c = Commit(f(w); r) to f(w), and the extractor extracts the
appropriate r, then the Σ-protocol has f -unique extraction. We remark also
that a statistical variant of f -unique extraction is sufficient for our purpose. We
choose the definition below for simplicity and because our instantiation satisfies
it. See Sect. 3 for more details and concrete example of f -unique extraction.

Definition 1 (f-Unique Extraction). For a (possibly non-efficient) function
f , a Σ-protocol Σ has f -unique extraction if for any statement x, any tran-
script τ = (α, β, γ) and challenge β′ �= β, there is no γ0, γ1, such that for
τb = (α, β′, γb), we have

f(Ext(x, τ, τ0)) �= f(Ext(x, τ, τ1)).

Non-Interactive Zero Knowledge. Given a witness w for statement x, a
non-interactive zero-knowledge (NIZK) proof system allows a prover to generate
a proof π that attests that she knows some w′ such that (w′, x) ∈ R. Proofs π
can be verified for statement x without revealing anything but that the state-
ment is true. Here, we quantify “knowledge of the witness” either via adaptive
knowledge soundness or online-extractability. The former informally states that
if an algorithm A can generate a valid proof-statement pair (x, π), then there
exists some extractor that when given black-box access to A, can extract some
witness w s.t. (x,w) ∈ R. The latter requires that the witness w can be extracted
from (x, π) “on-the-fly" without disrupting A. In this context, we require some
random oracle H on which proving and verification rely. Further, we assume that
the prover and verifier are supplied with a common random string crs. As we
later aim to avoid such a crs in our blind signature framework, the crs will be
the output of a random oracle.

More formally, an NIZK for a relation R is a tuple of oracle-calling PPT
algorithms (ProveH,VerifyH) such that:

– ProveH(crs, x, w): receives a common random string crs ∈ {0, 1}�, a statement
x and a witness w, and outputs a proof π,

– VerifyH(crs, x, π): receives a statement x and a proof π, and outputs a bit
b ∈ {0, 1}.

Here, � is the length of common random strings. An NIZK is correct if
for any crs ∈ {0, 1}�, (x,w) ∈ R, and π ← ProveH(crs, x, w), it holds that
VerifyH(crs, x, π) = 1.

It is zero-knowledge if there exists a PPT simulator Sim = (SimH,Simπ)
that outputs simulated proofs π′ ← Simπ(crs, x) that are indistinguishable from
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real proofs π ← ProveH(crs, x, w) that are generated with witness w such that
(x,w) ∈ R. Here, SimH simulates the random oracle H for simulated proofs.

We define adaptive knowledge soundness. We remark that the soundness
relation Rlax can be different from the (correctness) relation R. We are typically
interested in R ⊆ Rlax and call Rlax the relaxed relation.

An NIZK is adaptively knowledge sound for relation Rlax if there exists a
PPT algorithm Ext such that for any crs ∈ {0, 1}�, given oracle access to any
PPT adversary A (with explicit random tape ρ) that makes QH = poly(λ)
random oracle queries, then for (x, π) ← AH(crs; ρ), the extractor finds some
w ← Ext(crs, x, π, ρ,
h) with (x,w) ∈ Rlax with probability at least μ(λ)−negl(λ)

poly(λ) .

Here, μ(λ) is the probability that A outputs valid pairs (x, π) and 
h are the
random oracle outputs in the run of A.

An NIZK is online-extractable if for all PPT adversaries A, there exists a
PPT simulator SimCRS that outputs a trapdoor td and simulated crs that is
indistinguishable from some random crs ← {0, 1}�, and a PPT extractor Ext,
such that for any QH = poly(λ) and PPT adversary A that on input crs
makes at most QH random oracle queries and outputs statement-proof pairs
{(xi, πi)}i∈[QS ] ← AH(crs), Ext outputs wi ← Ext(crs, td, xi, πi) such that for
all i it holds that (xi, wi) ∈ R, and all proofs verify, with probability at least
μ(λ)−negl(λ)

poly(λ) . Here, μ(λ) denotes the probability that the proofs output by A
verify correctly.

3 Optimizing the Fischlin Blind Signature

In this section, we provide an optimized generic construction of blind signa-
tures compared with the Fischlin blind signature [28]. In particular, we relax
the extractable (and perfect binding) commitment and multi-online extractable
NIZK used as the central building block for the Fischlin blind signature by a com-
putationally binding commitment and a standard rewinding-based NIZK built
from a Σ-protocol satisfying f -unique extraction. As we show in Sect. 3.3, this
relaxation allows us to minimize the sum of the communication and signature
size. We construct a natural partially blind variant in the full version.

3.1 Construction

Our generic construction is based on the building blocks (C,S,Σ) that satisfy
some specific requirements. If (C,S,Σ) satisfies these requirements, then we call
it BSRnd-suitable.

Definition 2. (BSRnd-Suitable (C,S,Σ)). The tuple of schemes (C,S,Σ) are
called BSRnd-suitable, if it holds that

– C is a correct and hiding rerandomizable commitment scheme with public
parameter, message, randomness, and commitment spaces {0, 1}�C , Cmsg, Crnd,
and Ccom, respectively, such that Cmsg is efficiently sampleable and 1/|Cmsg| =
negl(λ),
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– S is a correct and euf-cma secure deterministic signature scheme with mes-
sage space Smsg that contains Ccom, i.e., Ccom ⊆ Smsg and we assume elements
in Smsg are efficiently checkable,

– Σ is a correct, HVZK, 2-special sound Σ-protocol with high min-entropy, and
challenge space CH with 1/|CH| = negl(λ) for the relation

Rrnd := {x =(pp, vk,m), w = (μ, c, r) |
C.Commit(pp,m; r) = (c, r) ∧ S.Verify(vk, μ, c) = 1}.

We also require Σ to be f-unique extraction where f(w) = c, i.e., f outputs
c and ignores (μ, r).

Let (C,S,Σ) be BSRnd-suitable. Let Hpar,HM,Hβ be a random oracles from
{0, 1}∗ into {0, 1}�C , Cmsg, CH, respectively.

Construction. We present our blind signature BSRnd. Below, we assume that the
verification key implicitly specifies the public parameter pp for C via pp = Hpar(0).
We assume pp is provided to all of the algorithms for readability.

– BSRnd.KeyGen(1λ): samples (vk, sk) ← S.KeyGen(1λ) and outputs verification
key bvk = vk and signing key bsk = sk.

– BSRnd.User(bvk,m): sets m ← HM(m) and outputs the commitment c ∈ Ccom

generated via (c, r) ← C.Commit(pp,m) as the first message and stores the
randomness st = r ∈ Crnd.

– BSRnd.Signer(bsk, c): checks if c ∈ Ccom, samples a rerandomization
randomness Δr ← Crnd, rerandomizes the commitment c via c′ =
C.RerandCom(pp, c,Δr), signs μ ← S.Sign(sk, c′), and finally outputs the sec-
ond message ρ = (μ,Δr).

– BSRnd.Derive(st, ρ): parse st = r, ρ = (μ,Δr) and checks Δr ∈ Crnd. It
then computes the randomized commitment c′′ = C.RerandCom(pp, c,Δr)
and randomized randomness r′ ← C.RerandRand(pp, c,m, r,Δr), and checks
S.Verify(vk, c′′, μ) = 1 and c′′ = C.Commit(pp,m; r′). Finally, it outputs
a signature σ = π, where (α, st′) ← Σ.Init(x,w), β ← Hβ(x, α), γ ←
Σ.Resp(x, st′, β), π = (α, β, γ) with x = (pp, vk,m), w = (μ, c′′, r′).

– BSRnd.Verify(bvk,m, σ): parses σ = π and π = (α, β, γ), sets m = HM(m) and
x = (pp, vk,m), and outputs 1 if β = Hβ(x, α), Σ.Verify(x, α, β, γ) = 1, and
otherwise outputs 0.

3.2 Correctness and Security

The correctness of BSRnd follows directly from the correctness of the underlying
schemes (C,S,Σ). Blindness follows mainly from the HVZK property of Σ and the
hiding property of C. The only thing to be aware of is that the user needs to check
the validity of the rerandomized commitment c′′ by computing a rerandomized
randomness using the randomness r used to compute the original commitment
c. In order to invoke the hiding property of C on c, we rely on the correctness of
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the randomization property so that the reduction no longer needs to check the
validity of c′′.

The main technical challenge is the proof of one-more unforgeability. The
proof is given below, for an overview see Sect. 1. We refer to the full version for
proofs of correctness and blindness.

Theorem 1. The blind signature BSRnd is correct, blind under malicious keys
and one-more unforgeable if the schemes (C,S,Σ) are BSRnd-suitable.

Proof. Let A be a PPT adversary against one-more unforgeability. Denote by QS

the number of signing queries, by QM the number of HM queries, and by QH the
number of Hβ queries. Recall that we model Hpar,HM, and Hβ as random oracles,
where we assume without loss of generality that A never repeats queries. In the
end of the interaction with A, that is after QS signing queries, A outputs QS +1
forgeries {(mi, σi)}i∈[QS+1]. We write σi = πi and denote by ci the QS first
message queries to BSRnd.Signer(bsk, ·) issued by A. Note that if A is successful,
then we have Σ.Verify(xi, αi, βi, γi) = 1 and βi = Hβ(xi, αi) for mi = HM(mi),
xi = (pp, vk,mi), and πi = (αi, βi, γi). We first slightly alter the real game and
remove subtle conditions to make the later proofs easier. We denote by AdvHi

A (λ)
the advantage of A in Hybrid i for i ∈ {0, 1}.

– Hybrid 0 is identical to the real game.
– Hybrid 1 is the same as Hybrid 0, except it aborts if there is a collision in HM

or Hβ , or there is some (xi, αi) for i ∈ [QS +1] that was never queried to Hβ .

It suffices to upper bound the abort probability. A collision in HM (resp. Hβ)
happens with probability at most Q2

M/|Cmsg| (resp. Q2
H/|CH|) (which follows for

example from a union bound). Moreover, the probability that some fixed βi of A’s
output equals to Hβ(xi, αi) is exactly 1/|CH|, if (xi, αi) was never queried to Hβ .
Thus, it follows that AdvH0

A (λ) ≤ AdvH1
A (λ)+ Q2

M

|Cmsg| +
Q2

H+1
|CH| = AdvH1

A (λ)+negl(λ).

Description of Wrapper Algorithm B. We now present a wrapper algorithm B
that simulates the interaction between the challenger G and A in Hybrid 1.
Looking ahead we apply a generalization of the standard forking lemma on B to
extract the witnesses from all the proof (i.e. forgery) output by A.

Notice that G is deterministic once the keys (vk, sk) of the (deterministic)
signature scheme S, the QS rerandomization randomness in Crnd, and the outputs
of the random oracles Hpar,HM,Hβ are determined. Since Hpar is only used to
generate the public parameter pp of the commitment scheme, we assume without
loss of generality that only pp is given to A rather than access to Hpar. We use
coin to denote all the QM outputs of HM and the random coins used by A. We use

h = (̂βi,Δri)i∈[QH+QS ] ∈ (CH × Crnd)QH+QS to explicitly denote the list that
will be used to simulate the outputs of Hβ and rerandomziation randomness
sampled by G. Here, we note that 
h is deliberately defined redundantly since G
only needs QH hash outputs and QS rerandomziation randomness, rather than
QH + QS of them each. We also use ̂β ∈ CH to denote the output of Hβ to
distinguish between the hash value β included in A’s forgeries. We then define
B as an algorithm that has oracle access to S.Sign(sk, ·) as follows:
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BS.Sign(sk,·)(pp, vk,
h; coin) : On input pp, vk, and 
h ∈ (CH × Crnd)QH+QS , B simu-
lates the interaction between the challenger G and A in Hybrid 1. B invokes A
on the randomness included in coin and simulates G, where it runs the same
code as G except for the following differences:

– It uses the provided pp and vk rather than generating it on its own;
– All QM random oracle queries to HM are answered using the hash values

include in coin;
– On the i-th (i ∈ [QH ]) random oracle query to Hβ , it retrieves an unused
(̂βk,Δrk) with the smallest index k ∈ [QH + QS ] and outputs ̂βk and
discards Δrk;

– On the i-th (i ∈ [QS ]) first message ci ∈ Ccom from A, it retrieves an
unused (̂βk,Δrk) with the smallest index k ∈ [QH + QS ] and discards
̂βk. It then computes c′

i = C.RerandCom(pp, ci,Δrk), queries the signing
oracle on c′

i, obtains μi ← S.Sign(sk, c′
i), and returns the second message

ρi = (μi,Δrk).
At the end of the game when A outputs the forgeries, B checks if the forgeries
are valid and the added condition in Hybrid 1. If the check does not pass,
then B outputs ((0)i∈[QS+1],⊥), i.e., QS +1 zeros followed by a ⊥. Otherwise,
B finds the indices Ii ∈ [QH + QS ] such that Hβ(xi, αi) = βi = ̂βIi for
i ∈ [QS + 1], which are guaranteed to exist uniquely due to the modification
we made in Hybrid 1. It then sets Λ = (xi, αi, βi, γi)i∈[QS+1] and outputs
((Ii)i∈[QS+1], Λ). It can be checked that B perfectly simulates the view of
the challenger G in Hybrid 1. Therefore, B outputs Λ �= ⊥ with probability
AdvH1

A (λ).

Description of Forking Algorithm FB. We now define a generalization of the stan-
dard forking algorithm F so that F keeps on rewinding B until some condition is
satisfied. Concretely, F takes as input (pp, vk), has oracle access to S.Sign(sk, ·),
and invokes B internally as depicted in algorithm 1, where the number of repe-
tition T is defined below.

We show that if A succeeds in breaking one-more unforgeability in Hybrid 1
with non-negligible probability, then we can set a specific number of repetition
T so that the forking algorithm FB terminates in polynomial time and succeeds
in outputting a non-⊥ with non-negligible probability. Formally, we have the
following lemma.

Lemma 1. Let ε = AdvH1
A (λ). Then, if we set T =

(

ε
(QH+QS)(QS+2)2

)−1

·
log(2QS + 2), FB outputs a non-⊥ with probability at least ε

2(QS+2)2 .
In particular, if ε is non-negligible, then T = poly(λ). Moreover, the running

time of FB is at most (roughly) a factor T ·(QS+1)+1 more of B (or equivalently
A), so FB runs in polynomial time.
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Algorithm 1. Description of the forking algorithm F
S.Sign(sk,·)
B (pp, vk)

1: Pick coin for B at random.
2: �h ← (CH × Crnd)

QH+QS

3:
(
(Ii)i∈[QS+1], Λ

) ← BS.Sign(sk,·)(pp, vk,�h; coin)
4: if Λ = ⊥ then
5: return ⊥ � Return fail.
6: D := () � Prepare empty list.
7: for j ∈ [QS + 1] do
8: (c, flag) := (1, ⊥)
9: while c ∈ [T ] ∧ ¬flag do

10: �h
(c)
j,≥Ij

← (CH × Crnd)
QH+QS−Ij+1

11: �h
(c)
j := �h<Ij‖�h(c)

j,≥Ij

12:
(
(I

(c)
j,i )i∈[QS+1], Λ

(c)
j

) ← BS.Sign(sk,·)(pp, vk,�h(c)
j ; coin)

13: if I
(c)
j,j = Ij then

14: D = D ∪ (j, Ij , Λ
(c)
j )

15: flag = � � Break from while loop.
16: c = c + 1

17: if |D| < QS + 1 then � Check if B succeeds in all QS + 1 run.
18: return ⊥ � Return fail.
19: return (Λ, D)

Proof. Assume B outputs a valid Λ = (xi, αi, βi, γi)i∈[QS+1] in the first execution
and denote this event as E. For i ∈ [QS + 1], we denote the tuple (xi, αi, βi, γi)
as the i-th forgery. For any (i, k) ∈ [QS + 1] × [QH + QS ], we denote Ei,k as
the event that forgery is associated to the k-th hash query, i.e., the k-th entry
of 
h ∈ (CH × Crnd)QH+QS includes βi. Here, note that ∀i ∈ [QS + 1], we have
∑

k∈[QH+QS ] Pr[Ei,k] = 1. We define the set Pi as

Pi =
{

k

∣

∣

∣

∣

Pr[Ei,k | E] ≥ 1
(QH + QS)(QS + 2)

}

,

where for any k ∈ Pi, we have Pr[Ei,k] ≥ ε
(QH+QS)(QS+2) . Let us define Egood

i =
∨

k∈Pi
Ei,k. Then, we have Pr

[

Egood
i

∣

∣

∣ E
]

≥ QS+1
QS+2 , since there are at most (QH +

QS) possible values of k’s not in Pi and they can only account to a probability
at most (QH + QS) × 1

(QH+QS)(QS+2) =
1

QS+2 .
Next, for any (i, k) ∈ [QS +1]×Pi, let us define Xi,k = Rcoin×(CH×Crnd)k−1

and Yi,k = (CH × Crnd)QH+QS−k+1, where Rcoin denotes the randomness space
of coin. Here, note that (xi,
h≥k) ∈ Xi,k ×Yi,k can be parsed appropriately to be
(coin,
h), and defines all the inputs of B, where we assume a fixed (pp, vk). We
further define Ai,k ⊆ Xi,k × Yi,k to be the set of inputs that triggers event Ei,k.
Then using the splitting lemma with α = QS+1

QS+2 · ε
(QH+QS)(QS+2) , there exists a
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set Bi,k ⊂ Xi,k × Yi,k such that

Bi,k =

{
(xi,�h≥k) ∈ Xi,k × Yi,k

∣∣∣∣∣ Pr
�h′≥k←Yi,k

[
(xi, �h′≥k) ∈ Ai,k

]
≥ ε

(QH + QS)(QS + 2)2

}
,

(1)

and

Pr
(xi, �h′≥k)←Xi,k×Yi,k

[

(xi,
h≥k) ∈ Bi,k

∣

∣

∣ (x,
h≥k) ∈ Ai,k

]

≥ QS + 1
QS + 2

. (2)

We are now ready to evaluate the success probability of the forking algorithm
FB. With probability ε, B outputs ((Ii)i∈[QS+1], Λ) in the first execution on input
(coin,
h) ∈ Rcoin × (CH × Crnd)QH+QS . Then the probability that event Egood

i

occurrs for all i ∈ [QS + 1] is at least

Pr
[

∀i ∈ [QS + 1], Egood
i

∣

∣

∣E
]

≥ 1 −
∑

i∈[QS+1]

Pr
[

¬Egood
i

∣

∣

∣E
]

≥ 1
QS + 2

,

where the first inequality follows from the union bound and the second inequality
follows from Pr

[

Egood
i

∣

∣

∣ E
]

≥ QS+1
QS+2 .

Then, from eq. (2) and following the same union bound argument, FB samples
a good input such that (coin,
h) ∈ Bi,Ii for all i ∈ [QS + 1] conditioned on Egood

i

for all i ∈ [QS + 1] with probability at least 1
(QS+2) . Therefore, by eq. 1, if FB

resamples 
hi,≥Ii ∈ Yi,Ii = (CH×Crnd)QH+QS−Ii+1 conditioned on the set Bi,Ii , B
succeeds on input (coin,
hi,<Ii‖
hi,≥Ii) with probability at least ε

(QH+QS)(QS+2)2 .

Conditioning on sampling an input (coin,
h) ∈ Bi,Ii for all i ∈ [QS + 1] and
noting the independence of each rewinding, the probability that B succeeds in
all j-th rewinding for j ∈ [QS + 1] is at least

(

1 −
(

1 − ε

(QH + QS)(QS + 2)2

)T
)QS+1

≥
(

1 − 1
elog(2QS+2)

)QS+1

=
(

1 − 1
2(QS + 1)

)QS+1

≥ 1
2
.

Collecting all the bounds, we conclude that FB succeeds with probability at least
ε

2(QS+2)2 as desired. Moreover, the running time of FB is roughly the same as
running B for at most T · (QS + 1) + 1 times, where the runtime of B is roughly
the same as the runtime of A.

Using FB to Break Binding of C or euf-cma of S. We are now ready to finish
the proof. Assume ε = AdvH1

A (λ) is non-negligible. We use FB to extract the
witnesses from the proofs output by A with non-negligible probability and show
that such witnesses can be used to break either the binding of C or the euf-cma
security of S. Thus establishing that ε = negl(λ) by contradiction.
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We define adversary AC,S on both the binding property of C and the euf-cma
property of S as follows. Initially, AC,S obtains pp from the binding challenger.
Further, she receives vk and oracle access to a signing oracle S.Sign(sk, ·) from the
euf-cma challenger. Then, she runs the forking algorithm R ← F

S.Sign(sk,·)
B (pp, vk).

She checks R �= ⊥, and parses R = (Λ,D), where Λ = (xi, αi, βi, γi)i∈[QS+1] and
D = (j, Ij , Λj)j∈[QS+1]. Due to Lemma 1, FB runs in polynomial time and has
non-negligible success probability. Below, we describe the second part of AC,S

and analyze its success probability conditioned on FB succeeding. (If R = ⊥,
then AC,S outputs ⊥ and aborts.)

For j ∈ [QS + 1], we denote by (x′
j , α

′
j , β

′
j , γ

′
j) the j-th element of the tuple

Λj . Moreover, note that the same coin and values (̂β1,Δr1), . . . (̂βIj−1,ΔrIj−1)
are used for the initial run of B and the run of B where B outputs Λj . Thus,
we have for all j ∈ [QS + 1] that (xi, αi) = (x′

i, α
′
i). Moreover, we have

̂βIj �= ̂βj,Ij , or equivalently βj �= β′
j for all j ∈ [QS + 1] with probability

at least 1 − QS+1
|CH| = 1 − negl(λ) since each hash outputs are sampled uni-

formly and independently at random. This allows AC,S to invoke 2-special sound-
ness of Σ with overwhelming probability. For all i ∈ [QS + 1], she runs Ext
on (xi, (αi, βi, γi), (αi, β

′
i, γ

′
i)) to extract a witness wi = (μi, ci, ri) such that

C.Commit(pp,mi; ri) = ci ∧ S.Verify(vk, μi, ci) = 1, where xi = (pp, vk,mi).
If there exists distinct i, j ∈ [QS + 1] with ci = cj , AC,S sends

(mi,mj , ri, rj) to the binding security game of C. Note that due to the check
in Hybrid 1, the (mi)i∈[QS+1] are pairwise distinct, in particular mi �= mj but
C.Commit(pp,mi; ri) = C.Commit(pp,mj ; rj). However, due to the binding prop-
erty of C, this can happen with only negligible probability. Thus, the extracted
commitments (ci)i∈[QS+1] must be distinct with overwhelming probability.

In such a case, there must be at least one i∗ ∈ [QS + 1] such that c∗
i was

never queried to the signing oracle S.Sign(sk, ·) in the first execution of B or
equivalently of A. This is because due to the one-more unforgeability game, A
only queries the signing oracle QS times. Thus, AC,S finds such i∗ with the
smallest index and outputs (μi∗ , c∗

i ) as a forgery against the euf-cma security of
S.

It remains to show that what AC,S output is a valid forgery, i.e., B never
queried c∗

i to the signing oracle in any of the rewound executions. To argue this,
we first show that all the extracted commitments (ci)i∈[QS+1] are fixed after the
first execution ends due to f -unique extraction. For any (xi, τi := (αi, βi, γi)) ∈
Λ defined in the first execution of B, conditioning on FB succeeding, another
valid transcript (xi, τ

′
i := (αi, β

′
i, γ

′
i)) ∈ Λi with βi �= β′

i is guaranteed to exist
with overwhelming probability. Due to f -unique extraction, for any such valid
transcript the value f(Ext(xi, τi, τ

′
i)) = ci is identical, where recall f simply

outputs the commitment included in the witness. Put differently, conditioning
on FB succeeding, (xi, τi) uniquely defines ci with overwhelming probability. We
emphasize that ci does not need to be efficiently computable given only (xi, τi);
we only care if ci is determined by (xi, τi) in a statistical sense.

Now, assume B queried c∗
i to the signing oracle in one of the rewound execu-

tions. This means A outputs some c∗ to B (or equivalently the simulated chal-
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lenger G in Hybrid 1) and B computed c∗
i = C.RerandCom(pp, c∗,Δr∗), where

Δr∗ is a fresh randomness sampled by FB to be used in the rewound execu-
tion. However, this cannot happen with all but negligible probability due to the
rerandomizability of C since we have established above that Δr∗ is sampled inde-
pendently from c∗

i . Since there are at most T · (QS +1) rewound executions, the
probability that B queries c∗

i to the signing oracle during in one of the rewound
execution is bounded by T ·(QS+1)·negl(λ) = negl(λ), where we use T = poly(λ)
due to Lemma 1.

Thus, with overwhelming probability, what AC,S output is a valid forgery
against the euf-cma security of S. However, due to the hardness of euf-cma
security of S, this cannot happen with all but negligible probability. Combining
all the arguments, we conclude that ε = AdvH1

A (λ) is negligible. This completes
the proof.

Remark 1 (Removing the Rerandomizability Property). As briefly noted in our
technical overview, an alternative approach to using rerandomizable commit-
ment is to let the signer (i.e., BSRnd.Signer) sample a random string rand
and run μ ← S.Sign(sk, c‖rand) instead of μ ← S.Sign(sk, c′), where c′ =
C.RerandCom(pp, c,Δr) is the rerandomized commitment. The signer then sends
ρ = (μ, rand) as the second message instead of ρ = (μ,Δr). By observing that
rand has an identical effect as Δr in the security proof, it can be checked that
the same proof can be used to show blindness and one-more unforgeability of
this modified protocol. While this approach works for any commitment scheme,
we chose not to since it requires a slightly larger NIZK proof due to the enlarged
signing space of the underlying signature scheme S.

3.3 Instantiation

We describe briefly how we instantiate the schemes (C,S,Σ) in the asymmetric
pairing setting. More details can be found in Sect. 1.3 and in the full version. For
C, we choose Pedersen commitments in G1 of the form c = gm

1 ppr, which are
naturally rerandomizable and consist of a single element in G1.

For the signature scheme S, we use a variant of the Kiltz-Pan-Wee (KPW)
structure-preserving signature (SPS) scheme [43] in the asymmetric pairing set-
ting. The message space of KPW is G

�
1, where � ∈ N is the message length.

Any SPS must contain at least three group elements, and at least one in
each G2 and in G1 [1]. But as the bit size of elements in G2 is larger than the
bit size of elements in G1 and Zp, removing elements in G2 in the signature is
desirable. For BSRnd, we do not require the full structure-preserving property of
KPW, as we can design efficient Σ-protocols for signature verification, even if
the signature contains elements in Zp.

Indeed, KPW signatures contain an element σ4 in G2. We observe that we can
safely replace σ4 with its discrete logarithm τ . Further, we can omit two more
elements in G1 for free, as they can be recomputed via τ and the remaining
signature elements.
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Our optimized variant is given below.

– SKPW.KeyGen(1λ): samples a, b ← Zp and sets A ← (1, a)� and B ← (1, b)�.
It samples K ← Z

(�+1)×2
p , K0, K1 ← Z

2×2
p and sets C ← KA. It sets

(C0,C1) ← (K0A,K1A), (P0,P1) ← (B�K0,B
�K1), vk ← ([C0]2, [C1]2,

[C]2, [A]2), and sk ← (K, [P0]1, [P1]1, [B]1). It outputs (vk, sk).
– SKPW.Sign(sk, [m]1): samples r, τ ← Zp and sets σ1 ← [(1,m�)K + r(P0 +

τP1)]1 ∈ G
2
1, σ2 ← [rB�]1 ∈ G

2
1, and σ3 ← τ ∈ Zp. It outputs (σ1, σ2, σ3).

– SKPW.Verify(vk, [m]1, (σ1, σ2, σ3)): checks e(σ1, [A]2) = e([(1,m�)]1, [C]2) ·
e(σ2, [C0]2 · τ [C1]2).

We show that SKPW is euf-cma under the SXDH assumption in the full
version. The proof relies on the computational core lemma of [44]. SKPW can be
made deterministic via a pseudorandom function.

For an efficient instantiation of the Σ-protocol Σ, we refer to the full version.
In the resulting blind signature BSRnd, the user sends 1 element in G1 and 1
element in Zp, the signer sends 4 elements in G1 and 1 element in Zp and
the final signature contains 6 elements in G1 and 5 elements in Zp. The total
communication is 303 Byte and signatures are of size 447 Byte for λ = 128.

4 Blind Signatures Based on Boneh-Boyen Signature

In this section, we provide a blind signature based on randomizable signatures.
Compared to the optimized generic construction of the Fischlin blind signature
in Sect. 3, the resulting signature size is much smaller since it only consists of
one signature of the underlying randomizable signature scheme. The construction
also relies on an online-extractable NIZK which can be instantiated efficiently by
carefully combining Bulletproofs and another NIZK for an ElGamal commitment
(see the full version). In the full version we show how to adapt the scheme for
a partially blind variant, where we modify the Boneh-Boyen signature [12,14] in
order to embed the common message into the verification key.

4.1 Construction

We focus on the asymmetric pairing setting. We note that there is also a natural
variant of this scheme in the symmetric setting and we omit details. First, we
recall the Boneh-Boyen signatures [12,14] in the asymmetric setting. While this
is implicit in our proof, we note the following is known to be selectively secure
in the standard model under the CDH assumption:

– SBB.KeyGen(1λ): samples α, β, γ ← Zp, and sets u1 = gα
1 , u2 = gα

2 , h1 =
gγ
1 , h2 = gγ

2 , v = e(g1, g2)αβ , and outputs vk = (u1, u2, h1, h2, v) and sk = gαβ
1 ,

– SBB.Sign(sk,m): samples r ∈ Zp and outputs (σ1, σ2) = (sk · (um
1 h1)r, gr

1) ∈
G

2
1,

– SBB.Verify(vk,m, (σ1, σ2)): outputs 1 if e(σ1, g2) = v · e(σ2, u
m
2 h2), and other-

wise outputs 0.
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Let Π be an online-extractable NIZK proof system, with random oracle Hzk :
{0, 1}∗ �→ {0, 1}�zk and common reference string crs of length �crs for the relation

Rbb := {x = (c, u1, g1), w = (m, s) | c = um
1 · gs

1}.

Let HM,Hcrs be a random oracles mapping into Zp, {0, 1}�crs respectively.

Construction. We present our blind signatures based on SBB, where we assume
that crs = Hcrs(0) is provided to all of the algorithms for readability.

– BSBB.KeyGen(1λ): outputs (bvk, bsk) ← SBB.KeyGen(1λ), where bvk = (u1, u2,
h1, h2, v) with u1 = gα

1 , u2 = gα
2 , h1 = gγ

1 , h2 = gγ
2 , v = e(g1, g2)αβ and

bsk = gαβ
1 .

– BSBB.User(bvk,m): checks validity of the verification key bvk via e(u1, g2) =
e(g1, u2) and e(h1, g2) = e(g1, h2), sets m ← HM(m) and computes a Pedersen
commitment c = um

1 gs
1 ∈ G1 to m and a proof π ← Π.ProveHzk(crs, x, w),

where s ← Zp, x = (c, u1, g1), and w = (m, s). It outputs the first message
ρ1 = (c, π) and stores the randomness st = s.

– BSBB.Signer(bsk, ρ1): parses ρ1 = (c, π), checks Π.VerifyHzk(crs, x, π) = 1 and
outputs the second message ρ2 = (ρ2,0, ρ2,1) ← (sk · (c · h1)r, gr

1) ∈ G
2
1, where

r ← Zp.
– BSBB.Derive(st, ρ2): parses st = s and ρ2 = (ρ2,0, ρ2,1), checks e(ρ2,0, g2) =

v · e(ρ2,1, u
m
2 gs

2 ·h2), and outputs the signature σ = (ρ2,0/ρs
2,1 · (um

1 h1)r
′
, ρ2,1 ·

gr′
1 ) ∈ G

2
1 for r′ ← Zp.

– BSBB.Verify(bvk,m, σ): sets m ← HM(m) and outputs
b ← SBB.Verify(bvk,m, σ).

4.2 Correctness and Security

We prove correctness, blindness and one-more unforgeability. Correctness follows
from a simple calculation. Blindness follows from the zero-knowledge property
of Π, and as c statistically hides the message and σ is re-randomized. The proof
follows a similar all-but-one reduction as the underlying Boneh-Boyen signature.
The only difference is that we modify the Boneh-Boeyn signature which is selec-
tively secure in the standard model, to be adaptively secure in the ROM, and
to use the (multi)-online extractor to extract randomness of c submitted by the
adversary. Concretely, the reduction first guesses a query m∗ = HM(m∗) and
embeds a CDH challenge into vk such that it can sign all values in Zp \{m∗}. For
each signing query, the reduction extracts the randomness of c from the proof π,
simulates the signing of m as in the original euf-cma proof of SBB, and finally
reapplies the randomness of c to the intermediate signature. If the extracted
message is m∗, the reduction aborts. Here, we crucially require that Π is online-
extractable. In the end, the reduction hopes to receive a valid signature on m∗

with which it can solve CDH. More details can be found in Sect. 1.3. A formal
security analysis is given in the full version.

Theorem 2. The blind signature SBB is correct, blind under malicious keys
under the zero-knowledge property of Π, and one-more unforgeable under the
CDH assumption and the online-extractability of Π.
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4.3 Instantiation

We give a brief overview of our online-extractable NIZK Π. More details can also
be found in the full version. As our online-extraction techniques are not reliant
on pairings, we use an additional group ̂G with generators ĝ1 and p̂p.

Tools. In the full version, we construct a secure Σ-protocol Σped for relation
Rped. In this overview, we compile it into a NIZK Πped via Fiat-Shamir. This is
kept implicit in the instantiation as we cannot rely on the security of Πped in a
black-box manner. The relation Rped is defined as

Rped = {(x,w) : c = um
1 gs

1, Ei = ĝei p̂p
ri , Ri = ĝri ,

∏

i∈[�]

EBi−1

i = ĝm · p̂p
tm ,

∏

i∈[�]

EBi−1

i+� = ĝs · p̂p
ts},

where x = (c, u1, g1, ĝ, p̂p, (Ei, Ri)i∈[2�], B) and w = (m, s, (ei, ri)i∈[2�], tm, ts).
Note that the relation shows that m =

∑�
i=1 eiB

i−1 and s =
∑�

i=1 ei+�B
i−1

under the DLOG assumption. Also, we use a NIZK Πrp with random oracle Hrp

for the relation

Rrp = {(x,w) : Ei = ĝei · p̂p
ri , ei ∈ [0, B − 1] for i ∈ [2�]},

We obtain Πrp by applying the Fiat-Shamir transformation as described in [5]
to the multi-round interactive proof system Σ2�

rp with crs = (ĝ, p̂p, (ĝi)i∈[�rp]) from
[4] (Appendix F.2), for appropriate �rp ∈ N. Denote with Rdlog = {(crs, w∗)} the
relation that contains all non-trivial DLOG relations w∗ for crs, i.e. computing
w∗ for random crs allows to solve the DLOG assumption. Using Theorem 4 of
[5], we show in the full version that Πrp is adaptively knowledge sound for the
relaxed relation Rlax := {(x,w) : (x,w) ∈ Rrp or (crs, w) ∈ Rdlog}.

Construction of Π. Equipped with the above tools, we instantiate the online-
extractable NIZK Π for relation Rbb with crs = (ĝ, p̂p, (ĝi)i∈[�rp]) and hash function
Hbb = (Hrp,Hβ), where Hrp (resp. Heg) is the hash function for Πrp (resp. Πped).
Let B = poly(λ).

To generate a poof π for statement x = (c, u1, g1), the prover decomposes the
witness (m, s) into m =

∑�
i=1 miB

i−1, s =
∑�

i=1 siB
i−1, commits to the decom-

positions e = (m1, . . . ,m�, s1, . . . , s�) via ElGamal in Ri = ĝri , Ei = ĝei p̂p
ri

i for
i ∈ [2�], where ri ← Zp, and sets tm ← ∑�

i=1 riB
i−1 and ts ← ∑�

i=1 ri+�B
i−1,

and finally outputs proofs π = (π0, π1, (Ei, Ri)i∈[2�]), where π0, π1 are proofs
generated appropriately via Πrp,Πped, respectively.

To check validity of a proof π, the verifier checks both proofs π0 and π1 with
appropriate statements x0 and x1, respectively, and outputs 1 iff both are valid.

Security. In the full version, we formally show that Π is correct, zero-knowledge
under the DDH assumption and online-extractable under the DLOG assumption.
Correctness follows immediately from the correctness of Πrp and Πped. Also, zero-
knowledge is easy to show via the hiding property of ElGamal commitments, the
zero-knowledge property of Πrp and Πped.
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The proof for multi-proof extractability is more intricate. Roughly, the extrac-
tor embeds a trapdoor td for the commitment scheme in the crs. Then, given a
statement-proof pair (x, π) with x = (c, u1, g1) and π = (π0, π1, (Ei, Ri)i∈[2�]), it
decrypts the witnesses (ei)i from the ElGamal commitment (Ei, Ri)i and tries
to check if the extracted witness reconstructs to a witness in the relation Rbb. We
expect that this is possible, as the range proof guarantees that the committed
values are short and Σped proves the linear relations in the exponents.

For the sake of exposition, below we only consider extracting from a single
pair (x, π) ← A(crs) generated by some adversary A. The argument generalizes
to QS pairs in a straightforward manner. Note that (x, π) defines statement-proof
pairs (x0, π1) for Πrp and (x1, π1) as in verification.

Denote with Fail the event that online-extraction of (x, π) fails, and assume
for the sake of contradiction that Fail occurs. We first try to extract a wit-
ness w0 = (e′

i, r
′
i)i from π0 via the knowledge extractor of Πrp, and a witness

w1 = (m, s, (ei, ri)i) from π1 from two related transcripts obtained via rewinding
A. Here, it is important that A is run with the same random tape coinA for both
extractions to guarantee that the statements x0 and x1 share the commitments
(Ei)i. For now, let us assume that both extractions succeed, i.e. (x0, w0) ∈ Rrp

and (x1, w1) ∈ Rped. Assuming the soundness of Πrp, we have e′
i ∈ [0, B − 1].

Moreover, assuming the soundness of Πped, the extracted (ei)i form the B-ary
decomposition of a valid opening of c. Then, under the assumption that extrac-
tion fails, we must have e′

i �= ei for some i. However, this breaks the binding
property of the Pedersen commitment implicitly defined by the ElGamal com-
mitments. In particular, we found a DLOG relation for the tuple (ĝ, p̂pi). Note
that while the extracted DLOG relation is a trapdoor information td the extrac-
tor uses to extract the witnesses, this will not be an issue since we do not need
td to analyze the success probability of the adversary.

It remains to show that extraction of w0 and w1 succeeds. Recall that we
assumed that the extraction of w0 and w1 succeeds simultaneously, even if we
initially run A on a shared random coin. We first extract w0 with the extractor
of Πrp. We can argue with adaptive knowledge soundness of Πrp that with a
probability of ε = Pr[Fail]−negl(λ)

poly(λ) , we have have that (x0, w0) ∈ Rrp and Fail

occurs. At this point, the randomness coinA of the adversary A is conditioned
on successful extraction of w0. In particular, we cannot apply adaptive knowledge
soundness of Πped, as the extractor of Πped has only sufficient success probability
if coinA is chosen at random.

Instead, we define a specialized forking algorithm that first runs A on the
same randomness (and same initial random oracle choices), and then rewinds
A to obtain related transcripts. A careful non-black box analysis of the forking
algorithm, similar to [51], allows us to conclude that the algorithm succeeds in
finding two related transcripts in polynomial time with probability ε/8.

If Fail is non-negligible, then with a probability of ε/8, the above adversary
breaks the DLOG assumption. So indeed the event Fail occurs with at most
negligible probability, i.e. the extractor of Π succeeds on valid proof-statement
pairs with high probability.
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Efficiency of BSBB. When BSBB is instantiated with Π for B = poly(λ), the user
sends 1 element in G1, 2�log2(2n� + � + 4)� + 4� + 1 in ̂G, and 10 + 2� elements
in Zp to the signer. The signer sends 2 elements in G1, and the final signature
contains 2 elements in G1.

We set B = 264 in order to have an extractor that performs roughly � · 232
group operations, where � = �logB p� = 4. The total communication is 2.2 KB
and signatures are of size 96 Byte for λ = 128.
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Abstract. With an anonymous reputation system one can realize the
process of rating sellers anonymously in an online shop. While raters can
stay anonymous, sellers still have the guarantee that they can only be
reviewed by raters who bought their product.

We present the first generic construction of a reputation system from
basic building blocks, namely digital signatures, encryption schemes,
non-interactive zero-knowledge proofs, and linking indistinguishable
tags. We then show the security of the reputation system in a strong
security model. Among others, we instantiate the generic construction
with building blocks based on lattice problems, leading to the first mod-
ule lattice-based reputation system in the random oracle model.

1 Introduction

Reputation systems are crucial for markets to function properly. They are usually
a user’s only indicator regarding the trustworthiness of a seller, or the quality
of a product. Right now, in real-world reputation systems, ratings are centrally
controlled (see, for example, Amazon or Yelp ratings) by the reputation system
provider (Amazon/Yelp). This means that the reputation system provider has
the ability to admit or deny users from the system, censor ratings, inject fake
ratings, and trace all raters’ identities. Of course, this allows a malicious provider
to unilaterally undermine the reputation system, e.g. by censoring inconvenient
ratings or by using knowledge of user identities to retaliate against bad ratings.

Cryptographic Reputation Systems. A cryptographic reputation system is a
decentralized system in which the roles and abilities of the reputation system
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provider are either fully replaced by cryptographic mechanisms or at least dis-
tributed among multiple parties, with strong anonymity guarantees for users.
First, a user registers (once) with the group manager, who is tasked with admit-
ting users to the system (essentially to prevent Sybil attacks). Then, when the
user buys a product, he receives a rating token from an issuer (e.g., the seller),
certifying that the user is indeed allowed to rate the issuer (to prevent users from
rating issuers they have never interacted with). Given the membership certificate
from the group manager and the rating token from the issuer, the user can cre-
ate a rating signature. We imagine that the user posts this signature to a public
reputation board, enabling other users to view and verify the rating. The rating
signature is anonymous, meaning that it does not reveal who, of all users who are
allowed to rate that issuer, issued this particular rating (preventing retaliation
against negative ratings). However, the opener possesses a special key to inspect
signatures and reveal the user’s identity in case of misuse. Finally, even though
rating signatures are otherwise anonymous to the public, anyone can efficiently
check whether any two rating signatures have been created by the same user
(to prevent the same user from submitting multiple ratings for the same issuer).
In this setting, the role of the reputation system provider has been distributed
among group manager, issuers and reputation boards. User anonymity is cryp-
tographically guaranteed, but can be revoked by the opener. What we describe
here can be seen as (a special case of) the ticket-based approach identified by
[25].

Desirable Construction Types. There exists a wealth of constructions of such
system in the literature (as surveyed in [25]), but they all work in the discrete
logarithm setting. With the looming threat of quantum computers, there is a
need for constructions that do not rely on the hardness of discrete logarithms
and instead rely on some hardness assumption not likely broken by quantum
computers, such as lattice-based assumptions. We are aware of only a single
lattice-based reputation system in the literature, designed by El Kaafarani, Kat-
sumata, and Solomon [20]. We can generally distinguish generic constructions
from non-generic constructions. A generic construction is a prescription how to
plug together (almost) arbitrary instantiations of several basic schemes (e.g., sig-
nature schemes, encryption schemes, and non-interactive zero-knowledge proofs
(NIZKs)) into a secure reputation system. So far, reputation system construc-
tions have been non-generic, i.e. there is no formally proven way to construct
reputation systems from arbitrarily instantiated basic building blocks. Even
beyond the lack of an explicit generic construction, existing constructions are
also quite specific to their (discrete logarithm/lattice) setting. For example, a
natural choice for rating tokens would be for the issuer to sign the buying user’s
public key (thereby giving that user the right to rate). However, in the discrete
logarithm setting (e.g., [8,9]), rating tokens are typically (blind) signatures on
the user’s secret key, instead, because traditionally, it is easier to sign secret keys
(which live in Zp) than public keys (which live in the group G). In the lattice
setting, the only known construction [20] accumulates all buyers’ public keys in
a Merkle hash tree, which is (relatively) efficient in the lattice setting, but would
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be absurdly inefficient and borderline impossible to implement in the discrete
logarithm setting (considering the need to prove statements in zero-knowledge
about the hashes).

1.1 Our Contribution

In this paper, we give the first provably secure generic construction of a rep-
utation system from digital signatures, public-key encryption, linking indistin-
guishable tags (LITs), and NIZKs. We formally define security properties and
prove that the generic construction (and hence any concrete constructions built
from it) fulfills them. Furthermore, we show that this generic construction can
be reasonably instantiated in both the lattice setting and the discrete logarithm
setting, unifying and drawing parallels between the two settings. In particular,
this results in the first reputation system based on module lattices, i.e. on the
hardness of module lattice problems. Our construction compares favorably in its
privacy properties to the only other lattice-based construction [20], as discussed
later.

Generic Construction. The generic construction roughly follows a paradigm sim-
ilar to the sign-encrypt-prove paradigm [15] for group signatures, similar to [8,9]
(but modified to apply to both the lattice and the discrete logarithm setting).
The user generates some secret key usk; his public key is upk = f(usk) for some
one-way function f . To join the system, the user obtains a signature ρ on his
public key under the public key gmpk of the group manager. To enable rating an
issuer, who we identify by his public key ipk, the user also obtains a signature τ
on his public key from the issuer. Given those two signatures, the user composes
a rating text rtng and encrypts his public key upk for the opener (who holds the
decryption key to reveal upk in case of misuse). For technical reasons, the user
also encrypts usk under a key that nobody knows the secret key for (a trick com-
parable to the Naor-Yung paradigm). Furthermore, the user computes a linking
indistinguishable tag (LIT) using his secret key usk. The LIT is the gadget that
will allow anyone to check whether the user has rated the same issuer twice.
Then, the user uses the NIZK essentially as a signature of knowledge [16] to
create a non-interactive proof authenticating the rating text rtng by proving, in
zero-knowledge, that the ciphertexts and LIT have been computed correctly, and
that his public key upk has been signed by the group manager and the issuer.

Instantiation in the Discrete Logarithm Setting. In the discrete logarithm set-
ting, we can use LIT tags in the random oracle model of the form RO(ipk)usk

(note that this is a deterministic tag and hence enables detection of a user rating
ipk twice). Because the generic construction signs public keys, we use a structure-
preserving signature as the signature scheme. Unsurprisingly, encryption can be
accomplished with ElGamal and the NIZKs can be instantiated with Schnorr-
style protocols together with the Fiat-Shamir heuristic. More details can be
found in Sect. 5.1.
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Instantiation with Lattices. The instantiation with lattices is more difficult given
that the ecosystem for privacy constructions is less mature than in the discrete
logarithm setting. We need to instantiate the encryption scheme, the signature
scheme, the NIZK, and the linking indistinguishable tag. For more efficiency
and flexibility when setting parameters, we generally consider the module lattice
setting. For the encryption scheme, the typical choice is between primal and
dual Regev encryption (i.e. between putting the LWE error into the public key
or into ciphertexts). Primal Regev is more suitable for proving statements about
encryptions in zero-knowledge, since there is no added error in the ciphertext,
which is why we choose it for the instantiation. In particular, we use the verifiable
encryption scheme described by [38]. For the NIZK, we choose [38], which has
the advantage of supporting efficient vector shortness proofs without slack, but
is in the random oracle model. We use this feature to efficiently prove knowledge
of, for example, a valid [19] signature. This NIZK also interfaces well with the
other schemes chosen to instantiate the generic construction. Finally, we require
a linking indistinguishable tag. We use a tag similar to those of [3,20], which
can be seen as the lattice equivalent of DLOG-based tags mentioned above. To
build a LIT tag t in the lattice setting, [20] use an LWE secret as the secret key,
hash the message μ with the random oracle, and choose an error e to build an
LWE sample from it, i.e. tt = st · RO(ipk) + et. Linking works because if one
tags the same message with the same secret key, the difference of the two tags
is the difference of the two errors. Thus, the difference of two tags is short, iff
they should link. [20] show the security of their tag under the first-are-errorless
LWE assumption, a variant of LWE where the first few samples of an LWE
oracle do not contain any error. When instantiating the LIT, this costs them
some efficiency, so we modify their construction to show our tag secure under
the Module LWE assumption. We also introduce some new security notions for
LITs in order to interface better with our generic construction.

There are several signature schemes based on lattice assumptions. However,
we require one that plays nicely with zero-knowledge proofs, for example the
signature should not rely on random oracles. Thus, a first idea would be to
use the signatures of [33] or [29], as they are designed to be compatible with
current lattice-based proof systems. However, [33] present a construction based
on unstructured lattices, which is too inefficient compared to a construction from
structured lattices. Furthermore, their construction inherently uses a chameleon
hash to achieve adaptive security, which increases the complexity of a proof of
possession of a signature. On the other hand, [29] construct both a stateful �-
time signature and a stateless �-time signature that are both directly adaptively
secure. However, the former does not fit our generic construction, which requires
a stateless signature scheme without a limit on the signature queries. For the
latter we can argue that we can use it in our generic construction despite the
�-time restriction, but it suffers from a large reduction loss. Another candidate is
the stateless signature scheme of [19]. Like the other two signatures, it is a tag-
based signature scheme and a variant of signatures by [14], but is based on ideal
lattices. [19] show their signature to be non-adaptively secure and transform it
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to adaptive security by employing chameleon hashes. We instead show in the full
version [7] that the signature of [19] is already adaptively secure by using a proof
technique as in [32]. However, the signature scheme of [19] also suffers from a
high reduction loss similar to the stateless variant of [29], since they use the same
proof technique. Another possible signature scheme, especially when optimizing
for signature size, is the one by [11]. They design a credential system, which can
be based on one of several new lattice assumptions, such as Int-NTRU-ISISf .
This credential system implies a signature scheme that we can use in our generic
construction. For the signature schemes of [11,29] we later give rough estimates
of the size of a signature of a rating. For details, see Sect. 5.

Stateful Reputation System. We also discuss a stateful variant of our generic
construction of a reputation system in Sect. 5, which is limited to � users. The
stateful variant works the same way as the stateless construction except for
using stateful signatures as building blocks instead and having a fixed maximum
number of users. The security proofs of the stateless generic construction can
easily be adapted to apply to the stateful variant. Then, we can instantiate the
stateful generic construction with the same schemes as discussed before, except
for using the stateful signature scheme of [29]. Since their stateful scheme is
more efficient than their stateless variant, this also improves the efficiency of the
reputation system instantiation.

1.2 Related Work

Reputation System Constructions. Building reputation systems in the discrete
logarithm setting is well-understood, with a wealth of papers with a variety
of construction strategies and features. A good discussion can be found in the
survey of Gurtler and Goldberg [25]. Closest to our generic construction are [8,9],
they are not quite instantiations of our generic construction, but they follow a
similar paradigm (changes are mostly due to the fixed discrete logarithm setting
in those papers, such as the usage of blind signatures to avoid signing public
keys). Other papers, such as [6,36], offer some form of privacy for issuers. In
our construction, the issuer is known to all parties. We leave extensions, which
offer some privacy to issuers, to future work and note that the techniques used
here carry over to more complex scenarios. Another line of research considers
reputation systems in a blockchain context, as surveyed by Hasan, Brunie, and
Bertino [26]. Those systems usually aim for trustlessness, i.e. ideally no party
has to be trusted, but trust is distributed and backed by incentives throughout
the blockchain network. Our system makes some trust assumptions, e.g., if group
manager and issuer collude, we cannot prevent Sybil attacks. We do not model
any reputation board party mentioned by [26], which stores the rating signatures,
but note that it can be realized by a public ledger, ensuring that ratings are not
censored or deleted.

Lattice-Based Group Signatures and Credential Systems. One way to construct
a reputation system is to take some group signature as base and to modify it
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such that linking is possible [8,9,20]. This works because the notion of group
signatures is closely related to anonymous reputation systems; one can view
reputation systems as a group of group signatures. Both want to protect the
anonymity of users inside a group or system, where the users authenticate mes-
sages, while a privileged opener is able to de-anonymize users. Therefore, we can
explore existing lattice-based group signatures as potential bases for a lattice-
based reputation system. One example is the group signature of [34], which [20]
used to construct their reputation system, as explained later in more detail.

Another potential group signature to build a reputation system from is the
one of [13], which uses the sign-encrypt-proof paradigm. They employ the Aurora
SNARK [4] for their proofs, which has the advantage of no slack and very small
proofs. However, the computation time for the proofs required by the group
signature seems to be too high, as [13] explain.

In their paper on very efficient NIZKs with no slack, [40] also present a
group signature scheme, which is based on the constructions of [40,43]. While
this scheme promises very short signatures, their group signature is static, i.e. the
group does not change. This does not match our dynamic model of a reputation
system. Furthermore, [40] model their user identities as single ring elements of
a special set, which they sign to let the user join the group. However, in our
construction we need to be able to sign the public keys of the LIT scheme,
which generally do not fall into this special set.

Another group signature on which one could base a reputation system is the
one by [35]. They also follow the sign-encrypt-proof paradigm, and concretely
use the signatures of [19], an encryption scheme by [41] transformed to CCA
security similar to the Naor-Yung paradigm and some Stern-like proof system.
This group signature uses the same signature scheme and a similar encryption
scheme as building blocks as we do in our first instantiation of the reputation
system (note that we use different NIZKs).

Instead of basing the construction of a reputation system on some group
signature, one can also look at credential system, as they are another privacy-
focused primitive related to reputation systems. Two possible constructions are
the systems from [11,29]. The idea of both credential systems is that they con-
struct a blind signature, which they use to (blindly) sign some attributes, i.e.
create a credential over the attributes. To sign a message, they prove posses-
sion of a credential in zero-knowledge. Thus, the idea of their constructions is
different to our generic construction, which does not need a blind signature.

Lattice-Based Reputation Systems. To the best of our knowledge, the only other
construction of a reputation system that is based on lattices is the construction
of [20]. The idea for their construction is to start with the group signature from
[34] and view the reputation system as a group of group signatures. For each
item that can be rated, the group manager sets up a separate group signature
via a hash-based accumulator that is a Merkle-tree of all public keys of users
who may rate the item. To create a rating a user encrypts his identity, creates
a tag with a LIT and proves in zero-knowledge that he encrypted and tagged
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correctly as well as that his public key, for which he knows the secret key, is
contained in the Merkle-tree.

A drawback of their model is that there are no issuers, instead there is a single
group manager who manages everything. This gives the single group manager
more power in a setting where there are different people to be rated, where these
people need to trust the single group manager to work honestly. By separating
the group manager from issuers, we can also split up their power, allowing for
a more fine-grained approach of modelling trust. This is reflected in our secu-
rity model. Additionally our security model offers a slightly stronger corruption
model, except for requiring the opener to be honest (cf. Sect. 4.1).

Another drawback of the construction of [20] is that due to it relying on
public Merkle-trees, there exists a public record of all users who can rate an
item. While this does not contradict any formal security notion, in practice it is
undesirable that the whole purchase history of all users is publicly available and
a construction not exhibiting this issue is preferable. Our construction prevents
this drawback by using signatures instead of a Merkle-tree to add users to the
group. Obviously, even in our setting malicious issuers can always share the
purchase history of users who bought from them with other people, but this
is unpreventable. However, [20] requires their group manager to publish this
information in order for the system to work. Furthermore, due to their usage
of first-are-errorless LWE for the LIT as mentioned before and their usage of
Stern-like proofs, the construction of [20] is less efficient than ours.

The advantage that the construction of [20] has over our construction is that
they can assume the opener to be corrupt in every security notion but anonymity,
while our construction needs the opener to be honest-but-curious. [20] achieve
this requirement by introducing a Judge algorithm with which one can publicly
verify that the opener worked correctly. We note that it is straight-forward to
add Judge to our generic construction and our instantiations, but we omit it for
better readability.

2 Preliminaries

We denote drawing some x uniformly from a set S by x ← S. We overload
notation and denote by x ← D sampling x from a distribution D. If A(y) is a
(probabilistic polynomial time (ppt)) algorithm, x ← A(y) denotes sampling x
from the output distribution of A on input y. [A(y)] denotes the set of possible
outcomes of a ppt A on input y. We denote the random oracle as RO.

We denote scalars as lowercase letters a, column vectors as bold lowercase
letters a and matrices as bold uppercase letters A. By Ic we denote the identity
matrix of dimension c × c. If the dimensions are clear from the context, we may
only write I. The same holds for 0, by which we denote the vector or matrix
consisting of only zeroes. For the norm ‖a‖ of a vector we use the euclidian norm
unless specified otherwise. We denote the infinity norm of a vector by ‖a‖∞.

Unless otherwise specified, let R = Z[X]/(Xn+1) with n ≥ 16 being a power
of two and let q > 16 and q = 3, 5 mod 8. Let Rq = R/qR. With such a q, Rq
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splits into Rq
∼= Fqn/2 × Fqn/2 , where Fqn/2 denotes the field with qn/2 elements,

which we use for some results, e.g. Lemma 1. We represent elements of Rq as
vectors over Z

n
q . In general, we use the coefficient embedding θ : Rq → Z

n
q , since

for the R we use the canonical embedding is the same as the coefficent embedding
up to a factor of

√
n [29]. Define R2 = θ−1({0, 1}n) and R±1 = θ−1({−1, 0, 1}n).

By x̃ we refer to the constant term of some polynomial x ∈ R.
For CPA security of an encryption scheme and EUF-CMA security of a sig-

nature scheme we use the standard definitions.

2.1 Problems on Lattices

Definition 1 (MLWE). Let q > 2 and k > 0. Let R be a ring and Rq = R/qR.
Let χ be a distribution over Rq. For a secret s ∈ Rk

q , the Module Learning With
Errors (MLWE) As distribution is defined as choosing a ← Rk

q and e ← χ,
computing b = sta+ e mod q, and outputting (a, b).

The MLWE problem MLWEq,R,k,χ is then defined as distinguishing between
As for a secret s ← Rk

q and the uniform distribution over Rk+1
q .

It can be useful to group the ai from m samples together as the column
vectors of a matrix A ∈ Rk×m

q and the bi as the entries of a vector b ∈ Rm
q ,

such that we have stA+ et = bt for some error vector e ∈ Rm
q .

There exists an alternative version of the MLWE problem, where the secret
is not sampled uniformly from Rq, but instead sampled as s ← χk. This is
called the normal form of MLWE. The described MLWE problems are decisional
problems. There exist computational variants, where the goal is to compute the
secret s, given samples from the respective MLWE distribution. This is called
the (normal form) search MLWE problem sMLWEq,R,k,χ.

In some cases, we need to set the parameters of the normal form MLWE
problem in such a way that the secret used to create a set of m samples is
unique, meaning that with overwhelming probability there is no other secret
and error vector that could produce the samples.

Lemma 1 (Short MLWE secrets are unique). Let q 	= 2 be a prime with
q = 3, 5 mod 8 (or q = 1 mod 2n), k > 0, n > 16 be a power of 2, Rq =
Zq[X]/(Xn +1). Let Bβ = {e ∈ Rq : ‖e‖∞ ≤ β}. Let Δ ≥ 0 such that 2β +Δ <
q1/4. Then, there exists an m and a negligible function negl such that

Pr
[∃(s, s′, e, e′) ∈ (Bk

β)
2 × (Bm

β )2

with s 	= s′ ∧ ‖b‖∞ ≤ Δ
:
A ← Rk×m

q

bt = (s − s′)tA+ (e − e′)t

]
≤ negl(n).

The proof can be found in the full version [7].

2.2 NIZKs

We model non-interactive zero-knowledge proof systems in the random oracle
model. This is because when instantiating our generic construction of a repu-
tation system, the NIZKs we use are in the random oracle model. The generic
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construction itself and the security proofs, however, do not make use of the ran-
dom oracle model. There, it would suffice to model NIZKs without a random
oracle by simply removing it from the syntax and security models.

Definition 2 (NIZK). A non-interactive proof system (NIZK) for a relation
R in the random oracle model is defined as a triple ΠNIZK = (Setup,P,V) of
ppt algorithms:

– Setup(1n) outputs a common reference string crs.
– PRO(·)(crs, x, w,m) given instance x, witness w, and a message m, outputs

a proof π.
– VRO(·)(crs, x,m, π) outputs a bit b.

To simplify notation, we sometimes omit the random oracle RO(·), but assume
implicitly that the prover and verifier have access to it. We say that the NIZK is
correct, if for all (x,w) ∈ R and m ∈ {0, 1}∗, we have that

Pr[V(crs, x,m,P(crs, x, w,m)) : crs ← Setup(1n)] = 1.

For a relation R, LR = {x | ∃w : (x,w) ∈ R} is the language associated with
R. The message m is additional data bound to the proof (e.g., including m in a
Fiat-Shamir hash). Its role can be observed in Definition 6.

In order to display the relation R that is proven, we will use the following
notation for proofs.

Definition 3. We denote the generation of a proof π ← P(crs, x, w,m) by

π ← NIZK{x;w;R(x,w)}(m),

where P is from a non-interactive proof system ΠNIZK for the relation R. We
say “Verify π” to mean checking that V(crs, x,m, π) = 1 and we say “π verifies”
or “π is valid” if V(crs, x,m, π) = 1 holds.

With respect to security, we require the NIZK to be zero-knowledge (i.e.
proofs can be simulated without a witness), sound (i.e. one cannot prove false
statements), simulation-sound (i.e. one cannot prove false statements, even in
the presence of simulated proofs), and straight-line extractable (i.e. there exists
an extractor that can efficiently compute a witness from a valid proof without
rewinding). These definitions are standard, we list them below, starting with
zero-knowledge.

Definition 4 (Zero-Knowledge). A NIZK Π is zero-knowledge if
there exists a simulator S consisting of three ppt algorithms S =
(S.Setup,S.RO,S.Sim) such that for all ppt A there exists a negligible function
negl such that,

AdvZK
Π,A(n) =

∣
∣
∣
∣

Pr[AP(crs,·,·,·),RO(·)(1n, crs) = 1 : crs ← Setup(1n)]

− Pr[ASim(·,·,·),S.RO(·)(1n, crs) = 1 : crs ← S.Setup(1n)]

∣
∣
∣
∣
≤ negl(n)

where RO denotes a random oracle. The oracle Sim(x,w,m) checks if (x,w) ∈ R
and if so, runs S.Sim(x,m). We assume that S is stateful, i.e. it implicitly keeps
state between invocations of S.Setup, S.RO, and S.Sim.
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We give the simulator two advantages beyond a regular prover that should allow
it to efficiently simulate proofs without a witness: (1) S.Setup generates crs and
that process can yield a trapdoor that S stores in its state. (2) S answers the
random oracle queries of A with S.RO(·), so S can program random oracle
answers.

The second requirement we have is soundness, which states it is hard for an
adversary to prove a false statement.

Definition 5 (Soundness). We say that a NIZK Π is sound if for all ppt A,
there is a negligible function negl such that

AdvSnd
Π,A(n) = Pr

[VRO(·)(crs, x,m, π) = 1 ∧ x /∈ LR :
crs ← Setup(1n), (x,m, π) ← ARO(·)(1n, crs)

]
≤ negl(n)

Next, we require simulation soundness, i.e. even given access to an oracle
creating simulated proofs (potentially for false statements), it is hard to compute
an accepting proof for a wrong (not-queried) statement x.

Definition 6 (Simulation soundness). Let Π = (Setup,P,V) be a zero-
knowledge NIZK, with simulator S as in Definition 4. We say that a NIZK Π
is simulation-sound if for all ppt A, there exists a negligible function negl with

AdvSS
Π,A(n) =

Pr

⎡
⎣ VS.RO(·)(crs, x,m, π) = 1

∧ x /∈ LR

∧ A has not queried S.Sim(x,m)
:
crs ← S.Setup(1n),
(x,m, π) ← AS.Sim(·,·),S.RO(·)(1n, crs)

⎤
⎦

≤ negl(n)

Note that, as usual, A may even query S.Sim(x,m) for x /∈ L. The simulation
soundness property is sometimes understood to imply non-malleability of the
proof π, i.e. defined with the condition “π has not been output by S.Sim(x,m)”
instead of “A has not queried S.Sim(x,m)”. We use the weaker condition here,
which corresponds to the fact that we do not consider immaterial changes to
rating signatures (e.g., re-randomization with no change to the rating text or
the rated party) an attack (see, for example, Definition 18).

Finally, we require straight-line extractability.

Definition 7 (Straight-line extractability). Let Π = (Setup,P,V) be a
NIZK. We say that Π is a straight-line extractable proof of knowledge if there
are ppt algorithms E0, E1 such that for all ppt A0,A1, there exist negligible func-
tions negl0, negl1 such that

AdvPoK0
Π,A0

(n) =
∣∣∣∣ Pr[A0(1n, crs) = 1 : crs ← Setup(1n)]
− Pr[A0(1n, crs) = 1 : (crs, td) ← E0(1n)]

∣∣∣∣ ≤ negl0(n)

and

AdvPoK1
Π,A1

(n) = Pr

⎡
⎣ VRO(crs, x,m, π) = 1

∧ (x,w) /∈ R
:
(crs, td) ← E0(1n),
(x,m, π) ← A1(1n, crs),
w ← E1(td, x,m, π)

⎤
⎦ ≤ negl1(n)
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In the random oracle model, E1 gets the list of random oracle queries that A
made as additional input.

We give the extractor the advantage of setting up crs (allowing it to embed a
trapdoor td) and, in the random oracle model, of observing the random oracle
queries of A (as in [22]). The extractor does not have any ability to rewind
A, so extraction through rewinding is not an option. Note that in this security
definition, we do not give A access to simulated proofs.

Later on, to instantiate the reputation system based on lattices, we want to
use NIZKs over the following relation.

Definition 8. Let q > 0, R a ring, Rq = R/qR. Let φ, φeval, d, e, vd, ve,m1, �
and kbin be non-negative. Let ψ : R → R, x → x(X−1) be an automorphism. Let

– fi : R2(m1+�)
q → Rq be a quadratic function for i ∈ [φ],

– Fi : R2(m1+�)
q → Rq be an evaluation function for i ∈ [φeval],

– Di ∈ Rki×2(m1+�)
q ,ui ∈ Rki

q for i ∈ [vd],
– Ei ∈ Rpi×2(m1+�)

q ,vi ∈ Rpi
q for i ∈ [ve],

– (β(d)
i )i∈[vd], (β

(e)
i )i∈[ve] be some bounds,

– Ebin ∈ Rkbin×2(m1+�)
q and vbin ∈ Rkbin

q .

Call the combination of these parameters pp. Define the relation RR to consist of
pairs (pp, s) with s = (s1, ψ(s1),m, ψ(m)) ∈ R2m1

q ×R2�
q , such that the following

conditions hold:

∀1 ≤ i ≤ φ, fi(s) = 0

∀1 ≤ i ≤ φeval, F̃i(s) = 0

∀1 ≤ i ≤ vd, ‖Dis − ui‖∞ ≤ β
(d)
i

∀1 ≤ i ≤ ve, ‖Eis − vi‖ ≤ β
(e)
i

Ebins − vbin ∈ {0, 1}dkbin

Recall that the notation F̃i(s) denotes the constant term of polynomial Fi(s).

Lemma 2 ([38]). There exists a NIZK for relation RR that is zero-knowledge
and simulation-sound in the random oracle model.

While [38] only claim soundness instead of simulation-soundness, their anal-
ysis ([39, Appendix B], based on [1]) applies verbatim to simulation-soundness.
This is because to argue soundness for a proof π for statement x and message m,
one considers only random oracle queries of the form H(pp, x,m, · · · ). Simulated
proofs for (x′,m′) 	= (x,m), in contrast, are only concerned with random oracle
queries of the form H(pp, x′,m′, · · · ). Hence programming the random oracle for
pp, x′,m′, · · · does not interfere with the soundness analysis at all. We can effec-
tively imagine that the simulator and the soundness proof use two independent
random oracles.
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We also want the NIZK to be straight-line extractable. For this, we use Kat-
sumata’s transform [30] as shown in [11]. Their notion of multi-proof extractabil-
ity implies our straight-line extractability.

Corollary 1 ([11,30,38]). There exists a NIZK for relation RR that is zero-
knowledge and simulation-sound and straight-line extractable in the random ora-
cle model.

3 Linking Indistinguishable Tags

A building block we need are linking indistinguishable tags (LIT). The idea of
such a scheme is that one can compute a tag for a given message with a secret
key. An adversary should not able to tell which secret key was used to create
the tag. However, if one tags the same message twice, i.e. with the same secret
key, anyone can discover this by linking the tags. There also exists a function
f from which we can compute a public key pk = f(sk). We typically require f
to be a one-way function implicitly. This public key is not used in the scheme
itself, but can be used in conjunction with other primitives. The formal model
looks as follows.

Definition 9. A linking indistinguishable tags scheme consists of a function f
and the following ppt algorithms:

– KeyGen(1n): On input a security parameter n, it outputs a secret sk.
– Tag(sk, μ): On input a secret key sk and a message μ, it outputs a tag t.
– Vrfy(sk, μ, t): On input a secret key sk, a message μ and a tag t, it outputs a

bit b.
– Link(μ, t0, t1): On input a message μ and two tags t0, t1, it outputs a bit b.

We require that a LIT is correct. This is the case if for all security parameters
n, all sk output by KeyGen(1n), all messages μ, all tags t0, t1 output by Tag(sk, μ),
we have that Vrfy(sk, μ, t0) = 1 and Link(μ, t0, t1) = 1.

The first security requirement is tag-indistinguishability. In this indistin-
guishability game an adversary has to decide which of two secrets was used
to create the challenge, while having access to tag oracle for these secrets. We
define the oracle Tg(c, μ) to return t if there exists some (c, μ, t) ∈ Q. Else, we
return t ← Tag(skc, μ) and add (c, μ, t) to Q.

AnonLIT
Π,A,b(n)

1 : sk0, sk1 ← KeyGen(1n)

2 : pki = f(ski), i ∈ {0, 1}
3 : μ∗ ← ATg(·,·)(pk0, pk1)

4 : t∗ ← Tag(skb, μ
∗)

5 : b′ ← ATg(·,·)(t∗)

6 : If μ∗ was queried, output 0, else output b′.
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Definition 10. A LIT Π has tag-indistinguishability, if there exists a negligible
function negl such that for all ppt adversaries A it holds that

AdvLITAnon
Π,A (n) :=

∣∣∣Pr[AnonLIT
Π,A,0(n) = 1] − Pr[AnonLIT

π,A,1(n) = 1]
∣∣∣ ≤ negl(n).

The second security requirement is linkability. This asks that no adversary
can produce two secret key tag pairs and a message, such that the secret key
tag pairs are valid for the message, while the tags do not link. In comparison to
the security model of [20], we generalize our security model for linkability and
allow the adversary to output two different secret keys, but they must map to
the same public key.

LinkableLIT
Π,A(n)

1 : (sk0, sk1, μ, t0, t1) ← A(1n)

2 : If f(sk0) �= f(sk1) or ∃i ∈ {0, 1} : Vrfy(ski, μ, ti) = 0, return 0.
3 : If Link(μ, t0, t1) = 0, output 1.

Definition 11. A LIT Π has linkability if there exists a negligible function negl
such that for all ppt adversaries A it holds that

Pr[LinkableLIT
Π,A(n) = 1] ≤ negl(n).

Another security requirement, unforgeability, is similar to the requirement
for a one-way function. It requires that no adversary is able to produce a secret
key, message and valid tag, such that the tag links to another valid tag. For
that, we need a tag oracle QTg, that on input (sk, μ) returns t if there exists
(μ, t) ∈ Q. Else it computes t ← Tag(sk, μ), adds (μ, t) to Q and returns t.

ForgeLIT
Π,A(n)

1 : Q = ∅
2 : sk ← KeyGen(1n), pk = f(sk)

3 : (sk∗, μ, t∗) ← AQTg(sk,·)(pk)

4 : If Vrfy(sk∗, μ, t∗) = 0, output 0.
5 : If ∃ (μ, t) ∈ Q such that Link(μ, t, t∗) = 1, output 1.

Definition 12. A LIT Π is unforgeable, if there exists a negligible function negl
such that for all ppt adversaries A it holds that

Pr[ForgeLIT
Π,A(n) = 1] ≤ negl(n).
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The last requirement for LIT schemes is non-invertability. This asks that an
adversary is not able to find a secret key to given public key, while having access
to a tag oracle.

InvertΠ,A(n)

1 : sk ← KeyGen(1n)

2 : pk = f(sk)

3 : sk′ ← AQTg(sk,·)(pk)

4 : If pk = f(sk′), output 1.

Here QTg is defined as before.

Definition 13. A LIT Π has non-invertability, if there exists a negligible func-
tion negl such that for all ppt adversaries A it holds that

Pr[InvertΠ,A(n) = 1] ≤ negl(n).

Construction Based on Module Lattices. Given the formal model of a LIT, we
now want to construct a LIT based on module lattices of rank k. When we later
use the LIT in our reputation system, we only need k = 1, in which case the
security assumption for the LIT reduces to ideal lattices. The LIT may be of
independent interest, so we construct it with general k.

The idea for the construction is that a public key is simply a batch of MLWE
samples for some secret s. A tag on a message μ is the second component of
another batch of MLWE samples, i.e. tt = stAμ + e′t, for the same secret s and
some different error e′, where we define Aμ = RO(μ). This way, if we tag the
same message twice, Aμ is the same for both tags, and the difference of the two
tags is equal to the difference of the two errors. Since this is short, we can detect
that the tags were created for the same message.

Construction 14. Let m, k > 0. Let β < 2− n
mk+ n

2k log(q)−3. Let χ be a distri-
bution over Rq. Construct the LIT ΠLIT consisting of the following algorithms:

– KeyGen(1n): Choose s ← χk, e ← χm. Set sk = (s, e).
– Tag(sk, μ): Compute Aμ = RO(μ) ∈ Rk×m

q and e′ ← χm. Output tt =
stAμ + e′t.

– Vrfy(sk, μ, t): Compute Aμ = RO(μ) ∈ Rk×m
q . If ‖t − (stAμ)t‖∞ < β and

‖s‖∞ ≤ β, output 1.
– Link(μ, t0, t1): If ‖t0 − t1‖∞ < 2β, output 1.
– f = fA for A ← Rk×m

q , fA(sk) = (stA+ et)t

The construction is correct, if we have that Pr[‖x‖∞ ≤ β : x ← χ] with
overwhelming probability.

Lemma 3. The LIT ΠLIT has tag-indistinguishability (Definition 10) in the ran-
dom oracle model, if normal form MLWEq,R,k,χ is hard.
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This can be proven by proving that AnonLIT
ΠLIT,A,0(n) is indistinguishable from

a game where the challenge tag t∗ is generated uniformly at random, which
is possible using the indistinguishability of the MLWE distribution from the
uniform distribution. Then, one does the same for AnonLIT

ΠLIT,A,1(n), from which
we can see that the two games are indistinguishable if normal form MLWE is
hard.

Lemma 4. The LIT ΠLIT has non-invertability (Definition 13) in the random
oracle model if normal form sMLWEq,R,k,χ is hard.

Proof. Let A be an adversary against the invertability of the LIT. We construct
an adversary B against normal form search-MLWE from it. B simulates A by
using batching m samples from his MLWE oracle into a public key pk. By the
definition of the MLWE oracle, there is some secret s that was used to generated
these samples. When A asks for a tag on a previously unqueried message μ, B
uses its MLWE oracle to get a batch of m samples (A,b), defines RO(μ) := A
and answers with b. If A asks for a tag on a previously queried μ, B answers
with the b it generated before. When A outputs some sk′ = (s′, e′), B returns
s′ to its challenger. Due to Lemma 1 we know that the secret s behind the tags
is unique, therefore we know s = s′ if A wins and thus s′ is a valid solution for
normal form search-MLWE. ��
Lemma 5. The LIT ΠLIT is linkable (Definition 11) in the random oracle model.

Proof. The adversary can only win, if f(sk0) = f(sk1). This means, that st
0A+

et
0 = st

1A + et
1, where ski = (si, ei). Due to Lemma 1 we know that the short

MLWE secrets are unique, meaning s0 = s1. Therefore we know that t0 − t1 =
st
0Aμ + e′t

0 − st
1Aμ − e′t

1 = e′t
0 − e′t

1 for some e′
i, i ∈ {0, 1} with ‖e′

i‖∞ ≤ β. Thus
we have ‖t0 − t1‖∞ ≤ 2β which is why the Link algorithm always outputs 1,
meaning an adversary cannot win the linking game. ��
Lemma 6. The LIT ΠLIT is unforgeable (Definition 12) in the random oracle
model if normal form sMLWEq,R,k,χ is hard.

Proof. Let A be an adversary against the unforgeability of the LIT and let Q
be the number of oracle queries of A. Construct an adversary B against normal
form search-MLWE. B uses the first m samples of its oracle as the pk and gives
that to A. Then, on tag-query μ, B asks its oracle for m samples batched as
(A,b), programs the random oracle as RO(μ) := A and returns b. This way,
there is a consistent s behind the pk and tags A sees, although B does not know
it. Then, A outputs some sk∗, μ and t∗. If the tag is valid and links to some tag
t, B outputs s∗, where sk∗ = (s∗, ·). Now, due to Lemma 1 and the choice of β
we know that the probability that s 	= s∗ is negligible. Therefore, if A finds a
forgery, B outputs a solution for normal form search-MWLE with overwhelming
probability. ��
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Other Constructions. It is also possible to base similar constructions on the
security of Learning With Errors, Learning With Rounding or Module Learning
With Rounding [2]. For the latter two, this simplifies all algorithms, as we no
longer have to consider the error or how to sample it and can, for example,
simply check for equality of tags when linking them.

4 Reputation System

The first step to our reputation system is a syntax model. We base our model
on [9], but add some changes. In our model, we define four different (types of)
parties: the group manager, the opener, an issuer and a user. In contrast to [9],
we identify a user by some user public key upk, which he can generate himself and
for which he possesses some user secret key usk. Then, he can join the reputation
system by interacting with the group manager, who knows some group manager
key pair (gmsk, gmpk), with which he generates a registration token ρ to give to
the user. Note that the joining of new users is dynamic and the number of users
is not limited. Then, the user interacts with the issuer. The latter is identified by
some issuer public key ipk, for which he knows some issuer secret isk. The issuer
gives the user some rating token τ enabling the user to rate the issuer. Note that
in contrast to [9], the party to be rated is the issuer and not a product of an
issuer. The user rates the issuer by using his usk, ρ and τ , where the latter was
issued by the issuer to be rated, to create a signature for the rating. Anybody
can verify the signature to check that the rating is valid, while not being able
to see which user created the signature. Should the user rate the same issuer
twice, anybody can use the linking algorithm to detect that two ratings were
created by the same user. The last party is the opener, which in contrast to [9] is
a separate party from the group manager. The opener knows some opener secret
key osk for some opener public key opk. In the case that a user misbehaves, the
opener open a signature to break anonymity of the user, i.e. identify the user
who created the signature. Note that the group manager and opener generate
their secret keys separately, which is why our model offers a stronger security
model than [9]. We now give the formal definition of a reputation system.

Definition 15. A reputation system consists of the following algorithms:

– Setup(1n): The ppt algorithm outputs some public parameters pp. We implic-
itly assume that all algorithms have pp as additional input.

– KeyGenM (1n): The ppt algorithm outputs a pair of group manager secret and
public key (gmsk, gmpk).

– KeyGenO(1n): The ppt algorithm outputs a pair of opening secret and public
key (osk, opk).

– KeyGenI(1n): The ppt algorithm outputs a pair of issuer secret and public key
(isk, ipk).

– KeyGenU (1n): The ppt algorithm outputs a pair of user secret and public key
(usk, upk).
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– Join(gmpk, usk),Register(gmsk, upk): At the end of their interaction of these
interactive ppt algorithms, Join outputs a registration token ρ.

– Request(gmpk, ipk, usk, ρ), Issue(gmpk, isk, upk): At the end of the interaction
of these interactive ppt algorithms, Request outputs a rating token τ .

– Sign(gmpk, opk, ipk, usk, ρ, τ, rtng): The ppt algorithm outputs a signature σ.
– Vrfy(gmpk, opk, ipk, rtng, σ). The ppt algorithm outputs a bit b.
– Open(gmpk, osk, ipk, rtng, σ): The ppt algorithm outputs some upk.
– Link(gmpk, opk, ipk, (rtng′, σ′), (rtng′′, σ′′)): The ppt algorithm outputs a bit b.

Definition 16. A reputation system is correct if for all security parameters
n, all pp ∈ [Setup(1n)], all (gmsk, gmpk) ∈ [KeyGenM (1n)], all (osk, opk) ∈
[KeyGenO(1n)], all (isk, ipk) ∈ [KeyGenI(1n)], all (usk, upki) ∈ [KeyGenU (1n)],
all ρ ∈ [Join(gmpk, uski) ↔ Register(gmsk, upk)],
all τ ∈ [Request(gmpk, ipk, uski, ρi) ↔ Issue(gmpk, isk, upk)], all ratings rtng,
all σ ∈ [Sign(gmpk, opk, ipk, uski, ρ, τ, rtng)], all ratings rtng′,
all σ′ ∈ [Sign(gmpk, opk, ipk, usk, ρ, τ, rtng′)] it holds that

– Vrfy(gmpk, opk, ipk, rtng, σi) = 1
– Open(gmpk, opk, ipk, rtng, σi) = upki

– Link(gmpk, opk, ipk, (rtng, σ), (rtng′, σ′)) = 1.

4.1 Security Model

Next we define the security model of a reputation system. We consider five dif-
ferent notions called anonymity, non-frameability, traceability, public-linkability
and joining security. These notions are inspired by the model of [9], except for
non-frameability, which replaces strong-exculpability, and joining security, which
is new since we split the group manager and opener into two parties.

In our security games, we model corruption differently than [9,20]. Instead
of giving the adversary oracles to corrupt parties, we assume that every partici-
pant is corrupted, except for the minimal set that is needed so that the security
experiment is not trivially solvable. We note that this model of corruption does
not change the security level, it simply makes it easier to argue in proofs. Then,
since we differentiate between the group manager and issuers, we can corrupt
only one of them if needed. More importantly, this allows us model full cor-
ruption, meaning the adversary can choose the public keys freely for corrupted
parties, where in [20] the adversary also has to output a valid secret key for
the public key he outputs. We also assume that the adversary carries a state in
between its calls. Note that we do not consider concurrency.

Before we define the security experiments, we define some oracles that an
adversary A may have access to.

Rg(gmsk, upk): Run A ↔ Register(gmsk, upk). Add upk to U .
Req(gmpk, ipk, u): If the input was queried before, output ⊥. Else, run τu,ipk ←

Request(gmpk, ipk, usku, ρu) ↔ A and store the rating token τu,ipk.
SigO(gmpk, opk, ipk, u, rtng): If τu,ipk is undefined or the input was queried before,

output ⊥. Else, output σu,ipk ← Sign(gmpk, opk, ipk, usku, τu,ipk, rtng). Add
(ipk, rtng, σu,ipk) to Q.
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Iss(gmpk, isk, upk): Add upk to I. Run A ↔ Issue(gmpk, isk, upk).

Note that in the security games, some of these parameters are fixed and
cannot be chosen by the adversary. For the Rg oracle, for example, we fix gmsk,
but leave upk open and thus write Rg(gmsk, ·) in the JoinSecurity game.

The first security requirement for users is that they stay anonymous. In the
anonymity experiment, we have two honest users that we try to protect. Except
for these two users and the opener, we assume that every other party is corrupted,
i.e. controlled by the adversary. In contrast to the notion of full-anonymity of
group signature we only have selfless anonymity, meaning it is possible for a user
to identify his own signatures. Thus, the usks of the honest users should stay
hidden to the adversary.

AnonΠ,A,b(n)

1 : pp ← Setup(1n)

2 : (osk, opk) ← KeyGenO(1n)

3 : gmpk ← A(opk)

4 : For u ∈ {0, 1}
5 : (usku, upku) ← KeyGenU (1n)

6 : ρu ← Join(gmpk, usku) ↔ A(upku)

7 : If ρu =⊥, return 0.
8 : ipk∗ ← AReq(gmpk,·,·),SigO(gmpk,opk,·,·,·),Open(gmpk,osk,·,·,·)

9 : τu ← Request(gmpk, ipk∗, usku, ρu) ↔ A for u ∈ {0, 1}
10 : If τu =⊥ for any u ∈ {0, 1}, return 0.
11 : rtng ← AReq(gmpk,·,·),SigO(gmpk,opk,·,·,·),Open(gmpk,osk,·,·,·)

12 : σ ← Sign(gmpk, opk, ipk∗, uskb, ρb, τb, rtng)

13 : b′ ← AReq(gmpk,·,·),SigO(gmpk,opk,·,·,·),Open(gmpk,isk,·,·,·)(σ)

14 : If there was a query to Open with (gmpk, osk, ·, ·, σ) as argument, return 0.
15 : If there was a query to SigO with (gmpk, opk, ipk∗, ·, ·) as argument, return 0.
16 : Return b′.

Definition 17. A reputation system Π is anonymous, if there exists a negligible
function, such that for all ppt adversaries A it holds that

Advanon
Π,A (n) := |Pr[AnonΠ,A,0(n) = 1] − Pr[AnonΠ,A,1(n) = 1]| ≤ negl(n).

Another security requirement for users is non-frameability. This expresses
that any adversary can neither create a signature that opens to an honest user
nor create a signature that links to one of an honest user, where the latter
security requirement was added by [20]. In the security experiment, we have one
user to be protected. In contrast to [20], here and in all further security games,
we require that the keys of the opener are generated honestly. This is due to the
fact that we do not include a Judge algorithm as [20] do.
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NFrameΠ,A(n)

1 : pp ← Setup(1n)

2 : Q = ∅
3 : (osk, opk) ← KeyGenO(1n)

4 : gmpk ← A(osk)

5 : (usk0, upk0) ← KeyGenU (1n)

6 : ρ0 ← Join(gmpk, usk0) ↔ A(upk0)

7 : (ipk, rtng, σ) ← AReq(gmpk,·,0),SigO(gmpk,opk,·,0,·)()

8 : upk ← Open(gmpk, osk, ipk, rtng, σ)

9 : If Vrfy(gmpk, opk, ipk, rtng, σ) = 0, return 0
10 : If (ipk, rtng, ·) ∈ Q, return 0
11 : If upk = upk0, return 1

12 : If ∃(ipk, rtng′, σ′) ∈ Q : Link(gmpk, opk, ipk, (rtng, σ), (rtng′, σ′)) = 1, return 1

Definition 18. A reputation system Π has non-frameability, if there exists a
negligible function negl, such that for all ppt adversaries A it holds that

Pr[NFrameΠ,A(n) = 1] ≤ negl(n).

An issuers requires traceability from the reputation system, which means
that it is not possible to create a signature that does not open to some user or
that opens to a user that was not given a rating token by an honest issuer. Here,
we create one honest issuer that we want to protect.

TraceΠ,A(n)

1 : pp ← Setup(1n)

2 : I = ∅
3 : (osk, opk) ← KeyGenO(1n)

4 : (isk, ipk) ← KeyGenI(1
n)

5 : gmpk ← A(osk, ipk)

6 : (σ, rtng) ← AIss(gmpk,isk,·)()

7 : If Vrfy(gmpk, opk, ipk, rtng, σ) = 0, return 0
8 : upk ← Open(gmpk, osk, ipk, rtng, σ)

9 : If upk =⊥ ∨ upk /∈ I, return 1

Definition 19. A reputation system Π has traceability, if there exists a negli-
gible function negl, such that for all ppt adversaries A it holds that

Pr[TraceΠ,A(n) = 1] ≤ negl(n).
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A security guarantee for the whole system is public-linkability. This requires
that the outputs of Open and Link are consistent to each other, meaning it is not
possible for an adversary to create two ratings for the same issuer that open to
the same user, but do not link.

PLinkableΠ,A(n)

1 : pp ← Setup(1n)

2 : (osk, opk) ← KeyGenO(1n)

3 : (gmpk, ipk, (σj , rtngj)j∈{0,1}) ← A(osk)

4 : If ∃j ∈ {0, 1} : Vrfy(gmpk, opk, ipk, rtngj , σj) = 0, return 0.

5 : If Open(gmpk, osk, ipk, rtng0, σ0) �= Open(gmpk, osk, ipk, rtng1, σ1), return 0.
6 : If Link(gmpk, opk, ipk, (rtng0, σ0), (rtng1, σ1)) = 0, return 1.

Definition 20. A reputation system Π has public-linkability, if there exists a
negligible function negl, such that for all ppt adversaries A it holds that

Pr[PLinkableΠ,A(n) = 1] ≤ negl(n).

The group manager also has a security requirement. He wants that every
user who wants to join the system must register with him and does not circum-
vent him. Else, issuers can invent non-existent users to rate themselves or their
products.

JoinSecurityΠ,A(n)

1 : pp ← Setup(1n)

2 : U = ∅
3 : (gmsk, gmpk) ← KeyGenM (1n)

4 : (osk, opk) ← KeyGenO(1n)

5 : (ipk, rtng, σ) ← ARg(gmsk,·)(gmpk, osk)

6 : If Vrfy(gmpk, opk, ipk, rtng, σ) = 0, return 0.
7 : upk ← Open(gmpk, osk, ipk, rtng, σ)

8 : If upk /∈ U , output 1.

Definition 21. A reputation system Π has join-security, if there exists a neg-
ligible function negl, such that for all ppt adversaries A it holds that

Pr[JoinSecurityΠ,A(n) = 1] ≤ negl(n).

4.2 Generic Construction

We construct a reputation system from a signature scheme, an encryption
scheme, a LIT, and a NIZK.
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Construction 22. Let Σ = (KeyGenΣ ,SignΣ ,VrfyΣ) be a signature scheme. Let
ΠEnc = (KeyGenEnc,Enc,Dec) be an encryption scheme. Let ΠLIT = (KeyGenLIT,
Tag,VrfyLIT, LinkLIT, f) be a LIT scheme. Let ΠNIZK be a non-interactive proof
system for the relation listed in the “NIZK” expression below.

– Setup(1n): Run pp ← ΠNIZK.Setup(1n).
– KeyGenM (1n): Run (gmsk, gmpk) ← KeyGenΣ(1n).
– KeyGenO(1n): Run (skEnc, pkEnc) ← KeyGenEnc(1n)

and (sk′
Enc, pk

′
Enc) ← KeyGenEnc(1n). Set (osk, opk) = (skEnc, (pkEnc, pk

′
Enc))

and forget sk′
Enc.

– KeyGenI(1n): Run (isk, ipk) ← KeyGenΣ(1n).
– KeyGenU (1n): Choose usk ← KeyGenLIT(1n) and compute upk = f(usk).
– Join(gmpk, usk),Register(gmsk, upk): The group manager signs

ρ ← SignΣ(gmsk, upk) and sends ρ to the user. If VrfyΣ(gmpk, upk, ρ), the
user outputs it.

– Request(gmpk, ipk, usk, ρ), Issue(gmpk, isk, upk): The issuer signs
τ ← SignΣ(isk, upk) and sends τ to the user. If VrfyΣ(ipk, upk, τ), the user
outputs it.

– Sign(gmpk, opk, ipk, usk, ρ, τ, rtng): Compute c = Enc(pkEnc, upk; r). Compute
c′ = Enc(pk′

Enc, usk; r
′). Compute l = Tag(usk, ipk; rt). Output σ = (c, c′, l, π),

where

π = NIZK{gmpk, opk, ipk, pkEnc, pk
′
Enc, c, c

′, l;
upk, usk, ρ, τ, r, r′ ;upk = f(usk)∧

VrfyΣ(gmpk, upk, ρ) = 1∧
VrfyΣ(ipk, upk, τ) = 1∧
c = Enc(pkEnc, upk; r)∧
c′ = Enc(pk′

Enc, usk; r
′)∧

VrfyLIT(usk, ipk, l) = 1}(rtng)
– Vrfy(gmpk, opk, ipk, rtng, σ): Verify π for the corresponding statement.
– Open(gmpk, osk, ipk, rtng, σ): Verify π for the corresponding statement. If π is

valid, output upk = Dec(osk, c).
– Link(gmpk, opk, ipk, (rtng′, σ′), (rtng′′, σ′′)): Verify π′, π′′ for the corresponding

statements. If π′, π′′ are valid, output LinkLIT(ipk, l′, l′′).

The correctness of the construction follows directly from the correctness of
its building blocks.

4.3 Security of the Generic Construction

The encryption of usk with pk′
Enc in a rating is not necessary for functionality,

but a crucial component for the security proof. This is similar to the Naor-
Yung paradigm to get CCA security of an encryption scheme from CPA secu-
rity. Without the encryption of usk we would have to assume online simulation-
extractability (we use the terminology found in [18])– that it is hard for an
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adversary to create a valid proof from which an extractor cannot extract, even if
the adversary sees simulated proofs for possibly wrong statements not in the lan-
guage, and the extractor needs to be able to extract during protocol execution,
not just at the end – instead of simulation soundness from the NIZK. This is a
significantly stronger assumption on the proof system, so we choose to encrypt
the usk and to require simulation-soundness.

Theorem 1. If ΠEnc is CPA secure , the LIT has indistinguishable tags (Defi-
nition 10) and ΠNIZK has zero-knowledgeness and simulation-soundness (Defi-
nitions 4 and 6), the reputation system is anonymous (Definition 17).

Note that by our modelling of NIZKs, this theorem and the other security
theorems of the generic construction hold in the random oracle model. However,
as stated in Sect. 2.2, they can be adapted to hold in the standard model.

Proof. We prove this by a series of games. An overview can be found in Table 1.

Table 1. An overview of the sequence of games for the anonymity proof. The column
π states whether proofs are done honestly (P) or simulated (S). The columns Chal-
lenge and Query state what messages are encrypted in the ciphertexts c, c′ during the
generation of the challenge or the signature query answer. Tag states which secret is
used to generate a tag. Opening states how opening is done.

π Challenge Query Tag Opening

Game0 P c ≡ upk0
c′ ≡ usk0

c ≡ upku

c′ ≡ usku
usk0 Dec(skEnc, c)

Game1 S c ≡ upk0
c′ ≡ usk0

c ≡ upku

c′ ≡ usku
usk0 Dec(skEnc, c)

Game2 S c ≡ upk0

c′ ≡ 1|usk0|
c ≡ upku

c′ ≡ 1|usku| usk0 Dec(skEnc, c)

Game3 S c ≡ upk0
c′ ≡ 1|usk0|

c ≡ upku

c′ ≡ 1|usku| usk1 Dec(skEnc, c)

Game4 S c ≡ upk0

c′ ≡ usk1

c ≡ upku

c′ ≡ usku

usk1 Dec(skEnc, c)

Game5 S c ≡ upk0
c′ ≡ usk1

c ≡ upku

c′ ≡ usku
usk1 f(Dec(sk′

Enc, c
′))

Game6 S c ≡ upk1
c′ ≡ usk1

c ≡ upku

c′ ≡ usku
usk1 f(Dec(sk′

Enc, c
′))

Game7 S c ≡ upk1
c′ ≡ usk1

c ≡ upku

c′ ≡ usku
usk1 Dec(skEnc, c)

Game8 P c ≡ upk1
c′ ≡ usk1

c ≡ upku

c′ ≡ usku
usk1 Dec(skEnc, c)

Define εD,a,b(n) to be the advantage of some ppt D distinguishing Gamea(n)
from Gameb(n). Let Game0 be the Anon0 game. Define Game1 to be the same



440 J. Blömer et al.

game as Game0, except that the challenger uses the simulator S of ΠNIZK (Def-
inition 4) to generate all proofs, including the challenge. We immediately see
that an adversary cannot distinguish between these games, as the difference of
the distribution of the proofs is negligible due to the zero-knowledge property of
the proof system. Thus, we have that for all ppt distinguishers D, there exists a
ppt A0 such that

AdvZK
ΠNIZK,A0

(n) = εD,0,1(n).

Define Game2 to be the same game as Game1 except that c′ in the signa-
ture queries is generated as c′ ← Enc(pk′

Enc, 1
|usku|), i.e. we encrypt a string

of ones instead of usku. Furthermore, c′ in the challenge is generated as c′ ←
Enc(pk′

Enc, 1
|usk0|), i.e. we encrypt a string of ones instead of usk0. This is indistin-

guishable by the CPA security of the encryption scheme. By a standard hybrid
argument we can construct a ppt A against the CPA security of ΠEnc from a
distinguisher D such that

AdvCPA
ΠEnc,A1

(n) =
1

Q + 1
εD,1,2(n).

Define Game3 to be the same game as Game2 except that tags l in the signa-
ture queries and the challenge are computed as l ← Tag(usk1, ipk; rt), i.e. we use
usk1 instead of usk0. This is indistinguishable by the tag-indistinguishability of
ΠLIT (Definition 10). Let D be distinguisher distinguishing Game2 and Game3.
Construct an adversary A2 against the tag-indistinguishability of the LIT.

– On input (pk0, pk1) set up the reputation system as in Game2, except for
setting upk0 := pk0, upk1 := pk1.

– Simulate D.
– Whenever D asks for a signature, query the oracle for a tag l and use that to

create the signature. Do the same for the challenge.
– If D returns a bit b, return b.

We can easily see that if A2’s challenger is in experiment b = 0, the view of
D is the same as in Game2, else the view is the same as in Game3. Thus, we have
the following.

AdvLITAnon
ΠLIT,A2

(n) = εD,2,3(n)

Define Game4 to be the same game as Game3 except that c′ in the signa-
ture queries is generated as c′ ← Enc(pk′

Enc, usku; r′), i.e. we again encrypt usku

instead of 1|usku|, and c′ in the challenge is generated as c′ ← Enc(pk′
Enc, upk1; r

′),
i.e. we encrypt usk1 instead of 1|usk0|. By the CPA security of the encryption
scheme we immediately have the following for an adversary A3 that simulates a
distinguisher D as in Game3, by a similar argument as above:

AdvCPA
ΠEnc,A3

(n) =
1

Q + 1
εD,3,4(n)

Define Game5 to be the same game as Game4 except that opening is done
by remembering sk′

Enc during key generation, decrypting c′ to some usk and out-
putting f(usk) instead of outputting the decryption of c. An adversary can only
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distinguish between these games if he can submit an opening query (ipk, rtng, σ)
with σ = (c, c′, l, π) such that π is valid but Dec(skEnc, c) 	= f(Dec(sk′

Enc, c
′))

and such that σ is not an answer he received from the signature oracle. Call the
event that an adversary outputs such a query Fake. However, if an adversary
could submit such a query, this would break the simulation-soundness of ΠNIZK

(Definition 6). To show this, from a distinguisher D between Game4 and Game5
we construct an adversary A4 against the simulation-soundness of ΠNIZK.

– On input some ppNIZK, set up Game4 while remembering skEnc, sk
′
Enc and

setting pp = ppNIZK.
– Simulate D. To simulate proofs, A uses its simulator oracle.
– Whenever D makes an opening query on (ipk, rtng, σ), answer as in Game4.

Additionally, if σ = (c, c′, l, π) is not an answer from a previous signing query
and upk 	= upk′, where upk ← Dec(skEnc, c) and upk′ ← f(Dec(sk′

Enc, c
′)), stop

and output the statement from σ together with π.
– If D stops, output a failure symbol ⊥.

If A4 finds a query such that upk 	= upk′ and the σ is not from a signature
query, we know that, while π is valid and is not a response from the simulator
oracle, the statement is not in the language. Therefore, this σ together with the
corresponding statement is a proof that breaks the simulation-soundness. Thus,
we have that

AdvSS
ΠNIZK,A4

(n) = Pr[Fake] ≥ εD,4,5(n).

Define Game6 to be the same game as Game5 except that c in the challenge
σ is generated as c ← Enc(pkEnc, upk1; r), i.e. we encrypt upk1 instead of upk0.
This is again indistinguishable by the CPA security of the encryption scheme,
thus for a distinguisher D and an adversary A5 constructed similarly to above
we have

AdvCPA
ΠEnc,A5

(n) = εD,5,6(n)

Define Game7 to be the same game as Game6 except that opening is done
honestly again, i.e. by decrypting c. Again, from a distinguisher D we can con-
struct an adversary A6 against the simulation-soundness of ΠNIZK similar to
above and we get

AdvSS
ΠNIZK,A6

(n) ≥ εD,6,7(n)

Define Game8 to be the same game as Game7 except that the proofs are
generated honestly again, thus we have that Game6 is the same as Anon1. This
is again indistinguishable due to the zero-knowledge property of ΠNIZK. Thus,
we have that for all distinguishers D, there exists an A7 such that

AdvZK
ΠNIZK,A7

(n) = εD,7,8(n).
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Therefore, in total for any ppt distinguishers Di for i ∈ {0, . . . , 7} we have
that

Advanon
Π,A (n) ≤

7∑
i=0

εDi,i,i+1(n)

≤ 2AdvZK
ΠNIZK,A0

(n) + AdvLITAnon
ΠLIT,A2

(n)

+ (2Q + 3)AdvCPA
ΠEnc,A1

(n)

+ 2AdvSS
ΠNIZK,A4,S(n) = 1]

��
Theorem 2. If ΠLIT is non-invertible and unforgeable (Definitions 12 and 13)
and ΠNIZK has zero-knowledgeness and simulation-soundness (Definition 4 and
6), the reputation system has non-frameability (Definition 18).

Proof. When an adversary against non-frameability wins, we have that the
forgery either opens to the honest user or it links to a rating of the honest
user. From these cases, we construct an adversary that targets either the non-
invertability or the unforgeability of ΠLIT. We also need to analyze the probabil-
ity of some failure event, for which we use the simulation-soundness of ΠNIZK.

Let A be an adversary against the non-frameability (Definition 18) of the
reputation scheme that does at most q queries to the signing oracle. Let Fail be
the event that in the non-frameability game the statement of the proof contained
in the forgery of A is wrong, i.e. it is not in the language of the relation. Construct
an adversary B against the non-invertability (Definition 13) of ΠLIT as follows:

– On input pk, simulate NFrameΠ,A(n), except for setting upk0 = pk and
remembering sk′

Enc.
– When A queries the request oracle, use the simulator of ΠNIZK (cf. Definition

4) to answer the query. If it queries the signature oracle, use the tag oracle
to generate a tag, generate c, c′ honestly, then use the simulator of ΠNIZK to
generate the proof.

– Eventually, A outputs some forgery (ipk, rtng, σ) with σ = (c, c′, l, π). If
Vrfy(gmpk, opk, ipk, rtng, σ) = 1 and u := Open(gmpk, osk, ipk, rtng, σ) =
upk0, then usk ← Dec(sk′

Enc, c
′).

– Output usk.

We can easily see that the view of A is perfectly simulated, except for negligi-
ble error from simulating the proofs. If A could distinguish the views, we could
immediately construct C that breaks the zero-knowledgeness of ΠNIZK. Then,
we know that if A manages to output a valid signature that opens to upk0, and
Fail does not happen, it holds that pk = f(usk). Thus, we have the following.

Pr[InvertΠLIT,B = 1] ≥ Pr[NFrameΠ,A = 1 ∧ u = upk0 ∧ ¬Fail] + AdvZK
ΠNIZK,C(n)

We also construct a C against the unforgeability of ΠLIT (Definition 12).
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– On input pk, simulate NFrameΠ,A(n) except for setting upk0 = pk. Also save
sk′

Enc.
– When A queries the request oracle, use ΠNIZK simulator to answer the query.

If A queries the signature oracle, use the tag oracle to generate a tag, then use
the simulator of ΠNIZK to answer the query with the corresponding statement.

– A outputs (ipk, rtng, σ) with σ = (c, c′, π, l). If Vrfy(gmpk, opk, ipk, rtng, σ) = 1
and u := Open(gmpk, osk, ipk, rtng, σ) 	= upk0 and ∃(ipk, ˆrtng, σ̂) ∈ Q with σ̂ =
(ĉ, ĉ′, π̂, l̂) such that Link(gmpk, opk, ipk, (rtng, σ), ( ˆrtng, σ̂)) = 1 and rtng 	=
ˆrtng, then decrypt usk ← Dec(sk′

Enc, c
′) and output (usk, ipk, l).

Again, we can easily see that the view of A is perfectly simulated. If A
outputs a forgery (ipk, rtng, σ) such that

Vrfy(gmpk, opk, ipk, rtng, σ) = 1
and u := Open(gmpk, osk, ipk, rtng, σ) 	= upk0
and ∃(ipk, ˆrtng) ∈ Q : Link(gmpk, opk, ipk, (rtng, σ), ( ˆrtng, σ̂)) = 1
and Fail does not happen,

we know that by definition we have VrfyLIT(usk, ipk, l) = 1 and LinkLIT(ipk, l, l̂) =
1. Therefore we have the following.

Pr[NFrameΠ,A = 1|¬Fail ∧ u 	= upk0] = Pr[ForgeLIT
ΠLIT,C = 1]

Lastly, we want to analyze the probability Pr[Fail]. For this, we construct an
adversary D against the simulation-soundness of ΠNIZK (Definition 6):

– On input crs, simulate NFrameΠ,A(n) except for using the provided crs.
– Simulate A. Whenever A makes an oracle query such that the answer would

contain a NIZK, use the simulator oracle to generate the proof.
– A outputs some forgery (ipk, rtng, σ). If Vrfy(gmpk, opk, ipk, rtng, σ) = 1,

return σ and the corresponding statement.

We can easily see that A is perfectly simulated and that if Fail happens, D
wins. Therefore we can bound the non-frameability advantage of A.

Pr[NFrameΠ,A] ≤Pr[NFrameΠ,A ∧ ¬Fail] + Pr[Fail]
=Pr[NFrameΠ,A = 1 ∧ ¬Fail ∧ u = upk0]

+ Pr[NFrameΠ,A = 1 ∧ ¬Fail ∧ u 	= upk0] + Pr[Fail]
≤Pr[NFrameΠ,A = 1|¬Fail ∧ u = upk0]

+ Pr[NFrameΠ,A = 1|¬Fail ∧ u 	= upk0] + Pr[Fail]

=Pr[InvertΠLIT,B = 1] + Pr[ForgeLIT
ΠLIT,C = 1]

+ Pr[SimSoundΠNIZK,D,S = 1]

��
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Theorem 3. If Σ is EUF-CMA and ΠNIZK is straight-line extractable (Defini-
tion 7), the reputation system is traceable (Definition 19).

Proof. Let E0, E1 be the extractor for ΠNIZK (cf. Definition 7). Let A be a ppt
adversary against traceability. First, we define Trace′

ΠNIZK,A(n) to work like
TraceΠNIZK,A(n), except that the public parameters pp are generated by the
extractor, i.e. (pp, td) ← E0(1n). From the guarantees of the extractor (Defi-
nition 7) and a straight-forward reduction, we get that |Pr[Trace′

ΠNIZK,A(n) =
1] − Pr[TraceΠNIZK,A(n) = 1]| ≤ negl0(n) for some negligible function negl0.

We construct an adversary B against the unforgeability of Σ. BSign(sk,·)(pk)
runs Trace′

ΠNIZK,A(n), except that it sets ipk = pk and whenever A makes a
Iss(gmpk, isk, upk) query, B answers by querying its own oracle Sign(sk, upk) for
the signature. Eventually, A outputs (σ, rtng), where σ = (c, c′, l, π). B runs
E1(td, x, rtng, π) (where x is set appropriately to the proven statement) to receive
a witness w = (upk, usk, ρ, τ, r, r′). B outputs (upk, τ) as a candidate forgery.

Let failE be the event that Trace′
ΠNIZK,A(n) = 1, but E1 outputs an invalid

witness (i.e. (x,w) /∈ R). With a straight-forward reduction to straight-line
extractability, we can show that Pr[failE ] ≤ negl1(n) for some negligible func-
tion negl1. If Trace′

ΠNIZK,A(n) = 1 and ¬failE , B outputs a valid forgery. This is
because the Trace′ winning condition “upk /∈ I” (together with (x,w) ∈ R and
correctness of the encryption scheme guarantees that B has not queried its sign-
ing oracle for upk with overwhelming probability. Hence there exists a negligible
function negl2 such that

AdvEUFCMA
Σ,A (n)

≥Pr[Trace′
ΠNIZK,A(n) = 1 ∧ ¬failE ] − negl2(n)

=Pr[Trace′
ΠNIZK,A(n) = 1] − Pr[Trace′

ΠNIZK,A(n) = 1 ∧ failE ] − negl2(n)

≥Pr[Trace′
ΠNIZK,A(n) = 1] − negl1(n) − negl2(n)

��
Theorem 4. If Σ is EUF-CMA and ΠNIZK is straight-line extractable (Defini-
tion 7), the reputation system has joining security (Definition 21).

The proof is analogous to the proof of Theorem 3.

Theorem 5. If ΠLIT is linkable (Definition 11) and ΠNIZK has soundness, the
reputation system is publicly linkable (Definition 20).

Proof. Let A be an adversary against the public linkability of the reputation
system. We construct an adversary B against the linkability of ΠLIT from it:

– Simulate PLinkableΠ,A(n).
– A outputs some gmpk and ipk and forgery-rating pairs (σj , rtngj)j∈{0,1},

where σj = (cj , c
′
j , lj , πj).

– If both σj are valid signatures in the simulated public-linkability game and
do not link, decrypt c′

0, c
′
1 to get usk0, usk1 and output (usk0, usk1, ipk, l0, l1).
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If A outputs gmpk, ipk with two forgeries σ0, σ1 that are valid for these keys
and the opk, due to soundness of ΠNIZK we have that VrfyLIT(uskj , ipk, lj) = 1 for
j ∈ {0, 1}. Then, again due to the soundness of ΠNIZK, we have that f(usk0) =
f(usk1). Call Sound the event that A outputs such tags or such ciphertexts that
the above conditions do not hold. Then, we can construct an adversary C against
the soundness of ΠNIZK, by simply outputting the proof that A outputs. Thus,
we know that Pr[Sound] ≤ AdvSnd

Π,A(n). If the σj do not link, it follows that
(usk0, usk1, ipk, l0, l1) is a tuple of two valid tags for the same message created
with usk0, usk1 respectively, which do not link. Therefore, we have that

Pr[LinkableLIT
ΠLIT,C(n) = 1] = Pr[PLinkableΠ,A(n) = 1] + AdvSnd

Π,A(n).

��

The Role of Straight-Line Extraction. For the proof of traceability (The-
orem 3) and joining security (Theorem 4), we require ΠNIZK to be straight-
line extractable, i.e. the proof system must not rely on rewinding for extraction
(which, for example, Fiat-Shamir-based proofs usually do). In our security proofs
for Theorems 3 and 4, the reduction algorithm has access to a signature oracle.
Similarly to what was noted in [21], this represents an issue for an extractor: when
rewinding the reduction algorithm B, the extractor needs to answer B’s signing
oracle queries. However, in standard definitions, the extractor does not have
access to the signing oracle. Even if we grant access, the extractor querying the
signing oracle may actually cause an extracted forgery to become invalid. This
happens in case a signature on the forgery message is being requested by B dur-
ing rewinding. There are potential ways to circumvent this issue for specific proof
systems, but standard definitions of (rewinding-based) soundness are incompat-
ible with signing oracle access in security proofs. Straight-line extraction does
not suffer from this issue, as the extractor can be used without rewinding.

One can always implement straight-line extractable proofs by encrypting the
witness for some honestly generated publicly known public key and proving, with
a sound zero-knowledge proof, that the encrypted witness is valid. Note that in
our security proofs for Theorems 3 and 4, the only value we need to extract
from the proof is the membership certificate τ or ρ (upk is also used, but can
be computed by decrypting c). For this reason, when implementing straight-line
extractability, it suffices to additionally encrypt τ and ρ, there is no need to
encrypt the full witness of the rating NIZK.

Alternatively, one can use a NIZK that is inherently straight-line extractable
(e.g., using Fischlin’s transform [22] or Katsumata’s transform [30]). In these
cases, it also suffices to extract only a part of the witness, namely ρ, τ . In practice,
one can arguably even use a standard Fiat-Shamir-based construction, for which
one cannot prove straight-line extractability (cf. [5]). However, to the best of
our knowledge, there is no attack against Fiat-Shamir in practice that targets
schemes using it in place of a straight-line extractable proof.
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5 A Reputation System from Module Lattices

We now want to instantiate the generic construction with building blocks based
on module lattices. Since we only used generally common concepts, we are rel-
atively free in choosing which actual building blocks we want to use. However,
we need to make sure they fit together, especially with the NIZK, meaning that
we can prove the statements defined by our other building blocks. The NIZK of
our choice is, as mentioned previously in Corollary 1, the proof system of [38]
transformed into a straight-line extractable NIZK by Katsumata’s transform
[30]. With it, we can create proofs for the relation RR (cf. Definition 8), so we
have to argue that we can express our statements to prove via this relation.

For the LIT, we choose the scheme presented in Construction 14. To instan-
tiate Construction 22 with it, we need to prove possession of a secret usk and
secret upk, such that f(usk) = upk. Since this boils down to showing possession
of an MLWE secret for a secret b, this can be realized as shown in Table 2.
Due to our choice of the encryption scheme, we use the bit-decomposition of
the upk. Thus, we also need to prove that one knows upk,BitD(upk) such that
upk = G · BitD(upk) and BitD(upk) is a bit vector, which is also possible. Since
this works similar to showing possession of an MLWE secret for public b as
shown in [38], we roughly estimate the proof for the former to be of size 30KB.

Table 2. Proving possession of a usk for secret upk. Define A′ = [At
T | I | −G].

variable description instantiation

φ # of equations to prove 1
φeval # of evaluations with const. coeff. zero 0
υe # of exact norm proofs 2
υd # of non-exact norm proofs 0
kbin length of the binary vector to prove mU log q

s1 committed message in the Ajtai part (tt, et,BitD(upk)t)t

m committed message in the BDLOP part ∅ (no message)
f1 equation to prove A′s1 = 0

D1 public matrix for proving ‖E1s − u1‖∞ ≤ β
(e)
1

[

I 0 0
]

u1 public vector for proving ‖E1s − u1‖∞ ≤ β
(e)
1 0

β
(d)
1 upper bound on ‖E1s − u1‖∞ ≤ β

(e)
1 β

D2 public matrix for proving ‖E2s − u2‖∞ ≤ β
(e)
2

[

0 I 0
]

u2 public vector for proving ‖E2s − u2‖∞ ≤ β
(e)
2 0

β
(d)
2 upper bound on ‖E2s − u2‖∞ ≤ β

(e)
2 β

Ebin matrix for proving binary
[

0 0 I
]

vbin vector for proving binary 0
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For the encryption scheme, we use the MLWE variant of the primal Regev
encryption scheme that is presented in [38] as their verifiable encryption scheme.
There they also show that one can create a proof showing the validness of a
ciphertext, which we need in our generic construction. However, their scheme
has a message space of {0, 1}n, while we want to encrypt a upk ∈ Rm

q . Thus, we
instead encrypt the bit-decomposition BitD(upk) of the upk in multiple cipher-
texts. Based on the parameters in [38], we estimate the proof size showing the
ciphertext to be valid to be 4762KB. We expect other lattice-based encryption
schemes such as Kyber [12], Saber [17] and NTRU [27] to also work for our
generic construction, as [38] claim they work in their proof system.

To instantiate the signature scheme, we need it to be compatible with our
NIZK. Signature schemes that use the random oracle, such as Fiat-Shamir-with-
aborts signature scheme [37] or hash-then-sign signatures [23,42], are not suit-
able. Instead, we use signature schemes in the standard model, such as [19], and
we focus on signatures that are either specifically designed for use in combina-
tion with proofs of knowledge, such as [29], or are very efficient [11]. An overview
comparing the schemes can be found in Table 3.

Table 3. Overview over different candidate signature schemes to instantiate the repu-
tation system with. For the definition of the Int-NTRU-ISISf problem, see [11]. Proof
size refers to size of a NIZK in kilobytes in the framework of [38] proving possession of
a secret message-signature pair for 128-bit security. These are conservative estimates
for message space {0, 1}nm·log q.

Scheme State Assumption Proof Size

[19] and our adaption stateless RSIS –
[29][28, Appendix H] stateless MSIS –
[29] and our adaptions stateful MSIS 163584 KB
[11] stateless Int-NTRU-ISISf 59392 KB

The signature scheme of [19] is shown to be secure for non-adaptive queries,
to be converted to adaptive security via chameleon hash. However, one can
show that using a technique similar to [32] using the Rényi divergence, that
the scheme has adaptive security without the chameleon hash. For details, see
the full version [7], which also describes how to prove possession of a secret
message-signature pair in the framework of [38]. However, the signature scheme
has reduction loss dependent on the success probability of the adversary, which
leads to large parameters. The stateless signature scheme of [28,29] is designed
in such a way that the verification equation works well with relations that can
be proven by lattice-based proofs of knowledge. In particular, [29] already show
that one can show possession of a message-signature pair of their scheme in
the framework of [38]. This signature scheme suffers from the same reduction
loss drawback as [19] though, since they use the same proof technique of prefix-
guessing of a tag.
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In [11] they introduce a credential system based on novel security assumptions
that are related to ISIS. Their credential system can also be seen as a (blind)
signature, of which one proves possession, thus we can instantiate our signature
scheme and the proof with it. The most efficient credential system they design
is based on the so-called Int-NTRU-ISISf problem and achieves a proof size
of 29KB (under some heuristics) for a message space of {0, 1}16. If we use the
construction of [11] and the other aforementioned building blocks, we arrive at
a total proof size for the instantiation of the generic construction of 30KB +
4762KB+59392KB = 64184KB. Note that this is a very rough estimate and we
expect careful analysis to yield a much better proof size.

Stateful Reputation System. Parallel to the stateless variant, [29] also construct
a stateful �-time signature scheme based on MSIS. They show the size of a proof
showing possession of a secret message-signature pair to be 693KB for a message
in {0, 1}128, also using the proof system of [38]. It is possible to use stateful
signatures in our generic construction, by changing the model of the reputation
system such that the group manager and issuers are stateful, i.e. the Join and
Issue algorithms get some state as input. We also allow only a fixed number � of
users to join the system. The correctness and security model have to be changed
accordingly, which is straight-forward. Both are not unreasonable assumptions
to make in practice, as group managers have to keep track how many members
there are in the system anyways and issuers have to store information about their
sales, making both inherently stateful. Furthermore, for large enough �, e.g. 240,
this amount of users will likely not be reached in practice. The security proofs
for the stateful reputation system basically work as for the stateless reputation
system, except for using stateful and �-time signatures instead of stateless ones.

Instead of the stateful signatures of [29], one can use an adaption presented
in the full version [7], which is a slightly simplified version of the former getting
rid of the commitment in the signing process. There is a second adaption, which
can be more efficient than the signature of [29] depending on the degree of the
ring, since its security relies on RLWE, NTRU and RSIS instead of MSIS. Details
can be found in the full version [7].

5.1 Instantiation with Pairing-Based Cryptography

To instantiate the generic construction based on pairing-based cryptography, we
use the following constructions for the building blocks:

– The linking indistinguishable tags are t = RO(ipk)usk with f(usk) = gusk.
Two tags t0, t1 link if t0 = t1.

– The signature scheme to sign the user’s public key gusk is a simplified version
of the structure-preserving signature [24], namely σ = (R̃, S, T ) = (g̃r, (y ·
gw)1/r, (yw ·M)1/r) (as in [10]), where signatures are valid iff they are of that
form (can be checked using the pairing).

– The encryption scheme for the user’s public key is ElGamal, the encryption
scheme for usk ∈ Zp is bitwise raised ElGamal.
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– The NIZK is a simple Schnorr-like protocol made straight-line extractable
with Fischlin’s transform [22,31].

We leave the details of the instantiation to the reader.

Acknowledgement. We would like to thank the anonymous reviewers for their help-
ful comments and constructive feedback.
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Abstract. User privacy is becoming increasingly important in our digi-
tal society. Yet, many applications face legal requirements or regulations
that prohibit unconditional anonymity guarantees, e.g., in electronic pay-
ments where surveillance is mandated to investigate suspected crimes.

As a result, many systems have no effective privacy protections at all,
or have backdoors, e.g., stored at the operator side of the system, that
can be used by authorities to disclose a user’s private information (e.g.,
lawful interception). The problem with such backdoors is that they also
enable silent mass surveillance within the system. To prevent such mis-
use, various approaches have been suggested which limit possible abuse or
ensure it can be detected. Many works consider auditability of surveil-
lance actions but do not enforce that traces are left when backdoors
are retrieved. A notable exception which offers retrospective and silent
surveillance is the recent work on misuse-resistant surveillance by Green
et al. (EUROCRYPT’21). However, their approach relies on extractable
witness encryption, which is a very strong primitive with no known effi-
cient and secure implementations.

In this work, we develop a building block for auditable surveillance. In
our protocol, backdoors or escrow secrets of users are protected in mul-
tiple ways: (1) Backdoors are short-term and user-specific; (2) they are
shared between trustworthy parties to avoid a single point of failure; and
(3) backdoor access is given conditionally. Moreover (4) there are audit
trails and public statistics for every (granted) backdoor request; and (5)
surveillance remains silent, i.e., users do not know they are surveilled.

Concretely, we present an abstract UC-functionality which can be
used to augment applications with auditable surveillance capabilities.
Our realization makes use of threshold encryption to protect user secrets,
and is concretely built in a blockchain context with committee-based
YOSO MPC. As a consequence, the committee can verify that the con-
ditions for backdoor access are given, e.g., that law enforcement is in
possession of a valid surveillance warrant (via a zero-knowledge proof).
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Moreover, access leaves an audit trail on the ledger, which allows an
auditor to retrospectively examine surveillance decisions.

As a toy example, we present an Auditably Sender-Traceable Encryp-
tion scheme, a PKE scheme where the sender can be deanonymized by
law enforcement. We observe and solve problems posed by retrospec-
tive surveillance via a special non-interactive non-committing encryption
scheme which allows zero-knowledge proofs over message, sender identity
and (escrow) secrets.

Keywords: Anonymity · Auditability · Provable Security · Universal
Composability · UC · YOSO · Protocols

1 Introduction

In user-centric application scenarios such as communication services, electronic
payments, internet search engines, etc. there is a strong tension between the need
for user privacy and legal requirements or business interests that entail the mon-
itoring of a user’s (meta-)data. This tension is also reflected by the recent Euro-
pean Council Resolution on “Security through encryption and security despite
encryption” [18]. On the one hand, there is a strong demand for anonymity and
confidentiality supported by the European General Data Protection Regulation.
On the other hand, scenario-specific laws and regulations such as the European
Council Resolution on the Lawful Interception of Telecommunications [43] or
the EU Directive on Anti-Money Laundering and Countering the Financing of
Terrorism (AML/CFT) [44], to name just a few, make it necessary to revoke a
user’s anonymity or disclose its encrypted transaction data or messages under
certain well-defined circumstances, e.g., when a warrant has been issued for a
suspect.

The security research community has recognized and addressed the neces-
sity to balance confidentiality/anonymity with accountability. Most proposed
solutions follow a variant of the key escrow paradigm [2,3,9,19,35,41,45,49,53].
In key escrow systems one or more, typically fixed, trusted authorities (TAs)
aka escrow agents, are equipped with (shares of) a trapdoor key which can be
used to recover encrypted messages, revoke transaction anonymity, etc. However,
this holds the risk that, by corrupting the publicly known TAs, trapdoors can
be silently misused, e.g., for mass surveillance or spying on lawful individuals
of public interest (e.g., politicians, business leaders, celebrities). Due to these
issues, policymakers, security researchers, and practitioners are concerned about
deploying key escrow without further measures to prevent or detect misuse, e.g.,
[1,32]. Moreover, the lack of transparency concerning the lawful usage of trap-
doors leaves citizens with the subconscious feeling of being under permanent
surveillance.

To make surveillance actions more transparent and accountable, recent work
[22,29,46] has discovered the usefulness of distributed ledgers. Here, judges, law
enforcement, and companies publish commitments to information about surveil-
lance measures on the ledger and can provide zero-knowledge proofs that they
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behave according to the laws. However, these proposals do not enforce that, in
order to access user trapdoors, evidence must be put onto the ledger first. That
means, a secure and accountable escrow and disclosure of end-to-end encryption
keys is not considered. Hence, trapdoors kept by a company are still at risk of
being covertly misused without leaving any trace.

Very recently, Green et al. propose a misuse-resistant surveillance scheme
[31] which compels law enforcement to leaving a warrant on the ledger in order
to disclose the encrypted communication of a suspect. To this end, the authors
build on extractable witness encryption (EWE) [27], instead of a key escrow
scheme, where the publication of a warrant serves as the key (aka witness) to
decrypt the communication. Unfortunately, it seems implausible that extractable
witness encryption (for general NP languages) does actually exist [23].1 More-
over, they prove that any protocol secure in their model would already imply
extractable witness encryption (for a highly non-trivial language). The goal of
our system is to combine ledger-based auditability of surveillance actions with
corruption-resilient key escrow mechanisms. Similar to [31], leaving a warrant
on the ledger to access trapdoors is enforced, but without relying on extractable
witness encryption.

Goyal et al. [30] model storing secrets on a blockchain (via secret-sharing
them among members of an evolving committee) and retrieving them under
some condition. If we apply that idea to our scenario, we could secret-share
user-specific trapdoors at committees who only release their shares if they find a
warrant on the ledger requesting their specific shares. Benhamouda et al. [8] also
model storing of a secret on a blockchain, but additionally make committee mem-
bers anonymous until they finished their work to prevent targeted corruption.
Both methods [8,30] can result in a lot of overhead for the committee who poten-
tially has to manage millions of secrets. To reduce the committee’s workload
during the handover phase, we take this idea and combine it with a key-escrow
approach. Instead of secret-sharing millions of trapdoors on the blockchain, we
only secret-share one item: A secret key for a threshold encryption scheme. The
trapdoors are not secret-shared on the blockchain, but encrypted under a public
key and stored off-chain to reduce blockchain workload. The secret key for that
ciphertext is secret-shared on the blockchain and instead of directly retrieving
a secret from the blockchain, law enforcement can request the decryption of the
ciphertext. To increase security, only a part of the trapdoor is decryptable by
the blockchain committee; the other part is stored offline at the system operator.
Thus, the system remains secure even if the blockchain committee’s majority is
corrupted. See the full version [21] for a discussion of important design decisions.

While some other systems [24,38] only enable prospective surveillance, where
law enforcement must prepare surveillance of each user individually before this
user conducts any transactions, we achieve retrospective surveillance, where law
enforcement can also access transactions that were conducted in the past. We
additionally model this functionality as a building block in the UC framework
and prevent users from learning whether their trapdoor was retrieved or not

1 Even (non-extractable) witness encryption currently has no efficient constructions.
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(in contrast to [8,30]). Unlike [31], we achieve retrospective surveillance with-
out implying EWE. Moreover, the efficiency estimate of our application shows
that our system is realizable and scales favorably: The judge is only involved
in granting warrants, law enforcement is only involved when surveilling users
and the work on the blockchain only depends on the number of surveilled users,
not the number of registered users (cf. Sect. 4.3). We thus present the first UC-
secure proof of concept. Unfortunately, it is not practically efficient due to large
ciphertexts (cf. Sect. 5.3).

Additionally, we add the possibility to audit the surveillance decisions of law
enforcement. A special party, the auditor, has the power to retrospectively exam-
ine law enforcement’s surveillance decisions and inform the public about possible
abuse. Since this party is very powerful, care must be taken as to who takes on
this role; for example, a neutral investigative committee might be suitable.

1.1 Contribution

We formalize an auditable surveillance system as a building block which can
be used to enhance many different (existing) applications with the capability
to revoke a user’s anonymity or to reveal a user’s transaction data under the
condition that a law enforcement agency has a court-signed warrant that legally
empowers them to do so. Our auditable surveillance system is the first to com-
bine key escrow with accountability without requiring unlikely assumptions (e.g.,
EWE) while scaling well. We accomplish this through the following three con-
tributions.

First and foremost, we provide an abstract ideal functionality for auditable
surveillance, FAS. The functionality FAS serves as a building block which allows
to enhance protocols with auditable surveillance with relative ease. In particular,
this provides a basic target functionality to realize and serves as a separation
between the low-level implementation of the auditability mechanism, and the
high-level decision of adding auditability to protocols, e.g., choosing what data
to make available to law enforcement in anonymous electronic payment systems
with auditable surveillance. We formalize our auditable surveillance system in
the Universal Composability (UC) framework [14,15], which ensures that the
system’s security and privacy guarantees still hold if the system is run in com-
bination with many different other protocols.

Our second contribution is the protocol ΠAS which UC-realizes FAS. It uses
several cryptographic building blocks like commitments, signatures and zero-
knowledge proofs and is based on an ideal functionality for auditable decryption,
FAD, for managing the secret-shared secret key for the threshold encryption
scheme and answering decryption queries. Our modeling of this building block
achieves auditability of requests for secrets and privacy regarding which secrets
are released. The auditable decryption functionality FAD is also modeled in the
UC framework to enable a flexible use of this building block and we provide
a protocol FAD that UC-realizes it. We cast our protocol FAD in the YOSO
(You-Only-Speak-Once) model [25] (see Sect. 4.3 for a brief introduction). In
this model, protocols are executed by roles, where each role is only allowed to
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send messages once. Which party is executing a specific role is hidden until it
sends its messages. This prevents targeted corruption of parties that comprise
the current committee, and thus allows for leveraging global honest-majority (for
the set of all nodes operating the blockchain) assumptions for smaller committee
sizes, and achieving security against mobile adaptive adversaries2.

Our third contribution is a (toy) ideal functionality, FASTE, for Auditably
Sender-Traceable Encryption (ASTE). This functionality demonstrates the use-
fulness of FAS as a building block. Effectively, FASTE allows a registered user
to anonymously encrypt a confidential message to another registered user, while
ensuring that law enforcement is able to deanonymize the resulting ciphertext.
In our toy example, law enforcement does not learn the message of a ciphertext,
fully separating “content” from “eidentity”. But it is easy to modify the exam-
ple, so that law enforcement learns any function of message and identity. At
first glance, this may be a trivial application of encryption and zero-knowledge.
However, to attain retrospective surveillance which is somewhat practical, we
need to combine non-interactive non-committing encryption (NINCE) with zero-
knowledge proofs, which is highly non-trivial (cf. Sect. 1.2).

To summarize our contribution:

1. We identify and define an ideal UC-functionality, called FAS, which acts as a
building block for auditable surveillance systems or more generally auditable
access systems.

2. We realize this functionality in a setting where the deployment of such systems
is of interest (namely, the “blockchain space”). Therein we also specify a UC-
functionality FAD for auditable decryption, which may be of independent
interest. We stress however, that the realization of FAS is not in any way
restricted to this setting.

3. We demonstrate the applicability of FAS by building FASTE on top of it,
and provide techniques to overcome the challenges posed by retrospective
surveillance namely, techniques for ZK-compatible NINCE in the PROM.

1.2 Overview of Technical Challenges in Building Applications

To be used in an application, the auditable surveillance functionality FAS must
provide a suitable interface. In most applications, users need to be able to prove
that they escrowed a secret, e.g., a secret for the current period in our messenger
application ASTE. A first idea to realize that, is for FAS to provide a digital
signature on user identity, escrowed secret and current period to the user. How-
ever, formulating a usable (let alone zero-knowledge-compatible) UC signature
scheme turns out to be a daunting task, since signatures in UC are riddled with
subtleties [4,11,16,39], and indeed many modeling artifacts occur.

To circumvent such problems, FAS directly provides the possibility for users
to prove statements about their identity uid , their escrowed secret secret , some

2 Mobile adversaries can adaptively corrupt and uncorrupt parties as long as they do
not exceed a certain threshold of simultaneously corrupted parties.
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validity period vper and other information. Such a proof can show a statement
of interest w.r.t. vper , for a witness which includes (uid , secret), and the proof
ensures that the secret secret for uid is stored for period vper . Overall, this
approach is more general and easier to use.

Our Auditably Sender-Traceable Encryption (ASTE) functionality encapsu-
lates the main challenges encountered with auditable systems:

Privacy: Different information must be hidden from different parties: For FASTE,
message recipients must learn the message, but not the sender’s identity. Law
enforcement must not learn the message, but must learn the sender’s identity.

Soundness (of Surveillance): Despite anonymity of ciphertexts in FASTE, it
must be infeasible to produce ciphertexts in the name of another user.

Retrospective Surveillance: The surveillance requests of law enforcement
essentially behave like adaptive partial corruptions.

The second point (soundness) can make good use of the non-interactive proving
capabilities of FAS, which also greatly helps in achieving the first (privacy). How-
ever, the last point (retrospective surveillance) is surprisingly difficult to achieve,
even with FAS. Indeed, it is a case of the well-known “simulator commitment
problem” [34]: In the ideal execution, the simulator must generate a ciphertext
for an unknown message (due to confidentiality) and an unknown user (due to
anonymity). However, when law enforcement (lawfully) deanonymizes the user’s
identity uid in that ciphertext, it must be correct. In other words, the identity
uid is unknown to the simulator when it generates a ciphertext c (which “com-
mits” to uid). Yet, when law enforcement obtains the escrow secret, all (affected)
ciphertexts must correctly decrypt to the user’s identity uid . If non-interactive
decryption for law enforcement is assumed, then the simulator must retroac-
tively choose the identity uid of c. This asks for a (form of) non-interactive
non-committing encryption (NINCE), which is known to be impossible in the
standard model [42]. Thus, we rely on a NINCE-like construction in the pro-
grammable random oracle model (PROM). However, this entails a well-known
problem, namely, that it is not possible to prove statements about (random) ora-
cles with zero-knowledge proofs for NP—NP statements cannot have oracles.
To overcome this, we use a non-trivial construction of NINCE which incorpo-
rates cut-and-choose techniques to obtain black-box proofs for statements over
the NINCE-encrypted values (and even the encryption secret keys). In light of
an apparent necessity for zero-knowledge-compatible NINCE, we consider this
construction as part of our toolkit for basing applications on FAS.

1.3 Related Work

Key Escrow. Since the 1990s, many papers, e.g., [35,45,53], have been dealing
with different variants of key escrow mechanisms in various domains, where key
material is deposited with one or more trusted parties who can then decrypt
targeted communications or access devices. In particular, key escrow has also
been applied in the scope of e-cash [9] to balance anonymity and accountability.
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Also, more recent work follows this paradigm. For instance, in [2] the authors
propose protocols for secure-channel establishment of mobile communications
that offer a session-specific opening mechanism. A session key is escrowed with
n authorities which all need to agree for recovering the session key. The system
comes with some addition of security guarantees, e.g., non-frameability. The
work [49] considers lawful device access while protecting from mass surveillance.
The authors propose the use of self-escrow passcodes which are written to the
device itself and can only be retrieved by means of physical access, e.g., via
dedicated pins.

Table 1. Comparison of our system with the most relevant related work on accountable
surveillance systems

Paper Lawful-
only

Retro-
spective

Silent No EWE
needed

Public
Statistics

UC-
secure

Flexible
Framework

[38], [24] no no yes yes no no no

[19] no yes yes yes no no yes

[10] no yes no yes yes yes no

[41] no yes yes yes yes no partially

[33] yes yes no yes no no partially

[31] yes yes yes no yes yes no

Our System yes yes yes yes yes yes yes

1 Whether a warrant is needed for surveillance actions.
2 Whether surveillance is retrospective or only prospective.
3 Whether surveillance is silent, e.g., users are not aware that they are surveilled.
4 Whether the system does not assume the existence of EWE (extractable witness
encryption).
5 Whether the system supports public statistics.
6 Whether the system is UC-secure.
7 Whether the work contains a framework that can be used for many different appli-
cations.
8 The system support a limited set of applications.

Accountable Access. Some works have tried to extend key escrow with basic
accountability features. We compare ourselves with the most relevant of them
in Table 1. A more detailed comparison with [31] can be found in Sect. 5.4, after
our application ASTE is presented.

In [3] an anonymous yet accountable access control system is proposed.
Regarding accountability, the user needs to escrow its identity with a TTP which
is revealed by the TTP if some previously agreed condition bound to the ID
using verifiable encryption with labels (where the condition is encoded as label)
is satisfied. Liu et al. [41] propose an accountable escrow system focusing on
encrypted email communication. In their system users escrow their decryption
capability (instead of their private key), essentially by means of a 3-party Diffie-
Hellman key exchange, to trusted custodians. Custodians perform decryptions
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upon request by means of their own private keys and are trusted to log each
decryption request to hold the government accountable. Still, the private keys
of custodians can be stolen or they can be corrupted in particular as they are
well-known to government organizations. The works [24,38] deal with auditable
tracing techniques in the context of e-cash and cryptocurrencies, respectively.
The underlying idea is to provide a user either with a randomized version of
the authority’s public key, where the corresponding secret key is the revocation
trapdoor, or a completely random key, which is useless for tracing. The user can-
not tell which key it received until later when the authority is enforced to reveal
this. The big disadvantage of their approach is that the authority has to decide
in advance (e.g., at the beginning of each month) which users should be traced.
This could result in practical issues, e.g., when money laundering is suspected,
but the transactions of suspects cannot be traced since tracing was not turned
on for them. In [19] a “mutual accountability layer” is added to systems to make
operators accountable for opening key-escrowed user transactions. However, this
accountability feature only results in the current key escrow committee learning
that some transaction was opened. The lawfulness of opening a transaction is
not verified and information about opening requests are not persistently and
publicly stored.

Some proposals try to avoid key-escrow and its misuse potential from the
outset. Very recently, a misuse-resistant surveillance scheme with retrospective
exceptional access to end-to-end encrypted user communication has been pro-
posed in [31]. Instead of building on key escrow, users are forced to (additionally)
encrypt their messages with extractable witness encryption [28]. Loosely speak-
ing, witness encryption allows to define a policy under which a ciphertext can be
decrypted. In their scheme, this is the case when a warrant for the correspond-
ing user signed by a judge has been published on a public ledger. The major
disadvantage of their approach is that it is implausible that extractable witness
encryption schemes actually exist [23].

In [33], the authors also abstain from using key escrow. Instead, given a
warrant, a user has to (verifiable) reveal the transactions of interest itself to
the judge. Unfortunately, this prevents silent investigations and leaves a suspect
with the option to deny cooperation.

Several works deal with the collection of auditable logs of surveillance actions.
In [6] the authors propose a distributed auditing system for CALEA-compliant
wiretaps. The idea is to add Encryptor devices to the wiretaps which send
encrypted audit records to a log. With the help of the log, audit statistics can be
computed from ciphertexts using homomorphic encryption. Kroll et al. in two not
formally published manuscripts [36,37] propose different systems for accountable
access control to user data. Here, law enforcement needs to interact with a set of
decryption authorities to decrypt user records, for which a single encryption key
is used. Accesses are logged by an auditor party with whom the other parties
need to interact continuously in order to confirm the different protocol steps.
No end-to-end encryption of user data or the revocation of anonymous records
is considered. Also, formal security model and proofs are missing. The work [22]
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extending [29] uses ledgers to collect accountable information about surveillance
action and a hierarchical form of MPC to compute aggregate statistics. How-
ever, a secure and accountable escrow and disclosure of user trapdoors is not
considered. In particular, if such trapdoors are kept by a company, they can still
be misused by the company, stolen by an intelligence agency, etc. without leav-
ing any trace on the ledger. The work [46] addresses some of the issues of [22]
like, e.g., that government agencies and companies are trusted to regularly post
(correct) information on the ledger. This is done by introducing an independent
party called Enforcer who serves as the conduit for interactions between them
and ensure compliance. However, for this it is assumed that government agen-
cies and companies do never directly communicate with each other. Moreover,
they do not make use of ledgers to control access to user trapdoors to disclose
end-to-end encrypted communication or revoke anonymous transactions.

Finally, there are number of rather unconventional proposals to impede mass
surveillance. In [7], the authors introduce the concept of translucent cryptogra-
phy which, based on oblivious transfer and without relying on key escrow, allows
law enforcement to access encrypted messages with a certain probability p. In
[52], a system is proposed where law enforcement needs to provide a hash-based
proof of work in order to recover an encrypted message, intentionally resulting
in a high monetary cost (e.g., $1K-$1M per message). The work [51] considers
exceptional access schemes for unlocking devices such as smartphones. To unlock
a device, law enforcement needs to get approval by a set of custodians and sub-
sequently locate and get physical access to a randomly selected set of delegate
devices to obtain an unlock token. This requires both human and monetary
resources of the law enforcement agency. In [50] Scafuro introduces the concept
of break-glass encryption for cloud storage where the confidentiality of encrypted
cloud data can be revoked exactly once for emergency reasons. This “break” is
detectable by the data owner. The author’s construction relies on trusted hard-
ware and is a feasibility result rather than a practical solution. Persiano, Phan
and Yung [47] recently introduce the concept of anamorphic encryption. The
idea behind this is that even an attacker who can dictate the messages sent and
demand the surrender of a decryption key (e.g., a government), cannot prevent
a second, hidden, message from being sent along that only the dedicated recip-
ient can decipher. While this means that one cannot prevent the exchange of
hidden messages despite of surveillance, law enforcement agencies still consider
surveillance as a useful measure as not all criminals have the knowledge or skill
set to exploit this fact or find it convenient.

Storing Secrets on a Blockchain. There are prior works which model the capa-
bilities of storing secrets and retrieving them under certain conditions thereby
replacing the need for extractable witness encryption by relying on a blockchain.

In the recently published “eWEB” system [30] a dynamic proactive secret
sharing (PSS) scheme with an efficient handover phase is constructed and used
in a black-box way to store and retrieve secrets on a blockchain. Their sys-
tem is secure against an adversary that statically corrupts less than half of the
blockchain nodes. However, the members of the current committee are publicly
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known and the identifier of a retrieved secret is revealed to the general pub-
lic. Hence, in our case, a user would learn that law enforcement is exposing its
transactions, which should be prevented.

The system by Benhamouda et al. [8] uses a similar approach. They intro-
duce an evolving-committee PSS scheme instead, where the selection of the next
committee is a part of the secret-sharing scheme itself and the members of the
current committee remain anonymous (to anyone, including the members of the
previous committee) until they finished their work and hand over the role to the
next committee. This enables the system to handle a mobile adversary corrupt-
ing ≈29% of blockchain nodes. However, they do not clearly state how their PSS
scheme can be used to retrieve secrets from the blockchain, in particular it is
unclear who learns which secrets are retrieved, whether the current committee
learns this witness and whether the secret is revealed to the public or not.

Our usage of a blockchain has similarities to [8,30], in particular we also use
the anonymous committees from [8], but we additionally model the system as a
building block in the UC framework, which [8,30] do not. Also, we prevent users
from learning whether their secret was decrypted or not (in most cases).

Erwig, Faust and Riahi [20] propose a standalone protocol for threshold
decryption in the YOSO model. Our building block for auditable decryption
is similar to their protocol, but augmented to satisfy our auditing needs and
formalized in the UC-model instead of using game-based security notions.

Brorsson et al. [10] recently published PAPR, an anonymous credential
scheme with a retrospective auditable surveillance feature. PAPR and our work
both model retrospective auditable surveillance with a detailed UC framework,
utilizing techniques such as bulletin boards/blockchains, YOSO, secret-sharing,
ZK, and TPKE. Regarding the committee structure, our system differs from
PAPR as the sets of users and committee member candidates are distinct, while
PAPR’s sets are identical. However, it is worth mentioning that PAPR proposes
this separation as future work. Notably, our system supports silent anonymity
revocation, whereas anonymity revocation in PAPR is inherently non-silent.
Additionally, we implement different validity periods, allowing law enforcement
to revoke a user’s anonymity only for specific periods, offering a more nuanced
approach compared to PAPR, where revocation affects all credential showings.

2 System Overview

In this section, we provide an overview of our system. We start by introducing
the parties, followed by a high-level description of their interactions. Lastly, we
give a brief discussion of its (intuitively) captured security properties.

2.1 Parties

Our system consists of the following parties:

System Operator: The system operator SO operates the system (e.g.,
anonymous payment system, confidential instant messenger service) that is
enhanced with auditable surveillance.



Universally Composable Auditable Surveillance 463

Law Enforcement: Law enforcement LE can access a user’s escrowed secrets if
it is in possession of a valid warrant.

Judge: The judge J grants or rejects warrants.
Auditor: The auditor AU can access information about all used warrants.
Users: The set {Ui} of users who want to make use of the application provided.
Nodes: The set {Ni} of nodes that is available to execute assigned roles on the

blockchain (the shareholder committee).

There is one each of system operator, law enforcement, judge and auditor, but
there may be arbitrary many users and blockchain nodes. We consider static
corruption of SO, LE and the users Ui. For the nodes Ni we achieve mobile
adaptive corruption since each role a node can play is cast in the YOSO model
[25] and only sends messages once. J and AU3 are assumed to always be honest.
Apart from the explicitly modeled parties, some portions of our system are
available for everyone, for example reading information from the blockchain.

Fig. 1. High Level System Overview. The numbers represent the intended order of task
execution.

2.2 High-Level System Overview

An overview of the tasks the different parties can execute can be found in Fig. 1.
We now describe the intended usage of our system. In the following we focus on a
specific application and instantiation to make the description clearer. We apply
our functionality FAS to an anonymous message transfer service and instantiate

3 While a corrupt AU would learn all warrants, it is not possible for a corrupt AU to
convince a third party of false claims about those warrants.
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it with the protocols ΠAS and FAD that utilize a blockchain4. Note that of course
different applications and instantiations are possible as well.

To initialize the system, each party generates their respective cryptographic
keys. The public keys of SO, J and AU are posted on the blockchain and available
to everyone. The blockchain selects its first committees and creates a threshold
encryption keypair, whose public key is available to everyone and whose secret
key is secret-shared among the committee members.

Users need to register themselves with SO and create an account to use the
system. Each period (e.g., monthly) the user and SO create together a fresh
escrow secret that could be used to expose the user’s identity in messages sent
during that period. The secret is then secret-shared into two partial secrets:
One part is directly stored at SO5 and the other part (only known to the user)
is encrypted under the committee’s threshold public key. The ciphertext itself
reveals nothing about the user’s identity, but it is linked to the user’s identity
and the period the secret is valid for with a zero-knowledge (ZK) proof. After
depositing a secret for the current period, the user can use the messenger service
during that period. To use the anonymous messenger application, the sender
would prove in zero-knowledge that it has stored a secret for the current period
and appended its identity (but encrypted under its escrow secret for the current
period) to the current message. This proof can be verified by anyone, in partic-
ular the receiver and SO, where the latter can block non-complying messages.

If the law enforcement agency LE has a legitimate interest in disclosing one
or multiple user secrets, it can request a warrant from the judge J. Each warrant
consists of a set of sub-warrants and each sub-warrant states which user should
be surveilled in which period. Additional information is included in each sub-
warrant, for example the name of the court, the reason for surveillance, etc. If
J signs the warrant, LE can get information about each user from SO, i.e., the
partial secret stored by SO and the ciphertexts containing the other part of the
secret. With a signed warrant and the additional information from SO, LE is able
to retrieve the partial secrets for the users and periods in that warrant from the
blockchain. In particular, LE convinces the current committee in zero-knowledge
that it indeed has a warrant signed by J for that set of ciphertexts. Upon verifying
the proof, the committee then decrypts the ciphertexts and reveals the other
partial secrets to LE, who can then reconstruct the users’ full secrets. Given
the (anonymous) message data of the messenger system operator, LE can now
match the previously anonymous messages to users in the warrant (but only for
messages sent during the period specified in the warrant).

To prevent misuse of the system or even mass surveillance, several coun-
termeasures are supported by the system. Firstly, a system-wide policy func-
tion prevents any warrants violating that policy. For example, it may disallow

4 The features of a blockchain include publicly viewable and non-editable information
as well as easy committee formation. Alternatively, an append-only bulletin board
can be used. In this case, a committee has to be formed by some other means.

5 Since we use a Blum coin toss to jointly generate the secret, SO knows a share of
the secret anyway.
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surveillance of an individual user for more than 12 months (by a single war-
rant). Secondly, LE needs to be in possession of a valid warrant signed by J
to request a secret and the blockchain committee first verifies the validity of
this warrant before decrypting a secret. There exists the risk that the signing
key of the judge may get stolen and an attacker could use the stolen key to
sign a warrant itself and thus retrieve some secrets. We cannot prevent this
entirely (other than suggest that judges secure their secret keys properly), but
have mitigation measures. To retrieve a decrypted secret from the blockchain,
the request needs to publish some information about the respective warrant on
the blockchain, thus leaving visible proof that such a request took place. What
information about each warrant should be publicly available is declared by a
system-wide transparency function. Choosing a suitable transparency function
for the system can be a challenging task since one needs to balance the public’s
desire for information, the privacy of surveilled users, and LE’s need for silent
surveillance. The transparency function should, for example, never publish the
names of the surveilled individuals. But it may, for example, publish the number
of different users in the warrant, the periods in which the retrieved secrets are
valid and the name of the court that signed the warrant. Assuming the latter
information is published, each court can monitor the blockchain and upon seeing
more warrants signed by its key than they actually signed, they can detect key
theft and henceforth take appropriate measures6. Thirdly, assuming an appropri-
ate transparency function, anyone can get useful information about all enforced
warrants through publicly available statistics. For example, if the transparency
functions reveals the number of different users in the warrant, the number of
currently surveilled users becomes public. If this number suddenly skyrockets, it
is an indication of misuse of power. Fourthly, the auditor AU has the capability
(as it can access the “full” warrant information on the blockchain) to conduct
a detailed investigation of enforced warrants. It may check for any peculiarities
and prove statements about the stored warrants to an arbitrary entity without
revealing any further information. For instance, such a statement might be that
none of the warrants issued within a certain period of time involve a certain
user.

2.3 Security Properties and Trust Assumptions

We now summarize the desired security and privacy properties of our building
block for auditable surveillance in an informal and intuitive manner:

– (Non-colluding7) users are not aware whether LE issued a request to recover
one of their secrets.

6 Our system actually only supports a single non-revocable judge key to keep the model
from being overly complex, but the extension to several different and revocable judge
keys is straightforward.

7 This security property holds for a user colluding with other users and blockchain
nodes but not one colluding with SO or LE.
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– To use the Prove task (cf. Fig. 1) for an application on top, e.g., to prove
some statement involving the user’s identity, the user needs to have escrowed
a secret for the respective period.

– The privacy guarantees of the application on top are only breached if a war-
rant was granted. And even in that case, only the users covered by the warrant
have (some of) their data exposed.

– LE can only request secrets for warrants that comply with the system policy.
– After LE requested a decryption by the blockchain, the publicly available

information about the warrant (for statistical purposes) and the information
about the warrant that is only available to AU are permanently stored on the
blockchain and can not be modified or removed afterwards.

– Anyone is able to retrieve publicly available statistics on all enforced warrants.
– AU has the capability to provide the general public with provably correct

statistics about the enforced warrants.8

– Even if SO and LE collude, they can not expose any escrowed user secrets.
– Likewise, even if a majority of the blockchain nodes collude, they can not

reconstruct a user’s secret.

We assume the judge J and auditor AU to be honest. Since AU has the power
to read all warrants in the clear, it is a very powerful entity that could potentially
misuse that power. In reality, one could decentralize that trust by having multiple
auditor parties that utilize threshold cryptography or multi-party computation.
Since we trust the jurisdiction, we also model J as an honest party and assume
that it honestly follows the protocol. Warrants that were granted but legally
not justified can be detected upon request to AU. The existence of judge-signed
warrants also ensures that LE can also only request user information from SO
for which it has a signed warrant.

Although SO is corruptible in our system, we implicitly have to trust it in
some aspects: We assume that SO cooperates with other parties and responds to
messages. A SO that ignores messages from other parties could bring the system
to a halt or deny individual users’ participation in the system. Since SO has
a monetary motivation to keep the system running for a long time, we believe
these assumptions to be reasonable. Note that while a corrupt SO cannot send
false data (e.g., pretend that a ciphertext belongs to another honest user), it can
omit some data (e.g., data from colluding corrupt users) when sending it to LE.
This is a general problem that can be discouraged through laws.

As an exemplary application that is enhanced by auditable surveillance,
we consider Auditably Sender-Traceable Encryption (ASTE). This application
achieves (among others) the following core security guarantees:

– Any ciphertext which decrypts successfully (to m �= ⊥) for an honest user
can be deanonymized by LE.

– Finding ciphertexts which falsely deanonymize to an honest user is infeasible.

8 Since AU has access to the full warrants, its statistics can be more detailed than
those the general public can compute. AU could even prove to third parties (e.g., a
parliament) facts about specific warrants without revealing the full warrant.
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– Plaintext and identities remain secret to parties which are not allowed access
to them. That is: Without a warrant, LE learns nothing from a ciphertext.
With a valid warrant, LE can deanonymize the user, but the plaintext remains
hidden.

We give LE only the ability to deanonymize instead of reading the message (and
deanonymizing), since corrupted users may use secure encryption to encrypt
their messages anyway. However, by straightforward modifications, LE may learn
any function of the message and the user’s identity.

3 A Formal Model for Auditable Surveillance Systems

In this section we introduce the functionality FAS, our formal model for our
auditable surveillance system, which is independent of the application. We model
our system in the Universal Composability (UC) framework [14,15]. For a very
brief introduction to UC and for some writing conventions see the full ver-
sion [21].

Table 2. Variables used in FAS

pid The party identifier for
the UC framework (e.g.,
a physical identifier)

uid The (self-chosen) identity
of a user

secret The escrowed secret

vper The validity period for a
single secret (e.g., the
current month)

W A warrant from LE to
retrieve (multiple) user
secrets with
W = (W1, . . . ,Wv) and
Wi = (uidi, vper i,metai)

v number of subwarrants
Wi inside a warrant W

meta Meta information about
a warrant. Some of it is
public information and
some is only meant for
the auditor

W pub The information about
the warrant that should
be known to the public

We first introduce some variables that are essential for the functionality in
Table 2. We describe how our auditable surveillance system is modeled in the
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UC framework by presenting the ideal functionality FAS in Figs. 2 and 3. Note
that the functionality implicitly checks the pid of calling parties: If the func-
tionality description states “Input P: (. . .)” for P ∈ {SO, AU, J, LE}, then the
functionality first checks if the calling party has the correct role and ignores the
message if the role does not match. We now also sketch the individual tasks.

System Init and Party Init. These tasks are just for initializing the system and
other parties.

User Registration. To participate in the auditable surveillance system (and to
use the application on top) the user needs to create an account with SO. It is
ensured that each user can only create one account. The user can choose an
unique identity (uid) under which it will be known henceforth.

Store Secret. Each period (e.g., monthly) the user needs to deposit a new secret.
Since FAS is a trustworthy incorruptible entity, we do not need to encrypt it and
directly store the secret inside FAS. FAS first checks that the user is registered
in the system and has not yet stored a secret for the current period. Then, FAS

draws a fresh secret (so the user can not influence what his secret will be) and
stores it in its internal storage. After this task is finished, the user can now use
the application, which is not modeled directly in FAS. For an example on how
to use FAS for Auditably Sender-Traceable Encryption, see Sect. 5.

Request Warrant. In this task LE can request a warrant from J. The functionality
itself first checks if the proposed warrant W complies with the system’s policy
function fp. Then it gives J the opportunity to approve (b = 1) or deny (b = 0)
that warrant. FAS also ensures that each warrant is only processed once (this
ensures that the statistics calculated later will be correct).

Get Secrets. With a granted warrant LE can now retrieve the secrets for all
(uid , vper) pairs inside the warrant. FAS first verifies that the warrant was
approved by J and then outputs all secrets corresponding to that warrant to
LE.

Get Statistics. Every party of the system can query this task to enable the general
public to access statistics about the warrants. For every warrant granted by J the
transparency function ft is computed to get the publicly available information
W pub about that warrant. The publicly available information about each warrant
are then returned to the party asking for statistics.

Audit. When AU gets tasked with calculating detailed statistics or with investi-
gating the case of a specific user, it can call this task. AU is then provided with
all warrants that were approved by J. Since we assume AU to be a trustworthy
entity (or a group of entities that perform this task in a multi-party computa-
tion) we can provide AU with the warrants in the clear. The actual execution of
AU’s task takes place outside our system, we only provide AU with the necessary
information.

Prove and Verify. The zero-knowledge proof interface is used to build applica-
tions on top of FAS. The Prove task allows a prover to generate a proof π for
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Functionality FAS

System Parameters:
– ft — Transparency function. Outputs pub-

lic information of a warrant. Interface is
W pub ← ft(W ).

– fp — Policy Function. Checks whether a
given warrant is allowed by system policy.
Interface is {0, 1} ← fp(W ).

– S — Space of secrets
– R — an NP relation for statements about

stored secrets: Contains (stmtR,witR) ∈
R pairs where stmtR is a statement and
witR is a witness for that statement

– System pids: pidSO, pidJ, pidAU

Functionality State:
– LI: List of initialized parties (initially

empty). Contains (pid) entries.
– LU: List of registered users (initially

empty). Contains (pid, uid) pairs.
– LS: List of stored secrets (initially empty).

Contains (uidi, vperi, secreti) entries.
– LW : List of warrants that were requested

by LE from J (initially empty). Entries are
of the form (W , b), where b is a bit that
states whether the warrant was granted or
denied by the judge.

– Lπ : List of proofs (initially empty). Entries
are of the form (stmtR,witR, π, b), where
the bit b states whether the relation is ful-
filled or not.

System Init:
– Input SO & J & AU: (Init, SO/J/AU)

• If this is the first time, this task is in-
voked, do whatever is stated in “Be-
havior”. If this is not the first time this
task is invoked, ignore the messages.

• Ignore all other messages until this task
has been invoked.

– Behavior:
1. Create empty lists LI, LU, LS, LW , and

Lπ
2. Send (Init) to the adversary
3. Add pidSO and pidJ to LI

– Output SO & J & AU: (InitFinished)

Party Init:
– Input some Party P: (PInit)
– Behavior:

1. If pid �∈ LI, store pid in LI
2. Send (PInit) to the adversary

– Output to P: (PInitFinished)

User Registration:
– Input U: (Register, uid)
– Input SO: Register, uid′)
– Behavior:

1. As soon as U gave input, send
(Register, pid, uid) to the adversary.

Wait for (Ok) from the adversary and
input from SO before continuing.

2. If uid �= uid′, abort. (wrong inputs)
3. If (pid, ·) ∈ LU, abort. (User already

registered.)
4. If (·, uid) ∈ LU, abort. (Identity already

taken.)
5. Store (pid, uid) of the user in list of

registered Users LU
6. Store pid in LI

– Output U & SO: (Registered)

Store Secret:
– Input U: (StoreSecret, uid, vper)
– Input SO: StoreSecret, vper ′)
– Behavior:

1. If SO is corrupted (and U is hon-
est): As soon as U gave input, send
(StoreSecret, vper) to the adversary
and then wait for input from SO

2. If vper �= vper ′, abort
3. Check if user is registered: If

(pid, uid) /∈ LU, abort.
4. Check if user already registered a secret

for the current validity period: If there
exists an entry (uid, vper , ·) in the list
of stored secrets LS, abort

5. Generate secret: secret r← S
6. Store (uid, vper , secret) in the list of

stored secrets LS
– Output U: (SecretStored, secret)
– Output SO: (SecretStored, uid)

Request Warrant:
– Input LE: (RequestWarrant,W )
– Behavior:

1. Check if policy function allows that
warrant: If 0 ← fp(W ), abort (War-
rant not allowed by policy function).

– Output J: (RequestWarrant,W )
– Input J: (b)
– Behavior:

1. If there already exists an entry
(W , ·) ∈ LW , abort (Warrant already
processed).

2. If SO is honest: If b = 1, send
(RequestWarrant, ft(W ), |W̃ |, v) to
the adversary and wait for message
(Ok) from the adversary

3. If SO is corrupted: Send
(RequestWarrant,W , b) to the adver-
sary and wait for message (Ok) from
the adversary

4. Append (W , b) to LW
– Output LE: (RequestWarrant, b)

Fig. 2. The ideal functionality FAS
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Fig. 3. The ideal functionality FAS (continued)

a statement stmtR in some NP-relation R, where the witness witR includes the
user’s identity and escrow secret for the chosen period. The Verify task allows
to check the validity of a proof. As an example, a user may prove that it cor-
rectly encrypted its identity under its escrow secret key. Since we do not limit
our system to a single application, this generic proof/verify interface enables the
flexible use of different applications.

Remark 1. In the description of FAS (c.f. Figs. 2 and 3) there are several mes-
sages of the form “Send (value) to the adversary”. This is due to modeling the
system in the UC framework: In UC, privacy guarantees are modeled by explic-
itly sending all information that an adversary could learn in the real world to
the adversary. Additionally, in UC there exists only a single adversarial party



Universally Composable Auditable Surveillance 471

that can corrupt several other parties. In the real world, this corresponds to the
scenario that all dishonest parties collude and share all the information they
gathered with each other. Consequently, a UC-adversary learns a lot of informa-
tion. However, one should note that in reality dishonest parties learn significantly
less information if they do not cooperate.

4 Realizing the Model

After giving an idealized formalization of the system we want to achieve, we now
elaborate on how to actually build such a system.

4.1 A Protocol ΠAS for Realizing FAS

The functionality FAS represents an ideal version of the system we want to
achieve. Since in practice we do not want to rely on trusted third parties to
perform our calculations for us, we build a protocol ΠAS in the real world
that achieves the same security guarantees as FAS. We later prove that our
constructed protocol ΠAS UC-realizes FAS in the {FAD,FCRS,FBB,GCLOCK}-
hybrid model. As a setup assumption, we use the well-known functionality FCRS

which enables access for all parties to a common reference string (CRS), set up
by a trusted party with a given distribution. We also use an external bulletin
board functionality FBB, where any party can register a single (uid , v) pair asso-
ciated with its identity, where the uids need to be unique. Any party can retrieve
registered values v, which in our case are public encryption keys.

We modularize our realization by outsourcing the auditable decryption of
ciphertexts to another hybrid functionality FAD, which we describe in Sect. 4.2.
This hybrid functionality idealizes the primitive of a blockchain with an evolv-
ing set of committees where the committee members are anonymous until they
finished their work. The functionality is parameterized by a (threshold) PKE
scheme and provides everyone with access to a public key under which secrets
can be encrypted. Then, given suitable auditing and authorization information,
decryption of a ciphertext can be requested. In our case this information will be
a judge-signed warrant for that ciphertext. We outsource the auditable decryp-
tion for several reasons: 1. A primitive for auditable threshold decryption is an
interesting building block in itself and to the best of our knowledge no UC for-
malization of that primitive exists yet. 2. It simplifies the security analysis of our
system, since we can first assume that the decryption is handled by a trustworthy
party. In a second step we then replace the auditable decryption functionality
FAD with a protocol that realizes it.

Since blockchains with evolving committees generally require some concept
of time (e.g., to ensure that the committee changes daily), the functionality FAD

utilizes a global clock functionality GCLOCK (from [5]) to model time.
We now elaborate on some of the core techniques we use in ΠAS and refer for

the complete description of ΠAS and for the used hybrid functionalities (except
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FAD) to the full version [21]. The hybrid functionality FAD is briefly discussed
in Sect. 4.2 and in full detail in the full version [21].

System Init. SO and J each create a signing keypair. Then SO, J, and AU
initialize the auditable decryption functionality FAD together. The functionality
FAD is then used to provide all parties with access to the needed public keys.

User Registration. Users create a signing keypair (vkU, skU) during registration.
To ensure at most one account per user, we use an idealized bulletin board FBB,
where any party can register a single (uid , vkU) pair associated with its identity,
where the uids need to be unique. Any party can retrieve registered values.

Store Secret. To store a fresh secret with validity period vper , user and SO
jointly create a fresh secret secret with a Blum coin toss, where each party
draws a partial secret: SO draws sec1 and the user draws sec2. The full secret is
then secret := sec1 ⊕ sec2, but only learned by the user. The operator directly
stores the partial secret sec1 (along with the user’s identity uid and the current
period vper). The user encrypts the partial secret sec2 under the public threshold
encryption key pk of FAD, sends the resulting ciphertext ct to SO and proves in
zero-knowledge that it calculated all values honestly. SO also stores the cipher-
text ct and provides the user with a (blinded) signature on (uid , vper , secret)
(without learning secret). The user can then utilize this signature in the appli-
cation on top to prove to another party that it indeed stored a secret for that
validity period.

Request Warrant. First, J signs the warrant W proposed by LE to convince third
parties that it indeed has approved the warrant. Since the auditable decryption
functionality FAD needs to know which ciphertexts should be decrypted, we need
J to also sign all ciphertexts ct containing the partial secrets sec2 associated
with the warrant W . Therefore, we additionally include SO in this protocol: LE
sends the signed warrant to SO and asks for the corresponding ciphertexts ct
along with the stored partial secrets sec1.9 Afterwards, LE provides J with the
ciphertexts ct to get a signature on ˜W , which is the warrant W including the
ciphertexts.10 LE can now utilize the hybrid functionality FAD to request the
decryption of all ciphertexts corresponding to the warrant ˜W .

Get Secrets. After FAD processed the decryption request, LE can retrieve the
partial secrets sec2 for a warrant from FAD. Of course, FAD verified the validity
of all requests and partial secrets for invalid requests can not be retrieved. Then,

9 This of course enables SO to guess which users are or will be tracked by LE. But in
practice this could be amended either by SO just sending all its information to LE
or by LE using private information retrieval (PIR) to get just the ciphertexts for the
current warrant without SO learning which ciphertexts were retrieved.

10 Before sending the request to J, LE checks the users’ signatures. Before answering
the request, J checks the (same) signatures as well. Since we assume that J is always
honest, it would be sufficient for only J to check the signatures. But we intentionally
let LE check the signatures first to filter out invalid requests before forwarding them
to J, to reduce J’s workload.
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LE uses the already stored partial secrets sec1 (obtained from SO) to reconstruct
the full user secrets secret := sec1 ⊕ sec2 for all users in the warrant.

Get Statistics and Audit. Since FAD knows all requested11 warrants, FAD can
directly give the desired information for those tasks.

Prove and Verify. The Prove task is a local task in which the user uses a
NIZKPoK to create the proof π itself. Similarly, the Verify task is also a local
task in which the validity of the statement is verified using the NIZKPoK.

Security. In the full version [21] we show that our protocol ΠAS UC-realizes
FAS. In particular, we show the following theorem.

Theorem 1. ΠAS UC-realizes FAS in the {FAD,FCRS,FBB,GCLOCK}-hybrid
model under the assumptions that COM is a (computationally) hiding, (statisti-
cally) binding and (dual-mode) extractable and equivocable commitment scheme,
Σ is a EUF-CMA secure signature scheme, NIZK is a straight-line simulation-
extractable non-interactive zero-knowledge proof system, and TPKE is IND-CPA
secure against all PPT-adversaries A who statically corrupts either (1) a subset
of the users, (2) LE and a subset of the users, (3) SO and a subset of the users,
or (4) SO, LE and a subset of the users.

4.2 Decrypting Secrets with FAD

We now want to briefly describe our ideal auditable decryption functionality
FAD. The formal description can be found in the full version [21]. To enable
protocols based on the YOSO approach, our functionality makes use of the
global clock functionality GCLOCK and proceeds in rounds, where a round lasts
a predefined amount of time units and decryptions only become available in
following rounds. The functionality is also parameterized by a (threshold) PKE
scheme.

Init, Get Tasks and Interaction with GCLOCK . FAD starts by creating an encryp-
tion keypair and registering with the global clock GCLOCK . In ΠAS SO and J
each create a signing keypair and pass their public verification keys to FAD,
where they are stored. There are also tasks to provide the parties in ΠAS with
the public keys of SO, J and the public encryption key of the functionality. This
ensures that both systems use the same keys.

Request Decryption and Retrieve Secret. LE can send a signed warrant to FAD

to request decryption of all ciphertexts ct listed in that warrant. FAD checks if
that warrant is valid and then adds the listed ciphertexts ct to a list of pending
decryption requests. To allow our implementation FAD to be YOSO, requests
for decryption are only processed during committee handovers. To emulate that
behavior in the ideal world, FAD separates the request of a secret and the actual

11 Note that these tasks provide the parties with information about all requested war-
rants, independently of whether the secrets were actually retrieved or not.
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retrieval of a secret into two different inquiries by LE, with the requirement that
the committee switches between the two calls.

Role Execute. To emulate the passing of time in the real world and the fact
that YOSO parties can only send a message once, FAD interacts with the clock
GCLOCK : After all honest nodes have activated FAD, it advances the current
time. After the required amount of “time” passes, FAD emulates a committee
handover as follows: FAD handles all pending decryption requests and adds the
decrypted (partial) secrets to a list of processed decryption requests. After this
“committee handover”, the list of processed decryption requests contains all
(partial) secrets that are ready for retrieval by LE.

Get Statistics and Audit. FAD keeps track of all warrants for which LE requested
secrets. If AU initiates an investigation, FAD provides it with all valid warrants.
Likewise, FAD can also provide a party asking for statistics with the outputs of
the transparency function for all warrants. Therefore, FAD provides the same
statistics and audit information as FAS.

4.3 A Protocol FAD for Realizing FAD

We cast our protocol FAD in the YOSO model, which we now introduce briefly.

The YOSO Model. In the YOSO (You-Only-Speak-Once) model introduced by
[25], protocols are run between roles, where each role is only allowed to send
one message and has no lasting state. These roles can then be assigned to actual
machines executing them through some form of role assignment mechanism.
With a way to anonymously receive messages (e.g., by reading ciphertexts stored
on a public blockchain) and a role assignment mechanism that privately assigns
roles, this prevents targeted attack against roles: The identity of a machine
executing a role can only be learned when it sends its message, but at that point
it finished execution and is no longer in possession of any secret state.

This allows both resilience against denial-of-service attacks as well as against
strong adversaries trying to corrupt roles that are part of a protocol execution of
interest. Assuming a large enough pool of machines willing to execute roles, an
attacker able to corrupt any machine of its choosing, but limited in the number
of machines it can corrupt at once, cannot break the security of a protocol even
when run between only a number of roles smaller than the corruption limit.

To achieve this in our protocol, we make use of a blockchain with role assign-
ment functionality FBCRA, which provides a public append-only ledger together
with a mechanism that anonymously selects parties for the next committee by
posting public encryption and verification keys for the individual roles on the
ledger and privately sending the corresponding decryption and signing keys to
the assigned party. For more details, see Fig. 4. Note that since it is unclear how
to realize the role assignment functionality provided in [25], our functionality
differs from theirs in the following ways:

1. We integrated the global clock GCLOCK .
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2. FBCRA only allows assigning roles of the next committee, not roles at an
arbitrary time in the future.

3. The adversary can control a portion of the public keys (and FBCRA does not
get to know the corresponding secret keys).

We deem it plausible that the committee selection protocol from [8] with suitable
corruption thresholds in combination with a suitable blockchain can be used to
implement this12, although more efficient approaches such as described in [13]
are also possible. We want to stress here that we are in the “near future” setting
of [13], compared to the “far future” setting that would imply witness encryption.
Given that the mechanisms for assigning roles and the criteria by which parties
should be chosen are subject to ongoing research, we believe using FBCRA to
abstract from the details is a suitable approach that allows incorporation of
future research.

Now we give a brief description of FAD and refer to the full version [21] for
further details. Our instantiation FAD UC-realizes FAD in the {FBCRA,FCRS,
GCLOCK}-hybrid model.

Init, Get Tasks and Interaction with GCLOCK . During initialization, AU cre-
ates an encryption keypair and SO, J and AU post their public keys to the
ledger FBCRA. The common reference string is obtained by querying FCRS, the
other Get Tasks are handled by reading from the ledger FBCRA. All honest
nodes N register with the clock GCLOCK upon first activation. Additionally, the
distributed key generation protocol from [20] is run by the first roles assigned
through FBCRA, resulting in a public encryption key pk and a threshold-sharing
of the corresponding decryption key among the first committee.

Request Decryption and Retrieve Secret. To request decryption of ciphertexts
and subsequently receive user secrets, LE needs to be in possession of a judge-
signed warrant listing the relevant ciphertexts ct . To ensure privacy of the war-
rant ˜W , instead of simply posting the warrant to FBCRA, LE instead posts an
encryption W enc of the warrant ˜W under AU’s public key, the output W pub

of the transparency function and a NIZK-proof that it knows a valid signature
under J’s public key on ˜W and both W enc and W pub were computed correctly.
Additionally, instead of posting the ciphertexts ct directly, LE re-randomizes
them and also proves in zero-knowledge that the ciphertexts ̂ct are indeed re-
randomizations of the ciphertexts ct listed in the warrant. This ensures that the
users under surveillance can not be identified from the ciphertexts. The request
additionally contains a public encryption key of LE under which the responses
from the committee members will be encrypted.

After the responses have been posted, LE again reads the content of FBCRA,
decrypts all responses using its decryption key, and combines the partial decryp-
tions ct∗ to obtain the secret for each ciphertext ct .

Role Execute. Nodes N read the content of FBCRA at least once per round (this is
ensured by them only sending an update-message to GCLOCK after having done
12 Alternatively, a suitable variant of the committee selection protocol from [8] or the

“encryption to the current winner” scheme from [13] are good candidates as well.
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Fig. 4. Blockchain with role assignment functionality loosely based on [25]

so). Afterwards, they check if they were assigned a role in the current round. If
this is the case, they proceed as follows by parsing the content of the ledger:

– They gather all required encryption/verification keys for relevant previous
and the next committee

– They gather all messages with key shares of the threshold decryption key
– They gather all requests for decryption

After gathering all relevant messages, they fulfill their role as committee member
of the current round. For all messages gathered from the ledger, they validate the
signature and accompanying proofs and ignore the message if they are invalid.

They gather all resharings of the threshold decryption key that were made by
the previous committee and addressed to the current role and combine them to
obtain their share ski of the threshold decryption key sk. To enable the committee
in the next round to fulfill their duties as well, they reshare ski again and encrypt
each reshare to a committee member from the next round. This is again done in
the same way as in [20].

For each valid decryption request, a (partial) threshold-decryption of the
ciphertext ̂ct is performed using ski. The answer (including the partial decryption
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ct∗ and a proof of correct decryption) is encrypted under the public key of LE
contained in the request.

All messages to be sent13 are signed using the role’s signing key. Before send-
ing any message, all state except for the prepared messages is deleted. Finally,
all messages are posted to FBCRA.

Get Statistics and Audit. Obtaining statistics is achieved by reading the content
of FBCRA and gathering all W pub accompanied by valid NIZK-proofs. Similarly,
the audit is performed by AU reading the content of FBCRA and decrypting all
W enc accompanied by valid NIZK-proofs.

Security. In the full version [21] we show that our protocol FAD UC-realizes
FAD. In particular, we show the following theorem.

Theorem 2. If NIZK is a straight-line simulation-extractable non-interactive
zero-knowledge proof system, Σ is an EUF-CMA secure signature scheme, the
PKE scheme used by LE and AU is an IND-CPA secure public key encryp-
tion scheme, the PKE scheme that is a parameter of FBCRA is a RIND-SO
secure public key encryption scheme, and TPKE is an IND-CPA secure, ran-
domizable and binding (t, n)-threshold PKE, then ΠAD UC-realizes FAD in the
{FBCRA,FCRS,GCLOCK}-hybrid model with respect to adversaries A that may
statically corrupt SO and/or LE as well as mobile adaptively corrupt at most a
fraction t

n − ε of nodes N.

Efficiency. Given the need for a suitable incentive for nodes to participate, it is
important to limit the amount of work roles have to do. In our protocol, the work
of roles only depends on the number of decryption requests (which correspond
to the number of users under surveillance in the combined system), but not on
the number of ciphertexts created (which corresponds to the number of regis-
tered users in the combined system). A current bottleneck is the role assignment
process and the communication required to transmit the shared secret key to
the next committee. This is an active area of research and improvements along
the lines of [12,17,26] are promising.

5 Application

In this section, we present our (toy) application FASTE for Auditably Sender-
Traceable Encryption. It is intentionally kept very simplistic, and chosen to
exemplify the problems one encounters with creating a system with auditable
surveillance based on top of FAS. The construction and techniques developed for
FASTE, in particular those used for cut-and-choose-based combination of NINCE
with zero-knowledge, are applicable for many functionalities of interest.

13 These include messages to the next committee and decryption answers to LE.
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5.1 The Functionality FASTE

We briefly describe the capabilities, i.e., the tasks, offered by FASTE. The full
description is in the full version [21]. Basically, FASTE offers a public key encryp-
tion scheme to its users, with the tweak that only registered users can generate
ciphertexts c (which honest users accept), and that such ciphertexts can be
deanonymized by an authority (namely LE), holding users accountable. To sim-
plify the definition, given a ciphertext c, the intended receiver learns only the
message, while law enforcement LE learns only the identity of the encryptor
(and nothing about the message). This can be easily modified, cf. Remark 2. To
prevent perpetual user surveillance, “time” is partitioned into validity periods.
Ciphertexts are bound to a period, and honest users only accepts those bound
to the current period. These periods are also the granularity of surveillance of
LE. That is, a warrant specifies which users are under surveillance during which
(past) validity periods.

Setup and Auditability. The tasks System Init, Request Warrant, Get Statistics,
and Audit, are inherited from and identical to FAS with minimal changes to
System Init to formally handle update periods (i.e., GCLOCK).

Register, Update, and Next Period. Similar to FAS, a user must first register to
participate in the system, except that the user cannot choose its uid anymore (as
it will become the public encryption key in the protocol). The Next Period task
allows the system operator to advance the current validity period, in particular,
validity periods are not bound to (physical) time. Honest users will only accept
ciphertexts of the current validity period. Hence, when the period changes, users
must execute the Update task (which, intuitively, deposits a new escrow secret
for the current period).

Encrypt Message and Decrypt Ciphertext. These tasks do exactly what one
expects: They encrypt a message to a (registered) user, and decrypt received
ciphertexts. Decryption ensures that the ciphertext is encrypted w.r.t. the cur-
rent validity period. Ciphertexts under past periods are not accepted, otherwise,
a warrant specifying surveillance of a certain user in a certain period would
incorrectly omit (or include) ciphertexts which do not belong to said period.

Prepare Access. Law enforcement prepares the information necessary for access
to ciphertexts c covered by warrant W . This usually means that LE acquires
the respective escrow secrets associated with W , i.e., it is almost identical to the
Get Secrets task of FAS.

Execute Access. In this task, LE can check whether a ciphertext c was generated
by the user with identity uid during period vper , where LE is supposed to have
previously prepared access for a warrant which affects (uid , vper).

5.2 The Protocol ΠASTE

To realize FASTE, we build a protocol ΠASTE (whose full description is in the full
version [21]). Firstly, we work in the {FCRS,FBB,FAS,GCLOCK}-hybrid model.
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Thus, we can rely on FAS to take care of the basic requirements for adding
auditability, namely, key escrow with auditable access via warrants. Our sec-
ond key building block is a significantly tweaked public key encryption scheme,
PKEAS. In the protocol, the user identity uid will be set to a PKEAS public key.

The scheme PKEAS provides the promised deanonymization capabilities. This
is achieved by including a proof of consistency in the ciphertext (which requires
the sender’s uid and escrow secret usk) which demonstrates:

– One ciphertext component encrypts a message m to the receiver (with receiver
public key pkR = uidR).

– Another ciphertext component encrypts the sender uid (i.e., sender’s public
key) under the sender’s escrow secret key usk (to enable deanonymization).

This is proven via the non-interactive proof capabilities provided by FAS, which
additionally ensure that the tuple (uid , usk , vper) is in LSecrets, i.e., it is a stored
user secret. At a first glance, these two properties, combined with any secure
public key encryption scheme for the receiver, seem to be enough for our pur-
poses. However, as mentioned in the technical overview (Sect. 1.2), the simulator-
commitment-problem obstructs a security proof for this direct approach.

The Scheme PKEAS. To circumvent the impossibility of non-interactive non-
committing encryption (NINCE) [42], we rely on the (programmable) random
oracle model (PROM). It is trivial to construct public-key and secret-key NINCE
schemes in the PROM, and we let PKENCE and SKENCE be such schemes. Intu-
itively, we use PKENCE to encrypt the message for the receiver, and SKENCE

to encrypt the user’s identity uid under its escrow key usk for LE. We tie the
ciphertexts together with a zero-knowledge proof. Unfortunately, the random
oracle RO has no “code”, so it is impossible to prove (correct) encryption of a
message for PKENCE and SKENCE with the usual (circuit-based) zero-knowledge
proofs. Thus, we use a somewhat elaborate cut-and-choose technique, in order to
connect traditional zero-knowledge proofs for NP with PKENCE and SKENCE.14

Remark 2. For simplicity and concreteness, we only prove knowledge of the tuple
t = (m, uid , usk , vper) in PKEAS, and prove that ciphertext components encrypt
m under the receiver’s key pkR and uid under the escrow key usk (for law
enforcement access). However, it is straightforward to prove any efficient relation
over t. For example, choosing a receiver message function f and law enforcement
message function g, one can encrypt f(t) under pkR (by modifying the shares
mi,0/1 of m to encrypt shares of f(t) and adapting the proof statements), and
similarly encrypt g(t) under usk (by analogous modifications). In this sense, the
code in Fig. 5 has f(t) = m and g(t) = uid hard-coded for concreteness.

14 We note that avoiding a cut-and-choose approach is challenging for provably secure
constructions. There are impossibilities for black-box zero-knowledge proofs, e.g., [40,
48], which we have to avoid. We do so by using a cut-and-choose approach and
additionally constructing the NINCE together with its zero-knowledge proof. (The
positive results in [40] also use this idea.).
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Fig. 5. Encryption and ciphertext verification subroutines of PKEAS.
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Setup, encryption and ciphertext verification algorithms of PKEAS are given
in Fig. 5; the two latter algorithms depend on a public commitment key ck . Now,
we explain the idea behind the proofs (πcut, πcon) in PKEAS.Enc and PKEAS.Vfy
(see Fig. 5). The values m, uid , usk are first secret-shared, then used in encryp-
tions ctRE

i,b , ctLE
i,b . Moreover, the shares of mi,b, uid i,b, usk i,b along with the

encryption randomness are also committed to in ,i,b. The ,i,b will be important
for consistency proofs which we explain now. The extractability of πcon (realized
by FAS) allows to recover the committed values in the security proof. More-
over, πcon ensures that the shares committed in ,i,b are consistent with unique
shared values m′, uid ′, usk ′, e.g., m′ = m′

i,0 + m′
i,1 holds for all i. The proof

πcut is the cut-and-choose part which ensures that enough PKENCE resp. SKENCE

ciphertexts encrypt m′ under pkR resp. uid ′ under usk ′. For this, πcut forces
the encryptor to open a randomly chosen share γi ∈ {0, 1} of ctRE

i,b , ctRE
i,b and

,i,b for each i = 1, . . . , �(λ), where the challenge γ = RO(stmt , πcon) is derived
following the Fiat–Shamir paradigm. Note that if both for γi = 0 and γi = 1
can be opened, then πcon ensures that the value reconstructed from the shares is
m′ (resp. uid ′, usk ′), unless the binding property of COM is broken. Assuming
unconditionally binding COM, the latter cannot happen. Then, by a standard
argument, if less than the majority of ciphertext shares reconstruct m′ (resp.
uid ′, usk ′), the probability to succeed in πcut is about 2−�(λ)/2 = 2−λ. Conse-
quently, if πcon and πcut are accepting, then with overwhelming probability, the
extracted values m′

i,b, which satisfy m′ = m′
i,0 + m′

i,1, agree with the decrypted
values mi,b which yield mi = mi,0 + mi,1 in the majority of indices i. Thus,
decrypting each ctRE

i.b , computing mi, and then picking the majority value m of
mi (or ⊥ if none exists) agrees with overwhelming probability with the extracted
value m′ of πcon. Unsurprisingly, PKEAS.DecRE will do just that.

Observe that PKEAS.Vfy enables public verifiability of well-formedness of
ciphertexts. This verification allows the system operator to check ciphertext
validity and remove any invalid ciphertexts, and it is also the first step of decryp-
tion procedures PKEAS.DecRE and PKEAS.DecLE, which work as follows:

– PKEAS.DecRE decrypts all ctRE
i,b using skR, reconstructs messages mi = mi,0+

mi,1, and outputs m if this is the absolute majority of mi, and ⊥ otherwise.
– PKEAS.DecLE uses the escrow secret key usk and exploits the relation

usk i,1−γi
= usk − usk i,γi

to derive the second secret share usk i,1−γi
. With

this, it trial-decrypts the symmetric ciphertext(s) ctLE
i,b to recover uid i =

uid i,0 + uid i,1, and outputs uid if this is the absolute majority of uid i and ⊥
otherwise.

The majority decisions in decryption ensure that the extracted values m′ and
uid ′ from πcon coincide with the actual results of decryption. In particular, if
PKEAS.Vfy accepts c, then c will decrypt for the receiver and LE.

Law-Enforcement Access. To provide access to LE, the Prepare Access task
uses the Get Secrets task of the underlying FAS-hybrid functionality. Thus, LE
obtains escrow secrets usk for all tuples (uid , vper) covered by the warrant W .
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In the Execute Access task, the obtained escrow secrets usk for (uid , vper) is
used with PKEAS.DecLE to trial-decrypt a ciphertext c.

5.3 On Efficiency and the Necessity of (NI)NCE

We briefly sketch the apparent necessity of non-interactive (NI) non-committing
encryption (NCE) to efficiently realize FASTE. The core problem appears in
the security proof, where the simulator must generate ciphertexts for users
whose identities are unknown to it. Once a warrant W pertains a user with
uid , all simulated ciphertexts c1, . . . , cn affected by W must correspond to that
user. Thus, the simulator can (and must) not be committed to an identity uid
for a ciphertext, unless these are affected by warrants. If the Execute Access
task is non-interactive, this is very analogous to NINCE, which is impossible
without (strong) setup assumptions [42].15 As suitable setups are “black-box”,
e.g., random oracles, they are incompatible with circuit-based zero-knowledge.
Although expensive, cut-and-choose techniques are (to our best knowledge) the
only known approach. Unfortunately, the cut-and-choose proof leads to rela-
tively large ciphertexts. For λ = 128 bits of security, an optimistic estimate
yields at least 1.5MiB for the ciphertexts, without accounting for πcut and πcon,
see the full version [21] for details. These proofs allow trade-offs between size
and computational efficiency (e.g., by using SNARKs).

5.4 Comparison with [31]

Green, Kaptchuk, and Laer [31] construct (non-anonymous) messaging with
auditable surveillance. They face similar challenges for their protocols, and
implicitly rely on NINCE in the PROM as well. However, their setting is consid-
erably simpler: The recipient learns all information contained in the ciphertext,
so that it can simply recompute the encryption to ensure a ciphertext is well-
formed. This approach avoids zero-knowledge proofs, but is quite limited. It can,
for example, not be used as an anonymous messenger, since the receiver needs
the sender’s identity to recompute the ciphertext and verify the correctness of
the message. Thus it cannot be used to realize ASTE. As an additional feature,
[31] suggests to have the system operator remove invalid ciphertexts. This is
possible for ΠASTE, since ciphertext validity is publicly verifiable.16 However,
it is not possible for [31], unless the system operator can read every message,
defeating the purpose of the protocol.

While both [31] and we model system security in the UC framework, our ideal
functionalities differ in the following aspects: In our system it can be decided

15 Using interactive decryption circumvents the impossibility without strong setups,
but is undesirable in practice.

16 We stress that, although PKEAS as defined in Fig. 5 encrypts only the user identity
and not the message to law enforcement, this can easily be changed to also give the
message to law enforcement. As noted in Remark 2, our approach allows a quite
flexible choice of leakage, not just user identity and/or message.
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separately for the sender identity and the content of the message whether the
recipient, law enforcement (with a warrant), or both should learn it (cf. Remark
2). In [31] both parties learn both information17. Also, [31] is limited to the
messaging application scenario, while we also specify an auditable surveillance
functionality FAS that can be used for many applications, e.g., for FASTE.

Compared to us, [31] offers greater flexibility w.r.t. warrants. While our war-
rants are fixed on user (identity, validity period) pairs, in [31] a warrant may
specify a predicate on metadata of a ciphertext and law enforcement can enforce
access when the predicate is true. We explicitly avoid this flexibility, as it neg-
atively affects efficiency and requires strong(er) cryptographic primitives—our
approach is practically feasible, but [31] is far from it. Recall that [31] uses
extractable witness encryption (EWE) [27] whose existence is implausible [23]
for general NP-relations. While the relation in [31] is specific, it is quite complex,
so even if such EWE existed, its practical efficiency is implausible.

5.5 Other Applications

Offering a zero-knowledge proof interface allows broad use of FAS in applications,
and our techniques to combine PROM-based encryption and zero-knowledge
allow to overcome the problem of NINCE which naturally appears in most
applications. For example, one may augment an anonymous e-cash or electronic
payment system with auditable surveillance by adding a ciphertext for law-
enforcement, which encrypts the identities of the parties of the transfer and
proves that the encrypted contents (which law enforcement can learn with the
escrow secret) are indeed correct and related to the transaction which was carried
out.

6 Limitations and Future Work

In its current form, our building block and its realization are subject to certain
limitations. Realizations of the FBCRA hybrid functionality are still novel and
experimental [8,12,17], so the actual guarantees of such a realization may differ
from our assumptions. For PKEAS, ciphertext size is unacceptable in practice.

A realistic protocol must also cover the existence of many judges, law enforce-
ment agencies, and auditors. Once the judge (and auditor) are not modeled
as trusted parties anymore, key-revocation mechanisms become absolutely nec-
essary, as otherwise a single key compromise allows a (state-level) adversary
permanent unauthorized surveillance. Although our system ensures that such
unauthorized surveillance will be noticed, it does not prevent it. See also the full
version [21] for a more fine-grained discussion of system limitations.

17 While the ideal functionality in [31] technically only supplies some metadata to law
enforcement (during the message sending process) and not the sender’s identity, it
becomes apparent later in the paper that the authors assume the sender’s identity
to be included in the metadata.
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Moreover, to harden security, one should distribute trust over multiple par-
ties, especially for the auditor, for example by using threshold cryptography
or secure multi-party computation. Lastly, it is an interesting question how to
achieve more flexibility w.r.t. warrants, e.g., surveillance based on metadata sim-
ilar to [31], but without resorting to implausible primitives such as EWE.
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