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Abstract. The MPC-in-the-Head paradigm is a popular framework to
build zero-knowledge proof systems using techniques from secure multi-
party computation (MPC). While this paradigm is not restricted to a
particular secret sharing scheme, all the efficient instantiations for small
circuits proposed so far rely on additive secret sharing.

In this work, we show how applying a threshold linear secret shar-
ing scheme (threshold LSSS) can be beneficial to the MPC-in-the-Head
paradigm. For a general passively-secure MPC protocol model captur-
ing most of the existing MPCitH schemes, we show that our approach
improves the soundness of the underlying proof system from 1/N down
to 1/

(
N
�

)
, where N is the number of parties and � is the privacy threshold

of the sharing scheme. While very general, our technique is limited to a
number of parties N ≤ |F|, where F is the field underlying the statement,
because of the MDS conjecture.

Applying our approach with a low-threshold LSSS also boosts the
performance of the proof system by making the MPC emulation cost
independent of N for both the prover and the verifier. The gain is par-
ticularly significant for the verification time which becomes logarithmic
in N (while the prover still has to generate and commit the N input
shares). We further generalize and improve our framework: we show how
linearly-homomorphic commitments can get rid of the linear complexity
of the prover, we generalize our result to any quasi-threshold LSSS, and
we describe an efficient batching technique relying on Shamir’s secret
sharing.

We finally apply our techniques to specific use-cases. We first propose
a variant of the recent SDitH signature scheme achieving new interesting
trade-offs. In particular, for a signature size of 10 KB, we obtain a veri-
fication time lower than 0.5 ms, which is competitive with SPHINCS+,
while achieving much faster signing. We further apply our batching tech-
nique to two different contexts: batched SDitH proofs and batched proofs
for general arithmetic circuits based on the Limbo proof system. In both
cases, we obtain an amortized proof size lower than 1/10 of the base-
line scheme when batching a few dozen statements, while the amortized
performances are also significantly improved.
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1 Introduction

Zero-knowledge proofs are an important tool for many cryptographic protocols
and applications. Such proofs enable a prover to prove a statement by interacting
with a verifier without revealing anything more than the statement itself. Zero-
knowledge proofs find applications in many contexts: secure identification and
signature, (anonymous) credentials, electronic voting, blockchain protocols, and
more generally, privacy-preserving cryptography.

Among all the possible techniques to build zero-knowledge proofs, the MPC-
in-the-Head framework introduced by Ishai, Kushilevitz, Ostrovsky and Sahai
in [IKOS07] has recently gained popularity. This framework relies on secure
multi-party computation (MPC) techniques: the prover emulates “in her head”
an �-private MPC protocol with N parties and commits each party’s view inde-
pendently. The verifier then challenges the prover to reveal the views of a random
subset of � parties. By the privacy of the MPC protocol, nothing is revealed about
the plain input, which implies the zero-knowledge property. On the other hand,
a malicious prover needs to cheat for at least one party, which shall be discovered
by the verifier with high probability, hence ensuring the soundness property.

The MPC-in-the-Head (MPCitH) paradigm provides a versatile way to build
(candidate) quantum-resilient proof systems and signature schemes. This app-
roach has the advantage to rely on security assumptions that are believed to
be robust in the quantum setting, namely the security of commitment schemes
and/or hash functions. Many recent works have proposed new MPCitH tech-
niques which can be applied to general circuits and/or specific problems, some
of them leading to efficient candidate post-quantum signature schemes, see
for instance [GMO16,CDG+17,AHIV17,KKW18,DDOS19,KZ20b,BFH+20,
BN20,BD20,BDK+21,DOT21,DKR+21,KZ22,FJR22,FMRV22]. Proof sys-
tems built from the MPCitH paradigm can be divided in two categories:

– Schemes targeting small circuits (e.g. to construct efficient signature
schemes), such as [KKW18,BN20,KZ22]. In these schemes, the considered
MPC protocol only needs to be secure in the semi-honest model, enabling
efficient constructions, but the resulting proof is linear in the circuit size.
Previous schemes in this category are all based on additive secret sharing.

– Schemes such as [AHIV17,GSV21] in which the considered MPC protocol is
secure in the malicious model and the proof is sublinear in the circuit size
(in O(

√|C|) with |C| being the circuit size). Due to their sublinearity, these
schemes are more efficient for middle-size circuits (while the former remain
more efficient for smaller circuits arising e.g. in signature schemes).

We note that other quantum-resilient proof systems exist (a.k.a. SNARK,
STARK) which do not rely on the MPCitH paradigm and which achieve polylog-
arithmic proof size (w.r.t. the circuit size), see e.g. [BCR+19,BBHR19]. These
schemes are hence better suited for large circuits.

Our work belongs to the first category of MPCitH-based schemes (i.e.
targeting small circuits). Currently, the best MPCitH-based schemes in this
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scope rely on (N − 1)-private passively-secure MPC protocols with N par-
ties [KKW18,BN20,DOT21,KZ22], where the parameter N provides different
trade-offs between communication (or signature size) and execution time. In
these schemes, the proof is composed of elements of size solely depending on the
target security level λ (the “incompressible” part) and other elements of size
O(λ2/ log N) bits (the “variable” part). To obtain short proofs or signatures,
one shall hence take a large number of parties N . On the other hand, the prover
and verifier running times scale linearly with N (because of the MPC emulation)
and hence quickly explode while trying to minimize the proof size.

In this paper, we improve this state of affairs. While previous efficient instan-
tiations of the MPCitH paradigm for small circuits all rely on additive secret
sharing, we show how to take advantage of using threshold linear secret sharing.
Using our approach, we can decrease the soundness error from 1/N to 1/

(
N
�

)

(still using passively-secure protocols), for a small constant �, while making the
cost of the MPC emulation independent of N , for both the prover and the veri-
fier. The prover running time remains globally linear in N (because of the initial
sharing and commitment phase) but is still significantly improved in practice.
On the other hand, the verification time becomes logarithmic in N and is hence
drastically reduced (both asymptotically and in practice).

Our Contribution. We first describe a general model of multiparty computation
protocol (with additive secret sharing) which captures a wide majority of the
protocols used in the MPCitH context. (To the best of our knowledge, our model
applies to all the MPCitH schemes except those derived from ZKBoo or Ligero.)
Given a statement x and a relation R, these MPC protocols aim to evaluate a
randomized function f on a secret witness w such that f outputs Accept when
(x,w) ∈ R and Reject with high probability otherwise. The false-positive rate
of the MPC protocol corresponds to the probability that f outputs Accept even
if (x,w) �∈ R. We further recall the general transformation of such a protocol
into a zero-knowledge proof which achieves a soundness error of

1
N

+ p ·
(

1 − 1
N

)

where N is the number of parties and p is the false-positive rate of the MPC
protocol. We then show how to apply an arbitrary threshold linear secret sharing
scheme (LSSS) to our general MPC model and how to transform the obtained
MPC protocol into a zero-knowledge proof achieving the following soundness
error:

1
(
N
�

) + p · � · (N − �)
� + 1

,

where � is the threshold of the LSSS (any � shares leak no information while the
secret can be reconstructed from any � + 1 shares). Our theorems cover all the
MPC protocols complying with our general model, and for any threshold LSSS
(covering additive sharing as a particular case).
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Besides improving soundness, using an LSSS with a small threshold implies
significant gains in terms of timings. Indeed, the prover and the verifier do not
need to emulate all the N parties anymore, but only a small number of them (�+1
for the prover and � for the verifier). For instance, when working with Shamir’s
secret sharing [Sha79] with polynomials of degree � = 1, the prover only needs to
emulate 2 parties (instead of N) and the verifier only needs to emulate 1 party
(instead of N − 1) while keeping a soundness error about 1

N (assuming a small
false positive rate p). On the other hand, the proof size is slightly larger than in
the standard case (with additive sharing) since one needs to use a Merkle tree for
the commitments (and include authentication paths for the opened commitments
in the proof). Overall, our approach provides better trade-offs between proof size
and performances for MPCitH schemes while drastically reducing the verification
time in particular.

We further improve and generalize our approach in different ways. We first
show how using linearly-homomorphic commitments can make both the prover
and verifier times independent of N (which opens the doors to efficient schemes
with large N). The main issue with this approach given the context of application
of MPCitH is the current absence of post-quantum candidates for homomorphic
commitment schemes. We also generalize our approach to quasi-threshold LSSS,
for which a gap Δ exists between the number of parties � which leak no infor-
mation and the number of parties � + 1 + Δ necessary to reconstruct the secret.
We particularly analyze algebraic geometric quasi-threshold schemes [CC06] but
our result is mostly negative: we show that using such schemes does not bring
a direct advantage to our framework. We then show that our result on quasi-
threshold schemes is still useful in the context of batched proofs (i.e. proving
simultaneously several statements with a single verification process). We pro-
pose a batching technique based on Shamir’s secret sharing which enables to
efficiently batch proofs in our framework (for a subset of the existing MPCitH
schemes).

Finally, we describe some applications of our techniques. We first adapt the
SDitH signature scheme [FJR22] to our framework with Shamir’s secret sharing.
We obtain a variant of this scheme that achieves new interesting size-performance
trade-offs. For instance, for a signature size of 10 KB, we obtain a signing time
of around 3 ms and a verification time lower than 0.5 ms, which is competitive
with SPHINCS+ [ABB+22] in terms of size and verification time while achieving
much faster signing. We further apply our batching technique to two different
contexts: batched proofs for the SDitH scheme and batched proofs for general
arithmetic circuits based on the Limbo proof system [DOT21]. In both cases
and for the considered parameters, we obtain an amortized proof size lower than
1/10 of the baseline scheme when batching a few dozen statements, while the
amortized performances are also significantly improved (in particular for the
verifier).

Related Works. The MPC-in-the-Head paradigm was introduced in the seminal
work [IKOS07]. The authors propose general MPCitH constructions relying on
MPC protocols in the semi-honest model and in the malicious model. In the



Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head 445

former case (semi-honest model), they only consider 2-private MPC protocols
using an additive sharing as input (they also propose an alternative construction
with 1-private protocols). In the latter case (malicious model), they are not
restricted to any type of sharing. The exact security of [IKOS07] is analyzed in
[GMO16]. As other previous works about the MPCitH paradigm, our work can
be seen as a specialization of the IKOS framework. In particular, we restrict the
considered MPC model, optimize the communication in this model and provide
a refined analysis for the soundness (in the exact security setting) to achieve
good practical performances.

To the best of our knowledge, besides [IKOS07], the only previous work
which considers MPCitH without relying on an additive secret sharing scheme
is Ligero [AHIV17]. Ligero is a practical MPCitH-based zero-knowledge proof
system for generic circuits which uses Shamir’s secret sharing (or Reed-Solomon
codes). The authors consider a particular type of MPC protocol in the mali-
cious model and analyze the soundness of the resulting proof system. Ligero
achieves sublinear communication cost by packing several witness coordinates in
one sharing which is made possible by the use of Shamir’s secret sharing.

In comparison, our work formalizes the MPC model on which many recent
MPCitH-based schemes (with additive sharing) rely and shows how using LSSS
in this model can be beneficial. We consider a slightly more restricted MPC
model than the one of Ligero: we impose that the parties only perform linear
operations on the sharings. On the other hand, we only need the MPC protocol
to be secure in the semi-honest model and not in the malicious model as Ligero.
In fact, this difference of settings (semi-honest versus malicious) makes our tech-
niques and Ligero’s different in nature. While Ligero makes use of proximity
tests to get a robust MPC protocol, we can use lighter protocols in our case
(since we do not need robustness). Moreover, for a given number of parties and
a given privacy threshold, the soundness error of our work is smaller than the
one of [AHIV17]. On the other hand, we consider MPC protocols which only per-
forms linear operations on shares which, in the current state of the art, cannot
achieve sublinearity. For this reason, our work targets proofs of knowledge for
small circuits (for example, to build efficient post-quantum signature schemes)
while Ligero remains better for middle-size circuits (thanks to the sublinearity).

Finally, let us cite [DOT21] which is another article providing a refined anal-
ysis for the transformation of a general MPC model. The scope of the transfor-
mation differs from ours, since it covers (N − 1)-private MPC protocols using
broadcast.

In Table 1, we sum up all the MPC models considered in the state of the art
of the MPC-in-the-Head paradigm with the soundness errors and limitations of
the general schemes.

Concurrent Work. A concurrent and independent work [AGH+23] proposes an
optimization of the MPCitH-based schemes based on additive secret sharing. The
authors propose a “hypercube” technique which enables the prover to emulate
the entire MPC protocol by performing the computation of only log2 N + 1
parties instead of N , while keeping the same communication cost. While both
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Table 1. Existing general transformations of an MPC protocol into a zero-knowledge
proof, with associated MPC model and resulting soundness error. The column “Priv.”
indicates the privacy threshold of the MPC protocol, while the column “Rob.” indicates
its robutness threshold. N denotes the number of parties in the MPC protocol, δ denotes
the robustness error, and p denotes the false positive rate as defined in this work.

Construction SharingScheme Priv. Rob. Soundness Restriction

[IKOS07, Sect. 3] Additive 2 0 1 − 1

(N
2 )

–

[IKOS07, Sect. 4] Any t t When N = Ω(t),2−Ω(t) –

[GMO16] Any t r max

{
(r

t)
(N

t )
,

k∑

j=0

2j (k
j)(

N−2k
t−j )

(N
t )

}

with k = �r/2� + 1 –

[AHIV17] Any t r
(
1 − r

N

)t
+ δ Broadcast

[DOT21] Additive N − 1 0 1
N

+ p
(
1 − 1

N

)
Broadcast

Our work, Sect. 4 LSSS � 0 1

(N
� )

+ p �(N−�)
�+1

BroadcastLinear operations

Our work, Sect. 5.2 LSSS withthresholdgap Δ + 1 � 0
(�+Δ

� )
(N

� )
+ p · �

�+Δ+1
· (

N−�
Δ+1

)
BroadcastLinear operations

the hypercube approach and our approach enables to significantly speed up
MPCitH-based schemes, they provide different interesting trade-offs and their
relative performances shall depend on the context.

2 Preliminaries

Throughout the paper, F shall denote a finite field. For any m ∈ N
∗, the integer

set {1, . . . , m} is denoted [m]. For a probability distribution D, the notation
s ← D means that s is sampled from D. For a finite set S, the notation s ← S
means that s is uniformly sampled at random from S. For an algorithm A,
out ← A(in) further means that out is obtained by a call to A on input in
(using uniform random coins whenever A is probabilistic). Along the paper,
probabilistic polynomial time is abbreviated PPT.

In this paper, we shall use the standard cryptographic notions of indis-
tinguishability, secure pseudo-random generator (PRG), tree PRG, collision-
resistant hash function, (hiding and binding) commitment scheme, (honest veri-
fier) zero-knowledge proof of knowledge and secure multiparty computation pro-
tocols (in the semi-honest model). Those notions are formally recalled in the
full version [FR22]. We recall hereafter the definition of (quasi-)threshold linear
secret sharing.

Along the paper, the sharing of a value s is denoted [[s]] := ([[s]]1, . . . , [[s]]N )
with [[s]]i denoting the share of index i for every i ∈ [N ]. For any subset of indices
J ⊆ [N ], we shall further denote [[s]]J :=

(
[[s]]i
)
i∈J

.

Definition 1 (Threshold LSSS). Let F be a finite field and let V1 and V2

be two vector spaces over F. Let t and N be integers such that 1 < t ≤ N .
A (t,N)-threshold linear secret sharing scheme is a method to share a secret
s ∈ V1 into N shares [[s]] := ([[s]]1, . . . , [[s]]N ) ∈ V

N
2 such that the secret can be

reconstructed from any t shares while no information is revealed on the secret
from the knowledge of t − 1 shares.
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Formally, an (t,N)-threshold LSSS consists of a pair of algorithms:
{
Share : V1 × R �→ V

N
2

ReconstructJ : Vt
2 �→ V1

where R ⊆ {0, 1}∗ denotes some randomness space and where ReconstructJ is
indexed by a set (and defined for every) J ⊂ [N ] such that |J | = t. This pair of
algorithms satisfies the three following properties:

1. Correctness: for every s ∈ V1, r ∈ R, and J ⊂ [N ] s.t. |J | = t, and for
[[s]] ← Share(s; r), we have:

ReconstructJ([[s]]J ) = s.

2. Perfect (t− 1)-privacy: for every s0, s1 ∈ V1 and I ⊂ [N ] s.t. |I| = t − 1,
the two distributions
{

[[s0]]I | r ← R
[[s0]] ← Share(s0; r)

}
and

{
[[s1]]I | r ← R

[[s1]] ← Share(s1; r)

}

are perfectly indistinguishable.
3. Linearity: for every v0, v1 ∈ V

t
2, α ∈ F, and J ⊂ [N ] s.t. |J | = t,

ReconstructJ (α · v0 + v1) = α · ReconstructJ (v0) + ReconstructJ(v1).

Definition 2 (Quasi-Threshold LSSS). Let F be a finite field and let V1

and V2 be two vector spaces over F. Let t1, t2 and N be integers such that
1 ≤ t1 < t2 ≤ N . A (t1, t2, N)-quasi-threshold linear secret sharing scheme is a
method to share a secret s ∈ V1 into N shares [[s]] := ([[s]]1, . . . , [[s]]N ) ∈ V

N
2 such

that the secret can be reconstructed from any t2 shares while no information is
revealed on the secret from the knowledge of t1 shares.

The formal definition of (t1, t2, N)-quasi-threshold LSSS is similar to Def-
inition 1 with the ReconstructJ function defined over V

t2
2 (instead of Vt

2) with
cardinalities |I| = t1 and |J | = t2 (instead of |I| = t−1 and |J | = t). In particular
an (t − 1, t, N)-quasi-threshold LSSS is an (t,N)-threshold LSSS.

Definition 3 (Additive Secret Sharing). An additive secret sharing scheme
over F is an (N,N)-threshold LSSS for which the Share algorithm is defined as

Share :
(
s ; (r1, . . . , rN−1)

) �→ [[s]] :=
(
r1, . . . rN−1, s −

N−1∑

i=1

ri

)
,

with randomness space R = F
N−1, and the Reconstruct[N ] algorithm simply out-

puts the sum of all the input shares.

Definition 4 (Shamir’s Secret Sharing). The Shamir’s Secret Sharing over
F is an (� + 1, N)-threshold LSSS for which the Share algorithm builds a sharing
[[s]] of s ∈ F as follows:
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– sample r1, . . . , r� uniformly in F,
– build the polynomial P as P (X) := s +

∑�
i=1 riX

i,
– build the shares [[s]]i as evaluations P (ei) of P for each i ∈ {1, . . . , N}, where

e1, . . . , eN are public non-zero distinct points of F.

For any subset J ⊆ [N ], s.t. |J | = � + 1, the ReconstructJ algorithm interpolates
the polynomial P from the input � + 1 evaluation points [[s]]J = (P (ei))i∈J and
outputs the constant term s.

3 The MPC-in-the-Head Paradigm

The MPC-in-the-Head (MPCitH) paradigm is a framework introduced by Ishai,
Kushilevitz, Ostrovsky and Sahai in [IKOS07] to build zero-knowledge proofs
using techniques from secure multi-party computation (MPC). We first recall
the general principle of this paradigm before introducing a formal model for the
underlying MPC protocols and their transformation into zero-knowledge proofs.

Assume we want to build a zero-knowledge proof of knowledge of a witness
w for a statement x such that (x,w) ∈ R for some relation R. To proceed, we
shall use an MPC protocol in which N parties P1, . . . ,PN securely and correctly
evaluate a function f on a secret witness w with the following properties:

– each party Pi takes a share [[w]]i as input, where [[w]] is a sharing of w;
– the function f outputs Accept when (x,w) ∈ R and Reject otherwise;
– the protocol is �-private in the semi-honest model, meaning that the views of

any � parties leak no information about the secret witness.

We can use this MPC protocol to build a zero-knowledge proof of knowledge of
a witness w satisfying (x,w) ∈ R. The prover proceeds as follows:

– she builds a random sharing [[w]] of w;
– she simulates locally (“in her head”) all the parties of the MPC protocol;
– she sends a commitment of each party’s view to the verifier, where such

a view includes the party’s input share, its random tape, and its received
messages (the sent messages can further be deterministically derived from
those elements);

– she sends the output shares [[f(w)]] of the parties, which should correspond
to a sharing of Accept.

Then the verifier randomly chooses � parties and asks the prover to reveal their
views. After receiving them, the verifier checks that they are consistent with
an honest execution of the MPC protocol and with the commitments. Since
only � parties are opened, the revealed views leak no information about the
secret witness w, which ensures the zero-knowledge property. On the other hand,
the random choice of the opened parties makes the cheating probability upper
bounded1 by 1 − (N−2

�−2

)
/
(
N
�

)
, which ensures the soundness of the proof.

1 The optimal strategy for a malicious prover is to have an inconsistency only between
two parties. The soundness error is thus the probability that these two parties are
not simultaneously in the set of the � opened views.
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The MPCitH paradigm simply requires the underlying MPC protocol to be
secure in the semi-honest model (and not in the malicious model), meaning that
the parties are assumed to be honest but curious: they follow honestly the MPC
protocol while trying to learn secret information from the received messages.

Several simple MPC protocols have been proposed that yield fairly efficient
zero-knowledge proofs and signature schemes in the MPCitH paradigm, see for
instance [KZ20b,BD20,BDK+21,FJR22]. These protocols lie in a specific sub-
class of MPC protocols in the semi-honest model which we formalize hereafter.

3.1 General Model of MPC Protocol with Additive Sharing

We consider a passively-secure MPC protocol that performs its computation on
a base finite field F so that all the manipulated variables (including the witness
w) are tuples of elements from F. In what follows, the sizes of the different tuples
involved in the protocol are kept implicit for the sake of simplicity. The parties
take as input an additive sharing [[w]] of the witness w (one share per party).
Then the parties compute one or several rounds in which they perform three
types of actions:

Receiving randomness: the parties receive a random value (or random tuple)
ε from a randomness oracle OR. When calling this oracle, all the parties get
the same random value ε. This might not be convenient in a standard multi-
party computation setting (since such an oracle would require a trusted third
party or a possibly complex coin-tossing protocol), but in the MPCitH con-
text, these random values are provided by the verifier as challenges.

Receiving hint: the parties can receive a sharing [[β]] (one share per party) from
a hint oracle OH . The hint β can depend on the witness w and the previous
random values sampled from OR. Formally, for some function ψ, the hint is
sampled as β ← ψ(w, ε1, ε2, . . . ; r) where ε1, ε2, . . . are the previous outputs
of OR and where r is a fresh random tape.

Computing & broadcasting: the parties can locally compute [[α]] := [[ϕ(v)]]
from a sharing [[v]] where ϕ is an F-linear function, then broadcast all the
shares [[α]]1, . . . , [[α]]N to publicly reconstruct α := ϕ(v). If ϕ is in the form
v �→ Av + b, then the parties can compute [[ϕ(v)]] from [[v]] by letting

[[ϕ(v)]]i := A[[v]]i + [[b]]i for each party i

where [[b]] is a publicly-known sharing of b.2 This process is usually denoted
[[ϕ(v)]] = ϕ([[v]]). The function ϕ can depend on the previous random values
{εi}i from OR and on the previous broadcasted values.

After t rounds of the above actions, the parties finally output Accept if and
only if the publicly reconstructed values α1, . . . , αt satisfy the relation

g(α1, . . . , αt) = 0
2 Usually, [[b]] is chosen as (b, 0, . . . , 0) in the case of the additive sharing.



450 T. Feneuil and M. Rivain

for a given function g.
Protocol 1 gives a general description of an MPC protocol in this paradigm,

which we shall use as a model in the rest of the paper. In general, the computing
& broadcasting step can be composed of several iterations, which is further
depicted in Protocol 2. For the sake of simplicity, we shall consider a single
iteration in our presentation (as in Protocol 1) but we stress that the considered
techniques and proofs equally apply to the multi-iteration setting (i.e. while
replacing step (c) of Protocol 1 by Protocol 2).

1. The parties take as input a sharing [[w]].

2. For j = 1 to t, the parties:

(a) get a sharing [[βj ]] from the hint oracle OH , such that

βj ← ψj(w, ε1, . . . , εj−1; rj)

for a uniform random tape rj ;

(b) get a common random εj from the oracle OR;

(c) for some F-linear function ϕj

(εi)i≤j ,(αi)i<j
, compute

[[αj ]] := ϕj

(εi)i≤j ,(αi)i<j

(
[[w]], ([[βi]])i≤j

)
,

broadcast [[αj ]], and then publicly reconstruct αj .
Note: This step can be composed of several iterations
as described in Protocol 2.

3. The parties finally accept if g(α1, . . . , αt) = 0 and reject
otherwise.

Note: In the above description w, βj, εj, αj are elements from
the field F or tuples with coordinates in F (whose size is not
made explicit to keep the presentation simple).

Protocol 1: General MPC protocol Πadd.

Output Distribution. In the following, we shall denote �ε := (ε1, . . . , εt), �β :=
(β1, . . . , βt), �α := (α1, . . . , αt) and �r := (r1, . . . , rt). From the above description,
we have that the output of the protocol deterministically depends on the broad-
casted values �α (through the function g), which in turn deterministically depend
on the input witness w, the sampled random values �ε, and the hints �β (through
the functions ϕ’s). It results that the functionality computed by the protocol
can be expressed as:

f(w, �ε, �β) =

{
Accept if g(�α) = 0,
Reject otherwise,

with �α = Φ(w, �ε, �β), (1)
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(c) for k = 1 to ηj :

– compute a sharing

[[αj,k]] := ϕj,k

(εi)i≤j ,(αi)i<j ,(αj,i)i<k

(
[[w]], ([[βi]])i≤j

)
,

for some F-linear function ϕj,k

(εi)i≤j ,(αi)i<j ,(αj,i)i<k
;

– broadcast their shares [[αj,k]];

– publicly reconstruct αj,k;

We denote αj := (αj,1, . . . , αj,ηj ).

Protocol 2: General MPC protocol Πadd – Iterative computing & broadcasting
step for iteration j (with ηj denoting the number of inner iterations).

where Φ is the deterministic function mapping (w, �ε, �β) to �α (defined by the
coordinate functions ϕ1, . . . , ϕt). We shall restrict our model to MPC protocols
for which the function f satisfies the following properties:

– If w is a good witness, namely w is such that (x,w) ∈ R, and if the hints �β are
genuinely sampled as βj ← ψj(w, (εi)i<j ; rj) for every j, then the protocol
always accepts. More formally:

Pr�ε,�r

[
f(w, �ε, �β) = Accept

∣∣∣
(x,w) ∈ R

∀j, βj ← ψj(w, (εi)i<j ; rj)

]
= 1.

– If w is a bad witness, namely w is such that (x,w) /∈ R, then the protocol
rejects with probability at least 1 − p, for some constant probability p. The
latter holds even if the hints �β are not genuinely computed. More formally,
for any (adversarially chosen) deterministic functions χ1, . . . , χt, we have:

Pr�ε,�r

[
f(w, �ε, �β) = Accept

∣∣
∣

(x,w) �∈ R
∀j, βj ← χj(w, (εi)i<j ; rj)

]
≤ p.

We say that a false positive occurs whenever the MPC protocol outputs Accept
on input a bad witness w, and we call p the false positive rate.

The general MPC model introduced above captures a wide majority of
the protocols used in the MPCitH context, such as [KKW18,DDOS19,KZ20b,
BFH+20,BN20,BD20,DOT21,BDK+21,DKR+21,KZ22,FJR22,FMRV22]. To
the best of our knowledge, our model applies to all the MPCitH schemes in the
literature except those derived from the ZKBoo [GMO16] and Ligero [AHIV17]
proof systems. An example of protocol fitting this model is the [BN20] protocol
where the random multiplication (Beaver) triples to sacrifice are given by the
hint oracle. Another example is Limbo [DOT21] for which the hint oracle OH

corresponds to the untrusted subroutines ΠInnerProd and ΠRand while the random-
ness oracle OR is RandomCoin.
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3.2 Application of the MPCitH Principle

Any MPC protocol complying with the above description gives rise to a practical
short-communication zero-knowledge protocol in the MPCitH paradigm. The
resulting zero-knowledge protocol is described in Protocol 3: after sharing the
witness w, the prover emulates the MPC protocol “in her head”, commits the
parties’ inputs, and sends a hash digest of the broadcast communications; finally,
the prover reveals the requested parties’ inputs as well as the broadcast messages
of the unopened party, thus enabling the verifier to emulate the computation of
the opened parties and to check the overall consistency.

Soundness. Assuming that the underlying MPC protocol follows the model of
Sect. 3.1 with a false positive rate p, the soundness error of Protocol 3 is

1
N

+
(
1 − 1

N

) · p.

The above formula results from the fact that a malicious prover might suc-
cessfully cheat with probability 1/N by corrupting the computation of one
party or with probability p by making the MPC protocol produce a false pos-
itive. This soundness has been formally proven in some previous works, see
e.g. [DOT21,BN20,FJR22]. In the present article, we provide a general proof
for any protocol complying with the format of Protocol 1 in the more general
context of any (threshold) linear secret sharing (see Theorem 2).

Performances. The communication of Protocol 3 includes:

– the input shares ([[w]]i, [[β1]]i, . . . , [[βt]]i) of the opened parties. In practice, a
seed seedi ∈ {0, 1}λ is associated to each party so that for each committed
variable v (among the witness w and the hints β1, . . . , βt) the additive sharing
[[v]] is built as {

[[v]]i ← PRG(seedi) for i �= N

[[v]]N = v −∑N−1
i=1 [[v]]i.

Thus, instead of committing ([[w]]i, [[β1]]i), the initial commitments simply
include the seeds for i �= N , and comj

i becomes useless for j ≥ 2 and i �= N .
Formally, we have:

comj
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Com(seedi; ρ1
i ) for j = 1 and i �= N

Com([[w]]N , [[β1]]N ; ρ1
N ) for j = 1 and i = N

∅ for j > 1 and i �= N

Com([[βj ]]N ; ρj
N ) for j > 1 and i = N

Some coordinates of the βj might be uniformly distributed over F (remember
that the βj are tuples of F elements). We denote βunif the sub-tuple composed
of those uniform coordinates. In this context, the last share [[βunif]]N can be
built as [[βunif]]N ← PRG(seedN ) so that a seed seedN can be committed
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1. The prover shares the witness w into a sharing [[w]].

2. The prover emulates “in her head” the N parties of the MPC protocol.

For j = 1 to t:

(a) the prover computes
βj = ψj(w, (εi)i<j),

shares it into a sharing [[βj ]];

(b) the prover computes the commitments

comj
i :=

{
Com([[w]]i, [[β

1]]i; ρ
1
i ) if j = 1

Com([[βj ]]i; ρ
j
i ) if j > 1

for all i ∈ {1, . . . , N}, for some commitment randomness ρj
i ;

(c) the prover sends

hj :=

{
Hash(com1

1, . . . , com
1
N ) if j = 1

Hash(comj
1, . . . , com

j
N , [[αj−1]]) if j > 1

to the verifier;

(d) the verifier picks at random a challenge εj and sends it to the prover;

(e) the prover computes

[[αj ]] := ϕj

(εi)i≤j ,(αi)i<j

(
[[w]], ([[βi]])i≤j

)

and recomposes αj .
Note: This step is computed according to Protocol 2 in case of an iterative computing
& broadcasting step.

The prover further computes ht+1 := Hash([[αt]]) and sends it to the verifier.

3. The verifier picks at random a party index i∗ ∈ [N ] and sends it to the prover.

4. The prover opens the commitments of all the parties except party i∗ and further reveals
the commitments and broadcast messages of the unopened party i∗. Namely, the prover
sends ([[w]]i, ([[β

j ]]i, ρ
j
i )j∈[t])i�=i∗ , com1

i∗ , . . . , comt
i∗ , [[α1]]i∗ , . . . , [[αt]]i∗ to the verifier.

5. The verifier recomputes the commitments comj
i and the broadcast values [[αj ]]i for i ∈

[N ] \ {i∗} and j ∈ [t] from ([[w]]i, ([[β
j ]]i, ρ

j
i )j∈[t])i�=i∗ in the same way as the prover.

6. The verifier accepts if and only if:
(a) the views of the opened parties are consistent with each other, with the committed

input shares and with the hash digest of the broadcast messages, i.e. for j = 1 to t+1,

hj
?
=

⎧
⎨

⎩

Hash(com1
1, . . . , com

1
N ) if j = 1

Hash(comj
1, . . . , com

j
N , [[αj−1]]) if j > 1
Hash([[αt]]) if j = t + 1

(b) the output of the MPC protocol is Accept, i.e.

g(α1, . . . , αt)
?
= 0.

Protocol 3: Zero-knowledge protocol - Application of the MPCitH principle to
Protocol 1.
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in com1
N (instead of committing [[βunif]]N ). This way the prover can save

communication by revealing seedN instead of [[βunif]]N whenever the latter is
larger;

– the messages [[α1]]i∗ , . . . , [[αt]]i∗ broadcasted by the unopened party. Let us
stress that one can sometimes save communication by sending only some
elements of [[α1]]i∗ , . . . , [[αt]]i∗ and use the relation g(α1, . . . , αt) = 0 to recover
the missing ones;

– the hash digests h1, . . . , ht+1 and the unopened commitments com1
i∗ , . . . ,

comt
i∗ (as explained above, we have comj

i∗ = ∅ for j > 1 if i∗ �= N).

Moreover, instead of revealing the (N − 1) seeds of the opened parties, one
can generate them from a generation tree as suggested in [KKW18]. One then
only needs to reveal log2 N λ-bit seeds. We finally obtain a total communication
cost for Protocol 3 of

– when i∗ �= N ,

Cost = (t + 1) · 2λ
︸ ︷︷ ︸
h1,h2,...,ht+1

+( inputs
︸ ︷︷ ︸

[[w]]N ,[[β1]]N ,...,

+ comm︸ ︷︷ ︸
[[α1]]i∗ ,...,[[αt]]i∗

+ λ · log2 N
︸ ︷︷ ︸
seedi for i�=i∗

+ 2λ︸︷︷︸
com1

i∗

).

– when i∗ = N ,

Cost = (t + 1) · 2λ
︸ ︷︷ ︸
h1,h2,...,ht+1

+( comm︸ ︷︷ ︸
[[α1]]i∗ ,...,[[αt]]i∗

+ λ · log2 N
︸ ︷︷ ︸
seedi for i�=i∗

+ t · 2λ︸ ︷︷ ︸
com1

i∗ ,...,comt
i∗

).

where inputs denote the bitsize of (w, β1, . . . , βt) excluding the uniformly dis-
tributed elements βunif, and where comm denotes the bitsize of (α1, . . . , αt)
excluding the elements which can be recovered from g(α1, . . . , αt) = 0.

To achieve a soundness error of 2−λ, one must repeat the protocol τ = λ
log2 N

times. The resulting averaged cost is the following:

Cost = (t + 1) · 2λ + τ ·
(

N − 1
N

· inputs + comm + λ · log2 N +
N − 1 + t

N
· 2λ

)
.

Several recent works based on the MPCitH paradigm [BD20,KZ21,FJR22]
provides zero-knowledge identification protocols with communication cost below
10 KB for a 128-bit security level. Unfortunately, to obtain a small communica-
tion cost, one must take a large number of parties N , which induces an important
computational overhead compared to other approaches to build zero-knowledge
proofs. Indeed, the prover must emulate N parties in her head for each of the
τ repetitions of the protocol, which makes a total of λN

log2 N party emulations to
achieve a soundness error of 2−λ. Thus, increasing N has a direct impact on the
performances. For instance, scaling from N = 16 to N = 256 roughly halves the
communication but increases the computation by a factor of eight. Given this
state of affairs, a natural question is the following:
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Can we build zero-knowledge proofs in the MPC-in-the-head paradigm
while avoiding this computational overhead?

In what follows, we show how applying (low-threshold) linear secret sharing
to the MPCitH paradigm provides a positive answer to this question.

4 MPC-in-the-Head with Threshold LSS

4.1 General Principle

Let � and N be integers such that 1 ≤ � < N . We consider an (�+1, N)-threshold
linear secret sharing scheme (LSSS), as formally introduced in Definition 1, which
shares a secret s ∈ F into N shares [[s]] ∈ F

N . In particular, the vector spaces
of Definition 1 are simply defined as V1 = V2 = F hereafter (other definitions
of these sets will be considered in Sect. 5). We recall that such a scheme implies
that the secret can be reconstructed from any � + 1 shares while no information
is revealed on the secret from the knowledge of � shares. The following lemmas
shall be useful to our purpose (see proofs in the full version [FR22]). The first
lemma holds assuming the MDS conjecture [MS10] while the second one comes
from the equivalence between threshold LSSS and interpolation codes [CDN15,
Theorem 11.103].

Lemma 1. Let F be a finite field and let �,N be integers such that 1 ≤ � < N−1.
If an (� + 1, N)-threshold LSSS exists for F, and assuming the MDS conjecture,
then N ≤ |F| with the following exception: if |F| is a power of 2 and � ∈ {2, |F|−2}
then N ≤ |F| + 1.

Lemma 2. Let (Share, Reconstruct) be an (� + 1, N)-threshold LSSS. For every
tuple v0 ∈ V

�+1
2 and every subset J0 ⊆ [N ] with |J0| = �+1, there exists a unique

sharing [[s]] ∈ V
N
2 such that [[s]]J0 = v0 and such that

∀J s.t. |J | = � + 1,ReconstructJ ([[s]]J ) = s,

where s := ReconstructJ0(v0). Moreover, there exists an efficient algorithm
ExpandJ0

which returns this unique sharing from [[s]]J0 .

In the rest of the paper we shall frequently use the following notions:

– Sharing of a tuple. If v is a tuple, a secret sharing [[v]] is defined coordinate-
wise. The algorithms Share, Reconstruct and Expand (from Lemma 2) further
apply coordinate-wise.

– Valid sharing. We say that a sharing [[v]] is valid when there exists v such
that

∀J s.t. |J | = � + 1,ReconstructJ([[v]]J ) = v,

or equivalently3, when there exists J such that [[v]] = ExpandJ([[v]]J ).
3 This second formulation is true only for threshold schemes (and not for quasi-

threshold schemes that we will introduce latter).
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– Consistent shares. We say that shares [[v]]i1 , . . . , [[v]]iz
are consistent when

there exist other shares [[v]][N ]\{i1,...,iz} such that [[v]] is a valid sharing.

Application to the MPCitH Paradigm. We suggest applying a threshold LSSS
to the MPCitH paradigm instead of a simple additive sharing scheme. Let us
consider a protocol Πadd complying with the MPC model introduced in the
previous section (Protocol 1). We can define a protocol ΠLSSS similar to Πadd

with the following differences:

– the parties initially receive an (�+1, N)-threshold linear secret sharing of the
witness w,

– when invoked for a hint βj , the oracle OH returns an (� + 1, N)-threshold
linear secret sharing of βj ,

– when the shares of αj are broadcasted, the value αj is reconstructed using
the algorithm Reconstruct. Namely, the parties arbitrarily choose �+1 shares
([[αj ]]i)i∈J0 , run the algorithm ReconstructJ0 to get αj , and check that all the
broadcast shares are consistent with the output of ExpandJ0

. If the check fails,
the protocol returns Reject.

The resulting MPC protocol, formally described in Protocol 4, is well-defined
and �-private in the semi-honest model (meaning that the views of any � parties
leak no information about the secret). This is formalized in the following theorem
(see proof in the full version [FR22]).

Theorem 1. Let us consider an MPC protocol Πadd complying with the protocol
format described in Protocol 1. If Πadd is well-defined and (N − 1)-private, then
the protocol ΠLSSS corresponding to Πadd with an (� + 1, N)-threshold linear
secret sharing scheme (see Protocol 4) is well-defined and �-private.

4.2 Conversion to Zero-Knowledge Proofs

We can convert the MPC protocol using threshold linear secret sharings into
a zero-knowledge protocol using the MPC-in-the-Head paradigm. Instead of
requesting the views of N − 1 parties, the verifier only asks for the views of �
parties. Since the MPC protocol is �-private, we directly get the zero-knowledge
property. One key advantage of using a threshold LSSS is that only �+1 parties
out of N need to be computed by the prover, which we explain further hereafter.

Besides the commitments on the input sharing [[w]], and the hints’ sharings
[[β1]], . . . , [[βt]], the prover must send to the verifier the communication between
the parties, which for the considered MPC model (see Protocol 4) consists of
the broadcast sharings [[α1]], . . . , [[αt]]. Observe that such a sharing [[αj ]] is also
an LSSS sharing of the underlying value αj since it is computed as

[[αj ]] := ϕj
(εi,αi)i≤j

(
[[w]], ([[βi]])i≤j

)

where [[w]], [[β1]], . . . , [[βt]] are LSSS sharings and ϕj is an affine function. This
notably implies that, for all i, the broadcast sharing [[αj ]] = ([[αj ]]1, . . . , [[αj ]]N )
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1. The parties take as input an (�+1, N)-threshold linear sharing
[[w]].

2. For j = 1 to t, the parties:

(a) get an (�+1, N)-threshold linear sharing [[βj ]] from the hint
oracle OH , such that

βj ← ψj(w, ε1, . . . , εj−1; rj)

for a uniform random tape rj ;

(b) get a common random εj from the oracle OR;

(c) for some F-linear function ϕj

(εi)i≤j ,(αi)i<j
,

– compute

[[αj ]] := ϕj

(εi)i≤j ,(αi)i<j

(
[[w]], ([[βi]])i≤j

)
,

– broadcast [[αj ]],
– compute

αj := ReconstructJ0([[α
j ]]J0)

for some J0 of size � + 1,
– verify that ExpandJ0

([[α]]J0) is consistent with [[αj ]]

(i.e. that [[αj ]] forms a valid sharing) and reject other-
wise.

Note: This step can be composed of several iterations as
described in Protocol 2.

3. The parties finally accept if g(α1, . . . , αt) = 0 and reject oth-
erwise.

Note: In the above description w, βj, εj, αj are elements from
the field F or tuples with coordinates in F (whose size is not made
explicit to keep the presentation simple).

Protocol 4: General MPC protocol ΠLSSS with LSSS.

contains redundancy. According to Lemma 2, in order to uniquely define such
a sharing, one only needs to commit � + 1 shares of [[αj ]]. In other words, we
can choose a fixed subset S of � + 1 parties and only commit the broadcast
shares from these parties, which then acts as a commitment of the full sharing
[[αj ]]. For all j ∈ [t], the prover needs to send the broadcast share [[αj ]]i∗ of an
arbitrary unopened party i∗. To verify the computation of the � opened parties
I = {i1, . . . , i�} ⊆ [N ], the verifier can recompute the shares [[αj ]]i1 , . . . , [[α

j ]]i�
.

Then, from these � shares together with [[αj ]]i∗ , the verifier can reconstruct the
shares [[αj ]]S using Expand{i∗,i1,...,i�} and check their commitments.

By committing the broadcast messages of only a subset S of parties, the
proof becomes independent of the computation of the other parties. It means
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that the prover must commit the input shares of all the parties but only need
to emulate � + 1 parties to commit their broadcast shares. When � is small with
respect to N , this has a great impact on the computational performance of the
prover. The resulting zero-knowledge protocol is described in Protocol 5.

4.3 Soundness

Consider a malicious prover P̃ who does not know a correct witness w for
the statement x but still tries to convince the verifier that she does. We shall
say that such a malicious prover cheats for some party i ∈ [N ] if the broad-
cast shares [[α1]]i, . . . , [[αt]]i recomputed from the committed input/hint shares
[[w]]i, [[β1]]i, . . . , [[βt]]i are not consistent with the committed broadcast shares
([[α1]]S , . . . , [[αt]]S).

Let us first consider the simple case of false positive rate p = 0. If a malicious
prover cheats on less than N −� parties, then at least �+1 parties have broadcast
shares which are consistent with ([[α1]]i, . . . , [[αt]]i)i∈S and give rise to broadcast
values α1, . . . , αt for which the protocol accepts, i.e. g(α1, . . . , αt) = 0. Since p =
0, the input shares of those �+1 parties necessarily define a good witness w (i.e.
satisfying (x,w) ∈ R), which is in contradiction with the definition of a malicious
prover. We deduce that in such a zero-false-positive scenario, a malicious prover
(who does not know a good witness) has to cheat for at least N − � parties.
Then, if the malicious prover cheats on more than N − � parties, the verifier
shall always discover the cheat since she shall necessarily ask for the opening of
a cheating party. We deduce that a malicious prover must necessarily cheat on
exactly N − � parties, and the only way for the verifier to be convinced is to ask
for the opening of the exact � parties which have been honestly emulated. The
probability of this event to happen is

1
(

N
N−�

) =
1
(
N
�

) ,

which corresponds to the soundness error of the protocol, assuming p = 0.
Let us now consider a false positive rate p which is not zero. A malicious

prover can then rely on a false positive to get a higher probability to convince
the verifier. In case the committed input shares [[w]]1, . . . , [[w]]N were consistent
(i.e. they formed a valid secret sharing), the soundness error would be

1
(
N
�

) +

(

1 − 1
(
N
�

)

)

· p.

However, we cannot enforce a malicious prover to commit a valid secret sharing
[[w]] since the verifier never sees more than the shares of � parties. More precisely,
let us denote

J := {J ⊂ [N ] : |J | = � + 1}
and let w(J) be the witness corresponding to the shares [[w]]J for some subset
J ∈ J , formally w(J) := ReconstructJ([[w]]J ). Then we could have

w(J1) �= w(J2)
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1. The prover shares the witness w into an (� + 1, N)-threshold linear secret sharing [[w]].

2. The prover emulates “in her head” a (public) subset S of �+1 parties of the MPC protocol.

For j = 1 to t:

(a) the prover computes
βj = ψj(w, (εi)i<j),

shares it into an (� + 1, N)-threshold linear secret sharing [[βj ]];

(b) the prover computes the commitments

comj
i :=

{
Com([[w]]i, [[β

j ]]i; ρ
j
i ) if j = 1

Com([[βj ]]i; ρ
j
i ) if j > 1

for all i ∈ [N ], for some commitment randomness ρj
i , and computes the Merkle root

h̃j := MerkleTree(comj
1, . . . , com

j
N ).

(c) the prover sends

hj :=

{
h̃j if j = 1

Hash(h̃j , [[α
j−1]]S) if j > 1

to the verifier;

(d) the verifier picks at random a challenge εj and sends it to the prover;

(e) the prover computes, for i ∈ S,

[[αj ]]i := ϕj

(εk)k≤j ,(αk)k<j

(
[[w]]i, ([[β

k]]i)k≤j

)

and recomposes αj . This step is repeated as many times as in the MPC protocol (cf
Protocol 2).

The prover further computes ht+1 := Hash([[αt]]S) and sends it to the verifier.

3. The verifier picks at random a subset I ⊂ [N ] of � parties (i.e. |I| = �) and sends it to the
prover.

4. The prover opens the commitments of all the parties in I, namely she sends
([[w]]i, ([[β

j ]]i, ρ
j
i )j∈[t])i∈I to the verifier. The prover further sends the authentication paths

auth1, . . . , autht to these commitments, i.e. authj is the authentication path for {comj
i}i∈I

w.r.t. Merkle root h̃j for every j ∈ [t]. Additionally, the prover sends broadcast shares
[[α1]]i∗ , . . . , [[αt]]i∗ of an unopened party i∗ ∈ S \ I.

5. The verifier recomputes the commitments comj
i and the broadcast values [[αj ]]i for i ∈ I

and j ∈ [t] from ([[w]]i, ([[β
j ]]i, ρ

j
i )j∈[t])i∈I . Then she recovers α1, . . . , αt, by

αj = ReconstructI∪{i∗}([[α
j ]]I∪{i∗})

for every j ∈ [t].

6. The verifier accepts if and only if:

(a) the views of the opened parties are consistent with each other, with the committed
input shares and with the hash digest of the broadcast messages, i.e. for j = 1 to t+1,

hj
?
=

⎧
⎨

⎩

h̃j if j = 1

Hash(h̃j , [[α
j−1]]S) if 2 ≤ j ≤ t

Hash([[αj−1]]S) if j = t + 1

where h̃j is the Merkle root deduced from
({comj

i}i∈I , authj

)
and [[αj−1]]S are the

shares in subset S deduced from [[αj−1]] = ExpandI∪{i∗}
(
[[αj−1]]I∪{i∗}

)
;

(b) the output of the opened parties are Accept, i.e.

g(α1, . . . , αt)
?
= 0 .

Protocol 5: Zero-knowledge protocol: application of the MPCitH principle to
Protocol 4 with an (� + 1, N)-threshold linear secret sharing scheme.
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for distinct subsets J1, J2 ∈ J . A malicious prover can exploit this degree of
freedom to increase the soundness error.

Soundness Attack. Let us take the example of the [BN20] protocol on a field F.
In this protocol, the MPC functionality f outputs Accept for a bad witness w
(i.e. such that (x,w) �∈ R) with probability p = 1

|F| , i.e. if and only if the oracle
OR samples a specific element εw of F. In this context, a possible strategy for
the malicious prover is the following:

1. Build the shares [[w]]1, . . . , [[w]]N such that

∀J1, J2 ∈ J , εw(J1) �= εw(J2) .

We implicitly assume here that
(

N
�+1

) ≤ |F| and that constructing such
collision-free input sharing is possible. We assume that (x,w(J)) �∈ R for
every J (otherwise the malicious prover can recover a good witness by enu-
merating the w(J)’s).

2. After receiving the initial commitments, the verifier sends the challenge ε.
3. If there exists J0 ∈ J such that ε = w(J0), which occurs with probability(

N
�+1

) · p since all the ε(J) are distinct, then the malicious prover defines the
broadcast values α1, . . . , αt (and the broadcast shares in the set S) according
to the broadcast shares of the parties in J0. It results that the computation of
the parties in J0 is correct and the prover will be able to convince the verifier
if the set I of opened parties is a subset of J0 (I ⊂ J0).

4. Otherwise, if no subset J0 ∈ J is such that ε = w(J0), the malicious prover is
left with the option of guessing the set I. Namely, she (randomly) chooses a set
I0 of � parties as well as broadcast values α1, . . . , αt such that g(α1, . . . , αt) =
0, and then she deduces and commits the broadcast shares [[αj ]]S from the
[[αj ]]I0 (computed from the committed input shares) and the chosen αj ’s.
The malicious prover will be able to convince the verifier if and only if the
challenge set I matches the guess I0.

The probability pattack that the malicious prover convinces the verifier using the
above strategy satisfies

pattack :=

Pr[∃J0:ε=w(J0)]
︷ ︸︸ ︷(

N

� + 1

)
p ·

Pr[I⊂J0]︷ ︸︸ ︷(
�+1

�

)

(
N
�

) +

Pr[∀J,ε�=w(J)]
︷ ︸︸ ︷(

1 −
(

N

� + 1

)
p

)
·

Pr[I=I0]︷︸︸︷
1
(
N
�

)

=
1
(
N
�

) + p · � · (N − �)
� + 1

≥ 1
(
N
�

) +

(

1 − 1
(
N
�

)

)

· p.

︸ ︷︷ ︸
Soundness error if the

committed sharing is well-formed.
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Soundness Proof. We can prove that the above strategy to forge successful tran-
scripts for the [BN20] protocol is actually optimal and that it further applies to
other protocols complying with our model. This is formalized in the following
theorem (together with the completeness and HVZK property of the protocol).

Theorem 2. Let us consider an MPC protocol ΠLSSS complying with the pro-
tocol format described in Protocol 4 using an (� + 1, N)-threshold LSSS, such
that ΠLSSS is �-private in the semi-honest model and of false positive rate p.
Then, Protocol 5 built from ΠLSSS is complete, sound and honest-verifier zero-
knowledge, with a soundness error ε defined as

ε :=
1
(
N
�

) + p · � · (N − �)
� + 1

.

Proof. The completeness holds from the completeness property of the underlying
MPC protocol. The zero-knowledge property directly comes from the �-privacy
property of the MPC protocol with an (� + 1, N)-threshold linear secret sharing
scheme. See the full version [FR22] for the soundness proof.

Remark 1. Let us remark that the above theorem includes the MPCitH setting
with additive sharing as a particular case. Indeed, when � = N − 1, we obtain
the usual formula for the soundness error, that is:

� = N − 1 =⇒ ε =
1
N

+ p ·
(

1 − 1
N

)
.

Remark 2. When � = 1, we have ε ≈ 1
N (assuming p is small). It can look as

surprising that we can have such soundness error by revealing a single party’s
view. Since the communication is only broadcast, a verifier does not need to
check for inconsistency between several parties, she just needs to check that the
revealed views are consistent with the committed broadcast messages. Moreover,
the verifier has the guarantee that the shares broadcast by all the parties form
a valid sharing of the open value. It means that even if the prover reveals only
one party’s view, the latter can be inconsistent with the committed broadcast.
Assuming we use Shamir’s secret sharing, committing to a valid broadcast shar-
ing consists in committing a degree-� polynomial such that evaluations are the
broadcast shares. By interpolating the broadcast shares of � honest parties (and
given the plain value of the broadcast message), one shall entirely fix the corre-
sponding Shamir’s polynomial, and the other parties can not be consistent with
this polynomial without being consistent with the honest parties (and the latter
can only occur if there is a false positive).

4.4 Performances

The advantage of using a threshold LSSS over a standard additive sharing mainly
resides in a much faster computation time, for both the prover and the verifier.
Indeed, according to the above description, the prover only emulates �+1 parties
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while the verifier only emulates � parties, which is particularly efficient for a small
�. For example, assuming that p is negligible and taking � = 1, the soundness
error is 1/N (which is similar to standard MPCitH with additive sharing) and
the prover only needs to emulate � + 1 = 2 parties (instead of N) while the
verifier only needs to emulate � = 1 party (instead of N − 1).

When targeting a soundness error of λ bits, one needs to repeat the protocol
τ := −λ

log2 ε times and thus the number of times that a prover emulates a party
is multiplied by τ . Table 2 summarizes the number of party emulations for the
prover and the verifier for the standard case (additive sharing) and for the case
of an (� + 1, N)-threshold LSSS. Interestingly, we observe that the emulation
phase is more expensive when increasing N for the additive sharing case while
it becomes cheaper for the threshold LSSS case (with some constant �). For the
sake of comparison, we also give in Table 2 the numbers corresponding to the
hypercube optimization from the concurrent work [AGH+23].

The computational bottleneck for the prover when using an LSSS with low
threshold � and possibly high N becomes the generation and commitment of all
the parties’ input shares, which is still linear in N . Moreover the sharing gener-
ation for a threshold LSSS might be more expensive than for a simple additive
sharing. On the other hand, the verifier does not suffer from this bottleneck
since she only has to verify � opened commitments (per repetition). One trade-
off to reduce the prover commitment bottleneck is to increase �, which implies
a smaller τ (for the same N) and hence decreases the number of commitments.

Table 2. Number of party emulations to achieve a soundness error of 2−λ (assuming
a negligible false positive rate p).

With additive sharing With threshold LSSS

Traditional Hypercube � = 1 Any �

Prover ≈ λ N
log2 N

≈ λ log2 N+1

log2 N
≈ λ 2

log2 N
≈ λ �+1

log2 (N
� )

Verifier ≈ λ N−1
log2 N

≈ λ log2 N

log2 N
≈ λ 1

log2 N
≈ λ �

log2 (N
� )

In terms of communication, using a threshold LSSS implies a slight overhead.
In particular, since only � parties out of N are opened, we use Merkle tree for
the commitments and include the authentication paths in the communication.

Let us recall the notations defined in Sect. 3.2:

– inputs: the bitsize of (w, β1, . . . , βt) excluding the uniformly-distributed ele-
ments βunif, and

– comm: the bitsize of ([[α1]]i∗ , . . . , [[αt]]i∗) excluding the elements which can be
recovered from g(α1, . . . , αt) = 0.
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We denote unif the bitsize of the uniformly-distributed elements βunif. Then, the
proof size (in bits) when repeating the protocol τ times is

Cost = (t + 1) · 2λ
︸ ︷︷ ︸
h1,h2,...,ht+1

+τ · ( � · (inputs + unif)
︸ ︷︷ ︸

{[[w]]i,[[β1]]i,...,[[βt]]i}i∈I

+ comm︸ ︷︷ ︸
[[α1]]i∗ ,...,[[αt]]i∗

+ 2λ · t · � · log2

N

�︸ ︷︷ ︸
auth1,...,autht

).

Let us remark that the bitsize unif appears here while it was not the case for
additive sharings. This comes from the fact that, even if βunif is uniformly sam-
pled, [[βunif]] has some structure (i.e. some redundancy) when using an arbitrary
linear secret sharing scheme.

5 Further Improvements

In this section, we suggest potential ways to further improve and generalize our
approach.

5.1 Using Linearly Homomorphic Commitments

As explained previously, one of the bottlenecks of this construction is that the
prover must realize N commitments. Although we decrease the cost of emulating
the MPC protocol (from N parties to a constant number), we still need to
commit the inputs of all the parties which is still linear in N . For this reason,
we cannot arbitrarily increase the number of parties N even while working on
large fields (e.g. F232 or larger). One natural strategy to improve this state of
affairs and get rid of those N commitments is to use a linearly homomorphic
commitment scheme. When relying on such a scheme, the prover can just commit
the input shares for the � + 1 parties in S, instead of committing all the parties’
input shares. Then the commitment of any party can be expressed as a linear
combination of these commitments. For applications to the post-quantum setting
(which is a context of choice for MPCitH schemes), one could rely on lattice-
based homomorphic commitment schemes. To the best of our knowledge, most of
these schemes are only additively homomorphic (not linearly) and they support
a bounded number of additions which makes their application to our context
not straightforward. This is yet an interesting question for future research.

5.2 Using Quasi-Threshold Linear Secret Sharing

Theorem 2 only considers linear secret sharing schemes, but we can generalize
the result to any quasi-threshold linear secret sharing scheme. In such schemes,
� shares leak no information about the secret and �+1+Δ shares are necessary
to reconstruct the secret, with Δ > 0, namely we have a gap between the two
thresholds. In our context, this gap shall impact the soundness of the protocol.
Indeed, the prover just needs to cheat for N − � − Δ parties (such that there
is less than � + Δ honest parties), but the verifier asks to open only � parties.
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Considering quasi-threshold schemes bring more versatility to our approach and
opens the door to techniques that are not possible with tight threshold schemes
(e.g. batching such as proposed below).

Let us remark that the set S of emulated parties in Protocol 5 must be chosen
such that [[v]]S enables to deduce all the shares [[v]][N ]. In the tight threshold
case, such a set S is always of size �+1 (see Lemma 2), but in the case of quasi-
threshold LSSS, this set S might be larger than � + Δ + 1. Moreover, sending
shares [[α1]]i∗ , . . . , [[αt]]i∗ for one non-opened party i∗ ∈ S might not be enough
to enable the verifier to recompute [[αj ]]S for all j. Therefore the size of S and
the number of additional shares [[αj ]]i to be revealed depend on the underlying
quasi-threshold linear secret sharing, which impacts the communication cost. On
the other hand, the soundness error of the obtained proof of knowledge is not
impacted.

Theorem 3. Let us consider an MPC protocol ΠQT-LSSS complying with the
protocol format described in Protocol 4, but using an (�, � + Δ + 1, N)-quasi-
threshold LSSS in place of an (�+1, N)-threshold LSSS, and such that ΠQT-LSSS

is �-private in the semi-honest model and of false positive rate p. Then, Protocol 5
built from ΠQT-LSSS is complete, sound and honest-verifier zero-knowledge, with
a soundness error ε defined as

ε :=

(
�+Δ

�

)

(
N
�

) + p · �

� + Δ + 1
·
(

N − �

Δ + 1

)
.

Proof. The completeness holds from the completeness property of the underlying
MPC protocol. The zero-knowledge property directly comes from the �-privacy
property of the MPC protocol with an (�, � + Δ + 1, N)-threshold linear secret
sharing scheme. See the full version [FR22] for the proof of the soundness.

Using Algebraic Geometric Secret Sharing? One drawback while using a
tight threshold LSSS is that the number N of parties is limited by the size of
the underlying field F, specifically we have N ≤ |F| (see Lemma 1). In the full
version [FR22], we investigate whether quasi-threshold LSSS based on algebraic
geometry [CC06] can improve this state of affairs. Our result is negative: we
show that we cannot tackle this issue by using such schemes. We also show that
the soundness error (with � = 1) is at least 1/(2|F| − 1) for any quasi-threshold
LSSS. This implies that such sharing schemes could only have a limited interest
to achieve smaller sizes, since it could decrease the soundness error by a factor
at most two compared to the case with the Shamir’s secret sharing scheme.

We show hereafter that the above generalization to quasi-threshold LSSS is
useful for another purpose, namely an efficient batching technique in our frame-
work.

5.3 Batching Proofs with Shamir’s Secret Sharing

Principle. Shamir’s secret sharing is traditionally used to share a single element
of the underlying field, but it can be extended to share several elements simulta-
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neously. To share v1, v2, . . . , vu ∈ F, we can sample � random elements r1, . . . , r�

of F and build the polynomial P of degree � + u − 1 such that, given distinct
fixed field elements e1, . . . , eu+�,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P (e1) = v1

P (e2) = v2

...
P (eu) = vu

and

⎧
⎪⎨

⎪⎩

P (eu+1) = r1

...
P (eu+�) = r�

The shares are then defined as evaluations of P on fixed points of F\{e1, . . . , eu}.
Revealing at most � shares does not leak any information about the shared values
v1, . . . , vu, while one needs at least � + u shares to reconstruct all of them. In
other words, this is an (�, � + u,N)-quasi-threshold linear secret sharing scheme
for the tuple (v1, . . . , vu). Thus, while applying such a sharing to our context,
the soundness error is given by (see Theorem 3)

(
�+u−1

�

)

(
N
�

) + p · �

� + u
·
(

N − �

u

)
.

When running an MPC protocol on such batch sharing, the operations are simul-
taneously performed on all the shared secrets v1, . . . , vu. It means that we can
batch the proof of knowledge of several witnesses which have the same verifi-
cation circuit (i.e. the same functions ϕj in our MPC model – see Protocol 1).
Using this strategy, the soundness error is slightly larger, but we can save a lot
of communication by using the same sharing for several witnesses.

Specifically, the proof size while batching u witnesses is impacted as follows.
The parties’ input shares are not more expensive, but to open the communica-
tion, the prover now needs to send u field elements by broadcasting (instead of
a single one). Thus the communication cost for τ executions is given by

Cost = (t + 1) · 2λ
︸ ︷︷ ︸
h1,h2,...,ht+1

+τ · ( � · (inputs + rtapes)
︸ ︷︷ ︸
{[[w]]i,[[β1]]i,...,[[βt]]i}i∈I

+u · comm︸ ︷︷ ︸
α1,...,αt

+ 2λ · t · � · log2

N

�︸ ︷︷ ︸
auth1,...,autht

).

Unfortunately, the scope of application of this batching technique is limited.
In particular, while we can multiply the batched shared secrets by the same
scalar, with

[[

⎛

⎜
⎝

γ · v1

...
γ · vu

⎞

⎟
⎠]] := γ · [[

⎛

⎜
⎝

v1

...
vu

⎞

⎟
⎠]]

for some γ ∈ F, we cannot compute

[[

⎛

⎜
⎝

γ1 · v1

...
γu · vu

⎞

⎟
⎠]] from [[

⎛

⎜
⎝

v1

...
vu

⎞

⎟
⎠]]
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for distinct scalars γ1, . . . , γu (whenever at least two scalars are distinct). This
restriction implies that the scalar factors used in the verification circuit must
be independent of the different witnesses which are batched together. More pre-
cisely, it implies that the functions ϕj in our MPC model (see Protocol 1) must
be of the form

ϕj
(εi)i≤j ,(αi)i<j

( · ) = ϕ̄j
(εi)i≤j

( · )
︸ ︷︷ ︸

Linear function with

εi
-dependent coefficients

+ bj
(εi)i≤j ,(αi)i<j︸ ︷︷ ︸

Constant offset which

depends on the εi
’s and αi

’s

This restriction prevents the use of this batching strategy for several MPCitH
protocols. For example, all the protocols using the multiplication checking pro-
tocol from [BN20] as a subroutine cannot use this batching strategy. To the best
of our knowledge, the only protocols in the current state of the art which support
this batching strategy are Banquet [BDK+21] and Limbo [DOT21].

Batching Strategies. In what follows, we propose three strategies to batch
MPCitH proofs relying on the same verification circuit:

Naive strategy: The naive way to batch u MPCitH proofs is to emulate u
independent instances of MPC protocol, one for each input witness. Compared
to sending u independent proofs, one can save communication by using the
same seed trees and the same commitments for the u instances. This strategy
can be applied for standard MPCitH schemes based on additive sharing as
well as for our framework of threshold LSSS-based MPCitH. When using
additive sharings, the main drawback of this strategy is that the prover and
the verifier need to emulate the party computation a large number of times,
i.e. N times (or N − 1 times for the verifier) per iteration and per statement.
When batching u ≥ 25 statements with N = 256, the prover and the verifier
must emulate more than 100 000 parties to achieve a security of 128 bits.
When using a low-threshold LSSS, the emulation cost is much cheaper, but
the proof transcript is larger. While batching u statements, the emulation
cost and the soundness error are given by the following table:

# Emulations Soundness Error

Prover τ · (� + 1) · u 1

(N
� )

+ p · (N−�)·�
�+1

Verifier τ · � · u

SSS-based strategy: We can use the batching strategy based on Shamir’s
secret sharing (SSS) described above. Instead of having u independent input
sharings (one per witness), we have a single input sharing batching the u
witnesses. The number of MPC emulations is lower than for the naive strategy.
The proof size is also smaller and (mostly) below that of the standard setting
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for small u, but it grows exponentially when considering a small field F. Each
batched statement consumes one evaluation point (in F), the number N of
parties is hence limited by N ≤ |F|+1−u. Because of this limitation together
with the security loss due to the use of a quasi-threshold sharing scheme, the
soundness error of this batched protocol degrades rapidly as u grows. While
batching u statements using Shamir’s secret sharings, the emulation cost and
the soundness error are given by the following table:

# Emulations Soundness Error

Prover τ · (� + u)
(�+u−1

� )
(N

� )
+ p · �

�+u
· (

N−�
u

)

Verifier τ · �

Hybrid strategy: In the previous strategy, the proof size is convex w.r.t. the
number u of batched proofs and, for small some u, the curve slope is flatter
than the slope in the additive case. It means that using a hybrid approach can
achieve smaller proof sizes (as well as better performances) than with the two
above strategies. Specifically, instead of having one input sharing encoding
the u witnesses (one per batched statement) and a single emulation of the
MPC protocol, we can use ν input sharings each of them encoding u

ν witnesses
and have then ν emulations of the MPC protocol. Using this hybrid strategy,
the emulation cost and the soundness error are given by the following table:

# Emulations Soundness Error

Prover τ · (� + u
ν
) · ν

(�+u/ν−1
� )

(N
� )

+ p · �
�+u/ν

· (
N−�
u/ν

)

Verifier τ · � · ν

Section 6.2 presents some application results for these batching strategies. In
particular the full version [FR22] compares the three strategies for batched proofs
of the SDitH scheme [FJR22].

6 Applications

In the past few years, many proof systems relying on the MPC-in-the-Head
paradigm have been published. Table 3 provides a tentatively exhaustive list of
these schemes while indicating for each scheme:

– the base field (or ring) of the function computed by the underlying MPC
protocol,

– whether the underlying MPC protocol fits our general model (see Sect. 3.1),
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– the hard problem (or one-way function) for which the witness knowledge is
proved.

In column Base Ring, the notation “F (K)” means that the function computed
by the underlying MPC protocol is composed of F-linear functions and multipli-
cations over K. For example, the schemes for AES use F2-linear functions and
F256-multiplications.

Applying our framework with an arbitrary (low-)threshold linear secret shar-
ing scheme instead of an additive sharing scheme is possible whenever

– the underlying MPC protocol fits the model introduced in Sect. 3.1,
– the underlying MPC protocol is defined over a field (and not only a ring),
– this base field is large enough (since the number of parties N is limited by

the size of the field).

Because of this last condition, all the proof systems for Boolean circuits and/or
one-way functions with F2 operations (e.g. AES, Rain, SDitH over F2) do not
support our framework of MPCitH based on (low-)threshold LSSS. Same for the
scheme recently proposed in [FMRV22] and which achieves short communica-
tion using secret sharing over the integers: this idea is not compatible with our
approach.

6.1 Application to the SDitH Signature Scheme

We can transform the zero-knowledge proofs of knowledge described in Sect. 4
into signature schemes using the Fiat-Shamir’s heuristic [FS87].

In the following, we focus on the signature scheme obtained when applying
this approach to the SDitH protocol (SDitH for “Syndrome Decoding in the
Head”) [FJR22]on the base field FSD. We apply the ideas of Sect. 4 to this
scheme using Shamir’s secret sharing. Since the number N of parties is limited
by the field size, N ≤ |FSD|,4 we consider the instance with FSD := F256 as base
field. As explained previously, our MPCitH strategy with (� + 1, N)-threshold
LSSS does not make the signature smaller but substantially improves the signing
and verification times. According to Sect. 4.4, we obtain signatures of size (in
bits):

Size = 6λ + τ ·
(
� · (inputs + unif) + comm + 2λ · � · log2

N

�

)

where inputs, unif, and comm are such as defined in Sect. 3 (see the full ver-
sion [FR22] for explicit values for the SDitH scheme).

In [FJR22], the authors choose p a bit lower than 2−64 which implies that the
number of executions τ just needs to be increased by one while turning to the

4 The Shamir’s secret sharing over a field F can have at most |F|−1 shares (one share
by non-zero evaluation point), but we can have an additional share by defining it as
the leading coefficient of the underlying polynomial (i.e. using the point at infinity
as evaluation point).
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Table 3. Generic MPC-in-the-Head Techniques and Signature Schemes from MPC-
in-the-Head Techniques. All the signature sizes are in kilobytes and target a security
of 128 bits. The original signature sizes correspond to values given by the underlying
articles. The normalized signature sizes are given for a range of 8 − 32 parties (in
the underlying MPC protocol) when there is a preprocessing phase and for a range
of 32 − 256 parties otherwise. The column “Model” indicates whether the underlying
MPC protocol fits our general model.

Scheme Name Year Base Ring Model #Rounds Helper Hard Problem Signature Size

Original Normalized

ZKBoo [GMO16] 2016 Any ring ✗ 3 ✗ Any (2, 3)-decomposition circuit – –

ZKB++ [CDG+17] 2017 Any ring ✗ 3 ✗ – –

Ligero [AHIV17] 2017 Any field ✗ 5 ✗ Any arithmetic circuit C (addi-
tions and multiplications)

– –

Ligero++ [BFH+20] 2020 Any field ✗ 5 ✗ – –

KKW [KKW18] 2018 Any ring ✓ 3 or 5 ✓ – –

BN [BN20] 2020 Any field ✓ 5 ✗ – –

Limbo [DOT21] 2021 Any field ✓ log |C| ✗ – –

BN++ [KZ22] 2021 Any field ✓ 5 ✗ – –

Helium [KZ22] 2021 Any field ✓ 7 ✗ – –

Picnic1 [CDG+17] 2016 F2 ✗ 3 ✗ LowMC (partial) 32.1 –

Picnic2 [KKW18] 2018 F2 ✓ 3 ✓ 12.1 12.1 − 15.4

Picnic3 [KZ20b] 2019 F2 ✓ 3 ✓ LowMC (full) 12.3 11.1 − 13.7

Helium+LowMC [KZ22] 2022 F2 (F8) ✓ 7 ✗ 5.4 − 12.1 6.4 − 9.2

BBQ [DDOS19] 2020 F2 (F256) ✓ 3 ✓ AES 30.9 31.8 − 48.6

Banquet [BDK+21] 2021 F2 (F256) ✓ 7 ✗ 13.0 − 19.3 13.0 − 17.1

Limbo-Sign [DOT21] 2021 F2 (F256) ✓ 13 ✗ 14.2 − 17.9 14.2 − 17.9

Helium+AES [KZ22] 2022 F2 (F256) ✓ 7 ✗ 9.7 − 17.2 9.7 − 14.4

LegRoast [BD20] 2020 F2127−1 ✓ 7 ✗ Legendre PRF 12.2 − 16.0 12.2 − 14.8

PorcRoast [BD20] 2020 F2127−1 ✓ 7 ✗ Higher-Power Residue Charac-
ters

6.3 − 8.6 6.3 − 7.8

Rainier-128 [DKR+21] 2021 F2 (F128) ✓ 5 ✗ Rain [DKR+21] 5.1 − 9.4 5.9 − 8.1

BN++Rain [KZ22] 2022 F2 (F128) ✓ 5 ✗ 4.4 − 5.8 4.9 − 6.4

SDitH [FJR22] 2022 F2 ✓ 5 ✗ Syndrome Decoding over F2 11.8 − 17.0 10.9 − 15.6

2022 F256 ✓ 5 ✗ Syndrome Decoding over F256 8.3 − 11.5 8.3 − 11.5

[FMRV22] 2022 Z ✓ 5 ✓/✗ Subset-Sum Problem 21.1 − 33.2 24.3 − 34.8

2022 Z ✓ 5 ✗ BHH PRF [BHH01] 4.8 4.8 − 6.5

non-interactive case. Here, by taking � > 1, we decrease τ and each execution has
more impact on the communication cost. Therefore we take p negligible in order
to avoid to increase τ while turning to the non-interactive setting. At the same
time, it means that we can apply an idea from Limbo [DOT21] which consists in
using the same first challenge for all parallel executions of the underlying MPC
protocol.

As explained in Sect. 4.3, in case of a non-negligible false positive rate, an
adversary can try to forge a proof of knowledge by committing an invalid sharing
of the witness (which is not possible in the case of additive sharing). This ability
is also exploitable in the non-interactive setting while considering the attack
of [KZ20a]. In order to thwart this type of attack on our variant of the SDitH
scheme, we make the conservative choice of taking a false positive rate p satisfying

τ ·
(

N

� + 1

)
· p ≤ 2−128.
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This way, the probability that a single witness encoded by a subset of � + 1
shares among N leads to a false positive (in at least one of the τ iterations)
is upper bounded by 2−128 so that any attack strategy which consists to guess
(even partially) the first challenge shall cost at least 2128 operations. Then, we
simply need to take τ such that

(
N
�

)τ ≥ 2128 in order to achieve a 128-bit security
in the non-interactive setting. We propose four possible instances of our scheme
for � ∈ {1, 3, 7, 12} and N = 256 (the maximal number of parties).

We have implemented our variant of the SDitH signature scheme in C. In
our implementation, the pseudo-randomness is generated using AES in counter
mode and the hash function is instantiated with SHAKE. We have benchmarked
our implementation on a 3.8 GHz Intel Core i7 CPU with support of AVX2 and
AES instructions. All the reported timings were measured on this CPU while
disabling Intel Turbo Boost.

Table 4 summarizes the obtained performances for the different sets of param-
eters. We observe that the verification time is significantly smaller –between one
and two orders of magnitude– than for the original scheme. This was expected
since the verifier only emulates the views of � parties instead of N − 1. The gain
in signing time is more mitigated: even if the signer emulates only few parties,
she must still commit the input shares of N parties. Nevertheless, the number of
executions τ decreases while increasing the threshold �, which further improves
the signing time. The resulting signatures are slightly larger than for the origi-
nal scheme with the same number of parties (the short version), but our scheme
gains a factor 10 in signing and verification time. Compared to the fast version
of the original signature scheme (which uses a lower number of parties N = 32)
and for similar signature size, our scheme gains a factor 3 in signing time and a
factor 10 in verification time.

Table 4 further compares our scheme with recent MPCitH schemes based on
AES (both AES and SD for random linear codes being deemed as a conserva-
tive assumption) as well as with SPHINCS+ [ABB+22] as a baseline conser-
vative scheme. We can observe that our scheme outperforms AES-based candi-
dates for comparable signature sizes (around 10 KB). In particular, compared to
Helium+AES [KZ22], signing is 5 times faster with our scheme while verification
is 40 times faster. Fast versions of those schemes have signatures about twice
larger, while being still slower than ours in signing and verification. Compared
to SPHINCS+, our scheme achieves slightly better verification time and much
better trade-offs for signature size vs. signing time. Some other MPCitH signa-
ture schemes reported in Table 3 achieve smaller signature sizes (down to 5KB)
but they are based on less conservative assumptions (LowMC, Rain, BHH PRF).
Yet none of these schemes achieve fast verification as SPHINCS+ or our scheme.

6.2 Application of the Batching Strategy

We apply in the full version [FR22] our batching technique to two different
contexts:

– We batch non-interactive proofs of knowledge for the syndrome decoding
problem using the SDitH scheme [FJR22]. Since SDitH is not compatible
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Table 4. Parameters, performances and comparison. The parameters for [FJR22] and
our scheme are (m, k, w) = (256, 128, 80) and FSD = Fpoly = F256. Timings for [FJR22]
and our scheme have been benchmarked on a 3.8 Ghz Intel Core i7. Timings for Ban-
quet, Helium and SPHINCS+ have been benchmarked on a 3.6 GHz Intel Xeon W-2133
CPU [BDK+21,KZ22]. Timings for Limbo have been benchmarked on a 3.1 GHz Intel
i9-9900 CPU [DOT21].

Scheme N τ � t′ |Fpoints| log2 p |sgn| tsgn tverif

Our scheme 256 16 1 3 264 −167 10.47 KB 7.1 ms 0.46 ms

256 6 3 3 264 −167 9.97 KB 3.2 ms 0.38 ms

256 3 7 4 264 −222 11.10 KB 2.5 ms 0.47 ms

256 2 12 4 264 −222 11.99 KB 2.2 ms 0.51 ms

[FJR22] - Var3f 32 27 – 5 224 −78 11.5 KB 6.4 ms 5.9 ms

[FJR22] - Var3s 256 17 – 5 224 −78 8.26 KB 30 ms 27 ms

Banquet (AES) 16 41 – 1 232
(−32, −27) 19.3 KB 6.4 ms 4.9 ms

255 21 – 1 248
(−48, −43) 13.0 KB 44 ms 40 ms

Limbo-Sign (AES) 16 40 – – 248 −40 21.0 KB 2.7 ms 2.0 ms

255 24 – – 248 −40 14.2 KB 29 ms 27 ms

Helium+AES 17 31 – 1 2144
(−136, −144) 17.2 KB 6.4 ms 5.8 ms

256 16 – 1 2144
(−136, −144) 9.7 KB 16 ms 16 ms

SPHINCS+-128f – – – – – – 16.7 KB 14 ms 1.7 ms

SPHINCS+-128 s – – – – – – 7.7 KB 239 ms 0.7 ms

with our batching strategy, we propose a tweak of it. We achieve an amortized
proof size around 2.3 KB using � = 1 and around 0.83 KB using � = 8, instead
of around 8 KB (proof size when non batched).

– We batch proofs for general arithmetic circuits using the Limbo proof sys-
tem [DOT21]. We obtain an amortized proof size lower than 1/10 of the
baseline scheme when batching, while the amortized performances are also
significantly improved (in particular for the verifier).
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