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Preface

The 29th Annual International Conference on the Theory and Application of Cryptology
and Information Security (Asiacrypt 2023) was held in Guangzhou, China, onDecember
4–8, 2023.The conference covered all technical aspects of cryptology, andwas sponsored
by the International Association for Cryptologic Research (IACR).

We received an Asiacrypt record of 376 paper submissions from all over the world,
and the Program Committee (PC) selected 106 papers for publication in the proceedings
of the conference. Due to this large number of papers, the Asiacrypt 2023 program had
3 tracks.

The two program chairs were supported by the great help and excellent advice of six
area chairs, selected to cover themain topic areas of the conference. The area chairs were
Kai-Min Chung for Information-Theoretic and Complexity-Theoretic Cryptography,
Tanja Lange for Efficient and Secure Implementations, Shengli Liu for Public-Key
Cryptography Algorithms and Protocols, Khoa Nguyen for Multi-Party Computation
and Zero-Knowledge, Duong Hieu Phan for Public-Key Primitives with Advanced
Functionalities, and Yu Sasaki for Symmetric-Key Cryptology. Each of the area chairs
helped to lead discussions together with the PC members assigned as paper discussion
lead. Area chairs also helped to decide on the submissions that should be accepted from
their respective areas. We are very grateful for the invaluable contribution provided by
the area chairs.

To review and evaluate the submissions, while keeping the load per PC member
manageable, we selected a record size PC consisting of 105 leading experts from all
over the world, in all six topic areas of cryptology. The two program chairs were not
allowed to submit a paper, and PC members were limited to submit one single-author
paper, or at most two co-authored papers, or at most three co-authored papers all with
students. Each non-PC submission was reviewed by at least three reviewers consisting of
either PC members or their external sub-reviewers, while each PC member submission
received at least four reviews. The strong conflict of interest rules imposed by IACR
ensure that papers are not handled by PC members with a close working relationship
with the authors. There were approximately 420 external reviewers, whose input was
critical to the selection of papers. Submissions were anonymous and their length was
limited to 30 pages excluding the bibliography and supplementary materials.

The review process was conducted using double-blind peer review. The conference
operated a two-round review system with a rebuttal phase. After the reviews and first
round discussions the PC selected 244 submissions to proceed to the second round and
the authors were then invited to participate in an interactive rebuttal phase with the
reviewers to clarify questions and concerns. The remaining 131 papers were rejected,
including one desk reject. The second round involved extensive discussions by the PC
members. After several weeks of additional discussions, the committee selected the final
106 papers to appear in these proceedings.



vi Preface

The eight volumes of the conference proceedings contain the revised versions of the
106 papers that were selected. The final revised versions of papers were not reviewed
again and the authors are responsible for their contents.

The PC nominated and voted for two papers to receive the Best Paper Awards,
and one paper to receive the Best Early Career Paper Award. The Best Paper Awards
went to Thomas Espitau, Alexandre Wallet and Yang Yu for their paper “On Gaussian
Sampling, Smoothing Parameter and Application to Signatures”, and to Kaijie Jiang,
Anyu Wang, Hengyi Luo, Guoxiao Liu, Yang Yu, and Xiaoyun Wang for their paper
“Exploiting the Symmetry of Zn: Randomization and the Automorphism Problem”. The
Best Early Career Paper Award went to Maxime Plancon for the paper “Exploiting
Algebraic Structure in Probing Security”. The authors of those three papers were invited
to submit extended versions of their papers to the Journal of Cryptology. In addition,
the program of Asiacrypt 2023 also included two invited plenary talks, also nominated
and voted by the PC: one talk was given by Mehdi Tibouchi and the other by Xiaoyun
Wang. The conference also featured a rump session chaired by Kang Yang and Yu Yu
which contained short presentations on the latest research results of the field.

Numerous people contributed to the success of Asiacrypt 2023. We would like to
thank all the authors, including those whose submissions were not accepted, for submit-
ting their research results to the conference. We are very grateful to the area chairs, PC
members and external reviewers for contributing their knowledge and expertise, and for
the tremendous amount of work that was done with reading papers and contributing to
the discussions. We are greatly indebted to Jian Weng and Fangguo Zhang, the General
Chairs, for their efforts in organizing the event and to KevinMcCurley and KayMcKelly
for their help with the website and review system. We thank the Asiacrypt 2023 advi-
sory committee members Bart Preneel, Huaxiong Wang, Kai-Min Chung, Yu Sasaki,
Dongdai Lin, Shweta Agrawal and Michel Abdalla for their valuable suggestions. We
are also grateful for the helpful advice and organization material provided to us by the
Eurocrypt 2023 PC co-chairs Carmit Hazay and Martijn Stam and Crypto 2023 PC co-
chairs Helena Handschuh and Anna Lysyanskaya. We also thank the team at Springer
for handling the publication of these conference proceedings.

December 2023 Jian Guo
Ron Steinfeld
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Lattice-Based Cryptography: From Theory to Practice

Xiaoyun Wang

Institute for Advanced Study, Tsinghua University, Beijing, China

Abstract. Nowadays, post-quantum cryptography (PQC) mainly refers
to the public-key cryptosystems built on mathematical hard problems
in computational complexity theory, resisting the attacks from imagi-
nary quantum computers. In the last 30 years, substantial contributions
have beenmade in PQC research. Among the PQC families, lattice-based
cryptography is popularly regarded as a promising candidate; its security
relies on the hardness of computational mathematical problems in lattice
theory with high-dimension. In this talk, I will recap the mathemati-
cal background of lattice-based cryptography. Then I will introduce the
recent progress on the practical designs of lattice-based cryptosystems, as
well as a quick look at an amazing area called fully homomorphic encryp-
tion (FHE) which has interesting applications in privacy computing and
federated learning, etc.



Mathematical Problems Arising from Timing Attacks
on Signatures and Their Countermeasures

Mehdi Tibouchi

NTT Social Informatics Laboratories, Japan

Abstract. One of the aspects of cryptology that make it such an exciting
field to work in is the great variety of people’s backgrounds, and of
the reasons that brought them in to begin with. I personally arrived in
cryptology looking for interesting mathematical problems to solve. I did
find lots of interesting problems, that I mostly could not solve.

Side-channel attacks, and timing attacks in particular, are of course
an important challenge to the deployment of real-world cryptographic
systems. In this talk, however, I would like to discuss them from the
perspective of amathematical problem solver. Based on several examples
from the analysis of signature schemes, I would like to argue that they
are, both on the offensive and on the defensive side, a great source of
non-trivial yet tractable mathematical problems.
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Breaking the Size Barrier: Universal
Circuits Meet Lookup Tables

Yann Disser , Daniel Günther(B) , Thomas Schneider , Maximilian Stillger,
Arthur Wigandt, and Hossein Yalame

Technical University of Darmstadt, Darmstadt, Germany
disser@mathematik.tu-darmstadt.de,

{guenther,schneider,yalame}@encrypto.cs.tu-darmstadt.de,
maximilian.stillger@arcor.de, arthur.wigandt@protonmail.com

Abstract. A Universal Circuit (UC) is a Boolean circuit of
size Θ(n log n) that can simulate any Boolean function up to a certain
size n. Valiant (STOC’76) provided the first two UC constructions of
asymptotic sizes ∼ 5n log n and ∼ 4.75n log n, and today’s most efficient
construction of Liu et al. (CRYPTO’21) has size ∼ 3n log n. Evaluating
a public UC with a secure Multi-Party Computation (MPC) protocol
allows efficient Private Function Evaluation (PFE), where a private func-
tion is evaluated on private data.

Previously, most UC constructions have only been developed for cir-
cuits consisting of 2-input gates. In this work, we generalize UCs to
simulate circuits consisting of (ρ → ω)-Lookup Tables (LUTs) that map
ρ input bits to ω output bits. Our LUT-based UC (LUC) construction
has an asymptotic size of 1.5ρωn log ωn and improves the size of the UC
over the best previous UC construction of Liu et al. (CRYPTO’21) by
factors 1.12×–2.18× for common functions. Our results show that the
greatest size improvement is achieved for ρ = 3 inputs, and it decreases
for ρ > 3.

Furthermore, we introduce Varying Universal Circuits (VUCs), which
reduce circuit size at the expense of leaking the number of inputs ρ and
outputs ω of each LUT. Our benchmarks demonstrate that VUCs can
improve over the size of the LUC construction by a factor of up to 1.45×.

Keywords: universal circuit · private function evaluation ·
multi-party computation

1 Introduction

A Universal Circuit (UC) U is a Boolean circuit that can simulate any Boolean
circuit C consisting of ni inputs, ng gates, and no outputs. The UC U takes, in
addition to the function’s input x, a set of programming bits pC defining the
circuit C that U simulates, i.e., the UC computes U(x, pC) = C(x).

Valiant [51] proposed the first two UC constructions known as 2-way and
4-way split UCs with asymptotically optimal size Θ(n log n) and depth O(n),
where n = ni + ng + no is the size of the simulated circuit C. Kolesnikov and
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Schneider [34] gave the first practical implementation of a UC of non-optimal
asymptotic size O(n log2 n). A line of work [7,22,31,36,57] followed with the
common goal to minimize the size of Valiant’s UC construction. Recently, Liu
et al. [37] provided today’s most efficient UC construction of size ∼ 3n log n.

All of these works designed UCs to simulate Boolean gates with 2 inputs and
1 output. However, Valiant’s UC construction can be generalized to simulate cir-
cuits with (ρ → 1)-LUT, namely Lookup-Tables with ρ inputs x1, . . . , xρ and one
output y and can compute arbitrary functionalities f as y = f(x1, . . . , xρ) [48].

In this work, we propose LUT-based UCs (LUC) that evaluate circuits com-
posed of (ρ → ω)-LUTs having ω output bits y1, . . . , yω and are programmed to
compute yi = f i(x1, . . . , xρ) for 1 ≤ i ≤ ω and an arbitrary functionality f i. In
addition, we introduce Varying UCs (VUCs) that can simulate circuits consist-
ing of (ρ → ω)-LUTs with varying numbers of inputs ρ and outputs ω, thereby
leaking the number of in- and outputs of each LUT. VUCs have various applica-
tions (summarized in Sect. 1.1) like logic locking [55], which enables the designer
to provide the foundry of a chip with a “locked” version of the original circuit.
Once the locked circuit on the chip is fabricated, authorized users can regain
access to the original functionality by using a secret key.

On top of our new UC constructions, we provide implementations of our
constructions and analyze the size optimization of simulating LUT-based circuits
with LUCs and VUCs compared to using traditional Boolean circuit-based UCs.

1.1 Applications of (Varying) Universal Circuits

The most prominent application for UCs is Private Function Evaluation
(PFE) [6], which can be seen as a generalization of Secure Multi-Party Com-
putation (MPC) [20,54]. In MPC, a set of k parties P1, . . . ,Pk jointly compute
a publicly known circuit C on their respective private inputs x1, . . . , xk and
obtain nothing but the result C(x1, . . . , xk). In PFE, the circuit C that shall be
computed is private information as well, i.e., party P1 with circuit input C and
parties P2≤i≤k with data inputs x2, . . . , xk run a protocol that yields nothing
but C(x2, . . . , xk) and parties P2≤i≤k do not learn any information about the
circuit C.

PFE can be implemented via MPC by means of UCs as follows: The par-
ties P1, . . . ,Pk run an MPC protocol that evaluates the universal circuit U
as public circuit on the secret inputs pC of party P1 and x2, . . . , xk of par-
ties P2, . . . ,Pk, resulting in U(pC , x2, ..., xk) = C(x2, ..., xk). In summary, PFE
based on UCs is a very generic approach. It can simply be plugged into arbitrary
MPC frameworks without any modification to the underlying MPC protocol,
resulting in the same security level (semi-honest, covert, or malicious) as the
underlying MPC framework. In addition, PFE is completely compatible with
the features included in MPC like secure outsourcing [27] and non-interactive
computation [36]. PFE is applicable for situations where customers aim to use
a service from companies who want to hide how they perform the computation
and do not learn the customer’s data.1
1 UC-based PFE, unlike PFE based on Fully Homomorphic Encryption (FHE) [19,32],

relies primarily on symmetric encryption and involves far less computation.
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As a trade-off between privacy and efficiency, a variant of PFE called Semi-
Private Function Evaluation (SPFE) was proposed [21,43]. Unlike PFE,
SPFE does not hide the entire function, but leaks the topology of certain sub-
functions. SPFE can be applied in PFE scenarios where specific function compo-
nents are known publicly. This approach is particularly useful in cases where cer-
tain function details have already been disclosed, often for promotional purposes.
An example of this is car insurance companies offering discounts to experienced
drivers.

Beyond (S)PFE, UCs have many applications like hiding policy circuits in
attribute-based encryption [8,18], multi-hop homomorphic encryption [19], verifi-
able computation [16], program obfuscation [58], and hardware logic locking [40].

In this work, we introduceVaryingPrivate Function Evaluation (VPFE)
whose privacy-guarantee lies in between PFE and SPFE. Similar to PFE, our Vary-
ing UCs (VUCs) for VPFE hide the topology and functionality of the LUTs in
the circuit, but leak their number of in- and outputs. This has applications in
logic obfuscation techniques called logic locking, as demonstrated in prior studies
such as LUT-Lock [26] and eFPGA [11]. These techniques proposed using LUTs
to achieve secure logic locking on Application-Specific Integrated Circuit (ASIC)
designs by removing critical elements and mapping them to custom LUTs. As
shown in [11, Fig. 3], the adversary can only determine the number of inputs and
outputs of a LUT, while the LUT’s configuration bits are hidden, which is exactly
our setting for VPFE using VUCs. Without this knowledge, there is no adversarial
information leakage [11, Tab. 5]. Therefore, our VUCs can be used for secure logic
locking while additionally hiding the topology of the circuit.

1.2 Outline and Our Contributions

So far, UC-based PFE research considered synthesis of the input circuit (to
generate a small number of 2-input gates) and construction of the UC (to min-
imize its size) as independent tasks. In our work, we show that using multi-
input/output LUTs these two tasks can be combined to yield a better size. After
giving the preliminaries in Sect. 2 and summarizing the two UC constructions of
Valiant [51] (Sect. 3.2) and Liu et al. [37] (Sect. 3.3), we contribute the following:

LUT-based UC (LUC) Construction (Sect. 4). Valiant’s UC construction
can be generalized to support the evaluation of (ρ → 1)-LUT-based circuits
by merging for the ρ inputs ρ instances of its basic building block called edge-
universal graph [48, App. A]. This leads to a total size of ∼ 1.5ρn log n using
Liu et al.’s [37] UC construction. In our work, we extend this into a novel UC
construction to simulate for the first time functions composed of (ρ → ω)-LUTs
with ρ inputs and ω outputs. Our construction is general, can be applied to all
UC constructions based on Valiant’s framework [51] and improvements by Liu
et al. [37], and fits into the definition of UCs (cf. Definition 1 on page 6).

Size Improvements of LUCs for Basic Primitives (Sect. 4.3). Table 1
shows the history of improvements in UC sizes. Taking (V)PFE as our greatest
motivation for improving UC sizes, we study three basic building blocks that
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Table 1. Asymptotic sizes of various UC constructions and improvements over pre-
vious works. Previous UCs were for 2-input gates, whereas our LUC construction is
generalized to ρ-input LUTs.

Universal Circuit Asymptotic Size Improvement over previous work Fanin

Valiant’s 2-way [51] 5n log n - 2

Valiant’s 4-way [51] 4.75n log n 1.05× 2

Zhao et al.’s 4-way [57] 4.5n log n 1.06× 2

Liu et al.’s 2-way [37] 3n log n 1.5× 2

Our LUC 1.5ρn log n 1.12 − 2.18× ρ

can be used to construct more complex functionalities for common PFE appli-
cations: We compare the asymptotic circuit sizes when evaluating our new LUC
construction with UCs for equivalent binary gates (cf. Table 2) and achieve size
improvements of factor 1.67× for full adders, 2.67× for comparisons, and 2× for
multiplexers.

Varying UC (VUC) Construction (Sect. 5). In several applications (cf.
Sect. 1.1, Sect. 5.2) only the programming of the LUTs needs to be hidden, but
not their dimensions, i.e., we can leak their number of in- and outputs. For
this, we introduce Varying Universal Circuits (VUC) which are circuits that can
simulate other LUT-based circuits while hiding their topology and the LUT pro-
grammings, but leak the LUTs’ number of in- and outputs. We give the first VUC
construction that eliminates the leading ρ factor of our LUC construction (cf.
Table 1), while still maintaining its general design, i.e., we can transform all UC
constructions to our new VUC construction.

Implementation (Sect. 6.1). We provide the first implementation of today’s
most efficient UC construction of Liu et al. [37] which is of independent interest
and our LUC and VUC constructions.2 Moreover, we integrate these three UC
implementations into the MPC framework ABY [13] for PFE. To create LUT-
based circuits, we used the hardware circuit synthesis tool Yosys-ABC [10,53]
and Synopsis Design Compiler [5] for LUT-Mapping. We optimize LUT-based
PFE by combining LUTs with overlapping inputs and multiple outputs. However,
hardware synthesis tools do not by default support mapping to multiple output
LUTs. To address this, we post-process the single-output LUT circuits produced
by the synthesis tool to convert them to multi-output LUT circuits.

Evaluation (Sect. 6.3). We experimentally evaluate our LUC and VUC con-
structions for various LUT sizes, and compare them with the previous best con-
struction of Liu et al. [37]. The asymptotic UC sizes and improvements over
previous works are given in Table 4 for LUC and in Table 6 for VUC. Our new
LUC constructions outperform the state-of-the-art UC [37] in terms of circuit
sizes by up to 2.18×.
2 Our code is published under the MIT license at: https://encrypto.de/code/LUC.

https://encrypto.de/code/LUC
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1.3 Related Work

Universal Circuits (UCs). Valiant [51] defined universal circuits, showed that
they have a lower bound of size Ω(n log n), and proposed two asymptotically
size-optimal constructions using a 2-way or a 4-way recursive structure of sizes
∼ 5n log n and ∼ 4.75n log n, respectively. Hence, relevant research challenges
left are reducing the prefactor and the concrete UC sizes. Valiant’s constructions
can be generalized to simulate circuits composed of (ρ → 1)-LUTs as shown by
Sadeghi and Schneider [48, App. A] which is summarized in Sect. 4.1.

A modular UC construction of non-optimal size ∼ 1.5n log2 n + 2.5n log n
was proposed and implemented by Kolesnikov and Schneider [34]. Their con-
struction beats Valiant’s construction for small circuits thanks to small prefac-
tors. Motivated to provide more efficient PFE, Kiss and Schneider [31] imple-
mented Valiant’s 2-way split construction and proposed a more efficient hybrid
construction combining the 2-way split construction with the modular construc-
tion of [34]. Lipmaa et al. [36] generalized Valiant’s construction to a k-way split
construction and proved that the optimal value for k is 3.147, i.e., k ∈ {3, 4}
when k is an integer. Günther et al. [22] modularized Valiant’s construction,
implemented the more efficient 4-way split construction, gave a generic edge-
embedding algorithm for k-way split constructions, and showed that the 3-way
split construction with Valiant’s framework is less efficient than the 2-way split
construction. Zhao et al. [57] improved Valiant’s 4-way split construction to size
∼ 4.5n log n, which is today’s most efficient asymptotic size for UCs in Valiant’s
framework. Alhassan et al. [7] proposed and implemented a scalable hybrid UC
construction combining Valiant’s 2-way and 4-way split constructions with Zhao
et al.’s improvements [57]. Most recently, Liu et al. [37] reduced redundancies
in Valiant’s framework and provided today’s most efficient UC construction of
size ∼ 3n log n based on Valiant’s 2-way split construction, showed that k = 2-
way split is the most efficient in their new UC framework, and already almost
reached their computed lower bound of ∼ 2.95n log n. We provide the first imple-
mentation of their construction and use it as a basis for our UC constructions
for LUT-based circuits.

Private Function Evaluation (PFE). Katz and Malka [30] designed a
constant-round two-party PFE protocol with linear communication complex-
ity based on homomorphic public-key encryption. Holz et al. [24] optimized
and implemented the protocol of [30], demonstrating its superiority over the
hybrid UC implementation of Alhassan et al. [7] already for circuits with a few
thousand gates. Liu et al. [38] provide a constant-round actively secure two-
party PFE protocol with linear complexity. However, all these protocols are
not generic and hence not directly compatible with arbitrary MPC frameworks,
which makes them less flexible. For instance, these protocols cannot easily be
extended to multiple parties. Ji et al. [25] demonstrated the evaluation of pri-
vate RAM programs using four servers, building the first PFE of non-Boolean
and non-arithmetic functions. In fact, recent PFE applications relied on so-
called Semi-Private Function Evaluation (SPFE) where not necessarily the whole
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function needs to be hidden from the other parties, but selected parts of the
function can be leaked. The first SPFE construction and implementation was
proposed by Paus et al. [43] who provided several building blocks that can be
programmed with one function out of a class of functions (e.g., ADD/SUB whose
circuits have the same topology). Recently, Günther et al. [21] built an SPFE
framework that allows to split the function into public and private components,
embed the private components into UCs, and merge them into one Boolean
circuit that is evaluated via MPC. They demonstrated their framework on com-
puting car insurance tariffs and observed that some information of the function
is public, e.g., that experienced drivers usually get discounts.

MPC on LUTs. In the area of secure multi-party computation (MPC),
prior work noticed that 2-input/1-output gates can be extended into multi-
input/multi-output gates to reduce the circuit evaluation overhead [14,23,39,41,
45]. In Yao’s Garbled Circuit (GC) setting, Fairplay [39] implemented MPC pro-
tocols to evaluate gates with up to 3-input gates. The TASTY framework [23]
implemented ρ-input garbled gates using the garbled row reduction optimiza-
tion [44]. Recently, [45] proposed an MPC protocol that works on circuits with
multi-input/multi-output gates instead of working on circuits with 2-input gates.
Another line of work in the secret-sharing setting aims to optimize the rounds
and communication of the online phase without using Yao’s GC protocol: [14]
extended 2-input AND gates to the general N-input case using LUTs. Recently,
ABY2.0 [41] extended AND gates from the 2-input to the multi-input setting
with a constant online communication complexity at the cost of exponential
offline communication in the number of inputs. In addition, Syncirc [42] handles
the circuit generation with multi-input gates by using industry-grade hardware
synthesis tools [10,53].

2 Preliminaries

We refer to the size of a circuit n as the sum of its number of inputs ni, gates ng,
and outputs no: n = ni + ng + no.

Definition 1 (Universal Circuit [7,51]). A Universal Circuit U for ni inputs,
ng gates, and no outputs is a Boolean circuit that can be programmed to com-
pute any Boolean circuit C with ni inputs, ng gates, and no outputs by defining
programming bits pC such that U(x, pC) = C(x) for any input x ∈ {0, 1}ni .

2.1 Graph Theory

Let G = (V,E) be a directed graph and v ∈ V . The indegree (resp. outdegree)
of v which is the number of incoming (resp. outgoing) edges is denoted by deg+(v)
(resp. deg−(v)). G has fanin (resp. fanout) ρ if deg+(v) ≤ ρ (resp. deg−(v) ≤ ρ)
for all v ∈ V . We denote by Γρ(n) all directed acyclic graphs with at most n
nodes and fanin/fanout ρ for ρ, n ∈ N. For U ⊂ V , G[U ] := {U, {e = (u, v) ∈
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E : u, v ∈ U}} denotes the subgraph induced by U . We omit the index G in the
above definitions if G is clear from the context.

Let G = (V,E) ∈ Γρ(n). A topological order for G is a map ηG : V →
{1, ..., |V |} such that ∀(u, v) ∈ E : ηG(u) < ηG(v).

We represent Boolean circuits as directed acyclic graph G ∈ Γρ(n) for
some ρ > 1. However, almost all previous works [22,31,36,37,51,57] restricted
the circuits, that are simulated via UCs, to fanin/fanout ρ = 2. The reason for
this restriction can be found in the structure of universal circuits according to
Valiant’s [51] and Liu et al.’s [37] constructions. On a high level, a universal
circuit (UC) for simulating circuits C ∈ Γρ(n) is composed of ρ so-called Edge-
Universal Graphs (EUGs) each of size O(n log n), i.e., the total size of the UC
grows linearly with the maximum fanin/fanout ρ of the gates in the simulated
circuit C.

Definition 2 (Edge-Embedding [7,36,37,51]). Let G = (V,E) and G′ =
(P,E′) be directed graphs with P ⊂ V and G′ acyclic. An edge-embedding from
G′ into G is a map ψ : E′ → PG, where PG denotes the set of all paths in G,
with the following properties:

– ψ(e′) is a u-v-path (in G) for all e′ = (u, v) ∈ E′,
– ψ(e′) and ψ(ẽ′) are edge-disjoint paths for all e′, ẽ′ ∈ E′ with e′ �= ẽ′.

Definition 3 (Edge-Universal Graph [7,36,37,51]). A directed graph G =
(V,E), denoted as Uρ(n) with ordered pole set P := {p1, ..., pn} ⊂ V is called an
Edge-Universal Graph for Γρ(n) if:

– G is acyclic,
– Every acyclic G′ = (P,E′) ∈ Γρ(n) that is order-preserving, i.e., ∀e =

(pi, pj) ∈ E′ ⇒ i < j, can be edge-embedded into G.

On a high level, the graph G′ = (P,E′) in Definitions 2 and 3 represents a
Boolean function that is embedded into the graph G = (V,E), which represents
the UC, where P ⊂ V is the pole set of size |P | = n, which represents the inputs,
gates, and outputs of the function represented in G′. As an EUG requires that
every G′ ∈ Γρ(n) can be edge-embedded into G, the UC built by the EUG can
compute any function represented by a graph in the set Γρ(n).

EUGs for Γ2(n) graphs were constructed by merging two EUGs for Γ1(n)
graphs (cf. Definition 4 and Fig. 1) [7,22,31,36,37,51,57]. Thus, research focused
on minimizing the size of general EUGs for Γ1(n) graphs as these can
be merged to EUGs for arbitrary Γρ(n) graphs by merging ρ instances of
Γ1(n) EUGs (cf. Corollary 1).

Definition 4 (Merging of EUG). Let G = (V,E) and Ḡ = (V̄ , Ē) be two
EUG for Γρ(n) and Γρ̄(n) with the same pole order and V ∩ V̄ = P . Then
Ĝ = (V ∪ V̄ , E ∪ Ē) is called the merging of G and Ḡ with pole set P .

Proposition 1. The merging of a Γρ(n) and a Γρ̄(n) EUG is a Γρ+ρ̄(n) EUG.

We prove Proposition 1 in Appendix A of the full version [15].
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Corollary 1 ([51, Corollary 2.2]). An EUG for Γρ(n) can be constructed by
merging ρ EUGs for Γ1(n).

Proof. Let G = (V,E) be a Γ1(n) EUG with pole set P . Create ρ−1 copies of G
with the same pole set and merge these graphs successively. Correctness follows
directly by applying Proposition 1 ρ times. �
We call the UCs that are constructed according to Corollary 1 LUT-based UCs
(LUCs) and this construction was first mentioned in [48, App. A]. In Sect. 5, we
introduce our so-called Varying UC (VUC) construction that is constructed by
two instances of Γ1(n) EUGs but still allows to edge-embed graphs with arbitrary
fanin ρ.

p1

p2

p3

p4

(a) Γ2(4) graph

p1

p2

p3

p4

(b) U1(4)

p1

p2

p3

p4

(c) U1(4)

p1

p2

p3

p4

(d) merged U2(4)

p1

p2

X

p3

Y

p4

X

Y

(e) UC

Fig. 1. (a) shows the Γ2(4) graph with already partitioned edge sets E1 and E2, (b)
and (c) show the EUGs in which the edge sets E1 resp. E2 are embedded, (d) shows
the merged EUG with all edges embedded, (e) shows the resulting UC, where p1 is an
input, and p2, p3, p4 are translated to universal gates.

2.2 Building Universal Circuits from Edge-Universal Graphs

Boolean Circuits. A Boolean circuit is a directed acyclic graph whose nodes
are Boolean inputs, (binary) gates, and outputs, with directed edges represent-
ing the wires. A Boolean gate is a function z : {0, 1}k → {0, 1} for k ∈ N.
However, we can always divide a k-input gate into O(2k) binary gates using
Shannon’s expansion theorem [49]. Unfortunately, we cannot avoid an exponen-
tial blow-up of the number of gates by this transformation [52, Theorem 2.1].
The two most prominent minimization methods for Boolean circuits are due to
Karnaugh [29] and Quine-McCluskey [46]. As already mentioned, the UC con-
structions by Valiant [51] and Liu et al. [37] are designed to embed Γρ(n) graphs,
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thus we possibly need to reduce the outdegree of the gates to ρ by using so-called
copy gates which just copy their inputs [51, Corollary 3.1].3

From Edge-Universal Graphs to Universal Circuits. The translation from
an EUG G = (V,E) into a UC is depicted in Fig. 1 and works as follows. First,
the nodes of circuit C to be embedded in G are considered as the poles P ⊂ V
of the EUG. A pole p ∈ P is translated into an input or output wire, if p
corresponds to an input or output in C, or into a so-called Universal Gate,
if p corresponds to a gate in C. Universal gates take k inputs (k = 2 in the
previous works [7,37,51]), 2k programming bits, compute one output, and can be
programmed to simulate any k input Boolean gate by specifying the truth table
with the programming bits. We can implement universal gates with a binary
tree of 2k − 1 multiplexers (Y-switches) spanned over the 2k programming bits,
where the correct programming bit specified by the k inputs is forwarded to the
output (more details in [7,37]).4

x0

x1x0

p = 0

x1

x1x0

p = 1

(a) Y-switch

x1x0

x1x0

p = 0

x0x1

x1x0

p = 1

(b) X-switch

Fig. 2. Switching blocks with programming bit p (from [34]).

The remaining nodes in the set V \ P are for connecting the routes between
the poles. A node v ∈ V \ P is translated as follows:

– if v has two incoming edges and one outgoing edge, it is translated into a
multiplexer/Y-switch (cf. Fig. 2a). A multiplexer has two inputs x0 and x1

and a programming bit p and outputs one bit, namely xp. It is implemented
with 1 AND gate and 2 XOR gates [34].

– if v has two incoming edges and two outgoing edges, it is translated into an X-
switch (cf. Fig. 2b). An X-switch has two inputs x0 and x1, one programming
bit p and outputs two bits, namely (xp, x1−p). It is implemented with 1 AND
gate and 3 XOR gates [34].

3 Note that a Universal Circuit can also compute circuits with less than the specified
number of inputs, gates, and outputs by using dummy values with no functionality.

4 In Yao’s garbled circuit protocol [54], the UC’s universal gates can be implemented
as garbled tables when the function holder takes over the garbling part.
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– if v has one incoming wire, it is replaced by a single wire that connects all of
the outgoing edges.

The programming bits of the nodes are derived from the edge-embedding.

3 UC Constructions

In this section, we summarize the general guidelines for constructing edge-
universal graphs (Sect. 3.1), present the original idea of Valiant [51] (Sect. 3.2),
and describe the state-of-the-art construction of Liu et al. [37] (Sect. 3.3).

3.1 General EUG Constructions

The strategy for building UCs via EUGs is to construct Γ1(n) EUGs of small-
est size, merging ρ instances of these (cf. Corollary 1) to construct a Γρ(n)
EUG (ρ = 2 for binary gates), and translating this EUG into a UC. Valiant [51]
proposed the first two designs for Γ1(n) EUGs, today known as 2-way and 4-
way constructions, having asymptotic sizes of ∼ 2.5n log n and ∼ 2.375n log n.
Recently, Liu et al. [37] extended Valiant’s framework, simplified the construc-
tion, and achieved an EUG based on the 2-way approach of asymptotically
optimal size of ∼ 1.5n log n, which almost reaches their computed lower bound
of ∼ 1.475n log n. The concrete construction principle of both frameworks is the
same.

Let us assume we aim to construct a Γ1(n) EUG G = (V,E) for a circuit
of size n with a k-way construction and pole set P ⊂ V . First, we put k dis-
tinguished poles from the set P into a block called superpole that has k inputs
and k outputs. Within this superpole, we can route edge-disjointly between its
inputs and poles, and between its poles and outputs. In total, we have �n/k�
superpoles built by the poles set P . The k inputs and outputs of each superpole
then can be used as poles for k instances of a Γ1(�n/k� − 1) nested EUG, which
on a high level allows to find edge-disjoint paths between the superpoles of G.5

More formally, a superpole shall be able to edge-embed any so-called aug-
mented k-way block (similar to an augmented DAG in [37]). An augmented k-
way block is a map that defines the routes between the inputs and poles of the
superpole, and between poles and other poles and outputs.

Definition 5 (Augmented k-way Block). An augmented k-way block G =
(V,E) for pole set P , superpole inputs I, and superpole outputs O is a directed
graph such that

– V = P ∪ I ∪ O, P ∩ I = P ∩ O = ∅ and |I| = |O| = k,
– G[P ] := (P,EP ) has fanin/fanout 1,
– E = EP ∪ Eio with Eio satisfying

5 We distinguish between EUGs and nested EUGs as the recursively constructed
nested EUGs differ from its first EUG in Liu et al.’s construction [37].
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• (Soundness) Every e ∈ Eio satisfies either e = (in, p) or e = (p, out) for
p ∈ P, in ∈ I, out ∈ O,

• (Completeness) For every source (resp. sink) p ∈ P , there exists at most
one in ∈ I (resp. out ∈ O) such that (in, p) ∈ Eio (resp. (p, out) ∈ Eio).

The set of all augmented k-way blocks for P, I,O is denoted by Bk(P, I,O).

Definition 6 (k-way Superpole). A k-way superpole SP (k) is a tuple
SP (k) = (G = (V,E), P,P, I,O) with pole set P ⊂ V , with following condi-
tions:

– P = P ∪ I ∪ O with |I| = |O| = k and P ∩ I = P ∩ O = ∅,
– G can edge-embed every G′ ∈ Bk(P, I,O).

We denote the input recursion points I of a k-way superpole as {in1, in2,
..., ink} and the output recursion points O as {out1, out2, ..., outk}. These nodes
serve as the inputs and outputs to the superpole and will be the poles of the next
recursion, i.e., of the next nested EUG. We neither require the sets I and O to
be disjoint nor that the recursion points of different superpoles must be disjoint.
In fact, Valiant [51] merges the output recursion points of the i-th superpole
with the input recursion points of the (i+1)-th superpole. On a high level, a

Algorithm 1: Valiant(P, k)
Input :Poles P := {p1, ..., pn}, split parameter k
Output :Γ1(n) EUG G = (V, E), pole set P , sub-graphs G∗, G1, ..., Gk

1 V ← ∅, E ← ∅, G∗ ← ∅
2 O0 ← create k dummy nodes
3 for i ← 1 to �n

k
� do

4 Pi ← {pk(i−1)+1, ..., pki}
// Use Oi−1 as input recursion points to this superpole (cf. Fig.

3b)

5 SP (k)i = (Gi = (Vi, Ei), Pi, Pi, Ii, Oi) ← Createsuperpole(Pi, Oi−1, k);
G∗ ← G∗ ∪ {Gi}

6 V ← V ∪ Vi, E ← E ∪ Ei

7 for i ← 1 to k do
8 if n ≤ k then
9 Gi ← (∅, ..., ∅) // Recursion base

10 else
// Take the i-th output recursion point of each superpole (but

the last) as the poles for the next sub EUG

11 P i ← {O1[i], O2[i], ..., O� n
k

�−1[i]}
12 (Gi = (V i, Ei), ...) ← Valiant(P i, k)

13 V ← V ∪ V i, E ← E ∪ Ei

14 return G = (V, E), P, G∗, G1, ..., Gk
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superpole in a nested EUG U1, i.e., an EUG that is derived as a recursion from
a larger EUG U , has k entry points to an input of k distinguished superpoles
in U as well as k exit points from an output of k distinguished superpoles.

3.2 Valiant’s EUG Construction [51]

Definition 7 (Valiant EUG). A Valiant EUG G = (V,E) with pole set
P ⊂ V and sub-graphs G∗, G1, ..., Gk is created by Algorithm1 ( Valiant). We
also use the notation Valiantk(n) for a Valiant EUG with n poles and split
parameter k.

Valiant’s k-way EUG construction is built recursively as depicted in Fig. 3a.
A Γ1(n) EUG is a chain of �n/k� superpoles SP (k)1 = (G1 = (V1, E1), P1,
P1, I1, O1), . . . , SP (k)�n/k� = (G�n/k� = (V�n/k�, E�n/k�), P�n/k�,
P�n/k�, I�n/k�, O�n/k�) (lines 3–6 in Algorithm 1). Createsuperpole(P,O, k)
creates a superpole with poles P , input recursion points O, and split parameter k,
e.g., Valiant’s k = 2-way superpole SP (2) (Fig. 3b). The sets O1, . . . ,O�n/k−1�,
each of size k, then recursively build the poles of the nested EUGs in the next
recursion step (lines 7–13 in Algorithm 1), i.e., we build k nested EUGs G1 =
(V 1, E1), . . . , Gk = (V k, Ek) with pole sets P 1, . . . , P k, where Gi ∈ Γ1(�n/k�−1)
and P i = (O1[i], . . . ,O�n/k−1�[i]). Note that Ii := Oi−1 for all 1 < i ≤ �n/k� as
the k outputs of Gi ∈ SP (k)i are pairwise merged with the respective k inputs
of Gi+1 ∈ SP (k)i+1. The creation of the first output recursion points O0 is
a technical trick, and not needed because these nodes will never be used, but
it simplifies the definition of the algorithm by avoiding a case distinction. An

SP (2)1

SP (2)2

SP (2)� n
k

�

. ..

EUG1(�n
k
� − 1)

. ..

EUG1(�n
k
� − 1)

. ..

(a) Valiant’s EUG1(n) construction.

pi

pi+1

out1 out2

in1 in2

(b) Valiant’s SP (2) con-
struction.

Fig. 3. (a) shows Valiant’s 2-way split construction of EUG1(n) using two instances
of EUG1(�n

k
� − 1). (b) shows the corresponding superpole SP (2) construction for the

EUG.
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advantage of this recursive method is that we can also recursively reduce the
edge-embedding problem to finding paths between poles of the nested EUGs.
Assuming we can easily edge-embed paths from inputs to poles and from poles
to outputs within the superpoles, we can reduce finding a path from a pole
located in SP (k)i to a pole in SP (k)j to the problem of finding a path from
Oi[x] to Oj−1[x] for i, j ∈ [�n/k�], i < j, where x is the index of the target
output of the superpoles’ internal edge-embedding for the concrete poles. Exist-
ing UC implementations [7,22] split the edge-embedding into two sub-tasks: (a)
the superpole edge-embedding that takes care that the paths within a superpole
are defined in a correct manner, and (b) the recursion-point edge-embedding
which chooses the correct paths at the recursion points. We define the following
theorem and refer to [7,37] for its proof:

Theorem 1. Let G = (V,E) be a Valiant EUG with pole set P ⊂ V of size
|P | = n and sub-graphs G∗, G1, ..., Gk. Then G is an EUG for Γ1(n).

3.3 Liu et al.’s EUG Construction [37]

Definition 8 (Liu+ EUG). A Liu+ EUG G = (V,E) with pole set P ⊂ V
and sub-graphs G∗, G1, . . . , Gk is created by Algorithm2 ( Liu+). We also use the
notation Liu+k (n) for a Liu+ EUG with n poles and split parameter k.

We refer to Appendix B of the full version [15] for a complete description
of the construction of Liu et al. [37] including Algorithm 2. In the subsequent
sections of this work, we leverage the following theorem and refer to [37] for its
proof:

Theorem 2 cf. [37, Theorem 4]). Let G = (V,E) be a Liu+ EUG with pole
set P ⊂ V of size |P | = n and sub-graphs G∗, G1, ..., Gk. Then G is an EUG for
Γ1(n) with size bounded by

|SP (k)| − k

k log2(k)
n log2(n) + O(n).

4 Evaluating LUTs with UCs

In this section, we extend the UC constructions from Sect. 3 to be able to sim-
ulate (ρ → ω)-LUT-based circuits. In Sect. 4.1, we first review the construction
of [34,51] to evaluate (ρ → 1)-LUT-based circuits, i.e., circuits that consist of
LUTs with ρ inputs and one output. Then, in Sect. 4.2, we extend this to our
LUT-based UCs (LUCs) that allows the UC to simulate (ρ → ω)-LUT-based
circuits. Finally, in Sect. 4.3, we analyze the most important building blocks for
PFE applications, describe how to implement them with LUTs, and show their
theoretical improvement over evaluating the same building blocks with Boolean
circuits.
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4.1 UCs for LUTs with Multiple Inputs [48,51]

Valiant [51] proposed a method to integrate LUTs with more than two inputs
into UCs and its size has been computed in [48].

We can get a UC with n copies of (ρ → 1)-LUT from a Γρ(n) EUG that is
merged by ρ instances of Γ1(n) EUGs according to Corollary 1. Each pole of U
that is not an input or an output can then be implemented as a LUT with ρ
inputs.

Corollary 2. An EUG for Γρ(n) for ρ ∈ N≥2 can be constructed with size at
most 1.5ρn log2(n) + O(n).

Proof. Construct ρ instances of Liu+2 (n) and merge them. By Corollary 1, this
yields an EUG for Γρ(n) with size bounded by 1.5ρn log2(n) + O(n). �

4.2 UCs for LUTs with Multiple In- and Outputs

In order to support (ρ → ω)-LUTs with ω > 1 outputs in UCs, we propose a gen-
eral solution that is compatible with the original UC constructions of Valiant [51]
and Liu et al. [37]. The high level idea is as follows: For every (ρ → ω)-LUT that
is represented by pole vi, we add ω − 1 so-called auxiliary poles to the EUG and
the real pole vi forwards its inputs directly to these auxiliary poles. The real
pole and its auxiliary poles each compute and output one of the LUT’s output.
Concretely, the first pole takes the ρ inputs of the LUT using any of the above
UC constructions and computes the first output of the LUT. The remaining
poles copy the ρ inputs of the first poles by direct connections and compute the
remaining outputs of the LUT, resulting in a chain of ω poles.

We define the class of Γρ,ω(n) graphs that is used to map n (ρ → ω)-LUTs
to a graph G ∈ Γρ,ω(n). As the poles of the EUG are the nodes of G, we need
to add for each additional output of the i-th LUT (denoted as pole vi,1 in G) in
total ω − 1 additional poles (denoted as vi,2, . . . , vi,ω). These added poles vi,j>1

use the inputs from pole vi,1 and thus, they all have in-degree 0 (cf. condition 3
in Definition 9). We define Γρ,ω(n) as follows:

Definition 9 (Γρ,ω(n)). Let G = (V,E) be a directed acyclic graph with topolog-
ically ordered V := {v1,1, . . . , v1,ω, v2,1, . . . , v2,ω, . . . , vn,1, . . . , vn,ω} and ρ, ω ∈ N.
Then G ∈ Γρ,ω(n) if:

– |V | ≤ nω,
– |{vi,j ∈ V }| ≤ ω ∀i ∈ [n],
– deg+(vi,1) ≤ ρ ∧ deg+(vi,2) = · · · = deg+(vi,ω) = 0,
– deg−(vi,j) ≤ ρ ∀i ∈ [n] ∀j ∈ [ω].

To easily build an EUG with only marginal modifications, we show that
Γρ,ω(n) is also a Γρ(nω) graph:

Proposition 2. Let G ∈ Γρ,ω(n). Then G ∈ Γρ(nω).
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Algorithm 2: Liu+(P, k)
Input :Poles P := {p1, ..., pn}, split parameter k
Output :Γ1(n) EUG G = (V, E), pole set P , sub-graphs G∗, G1, ..., Gk

1 V ← ∅, E ← ∅, G∗ ← ∅
2 for i ← 1 to �n

k
� do

3 Pi ← {pk(i−1)+1, ..., pki}
4 SP (k)i = (Gi = (Vi, Ei), Pi, Pi, Ii, Oi) ← Createsuperpole(Pi, k)
5 G∗ ← G∗ ∪ {Gi}
6 V ← V ∪ Vi, E ← E ∪ Ei

7 for i ← 1 to k do
8 if n ≤ k then
9 Gi ← (∅, ..., ∅) // Recursion base

10 else
// Take the i-th output recursion point of each superpole as

the poles for the next sub EUG

11 P i ← {O1[i], O2[i], ..., O� n
k

�−1[i], O� n
k

�[i]}
12 (Gi = (V i, Ei), ...) ← Liu+(P i, k)

13 V ← V ∪ V i, E ← E ∪ Ei

14 foreach (u, v) ∈ E do
15 if u ∈ s and v is recursion point for some superpole s ∈ G∗ then
16 Gx ← the EUG in which v is a pole
17 E ← E \ {(u, v)}
18 w ← Γ −

Gx(v)
19 E ← E \ {(v, w)}
20 E ← E ∪ {(u, w)}
21 else if u is recursion point for some superpole s ∈ G∗ and v ∈ s then
22 Gx ← the EUG in which u is a pole
23 E ← E \ {(u, v)}
24 w ← Γ+

Gx(u)
25 E ← E \ {(w, u)}
26 E ← E ∪ {(w, v)}
27 remove all recursion points from V

28 return G = (V, E), P, G∗, G1, . . . , Gk

Proof. Let G = (V,E) ∈ Γρ,ω(n). Obviously, it holds that |V | ≤ nω (condition 1
in Definition 9). Further, for all v ∈ V it holds that deg+(v) ≤ ρ and deg−(vi,j) ≤
ρ from conditions 3 and 4 in Definition 9. Thus, G ∈ Γρ(nω). �

Now, we can build EUGs for multi-input and multi-output LUTs.

Corollary 3. Let ρ, ω ∈ N. Then there exists a EUG for Γρ,ω(n) with size
bounded by

1.5ρnω log2(nω) + O(nω).
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Proof. Step 1: Create a Γρ(nω) EUG U = (V U , EU ) with a topologically ordered
pole set P ⊂ V U that has the form (..., vi−1,ω, vi,1, ..., vi,ω, vi+1,1, ...) for all i ∈ [n],
i.e., the original pole vi,1 directly preceding the auxiliary poles vi,j for 1 < j ≤ ω:
We do this by creating a Liu+ EUG U with pole set P and split parameter
k = 2. Then we merge ρ instances of it. By Theorem 2 with |SP (2)| = 5 [37] and
Corollary 1, this yields a Γρ(nω) EUG of size at most 1.5ρnω log2(nω) + O(nω).

Step 2: Adjust U to get the final EUG Ū = (V Ū , EŪ ) with pole set P ⊂ V Ū :
Let vi,j be an auxiliary pole of vi,1 for i ∈ [n], 1 < j ≤ ω. Remove all of its
incoming edges and replace each of them with an edge connecting the original
pole vi,1 with the auxiliary pole vi,j , i.e., remove (w, vi,j) ∈ EU for w ∈ V U and
replace it by (vi,1, vi,j). This yields ρ edges (vi,1, vi,j) per auxiliary pole vi,j (one
for each EUG instance). Thus, EU becomes a multi set. The graph that results
from modifying U in the just described way is denoted by Ū and its pole set is
denoted by P .

Step 3: Embed any graph G = (P,E) ∈ Γρ,ω(n) into Ū : To show that Ū is a
EUG for Γρ,ω(n), we need to define an edge-embedding ψ from G into Ū . Thanks
to Proposition 2, it holds that G ∈ Γρ(nω). Note that the “relative topological
order” is maintained, i.e., ηG(vi) < ηG(vi+1) for i ∈ [n]. However, although Ū
has nω poles, it is not an EUG for all Γρ(nω) graphs as all poles vi,j>1 are
directly connected to pole vi,1 via the edge (vi,1, vi,j>1) for i ∈ [n], j ∈ [ω]. Thus,

(3 → 1)-LUTi

(3 → 1)-LUTi+1

. . .

. . .
. . . . . .

. . . . . .

(a) Two (3 → 1)-LUTs in our LUC.

(3 → 2)-LUTi,1

(3 → 2)-LUTi,2

. . .

. . .
. . . . . .

. . . . . .

(b) One (3 → 2)-LUT in our LUC.

Fig. 4. Embedding of (3 → 1)-LUTs (a) and (3 → 2)-LUTs (b) in a single superpole of
our LUC construction. The blue line in (b) indicates that the inputs of the first LUT
part are forwarded to the second LUT part. Each of the LUT parts in (b) generate one
output with the same inputs, thus building together a (3 → 2)-LUT. The red edge is
optional and can be removed as only one input in the superpole is needed.
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we cannot find edge-disjoint paths from any pole vk<i,l to vi,j>1 for k ∈ [n],
l ∈ [ω], as these would all use an ingoing edge of pole vi,1. So, we need to show
that all nodes vi,j>1 ∈ G have indegree 0 to ensure that no edge-disjoint path
needs to end up at pole vi,j>1 ∈ Ū . This, however, is fulfilled due to condition
3 of Definition 9, i.e., there exists no edge e = (vk<i,l, vi,j>1) ∈ G for which
an embedding ψ(e) needs to be defined (the same argument holds for edges
e = (vi,l<j , vi,j) ∈ G).

So far, we showed that G only contains edges e = (vk<i,l, vi,1) ∈ G, which are
the only ones to edge-embed into Ū . However, as we just added additional edges
to poles vi,1 and no outgoing edges from any poles in Ū have been removed, we
can get the edge-embedding ψ directly from Corollary 2. �

In Fig. 4, we present our LUC construction for the embedding of both (3 →
1)-LUTs and (3 → 2)-LUTs within a single superpole. Specifically, in Fig. 4a, a
superpole consists of two (3 → 1)-LUTs, each having three individual inputs and
one output. In contrast, in Fig. 4b, a (3 → 2)-LUT requires two poles, limiting the
embedding capacity to a single (3 → 2)-LUT within one superpole. We achieve
this by implementing each pole as a (3 → 1)-LUT in our LUC construction,
effectively combining them to form a (3 → 2)-LUT. The second part of the
LUT shares the same inputs as the first part (indicated by the blue edge in
Fig. 4b), eliminating the need for an additional node between the two poles. The
two outputs of the (3 → 2)-LUT are forwarded to the lower node and can then
propagate to the nested EUGs through this node. As an optimization, we can
remove one incoming edge from the superpole (indicated by the red edge in
Fig. 4b) since only one outer input is utilized.

4.3 Improvement

In this section, we show improvements of our LUC for several basic building
blocks like full adder (FA), comparator (CMP), and multiplexer (MUX). As
summarized in Table 2, our basic building blocks are smaller than the previous
constructions [7,22,31,37] in UC size by factor ≈ 1.67×–2.67×. Note that we
compute improvement factors based only on the prefactor. The actual enhance-
ments will be greater as also the logarithmic term is improved. This UC size
reduction is achieved by merging 2-input gates into larger multi-input LUTs.

Full Adder (FA): The optimized implementation of a FA uses four 2-input XOR
gates and one 2-input AND gate (cf. [33, Fig. 2]). We can implement a FA using
only one (3 → 2)-LUT, resulting in an improvement by ≈ 1.67× in LUC size (cf.
Table 2). The embedding of a (3 → 2)-LUT in our LUC is depicted in Fig. 4b.

Comparator (CMP): The 1-bit comparator consists of three 2-input XOR gates
and one 2-input AND gate (cf. [33, Fig. 6]). Our improved LUT-based instan-
tiating for CMP uses only one (3 → 1)-LUT, resulting in an improvement of
≈ 2.67× in LUC size (cf. Table 2). The embedding of a (3 → 1)-LUT in our
LUC is depicted in Fig. 4a.
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Multiplexer (MUX): The MUX block can be instantiated with two 2-input XOR
gates and one 2-input AND gate (cf. [35, Fig. 2]). In our approach, MUX can be
instantiated with only one (3 → 1)-LUT, resulting in an improvement of ≈ 2×
in the LUC size (cf. Table 2). The embedding of a (3 → 1)-LUT in our LUC is
depicted in Fig. 4a.

Complex Building Blocks. We now present several motivating examples that
benefit from improvements of our basic building blocks.

Addition and Subtraction. An l-bit addition is composed of a chain of l Full
Adders (FA) (cf. [33, Fig. 1]. An l-bit subtraction is defined as x − y = x + y + 1
and can be constructed similarly to an addition circuit using l FAs (cf. [33,
Fig. 3]. Using our FA construction, the LUC size of the addition and subtraction
is improved by ≈ 1.67×.

Table 2. LUC sizes for basic building blocks which can be used to construct more
complex functionalities. b denotes the frequency of occurrence of the specific building
blocks within the circuit.

Building

Block (BB)
Boolean Circuit LUT-based Circuit

Improvement
# Gates Asympt. UC Size LUT type Asympt. LUC Size

4 XOR
FA

1 AND
15b log2 5b + O(b) (3 → 2)-LUT 9b log2 b + O(b) 1.67×

3 XOR
CMP

1 AND
12b log2 4b + O(b) (3 → 1)-LUT 4.5b log2 b + O(b) 2.67×

2 XOR
MUX

1 AND
9b log2 3b + O(b) (3 → 1)-LUT 4.5b log2 b + O(b) 2×

Multiplication. Multiplication of two l-bit numbers can be composed of l2 of 2-
input AND gates ((2 → 1)-LUT) and (l −1) l-bit adders [33]. Using the efficient
implementation for LUT-based adders, the LUC size of the multiplication circuit
is improved by ≈ 1.67×.

Multiplexer. An l-bit multiplexer circuit can be composed of l parallel MUX
blocks (cf. [35, Fig. 9]) to select one of the l-bit inputs. So, using our LUT-based
MUX has ≈ 2× improvement for an l-bit multiplexer.
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Comparison. An l-bit comparison circuit can be composed of a chain of l CMP
blocks (cf. [33, Fig. 5]). Thus, our CMP construction improves the LUC size of the
comparison circuit by ≈ 2.67×. A minimum circuit which selects the minimum
value of a list of m l-bit values is composed of l-bit comparison and multiplexer
circuits (cf. [33, Fig. 8]) and hence is improved by ≈ 2.3×.

5 Our Varying UC (VUC) Construction

In many applications, sub-functionalities are naturally implemented by LUTs
with higher dimension, e.g., Sboxes in AES. In this case, we aim to put sin-
gle LUTs with a higher dimension (e.g., ρ = 8) into the UC. Using our LUC
construction for this concrete example, we would need to compose the UC of 8
instances of Γ1(n) EUGs, even if we only need the full (8 → 1)-LUT few times
in the whole circuit.6 Thus, our aim is to find a way to use single LUTs with
input dimension of ρ > 3 without a massive influence on the total circuit size.

In this section, we present our Varying UC (VUC) construction, which devi-
ates from the conventional universal circuits (UCs) that have been widely stud-
ied [7,22,31,34,36,37,51]. Traditionally, UCs have been designed to conceal both
the topology and the gate functionality of the simulated function, and have relied
on the use of fixed computational units, namely universal 2-input gates or, like in
our work, (ρ → ω)-LUTs with a globally fixed number of inputs ρ and outputs ω.
A VUC, however, allows for the use of different programmable computational
units, thereby leaking information about the types of units used. In particular,
we focus on VUCs built using (ρ → ω)-LUTs with varying numbers of inputs
and outputs, thereby revealing the dimensions of the individual LUTs.

Definition 10 (Varying Universal Circuit (VUC)). A Varying Universal
Circuit V for ni inputs, the ordered list of ng gates G = (G1, . . . ,Gng

) of varying
input and output dimensions, and no outputs is a Boolean circuit that can be
programmed to compute any Boolean circuit C with ni inputs, no outputs, and
ng gates that can be topologically ordered into G by defining a set of programming
bits pC such that V(x, pC) = C(x) for all possible input values x ∈ {0, 1}ni .

In Sect. 5.2, we discuss several applications of VUCs as well as their leakage.

5.1 The VUC Construction

First, we show how to build our VUC for evaluating different (ρ → 1)-LUTs
with varying input dimensions ρ. Later in this section, we show how to extend
this construction to evaluate any (ρ → ω)-LUTs with varying input and output
dimensions ρ and ω. In our VUC construction, we keep building our UC from
only two instances of a Γ1(n) EUG, independent of the LUT sizes. This reduces
the overhead of our LUT-based UC construction that merges ρ instances of the

6 An alternative would be to decompose the larger LUTs into multiple smaller ones
using Shannon expansion [49].
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large Γ1(n) EUG for (ρ → 1)-LUT. We do this by adding auxiliary poles u to
the EUG whose task is to collect up to two inputs and forward these inputs
via direct edges to a real pole v to push the indegree of v to ρ. Definition 11
defines ΓP+,P−(n) graphs, which classify the graphs that can be edge-embedded
into our VUC construction, namely, the vectors P+ and P− specify the maximum
indegree and outdegree of each LUT in our circuit that we aim to evaluate with
the UC. Our VUC design additionally allows the evaluation of functions that
only use a single type of ρ input LUTs by setting P+ = 1ρ,7 i.e., each LUT in
the circuit can have at most ρ inputs and the resulting VUC implements each
universal gate as a (ρ → 1)-LUT. In this case, the VUC is a real LUT-based
UC (LUC) and can be used for PFE. In the case for VPFE, the universal gates
of the UC have different implementations and therefore leak the specific input
sizes of all LUTs.

Definition 11 (ΓP+,P−(n)). Let G = (V,E) be a directed acyclic graph with
topologically ordered V := {v1, ..., vn} and P+,P− ∈ N

n. Then G ∈ ΓP+,P−(n)
if:

– |V | ≤ n,
– deg+(vi) ≤ P+

i ∧ deg−(vi) ≤ P−
i ∀i ∈ [n].

If P+/− = 1ρ for some ρ ∈ N, we write ρ instead of 1ρ.

In this sense, Corollary 2 yields a Γρ,ρ(n) EUG. In the following, we describe
our VUC construction. An example of the whole EUG creation and the embed-
ding process is depicted in Fig. 5. The explicit creation of the used auxiliary
graph is given by Algorithm3.

The key observation for our VUC construction is that, when merging two
instances of Γ1(n) EUGs, each of the n poles (excluding inputs and outputs)
can take two inputs, and can, but not necessarily need to, compute one output.
We can use this observation to merge poles in order to collect ρ > 2 inputs for
our LUT. For example, looking at Fig. 5, a (5 → 1)-LUT consists of the three
poles p6, p7, and p8, where pole p6 (resp. p7) just collects two (resp. one) inputs,
but does not compute any output. Instead, the ingoing edges are forwarded to
pole p8 (dashed lines) and the outgoing edges (dotted gray lines) are removed.
Pole p8 now has, in addition to its two regular ingoing edges, three additional
ingoing edges that come directly from poles p6 and p7. On a high level, we can
merge �ρ/2� poles into one (ρ → 1)-LUT, while the first �ρ/2� − 1 so-called
auxiliary poles each collect up to two inputs for the LUT which are then directly
forwarded to the last pole, which takes the last two inputs of the LUT and
computes the output.

7 1 denotes the vector where each entry is 1.
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More formally, we begin by constructing an auxiliary graph Ḡ. For each
pole p that has ρ > 2 incoming edges, we create an auxiliary pole for each two
additional inputs, i.e., �ρ/2− 1� auxiliary poles. Then, we replace all except two
edges from pole p by edges to the auxiliary poles. The purpose of the auxiliary
poles is to forward their inputs to the original multi-input pole. The resulting

v1 v2 v3 v5v4

v6

(a) Original graph

v1 v2 v3 v5v4

v6 u6,1 u6,2

(b) Corresponding auxiliary graph
p1

p2

p3

p4

p5

p6

p7

p8

(c) Edge-embedding of the original graph. First, the edges from the auxiliary graph are
embedded. Then, dotted gray edges are removed from the EUG, while dashed edges
are added to the EUG, resp. to the edge-embedding. The result is an edge-embedding
for the original graph. Now we can replace the ingoing edges to p6 by directed edges to
the multi-input pole p8. The auxiliary pole p7 becomes a Y-Switch that only forwards
the orange wire.

Fig. 5. Our varying UC construction for ρ = 5 inputs.
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Algorithm 3: AuxiliaryGraph(G)
Input :G = (V, E) ∈ ΓP+,2(n)

Output : Ḡ = (V̄ , Ē) ∈ Γ2(n + Δ) with Δ =
n∑

i=0

max{�P+
i −2

2
�, 0}

1 Ḡ = (V̄ , Ē) ← (V, ∅)
2 foreach vi ∈ V do
3 j ← 0
4 foreach e = (w, vi) ∈ E do
5 if j ≥ 2 then
6 if j ≡ 0 (mod 2) then
7 V̄ ← V̄ ∪ {u

i, j
2
}

8 Ē ← Ē ∪ {(w, u
i,� j

2 �)}
9 else

10 Ē ← Ē ∪ {e}
11 j ← j + 1

EUG U then guarantees that there can be a path from any pole with lower order
to the corresponding auxiliary poles.

If there is a multi-input gate with an odd number of inputs ρ, then there
will be one auxiliary pole in Ḡ with only one input. In this case, we can share
this auxiliary pole for two poles if both have an odd number of inputs (which is
always the case in the special case of PFE). This concrete auxiliary pole is then
later translated into an X-switching block so that the inputs can be forwarded
to the correct LUT.

Theorem 3. Let P+ ∈ N
n. Then there exists an EUG for ΓP+,2(n) with size

bounded by

3(n + Δ) log2(n + Δ) + O(n + Δ),

where Δ :=
n∑

i=1

max{�P+
i −2

2 �, 0}.

Proof. Step 1: Create a Γ2(n + Δ) EUG U = (V U , EU ) with a topologically
ordered pole set P that has the form (..., vi−1, ui,1, ..., u

i,� P+
i

−2
2 �

, vi, ...) for all

i ∈ [n], i.e., the auxiliary poles ui,j for j ∈ [�P+
i −2

2 �] are directly preceding the
original pole vi: We do this by creating a Liu+ EUG U with pole set P and split
parameter 2. Then we merge two instances of it. By Theorem 2 and Corollary 1,
this yields a Γ2(n + Δ) EUG of size at most 3(n + Δ) log2(n + Δ) + O(n + Δ).

Step 2: Adjust U to get the final EUG Ū = (V Ū , EŪ ) with pole set P ⊂ V Ū :

Let ui,j be an auxiliary pole of vi for i ∈ [n], j ∈ [�P+
i −2

2 �]. Remove all of its
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outgoing edges and replace each of them with an edge connecting the auxiliary
pole to the original multi-input pole, i.e., remove each (ui,j , w) ∈ EU for w ∈ V U

and replace it by (ui,j , vi). This yields two edges (ui,j , vi) per auxiliary pole ui,j .
Thus, EU becomes a multi set. If P+

i is odd and j = 1, add only one of these
edges instead of two (otherwise, vi would have too many ingoing edges). The
graph that results from modifying U in the just described way is denoted by Ū .

Step 3: Embed any graph G = (P,E) ∈ ΓP+,2(n) into Ū : For this, we construct
a Γ2(n+Δ) graph using auxiliary poles for nodes with indegree higher than 2 by
setting Ḡ = (V̄ , Ē) = auxiliaryGraph(G) ∈ Γ2(n+Δ) (Algorithm 3). Note that
the “relative topological order” is maintained, i.e., ηḠ(vi) < ηḠ(vi+1) ∀i ∈ [n].
Edge-embedding Ḡ into Ū yields ψ : Ē → PŪ . To show that Ū is a ΓP+,2(n)
EUG, we need to define an edge-embedding ψ̄ from G into Ū : Note that for
edges e = (vi, vl) ∈ G \ Ḡ, i.e., edges whose endpoints are not auxiliary poles,
ψ already yields edge-disjoint vi-vl-paths and we can set ψ̄(e) = ψ(e) for those
edges.

Now consider edges e = (vi, vl) ∈ G ∩ Ḡ, i.e., the endpoints of those
edges are transformed into an auxiliary pole in Ḡ. For each e, there is exactly
one ē = (vi, ul,j) ∈ Ḡ for j ∈ [�deg+(vl)−2

2 �] (line 8 in Algorithm 3). Now set
ψ̄(e) = ψ(ē) + (ul,j , vl) for one of the possibly two edges (ul,j , vl) that were
added to Ū before. Obviously, this yields a vi-vl-path. Since there are at most
two edges connecting to an auxiliary pole, we can choose a unique last edge for
each path. Because the paths in the image of ψ were already edge-disjoint, also
the paths in the image of ψ̄ are edge-disjoint. Thus, ψ̄ is an edge-embedding of
G into Ū . �

Theorem 3 gives us an EUG that can be used to build VUCs for (ρ → 1)-LUTs
with varying parameter ρ and can thus be used for VPFE. Next, we consider
VUCs for a fixed constant ρ which yields classical PFE.

Corollary 4. Let P+ = 1ρ ∈ N
n for ρ > 2. Then there exists a EUG for

ΓP+,2(n) with size bounded by

3�ρ

2
n� log2(�

ρ

2
n�) + O(�ρ

2
n�).

Proof. We follow the proof of Theorem 3 and highlight the differences.

Step 1: Create a Γ2(�ρ
2n�) EUG U with topologically ordered pole set P that

has the form (..., vi−1, ui,1, ..., ui,� ρ−2
2 �, vi, ui+1,1, ..., ui+1,	 ρ−2

2 
, vi+1, ...) as
described in step 1 in the proof of Theorem3.

Step 2: Adjust U to get the final EUG Ū = (V Ū , EŪ ) with pole set P ⊂ V Ū as
described in step 2 in the proof of Theorem3 with one difference: If ρ is odd, we
share one auxiliary pole ui,1 for two consecutive original poles vi and vi+1, i.e.,
we add the two edges (ui,1, vi) and (ui,1, vi+1).

Step 3: Edge-embed G into Ū as described in step 3 in the proof of Theorem 3
with one difference: If ρ is odd, the auxiliary graph Ḡ = (V̄ , Ē) shares one
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auxiliary pole ui,1 for two consecutive original poles vi and vi+1, i.e., ui+1,1 is
removed from V̄ and the edge (w, ui+1,1) is replaced by the edge (w, ui,1). As ui,1

and ui+1,1 both have indegree 1, ui,1 now has indegree 2. �

Multi-output Support for VUCs. An auxiliary graph that represents
multi-output LUTs is a ΓP+,P−,Ω−(n) graph as defined in Definition 12, i.e.,
ΓP+,P−,Ω−(n) classifies the graphs that can be edge-embedded into our UC con-
struction. Here, P+ is a vector of size n that specifies the indegree of each node in
the auxiliary graph and thus represents the maximum number of inputs of each
LUT in the UC. P− is a constant that specifies the maximum outdegree of each
node in the auxiliary graph/of each LUT in our circuit that we aim to evaluate
with the UC. Similarly, Ω− describes the number of distinguished outputs of the
LUTs, i.e., P− specifies the number of copies we have for each output of a LUT
in our circuit, while Ω− sets the number of outputs for each LUT.

As later, when embedding G into the EUG, each output of a LUT represents
a separate value, i.e., we need to put each output into an individual pole. As
the poles of the EUG are the nodes of the auxiliary graph, we need to add for
each additional output of the i-th LUT in total Ω−

i − 1 additional poles. In
Definition 12, we denote the outputs of the i-th LUT with vi,1, . . . , vi,Ω−

i
.

Definition 12 (ΓP+,P−,Ω−(n)). Let G = (V,E) be a directed acyclic graph with
topologically ordered V := {v1,1, . . . , v1,Ω−

1
, v2,1, . . . , v2,Ω−

2
, . . . , vn,1, . . . , vn,Ω−

n
}

and P+,P−, Ω− ∈ N
n. Then G ∈ ΓP+,P−,Ω−(n) if:

– |V | ≤
n∑

i=1

Ω−
i ,

– |{vi,j ∈ V }| ≤ Ω−
i ∀i ∈ [n],

– deg+(vi,1) ≤ P+
i ∧ deg+(vi,2) = · · · = deg+(vi,Ω−

i
) = 0,

– deg−(vi,j) ≤ P−
i ∀i ∈ [n] ∀j ∈ [Ω−

i ].

To easily build an EUG with only marginal modifications, we show that a
ΓP+,P−,Ω− is also a ΓP+,P− graph:

Proposition 3. Let G ∈ ΓP+,P−,Ω−(n). Then G ∈ ΓP+,P−(n + Δ), where Δ :=
n∑

i=1

Ω−
i − 1.

Proof. Let G = (V,E) ∈ ΓP+,P−,Ω−(n). It holds that |V | ≤
n∑

i=1

Ω−
i = n + Δ

where Δ =
n∑

i=1

Ω−
i − 1 (condition 1 in Definition 12). Further, for all v ∈ V

it holds that deg+(v) ≤ P+
i and deg−(vi,j) ≤ P−

i from conditions 3 and 4 in
Definition 12. �

We can build VUCs using Corollary 5 and UCs with constant ρ and ω using
Corollary 6, whose prove directly follows from Corollarys 4 and 5.
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Corollary 5. Let P+, Ω− ∈ N
n. Then there exists a EUG for ΓP+,2,Ω−(n) with

size bounded by

3(n + Δ) log2(n + Δ) + O(n + Δ),

where Δ :=
n∑

i=1

(max{�P+
i −2

2 �, 0} + Ω−
i − 1).

Proof. Let G = (P,E) ∈ ΓP+,2,Ω−(n) be the graph to be embedded in an EUG
with P = {v1,1, . . . , v1,Ω−

1
, v2,1, . . . , v2,Ω−

2
, . . . , vn,1, . . . , vn,Ω−

n
}. We

can transform G into a ΓP+,2(n + Δ′) graph where Δ′ :=
n∑

i=1

Ω−
i − 1 . Using

Theorem 3, we get an EUG for ΓP+,2(n + Δ′) that is bounded by

3(n + Δ′ + Δ′′) log2(n + Δ′ + Δ′′) + O(n + Δ′ + Δ′′),

where Δ′′ :=
n∑

i=1

max{�P+
i −2

2 �, 0} and setting Δ := Δ′ + Δ′′ yields an EUG of

the given size.
We need to add some more edges to the resulting EUG Ū = (V Ū , EŪ ) with

pole set P ⊂ V Ū , namely the inputs of the first pole associated with the LUT
need to be forwarded to all remaining output poles of the same LUT as follows:

∀i ∈ [n] : ∀vi,1 ∈ P : ∀(u, vi,1) ∈ EŪ : ∀vi,j ∈ P, j > 1 : EŪ = EŪ ∪
(u, vi,j). �
Corollary 6. Let P+ = ρ ∈ N

n for ρ > 2 and Ω− = 1ω ∈ N
n for ω > 1. Then

there exists an EUG for ΓP+,2,Ω−(n) with size bounded by

3(�(ρ

2
+ ω − 1)n�) log2(�(

ρ

2
+ ω − 1)n�) + O(�(ρ

2
+ ω − 1)n�).

5.2 Applications of Varying UCs (VUCs)

If we use a VUC instead of a UC in MPC-based PFE, we get Varying Private
Function Evaluation (VPFE). VPFE allows a set of k parties P1, . . . ,Pk, to
jointly compute a circuit C held by P1 on private data x2, . . . , xk held by Pi≥2

to obtain nothing but C(x2, . . . , xk), and Pi≥2 learn nothing about C but the
dimensions of all its LUTs. Thus, VPFE does not leak the whole topology of
sub-circuits like SPFE (cf. Sect. 1.1), but leaks more information than PFE.

We can reduce the leakage by randomly changing the sequence of LUTs
according to the topological order of the simulated circuit. In this way, building
blocks (e.g., full adders) do not occur as a whole block of consecutive LUTs of
the same dimension in the VUC. The function would be mapped to different
sequences of dimensions and thus we would remove fingerprints of certain func-
tions. So, even multiple building blocks of different circuit layers can be mixed
in a sequence. This technique, however, still allows to exclude certain functions
when they cannot be mapped to the given sequence of dimensions.
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Some applications, such as logic locking (cf. [11, Fig. 3] and Sect. 1.1) do not
require full privacy of the evaluated function and allow for the leakage of the
sequence of dimensions of the used LUTs. However, in general PFE applications,
even knowledge of the LUT sizes may reveal too much information about the
protected function. Our analysis (cf. Sect. 4.3) and our benchmarks (cf. Sect. 6.3)
demonstrate that many functionalities can be reduced to 3-input LUTs. Conse-
quently, we benefit from using LUCs with 3-input LUTs in most cases. This
observation is not surprising, as most arithmetic operations can be reduced to
full adders (3-input LUTs), and only a small number of sub-functionalities bene-
fit from using LUTs with more than 3 inputs. However, when adding only one of
these larger LUTs, the overall size of the LUC would be significantly increased, as
a complete EUG graph would need to be added to the circuit for each additional
input of all LUTs, even if the higher dimension is used only once. Therefore,
VUCs are well-suited for embedding circuits with a limited number of various
LUT combinations, such as (3 → 1)-LUT and (8 → 8)-LUT, resulting in sig-
nificant size improvements. By implementing simple functionalities with (3 →
1)-LUTs and allowing complex functionalities with (8 → 8)-LUTs, a wide range
of possible functions can be achieved without compromising critical information
(which can always be implemented using a single LUT type). The (8 → 8)-LUTs
offer a vast set of 256 combinations, enabling the implementation of a large
and diverse collection of functionalities. Despite the inclusion of these additional
combinations, the resulting leakage remains limited.

There are many PFE applications that benefit from such a setting, including
credit checking [17], user-specific tariff calculations [21], and medical diagno-
sis [9]. All these applications rely on sub-functionalities such as classifiers. A
classifier utilizes a mapping table to look up a class based on input data, and
then outputs the determined class. To illustrate, a car insurance tariff calculator
may use a classifier to establish a basic price based on the type of car a poten-
tial customer drives. Multi-input LUTs, such as (8 → 8)-LUTs, can efficiently
implement these classifiers as they provide exactly such a table lookup. By incor-
porating individually tailored multi-input LUTs in a VUC, we can benefit from
overall size improvements over the LUC construction, while still maintaining the
internal implementation of the classifier, including the computation performed
to obtain the address of the lookup whose topology is hidden.

6 Implementation and Evaluation

We implement our proposed UC constructions using the MPC framework
ABY [13] to provide a fair comparison to previous PFE works on UCs [7,22,31].
MPC frameworks supporting multi-input garbled circuits [39] reduce the com-
munication of evaluating a single ρ input LUT to 2ρ − 1 ciphertexts. In ABY,
we implement ρ input LUTs as a multiplexer tree consisting of 2ρ − 1 2-input
AND gates, requiring 2(2ρ − 1) ciphertexts using half-gates [56]. This could be
further reduced to 1.5(2ρ − 1) ciphertexts using three-halves garbling [47].
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We benchmark our LUC construction (cf. Sect. 4) and compare it with the
most recent UC of Liu et al. [37] that simulates circuits with binary gates. More-
over, we evaluate our VUC construction (cf. Sect. 5) to show the improvement
over Liu et al.’s UC [37] and our LUC construction. All results in this section use
the EUG construction by Liu et al. [37] to construct the underlying Γ1 EUGs.
We discuss the LUT generation in Sect. 6.1, details about our UC compilation
in Sect. 6.2, and experimental results in Sect. 6.3.

6.1 LUT Generation

Hardware synthesis is a crucial process in electronic design automation that
involves converting an abstract function description into a functionally equivalent
logic implementation. This transformation is achieved through the utilization of
various optimization and technology mapping algorithms. These algorithms have
been extensively researched and developed over the course of many years. The
resulting circuit implementation is typically dependent on the target hardware
platform and the manufacturing technology employed. The two most common
target hardware platforms are Application Specific Integrated Circuits (ASICs)
and Field Programmable Gate Arrays (FPGAs).

This work specifically focuses on exploiting multi-input LUTs, which are
fundamental components of FPGAs (which consist of logic cells containing pro-
grammable LUTs) and their corresponding synthesis tools. Although ASIC syn-
thesis tools can also map to multi-input gates, this process is laborious, imprac-
tical, and necessitates the creation of large libraries to accommodate all possible
LUTs for each input size. Thus, we chose FPGA synthesis tools. The market
offers commercial FPGA synthesis tools like Intel Quartus Prime [1], VTR [2],
XST [4], and Vivado Synthesis tools by Xilinx [3]. However, these tools synthesize
LUT-based circuits tailored to the specific features of their respective devices.
For instance, most current FPGA devices support a maximum of 6-input LUTs.
In our work, we aim to generate circuits with up to 8-input LUTs, which, to the
best of our knowledge, is not supported by mainstream commercial tools.

In this work, similar to [12,14], we leverage the mapping capabilities of the
open-source tools Yosys [53] and ABC [10]. Yosys allows us to transform the
circuit descriptions into a network of low-level logic operations represented in
an intermediate format. Subsequently, ABC [10] organizes this network into a
Directed Acyclic Graph (DAG) and maps it to a depth-optimized circuit com-
posed of LUTs. It is worth noting that ABC [10] does not inherently support
mapping to multi-output LUTs. To overcome this limitation, we perform post-
processing on the single-output LUT circuits generated by ABC [10] and convert
them into multi-output LUT circuits. Additionally, we use integrated Intellec-
tual Property (IP) libraries within the commercial ASIC synthesis tool Synopsys
Design Compiler (DC) [5], to generate circuit netlists for more complex function-
alities such as floating-point operations. These circuits are initially created as
Boolean netlists by Synopsys DC [5], and we subsequently remap them to LUT-
based representations using the Yosys-ABC toolchain [10,53].
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6.2 UC Compilation

Let C denote the circuit to be embedded and ρ the maximum fan-in of the
circuit.

1. Parsing the circuit: The circuit is input in the Secure Hardware Definition
Language (SHDL) [39] and parsed into the internal graph representation. We
reduce the fan-out of the graph to the allowed fan-in ρ for LUCs (cf. Sect. 4)
and 2 for VUCs (cf. Sect. 5) by using copy gates. For VUCs, the auxiliary graph
(cf. Theorem 3) is generated. Here, we denote the auxiliary graph by G and the
former graph with possibly reduced fan-out by Ḡ.

2. Splitting G into Γ1 graphs and creating Γ1 EUGs: Using the LUC
construction yields ρ Γ1 graphs. For each Γ1 graph, we create a Γ1 EUG. Possible
EUGs are Valiant’s EUG [51] and the 2-way split EUG of Liu et al. [37]. If we
use the VUC construction, we get two Γ1 graphs.

3. Edge-embedding the Γ1 graphs and merging them: Each Γ1 graph is
edge-embedded into the corresponding Γ1 EUG. This edge-embedding is coded
directly into the control bits of the X- and Y-Switches of the EUG. The con-
crete algorithm uses a slightly modified version of the edge-embedding algorithm
in [22]. Then, the Γ1 EUGs are merged into a Γρ EUG (LUC) or into a Γ2 EUG
(VUC).

4. Basic optimizations and correctness checking: We remove edges con-
necting to an input pole as they will never be used and replace copy gates with
wires. Then we remove isolated nodes or change X- to Y-Switching nodes if one
edge was removed before. We check the correctness of the edge-embedding by
checking for each edge (u, v) in G, if there is a path leading from u to v.

5. Setting the gates of the EUG: In the VUC construction, we replace the
auxiliary poles with wires connecting directly to the actual pole or a Y-Switch
if only one input is forwarded. Analogously to step 4, we check the correctness
of the edge-embedding to Ḡ. For each node in G, we set the programming bits
of the corresponding EUG pole. We determine the order of inputs and then set
the programming bits accordingly. This also involves padding the programming
bits if the gate has more inputs. Note that these additional inputs are likely to
occur since each Universal Gate outputs ρ (in LUC construction) or 2 (in VUC
construction) wires, independent of whether they are used in G or not. We pad
the programming bits such that additional and undesired inputs are ignored.

6. Transforming the EUG into an ABY compatible UC: As a final step,
we topologically order the EUG and output it in the UC format compatible
with ABY [13]. Then, each node, along with its incoming and outgoing wires, is
written into a circuit file. At the same time, the programming bits are written
into a separate programming bits file.
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6.3 Experimental Results

Setup. Like previous works [22,31,37], we benchmark a set of real-world cir-
cuits from [50]. In addition, we consider other useful functions like Karatsuba
multiplication [28], Manhattan and Euclidean distance [14], and floating-point
operations [14]. For each functionality, we give the sizes of the resulting circuit,
as well as communication and runtime complexity when the UC is evaluated
with an MPC protocol. In order to show the improvement of our work, we use
two identical machines with a LAN connection of 10 Gbit/s bandwidth and
a round-trip time of 1 ms. Each machine is equipped with an Intel Core i9-
7960X@2.8 GHz with 128GB DDR4 RAM. All measurements are averaged over
10 executions.

Table 3. Number of AND and XOR gates per building block in our UCs.

Building block AND gates XOR gates

X-switching block [35] 1 3

Y-switching block [35] 1 2

Universal Gate with k ≥ 2 inputs 2k − 1 2k+1 − 2

LUC Improvement. As we have Universal Gates of different sizes, we cannot
just count the number of nodes in the EUG to compare the implementations. As
underlying MPC protocol for UC-based PFE we use Yao’s protocol [56] using free
XORs [35], so XOR gates can be evaluated without communication. Therefore,
we count the number of non-free AND gates to instantiate the building blocks
of the UC (cf. Table 3). We experimentally compared our implementations with
the best existing UC-based PFE construction of Liu et al. [37]. We provide our
results for our LUT-based UC constructions in Table 4. In our circuit generation,
we vary possible choices for (ρ → ω)-LUTs and select the ones with highest
improvement. We can see from Table 4 that our LUT-based UC construction is
always smaller than that of [37] by 1.12 − 2.18×.

For a comparison of the improvements in PFE, we securely evaluate our
generated UCs with the GMW-based SP-LUT protocol [14] and Yao’s GC pro-
tocol [56]. In Table 5, we show the runtime and communication of our LUT-based
UC construction (LUC) compared to the most recent UC construction of Liu et
al. [37] as baseline using Yao [56] and GMW [20]. Our new UC construction is
the fastest implementation: Compared to the baseline using Yao [56], the total
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Table 4. Comparison of the sizes of our LUT-based UC construction (LUC, cf. Sect. 4)
and the best previous UC construction of Liu et al. [37] as baseline (in number of
AND gates) measured with our implementations. The smallest size is marked in bold
and always achieved by our UCs. The sizes for our UC is the best combinations for (ρ
→ ω)-LUT for ρ ∈ {2, ..., 8} inputs and ω ∈ {1, . . . , 8} outputs for the benchmarked
circuit.

Circuit
Circuit size (# AND gates)

Improvement (×) LUT sizes (ρ → ω)
UC of [37] Our LUC

AES 1,779,105 1,779,105 1.00 2 → 1

DES 1,269,537 1,130,037 1.12 3 → 1

MD5 3,293,262 1,724,221 1.91 3 → 1

SHA-1 4,872,501 2,559,602 1.90 3 → 1

SHA-256 10,652,234 5,351,972 1.99 3 → 1

Add 32 6,926 3,907 1.77 3 → 2

Add 64 17,006 8,963 1.90 3 → 2

Comp 32 2,519 1,278 1.97 3 → 1

Mult 32x32 347,274 177,081 1.96 3 → 3

Karatsuba 32x32 286,933 156,888 1.83 3 → 3

MD256 327,203 150,046 2.18 3 → 2

ED64 1,852,419 947,679 1.95 3 → 3

FP-Add 32 113,620 90,964 1.25 3 → 1

FP-Mul 32 293,125 247,859 1.18 3 → 1

FP-Exp2 32 2,008,269 1,548,079 1.30 3 → 1

FP-Div 32 372,101 236,300 1.57 3 → 1

FP-Sqrt 32 176,176 118,873 1.48 3 → 1

FP-Comp 32 6,387 5,628 1.13 4 → 4

FP-Log 32 1,936,813 1,499,538 1.29 3 → 1

runtime for our sample circuits is faster by a factor of 1.14−2×. The communica-
tion improvements over the baseline using Yao [56] are 1.12−2.25×. The runtime
of Yao’s protocol is 3.83 − 11.5× faster than that of the LUT-based protocols
which can be explained by the constant round complexity of Yao’s protocol. The
SP-LUT protocol [14] always has the lowest communication, achieving factor
1.19 − 2.44× less communication than Yao’s protocol. In Table 5, it is evident
that the baseline employing Yao [56] exhibits superior runtime performance and
lower total communication overhead than the baseline employing the GMW pro-
tocol [20].
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Table 5. Runtime and communication for our LUT-based UC construction (cf. Sect. 4)
compared to the state-of-the-art UC of [37] when evaluated with ABY [13]. We include
the LAN evaluation time (in seconds) and the total communication (in Megabytes)
between the parties in LUT-based [14], Yao sharing [56], as well as in GMW sharing [20].
The best values are marked in bold.

UC construction UC of [37] Our LUT-based UC (LUC)

MPC protocol Yao [56] GMW [20] Yao [56] SP-LUT [14]

Circuit Time (s) Comm. (MB) Time (s) Comm. (MB) Time (s) Comm. (MB) Time (s) Comm. (MB)

AES 1.811 80.315 142.193 96.845 1.811 80.315 13.187 28.427

DES 1.282 57.271 101.645 68.071 1.124 50.570 9.233 24.311

MD5 3.471 148.348 238.847 168.991 1.832 76.638 26.642 46.013

SHA1 5.184 220.065 343.344 246.708 2.756 113.859 27.268 58.641

SHA-256 11.571 481.412 722.650 528.122 5.878 238.364 54.082 123.045

Add 32 0.018 0.314 1.139 0.594 0.009 0.177 0.224 0.148

Add 64 0.026 0.770 2.323 1.230 0.017 0.404 0.452 0.319

Comp 32 0.008 0.117 0.265 0.203 0.004 0.062 0.139 0.055

Mult 32x32 0.350 15.626 31.497 19.650 0.212 7.300 4.144 4.531

Karatsuba 32x32 0.292 12.901 27.214 16.597 0.191 6.469 3.685 4.020,1

MD256 0.337 14.801 29.037 18.326 0.193 6.592 4.234 4.544

ED64 1.924 83.552 142.147 97.558 1.046 39.704 17.524 24.572

FP-Add 32 0.164 5.105 11.780 6.859 0.139 4.003 2.903 2.426

FP-Mul 32 0.350 13.178 28.215 16.988 0.308 10.949 6.217 4.579

FP-Exp2 32 2.292 90.555 155.881 106.023 1.612 68.651 21.531 38.330

FP-Div 32 0.458 16.743 33.686 21.024 0.296 10.443 5.918 6.528

FP-Sqrt 32 0.223 7.915 18.910 10.433 0.168 5.237 3.417 3.442

FP-Comp 32 0.014 0.290 1.066 0.553 0.012 0.235 0.226 0.118

FP-Log 32 2.083 87.330 151.423 102.369 1.600 66.510 20.198 36.287

VUC Improvement. Table 6 shows that our VUC construction which – other
than LUC – leaks the fanin of the individual LUTs is up to 2.90× smaller than
Liu et al.’s UC [37] when evaluated with Yao’s protocol [56], the total runtime for
our sample circuits is faster by 1.1 − 2.85× and the communication is improved
by 1.06 − 2.96×. This shows that significant speedups can be achieved when
giving up some function privacy.

Note that during the process of compiling our VUC construction, our tool con-
ducts an initial verification to determine whether the LUC construction results
in a better size than VUC, and, if so, proceeds to compile a LUC. Nonetheless,
in the majority of cases, VUC yields a better size by a factor of up to 1.45×.
The superiority of VUC over LUC is strongly influenced by the circuit design.
Specifically, if the circuit can primarily be constructed using Look-Up Tables
(LUTs) with identical input dimensions, the overall size is better than VUC.
However, if the circuit can be effectively constructed using LUTs with differing
input dimensions, VUC performs better.
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Table 6. Sizes, runtime, and communication for our VUC construction (cf. Sect. 5). We
include LAN evaluation times (in seconds) and total communications (in Megabytes)
between the parties in LUT-based [14] as well as in Yao sharing [56]. We show the
size improvement of VUC over the UC of [37] and LUC construction (cf. Sect. 4) in
the last two columns. Note that VUCs reveal the LUTs’ dimensions, showcasing the
enhancements obtained by sacrificing some circuit privacy.

Circuit Size
Yao [56] SP-LUT [14] Size Improv.(×)

VUC/UC of [37]
Size Improv.(×)

VUC/LUC
Time Comm. Time Comm.

AES 1,584,047 1.724 71.753 142.221 2.607 1.13 1.13

DES 960,854 0.98 43.441 93.79 1.66 1.32 1.17

MD5 1,191,566 1.22 52.89 23.01 42.77 2.76 1.45

SHA-1 2,559,602 2.76 113.86 27.27 58.64 1.90 1.00

SHA-256 4,591,982 4.91 201.98 52.22 108.43 2.32 1.17

Add 32 3,907 0.01 0.18 0.23 0.15 1.77 1.00

Add 64 8,963 0.02 0.40 0.45 0.32 1.90 1.00

Comp 32 1,188 0.01 0.05 0.04 0.04 2.12 1.08

Mult 32x32 130,053 0.14 5.51 1.42 4.06 2.67 1.36

Karatsuba 32x32 112,829 0.12 5.01 1.41 3.41 2.54 1.40

MD256 112,829 0.13 5.01 1.37 4.09 2.90 1.33

ED64 947,679 1.05 39.70 17.52 24.58 1.95 1.00

FP-Add 32 90,964 0.14 4.00 2.90 2.43 1.25 1.00

FP-Mul 32 185,968 0.18 8.11 2.04 3.65 1.58 1.33

FP-Exp2 32 1,265,869 1.34 55.72 19.38 25.16 1.59 1.22

FP-Div 32 181,904 0.18 7.89 1.91 5.27 2.05 1.30

FP-Sqrt 32 89,311 0.10 3.84 1.07 2.70 1.97 1.33

FP-Comp 32 5,269 0.01 0.22 0.11 0.093 1.21 1.07

FP-Log 32 1,230,530 1.31 54.16 16.17 24.69 1.57 1.22
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Abstract. Reversed multiplication friendly embedding (RMFE) amor-
tization has been playing an active role in the state-of-the-art construc-
tions of MPC protocols over rings (in particular, the ring Z2k). As far
as we know, this powerful technique has NOT been able to find applica-
tions in the crown jewel of two-party computation, the non-interactive
secure computation (NISC), where the requirement of the protocol being
non-interactive constitutes a formidable technical bottle-neck. We initi-
ate such a study focusing on statistical NISC protocols in the VOLE-
hybrid model. Our study begins with making the decomposable affine
randomized encoding (DARE) based semi-honest NISC protocol com-
patible with RMFE techniques, which together with known techniques
for forcing a malicious sender Sam to honestly follow DARE already yield
a secure amortized protocol, assuming both parties follow RMFE encod-
ing. Achieving statistical security in the full malicious setting is much
more challenging, as applying known techniques for enforcing compliance
with RMFE incurs interaction. To solve this problem, we put forward a
new notion dubbed non-malleable RMFE (NM-RMFE), which is a ran-
domized RMFE such that, once one party deviates from the encoding
specification, the randomness injected by the other party will random-
ize the output, preventing information from being leaked. NM-RMFE
simultaneously forces both parties to follow RMFE encoding, offering
a desired non-interactive solution to amortizing NISC. We believe that
NM-RMFE is on its own an important primitive that has applications
in secure computation and beyond, interactive and non-interactive alike.
With an asymptotically good instantiation of our NM-RMFE, we obtain
the first statistical reusable NISC protocols in the VOLE-hybrid model
with constant communication overhead for arithmetic branching pro-
grams over Z2k .

As side contributions, we consider computational security and present
two concretely efficient NISC constructions in the random oracle model
from conventional RMFEs.

1 Introduction

Non-interactive secure computation (NISC) [20] is referring, in particular, to
a two-message secure two-party computation (2-PC), where the receiver Rachel
publishes a message encrypting her private input x and a sender Sam, at any
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time, can use Rachel’s message to complete a secure computation of f(x, y),
where y is his private input, by sending a single message to Rachel, which con-
tains no information about y beyond f(x, y). The importance of NISC is vividly
illustrated by application scenarios such as profile matching in a dating web-
site or DNA data comparing in an algorithm that tells whether two persons are
related. In these application scenarios, both Sam’s and Rachel’s inputs contain
sensitive personal information and are to be kept private, hence a secure 2-PC
protocol should be implemented to complete the tasks. However, conventional
2-PC protocols require interaction, which means that Sam and Rachel need to be
online at the same time and possibly exchange messages in multiple rounds. The
synchronization, for one thing, and intolerance to communication latency, for
another, put solutions involving interactive 2-PC protocols out of consideration.
On the other hand, NISC (especially those allow Rachel’s message to be reused
by multiple senders, called reusable NISC, or rNISC for short) enables “public-
key” variants of secure computation in the fashion that a public-key encryption
scheme enables secure transmission of messages among strangers.

Without efficiency concerns, the problem can be solved in a simple two-
step approach: one begins with any two-message 2-PC protocol secure against
semi-honest parties, e.g. Yao’s garbled circuit (GC) [27] or fully homomorphic
encryption (FHE) [16], and then have both parties include a non-interactive zero-
knowledge (NIZK) proof showing that their respective messages are honestly
prepared. The caveat of this simple approach is that the statements to be proved
involve cryptographic operations on secrets, which is in general inefficient.
NISC from oblivious transfer. In order to build NISC protocols for general
functions in the oblivious transfer (OT)-hybrid model, Ishai et. al. [17,20] started
with the semi-honest GC protocol. They used a statistical NISC for NC0 cir-
cuits to prove that Sam participates in the GC protocol honestly, avoiding the
inefficient non-black-box use of NIZK and only making a black-box use of a
pseudo-random generator (PRG). For NC0 circuits, there is an efficient statis-
tical semi-honest two-message 2-PC in the OT-hybrid model using the so-called
decomposable affine randomized encoding (DARE) [2,19]. The DARE allows to
transform a circuit evaluation into parallel calls to an OT functionality, which
in fact leaves no room for a malicious NISC receiver (as OT receiver) to cheat.
And the desired statistical NISC for NC0 circuits can be obtained by applying
the so-called certified OT [20] mechanism that allows Rachel to verify that Sam’s
inputs to these parallel OTs are honestly prepared. Though the asymptotic effi-
ciency of the above protocol is rather appealing, it contains several ingredients
that could incur large hidden constant in the concrete efficiency estimation. The
followup work [1] devised a clever way to squash the interactive cut-and-choose
to a single round, and obtained a concretely efficient NISC construction. With
more sophisticated manipulations, this cut-and-choose approach was extended
to yield amortized NISC protocols that allow to simultaneously evaluate multiple
instances of the same circuit in order to reduce the cost [23]. This amortization
technique seems to be very task-specific and not likely to be applied elsewhere.
Reusable NISC. An impossibility result concerning statistical reusable NISC
in the OT-hybrid model was shown in [10], casting such protocols in the setting
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of parallel calls to a string OT, where Sam provides the input pair and Rachel
provides the choice bit. The main observation is that such protocols satisfy that
Rachel’s message can be separated into bits where each bit is interacting with
only a small part of Sam’s message. This allows a malicious Sam to apply the
so-called selective failure attack. For instance, Sam honestly follows the protocol
specification, except that, in one call to string OT, he replaces one of the two
input strings by a uniform string and is caught cheating only when Rachel selects
the tampered string, which occurs with probability 1/2. The authors of [10] then
proposed a countermeasure through replacing OT with oblivious linear function
evaluation (OLE), and constructed efficient statistical rNISC protocols in the
OLE-hybrid model for branching programs over finite fields, which has high-
level resemblance to the statistical NISC for NC0 circuits in [20]. The OLE
functionality over a ring R allows Sam to input a, b ∈ R and Rachel to input α ∈
R, after which the functionality outputs a ·α+b to Rachel. Intuitively, replacing
OT with OLE has the advantage that, the selective failure attack succeeds with
probability related to the ring size (e.g. 1/|R|, if R is a finite field), which may be
negligible by setting the ring to be sufficiently large. For implementing the rNISC
protocols, a two-message reusable OLE protocol under the Paillier assumption
was also presented in [10]. Informally, a reusable OLE protocol has the property
that it is difficult for Sam to construct a partially correct message: any answer
message Sam provides to Rachel is either accepted or rejected except with a
negligible probability.

The followup work [13] improved the state-of-the-art of statistical rNISC
through a new statistical proof system for circuit satisfiability called line-point
zero-knowledge (LPZK) by a single Vector-OLE (VOLE) invocation. Another
optimization comes from the implementation aspect through an efficient pseu-
dorandom correlation generator (PCG) [5] construction for VOLE (similar to OT
extension) based on a variant of learning parity with noise (LPN) [3] assump-
tion. Instantiated with the reusable VOLE construction in [10] and the two-
round PCG construction in [6], the resulting VOLE protocol has good concrete
efficiency.

A very recent work [18] bypassed the impossibility result of [10], through mak-
ing a black-box use of a secure two-message OT protocol. The authors of [18]
followed the framework of [20], instead of extending the VOLE-hybrid frame-
work, and showed a compiler that constructs an rNISC in the random oracle
model for any Boolean function f , via a black-box use of any non-reusable NISC
protocol that computes a related function f ′. The non-reusable NISC protocol
for f ′ was then instantiated with the construction of [20]. The main drawbacks
are that their compiler is not statistical and incurs at least quadratic communi-
cation overhead in the security parameter1.
rNISC over integer rings. Focusing on statistical security and concerning
recent progress on rNISC for branching programs over fields, it is natural to ask

1 We remark that for some simple function f , e.g. branching programs, it seems that
the non-reusable NISC can be instantiated with a lightweight NISC protocol, and
the overhead is then optimized to linear in the security parameter.
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whether these schemes can be efficiently adapted to work over arbitrary rings (in
particular, the ring Z2k , as the models of computation in real-life programming
and the computer architectures are formulated as operations over Z232 or Z264).

More specifically, we are interested in finding out if it is possible to have
a statistical rNISC protocol over the ring Z2k that matches the benchmarks of
statistical rNISC protocols over large fields.

Given a branching program over a sufficiently large field, the statistical rNISC
protocols for branching programs in [10,13] have constant communication over-
head, compared to the semi-honest NISC (from DARE). We note that naively
taking the above rNISC protocols over a field and replacing the field with a
ring Z2k will ruin the security, due to the fact that the ring Z2k contains too
many zero divisors (one half). This results in that the soundness error will keep
a constant, no matter how large the ring Z2k is.

Similar problems have been under scrutiny in the study of arithmetic circuit
MPC protocols throughout the last decade, yielding a plethora of important
results. We highlight an extremely successful technique, the reversed multiplica-
tion friendly embedding (RMFE) [7,12]. Informally, an RMFE includes two maps
φ, ψ, which allows to efficiently transform computations over a small field Fp (ring
Z2k) into its extension field Fpd (extension ring GR(2k, d)2) through φ, and the
results over Fp can be efficiently recovered from the result of computations over
the large field Fpd (Galois ring GR(2k, d)) through ψ. Here we remark that the
naive embedding (e.g. Fp ↪→ Fpd) is a special case of RMFE (Fm

p ↪→ Fpd). On
the one hand, the RMFE technique provides amortization benefits (compared
to naive embedding). On the other hand, non-trivial efforts should be made to
force parties to follow the RMFE encoding honestly. As far as we know, RMFEs
have been applied into honest majority MPC [7,9,12], dishonest majority MPC
[15], VOLE-based ZK [21], and zk-SNARKs [4,8], etc. However, RMFEs have
not been applied in the NISC setting yet.

1.1 Our Contributions

We put forward a new and novel RMFE technique that strengthens RMFEs,
called non-malleable RMFE (NM-RMFE). We initiate the study of NISC over
Z2k as well. With our NM-RMFE technique, we give the first asymptotically
efficient statistical rNISC/VOLE for arithmetic branching programs over Z2k .
We also explore computational approaches to realize more concretely efficient
NISC constructions for arithmetic branching programs over Z2k from RMFEs.

(1) The NM-RMFE is essentially a randomized variant of RMFE such that,
when used in amortizing a secure 2-PC protocol, the randomness injected by
the honest party prevents information about his/her private input from being
leaked to the malicious party who cheats by providing an element not in the
image of the map φ. NM-RMFE offers a conceptually simpler (removing the
proofs) and, more importantly, non-interactive solution to forcing correct RMFE
encoding: Rachel can directly implement a check mechanism in NM-RMFE to

2 see definition in Sect. 2.
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abort a cheating Sam, while simultaneously an honest Sam’s input is not leaked
to Rachel when Rachel is cheating. We believe that NM-RMFE is of independent
interest in amortizing secure computation, interactive and non-interactive alike.
We give an NM-RMFE construction (in Sect. 3.2) with the following features.

Theorem (informal). There exists a family of (m, d;D)-NM-RMFE’s from Z
m
2k

to GR(2k, d), supporting multiplication for D − 1 times, with d/m asymptotically
close to a constant.

For instance, we construct a family of (m, d; 2)-NM-RMFEs over Z2k with
d
m → 29.13,m → ∞ and a family of (m, d; 3)-NM-RMFEs over Z2k with d

m →
80.15,m → ∞.

(2) Regarding NISC protocols over Z2k , we have the following informal the-
orem (induced by Theorem 4).

Theorem (informal). There exists a statistical rNISC protocol computing
branching programs over Z2k with communication overhead close to a constant.

The above theorem indicates that the amortized efficiency of our construction
asymptotically matches the state-of-the-art statistical rNISC protocol over large
fields [13]. Though our exposition highlights the most useful special cases of
arithmetic circuits over Z2k , all protocols straightforwardly extend to Fpk and
Zpk for arbitrary prime p. Before this work, statistical rNISC over small fields
[10,13] had to pay overhead at least linear in the security parameter (which are
realized by rNISC over large fields). More importantly, there was no efficient
constructions for Z2k . Our results bridge the gaps left behind by the difference
between computation domains in an amortized sense (asymptotic nature).

(3) As side contributions, we present a maliciously secure rNISC construction
for computing branching programs over Z2k from a random oracle aided cut-
and-choose, through making a black-box use of any two-message reusable VOLE
protocol over GR(2k, d) (inspired by the approach of [18]). We also present a
highly efficient maliciously secure NISC construction for computing branching
programs over Z2k in the OT-hybrid model.

1.2 Technical Overview

The challenge for constructing NM-RMFE lies in the fact that the notion itself
demands the coexistence of two conflicting properties: multiplication friendliness
(malleability for valid multiplicands) and non-malleability (against one invalid
multiplicand). There was no cryptographic primitive of this flavor in the lit-
erature, as far as we know. One must turn to known constructions for each
property separately for inspirations and hope that they can be combined. The
RMFE concatenation technique plays an important role in constructing binary
RMFE by concatenating two RMFE’s. On the other hand, the Fujisaki-Okamoto
(FO) transform (widely used in e.g. post-quantum cryptography NIST submis-
sions) uses two encryption schemes, one encrypting the payload while the other
one encrypting the random key of the first to enable a consistency check via
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checking whether the ciphertext of the second encryption scheme is valid. We
import the core idea of the FO transformation into RMFE concatenation by
injecting randomness into the first RMFE and use the its encoding relation for
FO style “cipher text” check.

For rNISC/VOLE constructions, we begin with recalling the construction of
rNISC/VOLE for branching programs in [13]. The semi-honest protocol is an
execution of t parallel VOLE’s over a large enough Galois field F, where t is the
number of components in Rachel’s input x ∈ F

t. Rachel’s inputs to the VOLE’s
are simply the t components of x. Sam’s inputs to the VOLE’s are generated
using a decomposable affine randomized encoding (DARE) scheme that, given y,
the branching program f(·, ·) and Sam’s private randomness, produces t pairs of
vectors (each pair of such vectors define an affine line, hence the name DARE).
Note that the semi-honest protocol already leaves a malicious Rachel no room to
cheat. The malicious protocol only needs to make sure that Sam’s t input lines
to the VOLE’s in the semi-honest protocol are indeed the result of running the
DARE scheme using f(·, ·), some secret y and some secret randomness. If one
adds a new VOLE to the semi-honest protocol and let Sam describe the DARE
scheme specification as an arithmetic circuit C to invoke the LPZK proof system
using his t input lines as witness, then the only room for Sam to cheat in this
intermediate protocol is to fake the consistency of the t lines and LPZK witness
encoded in the new VOLE instance. The above consistency check problem boils
down to a mechanism called VOLE with equality constraint (eVOLE) that allows
Sam to prove equivalence of an arbitrary component in the two vectors defining
one line and some component in the two vectors defining the other line. To
complete the malicious rNISC/VOLE protocol, one more instance of VOLE is
then added where Rachel’s input is a uniform point β ∈ F (input randomizer
for eVOLE construction), and eVOLE is invoked to prove consistency of Sam’s
input lines between this copy of VOLE (serving as a bridge) and all other copies
of VOLE’s.

We are now in good position to describe our constructions for rNISC/VOLE
over Z2k . Our exposition begins with an observation that the Galois ring GR(2k, d)
behaves very similarly to the Galois field F2d with respect to constructing build-
ing blocks LPZK and eVOLE in the recalled malicious protocol. This suggests
that we could view the inputs of Sam and Rachel as consisting of elements in
GR(2k, d) and try to design a rNISC/VOLE over GR(2k, d). But this idea alone
does not give us the desired efficiency, as the choice of the extension degree d
depends on the security parameter (we need 2d to be roughly the size of F in
the recalled protocol). To circumvent this caveat, we embed multiple elements
of Z2k into a single element of GR(2k, d) and make sure that computation (in
particular, multiplication) is still “preserved” under this embedding. If we could
make the RMFE techniques work with the recalled rNISC/VOLE framework,
the cost of operating over a large ring GR(2k, d) will be amortized by executing
Ω(d) copies of computation over Z2k and we are done.

The first challenge comes from the DARE scheme in the semi-honest protocol.
Unlike the conventional masking approach to privacy (adding a one-time-pad to
the sensitive value before computing on it and remove the pad afterwards),
the DARE scheme hides information through multiplying the sensitive matrix
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by two random structured matrices from the left and the right, respectively
(effectively hiding the sensitive matrix among the set of such matrices that have
the same determinant, hence destroying other information about the matrix than
its determinant). This subtle difference already causes big troubles in the semi-
honest model when naively compiling the DARE scheme with RMFE. Recall
that an RMFE over Z2k includes two Z2k -linear maps, the embedding map φ
and the decoding map ψ. Note that φ is not surjective (being an embedding)
and the embedding only preserves multiplication for GR(2k, d) elements that lie
in the image of φ. Therefore, one needs to carefully analyze the effect of this
fact on the correctness and privacy of the DARE scheme. If we were to sample
entries of the structured random matrices over the entire GR(2k, d), we could
encounter multiplication by a GR(2k, d) element that does not lie in the image
of φ, which would damage the correctness of the DARE scheme. From now on,
assume we sample entries of the structured random matrices over the image of φ
only. The DARE scheme involves computing matrix multiplication for two times
(for correctness we can use Degree-3 RMFEs [14]). We next analyze whether the
privacy of the DARE scheme is affected by RMFE. We remark that the product
of two elements in the image of φ may no longer remain in the image of φ, which
may reveal more information than we expect. We solve this by masking with a
random element in the kernel of ψ.

The second challenge comes from making malicious Sam follow the RMFE
encoding in our semi-honest protocol and making malicious Rachel correctly
encode her input using RMFE, simultaneously. Jumping ahead, note that once
the correct RMFE encoding is guaranteed, the rest of the security proof against
a malicious adversary follows straightforwardly using analogy to the recalled
protocol over fields (we include a self-contained exposition of the building blocks
LPZK and eVOLE over GR(2k, d) in Sect. 4.2 for completeness). This second
challenge is a huge bottle-neck because none of the known RMFE techniques
come close to suggesting a workable idea. The standard RMFE techniques for
constructing interactive secure computation protocols do have a (V)OLE-based
variant [21], where elements in GR(2k, d) are restricted in image of φ (see the
exposition in Sect. 5.1, where we do use it in our two side contributions). The
difficulties lie in removing the interaction that is liberally in use and seemingly
inherent. For one thing, sacrifice is used to generate correlated randomness that
enables the re-embedding VOLE functionality. This can be made non-interactive
at the cost of using a random oracle, hence settling for computational security.
More seriously, the above process of correlated randomness generation is only
capable of allowing one party (VOLE sender) to prove correct RMFE encoding
to the other party (VOLE receiver). This means that we would not be able
to prove correct RMFE encoding for Sam and Rachel simultaneously without
interaction. We put forward the notion of NM-RMFE and propose a statistical
instantiation of NM-RMFE that solves this bottle-neck problem. In a high level,
strengthening RMFE to NM-RMFE allows for “extraction” in the simulation,
which means that the simulation will go through no matter how the adversary
deviates from the NM-RMFE encoding. Combining all pieces together, we obtain
a statistical rNISC/VOLE for computing branching programs over Z2k with
asymptotic efficiency as the rNISC/VOLE over large fields.
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Computational NISC. Finally, we explore standard computationally secure
techniques for forcing both parties to follow the RMFE encoding honestly. For
the malicious sender side, we augment the above Galois ring analogue certified
VOLE by substituting the VOLE-hybrid model with the re-embedding VOLE-
hybrid model following the idea of [21]. For the malicious receiver side, we define
a variant of VOLE over GR(2k, d), where the receiver’s inputs are restricted in the
image of φ, and provide two instantiations. The former instantiation (inspired by
[18]) uses the random oracle to realize a non-interactive cut-and-choose such that
Rachel “proves” to Sam her input is in the image of φ. The latter construction
comes from an observation that for a correlated OT-based VOLE construction,
since the image of φ is actually a linear space over Z2k , the bits that Rachel
sends to correlated OTs one-to-one correspond to an element in the image of φ
as long as the number of correlated OTs is restricted to the size of the image
of φ.

2 Preliminaries

Notations. In this paper, bold letters (e.g. a, b) are used to denote vectors.
We use xi to denote the ith-component of the vector x (similarly xi,j for the
jth-component of xi). We use [a, b] (or [a, b + 1) sometimes) to denote the set
of integers in the range from a to b. If a = 1, it is simplified by [b]. We also use

x|J to denote the set {xi | i ∈ J}. We use x
$← R to denote that x is uniformly

sampled from a ring R and denote the uniform distribution over R by UR. For
a map φ : R1 → R2, we naturally extend it to be defined over vector space Rn

1

and matrix space Rm×n
1 . Let Im(φ) denote the set {φ(x) | x ∈ R1} and Ker(φ)

denote the set {x ∈ R1 | φ(x) = 0}. For a commitment scheme, we use the
notation [[α]] to denote the commitment of α. For two distributions D1,D2, we
use the notation D1

s≈ D2 to denote that they are statistically close.

Galois Rings. Let p be a prime, and k, d ≥ 1 be integers. Let f(X) ∈ Zpk [X]
be a monic polynomial of degree d such that f(X) := f(X) mod p is irreducible
over Fp. A Galois ring over Zpk of degree d denoted by GR(pk, d) is a ring extension
Zpk [X]/(f(X)) of Zpk . We refer to the textbook [26] for a friendly exposition.
Same as the special case of Galois fields, there is a bound on the number of roots
for a nonzero polynomial over GR(pk, d).

Lemma 1 ([26]). A nonzero degree-r polynomial over GR(pk, d) has at most
rp(k−1)d roots.

Lemma 1 immediately gives that for any nonzero degree-r polynomial f(x)
over GR(pk, d), we have that

Pr
[
f(α) = 0

∣∣∣ α
$← GR(pk, d)

]
≤ rp−d.

In particular, we have that 1/pd fraction of elements are zero divisors in GR(pk, d).
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Degree-D RMFE. The reverse Multiplicative Friendly Embedding (RMFE for
short) was first introduced in [7], which packs multiple multiplications over a
field Fq to one multiplication over its extension Fqd . It was further shown in [12]
that RMFEs over Galois fields (Fm

pr → Fprd) induce RMFEs over Galois rings
(GR(pk, r)m → GR(pk, rd)). Degree-D RMFE [14] is a natural generalization of
RMFE, which supports multiplication for upto D − 1 times.

Definition 1. Let p be a prime, k, r,m, d,D ≥ 1 be integers. A pair (φ, ψ) is
called an (m, d;D)-RMFE over GR(pk, r), if φ : GR(pk, r)m → GR(pk, rd) and
ψ : GR(pk, rd) → GR(pk, r)m are two GR(pk, r)-linear maps such that

ψ(φ(x1) · φ(x2) · · · φ(xD)) = x1 ∗ x2 ∗ · · · ∗ xD

for all x1,x2, ...,xD ∈ GR(pk, r)m, where ∗ denotes the entry-wise multiplication.

Standard RMFEs are essentially degree-2 RMFEs. Degree-D RMFEs have
the following properties, which are generalized from the degree-2 case.

Lemma 2 ([21]). Let (φ, ψ) be an (m, d;D)-RMFE over Galois ring GR(pk, r).
We have that GR(pk, rd) is the direct sum of Ker(ψ), φ(1)D−1 · Im(φ), where 1
denotes the vector of all 1’s. That is GR(pk, rd) = Ker(ψ) ⊕ (φ(1)D−1 · Im(φ)).

As shown in [14], there always exists an (m, d;D)-RMFE over Galois ring
GR(pk, r) with φ(1) = 1. Thus, we always assume φ(1) = 1 for the rest of this
paper. Then, the above lemma indicates that ψ introduces a bijection when
restricted on Im(φ). We have the following lemma that indicates the asymptotic
behavior of degree-D RMFEs.

Lemma 3 ([14]). There exists a family of (m, d;D)-RMFE over Z2k for all
k ≥ 1 with m → ∞ and d

m → 1+2D
3 (D + D(3+1/(2D−1))

2D+1−1
).

For instance, when m → ∞, there exists a family of (m, d; 2)-RMFEs over
Z2k with d

m → 4.92 and a family of (m, d; 3)-RMFEs over Z2k with d
m → 8.47.

VOLE. The (random) vector oblivious linear function evaluation (VOLE) is a
two-party primitive that allows two parties PS , PR to obtain random correlated
values. In more detail, the sender PS obtains two random vectors a, b, while the
receiver PR obtains a random scalar α and a random vector v such that v = a·α+b
holds. We formalize the ideal VOLE functionality over arbitrary ring R in Fig. 1.
We also use the chosen-input variant of VOLE in this paper, where (a, b), α are
provided by the sender and the receiver, respectively. The above VOLE correlation
can be viewed as a linear homomorphic Message Authentication Code (MAC) that
authenticates a using the MAC key α, denoted by [a]α.

Non-Interactive Secure Computation. We follow the VOLE-based reusable
Non-interactive Secure Computation (rNISC) definition in [13]. In a high level,
the sender PS encodes its input as multiple lines (PS ’s VOLE inputs) and the
receiver PR encodes its input as multiple points (PR’s VOLE inputs), one for
each line. In reusable security, a malicious sender A can learn whether the
receiver rejects its possibly illegal messages after each execution. We give the
formal definition of rNISC as follows.
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Fig. 1. Ideal functionality for random VOLE over R.

Definition 2 (rNISC). An VOLE-based reusable non-interactive secure com-
putation (NISC) protocol for an arithmetic function f : Rn1×Rn2 → Rt consists
of a triple of algorithms (R1, S,R2) defined as follows:

– R1(R,x) is a PPT algorithm that, given an input x ∈ Rn1 , outputs points
(α1, ..., αn′) ∈ Rn′

and auxiliary information aux.
– S(R,y) is a PPT algorithm that, given an input y ∈ Rn2 , outputs n′ pairs of

vectors ai, bi ∈ Rli , each specifying an affine line vi(α) := ai · α + bi.
– R2(R, (v1, ...,vn′), aux) is a polynomial-time algorithm, such that given n′

evaluations vi ∈ Rli and auxiliary information aux, outputs either z ∈ Rt or
⊥.

We say the algorithms (R1, S,R2) has reusable malicious security, if the follow-
ing security requirements hold:

– Completeness. As long as R2 takes inputs vi = vi(αi), for i ∈ [n′], where
vi(α) and αi are given by S and R1, respectively, we have that R2 outputs
z = f(x,y).

– Reusable ε-security against malicious sender. There exists a
polynomial-time extractor Ext such that given n′ lines v∗

i (t) := a∗
i · α + b∗

i

with vectors a∗
i , b

∗
i ∈ Rli , outputs y∗ ∈ Rn2 or ⊥ with the following

holds: for every honest receiver’s input x ∈ Rn1 , the receiver’s output z :=
R2(R, (v∗

1, ...,v
∗
n′), aux) is equal to f(x,y∗) except with ≤ ε probability over

the receiver’s randomness. The random-input variant of the above definition
is also used in this paper, where the probability is over both the receiver’s ran-
domness and an x sampled from Rn1 uniformly at random.

– Statistical security against malicious receiver. There exist a polynomial-
time extractor algorithm Ext and PPT simulator algorithm Sim such that,
given points α∗

1, ..., α
∗
n′ ∈ R, Ext outputs effective x∗ ∈ Rn1 with the fol-

lowing holds: for every honest sender’s input y ∈ Rn2 , the output distri-
bution of Sim(R, f(x∗,y)) is statistically close to {(v1(α∗

1), ...,vn′(α∗
n′)) |

(v1(α), ...,vn′(α)) ← S(R,y)}.
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Branching Program. In this paper, we mainly consider arithmetic functions
that can be represented by branching programs [19].

Definition 3 (Branching Program over R). A branching program (BP )
over R is defined by a quadruple BP = (G,ϕ, v, t), where G = (V,E) is a directed
acyclic graph, ϕ is an edge labeling function assigning each edge a degree-1 poly-
nomial in a single input variable xi, and v, t are two special vertices. The size of
BP is the number of vertices in G. Each input assignment x = (x1, ..., xn) ∈ Rn

induces an assignment Gx of a value from R to each e ∈ E. The output BP(x)
is defined as the sum of the weights of all directed paths from v to t in Gx , where
the weight of a path is the product of the values of its edges.

Let BP = (G,ϕ, v, t) be a BP of size s + 1 over R, computing a function
f : Rn → R. Fix some topological ordering of the vertices of G, where the
source vertex v is labeled 1 and the terminal vertex t is labeled s + 1. For any
input x, let Ax be the (s+1)× (s+1) matrix over R whose (i, j) entry contains
the value assigned by ϕ to the edge (i, j) (or 0 if there is no such edge). Define
L(x) as the submatrix of Ax − I obtained by deleting column v and row t (i.e.
the first column and the last row). Note that each entry of L(x) has degree (at
most) 1 in the inputs x; moreover, L(x) contains the constant −1 in each entry
of its second diagonal (the one below the main diagonal) and the constant 0
below this diagonal. We have the fact that f(x) = det(L(x)), and we say L(x)
is induced by a BP that computes f .

We briefly introduce the so-called “Decomposable Affine Randomized Encod-
ing” (DARE) for branching programs [2,19]. We begin by a simple randomization
lemma.

Lemma 4 ([19]). Let H be a set of square matrices over R, and G1,G2 be
multiplicative groups of matrices of the same dimension as H. Denote by ‘∼’ the
equivalence relation on H defined by: H ∼ H ′ iff there exists G1 ∈ G1, G2 ∈ G2

such that H = G1H
′G2. Let R1, R2 be uniformly and independently distributed

matrices from G1,G2, respectively. Then, for any H,H ′ such that H ∼ H ′, the
random variables R1HR2 and R1H

′R2 are identically distributed.

The above lemma can be instantiated with the following matrix sets:

– Hs consists of all s × s matrices over Z2k with −1’s in the second diagonal
(the diagonal below the main diagonal), and 0’s below the second diagonal.

– Gs
1 consists of all s × s matrices over Z2k with 1’s on the main diagonal and

0’s below the main diagonal.
– Gs

2 consists of all s × s matrices over Z2k with 1’s on the main diagonal and
0’s in all of the remaining entries except those of the rightmost column.

Let L(x) be a matrix induced by a size (s + 1) BP over Z2k computing
f : Z

n
2k → Z2k . We have the following corollary.

Corollary 1. Let R1, R2 be uniformly and independently distributed matrices
from Gs

1 ,Gs
2, respectively. We have that R1L(x)R2 reveals nothing about L(x)

but det(L(x)).
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Essentially, R1L(x)R2 in Corollary 1 is a randomized encoding of L(x), and
the above procedure is referred as DARE.

3 Non-Malleable RMFE

Before we show how to construct NISC/VOLE over Z2k , we first introduce our
main innovation separately, as we believe it is of independent interest. We start
with introducing the conception of NM-RMFE, followed by a construction.

3.1 Non-Malleable RMFE

To better illustrate the benefits of upgrading RMFEs to NM-RMFEs, let us
first consider a simple NISC/VOLE task as a warm-up, where PS has inputs
ai, bi ∈ Z

l
2k , PR has inputs αi, and PR wants to obtain vi := ai · αi + bi, for

i ∈ [m], i.e. the task for parallel VOLE over Z2k . This can be done with the
help of an (m, d; 2)-RMFE (φ, ψ) over Z2k and a VOLE functionality FGR(2k,d)

VOLE .
We show what would go wrong if RMFE encodings are not honestly computed
through this example.

In more detail, PS picks r
$← Ker(ψ)l and sends φ(a1, ...,am), φ(b1, ..., bm)+r

to FGR(2k,d)
VOLE , while PR sends φ(α1, ..., αm). Finally, PR receives v from FGR(2k,d)

VOLE ,
and outputs (v1, ...,vm) := ψ(v). We remark that the mask r is necessary and
sufficient for the privacy of PS ’s private inputs. In fact, we only want PR to
obtain ψ(v), but PR actually receives v. The potential leakage then is prevented
by masking with r, by Lemma 2.

The above protocol achieves semi-honest security, but not malicious security.
The main obstacle is that, for example, if a malicious receiver takes an input
Y /∈ Im(φ), the simulator cannot “extract” a y′ from Y (the simulation will go
through in the semi-honest model, by setting y′ := ψ(Y )). Existing works [9,
15,21] have developed methods to solve this issue, by letting the adversary to
prove that Y ∈ Im(φ). However, these approaches are either not statistical or
interactive. Instead, we solve the issue statistically by putting forward the notion
of Non-Malleable RMFE, which conceptually allows Y /∈ Im(φ). For the sake of
generality, we define Degree-D Non-Malleable RMFE as follows:

Definition 4 (Degree-D NM-RMFE). Let GR(pk, r) be a Galois ring and κ
be the statistical security parameter. A pair of maps (φ, ψ) is called an (m, d;D)-
NM-RMFE over GR(pk, r), if it has the following properties:

1. φ : GR(pk, r)m × {0, 1}O(κ) → GR(pk, rd), ψ : GR(pk, rd) → GR(pk, r)m ∪ {⊥}
are GR(pk, r)-linear maps3, satisfying

ψ(φ(x1, r1) · φ(x2, r2) · · · φ(xD, rD)) = x1 ∗ x2 ∗ · · · ∗ xD,

for any x1, ...,xD ∈ GR(pk, r)m and r1, ..., rD
$← {0, 1}κ.

3 More precisely, φ is GR(pk, r)-linear on GR(pk, r)m.
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2. if Y /∈ Im(φ), there exists a constant y ∈ GR(pk, r)m, such that for any
x1, ...,xD−1 ∈ GR(pk, r)m, we have

ψ(φ(x1) · · · φ(xD−1) · Y ) = x1 ∗ · · · ∗ xD−1 ∗ y + δ,

where δ ∼ Dx,Y
s≈ DY and DY is a PPT-sampleable distribution over

GR(pk, r)m ∪ {⊥} determined only by Y . We use the convention that for any
z ∈ GR(pk, r)m, z + ⊥ = ⊥ to make ψ well-defined.

Note that the above definition includes Degree-D NM-RMFE over Galois
fields, as GR(pk, r) is a field when k = 1. According to property 1, we can spec-
ify the distribution DY for Y ∈ Im(φ), such that δ ← DY , Pr[δ = 0 ] = 1.
We remark that in a high level, NM-RMFE allows for “extraction”. Using
an (m, d; 2)-NM-RMFE (φ, ψ) over Z2k instead of (m, d; 2)-RMFEs over Z2k ,
we immediately obtain a reusable malicious secure VOLE scheme over Z2k in
the FGR(2k,d)

VOLE -hybrid model without any additional cryptographic primitives (see
Fig. 2). We have the following theorem.

Fig. 2. A reusable malicious secure VOLE construction over Z2k in the FGR(2k,d)
VOLE -hybrid

model

Theorem 1. The protocol Π
Z2k

VOLE realizes FZ2k

VOLE with reusable malicious secu-

rity in the FGR(2k,d)
VOLE -hybrid model.

Proof. We first consider the situation that PS is corrupted and then turn to the
situation that PR is corrupted. Messages with a hat are from the simulator and
messages with a prime are from the adversary.

If PS is corrupted. When the simulator SimS extracts the messages A′,B′ +
C ′ sent to the ideal functionality FGR(2k,d)

VOLE by the adversary A, he computes
â1, ..., âm ∈ Z

l
2k such that for any α ∈ Z

m
2k , ψ(A′ ·φ(α)) = (â1 ·α1, ..., âm ·αm)+

δ, where the i-th row of δ satisfies the distribution DT
A′

i
, and picks (b̂1, ..., b̂m) ←
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ψ(B′ +C ′)+DA ′4. SS sends âi, b̂i for i ∈ [m] to the ideal functionality FZ2k

VOLE.
The indistinguishability comes from that ψ(A′ · Δ + B′ + C ′) in the real world
and (â1 ·α1 + b̂1, ..., âm ·α1 + b̂m) in the ideal world are statistically-close by the
definition of (m, d; 2)-NM-RMFE.

If PR is corrupted. When SimR extracts the message Δ′ sent to the ideal
functionality FGR(2k,d)

VOLE by the adversary A, he computes a α̂ such that for any
a1, ...,am ∈ Z

l
2k , ψ(φ(a1, ...,am) · Δ′) = (a1 · α̂1, ...,am · α̂m) + δ, where δ

satisfies the distribution (DT
Δ′)l. SimR sends α̂ to the ideal functionality FZ2k

VOLE.
Upon receiving z1, ...,zm ∈ Z

l
2k from FZ2k

VOLE, SimR picks (d̂1, ..., d̂m) ← (DT
Δ′)l,

Ĉ
$← Ker(ψ)l, and computes Ẑ := φ(z1 + d̂1, ...,zm + d̂m) + Ĉ. Then SimR

sends Ẑ to A. The adversary A receives Z = φ(a1, ...,am)·Δ′+φ(b1, ..., bm)+C

in the real world, where ψ(Z) and ψ(Ẑ) are statistically-close by the definition of
(m, d; 2)-NM-RMFE. Further, as Z’s projection on Ker(ψ) is perfectly masked
by C, A can not distinguish Z and Ẑ as well. Thus, we conclude the proof. �

3.2 Constructing NM-RMFE

In this section, we present an asymptotically good instantiation, that realizes a
slightly weaker variant of NM-RMFE, where the Property 2 in Definition 4 holds
for any x1, ...,xD ∈ (GR(pk, r)∗)m. We argue that this weaker variant is as good
as the standard one when applied in our NISC/VOLE protocol later in Sect. 4.

For convenience and w.l.o.g., we construct NM-RMFE over Galois fields. In
a high level, our construction consists of two layers of RMFEs, one is a stan-
dard RMFE, and the other is a so-called Extended RMFE. We define degree-D
Extended RMFE as follows:

Definition 5 (Degree-D Extended RMFE). Let Fq be a finite field of q
elements, n > d > m ≥ 1 and D ≥ 1 be integers. A pair of maps (φ, ψ) is called
an (m, d, n;D)q-Extended RMFE if φ : F

m
q ×Fqd → Fqn and ψ : Fqn → F

m
q ×Fqd

are two Fq-linear maps satisfying

ψ(φ(x1, y1) · φ(x2, y2) · · · φ(xD , yD)) = (x1 ∗ x2 ∗ · · · ∗ xD, y1y2 · · · yD),

for any xi ∈ F
m
q , yi ∈ Fqd , i ∈ [D].

The degree-D Extended RMFE is a natural extension of degree-D RMFEs,
and the construction is straightforward. Thus it is omitted here.

Let (φ1, ψ1) be an (m+k, d;D)q-RMFE, and (φ2, ψ2) be an (m+k, d, n;D)q-
extended RMFE. We construct an (m,n;D)q-NM-RMFE (φ, ψ) as follows.

– φ : F
m
q → Fqn is an Fq-linear map, such that φ : x �→ φ2(x, r, φ1(x, r)), where

r
$← F

k
q .

4 We define DA ′ := (DA′
1
, ...,DA′

l
)T.



52 F. Lin et al.

– For a Y ∈ Fqn , let (y, s, e) := ψ2(Y ), where y ∈ F
m
q , s ∈ F

k
q and e ∈ Fqd .

ψ : Fqn → F
m
q is defined as follows:

ψ(Y ) =
{

y, if ψ1(e) = (y, s) ,
⊥, otherwise.

W.l.o.g. and for simplicity, we take D = 2, and assume φ1(1) = 1 and
φ2(1, 1) = 1. Let V⊥ denote the set {φ2(0,0, φ1(x, r)) | x ∈ F

m
q , r ∈ F

k
q}. We

have the following observations (which can be naturally extended to D > 2
cases).

Proposition 1. Let (φ, ψ) be defined as above, there exists qn−d solutions for
Y ∈ Fqn , such that ψ(Y ) �= ⊥.

Proof. Assume there exist z ∈ F
m
q , t ∈ F

k
q satisfying ψ2(φ(Y ) = (z, t, φ1(z, t)).

Then, we have that

Y ∈ ψ−1
2 ({(z, t, φ1(z, t)) | z ∈ F

m
q , t ∈ F

k
q}).

By Lemma 2, we have that ψ−1
2 ({(z, t, φ1(z, t)) | z ∈ F

m
q , t ∈ F

k
q}) = Ker(ψ2) ⊕

Im(φ). Since |Ker(ψ2)| = qn

qm+k·qd and |Im(φ)| = qm+k, there are qn−d solutions
for Y such that ψ(Y ) �= ⊥. �
Proposition 2. Let (φ, ψ) be defined as above, then Fqn = Im(φ)⊕V⊥⊕Ker(ψ).

Proof. We show that for any Y ∈ Fqn , Y can be uniquely written as the additions
of the projections on the above sets, respectively. Define τ1 := φ1 ◦ ψ1. Assume
(y, s, e) := ψ2(Y ). Let A := φ2(y, s, φ1(y, s)) and B := φ2(0,0, τ1(e)−φ1(y, s)).
By definition, we have that A ∈ Im(φ) and B ∈ V⊥. It can be verified that
ψ2(Y −A−B) = (0,0, e− τ1(e)). Thus, (Y −A−B) ∈ Ker(ψ) and we complete
the proof. �

As the adversary can carefully select a Y /∈ Im(φ), we need to find the
distribution DY for each Y . From now on we consider the specific polynomial-
based construction of RMFE5, which allows us to provide an explicit description
of DY

6.
Let α1, α2, ..., αm and β1, β2, ..., βk be m + k pair-wise distinct elements in

Fq. There exists a unique polynomial f ∈ Fq[x] with deg(f) ≤ m + k − 1, such
that f(αi) = xi, i ∈ [m] and f(βj) = rj , j ∈ [k]. Let d = 2(m + k) − 1 and
n ≥ 2(m + k + d) − 1. There exist a degree-d irreducible polynomial p ∈ Fq[x]
and a degree-n irreducible polynomial g ∈ Fq[x] such that Fqd

∼= Fq[x]/(p) and
Fqn ∼= Fq[x]/(g). Therefore, elements in the extension field can be viewed as
polynomials. In particular, we pick g(x) = xn + ax + b, where a, b ∈ Fq (such
irreducible g(x) exists, if q is a prime and (n, d) = 1, see [24]). Let Y be a
polynomial over Fq with degree ≤ n − 1.
5 In the RMFE literature [7,12,14], known RMFEs are constructed from algebraic

geometry curves. Polynomials are essentially genus-0 curves and in most cases,
RMFEs constructed from genus-0 curves have a lower ratio d

m
.

6 In fact, similar results can be obtained for general constructions of RMFE, also for
RMFEs over Galois rings.
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– For x ∈ F
m
q , φ is defined as

φ : x �→ f, where f
$← Fq[x]≤m+k−1, satisfying f(αi) = xi, i ∈ [m].

– For f ∈ Fq[x]≤n−1, let f̂ := f mod p. ψ is defined as

ψ : f �→
{

(f(α1), ..., f(αm)), if f̂(αi) = f(αi), f̂(βj) = f(βj), i ∈ [m], j ∈ [k],
⊥, otherwise.

First we give the following lemma.

Lemma 5. Given a x ∈ F
m
q , α1, ..., αm and β1, ..., βk are m+k pair-wise distinct

elements in Fq, then there are qi solutions of r ∈ F
k
q , such that x, r interpolate

a polynomial f with degree ≤ m − 1 + i, i = 0, 1, ..., k.

Proof. Since the evaluation map σ : f �→ (f(α1), ..., f(αm), f(β1), ..., f(βk))
induces a bijection from Fq[x]≤m+k−1 := {f ∈ Fq[x] | deg(f) ≤ m + k − 1}
to F

m
q × F

k
q , there are at most qm+i solutions of x, r such that x, r interpolate

a polynomial f with degree ≤ m − 1 + i, i = 0, 1, ..., k. On the other hand, for
a given x ∈ F

m
q , let the first i positions of r be random, thus x along with r|[i]

interpolate a polynomial f with degree ≤ m − 1 + i. Set the remaining k − i
positions of r lie on f . Thus, there are at least qi solutions of r ∈ F

k
q for a given

x. Combining together, we conclude the proof. �
We have the following theorem.

Theorem 2. Let φ, ψ be defined above. For any Y ∈ Fqn , x ∈ (F∗
q)

m and suffi-
ciently large k, there exists a distribution DY such that Dx,Y

s≈ DY .

Proof. Let us consider the degree of Y . We remark that the result holds for any
x ∈ F

m
q if not pointed out explicitly.

i. If deg(Y ) ≤ m + k − 1. We have that

ψ(φ(x) · Y ) = ψ(f · Y ) = (f · Y (α1), ..., f · Y (αm))
= (f(α1), ..., f(αm)) ∗ (Y (α1), ..., Y (αm))
= x ∗ ψ(Y ),

as deg(f · Y ) ≤ d − 1. So in this condition, Dx,Y = DY : Pr[δ = 0 ] = 1.
ii. If m + k − 1 < deg(Y ) ≤ m + 2k − 1. Since deg(φ(x · Y )) ≤ d + k − 1,

ψ(φ(x) · Y ) = ⊥ if deg(φ(x) · Y ) ≥ d. On the other hand, the equation
ψ(φ(x) · Y ) = x � ψ(Y ) holds if deg(φ(x) · Y ) ≤ d − 1. By Lemma 5, we
have that for all possible values of x,

Dx,Y :
{

Pr[δ = 0] = 1/qdeg(Y )−m−k+1,
Pr[δ = ⊥] = 1 − 1/qdeg(Y )−m−k+1.

So in this condition, Dx,Y = DY .



54 F. Lin et al.

iii. If m + 2k − 1 < deg(Y ) ≤ 2(m + k − 1). Similarly, since deg(φ(x · Y )) ≤
d + m + k − 2, we have that ψ(φ(x) · Y ) = ⊥ if deg(φ(x) · Y ) ≥ d, and
ψ(φ(x) · Y ) = x � ψ(Y ) holds if deg(φ(x) · Y ) ≤ d − 1. There are only
q2(m+k)−1−deg(Y ) possible values of x such that x interpolates a polynomial
f with degree ≤ 2(m+k−1)−deg(Y ), as there are exactly q2(m+k)−1−deg(Y )

choices of such f . For these x, let r lie on f , and we have that

Dx,Y :
{

Pr[δ = 0 ] = 1/qk,
Pr[δ = ⊥] = 1 − 1/qk.

For the remaining qm − q2(m+k)−1−deg(Y ) possible values of x, there are no
solutions for r ∈ F

k
q , and we have Dx,Y = D. So in this condition, Dx,Y

s≈ D
for sufficient large k.

iv. If 2(m + k) − 1 ≤ deg(Y ) ≤ n − m − k. Let Ŷ := Y mod p, and we
can find r ∈ Fq[x] satisfying Y = Ŷ + p · r. Let a(x) :=

∏m
i=1(x − αi),

and b(x) :=
∏k

i=1(x − βi). Since deg(φ(x · Y )) ≤ n − 1, we have that if
deg(Ŷ ) ≤ m + k − 1, a(x) | r(x), and r(βj) = 0 for j ∈ J ⊆ [k],

Dx,Y :
{

Pr[δ = 0 ] = 1/qk−|J|,
Pr[δ = ⊥] = 1 − 1/qk−|J|.

However, we remark that if deg(Ŷ ) ≤ m+k − 1, b(x) | r(x) and a(x) � r(x),
we have that ψ(φ(0) · Y ) = 0 but ψ(φ(x) · Y ) = ⊥, for x ∈ (F∗

q)
m. Thus

for the remaining choices of Y , Dx,Y = D holds for x ∈ (F∗
q)

m. So, in this
condition, Dx,Y = DY for x ∈ (F∗

q)
m.

v. If deg(Y ) ≥ n − m − k + 1. If deg(φ(x) · Y ) ≤ n − 1, the discussion is
similar to the previous one, and we have that Dx,Y = DY for x ∈ (F∗

q)
m.

If deg(φ(x) · Y ) ≥ n, deg(φ(x) · Y mod g) will exceed d − 1 and lead to ⊥
overwhelmingly, as we take g(x) of the form g(x) = xn + ax + b, a, b ∈ Fq.
So in this condition, Dx,Y

s≈ DY for x ∈ (F∗
q)

m.

From above discussions, we conclude the proof. �
As the above NM-RMFE construction contains two layers of RMFEs, we

remark that the asymptotic behavior of NM-RMFE is not as good as RMFE
(though still constant). For instance, by Lemma 3, there exists a family of
(m, d; 2)-NM-RMFEs over F2(Z232 , Z264) with m → ∞ and d

m → 29.13 and a
family of (m, d; 3)-NM-RMFEs over F2(Z232 , Z264) with m → ∞ and d

m → 80.15.
For the concrete efficiency of (m, d; 3)-NM-RMFEs over Z232 , according to the
results in [14], there exists a (3m, 7(3m+4); 3)-RMFE over Z232 for any m ≤ 150.
We obtain that the NM-RMFE ratio d

m+k is 56 approximately, where k is related
to the statistical security parameter κ. Assume κ = 80, by setting m = 150, the
ratio d/m is 87.3. Note that for a given κ, the ratio d/m is close to a constant
(56 in this case), as long as m is relatively large compared to k.
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4 Amortized rNISC/VOLE

In this section, we first show how to construct a semi-honest secure NISC/VOLE
for computing branching programs over Z2k . Then we show how to obtain a
reusable malicious secure one.

4.1 Amortized NISC/VOLE with Semi-honest Security

Let L(x) be a matrix induced by a size (s+1) BP over Z2k computing f : Z
n
2k →

Z2k , i.e. det(L(x)) = f(x). Suppose x1, ...,xm ∈ Z
n
2k . We consider the case of

computing f(x1), ..., f(xm) in parallel7, where we can amortize the cost by using
RMFEs. In a high level, we present a variant of DARE for BP over GR(2k, d),
which, in effect, computes parallel DAREs for BP over Z2k (i.e. reveals nothing
but f(x1), ..., f(xm)).

Let (φ, ψ) be an (m, d; 3)-RMFE over Z2k , and τ := φ◦ψ. We generalize these
maps to perform on matrices in a natural way. As φ is a Z2k -linear map, it can
be observed that φ(L(x1), ..., L(xm)) = L(φ(x1, ...,xm)). We define following
matrix sets over GR(2k, d):

Ĥs := {φ(H1, ...,Hm) | Hi ∈ Hs, i ∈ [m]},

Ĝs
1 := {φ(G1, ..., Gm) | Gi ∈ Gs

1 , i ∈ [m]},

Ĝs
2 := {φ(G1, ..., Gm) | Gi ∈ Gs

2 , i ∈ [m]},

where Hs,Gs
1 ,Gs

2 are defined in Corollary 1.
We observe that the encoding of L(φ(x1, ...,xm)) (i.e. R1L(φ(x1, ...,xm))R2,

where R1, R2 are sampled uniformly at random from Ĝs
1 , Ĝs

2 , respectively) reveals
not only det(L(x1)), ..., det(L(xm)) but also det(L(φ(x1, ...,xm))), which we do
not desire. To solve this issue, we mask the encoding by random values over
Ker(ψ). Therefore, we define a matrix group Is for this purpose.

Definition 6. Let Is be the set of all s× s matrices over Ker(ψ) with 0’s below
the main diagonal.

We have the following proposition, which indicates that parallel DAREs over
Z2k can be implemented at one time via RMFE.

Proposition 3. Let R1, R2, R3 be uniformly and independently distributed
matrices from Ĝs

1 , Ĝs
2 , Is, respectively. We have that M := R1L(φ(x1, ...,xm))

R2 + R3 reveals no information about L(x1), ..., L(xm) but det(L(x1)), ...,
det(L(xm)).

Proof. The map ψ : GR(2k, d) → Z
m
2k induces m Z2k -linear maps ψi : GR(2k, d) →

Z2k , for i ∈ [m], i.e. (ψ1, ..., ψm) := ψ. By the definition of (m, d; 3)-RMFEs,
we have that ψi(R1L(φ(x1, ...,xm))R2 + R3) = ψi(R1)L(xi)ψi(R2), for i ∈ [m].

7 It remains interesting and open whether a branching program can be transformed
into copies of a sub branching program.
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Since R1, R2 are uniformly and independently distributed from Ĝs
1 , Ĝs

2, and ψ
conditioned on Im(φ) is a bijection, ψi(R1), ψi(R2) are uniformly and indepen-
dently distributed from Gs

1 ,Gs
2 for i ∈ [m], respectively. Thus, by Corollary 1,

ψi(R1)L(xi)ψi(R2) reveals nothing about L(xi) but det(L(xi)), for i ∈ [m].
Finally, we claim that R1L(φ(x1, ...,xm))R2 + R3 reveals no more informa-
tion than ψ(R1L(φ(x1, ...,xm))R2 + R3). Since, by Lemma 2, we have that
GR(2k, d) = Im(φ) ⊕ Ker(ψ) (assuming φ(1) = 1) and R1L(φ(x1, ...,xm))R2’s
projection on Ker(ψ) is perfectly masked by R3. This completes the proof. �

Given the above proposition, now we proceed to construct our semi-honest
NISC protocol over Z2k . We consider a slightly more general framework with t
branching programs BPi of size (si+1) over Z2k , computing fi : Z

n1
2k

×Z
n2
2k

→ Z2k ,
for i ∈ [t]. Let f(x,y) be a two-party sender-receiver functionality, taking inputs
x ∈ Z

n1
2k

,y ∈ Z
n2
2k

from the receiver PR and the sender PS , respectively, and
sends f(x,y) ∈ Z

t
2k to PR, where f := (f1, ..., ft). Let Li(x,y) be the si × si

matrix induced by BPi, for i ∈ [t]. Suppose f(x,y) will be invoked m times, with
inputs (x1,y1), ..., (xm,ym) ∈ Z

n1
2k

×Z
n2
2k

, respectively. We present the amortized
NISC protocol in Fig. 3 and we have the following theorem.

Fig. 3. Protocol for semi-honest NISC over Z2k in the (chosen-input) FGR(2k,d)
VOLE -hybrid

model.

Theorem 3 (Semi-honest NISC/VOLE over Z2k). Protocol ΠNISC realizes
a two-party sender-receiver functionality that computes f : Z

n1
2k

× Z
n2
2k

→ Z
t
2k

with semi-honest security in the FGR(2k,d)
VOLE -hybrid model. In particular, ΠNISC

invokes n1 instances of VOLE, and the length of the j-th VOLE instance is
Sj :=

∑
i∈D(j)

(
si

2

)
, where D(j) is the set of output entries that depend on Xj.
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Proof. If PR is corrupted, the simulator SimR receives X1, ...,Xn1 from the
adversary A. Then, SimR computes (x1, ...,xm) := ψ(X), and sends them to
the ideal functionality that computes f . For j ∈ [m], SimR receives zj ∈ Z

t
2k

from the ideal functionality, and for i ∈ [t], SimR samples random matrix Lj,i

over Z2k with −1’s in the second diagonal and 0’s below the second diagonal
such that det(Lj,i) = zj,i. For i ∈ [t], SimR samples R3,i

$← Isi and computes
Mi := φ(L1,i, ..., Lm,i) + R3,i. Finally, SimR delivers M1, ...,Mt to A emulated
as VOLE outputs (n1 instances of VOLE, with total length

∑n1
j=1 Sj). We remark

that this procedure can be done without the knowledge of Y , since the function f
is public. The correctness is easy to verify and the indistinguishability is directly
obtained by Proposition 3.

If PS is corrupted, the simulator SimS receives VOLE inputs from the adver-
sary A, which conveys the matrices M1(·), ...,Mt(·) over GR(2k, d). For i ∈ [t],
SimS computes (M1,i(·), ...,Mm,i(·)) := ψ(Mi(·)). Recall that for each Mj,i(·),
there exist R1,j,i ∈ Gsi

1 and R2,j,i ∈ Gsi
2 such that R1,j,iLi(·,yj)R2,j,i = Mj,i(·).

It can be observed that each entry of R1,j,i, R2,j,i can be computed from the VOLE
messages. (This depends crucially on the structure of R1,j,i, Li(·,yj), R2,j,i; we
refer the reader to [19] for more details.) Since R1,j,i, R2,j,i are invertible, SS can
extract yj for all j ∈ [m]. Finally, SimS sends y1, ...,ym to the ideal functional-
ity that computes f . The indistinguishability is obtained by the correct extraction
of y1, ...,ym. This completes the proof. �

4.2 Amortized rNISC/VOLE with Malicious Security

We first consider an intermediate security model where both the malicious sender
and the malicious receiver follow the RMFE part specifications8 (e.g., computes
X := φ(x1, ...,xm), Y := φ(y1, ...,ym)) and we only need to enforce the malicious
sender’s compliance with the DARE part specifications (e.g., sends messages to
the VOLE functionality according to Mi(·)). Then, we consider the full malicious
security model and show how to construct maliciously secure rNISC/VOLE for
computing branching programs over Z2k .

We generalize the certified VOLE (cVOLE) method (for Galois fields) [13]
to Galois ring analogue as the first step. The cVOLE is a special case of
NISC/VOLE, where the sender’s inputs sent to multiple instances of VOLE need
to satisfy some arithmetic constraints (formulated by a circuit C), which allows
for forcing the malicious sender to follow the (ΠNISC) protocol specifications
honestly (see Fig. 4). Similar to its Galois field counterpart [13], constructing
a cVOLE protocol over Galois rings involves two main ingredients, a certified
VOLE with equality constraint (eVOLE for short) over Galois rings and a sta-
tistical NIZK protocol for proving circuit satisfiability over Galois rings.

eVOLE. The eVOLE is a weak variant of cVOLE, which only restricts some
given positions of the sender’s inputs to multiple instances of VOLE to being

8 In fact, the malicious receiver can only cheat by deviating from the RMFE encoding.
Namely, we assume a semi-honest receiver.
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Fig. 4. Certified VOLE with a general arithmetic constraint

Fig. 5. Distributional certified VOLE with equality constraints.

equal (rather than satisfying a general arithmetic constraint). We formalize the
eVOLE functionality in Fig. 5. The eVOLE construction9 (presented in Fig. 6)
shares similarity with the eVOLE construction for Galois fields [13], and is built
upon random VOLE. We address the main difference and sketch how to construct
eVOLE from chosen-input VOLE for simplicity (the reduction of chosen-input
VOLE to random VOLE is straightforward).

9 We remark that for convenience, the construction proves one equality constraint,
which can be naturally extended to prove an arbitrary number of equality con-
straints.
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Fig. 6. Protocol for eVOLE over GR(2k, d) in the FGR(2k,d)
VOLE -hybrid model.

Suppose a1, b1 ∈ GR(2k, d)l1 , a2, b2 ∈ GR(2k, d)l2 are PS ’s inputs and α1, α2

are PR’s inputs to two VOLE instances, respectively. For proving the equality
constraint of some a1,i = a2,j , where i ∈ [l1], j ∈ [l2], we apply a Galois ring
analogue of the check mechanism [13]. By PS setting a1,l1+1 := b2,j , a2,l2+1 :=

b1,i, b1,l1+1, b2,l2+1
$← GR(2k, d) and sending b1,l1+1 − b2,l2+1 to PR, we have that

α2 · v1,i − α1 · v2,j + v1,l1+1 − v2,l2+1 = b1,l1+1 − b2,l2+1 (1)

holds if a1,i = a2,j . If a1,i �= a2,j and α1, α2 are uniformly and independently
distributed, by Lemma 1, Eq. (1) holds with probability at most 1/2d−1.

For proving the equality constraint of some b1,i = a2,j , we cannot reduce
it to the above case like [13]10. We use another equation for the check. By PS
10 In more detail, we cannot reduce v1,i = a1,i ·α1 + b1,i to v1,i ·α−1

1 = b1,i ·α−1
1 + a1,i,

as 1/2d fraction of elements in GR(2k, d) are zero divisors.
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setting b1,l1+1 := b2,j , a2,l2+1 := a1,i, b2,l2+1, a1,l1+1
$← GR(2k, d) and sending

b2,l2+1 − a1,l1+1 to PR, we have that

v2,j − v1,l1+1 − v1,i · α2 + v2,l2+1 · α1 = α1 · (b2,l2+1 − a1,l1+1) (2)

holds if b1,i = a2,j . Similarly, by Lemma 1, Eq. (2) holds with probability at most
1/2d−1 if b1,i �= a2,j and α1, α2 are uniformly and independently distributed.

We have the following proposition (see the proof in Appendix B.2 of the full
version [22]).

Proposition 4. Π
GR(2k,d)
eVOLE realizes FGR(2k,d)

eVOLE in the FGR(2k,d)
VOLE -hybrid model.

NIZK. The authors of [13] introduced a simple kind of information-theoretic
proof system for proving circuit satisfiability called line point zero knowledge
(LPZK). Informally, in an LPZK proof, the prover P generates from the witness
w and the circuit C an affine line v(x) := a · x + b over a field Fq. The verifier
V queries a single point α and obtains the evaluation v(α), then V decides
whether to accept the proof or reject. The LPZK proof system is statistical in
the VOLE-hybrid model and can be realized by a single invocation of VOLE.
We naturally extend the LPZK-NIZK construction for fields of [13] to Galois
rings, by simply replacing the field Fq with a Galois ring GR(2k, d). We remark
that the soundness error is decreased from O (1/q ) to O(

1/2d
)
, which can be

negligible in the security parameter for a sufficiently large d. The construction
communicates 3 elements over GR(2k, d) per multiplication gate and is “free” for
addition gates. We refer to Appendix B.1 of the full version [22] for more details.
cVOLE. We next provide a high-level overview of the construction of cVOLE
from eVOLE and LPZK-NIZK. The eVOLE is used to move the sender’s inputs
to multiple VOLE instances (n1 lines, on fixed points α1, ..., αn1) to another
VOLE instance (another line, on a random point γ), where an LPZK-NIZK over
Galois rings can be performed.

When substituting parallel VOLE instances in the semi-honest protocol
ΠNISC with the above cVOLE construction, the eVOLE requirement should be
satisfied (i.e. PR’s inputs need to be uniformly and independently distributed).
However, PR has fixed inputs in the NISC setting. To solve this, n1 + 2 VOLE
instances with PR’s corresponding inputs (α1 +β, ..., αn1 +β, β, γ) are required,

where α1, ..., αn ∈ Im(φ) and β, γ
$← GR(2k, d), and the equality constraints are

proven between VOLE instances corresponding to (αi + β, γ) and (β, γ). The
cVOLE protocol is presented in Fig. 7, and we have the following corollary with
a deferred proof in Appendix B.2 of the full version [22].

Corollary 2. Π
GR(2k,d)
cVOLE realizes FGR(2k,d)

cVOLE in the (FGR(2k,d)
VOLE ,FGR(2k,d)

eVOLE )-hybrid
model.

In particular, if instantiating FGR(2k,d)
eVOLE with Π

GR(2k,d)
eVOLE , we obtain a

cVOLE/VOLE construction, which essentially admits a NISC/VOLE protocol
with reusable malicious security for branching programs over GR(2k, d). If we
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Fig. 7. Protocol for Certified VOLE with a general arithmetic constraint in the

FGR(2k,d)
eVOLE -hybrid model

further assume both parties follow RMFE encoding honestly, the protocol can
securely compute branching programs over Z2k .

Putting all pieces together. Recall that NM-RMFE allows for “extraction”
when the adversary does not follow the NM-RMFE encoding honestly. The final
step is upgrading standard RMFE to NM-RMFE and we do not need to assume
both parties follow NM-RMFE encoding honestly. For NISC tasks that compute
BPs over Z2k , using the cVOLE technique11 and substituting Degree-3 RMFEs
by an (m, d; 3)-NM-RMFE (φ, ψ) in ΠNISC, we have the following theorem.

11 The circuit C (specifies the arithmetic constraints in DARE) is of size S :=
∑n1

j=1 Sj+
∑t

i=1 s3i according to naive matrix multiplication (Sj , si are defined as in Theorem 3).
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Theorem 4 (rNISC/VOLE from NM-RMFE). Suppose f : Z
n1
2k

× Z
n2
2k

→
Z

t
2k is a sender-receiver functionality whose i-th output can be computed by an

arithmetic branching program over Z2k of size si + 1 that depends on di inputs.
Let (φ, ψ) be an (m, d; 3)-NM-RMFE over Z2k and κ be the statistical security
parameter. Then f admits an rNISC/VOLE protocol with the following features:

• The protocol takes n1+2 parallel VOLE instances over GR(2k, d), and outputs
m executions of f .

• The protocol is secure against a malicious sender and a malicious receiver.
• Assume the branching program admits a verification circuit C that takes qa

inputs from a entries, qb inputs from b entries. The circuit C has S :=∑t
i=1(di

(
si

2

)
+ s3i ) multiplication gate. The total length of VOLE instances

is 2S + 6qa + 7qb +
∑t

i=1 di

(
si

2

)
, and 3S + 1 + 8qa + 9qb + 2

∑t
i=1 di

(
si

2

)
ele-

ments over GR(2k, d) are communicated.
• The simulation error is ε = O(

1/2d + 1/2κ
)
.

Proof. The construction is obtained by replacing RMFE with NM-RMFE and
VOLE with cVOLE in ΠNISC. Similar to that in Theorem 1, NM-RMFE allows
for simulating the cheating behavior of not following NM-RMFE encoding, thus
the resulting NISC protocol has reusable malicious security in the FGR(2k,d)

cVOLE -

hybrid model. With a statistical secure instantiation of FGR(2k,d)
cVOLE in the FGR(2k,d)

VOLE -
hybrid model, the resulting NISC protocol has reusable malicious security in the
FGR(2k,d)

VOLE -hybrid model. The simulation error is computed by the union bound of
the soundness of cVOLE and that of NM-RMFE. For the communication com-
plexity, recall that in cVOLE we require two additional entries of VOLE for an
ai,j entry that is an input to C, and three additional entries of VOLE for an bi,j

entry that is an input to C. Thus, we can obtain the above results. �
Recall that by Theorem 2, we realize a slightly weaker variant of NM-RMFE,

where x ∈ (Z∗
2k)m. We argue that this imperfect construction is still sufficient for

building rNISC/VOLE. When instantiating NM-RMFE with our construction
in the above rNISC/VOLE, intuitively the adversary A is allowed to query some
positions of the honest party’s inputs to VOLEs, and he learns whether they are
all in Z

∗
2k (through observing the validity of VOLE outputs). More precisely, if

the receiver is corrupted, recall that when we implement parallel DAREs, PS ’s
input Y will never be put into a entries, thus this attack can be avoided by
instantiating Lemma 4 with Ḡs

1 ≤ Gs
1 , Ḡs

2 ≤ Gs
2 such that their entries are even

(i.e. zero divisors) except for the main diagonal. If the sender is corrupted, we let
PR sample the mask α from φ((Z∗

2k)m)12, then applying this attack will always
lead to PR aborting.

5 Amortized Computationally Secure NISC

Our NM-RMFE approach admits rNISC/VOLE with good asymptotic efficiency
and practical concrete efficiency for a relative large batch size m. To achieve
12 This would slightly affect the eVOLE soundness.
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better concrete efficiency (especially for small m), we consider weaker security
models and explore computationally secure solutions to constructing (reusable)
NISC protocols for BPs over Z2k .

In this section, we first show how to force the sender to follow RMFE encoding
efficiently. Then, we present two approaches to forcing the receiver to follow
RMFE encoding honestly. The former approach is based on cut-and-choose and
makes black-box use of any two-round reusable VOLE protocol. The latter OT-
based approach is highly efficient but unfortunately not reusable. Combining
all together, we obtain two NISC protocols, a concrete efficient reusable NISC
construction with communication overhead O(λ), where λ is the computational
security parameter, and a highly efficient NISC construction with communication
overhead close to a constant.

5.1 Forcing the Sender to Follow RMFE Encoding

A naive solution is to augment the NIZK subprotocol in cVOLE to include a
proof for correct RMFE encoding. However, this would lead to proving circuit
satisfiability on a circuit of large size, which is inefficient. To this end, we use a
more efficient technique, re-embedding VOLE (embVOLE) [21] that was origi-
nally designed for ZK protocols and allows to “prove” RMFE constraints before
NIZK is applied. We slightly generalize the random embVOLE functionality to
fit NISC settings (see FGR(2k,d)

embVOLE in Fig. 8), which then allows the receiver PR to
query â|J ’s projection on Ker(ψ) , for some J ⊆ [l]. For some i ∈ J , to obtain
[ai]α from a random [âi]α, PS is supposed to send ui := ai − âi to PR, then
PR can verify whether ui = τ(âi) − âi (PR learns τ(âi) − âi from querying âi’s
projection on Ker(ψ)). If the check fails, ai /∈ Im(φ) and PR will abort, which
forces PS ’s inputs to satisfy RMFE constraints.

We present the random embVOLE protocol Π
GR(2k,d)
embVOLE in Appendix B.3 of the

full version [22], which can be made non-interactive by Fiat-Shamir heuristic.
We remark that Π

GR(2k,d)
embVOLE has communication overhead close to a constant,

when the length l is relatively large.

Fig. 8. Ideal functionality for random re-embedding VOLE over GR(2k, d).
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Fig. 9. Ideal functionality for chosen-input φVOLE over GR(2k, d).

We slightly modify functionalities FGR(2k,d)
eVOLE , FGR(2k,d)

cVOLE to include checking

RMFE constraints (yielding FGR(2k,d)
ëVOLE ,FGR(2k,d)

c̈VOLE , respectively). We construct an

ëVOLE protocol Π
GR(2k,d)
ëVOLE , which is the same as Π

GR(2k,d)
eVOLE , except that Π

GR(2k,d)
ëVOLE

is built upon FGR(2k,d)
embVOLE. We also construct an c̈VOLE protocol Π

GR(2k,d)
c̈VOLE , which

is the same as Π
GR(2k,d)
cVOLE , except that Π

GR(2k,d)
c̈VOLE is built upon FGR(2k,d)

ëVOLE . We refer
to Appendix B.4 of the full version [22] for more details.

5.2 Forcing the Receiver to Follow RMFE Encoding

In this section, we consider the remaining issue of forcing the receiver to fol-
low RMFE encoding. We remark again that the malicious receiver in the ΠNISC

protocol can only cheat by deviating from RMFE encoding. Therefore, in Fig. 9
we define a variant of VOLE, called φVOLE, where the receiver’s inputs are
restricted in the image of a RMFE map φ (this leaves no room for the mali-
cious receiver to cheat when building ΠNISC upon it). In general, we construct
computationally secure NISC protocols following the roadmap below,

FGR(2k,d)
φVOLE =⇒ Π

GR(2k,d)
embVOLE =⇒ Π

GR(2k,d)
ëVOLE

+Πq,t
NIZK=⇒ Π

GR(2k,d)
c̈VOLE =⇒NISC.

Recall that in c̈VOLE, there are n + 2 VOLE instances, and the first n + 1
VOLE instances correspond to PR’s inputs α1+β, ..., αn +β, β, respectively. We
remark that α1+β, ..., αn+β, β will be restricted in Im(φ), the ëVOLE soundness
is 1/2d + 1/2m rather than 1/2d−1. We present two φVOLE constructions with
different features as follows.
The φVOLE construction based on cut-and-choose. We are initially
inspired by the approach of the concurrent work [18], where they bypassed
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the impossible result of OT-based rNISC [10] via making a black-box use of
OT protocols with random oracles. Making a black-box use of OT (VOLE)
protocols instead of assuming black-box access to an ideal OT (VOLE) func-
tionality allows for “connecting” the inputs that the parties use to compute
OT messages with the other cryptographic primitives, e.g. commitments. Let
(ΠGR(2k,d)

PR,1 ,Π
GR(2k,d)
PS ,1 ,Π

GR(2k,d)
PR,2 ) be a two-message reusable VOLE protocol over

GR(2k, d), where PR runs Π
GR(2k,d)
PR,1 on her private input and random tape to

obtain the first round message π1, then PS computes the second round message
π2 by running Π

GR(2k,d)
PS ,1 on π1 and his private input, and finally PR obtains

the result by evaluating Π
GR(2k,d)
PR,2 on π2 and her random tapes. Recall that our

goal here is to guarantee that PR’s inputs are restricted in the image of an
RMFE map, and intuitively our high-level idea is cut-and-choose. The receiver
PR commits to inputs and random tapes used for generating her first VOLE
messages (several copies), and reveals some of them according to queries to a
random oracle. The sender PS then can check whether PR’s inputs are valid and
the VOLE messages are correctly computed. However, there is still a gap since
PR’s inputs are private (for computing rNISC/VOLE tasks) and none of them
could be revealed. We overcome this issue by observing that in cVOLE, PR’s
inputs to multiple VOLE instances are masked with a random β (suppose PR
has inputs α1, ..., αn), thus one of these commitments [[α1 + β]], ..., [[αn + β]], [[β]]
can be opened. Repeating the procedure for a sufficient number of times and
PS will believe that PR behaves honestly with an overwhelming probability.
The final problem is that a malicious PR may not provide consistent inputs in
different iterations. We show that if further assuming the commitment scheme
(Com, Open) is linearly homomorphic over Galois rings, we can apply a random
linear combination check on the committed inputs, where the random coefficients
can be obtained by querying a random oracle as well. Since RMFEs over Z2k are
Z2k -linear maps, these random coefficients can be sampled from Z2k . We present
the desired protocol in Fig. 10, which has O(λ) communication overhead due to
cut-and-choose.

We have the following theorem (see the proof in Appendix B.6 of the full
version [22]).

Theorem 5. Assuming a two-message reusable VOLE protocol over GR(2k, d),
and a linearly-homomorphic commitment scheme over GR(2k, d), Ω

GR(2k,d)
φVOLE real-

izes FGR(2k,d)
φVOLE in the random oracle model.

Combining all pieces together, we obtain an rNISC protocol (for computing
BPs over Z2k) that makes black-box use of any two-message reusable VOLE
protocol in the random oracle model. We note that, for constructing an rNISC
computing a general function f , the work [18] provides a compiler that lifts
a non-reusable (malicious secure) NISC protocol (computes a related function
f ′) to a reusable one. We observe that their tool is strong, but quite heavy
and expensive for general functions, while for some simple f , the efficiency can



66 F. Lin et al.

Fig. 10. Protocol for φVOLE making black-box use of VOLE over GR(2k, d).
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be significantly improved. To optimize the efficiency, we can use their rNISC
compiler to obtain a reusable VOLE protocol over Galois rings from black-box
use of OT13, which is expected to have good concrete efficiency.
The φVOLE construction from OT. We start with an observation on
RMFEs. Let (φ, ψ) be an (m, d;D)-RMFE over Z2k . We have that GR(2k, d) can
be viewed as a linear space over Z2k with dimension d. As φ, ψ are Z2k -linear
maps, Im(φ) can be viewed as a linear space over Z2k with dimension m, which is
a subspace of GR(2k, d) as well. Therefore, there exist a basis γ1, ..., γm ∈ GR(2k, d)
such that

φ : Z
m
2k → GR(2k, d), (a1, ..., am) �→ a1γ1 + ... + amγm.

We call such γ1, ..., γm an RMFE-basis. Let α ∈ Z
m
2k , and a, b1, ..., bm ∈

GR(2k, d)l. Denote a · αi + bi by vi, for i ∈ [m]. We have that

m∑
i=1

vi · γi =
m∑

i=1

(a · αi + bi) · γi = a · (
m∑

i=1

αiγi) +
m∑

i=1

bi · γi

= a · φ(α1, ..., αm) +
m∑

i=1

bi · γi.

Denoting
∑m

i=1 vi ·γi by v and
∑m

i=1 bi ·γi by b, we obtain an VOLE instance
v = a · φ(α) + b. From above discussions, we define the (chosen-input) reverse
subring VOLE (rsVOLE) functionality over GR(2k, d), where the receiver PR’s
inputs are over Z2k . We refer to Appendix B.5 of the full version [22] for the
functionality and a straightforward construction based on OT (similar to the
way that SPDZ2k [11] implements VOLE over Z2k).

Then in Fig. 11, we present a semi-honest secure φVOLE construction over
GR(2k, d) in the FGR(2k,d)

rsVOLE -hybrid model. To enable perfect simulation, we further
require that γ1 is invertible in GR(2k, d). Such RMFE-basis γ1, ..., γm ∈ GR(2k, d)
always exists, for an (m, d;D)-RMFE (φ, ψ) with φ(1) = 1. Intuitively, if b1 is
uniformly random, then b is uniformly random as well. We have the following
theorem (see the proof in Appendix B.6 of the full version [22]).

Theorem 6. Protocol Π
GR(2k,d)
φVOLE realizes FGR(2k,d)

φVOLE with semi-honest security.

Our OT-based rsVOLE construction essentially admits a φVOLE protocol
with semi-honest security (mk OTs involved in total). For such OT-based con-
structions, the malicious security can be naturally obtained if upgrading OTs to
Correlated OTs (COTs) (we can use the COT construction in [25]), as there is no
room for a malicious PR to cheat and a malicious PS can only cheat by providing
inconsistent inputs to OTs. This leads to an efficient malicious secure φVOLE
construction (the cost is even cheaper than constructing standard VOLE from
COT), and further an efficient malicious secure NISC construction for computing
BPs over Z2k .
13 VOLE is essentially a simple NISC task, therefore the inner protocol of the rNISC

compiler can be an OT-based (non-reusable) VOLE protocol. The specific construc-
tion is beyond the scope of this work, thus omitted.
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Fig. 11. Protocol for φVOLE over GR(2k, d) in the FGR(2k,d)
rsVOLE -hybrid model.
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Abstract. Secure computation is a cornerstone of modern cryptogra-
phy and a rich body of research is devoted to understanding its round
complexity. In this work, we consider two-party computation (2PC) pro-
tocols (where both parties receive output) that remain secure in the
realistic setting where many instances of the protocol are executed in
parallel (concurrent security). We obtain a two-round concurrent-secure
2PC protocol based on a single, standard, post-quantum assumption: The
subexponential hardness of the learning-with-errors (LWE) problem. Our
protocol is in the plain model, i.e., it has no trusted setup, and it is secure
in the super-polynomial simulation framework of Pass (EUROCRYPT
2003). Since two rounds are minimal for (concurrent) 2PC, this work
resolves the round complexity of concurrent 2PC from standard assump-
tions.

As immediate applications, our work establishes feasibility results for
interesting cryptographic primitives, such as the first two-round pass-
word authentication key exchange (PAKE) protocol in the plain model
and the first two-round concurrent secure computation protocol for quan-
tum circuits (2PQC).

1 Introduction

Secure computation is a fundamental primitive in cryptography which allows two
or more parties, all of whom have private inputs, to collectively compute some
function over their inputs securely without revealing the inputs themselves. In
recent years, significant attention has been devoted to the round-complexity of
secure computation in the setting of two parties, as well as in the multi-party
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setting (MPC). This has culminated in recent work of [5,11,23,28,35,41], which
give protocols that run in four rounds, known to be the least amount of rounds
possible for full security in the plain model1.

The results above achieve security in the standalone setting, where all parties
are assumed to participate in only one instance of the protocol.

The Concurrent Setting. A more realistic setting allows parties to participate
concurrently in arbitrarily many instances. Unfortunately, Barak, Prabhakaran
and Sahai [14] show that achieving the standard definition of concurrent security
is impossible in any rounds in the plain model, without a trusted setup. In an
effort to overcome the above mentioned impossibility results, many recent works
have focused on proving concurrent security for two-party computation (2PC) in
alternative models, e.g., in the bounded concurrent model [59], in the multiple
ideal-query model [38], and for input-indistinguishable computation [55].

One standard relaxation of simulation security, which is widely used to cir-
cumvent many lower-bound results, is the notion of super-polynomial simula-
tion, or SPS [58]. With this notion, for any real-world adversary, we require
an ideal-world simulator that runs in super-polynomial time. More precisely, in
this scenario, the simulator in the ideal world is allowed to run in (fixed) super-
polynomial time. Informally, the SPS security guarantees that any polynomial-
time attack in the real execution can also be mounted in the ideal world execu-
tion, albeit in super-polynomial time. This is directly applicable in settings where
ideal world security is guaranteed statistically or information-theoretically and
it is known to imply input-indistinguishable computation [55]. There has been a
fruitful line of research devoted to understanding the power of SPS security for
secure computations in the concurrent setting [26,33,48–50,54,60] [12,34,40].

The Round Complexity. In the concurrent setting, a series of works [33,49]
constructed constant-round protocols (approximately 20 rounds) in the simulta-
neous message exchange model. Later, Garg et al. [34] decreased the round com-
plexity to 5 rounds with SPS security from standard sub-exponential assump-
tions. In 2017, the work of Badrinarayanan et al. [12] used this notion to circum-
vent both the impossibility of concurrent MPC and the four-round lower-bound,
giving a protocol that works in three rounds and satisfies concurrent security.
For several years, this result was the best-known result regarding the round
complexity of MPC in the plain model. Until very recently, no two-round pro-
tocols were known. This was the case even in the restricted setting of two-party
computation (where both parties receive output).

Recently two new works improved the state of the art in this area:

– The work of [2] gave a two-round MPC protocol for general functionalities
which achieves standalone security in the plain model without setup and with a

1 It is also known how to achieve two-round MPC that satisfies a much weaker notion of
semi-malicious security, where the adversary is assumed to follow the honest protocol
specification. [36] Alternately, achieving full security in two rounds is possible if we
allow for a trusted setup. In this paper, we focus on achieving full malicious security
in the plain model, without setup.
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super-polynomial simulator, assuming subexponential non-interactive witness-
indistinguishable arguments, the subexponential SXDH assumption, and the
existence of a special type of non-interactive non-malleable commitment.2

– The work of [31] gave a concurrent, highly-reusable3 two-round MPC proto-
col for general functionalities, assuming subexponential quantum hardness of
the learning-with-errors (LWE) problem, subexponential classical hardness of
SXDH, the existence of a subexponentially-secure (classically-hard) indistin-
guishability obfuscation (iO) scheme, and time-lock puzzles.

Assumptions for Two-Party Secure Computation. The goal of our work
is to focus on secure computation in the two-party setting and to explore the
assumptions under which two-round secure protocols are possible. Even in this
more specific setting, the two above results are the only known protocols that
achieve two-round protocols for general two-party functionalities.4 Both of the
previously mentioned works on two-round protocols use powerful primitives
which are only known from strong assumptions. More specifically, the work of [2]
requires a strong version of non-interactive non-malleable commitments, which
are only known from strong, non-standard assumptions, such as adaptive one-
way functions [57], or keyless hash functions along with a subexponential variant
of the “hardness amplifiability” assumption of [19]. The work of [31] is able to
avoid using these strong commitments, instead using (a modified version of)
the one-round NMC of [46], which relies on the existence of sub-exponential
indistinguishability obfuscation (iO).

We briefly discuss the assumptions under which iO exists. Our understanding
of these assumptions has vastly improved in recent years, culminating in the
work of [44,45], which showed that iO can be built on well-founded assumptions,
namely hardness of LPN over Fp, hardness of DLIN, and the existence of PRGs
in NC0. However, our understanding of the assumptions necessary for quantum-
secure iO is much less stable. We note that besides the above-mentioned work,
all other constructions of iO rely on ad-hoc hardness assumptions which were
specifically invented for the purpose of proving the security of iO [3,4,6–8,13,
16,21,22,24,27,29,32,37,43,51,52,56,61,64]. Although some of the most recent
of these constructions rely on lattice-based assumptions which ostensibly could
be quantum-secure [22,37,64], there are already preliminary attacks on some
versions of these new assumptions [42]. Thus, in this setting, our understanding
is much more limited than in the classical case.

In addition to iO, both of the constructions of the two-round MPC above
use other assumptions (i.e., SXDH) which, while standard, are quantum-broken.
With all of this in mind, it is interesting to ask the following question:

2 The protocol of [2] is given in the form of a compiler that transforms a two-round
semi-malicious-secure MPC protocol into a malicious-secure one.

3 See [31] for the exact definition of reusability obtained.
4 If we restrict ourselves to functionalities where only one party receives output, then it

is known how to achieve two-round secure computation from much simpler assump-
tions [10], in the setting of standalone security.
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Can we achieve two-round concurrently secure two-party computation
under simple, post-quantum assumptions, in the plain model?

As mentioned above, this question is interesting even if we restrict ourselves
to the case of two parties, since up to this point the only known results even in
this subcase are the two discussed above, which both require strong, potentially
quantum-unsafe assumptions.

1.1 Our Contributions

In this work, we make a significant process in answering the above question. In
this particular case, we show how to build a two-round, concurrent-secure, two-
party secure computation protocol based on a single, standard, post-quantum
assumption, namely sub-exponential the hardness of the learning-with-errors
(LWE) problem. We state our main theorem now.

Theorem 1. Assuming the sub-exponential hardness of the learning-with-errors
(LWE) problem, there exists a two-round two-party computation protocol for any
polynomial-time functionality f where both parties receive outputs, in the plain
model with super-polynomial simulation.

We note that our protocol is the first two-round concurrent-secure 2PC the
protocol that does not require the existence of a one-round non-malleable com-
mitment (NMC). Instead, we are able to use the two-round NMCs of [47], which
is instantiable from sub-exponential LWE. Our protocol is also the first such
protocol that does not require the existence of non-interactive witness indistin-
guishable arguments or time-lock puzzles. Here, we briefly mention two of the
applications of our protocol.

Application: Round-Optimal PAKE. In a password-authenticated key
exchange (PAKE) [18] protocol, two users hold passwords (x1,x2) and want to
exchange a high-entropy secret if x1 = x2, otherwise, they learn nothing about
the other user’s inputs. Our concurrent 2PC protocol directly yields the first
two-round PAKE scheme in the plain model, resolving a long-standing open
problem in the area. Our protocol achieves the standard game-based security
notion, as defined by Bellare et al. [17].

Application: Concurrent Quantum Computation. As another application
of our protocol, we show how it immediately yields the first concurrent 2PC for
quantum functionalities (in the plain model) with classical inputs and outputs.
In fact, we show that our classical 2PC provides us with the necessary building
block to instantiate the recent compiler of Bartusek et al. [15], which we then
show how to lift to the concurrent settings.

1.2 Technical Overview

To introduce the techniques used in our concurrent 2PC construction, we start
by summarizing a discussion in the work of [12], which gives an intuition for why
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two-round secure computation protocols seem difficult to achieve. In particular,
they argue that such a protocol seems to necessarily imply non-interactive non-
malleable commitments (NMCs).

Difficulties in Constructing Concurrent 2PC. We focus our summary on
the case of two parties since our paper addresses this case. The authors of [12]
note that any such two-round 2PC protocol should have some sort of input
commitment in the first round, and then the second round should be used to
compute the output. They then make the following important observation: Since
we are working in the SPS model without setup, zero knowledge requires at
least two rounds. This means that an honest party must send its second message
without knowing if the adversary’s first-round message is honest. The example
given in [12] to illustrate this is as follows. Consider a case where the honest
party’s input is x, and where there is a “rushing” adversary which waits to
send its first message until after seeing the honest party’s first message. If this
adversary “mauls” the other party’s message and sends a first-round message
which also encodes x, then the honest party cannot detect this before sending out
its second message. Ostensibly, this would cause both the honest party and the
adversary to learn f(x, x), thus breaking SPS security of the protocol. Because of
this, it seems at first glance that non-interactive NMCs are necessary to prevent
such “mauling” attacks in two-round protocols.

Avoiding Non-interactive NMCs. As discussed earlier, we want to avoid
non-interactive NMCs, since contrary to two-round NMCs all non-interactive
constructions require strong assumptions. To do so, we must understand why
the intuition above is incorrect. One implicit assumption we have made in this
argument is that the adversary always learns the same output that the honest
party learns after the second round. This is indeed the case in public-output
protocols, where anyone can compute the output given just the transcript of the
protocol and no other information. However, what about the case of private-
output protocols, where each party must use private information in order to
reconstruct the output? In such protocols, when proving security, it is easier to
separate the adversary’s output (or more generally, its view) from the output
of the honest party. Notice that in the example above, the adversary sends its
first message without even knowing the input x which it is encoding. (In order
to prove security, at the very least, we must assume the honest party’s first-
round message does not leak its input.) If we could somehow guarantee that the
adversary can only unlock the protocol output if it knows its own input, this
would prevent the adversary from learning f(x, x).

Our Approach. We use all these observations in order to obtain our con-
struction. We will use four main tools in our construction: (1) a two-round
non-malleable commitment, (2) a two-round statistically-sender-private obliv-
ious transfer protocol (SSP OT), (3) a two-round strong SPS zero-knowledge
protocol, and (4) garbled circuits. We will require each party Pi to publish two
different types of commitments to its input, one using the NMC and the other
using an OT1 message. Roughly, the OT1 message will be used by party Pi
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in reconstructing its own output and the NMC will be used to help P1−i to
reconstruct its output. Crucially, we will show that the non-malleability of the
NMC is not needed for the privacy of the protocol, i.e., it is not needed to pre-
vent the adversary from learning f(x, x). Rather, it is only needed in order to
prevent the honest party from learning “mauled” outputs such as f(x, x). Note
that although the (rushing) adversary’s output must be decided before receiving
the adversary’s second-round NMC message, the honest party’s output can be
decided after seeing the entire transcript of the protocol. Thus two-round non-
malleability is easily sufficient to prevent mauling in terms of the honest party’s
output. How do we prevent the adversary from learning f(x, x), then? At a high
level, we rely on the SSP oblivious transfer, which satisfies exactly the property
we hinted at above: an adversary can only unlock the protocol output if it knows
the input of its OT1 message.

Putting these ideas into practice involves several technical issues. We discuss
a few here. One obvious issue is that we must somehow connect the NMC with
the OT1. Otherwise, it would be possible for the adversary to learn f(x1, y)
whereas the honest party learns f(x2, y). To do this, we observe that it is possible
to construct a simultaneous-message two-round NMC scheme, where both the
committer and receiver send a message in the first round, and where the first
round is binding. That is, the first round defines a unique x such that after the
second round, either the transcript commits non-malleably to x, or the transcript
is invalid and cannot be opened. With that in mind, we require that in addition
to committing to its input in its OT1 message, Pi must also commit to the
randomness used for its NMC1 message. P1−i then can construct its garbled
circuit to only reveal the output if this randomness is correct.

Security Analysis. Although this solution to the problem seems simple, it
introduces some subtleties to the proof of security. One such subtlety is in the
hybrid order when moving from the real world to the ideal world. Namely, we
must switch the OT1 of the honest party to be an OT1 of 0 before we switch
the honest party’s NMC to commit to 0. Since in the real world, the honest
party gets its output by opening the adversary’s OT2 message, and in the ideal
world it gets its output by extracting the adversary’s NMC, this causes there to
be several intermediate hybrids where there is no way for the honest party to
compute its output. We must carefully prove that during these hybrids, although
the honest party cannot compute its output, the output is well-defined and does
not change in any computationally distinguishable way across these hybrids. We
refer to Sect. 3.3 for details.

One other issue arises in the use of zero-knowledge to prove the honest gen-
eration of the garbled circuits with respect to the inputs committed to in the
NMCs. That is, at some point during the hybrids, we must switch the honest
party from using real proofs to using the SPS zero-knowledge simulator. Once we
do this, we must somehow guarantee that the adversary (who now is receiving
simulated proofs) cannot somehow use them to behave dishonestly. The work
of [12] offers techniques to solve this issue, which is highly related to the notion
of simulation-soundness [62]. Their main idea involves using strong SPS-zero-
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knowledge arguments in conjunction with non-malleable commitments. In strong
SPS-ZK arguments, the zero-knowledge the property holds even against adver-
saries who are powerful enough to run the simulator. We are able to use the
same techniques, although they require careful work to adapt to our setting and
security proof. We again refer to Sect. 3.3 for more details on this and other
technical issues.

Applications. We highlight two applications of our newly developed concurrent
2PC protocol.

(i) Round-optimal PAKE 5:In Password-Authenticated Key-Exchange
(PAKE) two parties want to exchange a session key if their (low-entropy) pass-
words match. This functionality is a special case of general 2PC, so it is clear
that any 2PC protocol immediately yields a PAKE scheme. However, the de-
facto security notion for PAKE [17] models security in the presence of concurrent
sessions. Thus, only concurrently secure 2PC properly generalizes PAKE to all
functionalities. As a corollary of our main theorem, we obtain the first round-
optimal PAKE without a trusted setup. This settles a long-standing question in
the area.

(ii) Quantum computation (Sect. 5): Observe that we can lift our result to the
quantum setting by plugging in our concurrent 2PC protocol in the construction
of [15]. At the high level, the protocol of [15] converts any quantum-secure 2PC
to a quantum 2PC, where parties wish to securely compute a quantum circuit
on their input. In each round, parties compute the encoding of their quantum
inputs, and in parallel, they run a classical concurrent secure 2PC to compute
the classical description of the quantum garbled circuit. In the end of the second
round, the sender can evaluate the circuit and get the output. [15] requires a
2PC with a straight-line simulator (which we can instantiate with our protocol)
and a quantum garbling scheme [25]. One subtlety in the proof is that we need to
adjust the security parameter for the quantum garbled circuits, as our simulator
has sub-exponential run-time (i.e., we use complexity leveraging).

2 Preliminaries

In the following, we write T1 � T2 for functions T1 and T2 if for all polynomials
p, p(T1(λ)) is asymptotically smaller than T2(λ). We denote with G(x; r) the
execution of a probabilistic algorithm G, where x is the input to the algorithm
and r is the string of random coins. When we do not need to explicitly deal with
the random coins of G, we write G(x) and assume that the coins r are chosen
uniformly at random. Additional definitions are given in the full version of the
paper [1].

2.1 Two-Round SPS Strong Zero Knowledge

We define the notion of two-round strong zero knowledge with super-polynomial
simulation first given in [47]. Here strong means that the zero-knowledge prop-
erty holds even against adversaries which themselves are strong enough to run
the simulator.
5 See the full version of the paper [1].
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We consider zero-knowledge protocols with the following syntax. All algo-
rithms below are polynomial-time.

– ZK1(1λ; r) → zk1 takes as input the security parameter 1λ along with ran-
domness r and produces the verifier’s message.

– ZK2(1λ, x, w, zk1; r′) → zk2 takes as input security parameter, the statement
x and the witness w along with the verifier’s message and randomness r′ and
produces the prover’s message.

– ZKverify(x, zk2, r) → 0/1 is a deterministic algorithm which takes the statement
x along with the prover’s message and the randomness used to generate the
verifier’s message and accepts or rejects.

Definition 1 ((Tsound, TSim, Tzk, TL, εsound, εzk)-SPSS Zero-Knowledge
Arguments)

Let L be a language in NP which is decidable in time TL, with a polynomial-
time computable relation RL. Let Tsound, TSim, Tzk be superpolynomial functions
where Tsound � TSim � Tzk � TL, and εzk, εsound negligible functions. A protocol
between a prover P and a verifier V is a (Tsound, TSim, Tzk, TL, εsound, εzk)-strong
zero-knowledge argument for L if it satisfies the following properties:

– Perfect Completeness. For every security parameter 1λ and NP statement
x and witness w where (x,w) ∈ RL, it holds that

Pr [ZKverify(x, zk2, r)] = 1,

where zk1 ← ZK1(1λ; r) and zk2 ← ZK2(1λ, x, w, zk1; r′) and the probability is
taken over the randomness of r and r′.

– (Tsound, εsound)-Adaptive Soundness. For every polynomial p(λ) and every
prover P∗ that works in time Tsound and is given 1λ and an honest verifier
message zk1; If P∗ chooses an input length 1p for some polynomial p ∈ poly(λ),
and then chooses x ∈ {0, 1}p \ L and outputs (x, zk2), it holds that

Pr [ZKverify(x, zk2, r) = 1] ≤ εsound(λ),

where r is the randomness used to generate zk1 and the probability is over the
random coins of V .

– (TSim, Tzk, εzk)-Strong Zero-Knowledge. There exists a (uniform) simulator
Sim which runs in time TSim which takes as input the round-one transcript zk1
and a statement x such that the following holds. Consider an adversary V ∗

which runs in time Tzk that takes as input 1λ and advice z and outputs a
verifier’s first round message zk∗

1. Then, for all (x,w) ∈ RL, distinguishers D
which run in time Tzk, and advice z,

∣
∣Pr

[D(x, z, r,ZK2(1λ, x, w, zk∗
1)) = 1

] − Pr
[D(x, z, r,Sim(1λ, x, zk∗

1)) = 1
]∣
∣

< εzk(λ),

where r is the private randomness of V ∗.
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2.2 Two-Round Statistically-Sender-Private Oblivious Transfer

We give the formal definition of two-round oblivious transfer, where the
receiver’s security is computational, and there exists a (possibly computationally
unbounded) extractor for the receiver’s first-round message such that statisti-
cal security holds for the sender. The Oblivious Transfer scheme consists of the
following polynomial-time algorithms:

– OT1(1λ, b; r) → ot1: The receiver’s OT1 algorithm takes a choice bit b and
produces the receiver’s OT message.

– OT2(1λ, �0, �1,ot1; r′) → ot2: The sender’s OT2 algorithm takes a pair of
strings to choose from along with the receiver’s OT message and produces the
sender’s OT message.

– OT3(ot2; r) → �b: The receiver’s OT3 takes the sender’s OT message and
outputs �b.

Definition 2. A tuple (OT1,OT2,OT3) is a (TR, εR, εS)-statistically-sender-
private oblivious transfer algorithm if the following properties hold:

– Correctness. For all λ, b, �0, �1,

Pr
[

OT3(ot2; r) = �b

∣
∣
∣
∣

ot1 ← OT1(1λ, b; r)
ot2 ← OT2(1λ, �0, �1,ot1)

]

= 1.

– (TR, εR)-Computational Receiver Privacy. For all machines D running
in time at most TR(λ),

∣
∣Pr

[D(1λ,ot1,0) = 1
] − Pr

[D(1λ,ot1,1) = 1
]∣
∣ < εR(λ),

where ot1,b ← OT1(1λ, b) for b ∈ {0, 1}, and the probability is taken over the
coins of OT1 and D.

– εS-Statistical Sender Privacy. There exists a (possibly unbounded-time)
extractor such that the following holds. For any sequence {ot1,λ, �0,λ, �1,λ}λ,
define the distribution ensembles {D0,λ}λ and {D1,λ}λ, where Db,λ is defined
as follows:
1. Run OTextract(ot1,λ) to obtain μ.
2. If b = 0, output OT2(1λ, �0,λ, �1,λ,ot1,λ).
3. If b = 1, set �′

b = �b,λ and �′
1−b = 0 and output OT2(1λ, �′

0, �
′
1,ot1,λ).

The two ensembles {D0,λ}λ and {D1,λ}λ have statistical distance at most εS.

In the body of our paper, we will use the following syntax, which reduces
trivially to the syntax above.

– OT1(1λ, x; r) → ot1: The receiver’s OT1 algorithm takes a string of choice bits
x and produces the receiver’s OT message.

– OT2(1λ, lab,ot1; r′) → ot2: The sender’s OT2 algorithm takes a list lab =
{labi,b}i∈[|x|],b∈{0,1} of pairs of strings to choose from of length |x| along with
the receiver’s OT message and produces the sender’s OT message.

– OT3(ot2; r): The receiver’s OT3 takes the sender’s OT message and outputs
{labi,xi

}i∈[|x|].
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2.3 Definition of Concurrent MPC

In this section, we present the definition of concurrent secure multi-party com-
putation. The definition below is a generalization of the definition of concurrent
secure multi/two-party computation [53,59]. Parts of this section are taken ver-
batim from [59], where the main modifications are due to the fact that we allow
the simulator to run in super-polynomial time.

Multi-party Computation. Consider an n-party quantum functionality spec-
ified by a family of circuits F = {Fλ}λ where Fλ has m1(λ) + · · · + mn(λ)
input bits and �1(λ) + · · · + �n(λ) output bits. Let Π be an n-party proto-
col for computing F . For security parameter λ and any collection of inputs
(x1, . . . ,xn), where xi ∈ {0, 1}mi(λ). We denote the output of the functionality
by Fλ(x1, . . . ,xn) → (y1, . . . ,yn), where yi ∈ {0, 1}�i(λ) and xi is Pi’s input.

Concurrent Execution in the Ideal Model. Next, we describe the concur-
rent execution of the protocol in the ideal world. Unlike the stand-alone setting,
here the trusted party computes the functionality many times, each time upon
different inputs. Let Π := (P1, . . . , Pn) be an MPC protocol for computing an
n-ary circuit F and λ be the security parameter. We consider adversaries that
corrupt any subset of the parties, where the subset is pre-determined before the
beginning of the execution, and we denote by I ⊂ [n] the subset of corrupted
parties. An ideal execution with an adversary who controls the parties I proceeds
as follows:

– Inputs: The inputs of the parties P1, . . . , Pn are determined by input-selecting
machines M := M1, . . . ,Mn, where each Mi sends xi,j to each party Pi and
for each session j, at the beginning of the experiment.

– Session initiation: When the adversary initiates the session number j by
sending a (start-session, i) to the trusted party. If i ∈ [n] − I (means Pi is an
honest party) the trusted party sends (start-session, j) to Pi, where i ∈ [n],
and j is the index of the session (i.e., this is the j-th session to be started by
Pi).

– Honest parties send inputs to trusted party: Upon receiving the acti-
vation message (start-session, i) from the trusted party, each honest party Pi

sends (j,xi,j) to the trusted party.
– Corrupted parties send inputs to trusted party: Whenever the adver-

sary wishes, it may ask a corrupted party Pi to send a message (j,x′
i,j) to the

trusted third party, for any x′
i,j of its choice. A corrupted party Pi can send

the pairs (j,x′
i,j) in any order it wishes. The only limitation is that for any j,

at most one pair indexed by j can be sent to the trusted party.
– Trusted party answers corrupted parties: When the trusted third party

has received messages (j,x′
i,j) from all parties (both honest and corrupted)

it computes F(x′
1,j , . . . ,x

′
n,j) → (y1,j , . . . ,yn,j) and sends (j,yi,j) to every

corrupted Pi.
– Adversary instructs the trusted party to answer honest parties:

When the adversary sends a message of the type (send-output, j, i) to the
trusted party, the trusted party directly sends (j,yi,j) to the honest party Pi.
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If all inputs for session j have not yet been received by the trusted party the
message is ignored. If the output has already been delivered to the honest
party, or i is the index so that Pi is a corrupted party, the message is ignored
as well.

– Outputs: Each honest party always outputs the vector of outputs that it
received from the trusted party. The corrupted parties may output an arbitrary
state and the messages obtained from the trusted party.

Let S be a PPT algorithm (representing the ideal-model adversary) and let
I ⊂ [n] be the set of corrupted parties. The adversary takes as an input an
auxiliary information z. Then the ideal execution of F , denoted by the random
variable

IDEALF,I,S,M (λ, z)

is defined as the outputs of the ideal functionality and the output of S, from the
ideal process described above.

Execution in the Real Model. We next consider the execution of Π in the
real world. We assume that the parties communicate through an asynchronous
fully connected and authentic point-to-point channel but without guaranteed
delivery of messages. Let F , I be as above, and let Π be a multi-party protocol
for computing the corresponding circuit. Furthermore, let A be a PPT machine
such that for every i ∈ I, the adversary A controls Pi. Then, the real concurrent
execution of Π with security parameter λ, and auxiliary input z to A, is denoted

REALΠ,I,A(λ, z)

and it is defined as the output vector of the honest parties and the adversary
A resulting from the following process. The parties run concurrent executions
of the protocol, where every party initiates a new session whenever it receives
a start-session from the adversary. The honest parties use the string provided
by the attacker as their input for this session. The scheduling of all messages
throughout the executions is controlled by the adversary.

Security. The security of Π under composition is defined by saying that for
every real-model adversary there exists an ideal model adversary that can sim-
ulate the execution of the secure real-model protocol. We parametrize the defi-
nition by the runtime of the simulator T . Formally:

Definition 3 (Concurrent Security in the Malicious Model). let F , n, λ
and Π be as above. Protocol Π is said to T -securely realize F under concurrent
composition if for every real-model PPT adversary A, there exists an ideal-model
adversary S with runtime bounded by T , such that every state z and every I ⊂ [n]
it holds that

{IDEALF,I,S(λ, z)}n∈N ≈c {REALΠ,I,A(λ, z)}n∈N,

where the notation ≈c denotes computational indistinguishability.
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Remark 1. We shall pointed out that the above definition can be also generalized
to real-world adversaries A beyond polynomial-time. Furthermore, our proof
in Sect. 3.3 can be adapted to establish security for a real-world adversary whose
runtime is bounded by T̃ , and the simulator is bounded by some T 	 T̃ .

Quantum Circuits. We can modify our definition to work with quantum cir-
cuits, how ever we keep the inputs and outputs classical. In particular, we only
allow inputs xi ∈ {0, 1}mi(λ) and outputs yi ∈ {0, 1}�i(λ). The only differences
are:

1. F is a family of quantum circuits.
2. A is a quantum circuit with auxiliary (quantum) state z.
3. S runs in quantum polynomial time.

We leave it as an open problem to study the definition of quantum concurrent
multiparty computation with inputs and outputs as quantum states.

Remark 2. We remark that our definition assumes that the honest parties’ out-
puts are only revealed to the distinguisher at the end of the experiment and that
it cannot adaptively choose honest parties’ inputs in subsequent sessions based
on previous honest outputs. Such a definition suffices for many applications con-
current 2PC, although we remark that stronger variants exist [26].

3 The Construction

In this section, we prove the following theorem.

Theorem 2. Assuming the existence of subexponentially-secure versions of the
following primitives:

– A two-round SPSS zero-knowledge argument system
– A two-message concurrent NMC scheme
– A two-round statistically-sender private oblivious transfer scheme
– A garbled circuit scheme

there exists a two-round two-party computation protocol for any polynomial-time
functionality f , in the plain model with super-polynomial simulation.

We note that each primitive is known from the subexponential hardness of
LWE. In particular, [20] show the existence of two-round Statistically-Sender-
Private OT from LWE, and both the SPSS zero-knowledge argument and the
NMC scheme of [47] can be instantiated using LWE (see Sect. 4 for details).
Finally, garbled circuits can be instantiated using any one-way function, which
is known from LWE. Thus we have Theorem2 as a corollary.

We now describe the construction of two-round two-party computation where
both parties receive outputs.
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3.1 Required Primitives

First, we review the syntax of all the primitives we will use.
Let λ be the security parameter, and we assume 1λ is an implicit parameter

in all the following algorithms.

– A two-round (Tsound, TSim, Tzk, TL, ε1, ε2)-SPSS ZK argument system

(ZK1,ZK2,ZKverify,ZKsim),

where Tsound, TSim, Tzk, TL are specified below and ε1, ε2 are any negligible func-
tions.

– A two-round (Tnmc, ε)-fully-concurrent non-malleable commitment scheme

(NMCsend
1 ,NMCrecv

1 ,NMCsend
2 ),

where Tnmc is specified below and ε is any negligible function. In addition, we
assume that the extraction algorithm NMCextract runs in time TNMCextract .

– A (TG, ε)-garbled circuit scheme (Garble,Eval,SimGarble), where TG is specified
below and ε is any negligible function.

– A two-round (TR, ε1, ε2)-statistically-sender-private OT scheme (OT1,OT2,
OT3,OTextract), where TR is specified below and ε1, ε2 are any negligible func-
tions. Additionally, we assume the extraction algorithm OTextract runs in time
TOTextract .

For the zero-knowledge system, we define a language Li→j in NP which will
be proved by both parties during the 2PC protocol (Fig. 1).

Complexity Hierarchy. We require the primitives above satisfy the following
complexity hierarchy:

poly(λ) � Tsound � TSim � Tnmc � TNMCextract � Tzk � TR � TOTextract � TG � TL.

(nmcPi,send
1 ,nmc

Pj ,recv

1 ,nmc
Pj ,send

1 ,nmcPi,send
2 , C̃P

i ,ot
Pj

1 ,otPi
2 ) ∈ Li→j iff:

There exists (xi, r
Pi,send
c , rPi

gc , r
Pi,send
ot ) where

– nmcPi,send
1 = NMCsend

1 (1λ, val; rPi,send
c ) for the value val = (xi, r

Pi
gc , r

Pi,send
ot ),

– nmcPi,send
2 = NMCsend

2 (1λ, val,nmc
Pj ,recv

1 , rPi,send
c ),

– (C̃P
i , lab) = Garble(C, rPi

gc) for the circuit C defined below, with the hardcoded value

set to (xi,nmc
Pj ,send

1 ), and

– otPi
2 = OT2(lab,ot

Pj

1 , rPi,send
ot ), where lab is the family of labels obtained from

Garble.

Fig. 1. Description of the language Li→j



84 B. Abdolmaleki et al.

Additionally, we require that the language above is decidable in time TL.

Some Final Notation. Let onlychoices(x, lab) take a string x and a list lab =
{labi,b}i∈[|x|],b∈{0,1} of strings as input and produce the list {lab′

i,b}i∈[|x|],b∈{0,1},
where for each i lab′

i,xi
= labi,xi

, and lab′
i,1−xi

= 0.

3.2 The Protocol

We now describe the protocol for two-round 2PC. Without loss of generality, we
describe the actions of Party 1.

2-round 2PC protocol:

In each round, Party 1 performs the following actions.

Round 1:

1. Choose random strings rP1,send
c , rP1,recv

c , rP1
gc , rP1,recv

ot , rP1,send
ot , and rP1

zk of
appropriate sizes.

2. Compute a ZK verifier’s message zkP1
1 ← ZK1(1λ; rP1

zk).
3. Compute a round-one committer’s NMC message

nmcP1,send
1 ← NMCsend

1 (1λ, val; rP1,send
c ),

where the committed value val = (x1, r
P1
gc , rP1,send

ot ) consists of P1’s input
along with the randomness which P1 will use to generate the garbled
circuit and OT2 messages in round 2.

4. Compute a round-one receiver’s NMC message

nmcP1,recv
1 ← NMCrecv

1 (1λ; rP1,recv
c ).

5. Compute an OT receiver’s message

otP1
1 ← OT1(1λ, (x1, r

P1,send
c , rP1

gc , rP1,send
ot ); rP1,recv

ot ),

where the choice bits (x1, r
P1,send
c , rP1

gc , rP1,send
ot ) consist of the randomness

rP1,send
c used to generate the round-one sender’s NMC message along with

the committed values x1, r
P1
gc , rP1,send

ot .
6. Send (zkP1

1 ,nmcP1,send
1 ,nmcP1,recv

1 ,otP1
1 ) to P1.

Round 2:

After receiving the first-round message (zkP2
1 , nmcP2,send

1 , nmcP2,recv
1 , otP2

1 )
from party 2, party 1 does the following:
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1. Compute the sender’s second-round NMC message

nmcP1,send
2 ← NMCsend

2 (1λ, val,nmcP2,recv
1 , rP1,send

c ),

where the committed value val = (x1, r
P1
gc , rP1,send

ot ) is as in round 1.
2. Compute the garbled circuit (C̃P1 , lab) ← Garble(1λ, C, rP1

gc ), where
C is the circuit defined below, and the hardcoded values are
(λ,x1,nmcP2,send

1 ).
3. Compute the sender’s OT message

otP1
2 ← OT2(1λ, lab,otP2

1 ; rP1,send
ot ),

with the labels lab obtained from the garbling algorithm in the previous
step.

4. Compute the prover’s ZK message zkP1
2 ← ZK2(1λ, φ, w, zkP2

1 ) for the
language L1→2 with the statement

φ = (nmcP1,send
1 ,nmcP2,recv

1 nmcP2,send
1 ,nmcP1,send

2 , C̃P1 ,otP2
1 ,otP1

2 )

and witness w = (x1, r
P1,send
c , rP1

gc , rP1,send
ot ).

5. Send (nmcP1,send
2 , C̃P1 ,otP1

2 , zkP1
2 ) to P2.

Output Computation:

After receiving party 2’s second-round message (nmcP2,send
2 , C̃P2 ,otP2

2 ,
zkP2

2 ), party 1 does the following to compute its output:

1. If the NMC verification algorithm NMCverify(1λ, τ, rP1,recv
c ) fails with

respect to P2’s commitment transcript

τ = (nmcP2,send
1 ,nmcP1,recv

1 ,nmcP1,send
2 ),

then abort and output ⊥.
2. Let

φ′ = (nmcP2,send
1 ,nmcP1,recv

1 nmcP1,send
1 ,nmcP2,send

2 , C̃P2 ,otP1
1 ,otP2

2 )

be the statement which party 2 proves via zkP2
2 , with respect to language

L2→1. If ZKverify(φ′, zkP2
2 , rP1

zk) = 0 then abort and output ⊥.
3. Compute the output labels lab′ ← OT3(otP2

2 , rP1,recv
ot ) of the OT protocol.

4. Output the evaluation Eval(C̃P2 , lab′) of the garbled circuit C̃P2 sent by
P2, using the labels lab′ obtained in the previous step.

The circuit C which is garbled by Party 1 is as follows.

Circuit C:

Input: (x2, r
P2,send
c , rP2

gc , rP2,send
ot )
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Hardcoded: (λ,x1,nmcP2,send
1 )

1. If nmcP2,send
1 = NMCsend

1 (1λ, (x2, r
P2
gc , rP2,send

ot ); rP2,send
c ), then:

(a) Return f(x1,x2)
2. Else:

(a) Return ⊥.

3.3 Security

We now prove Theorem 2 by showing that the protocol above satisfies the defi-
nition of concurrent MPC security given in Sect. 2.3.

Let there be n parties, with a subset of corrupted parties C ∈ [n]. Consider
a PPT adversary A which spawns a polynomial number of sessions of the pro-
tocol described above, where for each session at most one party is corrupt, and
schedules messages across the different sessions in an arbitrary order, controlling
the inputs and messages of the corrupted parties. At the end of the experiment,
A receives the outputs of all parties in all sessions. We show the existence of
an ideal-world adversary (called the “simulator”) which produces an interaction
with A that is indistinguishable from the real-world interaction of A.

We describe the behavior of the simulator below. In the following, we denote
a session by (s, i, j), where s is the session number, and parties Pi and Pj run
the 2PC protocol during this session. Without loss of generality we assume Pi is
honest and Pj is corrupt, and that A always asks for the message of Pi in both
rounds before sending the message of Pj for that round.

The Concurrent-Secure Simulator:

At the beginning of the experiment, the simulator invokes A. The simulator also
initializes a database where it will store, for each session (s, i, j), the messages
and extracted values of Pj , the simulator’s private state for this session, along
with the ideal functionality output for the session. The simulator then responds
to A in the following manner.

Whenever A initializes session (s, i, j), do the following to simulate Pi’s
message to Pj :

1. Choose random strings rPi,send
c , rPi,recv

c , rPi
gc , rPi,recv

ot , rPi,send
ot , and rPi

zk of
appropriate sizes. Store all strings as the simulator’s private state for session
(s, i, j).

2. Compute a ZK verifier’s message zkPi
1 ← ZK1(1

λ; rPi
zk).

3. Compute a round-one committer’s NMC message

nmcPi,send
1 ← NMCsend

1 (1λ, val; rPi,send
c )

for the value val = (0, 0, 0).
4. Compute a round-one receiver’s NMC message

nmcPi,recv
1 ← NMCrecv

1 (1λ; rPi,recv
c ).
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5. Compute an OT receiver’s message otPi
1 ← OT1(1

λ, (0, 0, 0, 0); rPi,recv
ot ),

where the choice bits are (0, 0, 0, 0).
6. Send (zkPi

1 ,nmcPi,send
1 ,nmcPi,recv

1 ,otPi
1 ) to Pj on behalf of Pi.

Whenever A sends a first-round message m on behalf of Pj in session
(s, i, j), do the following:

1. Parse m as (zk
Pj

1 , nmc
Pj ,send

1 , nmc
Pj ,recv

1 , ot
Pj

1 ). Store m as Pj ’s first-round
message in session (s, i, j).

2. Compute the extracted values (xj , r
Pj ,send
c , r

Pj
gc , r

Pj ,send
ot ) ← OTextract(ot

Pj

1 )

from Pj ’s OT receiver’s message, and save (xj , r
Pj ,send
c , r

Pj
gc , r

Pj ,send
ot ) as Pj ’s

OT receiver value in session (s, i, j).

3. If nmc
Pj ,send

1 = NMCsend
1 (1λ, (xj , r

Pj
gc , r

Pj ,send
ot ); r

Pj ,send
c ), then send xj to the

ideal functionality and receive back the evaluation y = f(xi,xj). If

nmc
Pj ,send

1 �= NMCsend
1 (1λ, (xj , r

Pj
gc , r

Pj ,send
ot ); r

Pj ,send
c ), set y = ⊥.

4. Store y as the ideal-world output for Pj in session (s, i, j).

Whenever A requests a second-round message from honest party Pi in
session (s, i, j), do the following:

1. Retrieve Pj ’s first-round message m =(zk
Pj

1 , nmc
Pj ,send

1 , nmc
Pj ,recv

1 , ot
Pj

1 )
for session (s, i, j).

2. Compute a round-two NMC sender’s message

nmcPi,send
2 ← NMCsend

2 (1λ, val,nmc
Pj ,recv

1 , rPi,send
c )

for the value val = (0, 0, 0).
3. Compute a simulated garbled circuit (C̃P

i , lab) ← SimGarble(1
λ, |C|, y; rPi

gc )
using the output y saved previously for session (s, i, j).

4. Compute an OT sender’s message

otPi
2 ← OT2(1

λ, onlychoices(c, lab),ot
Pj

1 , rPi,send
ot ), where

c = (xj , r
Pj ,send
c , r

Pj
gc , r

Pj ,send
ot ) is the saved OT receiver’s value for round

(s, i, j). Recall that onlychoices sets all non-chosen labels to 0.
5. Compute a simulated prover’s ZK message zkPi

2 ← ZKsim(1λ, φ, zkPTwo
1 , r′)

using the statement

φ = (nmcP1,send
1 ,nmcP2,recv

1 nmcP2,send
1 ,nmcP1,send

2 , C̃P1 ,otP2
1 ,otP1

2 )

and r′ is random.
6. Send (nmcPi,send

2 , C̃P
i ,otPi

2 , zkPi
2 ) to Pj on behalf of Pi.

Whenever A sends a second-round message m on behalf of Pj for
session (s, i, j), do the following:

1. Parse m as (nmc
Pj ,send

2 , C̃P
j ,ot

Pj

2 , zk
Pj

2 ).
2. If the NMC verification algorithm NMCverify(1

λ, τ, rPi,recv
c ) fails with respect

to Pj ’s commitment transcript τ = (nmc
Pj ,send

1 ,nmcPi,recv
1 ,nmcPi,send

2 ), then
instruct the ideal functionality to deliver ⊥ to Pi.

3. If ZKverify(φ
′, zkPi

2 , r
Pj

zk ) = 0 then instruct the ideal functionality to deliver ⊥
to Pi.
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4. Extract the committed values

(xj , r
Pj
gc , r

Pj ,send
ot ) ← NMCextract(nmc

Pj ,send

1 ,nmcPi,recv
1 ,nmc

Pj ,send

2 )

from Pj ’s NMC transcript. If we haven’t already queried the ideal
functionality, send xj to the ideal functionality. Note that because the NMC
is perfectly binding after round 1, the value xj is identical to the value
extracted by OTextract during round 2 as long as the identity checked in C
holds.

5. Use the values obtained in the previous step to check if the conditions in
statement φ hold with respect to language Lj→i. If they do not hold, output
“special abort”.

6. If we have not yet aborted, instruct the ideal functionality to deliver the
output to Pi.

We show the view in the real world is indistinguishable from the view in the
ideal world via a series of hybrid games, where the first hybrid H0 corresponds
to the real world and the last hybrid H6 corresponds to the ideal world. The
hybrids are as follows.

Hybrid H0: In this hybrid, the simulator plays the role of all honest parties
in all sessions, and behaves identically to the real-world executions of the
protocol.

Hybrid H1: Here the simulator acts in the same way as in H0 except that for
each honest party Pi’s round 2 message during session (s, i, j) it simulates
the ZK proof it sends to A. This hybrid now runs in time poly(TSim).

Hybrid H2: The simulator acts in the same way as H1, except that when
computing each honest party Pi’s round 1 message during session (s, i, j),
it sends the chooser’s OT message with choice bits (0, 0, 0, 0) instead of
(xi, r

Pi,send
c , rPi

gc , rPi,send
ot ). This hybrid still runs in time poly(TSim).

Hybrid H3: The simulator acts in the same way as H2, except for each session
(s, i, j), during rounds 1 and 2 it commits to (0, 0, 0) on behalf of Pi instead
of (xi, r

Pi
gc , rPi,send

ot ). This hybrid still runs in time poly(TSim).
Hybrid H4: The simulator acts in the same way as H3, except that after receiv-

ing Pj ’s round 2 message during session (s, i, j) it breaks nmcPj ,send
1 to obtain

(xj , r
Pj
gc , r

Pj ,send
ot ) and during the output computation phase outputs “special

abort” if the conditions in statement φ don’t hold. This hybrid now runs in
time poly(TNMCextract).

Hybrid H5: The simulator acts in the same way as H4, except that after
receiving Pj ’s round 1 message during session (s, i, j), it runs OTextract on
Pj ’s OT receiver message to obtain the values (xj , r

Pj ,send
c , r

Pj
gc , r

Pj ,send
ot ).

If nmcPj ,send
1 = NMCsend

1 (1λ, (xj , r
Pj
gc , r

Pj ,send
ot ); rPj ,send

c ), the simulator sends
xj to the ideal functionality to obtain f(xi,xj). On the other hand, if
nmcPj ,send

1 �= NMCsend
1 (1λ, (xj , r

Pj
gc , r

Pj ,send
ot ); rPj ,send

c ), the simulator sends the
value xj extracted using NMCextract after receiving Pj ’s round 2 message to
the ideal functionality. It tells the ideal functionality to deliver the output to
P1 at the end of session (s, i, j) as long as the session did not abort. This
hybrid now runs in time poly(TOTextract).
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Hybrid H6: The simulator acts in the same way as H5, except that for every
honest party Pi’s second-round message during session (s, i, j), it simulates
the generation of the garbled circuit using the saved value y received from the
ideal functionality instead of generating it honestly. This final hybrid runs in
time poly(TOTextract), which is the running time of the ideal-world simulator.

We want to use these hybrids to show the view of A is indistinguishable
between the real and ideal worlds. There is a problem, though: in H2 and H3,
the honest parties have no way to obtain its output. This is because the simulator
switches the honest parties’ ot1 messages to 0 in H2, which means the real-world
method of running the garbled circuit to obtain the output will not work, and
the simulator is not yet powerful enough to break the commitment.

Despite this, it is still possible to use this ordering of hybrids to prove indis-
tinguishability. Consider the pair (s,xj , bi), where xj is the input committed to
by corrupt party Pj during session (s, i, j), and bi is a bit which denotes whether
or not honest party Pi accepts Pj ’s NMC and zero knowledge proof during the
same session. Assuming A cannot generate a proof for a false statement, this
pair determines the output of Pi in session (s, i, j) regardless of whether we are
in the real or the ideal world. So to make the proof work, during certain steps
we will argue indistinguishability of the tuple (v, {(s,xj , bi)}s) between hybrids,
where v is the view of A.

The proof is organized as follows.
We first argue computational indistinguishability between each successive

pair of hybrids. Afterwards we argue indistinguishablity of the combined view
of A along with the output of P1. Before starting, define a “bad” event E which
will be useful in our proofs.

Definition 4. We define event E to occur if there exists a session (s, i, j) where
both of the following happen:

1. Pi accepts Pj’s ZK proof
2. one of the conditions of the statement φ′ do not hold w.r.t. Lj→i.

Lemma 1. E occurs with negligible probability in H0.

Proof. This follows from the adaptive soundness of the SPSS ZK argument sys-
tem for languages decidable in time TL and the fact that Lj→i is decidable in
time TL. �
Lemma 2. Assuming the zero-knowledge property of the SPSS ZK argument
system, the view of A between H0 and H1 are computationally indistinguishable.

Proof. We prove the claim via a sequence of subhybrids for each session (s, i, j),
where in each subhybrid we switch to a simulated ZK2 message for Pi.

Assume there is a PPT adversary A who can interact with the simulator
and then, given P1’s output, distinguish between real and simulated for session
(s, i, j). Then we construct a PPT adversary A′ which contradicts the zero-
knowledge property of the ZK system.
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Fix the randomness used by the adversary, and by the simulator to generate
all honest parties’ messages before Pi’s second-round message. There must be
at least one way to fix this randomness such that the advantage of A is still
nonnegligible. This also fixes the statement φ (and the witness w for s) which
Pi should prove in round 2.

Now we construct A′ to run the experiment with this fixed randomness, and
to forward zk

Pj

1 to the ZK challenger. Then A′ receives zkPi
2 which is either a

valid proof of s or a simulated one. A′ uses zkPi
2 as the proof to send to A instead

of generating one itself when generating the second-round message for Pi. It then
outputs whatever A outputs.

A distinguishes the real and simulated for (s, i, j) even with the round 1
randomness fixed, and this is identical to the experiment described above with
the new A′. So A′ is a distinguisher for the zero-knowledge property of the ZK
system. �
Lemma 3. Assuming the zero-knowledge property of the SPSS ZK argument
system, E occurs with negligible probability in H1.

Proof. Assume there is an adversary A which causes E to happen with nonneg-
ligible probability in H1. Note that by Lemma 1 A cannot cause E to happen
with nonnegligible probability in H0. We can extract the committed value in
time TNMCextract for each session to check whether or not E holds, thus creating a
poly(TNMCextract)-time distinguisher for H0 and H1, contradicting Lemma 2, since
poly(TNMCextract) � Tzk. �
Lemma 4. Assuming the chooser’s security of the OT scheme, the tuple
(v, {(s,xj , bi)}s) between H1 and H2 is computationally indistinguishable.

Proof. We prove the claim via a sequence of subhybrids for each session (s, i, j),
where in each subhybrid we switch Pi’s ot1 message to 0.

Assume there is a PPT adversary A who can interact with the simulator and
then, given {(s,xj , bi)}s in addition to its view v at the end of the interaction,
distinguishes between the subhybrid for some (s, i, j) and the previous subhybrid
with nonnegligible probability. We use A to build an adversary A′ for the OT
chooser’s security game. For simplicity of exposition, we first assume that A
distinguishes only given its view v. Once we have established the reduction in
this case, we extend it to the case where A also receives (v, {(s,xj , bi)}s).

Fix the randomness (rPi,send
c , rPi

gc , rPi,send
ot ) generated on behalf of Pi for ses-

sion (s, i, j). There must be at least one such fixed value for which A still dis-
tinguishes with nonnegligible probability. Let A′ run the experiment identically
to the previous subhybrid with the randomness above fixed to this particular
value, except that instead of computing otPi

1 directly it receives this value from
the OT challenger. The challenger either computes the OT with choice bits
(rPi,send

c , rPi
gc , rPi,send

ot ) or (0, 0, 0, 0).
Assuming (rPi,send

c , rPi
gc , rPi,send

ot ) is fixed, this experiment is identical to the
previous subhybrid in the first case and the subhybrid for (s, i, j) in the second
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case. So if A successfully distinguishes then A′ does as well. This contradicts
chooser’s security of the OT, since TSim � TR.

To extend to the case where A also receives {(s,xj , bi)}s, note that
we can break the commitments of each of the corrupted parties in time
TNMCextract to retrieve each corrupted input xj , and bi is known already by
the experiment. Passing these to the adversary we obtain a poly(TNMCextract)-
time distinguisher, which still contradicts chooser’s security of the OT, since
poly(TNMCextract) � TR.

�
Lemma 5. Assuming E occurs with negligible probability in H1, E occurs with
negligible probability in H2.

Proof. Assume there is an adversary A which causes E to happen with nonneg-
ligible probability in H2. Note that by Lemma 3 A cannot cause E to happen
with nonnegligible probability in H1. We can break the corrupted parties’ com-
mitments each in time TNMCextract to create a poly(TNMCextract)-time distinguisher
for H1 and H2, contradicting Lemma 4, since poly(TNMCextract) � TR. �
Lemma 6. Assuming the non-malleability of the commitment scheme, the tuple
(v, {(s,xj , bi)}s) between H2 and H3 is computationally indistinguishable.

Proof. We prove the claim via a sequence of subhybrids for each session (s, i, j),
where, in each subhybrid we switch to an NMC of 0 for Pi.

Assume there is a PPT adversary A who can interact with the simulator
and then, given {(s,xj , bi)}s in addition to its view v at the end of the interac-
tion, distinguishes between the previous hybrid and the hybrid for (s, i, j) with
non-negligible advantage. Then we create a TSim-time A′ which contradicts the
non-malleability property of the commitment scheme. Note that {(s,xj , bi)}s is
computable directly from the output of the non-malleability game, since each
corrupted party Pj commits to xj (i.e., these are part of the RHS committed
values).

Fix the randomness rPi
gc and rPi,send

ot generated for Pi in session (s, i, j). There
must be some such fixed values where A still distinguishes between the two
subhybrids with non-negligible advantage. We create A′ as follows. A′ runs the
experiment identically to the previous subhybrid, except that the values rPi

gc

and rPi,send
ot are fixed to maximize the probability of distinguishing, and the

following changes are made to the non-malleable commitment interactions. When
computing Pi’s round 1 message, instead of computing nmcPi,send

1 , it receives this
value from the challenger for the NMC game and forwards it to A. It forwards
nmcPj ,recv

1 which it receives from A to the challenger as well. When computing
Pi’s round 2 message, it receives nmcPi,send

2 from the challenger and forwards it
to A again. The NMC challenger commits to either (xi, r

Pi
gc , rPi,send

ot ) or (0, 0, 0).
If the challenger commits to (xi, r

Pi
gc , rPi,send

ot ) then the experiment is identi-
cal to the subhybrid directly preceding the subhybrid for session (s, i, j), and if
the challenger commits to (0, 0, 0) then the experiment is identical to the sub-
hybrid for (s, i, j) (with some fixed randomness, as described above). Thus A′
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wins the non-malleability game of the commitment scheme with non-negligible
probability, contradicting the non-malleability of the commitment scheme, since
poly(TSim) � Tnmc. �
Lemma 7. Assuming E occurs with negligible probability in H2 and the non-
malleability of the commitment scheme, E occurs with negligible probability in
H3.

Proof. Assume that E occurs with non-negligible probability in H3. We can
construct an adversary A′ in the same way as in Lemma 6, playing the role of
the adversary in a full nonmalleability game. By the nonmalleability property
of the commitment scheme, the joint view of A′ combined with the values it
committed to are indistinguishable regardless of what the challenger commits
to. If we have both the view of A′ along with the values committed to it is
easy to check if E occurred. If E occurs with nonnegligible probability in H2

then by checking E we have a poly(TSim)-time distinguisher which contradicts
non-malleability of the NMC. �
Lemma 8. Assuming E occurs with negligible probability in H3, then the tuple
(v, {(s,xj , bi)}s) between H3 and H4 are computationally indistinguishable.

Proof. The only difference between H3 and H4 is that we break all corrupted
parties’ commitments and output “special abort” if at any point E occurred. So
the only time the two hybrids are distinguishable is if E occurs. Thus indistin-
guishability follows from Lemma 7. �

Note that from this point onward, proving hybrid indistinguishability is suf-
ficient for proving E occurs with negligible probability, since every hybrid now
checks E explicitly.

Lemma 9. The tuple (v, {(s,xj , bi)}s) between H4 and H5 are computationally
indistinguishable.

Proof. This follows trivially from the fact that the view of A is identical between
H4 and H5. �
Lemma 10. Assuming E happens with negligible probability in H1 and H5, the
view of the adversary A between H1 and H5 is computationally indistinguishable.

Proof. By the previous claims the tuple (v, {(s,xj , bi)}s) is indistinguishable
between these hybrids. Assuming E did not happen, in both hybrids the output
of each honest party Pi during session (s, i, j) is f(xi,xj) if b = 1 and ⊥ if b = 0.
To see why this is the case when b = 1, note that the value xj extracted by
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OTextract after round 1 is identical to the value extracted for x′
j by NMCextract

after round 2. Assuming E does not occur, P1 outputs x′
j in H1, and P1 outputs

xj in H5.
Thus the claim follows from the fact that E occurs with negligible probability

in H5, which follows from Lemma 9. �
Lemma 11. Assuming security of the garbled circuit scheme and statistical
sender’s security of the OT, the view of A between H5 and H6 is computationally
indistinguishable.

Proof. We consider a subhybrid H′
5 which acts similarly to H5 except that when

generating the second-round message for each honest Pi during session (s, i, j),
it uses onlychoices to zero out the labels given by the honest party in ot2 which
do not correspond to the adversary’s input.

This claim then follows from the next two claims. �
Lemma 12. Assuming statistical sender’s security of the OT, the view of the
adversary A between H5 and H′

5 are statistically indistinguishable.

Proof. We prove the claim via a sequence of subhybrids for each session (s, i, j),
where in each subhybrid we switch the ot2 message of Pi to zero out non-chosen
labels. Assume there is an adversary A who can interact with the simulator and
then distinguish between the subhybrid for some session (s, i, j) and the preced-
ing subhybrid with nonnegligible probability. We use A to build an adversary
A′ for the OT sender’s security game.

Fix the randomness rPi
gc used to generate Pi’s garbled circuit which it sends

as part of its second-round message. There must be at least one such fixed value
for which A still distinguishes with nonnegligible probability. Let A′ run the
experiment identically to the subhybrid preceding (s, i, j) with rPi

gc fixed to this
value, except that it passes the ot1 message otPj

1 generated by A to the OT
challenger. The OT challenger then either responds with an otPi

2 corresponding
to the same labels in H5, or breaks otPj

1 and zeros out the labels which do not
correspond to the adversary’s input. A′ then outputs the output of A.

Assuming rPi
gc is fixed, this experiment is identical to the preceding hybrid in

the first case and the subhybrid for (s, i, j) in the second case. So if A successfully
distinguishes then A′ does as well. �
Lemma 13. Assuming security of the garbled circuit scheme, the views induced
by H′

5 and H6 are computationally indistinguishable.

Proof. We prove the claim via a sequence of subhybrids for each session (s, i, j),
where in each subhybrid we switch the garbled circuit of Pi to be simulated.

Assume there is an adversary A who distinguishes between the subhybrid
directly preceding the one for some session (s, i, j) and the subhybrid for (s, i, j)
with nonnegligible probability. We use A to build a poly(TOTextract)-time adversary
A′ that contradicts security of the garbled circuit.

Fix the randomness used by A and the randomness used by the simulator in
generating all rounds preceding Pi’s second-round message during session (s, i, j).
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There must be some such fixed randomness such that A still distinguishes with
nonnegligible probability. This also fixes the circuit which the honest party Pi

garbles along with Pj ’s ot1 input in session (s, i, j).
Let A′ work in the same way as the subhybrid preceding (s, i, j) except

that it receives a garbled circuit and labels (C̃P1 , labels) from the challenger,
which it uses as the garbled circuit and labels for Pi in session (s, i, j). The
challenger either computes the garbled circuit honestly or simulates using the
output f(xi,xj), which is fixed because of the fixed randomness. A′ finally out-
puts the output of A. Based on what the challenger does, the experiment is either
identical to the subhybrid preceding (s, i, j) or the (s, i, j) subhybrid (with the
adversary’s randomness fixed). This means that A distinguishes with nonnegligi-
ble probability and thus so does A′, contradicting security of the garbled circuit,
since poly(TOTextract) � TG. �

4 Instantiating the Non-Malleable Commitment of [47]
Using LWE

In this section, we list all primitives used in each part of the construction of fully
concurrent non-malleable commitments of [47], along with how to instantiate
each primitive using subexponential hardness of LWE.

Two-round extractable commitments are constructed using the following
primitives:

– A non-interactive perfectly binding commitment. Can be obtained from
LWE using one of the LWE-based PKE schemes.

– Two-round statistically-sender-private oblivious transfer. Known from
LWE [20].

– Yao’s garbled circuits. Symmetric-key encryption is known from LWE.
– Two-round zero knowledge with super-polynomial simulation. Known

from LWE [9,39].
Two-round SPS strong zero knowledge arguments are constructed using

the following primitives:
– A zap. Known from LWE [9,39].
– The two-round extractable commitment. See above.
– A trapdoor for the prover to use. Can use an instance of SIS.

Two-round constant-tag non-malleable commitments are constructed
using the following primitives:

– The two-round extractable commitment. See above.
– A non-interactive perfectly binding commitment. Can be obtained from

LWE using one of the LWE-based PKE schemes.
One-one non-malleable commitments in two rounds are constructed using

the following primitives:
– The two-round constant-tag non-malleable commitment. See above.
– The two-round SPS strong ZK. See above.

One-one simulation-sound zero knowledge in two rounds is constructed
using the following primitives:
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– The one-one non-malleable commitment. See above.
– A zap. Known from LWE [9,39].
– A trapdoor for the prover to use. Can use an instance of SIS.

Fully-concurrent non-malleable commitments in two rounds are con-
structed using the following primitives:

– The one-one simulation-sound zero knowledge argument. See above.
– The constant-tag non-malleable commitment. See above.

5 Quantum Computation

We conclude by observing that the simulator for our two-party computation
protocol is straight-line, i.e., it does not resort to rewinding the adversary to
generate a simulated transcript, and black-box. It is shown in [63] that any such
protocol remains secure also against quantum attackers (i.e., it is post-quantum
secure) and furthermore in [15] it is shown that any post-quantum two-round
2PC with a straight-line black-box simulator can be generically compiled into a
secure 2PC for quantum circuits without adding any round. In [15] they proposed
an instantiation of the classical 2PC in the common reference string model.
Plugging our protocol (with a suitable instantiation of the underlying building
blocks) into their result we obtain the following new implication.

Theorem 3. Assuming the quantum sub-exponential hardness of the LWE prob-
lem, there exists a two-round concurrent 2PC for all quantum circuits, with clas-
sical inputs and outputs, in the plain model.

5.1 Quantum Concurrent 2PC

For completeness, we describe our construction of concurrently secure two-round
2PC with respect to quantum functionalities. Our protocol is essentially identical
to the three-message two-party protocol described in [15], except that we sub-
stitute our (classical) 2PC protocol from Sect. 3 and we only require one party
to know the output. Hence we drop the third round from the protocol described
in [15]. Before describing the protocol, we need bring some definitions of the
quantum primitives and we take them in verbatim from [15].

Definition 5 (Clifford + Measurement Circuit). A Clifford + Measure-
ment circuit with parameters ni + kii∈[d] operates on n1 + k1 input qubits and
applies d alternating layers of Clifford unitary and computational basis measure-
ments, during which a total of k1 + · · · + kd of the input qubits are measured. It
is specified by (F0, f1, . . . , fd), where F0 us a Clifford unitary, and each fi is a
classical circuit which takes as input the result of computational basis measure-
ments on the i-th layer, and outputs a Clifford unitary Fi. In layer i ∈ [d], ki

qubits are measured and ni qubits are left over. The circuit is evaluated by first
applying F0 to the n1 + k1 input qubits, then the following steps are performed
for i = 1, . . . d:
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– Measure the remaining ki qubits in the computational basis, resulting in out-
comes mi ∈ {0, 1}k1 .

– Evaluate fi(mi) to obtain a classical description of a Clifford Fi ∈ Cni
.

– Apply Fi to the first ni registers.

The output of the circuit is the result of applying Fd to the final nd registers.

Definition 6. (Garbling scheme for C + M Circuits). A garbling scheme
for C+M circuits consists of three procedures (QGarble, QGEval, QGSim) with the
following syntax.

– (E0, Q̃) ← QGarble(1λ, Q): A classical PPT procedure that takes as input the
security parameter and a C + M circuit and outputs a Clifford input garbling
matrix E0 and a quantum garbled circuit Q̃.

– xout ← QGEval(x̃inp, Q̃) : A QPT procedure that takes as input a garbled input
x̃inp and a garbled C + M circuit Q̃, and outputs a quantum state xout.

– (x̃inp, Q̃) ← QGSim(1λ, {ni, ki}i∈[d],xout): A QPT procedure that takes as input
the security parameter, parameters for a C + M circuit, and an output state,
and outputs a simulated garbled input and garbled circuit.

Correctness. For any C + M circuit Q with parameters {ni + ki}i∈[d] and n0-
qubit input state xinp along with (potentially entangled) auxiliary information
z, we have:

{(QGEval(E0(xinp, 0kλ), Q̃), z) : (E0, Q̃) ← QGarble(1λ, Q)} ≈s (Q(xinp), z)).

Security. For any C+M circuit Q with parameters {ni + ki}i∈[d] and n0-qubit
input state xinp along with (potentially entangled) auxiliary information z, we
have:

{(E0(xinp, 0kλ), Q̃, z) : (E0, Q̃) ← QGarble(1λ, Q)}
≈c (QGSim(1λ, {ni, ki}i∈[d], Q(xinp)), z).

The rest of this section assumes familiarity with basic notions of quantum
computation, and quantum garbled circuits as we defined above and were ini-
tially introduced in [25]. For a comprehensive background, we refer the reader
to [15]. For the construction of our protocols, we need the following building
blocks:

i A post-quantum secure concurrent two-round two-party protocol for classical
computation c2PC (let Tc2PC denote the runtime of the simulator).

ii A quantum garbling scheme for C+M gates (QGarble, QGEval, QGSim), secure
against adversaries running in time TQGC.

We denote by Tc2PC the runtime of the simulator of the classical two party
computation and by TQGC the maximum runtime of the distinguisher allowed by
the security of the quantum garbled circuit. We require that poly(λ) � Tc2PC �



Two-Round Concurrent 2PC from Sub-exponential LWE 97

TQGC. In our protocol, parties P1 and P2 each having inputs x0 and x1 want
to compute a quantum circuit Q on their inputs and only P1 gets outputs out1
while P2 receives no output in a way that they do not reveal anything about their
inputs and only one party gets the output of the computation. We assume that
Q is a Clifford+Measurement quantum circuit and takes input (x0,x1,Tk,0k),
where T denotes a magic state T = 1/

√
2 · (|0〉 + eiπ/4 |1〉).

At a high level, the quantum two-party protocol between parties P1,P2 runs
in two parallel phases, one is for the parties to jointly encode their quantum
inputs and simultaneously they run a two-message classical 2PC that outputs
a classical description of a quantum garble circuit to P1 according to the func-
tionality f [Q] which is described in Fig. 2; which allows P1 to later evaluate the
garbled circuit to get his own output.

To make the protocol secure against a malicious P2 we use the “cut and
choose” technique from [30] and we refer to [15, §2,5] where they explained how
this technique would be applied on their two-party protocol to make it secure
against malicious P2. The cut-and-choose technique is done by the Clifford uni-
tary Udec-check-enc in the functionality of our c2PC that is used in the computation
phase of our protocol below. Now we describe our protocol in more detail:

Quantum two party computation protocol

Common information: security parameter λ, and C + M circuit Q to be
computed with n1 + n2 input qubits, m1 + m2 output qubits, nZ auxiliary
0 states, and nT auxiliary T states. let
s = n2 + (n1 + λ) + (2nZ + λ) + (nT + 1)λ.
P1’s Input: x1 (Parsed as a computational basis state)
P2’s Input: x2 (Parsed as a computational basis state)

– Round 1 P1 :
• Samples a random Clifford C1 ← Cn1+λ and uses it to encrypt and

authenticate his input x1 as m1 := C1(x1,0λ).
• Computes the first round message m1, of the c2PC using C1 as his

input.
• Sends (m1,m1) to P2.

– Round 2 P2 :
• Samples random Cliffords C2 ← Cs and Cout ← Cm2+λ uses C2 to

encrypt and authenticate his own input x2 alongside with encoding
of his quantum state m2 := C2(x2,m1,02nZ , T (nT+1)λ).

• Computes the second round message m2 for the classical c2PC com-
putation using (C2, Cout) as their input.

• Sends (m2,m2) to P1.
– Computation Phase P1 does the following computation:

• Using m2 he can compute the output of the classical c2PC that is
(Udec-check-enc,D, g̃1, . . . , g̃d).

• Compute (minp, zcheck, trap2,Tinp, tcheck) ← Udec-check-enc(m2)
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• Measure each qubit of (zcheck, trap) in the standard basis and abort
if any measurement is not zero.

• Measure each qubit of tcheck and the T-basis and abort if any mea-
surement is not zero.

• Compute out1 ← QGEval(D0, g̃1, . . . , g̃d,minp).

We note that, in step 2 of Fig. 2, given a C + M circuit Q, and a Clifford
Cout ∈ Cm1+λ, the circuit Qdist(Cout) is defined as follows: it takes as input
(n1 + n2 + nZ + λ + nT λ) qubits (x1 + x2 + zinp + trapA, tinp) on registers
(A,B,Zinp, T rapA, Tinp), it will first apply the magic state distillation circuit
from Lemma 3.3 of [15] with parameters (nT λ, λ) to tinp to produce QRV t of
size nT , then it will run Q on (x1,x2, zinp, t) to produce (y1, y2), and in the end,
it outputs (Cout(y2, trapA), y1).

5.2 Security Proof of Quantum Concurrent 2PC

In this section, we prove Lemma 14 that is similar to the proof of Theorem 5.1
in [15]. For the sake of completeness, we write out the proof in its entirety.

Lemma 14. Assuming two-round concurrently secure 2PC protocol with black-
box super-polynomial simulation running in time Tc2PC and sub-exponentially
secure quantum garbled circuit with simulation running time TQGC, where
poly(λ) � Tc2PC � TQGC, there exists a concurrent two-round 2PC for all quan-
tum circuits in the plain model.

Proof. For the sake of simplicity, we prove it in the following two cases when

1. A quantum polynomial-time adversary A corrupting party P1.
2. A quantum polynomial-time adversary A corrupting party P2.

For the ideal functionality, we use the Classical functionality in Fig. 2.

Case 1: Consider any quantum PT adversary A corrupting party P1. The sim-
ulator Sim(x1, auxA) is defined as follows:

– Receive (m1,m1) from A and compute inp ← c2PC.Sim(1λ,m1). If inp = ⊥
the abort, else parse inp as C1 and compute (x′

1, trap1) := C†
1(m1).

– Query ideal functionality and compute simulated round 2 message as follows:
• Compute (m̃inp,D, g̃1, . . . , ˜gd) by running QGSim(1λ, {ni, ki}i∈[d], out1)

where where m̃inp is the simulated quantum garbled input and
{ni, ki}i∈[d] are the parameters of C + M circuit Qdist(Cout).

• Sample a random Udec-check-enc and compute m2 := U†
dec-check-enc

(m̃inp,0, trap1, T
λ).

• Compute m2 ← c2PC.Sim(1λ,Udec-check-enc,D, g̃1, . . . , g̃d).
• Send (m2,m2) to A.
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Classical functionality f [Q]

Common Information: security parameter λ, and C + M circuit Q to be computed
with n1 + n2 input qubits, m1 + m2 output qubits, nZ auxiliary 0 states, and nT

auxiliary T states. let s = n2 + (n1 + λ) + (2nZ + λ) + (nT + 1)λ.

P1’s Input: Classical description of C1 ∈ Cn1+λ

P2’s Input: Classical description of C2 ∈ Cs and Cout ∈ Cm2+λ

1. Sample the unitary Ucheck as follows:
– sample random permutation π on (nT + 1)λ elements.
– Sample random element M ← GL(2nT ,F2).
– Compute a description of the Clifford Ucheck that operates as follows on regis-

ters (A, B, TrapB, ZA, TrapA, TA).
• Rearrange the registers of TA according to the permutation π and then

partition the registers into (Tinp, Tcheck).
• Apply the inner map M to the registers ZA and then partition the registers

into (Zinp, Zcheck).
• Rearrange the registers to (A, B, Zinp, TrapA, Tinp, Zcheck, TrapB, Tcheck).

– Define Udec-check as:

Udec-check := Ucheck(I
nA ⊗ C†

B ⊗ I
(2nZ+λ)+(nT+1)λ)C†

2

2. Sample (E0, D0, g̃1, · · · , g̃d) ← QGarble(1λ, Qdist(Cout)).
3. Compute the description of Udec-check-enc := (E0 ⊗ I

(nZ+λ)λ)U†
dec-check.

P1 Output:

1. A unitary Udec-check-enc on s qubits.
2. A quantum garbled circuit (D, g̃1, . . . , g̃n)

Fig. 2. Classical functionality F [Q] to be used in the quantum c2PC protocol

We now show that the simulation strategy is successful against all malicious
QPT adversaries. That is, the view of the adversary A(x2, auxA) along with
the output of the honest parties is computationally indistinguishable in the real
and ideal worlds. We show this via a series of computationally indistinguishable
hybrids where the first world H0 corresponds to the real world and the last game
corresponds to the ideal world.

1. H1: In this game, Sim runs c2PC.SimP1 in time Tc2PC and simulates the c2PC
scheme, using c2PC.Sim to extract A’s input, C1, and runs c2PC.Sim to com-
putes party P2’s message m2. Use C1 and freshly sampled (C2, Cout) to sample
the output of the classical functionality that is given to c2PC.Sim.
The (computational) indistinguishability of H0 and H1 comes directly from
the security against corrupted c2PC scheme.
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2. H2: Now, we make a (perfectly indistinguishable) switch in how m2 is com-
puted and how Udec-check-enc (part of the classical c2PC output) is sampled.
Define (x′

1, trap1) := C†
1(m1), where C1 was extracted from m1. As here exists

a Clifford unitary U such that Udec-check-enc = UC†
2 , where C2 was randomly

sampled. Thus, since the Clifford matrices form a group, an equivalent sam-
pling procedure would be to sample Udec-check-enc and define

m2 := U†
dec-check-enc(E0(x′

1,x2,0nZ+λ, TnT λ),0nZ , trap1, T
λ).

Notice that, in H1, we have that,

Udec-check-enc(m2) := (E0(x′
1,x2,0nZ+λ, TnT λ),0nZ , trap1, T

λ).

This hybrid runs in time Tc2PC. We observe that H1 and H2 are equivalent.
3. H3: In this game, we simulate the quantum garbled circuit. In particular,

compute
out1 ← Qdist[Cout](x′

1,x2,0nZ+λ, TnT λ)

and then compute m̂inp by running QGSim and the substitute m̂inp for
E0(x′

1,x2, 0nZ+λ, TnT λ) in the computation of m2, so that m2 :=
U†

dec-check-enc (E0(x′
1,x2,0nZ+λ, TnT λ),0nZ , trap1, T

λ). This hybrid runs in
time Tc2PC. The (computational) indistinguishability of H2 and H3 comes
directly from the sub-exponential security of the QGC.

4. H4: Finally, instead of directly computing out1 from the first stage of Qdist,
query the ideal functionality with x′

1 and receive back out1. Now, during
party P2’s output reconstruction step, if the check passes, send “accept”to
the ideal functionality, and otherwise send “abort” to the ideal functionality.
This game is now same as the ideal world. This hybrid runs in Tc2PC.
We observe that H4 and H5 are equivalent.

Case 2: Consider any quantum PT adversary A corrupting party P2. The sim-
ulator Sim is defined as follows. Whenever we say that the simulator aborts, we
mean that it sends ⊥ to the ideal f‘The simulator Sim(x2, auxA) works as follows:

– Compute m1 ← c2PC.Sim(1λ), samples a random Clifford C1, and compute
m1 := C1(0n1 ,0λ). Send (m1,m1) to A(x2, auxA).

– Receive (m2,m2) from A and compute out ← c2PC.Sim(1λ,m2). Abort if
out = ⊥, otherwise, parse out as (C2, Cout).

– Using (C1, C2) sample Udec-check and compute (x′
1,x

′
2,minp, trap2, zcheck,

trap1, Tinp, tcheck) ← Udec-check(m2). Measure each qubit of zcheck and trap2 in
the standard basis and each qubit of tcheck in the T-basis. If any measurement
is non-zero, then abort.

We observe that the simulation strategy is successful against all malicious
QPT adversaries. That is, the view of the adversary along with the output of
the honest parties is computationally indistinguishable in the real and ideal
worlds. For this, we consider the following hybrids where H0 is the real word.
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1. H1 In this world we run c2PC.Sim to compute the first message of the c2PC
as m1 and extract (C2, Cout) (or abort). This hybrid runs in time Tc2PC. This
world is computationally indistinguishable from the real world by the security
of the c2PC scheme against the malicious P2.

2. H2 In this world, we compute m1 as C1(0nB ,0λ) and substitute x1 with
x′
1 before computing Qdist(Cout). This hybrid runs in time Tc2PC This world

is statistically indistinguishable from H1 from the security of the Clifford
authentication code.
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Abstract. In the recent work of (Cheon & Lee, Eurocrypt’22), the con-
cept of a degree-D packing method was formally introduced, which cap-
tures the idea of embedding multiple elements of a smaller ring into a
larger ring, so that element-wise multiplication in the former is some-
what “compatible” with the product in the latter. Then, several opti-
mal bounds and results are presented, and furthermore, the concept is
generalized from one multiplication to degrees larger than two. These
packing methods encompass several constructions seen in the literature
in contexts like secure multiparty computation and fully homomorphic
encryption.

One such construction is the concept of reverse multiplication-friendly
embeddings (RMFEs), which are essentially degree-2 packing methods.
In this work we generalize the notion of RMFEs to degree-D RMFEs
which, in spite of being “more algebraic” than packing methods, turn out
to be essentially equivalent. Then, we present a general construction of
degree-D RMFEs by generalizing the ideas on algebraic geometry used
to construct traditional degree-2 RMFEs which, by the aforementioned
equivalence, leads to explicit constructions of packing methods. Further-
more, our theory is given in a unified manner for general Galois rings,
which include both rings of the form Zpk and fields like Fpk , which have
been treated separately in prior works. We present multiple concrete sets
of parameters for degree-D RMFEs (including D = 2), which can be use-
ful for future works.

Finally, we discuss interesting applications of our RMFEs, focusing
in particular on the case of non-interactively generating high degree cor-
relations for secure multiparty computation protocols. This requires the
use of Shamir secret sharing for a large number of parties, which requires
large-degree Galois ring extensions. Our RMFE enables the generation
of such preprocessing data over small rings, without paying for the mul-
tiplicative overhead incurred by using Galois ring extensions of large
degree. For our application we also construct along the way, as a side
contribution of potential independent interest, a pseudo-random secret-
sharing solution for non-interactive generation of packed Shamir-sharings
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over Galois rings with structured secrets, inspired by the PRSS solutions
from (Benhamouda et al., TCC 2021).

1 Introduction

Several cryptographic constructions are designed to work over finite discrete
structures. For example, encryption schemes, digital signatures, or message
authentication codes, all widely used in day-to-day digital systems, are designed
to manipulate bit strings of certain length. The same holds for cryptographic
hash functions, or key exchange protocols. However, there is a large body of
cryptographic constructions that, on top of working over a finite discrete struc-
ture, require certain minimal algebraic properties, either for the definition of
the primitive itself or for their construction. For example, Diffie-Hellman key
exchange [18] makes use of a finite group where the discrete logarithm problem
is hard. Similarly, encryption schemes such as Paillier [28] or RSA [30] make use
of group of invertible integers modulo N2 and N respectively, where N is the
product of two large primes.

On the other hand, other cryptographic primitives not only make use of alge-
braic structures underneath, but their security definition is actually tied to some
algebraic structure. For example, in fully homomorphic encryption two messages
over some finite ring can be encrypted, and the two corresponding ciphertexts
can be added/multiplied together to obtain encryptions of the sum/product
of the two underlying plaintexts. Also, functional encryption for dot products
(cf. [1]) is a primitive that enables the encryption of a message under some public
key so that, having certain special secret key, only the dot product between the
plaintext and the secret key can be recovered. Again, such definition is tied to
a specific algebraic structure in order for the notion of a “dot product” to be
well defined. Finally, another good example is secure multiparty computation,
where different parties compute a given function securely without leaking their
inputs. Such function is typically defined as an arithmetic circuit over some finite
algebraic structure.

Typically, the most general algebraic structure that underpins many crypto-
graphic primitives, including the ones exemplified above, is that of a finite ring.
This is a finite set where a product and addition operation are defined, and
these satisfy certain basic properties such as commutativity of addition, asso-
ciativity, or distributivity. Unfortunately, not all cryptographic primitives can
be instantiated under any arbitrary finite ring. For example, most homomorphic
encryption techniques work over rings of the form ZN for very specific integers N ,
lattice-based construction typically makes use of polynomial rings extensions of
a very structured form [27], and most secure multiparty computation protocols
are designed to work over finite fields, which are a subset of finite rings where
every non-zero element has a multiplicative inverse, and in some cases this finite
field cannot be small. Only recently the case of MPC over rings of the form
ZN for more general N was considered (cf. [13]), and in [20] the case of MPC
over a (possibly non-commutative) arbitrary finite ring was studied. In addition,
zero-knowledge proofs are typically designed for arithmetic circuits over finite
fields, with the case of more general rings only being explored recently [33].
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The Use of Ring Extensions. As we mentioned above, ring extensions—
which are rings of polynomials reduced modulo some fixed polynomials—appear
naturally in the context of lattice-based cryptography. However, that is not the
only context where this type of extension rings are used. An interesting and
relevant algebraic structure is the ring of integers Zpk modulo a prime power
pk. The relevance of this structure is two-fold. On the one hand, it contains as a
particular case the integers modulo powers of two, like 264 or 2128, which are good
for many applications since they are closer to hardware implementations and
they are more “compatible” with binary circuits [16]. On the other hand, having
constructions that work over Zpk for any arbitrary prime power pk typically lead,
with the help of the Chinese remainder theorem, to constructions that work over
ZN for any positive integer N . It has been identified in many different works
(e.g. [20]) that the main property required by the underlying ring Zpk in order for
certain cryptographic primitive (e.g. MPC or ZKP) to be instantiable over Zpk

is that the Lenstra constant of the ring, which is the size of the largest subset
where every non-zero pairwise difference is invertible, has to be large enough.
Since the Lenstra constant of Zpk is p, this means that p cannot be very small,
which rules out important cases such as Z2k .

To address the complication above, multiple works such as [2,5,7,8,21] have
made use of ring extensions of Zpk to ensure the Lenstra constant of the resulting
ring is large enough, hence enabling the construction of the specific cryptographic
primitive at hand. Such ring extensions are known as Galois rings, and they
have the form Zpk [X]/(f(X)), where f(X) is some polynomial of degree d over
Zpk that is irreducible when taken modulo p. This ring is denoted by GR(pk, d),
and it is known to have a Lenstra constant of pd, which increases exponentially
as the extension degree d grows. Because of this, works in the context of secure
multiparty computation (cf. [2]) and more recently zero-knowledge proofs [10,26]
have made use of such extensions in order to instantiate these cryptographic
primitives over Zpk .

Packing Methods. As we have mentioned above, ring extensions are required
in contexts such as fully homomorphic encryption, which is typically based on
lattices, or secure multiparty computation and zero-knowledge proofs over rings
of the form Zpk . However, most applications do not make use of these ring
extensions directly, but rather they are better suited for the underlying base
ring. In the context of lattice-based FHE, this has been addressed by making use
of ring extensions that are ring-isomorphic to multiple copies of the underlying
base ring via CRT. These extensions require the quotient polynomial to split
completely into linear factors, and in particular it cannot be invertible.

For MPC and ZKPs, the quotient polynomial has to be irreducible in order
to guarantee a large-enough Lenstra constant, so in particular packing elements
using CRT-based techniques is not possible. To address this complication, a
tool named reverse multiplication-friendly embeddings, or RMFEs for short, was
introduced in [9]. At a high level, an RMFE is a pair of additive homomor-
phisms from/to a Galois ring to/from Z

r
pk that map polynomial product in the

Galois ring to element-wise product in Z
r
pk . More precisely, an RMFE is a pair of
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Zpk -linear homomorphisms (φ : Zr
pk → GR(pk, d), ψ : GR(pk, d) → Z

r
pk) such that

ψ(φ(x) ·φ(y)) = x�y for every x,y ∈ Z
r
pk , where · denotes product in GR(pk, d)

and � denotes component-wise product in Z
r
pk . This is less ideal than the CRT-

based packing techniques used in lattice-based cryptography since it does not
hold that the product of any two ring extension elements x ·y somehow “encodes”
multiple products over Zpk , but rather, if x = φ(x) and y = φ(y), then x · y can
be “decoded” to the products x � y by mapping this value with ψ. Furthermore,
very importantly, unlike CRT-based techniques it is not possible to multiply
more than two values before “decoding” with ψ, since it is not necessarily the
case that ψ(φ(x) · φ(y) · φ(z)) = x � y � z. As a result, for multiple products
all existing cryptographic constructions making use of RMFEs must follow a
pattern that somewhat resembles “encode → multiply → decode → repeat”. In
contrast, CRT-based packing can follow the pattern “encode → multiply → · · · →
multiply → decode”.

RMFEs have played a major role in enabling multiple recent results in the
literature. In the work where they were introduced [9], they were used in order
to achieve honest majority MPC without the log n overhead stemming from the
use of field extensions. This only works for SIMD circuits, a restriction that was
later removed in [29] again by using RMFEs. The work of [11] uses RMFEs to
improve the state-of-the-art in dishonest majority MPC over Z2, and [21] uses
again RMFEs, this time over more general Galois rings—which are constructed in
[15]—to improve the communication of SPDZ2k [13], the state-of-the-art protocol
for dishonest majority MPC over Z2k . RMFEs have also found applications in the
zero-knowledge domain: [10] improves the Aurora and Ligero proof systems by
using RMFEs; and in [26] a concretely efficient post-quantum signature scheme
based on MPC-in-the-Head is proposed, Helium, which makes use of RMFEs in
order to increase the field size, which improves the soundness of the proof and
hence reduces signature size), while reducing the penalty of using a larger field.

Finally, in the recent work of [12], the concept of a packing method was
introduced, with the aim of unifying and generalizing the notion of RMFEs and
CRT-based packings, already used in the literature. A packing method is similar
to an RMFE in that it is comprised of packing (“encoding”, φ) and unpacking
(“decoding”, ψ) methods, but: (1) their additive homomorphism property is more
relaxed, (2) they can be randomized, (3) unpacking/decoding can lead to an error
and, crucially, (4) they allow for more than one multiplication to be carried out
before decoding (and in fact there could be different packing/unpacking methods
depending on the degree of the multiplication being decoded). In [12], the authors
show how packing methods generalize existing approaches in the literature, and
they show lower and upper bounds on the parameters of these constructions. We
discuss in much more detail the work of [12] in Sect. 1.2.

1.1 Our Contribution

The packing methods defined in [12] allow for several multiplications to be
carried out before decoding, while as we discussed above, RMFEs only allow
for one single multiplication. On the other hand, RMFEs have better proper-
ties than packing methods in that they are Zpk -homomorphisms that do not
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output errors and are not randomized. This is important for their applications
to MPC and ZKPs. This is the motivation of our work, which includes the fol-
lowing contributions.

Degree-D RMFEs. In this work, we extend the important notion of RMFEs
by introducing the concept of Degree-D Reverse Multiplication-Friendly Embed-
dings, which is a generalization of RMFEs that enable D − 1 multiplications to
be carried out before “decoding”. In more detail, a degree-D RMFE is a pair of
Zpk -linear homomorphisms (φ : Zr

pk → GR(pk, d), ψ : GR(pk, d) → Z
r
pk) such that

ψ(φ(x1) · φ(x2) · · · φ(xD)) = x1 � x2 � · · · � xD for every x1, . . . ,xD ∈ Z
r
pk .1 We

call r
d the ratio of RMFE. Fix p to be a constant, we call a RMFE asymptotically

good if this ratio is a constant for growing r and d. In our work we put forward
the study of these objects and make substantial progress in this direction by
presenting a construction of an asymptotically good degree-D RMFE for Galois
rings over Zpk for any r, D, p and k, where the rate is roughly 3

D(2D+1) , which
is constant in the length r.

To illustrate how such objects may be constructed, let us first present a
simple example of degree-D RMFE which is not asymptotically good. Given
a vector x = (x1, . . . , xr) ∈ Z

r
pk with p > r, we define the map φ as

φ(x) = f(x) ∈ GR(pk, (r − 1)D + 1) ∼= Zpk/(g(x)) with f(i) = xi and degree-
((r − 1)D + 1) irreducible polynomial g(x) over Zpk . The map ψ is defined as
ψ(f(x)) = (f(1), . . . , f(r)). The multiplication relation holds as the product of
any D degree-(r − 1) polynomials is a polynomial of degree at most D(r − 1).
Since the degree of this polynomial is less than deg(g(x)) = D(r − 1) + 1, we
can recover r evaluations of this polynomial. The construction of this degree-D
RMFE is simple and effective, and its ratio is r

(r−1)D+1 , which is optimal. How-
ever, the length r of the vector x is upper bounded by p, while instead, we would
like a single RMFE construction that works for any choice of r.2 Inspired by the
approach taken in the original work on (degree-2) RMFEs [9], in order to obtain
an asymptotically good degree-D RMFEs we resort to the theory of function
fields. By applying certain “concatenation” method to the asymptotically good
RMFEs derived from these mathematical objects, we are then able to obtain our
asymptotically good degree-D RMFEs over Z2k .

Our results on degree-D RMFEs generalize these in [9] from D = 2 to D >
2, showing that the techniques in that work are a particular case of a more
general framework. This improves our understanding on these important tools,
and furthermore, we believe our work opens an interesting direction of study in
terms of constructing even better degree-D RMFEs, and expanding the set of
applications that can benefit from them.

1 In our actual definition, as in the definition of traditional (degree-2) RMFEs, the
domain of φ/codomain of ψ can be a Galois ring as well instead of Zpk .

2 It is possible to improve this basic construction via certain concatenation techniques.
However, any construction based on this polynomial evaluation cannot achieve con-
stant ratio, which can be seen as an analogue of the concatenation of Reed-Solomon
codes in the classic coding theory.
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Relations to the Packing Methods from [12]. We show that degree-D RMFEs
are particular cases of packing methods, but in the general case the converse
direction does not hold, that is, not every degree-D packing method is a degree-
D RMFE. In fact, we are able to prove that packing methods that satisfy certain
additional linearity properties can be turned into degree-D RMFEs. Crucially,
degree-D RMFEs satisfy the following highly relevant properties not held by
packing methods:

– Degree-D RMFEs are actual Zpk -homomorphisms, so unlike the packing meth-
ods from [12], they are not randomized, they are fully linear and they do not
output errors.

– A degree-D packing method consists of different packing/unpacking methods,
one for every “level” � ∈ {1, . . . , D}. In contrast, degree-D RMFEs consist of
only one “packing/unpacking” pair (φ, ψ), which works for all levels.

The relations between packing methods and our degree-D RMFEs are
explored in detail in Sect. 3. We show that a degree-D RMFE is actually a
degree-D packing method. This means the lower bound on the ratio in [12] can
be applied to degree-D RMFE. We provide several constructions of degree-D
RMFE which can be directly transformed to degree-D packing method. Unlike
the construction in [12], our packing methods obtained from RMFEs are Zpk -
homomorphism. Our construction of RMFE implies that there exists degree-D
packing method of density roughly 3

D(1+2D) over Z2� for any D and �, which
is constant in the length. On the other hand, if we add an extra requirement
on the packing method that the packing algorithm in the packing method is
deterministic and linear, then a degree-D packing method is a degree-D RMFE
as well.

Applications of Degree-D RMFEs. As discussed previously, RMFEs have found
multiple theoretical and practical applications across different domains such as
MPC and zero-knowledge proofs. From this, our degree-D RMFEs can be used
as a drop-in replacement in settings that currently use traditional (degree-2)
RMFEs, but require large degree evaluation. For example, it can be used to
amortize the communication of securely computing the product of, say, three
secrets, or proving in zero-knowledge the correctness of a, say, product of three
witnesses. Unfortunately, some of these applications do not benefit directly from
products of more than two terms, essentially because of the fact that single mul-
tiplication is “complete” to represent a more general computation, and aspects
such as interaction enable weaker notions such as traditional degree-2 RMFEs to
be sufficient. In Sect. 5 we add a thorough discussion on potential applications
of this type, where existing RMFE-based solutions are “enhanced” by enabling
larger degree.

In this work we identify a concrete application that benefits extensively by
the use of degree-D RMFEs for D > 2. This corresponds to delegating the genera-
tion of preprocessing material for certain secure computation (e.g. authenticated
multiplication triples) to a large committee, which is in charge of generating said
correlations in order to later re-share them for the target MPC execution. Since
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the larger the committee the better the ratio of honest parties, it is good if such
a protocol for correlation generation scales well as the number of parties grows.
We model this by requiring no interaction among the parties in the large com-
mittee, which can be enabled by means of pseudo-random Shamir secret-sharing
techniques and local multiplications with low-enough threshold. However, when
the target ring structure has a small Lenstra constant, such techniques do not
work, and hence require a large ring extension.

This is precisely where our degree-D RMFEs prove themselves useful: they
enable the use of ring extensions while non-interactively multiplying several
secrets in order to generate the desired correlations, but without paying the
“penalty” of using said large degree extensions. As a result, we obtain efficient
delegation of correlations of degree ≥ 2, while avoiding communication among
the generating committee (which enables larger and hence more trustworthy quo-
rums). This application, however, is not a simple “plug-and-play” of our degree-D
RMFEs, and we introduce several techniques of potential independent interest
to tackle this. The main challenge lies in ensuring that pseudo-random secret-
sharing techniques can be adapted to generate the concrete type of sharings we
need in our context, given that the underlying secrets will have to belong to a
particular submodule. In Sect. 5, where we describe this application in detail, we
show how such PRSS constructions can be instantiated, drawing inspiration from
the techniques in [3] in order to improve the storage complexity by exploiting a
small corruption threshold.

We fully prove the security of our PRSS construction, and then we use it in
conjunction with our degree-D RMFEs to efficiently instantiate the application
above. We refer to the full version [19] for a more detailed overview on this
application.

1.2 Related Work

The first constructions of (degree-2) RMFEs appeared in [9], although some
ideas were already present in [4]. After these works, there is a large body of
research that has applied RMFEs for different settings such as secure multiparty
computation or zero-knowledge proofs, with a non-exhaustive list including [2,
10,21,26].

Given the traction achieved by the concept of RMFEs, and also given the
use of other forms of packing in domains such as lattice-based homomorphic
encryption [32], the work of [12] aimed at presenting a unified framework that
captures these different packing notions. The resulting concept, packing meth-
ods, constitutes a generalization of both (degree-2) RMFEs and the CRT-based
packing used in lattice-based cryptography. The authors then present a survey
of existing techniques that fit their framework, and present bounds and impos-
sibility result on the existence and the efficiency of their packing methods. Our
degree-D RMFEs constitute a generalization of degree-2 RMFEs, and, as we
show in Sect. 3, they turn out to be particular instances of the packing methods
from [12]. Furthermore, with a minor extra condition, packing methods turn
out to be equivalent to our degree-D RMFEs. The relation between these two
notions is explored in detail in Sect. 3.
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Regarding delegation of correlation generation for MPC, the work of [24],
which introduces an MPC protocol based on packed secret-sharing that is par-
ticularly suitable for parallel computation, presents an application where this pro-
tocol is used by a committee P to generate multiplication triples to another com-
mittee Q. We note that their protocol requires communication among the parties
in committee P, whereas our solution is fully non-interactive. Even more—and
very importantly for our application of degree-D RMFEs—our techniques are
used to generate arbitrary degree-D correlations, while in [24] only multiplica-
tion triples, a particular case of degree-2 correlations, is considered. However, the
non-interactivity aspect of our solution is achieved at the expense of using pseudo-
random secret-sharing (which requires exponential storage for some parameter
choices), and the high degree aspect requires tolerating a smaller threshold. Fur-
thermore, the techniques in [24] support an active adversary, while our solution
in Sect. 5 is only passively secure.

Finally, in terms of pseudo-random secret-sharing, earlier techniques [14,23]
required an exponential amount of seeds to be held by each party, and they were
only suitable for Shamir secret-sharing over fields where the underlying secret is
uniformly random in the field. In the recent work of [3] this was generalized by
making use of covering designs, and instantiations of PRSS solutions for sharings
of higher-degree with more structured underlying secrets were proposed. These
techniques serve as the basis for our PRSS from Sect. 5.2, but we cannot use it
directly since (1) they are designed for use over finite fields while in our case
we have a Galois ring, and most importantly, (2) the type of correlations we
need to generate are not included in the ones proposed in [3]. The first issue is
easily addressed by making use of the fact that Galois rings have a large enough
Lenstra constant. On the other hand, the second complication requires us to
propose from scratch a new PRSS solution for our correlations at hand, based
on the covering design approach from [3].

2 Preliminaries

Notation. We let p be a prime, and d, k,m, n be positive integers. Generally,
pk will be the characteristic of the rings we consider, d,m will be the degree of
certain ring extensions, and n will be the dimension of the vectors that will be
packed. Vectors are denoted with bold characters, and, following the notation
in [12], element-wise multiplication of vectors is denoted by a � b.

Galois Rings. Let Irr(X) be a polynomial over Zpk of degree d, such that reduc-
ing its coefficients modulo p leads to an irreducible polynomial over the field Zp.
Consider the quotient ring Zpk [X]/(Irr(X)). This is a Galois ring of degree d and
characteristic pk, and we denote it by GR(pk, d). As particular cases, we have
that GR(pk, 1) equals Zpk , the ring of integers modulo pk, and GR(p, d) equals
Fpd , the finite field with pd elements.

A crucial fact of Galois rings is that their non-invertible elements are exactly
the elements that are multiples of p. From this, it can be proven that one can do
polynomial interpolation over Galois rings in essentially the same way similarly
as in the finite field case, as the following proposition shows.
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Proposition 1. ([2,35]). Assume that pd ≥ n. There exists n elements
α1, . . . , αn in GR(pk, d) such that given any x1, . . . , xn ∈ GR(pk, d), there is
a unique polynomial of degree n − 1, f(X) ∈ GR(pk, d)[X], with f(αi) = xi. We
call such {α1, . . . , αn} an exceptional set.

Using Proposition 1, all of the results from finite fields regarding interpola-
tion and polynomial evaluation carry over to the Galois ring setting. For exam-
ple, Schwartz-Zippel lemma holds, and also Shamir secret-sharing can be con-
structed.

Function Fields. Let us briefly recall some background on algebraic function
fields, which will play a crucial role in our constructions. The reader may refer
to [34] for the details.

A function field F over Fq is a field extension over Fq in which there exists
an element z of F that is transcendental over Fq such that F/Fq(z) is a finite
extension. Fq is called the full constant field of F if the algebraic closure of Fq in
F is Fq itself. In this paper, we always assume that Fq is the full constant field
of F , denoted by F/Fq.

Each discrete valuation ν from F to Z ∪ {∞} defines a local ring O = {f ∈
F : ν(f) ≥ 0}. The maximal ideal P of O is called a place. We denote the
valuation ν and the local ring O corresponding to P by νP and OP , respectively.
The residue class field OP /P , denoted by FP , is a finite extension of Fq. The
extension degree [FP : Fq] is called degree of P , denoted by deg(P ). For a place
P and a function f ∈ OP , we denote by f(P ) the evaluation of f at place P if
f ∈ OP . We note that f(P ) ∈ Fp.

A divisor G is a formal sum of places, G =
∑

cP P , such that cP ∈ Z

and cP = 0 except for a finite number of P .3 We call this set of places where
cP �= 0 the support of G, denoted by supp(G). The degree of G is degG :=∑

cP degP ∈ Z. The Riemann-Roch space L(G) is the set of all functions in
F with certain prescribed poles and zeros depending on G (together with the
zero function). More precisely if G =

∑
cP P , every function f ∈ L(G) must

have a zero of order at least |cP | in the places P with cP < 0, and f can
have a pole of order at most cP in the places with cP > 0. The space L(G)
is a vector space over Fq. Its dimension is governed by certain laws (given by
the so-called Riemann-Roch theorem). A weaker version of that theorem called
Riemann’s theorem states that if degG ≥ 2g−1 then dimL(G) = deg(G)−g+1.
On the other hand, if degG < 0, then dimL(G) = 0. Let P1, . . . , Pn be n >
deg(G) rational places of F that is disjoint from the support of divisor G. Then,
(f(P1), . . . , f(Pn)) has at most deg(G)’s 0 components as f ∈ L(G−∑

f(Pi)=0 Pi)
implying dimL(G−∑

f(Pi)=0 Pi) > 0. Moreover, if f, g ∈ L(G), then fg ∈ L(2G)
as fg has the pole of order at most 2cP in the place P with G =

∑
cP P . This

property can be seen as the generalization of the polynomials in the function
field.

3 cP is only used for expressing divisor G explicitly so as to present the basic property
of the function field. The explicit construction of G is not the focus of this paper.
Thus, cp will not appear in our construction.
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Packing Methods. Now we present the notion of packing methods, as intro-
duced in [12, Definition 3.1], together with some results given in that work. The
definition in [12], however, considers arbitrary rings, while we adapt it here to
focus only on Galois rings. This is not restrictive: as we have mentioned, impor-
tant rings such as Zpk or Fpd are particular cases, and these are the only types
of structures considered in [12] ultimately.

Definition 1 (Packing Methods). Consider two Galois rings GR(pk, d) and
GR(pk,m). We call a pair of algorithms (Pack,Unpack) a packing method for n
GR(pk, d)-messages into GR(pk,m), if it satisfies the following.

– Pack is an algorithm (possibly probabilistic) which, given a ∈ GR(pk, d)n as
an input, outputs an element of GR(pk,m).

– Unpack is a deterministic algorithm which, given a ∈ GR(pk,m) as an input,
outputs an element of GR(pk, d)n or ⊥ denoting a failure.

– Unpack(Pack(a)) = a holds for all a ∈ GR(pk, d)n with probability 1.

The notion of a packing method does not capture how the packing and
unpacking algorithms should behave with respect to the operations of the two
involved rings. This is captured by the concept of a degree-D packing, which in
essence, requires that these methods must be additively homomorphic, and they
must be compatible with “up to D multiplications”.

Definition 2. (Degree-D Packing, Definition 3.1 in [12]).
Let (Packi,Unpacki)Di=1 be a collection of packing methods of GR(pk, d)n into
GR(pk,m). We call this collection a degree-D packing method, if it satisfies the
following: for any 1 ≤ i ≤ D, then

– Unpacki(a ± b) = a ± b, if a, b ∈ GR(pk,m) satisfy Unpacki(a) = a �= ⊥ and
Unpacki(b) = b �= ⊥;

– If s, t ∈ Z
+ are such that s + t = i ≤ D, then Unpacki(a · b) = a � b holds,

where a, b ∈ GR(pk,m) satisfy Unpacks(a) = a �= ⊥ and Unpackt(b) = b �= ⊥.

These definitions imply that Unpacki(c · a) = c · Unpacki(a) for any c ∈ Zpk ,
and in particular Unpacki(0) = 0.

We define the packing density of a packing method to be the ratio n · d/m.
Notice that, even though the Pack algorithm of a packing method can be prob-
abilistic, we can make this algorithm deterministic by fixing the random coins.
This will not affect Definition 2, and the packing density does not decrease. In
what follows, we focus on the deterministic packing algorithms.

3 Degree-D RMFEs and Relations to Packing Methods

We now introduce the novel concept of a degree-D reverse multiplication-friendly
embedding, or RMFE, for short. For D = 2, the notion of an RMFE was intro-
duced in [9], where explicit constructions based on techniques from algebraic
geomtry were given. Here we consider a natural generalization for D ≥ 2.
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Definition 3. (Degree-D Reverse Multiplication-Friendly Embedding).
Consider two Galois rings GR(pk, d) and GR(pk, rd). Let φ : GR(pk, d)n →
GR(pk, rd) and ψ : GR(pk, rd) → GR(pk, d)n be two group homomorphisms
( i.e. they are additively homomorphic). The pair (φ, ψ) is a degree-D reverse
multiplication-friendly embedding, or degree-D RMFE for short, if, for any
a1 . . . ,aD ∈ GR(pk, d)n, it holds that ψ(φ(a1)·φ(a2) · · · φ(aD)) = a1�a2�· · ·�aD.
We call such RMFE a (n, r;D)-RMFE over GR(pk, d).

Some important direct consequences of this definition are presented in the
following propositions.

Proposition 2. Let (φ, ψ) be a degree-D RMFE. Then φ is injective and ψ is
surjective.

Proof. To see that φ is injective it suffices to show that φ(a) = 0 implies that a =
0. Indeed, if φ(a) = 0 then 0 = ψ(0) = ψ(φ(a)�φ(1) · · · φ(1)) = a�1�· · ·�1 = a.
Similarly, given a ∈ GR(pk, d)n, it can be verified that a preimage of a under ψ
is given by φ(a) · φ(1) · · · φ(1), which shows that ψ is surjective. ��
Lemma 1. Both φ and ψ are Zpk -linear maps.

Proof. The proof is quite straightforward. Due to the fact that φ is group homo-
morphism, we have φ(ha) = φ(

∑h
i=1 a) =

∑h
i=1 φ(a) = hφ(a) for any h ∈ Zpk

and a ∈ GR(pk, d)n. The same argument can be applied to ψ as well. ��
Lemma 2. Let (φ : GR(pk, d)n → GR(pk,m), ψ : GR(pk,m) → GR(pk, d)n)
be a degree-D RMFE. Then there exists a degree-D RMFE (φ′ : GR(pk, d)n →
GR(pk,m), ψ′ : GR(pk,m) → GR(pk, d)n) with φ′(1) = 1.

Proof. We begin by claiming that φ(1) ∈ GR(pk,m) is invertible. Assume not,
and thus p | φ(1). As φ is a Zpk -linear map, we have φ(pk−11) = pk−1φ(1) = 0
which contradicts to Proposition 2. Now, we define φ′ : GR(pk, d)n → GR(pk,m)
and ψ′ : GR(pk,m) → GR(pk, d)n as follows: φ′(a) = φ(a) · φ(1)−1 for a ∈
GR(pk, d)n, and ψ′(a) = ψ(a · φ(1)D) for a ∈ GR(pk,m). It is easy to verify
that these functions are additively homomorphic. We can also see that φ′(1) =
φ(1)·φ(1)−1 = 1, as required. It is only left to check then that (φ′, ψ′) is indeed a
degree-D RMFE. To see this, consider a1 . . . ,aD ∈ GR(pk, d)n, then ψ′(φ′(a1) ·
φ′(a2) · · · φ′(aD)) = ψ′(φ(a1) · · · φ(aD) ·φ(1)−D) = ψ(φ(a1) · · · φ(aD) ·φ(1)−D ·
φ(1)D) = ψ(φ(a1) · · · φ(aD)) = a1 � a2 � · · · � aD. ��

A degree-D RMFE (φ, ψ) that satisfies φ(1) = 1 has several interesting prop-
erties, and due to the previous lemma, we assume this to be the case from now
on. First, the composition ψ◦φ is the identity function GR(pk, d)n → GR(pk, d)n,
which follows from ψ(φ(a)) = ψ(φ(a) · 1 · · · 1) = ψ(φ(a) · φ(1) · · · φ(1)) =
a � 1 � · · · � 1 = a.

In addition, such a degree-D RMFE is also a degree-D′ RMFE for any
D′ ≤ D (a property that does not necessarily hold for a more general RMFE).
Indeed, given a1 . . . ,aD′ ∈ GR(pk, d)n, we have that ψ(φ(a1) · · · φ(aD′)) =
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ψ(φ(a1) · · · φ(aD′) · 1 · · · 1) = ψ(φ(a1) · · · φ(aD′) ·φ(1) · · · φ(1)) = a1 � · · · �aD′ �
1 � · · · � 1 = a1 � · · · � aD′ .

These properties will be used later. In what follows, we discuss the equiva-
lence between the degree-D RMFEs introduced here, and the packing methods
from [12], discussed in Sect. 2.

3.1 From Degree-D RMFEs to Packing Methods

In this section, we show that every degree-D RMFE is a packing method of
degree-D. Let (φ : GR(pk, d)n → GR(pk,m), ψ : GR(pk,m) → GR(pk, d)n) be a
degree-D RMFE. From Proposition 2, we can assume without loss of generality
that φ(1) = 1.

Theorem 1 (from RMFEs to Packing Methods). Let (Packi,Unpacki)Di=1

be defined as follows:

– Packi = φ for i = 1, . . . , D.
– For each i = 1, . . . , D, Unpacki(a) = ψ(a) if a ∈ span

Z
pk
(Mi) and

Unpacki(a) = ⊥ otherwise, where span
Z

pk
(Mi) is the Zpk -module generated

by Mi = {∏i
j=1 φ(xj) : xj ∈ GR(pk, d)n}.

Then, this constitutes a degree-D packing method.

Proof. It is easy to check that Unpacki(a± b) = a±b whenever a, b ∈ GR(pk,m)
satisfy Unpacki(a) = a �= ⊥ and Unpacki(b) = b �= ⊥, which follows from the
fact that ψ is additively homomorphic and from the linearity of the Zpk -module
Mi.

It remains to be checked that, if s, t ∈ Z
+ are such that s + t = i, then

Unpacki(a ·b) = a�b holds, where Unpacks(a) = a �= ⊥ and Unpackt(b) = b �= ⊥.
To see this, first we notice that, since a �= ⊥ and b �= ⊥, it must be that
a ∈ span

Z
pk
(Ms) and b ∈ span

Z
pk
(Mt), so we can write a and b in the form

a =
∑�a

j=1 αjm
(a)
j and b =

∑�b

j=1 βjm
(b)
j , where each m

(a)
j is in Ms, each m

(b)
j

is in Mt, and each αj , βj is in Zpk . Furthermore, we write m
(a)
j =

∏s
q=1 φ(x(j)

q ),

and m
(b)
j =

∏t
q=1 φ(y(j)

q ). Now, we prove some claims that will be useful.

Claim. It holds that Unpacks(a) =
∑�a

j=1 αj

∏s
q=1 x

(j)
q , and similarly

Unpacki(b) =
∑�b

j=1 βj

∏s
q=1 y

(j)
q .

Proof (of Claim). We prove this for a only, as the proof of b is similar. First,
notice that ψ(m(a)

j ) = ψ(
∏s

q=1 φ(x(j)
q )) =

∏s
q=1 x

(j)
q , which follows from the fact

that (φ, ψ) is not only a degree-D RMFE, but also a degree-s RMFE. The claim
then holds because of the linearity of ψ.

Claim. For each j it holds that ψ((
∏s

q=1 φ(x(j)
q )) · (

∏t
q=1 φ(y(j)

q ))) =

(
∏s

q=1 x
(j)
q ) � (

∏t
q=1 y

(j)
q ).
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Proof (of Claim). This follows directly from the fact that (φ, ψ) is a degree-D′

RMFE for any D′ ≤ D, and the fact that s + t = i ≤ D.

It is easy to see that a ·b ∈ span
Z

pk
(Mi). With this, and the two claims above

at hand, we can compute the following:

Unpacki(a · b) = ψ(a · b)

= ψ((
�a∑

j=1

αjm
(a)
j ) · (

�b∑

h=1

βhm
(b)
h ))

= ψ(
∑

j,h

αjβh · m
(a)
j m

(b)
h )

=
∑

j,h

αjβh · ψ(m(a)
j m

(b)
h ) linearity of ψ

=
∑

j,h

αjβh · ((
s∏

q=1

x(j)
q ) � (

t∏

q=1

y(j)
q )) second claim

= (
�a∑

j=1

αj

s∏

q=1

x(j)
q ) � (

�b∑

h=1

βh

t∏

q=1

y(j)
q )

= Unpacks(a) � Unpackt(b). first claim

This concludes the proof of the theorem. ��

3.2 From Degree-D Packing to Degree-D RMFEs

In general, not every degree-D packing is a degree-D RMFE. First, a degree-
D packing is a family of pairs (Packi,Unpacki)Di=1, while a degree-D RMFE is
only made of one pair of functions. In addition, packing methods do not need
to be deterministic or linear, which are properties satisfied by RMFEs. Finally,
the Unpack algorithm of a packing method can result in ⊥ while RMFEs, being
homomorphisms, do not. In this direction, consider the following example.

Example 1. Consider a packing method for n GR(pk, d)-messages into a GR(pk, 2·
n · d) message for pd ≥ n. From Proposition 1, we can find n distinct elements
α1, . . . , αn ∈ GR(pk, d) to do interpolation on. The packing algorithm is defined
as follows: given (x1, . . . , xn) ∈ GR(pk, d)n, we randomly select a polynomial
f(x) of degree n over GR(pk, d) such that f(αi) = xi. Note that this f(x) is not
unique as we only interpolate f at n points. Then, the pack algorithm is defined
as Pack((x1, . . . , xn)) = f(x) ∈ GR(pk, 2nd) as GR(pk, 2nd) ∼= GR(pk, d)/(g(x))
with a degree-2n irreducible polynomial g(x) over GR(pk, d). The unpack algo-
rithm is also clear as we define Unpack(f(x)) = (f(α1), . . . , f(αn)). One can also
easily show that this packing method is a degree-2 packing. However, it is not a
degree-2 RMFE as the packing method is not deterministic.
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In this section, we show that being deterministic and linear is not only nec-
essary for a degree-D packing to be a degree-D RMFE, but they are in fact
sufficient. In other words, we show that a degree-D RMFE can be derived from
any degree-D packing (Packi,Unpacki)Di=1, as long as each Packi is Zpk -linear
and deterministic. This is proven in Theorem 2 below. However, we first present
Proposition 3 and Lemma 3, which are useful tools for proving the claimed result.

Proposition 3. Let (Packi,Unpacki)Di=1 be a degree-D packing method. Then,
for any a1 . . . ,aD ∈ GR(pk, d)n, we have that
UnpackD(Pack1(a1) · · ·Pack1(aD)) = a1 � · · · � aD.

Proof. We prove it by induction. For D = 2, it is clear that UnpackD(Pack1(a1) ·
Pack1(a2)) = a1 � a2 as we let i = 2, s = t = 1 in Definition 2. We pro-
ceed to the case D. Let a = Pack1(a1) · · ·Pack1(aD−1) and b = Pack1(aD)
in Definition 2, we have UnpackD(a · b) = UnpackD−1(a) � Unpack1(b) =
UnpackD−1(a) � aD. The proof is completed by applying the induction
UnpackD−1(Pack1(a1) · · ·Pack1(aD−1)) = a1 � · · · � aD−1. ��

From the proposition above, the following observation holds. Let a ∈ MD =
{∏D

j=1 Pack1(xj) : xj ∈ GR(pk, d)n}, then UnpackD(a) =
∏D

j=1 xj , and in par-
ticular, UnpackD(a) �= ⊥. Furthermore, this also extends naturally to the case in
which a ∈ span

Z
pk
(MD) by using the linearity of Unpack1. In particular, Unpack1

restricted to span
Z

pk
(MD) is a Zpk -linear homomorphism, and therefore, the fol-

lowing lemma can be applied to it.

Lemma 3. Let f : M → GR(pk, d)n be a Zpk -linear function, where M is a
Zpk -submodule of GR(pk,m). Then, f can be extended to a Zpk -linear function
g : GR(pk,m) → GR(pk, d)n.

Proof. As M is Zpk -submodule of GR(pk,m), by the fundamental decomposition
theorem, we write M =

∑a
i=1 Siβi with S1 ⊆ · · · ⊆ Sa are the ideal of Zpk and

βi ∈ GR(pk,m). To extend f , it suffices to decide the value of g(βi). Assume
Si = pαiZpk . As g(x) is Zpk -linear, we have f(pαiβi) = g(pαiβi) = pαig(βi).
This implies that g(βi) = p−αif(pαiβi). Thus, we extend the domain of f from
M to a free module M ′ :=

⊕a
i=1 Zpkβi. As we can write GR(pk,m) = M ′ ⊕ N

where N =
⊕m−a

i=1 Zpkγi, define the value g(γi) ∈ GR(pk, d)n in an arbitrary
manner and the proof is completed. ��

With this lemma at hand we can finally construct our degree-D RMFE from
the degree-D packing method (Packi,Unpacki)Di=1.

Theorem 2 (from Packing Methods to RMFEs). Consider the following
functions φ : GR(pk, d)n → GR(pk,m) and ψ : GR(pk,m) → GR(pk, d)n:

– φ(a) = Pack1(a) for a ∈ GR(pk, d)n;
– ψ is defined by applying Lemma 3 to f = UnpackD and M = span

Z
pk
(MD).

In a bit more detail, ψ(a) = UnpackD(a) for a ∈ span
Z

pk
(MD), and for a /∈

span
Z

pk
(MD) ψ(a) is defined as to preserve linearity.
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Then, (φ, ψ) is a degree-D RMFE.

Proof. First, from Lemma 3, we know that ψ is a Zpk -linear map. The linearity of
φ is followed by the fact that Pack1 is Zpk -linear. Since both Pack1 and UnpackD

are deterministic, φ and ψ are well defined.
Finally, we prove the required multiplicative relation. Let a1 . . . ,aD ∈

GR(pk, d)n, then, from Proposition 3, we have that

ψ(φ(a1) · · · φ(aD)) = UnpackD(Pack1(a1) · · ·Pack1(aD))
= a1 � · · · � aD,

as required. This completes the proof. ��

4 Constructing Degree-D RMFEs

This section is devoted to the explicit construction of degree-D RMFEs over
Galois rings. The organization of this section is the following. First, in Sect. 4.1
we provide a series of results that will be useful in our general construction. Then,
in Sect. 4.2 we begin with the particular case of D = 2, presenting explicit con-
structions of degree-2 RMFEs over Galois rings. This serves two purposes. First,
even though the results of [15] show that degree-2 RMFEs over Galois rings can
be obtained by lifting existing RMFE constructions over fields (like, for exam-
ple, the constructions from [9]), no explicit constructions or explicit parameters
were provided. Second, we generalize the ideas in our degree-2 constructions in
Sect. 4.3 to obtain our main result: degree-D RMFE constructions for D ≥ 2.

4.1 Lemmata

We first provide a composition lemma that shows that composing two degree-D
RMFEs results in a degree-D RMFE. Such lemma can be seen as an analogue
of concatenation in classical coding theory. The composition lemma of RMFEs
over fields in [9] can reduce the task of designing an RMFE over a general field
extension to the case of a prime field. Here we present a version of this lemma
over Galois rings. Generally speaking, given one RMFE of large dimension over
a big Galois ring and another RMFE of small dimension over a small Galois ring,
the composition of these two RMFEs gives rise to an RMFE of large dimension
over the small Galois ring.

Lemma 4 (Composition Lemma). Assume that (φ1, ψ1) is an (n1, k1;D)-
RMFE over GR(p�, k2r) and (φ2, ψ2) is an (n2, k2;D)-RMFE over GR(p�, r) .
Then φ : GR(p�, r)n1n2 → GR(p�, rk1k2) given by

(x1, . . . ,xn1 ) �→ (φ2(x1), . . . , φ2(xn1 )) ∈ GR(p�, rk2)
n1 �→ φ1(φ2(x1), . . . , φ2(xn1 ))

and ψ : GR(p�, rk1k2) → GR(p�, r)n1n2 given by

α �→ ψ1(α) = (u1, . . . ,un1) ∈ GR(p�, rk2)n1 �→ (ψ2(u1), . . . , ψ2(un1))

define an (n1n2, k1k2;D)-RMFE over GR(p�, r).
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Proof. It is clear that both φ and ψ are GR(p�, r)-linear. For any
x(1),x(2), · · · ,x(D) ∈ GR(p�, r)n1n2 , we have

ψ(
D∏

i=1

φ(x(i))) = ψ2 ◦ ψ1(φ1(
D∏

i=1

(φ2(x
(i)
1 ), . . . , φ2(x(i)

n1
))))

= ψ2((φ2(x
(1)
1 ), . . . , φ2(x(1)

n1
)) ∗ · · · ∗ (φ2(x

(D)
1 ), . . . , φ2(x(D)

n1
)))

= (ψ2(φ2(x
(1)
1 ) ∗ · · · ∗ φ2(x

(D)
1 )), . . . , ψ2(φ2(x(1)

n1
) ∗ · · · ∗ φ2(x(D)

n1
)))

= (x(1)
1 ∗ · · · ∗ x(D)

1 , . . . ,x(1)
n1

∗ · · · ∗ x(D)
n1

)

= x(1) ∗ · · · ∗ x(D).

This completes the proof. ��
It will be important for our constructions to establish a relation between

RMFEs and function fields. This is achieved by the following lemma.

Lemma 5. Let q be a power of a prime. Let F/Fq be a function field of genus g
with n distinct rational places P1, P2, . . . , Pn. Let G be a divisor of F such that
supp(G) ∩ {P1, . . . , Pn} = ∅ and dimFq

L(G) − dimFq
L (G − ∑n

i=1 Pi) = n. If
there is a place R of degree k with k > D deg(G), then there exists an (n, k;D)-
RMFE over Fq.

Proof. Consider the map π : L(G) → F
n
q ; f �→ (f(P1), . . . , f(Pn)). Then

the kernel of π is L(G − ∑n
i=1 Pi). Since dimFq

Im(π) = dimFq
L(G) −

dimFq
L (G − ∑n

i=1 Pi) = n, π is surjective. Choose a subspace V of L(G) of
dimension n such that π induces an isomorphism between V and F

n
q .

We identify Fqk with the residue field FR of R. We write by cf (and fR,
respectively) the vector (f(P1), . . . , f(Pn)) (and the residue class of f in FR,
respectively) for a function f ∈ L(D·G). Define the linear map φ : π(V ) = F

n
q →

FR = Fqk ; cf �→ fR ∈ Fqk . Note that the above f ∈ V is uniquely determined
by cf . It is clear that φ is Fq-linear and injective since deg(R) > deg(G).

Define τ : L(D · G) → FR = Fqk ; f �→ fR ∈ Fqk . Then τ is Fq-linear and
injective since deg(R) > D deg(G) = deg(D · G).

Define the map ψ : Im(τ) ⊆ FR → F
n
q ; fR �→ (f(P1), . . . , f(Pn)) ∈ F

n
q . Note

that the above f ∈ L(D · G) is uniquely determined by fR. ψ is Fq-linear and
surjective (but not injective). We extend ψ from Im(τ) to FR linearly. We obtain
the pair (φ, ψ).

For any cf(1) , . . . , cf(D) ∈ F
n
q with uniquely determined f (1), . . . , f (D) ∈ V ,

we have

ψ(
D∏

i=1

φ(cf(i))) = ψ(
D∏

i=1

f
(i)
R ) = ψ((

D∏

i=1

f (i))R) = c∏D
i=1 f(i) = cf(1) ∗ · · · ∗ cf(D) .

Note that (
∏D

i=1 f (i))R belongs to Im(τ) since
∏D

i=1 f (i) ∈ L(DG). We conclude
that (φ, ψ) defined above is an (n, k;D)-RMFE over Fq. ��
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Note that Galois rings are a generalization of finite fields. In [15], the authors
manage to show that one can explicitly construct RMFEs over the Galois ring
GR(p�, k) if there exists a explicit construction of RMFEs over the finite field
Fpk . This is captured by the lifting result in Theorem 18 of [15], adapted below
to our setting.

Lemma 6. Let q = pr for a prime p. Then the (n, k;D)-RMFE over Fq con-
structed in Lemma 5 can be lifted to an (n, k;D)-RMFE over GR(p�, r) for any
� ≥ 1.

Note that although Theorem 18 of [15] only proves the above lemma for the
case where D = 2, it can be easily generalized to arbitrary D. Let us explain
this briefly. The map φ in the proof of Lemma 5 is injective, thus by Lemma
9 of [15] it can be lifted to a map φ′ from GR(p�, r)n to FR = GR(p�, kr) for
any � ≥ 1 and φ′ is also injecive. As the map τ in the proof of Lemma 5
is also injective, we can apply Lemma 9 of [15] again to get a map τ ′ from
L(D · D) to FR = GR(p�, kr). Finally, the map ψ′ can be defined by sending
fR ∈ FR = GR(p�, kr) to (f(P1), . . . , f(Pn)) ∈ GR(p�, r)n. Thus, the pair (φ′, ψ′)
is the desired RMFE.

Corollary 1. If p ≥ n, then there exists an (n, k = D(n − 1) + 1;D)-RMFE
over GR(p�, r) for any � ≥ 1.

Proof. We take the rational function field Fp(x) and a divisor G of degree n−1, a
place of degree D deg(G)+1 = D(n−1)+1, we obtain an (n, k = D(n−1)+1;D)-
RMFE over Fp by Lemma 5. The desired result follows from Lemma 6. ��

4.2 Construction of Degree-2 RMFEs

In this subsection, we provide some explicit constructions of degree-2 RMFEs.
We begin with an RMFE of bounded length. This RMFE is derived from rational
function fields, or function fields of small genus. Then, we provide the asymp-
totic construction of degree-2 RMFE based on function field towers. This will
be useful to settle ideas that will be generalized in Sect. 4 when we construct
degree-D RMFEs. Furthermore, we observe that even though degree-2 RMFEs
over Galois rings were first proposed in [15], in that work the authors only pre-
sented asymptotic constructions of degree-2 RMFEs. These objects have found
many applications in recent cryptographic constructions (cf. [2,5,7,8,21]), which
motivates the task of finding explicit constructions with clear and well deter-
mined parameters. We achieve this in this section by providing explicit degree-2
RMFE constructions over Galois rings, with a wide variety of parameters. We
remark that these constructions have not appeared in the literature before.

Example 2 (Concrete Degree-2 RMFEs of Bounded Dimension). Consider the
rational function field over F2. Take n = 2. Choose a divisor G of degree 1 and
a place of degree 2, we obtain a (2, 3; 2)-RMFE over F2 by Lemma 5. Hence, by
Lemma 6, there is a (2, 3; 2)-RMFE over Z2� for all � ≥ 1. With a divisor G of
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degree 2 and a place of degree 5, we obtain a (3, 5; 2)-RMFE over F2 by Lemma
5. Hence, by Lemma 6, there is a (3, 5; 2)-RMFE over Z2� for all � ≥ 1.

Now, consider a function field over F8 with n rational places and genus g.
Then for any m ≤ n, we choose m distinct points and a divisor of degree m+2g−1.
Let k = 2(m+2g−1)+1 = 2m+4g−1. Then we have an (m, k = 2m+4g−1; 2)-
RMFE over F8. Hence, we obtain a (2m, 6m+ 12g− 3; 2)-RMFE over GR(2�, 3).
Hence, by Lemma 5, there is a (2m, 6m+12g−3; 2)-RMFE over Z2� for all � ≥ 1.
As particular cases:

– Taking (g,m) = (0, 9), we get a (2m, 6m−3; 2)-RMFE over Z2� for any m ≤ 9.
For instance, we have a (8, 21; 2)-RMFE, (10, 27; 2)-RMFE, (18, 51; 2)-RMFE
over Z2� for all � ≥ 1.

– Taking (g,m) = (1, 14), we get a (2m, 6m + 9; 2)-RMFE over Z2� for any
m ≤ 14. For instance, we have a (28, 93; 2)-RMFE over Z2� for all � ≥ 1.

– Taking (g,m) = (2, 18), we get a (2m, 6m + 21; 2)-RMFE over Z2� for any
m ≤ 18. For instance, we have a (36, 129; 2)-RMFE over Z2� for all � ≥ 1.

Finally, consider a function field over F32 with n rational places and genus g.
Then for any m ≤ n, we choose m distinct points and a divisor of degree m+2g−1.
Let k = 2(m+2g−1)+1 = 2m+4g−1. Then we have an (m, k = 2m+4g−1; 2)-
RMFE over F32. Hence, we obtain a (3m, 10m+20g−5; 2)-RMFE over GR(2�, 5).
Hence, by Lemma 6, there is a (3m, 10m + 20g − 5; 2)-RMFE over Z2� for all
� ≥ 1.

– Taking (g,m) = (0, 33), we get a (3m, 10m − 5; 2)-RMFE over Z2� for any
m ≤ 33. For instance, we have a (99, 325; 2)-RMFE over Z2� for all � ≥ 1.

– Taking (g,m) = (1, 44), we get a (3m, 10m + 15; 2)-RMFE over Z2� for any
m ≤ 44. For instance, we have a (132, 455; 2)-RMFE over Z2� for all � ≥ 1.

– Taking (g,m) = (2, 53), we get a (3m, 10m + 35; 2)-RMFE over Z2� for any
m ≤ 53. For instance, we have a (159, 565; 2)-RMFE over Z2� for all � ≥ 1.

– Taking (g,m) = (3, 64), we get a (3m, 10m + 55; 2)-RMFE over Z2� for any
m ≤ 64. For instance, we have a (192, 695; 2)-RMFE over Z2� for all � ≥ 1.

Asymptotic Construction of Degree-2 RMFEs. Now we consider the task
of constructing degree-2 RMFEs of unbounded dimension. We begin by consider-
ing two function field towers. The first tower was introduced in [22]. Let q = r2,
where r is a prime power. For t ≥ 1, let Ft = Fq(x1, x2, . . . , xt) with

xr
i+1 + xi+1 =

xr
i

xr−1
i + 1

(1)

for i = 1, 2, . . . , t − 1. Then the genus g(Ft) of Ft is at most rt and the number
N(Ft) of rational places is at least 1 + rt(r − 1).

We proceed to the second tower. Let q = p2m+1, where p is a prime and
m ≥ 1 is an integer. For t ≥ 1, let Ft = Fq(x1, x2, . . . , xt) with

Trm

(
xi+1

xqm+1

i

)

+Trm+1

(
xqm

i+1

xi

)

= 1 (2)
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for i = 1, 2, . . . , t−1, where Tra(T ) = T +T q+ · · ·+T qa−1
. Then limt→∞ g(Ft) =

∞. Furthermore, for all t ≥ 1, we have N(Ft)
g(Ft)−1 ≥ 2(pm+1−1)

p+1+ε with ε = p−1
pm−1 ,

where g(Ft) and N(Ft) stands for the genus and the number rational places of
Ft, respectively. Coupling these observations with our previous results, we obtain
Corollary 2, which shows the existence of degree-D RMFEs over Galois rings for
any dimension and any characteristic q. Then, in Corollary 3 we apply this to
the relevant case of Galois rings over Z2k .

Corollary 2. Let F/Fq be a function field of genus g with n distinct rational
places and a place of degree k ≥ 2n+4g−1. Then there exists an (n, k; 2)-RMFE
over Fq. In particular,

(i) if q is a square, there is a constructive family of (n, k; 2)-RMFE over Fq with
n → ∞ and k

n → 2 + 4√
q−1 ;

(ii) if q = p2m+1 for a prime p, there is a constructive family of (n, k; 2)-RMFE
over Fq with n → ∞ and k

n → 2 + 2(p+1+ε)
pm+1−1 , where ε = p−1

pm−1 .

Proof. One can take a divisor of degree n+ 2g− 1. Then by the Riemann-Roch
Theorem, we have dimFq

L(G)−dimFq
L(G−∑n

i=1) = deg(G)−g+1−(deg(G)−
g+ 1 − n) = n. Take k = 1+ 2deg(G) = 1 + 2(n + 2g − 1) = 2n + 4g − 1. Then
k > 2 deg(G). Thus, by Lemma 5, we have an (n, k; 2)-RMFE over Fq.

(i) Applying to the first tower with n being the number N(Ft), we have k
n =

2n+4g−1
n = 2 + 4g

n − 1
n → 2 + 4√

q−1 .
(ii) Applying to the second tower with n being the number N(Ft), we have

k
n = 2n+4g−1

n = 2 + 4g
n − 1

n =→ 2 + 2(p+1+ε)
pm+1−1 .

��
Corollary 3. There exists a constructive family of (n, k; 2)-RMFE over Z2� for
all � ≥ 1 with n → ∞ and k

n → 4.92.

Proof. Consider the rational function field over F2. Choose a divisor G of degree
2 and a place of degree 5, we obtain a (3, 5; 2)-RMFE over F2. Hence, by Lemma
6, there is a (3, 5; 2)-RMFE over Z2� for all � ≥ 1.

By Corollary 2(ii), there is a constructive family of (N,K; 2)-RMFE over F32

with K
N → 2 + 20

21 = 62
21 . Thus, we obtain (N,K; 2)-RMFE over GR(2�, 5) with

K
N → 2 + 20

21 = 62
21 .

By Lemma 4, we obtain a constructive family of (n = 3N, k = 5K; 2)-RMFE
over Z2� with n → ∞ and k

n → 62
21 × 5

3 ≈ 4.92. ��

4.3 Construction of Degree-D RMFEs

Finally, in this section we provide some explicit constructions of degree-D
RMFEs for D ≥ 2. As before, we begin by considering RMFEs of bounded
dimension, which are obtained from function fields with small genus. Then, we
provide degree-D RMFEs with unbounded dimension, which are obtained by
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making use of certain function field towers. We remark that these constructions
are entirely new, considering that the notion of degree-D RMFEs is introduced
in our work.

Example 3 (Concrete Degree-D RMFEs of Bounded Dimension). Consider the
rational function field over F2. Choose a divisor G of degree 2 and a place of
degree 1 + 2t for all t ≥ 2, we obtain a (3, 1 + 2t; t)-RMFE over F2 by Lemma 5.
Hence, by Lemma 6, there is a (3, 1 + 2t; t)-RMFE over Z2� for all � ≥ 1.

Consider a function field over F22t+1 with n rational places and genus g.
Then for any m ≤ n, we choose m distinct points and a divisor of degree m +
2g − 1. Let k = t(m + 2g − 1) + 1 = tm + 2tg − t + 1. Then we have an
(m, k = tm+2tg− t+1; t)-RMFE over F22t+1 . Hence, by Lemma 4, we obtain a
(3m, (1 + 2t)(tm+ 2tg− t+ 1); t)-RMFE over F2 by composing the (3, 1 + 2t; t)-
RMFE above and (m, tm + 2tg − t + 1; t)-RMFE. Hence, by Lemma 6, there is
a (3m, (1 + 2t)(tm + 2tg − t + 1); t)-RMFE over Z2� for all � ≥ 1.

– Taking (g,m) = (0, 1 + 22t+1), we get a (3m, (1 + 2t)(tm − t + 1); t)-RMFE
over Z2� for any m ≤ 1 + 22t+1. For instance, we have a (3(1 + 22t+1), (1 +
2t)(t(1 + 22t+1) − t + 1); t)-RMFE over Z2� for all � ≥ 1.

– Taking (t, g,m) = (3, 1, 150), we get a (3m, 7(3m + 4); 3)-RMFE over Z2� for
any m ≤ 150. For instance, we have a (450, 3178; 3)-RMFE over Z2� for all
� ≥ 1.

– Taking (t, g,m) = (3, 2, 172), we get a (3m, 7(3m+10); 3)-RMFE over Z2� for
any m ≤ 172. For instance, we have a (516, 3682; 3)-RMFE over Z2� for all
� ≥ 1.

Asymptotic Construction of Degree-D RMFEs. We now proceed to the
asymptotic construction of degree-D RMFEs of unbounded dimension. The con-
struction makes use of the same function field tower we use in the asymptotic
construction of degree-2 RMFE. Our results are presented in the following two
corollaries. As with the degree-2 case, Corollary 4 shows the existence of degree-
D RMFEs over Galois rings for any dimension and any characteristic q, while
Corollary 5 is a particular case for the relevant setting of Galois rings over Z2k .

Corollary 4. Let F/Fq be a function field of genus g with n distinct rational
places and a place of degree k. Then there exists an (n, k;D)-RMFE over Fq as
follows.

(i) if q is a square, there is a constructive family of (n, k;D)-RMFE over Fq

with n → ∞ and k
n → D + 2D√

q−1 ;
(ii) if q = p2m+1 for a prime p, there is a constructive family of (n, k;D)-RMFE

over Fq with n → ∞ and k
n → D + D(p+1+ε)

pm+1−1 , where ε = p−1
pm−1 .

Proof. One can take a divisor of degree n+ 2g− 1. Then by the Riemann-Roch
Theorem, we have dimFq

L(G)−dimFq
L(G−∑n

i=1) = deg(G)−g+1−(deg(G)−
g+1−n) = n. Take k = 1+D deg(G) = 1+D(n+2g− 1). Then k > D deg(G).
Thus, by Lemma 5, we have an (n, k;D)-RMFE over Fq.
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(i) Applying to the first tower in (1) with n being the number N(FD), we have
k
n = tn+2Dg−D

n = D + 2Dg
n − D

n → D + 2D√
q−1 .

(ii) Applying to the second tower in (2) with n being the number N(FD), we
have k

n = Dn+2Dg−D
n = D + 2Dg

n − D
n → D + D(p+1+ε)

pm+1−1 . ��
Corollary 5. There exists a constructive family of (n, k;D)-RMFE over Z2� for
all � ≥ 1 with n → ∞ and k

n → 1+2D
3 ×

(
D + D(3+1/(2D−1))

2D+1−1

)
.

Proof. Consider the rational function field over F2. Choose a divisor G of degree
2 and a place of degree 1+2D, we obtain a (3, 1+2D;D)-RMFE over F2. Hence,
by Lemma 6, there is a (3, 1 + 2D;D)-RMFE over Z2� for all � ≥ 1.

By Corollary 4(ii), there is a constructive family of (N,K;D)-RMFE over
F21+2D with K

N → D + D(3+1/(2D−1))
2D+1−1

. Thus, we obtain (N,K;D)-RMFE over

R�(2, 1 + 2D) with K
N → D + D(3+1/(2D−1))

2D+1−1
.

By Lemma 4, we obtain a constructive family of (n = 3N, k = (1 + 2D)K)-
RMFE over Z2� with n → ∞ and k

n →
(
D + D(3+1/(2D−1))

2D+1−1

)
× 1+2D

3 . ��

Remark 1. The degree-D RMFE over Z2� presented in Corollary 5 achieves the
ratio k

n ≈ D(1+2D)
3 . By Theorem 1, this also means there exists degree-D packing

method of density roughly 3
D(1+2D) over Z2� .

5 Applications of Degree-D RMFEs

Having established the relations between our novel degree-D RMFEs and the
degree-D packing methods from [12] in Sect. 3, and after showing explicit con-
structions of degree-D RMFEs in Sect. 4, we now proceed to discuss settings
in which degree-D RMFEs can prove useful. At a high level, degree-D RMFEs
find applications in settings where (1) the goal is to operate over a Galois ring
GR(pk, d) of small degree d, but the underlying machinery requires a Galois
ring extension GR(pk,m) of a large degree m; and (2) degree-D computation is
needed.

Examples of scenarios that meet these conditions include somewhat homo-
morphic encryption (SHE), secure multiparty computation (MPC), and even
zero knowledge proofs (ZKPs). However, finding direct applications of our novel
degree-D RMFEs for D > 2 to these settings is not trivial since, as we dis-
cuss in the full version [19], degree-2 computation seems to be enough for many
use-cases. Fortunately, there are certain “less direct” scenarios that benefit from
computation of higher degree, and after our initial discussion below we will focus
this section on one of these applications, which have to do with generating cor-
related randomness non-interactively for use in secure multiparty computation
protocols.

We refer to the full version [19] for a detailed discussion of potential applica-
tions to SHE and MPC, but here we focus on the following.
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Our Main Application: Non-interactive Correlation Generation. Here,
we consider an application to MPC where high degree computation is required,
but interaction is less desired. Instead of aiming at directly improving the effi-
ciency of MPC protocols, we consider the different but closely related problem
of generating preprocessing material used for secure computation. To provide
context, we observe that it is a common practice to divide the execution of an
MPC protocol into two phases: an offline phase (also known as preprocessing
phase) that is independent of the inputs and hence can be executed by the par-
ties before the inputs are known, and an online phase, which depends on the
inputs and tends to be much lighter and more efficient than the offline phase,
on top of using in some cases less computational assumptions and simpler tools.
The motivation behind such separation is to push most of the complexities and
inefficiencies to the offline phase which, being independent of the inputs, can be
in principle executed by the parties before the inputs are known (say, overnight
before a computation that will happen next day). This way, the latency from
input provision to output computation, which is dictated by the efficiency of the
online phase, can be minimized.

The role of the offline phase is to establish certain correlated randomness
among the parties (which is, again, independent of the inputs for the computa-
tion), which is then “consumed” in the online phase by the parties in order to
securely compute the given function. An alternative to letting the parties run
the offline phase to generate this correlated randomness themselves, which could
be expensive or prohibitive in some settings where no “overnight” computation
is available, is to let the parties receive this correlated randomness from some
external source. For example, a trusted dealer could be in charge of distributing
such randomness [25], using trusted hardware [17], or using PCGs [6].

Another approach to generating the required correlated randomness consists
of replacing the trusted dealer with a different set of parties who run an MPC pro-
tocol among themselves to generate the required correlations. This way, there is
no single point of failure such as a trusted dealer. This approach can be regarded
as some form of “correlations-as-a-service”, which is a model that has been con-
sidered before in the literature [24,31]. In our application, we require minimal
interaction among the set of parties in charge of generating the correlated ran-
domness for other committees.

5.1 Degree-D Correlations

We denote by P = {P1, . . . , Pn} the parties in the preprocessing committee,
i.e. the parties that will generate the required correlations, and we denote by
Q = {Q1, . . . , QN} the parties in the online committee, i.e. the parties who will
“consume” these correlations to securely compute the desired functionality on
their private inputs. We consider an adversary that passively corrupts t out of the
n parties in P. For simplicity we consider correlations over Zpk , although this can
be easily generalized to Galois rings of arbitrary degree. In its more general form,
a correlation is a distribution over vectors of the form (y(1), . . . ,y(N)) ∈ (Zpk)N ,
where, in the MPC context, each party Qi is intended to receive y(i). However,
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in this work we focus on a particular case of high relevance, which is the case
in which the parties obtain sharings of m values (y1, . . . , ym) ∈ Zpk following
certain distribution computable from degree-D polynomials. The sharings are
done using some target linear secret-sharing scheme over Zpk , which we denote
by 〈·〉. That is, the correlation consists of the parties in Q receiving sharings
(〈y1〉, . . . , 〈ym〉).
Definition 4. (Degree-D Correlations). Consider a degree-D function F :
(Zpk)� → (Zpk)m, meaning that, if (y1, . . . , ym) = F (x1, . . . , x�), then each yi is
the evaluation of a multivariate polynomial Fi(x1, . . . , x�) of degree at most D.
A degree-D correlation is a list of sharings of the form (〈y1〉, . . . , 〈ym〉), where
(y1, . . . , ym) = F (x) for some uniformly random x ∈ Z

�
pk .

We present several examples of useful degree-D correlations in the full version
[19], which include multiplication triples, authenticated triples, and generaliza-
tions.

Overview of Our Correlation Generation Techniques. From now onwards,
let F : (Zpk)� → (Zpk)m be a degree-D function given by y = F (x), with
yi = Fi(x) for i ∈ {1, . . . , m}. At a high level, our approach for the parties in
P to generate the degree-D correlations derived from F towards committee Q
consist of the following steps.

1. Parties in P generate Shamir sharings (�x1� , . . . , �x��), where each xi ∈ Zpk

is uniformly random.
2. Parties in P securely compute (�y1� , . . . , �ym�), where yi = Fi(x) for i ∈

{1, . . . , m}.
3. Parties in P reshare (�y1� , . . . , �ym�) towards Q, which enable the latter com-

mittee to obtain (〈y1〉, . . . , 〈ym〉).
Recall that our main goal is to achieve the above while maintaining no inter-

action among the parties in P. The rest of this section is devoted to describing
these ideas in detail, and overcoming the following challenges:

– The parties in P must generate (�x1� , . . . , �x��) non-interactively. This is
done with the help of pseudo-random secret-sharing (PRSS), as described in
Sect. 5.2. We build on top of the techniques from [3], adapting to the case of
Galois rings, and considering certain extensions we will need for our concrete
use-case.

– The parties in P must compute (�y1� , . . . , �ym�) non-interactively. This is
achieved by requiring the initial threshold in Shamir secret-sharing to be low
enough, so that D sequential multiplications can be carried out locally without
losing the ability to reconstruct the underlying secrets.

– In our case where the ring is Zpk , Shamir secret-sharing does not work
directly, and instead a Galois ring extension GR(pk, δ) of large enough degree
δ = Θ(log(n)) must be used. This is exactly where our degree-D RMFEs
come into the picture: we make use of our RMFEs to remove asymptotically
the overhead caused by this extension, achieving zero overhead and enabling
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efficient correlation generation. The use of RMFEs and the use of Galois rings
introduce some changes with respect to the PRSS from [3]. This is discussed
below.

5.2 Pseudo-Random Secret-Sharing

Let R = GR(pk, δ). Committee P generates the Shamir sharings (�x1� , . . . , �x��)
where xi ∈R R for i ∈ {1, . . . , �} using pseudo-random secret sharing, or PRSS
for short, which is a technique that enables the parties in P to generate Shamir
shares of random values without interaction, assuming only a setup phase where
the parties receive certain “seeds” that are used to feed pseudo-random functions
that will determine the corresponding shares. Recall that t is the number of
corrupted parties in P, and D is the degree of the correlation. We assume that
t · D < n, and we let d =

⌊
n−1
D

⌋ ≥ t, which is the largest integer such that
d · D < n. The Shamir sharings that we generate will have degree d, which is in
principle larger than the corruption threshold t.

We use �x�d = (z1, . . . , zn) to denote packed secret-sharing of a vector x ∈
Rκ, meaning that there exists a polynomial f(X) over R of degree at most d
such that zi = f(αi) for i ∈ {1, . . . , n} and xj = f(βj) for j ∈ {1, . . . , κ},
where {α1, . . . , αn, β1, . . . , βκ} is an exceptional set over R. It is well known
that the secret x is determined by any d + 1 shares, but given any t of these
shares, the secret vector x is kept private. For our construction we will actually
need {β0} ∪ {α1, . . . , αn, β1, . . . , βκ} to be an exceptional set, which requires
1 + n + κ ≤ pδ.

Recall that R = GR(pk, δ). From now on we fix a degree-D RMFE (φ :
Z

r
pk → R,ψ : R → Z

r
pk). In our work, we make use of PRSS to non-interactively

generate sharings of the form �x�d, where x = (x1, . . . , xκ) with xi ∈ Im(φ) for
i ∈ {1, . . . , κ}. Inspired by the approach in [3], we construct a PRSS solution
suited for our algebraic structure R, which is in general not a field, and also
ensuring the underlying secrets are uniformly random in the Zpk -submodule
(Im(φ))κ, rather than just being uniformly random in Rκ.

Covering Designs. The main insight in [3] is that any PRSS solution is closely
tied to the notion of a covering design, and that the latter become more efficient
as the gap between the adversarial threshold t and the desired degree d increases.
We begin by reusing the definition of a covering design from [3].

Definition 5 (Covering Design, Definition 3.2 in [3]). Fix integers 0 <
t ≤ m ≤ n, and let C = (S1, . . . , S�) be a collection of � different subsets Sj ⊆
{1, . . . , n}, all of size |Sj | = m. C is said to be an (n,m, t)-cover if for every size-t
subset T ⊆ {1, . . . , n}, |T | = t, there is a set Sj ∈ C that covers it, i.e. T ⊆ Sj.

The goal of pseudo-random secret-sharing (PRSS) as we use it in our work
is to enable n parties P = {P1, . . . , Pn} to generate a large amount of sharings
�r�d, where r is uniformly random in the Zpk -module (Im(φ))κ. This was first
considered in [14] for the case d = t (i.e. the degree d equals the desired threshold
t, and κ = 1 so only one secret can be stored), and the secret lies in R with k = 1



130 D. Escudero et al.

(i.e. the algebraic structure is a finite field and the secret is uniform in the field
itself, not in a subset of it). These traditional solutions require the parties to hold
an exponential amount of different seeds, or more precisely, each party must hold(
n
t

)
seeds, which is exponential in n for parameter ranges of interest. In the recent

work of [3], a generalization of the techniques in [14] was presented, where the
authors considered the case in which t < d, or in other words, the case where
there is a gap between the threshold and the degree, which enables for packing
more than one secret using packed secret-sharing. In [3], the authors show that
such gap can be used to drastically reduce the amount of seeds required to
achieve PRSS. We draw inspiration from their construction to design our PRSS
solution.

PRSS Construction. Now we are ready to describe our PRSS solution. Recall
that the goal is to let the parties obtain a large amount of sharings �x�d where
each xi is uniformly random in Im(φ). Also, recall that the packing parameter
is 1 ≤ κ ≤ (d − t) + 1. Let C′ = {S′

1, . . . , S
′
�′} be a (n, d − κ + 1, t)-cover.

Consider the collection C = {S′ \ {j} : S′ ∈ C′, j ∈ S′} = {S1, . . . , S�}, which
contains � ≤ �′(d − κ + 1) different subsets, each of size d − κ. Let us denote
Si = {1, . . . , n} \ Si, for each i ∈ {1, . . . , �}. Notice that |Si| = n − (d − κ).

PRSS Construction

Setup: The parties start with the following setup.

1. For each Si as defined above, sample a uniformly random key ki ∈
{0, 1}κ for a PRF, which we denote by PRFki

(·).
2. Each party Pj for j ∈ {1, . . . , n} receives the seeds ki for every i ∈

{1, . . . , �} such that Pj ∈ Si.

Share generation: In order to non-interactively generate shares �r�d

where r is uniformly random in the Zpk -module (Im(φ))κ ⊆ Rκ, the
parties proceed as follows.

1. For each Si = {1, . . . , n}\Si, consider the polynomial PSi
(X) obtained

by interpolating the following conditions: PSi
(X) equals 0 if X = αh

with h ∈ Si, it equals rij if X = βj ∈ {β1, . . . , βκ}, and it equals si if
X = β0, where (ri1, . . . , riκ‖si) = PRFki

(id, j) ∈ (Im(φ))κ ⊕ R, where
id is some common identifier corresponding to the current PRSS run
(e.g. a counter). Note that:

– This polynomial has degree at most d since there are (d−κ)+κ+
1 = d + 1 conditions above given that |Si| = d − κ.

– Each party Pj ∈ Si can compute the polynomial PSi
(X) (and in

particular PSi
(αj)).

– Each party Pj /∈ Si can trivially compute PSi
(αj), since this value

is equal to zero.
2. Define the polynomial Q(X) :=

∑�
i=1 PSi

(X), which has degree at most
d. From the observations above, each party Pj can compute Q(αj).
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3. The parties output the shares �r�d = (Q(α1), . . . , Q(αn)), where r =
(Q(β1), . . . , Q(βκ)).

Theorem 3. Fix integers 0 < t ≤ d ≤ n and 1 ≤ κ ≤ (d− t)+1. Given a size-�′

(n, d − κ + 1, t)-cover, the construction above is a PRSS solution for t-secure
distribution of sharings �r�d where r ∈R (Im(φ))κ, with the following complexity
measures:

– The total number of different PRSS seeds is � ≤ �′(d − κ + 1), and
– Each key is received by |Si| = n − (d − κ) parties.
– In average, each party in P stores

∑�
i=1 |Si|

n ≤ �′(d−κ+1)(n−(d−κ))
n .

Proof. The claimed complexities can be verified by inspection. For the purpose
of the proof we assume that the values (ri1, . . . , riκ‖si) are uniformly random
(instead of pseudo-random) in (Im(φ))κ ⊕ R. The general case is achieved by a
standard reduction to the security of the PRF.

Let T ⊆ {1, . . . , n} be any set with |T | = t. Such set determines t shares
Q(αj) for j ∈ T . To see that the PRSS construction is secure we need to show
that, even with the knowledge of the seeds of parties Pi for i ∈ T , the output
polynomial Q(X) is uniformly random subject to its shares for indices j ∈ T
being equal to Q(αj), and its secrets being uniformly random in Im(φ). Clearly,
Q(X) has degree ≤ d. From this, it suffices to show that, even with knowledge of
(ri1, . . . , riκ‖si) for i such that Si ∩ T �= ∅ (i.e. knowledge of ki), Q(X) satisfies
the following:

1. Q(αj) =
∑

Si∩T �=∅ PSi
(αj) for j ∈ T (these are the shares corresponding

to the indices in T , which are computable from (ri1, . . . , riκ‖si) for Si with
Si ∩ T �= ∅).

2. (Q(β1), . . . , Q(βκ)) ∈R (Im(φ))κ.
3. Q(X) evaluated at any other λ := d+1−κ−t ≥ 0 points is uniformly random

in Rλ.

Now, observe that, since C′ = {S′
1, . . . , S

′
�′} is a (n, d−κ+1, t)-cover, we have

that there exists S′ ∈ C′ such that T ⊆ S′. Notice that |S′\T | = (d−κ+1)−t = λ.
Let us write S′ \ T = {μ1, . . . , μλ}. By definition of C, for each j ∈ {1, . . . , λ}
there exists ij ∈ {1, . . . , �} such that Sij

= S′ \ {μj}. Notice that T ⊆ ⋂λ
j=1 Sij

.
Let us write Q(X) = Q′(X) + Q′′(X), where Q′(X) =

∑
i∈{i1,...,iλ} PSi

(X) and
Q′′(X) =

∑
i∈{1,...,�}\{i1,...,iλ} PSi

(X). Property (1) above follows directly from the
definition of Q(X). Notice that the polynomials Q′ and Q′′ follow independent
distributions, so to prove properties (2) and (3) it suffices to show they hold for
the polynomial Q′(X). Also, importantly, notice that for every j ∈ {1, . . . , λ}, it
holds that Sij

∩T = ∅ and therefore (rij1, . . . , rijκ‖sij
) are uniformly random in

(Im(φ))κ⊕R. Due to this, (PSij
(β1), . . . , PSij

(βκ)) = (rij1, . . . , rijκ) ∈R (Im(φ))κ,
which proves property (2).
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For property (3), we claim that (Q′(μ1), . . . , Q′(μλ)) is uniformly random
in Rλ. It is useful to observe that we can write each PSij

(X) as PSij
(X) =

sij
· Hij

(X) +
∑κ

a=1 rija · GSij
,a(X). where all GSij

,a(αh) = Hij
(αh) = 0 for

h ∈ Si, but also Hij
(βh) = 0 for h ∈ {1, . . . , κ}, and equals 1 if h = 0; and

finally GSij
,�(βh) = 0 for h ∈ {0, 1, . . . , κ} \ {j}, and GSij

,a(βj) = 1. Notice that
deg(GSij

,a),deg(Hij
) ≤ d + 1 as we only interpolate GSij

,a(X) and Hij
(X) at

d − κ + 1 + κ + 1 = d + 2 points.
In addition to the above, we observe that for every j, j′ ∈ {1, . . . , λ} it holds

that μj′ ∈ Sij
if j �= j′ and, otherwise μj′ ∈ Sij

. Therefore, PSij
(αμj′ ) = 0 if

j �= j′. Otherwise, if j = j′, we have that PSij
(αμj

) = sij
· Hij

(αμj
) + zj , where

zj =
∑κ

h=1 rijh · GSij
,h(αμj

).
Importantly, since zj is independent of sij

, and sij
is uniformly random,

for Property (3) it suffices to show that Hij
(αμj

) is invertible in R. By the
definition of Hij

(X), we have Hij
(X) = cij

· ∏h∈Sij
(x − αh) · ∏κ

h=1(x − βh) with
Hij

(β0) = cij
· ∏

h∈Sij
(β0 − αh) · ∏κ

h=1(β0 − βh) = 1. This implies that cij
is

invertible in R. Combining with the fact that {α1, . . . , αn, β0, β1, . . . , βκ} is an
exceptional set over R and μj /∈ Sij

implies that

Hij
(αμj

) = cij

∏

h∈Sij

(αμj
− αh)

κ∏

h=1

(αμj
− βh)

is invertible in R. This leads to the claim that PSij
(αμj

) distributes uniformly
at random over R.

Putting the pieces together, we see then that (Q(αμ1), . . . , Q(αμλ
)) is equal

to (sij
· Hij

(αμj
) + zj)λj=1, which is in a 1-1 correspondence with (si1 , . . . , siλ

),
which is uniformly random in Rλ. This concludes the proof. ��

On the Amount of Seeds. An important metric for the efficiency of a PRSS
solution is the amount of seeds that every party should hold. In our case, this
corresponds to (�′(d − κ + 1)(n − d + κ))/n, where �′ is the size of the smallest
(n, d − κ+1, t)-cover. As noted in [3], there is not a closed expression for �′, but
concrete lower and upper bounds are known in several cases. First, recall that
1 ≤ κ ≤ d − t+1. In the case in which κ = d − t+1, we have that d − κ+1 = t,
and in this case the smallest (n, t, t)-cover is comprised of all possible subsets of
size t, so �′ =

(
n
t

)
.

For the case in which κ < d− t+1, smaller covering designs can be obtained.
For example, if n = 72, t = 6 and d = 23 (as we will see in Sect. 5.3, taking d =
23 < 72/3 = n/3 enables us to handle degree-3 correlations) and d − κ+ 1 = 18
(so κ = 6), the best known size of a (72, 18, 6)-cover is �′ = 10092.4 Assuming
128-bit seeds, the average seed size per party becomes only ≈ 2.2Mb.

4 Such covering design sizes can be found in https://www.dmgordon.org/cover/.

https://www.dmgordon.org/cover/
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5.3 Non-interactive Correlation Generation

With the building blocks presented previously, we are ready to present our end-
to-end protocol for the committee P to generate a sample from the degree-
D correlation towards committee Q. Recall that R = GR(pk, δ), and that
(φ : Z

r
pk → R,ψ : R → Z

r
pk) is a degree-D RMFE. The correlation we aim

at generating is (〈y1〉, . . . , 〈ym〉), where yi = Fi(x) ∈ Zpk for some degree-D
polynomial Fi over Zpk , and x ∈ Z

�
pk is uniformly random. Jumping ahead, due

to the use of RMFEs and packed secret-sharing, our method not only produces
one single sample from such distribution, but it actually generates multiple sam-
ples (〈y1jl〉, . . . , 〈ymjl〉) for j ∈ {1, . . . , κ} and l ∈ {1, . . . , r}.

We first introduce some preliminaries. Recall that t < n/D is the number
of corrupted parties in P, and d =

⌊
n−1
D

⌋
, so t ≤ d < n. Also recall that

1 ≤ κ ≤ (d−t)+1 is the amount of secrets packed. We denote by π : R → (Zpk)δ

the natural bijection between R and δ-dimensional vectors over Zpk . As before,
we use �x�d = (z1, . . . , zn) to denote Shamir secret-sharing of degree d of a
secret x = (x1, . . . , xκ) ∈ Rκ, meaning there is a polynomial f(X) over R of
degree at most d such that zi = f(αi) for i ∈ {1, . . . , n} and xj = f(βj) for
j ∈ {1, . . . , κ}, where {α1, . . . , αn, β1, . . . , βκ} is an exceptional set over R. A
simple but important property of packed secret-sharing we will make use of
is that, if �x�d1

= (z1, . . . , zn) and �y�d2
= (w1, . . . , wn), then �x � y�d1+d2

=
(z1 · w1, . . . , zn · wn), where � denotes component-wise product. This implies
that, when the parties in P hold packed sharings, they can locally compute their
product of their shares to obtain shares of the product of the underlying secrets,
albeit with a larger degree.

For j ∈ {1, . . . , κ} and h ∈ {1, . . . , q +1} for some q, we let λq,j,h ∈ R be the
coefficient such that, for every polynomial f(X) over R of degree at most q, it
holds that f(βj) =

∑d+1
h=1 λq,j,hf(αh). These correspond to standard Lagrange

coefficients used in polynomial interpolation. Given c ∈ R, we denote by Mc ∈
Z

δ×δ
pk the matrix that represents multiplication by c over Z

δ
pk , that is, for every

x ∈ R it holds that π(c·x) = Mc·π(x). Finally, we use Mφ ∈ Z
δ×r
pk and Mψ ∈ Z

r×δ
pk

to denote the matrices representing the linear transformations π ◦φ : Zr
pk → Z

δ
pk

and ψ ◦ π−1 : Zδ
pk → Z

r
pk , respectively. In other words, Mφ · x = π(φ(x)) for

every x ∈ Z
r
pk and Mψ · y = ψ(π−1(y)) for every y ∈ Z

δ
pk .

With this notation at hand, we are ready to introduce our protocol to gener-
ate the desired correlation.

Degree-D correlation generation

The following protocol enables the parties in Q to receive κ · r degree-D
correlations (〈y1jl〉, . . . , 〈ymjl〉) for j ∈ {1, . . . , κ} and l ∈ {1, . . . , r},
generated non-interactively by the parties in P. Assume t ≤ d. Let
d =

⌊
n−1
D

⌋
, and κ = (d − t)+ 1. Let Fi : Z�

pk → Zpk be a polynomial over
Zpk of degree Di ≤ D.
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Setup: The parties in P have the PRSS seeds from Thm 3.
Protocol: The parties proceed as follows:

1. The parties in P use PRSS to obtain non-interactively
(�u1�d , . . . , �u��d), where each ui is equal to (ui1, . . . , uiκ) ∈ Rκ, with
uij = φ(xij) ∈ R, where xij = (xij1, . . . , xijr) ∈ (Zpk)r.

2. The parties in P locally compute (�v1�d·D1
, . . . , �vm�d·Dm

), where
vij = Fi(u1j , . . . , u�j) ∈ R for every i ∈ {1, . . . , m} and j ∈ {1, . . . , κ}.
Notice that here, Fi is treated as a polynomial over R. We denote
di = d · Di and �vi�di

= (v(1)
i , . . . , v

(n)
i ).

3. For each i ∈ {1, . . . ,m}, each Ph ∈ P with h ∈ {1, . . . , di + 1}
computes w

(h)
i = π(v(h)

i ) ∈ (Zpk)δ. Then Ph distributes shares
(〈w(h)

i1 〉, . . . , 〈w(h)
iδ 〉) to the parties in Q.

4. For each i ∈ {1, . . . , m}, and for each j ∈ {1, . . . , κ}, the par-
ties in Q compute locally (〈zij1〉, . . . , 〈zijδ〉)ᵀ =

∑di+1
h=1 Mλdi,j,h

·
(〈w(h)

i1 〉, . . . , 〈w(h)
iδ 〉)ᵀ.

5. The parties in Q compute locally (〈yij1〉, . . . , 〈yijr〉)ᵀ = Mψ ·
(〈zij1〉, . . . , 〈zijδ〉)ᵀ. Finally, the parties in Q output the r · κ corre-
lations (〈y1jl〉, . . . , 〈ymjl〉) for j ∈ {1, . . . , κ} and l ∈ {1, . . . , r}.

Theorem 4. At the end of the protocol above, the r · κ correlations
{(〈y1jl〉, . . . , 〈ymjl〉)}κ,r

j=1,l=1 that the parties in Q obtain follow the desired cor-
relation distribution. Moreover, a passive adversary corrupting at most t parties
in Q does not learn anything about the underlying secrets.

Proof. Privacy follows straightforwardly from the properties of the PRSS con-
struction, discussed in Sect. 5.2. Therefore, it only remains to be seen that the
sharings output by the parties in Q follow the correct distribution.

We begin by observing that (w(h)
i1 , . . . , w

(h)
iδ ) = π(v(h)

i ) by definition. Then,
for each i ∈ {1, . . . ,m} and j ∈ {1, . . . , κ}, the definition of the matrix Mλdi,j,h

implies that

(zij1, . . . , zijδ)ᵀ =
di+1∑

h=1

Mλdi,j,h
· (w(h)

i1 , . . . , w
(h)
iδ )ᵀ (by definition)

=
di+1∑

h=1

Mλdi,j,h
· π(v(h)

i ) (observation above)

=
di+1∑

h=1

π(λdi,j,h · v
(h)
i ) (definition of Mλdi,j,h

)

= π

(
di+1∑

h=1

λdi,j,h · v
(h)
i

)

(linearity of π)
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= π (vij) (definition of {λdi,j,h}).

Now, notice that since (yij1, . . . , yijr)ᵀ = Mψ · (zij1, . . . , zijδ)ᵀ and
(zij1, . . . , zijδ) = π(vij) from the analysis above, the definition of Mψ implies
that (yij1, . . . , yijr) = ψ(vij). Furthermore, each vij ∈ R for i ∈ {1, . . . , m} and
j ∈ {1, . . . , κ} satisfies vij = Fi(u1j , . . . , u�j) = Fi(φ(x1j), . . . , φ(x�j)). Since Fi

has degree Di ≤ D, the properties of the degree-D RMFE (φ, ψ) imply that, for
each l ∈ {1, . . . , r}, it holds that

(ψ(vij))l
︸ ︷︷ ︸

l-th coordinate of ψ(vij)∈Z
r

pk

= (ψ(Fi(φ(x1j), . . . , φ(x�j))))l = Fi(x1jl, . . . , x�jl).

However, recall that (yij1, . . . , yijr) = ψ(vij). This implies that (ψ(vij))l is pre-
cisely equal to yijl, so yijl = Fi(x1jl, . . . , x�jl).

The above leads us to conclude that the outputs (〈y1jl〉, . . . , 〈ymjl〉) for j ∈
{1, . . . , κ} and l ∈ {1, . . . , r} follow the correct correlation. This is because, for
every j, l, each yijl is equal to Fi(r), where r = (x1jl, . . . , x�jl) ∈ Z

�
pk , and by

the properties of the PRSS, the distribution of this r is uniformly random over
Z

�
pk , as required by the correlation. ��

Communication Complexity. In step 3 of our correlation generation protocol,
for every i ∈ {1, . . . , m}, each party Ph ∈ P with h ∈ {1, . . . , Di · n + 1} must
distribute a total of δ shares to each of the N parties in Q. Denoting by s the size
in bits of each 〈·〉-sharing corresponding to each party in Q, this communication
sums up to δ ·N ·s ·∑m

i=1(Di ·d+1). Since κ ·r correlation samples are produced
in total, and taking into account that Di ≤ D and κ = (d−t)+1 with d =

⌊
n−1
D

⌋
,

the amortized total cost per correlation is

Ns ·
(

δ
∑m

i=1(Di · d + 1)

κr

)
= O

(
Ns

(
δ

r

) (
d

κ

)
(mD)

)
= O

(
Ns

(
δ

r

) (n

κ

)
m

)
.

Notice now that we use the construction of degree-D RMFE (φ, ψ) in Corol-
lary 5. This map yields δ

r ≈ (1+2D)D
3 , which crucially, is constant in the number

of parties n. In contrast, if we did not use our degree-D RMFEs, there would
be an overhead that is logarithmic in n. For the factor n/κ, recall that κ is a
term such that 1 ≤ κ ≤ ⌊

n−1
D

⌋ − t + 1. In the extreme case in which κ = 1, the
factor n/κ equals n, so we get a communication complexity that is quadratic in
n, but we get the smallest possible covers. We can achieve linear communication
complexity by taking κ = Ω(n), although this would increase the cover sizes. We
refer the reader to the discussion in [3] for more details on known cover sizes.
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Abstract. Garbling schemes allow to garble a circuit C and an input
x such that C(x) can be computed while hiding both C and x. In the
context of adaptive security, an adversary specifies the input to the circuit
after seeing the garbled circuit, so that one can pre-process the garbling
of C and later only garble the input x in the online phase. Since the
online phase may be time-critical, it is an interesting question how much
information needs to be transmitted in this phase and ideally, this should
be close to |x|. Unfortunately, Applebaum, Ishai, Kushilevitz, and Waters
(AIKW, CRYPTO 2013 ) show that for some circuits, specifically PRGs,
achieving online complexity close to |x| is impossible with simulation-
based security, and Hubáček and Wichs (HW, ITCS 2015 ) show that
online complexity of maliciously secure 2-party computation needs to
grow with the incompressibility entropy of the function. We thus seek
to understand under which circumstances optimal online complexity is
feasible despite these strong lower bounds.

Our starting point is the observation that lower bounds (only) concern
cryptographic circuits and that, when an embedded secret is not known
to the adversary (distinguisher), then the lower bound techniques do
not seem to apply. Our main contribution is distributional simulation-
based security (DSIM), a framework for capturing weaker, yet meaningful
simulation-based (adaptive) security which does not seem to suffer from
impossibility results akin to AIKW. We show that DSIM can be used
to prove security of a distributed symmetric encryption protocol built
around garbling. We also establish a bootstrapping result from DSIM-
security for NC0 circuits to DSIM-security for arbitrary polynomial-size
circuits while preserving their online complexity.

1 Introduction

The garbled circuits approach to secure two-party computation goes back to a
seminal work of Yao [44] and allows two parties to evaluate a circuit C on their
private inputs. Bellare, Hoang and Rogaway (BHR) [12] suggest to abstract
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out the central building block behind this approach into a garbling scheme. A
garbling scheme allows a party (called garbler) to garble a circuit C and input
x into C̃ and x̃ such that another party (called evaluator) can derive C(x) from
C̃ and x̃. Selective (simulation-based) security of a garbling scheme is defined as
comparison between real and simulated garbling: A garbling scheme is secure if
no adversary can distinguish real garbling from the output of a simulator who
is given only C(x) and some leakage Φ(C) on C.

BHR further point out [11] that in some settings, a stronger adaptive security
notion is needed, in which the adversary chooses the input x adaptively after
seeing the garbled circuit C̃. In particular, the simulator works in two stages now
and has to produce C̃ first given only Φ(C), and produces x̃ only after seeing
C(x). The second adaptive phase is often referred to as online phase, and the
size of |x̃| as the online complexity.

In the selective setting, the size of the garbled input x̃ can be linear in the size
of x and independent of any other circuit dimension, e.g. λ|x| in the case of Yao’s
garbling scheme and many of its variants (for security parameter λ). Ideally,
the online complexity of adaptively secure garbling schemes would match this
bound. Unfortunately, Applebaum, Ishai, Kushilevitz and Waters (AIKW [7])
show that adaptively secure garbling schemes for PRGs need online complexity
|C(x)|, and adaptively secure constructions for general circuits indeed match this
bound [4,11,24,29,32,34].

Circumventing the AIKW Lower Bound. Approaches to circumvent the
AIKW lower bound include complexity leveraging over all possible values of
x (with a superpolynomial-time simulator) and proving security in the pro-
grammable random oracle model [11]. Another line of work shows how to
construct adaptively secure garbling schemes with low online complexity for
restricted circuit classes [4,33,37] which contained in the class of all invertible
circuits and, therefore, unfortunately exclude garbling most cryptographic func-
tions with adaptive simulation-security.

Relaxing Garbling Scheme Security. In this work, we explore a new app-
roach which seems suitable for cryptographic circuits. Concretely, we identify a
relaxed (simulation-based) garbling scheme security notion that is not affected
by the same lower bound and ask which circuit classes can be securely garbled
with respect to it. Specifically, when garbling cryptographic circuits, some inputs
are typically generated honestly and secretly and thus, in this case, the adversary
does not know them, and the standard definition of adaptive simulation-based
security seems too strong

1.1 Summary of Contributions

Generalizing Adaptive Garbling Scheme Security. Our main contribution
is a security framework for garbling schemes, called distributional simulation-
based security (DSIM) which relaxes the existing simulation-based adaptive secu-
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rity notion. The idea is to model realistic restrictions on the knowledge of adver-
sary and simulator such as partially hiding the circuit (or inputs) that is garbled
from the adversary. DSIM security bypasses the AIKW lower bound and our
generalization of it as they are specific to the adversary’s and simulator’s (lack
of) knowledge in the adaptive simulatability game.

We then show relations between DSIM and existing adaptive security notions,
in particular that adaptive simulatability implies DSIM when suitably restricting
the DSIM parameters. We further show how use a DSIM-secure garbling scheme
to turn an authenticated encryption scheme (AE) into a two-party distributed
encryption protocol. The AE scheme needs to be additionally secure under linear
related-key (RK) attacks. PRFs secure under RK attacks can be achieved, e.g.,
based on key-homormorphic PRFs [16].

Bootstrapping Distributional Security. Moreover, we show a bootstrap-
ping result for circuits which are output indistinguishable, i.e. for which there
exists an efficient circuit sampler producing C such that C(x) and C(0|x|) are
computationally indistinguishable for arbitrary adversarially chosen inputs x.

Theorem 1 (Informal). Assume that garbling scheme Gb is DSIM-secure for
garbling the class of output indistinguishable NC0 circuits with online complexity
α and assume IND-CPA secure symmetric encryption exists. Then, there exists
a garbling scheme that is DSIM-secure for garbling the class of all polynomial
size output indistinguishable circuits with online complexity α.

Note that the bootstrapping result preserves the online complexity of the gar-
bling scheme, and hence it suffices to construct a DSIM-secure garbling scheme
for the class of output indistinguishable NC0 circuits with online complexity
O(|x|) to obtain a DSIM-secure garbling scheme for the class all output indis-
tinguishable circuits with online complexity O(|x|). The construction of such a
garbling scheme remains a very interesting open problem.

Further Results About Standard Simulation-Based Security. To com-
plement our main contribution, we also include two smaller results within the
context of the standard adaptive security notion. We generalize the AIKW lower
bound and provide small improvements regarding the online complexity for gar-
bling NC1 circuits.

Bounding Online Complexity in Terms of (Pseudo-)entropy. AIKW show that
garbling a pseudorandom generator (PRG) with adaptive security requires the
online complexity of the garbling scheme to grow with the output size |C(x)|.
Using a similar, more general idea, Hubácek and Wichs (HW [31]) show that the
online complexity of maliciously 2-party computation is lower bounded by the
Yao incompressibility entropy [42,45] of the computed function. HW also trans-
lates into a (slightly worse) analogous lower bound for the online complexity of
adaptively secure garbling schemes: Assume that the 2PC protocol is realized
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by a garbling scheme combined with a maliciously secure two-party computa-
tion protocol to securely evaluate the input garbling (e.g., an oblivious transfer
protocol in the case of a projective garbling scheme), one can deduct the com-
munication complexity of the latter and obtains a lower bound for the online
complexity of the garbling scheme.

We apply the HW approach to lower bound the online complexity of a gar-
bling scheme by the Yao incompressibility entropy of the outputs of the garbled
circuit and thereby obtain a direct proof of this result as well as slightly improved
bounds compared to HW. The lower bound includes cryptographic functions
such as PRGs, pseudorandom functions, and encryption schemes, all of which
(when using suitable parameters) have higher incompressibility entropy than
their input size. Note that the more standard notion of HILL pseudo-entropy
(indistinguishabililty from a distribution with k bits of true entropy), if high,
also implies high incompressibility entropy, but the converse is not necessarily
true [27,30], whence HW and we state our results in terms of incompressibility
entropy.

Theorem (Informal). Let C ←$ SamC(1λ) be a distribution over circuits and
x ←$ Samx(C, 1λ) be a distribution over inputs, depending on C. Then if Gb is
a SIMΦ-secure garbling scheme, its online complexity |x̃| is greater or equal to
the Yao incompressibility-entropy of C(x) (minus a small constant) conditioned
on Φ(C), where Φ is some function on the circuit.

Here Φ is a function that depends on the flavour of SIM security we want to
capture. Typically, Φ is just the topology of the circuit C, which would not
contribute to the entropy, but it can also be a less trivial function.

Garbling Schemes with (almost) Optimal Online Complexity. Our final result
revisits the question of constructing garbling schemes with (almost) optimal
online complexity under existing security notions. To circumvent the AIKW
lower bound, various works considered the weaker notion of indistinguishability-
based adaptive security [11]. (For brevity, we will call this notion adaptive
indistinguishability or adaptive IND security.) Table 1 summarizes the exist-
ing results, the circuit class they apply to, their online complexity and security
assumptions. Note that any circuit with constant treewidth can be simulated in
NC1 [36], and that there exist NC1 circuits that do not have low treewidth, e.g.
Goldreich’s PRG [26] is in NC0 ⊆ NC1 [5] but has high expansion and hence
high treewidth. In fact, low treewidth already implies invertibility [14,15,22]1.

Concretely, we revisit the adaptively indistinguishable garbling scheme by
Jafargholi, Scafuro and Wichs (JSW) [33] for garbling NC1 circuits. The JSW
construction has an online complexity that includes a small linear overhead in the
circuit depth. We show how to modify the construction to remove this overhead.

Theorem (Informal). Assuming the existence of one-way functions, there
exists an adaptively indistinguishable garbling scheme for NC1 circuits with
online complexity 2λ|x|.
1 See full version for details.
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Table 1. Overview of adaptively indistinguishable garbling schemes with online com-
plexity linear in the input size |x|, by circuit class for which security is known. d denotes
the circuit depth and λ the security parameter.

Circuit class online complexity assumption

Ananth & Sahai [4] Arbitrary poly(λ, |x|) iO + OWF

Kamath, Klein & Pietrzak [37] Constant tw λ|x| OWF

Jafargholi, Scafuro & Wichs [33] NC1 2λ|x| + 2λ2d OWF

this work NC1 2λ|x| OWF

Jafargholi, Scafuro and Wichs further observed that an adaptively indistin-
guishable garbling scheme (IND) is also adaptively simulatable when restricting
the garbling scheme to efficiently invertible functions. Adaptive IND security
ensures that garblings of (C0, x0) and (C1, x1) are indistinguishable, even when
x0 and x1 are chosen adaptively, as long as C0(x0) = C1(x1). Since this equality
requirement is rather restrictive, it is not obvious how to use IND security for
cryptographic circuits in general. However, IND secure garbling should be useful
to use with all techniques that are compatible with indistinguishability obfusca-
tion (iO)as well, because iO requires that for all x, C0(x) = C1(x) which implies
the condition C0(x0) = C1(x1) for x = x0 = x1. Therefore, IND security should
be useful, e.g., for puncturable PRFs. We show the following:

Corollary (Informal). Assuming the existence of one-way functions, there
exists an adaptively simulatable garbling scheme for efficiently invertible NC1

circuits with online complexity 2λ|x|.

1.2 Outline

In Sect. 2, we provide a technical overview over our main results. Section 3 pro-
vides background on garbling schemes and cryptographic primitives. Section 4
introduces our notion of distributional simulation-based security (DSIM). We
show how to use the notion in Sect. 5 on the example of distributed symmetric
encryption and prove a bootstrapping results for DSIM-secure garbling schemes
in Sect. 6. Our adaptation of the HW incompressibility approach to generalize
the AIKW lower bound is presented in Sect. 7. Finally, we show how to garble
efficiently invertible NC1 circuits with online complexity 2λ|x| based on one-way
functions in Sects. 8.

2 Technical Overview

This section provides an overview of our core contribution, a relaxed simulation-
based security notion for garbling schemes.
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Fig. 1. Simulation-based security games Sim0A,Gb and Sim1A,S for garbling scheme Gb,
adversary A and simulator S, and circuit leakage function Φ.

2.1 Definining Distributional Simulation-Based (DSIM) Security

A quick recap of the existing adaptive simulation-based security notion [11]:
Fig. 1 shows the real and ideal security games as interaction between adversary
A, the security game, and a simulator S. In the ideal game Sim1A,S , A chooses
(and hence knows) the circuit C and input x to be garbled, while the simula-
tor has to simulate given leakage Φ(C) and output C(x) only. Intuitively, this
simultaneously captures strong privacy guarantees on the circuit and input.

This security notion gives the adversary the power to choose and learn the
full circuit C and the input x to be garbled. The AIKW lower bound and our
generalization effectively exploit an attack vector that is specific to this security
notion: Since the adversary knows both C and x, they can compute the output
C(x) themselves and then compare it to the result of the garbled circuit evalua-
tion. A simulator on the other hand is asked to simulate the garbled input given
only C(x). As AIKW and HW show, this simulation can simply not succeed
if C(x)|Φ(C) produces too much (pseudo-)entropy. However, the main purpose
of using a garbling scheme is to hide at least some information about either C
or x, else one could evaluate C(x) in the clear. For example when garbling a
cryptographic function such as an encryption function enc(k, ·) for secret key k,
the key is typically sampled as part of the outer protocol. Hence only the garbler
knows k. Thus when defining and proving security against a malicious evaluator,
it suffices to prove security against an adversary (i.e. the evaluator) who does not
know k and thus does not know the entire circuit C. As it suffices to consider a
weaker adversary, we introduce two modifications to games Sim0A,Gb and Sim1A,S :

Modification 1: Partially Hiding the Circuit from A. Instead of A choosing
C, the game is parameterized by a sampler Sam whose description is known
to the adversary, leading to a distributional definition style. The sampler out-
puts a circuit C and circuit leakage lkgC . The latter is given to both adversary
and simulator and captures the partial information that A receives about C.
An adversary may for instance be allowed to choose and learn which class of
functions is garbled, e.g. the particular encryption scheme, but not the random
choice of key. If on the other hand Sam samples from a distribution containing a
single fixed circuit, then the adversary’s knowledge is the same as in the existing
security notion. We further augment the leakage so that it outputs a PPT oracle
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Fig. 2. Distributional simulation-based security games DSim0Sam,A,Gb,Λ and
DSim1Sam,A,S,Λ for garbling scheme Gb, sampler Sam, adversary A, simulator S,
and simulator leakage Λ.

O which depends on the (secret) state of Sam. Oracle O models, e.g., encryption
queries which depend on a secret key k that is also used in a circuit. Allowing
such oracles supports composability, as we will see in Sect. 5, and it is similar to
the interface which the ideal functionality exposes to the simulator in Canetti’s
universal composability framework [19]. For example, in our case this allows us
to prove meaningful security of garbling an $-RK-AE secure encryption scheme;
here the $-RK-AE security allows the adversary to make multiple queries to the
encryption oracle, which would be impossible to model without our “free-form”
oracle O that can contain the encryption oracle in this example use-case.

Modification 2: Relaxing the Consistency Requirement on S. The relaxation to
partial adversarial knowledge of C then makes it also natural to relax simulation
requirements: If the partial knowledge an adversary gains about C and x does
not allow to infer C(x) but only some distribution of a possible output, then
simulation may be with respect to this distribution instead of a particular output.
We capture this observation through a new leakage function Λ(C, x) which as
before, is applied to obtain the simulator’s input in the game’s online phase. This
leakage could be C(x) (as in SIM), or empty (the other extreme) or anything in
between, depending on what models the situation best (the less information we
give to the simulator, the stronger the security guarantee by DSIM). In our $-RK-
AE encryption example Λ(C, x) = ∅, since as long as the key remains unknown
to the adversary, a uniformly random output is indistinguishable from enc(k, x)
for any x. So, the simulator can model the output as a uniformly random string,
without knowing the actual output. Interestingly, this gives the security notion
a semi-adaptive flavour as the simulator does not depend on the input x at all.

DSIM Security Games. Figure 2 shows a slightly simplified version of our
new security games as interaction between adversary A, the security game, and
a simulator S. Note that, while consistency is relaxed in the security definition,
the garbling scheme is still expected to provide the usual correctness guarantees.
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Related Work. Our distributional security notion for garbling schemes is
inspired by some existing techniques for sampling inputs in security games.

Distributional Security Notions. A distributional approach is the standard way
to define security of deterministic public-key encryption schemes [9]. In this con-
text, an adversary that is allowed to choose the message m to be encrypted
could simply re-encrypt m under the public key and compare with the challenge
ciphertext, leading to a trivial attack. As discussed above, the AIKW lower
bound is derived from a similar attack where the adversary can compare C(x)
to the output of the simulation. In both cases, the solution is to limit the adver-
sary’s knowledge, and define and prove security only for the scenario where the
adversary knows the input distribution.

Another context where distributional security notions have been used before
is zero knowledge [21,25,35,38]. Distributional zero knowledge and related
notions relax the zero knowledge property by choosing the statement, i.e. the
verifier’s input to the computation, from an efficiently samplable distribution
instead of universally quantifying over it. In the context of garbling schemes
on the other hand, existing notions give the adversary the power to choose all
inputs to the computation, and our relaxation to distributional security allows
to hide some of the inputs from the adversary while maintaining a relaxed form
of adversarial control over them.

Circuits Samplers. Our definitional style uses a circuit sampler which is reminis-
cent of the treatment of Universal Computational Extractors (UCE) as abstrac-
tion of keyed hash functions by Bellare, Hoang and Keelveedhi [10]. When using
the DSIM definition with respect to the class of output indistinguishable circuits,
one can view the DSIM notion as a notion of garbling schemes for probabilistic
functionalities which is somewhat similar to the concept of probabilistic indis-
tinguishability obfuscation (piO), a notion put forward by Canetti, Lin, Tessaro
and Vaikuntanathan [20], where one should not be able to distinguish obfus-
cations of two computationally indistinguishable distributions D0 and D1. Our
DSIM variant is different from piO in that DSIM is simulation-based and, since
we study garbling schemes, the adversary only gets to see a single sample of the
distribution.

2.2 Application: Distributed Symmetric Encryption

A distributed symmetric encryption protocol (DSE) allows multiple servers to
jointly perform symmetric encryption of a message, such that each server holds
only a share of the key. The notion was formally introduced by Agrawal, Mohas-
sel, Mukherjee and Rindal (AMMR [2]) and a construction for an arbitrary
number of parties based on distributed PRFs was proposed.

Distributed Symmetric encryption for arbitrary encryption schemes. For effi-
ciency reasons, existing constructions have focused on distributed version of
special-purpose encryption schemes [1,40]. AMMR point out that while DSE
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can in principle be achieved from general-purpose MPC (which would allow
to distribute any existing encryption scheme), this approach would be pro-
hibitively expensive. Nevertheless, such a construction would be preferable when
the encryption scheme to be used in an application is already fixed. In this case,
efficiency can be improved in other ways, e.g. through a message-independent
preprocessing phase.

In Sect. 5, we show a construction for the two-server case based on a garbling
scheme. The idea is to split encryption into two phases: First (and possibly
in advance), the encryption circuit is garbled. Then in the online phase, only
the message needs to be garbled. This preprocessing strategy means that the
garbling scheme needs some flavour of adaptive security and we show that our
new distributional simulation-based security notion suffices.

Remark. Encryption is typically length-preserving, so one could use a garbling
scheme whose online complexity is proportional to its output length also. How-
ever, if the same message was, say, encrypted under t keys into t ciphertexts,
then we would have a length-expanding circuit whose pseudo-entropy grows with
t. For simplicity of exposition, we will focus on the single-key version.

We show security in a simplified and more restricted model in comparison to
AMMR: We assume a two-server setting where only server S2 makes encryption
queries. Server S2 acts as evaluator in the garbling scheme, and we focus on
showing security against a corrupt S2 as this is the more difficult case. Decryption
is assumed to be performed by a trusted party. Finally, we restrict the adversary
to multiple indirect encryption queries but only a single direct encryption query
in the terminology of AMMR.

Protocol Overview. For two servers S1 and S2, the construction works as follows.
Assume a symmetric authenticated encryption scheme se, a garbling scheme Gb
with DSIM security with respect to output indistinguishable samplers such as
authenticated encryption, and ideal oblivious transfer. In the basic construction,
each server Si holds an additive share ki of the symmetric encryption key k =
k1⊕k2. To encrypt a message m under se and k and randomness r = r1⊕r2, the
servers act as follows: Server S1 samples r1 and garbles enc(k1 ⊕·, ·; r1 ⊕·). Both
servers then run an OT protocol to garble the missing inputs k2, m, and r2.
We show that the AE security of the symmetric encryption scheme se still holds
against a malicious server S2. We need to assume related-key security of the AE
against linear functions since the malicious server can choose an arbitrary key
k1 to be xored on k2.

For the case of encrypting the message under t different keys k1, . . . , kt, the
output of the circuit would consist of t ciphertexts. To compress the size of S2’s
input, the key shares kj

2 can be computed by a PRG as kj
2 = PRG(sj), and

similarly for S2’s randomness. Then in the online phase, we only need to garble
the two PRG seeds and the message, both of which are independent in size of t
and hence the output size. See Sect. 5 for details on the single-key version of the
protocol.
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2.3 Bootstrapping NC0 to Polynomial-Size Circuits

In the realm of obfuscation, bootstrapping is an established technique to turn
positive results for a limited class of circuits into a positive result for arbitrary
polynomial-size circuits. The bootstrapping techniques in the context of obfus-
cation follow the randomized encoding approach by Applebaum, Ishai, Kushile-
vitz [6], see e.g. [3,23] for examples. Assume we can obfuscate low-depth circuits.
Instead of directly obfuscating a given high-depth circuit C(x) for inputs x, a
randomized encoding function is applied to the circuit. The result C̃(x; r) is
a new circuit that outputs a randomized encoding of C(x). C̃(x; r) uses addi-
tional randomness r and is chosen such that for random r, C̃(x; r) does not leak
more information than y = C(x). If the encoding function itself has low depth,
then C̃(x; r) can now be obfuscated, and y can be recovered from C̃(x; r) via a
(high-depth, public) decoding function Dec.

Since randomized encodings and garbling schemes are different abstractions
of the same underlying idea, it is natural to ask if the randomized encodings
bootstrapping technique can be used to bootstrap adaptive security of garbling
schemes from low-depth circuits to arbitrary polynomial-size circuits. That is,
instead of directly garbling a circuit C(x), we could try to (outer) garble the
(inner) garbling function C̃(x; r) := [GCircuit(C(·); r),GInput(x)] with explicit
hardcoded randomness r. Now, if the inner garbling scheme produces a low
depth circuit C̃, the outer garbling scheme only needs to be secure for low-depth
circuits, and, the inner garbling scheme only needs to be selectively secure, not
adaptively. Now, the inner garbling scheme C̃ can be simply, e.g., Yao’s garbling
scheme, which is useful for two reasons: (1) Yao can be proven selectively secure
assuming it uses $-IND-CPA symmetric encryption [12,18,39] and (2) Yao’s
garbling can be implemented in constant depth (see Lemma 1 for details).

However, proving SIM security in this setting is infeasible for the following
reason. When we try to reduce the SIM security of the combined (garbling of
garbling) garbling scheme to the SIM security of the outer garbling scheme, the
adversarial evaluator chooses the circuit to be garbled, in this case, the inner
garbling function C̃(.; r) with the hardcoded randomness r. Adversary knowing
r trivially compromises the security of the inner garbling.

Luckily, our DSIM security notion precisely allows to circumvent the ran-
domness issue by dividing the adversary into two parts that do not share a
state: first part samples the circuit from a suitable output indistinguishable dis-
tribution (e.g. $-IND-CPA secure encryption with a uniformly random key, see
Definition 8 for how exactly we define the natural property of output indistin-
guishability) and the second adversary interacts with the garbler. Hence, we can
prove Theorem 1.

3 Preliminaries

All algorithms take as input the security parameter 1λ. We write it explicitly for
some algorithms, but leave it implicit for most algorithms. a ← A(x) assigns the
result of an execution of the deterministic algorithm A on input x to variable
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a. a ←$ A(x) denotes the execution of a randomized algorithm. a||b denotes the
concatenation of two bit strings a and b. A2 ◦A1 denotes the composition of two
algorithms in the form A2(A1(.)). We often write AO1,O2 for an adversary access-
ing oracle O1 and O2 and sometimes write AO1

O2
for conciseness. We sometimes

use the notation A O1,..,Ot→ Gb inspired from state-separating proofs [17] to say
that the adversary A is the main procedure who has access to oracles O1, ..,Ot

of a distinguishing game Gb. Pr
[
1 = A O1,..,Ot→ Gb

]
then refers to the probability

that the adversary A, after interacting with the oracles O1, ..,Ot of Gb returns
1. We like this notation, because it makes both the name of the game and the
adversary’s oracle explicit, while the standard oracle subscript notation AO1,..,Ot

only contains the oracles (but not the name of the game), and the experiment
notation Gb

A only contains the name of the game (but not the oracles).

3.1 Cryptographic Primitives

Fig. 3. Games $-IND − CPAb
se(1

λ) and $-RK − AEb
se(1

λ).

For a symmetric encryp-
tion scheme se, $-
IND-CPA-security
captures that cipher-
texts are indistin-
guishable from ran-
dom strings of the
same length. The
related-key authen-
ticated encryption
security game $-RK-
AE provides decryp-
tion queries in addi-
tion and allows adver-
sarially chosen lin-
ear offsets on the
key. Related-key secu-
rity has been introduced by Bellare and Kohno [13].

Definition 1 ($-IND-CPA and $-RK-AE Security). A symmetric encryp-
tion scheme se = (enc, dec) is indistinguishable under chosen plaintext attacks
($-IND-CPA) if for all PPT adversaries A, the advantage Adv$-IND−CPA

se,A (1λ) :=

|Pr
[
1 = A(1λ) ENC−→ $-IND − CPA0(1λ)

]
− Pr

[
1 = A(1λ) ENC−→ $-IND − CPA1(1λ)

]
|

is negligible in λ. se is authenticated encryption under linear related key attacks
if for all PPT adversaries A, the advantage Adv$-RK−AE

se,A (1λ) :=

|Pr
[
1 = A(1λ)

ENC,DEC−→ $-RK − AE0(1λ)
]

− Pr
[
1 = A(1λ)

ENC,DEC−→ $-RK − AE1(1λ)
]
|

is negligible in λ. See Fig. 3 for the security games.
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3.2 Garbling Schemes

Definition 2 (Garbling scheme). A Garbling scheme Gb consists of three
PPT algorithms (GCircuit,GInput,GEval) with the following syntax:

– (C̃,K, d) ←$ GCircuit(C) : the garbling algorithm takes as input a circuit
C : {0, 1}n → {0, 1}m, and outputs a garbled circuit C̃, keys K and output
decoding information d. m and n are polynomials in λ.

– x̃ ←$ GInput(K,x) : the input garbling algorithm takes an input x ∈ {0, 1}n
and the keys K and outputs an encoding of the input x̃.

– y ← GEval(C̃, x̃, d) : the evaluation algorithm takes as input the garbled cir-
cuit, a garbled input, the output encoding information d and returns a value
y ∈ {0, 1}m , where m is the output length of C.

Correctness of the garbling scheme holds if for any λ, any circuit C and any
input x ∈ {0, 1}n we have

Pr
[
C(x) = GEval(C̃, x̃, d)

]
= 1 − negl(λ),

where (C̃,K, d) ←$ GCircuit(C), x̃ ←$ GInput(K,x).

Fig. 4. Experiments SelSim0A,Gb and SelSim1A,S .

We first define selective
simulation security, where
the adversary chooses cir-
cuit C and input x at
the same time. We define
adaptive garbling scheme
security in Sect. 4, where
we compare it to the DSIM
definition, which we pro-
pose.

Definition 3 (SelSim security). Let Φ be a leakage function. We say that Gb
is selectively simulation secure (SelSim) if for any PPT adversary A there
exists a PPT simulator S such that

AdvSelSimA,S,Gb(1
λ) := |Pr

[
1 = SelSim0A,S,Gb

] − Pr
[
1 = SelSim1A,S

]| = negl(λ),

where experiments SelSim0A,Gb and SelSim1A,S are specified in Fig. 4.

4 Distributional Simulation-Based Security (DSIM)

In this section, we first define the simulation-based and indistinguishability fla-
vours of adaptive security and then present our new definition of adaptive dis-
tributional simulation-based security (DSIM) for garbling schemes.
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Fig. 5. Experiments Indb
A,Gb, Sim0A,Gb, Sim1A,S , DSim0Sam,A,Gb,Λ,Filter(1

λ) and

DSim1Sam,A,S,Λ,Filter(1
λ).

Definition 4 (Adaptive SIM security). Let Φ be a leakage function. We say
that Gb is adaptively SIMΦ-secure if for any PPT adversary A there exists a
PPT simulator S such that

AdvSimA,S,Gb(1
λ) := |Pr

[
1 = Sim0A,S,Gb

] − Pr
[
1 = Sim1A,S

]| = negl(λ),

where experiments Sim0A,Gb and Sim1A,S are specified in Fig. 5.

Definition 5 (Adaptive IND security). We say that Gb is adaptively
IND-secure if for any PPT adversary A which queries circuits C0 and C1

with equal input length and inputs x0 and x1 such that C0(x0) = C1(x1) and
Φ(C0) = Φ(C1), there exists a negligible function negl(λ) such that:

AdvIndA,Gb(1
λ) := |Pr

[
1 = Ind0A,Gb

] − Pr
[
1 = Ind1A,Gb

]| = negl(λ),

where the experiment Indb
A,Gb is specified in Fig. 5.

Definition 6 (Sampler classes). A class of samplers C is a set of PPT adver-
saries Sam such that (C, lkgC ,O) ←$ Sam(1λ).

Definition 7 (Adaptive distributional SIM security (DSIM).) Let C be a
sampler class and Λ be a leakage-function. Garbling scheme Gb is DSimΛ,Filter[C]-
secure if for any PPT Sam ∈ C and any PPT A, there exists a PPT simulator
S such that AdvDSim

Sam,A,S,Gb(1
λ) :=
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|Pr
[
1 = DSim0Sam,A,Gb,Λ,Filter(1

λ)
] − Pr

[
1 = DSim1Sam,A,S,Λ,Filter(1

λ)
]|

is negligible, where Fig. 5 defines the experiments DSim0Sam,A,Gb,Λ,Filter(1
λ) and

DSim1Sam,A,S,Λ,Filter(1
λ).

In the above DSIM definition lkgC could be e.g. the topology of the circuit C
(to match the SIM definition). Alternatively, if we are garbling e.g. an encryp-
tion scheme with the key hardcoded in the circuit C, then lkgC could be the
circuit C without the hardcoded random key. O is a (possibly stateful) PPT
oracle which might be, for example, an encryption oracle which depends on the
key k embedded into C, OC(x) might additionally depend on C(x), e.g., when
forbidding to send C(x) to a decryption oracle, see Sect. 5 for an example. See
Sect. 2.1 for more intuition behind the different parameters.

In the DSIM definition, the grey parameters (Λ,Filter) are optional and can be
ignored (i.e. Filter can be thought of as identity and Λ as empty) when reading
this paper, that is, they are not needed for understanding the bootstrapping
proof or DENC example. They are included just as an example on how to extend
the definition and to draw connection to SIM definition.

Remark on the Optional Parameters. W.l.o.g. we consider that stA contains
variables for lkgC and x, and, if lkgC allows to compute C, then we also assume
that w.l.o.g., lkgC and stA contain a variable for C which contains the correct
value. This will later allow us to discuss specific leakage functions.

In the special case when the sampler leaks lkgC := C and Λ(stA) = C(x),
SIM implies DSIM, because the adversary has slightly less information in DSIM
than in SIM (since it does not know the randomness used for sampling), and
additionally, the simulator S is stronger in DSIM.

Theorem 2 (SIM implies DSIM). Let Φ be a polynomial-time com-
putable leakage function. If a garbling scheme Gb is SIMΦ-secure, then Gb
is DSimΛ,Filter[C]-secure, where C = {PPT Sam : (C, lkgC := C) ←$ Sam},
Λ(stA) = C(x) and Filter(lkgC) is such that Φ(lkgC) can be computed given
Filter(lkgC).

Proof. Let Gb be a SIMΦ-secure garbling scheme. Assume towards contradiction
that there is Sam ∈ C and PPT A s.t. for all PPT S AdvDSim

Sam,A,S,Gb(1
λ) is non-

negligible. Define the first stage of the SIM-adversary as A′(1λ) := Sam(1λ) and
A′ is A for all further stages. Let S ′ be the simulator ensured by SIM-security
such that AdvSimA′,S′,Gb(1

λ) is negligible.
Now, define the first stage simulator as S(Filter(lkgC)) = S ′(Φ(lkgC)) and

the second stage simulator as S(·, ·) := S ′(·, ·) and A′ is A for all other inputs.
Now AdvSimA′,S′,Gb(1

λ) = AdvDSim
Sam,A,S,Gb(1

λ), and we reached a contradiction. 	

We can also recover the other direction, DSIM implies SIM, if we choose lkgC

to be the sampler’s full state and choose Filter(lkgC) = Φ(C) and Λ(stA) = C(x).
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Fig. 6. Output indistinguishability

Note however, that the
core difference between
SIM and DSIM is the idea
of sampler classes which
restrict the information
lkg which is passed from
Sam to A2. Recall that this
restriction models that in
garbling scheme applica-
tion such as private func-
tion evaluation, the party choosing the input might have some information about
the function to be evaluated, but not all information—otherwise one party could
simply send its function to the other party. Of particular interest to us are cir-
cuits with embedded cryptographic keys which make the output of the evaluated
circuit indistinguishable from a distribution which could have been chosen inde-
pendently of the input to the circuit, as, e.g., in IND-CPA-secure encryption
where an encryption of a message m is indistinguishable from an encryption of
0|m|. To be useful for garbling security, we need the indistinguishable distribu-
tion to be generated by a circuit of the same size. Therefore, we demand that the
function distribution consists of a fixed circuit C for which only the randomness
is sampled, i.e., C := C( · ; r) is a circuit with randomness r hardcoded into it.

Definition 8 (Output Indistinguishable Sampler). We define the class
Cout of output indistinguishable samplers as the set of PPT Sam such that

Fixed circuit there exists a circuit C = (Cλ)λ, polynomial p and PPT Samleak

such that Sam can be written as in Fig. 6 (left), and
Output indistinguishability for all PPT distinguishers D, the advantage

AdvOut
Sam,D(1λ) := |Pr

[
1 = Out0Sam,D(1λ)

] − Pr
[
1 = Out1Sam,D(1λ)

]| = negl(λ),

where Fig. 6 defines Out0Sam,D(1λ) and Out1Sam,D(1λ).

Remark. Note that D does not need to receive any leakage about C since the
circuit is fixed. We use the notation lkgCr

just to be consistent with definition
of DSIM.

5 Distributed Symmetric Encryption (DSE)

This section shows that DSIM security with respect to admissible samplers
implies useful security properties on the example of distributed encryption that
was introduced in Sect. 2. For simplicity of exposition, we focus on the case
of two servers and a single message. See Sect. 2 for further introduction to our
example and a discussion on extending the example into a length-expanding case

2 hence, in most cases where DSIM is a meaningful notion, Filter should just be identity.
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while maintaining the same online complexity. See the full version for a discus-
sion on how to replace the ENC queries in the protocol by further garblings.
In a nutshell, self-composition requires careful consideration regarding the order
of quantifiers of the sampler Sam, the adversary A and the simulator S in the
DSIM security notion, and additionally, a straightforward approach only allows
for the self-composition of a constant number of garblings.

Remember that we are in a setting with two servers who hold secret shares
k1, k2 of a symmetric key k = k1 ⊕ k2, and who wish to perform distributed
encryptions under k. One way to implement such a protocol is by combining
a garbling scheme with an oblivious transfer protocol to obtain a two-party
computation protocol for evaluating enc(k1 ⊕ k2, x) for message x ∈ {0, 1}λ.

Below, we describe the protocol between two stateful servers. We keep state
implicit for concise notation and we abstract away the OT protocol. The sym-
metric key k is assumed to be generated and secret shared by a trusted party in a
setup phase. We refer to the protocol below as distributed symmetric encryption
protocol (DSE), using a symmetric encryption scheme se and a garbling scheme
Gb.

Phase I
Server 1

Input: k1, 1
λ

r1 ←$ {0, 1}λ

C ← se.enc(k1 ⊕ ·, ·; r1 ⊕ ·)
(C̃, K, d) ←$ Gb.GCircuit(C)

return (C̃, d)

Phase II
Server 2

Input: k2, msg, C̃, d, 1λ

r2 ←$ {0, 1}λ

x ← k2||msg||r2
return x

Server 2

Input: x̃, C̃, d, 1λ

x′ ← Gb.GEval(C̃, x̃, d)

return x′

Security. The protocol shall provide security in a setting where the adversary
obtains the key of one of the two servers. We here focus on corruption of the key
of Server 2 and model security in this case. The security notion we consider is
$-AE security in the presence of the above distributed protocol under the same
key. In this toy example, we consider only a single corrupted execution of the
protocol.

Security is defined as indistinguishability of Denc0A(1λ) and Denc1A(1λ) in
Fig. 7. The game starts by sampling key shares k1 and k2 and computing a
garbled circuit C̃ and d, either honestly or via simulator S. The adversary A,
acting as corrupted Server 2, is then given C̃, d and k2 and outputs a message
msg to be encrypted. The game proceeds by garbling this message together
with encryption randomness r2 and providing this x̃ to A. At every step, A
has access to encryption and decryption oracles, modeling honest executions run
concurrently. Finally, A outputs a guess b′.
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Definition 9 (Distributed Encryption Security (DENC)). Let se be a
symmetric encryption scheme where ciphertexts are twice as long as the plain-
texts. Let Gb be a garbling scheme. Then, the DSE protocol using se and Gb is
DENC-secure if for all PPT adversaries A, there exists a PPT simulator S such
that

|Pr
[
1 = Denc0A(1λ)

] − Pr
[
1 = Denc1A,S(1λ)

]|
is negligible, where Fig. 7 defines Denc0A(1λ) and Denc1A(1λ).

Fig. 7. Security games (left and middle) for DENC-security and hybrid game (right)
for Theorem 3. The adversary A and simulators S and Shybrid are stateful. We leave
their state implicit for conciseness of notation.
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Fig. 8. Sampler Sam that emulates the sampling of Denc0(1λ) and a distinguisher C
which just runs A.

Theorem 3. If se is an authenticated encryption scheme in the presence of
linear related-key attacks ($-RK-AE-secure) and Gb is DSim[COut]-secure, then
DSE is DENC-secure.

Remark. We write DSim[COut] to denote DSimΛ,Filter[COut] where Λ is empty
and Filter is identity. That is, the parameters Λ and Filter are not needed for this
section.

Proof. The proof of Theorem 3 proceeds via two high-level game-hops, see Fig. 7
(right) for the hybrid game between DENC0A(1λ) and DENC1A,S(1λ). The first game
hop from DENC0A(1λ) to HybridA(1λ) reduces t to DSim[COut]-security, and the
second game-hop from HybridA(1λ) to DENC1A,S(1λ) reduces to RK-AE security.
We first provide the reduction for the 2nd game-hop, since it is easier than the
first game-hop.

HybridA(1λ) to DENC1A,S(1λ): For any PPT simulator Shybrid, we define a PPT
simulator S as follows: The simulator S runs Shybrid, but answers its ENC queries
with random strings of length 2λ and its DEC queries with ⊥. Now, to reduce the
indistinguishability of HybridA(1λ) and DENC1A,S(1λ) to $-RK-AE, observe that
k1 is not used and thus, k1 is perfectly random as required. Now, assume toward
contradiction that there exists a pair of PPT algorithms (A,Shybrid) such that
the difference between Pr

[
1 = HybridA(1λ)

]
and Pr

[
1 = DENC1A,S(1λ)

]
is non-

negligible, where S is derived from Shybrid as previously described. Then, we can
construct the following adversary B against $-RK-AE: B emulates HybridA(1λ),
except for all ENC and DEC queries which it forwards to its $-RK-AE-game (with
Δ being the all-zeroes string). B outputs whatever A outputs. By construction,
we have that
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Pr
[
1 = A(1λ)

ENC,DEC−→ $-RK − AE0(1λ)
]

= Pr
[
1 = HybridA(1λ)

]
.

Additionally, we claim that

Pr
[
1 = A(1λ)

ENC,DEC−→ $-RK − AE1(1λ)
]

= Pr
[
1 = DENC1A,S(1λ)

]
.

Namely, in both cases, the ENC queries of A are answered by random strings of
length 2λ, and the DEC queries are answered by ⊥, and the game is stateless,
as there is no set S of previously obtained ciphertexts. Therefore, it does not
matter whether queries to ENC and DEC are forwarded to the $-RK − AE1 game
(as done by B) or simulated as random answers and ⊥ answers, respectively,
without forwarding (as done by S). Thus, we can conclude Adv$-RK−AE

se,A (1λ) is
non-negligible and reach a contradiction.

DENC0A(1λ) to HybridA(1λ): Assume towards contradiction that A is a
PPT adversary which has non-negligible advantage in distinguishing between
DENC0A(1λ) and HybridA,Shybrid

(1λ), regardless of how we instantiate Shybrid.
Now, we construct an adversary (Sam(1λ), C) against DSim[COut]-security.
(Sam(1λ), C) is shown in Fig. 8. We first prove that Sam is output indistinguish-
able.

Claim 1. If se is an $-RK-AE, then Sam ∈ COut.

Fig. 9. Rewritten version of Sam.

Written with explicit random-
ness r := k1||k2||r1 of length
p(λ) := 3λ, circuit Cλ(., r) :=
enc(k1⊕·, ·; r1⊕·) and Samleak(r)
which returns lkgC ← k2 and
O ← ENC,DEC, we can re-write
Sam as in Fig. 9, as required to
prove output indistinguishabil-
ity. We now prove that for all
PPT D,

|Pr
[
1 = Out0Sam,D(1λ)

] − Pr
[
1 = Out1Sam,D(1λ)

]|
is negligible, via a sequence of game hops shown in Fig. 10.

We inline the code of Sam, move computations downwards when variables are
not used before, and inline the code of the circuit Cr. We also write S ← S∪{c∗}
as an explicit state update instead of writing c∗ = C(xb) as oracle subscript. The
encryption process in the grey line uses fresh and uniform randomness since r1
is uniformly random and so is r1 xored with an adversarially chosen value.

We now reduce to $-RK-AE security (Definition 1) in order to replace the
ENC oracle by one that returns random strings of length 2λ, the string c∗ by a
random string of length 2λ and the DEC oracle by an oracle that always returns
⊥. After the reduction to $-RK-AE security, since c∗ does not depend on b
anymore, we have that Pr[b = b∗] = 1

2 .
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Fig. 10. Game hops to show Claim 1.

The reduction B to $-RK-AE security can answer all ENC queries m by
a query (m,Δ = 0λ) to its own encryption oracle, and it can compute the
ciphertext c by choosing Δ′ := Δ ⊕ k2, since then,

k ⊕ Δ′ = (k1 ⊕ k2) ⊕ (Δ ⊕ k2) = k1 ⊕ Δ,

which B expects. Analogously, the reduction proceeds with decryption queries.
This concludes the proof of Claim 1 that Sam ∈ COut.

Hence, by DSim[COut]-security, there exists a simulator SDSIM for (Sam,B)
such that

|Pr
[
1 = DSim0Sam,B,Gb,Λ(1λ)

] − Pr
[
1 = DSim1Sam,B,SDSIM,Λ(1λ)

]|
is negligible. Given SDSIM, the simulator Shybrid with oracle access to ENC and
DEC runs

(C̃, d, stS) ←$ SENC,DEC
DSIM (lkgC) and x̃ ←$ SENC,DEC

DSIM ([], stS)

and returns (C̃, d, x̃).

Since |Pr
[
1 = DSim0Sam,C,Gb(1

λ)
] − Pr

[
1 = DSim1Sam,C,SDSIM

(1λ)
]|

=|1 = Pr
[
DENC0A(1λ)

] − Pr
[
1 = HybridA,Shybrid(1λ)

]
|

and the former is negligible and the latter non-negligible, we reached a contra-
diction.
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Fig. 11. Garbling scheme Gbcomb. Length of rin is chosen s.t. it is compatible with Yao’s
garbling scheme, however, the same results apply to any projective garbling scheme,
just |rin| might need to be adjusted.

6 Bootstrapping for Output Indistinguishable Samplers

In this section, we bootstrap DSIM security for output indistinguishable sam-
plers returning NC0 circuits to output indistinguishable samplers returning
arbitrary polynomial-size circuits. Let us denote the class of output indistin-
guishable samplers by COut and output indistinguishable samplers which only
return circuits in NC0 by COut,NC0 ⊆ COut. Based on a DSimΛ,Filter[COut,NC0

]-
secure garbling scheme (for NC0 circuits), we construct a DSimΛ,Filter[COut]-
secure garbling scheme (for arbitrary poly-size circuits): The new garbling
scheme Gbcomb = (GCircuitcomb,GInputcomb,GEvalcomb) which we construct (cf.
Fig. 11) combines two garbling schemes, the inner SelSim-secure garbling scheme
Gbin = (GCircuitin,GInputin,GEvalin) for arbitrary polynomial-size circuits and
an outer garbling scheme Gbouter = (GCircuitouter,GInputouter,GEvalouter) for NC0

circuits which is DSimΛ,Filter[COut,NC0
]-secure, to obtain a combined garbling

scheme Gbcomb which is DSimΛ,Filter[COut]-secure. Gbcomb garbles a circuit C(·)
and input x as depicted in Fig. 11, where Cin is a circuit that takes as input
x and produces as output the (selectively secure) garbling of C, i.e., C̃in, a
garbling of x and the decoding information din. Gbin could be any SelSim-
secure, projective3 garbling scheme, e.g., Gbin = (GCircuitin,GInputin,GEvalin) :=
(GCircuityao,GInputyao,GEvalyao) is a valid choice (Yao’s garbling is provably Sel-
Sim secure, assuming only the existence of $-IND-CPA secure symmetric encryp-
tion scheme). We need to show that the circuit Cin is indeed in NC0 and that
Gbcomb is DSimΛ,Filter[COut]-secure.

Section 6.1 shows the (easy) statement that the circuit Cin is in NC0. In a
nutshell, this follows from Gbin being a projective garbling scheme and C̃in and
the decoding information din being just some constant bitstring in Cin.

Section 6.2 proves that if the sampler for circuit C(x) is in COut, then the
sampler for circuit C̃(x; r) is in COut,NC0

. Section 6.3 then states and proves our
main bootstrapping theorem.

3 A garbling scheme is projective, if for each input bit xi, the input garbling is one
out of two possible strings K0(i) and K1(i). For example, Yao’s garbling scheme is
projective.
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6.1 Cin is low-depth

Recall that Cin is defined as Cin(·) := [C̃in,GInputin(· ,Kin), din] where C̃in, din
and Kin are constant values (constant bitstrings). Hence, in order to show that
the function Cin can be implemented as a constant depth circuit, it is enough to
show the following lemma.

Lemma 1 (Low-depth Projective Input Garbling). If Gbin is a projective
garbling scheme, then GInputin(·;Kin) : x → GInputin(x;Kin) can be described by
a constant-depth circuit.

Proof. Denote by xi the ith bit of the input x. Now Kin consists of key pairs
ki
0, k

i
1 for each bit of x. W.l.o.g., we can assume that Kin is a concatenation of

all the key pairs in order. The input garbling of x, i.e. GInputin(x;Kin), outputs
k1

x1
||...||kλ

xλ
. This can clearly be done in constant depth by a circuit that just

checks each bit of x one by one (in parallel) and outputs the corresponding key
kxi

for each bit. 	


6.2 Output Indistinguishable Sampling

We now prove that the above circuit transformation, when applied to a circuit
sampler Samcomb(1λ) in COut yields a circuit sampler Samouter(1λ) in COut,NC0

.
Since Samcomb is output indistinguishable, there exists a polynomial p(λ) and
a circuit C = (Cλ)λ∈N such that Samcomb(1λ) can be written as below (left).
Then, we define the circuit sampler Samouter(1λ) (with randomness r||rin) as
follows (right):

Samcomb(1λ)

r ←$ {0, 1}p(λ)

Cr(.) ← C(·, r)
return Cr, lkgCr

, O

Samouter(1λ)

r ←$ {0, 1}p(λ)

rin ←$ {0, 1}12λ|Cr|

C̃in, Kin, din ← GCircuitin(Cr(·); rin)
Cin(·) ← [C̃in,GInputin(· , Kin), din]

return Cin, lkgCr
, O

Lemma 2 (Output indististinguishability). Let Samcomb ∈ COut. If Yao’s
garbling scheme is selectively secure, then Samouter(1λ) ∈ COut,NC0

.

Proof. Firstly, by Lemma 1, Samouter produces circuits in NC0. Hence remains
to show that Samouter is output indistinguishable, i.e., we prove that for all PPT
adversaries Douter,

|Pr
[
1 = Out0Samouter,Douter

(1λ)
] − Pr

[
1 = Out1Samouter,Douter

(1λ)
]| = negl(λ).
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We prove indistinguishability of Out0Douter
(1λ) and Out1Douter

(1λ) via several
hybrids. The games OutbDouter

(1λ) and Hb are perfectly equivalent; we only inline
the definition of circuit Samouter and reorder some lines, whose order does not
affect the functionality.

From Hb(1λ) to Hb+2
S , we reduce to the selective simulation-based security of

Gbin. The highlighted lines in Hb refer to the SelSim adversary (who first chooses
circuit, input and its state, Cr, xb, st, and then receives garbling and returns its
guess). Note that the SelSim adversary knows r and can hence compute the
algorithm O and pass it in st, so Douter

O can be replaced by a code equivalent
and efficient algorithm that does not make oracle queries to O (but simply runs
the algorithm O).

OutbSamouter,Douter
(1λ)

Cin, lkgCr
, O ←$ Samouter

(x0, st) ←$ Douter
O(1λ, lkgCr

)

x1 ← 0|x0|

b∗ ←$ Douter
OCr(xb)(Cin(xb), st)

return b∗

From H0+2
S to H1+2

S , we reduce to the
output indistinguishability of Samcomb, note
that the two first lines of Hb+2

S are code
equivalent to Samcomb and the highlighted
lines refer to the output indistinguishability
adversary (note that the topology Φ(Cr) can
be computed when you know C and C is con-
stant). For this game hop we switch back to
O being an oracle algorithm (as opposed to
emulating Douter

O by running the actual algo-
rithm O).

Hb

r ←$ {0, 1}p(λ)

Cr, lkgCr
← C(·, r), lkgCr

(x0, st) ←$ Douter
O(1λ, lkgCr

)

x1 ← 0|x0|

rin ←$ {0, 1}12λ|Cr|

C̃in, Kin, din ← GCircuitin(Cr(·); rin)
Cin(·) ← [C̃in,GInputin(· , Kin), din]

(C̃, x̃, d) ← Cin(xb)

b∗ ←$ Douter
OCr(xb)((C̃, x̃, d), st)

return b∗

Hb+2
S

r ←$ {0, 1}p(λ)

Cr, lkgCr
← C(·, r), lkgCr

(x0, st) ←$ Douter
O(1λ, lkgCr

)

x1 ← 0|x0|

(C̃, x̃, d) ← S(Φ(Cr), Cr(xb))

b∗ ←$ Douter
OCr(xb)((C̃, x̃, d), st)

return b∗

	
6.3 Main Theorem

We now prove our main bootstrapping theorem.

Theorem 4 (Bootstrapping RIND from NC0 to poly). If the garbling
scheme Gbouter = (GCircuitouter,GInputouter,GEvalouter) is DSimΛ,Filter[COut,NC0

]-
secure and if Gbin = (GCircuitin,GInputin,GEvalin) is a projective SelSim-secure
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garbling scheme, then the garbling scheme Gbcomb = (GCircuitcomb,GInputcomb,
GEvalcomb) achieves DSimΛ,Filter[COut] security.

Proof. For all PPT Samcomb ∈ DSimΛ,Filter[COut] and for all PPT A, we want to
construct a simulator Scomb such that the following advantage

|Pr
[
1 = DSim0Samcomb,A,Gbcomb,Λ

(1λ)
] − Pr

[
1 = DSim1Samcomb,A,Scomb,Λ

(1λ)
]| (1)

is negligible.

DSim0Samcomb,A,Gbcomb,Λ
(1λ)

Cr, lkgCr
, O ←$ Samcomb(1

λ)

(C̃, K, d) ←$ GCircuitcomb(Cr)

(x, stA) ←$ AO(C̃, d, lkgCr
)

x̃ ←$ GInputcomb(K, x)

b′ ←$ AOCr(x)(x̃, stA)

return b′

H0

r ←$ {0, 1}p(λ)

Cr(.) ← C(·, r)
rin ←$ {0, 1}12λ|C|

C̃in, Kin, din ← GCircuitin(Cr(·); rin)
Cin(·) ← [C̃in,GInputin(· , Kin), din]

C̃, K, d ←$ GCircuitouter(Cin)

(x, stA) ←$ AO(C̃, d, lkgCr
)

x̃ ←$ GInputouter(K, x)

b′ ←$ AO
C̃r(x̃)(x̃, stA)

return b′

DSim1Samcomb,A,Scomb,Λ
(1λ)

Cr, lkgCr
, O ←$ Samcomb(1

λ)

(C̃, d, stS) ←$ SO(Filter(lkgCr
))

(x, stA) ←$ AO(C̃, d, lkgCr
)

x̃ ←$ SO(Λ(stA), stS)

b′ ←$ AO
C̃r(x̃)(x̃, stA)

return b′

H1

r ←$ {0, 1}p(λ)

Cr(.) ← C(·, r)
rin ←$ {0, 1}12λ|C|

C̃in, Kin, din ← GCircuitin(Cr(·); rin)
Cin(·) ← [C̃in,GInputin(· , Kin), din]

C̃, d, stS ←$ Souter
O(Filter(lkgCr

))

(x, stA) ←$ AO(C̃, d, lkgCr
)

x̃ ←$ Souter
O(Λ(stA), stS)

b′ ←$ AO
C̃r(x̃)(x̃, stA)

return b′

The experiments DSim0Samcomb,A,Gbcomb,Λ
(1λ) and the hybrid game H0 are code

equivalent by inlining the code of Samcomb, GCircuitcomb and GInputcomb. Now,
observe that the lines highlighted in grey in H0 describe Samouter(1λ) and thus,
H0 is also equivalent to DSim0Samouter,A,Gbouter,Λ

(1λ), as required for the reduction.
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Analogously, the hybrid game H1 is equivalent to DSim1Samouter,A,Gbouter,Λ
(1λ)

with Samouter ∈ COut,NC0
(Lemma 2) and thus, by DSimΛ,Filter[COut,NC0

]-security
of Gbouter (assumption), there is a simulator Souter s.t. H0 is indistinguishable
from H1. If we define simulator S according to grey lines in H1, we notice
that H1 is also code equivalent to DSim1Samcomb,A,Gbcomb,Λ

(1λ), which concludes the
proof. 	


7 Large Yao-Incompressibility Entropy Implies Large
Online Complexity

HW lower-bound the online complexity of 2-party computation with security
against malicious parties by the incompressibility entropy of the output distribu-
tion induced by the function to be computed, i.e., the shortest possible encoding
of the output. Their lower bound also induce lower bounds on the online com-
plexity of a SIM-secure garbling scheme, albeit with slightly worse parameters,
see Sect. 1.1 for more discussion. In this section, we adapt the HW approach and
lower bound the online complexity of a SIM-secure garbling scheme directly.

To explain our approach conceptually, let us revisit the AIKW lower bound
which shows that SIM-secure garbling of a PRG requires an online complexity
equal to the output length of the PRG. Namely, AIKW consider C := PRG
and by correctness of the garbling scheme, we have C̃(x̃) = PRG(x). Therefore,
the simulator who first creates a garbled circuit C̃ and then gets y = PRG(x)
also needs to create x̃ such that C̃(x̃) = y. Now, the check that C̃(x̃) evaluates
to y can be performed only knowing y, and since the simulator gets only y,
we can run the simulator on a random y instead of a PRG output—by PRG
security, the simulator should be as successful in creating a simulated input x̃
such that C̃(x̃) = y. However, if |x̃| < |y| the simulator has an impossible task,
because y has more entropy than x̃. Therefore, |x̃| should be proportional to the
computational entropy of C(x).

In this paper, following HW, we measure computational entropy of a distribu-
tion D by its smallest efficient encoding, known as Yao incompressibility entropy
(or Yao pseudo-entropy). This way, our result extends also to the entropy of
all distributions which are indistinguishable from D and thus the HILL pseudo-
entropy of D. This is because high HILL pseudo-entropy implies high Yao incom-
pressibility entropy (see e.g. [43]).

Definition 10 (Yao Incompressibility Entropy [42]). Let Φ be a leakage
function and (C, x) ←$ D(1λ) be an efficiently sampleable distribution. The
distribution D is kλ-incompressible, if for every polynomial-size circuit fam-
ily pair of a compression algorithm Cmprλ(·, ·) and a decompression function
Decmprλ(·, ·) s.t. for all x: Decmpr

(
Cmpr(C(x), Φ(C)), Φ(C)

)
= C(x) it holds

that

E(C,x)←$D(1λ)[|Cmpr(C(x), Φ(C))|] ≥ kλ,

where |.| measures the output of Cmpr in bits.
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Theorem 5 (Lower Bound, generalized AIKW). Let Gb be a SIM-secure
garbling scheme with leakage function Φ, and let (C, x) ←$ D(1λ) be an efficiently
samplable distribution with incompressibility-entropy ≥ kλ.

Then, the expected online complexity is

E(C,x)←$D(1λ),x̃←$Gb.GInput[|x̃|] ≥ kλ − 2.

We assume that the online complexity |x̃| is uniquely determined by Φ(C).

Remark. Previous works [8,28,31,42] define (conditional) Yao and HILL pseudo-
entropy in different flavors with respect to using (im)perfect correctness of com-
pression as well as Shannon entropy vs. min-entropy. In the full version, we
discuss their relation and prove a variant of Theorem 5 for each of them.

Proof. Assume towards contradiction that

E(C,x)←$D(1λ),x̃←$Gb.GInput[|x̃|] < kλ − 2, (2)

Since the garbling scheme Gb is SIM-secure, there exists a PPT simulator S, s.t.

Pr

⎡
⎢⎢⎣
Gb.GEval(C̃, x̃, d) = C(x)

|x̃| = |Gb.GInput(x)|

∣∣∣∣∣∣∣∣

(C, x) ←$D(1λ)

C̃, d, st ←$S(1λ, Φ(C))

x̃ ←$S(1λ, C(x), st)

⎤
⎥⎥⎦ ≥ 1 − μ(λ),

where μ is negligible. The garbled input that the simulator returns must (almost
always) have the correct online complexity, since otherwise we can use the length
of the garbled input to distinguish real garbling from simulated garbling. We now
use the simulator S to build a pair of efficient algorithms compressor Cmpr and
decompressor Decmpr. Let Sdet

λ be a deterministic version of the simulator, i.e.,
Sdet

λ is equal to the simulator S(1λ, ·; rλ), where rλ is the internal randomness
that maximizes the above probability. We here use that [42] allow Cmpr and
decompressor Decmpr to be a non-uniform circuit family. Then, we define com-
pressor Cmpr and decompressor Decmpr as follows, writing lkgΦ for a supposed
output of Φ(C).

Cmpr(y, lkgΦ)

C̃, d, st ← Sdet
λ (lkgΦ) // 1st stage of simulator

x̃ ← Sdet
λ (y, st) // 2nd stage of simulator

if GEval(C̃, x̃, d) = y AND |x̃| = |Gb.GInput(x)|
return 0||x̃

return 1||y
return x̃1,...,k−2

Decmpr(b||z, lkgΦ)

if b = 1

return z

C̃, d, st ← Sdet
λ (lkgΦ)

// 1st stage of simulator

return GEval(C̃, z, d)



Adaptive Distributional Security for Garbling Schemes 165

The if-clause in the compressor is false only with negligible probability,
because by averaging argument, we can show that there is simulator’s random-
ness rλ that achieves at least success probability 1 − 2μ(λ). Hence,

ED[|Cmpr(C(x), Φ(C))|] =
∑

C,x∈D,if true

PrD[C, x] |Cmpr(C(x), Φ(C))|︸ ︷︷ ︸
=|Gb.GInput(x)|+1

+
∑

C,x∈D,if false

PrD[C, x]

︸ ︷︷ ︸
negl(λ)

|Cmpr(C(x), Φ(C))|︸ ︷︷ ︸
polynomial (WLOG)

︸ ︷︷ ︸
negl(λ)

≤ ED[|Gb.GInput(x)| + 1] + negl(λ)
= ED[|Gb.GInput(x)|]︸ ︷︷ ︸

≤k−2 by (2)

+1 + negl(λ) < k − 1 + negl(λ)

which is a contradiction with incompressibility.
	


8 Garbling NC1 Circuits with Online Complexity O(|x|)
In this section we construct a garbling scheme with online complexity 2nλ and
prove that it is adaptively indistinguishable for NC1circuits. Our construction
can thus be seen as JSW [33] instantiated just with Yao’s garbling scheme and
without the somewhere equivocal encryption layer. In a nutshell, the JSW con-
struction garbles a circuit C by first constructing a new circuit C ′ consisting of
two copies of C connected through selector gates that each forward the output
of one of the copies of C. The circuit C ′ is then garbled using Yao’s garbling
scheme and the resulting garbled circuit is encrypted with a somewhere equivocal
encryption scheme [29]. The somewhere equivocal encryption scheme contributes
to the online complexity as decryption keys need to be transmitted in the online
phase. We show through a new security analysis that the final encryption step
can actually be omitted, thus reducing the online complexity to 2λ|x|.

We now present the construction and then discuss how our proof differs from
JSW and then provide the proof in the supplementary material.

8.1 Yao’s Garbling Scheme

Let se = (enc, dec) be a symmetric encryption scheme with key space {0, 1}λ.
Yao’s garbling scheme Gbyao [44,46] consists of algorithms GCircuityao, GInputyao
and GEvalyao that are shown in Fig. 12. For each wire, two uniformly random
keys are sampled and assigned values 0 and 1, respectively. To garble a gate g,
its left and right predecessor and the corresponding wire keys are determined,
and four ciphertexts are computed according to gate operation op(g).



166 E. A. Bock et al.

Fig. 12. Yao’s garbling scheme Gbyao with split output map.

Fig. 13. Circuit C′.

Our description differs slightly from the literature in the
split between garbled circuit and output decoding informa-
tion: Instead of the more traditional view that treats the
whole output map (consisting of wire keys and their map-
ping to bits) as part of the output decoding information,
we separate the wire keys Kout (sorted lexicographically
to hide their association with bits) from the actual map d
(pointing now to entries in the key list). The wire keys then
become part of the garbled circuit. This is in line with what
JSW called output-key security in their construction: Yao’s garbling scheme is
actually adaptively simulatable even when the output wire keys (without the
mapping to bits) are sent with the garbled gates in the offline phase. We refer
to this version as weak online Yao. Interestingly, this is reminiscent of the point-
and-permute technique [41] applied only to the output wires, and reduces the
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online complexity to nλ + m (assuming a suitable encoding of gate indices).
Note that this change does not affect the combined information contained in the
garbled circuit and output decoding information, we simply redistribute it.

8.2 Our Construction

For b ∈ {0, 1}, a selector gate Selb takes as input two bits u0 and u1 and outputs
ub. We define our garbling scheme Gb = (GCircuit,GInput,GEval) as

– GCircuit(C) := GCircuityao(C ′), where C ′ := Sel0 ◦ C||C (Fig. 13) is a circuit
consisting of two copies of C connected by m selector gates Sel0.

– GInput(K,x) := GInputyao(K,x||x).
– GEval(C̃, x̃, d) := GEvalyao(C̃, x̃, d)

The input size of C ′ is twice that of C, and hence the input encoding size is
twice that of Yao’s garbling scheme.

Comparison to JSW Construction. JSW additionally encrypt the garbled circuit
with a layer of somewhere equivocal encryption (SEE) where the simulator can
revoke at pebbling complexity many ciphertexts. The overall construction has
an online complexity independent of the output size of the circuit. However,
the online complexity of JSW is affected by the SEE decryption key, which is
sent together with the garbled input. The decryption key removes the layer of
somewhere equivocal encryption and then the garbled circuit can be evaluated
on the garbled input. By the formula in [29] (Table 1), the size of the decryption
key is t · s · λ · log n, where for JSW, t is the number of gates to be revoked and
s is the size of a garbled gate, which is effectively linear in λ. Since the number
of gates to revoked is either the width w or the depth d of the circuit, the size of
the decryption key is either O(dλ2) or O(wλ2).

8.3 Security

Theorem 6. Assuming IND-CPA security of symmetric encryption scheme se,
the garbling scheme Gb is IND-secure (Definition 5) for NC1 circuits and has an
online complexity of 2nλ.

Our proof of Theorem 6 follows JSW and HJOSW [29], except when moving
from left selectors to right selectors. Here, we observe that under the condition
that C0(x0) = C1(x1), selector gates do not need to be garbled in an input-
dependent way. The reason is that switching from left selectors to right selectors
preserves the encryption of the zero output key under the left and right zero
input key as well as the encryption of the one output key under the left and
right one key. Since C0(x0) = C1(x1), these decryptions always yield the correct
output key, no matter whether the output gate was pebbled according to the
left or right selector. Only the content of “mixed” ciphertexts changes depending
on whether we garble a left or right selector, but mixed ciphertexts are never
decrypted since C0(x0) = C1(x1). We provide the proof of Theorem 6 in the
full version.
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Abstract. This paper examines multi-party computation protocols in
the presence of two major constraints commonly encountered in deployed
systems. Firstly, we consider the situation where the parties are con-
nected not by direct point-to-point connections, but by a star-like topol-
ogy with a few central post-office style relays. Secondly, we consider MPC
protocols with a strong honest majority (t � n/2) in which we have
stragglers (some parties are progressing slower than others). We model
stragglers by allowing the adversary to delay messages to and from some
parties for a given length of time.

We first prove that having only a single honest relay is enough to
ensure consensus of the messages sent within a protocol; then, we show
that special care must be taken to describe multiplication protocols in
the case of relays and stragglers; finally, we present an efficient honest-
majority MPC protocol which can be run ontop of the relays and which
provides active-security with abort in the case of a strong honest major-
ity, even when run with stragglers. We back up our protocol presentation
with both experimental evaluations and simulations of the effect of the
relays and delays on our protocol.

1 Introduction

Multi-Party Computation (MPC) allows a set of mutually distrusting parties
to compute a function of their joint private inputs, without revealing anything
about the inputs bar what can be deduced from any output of the function.
MPC is now practical for a number of use-cases, it is becoming increasingly
deployed in special niche applications, and much research work is now focused
on extending the application space beyond these specific use-cases.

While MPC has been studied in a variety of different settings, most of the pro-
tocols are based on strong assumptions, such as the existence of direct fast com-
munication channels between each pair of computing parties, fully synchronous
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communication channels and a static set of parties which is progress through the
protocol execution at the same speed.

Network Topology. In almost all academic works, and almost all academic imple-
mentations of MPC, the computing parties {P1, . . . ,Pn} are all connected with
each other by dedicated connections, thus if we have n parties, this requires
n ·(n−1) uni-directional channels, often realised using n ·(n−1)/2 bi-directional
TLS connections. However, in commercial applications this is not practical, as it
implies each commercial entity enables n− 1 external connections per MPC cal-
culation. This can be problematic, as a corporate network is often locked down
to an extent that creating new connections on new ports is frowned upon by the
IT department.

One solution to this problem is to route all messages via a relay, so that
communication operates in a star-like pattern. Indeed, this was proposed by the
company ZenGo in their white paper describing the White-City protocol [23].
This protocol proposes a number of such relays (aimed to protect against adver-
sarial behaviour) which maintain consistency via a consensus protocol between
them. Each relay R does not (necessarily) need to be one of the computing par-
ties, it simply acts as a message transmission conduit between Pi and Pj , for
each pair (i, j). This means that each party Pi only needs to maintain a single
connection to the relay R. Communication can be kept private from the relay
by end-to-end encryption between Pi and Pj , and communication on the links
between Pi and R can be ensured to be authentic via the use of message authen-
tication codes. Other than being more practical, another advantage of having
one (or more) relay node is that this provides a business model for companies to
supply MPC services to clients: the relay node is providing the MPC service, for
clients to connect to, and it can also act as a broker in brokering relationships
between parties who desire to compute some joint function on their input. By
charging for the usage of the relay node the companies can obtain revenue for
providing the service.

In this work, we propose a relay model similar to Amazon SQS (Simple
Queue Service) where messages are sent to a server and receivers retrieve and
delete them. However, in our model, multiple relays are utilized to ensure security
guarantees, whereas Amazon uses multiple servers for quality-of-service purposes
in its highly distributed system.

Dynamic Computation with Delays. In common with most secure protocols, one
works (ideally) in a Dolev-Yao model [11] in which the adversary is able to
control the messages which are sent between parties, for example by replacing,
dropping or placing messages out-of-order. In a real network, this is relatively
hard for an adversary to do, thus most (practical) MPC work assumes that if
party Pi sends a message to party Pj then such a message will eventually get
from the source to the destination, and messages will be delivered in order. In
a real computer network, such as the internet, the latter is a valid assumption
as the exact route taken by messages is often unknown before the message is
sent, and underlying network protocols provide the guarantee that messages
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arrive in order. However, if the “network” has a single bottleneck of a relay R,
then an adversary who controls the relay can mount trivial attacks which break
the assumption that a message will always get through. In addition, modelling
the system as synchronous, with a publicly known upper bound (time-out) on
message latency, in practice is either very difficult to achieve or can severely
impact communication speed, for example, if a large time-out upper bound is
set so to ensure that all the messages from all the parties are delivered.

1.1 Our Contributions

In this work, we consider both these aspects and define an MPC protocol in
presence of relay nodes which ensures some kind of robustness against delays,
without relying on large time-out bounds. Our goal is to design a concretely
efficient protocol based on more realistic network assumptions.

Concretely, we can summarize our main results as follows: 1) We formalize
our communication model in the UC framework by giving an ideal function-
ality, called FSecureRobustRelay, which defines a network where all communication
occurs through relay nodes in a star-like topology and in the presence of a δ-
delaying active adversary which can arbitrarily delay a party’s execution of a
command for up to δ rounds. In addition, we provide a protocol implementing
this ideal functionality. 2) We give a generic secret sharing based MPC protocol
secure against a δ-delaying active adversary that can proceed at the speed of the
fastest parties. Our protocol makes use of an ideal functionality FMult to evaluate
multiplication gates. 3) We instantiate FMult and show that the efficiency of the
resulting protocol is comparable to that of the most efficient protocols in the set-
ting of an honest majority which assume point-to-point channels between each
pair of parties and without delays. In particular, our protocol achieves O(n|C|)
communication and takes advantage of the star-like network topology which
allows to implement broadcast communication essentially for free. In addition,
we give a detailed description of related protocols and highlight the differences
with our approach. 4) Finally, we implement the communication network with
relay nodes in pure Rust and present experimental results comparing its perfor-
mance to that of direct TLS connections between the parties and showing the
practicality of our star-like topology. Additionally, we explore the behaviour of
our network under different settings and the performance of the MPC protocol
built on top of the relays.

We now describe our contributions and techniques in greater detail.

Relays Nodes/Star-Like Network Topology. We consider a star-like topol-
ogy network and build a model for relay nodes. We demonstrate that it is possi-
ble to remove the problem of adversarial control of the relay node by providing
a set of r relay nodes {R1, . . . ,Rr}, instead of just one, such that quality of
service is maintained, after an initial key agreement phase, as long as at least
one relay node is honest. Compared to the White-City protocol, our setting
requires consensus only to set the communication channels (where pairwise keys



MPC with Delayed Parties over Star-Like Networks 175

are distributed), offering a significant advantage compared to other protocols,
like White-City, which requires consensus at every interaction. We provide more
comparison with [23] is given in the full version.

In practice, the value of r can be much less than the number of MPC parties
n. For example, one may allow for r = 2 and have the two relay nodes provided
by two different companies or servers. In such a situation, the adversary can
corrupt one out of the r = 2 relay nodes and we still maintain security.

Fig. 1. Comparison between different topology networks with 4 computing parties
P1, P2, P3, P4: a full network topology, a star-like network with 1 relay node and a
replicated star-like topology with 2 relays.

More formally, we will model a relay node as an ideal functionality, and
have the computing parties P1, . . . ,Pn connected with each other via a repli-
cated star-like network with r relays R1, . . . ,Rr, such that each Pi is connected
only to the relays. The adversary, in practice, has full control of the communica-
tion, through point-to-point, secure authenticated channels, in that it can read
(note not modify) messages sent between honest parties. In Fig. 1, we graphically
compare our model with a full-network topology and a more classical star-like
topology. Notice the relays are not connected to each other and they maintain
an internal state that is updated when interacting with parties.

The benefit of this network model is twofold: a more realistic communication
model and low communication complexity in the MPC evaluation, since it allows
us to reduce the communication between the computing parties, in that they only
need to communicate with the central nodes. We will expand on this below.

Modelling Delays. We consider protocols where one could have a large number
n of computing parties, some of which may be statically corrupt, over a network
topology as described above with r � n. In such a situation it can be the case
that even honest parties Pi may occasionally drop out of the computation and
then come back or be suffering from some kind of delays in the communication.
This could be for legitimate reasons, the need for something to be patched in the
organization, a simple reboot, or it could be via adversarial behaviour, i.e. the
adversary temporarily stops the given party from being part of the computation
via a DoS attack, for example. We note that in these situations the adversary
does not take control of the party, instead we are still in a static and not adaptive
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security model, but the adversary can actively make the party drop out of the
computation for a while (a time interval we denote by δ).

We ensure that our relays, and the MPC protocol we run on top, can cope
with a party dropping out of a computation and then returning to it. This is
why we require that the relays must not simply act as a store-and-forward postal
service, but must maintain some state in order to allow a party to rejoin and
recover messages which they have not received.

More formally, we assume a synchronous network. This means that there
is a publicly-known upper bound on message delays which allow the parties to
follow the protocol specifications based on time. Therefore, the communication
proceeds in rounds, each taking a fixed amount of time, and such that all the
messages sent at the beginning of a certain round are delivered within the same
round. However, we give the adversary the possibility of partially control the
scheduling of the delivery of all messages. Concretely, we allow the adversary
to choose whether a specific command is responded to, or not, by allowing a
delay , i.e., the adversary can prevent the execution of a command for at most
δ rounds. Clearly, without restriction, the adversary would be able to mount an
indefinite denial of service attack but, since our usage of this ability is to model
the situation where a party goes temporarily offline for a short period, we admit
only bounded delays. In addition, the delays are local , i.e., it applies to a single
party Pi and it applies to all the messages passed between Pi and all the relays
R1, . . . ,Rr.

We define an ideal functionality FSecureRobustRelay modelling such a network
with relays and delays and describe a protocol implementing it.

Efficient MPC with Stragglers. A line of research [1–3,8,9,12,15,22], moti-
vated by concrete applications, have proposed MPC protocols supporting a more
dynamic form of participation, with parties that can join and/or leave the compu-
tation. Most of these protocols rely on committees to carry on the computation.

We describe an MPC protocol which allows for parties to recover from
dropped messages without the need for either the relays to maintain a list of all
messages ever sent, or the parties restart the computation from scratch. How-
ever, we adopt a different approach compared to other works. Our protocol will
proceed without waiting for all parties’ message to be delivered in each round,
but rather at the speed of the fastest parties. In particular, a party will progress
through the MPC computation at its own pace, essentially stopping if a delay
is activated. Thus, it can be the case that different parties progress through the
MPC protocol at different rates, a bit like an asynchronous MPC protocol, even
though the underlying communication model is synchronous.

Our main goal is to achieve efficiency by reducing the time-out bound of
rounds and make the whole protocol proceed at the peace of the fastest parties.
We note that a similar approach was also taken by Benhamouda et al. [4]. In
this latter paper is defined the notion of stragglers resilience. Our security goal is
similar, and we will give a detailed comparison both in techniques and efficiency
between this and our work in the full version.
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MPC Techniques. We describe an MPC protocol with computing parties P1, . . . ,
Pn and relays R1, . . . ,Rr, where a malicious static adversary can corrupt up to
tp computing parties and tr relays and control the delays of an arbitrary number
of computing parties, albeit for a limited number of rounds. We provide active
security with abort in the case of a strong honest majority, i.e. tp/2 � n/2.

Our protocol is based on a degree-t Shamir secret sharing scheme, with tp ≤
t < n/2, and can proceed through a computation at the speed of the fastest
2 · t + 1 parties (which could include the tp dishonest ones). This is possible
as the fast parties can rely on the relays to act as a ‘storage’ mechanism to
allow for the slower parties to catch up. We can also easily bound, and try to
limit, the state size which needs to be stored by the relays as a function of the
multiplicative width and depth of the function being computed, and the number
of computing parties.

We first present a generic secret-shared based protocol which makes use of
a multiplication functionality, FMult, to evaluate multiplication gates. The func-
tionality FMult can be instantiated with a multiplication protocol that is secure
up to additive attacks [14]. As observed in prior work, some of the most efficient
passively secure multiplication protocol [10,21] are actually actively secure up
to additive attacks in normal networks, or in networks without a super-honest
majority. Roughly, this means that the only thing a fully malicious adversary
can do is to add fixed values to the output of multiplication gates, and to the
output of the computation. We show that our basic protocol is secure up to
additive internal attacks (additive attacks mounted on the internal wires of the
circuit) in the FSecureRobustRelay-hybrid. Notice to allow input completeness, i.e.
all honest parties’ input being included in the computation, we assume that no
delays occur in the input phase, or alternatively, we could make all the parties
wait until they receive all the n − 1 input messages from all the other parties.

We then compile this protocol to achieve active security with abort. A stan-
dard strategy to do this is to first run the basic passively secure protocol, then
add a verification step aimed to check that all the multiplications were correctly
done and finally reconstruct the output if the check passed. However, this would
imply storing very large states on our relays. Hence, we use the same approach
of Chida et al. [7], also used in Fluid MPC [8] and LeMans [22], and perform two
computations of the circuit, one on secret shared values 〈x〉 and the other one
with randomised versions 〈Δ ·x〉 of the actual values. To avoid maintaining large
states, we proceed like in FluidMPC and incrementally compute the checking
equation during the computation.

We adopt the framework of circuit compilation [8,14], and compile the circuit
C to be evaluated into a new circuit C̃, called a robust circuit , such that when
C̃ is evaluated using a passively secure MPC protocol which is secure up to
additive attacks, it results in a protocol for evaluating the original circuit C
which is actively secure with abort. This view point allows us to bound the state
which needs to be saved by the relays in our protocol.

We note that our notion of state is different from that in Fluid MPC, where
the state needed to be transferred is the entire width of the circuit at any one
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layer, whereas in our situation the state is only the part of the width related to
multiplication gates at that layer. Thus we adopt a slightly different notion of
robust circuit, and associated compiler. This also implies that, although keeping
small states is an important task, it is not as crucial as in committee-based
protocols because we do not need to pass them from one committee to another.
This gives rise to trade-offs between communication and state-complexity.

As a last remark, even if the general strategy we adopt in our MPC protocol
is similar to that used in other works, adapting it to our setting and trying to
maintain low complexity requires a careful design of the basic building blocks. For
example, we show in the full version that if we instantiate FMult with the widely
used Maurer’s multiplication protocol [20], our general construction does not
work anymore. Instead, we provide a simple and efficient instantiation of FMult

using a variant of the multiplicative protocol given by Damg̊ard and Nielsen
[10] (DN protocol), showing that the security of the multiplication and resulting
MPC protocol relies on the robustness of FSecureRobustRelay. In particular, our
network allows a single party Pi to send a value to all the computing parties
in a single command, by simply sending the value to all the relays. This means
that we can remove the “king” from the DN protocol, and instead utilize a
broadcast mechanism to allow all parties to essentially be the king. Since at
least one relay is honest, this broadcast mechanism comes “for free” and ensures
that corrupt parties are forced to send the same value to all honest parties. This
simple observation enables us to prevent the double dipping attack [13,17] on
the DN protocol.

Notice that the fact that it is simpler – and more efficient – for a party to
communicate in a broadcast manner, as opposed to a point-to-point manner,
via the relays means that traditional notions of communication complexity of
protocols may not apply, since, traditionally a broadcast is considered more
expensive than point-to-point communication.

Finally, in the full version, we outline possible optimizations to our basic
construction and give an estimation of the complexity of different strategies.
In particular, we show that our main approach roughly match the communica-
tion complexity of [7], achieving linear communication and a concrete amortized
communication cost of 12/13 field elements per multiplication gate per party. If
we allow the use of PRGs this costs goes down to 8/9 field elements per party.
We also sketch how to further reduce the communication costs to 6 (or 4 with
PRGs) field elements per party using techniques from [5,18,19].

Implementation. While the use of relays results in a more realistic network, it
might introduce additional communication. To evaluate the performance of our
network topology, we implemented protocol ΠSecureRobustRelay, presented in Fig. 4,
in pure Rust, and compared its performance to that of direct communication
between two parties. The results in Sect. 7 show that using relays has no notice-
able impact on the performance when sending up to 219 16-byte messages. Note
that, a 16-byte message can correspond to a finite field element of around 128
bits in size, and thus can represent native data-type for any MPC computation
layered ontop.
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In addition, we analyse how to best configure the network in order to optimise
the communication runtimes. First, we conclude that although erasing each mes-
sage in the relays immediately after retrieval results in slower communication,
erasing them in batches achieves similar performance to direct communication.
On the other hand, never deleting messages not only means the relays might
run out of memory, but also turns out to be slower since the relays must iter-
ate through several messages when answering message request. Second, we show
that a network with more relays has increased security while adding only a small
overhead to the communication time.

A second set of experiments is dedicated to evaluate the performance of the
MPC protocol. We measure the number of multiplications performed in one
second both when parties all run at the same speed and when some of them are
slower than others.

2 Preliminaries

For a set S, we denote by a ← S the process of drawing a from S with a
uniform distribution on the set S. If D is a probability distribution, we denote
by a ← D the process of drawing a with the given probability distribution. For
a probabilistic algorithm A, we denote by a ← A the process of assigning a
the output of algorithm A, with the underlying probability distribution being
determined by the random coins of A. We use [n] to denote the set {1, . . . , n}
and P = {P1, . . . ,Pn} the set of parties.

In the full version we cover the basic definitions of Shamir’s secret sharing,
encryption and circuit depth/width that we will require.

2.1 Communication and Security Model

We summarize here our settings, as previously described. We assume P =
{P1, . . . ,Pn} computing parties and {R1, . . . Rr} relay nodes. Parties are only
connected with relays via authenticated, but not necessarily private, channels
and not with each other and also the relays are not connected with each other.
More formally, we prove security in the authenticated-links model (AM) [6], where
the adversary can only deliver messages that were sent by parties and must
deliver them unmodified. Relays maintain an internal state that is updated when
interacting with parties.

We assume a synchronous network with a publicly-known upper bound (time-
out) on message delays which allows the parties to follow protocol specifications
based on time. Therefore, the communication proceeds in rounds, each taking a
fixed amount of time.

We consider δ-delaying malicious static adversaries which are allowed to
control up to tr ≤ r − 1 relays and tp ≤ t parties, where n ≥ 2t+1. We also give
the adversary the possibility of partially control the scheduling of the delivery of
all messages by allowing it to arbitrarily delay parties by up to δ rounds. This
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means that each party can be delayed more than once during the computation,
but each time only by δ rounds.

We consider security with selective abort , where the adversary receives the
output and determines which honest parties will receive abort and which will
receive their correct output.

2.2 Internal Additive Attacks

Intuitively, an additive attack (Definition 1) is an attack which changes the value
of a gate’s output wire in the circuit by an additive value before the calculation
is performed, i.e. blindly changing a wire from f(x) to f(x) + δa, where f(x) is
the function computed by the gate and δa is a value known by the adversary.

We recall the formal definition of an additive attack. One minor modification
to the definition from [8,14] is due to the check in our protocol for opening a
value, given in Fig. 5, Sect. 4. In particular, since the output wires of a circuit will
be checked via the underlying error-detection properties of the Shamir’s secret
sharing scheme, we restrict to an additive attack only related to the internal
wires of a circuit and not to the output wires. We call such an attack “internal
additive attack” in order to distinguish it from the standard notion of an additive
attack (which also allows the adversary to add a known value to the output wires
of the circuit).

Definition 1 (Internal Additive Attack). Let C : Fn → F
k be a circuit.

An additive attack A by an adversary on the evaluation of the circuit C assigns
an element of F to each of the circuits’ internal wires, i.e. a wire between two
gates ga and gb. Let Aa,b denote the value assigned by the attack to the internal
wire between gates ga and gb. The additive attack changes the calculation of the
circuit as follows: For each internal wire between gates ga and gb, the value Aa,b

is added to the wires value after the calculation of the output of gate ga, but
before the calculation of the gate gb.

3 Relays and Delays

In this section, we present the protocol ΠSecureRobustRelay, which formally describes
how parties and relays securely communicate in presence of bounded delays. The
protocol is given in Fig. 4. It implements the ideal functionality FSecureRobustRelay,
given in the full version.

The protocol ΠSecureRobustRelay uses two main distinct building blocks, namely
the functionalities FSingleRelay and FDelay, that we briefly describe before intro-
ducing our main protocol. This approach allows to first introduce the topology
of our network with relays and then add the possibility of adversarial delays.
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Functionality FSingleRelay(R, P1, . . . , Pn)

This functionality runs with an adversary S, a special party (denoted by R), which
is the relay, and n parties (denoted by P1, . . . , Pn). The functionality maintains
pairwise counters τi,j , for all i �= j, and global counters τi,P for all i ∈ P, and
variables ετi,j ∈ {⊥, 0, 1}, and ετi,P,j ∈ {⊥, 0, 1}.
Upon activation the functionality receives either (−, PI) or (R, PI) from the adver-
sary, where PI ⊂ {P1, . . . , Pn} is the set of corrupt parties, indicating in the first
case that the relay is honest, and the in second case that the relay is dishonest. We
assume |PI | ≤ tp.

Init: On input (init) from all parties the functionality sets all the counters τ ← 0
and ε ← ⊥.

Send: On input (send, R, Pi, Pj , m) from Pi,
1. Send (sent, i, j, m) to R and increment τi,j by one.
2. Set mτi,j ← m and store it. Set ετi,j ← 0.
3. Delete (i, j, m) from the store.

SendToAll: On input (sendToAll, R, Pi, P, m) from Pi,
1. Send (sendToAll, i, P, m) to R and increment τi,P by one.
2. Set mτi,P ← m and store it. Set ετi,P,j ← 0, ∀j ∈ P \ i.
3. Delete (i, P, m) from the store.

Erase: On input (erase, R, Pi, Pj , τi,j) from Pj .
1. Send (erase, Pi, Pj , τ) to R.
2. Set ετi,j ← 1, and delete mτi,j for all τi,j ≤ τ .

EraseAll: On input (eraseAll, R, P, Pj , τ ) from Pj , where τ = {τi,P}i�=j

1. Send (eraseAll, P, Pj , {τi,P}i�=j) to R.
2. Set ετi,P,j ← 1, ∀i
3. For each i, if ετi,P,j = 1 for all j ∈ P, delete mτi,P for all τi,P ≤ τ .

Request: On input (request, R, Pi, Pj , τi,j) from Pj ,
1. Send (request, Pi, Pj , τi,j) to R.
2. If R is corrupt, wait for (Deliver, m̃) from S, send m̃ to Pj .

Else, if ετi,j �= 0 then return ⊥ to Pj , else retrieve mτi,j and send it to Pj .
RequestFromAll: On input (requestFromAll, R, P, Pj , τ ) from Pj , where τ =

{τi,P}i�=j ,
1. Send (requestFromAll, P, Pj , {τR

i,P}i�=j) to R.
2. If R is corrupt, wait for (Deliver, m̃) from S, send m̃ to Pj .

Else, for all i �= j, if ετi,P,j �= 0 then set the ith-coordinate of m to be
equal to ⊥, otherwise retrieve the ith-message corresponding to τi,P . Send
the vector m to Pj .

Figure 2. Functionality modelling a single relay

3.1 A Single Relay

The functionality FSingleRelay, described in Fig. 2, captures all the interactions
between parties P1, . . . ,Pn and a single relay R. The functionality is described by
six commands, other than the initialization command Init, as explained below.
Send. In the send command we let the adversary see the message being sent
even between honest parties and an honest relay. This captures the fact that our
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connections are only authentic. To manage the send commands the functionality
maintains pairwise counters, τi,j , ∀(i, j), that are used to store, retrieve and erase
messages sent from party Pi to Pj . The relay uses the variable ετi,j to indicate
whether the τi,j-th message from Pi to Pj needs to be stored for future possible
retrievals by party Pj . We have ετi,j = ⊥ if the specific message associated to
counter τi,j has not been sent, ετi,j = 0 if the associated message is stored for
future use, and ετi,j = 1 if the associated message is never going to be retrieved.

The variable ετi,j is used to avoid messages being stored indefinitely by the
relay. We allow a receiving party to indicate that the network can erase messages,
and these will never be requested in the future. To indicate which messages are
not going to be retrieved, a receiving party uses the erase command.

Request. Parties use the request command to retrieve a message. The request
is of the form (i, j, τi,j), where party Pj is requesting the τi,j-th message sent
to it by party Pi. The adversary is allowed to replace any sent message, which
has not been erased, to any value it wants, including ⊥, as long as the relay is
corrupt, via the request query. A ⊥ value is returned by an honest relay if the
message has been erased, or it has not yet been received by the relay. Note, the
request command allows an adversarial relay to send different messages for the
same (i, j, τi,j) tuples for different request queries.

SendToAll. Similarly, a party Pi can also send a message to all the other parties
(or even a subset of P), by just sending a single message to the relay. This
is captured by the sendToAll command. To manage these, the functionality
maintains ‘global’ counters, τi,P and ετi,P,j

, ∀i, j ∈ P, used to store, retrieve and
erase messages sent from Pi to all parties in P \ Pi. The sendToAll command
is paired with requestFromAll and eraseAll commands in order to manage
these sent messages.

RequestToAll. The command requestFromAll allows a single party Pj to
retrieve messages from all parties. To ease the exposition, we only allow this
command on global messages with counters τi,P , for all i. It can be used by Pj

to obtain all the n − 1 messages mτi,P , for i �= j. This command will retrieve a
vector of messages, one from each sending party. If a specific message has not
yet been received by the relay, then ⊥ is returned in this location.

Erase EraseFromAll. The relaying party R only stores messages for which ετi,j

(resp. ετi,P,j
) is not equal to one. Notice that, the relay R does not delete the

message on retrieval (by setting ετi,j = 1) since the receiving party may wish to
request it again (in the case of it failing for some reason during the execution of
the request command). Relays delete messages only when they are instructed
to, which happens when either erase or eraseAll are called.

An implementation of this underlying functionality FSingleRelay is immediate,
in that the relaying party R just needs to maintain a list of messages sent, which
may be requested in future, and it needs to maintain authenticated links with
all parties.
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Functionality FDelay(P1, . . . , Pn, R1, . . . , Rr, δ)

This functionality runs with an adversary S, n parties, denoted by P1, . . . , Pn, and
r relays, denoted by R1, . . . , Rr. In addition as input it takes a parameter δ ∈ N.
Further, it stores δi ≤ δ for each i ∈ [n].

Init: Set δi ← ⊥ for all i ∈ [n].
Delay: On input (delay, Pi, command):

– If δi = ⊥: Send (delay, i) to S and wait for input.
– If S returns (delay, Di) and 0 < Di ≤ δ, then

1. Send (delayed, Di) to S.
2. Set δi ← Di.

– If S returns (delay, Di) and Di ≥ δ, then
1. Send (delayed, δ) to S.
2. Set δi ← δ.

– Else, send ok to Pi

– If δi �= ⊥:
1. Set δi ← δi − 1.
2. If δi = 0: send ok to Pi

Figure 3. Functionality modelling delays

3.2 Modelling Bounded Delays

We now turn to modelling the bounded-delay communication setting for our
main protocol. This is captured by the functionality FDelay given in Fig. 3. It is
parametrized by a constant δ and it works by querying the adversary, who can
then impose a delay bounded by δ. This means that, as soon as a party has
been delayed for δ rounds, the next command will proceed. More in details, once
the functionality is called with (delay,Pi, command), where command represent a
specific action that Pi is trying to execute, we distinguish two different cases. If
δi = ⊥, it means that Pi is not currently delayed. Hence, the functionality sends
a message (delay, i) to the ideal adversary S. If S replies with (delay,Di), then
the functionality sets δ = Di, meaning that Pi will be delayed for Di rounds,
otherwise returns ok to Pi. If otherwise δi �= ⊥, Pi has been already delayed, so
the functionality sets δi ← δi − 1, and if the resulting δi is 0, it sends ok to Pi.

In a real world implementation, as communication is essentially synchronous,
if a party does not receive a valid response (e.g. a message or an ok signal) after
a request, then they interpret this as a delay. Note, that the delay is local for a
party Pi, it does not depend on the specific corresponding party Pj . However, it
does apply for all messages passed between Pi and all of the relays R1, . . . ,Rr.

In addition, we require that parties are delayed only for a limited number
of rounds; if we removed this condition, and set δ = ∞, then the resulting
functionality would produce something akin to an asynchronous network, which
would result in some changes needed to the resulting MPC protocol which we
run on top of our relays.
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As remarked, the delays model the fact that parties can execute the protocol
at different speeds, and can reboot themselves or go offline for a short period.
We give the adversary the ability to control this operation.

3.3 Implementing a Secure Robust Relay Using Multiple Single
Relay’s

We can now formally describe our star-like topology where n parties, instead
of relying on a single relay, rely on a set of relays, assuming at least one of
them is honest. We show that, once each party has agreed pair-wise keys for an
AEAD encryption scheme with each other party, then a robust relay protocol
can be implemented, assuming only one honest relay and without expensive
consensus procedures. We could assume these keys are pre-distributed, however
for completeness in the full version we present how the parties can execute a
key agreement protocol over a set of relays, as just defined. However, to do so
requires that a majority of the relays is honest.

We stress that AEAD encryption is only used on point-to-point channels,
i.e. with the send command. Looking ahead, our MPC protocol only relies on
sendToAll, which works like a public broadcast in a normal MPC protocol and
does not require encryption.

Protocol Intuition. The protocol ΠSecureRobustRelay has an initialization phase
where parties call the key-exchange functionality FKE. To send a message mi,j to
Pj , a party Pi first encrypts the message and then waits for an ok message from
the network. This model the fact that Pi might be either temporarily offline,
for example for a reboot, or delayed by the adversary. When ok is received, it
sends the ciphertext cti,j ← Encki,j (mi,j) to all the relays. Each relay stores the
ciphertext, and makes it available for a later request from Pj . Note that if Pi is
honest, then all the relays have the same ciphertext cti,j stored. When Pj wants
to get this message, again it waits for an ok message from the network, and then
requests these ciphertexts to all the relays. Intuitively, security is guaranteed by
the following argument.

– If both Pi and Pj are honest, and Pj requests a message sent by Pi, it receives
cti,j from the honest relays, which will decrypt to the input message mi,j

sent by Pi. Note that corrupt relays can send arbitrary messages/ciphertexts,
however, since they do not know the secret key ki,j , these messages are either
invalid ciphertexts or ⊥. For this reason, Pj will always receive the correct
message.

– If Pi is honest and Pj is corrupt, then Pj can output whatever they want. It
can also abort after it decrypts the message mi,j sent by Pi.

– The case of Pi, Pj both corrupt is similar to the previous one.
– If only Pi is corrupt, then it can send arbitrary values to the relays during

the send command. However, if Pi is colluding with some of the corrupt
relays, then it can make an honest Pj accept a value that was not previously
stored. This can happen for example when the honest relays reply ⊥ on a
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Protocol ΠSecureRobustRelay(R1, . . . , Rr, P1, . . . , Pn, δ)

Let H be a hash function modelled as a random oracle and E = (KeyGen,Enc,Dec)
an AEAD encryption scheme that uses FKE as key-exchange functionality.

init: Each pair of parties (i, j) call the functionality FKE obtaining ki,j .
send: When Pi wishes to send a message m to Pj :

1. Pi computes ct ← Encki,j (m) and sends (delay, Pi, (send, Pj)) to FDelay

until it receives an ok message from the functionality.
2. When Pi receives ok, it calls (send, Rk, Pi, Pj , ct) on FSingleRelay, ∀k ∈ [r].

sendToAll: When Pi wishes to send a message m to all other parties:
1. Pi sends the command (delay, Pi, (sendToAll, P)) to FDelay until it receives

an ok message from the functionality.
2. When Pi receives ok, it calls (send, Rk, Pi, P, m) on FSingleRelay ∀k ∈ [r].

request: When party Pj wishes to get the message from Pi with index τi,j , Pj

sends (delay, Pj , (request, Pi)) to FDelay until it receives an ok message from
the functionality.
1. When Pj receives ok, it calls (request, Rk, Pi, Pj , τi,j) on FSingleRelay, for

each k ∈ [r], obtaining ctk for k ∈ [r].
2. Check: Party Pj performs the following check

– If, for all values of k, ctk = ⊥ then return ⊥ //it might be that the
message has not yet been sent by party Pi.

– Else, for each k such that ctk �= ⊥, compute mk ← Decki,j (ctk).
– If there is a unique mk �= ⊥ then accept this value.
– Else, if there is more than one value mk �= ⊥, then abort.

requestFromAll: When party Pj wishes to get n − 1 messages from P \ Pj with
index τi,P , i �= j, Pj sends (delay, Pj , (requestFromAll, P)) to FDelay until it
receives an ok message from the functionality.
1. When Pj receives ok, it calls (requestFromAll, Rk, P, Pj , τ ), where τ =

{τi,P}i�=j , on FSingleRelay, for each k ∈ [r], obtaining mk, k ∈ [r].
2. Check: Party Pj performs the following check for each coordinate of the

received vectors mk = (mi,k)i�=j .
– If, for some values of k, mi,k = ⊥, then set mτi,P = ⊥.
– Otherwise, if there is a unique mi,k �= ⊥, for all k, then accept this

value; else, if there is more than one value mi,k, for different k, such
that mi,k �= ⊥, then abort.

erase: When Pj wishes to erase messages from Pi:
1. Pj sends (delay, Pj , (erase, Pi)) to FDelay until it receives an ok message

from the functionality.
2. When Pj receives ok, it calls (erase, Rk, Pi, Pj , τi,j) on FSingleRelay ∀k ∈ [r].

eraseAll: When Pj wishes to erase messages from P:
1. Pj sends (delay, Pj , (eraseAll, P)) to FDelay until it receives an ok message

from the functionality.
2. When Pj receives ok, it calls (eraseAll, Rk, P, Pj , τ ) on FSingleRelay for each

k ∈ [r], where τ is a vector of counters (τi,P)i�=j .

Figure 4. Protocol ΠSecureRobustRelay



186 M. Gama et al.

request command from Pj , while the corrupt ones send valid ciphertexts
corresponding to a unique message m. This is possible since in this case the
key ki,j is known to the relays in RI , i.e., the set of corrupt relays. This means
that a corrupt sender cannot change a value that was previously stored by
the honest relays, but can input a new value if no previous value was stored
in Rk, k �∈ RI .

When a party Pi wants to send a common message to all parties, via
sendToAll, it does not encrypt the message but simply sends it to all the relays
via authenticated links. Similar to the previous case, we show that, since we
assume at least one honest relay, the output of the request step, if the receiving
party Pj is honest, either is the value actually sent and stored in the relays or
Pj outputs abort. Note that this time we do not allow the adversary to send
values that are not stored in all the relays, so a message is not accepted unless it
is the only valid message stored in all the relays. Similarly, we extend request
to requestFromAll allowing a party Pj to request messages from all other par-
ties. The security of it can be proven by applying the same arguments given for
request to each of the messages that Pj is retrieving. More formally, we prove
the following theorem. For the proof see the full version.

Theorem 1. The protocol ΠSecureRobustRelay securely with abort realizes
FSecureRobustRelay in the {FSingleRelay,FDelay, FKE}-hybrid model.

4 MPC Building Blocks

We describe our MPC protocol via a set of standard MPC functionalities and
sub-protocols which utilize FSecureRobustRelay to implement the communication
between the parties. We let PI denote the set of computing parties which are
adversarially controlled, i.e. PI ⊂ {P1, . . . ,Pn}.

We recall that in our protocols, both parties P and relays R maintain pairwise
and global counters and variables, as described in the previous section. To ease
the exposition, we describe our protocols implicitly assuming that each message
is associated with its counter.

In describing our protocols in the FSecureRobustRelay-hybrid model, we present
each command as separate send, sendToAll, request and requestFromAll
commands. However, evaluating each layer of the circuit (bar those at depth
zero) consists in each party executing a set of send/sendToAll commands fol-
lowed, by a set of request/requestFromAll commands. In terms of the under-
lying synchronous communication model upon which the relays are built, a
send/sendToAll command passed to the r-relays from party Pi is executed
in one round. This means that, if Pi wants to send a message to Pj and there
are no delays, then the send from Pi to all of the Rk’s terminates within the
same communication round. However, two consecutive send commands by party
Pi destined for Pj and Pk will take up two rounds in the underlying synchronous
communication model.



MPC with Delayed Parties over Star-Like Networks 187

Sub-protocol Open(j, 〈x〉)

Input: Each party Pi holds a share xi of the unknown value x. We denote by ctxi

the ciphertext corresponding to xi according to an AEAD encryption scheme.
Output: Pj obtains x

Open(j, 〈x〉t):
1. For all i ∈ [n], j �= i Pi calls (send, Pi, Pj) on FSecureRobustRelay, inputting a

vector x after receiving ok, where x is the vector consisting of r-values ctxi

and r is the number of relays. Let the associated τ value for these messages
be τi,j .

2. Pj runs the sub-protocol y ← Receive(j, 2t) below.
3. Pj forms the set M of all indices for which yi �= ⊥, and the vector xM of

values yi �= ⊥.
4. Pj computes P M · xM and outputs abort if the result is not equal to 0,

where P M is the parity check matrix, restricted to the set of parties M.
5. Party Pj computes x ← rM · xM, where rM is the recombination vec-

tor restricted to the parties in M, and returns this as the output of the
procedure.

Figure 5. Procedure to open a sharing 〈x〉 towards a single party Pj or to P

We will make use of the following sub-protocols and functionalities.

Sub-protocol Open(i, 〈x〉t). Described in Fig. 5, it takes a shared value 〈x〉t

and opens it to Pi .
Sub-protocol Open(〈x〉t). It takes a shared value 〈x〉t and opens it to all parties
P. The cost of Open(〈x〉t) and Open(i, 〈x〉t) is r field elements per party, where
r is the number of relays.
Sub-protocol Receive(i, ι). It is described in Fig. 6 and allows party Pi to
receive a vector y of shares/values via a number of request to FSecureRobustRelay.
The second input parameter ι, indicates the minimum number of shares Pi

needs to receive to complete the command. Notice, in Receive(i, ι) after executing
enough request commands to complete the recovery of the secret shared value,
we then execute erase commands for all other parties. Thus data which has
been received is deleted on the relays, and data which is not received for this
round is not stored by the relays when they do eventually receive it. These
erase commands could be executed every so often, and not every execution of
Receive(i, ι), as they increase the number of underlying rounds needed. However,
the less one executes them, the more data needs to be stored by the relays.
Thus there is a trade-off, and we settle on executing the erase commands for
every Receive(i, ι) for expository purposes. It can be modified to obtain the sub-
procedure ReceiveFromAll(i, ι) by using the requestFromAll to FSecureRobustRelay.
Notice that both variants allow the receiving parties to proceed as soon as they
have received 2 · t + 1 shares, hence they do not need to wait for the full set of
n shares.
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Sub-protocols Receive(j, 〈x〉) and ReceiveFromAll(j, ι)

Receive(j, ι):
1. Party Pj initializes a vector y of length n containing ⊥ in each location,

bar location j where it places the value xj .
2. Pj repeats the following step until the vector y contains at least ι non-⊥

values:
(a) For i ∈ [n], if yi = ⊥ then call (request, Pi, Pj) on FSecureRobustRelay,

inputting τi,j after receiving ok, to obtain the value xi. If the function-
ality return abort, then abort, otherwise place xi in position i in the
vector y.

Note, this may take many iterations since party Pj may possibly not yet
have sent its message yet, or the adversary may be delaying messages.

3. Party Pj calls (erase, Pi, Pj) on FSecureRobustRelay, inputting τi,j on receiving
ok, for all parties Pi.
This ensures that data on relays is either deleted, or not stored if it is not
going to be called for.

ReceiveFromAll(j, ι):
1. Party Pj initializes a vector y of length n containing ⊥ in each location,

bar location j where it places the value xj .
2. Pj repeats the following step until it receives at least ι non-⊥ values:

(a) Call (requestFromAll, P, Pj) on FSecureRobustRelay, inputting τ = (τi,P)i

after receiving ok, to obtain the values (xi)i�=j . If the functionality
return abort, then abort, otherwise place (xi)i in position i in the vector
y, for each i.

Note, this may take many iterations since party Pj may possibly not yet
have sent its message yet, or the adversary may be delaying messages.

3. Party Pj calls (eraseAll, P, Pj) on FSecureRobustRelay, inputting τ = (τi,P)i

on receiving ok, for all parties Pi.
This ensures that data on relays is either deleted, or not stored if it is not
going to be called for.

Figure 6. Sub-Procedures to open a sharing 〈x〉

Sub-Protocol ΠInput(i). It is a data-input sub-protocol given in Fig. 7. It requires
that all parties are in consensus about the value broadcast by party Pi, thus we
need all parties to terminate Input(i) before proceeding. This is unlike other parts
of our MPC scheme, which allow faster parties to continue with the computation,
i.e. they do not need to wait for all other parties to terminate the protocol. The
communication cost of the protocol is ≈ 2 · r field elements per party for each
input, where r is the number of relays, plus a call to FRand.
Functionalities FRand and FCoin. When the number of parties is small, we will
use the relatively standard functionality FNI

Rand, described in the full version. It
generates a random degree-t Shamir sharing 〈r〉t in a non-interactive manner.
In the full version, we also discuss how we proceed for larger values of n and
tp, and describe a protocol ΠRand that implements the interactive functionality
FRand in the FSecureRobustRelay-hybrid model. The amortized communication cost
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Sub-protocol Input(i)

Input: Party Pi holds a secret value x
Output: Parties in P hold 〈x〉t

This protocol assumes δ = 0.

1. All the parties call FRand for a new counter value cnt and obtains a sharing 〈v〉.
2. Pi runs Open(Pi, 〈v〉), to obtain the random value v. If the output is abort,

then Pi outputs abort.
3. Pi computes w ← x − v and calls Fδ=0

SecureRobustRelay on (sendToAll, Pi, P),
inputting a vector w consisting of r-ciphertexts ctw.

4. Each Pj , for Pj �= Pi, calls (request, Pi, Pj), inputting τ on receiving ok, for
the requisite value of τ .

– If this returns ⊥ then party Pj aborts.
– If a value w is returned then call (erase, Pi, Pj), inputting τ on receiving

ok.
5. The parties set 〈x〉 ← 〈v〉 + w.

Figure 7. Sub-protocol Input(i) to enable party Pi to enter a secret value x into the
computation.

of ΠRand is n−1
n−t−1 . In the full version, we also explain how to produce a proto-

col implementing a functionality FDoubleRand, which produces a random double
sharing (〈r〉t, 〈r〉2t), and a protocol to implement a functionality FCoin, which
generates a common random value.

4.1 Multiplication Protocols

Functionality FMult

Let PI be the set of corrupt parties and PH = P \ PI the set of honest parties.
On input (Multiply, P ′, idx, idy, idz), where P ′ ⊆ P, and idx, idy are present in
memory. Retrieve the values x, y. Send (Multiply, P ′, idx, idy) to S along with
corrupt shares, and wait for a reply. We can have the following cases:

– If S sends (abort, Ĥ), forward abort to Ĥ ⊆ PH

– If S sends (Done, P̂, δa, {zi}i∈PI ), compute x · y + δa, construct a full sharing
〈z〉t using x · y + δa and {zi}i∈PI and distributes it to the honest parties in P̂.
Moreover, store (idz, 〈z〉t).

– If the adversary sends (Done, Ĥ), retrieve the (idz, 〈z〉) and sends {zi}Ĥ to

parties in Ĥ.

Figure 8. The functionality FMult secure up to additive attacks

In our main MPC protocol we will use the ideal functionality FMult (given
in Fig. 8) to evaluate multiplication gates. FMult takes two sharing 〈x〉t and 〈y〉t
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present in memory and outputs a sharing 〈z〉t = 〈x · y + δa〉t, where δa is a value
chosen by the adversary.

FMult is a delayed functionality and it works as follows. It takes as input 〈x〉t

and 〈y〉t. When a subset P ′ ⊆ P of parties calls the functionality, FMult sends a
message to the ideal adversary S. The ideal adversary S emulates FSecureRobustRelay

and controls all the communications between the computing parties and relays
receiving delay messages from the adversary A. In the simulation, every time a
party Pi, or a subset of parties P̂, is able to request enough shares to compute
the shared output of the multiplication gate, S checks if these shares are valid.
If this is the case, it extracts the error δa that could have been introduced by
A and forward the value δa, along with corrupt shares {zi}i∈PI

to the function-
ality which constructs a valid sharing of x · y + δa consistent with the corrupt
shares obtained by S. In addition, the functionality stores 〈z〉t. If S detects same
inconsistency in the output shares, then it sends an abort message to the func-
tionality, together with the set of honest parties that in the simulation received
those shares. Finally, when slower parties successfully conclude the evaluation
of the multiplication gate, S just communicates to the functionality the indices
of those parties, that will receive their consistent shares from FMult.

Crucially, since the 2t + 1 or more shares used by the “fastest parties” to
evaluate the multiplication gate are stored in the relays and used also by the
slower parties later in the protocol, these shares fix any (potential) malicious
behaviour. Indeed, if the first parties output abort when they reconstruct their
shares, also slower parties that are going to use the same shares will output
abort; on the other hand, if the fastest parties successfully evaluate the gate,
then the shares used by those fix the (potential) additive error, so that the next
set of parties concluding the gate evaluation either output the same value (and
additive error) or abort.

The protocol ΠMult1 (Fig. 9), which we use to implement FMult, is an adapta-
tion of [10,16] and requires a communication of only r field elements per party,
plus the cost of generating random 〈r〉t and 〈r〉2t, that can be amortized as we
have seen before.

Recall, the DN was proven to be insecure (i.e., not private) in the case of MPC
protocols with strong honest majority via the double-dipping attack. However,
in our setting, the double-dipping attack does not work anymore because corrupt
parties have to send the same share (that can be incorrect) to all honest parties
and, moreover, we do not have a special computing party playing the role of
the king. We will prove this in the next lemma, showing that the view of the
adversary controlling up to tp ≤ t parties is independent from honest parties’
shares. For the proof see the full version.

Lemma 1. The protocol ΠMult1 described in Fig. 9 securely with abort imple-
ments the functionality FMult in the {FSecureRobustRelay, FRand}-hybrid model
against a malicious adversary corrupting up to t < n/2 computing parties and
r − 1 relays.
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Protocol ΠMult1

Input: 〈x〉t and 〈y〉t. Also we need random 〈r〉t and 〈r〉2t

Output: 〈z〉t, s.t. z = x · y

Init: Parties call FDRand to obtain 〈r〉t and 〈r〉2t.
Mult: 1. Each party locally computes 〈v〉2t = 〈x〉t · 〈y〉t + 〈r〉2t

2. Each Pi calls FSecureRobustRelay on (sendToAll, Pi, P).
After receiving ok, Pi inputs its share value vi.

3. Each party Pi runs the sub-protocol ReceiveFromAll(i, 2t+1) to obtain the
shares vj , j �= i.
Note, each party has to receive 2 · t+1 shares, 2 · t are not enough to ensure
the simulation is correct.

4. Parties reconstruct v = x · y + r and locally compute 〈z〉t = v − 〈r〉t.
Note, on reconstruction the parties may notice that the sharing is not a
degree 2 · t sharing, in which case they abort.

Figure 9. Protocol ΠMult1 to compute 〈z〉t.

5 MPC Secure up to an (Internal) Additive Attack Using
Secure Robust Relays

In this section, we show how to run an MPC protocol with an honest majority
using the network model described in the previous sections, i.e., according to the
functionality FSecureRobustRelay, which is secure up to a form of additive attack.
Assuming only adversaries which do not delay messages, this is relatively simple1,
thus our main challenge is to efficiently deal with delays. Our protocol will allow
the parties not being delayed, (or being delayed less) to proceed without waiting
messages from the slowest parties and as soon as they have the required 2 · t + 1
values from other parties. Any messages that are sent to the delayed parties will
of course be stored in the relays until they are needed. As an extreme example,
assuming a large enough number of participating parties, a party could simply
send no messages, wait for the other parties to finish the computation, and
then request all of the messages from other parties to compute the output for
themselves.

5.1 The δ-iaa MPC Protocol in the FSecureRobustRelays-Hybrid Model

The protocol ΠPMPC to securely (up to internal additive attacks) evaluate a
randomized arithmetic circuit C over a finite field F is given in the full version.
At a high level the protocol proceeds in three stages: an input stage, that is
instantiated with the sub-protocol ΠInput, described in Fig. 7, and with calls to
the ideal functionalities FRand and FDRand, an evaluation stage, consisting in
the evaluation of linear and multiplicative gates, and an output stage, where

1 No delays means that the relays function like a regular point to point network on
which one can run general MPC protocols.
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parties call the sub-protocol Open, given in Fig. 5. We start with a protocol
ΠPMPC that evaluates a (randomized) circuit C in the FSecureRobustRelay-hybrid
model with security against δ-delaying passive adversaries, except for an actively
secure input step without delays, i.e. with δ = 0. We show that, when ΠPMPC is
executed in the presence of an active adversary, it computes a circuit C ′ that is
the same as C up to some internal additive attacks. The key point is that, if the
actively secure input protocol completes, then we know that the share values in
the input gates are correct and the output gates are self-authenticating in that
ΠOpen will output abort if the input shared value is not a valid Shamir sharing.
Thus the only place where the adversary can introduce errors, and avoid an
abort, is by transmitting the sharing of the wrong value in the multiplication
protocol. This wrong value will equate to the adversary introducing a known
error, as per Definition 1.

Note that, whilst the underlying network is synchronous and the underlying
MPC protocol proceeds in what looks like “rounds” of interaction, due to the
delays, the parties can actually be at different rounds of the MPC protocol at
the same point in time.

More formally, we prove in the full version the following theorem.

Theorem 2. Given a randomized circuit C, the protocol ΠPMPC for computing
C is secure against any δ-delaying passive adversary controlling up to t < n/2
parties and r − 1 relays in the {FDoubleRand, FRand,FMult, FSecureRobustRelay}-hybrid
model. In addition, ΠPMPC securely evaluates a circuit C ′ with abort against δ-
delaying active adversaries controlling up to t < n/2 parties and r − 1 relays,
where C ′ is a corruptible version of C that additionally takes an input A, which
specifies an additive attack on each internal wire of C from the adversary, and
outputs the result of the additively corrupted C as specified by A to a subset
P̂ ⊆ P of parties.

In the full version we also examine the effect of delays on the state size needed
to be held by a relay in the best case of no delays, the worst case and the case
of random delays. We present a simulation for the case of random delays which
models the state size of the relays and the round in which the MPC protocol
terminates, when evaluating a circuit of a given multiplicative depth.

6 Actively Secure MPC-with-Abort Using Secure Robust
Relays

In Fig. 10, we give our functionality FDelayedMPC, with the associated implement-
ing protocol ΠDelayedMPC, being given in Fig. 11. Intuitively, the functionality
presents a variant of the standard active-with-abort MPC security definition,
modified to the situation where we have delays, so that some subset of parties
can conclude the evaluation before others. In the previous section, we presented
a protocol ΠPMPC which achieves security up to δ-internal additive attacks. In
this section, we compile the prior protocol into one which does not allow internal
additive attacks. This is done by following the same approach described in [14],
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in which it was proved that every circuit C can be compiled to a robust circuit
C̃, i.e., the circuit itself protects the protocol against internal additive attacks.
Therefore, we simply apply ΠPMPC to a robust circuit and prove that this is
enough to achieve our goal.

Functionality FDelayedMPC(P1, . . . , Pn)

The functionality runs with parties P1, . . . , Pn and an adversary S. Let C be a
(randomized) arithmetic circuit

Initialise: On input (init,F) from all parties, if (init) was received before then
ignore the command, otherwise store F.

Evaluation: The functionality receives input from parties and adversary. Evaluate
the circuit C and compute the output. Send the output to S.

Output: The functionality wait an input from the adversary. When S sends
(abort, Ĥ), send abort to honest parties Ĥ ⊆ PH ; when S sends (Done, P̂),
send the output to honest parties in P̂.

Figure 10. The delayed MPC functionality

Protocol ΠDelayedMPC

The protocol takes as input a randomized arithmetic circuit C and the correspond-
ing robust circuit C̃. The protocol executes all the gates at a given depth in par-
allel. We proceed from depth zero to depth d. The depth zero gates consist of
input, random-input and linear gates. At depth greater than zero there are linear,
multiplication and output gates.

Evaluation: Parties evaluates the robust circuit C̃ on their private input using
Shamir’s secret sharing scheme to run the protocol ΠPMPC.

Output: This is the final stage of the protocol and parties P̂ ⊆ P reaching this
point hold the output of C̃, i.e. 〈z〉t = 〈y + c · Z〉t and 〈T 〉t = 〈β · Z〉t.
1. Each Pi ∈ P̂ runs Open(〈T 〉) and Open(〈z〉) to obtain the values T and z.

If either of these protocols outputs abort then output abort.
2. If T �= 0 then output abort, otherwise return z.

Figure 11. The protocol ΠDelayedMPC for secure delayed MPC

Unlike [14], we do not need to compile into the robust circuit an error cor-
recting code, since this comes “for free” with Shamir’s secret sharing. Thus our
definition of a robust circuit differs slightly from the one in [14] and it is perhaps
closest to the definition given in [8] even if we do not need to preserve each wire
value in the state across committees, therefore our definition becomes simpler
than that considered in [8].
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Definition 2 (Robust Circuit). Given an arithmetic circuit C for a func-
tionality f of depth d and width w = max{w1, . . . , wd}, a robust circuit C̃ cor-
responding to C is a circuit that realizes the functionality f̃ that computes:

Original output: Compute y = C(x) for some inputs x.
Random values: Sample random values Δ,β, αk,l ∈ F, where each αk,l is
associated to the k-th multiplication gate at depth l, and c ∈ F

|y|.
Linear Combinations: Computes the following linear combinations

u =
d∑

l=1

(
wl∑

k=1

αk,l · zk,l

)
,

v =
d∑

l=1

(
wl∑

k=1

αk,l · (Δ · zk,l)

)
,

where zk,l corresponds to the output of the k-th multiplication at depth l.
Zero Check Value: Compute Z = Δ · u − v.
Final Output: Output (z, T ) = (y + c · Z, β · Z).

A robust circuit can be computed from a standard circuit with a small increase
in depth and a linear increase in the width, as the following lemma demonstrates.

Lemma 2. Any arithmetic circuit C for functionality f , with input x, output
y, depth d and width w, can be transformed into a robust randomized circuit
C̃ for functionality f̃ of Definition 2 of depth d + 4 and maximum width 4 · w,
assuming |x| ≤ w.

The proof of this lemma and a more intuitive description of how a robust circuit
is evaluated is given in the full version. Given this lemma, we can now prove
that if we evaluate a robust circuit C̃ corresponding to a (randomized) circuit C
using the protocol ΠPMPC described in the previous section, we obtain an actively
secure protocol with abort implementing the ideal functionality FDelayMPC for C,
where the communication can be adversarially delayed by the adversary and
modelled using relays.

This discussion is formalised in the following theorem, which is proved in the
full version. In the full version, we also give an informal intuition of why the
final check can be performed even in presence of delays and without requiring
additional randomness for slower parties.

Theorem 3. Let C̃ be the robust circuit over F corresponding to C (according to
Definition 2). The protocol ΠDelayedMPC in Fig. 11, computing C̃, securely imple-
ments FDelayedMPC with abort against a δ-delaying active adversary corrupting up
to t < n/2 parties and r − 1 relays, except with probability 3/|F| in the {FRand,
FSecureRobustRelay, FMult}-hybrid model.

A complete proof can be found in the full version. Intuitively, however, the
security of the protocol follows from the security of ΠPMPC and the zero-check
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provided by the robust variant of C. Note that, while corrupt parties can always
output abort, if an honest party Pi outputs abort in the final stage of ΠDelayedMPC,
either they received inconsistent shares in one of the openings or the check did
not pass. Since, in both cases, the shares causing abort are stored in the relays
and cannot be changed, this means that all honest parties concluding the pro-
tocol after Pi will also output abort. If, on the contrary, the check passed, then
finishing parties P̂ open the correct value y except with negligible probability.
An important observation is that, when more parties will finish the circuit evalu-
ation, they are going to use the same shares and randomness used by a previous
set of parties in the zero-check, rather than additional shares, which in general
could be problematic. However, as noticed in the previous section, a malicious
behaviour of A is somehow fixed by the first 2t + 1 shares stored in the relays,
because these shares cannot be changed any more if at least one of the relays is
honest. Therefore, if there is an additive attack on the output of a multiplication
gate, this must be reflected in the first 2t + 1 shares revealed, otherwise when
more shares of the output value are sent to the relays, and later to the parties,
inconsistencies will be noticed by honest parties. More concretely, this implies
that if the first subset of honest parties P̂H successfully finish the protocol, then
slower honest parties either output the same correct value or they abort the com-
putation. In the full version we also give an estimation of the communication
complexity of our protocol and discuss further optimizations.

7 Experiments

We present two forms of experiments. The first evaluates the networking per-
formance of the relays. We investigate the difference multiple relays have on
performance, as well as the communication slowdown induced by the relays’
existence. The second set of experiments evaluates the performance of the MPC
protocol built on top of the relays. Here we measure performance by the number
of multiplications per second that can be performed. Precise numerical values
for the main results presented in this section are given in the full version.

7.1 Networking Experiments

We now provide a more detailed explanation of our implementation of the pro-
tocol ΠSecureRobustRelay, as well as the results of our experimental evaluations. To
maximise the degree of concurrency, asynchronicity and parallelism, we used
the tokio framework. For high-performance and manageable communications
between the parties and relays, we used the tonic framework to employ gRPC,
which is a remote-procedure-call framework that uses Protocol Buffers (known
as protobuf) for data serialisation. We used the RustCrypto crate for standard
cryptographic primitives, such as the AES256-GCM-SIV authenticated encryp-
tion scheme and the CMAC-AES256 message authentication code (MAC) algo-
rithm. We ensure that our deployment takes advantage of AES hardware accel-
eration, namely AES-NI.
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In the following experiments, the relays are run on identical machines with
an Intel i9-9900 CPU and a 128 GB RAM. The parties communicating through
the relays run machines with an Intel i7-770 CPU and a 32 GB RAM. The ping
time between all of the machines is 1.003 ms.

We examine the case of both the send and request commands and the
sendToAll and requestFromAll commands; we refer to the former as the “p2p
experiments” whereas the latter we refer to as the “broadcast experiments”. The
send and request commands have potentially more overhead, since the sending
party needs to encrypt and the receiving party needs to decrypt.

Data Structures. The data structures used to implement the different message
stores in the relays are different depending on whether we are considering p2p
or broadcast communication.

For the p2p messages, the relays use multi-value maps to store the messages
exchanged between party Pi and party Pj . At runtime, there are n · (n − 1)
entry lists in the map for all uni-directional channels. For each entry (Pi,Pj),
the map stores a list of messages sent by Pi to Pj . Each message is composed of
a round number, an encrypted message payload and a MAC for authentication
between parties and relays. Since the relays should be capable of handling many
requests concurrently in a multi-threaded setting, the multi-value map should be
resilient against the problems caused by concurrent accesses. We used the evmap
crate for this purpose. The crate evmap offers lock-free, eventually consistent,
and concurrent read handles. Our protocol requires many reads since parties
continuously invoke the request command until a new message is retrieved.
However, the write handles in a multi-writer setting require a mutex for thread
safety. As a result, writing operations will be considerably more expensive than
reads.

For the broadcast messages, multi-value maps are again used through the
evmap crate, and the messages contain the same information. However, since
each message is now meant to be received by all the other parties, messages are
no longer stored according to the corresponding (Pi,Pj) pair, but to their counter
(or round number). Thus, for each counter, the map stores a list of messages sent
by the different parties during that same round. Note that every time we erase
broadcast messages, we always erase all the messages associated with the same
counter. Hence, erasing messages will correspond to deleting entries from the
map.

Experiments. We identified four key experimental setups that we wanted to
investigate, which we label as DP, E0, E1 and Ek.

– DP : This experiment used no relays between the parties. Parties communicate
directly, and all communications are protected by TLS.

– E0 : This experiment used relays to establish indirect communications
between the parties. Parties request messages without removing them from
the relays.
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– E1 : This experiment had the same setting as E0, but parties immediately
remove each message after retrieval, i.e. the removal batch size is one.

– Ek : This experiment is similar to E1, but parties issue erase commands after
retrieval of k > 1 messages, i.e., the removal batch size is k.

For the p2p experiments we considered the case of only two communicating
parties: a sender and a receiver. The sender sends a predetermined number of
messages one by one, either directly to the receiver (in DP) or to all the relays
(in E0, E1 and Ek). In DP, the receiver passively waits until all the expected
messages were received and the runtime is measured on the sender’s side as the
time taken to send all the messages. In the experiments with relays (E0, E1 and
Ek), the receiver continuously queries the relays for each message. Once message
i is successfully retrieved, queries for message i+1 are sent, and so on, until all of
the expected messages were sent and received. At the end of the experiment, an
acknowledgement of receipt is sent to the sender through the relays (the sender
starts querying the relays for the receipt once all messages have been sent). The
runtime is measured on the sender’s side as the time between starting sending
the messages and receiving the acknowledgement of receipt.

For the broadcast experiments we considered the case of three communi-
cating parties, where each party simultaneously acts as a sender and receiver.
Parties alternate between sending and receiving messages: after sending mes-
sage i, they continuously query the relays until they receive message i from the
other parties. They then send and request message i + 1, and so on, until all
the expected messages were received. When this happens, each party broad-
casts an acknowledgement of receipt and then waits for the acknowledgement of
receipt from the other parties. The runtime is measured by each party as the
time between starting sending the messages and receiving the acknowledgement
of receipt from every other party.
Relays vs Direct Comm. We seek first to understand the overhead caused by
relays compared to a deployment topology wherein parties communicate directly.
The graphs in Fig. 12 show the runtimes of the experiments above for an increas-
ing number of 16-byte messages, with three relays and Ek with the removal batch
size k = 100 for both the p2p and broadcast messages. Additionally, runtimes
for Ek with batch size k = 100 and 16 kB messages are also presented. First,
it is clear that the results for all experiments are very similar when sending up
to 215 messages. For 217 and 219 messages, E1 has the slowest runtimes, which
is due to the receiver invoking the erase command after each received message
and before requesting the next message. However, erasing messages is necessary
to guarantee the relays do not run out of memory. Furthermore, for p2p com-
munications, even though E0 is faster than E1, it is still much slower than Ek.
This happens because when answering message requests, the relays need to iter-
ate through all of their stored messages until the desired one is found. As the
number of stored messages grows, this will substantially affect the performance.

Erasing batches of messages as in the Ek experiment prevents running into a
memory limit while keeping the runtimes very close to the ones for DP. Indeed,
batch erasure avoids accumulating large numbers of messages in the relays with-
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Fig. 12. Runtimes (with logarithmic scale on the y-axis) for experiments DP, E0, E1
and Ek with k = 100 and 16-byte messages, and for Ek with k = 100 and 16 kB
messages, showing: (left) p2p messages; (right) broadcast messages.

out the high cost of repeatedly invoking the erase command. Sending larger
messages will naturally increase the communication time, but the overhead is
insignificant.

Note that the broadcast experiments are always slower than the p2p experi-
ments, which results from the following difference: in the p2p experiments, there
is one sender and one receiver; in the broadcast experiments, there are three
parties, and all of them send and receive (additionally, each of them needs to
receive the messages from the other parties before sending the next message).

One can also see that E0 and E1 behave differently in the broadcast exper-
iments compared to the p2p experiments. This is due to the difference in the
way messages are organised in the relays, as was mentioned in Subsect. 7.1. In
the p2p experiments, the relays first find the list of messages between two par-
ties and then iterate through the list to obtain the message with the requested
counter. In the broadcast experiments, the relays find the list of messages for
the requested counter (which will contain at most a message by each party), and
return all of them. Therefore, requesting broadcast messages does not become
slower even when we never erase them. In both cases erasing in batches is to be
preferred anyway, as it prevents an explosion in the memory requirements.

Removal Batch Size. We also wished to determine the influence of the size k of
the removal batch in the Ek experiment. To do so, we perform this experiment
with a fixed number of sent messages (217) and an increasing batch size k for
both the p2p and the broadcast settings. The results are presented in the left
graph of Fig. 13.

As seen in the previous experiment, erasing each message after retrieval is
considerably slower than batch erasure. However, the batch size k > 1 has little
influence on the total runtime up until k = 50000. For this batch size, because
the relays will store up to k − 1 messages before deleting, the time required for
the relays to iterate through all of the stored messages and retrieve the correct
one becomes noticeable in the total communication time. This is, however, only
a small increase when compared to lower batch sizes, and still much faster than
erasing every message after retrieval.
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Fig. 13. Communication runtimes, showing for both the p2p and broadcast (BC) com-
munications: (left) experiment Ek with 217 16-byte messages and increasing batch size
k; (right) experiment Ek with k = 100 and 16-byte messages with 2, 3 and 4 relays.

In the p2p experiments with k = 1, we observe a considerable slowdown
because of numerous concurrent write queries (requests and erasures) sent to the
relays. The relays employ a pessimistic concurrency control by locking the data
items to mitigate conflicting updates. Therefore, such controls offer data safety
and integrity at the cost of latency due to resource contention. In our implemen-
tation, as explained earlier, the p2p and the broadcast experiments have slightly
different data structures impacting the locking mechanisms. Another critical fac-
tor for concurrent systems is the resource access pattern. The p2p experiment
(k = 1) and the broadcast experiments are inherently different. In the latter,
the parties send messages to the relays simultaneously and wait until all mes-
sages for that round are available within the relays. Afterwards, they issue delete
requests concurrently. They do not need to wait for all deletes; the faster parties
can continue to the next broadcast round. However, in the former, a sending
and a receiving party exchange messages simultaneously via relays (causing con-
tention within the relays). The write queries fight to acquire locks, which is one
of the reasons that the larger erase batches reduce the number of concurrent
write queries, resulting in faster overall runtimes. These experiments are quite
different in terms of deployment topology and the order of executions.

Note that when choosing the optimal batch size we must consider our specific
setting, e.g., the number of players and the memory of the relays.

Number of Relays. Finally, we analysed the influence of the number of relays
on the network performance. In the right graph of Fig. 13 we present results
for experiment Ek with k = 100 when using 2, 3 and 4 relays (as opposed to
the previous experiments which used a fixed number of three relays). On one
hand, more relays mean the sender will send each message more times (one for
each relay). On the other hand the receiver accepts a message as soon as it
decrypts correctly (in the p2p experiments) and hence does not need to wait
until all relays reply to the message request. However, requesting and erasing
messages from more relays will also increase the communication. We therefore
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obtain slower communication times when using more relays, even though the
overhead of adding each new relay is relatively small.

Recall also that because we only require one honest relay to ensure the over-
all communication is secure, having more relays will allow a higher corruption
percentage within the relays themselves. Thus, the exact number of relays used
should depend on the desired performance security trade-off.

Concluding Remarks. We have shown that communicating through relay nodes
introduces only a small overhead when compared to direct communication
between parties, especially when erasing messages in batches. Our implemen-
tation can be further optimized by, e.g., using a lock-free data structure for both
reading and writing. For a real-world deployment of this network topology, we
do recommend doing application-specific benchmarking to find a (sub)optimal
batch size and relay number for the desired settings since there are unlimited
possible deployment plans and hardware profiles.

7.2 Multiplication

We now turn to benchmarking our MPC protocol running on top of the relay
enabled network. We benchmark the protocol by examining the number of mul-
tiplications which can be performed per second by the MPC protocol. Recall
that the main communication required in the multiplication protocol is that of
each party sending a single broadcast message via the sendToAll command,
and then each party executing the requisite requestFromAll commands. The
computation cost on top of this is then the execution of the relevant PRSS and
some associated simple arithmetic operations.

We first targeted an MPC protocol with three parties, with at most one
corruption; thus the non-interactive version of the PRSS could be utilized. We
examined an implementation based on a finite field of 128 bits in size, which fits
into the 16 bytes of our earlier experiments. We performed experiments similar
to the broadcast experiments mentioned above. In particular, we examined the
effect on the throughput (measured in multiplications per second) of varying the
number of multiplications which are batched in each execution of the protocol.
One can think of the batch size as the number of multiplications at a given depth
in the evaluated circuit, since all such multiplications can be batched together.

Then, we examined an MPC protocol with six parties, again with at most one
corruption. The setup is similar to the experiment with three parties, except now
instead of three relays we have only two, one of them run on one of the faster
machines (Intel i9-9900 CPU and 128 GB RAM) and the other on one of the
slower machines (Intel i7-770 CPU and 32 GB RAM) - note that in all previous
experiments, the relays were always run on the faster machines. Regarding the
parties, instead of running all of them on the slower machines as before, three of
them are now run on the faster machines. This allows us to simulate a situation
where some of the parties participating the protocol are faster and progress
in the computation ahead of the others. Indeed, since we assume at most one
corruption, it is possible to process multiplications as soon as messages from any
three of the parties are available.
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The experiments are presented in Fig. 14, where we averaged the execution
time over a total of 211 multiplication rounds. For the six party setting, we
averaged the run time over the three slow parties, and the three fast parties,
separately. We see that for the three party multiplication, our implementation
can cope with up to around 300 thousand multiplications per second when the
number of parallel multiplications exceeds 216 = 65536. When considering six
parties, the faster parties achieve close to 270 thousand multiplications per sec-
ond for the same batch size. The effect of having both fast and slow parties is
observable in the throughput of multiplications per second shown in Fig. 14, for
the average of the three fast and the three slow parties.

Fig. 14. Number of multiplications per second for increasing size of multiplication
batches and erasing messages every 100 multiplication rounds, for 3 parties and 3
relays and for 6 parties and 2 relays.

For sequential multiplication (i.e., batch size 20) the difference is less obvious
(1165 multiplications per second for slow parties vs 3483 for fast parties) since
the slow parties can catch up after every single multiplication. As the batch size
increases, the computation and communication to be performed in each multi-
plication round also increase, resulting in the fast parties computing on average
180 thousand more multiplications per second than the slow ones. This illus-
trates how the use of relays allows faster parties to progress in the computation,
while slower ones are still able to retrieve all the necessary messages at their own
pace. We note that one of the slow parties was on average 4 times slower than
the other two, which impacts the presented average multiplication rate. There is
a small kink in the graph at a batch size of around 27 (for the three party case)
or around 28 (for the six party case) which we could not explain, we think this
is an effect of the underlying Rust switching between two different algorithms
for data access.
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Our code can be significantly improved, as this is just a first implementation,
with the multiplications being performed in a single threaded manner. We expect
throughputs of around one million multiplications per second could be easily
achieved with a fully optimized implementation.
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Abstract. Beerliová-Trub́ıniová and Hirt introduced hyper-invertible
matrix technique to construct the first perfectly secure MPC protocol in
the presence of maximal malicious corruptions �n−1

3
� with linear com-

munication complexity per multiplication gate [5]. This matrix allows
MPC protocol to generate correct shares of uniformly random secrets
in the presence of malicious adversary. Moreover, the amortized com-
munication complexity of generating each sharing is linear. Due to this
prominent feature, the hyper-invertible matrix plays an important role
in the construction of MPC protocol and zero-knowledge proof protocol
where the randomness needs to be jointly generated. However, the down-
side of this matrix is that the size of its base field is linear in the size of
its matrix. This means if we construct an n-party MPC protocol over Fq

via hyper-invertible matrix, q is at least 2n.
In this paper, we propose the ramp hyper-invertible matrix which can

be seen as the generalization of hyper-invertible matrix. Our ramp hyper-
invertible matrix can be defined over constant-size field regardless of the
size of this matrix. Similar to the arithmetic secret sharing scheme, to
apply our ramp hyper-invertible matrix to perfectly secure MPC pro-
tocol, the maximum number of corruptions has to be compromised to
(1−ε)n

3
. As a consequence, we present the first perfectly secure MPC pro-

tocol in the presence of (1−ε)n
3

malicious corruptions with constant com-
munication complexity. Besides presenting the variant of hyper-invertible
matrix, we overcome several obstacles in the construction of this MPC
protocol. Our arithmetic secret sharing scheme over constant-size field
is compatible with the player elimination technique, i.e., it supports the
dynamic changes of party number and corrupted party number. More-
over, we rewrite the public reconstruction protocol to support the shar-
ings over constant-size field. Putting these together leads to the constant-
size field variant of celebrated MPC protocol in [5].

We note that although it was widely acknowledged that there exists
an MPC protocol with constant communication complexity by replac-
ing Shamir secret sharing scheme with arithmetic secret sharing scheme,
there is no reference seriously describing such protocol in detail. Our
work fills the missing detail by providing MPC primitive for any appli-
cations relying on MPC protocol of constant communication complexity.
As an application of our perfectly secure MPC protocol which implies
perfect robustness in the MPC-in-the-Head framework, we present the
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constant-rate zero-knowledge proof with 3 communication rounds. The
previous work achieves constant-rate with 5 communication rounds [32]
due to the statistical robustness of their MPC protocol. Another appli-
cation of our ramp hyper-invertible matrix is the information-theoretic
multi-verifier zero-knowledge for circuit satisfiability [44]. We manage to
remove the dependence of the size of circuit and security parameter from
the share size.

1 Introduction

Secure multiparty computation (MPC) is a technique that allows several par-
ties to jointly compute a public function without disclosing their private inputs
even if an adversary corrupts t out of n parties. The MPC protocols can be
divided into several classes based on their security levels and threat models. A
protocol is perfectly secure if an adversary’s view of the protocol can be simu-
lated given only his inputs and outputs, and the simulated view follows exactly
the same distribution as the real view. An adversary is called malicious if the
corrupted parties he controls can deviate the protocol in an arbitrary manner.
It was shown in [6] that the maximal number of corrupted parties is �n−1

3 � for
an n-party MPC protocol perfectly secure against malicious adversary.1 Since
then, there is a great effort to improve the communication complexity of MPC
protocol in this adversary model. The first MPC protocol achieving linear com-
munication complexity is due to [5]. They introduced a new technique called
hyper-invertible matrices (HIM for short) that can generate a random sharing
at the cost of linear communication complexity. They also borrow several ideas
from previous works such as player elimination [31], public reconstruction [18].
We note that although they achieve the linear communication complexity, the
actual amortized communication complexity of securely evaluating a multipli-
cation gate is O(n log n) bits regardless of the size of the field. The work in
[11] introduced a new technique called reverse multiplication friendly embed-
ding which maps a vector in F

r
q into an element in extension field Fqm while the

component-wise product of two vectors is preserved by mapping it to a product
of two elements(here m is linear in r). This technique enables their MPC pro-
tocol to securely evaluate O(log n) instances over binary field by invoking the
protocol in [5] in a “black-box” way and thus they manage to achieve the linear
communication complexity for any Boolean circuit. All above protocols use the
Shamir secret sharing scheme (SSS) [40] as their building block. Thus, the share
sizes of their protocols are least Ω(log n).

The arithmetic SSS introduced in [12] generalizes the idea of Shamir SSS.
The merit of the generalization is that one can obtain a variant of Shamir SSS
over constant-size field while the downside of this variant is that there is an εn
gap between privacy and reconstruction. Thus, such arithmetic SSS can not han-
dle the maximal number of corruptions �n−1

3 � but the sub-optimal number of

1 The perfectly secure MPC protocol in this paper is assumed to have guaranteed
output delivery since t < n/3.
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corruptions (1−ε)n
3 . Due to the Franklin-Yung paradigm [21] and arithmetic SSS,

it was widely acknowledged that there exists an MPC protocol over constant-size
field perfectly secure against (1−ε)n

3 malicious corrupted parties with O(1) amor-
tized communication complexity. However, we are surprised to find that there
is no literature seriously describing such a protocol in detail. In this paper, we
present such a protocol by deriving constant-size field variant of the celebrated
MPC protocol [5]. The first challenge we face is the constant-size field variant
of hyper-invertible matrix which we name it ramp hyper-invertible matrix. The
idea of ramp hyper-invertible matrix can be dated back to [11]. However, they
do not seriously expand such idea by providing efficient constructions of this
matrix. Instead, we present the explicit constructions of such matrix in this
paper and apply it to MPC protocol. We believe that the applications of ramp
hyper-invertible matrix are not limited to MPC protocol and might be of inde-
pendent interests. Besides, the player elimination technique is not compatible
with arithmetic SSS. The player elimination technique remove parties from the
preprocessing phase which implies that the number of parties n and the num-
ber of corrupted parties t are dynamically changed during the preprocessing
phase. Thus, we propose an arithmetic SSS that is compatible with the dynamic
changes of n and t. Finally, we rewrite the public reconstruction protocol to make
it applicable over constant-size field. Putting everything together, we are able
to present the constant-size variant of MPC protocol [5]. As a consequence, we
obtain a constant-rate zero-knowledge proof from MPC-in-the-head (MPCitH)
framework [32]. We also provide two applications of our ramp hyper-invertible
matrices in the zero-knowledge proof.

1.1 Our Contributions

The hyper-invertible matrix was proposed in [5] to amortize the communication
complexity of generating random sharings. However, the downside of this matrix
is that the size of its base field grows with the size of the matrix. Therefore,
any MPC protocol based on hyper-invertible matrix must be defined over a
field of size Ω(n). The motivation of our ramp hyper-invertible matrix is to
construct a perfectly secure MPC protocol over constant-size field for n-parties
in the presence of almost maximal malicious corruptions (1−ε)n

3 such that the
amortized communication complexity of evaluating single multiplication gate is
O(1). Such an MPC protocol implies a constant-rate zero-knowledge proof [32].
Although such an MPC protocol was assumed to exist by replacing the Shamir
secret sharing scheme with the asymptotically good arithmetic secret sharing
scheme [12] in the MPC protocol, we note that there are still several technical
difficulties to be overcome which were not explored so far. In this work, we
consider the constant-size field variant of the celebrated MPC protocol [5]. The
first obstacle is the variant of hyper-invertible matrix defined over constant-size
field which we believe to be of independent interest. The second obstacle is to
construct arithmetic secret sharing scheme compatible with the dynamic change
of the number of parties and the number of corrupted parties. This is due to the
application of player elimination protocol which removes a pair of parties at a
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time. The third obstacle is to carry out error correction over constant-size field
as our shares are defined over constant-size field. In the rest of this subsection,
we will introduce these obstacles in detail and how we overcome them.

Hyper-invertible Matrix. We introduce ramp hyper-invertible matrices
which can be seen as a generalization of hyper-invertible matrices. Basically
speaking, M is an n × n hyper-invertible matrix if for any subsets I, J ⊆ [n]
with |I| = |J |, the submatrix of M indexed by the rows in I and the columns in
J is invertible. As a consequence, if (y1, . . . , yn)T = M(x1, . . . , xn)T , for any sub-
sets I, J ⊆ [n] with |I| + |J | = n, there is a linear bijective function f : Fn

q → F
n
q

mapping (xi)i∈I , (yj)j∈J onto (xi)i∈[n]/I , (yj)j∈[n]/J . This leads to the following
two properties. If I is the set of corrupted parties, (xi)i∈[n]/I and (yj)j∈[n]/J

uniquely determine (yj)j∈J . Moreover, (yj)j∈J are distributed uniformly at ran-
dom by knowing (xi)i∈I and (yj)j∈[n]/J . The argument in [5] leverages these
two properties to generate random double sharings with linear communication
complexity. Our ramp hyper-invertible matrices still keep these two properties
with slight relaxation. In particular, we require that |I| + |J | ≤ (1 − ε)n for the
first property to hold and |I| + |J | ≥ (1 + ε)n for the second property to hold.
We show that this ramp hyper-invertible matrix is closely related to linear code
with large distance and dual distance. Such connection allows us to exploit the
knowledge from the well-studied coding theory to produce ramp hyper-invertible
matrix over any constant-size field.

Asymptotically Good Arithmetic Secret Sharing Scheme and Player
Elimination. The player elimination technique was introduced in [31] to divide
the preprocessing phase into Ω(n) segments and in each segment if a party devi-
ates from the protocol, a pair of parties containing this party will be identi-
fied and removed from the following computation. This technique can efficiently
reduce the communication cost of identifying corrupted parties and thus was
adopted in [5] and some follow-ups. To adapt such technique to our MPC proto-
col, our asymptotically good arithmetic SSS must be compatible with dynamic
change of the number of parties and the number of corrupted parties. We note
that in contrast to the Shamir SSS, the known construction of asymptotically
good arithmetic SSS does not satisfy this dynamic property, i.e., based on alge-
braic geometry code, one can construct a family of ti-strongly multiplicative
SSS2 on ni parties such that ti

ni
= Ω(1) and ni tends to infinity with ni

ni−1
> 1

is a constant. In Theorem 4, we show how to construct t′-strongly multiplica-
tive SSS on n′ parties for any n′ = n − 2(t − t′) and t′ ≤ t from a t-strongly
multiplicative SSS on n parties.

Error-Correcting Codes and Public Reconstruction. The public recon-
struction in [5] can efficiently and robustly open the secret at the cost of linear

2 We refer the reader to Sect. 4.1 for formal definition.
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communication complexity. The first step is to treat k secrets waiting for open-
ing as a message and re-encode such message to a codeword (c1, . . . , cn) via a
Reed-Solomon code. In this process, all parties locally compute the share of ci

according to the encoding algorithm. Then, all parties send their shares of ci

to the i-th party and let i-th party reconstruct c′
i. By applying the decoding

algorithm to (c′
1, . . . , c

′
n), all parties can robustly reconstruct the codeword and

thus obtain k secrets. To adapt this protocol, we propose an error-correcting
code over constant-size field with large distance. Moreover, the encoding and
decoding algorithm of our code can be efficiently implemented.

Beaver Triples. The Beaver triples are used to securely evaluate the multi-
plication gate in the online phase. The Beaver triple consists of two sharings of
random elements [a]t, [b]t and the share of their product [ab]t where [·]t represents
sharing of t-threshold Shamir SSS. To produce this triple in [5], the preprocess-
ing phase first prepares two sharings of random element [r]t, [r]2t. Both of them
can be efficiently produced via hyper-invertible matrix technique. [r]2t is used to
mask the product [a]t[b]t and [r]t is used to re-share the secret ab by computing
ab + r − [r]t. One can think of [·]t as degree-t polynomial. To adapt this tech-
nique, we let [·]t be the sharings of an SSS Σt with t-privacy. Since our SSS is
t-strongly multiplicative, the product of two sharings belongs to a new SSS Σ2t

with 2t-privacy. The reconstruction of Σ2t is 2r if the reconstruction of Σt is r.3

Perfectly Secure MPC Protocol with Constant Amortized Commu-
nication Complexity. With all building blocks above at hand, we are able
to present the perfectly secure MPC protocol with constant amortized commu-
nication complexity in the presence of (1−ε)n

3 corrupted parties. The idea is to
replace the building blocks in [5] defined over large field with our new building
blocks which can be defined over constant-size field. To do this, we first replace
the Shamir SSS with our arithmetic SSS to reduce the share size. Moreover,
our new public reconstruction protocol is applicable to secret over constant-size
field as we resort to error-correcting code over constant-size field. By replac-
ing hyper-invertible matrix with ramp hyper-invertible matrix, we can generate
double-sharings as efficient as in [5]. As a consequence, our new protocol can
achieve the linear complexity as the celebrated MPC protocol in [5]. Since the
number of corrupted parties (1−ε)n

3 is suboptimal, our protocol use the packed
arithmetic secret sharing to further reduce the communication complexity. If we
simultaneously evaluate Ω(n) instances of the same circuit, we can reduce linear
communication complexity to constant. In this sense, our protocol achieves the
constant amortized communication complexity.

Constant-Rate Zero-Knowledge Proof. The communication complexity of
constant-rate zero-knowledge proof is linear in circuit size |C|. The first construc-
tion was presented in [32] as a byproduct of the MPC-in-the-Head framework.
3 In fact, we are only concerned about the reconstruction of Σ2t.
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This requires an MPC protocol over constant-size field with perfect or statistical
t-robustness (in a malicious model) and t-privacy (in a semi-honest model). In
[32], they show that a variant of the MPC protocol given in [16] using arithmetic
SSS as the building block can serve this purpose. However, the MPC protocol
in [16] only achieves statistical t-robustness. This forces the MPCitH protocol
relying on this MPC protocol to be separated into two phases which causes
more communication rounds. It is desirable to achieve perfect t-robustness so
as to optimize the communication rounds. The building block of our MPCitH
protocol is a perfectly secure MPC protocol over constant-size field and thus our
MPCitH needs 3 communication rounds.

Joint Sampling of Multiple Verifiers. In information-theoretic multi-verifier
zero-knowledge(MVZK), n verifiers jointly generate one challenge for the prover.
We consider MVZK for circuit satisfiability in the setting of honest majority
verifiers. By applying HIM technique in [5] to generate random secret sharings,
the coin-tossing protocol in MVZK [44] achieves communication overhead O(λ+
log |C|) where λ is security parameter and |C| is the number of multiplication
gates in the circuit. If we relax the number of corrupt parties from n−1

2 to
( 1−ε

2 )n, the ramp HIM can replace HIM to do the same job and reduce the
communication overhead of coin-tossing protocol to O(1). Moreover, we propose
a new technique to remove the dependence of security parameter from the share
size when checking the circuit satisfiability.

1.2 Related Work

The first perfectly secure MPC protocol was proposed in [6] for t < n/3. Since
then, there are numerous efforts to reduce the communication complexity. The
introduction of the hyper-invertible matrix in [5] leads to the first perfectly secure
MPC protocol with linear communication complexity which also reaches the the-
oretical limit. The same linear communication complexity can be achieved for
perfectly secure MPC protocol over any finite field [11]. The depth related com-
munication complexity in the expression was further removed in [27]. For honest
majority setting t < (n − 1)/2, there are many constructions achieving linear
complexity in security-with-abort model [7,14,18,20,24,26,29,37]. In [13], they
consider the honest majority MPC protocol tolerating t < n(1−ε)

2 corruptions.
Compared to the optimal corruption n−1

2 , their scheme is defined over constant-
size field and thus can save a O(log n) multiplicative factor. We note that once
t > n/3, MPC protocols can not be zero-error but succeed with high probability
with the help of broadcast channel. Thus, it is not comparable with our MPC
protocol for t < n/3 where the broadcast can be simulated with perfect secure
by communicating O(n2) bits.

The MPC-in-the-head paradigm establishes a close connection between zero-
knowledge proof systems and MPC protocols. Its theoretical framework was
proposed in [32] and the first practical instantiation was given in [25]. From
practical point of view, the MPC protocols based on additive secret sharing play
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a crucial role in the MPCitH protocol. The reason is that additive secret shar-
ing can be efficiently generated by the pseudo-random generator and thus the
MPCitH protocol can commit to the seed instead of sharings. The preprocessing
phase was introduced to the MPCitH protocols in [34]. Since then, there are two
ways of verification in the preprocessing phase: cut-and-choose (KKW [34]) and
sacrificing (BN [4], Limbo [19], Helium [33]). They are practical MPCitH proto-
cols requiring either more communication rounds or larger field size. In this work,
we are concerned about the theoretical performance of zero-knowledge proof and
thus propose the MPCitH protocol based on ramp HIM. Combined with our per-
fectly secure MPC protocol against malicious adversary, our MPCitH protocol
is a 3-round constant-rate zero-knowledge proof.

MVZK was first proposed in [10] and non-interactive MVZK was instantiated
in [1]. Some earlier works [1,30] rely on public-key operations and thus achieve
only computational security. In [2], they focus on minimal assumption for MVZK
and achieves computational security and everlasting security. There are a few
works investigating MVZK in the presence of honest majority verifiers [2,3,44].
The protocol in [3] aims to realize stronger security-with-identifiable-abort at a
cost of tolerating a smaller number of corruptions(t < n/3 or t < n/4). In this
paper, we aim to reduce the communication overhead by replacing the HIM in
[44] with the ramp HIM.

2 Preliminaries

For an integer n > 1, denote by [n] the set {1, 2, . . . , n}. For two integers a, b
with 0 ≤ a < b, denote by [a, b] the set {a, a + 1, · · · , b}. A finite field of size
q is denoted by Fq. Throughout this paper, we use bold face v to represent a
vector. Given a vector u = (ui)i∈[n] ∈ F

n
q and a subset J ⊂ [n], we denote

by uJ = (ui)i∈J the projection of u at J . The component-wise product of two
vectors c1 and c2 is denoted by c1 � c2. F

r
q is the collection of r-dimensional

vectors over Fq and F
r×n
q the collection of r × n matrices over Fq. We assume

the circuits evaluated by MPC protocol consist of cI input gates, cR random
gates and cM multiplicative gates. The depth of multiplication gates is denoted
as DM . We denote by λ the security parameter in zero-knowledge proof, which
implies that soundness error is at most 2−λ.

2.1 Hyper-invertible Matrices

The hyper-invertible matrix was introduced in [5] to amortize the communica-
tion complexity of generating random sharings. A prominent feature of hyper-
invertible matrix is that every square submatrix of this matrix is invertible.

Definition 1. A matrix M ∈ F
r×n
q is called a hyper-invertible matrix if for

any row index set I ⊆ [r] and column index set J ⊆ [n] with |I| = |J |, the
square submatrix of M formed by rows indexed by I and columns indexed by J
is invertible.
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The mapping of a hyper-invertible matrix implies a symmetry property.

Lemma 1 ([5]). Let M be an n × n hyper-invertible matrix over Fq. Let
(y1, . . . , yn)T = M(x1, . . . , xn)T . Then for any subset I,B ⊆ [n] with |I|+ |B| =
n, there is a linear bijective function f : Fn

q → F
n
q mapping ((xi)i∈I , (yj)j∈B)

onto ((xi)i∈[n]/I , (yj)j∈[n]/B).

2.2 Linear Codes

A linear code C over Fq is a linear subspace in F
n
q . The dimension of C is defined

to be the Fq-dimension of this subspace and the length of C is defined to be n.
One can define Hamming distance for any pair of vectors v = (vi),u = (ui) in
F

n
q , i.e., d(v,u) = |{i ∈ [n] : vi 
= ui}|. The Hamming weight of u is defined

as wt(u) = d(u,0), where 0 stands for the zero vector. For a linear code C,
the minimum distance (distance for short) of C is defined to be the smallest
Hamming weight of nonzero codewords. A linear code of length n, dimension k
and distance d is denoted by [n, k, d]. A generator matrix G of a linear code C
is a k × n matrix whose row vectors form an Fq-basis. The dual code C⊥ of C
consists of the solutions to GxT = 0T , i.e., C⊥ = {x ∈ F

n
q : Gx = 0}. We call

the minimum distance of C⊥ the dual distance of C. A generator matrix of C⊥

is called a parity-check matrix of C.

2.3 Secret Sharing Scheme

Let us briefly introduce the background of secret sharing scheme.

Definition 2 (Secret sharing scheme). A secret sharing scheme over Fq is
a vector of random variables X = (X0,X1, . . . , Xn) with each Xi ∈ Fq such that
the following holds:

– The random variable X0 is uniform over Fq.
– t-privacy: Given any subset B ⊆ [n] with |B| ≤ t, any x0 ∈ Fq and any xB ∈

F
|B|
q with Pr[(Xi)i∈B = xB |X0 = x0] > 0, Pr[X0 = x0|(Xi)i∈B = xB] = 1/q.

That is, the shares in the set B provide no information on the secret.
– r-reconstruction: Given any subset B ⊆ [n] with |B| ≥ t+1 and any xB ∈ F

|B|
q

with Pr[(Xi)i∈B = xB|X0 = x0] > 0, there is a unique x0 ∈ X0 such that
Pr[X0 = x0|(Xi)i∈B = xB ] = 1. That is, the shares in the set B uniquely
determine the secret.

In this paper, we use packed secret sharing scheme to reduce the communication
complexity. A packed secret sharing scheme is a secret sharing scheme with its
secret defined over a vector space instead of a field.

Definition 3 (Packed secret sharing scheme). A packed secret sharing
scheme over Fq with secret space F

s
q is a vector of random variables X =

(X0,X1, . . . , Xn) with each Xi ∈ Fq for i ∈ [n] and X0 ∈ F
s
q.
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In most of the cases, a packed secret sharing scheme is obtained by first construct-
ing a secret sharing scheme over Fq with n + s − 1 shares (X1, . . . , Xn+s−1) and
move s−1 shares (Xn+1, . . . , Xn+s−1) to the secret space. Then, such secret shar-
ing scheme has n shares (X1, . . . , Xn) and the secret (X0,Xn+1, . . . , Xn+s−1) ∈
F

s
q. It is easy to show that if the original secret sharing scheme has t-privacy and

r-reconstruction, the resulting packed secret sharing scheme has t − s-privacy
and r-reconstruction.

2.4 Algebraic Curves

Let us briefly introduce some background on algebraic curves and function fields
over finite fields. The reader may refer to [42,43] for detail. An algebraic curve
X defined over Fq is denoted by X/Fq. We denote by X (Fq) the set of all Fq-
rational points on X (informally those points with coordinates belonging to Fq).
We denote by Fq(X ) the function field of X/Fq. An element of Fq(X ) is called a
function. For a point P on X , we denote by νP the normalized discrete valuation
corresponding to the point P .

For a nonzero function x of Fq(X ) and a point P , we denote by νP (x) the
valuation of x at P . For m ∈ Z, we form the vector space

L(mP ) = {x ∈ Fq(X )\{0} : νP (x) ≥ −m; νQ(x) ≥ 0 for all Q 
= P}∪{0}. (1)

This is a finite-dimensional vector space over Fq. We have the following Riemann-
Roch Theorem [42, Chapter 1].

Proposition 1 (Riemann-Roch Theorem). Let X/Fq be an algebraic curve
of genus g. Then for any m ∈ Z and a point P , one has

dimFq
L(mP ) ≥ m − g + 1 (2)

and equality holds if m ≥ 2g − 1.

For algebraic geometry codes based on algebraic curves, we usually require
curves have many rational points compared with genus. In other words, given
an algebraic curve X/Fq of genus g, we want the cardinality |X (Fq)|, denoted by
N(X ), to be as large as possible. By the Hasse-Weil bound [36,42,43], we know
that

N(X ) ≤ q + 1 + 2g
√

q. (3)

The above Hasse-Weil bound is tight for relatively small genus, i.e., for genus
g ≤ q(q−1)/2. For large genus, we have the following asymptotic Vlǎduţ-Drinfeld
bound [36,42,43]: for any family {X/Fq} of algebraic curves with genus g(X ) of
X tending to ∞, we have

lim sup
g(X )→∞

N(X )
g(X )

≤ √
q − 1. (4)
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If q is an even power of a prime, then based on modular curves, Garcia-
Stichtenoth [22,23] provided an explicit construction of a family {X/Fq} of
algebraic curves satisfying that g(X ) → ∞ and

N(X ) ≥ 1 + (
√

q − 1)g(X )

for every curve X in this family.

2.5 MPC-in-the-Head

The MPC-in-the-Head paradigm was introduced by [32]. It applies an MPC
protocol and a commitment scheme to construct a zero-knowledge proof for
the witness w of any NP relation R. MPCitH tackles any NP relation R(x,w)
as an multiparty computation functionality f(x,w) for input client I, n parties
P1, · · · , Pn and output client O. Input cient I receives witness w from the prover
and shares to n parties, who can execute a protocol to verify the witness with
public input x and send result to output client O.

The prover emulates the execution of an MPC protocol with n imaginary
parties in his head and commits to the views of all parties. The view of a party
consists of its private input, its random tapes, and all its received messages
from other parties. The verifier selects a subset containing t parties. Finally, the
prover reveals the views of chosen parties and the verifier checks the consistency
of views. We say a pair of views Vi, Vj of party Pi, Pj are consistent if all ongoing
messages of Vi are identical to the incoming messages in Vj and vice versa.

If we want to instantiate MPCitH paradigm with a concrete MPC protocol,
it should satisfy following properties:

Definition 4 (Three properties of an MPC protocol). Let Πf be an MPC
protocol realizing the function f representing a NP relation R for input client I,
n parties P1, · · · , Pn and output client O. Let 1 ≤ t < n and the adversary could
corrupt at most input client and t parties. We denote I ⊆ [n] with |I| ≤ t as
corrupted parties.

– Correctness: We say Πf realizes perfect (statistical, respectively) correctness
if for any (x,w1, · · · , wn), the probability that the outputs of some parties
deviate from f(x,w1, · · · , wn) is 0 (negl(λ), respectively).

– t-Privacy: We say Πf realizes statistical (perfect, respectively) t-privacy
in the presence of semi-honest adversary if for any input (x,w1, · · · , wn),
there exists a PPT algorithm S such that the distribution of S(x, {wi}i∈I ,
f(x,w1, · · · , wn)) is statistically(perfectly, respectively) indistinguishable with
the distribution of joint views V iewI(x,w1, · · · , wn)

– t-Robustness: We say Πf realizes statistical (perfect, respectively) t-robustness
in the presence of malicious adversary if for any input (x,w1, · · · , wn) satisfying
f(x,w1, · · · , wn) = 0, the probability that all parties outputs 1 and the views of
honest parties are consistent is negl(λ) (0, respectively).
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3 Ramp Hyper-Invertible Matrix

In this section, we will introduce the notion of ramp hyper-invertible matrices
and their constructions. We also provide an explicit construction via algebraic
geometry codes as well as an existence result based on the Gilbert-Varshamov
bound.

3.1 Ramp Hyper-Invertible Matrices and Functions

The ramp hyper-invertible matrix (ramp HIM for short) is a generalization of
the hyper-invertible matrix. The formal definition is given as follows.

Definition 5. A matrix M ∈ F
m×n
q with m ≤ n is called an (n,m; r, p)q-ramp

hyper-invertible matrix if

(i) For any integers s, t satisfying 0 ≤ s ≤ m, 0 ≤ t ≤ n and s + t ≥ r, every
s × (n − t) submatrix of M has full column rank;

(ii) For any integers s, t satisfying 0 ≤ s ≤ m, 0 ≤ t ≤ n and s + t ≤ p, every
s × (n − t) submatrix of M has full row rank.

Definition 5 implies that an (n,m;n, n)q-ramp HIM is actually an HIM
defined in [5]. However, it is not easy to see how to construct a ramp HIM
meeting Definition 5. Thus, we propose an equivalence definition, i.e., ramp
hyper-invertible function (HIF for short). The ramp HIF is a generalization of
hyper-invertible function defined in [5].

Definition 6. An Fq-linear map from F
n
q to F

m
q is called an (n,m; r, p)q-ramp

hyper-invertible function if

(i) Given every pair x ∈ F
n
q and y ∈ F

m
q with y = f(x); and any subsets I ⊆ [n]

and J ⊆ [m] with |I| + |J | ≥ r, the vectors xI and yJ uniquely determine
xĪ .

(ii) Given any subsets I ⊆ [n] and J ⊆ [m] with |I| + |J | ≤ p, and any vector
uI ∈ F

|I|
q , the composition map πJ ◦ f(uI ,xĪ) is a surjective map from F

|Ī|
q

to F
|J|
q :

F
|Ī|
q

f(uI ,xĪ)−→ F
m
q

πJ−→ F
|J|
q ,

where πJ is the projection map at the index set J .

The following result proves the equivalence between ramp HIMs and ramp HIFs.

Theorem 1. There exists an (n,m; r, p)q-ramp HIM if and only if there exists
an (n,m; r, p)q-ramp hyper-invertible function.

Proof. We first prove the if direction. Assume that there is an (n,m; r, p)q-ramp
hyper-invertible function φ. By fixing a basis {v1, . . . ,vn} of F

n
q and a basis

{u1, . . . ,um} of Fm
q , we have φ(vi) =

∑m
j=1 aijuj . Since φ is an Fq-linear map,

we conclude that φ(x) = AxT , where A = (aij). Next, we show that A is indeed
an (n,m; r, p)-ramp HIM. Let I ⊆ [n], J ⊆ [m] be any subsets of size t and s
respectively.
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1. Assume s + t ≥ r. Recall that the matrix AJI is a submatrix of A whose
rows are indexed by J and columns indexed by I. As φ(x) = AxT = yT , we
have yT

J = AJIxT
I + AJĪxT

Ī
. By the first condition of a ramp HIF, yJ and xI

uniquely determine xĪ . Suppose that AJĪ would not have full column rank,
then there exists a nonzero vector a such that AJĪa

T = 0. This implies that
AJĪxT

Ī
= AJĪ(a + xĪ)T = yT

J − AJIxT
I . This contradicts the first condition

of a ramp HIF. Thus, we conclude that any s × (n − t) submatrix of A has
full column rank if s + t ≥ r.

2. Assume s+ t ≤ p. Similarly, we have yT
J = AJIxT

I +AJĪxT
Ī
. By fixing xI and

the second condition of a ramp HIF, the map φJ : F|Ī|
q → F

|J|
q given by

φJ(xĪ) := AJĪx
T
Ī + AJIxT

I

is surjective. This implies that AJĪ has full row rank. Thus, we conclude that
any s × (n − t) submatrix of A has full row rank if s + t ≤ p.

We proceed to prove the only if direction. Given an [n,m; r, p]q-ramp HIM A, we
define the linear map φ : Fn

q → F
m
q given by φ(x) = AxT . Let I ⊆ [n], J ⊆ [m]

be any subsets of size t and s respectively.

1. Assume s + t ≥ r. Given every pair x ∈ F
n
q and y ∈ F

m
q with yT = φ(x),

we have yT
J = AJIxT

I + AJĪxT
Ī
. Since any s × (n − t) submatrix of A has

full column rank, a similar proof in the “if” part shows that xĪ is uniquely
determined by yJ and xI .

2. Assume s + t ≤ p. Observe that yT
J = AJIxT

I + AJĪxT
Ī
. Fixing any xI ∈ F

|I|
q ,

the map πJ ◦ φ(x) = yJ is surjective as AJĪ is an s × (n − t) submatrix of A
with full row rank.

The proof is completed.

From Theorem 1, it suffices to construct a ramp HIF so as to construct a
ramp HIM. In the following subsection, we show how to construct the ramp HIF
from the linear code. This provides a machinery for the constructions of ramp
HIMs.

3.2 Connections with Linear Codes

In this subsection, we establish the connection between ramp HIFs and linear
codes. We show that a linear code with large distance and dual distance can be
used to construct a ramp HIF. Since linear codes are well studied, this provides a
very good source for explicitly constructing HIMs. In the following theorem, we
prove that a ramp HIF exists if and only if a linear code with certain property
exists.

Theorem 2. There exists an (n,m; r, p)q-ramp HIF if and only if there exists
an [n + m,n, n + m − r + 1]-linear code C with dual distance p + 1 over Fq.
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Proof. We first prove the if direction. Since the dimension of C is n, without
loss of generality, we may assume the first n indices of C form an information
set, i.e., the first n columns of every generator matrix are linearly independent.
We proceed to show how to construct a ramp HIF from C. Define a linear map
φ : Fn

q → F
m
q given by φ(c1, . . . , cn) = (cn+1, . . . , cn+m) with (c1, . . . , cn+m) ∈ C.

We first prove that this map is well defined. Note that [n] is an information set
of C. This implies that the projection map π[n] : C → F

n
q is a bijection. For

any vector (c1, . . . , cn) ∈ F
n
q , there exists unique codeword c ∈ F

n+m
q such that

c[n] = (c1, . . . , cn). Thus, this map is well defined. It is clear that φ is an Fq-
linear map. We proceed to show that φ is an (n,m; r, p)q-ramp HIF. Let I ⊆ [n],
J ⊆ [m] be any subsets of size t and s, respectively.

1. Assume s + t ≥ r. Given every pair x ∈ F
n
q and y ∈ F

m
q with y = φ(x), we

have (x,y) ∈ C. Since C has minimum distance n + m − r + 1, knowing xI

and yJ , we can uniquely identify a codeword (x,y) ∈ C. Otherwise, if there
exists another codeword (x′,y′) ∈ C such that x′

I = xI and y′
J = y. Due

to the linearity of C, (x − x′,y − y′) ∈ C is a nonzero codeword of weight
at most n + m − r. A contradiction occurs. Since we can uniquely identify a
codeword (x,y) ∈ C, xĪ is unique.

2. Assume s + t ≤ p. Given any vector uI ∈ F
|I|
q , we want to prove that the

map πJ ◦ φ(uI ,uĪ) is a surjection from F
|Ī|
q → F

|J|
q . To see this, we recall

that the dual distance of C is p + 1. This implies that for any uI ∈ F
|I|
q and

vJ ∈ F
|J|
q , there exists a codeword (x,y) ∈ C such that xI = uI and yJ = vJ

as |I|+|J | ≤ p. By the definition of the map φ, the identity πJ ◦φ(xI ,xĪ) = yJ

holds for any yJ ∈ F
|J|
q .

We proceed to prove the only if direction. Let φ be an (n,m; r, p)q-ramp HIF.
Thus, by Theorem 1, we have φ(x) = AxT for some m × n matrix A over Fq.
To define a linear code C, it suffices to define a generator matrix G of C. Let
G = (In, AT ) be an n × (n + m) matrix over Fq, where In is the identity matrix
of size n. We want to show that the linear code with generator matrix G has
dimension n, minimum distance at least n+m− r +1 and dual distance at least
p + 1. The dimension of this code is clear as rank(G) = n.

(i) We now show that the minimum distance of C is at least n+m−r+1. Suppose
that the minimum distance were less than n + m − r + 1. Let (x,xAT ) ∈ C
be a codeword of weight at most n + m − r. This means there exists two
index subsets I ⊆ [n] and J ⊆ [m] with |I| + |J | ≥ r such that xI = 0 and
πJ(AxT ) = AJIxT

I + AJĪxT
Ī

= 0. This gives AJĪxĪ = 0. Put s = |I| and
t = |J |. Since φ is an (n,m; r, p)q-ramp HIF, by Theorem 1, any s × (n − t)
submatrix of A has full column rank. This implies AJĪ has full column rank
and xĪ has to be 0. Therefore, the distance of C is at least n + m − r + 1.

(ii) Finally we show that the dual distance of C is at least p + 1. Since the
generator matrix G of C is systematic, a generator matrix of dual code C⊥

of C has the form (−A, Im). We turn to bound the minimum distance of
this dual code. Let c = (−xA,x) ∈ C⊥ be a codeword of weight at most p.
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Let I ⊆ [n] and J ⊆ [m] with s = |I| and t = |J | be the support sets of
xA and x, respectively. This implies πĪ(−xA) = −xJAJĪ = 0. Since φ is an
(n,m; r, p)q-ramp HIF, by Theorem 1, any s×(n− t) submatrix of A has full
row rank as long as s+ t ≤ p. This forces xJ = 0 and thus c = 0. Therefore,
the dual distance of C is at least p + 1.

The proof is completed.

By combining Theorem 2 and Theorem 1, we obtain the following corollary.

Corollary 1. The following are equivalent.

(i) There exists an [n,m; r, p]q-ramp HIM.
(ii) There exists an [n,m; r, p]q-ramp HIF.
(iii) There exists an [n + m,n, n + m − r + 1] linear code C over Fq with dual

distance p + 1.

Moreover, if G = (In, AT ) is the generator matrix of C, then A is an [n,m; r, p]q-
ramp HIM.

3.3 Construction of q-ary Ramp HIM

By Subsect. 3.2, we know that in order to construct a ramp HIM with smaller
reconstruction r and larger privacy p, we need a linear code with both large
distance and dual distance. A good candidate for such a code is the algebraic
geometry code. Before instantiating our construction of ramp HIMs through
linear codes, let us briefly introduce algebraic geometry codes in this subsection.
The reader may refer to [42,43] for details. In this subsection, we instantiate
the construction of q-ary ramp HIM. The binary ramp HIM is deferred to the
Appendix in the full version [35].

Let X/Fq be an algebraic curve of genus g with �+1 pairwise distinct rational
points P∞, P1, . . . , P�. Denote by P the set {P1, . . . , P�}. For an integer κ with
g ≤ κ < �, define an algebraic geometry code

C(P, κP∞) := {(f(P1), . . . , f(P�)) : f ∈ L(κP∞)}. (5)

Then the code C(P, κP∞) is a linear code over Fq. Furthermore, C(P, κP∞) and
its dual C⊥(P, κP∞) have the following parameters

Proposition 2 (see [42,43]). Assume 2g − 1 < k < �, then C(P, κP∞) is a
q-ary [�, k, d]-linear code and C⊥(P, κP∞) is a q-ary [�, k⊥, d⊥]-linear code with
the parameters k, k⊥, d, d⊥ satisfying

k = κ − g + 1, k⊥ = � − κ + g − 1, d ≥ � − κ d⊥ ≥ κ − 2g + 2.

Corollary 2 (via Garcia-Stichtenoth tower). Assume that q is an even
power of a prime. There exists a family of [n, k, d]-linear codes over Fq with
efficient encoding and decoding algorithms and k + d ≥ n(1 − 1√

q−1 ) + 1. Here
g = n√

q−1 .
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If the curve is a projective line, then the genus g is equal to 0 and the algebraic
geometry code defined above is a Reed-Solomon code. Now we instantiate the
above algebraic geometry code to Corollary 1 to obtain a ramp HIM.

Proposition 3. Let X/Fq be an algebraic curve of genus g with at least m+n+1
pairwise distinct rational points. If g − 1 < m ≤ n, then for any κ there exists
an (n,m; r, p)q-ramp HIM with r ≤ n + g and p ≥ n − g.

Proof. Put � = m+n and κ = n−g+1. By Proposition 2, the code C(P, κP∞) is
a q-ary [m+n, n]-linear code with minimum distance d ≥ m+n−κ = m−g +1
and dual distance d⊥ ≥ κ − 2g + 2 = n − g + 1. By Corollary 1, there is an
(n,m; r, p)-ramp HIM with d = n + m − r + 1 and p + 1 = d⊥. This gives
r = n + m + 1 − d ≤ n + g and p = d⊥ − 1 ≥ n − g. This completes the proof.

Note that if the base curve is a projective line, then the genus g = 0. Thus, we
obtain an (n,m;n, n)-ramp HIM, i.e., an (n,m)q-HIM.

Theorem 3. If q ≥ 4 is an even power of a prime, then there exists a family of
(n,m; r, p)-ram HIM with n → ∞, m ≥ n√

q−1 and

lim sup
n→∞

r

n
≤ 1 +

2√
q − 1

, lim inf
n→∞

p

n
≥ 1 − 2√

q − 1
.

Furthermore, this family can be constructed in time O(n3).

Proof. Let {X/Fq} be a family of algebraic curves given in [22]. Then we have
N(X ) ≥ 1 + g(X )(

√
q − 1). Put g = g(X ) and let g − 1 < m ≤ n satisfy

N(X ) = n + m. By Proposition 3, there exists a family of (n,m; r, p)q-ramp
HIMs with r ≤ n + g and p ≥ n − g. As m ≤ n and g

m+n → 1√
q−1 , we have

g
n ≤ 2√

q−1 . The desired result follows. As the Riemann-Roch space L(κP∞) can
be constructed in time O(κ3) [41], A generator matrix of C(P, κP∞) can be
constructed in time O(n3). By Corollary 1, the corresponding ramp HIM can be
constructed in time O(n3) as well.

Corollary 3. If q = O(1/ε2) for a real ε ∈ (0, 1), then there exists a family of
(n, n; (1 + ε)n, (1 − ε)n)-ramp HIM with n → ∞. Furthermore, this family can
be constructed in time O(n3).

4 Perfectly Secure MPC for t < n(1−ε)

3
over Constant-Size

Fields

In this section, we will present a perfectly secure MPC protocol over constant-
size fields by modifying the one in [5]. The challenge is to replace each gadget
over large field in [5] with the one over constant-size fields. We emphasize that
our security proof follows the line of [5]. The missing proof can be found in [5]
such as the player elimination and so on. Since our MPC protocol is perfectly
secure, most of the efforts are taken to detect the corruptions and remove the
corrupted parties.
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4.1 Arithmetic Secret Sharing Schemes

Let us briefly explain the downside of the Shamir secret sharing scheme. Since
the Shamir secret sharing scheme is derived from polynomial evaluation, the
number of parties is at most the size of underlying field. If an n-parties MPC
protocol securely evaluates an arithmetic circuit over the constant-size field Fq,
then Shamir secret sharing scheme will cause a Ω(log n) overhead by embedding
this constant field Fq into Fqr with qr ≥ n. Thus, it is desirable to design
secret sharing scheme over constant-size field. Our protocol utilizes the gap εn to
simultaneously compute Ω(n) instances. We emphasize that although we present
our perfectly secure MPC protocol over field of size Ω( 1

ε2 ), it is possible to
construct perfectly secure MPC protocol over binary field by replacing each
gadget with the one over the binary field.

An arithmetic secret sharing scheme [15] is a generalization of the Shamir
secret sharing scheme which can be instantiated over any constant-size field.
The formal definition of arithmetic secret sharing scheme is tedious and too gen-
eral for our application. We briefly explain the motivation of this scheme and
only provide the necessary definitions for our purpose. We note that the Shamir
secret sharing scheme supports multiplication, i.e., the component-wise prod-
uct of two sharings from t-threshold Shamir secret sharing scheme is a sharing
from 2t-threshold Shamir secret secret sharing scheme. It can be generalized to
component-wise product of d sharings. In arithmetic secret sharing scheme, we
first have a base scheme called C and let the component-wise product of d shar-
ings consist of a scheme C∗d. We require that the sharing in C∗d can be used to
recover the product of d secrets corresponding to these d sharings. Moreover, the
base scheme must have t-privacy and r-reconstruction. These are the properties
necessary for MPC protocols. In this sense, the arithmetic secret sharing scheme
captures the essence of the Shamir secret sharing scheme for MPC application.
The merit of such generalization is that we can find a large number of codes
except Reed-Solomon codes meet the definition of arithmetic secret sharing and
are applicable to MPC protocol and other cryptography primitives.

Definition 7. Let C ⊆ F
s
q × F

n
q (packed secret sharing scheme for s > 1) be a

linear secret sharing scheme whose secret space is F
s
q and share space is F

n
q .4 We

say C is t-strongly multiplicative secret sharing scheme5 if

1. C has t-privacy: for any subset A of [n] of size at most t, and any pair of
secret s, s′ ∈ F

s
q, one has that |{c ∈ C : cA = s}| = |{c ∈ C : cA = s′}|.

2. C has (n − 2t)-reconstruction: i.e., for any subset A of [n] of size at least
n − 2t and c, c′ ∈ C∗2, one has that cA 
= c′

A.
3. The secret sharing scheme C�2 = spanFq

{c1 � c2 : c1, c2 ∈ C} has (n − t)-
reconstruction, i.e., for any subset A of [n] of size at least n−t and c, c′ ∈ C∗2,
one has that cA 
= c′

A.
4 We use 0 to represent the index of the secret and [n] to represent n indices of the

shares.
5 In [15], a t-strongly multiplicative LSSS on n players for F

k
q over Fq is also called an

(n, t, 2, t)-arithmetic secret sharing scheme with secret space F
k
q and share space Fq.
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It is desirable to fix the field size q and let the number of parties n approach infin-
ity. If the ratio t

n is a constant, such t-strongly SSS is asymptotically good. The
instantiation of asymptotically good t-strongly multiplicative SSS is based on
algebraic geometry code. By applying Garcia-Stichtenoth tower [22], we obtain
the following construction.

Proposition 4 (via Garcia-Stichtenoth tower). Assume q is an even power
of a prime. Let γ ∈

(
0, 1

3 − 2√
q−1

)
. Then there exists a sequence {Ci} of q-ary

LSSS on ni players with the secret space Fqki , the share space Fq such that

(i) limi→∞ ki

ni
= γ.

(ii) Ci has ri-reconstruction and ti-privacy satisfying ti

ni
= ri

ni
− 2√

q−1 − γ.
(iii) C∗2

i = spanFq
{c1 � c2 : c1, c2 ∈ Ci} ⊆ F

ki
q × F

ni
q is a SSS with 2ri-

reconstruction and 2ti-privacy.
(iv) The sharing and reconstruction algorithms of Ci and C∗2

i can be efficiently
implemented.

(v) The decoding algorithm of Ci can efficiently correct up to ni−ri−1
2 corrupted

shares for any sharing in Ci

If 2ri ≤ ni − ti, then Ci is a ti-strongly multiplicative LSSS. Let ri = ni

3 and
we obtain the following SSS.

Corollary 4. Let q ≈ 144
ε2 = O( 1

ε2 ) and γ = ε
6 . There exists a family of ( 1−ε

3 )ni-

strongly multiplicative secret sharing scheme Ci ⊆ F

εni
6

q ×F
ni
q when ni → ∞. This

multiplicative SSS has (1−ε)ni

3 -privacy and ni

3 -reconstruction.

The player elimination introduced in [31] is used to transform a non-robust
protocol into a robust protocol with no additional costs. Each time the inconsis-
tent sharings are detected, this player elimination protocol is initiated to localize
and remove a pair of parties containing at least one corrupted party from the
preprocessing phase. To apply this protocol, our arithmetic secret sharing scheme
should be compatible with the reduced number of the parties and corrupted par-
ties. In the following theorem, we show how to obtain a t′i-strongly multiplicative
LSSS from a ti-strongly multiplicative LSSS with t′i < ti. Then, we can apply
Corollary 4 for any privacy ti and number ni of parties.

Theorem 4. Assume that Ci ⊆ F
s
q ×F

ni
q is a ti-strongly multiplicative LSSS on

ni players in Proposition 4. Then, there exists a t′i-strongly multiplicative LSSS
C ′ ⊆ F

s
q × F

n′
i

q with n′
i = ni − 2(ti − t′i). Moreover, r′

i ≤ n′
i

3 and t′i ≤ n′
i(1−ε)

3 if
ri = ni

3 and ti = ni(1−ε)
3 .

Proof. Since Ci is a ti-strongly multiplicative LSSS, we have 2ri ≤ ni − ti. We
first fix the number of parties ni and the dimension of secret space si, and let
the privacy be t′i and reconstruction be r′

i = ri − (ti − t′i) in Proposition 4. Such
SSS Ĉi exists as

t′i
ni

=
ti
ni

− (ti − t′i)
ni

=
ri − (ti − t′i)

ni
− 2√

q − 1
− γ =

r′
i

ni
− 2√

q − 1
− γ
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We obtain C ′
i by puncturing the last 2(ti − t′i) shares of Ĉi. The privacy and

reconstruction of C ′
i are exactly the same as that of Ĉi which are t′i and r′

i =
ri − (ti − t′i) respectively. Similarly, the reconstruction of C ′∗2

i is 2r′
i. The proof

is completed as 2r′
i = 2ri − 2(ti − t′i) ≤ n′

i − ti ≤ n′
i − t′i. It is clear that r′

i ≤ n′
i

3

and t′i ≤ n′
i(1−ε)

3 if ri = ni

3 and ti = ni(1−ε)
3 .

Remark 1. Although we only present t-strongly multiplicative SSS over field of
size Ω(1/ε2), it is possible to construct t-strongly multiplicative SSS over binary
field [39]. The same trick in Theorem 4 can be applied to this SSS. The resulting
SSS becomes the building block of perfectly secure MPC over the binary field.

Remark 2. To check the consistency of this linear secret sharing scheme, we
note that it suffices to run the reconstruction algorithm of this linear secret shar-
ing scheme and then compare the shares recovered by this reconstruction algo-
rithm with the shares at hand. Since our secret sharing scheme is obtained from
algebraic geometry code with an efficient decoding algorithm, this reconstruction
algorithm is in fact the decoding algorithm for this algebraic geometry code.

4.2 Randomization Based on Ramp Hyper-invertible Matrices

Protocol RandEl(d)

Setup: a set of n′ parties I = {P1, . . . , Pn′} and at most t′ ≤ n′(1−ε)
3

of them are
corrupted. Let M be an (n′, n′, n′(1+ε), n′(1−ε))-ramp hyper-invertible matrix over
Fq in Definition 6.

– For Pi ∈ I, Pi generates a random secret si ∈ F
s
q and shares this secret among

parties in I by invoking Σd.
– All parties locally compute ([r1]d, . . . , [rn′ ]d)T = M([s1]d, . . . , [sn′ ]d)T .
– For i = T + 1, . . . , n′ for some T ≤ t′, all parties open ri to Pi. Pi checks the

consistency of [ri]d and becomes unhappy if the sharing is not correct.
– Output the remaining unopened sharings [r1]d, . . . , [rT ]d.

The secret sharing scheme in Corollary 4 is our building block for our MPC
protocol. Our MPC protocol starts with n parties and at most t = (1−ε)n

3 of
them are corrupted where ε can be an arbitrarily small value. In what follows,
we fix t = (1−ε)n

3 . During the preprocessing phase, the player elimination tech-
nique introduced in [31] divides the computation into O(n) segments and in each
segment the protocol tries to identify the corrupted parties when inconsistent
shares are detected. This protocol can locate a pair of parties such that at least
one of them is corrupted. Then, this pair of parties are removed from the proto-
col. The number of parties and the number of corrupted parties are updated to
n−2 and t−1 respectively. All remaining parties repeat current segment. Thus,
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in the preprocessing phase, our protocol assumes that the number of parties and
corrupted parties are n′ ≤ n and t′ ≤ t respectively.

In what follows, we assume q = O( 1
ε2 ) and our MPC protocol is defined

over Fq.
Let Σd ∈ F

s
q × F

n′
q be an SSS in Theorem 4 with privacy d ∈ [t′, n′(1−ε)

3 ],
reconstruction r = n′

3 and s = εn
6 . Due to the player elimination protocol, the

value of d may decrease throughout the prepocessing protocol. The initial value
of d is t. Denote by [s]d = (x1, . . . , xn) ∈ Σd the packed secret-sharing of s ∈ F

s
q.

6

Since our SSS supports multiplication, to open the secret of [s1]d � [s2]t safely,
we need to mask it with [r]2d, a sharing of a random vector r generated by Σ2d.
This is because Σ2d is actually the “squared” Σd, i.e., Σd corresponds to Ci and
Σ2d corresponds to C∗2

i by Proposition 4. In this sense, Σ2d has 2d-privacy and
2r-reconstruction.

Proposition 5. Assume that Σd in the Protocol RandEl has d-privacy with
d ≥ t′. If T ≤ t′ and all honest parties are happy, then [r1]d, . . . , [rT ]d are
correct sharings of uniformly random secrets r1, . . . , rT and the adversary learns
no information about them. The total communication complexity is O(n2) for
generating Ω(n) correct sharings.

Proof. The proof follows the same step in [5] except that we replace hyper-
invertible matrix with ramp hyper-invertible matrix in Definition 5. For con-
venience, we use [ri] to represent the sharing [ri]d in the proof. We first con-
sider the robustness, i.e., the unopened sharings [r1], . . . , [rT ] are correct. Let
S ⊆ {T +1, . . . , n′} be the index set of honest parties and S̄ = {T +1, . . . , n′}/S.
Since there are at most t′ corrupted parties in I, |S| ≥ n′ − T − t′ ≥ n′ − 2t′.
[ri]i∈S are correct sharings checked by the honest parties in S as all parties do
not complain. Moreover, there are at least n′ − t′ honest parties in I. Let H be
the collection of honest parties in I and we have |H| ≥ n′ − t′. Observe that
|H| + |S| ≥ 2n′ − 3t′ ≥ n + εn as t′ ≤ n′(1−ε)

3 . This implies that n′ − t′ sharings
[si]i∈H generated by the honest parties together with [ri]i∈S uniquely determine
T sharings [ri]i∈[T ] as M is an (n′, n′, n′(1+ε), n′(1−ε))-ramp HIM. Since [si]i∈H

and [ri]i∈S are correct sharings, the unopened sharings [ri]i∈[T ] are correct as
well.

We proceed to the privacy argument. The secret sharing scheme Σ has d ≥ t′-
privacy. This implies that the adversary can not obtain ri from any t′ shares of
[ri]. Moreover, the adversary knows the random vectors ri for i ∈ S̄ opening
to the corrupted parties and si for i ∈ [n′] \ H generated by the corrupted
parties. They are at most 2t′ vectors in total. If we fix these vectors, as M is an
(n′, n′, n′(1 + ε), n′(1 − ε))-ramp HIM and |S̄ ∪ [T ]| + |[n] \ H| ≤ 3t′ ≤ n′(1 − ε),
there is a surjection from si, i ∈ H to ri, i ∈ [T ]. Since si, i ∈ H are distributed
uniformly at random, ri, i ∈ [T ] are distributed uniformly at random as well.
This means the distribution ri, i ∈ [T ] is independent of ri for i ∈ S̄ and si for
i ∈ [n′] \ H.

6 In the Shamir SSS, one can identify this privacy d as the degree of polynomials.
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As for the communication complexity, we note that each party sends and
receives n′ − 1 shares. Thus, the total communication complexity is O(n′2) =
O(n2). If no one complains, invoking RandEl can generate Ω(n) correct sharings
and thus each sharing cost O(n) communication complexity. We also note that
each sharing belongs to a packed secret sharing scheme and thus the amortized
communication complexity is further reduced to constant.

The RandEl was invoked in [5] to produce random double sharings. Assume
there are t′ corrupted parties and n′ parties remaining in the preprocessing phase.
Instead of using HIM, we use ramp HIM over constant-size field to generate
the random double sharings. All parties want to obtain the double sharings
([a]d, [a]d′) of random vector a for some t′ ≤ d, d′ ≤ n′ − t′. In order to do
that, one can modify RandEl protocol as follows. Pi generates random double
sharings [si]d, [si]d′ and applies the ramp hyper-invertible matrix to obtain [ri]d
and [ri]d′ . For i = T + 1, . . . , n, Pi not only checks the consistency of [ri]d and
[ri]d′ but also makes sure that the opened secrets ri are the same. This will force
the remaining unopened sharings [ri]d and [ri]d′ to be correct and associated
with the same secret. We call this modified protocol DoubleSharings. The
same argument implies the following result.

Corollary 5. Assume that t′ ≤ d, d′ ≤ n′ − t′. If T ≤ t′ and all hon-
est parties are happy, then DoubleSharings will output correct sharings
([r1]d, [r1]d′), . . . , ([rT ]d, [rT ]d′) with uniformly random secrets r1, . . . , rT and the
adversary learns no information about them. The total communication complex-
ity is O(n2) for generating Ω(n) correct sharings.

4.3 Public Reconstruction

The public reconstruction protocol is used to efficiently and robustly open the
secret [5,18]. The idea is that instead of reconstructing one secret, this protocol
allows all parties to simultaneously reconstruct Ω(n) secrets. Meanwhile, the
communication complexity keeps the same O(n2) and thus the amortized com-
munication complexity is reduced to O(n). To achieve this goal, this protocol
treats k = Ω(n) secrets as a message of length k and re-encodes this message to
a codeword of length n′ such that this linear code has minimum distance at least
2t′ + 1. Each party reconstructs one secret corresponding to one component of
this codeword. Since there are at most t′ corrupted parties, this message can be
robustly recovered subject to at most t′ errors. Our Protocol ReconPub is a
generalization of the counterpart in [5,18]. Because our protocol is defined over
constant-size field, we resort to algebraic geometry codes for error correction.

Theorem 5. For d ≤ t, ReconPub robustly reconstructs the secrets a1, . . . ,aT

towards all parties in I. For d ≤ 2t′, ReconPub detectably reconstructs the
secrets a1, . . . ,aT towards all parties in I. The total communication complexity
is O(n′2)
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Protocol ReconPub(d, [a1]d, . . . , [aT ]d)

Setup: a set of n′ parties I = {P1, . . . , Pn′} and at most t′ ≤ n′(1−ε)
3

of them are
corrupted. Let T = n′(1 − ε) − 2t′ − 1 = Ω(n) and M = (mij)n′×T be a generator
matrix of a [n′, T, 2t′+1] linear code C over Fq in Corollary 2 as 2t′+1+T = n′(1−ε).

Input: T sharings [a1]d, . . . , [aT ]d ∈ Σd in Corollary 4.

– For i = 1, . . . , n′, the parties in I locally compute [ri]d =
∑T

j=1 mij [aj ]d.
– The parties in I send their shares of [ri]d to Pi.
– Pi checks the consistency of [ri]d. If d ≤ t′, Pi robustly reconstructs the secret

ri by invoking decoding algorithm of Σd and sends them to other parties in I.
Otherwise if d ≤ 2t′, Pi either reconstructs the secret r̃i and sends it to other
parties in I or becomes unhappy if there are inconsistent shares.

– If no one becomes unhappy, the parties in I robustly reconstruct a1, . . . , aT

from r̃1, . . . , r̃n′ . More precisely, write r̃i = (ri1, . . . , ris) ∈ F
s
q and decode the

codeword (r1j , . . . , rn′j) ∈ C for j = 1, . . . , s to obtain the message (a1j , . . . , aTj)
for j = 1, . . . , s.

Output: ai = (ai1, . . . , ais), i = 1, . . . , T .

Proof. We prove the first claim. Without loss of generality, we assume d = t. For
each party Pi ∈ I, [ri]d consists of at most t′ incorrect shares. Since [ri]d ∈ Σd,
by Proposition 4, the reconstruction of Σd is r = t + εn′/3 and it can correct
up to (n′−r)

2 ≥ t′ errors. Thus, the honest party Pi can robustly reconstruct ri.
After this reconstruction, there are at least n′ − t′ correct secrets ri. Thus, the
decoding algorithm of C can correct errors and output correct messages.

We proceed to the second claim d = 2t′. The argument is divided into two
cases.

1. Some honest party Pj receives corrupted shares of [ri]d from the adversary.
By Proposition 4 and Corollary 4, the minimum distance of Σ2t′ is at least
n′ − 2r′ ≥ n′/3. Since there are at most t′ < n′/3 corrupted shares, Pj can
detect them and become unhappy.

2. All honest parties receive consistent shares. This implies that there are at
least n′ − t′ correct secrets ri. Thus, the decoding algorithm of C can correct
errors and output correct messages.

As for the communication complexity, party Pi sends his share of [rj ]d to Pj and
the secret ri to all other parties. Thus, the total communication complexity is
O(n2) for opening T = Ω(n) secrets. The proof is completed.

Now we proceed to generate Beaver triples ([a]t, [b]t, [c]t) to prepare for mul-
tiplication gates. Random sharings [a]t and [b]t could be generated by invoking
RandEl. Since arithmetic secret sharing has strong multiplicativity, all par-
ties could locally compute [c]2t. The key of transforming [c]2t to [c]t is degree
reduction, which can be done with double sharings generated in RandEl.



Ramp Hyper-invertible Matrices 225

Protocol Triples
Setup: The set of parties I = {P1, . . . , Pn′}, the number of parties n′ and the number
of corrupted parties t′.

– The parties in I invoke DoubleSharings three times to gener-
ate ([a1]t, [a1]t′), . . . , ([aT ]t, [aT ]t′), ([b1]t, [b1]t′), . . . , ([bT ]t, [bT ]t′) and
([r1]t, [r1]2t′), . . . , ([rT ]t, [rT ]2t′).

– The parties in I locally compute [dk]2t′ = [ai]t′ � [bi]t′ + [ri]2t′ for i = 1, . . . , T .
– The parties in I invoke ReconPub(2t′, [d1]2t′ , . . . , [dT ]2t′) to publicly recon-

struct d1, . . . ,dT ,
– The parties in I locally compute [ci]t = di − [ri]t.

Output: T triples ([a1]t, [b1]t, [c1]t), . . . , ([aT ]t, [bT ]t, [cT ]t).

Theorem 6. If all honest parties are happy, Protocol Triples successfully out-
puts Beaver triples ([ai]t, [bi]t, [ci]t)i∈[T ]

7 such that ai and bi are uniformly ran-
dom vectors and ci = ai � bi. Moreover, the total communication complexity of
Triples is O(n2).

Proof. Corollary 5 shows that if all honest parties are happy, then Double-
Sharings generates correct sharings ([ai]t′ , [bi]t′ , [ri]2t′)i∈[T ] such that ai,bi, ri

are uniformly random vectors by Corollary 5. Theorem 5 shows that Recon-
Pub can reconstruct correct secrets towards all parties if all honest parties are
happy. It is clear that ci = ai �bi as our SSS are multiplicative by Proposition 4.
The privacy argument is straightforward. DoubleSharings does not reveal any
information to the adversary by Corollary 5. Moreover, ReconPub only opens
the random elements which contain no information about ci. The total commu-
nication complexity is the cost of invoking DoubleSharings and ReconPub,
which is O(n2) due to Corollary 5 and Theorem 5.

4.4 Put Together

In this subsection, we briefly explain how to replace the protocols in [5] with our
new protocols so as to obtain perfectly secure MPC for t < n(1−ε)

3 over constant-
size fields. The prominent feature of our MPC protocol is constant share size.
We use the same player elimination protocol in [5] containing fault detection,
fault localization and player elimination.

Put everything together, we obtain the following theorem.

Theorem 7. The protocol PreprocessingPhase generates cM + cR + cI inde-
pendent random Beaver triples [ai]t, [bi]t, [ai � bi]t with independently random
vectors ai,bi ∈ F

εn
6

q . The total communication complexity is O((cI +cM +cR)n+
n3). The amortized communication complexity of generating one triple is O(n).8

7 Invoking Triples once can generate T = n′(1 − ε) − 2t′ − 1 = Ω(n) triples. Each
triple contains εn

6
secrets.

8 Since such triple consists of packed secret sharing scheme, we can further reduce the
amortized communication complexity to constant if we evaluates Ω(n) instances of
the same circuit in the online phase.
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Proof. The proof is quite straightforward since we have already proven The-
orem 6. If every party is happy, then Triples guarantees that all the Beaver
triples generated in this segment is correct. Otherwise, all parties invoke the
player elimination protocol to localize a pair of parties containing at least one
corrupt party. The privacy argument can be derived directly from Theorem 6.
It remains to compute the communication complexity. We note that we divide
the preprocessing phase into t segments. In each segment, we either remove
two parties or complete this segment and obtain � Beaver triples. Since there
are n parties, we invoke at most t + n

2 = O(t) segments. For each segment,
we invoke Triples �

tT times which incurs O( �n2

tT ) = O(�) communication com-
plexity. The player elimination protocol in Appendix incurs the same amount
of communication complexity in this segment plus the cost of three broadcasts
O(n2). Thus, the total communication complexity for preprocessing phase is
O(�t + n3) = O((cI + cM + cR)n + n3).

Protocol PreprocessingPhase
Setup: the set of actual parties is I = {P1, . . . , Pn′}, the number of parties is n′ = n
and the number of corrupted parties is t′ = t. The preprocessing phase generates
� = cI + cM + cR Beaver triples.

– For 1st, . . . , tth segment,

• Each party in I sets his happy-bit to happy.
• The party in I invokes Triples � �

tT
� times to generate �

t
Beaver triples

([a]t′ , [b]t′ , [a � b]t′).
• If there is at least one party unhappy, invoke player elimination protocol to

localize a pair of parties P ′ = {Pi, Pj}.
• Set I = I \ P ′ and n′ = n′ − 2, t′ = t′ − 1. Repeat this segment.

Theorem 8. The protocol OnlinePhase perfectly securely evaluates a single
instruction multiple data (SIMD) circuit with εncI

6 input, εncM

6 multiplication,
εncR

6 random gates and DM depth in the presence of t = (1−ε)n
3 actively cor-

rupted parties, given cI + cM + cR pre-shared multiplication triples. The total
communication complexity is O((cI + cM + cR)n + DMn2 + n3) and thus the
amortized communication complexity of computing each gate is O( DM n+n2

cI+cM+cR
). If

cI + cM + cR is bigger than n2 +DMn, the amortized communication complexity
for each gate is a constant.

Proof. The online phase follows the line of Computationphase protocol in [5].
Since our circuit is a SIMD circuit, we use the packed secret sharing obtained
in preprocessing phase to compute the Computationphase protocol. Each triple
in the preprocessing phase can compute εn

6 instances simultaneously. Thus, it
suffices to generate cI + cM + cR Beaver triples in the preprocessing phase. The
total communication complexity in the preprocessing phase is O((cI + cM +
cR)n + n3) by Theorem 7.
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Protocol OnlinePhase
Input Gate: (Pi input s)

– The parties in I send their shares of [r]t to Pi. Pi robustly reconstructs r by
running decoding algorithm in Proposition 4.

– Pi broadcasts s − r and the parties in I locally compute [s]t = s − r + [r]t.

Addition Gate: The parties in I locally compute [x + y]t = [x]t + [y]t.
Scalar Gate: The parties in I locally compute [λx]t = λ[x]t
Random Gate: Pick a random sharing [r]t associated with this gate.
Multiplication Gate: Up to T

2
multiplication gates are processed simultaneously.

The input of each multiplication gate is [xi]t, [yi]t for i = 1, . . . , T/2. The Beaver
triples ([ai]t, [bi]t, [ci]t), i = 1, . . . , T/2 are given.

– For i = 1, . . . , T/2, the parties in I locally compute [di]t = [xi]t − [ai]t and
[ei]t = [yi]t − [bi]t.

– Invoke ReconPub to robustly reconstruct the secrets di, ei for i = 1, . . . , T/2.
– The parties in I locally compute [xi �yi]t = di � ei + ei � [xi]t +di � [yi]t + [ci]t

for i = 1, . . . , T/2.

Output Gate: (Output [s]t to all parties) The parties in I send their shares of [s]t
to other parties. All parties robustly reconstruct s by running decoding algorithm in
Proposition 4.

We proceed to the online phase. At the input gate, we use a pre-shared ran-
dom vector r to mask the input s and then broadcast the difference s−r. Thus, we
broadcast n times and each broadcast can be simulated by communicating O(n2)
bits. All parties obtain their shares of the secret s by locally computing [r]t+s−r.
The addition and scalar gate can be done locally. Thus, the total communication
complexity for computing input gates is O(n3 +cIn). At the multiplication gate,
the Beaver triple ([a]t, [b]t, [a � b]t) is used to securely compute a sharing of a
product at the cost of two public reconstructions. The ReconPub amortizes the
communication complexity of public reconstruction by reconstructing T = Ω(n)
secrets simultaneously. Thus, we can evaluate Ω(n) multiplication gates by invok-
ing ReconPub once. Since the secret space of our SSS has dimension εn

6 , this
packed secret sharing scheme can evaluate εn

6 instances simultaneously. Each
random gate picks a random sharing. Thus, the total communication complex-
ity of random gates is O(cRn). This means the total communication complexity
of computing multiplication gates is O(cMn+DMn2). Therefore, the total com-
munication complexity of OnlinePhase is O((cI + cM + cR)n + DMn2 + n3).

We proceed to the robustness argument. At the input gate, all parties use
a random sharing generated in the preprocessing phase to generate the sharing
of one input. No corruption happens in this stage. At the addition gate and
scalar gate, all parties do local computation and no corruption happens. At the
multiplication gate, all parties open secrets by invoking ReconPub. We note
that the the sharings to be opened belong to Σt which can be error corrected by
Proposition 4. Thus, the corruptions caused by the adversary in this stage will
be corrected. At the output gate, we obtain the same conclusion as the sharings
to be opened belong to Σt as well.
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We proceed to the privacy argument. We note that the secret sharing scheme
we use has t-privacy and there are t′ ≤ t corrupted parties in the online phase. At
the input gate, the input is masked by a random element and thus the element
broadcasted is a random element revealing no information about the input. At
the multiplication gate, the opened secrets are random elements which reveal no
information. Thus, the adversary learns nothing except the output in the online
phase.

Remark 3. Since our MPC protocol uses the packed secret sharing scheme, to
achieve constant amortized communication complexity, our MPC protocol must
run over single instruction multiple data (SIMD) circuit which carries out the
exact same computation to several inputs simultaneously. However, it is also pos-
sible to adapt it to other circuits although the protocol will be more complicated.
We briefly explain the modification required for this goal. In [17], they propose a
way to reroute the network. We can replace our double sharings with the shar-
ings of random vectors and the permutation of their coordinates in the ramp
HIM protocol. When we open the pair of secrets, we compare if the secret and
the permutation of the secret are consistent. Thus, we can apply the technique
in [17] to modify the circuit to achieve small communication complexity. The
technique in [17] is to embed the computation in a special form of a universal
circuit based on the so-called Bene’s network [9] which requires the sharings with
the permutation of their coordinates.

5 MPC-in-the-Head

5.1 Check Consistency of Shares via Ramp HIM

The application of HIM in zero-knowledge proof was due to [8] where HIM
was used to check the consistency of sharings. To check consistency of n − 2t
sharings, HIM requires n+ t additional sharings. Thus, the overhead of checking
one sharing is roughly t+n

n−2t = O(1) field element. The downside is that HIM
requires that |F| ≥ 2n. As a generalization of HIM, the ramp HIM is defined
over constant-size field which can save the communication complexity.

Proposition 6. Assume at most t = 1−ε
3 n parties of P1, · · · , Pn are corrupted

and Σd has d-privacy with d ≥ t. Protocol CheckConsistency(d) verify the
d-consistency of 2t secret sharings with zero error probability. It is t-private in
the presence of semi-honest adversary and perfectly t-robust in the presence of
malicious adversary.

Proof. We use [ri] to represent [ri]d. We begin by proving that protocol Check-
Consistency(d) is t-robust in the presence of malicious adversary. Let H ⊆ [n]
be the index set of honest parties and H̄ = [n]/H be the index set of corrupted
parties. Since there are at most t corrupted parties, |H| ≥ n − t. If no party
complains, [si] for i ∈ H are correct sharings. Moreover, [ri] for i ∈ [2t + 1, n]
provided by the input client can not be corrupted by the adversary. The fact that
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|H|+ |[2t+1, n]| ≥ 2n−3t ≥ (1+ ε)n and M is an (n, n, (1+ ε)n, (1− ε)n)-ramp
HIM implies that [si] for i ∈ H and [ri] for i ∈ [2t + 1, n] uniquely determine
the sharings [ri] for i ∈ [2t]. Since [r] for i ∈ [2t] and [si] for i ∈ H are correct
sharings, [ri] for i ∈ [2t] are also correct sharings.

We proceed to the argument of t-privacy in the presence of semi-honest adver-
sary. Since Σd has d ≥ t-privacy, the adversary learns nothing from any t shares
of [s1], . . . , [sn]. If we fix [si] for i ∈ H and [ri] for i ∈ [2t], the fact that M is
an (n, n, (1 + ε)n, (1 − ε)n)-ramp HIM and |H̄| + 2t ≤ 3t ≤ (1 − ε)n implies that
there is a surjection from ri, i ∈ [2t + 1, n] to si, i ∈ H̄. Since ri, i ∈ [2t + 1, n]
provided by the input client are distributed uniformly at random, si, i ∈ H̄ are
also distributed uniformly.

Protocol CheckConsistency(d)
Setup: n parties P1, · · · , Pn and an input client I
Public input: an (n, n, (1 + ε)n, (1 − ε)n)-ramp HIM M
Private input: Pi obtains corresponding shares of [r1]d, · · · , [r2t]d

– Input client randomly generates [r2t+1]d, · · · , [rn]d and distributes correspond-
ing shares to P1, · · · , Pn

– Parties locally compute ([s1]d, · · · , [sn]d)T = M([r1]d, · · · , [rn]d)T

– Party Pi receives all shares of [si] from other parties and checks the consistency.
If the sharing is incorrect, Pi complains and the protocol aborts.

– If no party complains, the parties conclude that [r1]d, · · · , [r2t]d are consistent.

Remark 4. Protocol CheckConsistency(d) is similar to Protocol RandEl(d)
as ramp HIM is used to guarantee d-consistency. The major difference is input
and output. In MPC protocol, preprocessing data come from secret sharings gen-
erated by each party including both honest parties and corrupted parties while in
MPCitH protocol, preprocessing data are directly provided by the prover.

5.2 Constant-Rate Zero-Knowledge Proof

The MPC protocol in [5] is perfectly secure against malicious adversary. This
MPC protocol has perfect robustness and the MPCitH protocol relying on it
thus saves two rounds of communication [32].

The communication cost of the prover consists of commitment and decom-
mitment. According to [32], we need a statistically-binding commitment scheme,
whose output length grows linearly in message length. The communication cost
of commitment is O(n|C| log q) bits. The decommitment requires the prover to
reveal the views of t parties selected by the verifier which includes witness,
preprocessing data and broadcast value, which takes O(t|C| log q) bits commu-
nication. In summary, the communication complexity of MPCitH protocol is
O((n + t)|C| log q) bits, which is equivalent to O(n|C| log n) as t = Ω(n) and
HIM forces q ≥ 2n [8].
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We briefly describe how to reduce communication complexity to O(|C|) with
the help of ramp HIM. Firstly, we apply a packed secret sharing which batches
Ω(n) evaluations together to remove the multiplicative factor n in the commu-
nication complexity. The next step is to apply an MPC protocol over constant-
size field in Section 4. By replacing RandEl(d) with CheckConsistency(d),
we obtain an MPC protocol Πf that has t-privacy and perfect t-robustness
due to Proposition 6. Plugging this MPC protocol in [8], finally we obtain a
3-round constant-rate zero-knowledge proof. In contrast, the constant-rate zero-
knowledge proof proposed in [32] has 5 communication rounds since it relies on
a MPC protocol [16] with statistical robustness and coin tossing between prover
and verifier causes more interaction.

Theorem 9. Given a statistically binding commitment scheme, for any NP rela-
tion R(x,w) which can be verified with a circuit with O(|C|) gates, there exists
a two-party 3-round9 constant-rate zero-knowledge proof in the random oracle
model. The protocol has communication complexity O(|C|) and soundness error
2−Ω(n).

6 Information-Theoretic Multi-verifier Zero-Knowledge
Proof

In MVZK, the prover P wants to convince n verifiers V1, · · · ,Vn that regarding
to a NP relation R, it holds a witness w for a statement such that R(x,w) = 1.
In this paper, we focus on a special NP relation:circuit satisfiability, which aims
to find a witness w ∈ Fq for a circuit C such that C(w) = 1. We assume that
at most t verifiers are corrupted by the adversary and can collude with the
prover. There are two types of communications, the communications between
the verifiers and prover and the communications between different verifiers. In
[44], they present an efficient MVZK in the presence of honest-majority verifiers.

In the information-theoretic MVZK, the verifiers invoke a coin-tossing func-
tionality Fcoin to jointly sample an random element in the challenge set. In this
process, HIM plays a central role in producing random sharings. However, due
to circuit size and the security parameter, the share size of MVZK has to be
large enough. There is another challenge related to the share size which is the
verification technique [44]. We briefly introduce this technique and show how to
adapt it to our constant-size field later.

1. For a circuit with |C| multiplication gates, the prover distributes correspond-
ing share of ([xi], [yi], [zi])i∈[|C|] to n verifiers, which needs communication of
O(n|C|) field elements in Fq.

2. All verifiers jointly sample a uniform challenge χ ∈ Fqr and compute the
inner-product tuple:

9 If we consider random oracle model, then statistically binding commitment scheme
needs only one round [38]. We emphasize that regardless the model, our new MPCitH
protocol saves two rounds of communication compared to [32].
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[x] = ([x1], χ · [x2], . . . , χ|C|−1 · [x|C|])
[y] = ([y1], [y2], . . . , [y|C|])

[z] =
|C|∑

i=1

χi−1 · [zi]

Note that inner product tuples are Shamir SSS defined over Fqr . In this step,
joint sampling communicates O(n2) field elements in Fqr .

3. All verifiers apply the inner-product checking method in [28,29]. As [28]
has analyzed, the verification procedure incurs communication of O((nτ +
n2) logτ |C|) field elements in Fqr (Here τ is compress parameter).

We notice that the soundness error is dependent on Fqr . If there exists one
incorrect multiplication triple, then the inner-product tuple passes the verifica-
tion of inner product with probability at most |C|−1

qr . To achieve a soundness
error of 2−λ, we have to set qr = 2λ(|C| − 1), which incurs a communication
overhead O(λ+ log |C|) if our computation is carried out over Fq instead of Fqr .

It is clear that moving from Fq to Fqr increases the communication complexity
in Step 2 and Step 3. We can save the communication complexity in Step 2 by
introducing ramp secret sharing and ramp HIM. The communication complexity
in step 3 can be saved by “batched checking”.

Functionality Fcoin

This functionality runs for n verifiers and an adversary A as follows:

– Upon receiving (coin, C) from all verifiers where C is the challenge set, sample
r ← C and sends (random, r) to A.

– If A returns the message (deliver), then sends (random, r) to all verifiers. Oth-
erwise A returns the message (abort), then outputs abort for all verifiers.

To begin with, we instantiate Fcoin over constant-size field. The building
blocks of our protocol are ramp secret sharing scheme and ramp HIM, i.e., we use
the ramp secret sharing scheme over constant-size field with 1−ε

2 n-privacy and
1
2n-reconstruction. This ramp SSS requires that the number of corrupted verifiers
is sub-optimal t = (1−ε)n

2 and its secret space is F
Ω(εn)
q with ε = O(λ log |C|

n ).

Protocol Rand
Public input: an (n, t, a, (1 − ε)n)-ramp HIM M(a can be any number since Rand
only uses (1 − ε)n-privacy instead of (1 + ε)n-reconstruction of ramp HIM).

– Each verifier Vi samples a random sharing [si]t and distributes corresponding
share to other verifiers.

– All verifiers locally compute ([r1]t, . . . , [rt]t)
T = M([s1]t, · · · , [sn]t)

T .
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Protocol Coin
Setup: The protocol Rand generates t random sharings at one time. The protocol
Coin picks a random sharing [r]t from these t sharings.

– Each verifier sends his share of [r]t to all other verifiers. After receiving shares
from other n − 1 verifiers, each verifier checks whether [r]t is a valid secret
sharing.

– If each verifier Vi concludes that all shares are correct, the secret r are recon-
structed and outputted. Otherwise, Vi broadcasts the message (abort) and the
protocol aborts.

Similar to [44], we obtain the following result.

Theorem 10. The protocol Coin realizes Fcoin in security-with-abort model in
the presence of a malicious adversary corrupting t = 1−ε

2 n verifiers.

Proof. The only difference from [44] is that our Rand protocol uses ramp HIM
instead of HIM. It suffices to prove that the randomness produced by Rand
protocol is independent of the adversary. Since M is an (n, t, a, (1 − ε)n)-ramp
HIM and 2t = (1 − ε)n, there is a surjection from (si)i∈H to (ri)i∈[t] where H is
the set of honest parties. This means (ri)i∈[t] distributes uniformly at random
conditioning on the sharings of the corrupted parties (si)i∈[n]/H .

We proceed to the batch checking. Assume that [x] is a sharing over Fq and
χ ∈ Fqr . We redefine the inner product in this setting. We note that one can
represent Fqr as a linear subspace over Fq. Let v1, . . . , vr be the basis of Fqr over
Fq. Then, for any element λ ∈ Fqr , we have λvi =

∑r
j=1 mijvj . Thus, λ can be

thought of as a linear map Mλ = (mij)r×r from F
r
q to its self. In this sense, we

redefine · as
λ · (x1, . . . , xr) = Mλ(x1, . . . , xr)

where x1, . . . , xr ∈ Fq. We now show how to check circuit satisfiability.

1. For a circuit with |C| multiplication gates, the prover distributes correspond-
ing share of ([xi], [yi], [zi])i∈[|C|] over Fq to n verifiers. Pad ([0], [0], [0])’s to
these |C| sharings so that the number of sharings is divisible by r. We now
assume that |C| is divisible by r.

2. All verifiers jointly sample a uniform challenge χ ∈ Fqr and compute the
inner-product tuple:

[x] = (([x1], . . . , [xr]), χ · ([xr+1], . . . , [x2r]), . . . , χ
|C|/r−1 · [x|C|−r+1], . . . , [x|C|])

[y] = (([y1], . . . , [yr]), ([yr+1], . . . , [y2r]), . . . , ([y|C|−r+1], . . . , [y|C|]))

[z] =

|C|/r∑

i=1

χi−1 · ([z(i−1)r+1], . . . , [zir])

3. All verifiers apply the inner-product checking method in [28,29].
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Therefore, the amortized share size is now independent of the security parameter
and circuit size.
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A Player Elimination

Player elimination was first proposed in [31] to transform a non-robust (but
detectable) protocol into a robust protocol at essentially no additional costs. This
protocol cuts the preprocessing phase into many segments. At the beginning of
each segment, all parties are happy. If some party detects the inconsistency, he
becomes unhappy in this segment. At the end of this segment, if there is some
party unhappy, the protocol enters into fault localization and removes a pair of
parties from the rest of the computation. Then, the player elimination proto-
col repeats this segment. For completeness, we present the player elimination
protocol in [5].

Player Eliminiation

Setup: a set of n′ parties I = {P1, . . . , Pn′} and at most t′ ≤ n′(1−ε)
3

of them are
corrupted. Divide the computation into several segment and do the following in each
segment.

Initialization: All parties set their happy-bit happy.

Fault Detection: Reach agreement whether or not at least one party is unhappy.

Fault Localization: Find a pair of parties E in I that contain at least one corrupted
party.

– Denote the player Pr ∈ I with the smallest index r as the referee.
– Every Pi ∈ I sends everything he received and all random values he chose during

the computation of the actual segment (including fault detection) to Pr.
– Given the value received above, Pr can reproduce all message that should be

sent and compare it with the value from the recipient that claims to have. Then,
Pr broadcasts (�, i, j, x, x′) where � is the index of the message, x is the message
sent by Pi and x′ is the message received by Pj with x �= x′.

– The accused parties Pi, Pj broadcast whether they agree with Pr. If Pi disagrees,
set E = {Pr, Pi}. If Pj disagrees, set E = {Pr, Pj}. Otherwise set E = {Pi, Pj}.

Player Elimination: Set I = I \ E, n′ = n′ − 2, t′ = t′ − 1 and repeat this segment.
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Abstract. Multi-party private set union (MPSU) allows k(k ≥ 3) par-
ties, each holding a dataset of known size, to compute the union of their
sets without revealing any additional information. Although two-party
PSU has made rapid progress in recent years, applying its effective tech-
niques to the multi-party setting would render information leakage and
thus cannot be directly extended. Existing MPSU protocols heavily rely
on computationally expensive public-key operations or generic secure
multi-party computation techniques, which are not scalable.

In this work, we present a new efficient framework of MPSU from
multi-party secret-shared shuffle and a newly introduced protocol called
multi-query secret-shared private membership test (mq-ssPMT). Our
MPSU is mainly based on symmetric-key operations and is secure against
any semi-honest adversary that does not corrupt the leader and clients
simultaneously. We also propose new frameworks for computing other
multi-party private set operations (MPSO), such as the intersection, and
the cardinality of the union and the intersection, meeting the same secu-
rity requirements.

We demonstrate the scalability of our MPSU protocol with an imple-
mentation and a comparison with the state-of-the-art MPSU. Experi-
ments show that when computing on datasets of 210 elements, our pro-
tocol is 109× faster than the state-of-the-art MPSU, and the improve-
ment becomes more significant as the set size increases. To the best of
our knowledge, ours is the first protocol that reports on large-size exper-
iments. For 7 parties with datasets of 220 elements each, our protocol
requires only 46 s.

Keywords: Multi-query secret-shared private membership test ·
Private set union · Multi-party secret-shared shuffle

1 Introduction

Private set union (PSU) allows a group of mutually untrusted parties to compute
the union of their sets without revealing any additional information. PSU has
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various applications, including cyber risk assessment and management [26,34],
privacy-preserving data aggregation [6,8], and computing private DB full join
[33]. For example, to assess system risks and deploy corresponding defenses,
security practitioners usually want to obtain a joint list of their IP blacklists.
However, they are increasingly concerned with the privacy of sensitive data,
which may experience disclosure without appropriate computation techniques.
One crucial way this can be enhanced is PSU, which can be used to protect the
privacy of each organization while computing the union correctly.

In addition, the combination of PSU with other set operations is also greatly
in use. For instance, a social service organization needs to determine the cancer
patients who are entitled to social welfare, and they would require the patient
data from several hospitals to obtain the set of all cancer patients, and then
identify those who are eligible for social welfare [30,33]. Using PSU, the organi-
zation can securely compute the union of all cancer patients from the hospitals
without revealing any raw data to other parties. Subsequently, the organization
can obtain the final result while preserving privacy by performing a private set
intersection (PSI) calculation between the obtained set and those eligible for
social welfare.

PSI and PSU can be classified into two-party and multi-party settings based
on the number of participants. Over the last decade, two-party PSI has received
considerable research attention [2,7,11,13,14,17,19,22,29,31,38–41,43,44]. The
most efficient two-party PSI protocol to date [43] achieves performance compara-
ble to the insecure naive hashing PSI. Multi-party PSI (MPSI) has also benefited
from the research on two-party PSI, leading to the development of many efficient
constructions [4,9,32,36] suitable for large sets with millions of elements. As for
PSU, Kisser and Song initially studied the two-party PSU [30]. Although some
subsequent works [5,16,20,25] have been proposed, their constructions rely heav-
ily on additively homomorphic encryption (AHE) or complex circuits, resulting
in low efficiency. In 2019, Kolesnikov et al. [33] proposed the first two-party PSU
protocol suitable for large sets. Their construction is mainly based on symmetric-
key operations combined with oblivious transfer (OT), achieving a three-orders-
of-magnitude improvement in speed compared to [16]. In the following years,
Garimella et al. [21] and Jia et al. [28] further reduced the communication and
computation overhead using oblivious switching. Very recently, [12,24,49] realize
linear computation and communication complexity and are more efficient.

1.1 Motivation

Despite growing interest in PSU, there has been no scalable multi-party PSU
(MPSU) protocol. Most of the previous protocols [20,23,27,30,47] are not feasi-
ble on large datasets, due to non-constant AHE operations that are proportional
to the size of the sets. [46] constructed a constant-round protocol from reversed
Laurent Series and secret sharing but has a high computation and communica-
tion complexity. The protocol proposed in [5] sorts and merges the sets of the
participants using general MPC techniques, but it suffers from the significant
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overhead caused by complex circuits. [48] requires public-key operations propor-
tional to the input domain size of the sets. Although they have optimized the
protocol using a divide-and-conquer approach, the number of public-key opera-
tions still grows linearly with the size of the set and the number of participants.
Currently, most work on MPSU is still in the theoretical stage. Only [5,48] have
implemented and tested their protocols, but their performance is unsatisfactory.
These above-mentioned drawbacks limit the applications of MSPU. Therefore,
it is sensible to pose the problem:

Can we construct a truly scalable MPSU protocol?

1.2 Contribution

In this paper, we answer this problem affirmatively in the semi-honest setting.
In detail, our contributions can be summarized as follows:

1. We analyze the differences between MPSU and MPSI, then discuss the perfor-
mance gap between them, and point out the difficulties in extending two-party
PSU protocols to multi-party settings (cf. Sect. 2.1).

2. We propose a new protocol called multi-query secret-shared private set mem-
bership test (mq-ssPMT) to cater for the multi-party setting, and provide
an efficient construction of mq-ssPMT based on the multi-query reverse pri-
vate set membership test (mq-RPMT) proposed in [49]. mq-ssPMT can eas-
ily realize mq-RPMT and can be directly used for computing two-party PSI
and PSU. Specifically, when constructing a two-party PSU protocol, our mq-
ssPMT reduces one round of communication and n bits of communication
cost, where n is the size of the set, compared to mq-RPMT in [49] while
keeping the same computation cost.

3. We present new frameworks for computing multi-party private set operations
(MPSO) based on mq-ssPMT and multi-party secret-shared shuffle. Useful
functions include:

– Computing the union, i.e., MPSU
– Computing only the cardinality of the union
– Computing the intersection, i.e., MPSI
– Computing only the cardinality of the intersection

Furthermore, we prove that our frameworks are secure against any semi-
honest adversary that does not corrupt the leader and clients simultaneously.

4. We demonstrate the scalability of our MPSU protocol with an implementa-
tion. As a result, our MPSU protocol is 109× faster in terms of running time
on sets of 210 elements than the state-of-the-art MPSU protocol. Moreover, for
7 parties each holding a million-element dataset, our MPSU protocol requires
only 4min on WAN and 46 s on a LAN. Our implementation is released on
Github: https://github.com/lx-1234/MPSU.

1.3 Related Work

We review previous MPSU protocols in the semi-honest setting and provide a
theoretical comparison among them.

https://github.com/lx-1234/MPSU
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AHE-Based MPSU. Kisser and Song [30] proposed the first MPSU protocol
based on polynomial representations and threshold AHE. The core idea is that
each participant Pi represent his set Xi as a polynomial fi whose roots are the
set elements, so the polynomial

∏k
i=1 fi represents the union

⋃k
i=1 Xi. Their

protocol requires a large number of AHE operations and high-degree polynomial
calculations, which results in inefficiency.

Frikken [20] also uses polynomial representation and threshold AHE. Each
Pi represents his set Xi as a polynomial fi. P1 first encrypts f1 using AHE, and
sends to P2. P2 computes (x · Enc(f1),Enc(f1)) for each x ∈ X2. Note that if
x /∈ X1, then f1(x) �= 0, and all participants can jointly decrypt the ciphertext
and recover x by computing the inverse. Otherwise, both ciphertexts decrypt
to 0. Therefore, they can compute the difference set X2\X1. Similarly, they
compute X2\X1, · · · ,Xk\(X1 ∪ · · · ∪ Xk−1) separately, which can be merged to
get the union. Although the polynomial degree in [20] is lower than [30], the
complexity is still of quadratic order in the size of the set due to the need to
perform multi-point evaluations on the encrypted polynomials.

Gong et al. [23] proposed a constant-round MPSU protocol based on thresh-
old AHE and Bloom filters (BF). They observed that if a BF has no collisions,
then for each element stored in it, at least one of the positions is mapped only by
itself. Exploiting this property, they first construct a BF storing the union and
then check whether each position in the BF was mapped only by one element. If
so, they could figure out that element. Since the length of the BF is related to the
statistical security parameter and the union size, their protocol requires a large
amount of AHE operations. So the computational overhead is unacceptable.

All these three works use a threshold AHE and when the threshold is set to
k, they can resist arbitrary collusion.

Other MPSU. Seo et al. [46] proposed a constant-round MPSU protocol based
on secret sharing and reversed Laurent series. Their core idea is that if two sets
X and Y are represented by polynomials fX and fY respectively, then the union
X∪Y can be represented by the least common multiple of fX and fY , denoted as
lcm(fX , fY ). Note that 1

fX
+ 1

fY
= q(x)

lcm(fX ,fY ) , so it suffices to calculate 1
fX

+ 1
fY

.
Although this protocol achieves constant-round communication, the operations
on high-degree polynomials result in high computation and communication com-
plexity. Additionally, their protocol relies on the honest majority assumption.

Blanton et al. [5] proposed a more efficient MPSU protocol based on oblivious
sorting and generic MPC techniques in the honest majority setting. At a high
level, they first merge all sets into a large set, then sort it, and remove duplicate
elements by comparing adjacent elements to obtain the union. They focused on
constructing corresponding circuits and implemented them using generic MPC
techniques. Their experimental results show that in the three-party for 32-bit
sized elements, computing the union of 210 elements set takes 11.8 s.

Vos et al. [48] convert sets to bit-sets, i.e., a vector of bits is assigned to
each dataset Xi in which the ith element of this bit-vector (bit-set) is equal to
1 if the ith element of an ordered universe U of elements belongs to Xi, and 0
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otherwise. They obtain the union by performing a secure OR on the bit-sets.
Their secure OR is based on totally public-key operation, and the number of
secure OR is linearly related to the size of U , which makes the protocol unsuitable
for a large U such as |U| = 232. To address this issue, they use a divide-and-
conquer approach where each participant divides their bit-set into D parts and
uses secure OR to check if each part contains any elements. If so, the part is
further divided; otherwise, it is discarded. Nevertheless, each participant in the
optimized protocol still needs to perform O(kn log |U|) public-key operations,
which makes it non-scalable for large sets or a large U .

Other related work contains an MPSU protocol with an untrusted third
party’s help [47] and an MPSU protocol focus on multiset setting [27], which
both rely heavily on AHE and are out of the scope of our consideration.

Table 1 summarizes and compares the theoretical complexity and the ability
to resist collusion of existing MPSU protocols and our protocol. Leader refers to
the participant who obtains the union result or starts the computation. Client
refers to the remaining participants. [5,20,46] can achieve malicious security, but
we only compare with their semi-honest protocols here.

It should be noted that [23,30,48] will reveal the union to all participants
unavoidably, while in our protocol only the leader gets the result. Moreover, our
protocol can be extended to that case in the semi-honest setting, i.e., the leader
just broadcasts the output once he receives it. So we could say we achieve a
stronger MPSU function in the semi-honest setting.

Table 1. Asymptotic communication (bits) and computation costs of MPSU protocols
in the semi-honest setting. Pub: public-key operations; sym: symmetric-key operations.
n is the size of input set. k is the number of participants. N is the size of union. U is
the universe of input elements. σ is the bit length of input elements. t is the number
of AND gates in the SKE decryption circuit. λ is statistical security parameter. κ is
computational security parameter. Generally, λ = 40. In our protocol, κ = 128 while in
other works κ is the public key length. We ignore the offline phase cost in our protocol.
* means that in our protocol the adversary does not corrupt the leader and clients
simultaneously.

Protocol Comm. Comp. (#Ops sym/pub) Corruption
Leader Client Rounds Leader Client

[30] O(κk3n2) O(k) O(k2n3) pub < k

[20] O(κkn) O(k) O(kn2) pub < k

[46] O(σk3n2) O(1) O(k4n2) sym < �(k + 1)/2�
[5] O(σ(σkn logn + k2)) O(log k) O(σkn logn + k2) sym < �(k + 1)/2�
[23] O(κλkN) O(κλN) O(1) O(λkN) pub O(λN) pub < k

[48] O(κk2n log |U|) O(κkn log |U|) O(log |U|) O(k2n log |U|) pub O(kn log |U|) pub < k

Ours O((t + κ + (σ + λ + log (kn))k)kn) O((t + λ + κ)kn) O(log (σ − logn) + k) O(tkn) sym < k∗

2 Overview of Our Techniques

In this section, we provide a high-level technical overview of our MPSU protocol.
We first analyze the difficulties in constructing MPSU protocols and then show
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how to address these issues using our new techniques. The ideal functionality of
MPSU is given in Fig. 1.

Parameters: k parties: P1, · · · , Pk; Set size n; The bit length of set elements σ.
Functionality:

– Wait for input Xi = {x1
i , · · · , xn

i } ⊂ F2σ from Pi.

– Give output
k⋃

i=1

Xi to P1.

Fig. 1. Multi-party Private Set Union Functionality Fmpsu

2.1 Difficulties in MPSU

The Difference Between MPSU and MPSI. Like MPSI, the security of
MPSU requires that the receiver cannot obtain any information except for the
union. However, unlike MPSI, the intersection must be a subset of the receiver’s
set, so we only need to consider the elements in the receiver’s set. On the other
hand, the union output by MPSU contains all the sets of the participants, so the
protocol must involve the transmission of elements from all the participants’ sets.
And it is necessary to prevent an adversary from distinguishing which participant
an element belongs to. Moreover, if different participants have the same element,
the duplicates must be removed during the protocol execution to ensure that each
element appears only once in the union; otherwise, the adversary will know how
many participants have that element. Therefore, the MPSU protocol is more
complex in its design than MPSI and has some efficiency gaps.

Difficulties in Extending from Two-Party PSU. In two-party PSI, there
is a function called private set membership test (PMT). In the PMT, the sender
inputs a set X, and the receiver inputs an element y. The receiver can determine
whether y belongs to X, while the sender cannot obtain any information.

However, PMT cannot be applied to two-party PSU. To compute the union,
[33] proposed reverse PMT (RPMT), in which the sender inputs an element x,
and the receiver inputs a set Y , then the receiver determines whether x ∈ Y .
They combine RPMT and oblivious transfer (OT) to construct a PSU protocol.
For each element x ∈ X, the sender and the receiver run the OT protocol with
input (x,⊥) and the boolean value of the expression x ∈ Y (i.e., 1 if x ∈ Y
otherwise 0), respectively, where ⊥ is a special symbol. Note that the receiver
can obtain x if and only if x /∈ Y , so the receiver can obtain X\Y , and finally
output (X\Y ) ∪ Y = X ∪ Y . Figure 2 illustrates this idea.

The core of the existing efficient two-party PSU protocols [12,21,24,28,33,49]
is the efficient construction of RPMT. However, if we want to extend this idea
to compute X1 ∪ X2 ∪ · · · ∪ Xk, which can be split into X1 ∪ (X2\X1) ∪ · · · ∪
(Xk\(X1 ∪ · · · ∪ Xk−1)), two problems arise:
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x = a, Y = {b, c} x = b, Y = {b, c}

a Y b Y

0 1

RPMT RPMT

(a, ⊥) (b, ⊥)

a ⊥

OT OT

Fig. 2. Illustration of how to use RPMT and OT to perform PSU. The sender’s set
is {a, b} and the receiver’s set is {b, c}. The left-hand side illustrates that the sender
computes for his element a, which does not belong to Y . The right-hand side shows
that the sender computes for his element b ∈ Y that belongs to Y .

1. Since the receiver in RPMT knows whether the sender’s element belongs to
the receiver’s set, RPMT leaks the size of the cardinality of the difference set
|X\Y | to the receiver, which is not allowed in the multi-party setting.

2. RPMT can only compute the difference between two sets but does not work
in the multi-party setting, i.e., computing Xk\(X1 ∪· · ·∪Xk−1) where k ≥ 3.

Therefore, it is difficult to directly apply the techniques (RPMT) of two-party
PSU to the multi-party setting. The construction of efficient MPSU protocols
requires stronger functions.

2.2 Multi-Query Secret-Shared Private Membership Test

Based on the analysis in the previous section, the root cause of the first problem
is that, in RPMT, the result is directly output to the receiver, which leads to
information leakage. If we output the result of RPMT in the form of secret
sharing, with each party holding a share of the output, then neither party can
obtain any information. This function is called secret-shared RPMT. In this case,
the roles of the two parties are completely symmetric, so secret-shared RPMT
and secret-shared PMT (ssPMT) are the same function. We will use ssPMT to
refer to this function in the following text.

As early as 2018, Ciampi et al. [14] combined PSI with secure two-party
computation (2PC) to construct ssPMT. In 2021, Zhao et al. [50] formally defined
ssPMT and built it based on the secure comparison protocol in [15]. However,
their constructions have high communication overhead. Moreover, since only one
element of the sender can be tested each time, multiple repetitions of ssPMT
are needed to query all elements, which results in significant overhead.

In this work, we propose multi-query ssPMT (mq-ssPMT), which supports
querying multiple elements of the sender simultaneously, thereby reducing the
average cost per element. The ideal functionality of mq-ssPMT Fmq-sspmt is given
in Fig. 3. mq-ssPMT can implement PMT(RPMT) simply by having the sender
(receiver) send its share to the receiver (sender) to recover the result. Therefore,
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mq-ssPMT realizes a stronger function compared to PMT and RPMT. On the
other hand, mq-ssPMT can also be used to construct two-party PSI or PSU
protocols. For a PSI protocol, we only need to implement PMT. For a PSU
protocol, we do not need to implement RPMT and then calculate the difference
set using OT. We can directly construct a special input of OT: suppose the sender
S and the receiver R of mq-ssPMT each holds e0, e1 ∈ {0, 1}, where e0 ⊕ e1 is
the boolean value of the expression y ∈ X. As the receiver of OT, S inputs the
selection bit e0, and as the sender of OT, R inputs a pair of messages me1 = y
and me1⊕1 =⊥. Then, S can obtain the element y if and only if e0 = e1, that is,
y /∈ X, thus completing the computation of the union. Figure 4 illustrates the
main idea behind this.

Parameters: Sender S, Receiver R; Set size n; The bit length of set elements σ.
Functionality:

– Wait an input Y = {y1, · · · , yn} ⊂ F2σ from R.
– Wait an input X = {x1, · · · , xn} ⊂ F2σ from S.
– For i ∈ [n]: Set bi = 1 if yi ∈ X, otherwise set bi = 0. Sample e0 ← {0, 1}n

and compute e1 = e0 ⊕ b. Give e0 to S and give e1 to R.

Fig. 3. Multi-Query Secret-Shared Private Membership Test Functionality Fmq-sspmt

x = a, Y = {b, c} x = b, Y = {b, c}

a Y b Y

1 1 1 0

mq-ssPMT mq-ssPMT

(⊥, a) (⊥, b)

a ⊥

OT OT

Fig. 4. Illustration of how to use mq-ssPMT and OT to perform PSU. The sender’s set
is {a, b} and the receiver’s set is {b, c}. The left-hand side illustrates that the sender
computes for his element a, which does not belong to Y . The right-hand side shows
that the sender computes for his element b ∈ Y that belongs to Y . We remark that the
sender can query a, b simultaneously, and we separate a and b only for illustration.

2.3 MPSU Based on mq-ssPMT

We have now solved the first problem discussed in Sect. 2.1 using the new func-
tion mq-ssPMT. How can we solve the second problem, namely, how to compute
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Xk\(X1∪· · ·∪Xk−1)? Note that in MPSU, the adversary is not allowed to know
any intermediate results Xi\(X1 ∪ · · · ∪ Xi−1)(2 ≤ i ≤ k), so we cannot directly
compute and output them. They must exist in some form of ciphertexts or secret
shares.

Let’s consider a simplified setting where three parties P1,P2,P3 want to
compute X3\(X1 ∪ X2). In Sect. 2.2, we showed how to compute the difference
set between two parties directly using mq-ssPMT. If we split X3\(X1 ∪ X2)
into (X3\X1) ∩ (X3\X2), and send not the element itself but the share of the
element in the OT phase, then P1,P2,P3 can recover the element x if and only
if x ∈ X3\X1 ∧ x ∈ X3\X2, i.e., x ∈ X3\(X1 ∪ X2). Specifically, P3 acts as the
receiver and executes the mq-ssPMT separately with P1 and P2. For any x ∈ X3,
P3 and P1 each hold secret shares e131, e

0
31 ∈ {0, 1}, indicating whether x ∈ X1,

and P3 and P2 each hold secret shares e132, e
0
32 ∈ {0, 1}, indicating whether

x ∈ X2. P3 uses additive secret sharing to split x into x = x1 ⊕ x2 ⊕ x3, and
then acts as the sender to execute the OT protocol separately with P1 and P2.
Taking the OT with P1 as an example, P3 inputs me1

31
= x1 and me1

31⊕1 = r1,
where r1 is a random value, and P1 inputs e031. P1 can obtain the share x1 if
and only if x /∈ X1. Similarly, P2 can obtain the share x2 if and only if x /∈ X2.
Therefore, only when x /∈ (X1 ∪ X2), that is, x ∈ X3\(X1 ∪ X2), can P1,P2,P3

recover x, otherwise they can only get a random value.
In the same way, we can compute all Xi\(X1 ∪ · · · ∪ Xi−1)(2 ≤ i ≤ k). Since

any party always holds a share of his own set, any number of other participants
can not collude to obtain his input information. However, if we want to merge
all difference sets and output the union to P1, there are two remaining problems:

1. P1 knows the correspondence between the shares and the difference sets, so
the shares cannot be directly sent to P1 for recovery.

2. Since P1 has no knowledge of the elements in the other parties’ sets, and these
elements do not necessarily have a specific structure. So P1 cannot distinguish
between set elements and random values, i.e., P1 don’t know which element
he should add to the union.

To solve the first problem, we use a multi-party secret-shared shuffle (cf.
Sect. 3.4) to randomly permute and re-share all the shares held by the parties.
Since any k−1 parties don’t know the information about the permutation and all
shares are refreshed, the adversary can not find the correspondence between the
difference sets and the shares. To solve the second problem, all parties append
the hash value of the element to the end of it when performing secret sharing,
i.e., sharing x‖H(x). When the output length of the hash function H is long
enough, the probability that there exists an s satisfying r = s‖H(s) is negli-
gible. Therefore, P1 can distinguish the set elements from random values with
overwhelming probability.

Note that both mq-ssPMT and multi-party secret-shared shuffle have an
efficient online phase, so our MPSU protocol is also efficient in the online phase.
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3 Preliminaries

3.1 Notation

We use Pi to denote participants, Xi to represent the sets they hold, where each
set has n σ-bit elements. k denotes the number of participants. We use λ, κ as
the statistical and computational security parameters, respectively. [n] denotes
the set 1, 2, · · · , n. F2σ denotes the finite field composed of all σ-bit strings.
We use x‖y to denote the concatenation of two strings. We denote vectors with
bold fonts and individual elements with indices. For example, a is a vector
of n elements where each individual element is denoted as ai. a ⊕ b represents
(a1⊕b1, · · · , an⊕bn). π(a) represents (aπ(1), · · · , aπ(n)), where π is a permutation
on n items. We use := to denote assignment. For some set S, the notation s ← S
means that s is assigned a uniformly random element from S. By negl(λ) we
denote a negligible function, i.e., a function f such that f(λ) < 1

p(λ) holds for
any polynomial p(·) and sufficient large λ. We use the abbreviation PPT to
denote probabilistic polynomial-time.

3.2 Symmetric-Key Encryption

Our construction of mq-ssPMT is based on the mq-RPMT in [49], which uses
symmetric-key encryption (SKE). We use the standard definition of SKE. To
ensure the security of our mq-ssPMT, we require a security notion called multi-
message multi-ciphertext pseudorandomness like the mq-RPMT in [49]. We give
these definitions in Appendix A.

3.3 Oblivious Transfer

OT [42] is a foundational primitive in MPC, the functionality of 1-out-of-2 ran-
dom OT (ROT) is given in Fig. 5.

Parameters: Sender S, Receiver R; The bit length of message σ.
Functionality:

– Wait an input b ∈ {0, 1} from R.
– Sample m0, m1 ← F2σ . Give (m0, m1) to S and give mb to R.

Fig. 5. 1-out-of-2 Random OT Functionality Frot

3.4 Multi-party Secret-Shared Shuffle

Multi-party secret-shared shuffle can permute the share vectors of all parties
randomly and refresh all shares, and the functionality is given in Fig. 6. Early
works [10,35] focused on the construction for the two-party setting, and later,
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Eskandarian et al. [18] extended the protocol of [10] to the multi-party setting.
Their protocol consists of an offline phase and an online phase. In the offline
phase, each party generates a random permutation and a set of correlated vectors
called share correlation. In the online phase, each party permutes and refreshes
the share vectors efficiently using share correlation. We give the functionality of
share correlation and details of their protocol in Appendix B.

Parameters: k parties: P1, · · · , Pk; The dimension of vector n; The bit length
of individual element σ.
Functionality:

– Wait an input xi = (x1
i , · · · , xn

i ) ∈ F
n
2σ from each Pi(1 ≤ i ≤ k).

– Sample a random permutation π : [n] → [n]. For 1 ≤ i ≤ k, sample x′
i ← F

n
2σ

satisfying
k⊕

i=1

x′
i = π

( k⊕

i=1

xi

)

and give x′
i to Pi.

Fig. 6. Multi-party Secret-Shared Shuffle Functionality Fms

3.5 Oblivious Key-Value Stores

A key-value store [22,38] is a data structure that stores a map from keys to
corresponding values. The definition is as follows:

Definition 1. A key-value store (KVS) is parameterized by a set K of keys, a
set V of values, and a random value r ∈ {0, 1}κ, and consists of two algorithms:

– Encode({(k1, v1), · · · , (kn, vn)}, r): takes as input a set of {(ki, vi)}i∈[n] ⊆ K×
V and outputs an object D (or, with statistically small probability, an error
indicator ⊥).

– Decode: takes as input an object S, a key k, and outputs a value v.

Correctness. For all A ⊆ K × V with distinct keys:

(k, v) ∈ A and ⊥�= D ← Encode(A, r) ⇒ Decode(D, k, r) = v

Obliviousness. For all distinct {k0
1, · · · , k0

n} and all distinct {k1
1, · · · , k1

n}, if
Encode does not output ⊥ for {k0

1, · · · , k0
n} or {k1

1, · · · , k1
n}, then the output

{D|vi ← V, i ∈ [n],Encode({(k0
1, v1), · · · , (k0

n, vn)}, r)} is computationally indis-
tinguishable to {D|vi ← V, i ∈ [n],Encode({(k1

1, v1), · · · , (k1
n, vn)}, r)}.

A KVS is an oblivious KVS (OKVS) if it satisfies the obliviousness property.
In addition to the obliviousness, [49] also proposed the randomness property to
prove the security of their mq-RPMT protocol. Our mq-ssPMT protocol simi-
larly requires this property.
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Randomness. For any A = {(k1, v1), · · · , (kn, vn)} and k∗ /∈ {k1, · · · , kn}, the
output of Decode(D, k∗, r) is statistically indistinguishable to that of uniform
distribution over V, where D ← Encode(A, r).

Garbled cuckoo table (GCT) is the most efficient construction of KVS, includ-
ing 2H-GCT in [38] and 3H-GCT in [22]. And 3H-GCT satisfies both oblivious-
ness and randomness. Recently, Raghuraman et al. conducted a thorough theo-
retical and experimental analysis of the Encode algorithm in GCT, and presented
the most efficient Encode algorithm to date within the commonly used parame-
ters range. Due to space limitation, the formal description of their algorithm is
given in deffer to Appendix C.

3.6 Security Model

In this work, we consider only the semi-honest model, where adversaries strictly
follow the protocol specification but try to learn more than allowed by inspect-
ing the protocol transcript. Furthermore, since our protocol involves multiple
parties, we also consider collusion, which means an adversary can corrupt mul-
tiple parties and combine their views to infer more information. We adopt the
standard definition of semi-honest security as defined in [37].

Definition 2. Let f : ({0, 1}∗)k → ({0, 1}∗)k be an k-ary function-
ality, where fi(x1, · · · , xk) denotes the ith element of f(x1, · · · , xk). For
I = {i1, · · · , it} ⊆ [k], let fI(x1, · · · , xk) denote the subsequence
fi1(x1, · · · , xk), · · · , fit

(x1, · · · , xk). Let Π be a k-party protocol for computing
f . The view of the ith party Π during an execution of Π on x̄ = (x1, · · · , xk)
is denoted by VIEWΠ

i (x̄). For any I = {i1, · · · , it}, we let VIEWΠ
I (x̄) def=

(I,VIEWΠ
i1 (x̄), · · · ,VIEWΠ

it
(x̄)). We say Π privately computes f against semi-

honest adversaries if there exists a PPT algorithm, denoted Sim, such that for
every I ⊆ [k], it holds that

{Sim(I, (xi1 , · · · , xit
), fI(x̄))}x̄∈({0,1}∗)k

c≡ {VIEWΠ
I (x̄)}x̄∈({0,1}∗)k

4 Multi-Query Secret-Shared Private Membership Test

In this section, we describe the details of our efficient mq-ssPMT, which securely
computes the functionality in Fig. 3 in the presence of semi-honest adversaries.
We first revisit the mq-RPMT in [49], then show how to build an mq-ssPMT
protocol based on it.

4.1 Revisit mq-RPMT in ZCLZL23

Zhang et al. [49] observe that the reason why the RPMT proposed in [33] cannot
support multiple queries is that they use the same indication string s for every
element belonging to the receiver R. Specifically, if an element x belongs to
R’s set Y = {y1, · · · , yn}, then S will get s when queries x. Allowing S to
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make multiple queries will result in information leakage if S gets the same string
when queries distinct elements, which means they belong to the intersection
with overwhelming probability. A natural idea to address this issue is that R
uses different indication strings for different elements, but this will allow R to
know the specific elements from S based on the correspondence between the
elements and the indication strings.

To tackle this challenge, in [49], R uses a randomized encryption scheme to
encrypt an indication string s n times to get n different ciphertexts s1, · · · , sn.
Then R uses an OKVS to map each element to a si, i.e., compute D :=
Encode({(y1, s1), · · · , (yn, sn)}, r), and sends D to S. S queries each element
xi(1 ≤ i ≤ n) in his set X to get s∗

i := Decode(D,xi, r). Then they use a newly
introduced function called vector oblivious decryption-then-matching (VODM),
where S inputs s∗ and R inputs an encryption key and s, and then R knows
whether Dec(k, s∗) equals s. Note that if xi ∈ Y , s∗

i belongs to{s1, · · · , sn}. If
not, s∗

i is a random ciphertext due to the randomness property of OKVS. So their
construction realizes mq-RPMT correctly. The security relies on the security of
VODM and the randomness of OKVS.

[49] proposed VODM constructions for both public-key encryption (PKE)
and SKE. For PKE, they use a re-randomizable PKE. S directly sends the re-
randomized ciphertext to R for decryption. For SKE, they use GMW protocol
to compute the decryption circuit of SKE. Then S sends the output shares
to R, who recovers the final result. They notice that randomized SKE causes
ciphertext expansion. To avoid this problem, they proposed new construction
for deterministic SKE: R uses a deterministic SKE to encrypt 0, 1, · · · , n − 1 to
obtain n different ciphertexts s1, · · · , sn, and adds a comparison circuit at the
end of the decryption circuit in VODM to check whether the decryption result
is less than n. If it is, the element belongs to Y . Otherwise, it does not.

4.2 Construction of mq-ssPMT

It is worth noting that in [49], the output of mq-RPMT is exactly the output
of VODM. If we realize secret-shared VODM (ssVODM), we can achieve mq-
ssPMT. The ideal function of ssVODM is given in Fig. 7. In the SKE-based
mq-RPMT in [49], GMW is used to implement VODM. However, the output
of GMW is already in the form of secret sharing. If we omit the last step of
recovering the secret, this construction is actually ssVODM. Therefore, we can
directly obtain an efficient mq-ssPMT from the mq-RPMT in [49]. According
to the method of constructing the two-party PSU using mq-ssPMT in Sect. 2.2,
the SKE-based PSU in [49] can reduce one round of communication and n bits
of communication.

Furthermore, the OKVS scheme used in [49] is 3H-GCT in [22]. We use an
optimized 3H-GCT in [43] to reduce computation and communication costs. The
details of our mq-ssPMT are shown in Fig. 8.

Security. Regarding the security of Πmq-sspmt, we have the following theorem.
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Parameters: Sender S, Receiver R; Set size n; An encryption scheme E =
(Setup,KeyGen,Enc,Dec).
Functionality:

– Wait an input k, S from R.
– Wait an input {s∗

1, · · · , s∗
n} ⊂ {0, 1}∗ from S.

– For i ∈ [n], compute s′
i = Dec(k, s∗

i ). Set bi = 1 if s′
i ∈ S, otherwise set bi = 0.

Sample e0 ← {0, 1}n, then compute e1 = e0 ⊕ b. Give e0 to S. Give e1 to R.

Fig. 7. Secret-Shared VODM Functionality Fssvodm

Parameters:

– Sender S, Receiver R.
– A SKE E = (Setup,KeyGen,Enc,Dec) satisfies multi-message multi-ciphertext

pseudorandomness.
– An OKVS scheme (Encode,Decode) and its random value r.
– Ideal functionality Fssvodm in Fig. 7.

Input of S: X = {x1, · · · , xn} ⊂ F2σ .
Input of R: Y = {y1, · · · , yn} ⊂ F2σ .
Protocol:

1. S runs pp ← Setup(1κ) and KeyGen(pp) to get a key k. For i ∈ [n], computes
si = Enc(k, i − 1).

2. S computes an OKVS D := Encode
(
(x1, s1), · · · , (xn, sn), r

)
and sends D to

R.
3. R computes s∗

i := Decode(D, yi, r) for i ∈ [n].
4. S and R invokes Fssvodm. R acts as sender with input (s∗

1, · · · , s∗
n). S acts

as receiver with input {0, 1, · · · , n − 1}, k. S and R receive e0, e1 ∈ {0, 1}n,
respectively.

Fig. 8. mq-ssPMT Protocol Πmq-sspmt

Theorem 1. Assume the SKE scheme E = (Setup,KeyGen,Enc,Dec) satis-
fies multi-message multi-ciphertext pseudorandomness. The protocol in Fig. 8
securely computes Fmq-sspmt against semi-honest adversaries in the Fssvodm-hybrid
model.

Since Πmq-sspmt is essentially the same as mq-RPMT in [49] except for omit-
ting the last step of secret reconstruction, the security proof of Πmq-sspmt is similar
to that of mq-RPMT and is not repeated here. We recommend interested readers
to refer to the proof in [49].

5 Protocol Overviews and Details

In this section, we give the details of our MPSU protocol. We also construct
multi-party private set union cardinality (MPSU-CA), MPSI, and multi-party
private set intersection cardinality (MPSI-CA) protocols based on mq-ssPMT
and multi-party secret-shared shuffle.
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5.1 MPSU

Our MPSU protocol follows the approach outlined in Sect. 2. Each participant
Pi (2 ≤ i ≤ k) acts as the receiver and performs the mq-ssPMT protocol with
all Pj (1 ≤ j < i). For each element in the set of Pi, Pi splits it into i shares
using additively secret sharing and shares with all Pj . Since each share is a
random value, we use random OT to generate each share, and Pi computes
his own share locally to reduce the communication overhead caused by OT.
Next, all parties combine their shares of all the difference sets (if there is no
corresponding share, set it to 0) to generate a (k − 1) × n dimensional vector
and set it as the input to the multi-party secret-shared shuffle protocol. Then,
P2, · · · ,Pk send their new shares to P1, who recovers

⋃k
i=2 Xi\X1. Finally, P1

outputs
⋃k

i=1 Xi = X1 ∪ (
⋃k

i=2 Xi\X1). The protocol details are given in Fig. 9.

Parameters:

– k parties: P1, · · · , Pk.
– Ideal functionalities Fmq-sspmt in Fig. 3, Frot in Fig. 5, Fms in Fig. 6.
– A collision-resistant hash function H(x) : {0, 1}∗ → {0, 1}�.

Input of Pi: Xi = {x1
i , · · · , xn

i } ⊂ F2σ .
Protocol:

1. For 1 ≤ i < j ≤ k, Pi and Pj invoke Fmq-sspmt. Pi acts as sender with input Xi.
Pj acts receiver with input Xj . Pj , Pi receive e0

ji, e
1
ji ∈ {0, 1}n, respectively.

2. For 1 ≤ i < j ≤ k, 1 ≤ t ≤ n:
– Pi and Pj invoke Frot.
– Pj acts as sender with no input.
– Pi acts as receiver with input e1ji,t.

– Pj receives r0ji,t, r
1
ji,t ∈ {0, 1}σ+�. Pi receives rji,t := r

e1ji,t

ji,t .

3. For 2 ≤ j ≤ k, Pj computes rjj,t :=
(
xt

j‖H(xt
j)

) ⊕ ⊕j−1
i=1 r

e0ji,t

ji,t for t ∈ [n].
4. Each Pi computes shi ∈ F

(k−1)n

2σ+� as follows: for max(2, i) ≤ j ≤ k, 1 ≤ t ≤ n,
shi,(j−2)n+t := rji,t. Set all other positions to 0.

5. All Pi invoke Fms with input shi. Pi receives sh′
i.

6. For 2 ≤ i ≤ k, Pi sends sh′
i to P1. P1 recovers z :=

⊕k
i=1 sh′

i. Set Y := ∅.
For 1 ≤ i ≤ (k − 1)n, if zi = s‖H(s) holds for some s ∈ F2σ , P1 computes
Y = Y ∪ {zi}. Outputs X1 ∪ Y .

Fig. 9. Multi-party Private Set Union Protocol Πmpsu

Correctness. We first prove
⋃k

i=1 Xi ⊆ X1 ∪ Y . For any x ∈ ⋃k
i=1 Xi, if

x ∈ X1, then x ∈ X1 ∪ Y . Otherwise, there exists a unique j that satisfies
x ∈ Xj\X1 ∪ · · · ∪Xj−1). Therefore, when Pj shares x‖H(x) to all Pi(1 ≤ i < j)
using ROT, all Pi will choose the share instead of the random value. Because the
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multi-party secret-shared shuffle does not affect the correctness of the recovery,
P1 will always obtain x‖H(x) and add x to the output.

Then, we prove (X1 ∪ Y ) ⊆ ⋃k
i=1 Xi, which is equivalent to proving Y ⊂

⋃k
i=1 Xi. Since Y is a subset of {z1, · · · , z(k−1)n}, we only need to consider each

individual zi. If there is no x ∈ ⋃k
i=1 Xi that satisfies zi �= x‖H(x), then zi

must be a random value due to the randomness of ROT’s output. Therefore,
Pr [zi = s‖H(s) for some s] = 2−�. By a union bound, we have:

Pr

[

X1 ∪ Y �⊆
k⋃

i=1

Xi

]

≤ (k − 1) · n · 2−� = 2log (k−1)+log n−�

When � ≥ λ + log (k − 1) + log n, the probability is negligible.

Security. Now we prove the security of Πmpsu in Fig. 9.

Theorem 2. Πmpsu in Fig. 9 securely computes Fmpsu against any semi-honest
adversary that does not corrupt P1 and any subset of {P2, · · · ,Pk} simultane-
ously in the (Fmq-sspmt,Frot,Fms)-hybrid model.

Proof. Let C and H be a coalition of corrupt and honest parties, respectively.
|C| = η. To show how to simulate C’s view in the ideal model, we consider two
cases based on whether P1 is corrupted.

P1 is Honest. In this case, P1 /∈ C. SimC(Xi1 , · · · ,Xiη
) runs as follows:

1. For all Pi ∈ C, SimC samples e′0
iu ← {0, 1}n for 1 ≤ u < i and e′1

vi ← {0, 1}n

for i < v ≤ k, which satisfy for all Pi,Pj ∈ C(i < j), 1 ≤ t ≤ n:
– e′0

ji,t ⊕ e′1
ji,t = 1, if xt

j ∈ Xi

– e′0
ji,t ⊕ e′1

ji,t = 0, if xt
j /∈ Xi

Then SimC appends all e′0
iu,e′1

vi to the view.
2. For all Pi ∈ C, SimC samples r′0

iu, r′1
iu ← F

n
2σ+� for 1 ≤ u < i and r′

vi ← F
n
2σ+�

for i < v ≤ k, which satisfy for all Pi,Pj ∈ C(i < j) and all 1 ≤ t ≤ n:

∀1 ≤ t ≤ n, r′
ji,t = r

′e′1
ji,t

ji,t

Then SimC appends all r′0
iu, r′1

iu, r′
vi to the view.

3. For all Pi ∈ C, SimC samples sh′′
i ← F

(k−1)n

2σ+� and appends is to the view.
4. For all Pi ∈ C, SimC invokes mq-ssPMT simulator SimR

mq-sspmt(Xi,e
′0
iu) for

1 ≤ u < i and SimS
mq-sspmt(Xi,e

′1
vi) for i < v ≤ k. Then appends the output

to the view.
5. For all Pi ∈ C, SimC invokes ROT simulator SimS

rot(r
′0
iu, r′1

iu) for 1 ≤ u < i
and SimR

rot(e
′1
vi, r

′
vi) for i < v ≤ k. Then appends the output to the view.

6. For all Pi ∈ C, SimC creates shi as Step 3 and Step 4 of Πmpsu. Then invokes
multi-party secret-shared shuffle simulator SimPi

ms(shi, sh′′
i ) and appends the

output to the view.
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Now we argue that the view output by SimC is indistinguishable from the
real one. In the real world, the output e0

ji,e
1
ji of mq-ssPMT, the output r0

ji, r
1
ji

of ROT, and the output sh′
i of multi-party secret-shared shuffle are uniformly

random from the perspective of a single corrupted party. Even if all the parties
in C combine their views, the outputs of the mq-ssPMT and ROT protocols run
with the honest parties, i.e., e0

ji,e
1
ji, r

0
ji, r

1
ji(Pi ∈ H or Pj ∈ H), are uniformly

random and mutually independent. Moreover, the outputs of the protocols run
with the corrupted parties, i.e., e0

ji,e
1
ji, r

0
ji, r

1
ji(Pi,Pj ∈ C), are still uniformly

random but constrained by the correctness of mq-ssPMT and ROT.
As for the output of multi-party secret-shared shuffle protocol, at least one

share sh′
h is unknown because the number of corrupted parties is always less

than k. So from the perspective of C, the output sh′
i(Pi ∈ C) are uniformly

random and independent of each other.
Notice that in the view output by SimC , all messages are uniformly random

and satisfy the correctness constraints, which is exactly the same as that of real
world. So the simulated view is computationally indistinguishable from the real.

P1 is Corrupted. In this case, C = {P1}. So the simulator SimC(X1,
⋃k

i=1 Xi)
needs to simulate P1’s view. SimC runs as follows:

1. SimC samples e′1
i1 ← {0, 1}n for 2 ≤ i ≤ k and appends them to the view.

2. SimC samples r′
i1 ← F

n
2σ+� for 2 ≤ i ≤ k and appends them to the view.

3. SimC computes Y ′ := (
⋃k

i=1 Xi)\X1, and constructs z′ ∈ F
(k−1)n

2σ+� as follows:
– for ∀yi ∈ Y ′, z′

i := yi‖H(yi)
– for |Y ′| < i ≤ (k − 1)n, samples z′

i ← F2σ+�

Then, SimC samples a random permutation π : [(k − 1)n] → [(k − 1)n], and
computes z′′ := π(z′).

4. For 1 ≤ i ≤ k, SimC samples sh′′
i ← F

(k−1)n

2σ+� , which satisfies
⊕k

i=1 sh′′
i = z′′.

Then SimC appends all sh′′
i to the view.

5. SimC invokes mq-ssPMT simulator SimS
mq-sspmt(X1,e

′1
i1) for 2 ≤ i ≤ k. Then

appends the output to the view.
6. SimC invokes ROT simulator SimR

rot(e
′1
i1, r

′
i1) for 2 ≤ i ≤ k. Then appends the

output to the view.
7. SimC constructs sh1 as Step 3 and Step 4 of Πmpsu. Then invokes multi-party

secret-shared shuffle simulator SimP1
ms (sh1, sh′′

1) and appends the output to
the view.

Now we argue that the view output by SimC is indistinguishable from the
real one. Specifically, we need to prove sh′

i from each Pi does not leak any other
information except for the union. For all 2 ≤ j ≤ k, consider an element xt

j ∈ Xj .
If there exists some Xi(1 ≤ i < j) that xt

j ∈ Xi, then e0ji,t ⊕ e1ji,t = 1, rji,t =

r
e1

ji,t

ji,t �= r
e0

ji,t

ji,t . So
⊕k

i=1 shi,(j−2)n+t =
⊕j

i=1 rji,t = r ⊕ r
e0

ji,t

ji,t ⊕ r
e1

ji,t

ji,t is uniformly
random from the perspective of P1, where r is the sum of remaining terms. So
in the real world, the individual elements of

⊕k
i=1 sh′

i are all uniformly random
values except for |⋃k

i=2 Xi\X1| elements, which is the same as simulated view.
So the simulated view is computationally indistinguishable from the real. ��
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An Efficiency Optimization. In our MPSU protocol, each Pi(1 ≤ i ≤ k −
2) acts as sender to execute mq-ssPMT with Pi+1, · · · ,Pk. And in each mq-
ssPMT, Pi needs to encrypt n messages and compute a corresponding OKVS.
We observe that Pi can use the same OKVS in all mq-ssPMT, which could
avoid additional computation costs caused by multiple encryptions and Encode
without compromising the security of the protocol. The only change required is
the length of ciphertexts of SKE, which should be increased from λ + 2 log n to
λ + 2 log n + 2 log (k − i). So we can guarantee that the probability of collisions
between the random results of Decode and the ciphertexts of indication strings
is negligible. Therefore, we can ensure the correctness of the protocol.

Insecurity Against Arbitrary Collusion. We now illustrate why we need the
assumption that P1 does not collude with others. In our protocol, P1 reconstructs
the vector z in Step 6, which is a permutation of

⊕k
i=1 shi. So each individual

element of z is the form of
⊕j

i=1 rji,t. However, all rji,t(1 ≤ i < j, 1 ≤ t ≤ n) is
known by Pj , which is not uniformly random from the perspective of colluding
P1,Pj . More specifically, they can recover the output of Pi in ROT. So they could
get the output of Pi in mq-ssPMT with Pj , which will reveal the information
of Xi. We argue that although we require this special assumption, we achieve
security against any number of semi-honest clients and significant improvement
in efficiency.

MPSU-CA. MPSU-CA is a variant of MPSU, where the receiver is only allowed
to know the cardinality of the union. To fill the gap between MPSU and MPSU-
CA, we only need to make minor modifications to our MPSU protocol. Each
party no longer shares his own elements, but instead, an indication string s
agreed on in advance. Finally, Pi could count the number of s to get the cardi-
nality of the union.

Another difference is that since each party agrees on an indication string,
the problem of distinguishing random values and set elements in MPSU does
not arise here. So we do not need to append a hash at the end of each element,
which could reduce communication costs. The details of our MPSU-CA protocol
are given in the full version.

5.2 MPSI

We now discuss MPSI. We first give the functionality in Fig. 10. Since the inter-
section must be a subset of X1, we only need to share X1. So P1 acts as sender
and executes mq-ssPMT with all other Pi(2 ≤ i < k). On the other hand,
unlike computing the union, the intersection

⋂k
i=1 Xi can be decomposed into

⋂k
i=1 (X1 ∩ Xi). Therefore, each Pi should obtain the share of the intersection

X1 ∩ Xi instead of the share of the difference set X1\Xi. Therefore, Pi cannot
directly use the output of mq-ssPMT as the selection bit in ROT as in the MPSU
protocol but should choose the other message. The detailed description is given
in Fig. 11.
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Parameters: k parties P1, · · · , Pk; Set size n; The bit length of set elements σ.
Functionality:

– Wait for input Xi = {x1
i , · · · , xn

i } ⊂ F2σ from Pi.

– Give output
k⋂

i=1

Xi to P1.

Fig. 10. Multi-party Private Set Intersection Functionality Fmpsi

Parameters:

– k parties: P1, · · · , Pk.
– Ideal functionalities Fmq-sspmt in Fig. 3, Frot in Fig. 5, Fms in Fig. 6.
– The bit length of indication string �.

Input of Pi: Xi = {x1
i , · · · , xn

i } ⊂ F2σ .
Protocol:

1. For 2 ≤ i ≤ k, P1 and Pi invoke Fmq-sspmt. Pi acts as sender with input Xi, P1

acts as receiver with input X1. P1, Pi receive e0
1i, e

1
1i ∈ {0, 1}n, respectively.

2. For 2 ≤ i ≤ k, 1 ≤ t ≤ n:
– P1 and Pi invoke Frot.
– Pi acts as sender with no input.
– P1 acts as receiver with input e01i,t ⊕ 1.

– Pi receives r01i,t, r
1
1i,t ∈ {0, 1}σ+�. P1 receives r1i,t := r

e01i,t⊕1

1i,t .

3. For 1 ≤ t ≤ n, P1 computes r11,t :=
(
xt
1‖H(xt

1)
) ⊕ ⊕k

i=2 r1i,t.
4. Each Pi(2 ≤ i ≤ k) computes shi ∈ F

n
2σ+� as follows: for 1 ≤ t ≤ n, sht :=

r
e11i,t

1i,t . P1 computes sh1 ∈ F
n
2σ+� as follows: for 1 ≤ t ≤ n, sht := r1i,t.

5. All Pi(1 ≤ i ≤ k) invoke Fms with input shi. Pi receives sh′
i.

6. For 2 ≤ i ≤ k, Pi sends sh′
i to P1. P1 recovers z :=

⊕k
i=1 sh′

i. Set Y := ∅.
For 1 ≤ i ≤ n, if zi = x‖H(x) holds for some x ∈ X1, computes Y = Y ∪ {zi}.
Outputs Y .

Fig. 11. Multi-party Private Set Intersection Protocol Πmpsi

Correctness. Similar to the analysis of MPSU protocol in Sect. 5.1. Since zi

needs to satisfy zi = x‖H(x) and x ∈ X1, the probability of Πmpsi outputting a
wrong result does not exceed n · 2−σ · 2−� = 2log n−σ−�. If σ − log n ≥ λ, it’s not
necessary to append H(x) to the end of x to ensure that the error probability is
less than 2−λ. If σ − log n < λ, we need � ≥ λ + log n − σ.

Security. We now prove the security of Πmpsi in Fig. 11.

Theorem 3. Πmpsi in Fig. 11 securely computes Fmpsi against any semi-honest
adversary that does not corrupt P1 and any subset of {P2, · · · ,Pk} simultane-
ously in the (Fmq-sspmt,Frot,Fms)-hybrid model.

Proof. Since the proof is similar to the Proof of Theorem 2, we leave it to
Appendix D.
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MPSI-CA. Like our MPSU-CA protocol, we could similarly build MPSI-CA
based on our MPSI protocol. In contrast to MPSI, P1 shares an indication string
s instead of his own elements, just like MPSU-CA protocol. The details are given
in the full version.

Remark 1. These approaches for MPSI and MPSI-CA are not competitive with
the state-of-the-art special-purpose protocols for MPSI and MPSI-CA. In partic-
ular, mq-ssPMT and multi-party secret-shared shuffle is unnecessary for them.
We include these two protocols merely for illustrative purposes.

6 Complexity Analysis

In this section, we analyze the computation and communication complexity of
our four protocols.

6.1 mq-ssPMT

We first analyze the complexity of our mq-ssPMT protocol. The costs of mq-
ssPMT can be divided into three parts: the cost of SKE encryption, the cost of
OKVS, and the cost of ssVODM. Similar to [49], we use LowMC [1] to initialize
SKE and implement ssVODM using 2PC. In addition to the decryption circuit
of LowMC, we also need a comparison circuit. In this work, we only consider
the case where n = 2q, so we can use the method in [49]: to compare whether
a σ-bit string is less than n, we only need to check if one of its first σ − log n
bits is 1, so we need a total of σ − log n− 1 AND gates. Therefore, the ssVODM
protocol requires a total of n(t + σ − log n − 1) = O(tn) AND gates, where t is
the number of AND gates in the SKE decryption circuit. We now calculate the
cost of each part.

– SKE encryption: The computation complexity of encrypting 0, 1, · · · , n− 1 is
O(n).

– OKVS: We use the optimized 3H-GCT algorithm in [43]. We employ it with
a cluster size of 214, weight w = 3. These result in the size of OKVS is
1.28n|c| bits, where |c| is the size of a ciphertext of SKE. The computation
complexities of Encode,Decode are both O(n). Sending an OKVS to other
parties needs one round communication.

– ssVODM: We use GMW to employ 2PC. Notice that we do not need to share
the input, i.e., the sender of ssVODM could use 0 as the share of s∗

1, · · · , s∗
n

and the receiver could use 0 as the share of the decryption key k. Therefore,
the costs contain only the evaluation of the AND gates. Using Beaver triple
[3], each AND gate requires 4 bits communication and O(1) computation.
Therefore, the communication costs are 4n(t + σ − log n − 1) bits and the
computation complexity is O(n(t + σ − log n)). Since the round complexity
of GMW depends on the depth of AND gates, which is one in each round
of LowMC decryption and log2 (σ − log n) in string comparison, the round
complexity is O(log (σ − log n)).
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According to the analysis in Sect. 5.1, the length of a ciphertext is no more
than λ+2 log (kn). In the scenario we are studying, where σ ≤ 128, n ≤ 224, k ≤
20, we have t is greater than σ and log (kn). Therefore, we can approximate
O(t + σ + log (kn)) as O(t). Thus, in mq-ssPMT, the computation complexity
is O(nt), the communication complexity is O(n(t + λ)) bits, and the round
complexity is O(log (σ − log n)).

6.2 MPSU and MPSU-CA

MPSU. The costs of our MPSU protocol can be split to four parts, including
mq-ssPMT, ROT, multi-party secret-shared shuffle and secret reconstruction.
We analyze the costs of these parts, respectively.

– mq-ssPMT: Since Pi executes mq-ssPMT k − 1 times, the communication
complexity is O((t + λ)kn), and the computation complexity is O(tkn) for
all parties. Moreover, Pi can run mq-ssPMT with others in parallel, so the
round complexity is O(log (σ − log n)).

– ROT: Pi executes ROT k − 1 times, so the communication complexity is
O(κkn), and the computation complexity is O(kn) for all parties. Since we use
a constant-round ROT and execute all ROT in parallel, the round complexity
is O(1).

– Multi-party secret-shared shuffle: We use the protocol in [18]. In its offline
phase, each pair of parties need to run a share translation protocol in
[10]. Omitting message sizes and log factors, the computation complexity
and the communication complexity for each party are both Õ(k2n). In the
online phase, since we need to shuffle (σ + �)-bits elements, the computa-
tion complexity is O(kn) for each party, and the communication complexity
is O((σ + �)k2n) for P1 and O((σ + �)kn) for P2, · · · ,Pk according to the
details described in Appendix B. The round complexity is O(k).

– Secret reconstruction: The communication complexity and computation com-
plexity of P1 is O((σ + �)k2n) and O(n), respectively. The communication
complexity of other parties is O((σ + �)kn). And it needs one round commu-
nication.

Therefore, omitting the costs in the offline phase and taking � = λ + log n +
log (k − 1), the computation complexity of all parties is O(tkn). The communi-
cation complexity of P1 is O((t + κ + (σ + λ + log (kn))k)kn). The communi-
cation complexity of P2, · · · ,Pk is O((t + λ + κ)kn). The round complexity is
O(log (σ − log n) + k).

MPSU-CA. Our MPSU-CA protocol differs from the MPSU protocol only in
the elements being shared. In MPSU, the length of the secret being shared is σ+�,
while in MPSU-CA it is �. We take � = λ+ log n+ log (k − 1). The computation
complexity of all parties is O(tkn). The communication complexity of P1 is
O((t+ κ+ (λ+ log (kn))k)kn). The communication complexity of P2, · · · ,Pk is
O((t + λ + κ)kn). The round complexity is O(log (σ − log n) + k).
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6.3 MPSI and MPSI-CA

MPSI. Our MPSI protocol’s costs can also be divided into mq-ssPMT, ROT,
multi-party secret-shared shuffle, and secret reconstruction. We analyze the costs
of these parts, respectively.

– mq-ssPMT: Since P1 needs to act as receiver to execute mq-ssPMT with all
P2, · · · ,Pk, the communication complexity is O((t + λ)kn) and the com-
putation complexity is O(tkn) for P1. The communication complexity is
O((t + λ)n) and the computation complexity is O(tn) for P2, · · · ,Pk.

– ROT: Assume the average communication cost per ROT is cot = O(κ) bits.
Since P1 needs to run ROT with P2, · · · ,Pk, the communication complexity
and the computation complexity of P1 is O(κkn) and O(kn), respectively. The
communication complexity and the computation complexity of P2, · · · ,Pk is
O(κn) and O(n), respectively.

– Multi-party secret-shared shuffle: Same as the analysis in Sect. 6.2, the com-
putation of each party is O(n). The communication complexity of P1 is
O((σ + �)kn). The communication complexity of P2, · · · ,Pk is O((σ + �)n).

– Secret reconstruction: The communication complexity and computation com-
plexity of P1 is O((σ + �)kn) and O(n), respectively. The communication
complexity of other parties is O((σ + �)n).

Omitting the costs in the offline phase, since σ + � = max{λ + log n, σ}, the
computation complexity and communication complexity of P1 is O(tkn) and
O((t+κ+λ)kn), respectively. The computation complexity and communication
complexity of P2, · · · ,Pk is O(tn) and O((t + κ + λ)n), respectively. Similarly,
the round complexity is O(log (σ − log n) + k).

MPSI-CA. The bit length of the secret shared in our MPSI protocol is σ+ � =
max {λ + log n, σ}, which is the same as that of MPSI-CA. Therefore, they have
the same complexity.

We conclude the complexity of our four protocols in Table 2.

Table 2. The conclusion and comparison of our MPSU, MPSU-CA, MPSI, and MPSI-
CA protocols. n is the set size. k is the number of parties. σ is the bit length of set
elements. t is the number of AND gates in an SKE decryption circuit. λ is statistical
security parameter. κ is computational security parameter. The computation complex-
ity refers to the number of symmetric-key operations.

Protocol Comm. Comp.
Leader Client Rounds Leader Client

MPSU O((t + κ + (σ + λ + log (kn))k)kn) O((t + λ + κ)kn) O(log (σ − logn) + k) O(tkn)

MPSU-CA O((t + κ + (λ + log (kn))k)kn)

MPSI O((t + λ + κ)kn) O((t + λ + κ)n) O(tkn) O(tn)

MPSI-CA



Scalable Multi-party Private Set Union from mq-ssPMT 259

7 Implementation

In this section, we provide experimental details and test results for MPSU, and
compare our results with previous work. We ignore the costs of the offline phase,
including the generation of base OTs, share correlations, and Beaver triples. All
experimental data are the average of 10 trials under the same environment. We
compute the communication costs of a party as the sum of the data he sent and
received.

7.1 Experimental Setup

We run all protocols on a single Intel Ice Lake processor at 3.2GHz with 256GB
RAM. We emulate the two network connections using Linux tc command. For
the LAN setting, we set network latency to 0.02ms and bandwidth of 10Gbps
and for the WAN setting the latency is set to 40 ms and bandwidth 400Mbps.

7.2 Implementation Details

For concrete analysis we set the computational security parameter κ = 128 and
the statistical security parameter λ = 40. Our protocol is written in C++ and
we use the following libraries in our implementation.

– OKVS and GMW: We use the optimized 3H-GCT in [43] as our OKVS instan-
tiation, and re-use the implementation of 3H-GCT and GMW by the authors
of [43]1.

– LowMC: We set both block size and key length to 128 bits, and the number
of Sbox to 10, so the number of rounds is 20. Therefore, the number of AND
gates in decryption circuit is t = 600. The concrete parameters we use are
from [49]2. And we use the implementation of LowMC by the authors of [1]3.

– ROT: We use SoftSpokenOT [45] implemented in libOTe4, and set field bits
to 5 to balance computation and communication costs.

– Others: We utilize the implementations of circuit, PRNG, and hash function
provided by cryptoTools5. In addition, we adopt Coproto6 to realize network
communication.

7.3 Comparison with Prior Work

Since only [5] and [48] have implemented their protocols so far, we only compare
our work with these two works.
1 https://github.com/Visa-Research/volepsi.git.
2 https://github.com/alibaba-edu/mpc4j/blob/adee91f7966a3166f6e662f6b4a321ea36fc

f39d/mpc4j-common-tool/src/main/resources/low_mc/lowmc_128_128_20.txt.
3 https://github.com/LowMC/lowmc.git.
4 https://github.com/osu-crypto/libOTe.git.
5 https://github.com/ladnir/cryptoTools.git.
6 https://github.com/Visa-Research/coproto.git.

https://github.com/Visa-Research/volepsi.git
https://github.com/alibaba-edu/mpc4j/blob/adee91f7966a3166f6e662f6b4a321ea36fcf39d/mpc4j-common-tool/src/main/resources/low_mc/lowmc_128_128_20.txt
https://github.com/alibaba-edu/mpc4j/blob/adee91f7966a3166f6e662f6b4a321ea36fcf39d/mpc4j-common-tool/src/main/resources/low_mc/lowmc_128_128_20.txt
https://github.com/LowMC/lowmc.git
https://github.com/osu-crypto/libOTe.git
https://github.com/ladnir/cryptoTools.git
https://github.com/Visa-Research/coproto.git
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Blanton et al. [5]. Since their implementation is not available, we can only
use the experimental results they published in their papers. They implemented
the 3-party PSU protocol in C++, assuming an honest majority, and tested
it in a LAN with a bandwidth of 1 Gbps on 2.4GHz AMD Opteron. They
tested their protocol with 32-bit elements and set sizes of 24, 26, 28, 210, and the
running times were 0.13 s, 0.52 s, 2.41 s, and 11.89 s, respectively. In contrast, our
protocol, which is secure under the assumption that P1 does not collude with
other parties, runs in a 10 Gbps bandwidth environment in the same setting,
taking 0.10 s, 0.10 s, 0.11 s, and 0.14 s, respectively.

Vos et al. [48]. Vos et al.’s protocol employs a divide-and-conquer approach,
so the computational cost and communication overhead are related to the dis-
tribution of the input set. Precisely, if the input elements are concentrated in
neighboring regions of the universe, then most branches can be pruned by the
divide-and-conquer algorithm. If the input elements are more dispersed, then
more secure OR operations are required. We test their open-source code on ran-
dom datasets and set the divide-and-conquer parameter D = 2 to minimize the
number of secure OR operations required. The (expected) communication over-
head is calculated using the formula provided in their paper. Finally, since in
their implementation parties transmit data directly through memory, which is
not affected by bandwidth, we only test our protocol in a LAN and compare it
with theirs. The results are shown in Table 3.

We test our protocol for set sizes of n = {24, 26, 28, 210} and different numbers
of parties k = {3, 4, 5, 7, 10}. For each set size, we set the universe size to be
|U| = 216 to make [48] achieve higher efficiency. From the perspective of running
time, our protocol shows significant efficiency improvements compared to [48].
Moreover, it gains greater improvements for larger set sizes. In particular, under
the condition of a set size of 210, our protocol achieves a 109× speedup. If the set
size is increased to 220, there will be a remarkable improvement. However, [48]
already takes 75 s for 10 parties and a set size of 210, and testing larger sets will
take several tens of minutes or even an hour and require a larger input domain,
such as |U| = 232, which will further decrease the efficiency of [48]. Therefore,
we believe that testing for a set size of 210 is sufficient to demonstrate that our
protocol is more efficient than [48].

From the perspective of communication overhead, all communication costs
in [48] come from secure OR operations, so we should minimize the number
of secure OR operations required. Therefore, we chose D = 2 as the optimal
parameter for the expected communication overhead. Nevertheless, our protocol
still achieves 3–4× improvements in communication overhead. Specifically, when
n = 210 and k = 10, the communication overhead of the leader in their protocol
is 25.55MB, while our protocol only requires 6.30MB. Moreover, as the universe
size increases, the gap becomes even more significant.
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Table 3. The comparison of [48] and our MPSU protocol in running time (seconds)
and communication cost (MB) in the LAN setting. The bit length of our elements is
64. The output length of H is � = 64. The size of universe in [48] is set to |U| = 216.
The parameter in divide-and-conquer is D = 2. The communication cost refers to
Leader’s communication cost. In our protocol, each party uses k−1 threads to interact
with all other parties separately, and 4 threads are used to perform parallel SKE
encryption. In their protocol, the leader uses k − 1 threads to interact with all other
parties simultaneously. Bold numbers indicate the best results under current conditions.
Cells with - means there is almost no improvement.

Number
Parties k

Protocol Set Size n

24 26 28 210

Time 3 [48] 0.56 1.71 4.84 15.36
Ours 0.10 0.10 0.11 0.14

4 [48] 0.76 2.36 7.64 20.84
Ours 0.15 0.16 0.17 0.19

5 [48] 1.08 3.50 10.73 26.43
Ours 0.22 0.22 0.23 0.24

7 [48] 1.84 4.49 15.29 52.82
Ours 0.36 0.36 0.37 0.39

10 [48] 3.15 9.12 29.65 75.58
Ours 0.58 0.62 0.63 0.68

Speedup 5× 12× 41× 109×
Comm. 3 [48] 0.16 0.56 1.82 5.68

Ours 0.15 0.16 0.28 0.96
4 [48] 0.25 0.84 2.74 8.52

Ours 0.22 0.24 0.45 1.54
5 [48] 0.33 1.11 3.65 11.36

Ours 0.30 0.33 0.63 2.17
7 [48] 0.49 1.67 5.47 17.03

Ours 0.45 0.52 1.04 3.63
10 [48] 0.74 2.51 8.21 25.55

Ours 0.69 0.83 1.77 6.30
Speedup - 3× 4× 4×

7.4 Scalability

To demonstrate the scalability and practicality of our protocol, we test our pro-
tocol for larger set sizes of n = 214, 216, 218, 220 and different number of parties
k = 3, 4, 5, 7, 10. For each party, we use k − 1 threads to interact with all other
parties simultaneously and 4 threads to perform parallel SKE encryption.

Running Time. The running time of our protocol in both LAN and WAN
settings are shown in Table 4. Our protocol demonstrates good scalability. In the
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LAN setting, the running time of the protocol increases linearly with the set size.
Specifically, for the 3-party setting, computing MPSU for small sets (n = 214)
takes less than one second; medium-sized sets (n = 216, 218) can be computed
within 10 s; and large sets (n = 220) only require 29.02 s. Moreover, since our
protocol can be well parallelized, it also shows good scalability as the number of
parties increases. For example, for n = 218, when the number of parties increases
from 3 to 10, the running time only increases by 2.8×, and when the number
of parties increases from 3 to 7 for n = 220, the running time only increases by
1.6×. On the other hand, our protocol has reasonable communication overhead,
making it also efficient in the WAN setting. For example, in the 10-party setting,
computing n = 218 takes around 2min, and in the 7-party setting, computing
n = 220 takes around 4min.

Table 4. Running time (seconds) of our protocol in LAN and WAN settings. Each
party holds n 64-bit elements. The output length of H is � = 64. Cells with - denotes
trials that ran out of memory.

Setting Number Parties k Set Size n

214 216 218 220

LAN 3 0.55 1.79 7.04 29.02
4 0.60 1.88 7.46 30.28
5 0.67 2.01 7.92 34.10
7 0.88 2.71 10.77 45.68
10 1.41 4.89 19.90 -

WAN 3 3.36 6.64 15.38 51.81
4 4.14 8.63 20.28 72.61
5 5.53 10.56 29.35 111.06
7 6.91 17.21 60.17 227.75
10 11.08 33.89 127.71 -

Communication Overhead. The communication overhead of the protocol is
shown in Table 5. P1 has the highest communication overhead, and the commu-
nication overhead of P2, · · · ,Pk−1 is the same, and the communication overhead
of Pk is slightly lower than that of Pi(2 ≤ i ≤ k − 1). The communication over-
head of all parties is linearly proportional to the set size. The communication
overhead of P2, · · · ,Pk is linearly proportional to the number of parties. The
communication overhead of P1 grows quadratically with the number of parties,
as it need to reconstruct the secret.
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Table 5. Communication (MB) of our protocol for different set sizes and different
numbers of parties. Each party holds n 64-bit elements. The output length of H is
� = 64. Pi denotes P2, · · · , Pk−1. Cells with - denotes trials that ran out of memory.

Number
Parties k

Set Size n

214 216 218 220

P1 Pi Pk P1 Pi Pk P1 Pi Pk P1 Pi Pk

3 14.43 13.93 13.43 57.58 55.58 53.58 229.76 221.76 213.76 917 885 853
4 23.14 20.89 20.14 92.38 83.38 80.38 368.64 332.64 320.64 1472 1328 1280
5 32.86 27.86 26.86 131.17 111.17 107.17 523.52 443.52 427.52 2090 1770 1706
7 55.29 41.79 40.29 220.75 166.75 160.75 881.28 665.28 641.28 3519 2655 2559
10 96.43 62.68 60.43 385.13 250.13 241.13 1537.92 997.92 961.92 - - -

8 Conclusion

In this work, we introduce a new protocol called mq-ssPMT, which is an effec-
tive technique in multi-party private set operations. We also give an efficient
construction of mq-ssPMT, which is mainly based on symmetric-key operations.
By combining with multi-party secret-shared shuffle and ROT, we propose a
multi-party private set operation framework from mq-ssPMT, including MPSU,
MPSU-CA, MPSI, and MPSI-CA. We stress that although our protocols require
the assumption that the leader does not collude with others, which achieves
weaker security, our MPSU protocol is the first protocol that reports on large-
size experiments and is truly scalable. We leave the construction of efficient
MPSU protocol which resists arbitrary collusion as a future work.

Acknowledgement. We thank all the anonymous reviewers for helpful feedback on
the write-up. This work is supported by the National Key Research and Development
Program of China (2022YFB2701600), National Natural Science Foundation of China
(U21A20467, 61932011, 61972019), and Beijing Natural Science Foundation (M21033,
M21031).

A Symmetric-Key Encryption

A SKE scheme is a tuple of four algorithms:

– Setup(1κ): on input the security parameter κ outputs public parameters pp,
which include the description of the message and ciphertext space M, C.

– KeyGen(pp): on input public parameter pp outputs a key k.
– Enc(k,m): on input a key k and a plaintext m ∈ M, outputs a ciphertext

c ∈ C.
– Dec(k, c): on input a key k and a ciphertext c ∈ C, outputs a message m ∈ M

or an error symbol⊥.
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Correctness. For any pp ← Setup(1κ), any k ← KeyGen(pp), any m ∈ M and
any c ← Enc(k,m), it holds Dec(k, c) = m.

Security. To ensure the security of our mq-ssPMT, we require a security notion
called multi-message multi-ciphertext pseudorandomness like the mq-RPMT in
[49]. Formally, a SKE is multi-message multi-ciphertext pseudorandom if for any
PPT A = (A1,A2):

AdvA(1κ) = Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

β = β′ :

pp ← Setup(1κ);
k ← KeyGen(pp);
(m1, · · · ,mn, state) ← A1(pp);
β ← {0, 1};
for i ∈ [n] : ci,0 ← Enc(k,mi), ci,1 ← C;
β′ ← A2(pp, state, {ci,β}i∈[n])

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1
2

is negligible is κ.

B Multi-party Secret-Shared Shuffle

The functionality of share correlation is given in Fig. 12. The protocol details of
multi-party secret-shared shuffle in [18] are given in Fig. 13.

Parameters: k parties: P1, · · · , Pk; The dimension of vector n; The bit length
of individual element σ.
Functionality:

– Wait an input πi : [n] → [n] from each Pi(1 ≤ i ≤ k).
– Sample a′

i, bi ← F
n
2σ for 1 ≤ i ≤ k − 1 and ai ← F

n
2σ , Δ ← F

n
2σ for 2 ≤ i ≤ k,

which satisfy:

Δ = πk

(

· · ·
(

π2

(
π1

( k⊕

i=2

ai

) ⊕ a′
1

)
⊕ a′

2

)

· · · ⊕ a′
k−1

)

⊕
k−1⊕

i=1

bi

Give a′
1, b1 to P1. Give a′

i, ai, bi to Pi(2 ≤ i ≤ k − 1). Give ak, Δk to Pk.

Fig. 12. Share Correlation Functionality Fsc
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Parameters:

– k parties P1, · · · , Pk.
– Ideal functionality Fsc in Fig. 12.
– The dimension of vector n and the bit length of individual element σ.

Input of Pi: [x]i, a share of x ∈ F
n
2σ based on addtively secret sharing.

Protocol:

1. Each Pi samples a random permutation πi : [n] → [n] and invokes Fsc with
input πi. P1 receives a′

1, b1 ∈ F
n
2σ . Pi(2 ≤ i ≤ k − 1) receives a′

i, ai, bi ∈ F
n
2σ .

Pk receives ak, Δk ∈ F
n
2σ .

2. For 2 ≤ i ≤ k, Pi computes zi := [x]i ⊕ ai, and send zi to P1.
3. P1 computesz′

1 := π1

( ⊕k
i=2 zi ⊕ [x]1

) ⊕ a′
1 and send it to P2. P1 outputs b1.

4. For 2 ≤ i ≤ k − 1, Pi computes z′
i := πi(z

′
i−1) ⊕ a′

i and sends it to Pi+1. Pi

output bi.
5. Pk outputs πk(z

′
k−1) ⊕ Δk.

Fig. 13. Multi-party Secret-Shared Shuffle Protocol Πms

C Garbled Cuckoo Table

The formal description of GCT in [43] is given in Fig. 14.

D Proof of Theorem 3

Below we give the details of the Proof of Theorem 3.

Proof. Let C and H be a coalition of corrupt and honest parties, respectively.
|C| = η. To show how to simulate C’s view in the ideal model, we consider two
cases based on whether P1 is corrupted.

P1 is Honest. In this case, P1 /∈ C. SimC(Xi1 , · · · ,Xiη
) runs as follows:

1. For all Pi ∈ C, SimC samples e′1
1i ← {0, 1}n, r′0

1i, r
′1
1i ← F

n
2σ+� , sh′′

i ← F
n
2σ+�

and appends them to the view.
2. For all Pi ∈ C, SimC invokes mq-ssPMT simulator SimS

mq-sspmt(Xi,e
′1
i ) and

appends the output to the view.
3. For all Pi ∈ C, SimC invokes ROT simulator SimS

rot(r
′0
1i, r

′1
1i) and appends the

output to the view.
4. For all Pi ∈ C, SimC creates shi as Step 4 of Πmpsi. Then invokes multi-party

secret-shared shuffle simulator SimPi
ms(shi, sh′′

i ) and appends the output to
the view.

Now we argue that the view output by SimC is indistinguishable from the
real one. In the real world, the output e1

1i of mq-ssPMT, the output r0
1i, r

1
1i

of ROT, and the output sh′
i of multi-party secret-shared shuffle are uniformly

random. Moreover, the outputs of mq-ssPMT and ROT of all parties in C are
mutually independent.
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Parameters:

– Statistical security parameter λ and computational security parameter κ.
– Finite field F and finite group G.
– Output length m = m′ + m̂ where m′ = O(n), m̂ = O(λ).

Input: n key-value pairs {(k1, v1), · · · , (kn, vn)} ⊆ K × V.
Encode({(k1, v1), · · · , (kn, vn)}, r) :

(1) [Sample] Let row′ : K × {0, 1}κ → Sw and ˆrow : K × {0, 1}κ → F
m̂ be

random functions where Sw ⊂ {0, 1}m′
is the set of all weight w strings. Let

row(k, r) := row′(k, r)‖ ˆrow(k, r) and define

H :=

⎡

⎣
row(k1, r)

· · ·
row(kn, r)

⎤

⎦ ∈ F
n×m

(2) [Triangulate] Let H ′ := H, J := ∅. While H ′ has rows:
(a) Select j ∈ [m] such that the jth (sparse) column of H ′ has the minimum

non-zero weight.
(b) Append index j to the ordered list J . Remove all rows i ∈ [n] from H ′ for

which H ′
i,j �= 0.

Define δ := |J |, the gap as g := n − δ, permutation matrices πr ∈
{0, 1}n×n, πc ∈ {0, 1}m×m such that πc

m−k,m−δ−k = 1 for k ∈ [0, m̂),
πc

Ji,m+1−i = 1 and πr
n+1−i,i′ = 1 for some i′ where Hi′,Ji

�= 0 and all i ∈ [δ].
Let

T := πr · H · πc =

[
A B C
D E F

]

where F ∈ {0, 1}δ×δ is lower triangular, B ∈ F
g×m̂, E ∈ F

δ×m̂ are the dense
columns.

(3) [Zero-C] Compute T ′ :=
[
I −CF −1

0 I

]

· T =

[
A′ B′ 0
D E F

]

.

(4) [Solve-Dense] If B′ doesn’t have full row rank, return ⊥. Let B∗ := QB′ be
the (lower) reduced row echelon form of B′, and

T ∗ :=

[
Q 0
0 I

]

· T ′ =
[
A∗ B∗ 0
D E F

]

, v∗ :=

[
Q −QCF −1

0 I

]

· πr · v

where v = (v1, · · · , vn)
T ∈ F

n×1.
(5) [Back-substitution] Compute P ∗ := T ∗−1 · v∗ via back-substitution and

return P := P ∗ · πc−1.

Decode(P , k, r) : return〈row(k, r), P 〉.

Fig. 14. GCT algorithm in [43]
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As for the output of multi-party secret-shared shuffle protocol, the share sh′
1

is unknown and uniformly random for corrupted parties because P1 is honest. So
all sh′

i(Pi ∈ C) are uniformly random and independent of each other from the
perspective of C. Notice that in the simulated view, all messages are uniformly
random and mutually independent, so the output view of SimC is computation-
ally indistinguishable from real.

P1 is Corrupted. In this case, C = {P1}. So the simulator SimC(X1,
⋂k

i=1 Xi)
needs to simulate P1’s view. SimC runs as follows:

1. For 2 ≤ i ≤ k, SimC samples e′0
1i ← {0, 1}n and r′

1i ← F
n
2σ+� . Then appends

all these vectors to the view.
2. SimC constructs z′ ∈ F

n
2σ+� as follows:

– Set z′ uninitialized. For each x ∈ ⋂k
i=1 Xi, SimC computes x‖H(x) and

set a random uninitialized position of z′ to this value.
– For all uninitialized positions of z′, set a random value from F2σ+� .

3. SimC samples sh′′
i ← F

n
2σ+� for all 1 ≤ i ≤ k, which satisfies

⊕k
i=1 sh′′

i = z′.
SimC appends all sh′′

i to the view.
4. SimC invokes mq-ssPMT simulator SimR

mq-sspmt(X1,e
′1
1i) for 2 ≤ i ≤ k. Then

appends the output to the view.
5. SimC invokes ROT simulator SimR

rot(e
′0
1i⊕1n, r′

1i) for 2 ≤ i ≤ k. Then appends
the output to the view.

6. SimC constructs sh1 as Step 3 and Step 4 of Πmpsi. Then invokes multi-party
secret-shared shuffle simulator SimPi

ms(sh1, sh′′
1) and appends the output to

the view.

Now we argue that the view output by SimC is indistinguishable from the
real one. In the real world, the output e0

1i of mq-ssPMT, the output r1i of ROT,
and the output sh′

i of multi-party secret-shared shuffle are uniformly random.
Moreover, for different i, they are independent of each other. We prove that sh′

i

from each Pi does not leak any other information except for the intersection.
For each element xt

1 that belongs to X1, if there exists 2 ≤ i ≤ k that xt
1 /∈

X1∩Xi, we have e′0
1i,t ⊕e′1

1i,t = 0, r1i,t = r
e0
1i,t⊕1

1i,t �= r
e1

ji,t

ji,t . Therefore,
⊕k

i=1 shi,t =
⊕k

i=1 r1i,t = r ⊕ r
e1
1i,t

1i,t ⊕ r
e0
1i,t⊕1

1i,t is uniformly random from the perspective of
P1, where r is the sum of remaining terms. So in the real world,

⊕k
i=1 sh′

i

is uniformly random except for |⋂k
i=1 Xi| positions. So the simulated view is

computationally indistinguishable from the real. ��
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Abstract. Protocols with publicly verifiable covert (PVC) security offer
high efficiency and an appealing feature: a covert party may deviate from
the protocol, but with a probability (e.g., 90%, referred to as the deter-
rence factor), the honest party can identify this deviation and expose
it using a publicly verifiable certificate. These protocols are particularly
suitable for practical applications involving reputation-conscious parties.

However, in the cases where misbehavior goes undetected (e.g., with
a probability of 10%), no security guarantee is provided for the honest
party, potentially resulting in a complete loss of input privacy and out-
put correctness.

In this paper, we tackle this critical problem by presenting a highly
effective solution. We introduce and formally define an enhanced notion
called robust PVC security, such that even if the misbehavior remains
undetected, the malicious party can only gain an additional 1-bit of infor-
mation about the honest party’s input while maintaining the correctness
of the output. We propose a novel approach leveraging dual execution
and time-lock puzzles to design a robust PVC-secure two-party protocol
with low overhead (depending on the deterrence factor). For instance,
with a deterrence factor of 90%, our robust PVC-secure protocol incurs
only additional ∼10% overhead compared to the state-of-the-art PVC-
secure protocol.

Given the stronger security guarantees with low overhead, our proto-
col is highly suitable for practical applications of secure two-party com-
putation.
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1 Introduction

Secure two-party computation (2PC) allows two mutually distrusted parties to
jointly evaluate a common function on their inputs while maintaining input pri-
vacy. Traditionally, two main security notions for 2PC, i.e., semi-honest security
and malicious security, have been considered [12]. Protocols with semi-honest
security could be efficient but only protect against passive attackers who strictly
adhere to the prescribed protocols. Alternatively, protocols with malicious secu-
rity provide a much stronger guarantee, preventing attackers from gaining any
advantage through deviations from protocols. However, despite progress in the
past few years, protocols with malicious security remain significantly complex
and incur high overhead compared to those with semi-honest security.

The notion of covert security [4] is thereby introduced to serve as a com-
promise between semi-honest and malicious security. Covert security ensures
that a party deviating from the protocol will be caught by the honest party
with a fixed probability ε (e.g., ε = 90%), referred to as the deterrence fac-
tor. Achieving covert security entails significantly lower overhead than malicious
security [4,8,14,22]. Meanwhile, covert security provides a stronger security guar-
antee than semi-honest security, as it incorporates the risk of being caught, which
can serve as a deterrent to potential cheaters.

Nevertheless, in certain scenarios, the deterrent effect of covert security may
be insufficient. Merely catching the cheater does not enable the honest party to
effectively persuade others and accuse the cheater, as the cheater can still deny
their misconduct. To address this limitation, Asharov and Orlandi [2] introduced
an enhanced notion called publicly verifiable covert (PVC) security. Protocols
with PVC security allow the honest party to generate a publicly verifiable cer-
tificate when cheating is detected. The certificate serves as proof of cheating and
can be used to convince all other parties, including external entities. The certifi-
cate can be utilized for legal proceedings or incorporated into a smart contract
that automatically enforces financial penalties against the cheater. This prop-
erty is particularly compelling in practice, as it is efficient1 and can expose the
cheater’s misbehavior publicly and permanently, thereby imposing a reputational
risk and providing stronger accountability measures. In recent years, PVC secu-
rity has garnered substantial attention, resulting in the development of protocols
for both general two-party [2,17,20] and multi-party [3,9,10,31] computation.
Furthermore, PVC security model is also widely used in specific scenarios, such
as financially backed protocols based on blockchain [11,32], secure computation
concerning commitment based on blockchain [1], and private function evalua-
tion [25].

While PVC security offers an effective deterrent when cheating is detected,
there is a critical issue when misbehavior remains undetected (e.g., with a prob-
ability of 10%). In such cases, the honest party is left without any security guar-

1 It has been shown that a two-party PVC protocol with deterrence factor 50% incurs
only 20–40% overhead compared to the state-of-the-art semi-honest protocols based
on garbled circuits [17].
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antees, potentially resulting in a complete loss of input privacy and output cor-
rectness. In other words, the cheater may gain complete knowledge of the honest
party’s input and manipulate the output. This is unacceptable in many scenar-
ios, particularly for parties less concerned about reputation, who may be more
inclined to take risks in pursuit of significant gains. An existing countermeasure
to address this problem is to increase the deterrence factor to a relatively high
level (e.g., 99% or 99.9%). However, it should be noted that the efficiency of
protocols with PVC security is directly related to the deterrence factor, and
increasing the deterrence factor comes at the cost of reduced efficiency. Worse,
existing protocols with PVC security exhibit diminishing marginal benefits when
increasing the deterrence factor. For instance, increasing the deterrence factor
from 90% to 99% leads to a tenfold increase in protocol execution cost, and the
same holds for increasing from 99% to 99.9%.

Therefore, there is still a lack of effective approaches to prevent reputation-
insensitive parties from deviating from the protocol without incurring significant
overhead.

1.1 Our Contributions

In this paper, we present a compelling countermeasure to address the aforemen-
tioned problem. Specifically:

New security notion. We introduce an enhanced notion for PVC security
named robust PVC security to capture the goal. This notion can be seen as
making up for the deficiency of covert security in the other direction, focus-
ing on reducing the benefits of malicious behavior when it goes undetected
while maintaining the increased cost for cheater when caught provided by
PVC security. Protocols with robust PVC security ensure that even if the
misbehavior remains undetected, the malicious party can only obtain an addi-
tional 1-bit of information about the honest party’s input while simultaneously
preserving the correctness of the protocol’s output. By significantly reducing
the benefits of successful cheating, our approach goes further to effectively
discourages malicious parties from cheating in the protocol.

Protocol with low overhead. We propose a novel approach leveraging dual
execution and time-lock puzzles to design a general robust PVC-secure two-
party computation protocol with low overhead (depending on the deterrence
factor). For instance, when the deterrence factor is 90%, our protocol will
incur only additional ∼10% overhead compared to the state-of-the-art PVC-
secure protocol.

With its stronger security guarantees and low overhead, our protocol is highly
suitable for practical applications of secure two-party computation.

1.2 Technical Overview

In this subsection, we commence by reviewing the derandomization technique,
which has been employed in prior works for the design of PVC protocols. Notably,
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this technique will also serve as a key component in our protocol. Then, we briefly
explain our robust PVC security notion and present the basic idea for designing
protocols with robust PVC security. Finally, we discuss the main intuition behind
our novel approach to achieving robust PVC security with low overhead.

Derandomization in PVC Security. Recent general secure computation pro-
tocols with PVC security employ the cut-and-choose paradigm along with the
derandomization technique [3,9,10,17,31], which is simpler and more efficient
compared to the signed-OT technique used in earlier work [2,20].

Specifically, in the state-of-the-art PVC-secure two-party computation proto-
col [17] based on garbled circuits, each party pre-selects a seed for each instance.
These seeds determine the randomness used in specific instances, ensuring that
the execution of each instance is fully determined by the protocol description and
the parties’ seeds. At the start of the protocol, the evaluator, who cannot cheat
in garbled circuit evaluation, commits to its own seeds and selects one instance
for evaluation, leaving the remaining instances for checking. Subsequently, the
evaluator, acting as the receiver, engages in classical oblivious transfer (OT) pro-
tocols with the garbler to obtain the garbler’s seeds for the checking instances.
Additionally, the parties sign the transcripts for each instance. Throughout the
protocol execution, the evaluator uses the garbler’s seeds to verify the correct-
ness of the messages received from the garbler for the checking instances. Upon
detecting a deviation from the checking instances, the evaluator combines the
previously signed messages and its own seed decommitment to generate the cer-
tificate. Any other party can use the seeds to simulate the protocol execution and
verify deviations. If no deviation is detected, the evaluator proceeds to evaluate
the garbled circuit generated in the evaluation instance.

Importantly, in protocols with PVC security, potential cheaters are unaware
of which instances are being checked, making it impossible for them to prevent
honest parties from generating certificates. The deterrence factor in these proto-
cols is determined by the number of instances. For example, in the state-of-the-
art PVC-secure two-party computation protocol [17], λ instances are involved,
with λ − 1 instances checked by the evaluator and the remaining one instance
used for evaluation. Hence, the deterrence factor of this protocol is λ−1

λ . This
is the reason why existing protocols exhibit diminishing marginal benefits when
increasing the deterrence factor.

Robust PVC Security. In this paper, we introduce a new notion called robust
PVC security. Protocols with robust PVC security aim to provide security guar-
antees inherited from PVC security while simultaneously limiting the benefits
for cheaters when their deviations go undetected. We require that in such pro-
tocols, cheaters can obtain at most an additional 1-bit of information about the
honest party’s input, while ensuring the correctness of the protocol output, i.e.,
the output remains untampered.

The term “1-bit information” is used here because our approach leverages the
idea of dual execution. The dual execution technique was initially introduced by
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Mohassel and Franklin [27] and later formalized by Huang, Katz, and Evans [18].
This technique has found broad applications in general secure two-party compu-
tation with malicious and covert security [16,19,21,28,29] as well as private set
intersection (PSI) [30].

The dual execution technique is primarily employed in garbled circuits. The
idea behind dual execution is that two parties, PA and PB, execute two protocols
for the same evaluation circuit and inputs. In one protocol, PA acts as the garbler,
and PB acts as the evaluator, while in the other protocol, they switch roles,
i.e., PB becomes the garbler, and PA becomes the evaluator. Finally, the two
parties run a secure equality test protocol on the outputs of the two garbled
circuits to determine the final result. If the test passes, both parties obtain the
correct evaluation result; otherwise, it indicates that one party deviated from the
protocol, leading to termination. By utilizing this dual execution technique, the
malicious party can obtain, at most, an additional 1-bit of information about the
honest party’s input. The intuition is that even if the malicious party deviates
from the protocol as the garbler, it cannot cheat in garbled circuit evaluation
as the evaluator. Therefore, the information it can obtain from the maliciously
generated garbled circuit is limited to the result of the equality test, i.e., the
1-bit information of either true or false, which may depend on the honest party’s
inputs.

Therefore, a straightforward approach to achieving robust PVC security is by
integrating dual execution into PVC-secure protocols. Specifically, two parties PA

and PB can execute a PVC-secure protocol, such as the one proposed in [17], to
perform garbled circuit checking and obtain a final garbled circuit for evaluation.
Simultaneously, these two parties switch roles and execute the protocol again to
obtain another garbled circuit for evaluation. Then, each party plays the role
of the evaluator and evaluates the garbled circuit they have chosen. Finally, a
secure equality test protocol is employed to determine the final result. Although
this approach may seem viable, we propose a superior solution in this work.

Our Novel Approach. If the aforementioned approach is based on the state-
of-the-art PVC-secure protocol in [17], achieving robust PVC security with a
deterrence factor of λ−1

λ would require the protocol to generate 2λ garbled cir-
cuits. Specifically, each party would need to generate 2λ − 1 garbled circuits
and evaluate one garbled circuit. This includes λ circuits generated as the gar-
bler, λ − 1 garbled circuits generated for simulating garbled circuit generation
in instance checking, and one garbled circuit that is not generated but needs to
be evaluated. Therefore, achieving robust PVC security based on a PVC-secure
protocol incurs a cost that is roughly double that of the PVC-secure protocol
itself. As emphasized in [17], the cost of generating garbled circuits (unless the
circuit is very small) is the efficiency bottleneck of the protocol. Therefore, this
approach is not entirely satisfactory.

It happens that this cost can be significantly reduced by leveraging the special
protocol framework when integrating dual execution into a PVC-secure protocol.
The idea behind our novel approach stems from the following question:
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Must each party generate λ garbled circuits as the garbler while generating
λ − 1 different garbled circuits as the evaluator for circuit checking?

Fortunately, we found that the answer is NO, and parties can combine these
two circuit generation processes together. The idea of our approach is to let
the two parties jointly select λ + 1 seeds in a blind fashion. Subsequently, each
party randomly obtains λ seeds, while one seed remains hidden. When the sets
of seeds obtained by the two parties differ, the intersection of their seeds is of
size λ − 1. Importantly, each party remains unaware of the seeds obtained by
the other party. They can use their own λ seeds to generate λ garbled circuits
and an additional dummy garbled circuit for the hidden seed. Since the parties
share λ−1 common seeds, they can now reuse the materials computed for circuit
generation when playing the role of the evaluator to perform the circuit checking.

In summary, there are λ + 1 seeds, and each party obtains λ seeds, resulting
in a seed intersection of size λ − 1. Using their respective λ seeds, the parties
generate λ garbled circuits, where λ − 1 garbled circuits (derived from seeds in
the seed intersection) are identical for both parties. Each party can then reuse
the materials generated from these common λ−1 seeds to check the λ−1 garbled
circuits generated by the other party. Consequently, each party is left with one
unchecked garbled circuit, which can be used for dual execution.

With this insight, to achieve robust PVC security with a deterrence factor
of λ−1

λ , each party only needs to generate λ garbled circuits and evaluate one
garbled circuit. Notably, the checking of λ − 1 garbled circuits generated by
the other party no longer requires garbled circuit generation. In comparison
to the state-of-the-art protocol with PVC security [17], where a total of 2λ − 1
garbled circuits are generated by both parties, and one is evaluated, our approach
requires only one additional garbled circuit generation and one additional garbled
circuit evaluation. For instance, for the protocol in [17], achieving a deterrence
factor of 90% necessitates the garbler to generate 10 garbled circuits, while the
evaluator needs to perform 9 garbled circuit generations and one garbled circuit
evaluation. In contrast, our approach requires each party to generate 10 garbled
circuits and evaluate one garbled circuit. That is, the protocol in [17] requires
20 garbled circuit generations and evaluations, whereas our approach requires
22, and thus the additional overhead in our approach is less than 10% (given
that the cost of evaluations is lower than that of generations). Furthermore,
the computation of circuit checking for the protocol in [17] must be conducted
after circuit generation, while this computation is already performed during the
garbled circuit generation in our approach. Thus, as garbled circuit generations
and evaluations for each party can be executed in parallel in our approach, the
running time of our approach may outperform the PVC protocol in [17].

However, the realization of this insight is highly non-trivial. We omit intricate
details and provide a brief illustration of the idea behind our approach as follows.
The detailed description of our protocol can be found in Sect. 4.

To generate λ + 1 seeds, two parties, denoted as PA and PB, can each select
λ+1 seed shares sA

i and sB
i , respectively. Subsequently, each party engages in OT

protocols with the other party in two directions. As the sender, each party inputs
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their seed shares, while as the receiver, each party retrieves λ shares, leaving
one share unretrieved. To ensure that each party retrieves all-but-one shares,
we incorporate random values called witnesses as input in the OT protocols,
similar to the approach used in [17]. If a receiving party does not retrieve a
share, this party must retrieve the corresponding witness. The retrieved shares
and witnesses should be provided by the receiver and verified by the sender
later to continue the execution of the protocol. The seeds are then defined as
si = sA

i ⊕ sB
i , and each party will derive λ seeds. A secure equality test is

performed by the two parties to ensure that the sets of their seeds are distinct,
and if they are found to be identical, the two parties restart the protocol. Step 1
in Fig. 1 illustrates the scenario where 6 seeds are generated.

Fig. 1. Seeds generation and garbled circuit evaluation.

Then, each party can utilize the λ seeds they obtained to generate λ garbled
circuits. In the case where a party does not obtain a particular seed, a dummy
garbled circuit is generated in its place. The parties can exchange the commit-
ments of their λ+1 garbled circuits, where the randomness of each commitment
is also derived from the respective seed. With λ seeds in hand, each party can
verify the correct generation of λ − 1 garbled circuits (from the commitments)
while identifying the remaining one as the dummy circuit. Finally, each party
can evaluate the garbled circuit corresponding to the seed it does not obtain as
dual execution and subsequently perform a secure equality test on the outputs
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of the garbled circuits to determine the final result. Step 2 in Fig. 1 provides an
illustrative depiction of this procedure.

One issue encountered in this approach is the potential identification of the
dummy garbled circuit when receiving the commitments. More precisely, a mali-
cious party can discern which instances are being checked by the honest party
based on the dummy garbled circuit. If its maliciously generated garbled cir-
cuit is checked by the other party, the malicious party can promptly abort and
refuse to sign the messages required for generating a publicly verifiable certifi-
cate. To address this issue, we must ensure that each party remains unaware of
which instances are being checked until the necessary materials for certificate
generation are ready.

In our approach, we leverage a verifiable time-lock puzzle scheme [10,26] to
tackle this challenge. Using this scheme, the puzzle generator can efficiently cre-
ate a time-lock puzzle for a message, ensuring that the message remains concealed
until a specific time has passed, even against parallel adversaries. Essentially, this
efficiently generated time-lock puzzle compels a solver to complete a computa-
tional task that takes no less time than the specified duration to recover the
message. Moreover, once a puzzle is solved, the solver can effectively convince
others that the retrieved message originates from the puzzle. In addition, we also
require the option for the puzzle solver to open the puzzle at any time, serving
as the commitment scheme.

By employing a verifiable time-lock puzzle scheme, each party can generate
puzzles for the commitments of the garbled circuits. Therefore, both parties,
unaware of the instances being checked, can generate all the necessary materials
(e.g., signatures) for generating a publicly verifiable certificate. Afterwards, both
parties open their puzzles, verify the garbled circuits, and continue the proto-
col’s execution. If a party refuses to open its puzzles, the other party can solve
the puzzle instead. When both parties are honest, no puzzle solving procedure
is involved. In the case of detected deviation, the party solving the puzzle can
still generate a publicly verifiable certificate as proof of cheating. Given that
the puzzle solver can efficiently convince others that the recovered message is
derived from the puzzle, the certificate verification process is also efficient. If no
deviation is detected, both parties open the respective garbled circuits for eval-
uation and employ the dual execution approach to evaluate the garbled circuits
and determine the evaluation result.

Indeed, similar to the dummy garbled circuit, there exists a potential iden-
tification of the dummy instance in the OT protocols for input-wire labels. The
solution is also based on time-lock puzzles, but it is more involved (refer to Sect. 4
for the detailed solution). Additionally, to improve efficiency, we generate time-
lock puzzle for messages in a batched fashion, allowing each party to generate
only one real time-lock puzzle (see Sect. 2 and 4 for details).

1.3 Organization

In Sect. 2, we introduce the notations used in this paper and the building blocks
that form the foundation of our protocol. Subsequently, in Sect. 3, we present
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the formal definition of robust PVC security. Based on this definition, in Sect. 4,
we propose our robust PVC protocol in detail, leveraging the idea outlined in
Sect. 1.2, and provide the security proof. Finally, we discuss the efficiency and
potential enhancements of our protocol in Sect. 5.

2 Preliminaries

We denote the size of a set S as |S| and use the notation x ←$ S to represent
the uniform sampling of an element x from the set S. Additionally, let [n] =
{1, . . . , n} for a positive integer n. For a bit string x, the ith bit of x is denoted
by x[i]. The function bin(·) returns the bit representation of the input.

Let κ denote the computational security parameter, which is provided in
unary format as input to all algorithms. A function f in κ, mapping natural
numbers to [0, 1], is considered negligible if f(κ) = O (κ−c) for every constant
c > 0. Conversely, a function 1 − f is deemed overwhelming if f is negligible.

Given a seed ∈ {0, 1}κ, we can use a pseudorandom function with seed as
the key in the Counter (CTR) mode to derive sufficiently many pseudorandom
numbers and use them as random coins for operations in protocols.

We denote a (non-interactive) commitment scheme as Com. The scheme uti-
lizes random coins decom for commitment generation and opening. It should
satisfy (computational) binding and hiding properties, while also supporting
extraction and equivocation. In our protocol, we implement Com using the ran-
dom oracle H : {0, 1}∗ → {0, 1}κ by defining Com(m) = H(m, decom), where
decom ←$ {0, 1}κ. We employ the collision-resistant hash function H in the pro-
tocol. Our protocol will use the signature scheme (KGen,Sig,Vf) that is existen-
tially unforgeable under chosen-message attacks (EUF-CMA).

For an execution transcript of a two-party protocol trans = (m1,m2,m3, . . .),
where the parties send their messages alternately, the transcript hash of this
execution is defined as H = (H(m1),H(m2),H(m3), . . .).

Let ΠOT be the protocol that securely realizes a parallel version of the OT
functionality FOT below with perfect correctness [9], such that the receiver (resp.
sender) cannot “equivocate” its view by finding a random tape that produces a
different output (resp. uses a different input) from the one in the real execution.

Functionality FOT

Private inputs: PA has input x ∈ {0, 1}λ and PB has input {(Ai,0, Ai,1)}i∈[λ].

Upon receiving x ∈ {0, 1}λ from PA and {(Ai,0, Ai,1)}i∈[λ] from PB, send the
selected message {Ai,x[i]}i∈[λ] to PA.

In our protocol, we will use the protocol ΠEq that securely realizes the two-
party equality test [7,18] functionality FEq in the following.

Functionality FEq

Private inputs: PA has input x ∈ {0, 1}κ and PB has input y ∈ {0, 1}κ.
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Upon receiving x ∈ {0, 1}κ from PA and y ∈ {0, 1}κ from PB, let b = true if x = y,
and b = false otherwise.

– If both parties are honest, send b to both parties.
– If a party is corrupted by the adversary, send b to this corrupted party. Then

if continue from the adversary is received, send b to the honest party.

Garbling Scheme. Our protocol uses a circuit garbling scheme (Gb,Eval) as
follows.

– The algorithm Gb takes as input the security parameter 1κ and a circuit C
that has n = nA + nB input wires and nO output wires, and outputs input-
wire labels {(Xi,0,Xi,1)}i∈[n], a garbled circuit GC, and output-wire labels
{(Zi,0, Zi,1)}i∈[nO].

– The deterministic algorithm Eval takes as input a set of input-wire labels
{Xi}i∈[n] and a garbled circuit GC. It outputs a set of output-wire labels
{Zi}i∈[nO].

The correctness of the garbling scheme means that for any circuit C as above
and any input x ∈ {0, 1}n, we have

Pr

[
∀i, Zi = Zi,z[i]

∧ Zi �= Zi,1−z[i]

:
({(Xi,0, Xi,1)}i∈[n],GC, {(Zi,0, Zi,1)}i∈[nO ]) ← Gb(1κ, C)

{Zi} ← Eval({Xi,x[i],GC})

]

where z = C(x), except for a negligible probability. We assume that the garbling
scheme satisfies the standard security definition [5,23]. We assume that there is
a simulator SGb such that for all C and x, the distribution {SGb(1κ, C, C(x))} is
computationally indistinguishable from{(

{Xi,x[i]}i∈[n],GC,

{(Zi,0, Zi,1)}i∈[nO ]

)
: ({(Xi,0, Xi,1)}i∈[n],GC, {(Zi,0, Zi,1)}i∈[nO ]) ← Gb(1κ, C)

}
.

Verifiable Time-Lock Puzzle Scheme. We use a verifiable time-lock puzzle
scheme in our protocol. We restate its definition in [10] with minor modification2

as follows.

Definition 1. A verifiable time-lock puzzle scheme TLP consisting of algorithms
(Setup,Gen,Solve,Verify,Verify′) with solution space S is as follows.

– The algorithm Setup takes as input 1κ and a hardness parameter τ , and out-
puts public parameters pp.

– The algorithm Gen takes as input public parameters pp and a solution s ∈ S

and then outputs a puzzle p, together with an opening π.

2 In particular, we include the opening π (e.g., randomness) as the output of Gen for
later puzzle opening. We add the algorithm Verify to verify the opening of a puzzle
from the puzzle generator.
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– The deterministic algorithm Solve takes as input public parameters pp and a
puzzle p and then outputs a solution s and a proof π′.

– The deterministic algorithm Verify takes as input public parameters pp, a
puzzle p, a solution s, and an opening π and then outputs true if the solution
s is the valid solution for p. Otherwise, the algorithm outputs false.

– The deterministic algorithm Verify′ takes as input public parameters pp, a
puzzle p, a solution s, and a proof π′ and then outputs true if the solution s
is valid. Otherwise, the algorithm outputs false. This algorithm must run in
total time polynomial in κ and log τ .

A verifiable time-lock puzzle scheme TLP should satisfy completeness, cor-
rectness for opening and proof, soundness, and security. We provide the definition
of these properties and present a verifiable time-lock puzzle scheme [10,26] in
the full version of this paper [24].

In the description of our protocol, we do not explicitly differentiate between
puzzle opening and proof, as well as between the algorithms Verify and Verify′.
This is because all of these components enable efficient verification of the cor-
rectness of a given solution within the protocol.

It is worth noting that we can use a time-lock puzzle scheme to generate
time-lock puzzles in a batched manner. Specifically, we can generate a solution
s ∈ S and a time-lock puzzle p for s. Then, given messages {mi}, we can use
s as the seed to derive a sufficient number of (symmetric encryption) keys and
randomness and encrypt messages {mi} using keys via IND-CPA (or IND-CCA)
encryption schemes with generated randomness. For simplicity, we slightly abuse
notation and denote the encryption as Encs(·). The puzzle generator can send
the puzzle p and the ciphertexts of mi’s to the puzzle receiver. Note that the
ciphertexts of mi’s can also be regarded as time-lock puzzles since the puzzle
receiver learns nothing about the solution s before p is solved based on the
security of the time-lock puzzle and the encryption scheme3. After solving p and
obtaining s, the receiver can easily derive the messages {mi}. In this approach,
we refer to the solution s as the master puzzle key and the puzzle p as the master
time-lock puzzle.

In our protocol, we use s as the seed to derive keys, and then use the random
oracle with keys in CTR mode to generate enough pseudorandom padding to
encrypt messages {mi}. We can easily see that the encryption is IND-CPA-secure
before s is derived from p. This scheme allows us to program the random oracle
to equivocate the encrypted values in the security proof.

Remark 1. We note that given a ciphertext from the ciphertext space and a
key, the decryption of the ciphertext always succeeds (although not necessarily
yielding the correct result). This property is solely for the convenience of our
protocol description. It is very straightforward to modify our protocol to enable
honest parties to generate publicly verifiable certificates for decryption failures
and attribute blame to malicious parties responsible for generating invalid cipher-
texts [26].

3 In this paper, we use “ciphertext” and “puzzle” interchangeably for this setting.
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3 Definition of Robust PVC Security

Based on the discussion in Sect. 1.2, we define the ideal functionality FRobustPVC

for robust PVC security as follows.

Functionality FRobustPVC with deterrence ε

Public inputs: Both parties agree on a circuit C, which has n = nA + nB input
wires and nO output wires.
Private inputs: PA has input xA ∈ {0, 1}nA , whereas the other party PB has
input xB ∈ {0, 1}nB .

Both parties send their inputs to the ideal functionality. If abort from the party
corrupted by the adversary is received, send ⊥ to both parties and terminate.

– If an input of the form (cheat, ε̂), where ε̂ ≥ ε, from the party corrupted by
the adversary is received:

• With probability ε̂, send (corrupted) to both parties and terminate.
• With probability 1 − ε̂, send (undetected) to the corrupted party. Then

ignore any input of the form (cheat, ·) or (stupidCheat, ·).
– If an input of the form (stupidCheat, ε̂) from the party corrupted by the adver-

sary is received:
• With probability ε̂, send (corrupted) to both parties and terminate.
• With probability 1 − ε̂, send ⊥ to both parties and terminate.

– If input xA ∈ {0, 1}nA from PA and xB ∈ {0, 1}nB from PB has been received:
1. If both parties are honest, give C(xA, xB) to them and terminate.
2. If any party is corrupted, give C(xA, xB) to the corrupted party.
3. If a boolean function g from the adversary is received and undetected

has been sent, give g(xA, xB) to the adversary. Then if continue from the
adversary is received, give cheating to the honest party if g(xA, xB) = 0,
else give C(xA, xB) to the honest party.

In order to align with the security proof, we introduce slight modifications to
the definition inherited from PVC security. In the ideal functionality FRobustPVC,
we permit the adversary to cheat with a probability of being caught ε̂ that
larger than or equal to the specified deterrence factor ε, i.e., ε̂ ≥ ε. It is evident
that this modification does not compromise security. Additionally, we allow the
adversary to engage in stupid cheating. With stupid cheating, we do not impose
any restrictions on the probability of remaining undetected. In this scenario,
even if the adversary is not detected, the ideal functionality will still abort,
rendering the adversary unable to gain any advantage. It is also apparent that
this modification does not compromise security.

The definition of robust PVC security is given in the following.

Definition 2. A two-party protocol ΠRobustPVC along with algorithms Blame and
Judge achieves robust publicly verifiable covert (PVC) security with deterrence
ε if the following conditions hold.

Simulatability The protocol ΠRobustPVC, where the honest party might send cert
to the adversary if cheating is detected, securely realizes FRobustPVC with deter-
rence ε.
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Public Verifiability If the honest party outputs corrupted (together with an
output certificate cert), then the output of Judge(cert) is true, except for a
negligible probability.

Defamation Freeness For every PPT adversary A corrupting a party, if the
other party is honest, the probability that A generates a certificate cert∗ that
blames the honest party and leads to Judge(cert∗) outputting true is negligible.

Remark 2. In the definition above and the protocol description in Sect. 4, it
is specified that the honest party sends the certificate to the adversary. This
specification in the definition is to ensure that the adversary cannot learn any
information about the honest party’s input even when the certificate is provided.

Remark 3. We note that public verifiability in the definition also implies that if
the honest party outputs corrupted, the malicious party cannot hinder the honest
party from generating a valid certificate.

4 Our Robust PVC-Secure Protocol

In this section, we introduce the protocol ΠRobustPVC that achieves robust PVC
security defined in Sect. 3. This protocol is based on the idea introduced in
Sect. 1.2.

The protocol description here employs λ instances instead of λ+1 in Sect. 1.2
(thus with deterrence factor ε = λ−2

λ−1 ) for the sake of notation simplicity. The
circuit for ΠRobustPVC is denoted by C, consisting of n = nA + nB input wires
and nO output wires. The input of PA is xA ∈ {0, 1}nA while the input of PB is
xB ∈ {0, 1}nB .

Seed Preparation. At the beginning of the protocol, each party generates three
random κ-bit strings. For example, PA generates seedA

j , seed′A
j , and witness′Aj .

Here, (seed′A
j ,witness′Aj ) represents PA’s seed share and witness for the jth

instance, as discussed in Sect. 1.2, and seedA
j is used to derive randomness for

ΠOT when PA acts as the receiver. Each party commits to their three random
strings, and the commitments will be signed by the other party later. This
enables a certificate verifier to simulate the protocols execution based on these
seeds/witnesses and verify the deviation of the other party, given the signature
and the openings of signed commitments to these seeds/witnesses.

Next, each party executes ΠOT and retrieves all-but-one, i.e., λ − 1, seed
shares from the other party. For example, we assume that the index of the
garbled circuit PA will evaluate is ĵA, then PA retrieves {seed′B

j }j∈[λ]\{ĵA} and

witness′BĵA
. Each seed is defined as seed′

j ← seed′A
j ⊕ seed′B

j . Subsequently, both
parties execute the equality test protocol ΠEq as mentioned in Sect. 1.2 to ensure
they do not possess the same set of seeds. Furthermore, parties commit to their
retrieved seed shares and witnesses, which should be opened and verified by the
other party at a later stage.
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Circuit and Input Preparation. After obtaining the λ−1 seeds seed′
j ’s, each

party can generate λ − 1 garbled circuits {GCj} with randomness derived from
{seed′

j}. To avoid sending the whole garbled circuits, each party generates a
commitment to each GCj , along with its (randomly permuted) input-wire and
output-wire labels, using randomness derived from seed′

j . The input-wire labels
in each pair are randomly permuted to hide the semantic values of the labels
when the garbled circuit is later opened for evaluation. Additionally, the garbler
commits to the index of his/her input-wire labels with respect to the randomly
permuted input-wire labels. This step ensures that parties cannot change the
input after the instance checking. For the ĵAth (resp. ĵBth) instance where PA

(resp. PB) does not possess the seed, dummy materials are generated in their
places. As discussed in Sect. 1.2, a party cannot directly send the commitments
of the garbled circuits to the other party. Instead, each party uses the verifiable
time-lock puzzle scheme to encrypt those commitments and sends them to the
other party.

Then each party acting as the sender executes ΠOT with the other party
to transmit input-wire labels. The inputs to ΠOT are the input-wire labels for
the other parties. For each checking instance, it is essential to ensure that each
party can verify the validity of the input-wire labels provided by the other party.
For example, PA needs to verify that PB acting as the sender in ΠOT uses the
correct input-wire labels for PA. Since PA knows seed′

j , she knows all the correct
input-wire labels. Therefore, if PA knows the randomness used by PB in ΠOT, she
can check whether PB deviates from the protocol. However, it is important to
note that PB’s randomness cannot simply be derived from seed′

j or seed′B
j that

are known to PA. The reason is that, given those materials, PA can simulate the
execution of ΠOT and immediately determine which instance is the ĵBth instance,
i.e., the dummy instance of PB, subsequently identify the checking instances.
Hence, similar to the problem mentioned in Sect. 1.2, we need to ensure that a
party can check the instance, but until all materials for certificate generation
are ready. In our protocol, we additionally introduce seedA

j,OT and seedB
j,OT to

address this issue. For each instance, PA randomly chooses uniform κ-bit string
seedA

j,OT and uses the time-lock puzzle to encrypt seedA
j,OT and input-wire labels

of PB. Then in the execution of ΠOT where PA acts as the sender, the inputs
are time-lock puzzles for input-wire labels of PB, and the randomness is derived
from seedA

j,OT for PA’s ĵAth instance while seed′
j ⊕ seedA

j,OT for other instances.
Each party also acts as the receiver and executes ΠOT with the other party.

For example, the inputs of PA to ΠOT is 0nA for checking instance and xA ∈ [nA]
for the evaluation instance with index ĵA. The randomness in each execution is
derived from seedA

j . With knowledge of seed′
j and seedB

j,OT, PA can later simulate
the execution of PA in ΠOT and detect PB’s deviations.

Publicly Verifiable Evidence Creation. Each party proceeds to sign the
messages exchanged in each instance. At this stage, all materials necessary for
certificate generation are available. Since all materials related to checking devia-
tions are encrypted using time-lock puzzles, both parties are unable to perform
the instance checking at this point. Therefore, we need to set the hardness param-
eter of the verifiable time-lock puzzle scheme to ensure that the time-lock puzzle
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cannot be solved until both parties have exchanged their signatures. In our pro-
tocol, we let the hardness parameter τ > 2τc, where τc is the timeout time for
execution of Steps 6 and 7.

Check of Instances. Upon receiving the signature of the other party, each
party can open their respective time-lock puzzles, allowing the other party to
perform instance checking. If the other party fails to open the puzzles, each
party can solve the puzzles themselves. With the commitments of the garbled
circuit generated by the other party and the seed for ΠOT (i.e., seedA

j,OT or/and
seedB

j,OT), both parties can simulate the computation of the other party for their
checking instances. Among these instances, one should be a dummy instance,
while the remaining instances should be correct. In case a deviation by the
other party is detected, the detecting party can generate the certificate based
on the signed materials, the openings/proofs for the time-lock puzzles, and the
decommitments for the seeds/witnesses used in ΠOT.

Circuit Evaluation. Assuming the checking instances are correct, two gar-
bled circuits remain for evaluation. First, both parties open the commitments
for the seed shares and the witness they obtained at the beginning of the pro-
tocol to demonstrate their honesty. Then, they open their respective garbled
circuits, input-wire labels, and the mapping of output-wire labels to each other.
Both parties verify the openings provided by the other party and proceed to
evaluate the garbled circuit to obtain the output-wire labels and the result.
For example, PA obtains the output-wire labels {ZĵA,i}i∈[nO] and the result
zĵA

, where ĵA represents PA’s index of instance for evaluation. PA then sets
βA ← H(

⊕nO

i=1(ZĵA,i ⊕ ZĵB ,i,zĵA
[i])), where {ZĵB ,i,b}i∈[nO],b∈{0,1} denotes the

output-wire labels for the garbled circuit generated by PA and evaluated by PB.
Similarly, PB evaluates the garbled circuit, obtains the output, and computes
βB . Finally, the two parties use the equality test protocol ΠEq to determine the
final evaluation result.

The full description of the protocol ΠRobustPVC between two parties PA and
PB is given in the following.

Protocol ΠRobustPVC

Schemes/Protocols: The signature scheme (KGen, Sig,Vf) is EUF-CMA-
secure. The verifiable time-lock puzzle scheme TLP is secure with respect to the
hardness parameter τ > 2τc, where τc is the timeout time for execution of Steps 6
and 7. Com is the computational binding and hiding commitment scheme, H is
the collision-resistant hash function, the encryption scheme with respect to TLP is
IND-CPA-secure (see Section 2 for more information). ΠOT is a perfectly correct
protocol that realizes FOT, and ΠEq is an equality test protocol that realizes FEq.
The garbling scheme used in this protocol is secure.
Public inputs: Both parties agree on parameters κ, λ, and τ , and a circuit
C, which has n = nA + nB input wires and nO output wires. Both parties also
agree on the public information (e.g., time for communication rounds, algorithms,
parameters, and unique id for the execution of this protocol). PA and PB know
keys vkB and vkA, respectively, for the signature scheme.



Robust Publicly Verifiable Covert Security 287

Private inputs: PA has input xA ∈ {0, 1}nA and keys (vkA, sigkA) for the signa-
ture scheme. PB has input xB ∈ {0, 1}nB and keys (vkB , sigkB) for the signature
scheme.

Seed Preparation

1. PA goes through the following steps with PB. In the meantime, they switch
their roles to execute the symmetric steps, i.e., PA plays PB’s role and PB

plays PA’s.
(a) PA chooses uniform κ-bit strings for seedA

j , seed′A
j , and witness′Aj , and

computes cseedA
j

← Com(seedA
j ), cseed′A

j
← Com(seed′A

j ), and cwitness′A
j

←
Com(witness′Aj ) for j ∈ [λ], and sends these commitments to PB. PB picks
ĵB ←$ [λ] and sets bĵB = 1 and bj = 0 for j �= ĵB .

(b) PA and PB run λ executions of the protocol ΠOT. In the jth execution,

PA uses as input (seed′A
j ,witness′Aj ) with randomness derived from seedA

j ,
while PB uses as input bj with randomness derived from his seedB

j gener-

ated in Step 1a. At the end, PB has {seed′A
j }j �=ĵB and witness′AĵB

. Denote
the transcript of the jth execution by transAj .

Let CheckSetA = [λ]\{ĵA}, CheckSetB = [λ]\{ĵB}, and ComCheckSet =
[λ]\{ĵA, ĵB}.

2. PA computes seed′
j ← seed′A

j ⊕ seed′B
j for all j ∈ CheckSetA and hA ←

H(
⊕

j∈CheckSetA
seed′

j). PB performs a similar computation to derive {seed′
j}

and hB according to his CheckSetB . PA and PB use the protocol ΠEq to check
whether hA = hB . If it does not hold, they continue the protocol execution.
Otherwise, they restart the protocol.

3. PA computes cA ← Com(ĵA, {seed′B
j }j �=ĵA ,witness′BĵA

) and sends it to PB.
Similarly, PB computes and sends cB to PA.

Circuit and Input Preparation

4. For j ∈ CheckSetA, PA follows the procedure below, where all randomness in
the jth instance is derived from seed′

j .
(a) PA garbles the circuit C. Denote the jth garbled circuit by GCj , the input-

wire labels of PA by {Aj,i,b}i∈[nA],b∈{0,1}, the input-wire labels of PB by
{Bj,i,b}i∈[nB ],b∈{0,1}, and the output-wire labels by {Zj,i,b}i∈[nO ],b∈{0,1}.

(b) PA computes her label commitments hA
j,i,b ← Com(Aj,i,b) for all i ∈ [nA]

and b ∈ {0, 1} and also hB
j,i,b ← Com(Bj,i,b) for all i ∈ [nB ] and b ∈ {0, 1}.

(c) PA computes the commitment cj ← Com(GCj , {(hA
j,i,αA

i
, hA

j,i,ᾱA
i

)}i∈[nA],

{(hB
j,i,αB

i
, hB

j,i,ᾱB
i

)}i∈[nB ], {(H(Zj,i,0),H(Zj,i,1))}i∈[nO ]), in which each

pair (hA
j,i,0, h

A
j,i,1) is randomly permuted with respect to αA

i ←$ {0, 1},
while (hB

j,i,0, h
B
j,i,1) is also randomly permuted. Denote the index of

hA
j,i,xA[i] with respect to xA[i] in (hA

j,i,αA
i

, hA
j,i,ᾱA

i
) by γA

j [i] = αA
i ⊕ x[i],

and thus the string of indices is denoted by γA
j ∈ {0, 1}nA .

In parallel, PB also follows this procedure as PA for j ∈ CheckSetB using
randomness derived from seed′

j .
Then, PA lets cĵA = 0, γA

ĵA
= 0, and BĵA,i,b = 0 for all i ∈ [nB ] and b ∈ {0, 1}.

Symmetrically, PB lets cĵB = 0, γB
ĵB

= 0, and AĵB ,i,b = 0 for all i ∈ [nA] and
b ∈ {0, 1}.
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5. PA computes and sends cγA
j

← Com(γA
j ) for j ∈ [λ] to PB. Similarly, PB

computes and sends cγB
j

← Com(γB
j ) for j ∈ [λ] to PA.

6. For j ∈ [λ], PA chooses uniform κ-bit string seedA
j,OT and a random master

puzzle key sA
j , and generates a master time-lock puzzle psA

j
for sA

j with respect

to the hardness parameter τ . She also computes puzzles pcj ← EncsA
j

(cj),

pseedA
j,OT

← EncsA
j

(seedA
j,OT), and pBj,i,b ← EncsA

j
(Bj,i,b) for i ∈ [nB ] and

b ∈ {0, 1}. Then PA sends psA
j

, pcj , and pseedA
j,OT

to PB.

PA and PB run λ executions of ΠOT. In the jth execution, PA uses as input
{(pBj,i,0 , pBj,i,1)}i∈[nB ], and PB uses xB ∈ {0, 1}nB as input if j = ĵB and

0nB otherwise. Here PA uses (seed′
j ⊕ seedA

j,OT) for j �= ĵA and seedA
j,OT for

j = ĵA to derive her randomness in the jth execution, while PB uses seedB
j .

Finally, PB obtains {pBĵB,i,xB [i]}i∈[nB ] for the ĵBth execution. Denote the

transcript hash for the jth execution of ΠOT by HA
j .

Similarly, PB also follows the same procedure as PA, i.e., PB computes and
sends psB

j
, pcj , and pseedB

j,OT
for j ∈ [λ] to PA. PB also runs λ executions of

ΠOT for input {(pAj,i,0 , pAj,i,1)}i∈[nA] with PA as above. Denote the transcript

hash for the jth execution of ΠOT by HB
j .

Publicly Verifiable Evidence Creation

7. For each j ∈ [λ], PA generates a signature σA
j ← SigsigkA

(id, C, j, cseedB
j

, cseed′B
j

,

cwitness′B
j

, transAj , transBj , HA
j , psA

j
, pcj , pseedA

j,OT
, τ, λ) and sends these signatures

to PB. Then PB checks whether σA
j is valid for all j ∈ [λ], and aborts with

output ⊥ if not. Similarly, PB sends the symmetric signatures σB
j for all j to

PA, and PA checks their validity.

Check of Instances

8. PA and PB open the master time-lock puzzle of the master puzzle key to each
other. If one party does not open the puzzle, the other party can also solve
the puzzle to derive the master puzzle key.

9. For each j ∈ [λ], PA decrypts PB’s pcj and pseedB
j,OT

using the master puzzle key

sB
j to obtain cj and seedB

j,OT. PA also decrypts pAĵA,i,xA[i] to obtain AĵA,i,xA[i].

Note that for j ∈ ComCheckSet, honest PA holds the same seed′
j as honest

PB, and thus the same materials in Step 4. PA follows the checking procedure
below to check PB’s {cj} and {HB

j }. Once a certificate cert is generated during
the check, PA outputs corrupted, sends cert to PB, and halts immediately.
(a) For j ∈ CheckSetA, if there exists a cj from PB that is not equal to PA’s cj

and also cj �= 0, PA uniformly chooses such a j and uses Blame(BadCom, j)
to generate cert.

(b) For j ∈ CheckSetA, if cj from PB is equal to PA’s cj , PA simulates
PB’s computation of {pAj,i,b}i∈[nA] and the executions of ΠOT in Step 6

with PB’s randomness derived from {seed′
j ⊕ seedB

j,OT} to derive the tran-

script hash ĤB
j . If ĤB

j �= HB
j , PA uniformly chooses such a j and uses

Blame(BadOT, j) to generate cert.
For j ∈ CheckSetA, if PB’s cj = 0, PA simulates PB’s computation of
{pAj,i,b}, where Aj,i,b = 0, and the executions of ΠOT in Step 6 with PB’s
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randomness derived from seedB
j,OT to derive the transcript hash ĤB

j . If

ĤB
j �= HB

j , PA uniformly chooses such a j and uses Blame(BadOT, j) to
generate cert.

(c) If there are more than one commitment cj = 0 for j ∈ CheckSetA, uni-
formly choose two of them and let J = {j | cj = 0} such that |J | = 2. PA

uses Blame(BadNum, J) to generate cert.
(d) If for all j ∈ CheckSetA, cj from PB is equal to PA’s cj , PA aborts with

output ⊥.
Symmetrically, PB follows the same procedure to check instances (and gener-
ates cert if needed).

Circuit Evaluation

10. PA opens the committed message (ĵA, {seed′B
j }j �=ĵA ,witness′BĵA

) inside cA to
PB, while PB opens cB to PA. If the other party does not open the commitment
or the committed message is incorrect, the party aborts with output ⊥.

11. PA sends GCĵB , {(hA
i,(0), h

A
i,(1)) = (hA

ĵB ,i,αA
i

, hA
ĵB ,i,ᾱA

i
)}, {(hB

j,i,αB
i

, hB
j,i,ᾱB

i
)} (in

the same permuted order as before), and {(H(ZĵB ,i,0),H(ZĵB ,i,1))}, together
with decomcĵB

to PB. If Com(GCĵB , {(hA
ĵB ,i,αA

i
, hA

ĵB ,i,ᾱA
i

)}, {(hB
j,i,αB

i
, hB

j,i,ᾱB
i

)},

{H(ZĵB ,i,b)}; decomcĵB
) �= cĵB for some i, PB aborts with output ⊥.

Symmetrically, PB sends the corresponding materials with respect to the ĵAth
instance to PA, and PA checks the correctness of the materials.

12. PA sends {AĵB ,i,xA[i]}i∈[nA], γA
ĵB

, together with decommitments decomγA
ĵB

and {decomA
ĵB ,i,xA[i]}i∈[nA] to PB. If Com(γA

ĵB
; decomγA

ĵB

) �= cγA
ĵB

or

Com(AĵB ,i,xA[i];
decomA

ĵB ,i,xA[i]) �= hA
i,γA

ĵB
[i]

for some i, PB aborts with output ⊥.

Otherwise, PB evaluates GCĵB with input-wire labels {AĵB ,i,xA[i]}i∈[nA] and
{BĵB ,i,xB [i]}i∈[nB ] to obtain the output-wire labels {ZĵB ,i}i∈[nO ]. PB can
derive the result zĵB from {ZĵB ,i}i∈[nO ] and {(H(ZĵB ,i,0),H(ZĵB ,i,1))}i∈[nO ].
If any of the decoded bits is ⊥, PB then lets zĵB =⊥.
Symmetrically, PB sends the corresponding materials with respect to the ĵAth
instance to PA. Then PA checks the correctness of the materials and evaluates
the ĵAth garbled circuits to derive the result zĵA .

13. If zĵA =⊥, PA lets βA be a random κ-bit value. Otherwise, PA sets βA ←
H(

⊕nO
i=1(ZĵA,i ⊕ ZĵB ,i,zĵA

[i])). Symmetrically, PB computes his βB . Then PA

and PB use the equality test protocol ΠEq to check whether βA = βB . If it
holds, PA (resp. PB) outputs zĵA (resp. zĵB ). Otherwise, parties abort with
output cheating.

The description of the corresponding algorithm Blame that could output a
publicly verifiable certificate for cheating is given in the following.

Algorithm Blame

The party PX runs this algorithm to obtain a certificate cert for the malicious
behavior of PY . We first define the following notations:

– Denote msgj = (id, transYj , transXj , HY
j , psY

j
, pcj , pseedY

j,OT
, τ, λ), where pcj is the

ciphertext from PY .
– Denote the proof/opening with respect to psY

j
for sY

j by πj
a.
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– Denote vX
j = (seedX

j , seed′X
j ,witness′Xj ) and decomj = (decomX

j , decom′X
j ,

decomX
witness′j

).

The algorithm generates a certificate cert as follows depending on the received
parameters.

– (BadCom, j): Output cert = (BadCom, j,msgj , v
X
j , decomj , σ

Y
j , sY

j , πj).

– (BadOT, j): Output cert = (BadOT, j,msgj , v
X
j , decomj , σ

Y
j , sY

j , πj).

– (BadNum, J): Output cert = (BadNum, {j,msgj , v
X
j , decomj , σ

Y
j , sY

j , πj}j∈J).

a Note that πj can be provided by PY for puzzle opening or generated by PX if
the puzzle is solved by PX .

In the following, we present the description of the algorithm Judge. The
algorithm Judge could take as input a certificate cert generated by the algorithm
Blame and output whether the accused party is cheating.

Algorithm Judge

Inputs: A public key vkY , a circuit C, and a certificate cert.
Depending on the types of cheating, the algorithm verifies the certificate cert as
follows.

– BadCom: Parse the remaining part as (j,msgj , v
X
j , decomj , σ

Y
j , sY

j , πj). Ver-

ify the correctness of (sY
j , πj) and output false if πj is incorrect. Derive cj

from pcj . Use vX
j and decomj to re-construct commitments cseedX

j
, cseed′X

j
,

and cwitness′X
j

. Check the correctness of σY
j using vkY , and output false if the

signature is invalid. Decrypt pcj to obtain cj . Use vX
j to simulate the execu-

tions of ΠOT (in two directions) based on transXj and transYj and derive seed′Y
j

in Step 1a. Verify the simulation of ΠOT using transXj and transYj . If they do

not match, output false. Then use seed′
j = seed′X

j ⊕ seed′Y
j to simulate Step 4

and obtain ĉj . If cj �= ĉj and cj �= 0, output true. Otherwise, output false.
– BadOT: Parse the remaining part as (j,msgj , v

X
j , decomj , σ

Y
j , sY

j , πj). Ver-

ify the correctness of (sY
j , πj), and output false if πj is incorrect. Use vX

j

and decomj to re-construct commitments cseedX
j

, cseed′X
j

, and cwitness′X
j

. Check

the correctness of σY
j using vkY , and output false if the signature is invalid.

Decrypt pcj and pseedY
j,OT

to obtain cj and seedY
j,OT.

If cj = 0, use seedY
j,OT and the master time-lock puzzle key sY

j to simulate
the execution of ΠOT in Step 6, and verify whether PY is the first one whose
message hash is different from the one in HY

j . If yes, output true. Otherwise,
output false.
If cj �= 0, use vX

j to simulate the executions of ΠOT (in two directions) based

on transXj and transYj and derive seed′Y
j in Step 1a. Verify the simulation of

ΠOT using transXj and transYj . If they do not match, output false. Compute

seed′
j ← seed′X

j ⊕ seed′Y
j . Then use seed′

j , seed
′
j ⊕ seedY

j,OT, and the master
time-lock puzzle key sY

j to simulate the executions of ΠOT in Step 6, and
verify whether PY is the first one whose message hash is different from the
one in HY

j . If yes, output true. Otherwise, output false.
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– BadNum: Parse the remaining part as {j,msgj , v
X
j , decomj , σ

Y
j , sY

j , πj}j∈J .

Verify the correctness of {(sY
j , πj)} and output false if there exists a tuple

(sY
j , πj) that is incorrect. Use {vX

j } and {decomj} to re-construct commit-
ments {cseedX

j
}, {cseed′X

j
}, and {cwitness′X

j
}. Check the correctness of {σY

j } using

vkY , and output false if there exists a signature that is invalid. Decrypt {pcj }
to obtain {cj}. If cj = 0 for all j ∈ J , output true. Otherwise, output false.

Theorem 1. The protocol ΠRobustPVC along with algorithms Blame and Judge is
robust publicly verifiable covert secure with deterrence ε = 1 − 1

λ−1 .

Proof. We prove the robust PVC security of ΠRobustPVC by showing its simulata-
bility, public verifiability, and defamation freeness.

Simulatability. We first prove that ΠRobustPVC securely realizes FRobustPVC with
deterrence ε = 1 − 1

λ−1 . Without loss of generality, we assume that PB is honest
and PA is corrupted by A. Since the roles of PA and PB in ΠRobustPVC is symmetric,
the proof for the scenario where PB is corrupted is similar.

For an adversary A corrupting PA in the real world, we construct a simulator
S holding vkA that runs A as a sub-routine with auxiliary input z and interacts
with FRobustPVC in the ideal world. The simulation procedure is presented below.

0. S uses KGen to generate a pair of key (vkB , sigkB) and sends vkB to A.
1. S goes through the following steps with A.

(a) S receives {c
seedA

j
, c

seed′A
j

, c
witness′A

j
}j∈[λ] from A. In the meantime, S picks uniform

κ-bit strings {seedB
j , seed′B

j ,witness′B
j }j∈[λ], computes {c

seedB
j

, c
seed′B

j
, c

witness′B
j

}j∈[λ],

and sends these commitments to A as in the protocol.

(b) For all j, S playing the role of the receiver uses bj = 0 to retrieve seed′A
j in ΠOT

with randomness derived from seedB
j . S also plays the role of the sender and uses

{(seed′B
j ,witness′B

j )}j∈[λ] as input in ΠOT with randomness derived from seedB
j .

2. S computes seed′
j = seed′A

j ⊕ seed′B
j for all j ∈ [λ]. Then S let hj

B ← H(
⊕

[λ]\j seed′
j)

for all j ∈ [λ]. For the execution of ΠEq, S uses the simulator SEq, i.e., the corresponding

simulator for the protocol ΠEq, to obtain hA. If there exists hj
B , such that hj

B = hA, S
sets GoodEq = true and picks ĵB ←$ [λ]. If h

ĵB
B = hA, S returns true for ΠEq to A and

restarts the protocol, and otherwise returns false for ΠEq to A. If there is no hj
B , such that

hj
B = hA, S sets GoodEq = false and returns false for ΠEq to A.

3. S computes and sends dummy commitment cB to A. S also receives commitment cA from
A.

4. For all j ∈ [λ], S prepares garbled circuits and input materials as in Step 4 of the protocol.
5. S computes and sends dummy commitment {c

γB
j

} to A. S also receives {c
γA

j
} from A.

6. S generates the puzzle p
sB

j
for a random chosen master puzzle key sB

j as in the protocol

for j ∈ [λ]. S also generates dummy ciphertexts for his pcj and p
seedB

j,OT
for j ∈ [λ]. Then

S sends these puzzles to A.
S receives puzzles p

sA
j
, pĉj , and p

seedA
j,OT

for j ∈ [λ] from A. Since time-lock puzzles can

be solved in polynomial time, S can decrypt these puzzles and derive sA
j , ĉj , and seedA

j,OT

for j ∈ [λ].
For λ executions of ΠOT where S plays the role of the receiver, S uses as input 0nB and
randomness derived from seedB

j and receives A’s {pBj,i,0}. Let HA
j denote the transcript

hash for the jth executions.
For λ executions of ΠOT where S plays the role of the sender, S first generates dummy
ciphertexts {pAj,i,b

} and random κ-bit string seed′′
j for all j ∈ [λ]. Then S executes ΠOT

with A using {(pAj,i,0 , pAj,i,1 )}i∈[nA] as input with randomness derived from seed′′
j .

7. S generates signatures {σB
j } as an honest PB and sends them to A.
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S also receives {σA
j } from A. If any of the signatures are invalid, S executes the finishing

touches procedure as follows and sends abort to FRobustPVC to terminate the execution of
the protocol.
(a) Choose ĵB ←$ [λ] if GoodEq = false, and otherwise use ĵB chosen in Step 2 in this

simulation.
(b) Program the random oracle to let the decryption of pcĵB

be 0, decryption of pcj be

cj for j ∈ [λ]\{ĵB}, and decryption of {pAj,i,b
} be the correct values as those in the

protocol for j ∈ [λ]\{ĵB} and j = ĵB , respectively.
(c) Program the random oracle: for the ĵBth instance, let the decryption of p

seedB
ĵB,OT

be

seedB
ĵB,OT = seed′′

ĵB
. For j ∈ [λ]\{ĵB}, let the decryption of p

seedB
j,OT

be the decryption

of p
seedB

j,OT
be seedB

j,OT = seed′′
j ⊕ seed′

j .

Then S simulates the computation of an honest PA playing the role of the sender in the
executions of ΠOT in Step 6 of the protocol and obtain ĤA

j . If ĉj = 0, the simulation is

based on seedA
j,OT as the ĵAth instance in the protocol. If ĉj = cj , the simulation is based

on seed′
j ⊕ seedA

j,OT as other instances in the protocol. Let Jz be the set of indices that

ĉj = 0 and ĤA
j matches the simulation of ΠOT for the ĵAth instance as described in the

protocol. Let Js be the set of indices that ĉj = cj and ĤA
j matches the simulation of ΠOT

for the checking instances.
Hence, there are following cases (let Stupid = false and Type =⊥ by default):

– If |Js| < λ − 2, S executes the finishing touches procedure as in Step 7a–7c of
the simulation, sends (cheat, 1) to FRobustPVC, receives corrupted, opens the puzzle as
in Step 8 of the protocol, generates the certificate cert with respect to j and the
inconsistent ĉj or ĤA

j as in the protocol. S then sends cert to A as Step 9 of the
protocol to complete the simulation.

– If |Js| = λ − 2 and |Jz| = 2, S sets Stupid = true and sends (stupidCheat, λ−2
λ )

to FRobustPVC. If FRobustPVC returns corrupted, S sets caught = (λ−2
λ , true) and Type =

BadNum. If FRobustPVC returns ⊥, S sets caught = (λ−2
λ , false). Then S continues the

simulation.
– If |Js| = λ − 2, |Jz| = 1, and GoodEq = true, S sends (cheat, λ−2

λ−1 ) to FRobustPVC. If

FRobustPVC returns corrupted, S sets caught = (λ−2
λ−1 , true) and Type according to the

possible certificate with respect to the inconsistent ĉj or ĤA
j . If FRobustPVC returns

undetected, S sets caught = (λ−2
λ−1 , false). Then S continues the simulation.

– If |Js| = λ − 2, |Jz| = 1, and GoodEq = false, S sends (cheat, λ−1
λ ) to FRobustPVC.

If FRobustPVC returns corrupted, S sets caught = (λ−1
λ , true) and Type according to the

possible certificate with respect to the inconsistent ĉj or ĤA
j . If FRobustPVC returns

undetected, S sets caught = (λ−1
λ , false). Then S continues the simulation.

– If |Js| = λ−2 and |Jz| = 0, S executes the finishing touches procedure as in Step 7a-
7c, sends (cheat, 1) to FRobustPVC, receives corrupted, opens the puzzle as in Step 8 of
the protocol, generates the certificate cert with respect to j and the inconsistent ĉj or

ĤA
j as in the protocol, and sends cert to A as in Step 9 of the protocol to complete

the simulation.
– If |Js| = λ − 1, |Jz| = 1, and GoodEq = true, S sets caught =⊥. Then S continues the

simulation.
– If |Js| = λ − 1, |Jz| = 1, and GoodEq = false, then S tosses a coin, which with proba-

bility 1
λ outputs false and λ−1

λ outputs true. If the output is false, then S executes the
finishing touches procedure as follows, opens his puzzle, and sends abort to FRobustPVC

to terminate the execution of the protocol.
(a) Let ĵB be the element in Jz .
(b) Program the random oracle to let the decryption of pcĵB

be 0, decryption of pcj
be cj for j ∈ [λ]\{ĵB}, and decryption of {pAj,i,b

} be the correct values as those

in the protocol for j ∈ [λ]\{ĵB} and j = ĵB , respectively.

(c) Program the random oracle: Let the decryption of p
seedB

ĵB,OT
be seedB

ĵB,OT =

seed′′
ĵB

. For j ∈ [λ]\{ĵB}, let the decryption of p
seedB

j,OT
be seedB

j,OT = seed′′
j ⊕seed′

j .

If the output is true, then S sets caught =⊥ and continues the simulation.
– If |Js| = λ − 1 and |Jz| = 0, S sets Stupid = true and then sends the message

(stupidCheat, λ−1
λ ) to FRobustPVC.

If FRobustPVC returns corrupted, S executes the finishing touches by picking ĵB ←$ Js,
programming the random oracle to let the decryption of pcĵB

be 0, decryption of pcj
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be cj for j ∈ [λ]\{ĵB}, and decryption of {pAj,i,b
} be the correct values as those in

the protocol for j ∈ [λ]\{ĵB} and j = ĵB , respectively. S also programs the random

oracle: for the ĵBth instance, let the decryption of p
seedB

ĵB,OT
be seedB

ĵB,OT = seed′′
ĵB

.

For j ∈ [λ]\{ĵB}, let the decryption of p
seedB

j,OT
be seedB

j,OT = seed′′
j ⊕ seed′

j . Then S
opens the puzzle as in Step 8 of the protocol, generates the certificate cert with respect
to the inconsistent ĉj or ĤA

j as in the protocol. S then sends cert to A as Step 9 of
the protocol to complete the simulation.
If FRobustPVC returns ⊥, S executes the finishing touches by picking ĵB ←$ [λ]\Js and
programming the random oracle following the same procedure as FRobustPVC returns
corrupted. Then S opens his puzzle as in Step 8 of the protocol, and simulates the
abortion of the honest PB to terminate the simulation.

– If |Js| = λ, S executes the finishing touches procedure as in Step 7a-7c in this
simulation, opens his puzzle, and sends abort to FRobustPVC to terminate the execution
of the protocol.

Rewind A and run steps 1′ − 7′ below untila |J ′
s| = |Js|, |J ′

z| = |Jz|, caught′ = caught,
GoodEq′ = GoodEq, Stupid′ = Stupid, and Type′ = Type.

1′. S goes through the following steps with A.
(a) S receives the commitments {c

seedA
j

, c
seed′A

j
, c

witness′A
j

}j∈[λ] from A. In the meantime,

S playing the role of PB randomly chooses ĵB ←$ [λ] and then picks uniform κ-bit

strings {seedB
j , seed′B

j ,witness′B
j }j∈[λ]. S then computes c

seedB
j
, c

seed′B
j
, and c

witness′B
j

for j ∈ [λ]\{ĵB} as in the protocol and let c
seedB

ĵB

, c
seed′B

ĵB

, and c
witness′B

ĵB

be dummy

commitments. Finally, S sends these commitments to A as in the protocol.
(b) For all j ∈ [λ]\{ĵB}, S playing the role of the receiver uses bj = 0 to retrieve

{seed′
j

A}j∈[λ]\{ĵB} with randomness derived from {seedB
j }. For the ĵBth instance,

S runs the simulator SOT for the protocol ΠOT, and extracts (seed′A
ĵB

,witness′A
ĵB

).

S also plays the role of the sender and uses {(seed′B
j ,witness′B

j )}j∈[λ] as input with

randomness derived from seedB
j .

2′. S computes seed′
j = seed′A

j ⊕ seed′B
j for all j ∈ [λ]. Then S let hj

B ← H(
⊕

[λ]\j seed′
j) for

all j ∈ [λ]. S uses the simulator SEq for ΠEq to obtain hA. If there exists hj
B , such that

hj
B = hA, S sets GoodEq′ = true. Then if h

ĵB
B = hA, S returns true for ΠEq to A and

restart the protocol, and otherwise returns false for ΠEq to A. If there is no hj
B = hA, S

sets GoodEq′ = false and returns false for ΠEq to A.
3′. S computes and sends commitment cB to A. S also receives commitment cA from A. S

extracts (ĵA, {seed′B
j }j �=ĵA

,witness′B
ĵA

) from cA. If this extracted message is correct, store

ĵA. Otherwise, let ĵA =⊥.
4′. For all j ∈ [λ], S prepares garbled circuits and input materials as in Step 4 of the protocol.
5′. S computes and sends dummy {c

γB
j

} to A. S also receives {c
γA

j
} from A.

6′. S generates puzzles p
sB

j
for a random chosen master puzzle key sB

j and ciphertexts p
seedB

j,OT

for j ∈ [λ] as in the protocol. S generates ciphertexts pcj for computed cj for j ∈ [λ]\{ĵB}
and let the ciphertext pcĵB

encrypt 0. Then S sends these puzzles to A.

S receives puzzles p
sA

j
, pĉj , and p

seedA
j,OT

for j ∈ [λ] from A. Since time-lock puzzles can

be solved in polynomial time, S can decrypt these puzzles and derive sA
j , ĉj , and seedA

j,OT

for j ∈ [λ].
For all j 	= ĵB , S playing the role of the receiver runs ΠOT with A, using input 0nB

and randomness derived from seedB
j . In this way, S receives A’s {pBj,i,0}. In the ĵBth

execution of ΠOT, S playing the role of the receiver uses the simulator SOT for ΠOT

to extract {pBĵB,i,b
}i∈[nB ],b∈{0,1}. S can decrypt {pBĵB,i,b

}i∈[nB ],b∈{0,1} and obtain

{BĵB,i,b}i∈[nB ],b∈{0,1}.
If ĵA =⊥, S first generates ciphertexts for {pAj,i,b

} for j ∈ [λ] as in the protocol. Then, S
playing the role of the sender executes ΠOT with A using {(pAj,i,0 , pAj,i,1 )}i∈[nA] as input

with randomness derived from seed′
j ⊕ seedB

j,OT or seedB
j,OT as in the protocol. If ĵA 	=⊥,

S generates ciphertexts for {pAj,i,b
} for j ∈ [λ]\{ĵA} as in the protocol. For [λ]\{ĵA},

S playing the role of the sender executes ΠOT with A using {(pAj,i,0 , pAj,i,1 )}i∈[nA] as

input with randomness derived from seed′
j ⊕ seedB

j,OT or seedB
j,OT as in the protocol. For
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j = ĵA, S runs the simulator SOT for ΠOT to extract the input xA and returns dummy
ciphertexts {pAĵA,i

} to A.

7′. S generates {σB
j } as an honest PB in the protocol and sends them to A. S also receives

{σA
j } from A. If any of the signatures are invalid, then return to Step 1′.

Then S simulates the computation of an honest PA playing the role of the sender in the
executions of ΠOT in Step 6 of the protocol and obtain ĤA

j . If ĉj = 0, the simulation is

based on seedA
j,OT as the ĵAth instance in the protocol. If ĉj = cj , the simulation is based

on seed′
j ⊕ seedA

j,OT as other instances in the protocol. Let J′
z be the set of indices that

ĉj = 0 and ĤA
j matches the simulation of ΠOT for the ĵAth instance as described in the

protocol. Let J′
s be the set of indices that ĉj = cj and ĤA

j matches the simulation of ΠOT

for the checking instances.
Hence, there are following cases (let Stupid′ = false and Type′ =⊥ by default):

– If |J′
s| < λ − 2, then return to Step 1′.

– If |J′
s| = λ − 2 and |J ′

z| = 2, S sets Stupid′ = true. If ĵB ∈ J ′
s, S sets caught′ =

(λ−2
λ , true) and Type′ = BadNum. Otherwise, S sets caught′ = (λ−2

λ , false).

– When |J′
s| = λ − 2, |J ′

z| = 1, and GoodEq′ = true, if ĵB ∈ J ′
s, S sets caught′ =

(λ−2
λ−1 , true) and Type′ according to the possible certificate with respect to the incon-

sistent ĉj or ĤA
j . Otherwise, S sets caught′ = (λ−2

λ−1 , false).

– When |J′
s| = λ − 2, |J ′

z| = 1, and GoodEq′ = false, if ĵB ∈ J ′
s or ĵB ∈ J ′

z , S sets

caught′ = (λ−1
λ , true) and Type′ according to the possible certificate with respect to

the inconsistent ĉj or ĤA
j . Otherwise, S sets caught′ = (λ−1

λ , false).

– If |J′
s| = λ − 2 and |J ′

z| = 0, then return to Step 1′.
– If |J′

s| = λ − 1, |J ′
z| = 1, and GoodEq′ = true, S sets caught′ =⊥.

– When |J′
s| = λ − 1, |J ′

z| = 1, and GoodEq′ = false, if ĵ ∈ Js, then S sets caught′ =⊥.
Otherwise, return to Step 1′.

– If |J′
s| = λ − 1 and |J ′

z| = 0, then return to Step 1′.
– If |J′

s| = λ, then return to Step 1′.

8. If ĵA 	=⊥, S sends xA to FRobustPVC and receives the output z. Then S regenerates the
garbled circuit via

({AĵA,i}, {BĵA,i},GCĵA
, {ZĵA,i,b}) ← SGb(1

κ
, C, z)

and recomputes the materials of the ĵAth instance in Step 4b and 4c of the protocol. Since
this garbled circuit is simulated, S uses/programs dummy commitments/values in case

of need, e.g., for γB
ĵA

. S also uses the random oracle to program the opening of cĵA
and

{pAĵA,i
} with respect to the simulated garbled circuit. Then S opens his puzzle to A as

in the protocol. A may also open her puzzle.
9. If caught′ = (·, true), S generates the corresponding cert and sends it to A to complete the

simulation.
10. S sends the opening for cB to A as in the protocol. S also receives the opening for cA

from A. If Stupid′ = true, S simulates the abortion of the honest party to complete the

simulation. If the opening (ĵA, {seed′B
j }j �=ĵA

,witness′B
ĵA

) is not correct, S sends abort to

FRobustPVC and simulates the abortion of the honest party to complete the simulation.
11. S sends the simulated garbled circuit GCĵA

, together with corresponding label hash values,
to A. S also receives the garbled circuit GCĵB

and related materials from A. If they
are invalid, S sends abort to FRobustPVC and simulates the abortion of the honest party to
complete the simulation.

12. S sends the simulated labels, γB
ĵA

, and corresponding decommitments to A. S also receives

the labels, γA
ĵB

, and corresponding decommitments. If the received materials are invalid,

S sends abort to FRobustPVC and simulates the abortion of the honest party to complete the
simulation.

13. S uses the simulator SEq for ΠEq to obtain βA from A. Then S defines the boolean function
g as follows.
(a) On input xB ∈ {0, 1}nB , select the corresponding input labels for xB in the label

tuples {(BĵB,i,0, BĵB,i,1)}i∈[nB ].

(b) Evaluate the garbled circuit GCĵB
with the input-wire labels {AĵB,i,xA[i]}i∈[nA] and

{BĵB,i,xB [i]}i∈[nB ] as in the protocol to obtain {ZĵB,i}i∈[nO ] and zĵB
. In particular,

if some error occurs in the evaluation of garbled circuit, some hard-coded random
values provided by S are used for {ZĵB,i}i∈[nO ] and zĵB

.

(c) Compute βB ← H(
⊕nO

i=1(ZĵA,i,zĵB
[i] ⊕ ZĵB,i,zĵB

[i])).
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(d) If βA = βB , return true. Otherwise, return false.
S sends g to FRobustPVC, receives the output e from FRobustPVC, and gives e to A. If A does
not abort, S sends continue to FRobustPVC to complete the simulation.

a We could use standard techniques [13,15] to ensure that S runs in expected
polynomial time.

Now it remains to show that the joint distribution of the view of A simulated
by S and the output of PB in the ideal world is computationally indistinguishable
from the joint distribution of the view of A and the output of PB in the real
world. We provide the detailed proof in the full version of this paper [24].

Public Verifiability. We argue that whenever an honest party PX outputs the
message corrupted, this party should also be capable of producing a valid certifi-
cate for the malicious party PY corrupted by the adversary. This implies that
once the honest party detects the adversary’s cheating behavior, the adversary
cannot prevent the honest party from generating the certificate.

Note that in Step 7, without receiving a valid signature, the honest party will
not continue the execution of the protocol. Alternatively, if the honest party does
receive valid signatures, though this party still cannot obtain the solutions for the
time-lock puzzles/ciphertexts at this time, it is guaranteed that the adversary has
signed the time-lock puzzles/ciphertexts. Meanwhile, the adversary still cannot
access the solution for the time-lock puzzles and remains unaware of the indices
of the instances chosen by PX . Therefore, the adversary cannot base her decision
to continue or abort on these indices.

When the adversary gains knowledge of the indices of instances chosen by PX

to verify, the honest party has already gathered sufficient evidence to attribute
blame to the adversary. The honest party can locally solve the adversary’s puzzles
to obtain sY

j , cj , and seedY
j,OT sent by the adversary. These messages, combined

with the committed seeds and witness, as well as transXj and transYj , provide
enough information for anyone to simulate the execution of the checked instance
and obtain ĉj and ĤY

j . Anyone can conduct the same verification on ĉj and ĤY
j

as PX to determine if malicious PY deviated from the protocol execution. Since
PX ’s signature is provided, the non-repudiation property is ensured.

Defamation Freeness. Assuming an honest party PX is accused by the adversary
corrupting PY with a valid certificate, it implies that the adversary will provide
valid signature(s) of PX for the message(s)

(C, j, cseedY
j
, cseed′Y

j
, cwitness′Y

j
, transXj , transYj ,HX

j , psX
j

, pcj
, pseedX

j,OT
, τ, λ) .

Since PX is honest, she only signs the puzzles psX
j

, pcj
, and pseedX

j,OT
she has gen-

erated. These puzzles can be decrypted to derive sX
j , cj , and seedX

j,OT. According
to the soundness of the verifiable time-lock puzzle scheme, the adversary cannot
provide openings/proofs for solutions different from sX

j , cj , and seedX
j,OT.

First, we consider the certificate with type BadCom. In this setting, the adver-
sary aims to demonstrate that cj does not match the commitment generated from
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the seed′
j (and cj �= 0, which is obvious). Due to the binding property, the adver-

sary can only provide the valid committed values seedY
j , seed′Y

j , and witness′Yj
inside cseedY

j
, cseed′Y

j
, and cwitness′Y

j
. A certificate verifier will recompute seed′X

j

from transXj with randomness derived from seedY
j . On the one hand, since seed′X

j

is the output of a perfectly correct OT protocol, given the signed transcript of
ΠOT, there is exactly one valid output for PY that is consistent with transXj ,
regardless of PY ’s randomness and inputs. On the other hand, if the commit-
ted values seed′Y

j and witness′Yj are not the inputs of PY playing the role of
the sender in the perfectly correct protocol ΠOT, these committed values do not
match the signed transcript of ΠOT. Therefore, seed′

j = seed′A
j ⊕seed′B

j should be
the same as the one derived by the honest PX . Consequently, simulation for the
computation conducted by PX always leads to the same cj , and the algorithm
Judge will not output true (except for a negligible probability).

Then we consider the certificate with type BadOT. Similarly, we know that
the adversary cannot forge seed′

j = seed′A
j ⊕ seed′B

j , seedX
j,OT, and sX

j , and a
certificate verifier should derive the same {(pYj,i,0 , pYj,i,1)} and seed′

j ⊕ seedX
j,OT.

Hence, given the signed HX
j , the algorithm Judge will not output true except for

a negligible probability (when a collision of the hash function is found).
Finally, for the certificate with type BadNum, we know that the adversary

cannot forge cj . Hence, the honest PX should always have exactly one cj =
0. Therefore, the algorithm Judge will not output true (except for a negligible
probability).

Therefore, the protocol ΠRobustPVC along with algorithms Blame and Judge is
robust publicly verifiable secure with deterrence ε = 1 − 1

λ−1 . 	


5 Discussion

In this section, we discuss the performance and possible enhancement of our
protocol ΠRobustPVC.

5.1 Comparison

The protocol ΠRobustPVC is building upon the state-of-the-art secure two-party
computation protocol with PVC security [17]. As discussed in Sect. 1.2, our pro-
tocol incurs low additional overhead. We can easily observe that, compared to
the protocol in [17], our protocol only requires an additional garbled circuit gen-
eration and an additional garbled circuit evaluation (see Table 1). Interestingly,
as the deterrence factor increases, the additional overhead for garbled circuit gen-
eration/evaluation in our protocol compared to the protocol in [17] decreases.
As emphasized in [17], the cost of generating garbled circuits (unless the circuit
is very small) is the efficiency bottleneck of their protocol, making the number
of garbled circuit generations in our protocol highly desirable.

In the following, we argue that each phase of our protocol incurs low addi-
tional overhead compared to the protocol in [17].
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Table 1. Number of garbled circuit generation and evaluation needed to achieve differ-
ent deterrence factor ε, along with the additional overhead of our ΠRobustPVC compared
to the protocol in [17]. Since evaluations should be faster than generations, the addi-
tional cost is actually overestimated.

ε PVC-secure protocol [17] Our protocol ΠRobustPVC Additional
overheadPA PB Total PA PB Total

80% 5 + 0 = 5 4 + 1 = 5 10 5 + 1 = 6 5 + 1 = 6 12 20%

87.5% 8 + 0 = 8 7 + 1 = 8 16 8 + 1 = 9 8 + 1 = 9 18 12.5%

90% 10 + 0 = 10 9 + 1 = 10 20 10 + 1 = 11 10 + 1 = 11 22 10%

95% 20 + 0 = 20 19 + 1 = 20 40 20 + 1 = 21 20 + 1 = 21 42 5%

Seed Preparation It is easy to verify that the expected number of executions
for this phase is 2 − ε, where ε is the deterrence factor. For ε = 90%, the
expected number of executions is only 1.1. For ε = 95%, the expected number
is reduced to only 1.05. Additionally, the secure equality test can be completed
very quickly [7,18]. Therefore, the overhead of this phase is low.

Circuit and Input Preparation In our protocol, two parties can perform
garbled circuit generation in parallel during this phase. For the same deter-
rence factor, the number of garbled circuits generated in [17] is the same as
in ΠRobustPVC (for each party). Therefore, the running time for garbled circuit
generation is approximately the same as that of the protocol in [17]. We also
note that time-lock puzzle generation is efficient. Indeed, for all instances, a
single master puzzle key (inside a real time-lock puzzle) is sufficient. Hence,
the overhead of this phase is low.

Publicly Verifiable Evidence Creation This phase is almost identical to the
protocol in [17].

Check of Instances If both parties are honest and the master time-lock puzzle
is correctly opened, the computation performed by both parties (in parallel)
mainly involves the simulation of ΠOT, which incurs a similar running time
as the protocol in [17]. Moreover, compared to the protocol in [17], no sim-
ulation of garbled circuit generation is needed. Therefore, our protocol may
outperform the protocol in [17] in this phase.

Circuit Evaluation In this phase, both parties can evaluate the garbled circuit
in parallel. Hence, the running time required for garbled circuit evaluation is
almost the same as that of the protocol in [17]. Additionally, secure equality
tests can be completed quickly. Therefore, the overhead of this phase is low.

The communication cost primarily encompasses the execution of OT protocols
and the transmission of garbled circuits (including input-wire labels) for evalua-
tion. Consequently, the one-way communication is nearly identical to that in [17],
and the two-way communication is twice of that in [17]. Therefore, there is no
additional communication overhead in duplex networks compared to [17].

Based on the implementation presented in [17], as an example, when ε =
87.5%, i.e., the number of garbled circuit is 8, the execution time of their PVC-
secure protocol for an SHA-256 circuit is 71.31 ms in LAN and 2436 ms in
WAN. In comparison, the corresponding semi-honest protocol takes 38.04 ms



298 Y. Liu et al.

in LAN and 1080ms in WAN, while the maliciously secure protocol takes 611.7
ms in LAN and 17300 ms in WAN. Given that the performance of our proto-
col is similar to that of the protocol in [17], it is evident that our ΠRobustPVC

achieves comparable performance to the semi-honest protocol while significantly
outperforming the maliciously secure protocol.

5.2 Size of Certificate

In ΠRobustPVC, we have chosen not to include the circuit description C in the
certificate. Instead, we make the assumption that the circuit description is
commonly known. This practice aligns with the convention followed in PVC-
secure protocols [3,9,10,17,31]. Alternatively, one could opt to include the circuit
description C in the certificate. It is worth noting that the description of C can
be significantly shorter than the full circuit, such as representing it in high-level
code or utilizing an ID number from a widely used “reference circuits” database.

Due to the exclusion of the circuit description in the certificate, the size
of publicly verifiable certificates generated in the ΠRobustPVC protocol remains
constant.

5.3 Potential Enhancements

In our protocol ΠRobustPVC, we do not aim to prevent an attacker from learning
the evaluation result C(xA, xB) even when the honest party outputs cheating
at the end of the protocol. This occurs when the attacker generates a malicious
garbled circuit but not being caught (with probability 1−ε) or when the attacker
causes an abortion in the final equality test protocol.

We note this issue is not the focus of our protocol. In fact, it is well known that
two-party computation cannot guarantee fairness in general [6]. But there are
still some countermeasures that can be readily incorporated into our protocols.

For instance, one approach is to introduce an additional circuit that processes
the output-wire labels before they are used in the equality test, effectively con-
cealing the semantic values associated with the garbled circuit’s output. Another
technique, known as progressive revelation, allows for a gradual release of the
evaluation result bit-by-bit, preventing the attacker from obtaining the complete
input while leaving the honest party with nothing. For more detailed information
on these countermeasures, we refer interested readers to the work [18].
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Abstract. This paper introduces LERNA, a new framework for single-
server secure aggregation. Our protocols are tailored to the setting where
multiple consecutive aggregation phases are performed with the same set
of clients, a fraction of which can drop out in some of the phases. We
rely on an initial secret sharing setup among the clients which is gen-
erated once-and-for-all, and reused in all following aggregation phases.
Compared to prior works [Bonawitz et al. CCS’17, Bell et al. CCS’20],
the reusable setup eliminates one round of communication between the
server and clients per aggregation—i.e., we need two rounds for semi-
honest security (instead of three), and three rounds (instead of four) in
the malicious model. Our approach also significantly reduces the server’s
computational costs by only requiring the reconstruction of a single
secret-shared value (per aggregation). Prior work required reconstruct-
ing a secret-shared value for each client involved in the computation.

We provide instantiations of LERNA based on both the Decisional
Composite Residuosity (DCR) and (Ring) Learning with Rounding
((R)LWR) assumptions respectively and evaluate a version based on the
latter assumption. In addition to savings in round-complexity (which
result in reduced latency), our experiments show that the server compu-
tational costs are reduced by two orders of magnitude in comparison to
the state-of-the-art. In settings with a large number of clients, we also
reduce the computational costs up to twenty-fold for most clients, while
a small set of “heavy clients” is subject to a workload that is still smaller
than that of prior work.

Keywords: Secure Aggregation · Reusable Setup · Privacy Preserving
Machine Learning

1 Introduction

A secure aggregation protocol allows a set of clients, each holding an input xi, to
interact with one or more servers, so that the latter learns the sum

∑
xi, but no

additional information. The inputs xi could be integers, often mod q, or vectors
of integers. In contrast to the usual setting of multi-party computation, which
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assumes point-to-point channels, here communication only occurs between each
individual client and the server(s), i.e., there is no direct inter-client communi-
cation and clients can only communicate indirectly through the server(s).

Secure aggregation protocols are suitable for a broad range of applications,
such as privacy-preserving telemetry in browsers [14], analytics in digital con-
tact tracing [2], and Federated Machine Learning [9]. Practical multi-server
protocols [15,18] are, in fact, already being considered for standardization by
IETF [22]. In this paper, however, we target the single-server setting. This
setting is preferable whenever distributing trust among multiple non-colluding
entities is not easily feasible. However, it is also more challenging, as protocols
require multiple rounds of interaction and need to accommodate for potential
client dropouts, whilst ensuring the correctness of aggregation and the privacy of
clients’ inputs against other colluding clients and/or the server. These protocols
have emerged primarily in the context of Federated Machine Learning, starting
from Bonawitz et al. [10], which underlies Google’s Federated ML system [9],
and its recent optimizations and extensions [6,7].

This paper introduces a new general paradigm for single-server secure aggre-
gation, which improves upon the state-of-the-art in terms of round and com-
putational complexities. Our protocols are particularly advantageous in settings
where repeated aggregation phases are performed with the same set of clients
(some of which may drop out) as they only require two rounds per aggregation,
in addition to an initial setup round, at the presence of semi-honest colluding
clients and/or server. In comparison, prior protocols [7,10] require three rounds
per aggregation (without initial setup). In the malicious security model, all pro-
tocols require one additional round, namely, three rounds in our protocols and
four rounds in prior works. Moreover, our approach also significantly improves
the server workload by reducing the number of secret-sharing reconstructions.

Repeated Aggregation. While existing single server aggregation protocols
mainly focus on running a single aggregation, many scenarios require running
repeated aggregation sessions throughout a period of time, with the same set of
clients. A prototypical application involves a number of sensors or nodes in a
network reporting telemetry data. For example, a company of Internet of Things
(IoT) devices may want to aggregate operation data from a certain area period-
ically to help understand how the devices are used throughout the day. Other
examples include wireless sensor networks (WSN) [21], smart meters [3], and
medical devices [23].

Our protocol leverages the repeated aggregation setting by having an ini-
tial setup round that generates correlated states among clients to facilitate the
many aggregation phases later, reducing both round and computational com-
plexity. The protocol is robust to drop-outs, as long as the fraction of drop-out
clients is bounded at any point in time. Our main protocol focuses on the setting
with a large number of clients, e.g. M ≥ 20K. To reduce communication costs,
it selects a committee of fixed size O(κ2) in the initial setup round to hold the
correlated states. And the committee stays unchanged through out many aggre-
gation phases. The protocol guarantees the privacy of clients’ inputs against
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statically corrupted clients that may collude with the server, provided that the
total number of corrupted clients in the setup and all aggregation phases are
bounded. Compared to protocols designed for single aggregation, we rely on the
more stringent condition that the total number of corrupted clients is bounded
across many aggregation sessions. However, one can alleviate this assumption by
periodically rerunning the setup phase, generating fresh correlated states among
clients. Different applications may refresh at a different frequency, say, every day,
every week, or even longer, depending on how likely clients are corrupted. Viewed
this way, our protocol offers a new tradeoff between the rate of corruption and
efficiency gain.

Alternatively, when the number of client is small, e.g. M ≤ 80, our protocol
can avoid the committee in the initial setup round to guarantee stronger privacy:
in this setting, the clients may be adaptively corrupted instead of statically as
assumed above. (See the full version for details on this variant.)

Existing Single-Server Secure Aggregation. It is helpful to first review the
blueprint behind existing single-server aggregation protocols [7,10]. Here, we
restrict ourselves to the semi-honest setting for simplicity, but these protocols
(along with ours) can be modified to support malicious corruption of server and
clients.

The initial idea is to have each client i ∈ [M ] send a masked input zi = xi+ci

to the server. To generate these masks, every pair of clients i, j establishes a
shared key kij = kji = PRG(gsisj ), where gsi is a group element which acts as
an ephemeral public key associated with each client i ∈ [M ], and which is shared
in an initial round (through the server) with all other clients. The value si is
kept secret by client i. Then, each client i ∈ [M ] uses the mask

ci =
∑

j<i

kij −
∑

j>i

kij .

These masks satisfy in particular the cancellation property
∑

i ci = 0, and con-
sequently the server can simply output

∑
i zi =

∑
i xi.

A first concern is that this only works if each client remains alive and indeed
submits its own masked input—a term kij = kji included in client j’s mask cj

is not canceled out without client i’s contribution. To handle a dropout, each
client additionally secret shares their own secret si, which is reconstructed in
case they drop out, to then, in turn, derive all kji’s for j �= i.

A second concern is that a slow client i could be prematurely labeled as a
dropout, and their secret si reconstructed before the masked value zi reaches the
server, thus revealing xi. To prevent this, each client initially shares a second
random mask bi, along with si, and sends instead the masked input zi = xi+bi+
ci to the server. Then, after receiving the masked inputs {zi}i∈I from a subset
I ⊆ [M ] of the clients, for each i ∈ I, the server reconstructs bi, thus allowing
the inclusion of (xi + ci) in the final sum. In contrast, it reconstructs si for all
i /∈ I, thus enabling the computation of

∑
i∈I xi as discussed above. For every

client i /∈ I, because bi remains secret, the value xi remains protected even if
later zi is obtained by the adversary.
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Therefore, the overall protocol needs three rounds. An additional round is
needed to tolerate a malicious server, and it forces the server to commit to a
single set I of clients which are claimed not to have dropped out.

The Costs of Secret Sharing. The most expensive part in the above blueprint
is the initial sharing of si and bi, along with the later reconstruction of (one of)
them for each client. This impacts both the round and computational complexity
in several ways.

Foremost, secret sharing si and bi takes one additional round of communi-
cation. While some initial setup round is somewhat inherent (e.g., to share keys
to allow clients to communicate with each other via the server), this becomes a
bigger concern in the repeated aggregation setting. Here, it is crucial that the
values si and bi are re-generated and re-shared at each repeated session, for oth-
erwise dropping out at some later session may compromise the privacy of the
inputs from prior sessions.

Moreover, the computation and communication costs due to secret sharing
are high – Θ(M) for each client, and Θ(M2) for the server. Crucially, the server
needs to reconstruct one secret shared value—either si or bi—for each client.
In addition, for every client dropout, the server needs to perform Θ(M) expo-
nentiations to recover the corresponding values kij . To reduce costs, Bell et.
al. [7] proposed to have clients only secret share in a random neighborhood of
size Θ(log M + κ), where κ is the statistical security parameter. Though this
idea reduces the client and server costs to Θ(log M + κ) and M(Θ(log M + κ)),
respectively, the improvement is at the cost of weakening the security guarantees
at the presence of maliciously corrupted clients and/or server.1

Our Contributions. This paper proposes LERNA, a new lightweight approach
to single-server secure aggregation which addresses the aforementioned issues.
Foremost, it reduces the round complexity to two respectively three communi-
cation rounds for semi-honest and malicious security, respectively, in addition
to an initial offline round which establishes a setup that can be re-used across
multiple aggregations. Moreover, LERNA also features very small server costs,
as the server only needs to perform a single reconstruction of a secret-shared
value. We validate the performance of LERNA also by benchmarking a proto-
type implementation.

An important feature of our implementation is that it identifies a (random)
subset of the clients as a committee. Our benchmarking shows that the compu-
tational costs of committee members are smaller than the client costs of prior
solutions. However, LERNA is even more lightweight for clients outside of the
committee. Indeed, in addition to participating in an initial setup stage, non-
members only need to send a single message to the server to include their input in
an aggregation session, and subsequent interaction within the same session only
involves committee members. Our benchmarking demonstrates up to twenty-fold
performance improvement for these non-committee clients.

1 More specifically, using the protocol of Bell et. al., if the server is malicious, it may
recover the sums of inputs of multiple subsets of clients.
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A drawback of our solution, as shown in our benchmark, is a relatively
heavy communication cost in the initial offline round. This requires participat-
ing devices to have sufficient storage and network bandwidth. To amortize this
one-time cost, an ideal application for LERNA runs repeated aggregation for
large numbers of iterations, T , before rerunning the setup. We envision run-
ning LERNA for machine learning from data collected from a large number of
relatively powerful devices, e.g. the payment terminals Amazon One, medical
imaging devices, weather stations, etc.

Our protocols are built on top of a new primitive, which we call a key-
homomorphic masking scheme, which allows clients to initially secret share a
re-usable secret value (i.e., which can be reused across multiple computations) to
the committee as part of the initial offline round. We provide two instantiations
from, respectively, the DCR assumption [16] and (Ring) LWR assumption [5],
with the latter being our main result.

Related Work. The same reduction in round complexity was very recently
achieved by Guo et al. [19], also relying on a re-usable secret shared value.
However, their solution performs the aggregation in the exponent of a discrete-
log hard group, resulting essentially in the sever obtaining the value g

∑
i xi ,

where g is a group generator. In other words, the actual result can only be
extracted by computing the discrete logarithm, which is feasible only if

∑
i xi is

sufficiently small. This forces the computation to be over small domains accom-
modating Federated learning of models with small weights, such as quantized
or compressed models. In contrast, most Federated ML tasks typically involve
large values. LERNA does not suffer from this drawback. Our approach differs
from [19] in that it relies on different mathematical structures (underlying the
LWR and DCR assumptions) to obtain the aggregated sum in the clear. This,
in turn, requires overcoming a few challenges, in particular, designing special
secret-sharing schemes tailored to our requirements – linear reconstruction via
small coefficients (for LWR) and working over the integers (for DCR).

The work of [20] proposed a semi-honest protocol, SASH+, using a seed-
homomorphic PRG based on LWR similar to our key-homomorphic masking
scheme. However, SASH+ exploits the homomorphic property in a different way
from LERNA. At high-level, assuming LWR with dimension n, SASH+ reduces
the problem of aggregating �-dimension inputs to aggregating n-dimensional
homomorphic PRG seeds, which is done using the protocol of [7]. This reduction
reduces the computation cost of the server and each client by roughly a factor of
(�/n), but at the cost of increasing the round complexity from 3 to 4 per iteration,
and introducing an error to the aggregation result that scales linearly with M .
In comparison, LERNA reduces the round complexity from 3 to 2, and improves
the computation cost at the same time. LERNA also computes the aggregation
results exactly without error. As we’ll discuss in our benchmarks, LERNA server,
and non-committee clients are significantly faster than SASH+’s, while LERNA
committee clients become slower than SASH+ clients for very large M .

The work of [25] focuses on the specific application of repeated aggregation
in federated machine learning (FL), where the server selects a random subset of
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clients to aggregate at each iteration. It observes that the usual random client
selection strategy in FL causes a leakage of client inputs when the model is
close to converged. The paper proposes a new client selection algorithm to mit-
igate this leakage, assuming an honest server following this new algorithm. We
note that LERNA can also be adapted to run repeated aggregation over a dif-
ferent subset of clients at each iteration. The mitigation strategy can then be
orthogonally applied to the semi-honest version of LERNA. We stress that the
client selection strategy is not to be confused with LERNA’s committee selec-
tion. Client selection could be added on top of our protocol (but is not included
explicitly), and would happen in every iteration, whereas committee selection is
within our protocol, and happens only once during its setup phase.

A recent and concurrent work by Bell et al. [6] additionally considers the
question of input validation. While this is extremely important, it is orthogo-
nal to the issues studied by this paper. Their system also uses Ring-LWE for
efficiency improvement, but still follows broadly the above blueprint without a
re-usable setup.

1.1 Overview of LERNA

LERNA’s approach differs from the existing protocols in [7,10] whose core idea
is hiding each input xi with a masks that, as described above, satisfies the can-
cellation property. Instead, LERNA starts with a conceptually simpler solution,
where each client i hides its input xi with a (random) mask ci as zi = xi + ci,
and sends the masked value zi to the server. With the help of the clients, the
server first recovers cU =

∑
i∈U ci, for the set of online clients U , and hence the

aggregation result xU =
∑

i∈U zi − cU . The key question we answer is how the
clients securely help the server to compute cU .

Straw Man Solution. The first näıve idea is to let every client secret share its
mask ci with all other clients using a linear secret sharing scheme (Share,Recon),
such as Shamir’s secret-sharing scheme. In particular, the Recon algorithm
involves evaluating a linear function on the shares. As in prior works [7,10]
each client only has a private and authenticated channel with the server. They
can also communicate with each other indirectly through the server. Assuming
a PKI setup, such indirect communication can be private and authenticated.

In more detail, each client i ∈ [M ] sends (through the server) the j’th share ci
j

of ci to each other client j ∈ [M ], before sending their masked input zi = ci +xi.
The server then finds the set of clients U who have completed both steps, and
notifies them of the set U for aggregation. Each client j then locally aggregates
the shares it has received from clients i ∈ U , obtaining cU

j =
∑

i∈U ci
j . By the

linear homomorphism of the secret sharing, cU
j is the j’th share of the aggregated

mask cU . As long as enough clients, say j ∈ U ′ ⊆ U , send their aggregated
shares cU

j to the server, the latter can reconstruct cU = Recon({cU
j }j∈U ′), and

then recover the aggregated input xU .



308 H. Li et al.

This simple solution is, however inefficient: The step where each client i shares
its mask ci with all other clients has overall Ω(M2) communication complexity
per aggregation. To aggregate T times, the cost grows as Ω(M2 × T ).

Key-Homomorphic Masking Scheme. Somewhat informally a key-
homomorphic masking scheme involves a pair of algorithms Mask,UnMask. The
Mask algorithm takes an input x from some input space Zp, a masking key
k from some key space K, and a tag τ , and computes a masked message
z ← Mask(k, τ, x). The UnMask algorithm takes the above z and an “empty”
mask c ← Mask(k, τ, 0) under the same key k and tag τ , and recovers the mes-
sage x ← UnMask(z, c).

Importantly, the scheme is additively key-homomorphic for masks with the
same tag τ : Mask(k+k′, τ, x+x′) ≡ Mask(k, τ, x)�Mask(k′, τ, x′), where � rep-
resents homomorphic addition. We can generalize the additive homomorphism
to evaluate any linear function L over masks {zi ← Mask(ki, τ, xi)}:

Eval(L, {zi}) ≡ Mask(L({ki}), τ, L({xi})) ,

where the linear function L is evaluated respectively over ki’s in the key space
K and over xi’s in the message space Zp.

Jumping ahead, our instantiation of the masking scheme under LWR will
only achieve approximate key-homomorphism. We will explain below how we get
around this limitation. For now, it is helpful to assume a perfect masking scheme
to convey the main idea.

Sketch of the LERNA Protocol. We now describe the semi-honest protocol.
Note that the following description depends on a commitment Q ⊆ [M ]. One can
easily think of this committee as containing all clients, although in our concrete
instantiation below, we only include a (random) subset of the clients in Q

– Setup phase: The clients agree on a common committee Q ⊆ [M ] using public,
common randomness. Every client i secret shares a fresh masking key ki as
{ki

j}j∈[Q] and sends the j’th share ki
j to committee member j ∈ Q.

– Online phase: In the tth aggregation session,
1. The clients sample a common tag τ ← H(sid, t) using a hash function

H, modeled as a random oracle. Every client Pi then computes a masked
input zi ← Mask(ki, τ, xi) and sends zi to the server.
The server identifies the set U of online clients. It sends U to all committee
members Q, indicating that it wants to aggregate the inputs in U .

2. Upon receiving U , every committee member Pj aggregates the key shares
ki

j it received from clients i ∈ U , obtaining kU
j =

∑
i∈U ki

j , which by linear
homomorphism, equals the j’th share of kU =

∑
i∈U ki. (Therefore, given

enough shares {kU
j }j∈U ′ , for a large enough subset U ′, one can recover

kU .) Then, Pj computes an empty mask cU
j ← Mask(kU

j , τ, 0), and sends
it back to the server.
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Upon receiving enough shares {cU
j }j∈U ′ from a subset U ′ ⊆ U , the server

homomorphically computes the aggregated mask

cU = Eval(Recon, {cU
j }j∈U ′)

≡ Mask(Recon({kU
j }j∈U ′), τ, 0) ≡ Mask(kU , τ, 0)

where the first equivalence uses the fact that the Recon algorithm is linear.
Similarly,

zU =
∑

i∈U

zi =
∑

i∈U

Mask(ki, τ, xi)

≡ Mask(
∑

i∈U

ki, τ,
∑

i∈U

xi) = Mask(kU , τ, xU )

The server can now recover xU = UnMask(zU , cU ).

LWR-Based Instantiation. Our main instantiation of the masking scheme is
inspired by the simple seed-homomorphic PRG of [11]. The LWR assumption [5]
is associated with two moduli q > p, where p is the modulus of the message
space. A tag τ is an LWR public vector a ∈ Z

n
q , and the masking key k is an

LWR secret s ∈ Z
n
q . A masked input z is simply an LWR sample rounded to p

added with the message x, i.e.,

LWR: τ = a ∈ Z
n
q , k = s ∈ Z

n
q , z = 	〈s,a〉�p + x ∈ Zp .

The linear structure of LWR implies the key homomorphism property. However,
it only holds approximately due to rounding errors. More specifically: i) additive
key-homomorphism holds approximately with bounded error, and ii) linear key-
homomorphism holds with bounded error if the linear function L evaluated has
small coefficients. To see i), consider two masks with keys k1 = s1, k2 = s2,
inputs x1, x2, and a common tag τ = a. We have

z1 + z2 = 	〈s1,a〉�p + x1 + 	〈s2,a〉�p + x2

= 	〈s1 + s2,a〉�p + x1 + x2 + ε ,

where ε is the rounding difference between 	〈s1,a〉�p + 	〈s2,a〉�p and
	〈s1 + s2,a〉�p, which is bounded by 1. With regard to ii), when evaluating a
linear function L over the masks using the above approximate additive homo-
morphism, the error is scaled by the coefficients of L.

The approximate key homomorphism creates a technical issue in the protocol:
when the server evaluates Recon homomorphically, it introduces an additive error
in the aggregation result. To remove the error, our solution is to multiply the
inputs with a scaling factor Δ, set to be larger than the noise.

If the coefficients of Recon are large – e.g., as in Shamir’s secret sharing –
then the error induced by homomorphic evaluation, and hence the scaling factor
Δ becomes large, causing a significant overhead in the protocol. To minimize
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this overhead, we will use a linear secret-sharing scheme whose reconstruction
function has only −1, 0, 1 coefficients – referred to as the flatness property. An
additional benefit of the flatness property is that Recon becomes computationally
cheaper, involving only simple additions and subtractions.

Committee Based Flat Secret Sharing Scheme. As motivated above, we
need a secret sharing scheme with small reconstruction coefficients. One solution
appears to come from the work of [17], which transforms any monotone Boolean
formula for the threshold function into a linear secret-sharing scheme with small
coefficients, satisfying flatness. Unfortunately, however, known constructions of
Boolean formulae for the threshold function with M inputs has a size Ω(M5.3)
[26], which by the transformation of [17] gives a secret sharing consisting of
Ω(M5.3) elements in total. This is prohibitively expensive and recent work [4]
indicates several challenges in improving this.

Our committee-based construction follows the blueprint of [17], but drasti-
cally reduces the total share size from Ω(M5.3) to Θ(κ2) where κ is the security
parameter. Our key observation is that in the setting of secure aggregation, a
much weaker secret sharing scheme (than that of [17]) suffices:

1. Instead of using a monotone Boolean formula for threshold functions, it suf-
fices to consider gap threshold functions. Such a function outputs 1 if more
than ρ fraction of the inputs are 1 and outputs 0 if less than γ < ρ fraction
of the inputs are 1 (and has no guarantees for inputs in between). The values
of ρ and γ correspond to the reconstruction and privacy thresholds in the
context of secret sharing.

2. Instead of using a single formula, we use a distribution F of formulae. Our
secret-sharing scheme has a setup phase where a formula is sampled f ← F .
As such, the security and correctness of secret sharing only need to hold with
overwhelming probability over the random choice of f .
Sampling f ← F directly translates to sampling a committee of share holders
in the secret sharing scheme, corresponding to the committee Q chosen in the
setup phase of our protocol above.

3. In fact, we do not even need formulae that compute exactly the gap threshold
function. Instead, it suffices if for every “promised” input x, a random formula
f ← F computes the correct output with overwhelming probability. That is,

∀x with hamming weight < γM or > ρM,

Pr [f(x) correct |f ← F ] > 1 − negl(κ).

These relaxations allow us to modify the randomized construction of formulae
for threshold function in [26] to obtain a distribution of formulae with sizes
Θ(κ2) satisfying the above. The transformation of [17] then gives a committee
based secret sharing consisting of only Θ(κ2) elements in total, with a Θ(κ2)
size committee.

Server Efficiency. LERNA admits very efficient server computation. Upon
collecting all the masked inputs zi and all the mask shares cU

i , the server simply
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computes a sum
∑

i∈U zi, reconstruction over shares cU
i , and finally unmasks.

Since our secret sharing has 0/1 coefficients, reconstruction is also computing
a sum. LERNA server is 100× faster than that of prior work [7], where the
server needs to perform Θ(M) reconstruction of Shamir’s secret sharing, and
Θ(M(log M +κ)) group exponentiations. See Sect. 5 experimental data, and the
full version for asymptotic comparisons.

Static vs. Adaptive Corruptions. One consequence of the above approach
is that the random choices involved in sampling the formula (i.e., the commit-
tee of share holders) need to be independent of corruptions and dropouts in
an execution of the protocol, which we expect to be chosen non-adaptively (for
dropouts, in fact, we only require an overall set of potential dropouts to be fixed
non-adaptively, but when individual parties drop out can be chosen adaptively).
We stress that this assumption already inherently underlies the optimized aggre-
gation protocol from [7], which relies on choosing a random graph independently
of corruption and dropout patterns.

For the setting where the number of clients is small, e.g. M ≤ 80, we show an
alternative instantiation of LERNA that doesn’t involve sampling a committee
of share holders in the full version. In this variant, LERNA tolerates adaptive
corruption.

2 Preliminaries

In this section, we explain the system and failure models of LERNA, and give
an overview of LERNA’s security requirements. We provide a formal security
definition in the UC framework in the full version.

System Model. LERNA is a framework for secure aggregation involving M
clients and a single server. Different from the systems in [7,10], LERNA has
a one-time setup phase followed by many, T , online phases (also referred to
as aggregation sessions). The setup phase creates correlated secrets s1, . . . , sM

among the M clients, which are re-used in all following online phases. Dur-
ing each online phase, the server computes the aggregation over fresh inputs
x1, . . . ,xM from the same set of clients. The inputs to the clients xi ∈ Z

� are
large integer vectors from a bounded (but potentially exponentially large) range,
and the aggregation results are computed coordinate-wise over the integers.

Communication Model. Similar to prior work, LERNA has a simple communi-
cation pattern. During the online phases, each client communicates only with
the server through private and authenticated channels. During the setup phase,
the clients communicate indirectly with each other through the server, also in a
private and authenticated way. This can be achieved by assuming a PKI setup,
or, to avoid the PKI setup, the clients can run pairwise key-agreement through
the server at the beginning of the setup phase. We need to assume (similarly to
[7,10]) the server behave honestly in the key-agreement round.

The LERNA protocol proceeds in rounds. In each round, each client may send
one message to the server, and may receive a reply message from the server. For
simplicity, we assume synchronized communication channels.
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Failure Model. LERNA is designed to be robust against two types of failures,
corruption and dropout. For the first type of failure, a subset of the parties,
may or may not include the server, collude to try to learn the individual input
of the other clients. We further differentiate static and adaptive corruptions.
In static corruption, the adversary selects a subset of corrupted parties at the
beginning of the protocol execution. In adaptive corruption, the adversary is free
to choose which party to corrupt at any stage of the protocol execution. Our main
protocol in Sect. 4, suitable for running with large number of clients, tolerates
static corruption. The variant described in the full version for running with small
number of clients tolerates adaptive corruption. In the semi-honest setting, the
adversary learns the inputs and the internal states of the corrupted parties,
throughout the setup phase and all online phases. In the malicious setting, the
adversary controls the actions of the corrupted parties entirely.

For the second type of failure, a potentially different subset of clients drop
out from each online phase (and may come back in the future). We model no
clients dropout during the setup phase. This is equivalent to saying only the set
of clients who complete the setup phase is considered during the following online
phases. More precisely, we model the dropout failure by allowing the adversary
to choose a set of potential dropout clients Dt for each online phase t, all at the
beginning of the protocol. The adversary is allowed to adaptively decide whether
and when each client Pi ∈ Dt (from the potential set) actually drops out during
the online phase t.

Security Definition. The security of LERNA has two aspects: correctness and
privacy. They are parameterized by a constant fraction δ, which represents the
fraction of dropout clients tolerated by LERNA.

Correctness guarantees that in the semi-honest setting, the server computes
the correct result in a session, as long as less than δM clients drop out in that
session. In contrast, in the malicious setting, a corrupted client may arbitrarily
“pollute” the aggregation result or cause it to be ⊥, indicating an error.

For privacy, we consider an adversary that statically corrupts at most a γ
fraction of the clients, before the aggregation protocol begins. We tolerate any
fraction 0 ≤ γ < 1 − δ. The adversary may additionally corrupt the server. The
following privacy guarantee applies to both the semi-honest and the malicious
settings.

In the simpler case, where only clients but not the server are corrupted, the
adversary learns only the corrupted clients’ inputs in each aggregation session
and nothing else. In the case where the server is also corrupted, the adversary
learns the corrupted clients’ inputs, as well as a single sum of the honest clients’
inputs in a sufficiently large set U ⊆ [M ], where |U | > (1 − δ)M .

For comparison, the privacy guarantee of [7] is weaker. In the case where
both the server and a subset of the clients are corrupted, an adversary may learn
multiple non-overlapping sums of the honest inputs in each aggregation session.
Their security guarantees that each such sum contains at least Ω(log M) inputs,
which provides a weaker degree of anonymity.
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Formally, we define the security of LERNA in the UC framework [13]. Details
of the UC framework and our formal security definition are deferred to the full
version.

3 Technical Tools

In this section, we construct two technical tools, a key-homomorphic masking
scheme and a flat secret sharing scheme. As outlined in the technical overview
(Sect. 1.1), the masking scheme is used for hiding clients’ input vectors, and the
secret sharing scheme is used for sharing each client’s secret masking key.

3.1 Key-Homomorphic Masking

We first introduce the syntax of a key-homomorphic masking scheme.

– Setup(1λ, �, Bmsg) : takes as inputs the security parameter λ, a message
dimension �, and a lower bound Bmsg on the message modulus. It outputs
public parameters pp, which defines a key space K, a message space Z

�
pm

with
some modulus pm ≥ Bmsg, and a mask space Z

�
q with some modulus q.

In our framework, we assume every client enters the setup phase (Fig. 1) with
common correctly generated public parameters pp. If the Setup algorithm is
deterministic, or public-coin, then this assumption is simply a notational conve-
nience, since each client can compute the common pp on its own, using a random
oracle to derive common public randomness if necessary.

– KeyGen(pp) : outputs a masking key k ∈ K.
– TagGen(pp) : outputs a tag τ .

In our framework, each client Pi derives its secret masking key ki in the setup
phase, and re-uses it during all online phases. In contrast, it derives a fresh tag
τ for each online phase, using common public randomness. We only require the
key-homomorphic property to hold for masks under the same tag τ . While the
tag is public to all clients, the masking keys must remain secret.

– Mask(pp, k, τ,m) : takes as inputs a masking key k ∈ K, a tag τ , and a
message m ∈ Z

�
pm

, and outputs a masked message cm.
– UnMask(pp, cm, c0) : takes as inputs a masked message cm, and an “empty”

mask c0 (of message 0) under the same key and tag. It recovers a message
m∗ or ⊥.

The UnMask algorithm is a bit unusual, as it doesn’t take the masking key k or
the tag τ to recover the message. Instead, it asks the caller to first compute an
empty mask c0 using the key k and tag τ , and then feed c0 to the algorithm.
We define such a syntax because in our framework, the caller of UnMask is the
server. The clients jointly help the server compute the empty mask c0, instead of
revealing their masking keys, so that the keys remain secret during each online
phase.
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– Eval(pp, L, {ci}): takes as inputs a linear function L with d integer coefficients
and d masks {ci}i∈[d]. It homomorphically evaluates L on the masks and
outputs the result cL.

As mentioned earlier, the input masks {ci} to the Eval algorithm should be
masked under a common tag τ . Evaluating L on the masks roughly translates
to evaluating L on both the masking keys, over the key space K, and over the
messages, over the message space Z

�
pm

. We define this property below as key-
homomorphism.

Correctness. Formally, we define the correctness and the key-homomorphism
requirement as follows.

Definition 1 (correctness). For all public parameters pp, tags τ , and keys k
output by Setup, TagGen and KeyGen, and for all messages m ∈ Z

�
pm

, the fol-
lowing holds.

Pr

[

UnMask(pp, cm, c0) = m

∣
∣
∣
∣
∣

cm ← Mask(pp, k, τ,m),
c0 ← Mask(pp, k, τ,0).

]

= 1.

Definition 2 (key-homomorphism). Consider any linear function L, repre-
sented by d integer coefficients. For all public parameters pp, tag τ , and keys
k1, .., k� output by Setup, TagGen, and KeyGen, and all messages m1, ...,md ∈
Z

�
pm

, the following holds.
{
c̃L ← Mask

(
pp, L({ki}), τ, L({mi})

)}

≡ {
cL ← Eval(pp, L, {ci}) | ci ← Mask(pp, ki, τ,mi )

}
,

where L({mi}) is evaluated over Z
�
pm

and L({ki}), over the key space K.

The key-homomorphism definition above requires the evaluated mask cL to have
the same distribution as the “target” mask c̃L. We next introduce a relaxation
to this rather strong property. Roughly, the evaluated mask cL should be dis-
tributed close to the target mask c̃L. In other words, through homomorphic
evaluation we obtain the target mask with some bounded additive noise.

Our framework requires two additional properties from an approximate key-
homomorphic scheme. First, when computing UnMask on a masked input cm and
an empty mask c0, any additive noises in them translate to additive noises in
the recovered message. Second, when computing Eval on noisy masks, the addi-
tive noises translates to an additive noise in the evaluated mask, with bounded
magnitude. We formalize the above requirements as follows.

Definition 3 (ε-approximate key-homomorphism). Consider any linear func-
tion L, with d integer coefficients whose absolute values are bounded by some
BL ∈ N.

– Let c̃L, cL be the evaluated and the “target” masks as defined in Definition 2.
We require

‖c̃L − cL‖∞ ≤ εdBL.
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– Let cm, c0 be the masked input and the empty mask as defined in Definition 1.
For all integer noise vectors e1, e2 ∈ Z

�, we require

UnMask(pp, cm + e1, c0 + e2) = m + e1 + e2 mod pm.

– Let pp, {ci} be the public parameters and the masks as defined in Definition 2.
For all integer noise vectors {ei}, whose values are bounded by some Be ∈ N

we require

‖Eval(pp, L, {ci}) − Eval(pp, L, {ci + ei})‖∞ ≤ BedBL.

Security. For security, we require a mask under a randomly chosen key hides
its message. We further require this holds for a polynomial number of adaptive
sessions, each with a fresh tag sampled with public randomness, reusing the same
key.

Definition 4 (security). Let λ be the security parameter. The masking scheme
is secure if for all input dimension � = �(λ) ≤ poly(λ) and message modulus
lower bound Bmsg = Bmsg(λ) ≤ 2poly(λ), any efficient adversary A has negligible
advantage in distinguishing the experiments ExpA,b

Mask(1
λ) defined as follows:

– The challenger computes pp ← Setup(1λ, �, Bmsg), and samples a masking key
k ← KeyGen(pp). It launches A(1λ), sends pp to A, and repeats the following
steps until A outputs a bit b′.
1. Run τ ← TagGen(pp; r) using fresh randomness r, and send (τ, r) to A.

A replies with a message m ∈ Z
�
pm

.
2. If b = 1, compute c1 ← Mask(pp, k, τ,m). Otherwise, compute c0 ←

Mask(pp, k, τ,0). Send cb to A.

Construction Based on LWR. We construct a 1-approximate key-
homomorphic masking scheme based on the learning with rounding (LWR)
assumption [5]. The construction is a slight modification to the almost seed
homomorphic PRG based on LWR in [11].

Definition 5 (LWR [5]). let λ be the security parameter, n = n(λ), q = q(λ),
p = p(λ) be integers. The LWRn,q,p assumption states that for any m = poly(n)
A ← Z

m×n
q , s ← Z

n
q , u ← Z

m
q , the following indistinguishability holds:

(A, 	A · s�p) ≈c (A, 	u�p),

where 	·�p is the rounding function defined as 	·�p : Zq → Zp : x �→ 	(p/q) · x�.
Construction 1 (key-homomorphic masking by LWR).

– Setup(1λ, �, pm) : deterministically choose a modulus q and dimension n such
that LWRn,q,pm

is assumed to be hard. Output pp = (�, pm, q, n). The key
space is K = Z

n
q , the message space, Z

�
pm

, which is the same as the mask
space.
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– KeyGen(pp) : sample a vector s ← Z
n
q , and output k = s.

– TagGen(pp) : sample a matrix A ← Z
n×�
q , and output τ = A.

– Mask(pp, k, τ,m) : parse the key and tag as k, τ = s, A. Output the masked
message cm = 	A · s�pm

+ m ∈ Z
�
pm

.

– UnMask(pp, cm, c0) : output the message m∗ = cm − c0 ∈ Z
�
pm

.
– Eval(pp, L, {ci}) : parse L as d integer coefficients u1, . . . , ud. Output the

evaluated mask cL =
∑

i∈[d] uici ∈ Z
�
pm

.

The idea of the construction is simple. A masking key is an LWR secret k = s,
and a tag is a random LWR public matrix τ = A. Given a masking key s, a tag
A, and a message m as inputs, the Mask algorithm hides the message m with a
fresh LWR sample 	A · s�pm

. We defer the proof of Lemma 1 to the full version.

Lemma 1. Construction 1 is a 1-approximate key-homomorphic masking
scheme under the LWRn,q,pm

assumption.

Choosing Parameters q, n. It is proved in [5] that under the Learning With
Error (LWE) assumption with dimension n, modulus q, and any noise distribu-
tion bounded by B, the LWR assumption also holds with dimension n and moduli
q, pm such that q ≥ Bpmnω(1). It’s commonly believed that the LWE assumption
holds for sufficiently large B = poly(n), and sub-exponential modulus-to-noise
ratio α = q/B ≤ 2

√
n. Therefore, given a message modulus pm ∈ N, it suffices

to set n = (log pm + Ω(λ))2, and q = Bpmnlog λ.

Extension to Ring LWR. The above scheme can also be instantiated using the
Ring LWR assumption introduced together with LWR in [5]. We implement the
more computationally efficient version with Ring LWR and present experiment
data in Sect. 5.

Construction Based on DCR. Due to limited space, we defer our construction
of an exact key-homomorphic masking scheme under the decisional composite
residuosity (DCR) assumption to the full version.

3.2 Flat Secret Sharing

A threshold secret-sharing scheme with M parties normally has two algorithms
Share,Recon, and is parameterized by privacy and reconstruction thresholds γ, ρ,
where 0 < γ < ρ < 1. Running Share on a secret value creates M shares. Running
Recon on any subset of more than ρM shares recovers the secret. Any subset of
less than γM shares contains no information about the secret.

Secret Sharing in Our Framework. Our framework uses the scheme in an
unusual way. In the setup phase, the clients run Share to create shares of their
masking keys. In the online phase, the server runs Recon not over the key shares,
but homomorphically over empty masks created under the key shares. As long
as Recon is a linear function, the key-homomorphism property (Definition 2)
ensures that running Recon over the masks translates to over the underlying key
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shares. The two thresholds γ, ρ guarantees the masking keys are hidden when
at most γM clients are corrupted, and Recon succeeds when at least ρM clients
are online.

This approach creates a technical challenge when the masking scheme has
only approximate key-homomorphism (Definition 3). Namely, evaluating Recon
homomorphically creates an additive noise, which grows with the magnitude of
the coefficients of Recon. The noise then propagates into the aggregation result.

To help remove the noise, each client input is multiplied with a scaling factor
Δ, set larger than the noise. To accommodate the factor Δ in the clients inputs,
the message modulus of the masking scheme is in turn increased by log Δ bits.
This overhead motivates us to construct a secret-sharing scheme with small
coefficients in Recon, which we call a flat secret sharing scheme.

Overview of Our Scheme. Our starting point is the linear secret sharing
scheme [17] that has 0, 1 coefficients. However, using the scheme has a prohibitive
overhead: the total share size scales polynomially in the population M , namely
Ω(M5.3).

A first attempt at reducing the share size is to run the scheme in a small com-
mittee, sampled during the setup phase. If client corruption and dropout happen
independently to the committee sampling, then the fractions of corruption and
dropout in the committee roughly equal the true fractions in the population.
This is true in our framework, where the set of corrupted clients, and potential
dropout clients are decided statically at the beginning.

That is, we add a Setup algorithm to the scheme, which samples a committee
Q ⊆ [M ] at random. It can be shown that when the fractions 0 < γ < ρ < 1
has a constant gap, a committee of size O(κ) suffices, with a O(2−κ) statistical
error.

Running [17] as a blackbox with a committee of size O(κ) reduces the total
share size from O(M5.3) to O(κ5.3). But we are able to further improve it to
O(κ2), with a O(κ2)-size committee, by re-visiting the analysis of [26], and con-
structing a committee version of [17] in a non-blackbox way. We summarize the
syntax of our committee-based scheme for some secret space M below.

– Setup(1κ,M) takes as inputs the statistical security parameter κ, and the
population size M . It outputs a committee Q of share holders, and public
parameters pp.

– Share(pp, s) outputs shares {sj}j∈Q computed from s ∈ M.
– Recon(pp,W, {sj}j∈W ) takes as inputs a set W indicating which shares are

received, and the set of shares {sj}j∈W . It outputs a recovered secret s∗ or
⊥.

Correctness and Security. Formally, we define the correctness requirements
as follows.

Definition 6 (ρ-reconstruction). Let κ be the statistical security parameter. For
all population size M ∈ N, secret s ∈ M, and subset T ⊆ [M ] with size |T | > ρM
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the following holds.

Pr

⎡

⎢
⎣
Recon(pp,W, {sj}W )

= s

∣
∣
∣
∣
∣
∣
∣

(Q, pp) ← Setup(1κ,M),
W = T ∩ Q,

{sj}Q ← Share(pp, s)

⎤

⎥
⎦ ≥ 1 − negl(κ).

The usual security requires that, for any corruption set C ⊆ [M ] below the
threshold, i.e. |C| ≤ γM , corrupted shares {sj}Q∩C contain no information
about the secret s.

We need a stronger property (which implies the usual one) to prove security of
our framework: given corrupted shares {sj}Q∩C of 0, there is algorithm Ext that
“extents” them to a full set of shares {sj}Q for any secret s. The shares {sj}Q

distribute statistically close to shares of s. This is analogous to the property
that, given a corrupted subset of Shamir’s shares, one can interpolate the rest
of the shares to any secret s. We formalize this requirement as follows.

Definition 7 (γ-simulation-privacy). Let κ be the statistical security parame-
ter. There exists an efficient deterministic algorithm Ext such that for all popu-
lation size M ∈ N, secret s ∈ M, and subset C ⊆ [M ] with size |C| < γM the
following two distributions are statistically close.
They share the same public parameters (Q, pp) ← Setup(1κ,M).

1. {sj}Q is computed normally as {sj}Q ← Share(pp, s).
2. {s̃j}Q = {s′

j}Q∩C ∪ {s̃j}Q∩C is computed by
{s′

j}Q ← Share(pp, 0) and {s̃j}Q∩C = Ext(pp, C, {s′
j}Q∩C , s).

Flatness. As explained in “Secret Sharing in Our Framework”, we require the
Recon algorithm to have small coefficients as a linear function over the input
shares. This minimizes the noise introduced by evaluating Recon homomorphi-
cally over empty masks. A similar situation arises in the security proof of our
framework, where the simulator needs to evaluate Ext (Definition 7) homomor-
phically over noisy masks. We therefore additionally require Ext to have small
coefficients as a linear function over the input shares and the secret. We sum-
marize the above requirements as “flatness”.

Definition 8 (flatness). Let κ be the statistical security parameter. A flat secret
sharing scheme satisfies the following.

– The Recon algorithm, when not outputting ⊥, can be written as a linear func-
tion over the input shares, with integer coefficients bounded by O(1).

– The Ext algorithm can be written as a linear function over the input shares
and the secret, with integer coefficients bounded by O(log κ).

Construction Details. We start by recalling the result of [8] and [17], summa-
rized in the following theorem.



LERNA 319

Theorem 1 (formula to secret sharing [8,17]). For secrets over M = Zq for
any modulus q or M = Z, there exists an efficient algorithm that translates any
monotone Boolean formula f : {0, 1}M → {0, 1}, over variables x1, . . . , xM , of
size d = |f |, to a pair of secret sharing algorithms Sharef ,Reconf satisfy the
following:

– Sharef (s) computes d share units, each corresponding to a literal in f . For
each share holder i ∈ [M ], its share si consists of all units corresponding to
xi. Sharef (s) outputs the shares {si}.
If M = Zq, each share unit is an element in Zq. If M = Z, with secrets
bounded by B, each unit is an integer bounded by B2κ.

– For any subset T ⊆ [M ], let aT ∈ {0, 1}M denote the assignment where ai = 1
iff i ∈ T . For every subset of the shares {sj}T , reconstruction Recon(T, {sj}T )
succeeds iff f(aT ) = 1.
For any subset {sj}C that fails to reconstruct, there exists a simulation algo-
rithm Ext defined analogously to Definition 7.

– The algorithms Sharef ,Reconf satisfy “flatness” per Definition 8.

With Theorem 1, constructing a flat secret sharing scheme for any access struc-
ture reduces to finding a corresponding formula f :

– Setup constructs a formula f as pp, and defines the committee Q as the set
of distinct literals in f .

– Share,Recon simply run Sharef ,Reconf given by Theorem 1.

Below we first describe the result of [26], which shows the existence of a formula
ft, of size O(M5.3), for any t-threshold function. (Note that for any γM < t <
ρM , ft satisfies our requirement.)

Construction 2 (t-threshold monotone Boolean formula [26]).
In [26], ft (over M variables) is implicitly constructed through a formulae dis-
tribution Ft satisfying the following:

∀a ∈ {0, 1}M
, Pr [f(a) = Thresht(a) | f ← Ft] > 1 − 2M , (1)

where Thresht denotes the t-threshold function. Applying the union bound over
all 2M values for a, we have

Pr
[
∀a ∈ {0, 1}M

, f(a) = Thresht(a) | f ← Ft

]
> 0.

Hence, there exists a formula ft in Ft that computes Thresht exactly.
Further, note that for any threshold 0 < t < M , the function Thresht over M

inputs is equivalent to ThreshM ′/2 over M ′ = M +D ≤ 2M inputs, with D ≤ M
dummy variables always set to 1 or 0, respectively for the case of t < M/2 or
t ≥ M/2. For technical reasons, we always choose M ′ to be odd. Therefore, it
remains to construct a formulae distribution FM/2, for any odd M .

The construction is recursive. In the base case, F (0) is defined as

F (0) :=

{
xj for a uniform j $← [M ] w/ prob. p = 3 − √

5
0 w/ prob. (1 − p).



320 H. Li et al.

For i ≥ 1, the formulae distribution F i is defined inductively

F (i) := (F (i−1)
1 ∨ F

(i−1)
2 ) ∧ (F (i−1)

3 ∨ F
(i−1)
4 ),

where F
(i−1)
1 , F

(i−1)
2 , F

(i−1)
3 , F

(i−1)
4 are distributions independent and identical

to F (i−1). It’s shown that after k = O(1) + 2.65 log M recursion steps, the dis-
tribution FM/2 = F (k) satisfies Eq. 1.

Correctness and Efficiency of Construction 2. According to Eq. 1, we examine
the probability that, for any assignment a ∈ {0, 1}M , a sample f (i) ← F (i)

computes the incorrect result.

– When a has less than M/2 ones, f (i)(a) is supposed to output 0, but instead
(incorrectly) outputs 1. Let p

(i)
s denote this probability, i.e., f (i)(a) = 1. By

construction, we have

p(i)s =
(
1 − (1 − p(i−1)

s )2
)2

. (2)

– When a has at least M/2 ones, let p
(i)
c denote the probability that f (i)(a)

(incorrectly) outputs 0. Similarly, we have

p(i)c = 1 − (1 − (
p(i−1)

c

)2)2. (3)

By construction of F (0), and that M is odd, we also have

p(0)s < p(
1
2

− 1
2M

), p(0)c ≤ (1 − p) + p(
1
2

− 1
2M

).

It remains to show that p
(k)
s , p

(k)
c < 2M for k = O(1) + 2.65 log M , which follows

from the technical claims below, which are taken directly from [26].

Claim 1 (phase 1). For the recurrence relations specified by Eq. 2, 3 with any
initial values satisfying p

(0)
s < p/2 − p/(2M), p

(0)
c < 1 − p/2 − p/(2M), it holds

that p
(k1)
s ≤ p/2 − Ω(1), and p

(k1)
c ≤ 1 − p/2 − Ω(1) for k1 = 1.65 log M .

Claim 2 (phase 2). For the recurrence relations specified by Eq. 2, 3 with any
initial values satisfying p

(0)
s < p/2 − Ω(1), and p

(0)
c < 1 − p/2 − Ω(1), it holds

that p
(k2)
s , p

(k2)
c < 2M for k2 = O(1) + log M .

Intuitively, a formula sampled from F (0) fails with probability close to (but less
than) p/2 and 1− p/2 respectively in the two cases. Each recursive step “shifts”
them further away from the starting points towards 0. Claim 1 shows that it
takes k1 = O(log M) steps to start at Θ(1/M)-away and shift to Ω(1)-away
from the starting points. Claim 2 shows that it takes additional k2 = O(log M)
steps to shift exponentially close to 0.
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Since each recursive step multiplies the formula size by 4, after k = k1+k2 =
O(1)+2.65 log M steps, the formulas in F (k) has size 4O(1)+2.65 log M = O(M5.3).

Reducing the Size of Construction 2. Our first observation is instead of the for-
mula ft, we only need a formula fρ,γ that 1) computes 1 if the inputs have
> ρM ones, 2) computes 0 if the inputs have < γM ones, and 3) may otherwise
compute either. We denote this (ρ, γ)-threshold function Threshρ,γ . A similar
trick reduces computing Threshρ,γ over M variables to Thresh1/2+δ,1/2−δ over
M ′ ≤ 2M variables for some constant fraction δ = (ρ − γ)/4.

This observation allows us to calculate the initial failure probability for
f (0) ← F (0) differently from above.

– When a has less than M(1/2 − δ) ones, f (0) fails (i.e., computes 1) with
probability p

(0)
s < p(1/2 − δ) < p/2 − Ω(1).

– When a has more than M(1/2 + δ) ones, f (0) fails with probability p
(0)
c <

(1 − p) + p(1/2 + δ) < 1 − p/2 − Ω(1).

Since the initial values of p
(0)
s , p

(0)
c already satisfies the condition for Claim 2,

we indeed only need k2 = O(1) + log M recursive steps! This observation
already let us reduce the size of the formula from 4O(1)+2.56 log M = O(M5.3)
to 4O(1)+log M = O(M2).

Our second observation is that in the static corruption model, the set of
corrupted and the reconstructing share holders C, Ti at each iteration i is fixed
before the secret sharing Setup algorithm. Therefore, instead of finding an exact
formula fρ,γ that’s correct on all assignments, it suffices to sample f ← Fρ,γ

during Setup that’s correct on the (poly(κ) many) fixed assignments aC and
aTi

.
In particular, we can avoid taking the union bound over 2M values for a, and

only construct a distribution Fρ,γ (equivalently, F1/2+δ,1/2−δ) such that

∀a ∈ {0, 1}M
, Pr [f(a) = Threshρ,γ(a) | f ← Fρ,γ ] > 1 − 2κ.

By Claim 2, we now only need k′
2 = O(1) + log κ recursive steps, which further

reduces the formula size to O(κ2)!
To summarize, we obtain the following lemma.

Lemma 2 (flat secret sharing). For any population size M ∈ N, constant frac-
tions 0 < γ < ρ < 1, integer modulus q and dimension �, there exists a flat
secret-sharing scheme Setup,Share,Recon for secrets space M = Z

�
q or M = Z

�,
with privacy and reconstruction thresholds γ, ρ. Furthermore,

– It has committee size |Q| = O(κ2), where the constant depends on the thresh-
olds γ, ρ.

– The Recon algorithm, when written as a linear function, has O(κ) non-zero
coefficients, which are 1 or −1.



322 H. Li et al.

Concrete Algorithm for Theorem 1. When sharing a secret according to a for-
mula f , Sharef views f as a tree with AND, OR on the intermediate nodes, and
literals xi on the leaf nodes. It assigns a share to each node of this tree: i) Upon
reaching an AND node, split the current share s into two additive shares of s,
and assign them to the children. ii) Upon reaching an OR node, duplicate s and
assign them to the children. iii) Upon reaching a literal xi, assign s to share
holder i. Reconstruction according to f follows a similar recursive algorithm.

4 The LERNA Framework

In this section, we describe our abstract secure aggregation protocol assuming
the existence of the two technical tools introduced in Sect. 3:

– An ε-approximate key-homomorphic masking scheme HM = (HM.Setup,
KeyGen,TagGen,Mask,UnMask,Eval) setup properly with HM.pp, specifying
a message space Z

�
pm

, mask space Z
�
q and key space K.

– A flat secret sharing scheme SS = (SS.Setup,Share,Recon) for sharing the
masking keys in the above key space K.

The protocol additionally assumes a public key encryption scheme and two hash
functions H1,H2 modeled as random oracles. We assume the hash functions
H1,H2 output exactly the numbers of random bits required by the algorithms
SS.Setup, and TagGen.

The protocol runs with M clients {Pi} and a single server S for T iterations.
During each iteration t ∈ [T ], every client Pi obtains a fresh integer vector x ∈ Z

�

from a bounded range [0, Bx]. To avoid wrap-around in the aggregation results,
we setup the masking scheme with a modulus lower bound Bmsg = ΔMBx,
where Δ is a message scaling factor introduced in the protocol.

The protocol is further parameterized by two thresholds γ, δ ∈ (0, 1), specify-
ing the maximum fractions of corrupted clients and dropout clients, respectively,
under the restriction that γ + δ < 1. We set the privacy threshold of the secret
sharing scheme to γ, and the reconstruction threshold to ρ = 1 − δ.

In the online phase, the protocol uses a noise bound Be and a message scaling
factor Δ, which we specify in Sect. 4.4 for concrete instantiations under LWR.

4.1 The Semi-honest Protocol

We start with the simpler, semi-honest variant of the protocol, given in Fig. 1,
and Fig. 2. We describe the additional steps to obtain the malicious variant next,
and defer the more formal (in the UC framework) security proof for the malicious
protocol to the full version.

Setup Phase. During the setup phase, the clients first agree on a small com-
mittee Q, computed using public common randomness r1. They each sample a
secret masking key ki, and secret share it to the committee Q, using the server
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Fig. 1. LERNA protocol for the setup phase.

to distribute those shares. To keep the shares secret from the server, the clients
encrypt each share using the public key of its target share-holder.

Note that the clients only run the setup phase once, followed by T online
phases. In each online phase, each client Pi uses the same masking key ki to
mask its fresh input vector xi. Reusing the masking key may seem like a privacy
concern. To address this, we ensure that in each online phase, the clients sample
a fresh tag τ used for computing the mask. The randomness of the tag τ protects
the input vector xi, as long as the masking key remains secret.

Online Phase.
Step 1: Every client runs the key-homomorphic masking scheme HM.Mask to

obtain a masked input vector zi, and sends it to the server S. It’s important
to note that key-homomorphism only holds for masks computed using the same
tag τ . Therefore, the clients sample the tag using public common randomness
r2.

Step 2: The server receives the masked input vectors {zi} from the online
clients, and replies the online set U to each committee member. Note that non-
committee member clients don’t need to send anything in the rest of the online
phase.

Step 3: Every committee member Pj aggregates locally its shares of masking
keys from the online set U to obtain an aggregated key share kU

j , uses it to
compute an “empty mask” as its reconstruction vector wj , and sends it to the
server S.

Step 4: The server S receives reconstruction vectors {wj} from the online
committee members. It proceeds to locally recover the aggregation result.

First, it homomorphically aggregates the masked input vectors zi to obtain
csum. By key-homomorphism, the vector csum approximately equals running
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Fig. 2. LERNA protocol for the online phase (semi-honest).

HM.Mask on the scaled aggregation result x′
U = Δ · ∑

U xi under the key
kU =

∑
U ki. It remains to obtain an “empty mask” c0 under the same key

kU , with which the server can recover the scaled aggregation result x′
U , and

then the actual aggregation result xU = 	x′
U/Δ� through rounding.

To obtain the empty mask c0 under the key kU , the server homomorphi-
cally runs the algorithm SS.Recon over the reconstruction vectors wj . By key-
homomorphism, the result indeed approximately equals c0. Note that approxi-
mate key-homomorphism causes some errors in the recovered result x′

U . But we
set the scaling factor Δ sufficiently large to make sure such errors are removed
by the rounding step.

Alternative to the PKI Setup. The setup phase of our protocol requires the
clients to encrypt their secret shares under the public keys of the target share-
holders. For simplicity, our protocol assumes a public key infrastructure (PKI),
and that each client enters the setup phase knowing every other client’s public
key.
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An alternative approach is to let the clients run pairwise key agreement at
the beginning of the setup phase, as described in the “Communication Model”
paragraph (Sect. 2).

Committee Members and Non-members. Note that in each online phase,
non-member clients only have one task: send masked input vectors to the server.
The rest of the reconstruction steps are handled by committee member clients.

This separation of responsibility suggests an alternative aggregation model,
where during each phase, only a small, potentially random, subset among the
non-member clients is required to provide inputs. Our protocol can be adapted
straightforwardly to guarantee: as long as not too many committee members
drop out during the session, the server can securely compute the aggregation
result. This scenario can be useful for stochastic federated learning algorithms
that benefit from a large input population, but only learns from a random subset
at each iteration.

4.2 Correctness of LERNA

Below, we illustrate correctness by proving Lemma 3. A formal functionality
definition and security proof in the UC framework is in the full version.

Lemma 3 (correctness). If less than δM clients dropout in an online session t,
then the server outputs the correct aggregation result with overwhelming proba-
bility in the semi-honest setting.

Proof (sketch). Looking at the reconstruction step (online step 4), we first argue
that the aggregated mask csum is distributed close to a mask over the aggregation
result. By ε-approximate key homomorphism (Definition 3), we have

‖csum − Mask(HM.pp,
∑

i∈U

ki, τ,Δ
∑

i∈U

xi)‖∞ ≤ εM.

For the UnMask algorithm to work correctly, we need to argue the recon-
structed mask c0 is distributed close to an empty mask under the key

∑
i∈U ki.

To this end, we first argue that the Recon algorithm succeeds over the shares
from the set W with overwhelming probability. By assumption, online set U com-
puted by the server at the online step 2 has size |U | > (1 − δ)M . Therefore, all
online committee members send reconstruction vectors wj at online step 3. Let
the online set at online step 3 be U ′ ⊆ U . The set of valid reconstruction vectors
W equals W = U ′ ∩ Q. By assumption, we have |U ′| > (1 − δ)M . Therefore, by
(1 − δ)-reconstruction, the algorithm Recon indeed succeeds with overwhelming
probability.

By flatness (Definition 8), the function Recon(SS.pp,W, ·) is linear with O(1)
coefficients. Therefore, by ε-approximate key homomorphism, we have

‖c0 − Mask(HM.pp,
∑

i∈U

Recon(SS.pp,W, {ki
j}j∈W )

︸ ︷︷ ︸
ki

, τ,0)‖∞
≤ O(εBe|Q|),
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where Be is the bound on the noises ej in the vectors wj .
Finally, we conclude that the UnMask algorithm on masks csum and c0 returns

a noisy result x′
U = Δ

∑
U xi+e, where the noise has entries bounded by ‖e‖∞ =

O(ε(M + Be|Q|)). As long as the message scaling factor Δ is sufficiently large
Δ ≥ 2‖e‖∞, the server indeed recovers the correct result through rounding by
Δ. ��

4.3 Achieving Malicious Security

To achieve malicious security, we keep the setup phase (Fig. 1) unchanged, and
only modify the online phase (Fig. 2) starting from step 2. The modifications
follow similar ideas to prior work [7,10]. The modified online phase is given in
Fig. 3, where the changes are highlighted in blue.

Fig. 3. LERNA protocol for the online phase (malicious). (Color figure online)

To see why we need the additional steps in the malicious setting, consider
the following corrupted server. Recall that in the semi-honest online protocol,
the server sends an online set U to online committee members to recover an
aggregation result xU =

∑
U xi. A corrupted server instead sends different online

sets, U �= U ′, to two subsets of online committee members. As long as both
subsets are large enough, the correctness of the semi-honest protocol guarantees
the successful recovery of both results xU and xU ′ by the server. This obviously
violates our security definition, which requires only a single sum of honest inputs
is leaked in each online phase.
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The additional steps 3–4 in Fig. 3 roughly ask each client, including corrupted
ones, to “vote” on an online set U by signing a hash hU . The server collects those
signatures as unforgeable votes and sends them to the committee members. The
threshold in step 5 is set such that at most one online set U∗ can have enough
votes. Therefore, the above attack is prevented.

Preventing Abort Attacks. While setting the threshold for valid signatures
in Step 5 to (1 + γ)M/2 guarantees that at most one online set U∗ has enough
votes, it creates an opportunity for malicious clients to abort the protocol, even
when the server is honest, by not sending enough valid signatures. To avoid this
issue, we need enough honest clients so that their signatures alone are enough for
the threshold. Restricting the corruption and dropout threshold γ, δ such that
(3γ + 2δ) < 1 suffices.

Claim 3. Assuming (3γ + 2δ) < 1, and the server is honest, then every honest
committee member always collects at least (1 + γ)M/2 valid signatures in Step 5.

Proof. By the assumption, there are at least (1 − γ − δ)M honest clients in each
iteration that remain online, and will send a valid signature in Step 3 on the hash
hU received from an honest server. Calculation shows (1−γ−δ)M ≥ (1−γ)M/2
iff 1 ≥ (3γ + 2δ). ��

By the above claim, an honest server is guaranteed to receive non-⊥ recon-
struction messages from all honest online committee members in Step 6. By
ρ-reconstruction (ρ = 1 − δ) of the secret sharing, the server succeeds in com-
puting the empty mask c0.

Finally, the server may still abort if UnMask(HM.pp, csum, c0) fails. However,
in our LWR masking scheme (Construction 1), the UnMask algorithm simply
computes a subtraction modulo pm, which always succeeds.

Overhead of the Malicious Protocol. As highlighted in Fig. 3, the com-
munication and computation overhead of the malicious variant consists of the
server sending valid signatures {σi(U)} in step 4, and each committee member
verifying those signatures in step 5, respectively.

For ease of presentation, the variant shown in Fig. 3 requires every client to
send a signature in step 3. However, it can be shown that at the cost of a O(2−κ)
statistical error in privacy, only committee members need to send signatures.
Note that the number of signatures is at most the committee size |Q| = O(κ2),
which is independent of the number of clients M , or the input dimension �.
Therefore, when M or � is large, sending and checking those signatures incur
only negligible communication and computation overheads over the semi-honest
variant.

4.4 Instantiation Under LWR

Concretely, we instantiate the LERNA protocol with the 1-approximate homo-
morphic masking scheme based on LWR in Construction 1.
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We set the noise bound Be = O(log(κ)M2κ), which is required for secu-
rity. (See the full version for security proofs.) where κ is the statistical security
parameter. We set the message scaling factor Δ = O(M + Be|Q|) as required
by the correctness proof of Lemma 3, where |Q| = O(κ2) is the committee size
of the flat secret sharing scheme, as described in Sect. 3.2. Under these settings,
our protocol sets up the LWR-based masking scheme with message modulus
(which is the same as the mask modulus) pm = ΔMBx, which has bit length
log pm < O(1) + 3 log κ + κ + 2 log M + log Bx.

The LWR-based masking scheme has keyspace K = Z
n
q , where the dimension

n and modulus q is chosen such that LWRn,q,pm
is assumed to be hard. We

therefore instantiate a flat secret-sharing scheme with secret space M = K = Z
n
q .

We present communication and computation efficiency analysis for the LWR
instantiation in the full version.

5 Experimental Evaluation

We benchmark the concrete efficiency of the LERNA framework by implementing
the semi-honest protocol instantiated under the (Ring) LWR assumption (cf.
Sect. 4.4 for a description).

As our baseline, we compare our protocol design with the semi-honest pro-
tocol from [7], adapted naturally to the multi-session setting. In particular, the
baseline server uses the setup phase to randomly sample a communication graph,
and inform each client of its set of neighbors. Baseline clients re-use the same
communication graph throughout the following online phases.

Our benchmarks clearly highlight the lightweight server computation during
each online phase.

5.1 Implementation Details

Our prototypes are implemented in Python. The protocol simulations are run
locally, using the ABIDES simulation framework [12]. Our implementations use
the following libraries for heavy computations:

– SEAL [24] and PySEAL 2 for polynomial arithmetics required by Ring LWR.
– Gmpy23 for large integer arithmetics.
– M2Crypto4 as an interface to AES for implementing a PRG and a random

oracle.
– PyNaCl5 for public key encryption and key-agreement.

Setting Parameters. In the LERNA framework, we need to set two security
parameters, λ = 128, κ = 40. Computationally secure primitives (e.g., encryption

2 https://github.com/Lab41/PySEAL.
3 https://gmpy2.readthedocs.io/.
4 https://m2crypto.readthedocs.io/.
5 https://pynacl.readthedocs.io/.

https://github.com/Lab41/PySEAL
https://gmpy2.readthedocs.io/
https://m2crypto.readthedocs.io/
https://pynacl.readthedocs.io/
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Fig. 4. LERNA computation time vs. number of clients (M), with fixed input dimen-
sion � = 10K.

and the masking scheme) are set to have λ = 128 bits of security, and statistically
secure primitives (e.g., the flat secret sharing scheme) are set to have κ = 40 bits
of security. The concrete committee size equals |Q| = 214 = 16384 for κ = 40.

In our prototype, the message modulus pm for the (Ring) LWR based key-
homomorphic masking scheme is set as described in Sect. 4.4, which ranges from
142 to 145 bits in our benchmark settings. We set the RLWR dimension to be
211, and the modulus to q = pm · 2254 to guarantee at least 128 bits of security,
according to the hardness estimator6 of [1].

In the baseline prototype, we set the field size for Shamir’s secret sharing to
be a 257 bit prime, because the secrets are 256 bit curves used in key-agreement.
To set the neighborhood size k and privacy threshold t of Shamir’s secret sharing,
we follow Theorem 3.10 in [7] (section 3.5). In our settings where the number
of parties ranges from M = 400, . . . , 80K, the neighborhood size ranges from
k = 109, . . . , 126, and the privacy threshold ranges from t = 55, . . . , 63 to achieve
2−κ = 2−40 statistical error.

5.2 Benchmarks

Our benchmarks are run on a desktop machine with 32 Gigabyte of memory
and with a single core CPU speed 3.9 GHz. Our prototype implementations do
not take advantage of multiple cores. For computation time measurements, we
report an average over 10 experiment runs.

Computation Efficiency. We first benchmark the computation time of our
LERNA prototype with increasing numbers of clients M = 20K . . . , 80K. We
run the prototype with � = 10K dimension inputs vector with random entries
from [0, 264], and fix the corruption threshold at γ = 10%. In Fig. 4a, 4b, and 4c,
we respectively plot our client runtime during the setup and the online phases,
and our server runtime during the online phase. Comparing Fig. 4a and 4b, we
observe that the setup phase is much heavier compared to the online phases.

In Fig. 4b, and 4c, we observe that the dropout rate affects the computation
time of both committee member clients and the server. This is because our

6 Running code provided at https://lwe-estimator.readthedocs.io.

https://lwe-estimator.readthedocs.io
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Fig. 5. Computation time comparison between LERNA and [7], with fixed input dimen-
sion � = 10K, and dropout rate γ = 10%. (b) compares the server computation at a
smaller number of clients M = 400, . . . , 3200 due to the high cost of the baseline server.
(c) compares the amortized computation time of a single setup phase plus 20/40/80
online phases. Since the baseline client has negligible computation during setup, its
amortized time equals that shown in (a).

Fig. 6. LERNA computation time vs. input dimension (�), with fixed number of clients
M = 20K. The plot for client setup computation is omitted, as it doesn’t depend on �.

committee member needs to aggregate masking key shares over the dropout set,
which becomes larger both under higher dropout rates and with a larger number
of clients. Our server similarly aggregates masked input vectors over the online
set, which becomes smaller under higher dropout rates.

In the full version, we give more detailed numbers about the running time of
different components of our protocols.

We next benchmark the computation time of our protocol with increasing
input dimensions � = 10K . . . , 50K. We run the prototype with M = 20K
clients, and fix the corruption threshold again at γ = 10%. In Fig. 6a, and
Fig. 6b, we respectively plot our client and server during the online phase. Since
the clients and the server during the setup phase are independent of input dimen-
sions, we omit their plots.

Communication Efficiency. In Table 1 we report the communication sizes
of our client with increasing input dimensions � = 10K . . . , 50K. The server
communication can be deduced as the sum of all clients. Hence we omit its
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table. We run the prototype with M = 20K clients, and input entries from
[0, 264]. We fix the corruption threshold and the dropout rate both at 10%.

Table 1. Client communication sizes.

Phase � = 10K � = 30K � = 50K

Non-member setup 2.00 (GB) 2.00 (GB) 2.00 (GB)

Member setup 4.44 (GB) 4.44 (GB) 4.44 (GB)

Non-member online 0.18 (MB) 0.54 (MB) 0.91 (MB)

Member online 0.37 (MB) 1.09 (MB) 1.82 (MB)

The total offline communication of our clients is indeed heavy, as reported in
Table 1. Each client sends encrypted shares of its masking key to the server. Due
to the large Ring LWR dimension (2048) and modulus (∼400 bits), this phase
requires large communication (2 GB) from each client. Each committee member
additionally receives the encrypted shares from the clients.

Thankfully, the entire offline phase doesn’t need to be synchronized, which
eases the bandwidth requirement. If needed, each client can send a share of its
masking key to a committee member one at a time.

Comparing with the Baseline. To compare with the baseline, we run both
prototypes with 10K dimension inputs vectors with random entries from [0, 264].
We fix the corruption rate and the dropout rate at γ = 10%.

As discussed in the introduction, we assume a statically corrupted set of
clients throughout the repeated T sessions. A larger T , means a stronger assump-
tion on the staticness and the fraction of corruption. On the flip side, since our
protocol enjoys a re-usable setup across T sessions, a larger T gives better effi-
ciency. In comparing with the baseline, we not only compare the computation
time of each online iteration (Fig. 5a, 5b), but also the amortized time over dif-
ferent settings of T (Fig. 5c). The client computation and communication cost of
running our setup phase (, where a fresh committee is formed and secret masking
keys are shared,) are shown in Fig. 4a and Table 1. The server costs of setup for
our server and for the baseline solution are negligible. Hence we omit reporting
them here.

From Fig. 5a, we observe that even our slower committee member client runs
faster than the baseline during each online iteration for M = 20K to M = 80K.
As expected, its running time grows faster with M than the baseline because
our committee member needs to aggregate masking key shares over the dropout
set. If the dropout rate is a non-zero constant, as set in our experiment, then the
committee client’s work grows linearly in M . In comparison, the computation
of the baseline depends linearly in its neighborhood size in the communication
graph, which is O(log M).

In Fig. 5c, we compare the clients’ amortized running time (showing the heavy
member clients for LERNA) of a single setup phase followed by T = 20/40/80
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online iterations. Since the baseline client has negligible computation during
setup, its amortized time equals its online computation time, which doesn’t
change with T . We observe an advantage, even for the member clients, over the
baseline when amortized over more than T = 40 online sessions. For example,
at M = 80K, the total client computation time of 40 LERNA iterations equals
22+0.5 · 40 = 42(s). The total time of 40 baseline iterations is at least 1.2 · 40 =
48(s), according to the plot.

In Fig. 5b we are only able to compare the server’s performance at moder-
ate numbers of clients M = 400 . . . 3200, because the baseline server runs too
long when M reaches 10K. But this is enough to illustrate LERNA’s advantage
(concretely, more than 100×) in server computation times.

Comparing with SASH+ [20]. As mentioned in “Related Work”, the pro-
tocol SASH+ from [20] reduces aggregating �-dimension inputs to aggregating
n-dimensional homomorphic PRG seeds, where n is the LWR dimension. SASH+
then runs [7] for the latter. Asymptotically, SASH+ reduces the computation cost
of [20] from Õ(κ2+κ�) to Õ(κ2+κn+�) for the clients, and from Õ(κM�+κ2M)
to Õ(κMn+κ2M + �M) for the server. We optimistically estimate that SASH+
reduces the computation cost of [7] by a factor of (�/n).

In our benchmarks, � = 10K, and the LWR dimension n = 2048. We estimate
the server and client computational costs of SASH+ to be 5x smaller than [7] (in
reality, the improvement is smaller due to other computation steps that remain
constant). Under this estimation, we observe that the LERNA server (Fig. 5b)
and non-committee member clients (Fig. 4b) still significantly outperforms the
SASH+ server and SASH+ clients. However, the cost of a LERNA committee
member (Fig. 5a) becomes comparable to (when M is relatively small e.g. 20K)
or slower than (when M is larger) a SASH+ client.
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Abstract. Bottleneck complexity is an efficiency measure of secure mul-
tiparty computation (MPC) introduced by Boyle et al. (ICALP 2018) to
achieve load-balancing. Roughly speaking, it is defined as the maximum
communication complexity required by any player within the protocol
execution. Since it was shown to be impossible to achieve sublinear bot-
tleneck complexity in the number of players n for all functions, a prior
work constructed MPC protocols with low bottleneck complexity for spe-
cific functions. However, the previous protocol for symmetric functions
needs to assume a computational primitive of garbled circuits and its
unconditionally secure variant has exponentially large bottleneck com-
plexity in the depth of an arithmetic formula computing the function,
which limits the class of symmetric functions the protocol can compute
with sublinear bottleneck complexity in n. In this work, we make the fol-
lowing contributions to unconditionally secure MPC protocols for sym-
metric functions with sublinear bottleneck complexity in n.

– We propose for the first time unconditionally secure MPC protocols
computing any symmetric function with sublinear bottleneck com-
plexity in n. Technically, our first protocol is inspired by the one-time
truth-table protocol by Ishai et al. (TCC 2013) but our second and
third protocols use a novel technique to express the one-time truth-
table as an array of two or higher dimensions and achieve better
trade-offs.

– We propose an unconditionally secure protocol tailored to the AND
function with lower bottleneck complexity. It avoids pseudorandom
functions used by the previous protocol for the AND function, pre-
serving bottleneck complexity up to a logarithmic factor in n.

– By combining our protocol for the AND function with Bloom fil-
ters, we construct an unconditionally secure protocol for private set
intersection (PSI), which computes the intersection of players’ pri-
vate sets. This is the first PSI protocol with sublinear bottleneck
complexity in n and to the best of our knowledge, there has been no
such protocol even under cryptographic assumptions.
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1 Introduction

Secure multiparty computation (MPC) [58] is a fundamental cryptographic
primitive which enables n players to jointly compute a function f(x1, . . . , xn)
without revealing any additional information on their private inputs xi. Com-
munication complexity, which counts the total number of bits transmitted
between players, is considered as the most fundamental metric to measure the
efficiency of MPC protocols. A number of works have made significant pro-
gresses to minimize communication complexity for various useful functions (e.g.,
[7,13,15,20,21,27,28,30,42]).

However, in practical applications where lightweight devices perform MPC
via peer-to-peer communication, the per-party communication cost is a more
effective measure than the total cost. For example, consider secure computa-
tion on a star interaction pattern, in which a central player interacts with all
the other players and computes an output. Then, while total communication
cost is possibly scalable (i.e., O(n)), the central player must bear communi-
cation proportional to the total number of players. In large-scale MPC, these
costs quickly become prohibitive. To address these concerns, Boyle et al. [11]
introduced a different important efficiency measure, called bottleneck complex-
ity. Roughly speaking, the bottleneck complexity of an MPC protocol is defined
as the maximum communication required by any player during the execution of
the protocol.

To make protocols useful in applications to large-scale secure computation,
we aim at designing MPC protocols with sublinear bottleneck complexity in
the number of players n. On the negative side, Boyle et al. [11] showed that
it is impossible to achieve sublinear bottleneck complexity for all functions —
even without any security considerations. On the positive side, they proposed a
generic transformation from any (possibly insecure) protocol computing a func-
tion f to a secure MPC protocol for f preserving bottleneck complexity (up to
polynomial factors in a security parameter). Their results reduce in some sense
the above goal to constructing protocols with sublinear bottleneck complexity
without any privacy requirements, which is a purely complexity-theoretic ques-
tion. However, a main drawback of their compiler is that it needs to use fully
homomorphic encryption, which can only be instantiated from narrow crypto-
graphic assumptions [25,56]. Recently, Orlandi, Ravi and Scholl [48] constructed
MPC protocols with sublinear bottleneck complexity for specific functions from
weaker assumptions of one-way functions or linearly homomorphic encryption.
It still remains open whether we can construct unconditionally secure MPC pro-
tocols with sublinear bottleneck complexity.

1.1 Our Results

In this paper, we propose for the first time unconditionally secure MPC proto-
cols for symmetric functions with sublinear bottleneck complexity in the number
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of players1. We also propose an MPC protocol with lower bottleneck complex-
ity tailored to the functionality of checking if the sum of inputs is zero. As
an application, we construct an unconditionally secure protocol for private set
intersection (PSI), which computes the intersection of players’ private sets. This
is the first PSI protocol with sublinear bottleneck complexity and to the best
of our knowledge, there has been no such protocol even under cryptographic
assumptions. Following [48], we assume semi-honest adversaries, who do not
deviate from protocols, and the preprocessing model, in which players receive in
advance input-independent correlated randomness from a trusted third party. In
what follows, we discuss our contributions in more detail.

Protocols for General Symmetric Functions. Orlandi et al. [48] con-
structed an MPC protocol for a symmetric function h : {0, 1}n → {0, 1} assum-
ing a garbled circuit [59]. Although their original protocol was computationally
secure, it can be made unconditionally secure by replacing the underlying gar-
bled circuit with an information-theoretic one, which is also known as random-
ized encoding [39]. However, the unconditionally secure variant has exponentially
large bottleneck complexity in the depth of an arithmetic formula computing the
function f : {0, 1, 2, . . . , n} → {0, 1} such that f(

∑
i∈[n] xi) = h(x1, . . . , xn) for

all (x1, . . . , xn) ∈ {0, 1}n. To achieve bottleneck complexity O(n1−ε) for a con-
stant ε > 0, the unconditionally secure protocol needs to assume that the related
function f is represented by an arithmetic formula of depth (1−ε) log n. Note that
such symmetric functions only account for o(1) fraction of all symmetric func-
tions. We propose three kinds of unconditionally secure protocols with sublinear
bottleneck complexity for any symmetric function. There are trade-offs between
online bottleneck complexity, offline bottleneck complexity, i.e., the amount of
correlated randomness per party, and the privacy threshold (see Table 1). The
first protocol has online bottleneck complexity O(log n) and offline bottleneck
complexity O(n). The second is more balanced and its online and offline bot-
tleneck complexities are both O(

√
n). The third protocol has lower bottleneck

complexity O(n1/d log n) for any constant d but is only secure against adversaries
corrupting less than n/(d − 1) players. The numbers of rounds of our protocols
are O(n), which is the same as [48]. We also show that the round complexity
of our protocols can be made O(log n) by increasing the online complexity by
O(log n) times. Technically, our first protocol is inspired by the one-time truth-
table protocol [40] and our second and third protocol use a novel technique to
express the truth-table of f as an array of two or higher dimensions (see Sect. 2
for technical details).

Protocol for Checking Equality to Zero. We propose an unconditionally
secure MPC protocol realizing the functionality of checking if the sum of players’

1 An independent work [41] show an unconditionally secure MPC protocol for sym-
metric functions but our second and third protocols achieve better offline bottleneck
complexity than [41].
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Table 1. Comparison of unconditionally secure MPC protocols for a symmetric func-
tion h with sublinear bottleneck complexity in the number of players n.

Bottleneck complexity

Reference Condition on h Online Offline Corruption

[48] Dh ≤ (1 − ε) log n O(n1−ε) O(n1−ε) t < n

Ours (Theorem 1) Unnecessary O(log n) O(n) t < n

Ours (Theorem 2) Unnecessary O(
√

n) O(
√

n) t < n

Ours (Theorem 3) Unnecessary O(n1/d log n) O(n1/d log n) t < n/(d − 1)

The offline bottleneck complexity means the amount of correlated randomness per
party and t is the maximum number of players corrupted by adversaries. Let ε be a
constant and Dh be the minimum depth of arithmetic formulas computing the unique
function f such that f(

∑
i∈[n] xi) = h(x1, . . . , xn) for all (x1, . . . , xn) ∈ {0, 1}n.

inputs is equal to zero over a finite field F. Since the functionality is symmetric,
we can apply the above protocols for general symmetric functions. Our tailored
protocol achieves lower bottleneck complexity O(max{λ, log |F|}), where λ is a
security parameter. The functionality is a generalization of the AND function
if we choose a field whose characteristic is larger than n. As a comparison,
the AND protocol in [48] is based on pseudorandom functions and hence only
computationally secure. Our protocol avoids their use of pseudorandom functions
while preserving bottleneck complexity up to a logarithmic factor in n.

Application to Private Set Intersection. By combining our protocol for
checking equality to zero with Bloom filters [9,10], we obtain an unconditionally
secure PSI protocol, that is, an MPC protocol for computing X1 ∩ · · · ∩ Xn

from private sets X1, . . . , Xn ⊆ U each of size at most s. The offline bottleneck
complexity is Oλ(s2 log n) and the online bottleneck complexity is Oλ(s2 log n +
s log |U |), where we omit a polynomial factor in λ. Note that the bottleneck
complexity is sublinear in n. To the best of our knowledge, there has been no
such PSI protocol even under cryptographic assumptions (see Sect. 1.2 for a more
detailed comparison). The round complexity of our protocol is O(n). It can be
decreased to O(log n) by increasing the online complexity by O(log n) times.

1.2 Related Work

General MPC. Since the introduction of MPC [58], a rich line of works studied
communication complexity in various settings and showed feasibility results and
optimizations, e.g., [4,7,8,13,15,17,19–21,27–30,34–36,42,51]. However, proto-
cols in all of the above works require full interaction among players, that is, each
player may send messages to all the other players in each round of interaction.
This feature necessarily results in high bottleneck complexity Ω(n).
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MPC with Restricted Interaction Patterns. Halevi, Lindell and Pinkas
[32] initiated the study of MPC which restricts interaction among players. Halevi
et al. [31] formalized the notion in the more general setting by representing
an interaction pattern as a directed acyclic graph. MPC protocols on a star-
based interaction were proposed for general tasks and for specific tasks including
symmetric functions [5,23,38]. As we mentioned above, protocols on a star-
based interaction require a central player to bear communication proportional
to n, which results in Ω(n) bottleneck complexity. Halevi et al. [31] also studied
a chain-based interaction, in which players interact over a simple directed path
traversing all players. Protocols on a chain-based interaction possibly achieve low
bottleneck complexity since each player communicates with at most two players.
However, since the last player on the chain is allowed to evaluate the function
on every possible input of his choice, the constructions in [31] cannot achieve the
standard security of MPC, which requires that corrupted players learn nothing
but the output. The weaker security notion of MPC with restricted interaction
is formalized as residual security [31,32].

Private Set Intersection. Private set intersection (PSI) has a wide variety
of real-world applications as pointed out in [44]. Although many PSI protocols
were constructed unconditionally or based on cryptographic assumptions, to the
best of our knowledge, there has been no PSI protocol that achieves sublinear
bottleneck complexity in n. Indeed, the protocols in [14,26,37,43–45,47,49,50,
52,53] require full interaction and those in [1,2,6,12,24,33,46,57] assume a star
interaction pattern. Thus the bottleneck complexity of these protocols must be
at least linear in n. An exception is the protocol in [18], which utilizes a “round
table” structure where players are supposed to be nodes in a ring network and
each player only communicates with the consecutive players around the table.
The bottleneck complexity is thus possibly independent of n. However, their
protocol outputs an incorrect intersection with constant probability. Essentially,
their protocol securely finds elements x ∈ Xn on which a polynomial p(T ) :=
r · ∑

i∈[n] fi(T ) vanishes, where r is a random element unknown to any player
and each fi(T ) is a polynomial which vanishes exactly when evaluated on the
elements of the i-th player’s input set Xi.2 It is true that p(x) = 0 for all x ∈ X1∩
· · ·∩Xn but the set of all the roots of p(T ) may include elements outside X1∩· · ·∩
Xn since

∑
i∈[n] fi(x) = 0 even if x is not a common root of the fi’s. The authors

of [18] do not show how to make the probability of this event negligible. This is
why we do not consider their protocol for our comparison. Finally, we note that
the previous state-of-the-art protocols have better dependency on the maximum
size s of players’ input sets than ours. Indeed, the best-known communication
complexity (e.g., [1]) is linear in s while ours is quadratic in s.

2 We here assume that there is an injective map from the universe U containing all
the Xi’s to some finite field.
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2 Technical Overview

In this section, we provide an overview of our techniques. We give more detailed
descriptions and security proofs in the following sections. We call MPC protocols
with sublinear bottleneck complexity in the number of players BC-efficient.

2.1 BC-Efficient Protocols for General Symmetric Functions

First Protocol. Let h : {0, 1}n → {0, 1} be a symmetric function. Since the
value of h depends only on the sum

∑
i∈[n] xi, there is the unique function

f : {0, 1, . . . , n} → {0, 1} such that h(x1, . . . , xn) = f(
∑

i∈[n] xi). Our starting
point is the protocol in [48]: In the setup, players receive an additive shar-
ing (ri)i∈[n] of a random secret r, and a garbled circuit of a circuit computing
g(y) := f(y − r) from y, where r is hard-coded. In the online phase, each player
broadcasts yi = xi + ri, computes y =

∑
i∈[n] yi, and evaluates the garbled

circuit on y in a threshold manner. Due to the mask r, the value y is random
and independent of

∑
i∈[n] xi, and the security of the garbled circuit ensures

that the evaluation process reveals nothing but the output g(y) = h(x1, . . . , xn).
However, to achieve unconditional security, it is necessary to replace the garbled
circuit with an information-theoretic one, which results in exponentially large
bottleneck complexity in the depth of an arithmetic formula computing g.

Instead, our first protocol uses the idea of one-time truth-tables (OTTT) [40].
Roughly speaking, in an OTTT protocol, players receive in the setup an additive
sharing of the truth-table of a (not necessarily symmetric) function h permuted
with a random shift r = (r1, . . . , rn). In the online phase, each player broadcasts
yi = xi +ri and sets y = (y1, . . . , yn). Players recover the y-th component of the
permuted truth-table, which is equal to h(y − r) = h(x1, . . . , xn). We adapt the
OTTT protocol to the setting of h being symmetric. In this case, it is sufficient
to prepare an additive sharing of a shifted version of the truth-table of the
related function f : {0, 1, . . . , n} → {0, 1}. By receiving an additive sharing of
the random shift r ∈ {0, 1, . . . , n} in the setup, players can open y =

∑
i∈[n] xi+r

and the y-th component of the table, which is f(y − r) = f(
∑

i∈[n] xi).
Now, remaining problems are how to let players open secrets and broadcast

messages in a BC-efficient way. The protocol in [48] used a round-table structure
and let each player add his share to the message from the previous player and
send the result to the next player around the table. However, the round complex-
ity of this protocol is O(n). We propose a recursive protocol that opens secrets
with O(log n) rounds at the cost of increasing the online bottleneck complexity
by O(log n) times. Assume that players are partitioned into n/2 pairs and call
the members of each pair as the right and left players of the pair. For every
pair, the right player sends his share to the left player, who then adds it to his
own share. All of the left players then execute the protocol recursively on n/2
inputs, each of which is the sum of shares of each pair. After O(log n) iterations,
the final call of the protocol outputs the aggregation of all shares. In the worst
case, a player who is chosen as the left player of a pair in every iteration needs
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to communicate O(log n) elements and hence the online bottleneck complexity
increases by O(log n) times. In [48], the broadcast functionality was also realized
by a similar round-table structure, in which each player simply relays a message
from the previous to the next one. We reduce it to O(log n) but now with no
additional cost for online complexity. Our solution is simple: Represent the set
of players by a binary tree whose height is O(log n) and root is the player who
broadcasts a message. We let each player relay the message from his parent to
his children in the tree.

Second Protocol. Although the first protocol has polylogarithmic online bot-
tleneck complexity in the number of players n, a drawback is that the offline
bottleneck complexity is linear in n. We show a novel technique to extend the
above OTTT-based approach and obtain a protocol that balances offline and
online bottleneck complexities. The core idea of the first protocol is that players
securely obtain the component of the truth table T = [f(0), f(1), . . . , f(n)] at
position s =

∑
i∈[n] xi. This can also be interpreted as securely computing the

inner product 〈T, es〉, where es is the unit vector whose entry is 1 at position s
and 0 otherwise (we identify the set indexing entries with {0, 1, . . . , n}).

The key idea of our second protocol is to represent vectors T and es as
arrays of two dimension. Assume that n+1 is the product of two distinct primes
p, q of almost equal size O(

√
n). We then have a one-to-one correspondence φ

between Zn+1 := {0, 1, . . . , n} and Zp ×Zq from the Chinese remainder theorem.
The truth-table T then corresponds to a matrix M ∈ {0, 1}p×q whose (k1, k2)-
th entry is f(k), where (k1, k2) = φ(k) (we identify the set indexing rows and
columns with Zp and Zq, respectively). Furthermore, the equation 〈T, es〉 = f(s)
is rewritten as

〈es1 ,M · es2〉 = f(s), where (s1, s2) = φ(s). (1)

Importantly, since M is public, the computation of M · es2 can be locally done
and hence the computation players need to interactively perform is only the
inner product of vectors of dimension O(

√
n), instead of O(n).

Specifically, we cannot compute the inner product (1) for (s1, s2) = φ(s)
directly since we should not reveal s and can only open y = s − r with a ran-
dom mask r. To unmask s from y, we give players vectors eu1 ∈ {0, 1}p and
eu2 ∈ {0, 1}q as correlated randomness, where (u1, u2) = φ(r). Now, as in our
first protocol, players open y =

∑
i∈[n] xi − r, express it as φ(y) = (z1, z2),

and permutes eu1 and eu2 with shifts z1 and z2, respectively. They obtain
eu1+z1 = es1 and eu2+z2 = es2 , from which f(s) = h(x1, . . . , xn) can be com-
puted via Eq. (1). However, distributing (eu1 , eu2) itself reveals r. We instead
give players additive shares for eu1 and eu2 as correlated randomness. Since per-
muting vectors with a public shift and multiplying vectors by a constant matrix
are linear operations, players can obtain additive shares for es1 and M · es2 .

A remaining problem is how to compute the inner product of es1 and M ·es2

in a secret-shared form. Our key observation is that the multiplication protocol
based on Beaver triples [3] is BC-efficient. Indeed, assume that players have
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additive shares of (a, b, c), where a, b are random secrets and c = ab. They can
compute an additive sharing of xy from those for x and y as follows: (1) players
open u := x − a and v := y − b; (2) they compute �xy� = uv + v�a� + u�b� + �c�,
where �w� means an additive sharing for w. Since the functionality of opening
secrets can be realized in a BC-efficient way, this multiplication protocol is also
BC-efficient. Therefore, if we additionally distribute O(

√
n) Beaver triples in the

setup, we can securely compute 〈es1 ,M · es2〉 = f(s) in a secret-shared form.
Although we assume for simplicity that n + 1 is the product of two primes of
almost equal size, it is straightforward to extend it the general case since we
can choose primes such that

√
n < p < 2

√
n < q < 4

√
n thanks to Bertrand’s

postulate [55].

Third Protocol. In our second protocol, we express the truth-table T of the
function f by a two-dimensional array. We further extend the technique and
use an array of higher dimension d ≥ 2. For simplicity, assume that n + 1 is
the product of d distinct primes p1, p2, . . . , pd of almost equal size O(n1/d). The
general case can be dealt with similarly. From the Chinese remainder theorem,
we have a one-to-one correspondence φ from {0, 1, . . . , n} to Zp1 ×Zp2 ×· · ·×Zpd

.
We can then equivalently express the truth-table T of f by a p1-by-q matrix M
over any field F, where q = p2 · · · pd. Indeed, fixing a one-to-one correspondence
between k ∈ Zq and (s2, . . . , sd) ∈ Zp2 × · · · × Zpd

, we embed every value f(s)
into the (s1, k)-th entry of M for (s1, s2, . . . , sd) = φ(s). In other words, we can
choose a matrix M such that the equation 〈T, es〉 = f(s) is rewritten as

〈es1 ,M · (es2 ⊗ · · · ⊗ esd
)〉 = f(s), (2)

where (s1, s2, . . . , sd) = φ(s), esj
∈ F

pj is the unit vector whose entry is 1 at
position sj , and a ⊗ b denotes the Kronecker product of a and b. The problem
is now reduced to securely computing the inner product (2). Again, we should
not compute (2) for the sum s =

∑
i∈[n] xi itself since we can only open a

masked value y = s − r. To remove the mask r, we try to distribute vectors
eu1 , eu2 , . . . , eud

for (u1, u2, . . . , ud) = φ(r). Since this trivially reveals r, we give
players shares for them. A major difference from the second protocol is that we
use the Shamir secret sharing scheme over F with a threshold t < n/(d − 1) [54]
instead of the additive one. By opening φ(y) = (z1, z2, . . . , zd) and permuting
each share vector with a shift zj , players can compute a Shamir sharing of
es1 , es2 , . . . , esd

without recovering s. Importantly, the homomorphic property
of the Shamir scheme enables players to locally compute a Shamir sharing of
es2 ⊗ · · · ⊗ esd

with a threshold (d − 1)t since the degree of a function to be
evaluated is at most d − 1. Furthermore, since (d − 1)t < n, the shares can be
locally converted to an additive sharing of es2 ⊗ · · · ⊗ esd

and to an additive
sharing of M · (es2 ⊗ · · · ⊗ esd

). Finally, using p1 = O(n1/d) Beaver triples,
players interactively computes the inner product 〈e1,M · (es2 ⊗ · · · ⊗ esd

)〉 in
a secret-shared form in a BC-efficient way. For any constant d, the offline and
online bottleneck complexities are both O(n1/d) field elements if we open secrets
in a round-table structure, which requires O(n) rounds. Since the Shamir scheme
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needs to assume |F| > n, they are O(n1/d log n) in bits. We can reduce the round
complexity from O(n) to O(log n) if the recursive protocol is used to open secrets,
which increases the online bottleneck complexity by O(log n) times.

2.2 BC-Efficient Protocol for Checking Equality to Zero

We propose an unconditionally secure BC-efficient protocol for checking if the
sum of players’ inputs is zero over a finite field F. Since the functionality is sym-
metric, we can apply our protocols for general symmetric functions. Our tailored
protocol shown below achieves lower bottleneck complexity O(max{λ, log |F|}),
where λ is a security parameter.

First, we show a special case of our protocol, which computes the OR function
of players’ inputs. Our starting point is the previous protocol for the OR function
in [48]3. In the protocol, players receive an additive sharing (ri)i∈[n] of a random
secret r in the setup. The i-th player sets yi ← ri if he has xi = 0, and otherwise
he chooses yi uniformly at random. Players then open y =

∑
i∈[n] yi, which is

equal to r if and (essentially) only if OR(x1, . . . , xn) = 0. Note that r should not
be revealed since otherwise an adversary can learn the OR of the honest players’
inputs by subtracting the inputs and correlated randomness of the corrupted
players. It is therefore necessary to check the equality y = r without revealing
r. In [48], this is done by using a pseudorandom function (PRF): Players apply
the PRF in a nested manner starting from y by using their private keys, and
check the final value is equal to the value computed in the same way except
that it starts from r. To obtain an unconditionally secure protocol, we propose
a different method to check the equality y = r. Our key observation is that for
two random secrets a and b, the equation ay + b = ar + b is equivalent to y = r
except with a small probability that a = 0, and the view (ay + b, ar + b) reveals
nothing but whether the equality y = r holds in the information-theoretic sense.
In our protocol, players receive additive shares (ai)i∈[n] and (bi)i∈[n] for a and b,
and r′ := ar + b in the setup. In the online phase, after opening y, each player
computes y′

i = aiy + bi and obtains y′ =
∑

i∈[n] y
′
i = ay + b. Players then check

y′ = r′ and if so, output 0. The probability of failure can be made negligible in
λ if we choose r, a, b and shares for them from sufficiently large sets.

Finally, it is straightforward to extend the above protocol to a protocol for
checking whether

∑
i∈[n] xi = 0 holds. Let every player compute yi = xi + ri

and open y =
∑

i∈[n] xi + r. Using the above technique, players can check the
equality y = r, i.e.,

∑
i∈[n] xi = 0, without learning any additional information.

2.3 BC-Efficient PSI Protocol

We combine our protocol for checking equality to zero with Bloom filters [9]
and construct an unconditionally secure PSI protocol with sublinear bottleneck
complexity in n. First, we show a simple protocol whose bottleneck complexity
3 The original protocol in [48] computes the AND function. The functionalities are

equivalent since OR(x1, . . . , xn) = 1 − AND(1 − x1, . . . , 1 − xn).
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is sublinear in n but linear in the cardinality of the universe U = {1, 2, . . . , N}
containing all the input sets. In the protocol, each player encodes his input set
Xi ⊆ U as the characteristic vector Bi ∈ {0, 1}N of its complement, i.e., the
vector whose entry at position j is 1 if and only if j /∈ Xi. They compute an
additive sharing of the sum V =

∑
i∈[n] Bi over a finite field. (We suppose that

the characteristic of the field is so large that no wrap-around occurs.) This can
be done by giving players an additive sharing (ui)i∈[n] of the N -dimensional
zero vector in the setup and letting them compute Bi + ui. Observe that x ∈
X1 ∩ · · · ∩Xn if and only if the entry V[x] at position x is 0. For each element x
of the input set of a designated player, players compute the inner product of V
and ex in a secret-shared form using N Beaver triples. While the inner products
themselves reveal additional information on elements outside X1 ∩ · · · ∩ Xn,
players use our BC-efficient protocol for checking equality to zero and learn
whether 〈V, ex〉 = 0 and nothing else. Finally, X1 ∩· · ·∩Xn is securely obtained
if the designated player broadcasts the x’s for which 〈V, ex〉 = 0 holds.

Since U has typically large size, we aim to achieve better dependency on
|U | by making use of Bloom filters, which provide compact encodings of sets.
A Bloom filter encodes a set X of elements as an m-bit vector with respect
to λ randomly selected hash functions H1, . . . , Hλ. In a Bloom filter for X, all
entries are initialized to 0. To insert an element x ∈ X to the Bloom filter,
the entries at positions H1(x), . . . , Hλ(x) are all set to 1. We can test whether
y ∈ X by checking if the entries at positions H1(y), . . . , Hλ(y) are all 1. There
is a possibility of false positives but its probability can be made negligible in
λ if we choose m = Θ(sλ), where s is the maximum size of input sets [10].
Although our PSI protocol bears some similarities with the previous protocols
based on Bloom filters [1,46], their protocols are not BC-efficient and assume
a computational primitive of homomorphic threshold public-key encryption. In
our protocol, each player computes a Bloom filter BF(Xi) of his input set Xi

and inverts it, i.e., Bi := 1m − BF(Xi), where 1m is the m-dimensional all-
ones vector. As above, players compute an additive sharing of V =

∑
i∈[n] Bi

using additive sharings of zeros. For any x ∈ X1 ∩ · · · ∩ Xn, the entries of Bi

at positions H1(x), . . . , Hλ(x) are all zero and hence so are the corresponding
entries of V. The converse is not always true but with overwhelming probability,
for x /∈ X1 ∩ · · · ∩ Xn, at least one entry of V at positions H1(x), . . . , Hλ(x) is
non-zero due to the property of Bloom filters. Based on that observation, for each
element x of the input set of a designated player, we let players compute the inner
product of V and a Bloom filter BF({x}) of the singleton {x} in a secret-shared
form. The rest is similar to the above: Players check whether 〈V,BF({x})〉 = 0
based on our protocol for checking equality to zero, and the designated player
broadcasts the x’s for which the equality holds. If we implement the functionality
of opening secrets based on a round-table structure, the bottleneck complexity is
O(sm) = Oλ(s2) field elements plus O(s log |U |) bits since we have to compute
s inner products of m-dimensional vectors and m = Θ(sλ). Since no wrap-
around occurs if the characteristic is larger than nλ, the bottleneck complexity
is Oλ(s2 log n + s log |U |) in bits, omitting a polynomial factor in λ. We can
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also construct a PSI protocol with O(log n) rounds if we increase the online
bottleneck complexity by O(log n) times.

3 Preliminaries

Notations. For m ∈ N, define [m] = {1, . . . , m} and [0..m] = [m] ∪ {0}. Define
Zm as the ring of integers modulo m. We identify Zm (as a set) with {z ∈ Z :
0 ≤ z ≤ m − 1}. We denote the set of all subsets of X by 2X . For a subset X
of a set Y , we define Y \ X = {y ∈ Y : y /∈ X} and simply denote it by X if Y
is clear from the context. We write u ←$ Y if u is chosen uniformly at random
from a set Y . We call a function f : N � λ �→ f(λ) ∈ R negligible and denote
it by negl(λ) if for any c > 0, there exists λ0 ∈ N such that 0 ≤ f(λ) < λ−c

for any λ > λ0. We call f polynomial and denote it by poly(λ) if there exists
c > 0 and λ0 ∈ N such that 0 ≤ f(λ) ≤ λc for any λ > λ0. For two random
variables with range U , we define the statistical distance SD(X,Y ) between X
and Y as SD(X,Y ) = (1/2)

∑
u∈U |Pr[X = u] − Pr[Y = u]|. For two sequences

X = (Xλ)λ∈N, Y = (Yλ)λ∈N of random variables, we write X ≈ Y if a function
f : λ �→ SD(Xλ, Yλ) is negligible in λ. By default, the i-th element of a vector
u is denoted by ui or u[i]. For a vector s = (si)i∈Zm

∈ Xm and r ∈ Zm,
we define Shiftr(s) as the vector obtained by shifting elements by r. Formally,
Shiftr(s) = (ti)i∈Zm

is defined by ti = s(i−r) mod m for all i ∈ Zm. Let 0m be
the zero vector of dimension m and 1m be the all-ones vector of dimension
m. We simply write 0 or 1 if the dimension is clear from the context. Let Im

denote the m-by-m identity matrix and ei denote the i-th unit vector. For two
vectors u,v over a ring, we define the standard inner product of u and v as
〈u,v〉 =

∑
i u[i]v[i]. For a tuple of m polynomials ϕ = (ϕj)j∈[m] over F and

α ∈ F, we write ϕ(α) = (ϕj(α))j∈[m] ∈ F
m. Let g be a deterministic function

on Dn, where D is a set. We denote by Fg an n-input/n-output functionality
that on input x ∈ Dn, outputs Fg(x) = (g(x), . . . , g(x)). We call a function
h : {0, 1}n → {0, 1} symmetric if h(xσ(1), . . . , xσ(n)) = h(x1, . . . , xn) for input
(x1, . . . , xn) ∈ {0, 1}n and any permutation σ on [n]. The value of a symmetric
function h is determined only by the Hamming weight w of the input, i.e.,
w := |{i ∈ [n] : xi = 1}| =

∑
i∈[n] xi. Thus, there is the unique function

f : [0..n] → {0, 1} such that f(
∑

i∈[n] xi) = h(x1, . . . , xn) for all (x1, . . . , xn) ∈
{0, 1}n.

3.1 Secure Multiparty Computation

Let n be a polynomial in a security parameter λ. We denote the set of n players
by {P1, . . . ,Pn}, where Pi is the i-th player. Assume that each player Pi has
a private input xi from a finite set D. Let g be a deterministic function on
Dn. Consider the functionality Fg(x) = (g(x), . . . , g(x)) for x = (x1, . . . , xn).
Let Π be a protocol between n players. We assume the preprocessing model.
That is, a protocol includes a joint distribution D over the Cartesian product
R1 × · · · × Rn of n sets, and each player Pi receives ri ∈ Ri before he decides
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his input, where (r1, . . . , rn) is sampled from R1 × · · · × Rn according to D. We
assume computationally unbounded adversaries who passively corrupt up to t
players. (We do not consider active adversaries whose corrupted players deviate
from protocols arbitrarily.) Let ViewΠ,i(x) denote the view of Pi at the end of
the protocol execution on input x, and let OutputΠ,i(x) be the output of Pi. For
a security parameter λ, we say that Π is a t-secure MPC protocol for Fg if

Correctness. For any input x, Pr
[∃i ∈ [n] : OutputΠ,i(x) �= g(x)

]
= negl(λ);

Privacy. For any set T ⊆ [n] of size at most t and any pair of inputs x = (xi)i∈[n],
w = (wi)i∈[n] such that (xi)i∈T = (wi)i∈T and g(x) = g(w), it holds that
{(ViewΠ,i(x))i∈T }λ∈N ≈ {(ViewΠ,i(w))i∈T }λ∈N.

We simply say that Π is fully secure if it is (n − 1)-secure.
We denote by Commi(Π) the total number of bits sent or received by the

i-th player Pi during the execution of a protocol Π with worst-case inputs. We
denote by Randi(Π) the size of correlated randomness for Pi, i.e., the total
number of bits received by Pi in the setup of Π. We define the online (resp.
offline) bottleneck complexity of Π as BCon(Π) = maxi∈[n]{Commi(Π)} (resp.
BCoff(Π) = maxi∈[n]{Randi(Π)}). We say that Π is BC-efficient if BCon(Π) is
o(n). We denote by Round(Π) the round complexity of Π, i.e., the number of
sequential rounds of interaction.

We defer the simulation-based definition of secure MPC for n-input/n-output
randomized functionalities to the full version [22]. We also argue in the full
version [22] that a set of protocols in the paper can be composed concurrently.

3.2 Basic Algorithms

Let G be an abelian group (e.g., a finite field or a ring of integers modulo m).
Define AdditiveG(s) as an algorithm to generate additive shares over G for a
secret s ∈ G. Formally, on input s ∈ G, AdditiveG(s) chooses (s1, . . . , sn) ∈ G

n

uniformly at random conditioned on s =
∑

i∈[n] si, and outputs it. For a vector
s ∈ G

m, we define AdditiveG(s) as AdditiveG being applied to s in an element-wise
way. We simply write Additive instead of AdditiveG if G is clear from the context.

Let F be a finite field. Define MakeBeaverF() as an algorithm to gener-
ate a Beaver triple [3]. Formally, MakeBeaverF() takes no input and does the
following: (1) Let a, b←$F and c = ab; (2) Let (ai)i∈[n] ← AdditiveF(a),
(bi)i∈[n] ← AdditiveF(b) and (ci)i∈[n] ← AdditiveF(c); (3) Output (ai, bi, ci)i∈[n].

Suppose that |F| ≥ n + 1 and let α1, . . . , αn be pairwise distinct non-zero
elements of F. Define ShamirF,t(s) as an algorithm to generate shares of the
(t, n)-Shamir secret sharing scheme for a secret s ∈ F. Formally, on input s ∈ F,
ShamirF,t(s) chooses a random polynomial ϕ over F of degree at most t such that
ϕ(0) = s, and then outputs (ϕ(α1), . . . , ϕ(αn)). For a vector s ∈ F

m, we define
ShamirF,t(s) as ShamirF,t being applied to s in an element-wise way.

We can convert consistent shares of the Shamir scheme into additive shares
for the same secret. Indeed, there exist constants �1, . . . , �n, which we call
Lagrange coefficients associated with the αi’s, such that �1 · ϕ(α1) + · · · + �n ·
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ϕ(αn) = ϕ(0) for any polynomial ϕ of degree at most n−1. It immediately implies
that

∑
i∈[n] �ivi = s for (vi)i∈[n] ← ShamirF,t(s), which means that (�ivi)i∈[n] is

a tuple of additive shares for s.
Finally, we recall a simple mathematical fact that also follows from the invert-

ibility of Vandermonde matrices: Let s ∈ F and T ⊆ [n] be any set of size at
most t. Then, there is a polynomial ϕ of degree at most t such that ϕ(0) = s
and ϕ(αi) = 0 for all i ∈ T .

3.3 Bloom Filters

Bloom filters [9] are probabilistic data structures that provide compact encodings
of sets. Formally, let U be a set and H be a set of k independent uniform hash
functions H = {H1, . . . , Hk} such that each Hi maps elements in U to numbers
in [m]. To add an element x ∈ U , an algorithm Add takes an m-bit string
BF = (v(h))h∈[m] and an element x ∈ U as input, and sets v(h) ← 1 for all
h ∈ {H1(x), . . . , Hk(x)}. Let BF(∅) denote the string whose bits are all zero. For
X ∈ 2U , let BF(X) denote a string obtained by adding the elements of X. That
is, if X = {x1, . . . , xs}, first construct BF1, . . . ,BFs as BFj = Add(BFj−1, xj)
for all j ∈ [s], where BF0 = BF(∅), and then define BF(X) = BFs. Note
that the definition of BF(X) is independent of the order of the elements of X.
To query BF(X) for an element y ∈ U (i.e., to test whether y ∈ X), a query
algorithm Check takes an m-bit string BF = (v(h))h∈[m] and an element y ∈ U as
input, and checks if v(h) = 1 for all h ∈ {H1(y), . . . , Hk(y)}. If so, the algorithm
outputs 1 (“yes”) and otherwise it outputs 0 (“no”).

It is straightforward to see that if y is indeed in X, Check correctly outputs
“yes”. On the other hand, the converse is not true. Suppose that y /∈ X. If
the bits at positions H1(y), . . . , Hk(y) have by chance been set to 1 during the
insertion of the elements of X, the algorithm outputs “yes” incorrectly, resulting
in a false positive. We require a Bloom filter to satisfy that the probability of
false positives is negligible. Formally, we say that BF = (Add,Check) is a Bloom
filter for U with parameters m, k and s if for any X ∈ 2U with |X| = s and any
y ∈ U \ X, the probability that Check(BF(X), y) = 1 is negligible in k, where
the probability is taken over the random choice of H.

We can implement H with a d-universal hash family, which ensures that the
hash values of any d distinct inputs are independent and uniformly at random.
According to [16], the false positive probability of a Bloom filter is still negligible
even when a universal hash family is used instead of truly random functions.
More precisely, the analysis [16, Proposition 3.10] shows that if H is a d-universal
hash family for a constant d ≥ 2, then the false positive probability of the Bloom
filter based on H with parameters m, k, s is upper bounded by

(
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If we set m = 2ks, then ks/m + (ks/m)d = 1/2 + 1/2d is a constant less than 1,
and hence the probability is negligible in k. We note that an efficient d-universal
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hash family can be obtained by letting a hash function be a random polynomial
p of degree d−1 over a field of size at least m, and letting the hash value of x be
p(x). Note that such a function can be described in O(log m) bits if d = O(1).

4 BC-Efficient Protocols for Basic Functionalities

Broadcast. Let FBroadcast,i be the functionality which receives a non-private
input y from the i-th player and gives y to all players (described in Fig. 1). Since
we assume that all players are semi-honest, we immediately obtain a BC-efficient
protocol realizing FBroadcast,i. Indeed, we just utilize a round table structure
where players are supposed to be nodes in a ring network and each player only
communicates with the consecutive players around the table. Such a protocol
implicitly appears in [48]. However, the round complexity of this protocol is
O(n). To reduce it to O(log n), assume that the set of n players is represented
by a binary tree whose height is O(log n) and root is Pi. Each player sends his two
children the element that he received from his parent node. We show the formal
description of the protocol ΠBroadcast,i in Fig. 1. The complexity of ΠBroadcast,i is
BCon(ΠBroadcast,i) = O(�y) and Round(ΠBroadcast,i) = O(log n), where �y is the
bit-length of y. Note that BCoff(ΠBroadcast,i) = 0.

Functionality FBroadcast,i� �

Upon receiving y from the i-th player Pi, FBroadcast,i gives every player y.

� �

Protocol ΠBroadcast,i� �

Assumption. The set of n players is represented by a binary tree whose height
is h = O(log n) and root is the i-th player Pi. For each k ∈ [n], let Parentk be
the parent of Pk if k �= 1, and {Lk,Rk} be at most two children of Pk.

Non-private input. The i-th player Pi has y.

Output. Every player obtains y.

Protocol.
1. Pi sets yi = y and sends it to Li and Ri.
2. For each j = 1, 2, . . . , h, every player Pk at the j-th level sets yk as the

element he received from Parentk, and sends it to Lk and Rk.
3. Each player Pk outputs yk.

� �

Fig. 1. The functionality FBroadcast,i and a protocol ΠBroadcast,i implementing it
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Functionality FSum((xi)i∈[n])� �

Upon receiving a group element xi ∈ G from each player Pi, FSum gives every
player s :=

∑
i∈[n] xi.

� �

Sub-Protocol Π0
� �

Input. Each player Pi has a group element yi ∈ G.

Output. Every player obtains s =
∑

i∈[n] yi.

Protocol.
1. Partition the set of n players into �n/2� pairwise disjoint sets

S1, . . . , S�n/2�, each of size at most 2. Let Sk = {P�k ,Prk}, where �k < rk.
2. For each k = 1, 2, . . . , �n/2�, Prk sends his input yrk to P�k .
3. For each k = 1, 2, . . . , �n/2�, P�k computes sk = y�k + yrk .
4. Players P�1 , . . . ,P��n/2� invoke Π0 on input (s1, . . . , s�n/2�) and obtain s.
5. For each k = 1, 2, . . . , �n/2�, P�k sends s to Prk .
6. Each player Pi outputs s.

� �

Protocol Π ′
Sum

� �

Input. Each player Pi has a group element xi ∈ G.

Output. Every player obtains s =
∑

i∈[n] xi.

Setup.
1. Let (ai)i∈[n] ← AdditiveG(0).
2. Each player Pi receives ai.

Protocol.
1. Each player Pi sets yi = xi + ai.
2. Players invoke Π0 on input (y1, . . . , yn) and obtain s =

∑
i∈[n] yi.

3. Each player Pi outputs s.

� �

Fig. 2. The functionality FSum and a protocol Π ′
Sum implementing it

Sum. In Fig. 2, we describe the functionality FSum which receives group elements
x1, . . . , xn ∈ G, each from Pi, and gives s :=

∑
i∈[n] xi to all players. There are

two incomparable BC-efficient implementations of FSum. The former protocol
ΠSum, which implicitly appears in [48], utilizes a round table structure and lets
each player add his share to the message from the previous player and send the
result to the next player around the table. However, the round complexity of
ΠSum is O(n). We propose a novel protocol Π ′

Sum that uses recursion. Assume
that players are partitioned into �n/2� pairs and name the members of each pair
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as the right and left players of the pair. For every pair, the right player sends his
element to the left player, who then computes the sum sk of their elements. All
of the left players then execute the protocol Π ′

Sum recursively on �n/2� inputs
s1, . . . , s�n/2�. After O(log n) iterations, the final call of the protocol outputs the
aggregation of the sum of all elements. In the worst case, a player who is chosen as
the left player of a pair in every iteration needs to communicate O(log n) elements
and hence the online bottleneck complexity increases by O(log n) times. Note
that if one naively implements the above procedures, players learn additional
information, e.g., a partial sum of inputs. We thus let players mask their inputs
with additive shares of 0 in advance. The formal description of Π ′

Sum is shown
in Fig. 2. The complexities are BCoff(ΠSum) = BCoff(Π ′

Sum) = O(log |G|),
– BCon(ΠSum) = O(log |G|) and Round(ΠSum) = O(n);
– BCon(Π ′

Sum) = O((log n)(log |G|)) and Round(Π ′
Sum) = O(log n).

Multiplication. In Fig. 3, we describe the functionality FMult which takes addi-
tive shares (xi)i∈[n], (yi)i∈[n] for x and y (respectively), and gives additive shares
(zi)i∈[n] for z = xy. We obtain a BC-efficient protocol ΠMult for FMult based on
the above BC-efficient protocols for sum and a Beaver triple. We show its formal
description in Fig. 3. The correctness and security follow from [3]. Since players
also need to receive correlated randomness for two executions of a protocol imple-
menting FSum, the offline bottleneck complexity is BCoff(ΠMult) = O(log |F|).
The protocol has different online bottleneck complexity and round complexity
depending on implementation of FSum:

– BCon(ΠMult) = O(log |F|) and Round(ΠMult) = O(n);
– BCon(ΠMult) = O((log n)(log |F|)) and Round(ΠMult) = O(log n).

Inner Product. Let F be a finite field. Define a functionality FIP as follows
(described in Fig. 4): On input (xi,yi)i∈[n], where xi,yi ∈ F

m, FIP gives all
players z = 〈x,y〉, where x =

∑
i∈[n] xi and y =

∑
i∈[n] yi. We construct a

BC-efficient protocol ΠIP for FIP based on BC-efficient protocols for sum and
multiplication. We show the security proof in the full version [22].
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Since players need to receive correlated randomness for m executions of a
protocol implementing FMult and one execution of a protocol implementing FSum,
the offline communication complexity is BCoff(ΠIP) = O(m log |F|). In the online
phase, the protocol ΠIP invokes FMult m times and FSum once and thus has
different online communication complexity and round complexity depending on
implementation of FMult and FSum:

– BCon(ΠIP) = O(m log |F|) and Round(ΠIP) = O(n);
– BCon(ΠIP) = O((log n)m log |F|) and Round(ΠIP) = O(log n).

We define a variant F ′
IP, whose difference from FIP is that F ′

IP outputs shares
for an inner product z instead of z itself. We can construct a BC-efficient protocol
Π ′

IP for F ′
IP in a similar way. Indeed, Π ′

IP is the same as ΠIP except that it does not
reconstruct the inner product z. Thus, the bottleneck communication complexity
and round complexity of Π ′

IP is asymptotically the same as those of ΠIP. We defer
the formal description to the full version [22].

Functionality FMult((xi, yi)i∈[n])� �

1. FMult receives field elements xi, yi ∈ F from each player Pi.
2. FMult computes x =

∑
i∈[n] xi, y =

∑
i∈[n] yi and z = xy.

3. FMult runs (zi)i∈[n] ← AdditiveF(z).
4. FMult gives zi to each player Pi.

� �

Protocol ΠMult
� �

Input. Each player Pi has xi, yi ∈ F.

Output. Each player Pi obtains zi ∈ F, where (zi)i∈[n] ← FMult((xi, yi)i∈[n]).

Setup.
1. Generate a Beaver triple (ai, bi, ci)i∈[n] ← MakeBeaverF().
2. Each player Pi receives (ai, bi, ci).

Protocol.
1. Each player Pi computes ui = xi − ai and vi = yi − bi.
2. Players obtain u = FSum((ui)i∈[n]) and v = FSum((vi)i∈[n]).
3. For each k = 1, 2, . . . , n, Pk does the following:

– If k = 1, output z1 = ub1 + a1v + c1 + uv.
– If k �= 1, output zi = ubi + aiv + ci.

� �

Fig. 3. The functionality FMult and a protocol ΠMult implementing it
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Functionality FIP((xi,yi)i∈[n])� �

1. FIP receives vectors xi,yi ∈ F
m from each player Pi.

2. FIP computes x =
∑

i∈[n] xi, y =
∑

i∈[n] yi and z = 〈x,y〉.
3. FIP gives z to every player Pi.

� �

Protocol ΠIP
� �

Input. Each player Pi has xi = (x
(j)
i )j∈[m] ∈ F

m and yi = (y
(j)
i )j∈[m] ∈ F

m.

Output. Each player Pi obtains z = FIP((xi,yi)i∈[n]).

Protocol.
1. For each j ∈ [m], players obtain (w

(j)
i )i∈[n] ← FMult((x

(j)
i , y

(j)
i )i∈[n]).

2. Each player Pi computes zi =
∑

j∈[m] w
(j)
i ∈ F.

3. Players obtain z = FSum((zi)i∈[n]).
4. Each player Pi outputs z.

� �

Fig. 4. The functionality FIP and a protocol ΠIP implementing it

5 BC-Efficient Protocols for General Symmetric
Functions

5.1 First Protocol

First, we show a fully secure protocol that can achieve low online bottleneck
complexity O(log n). Recall that for a function h : {0, 1}n → {0, 1}, we denote
the functionality of giving every player h(x1, . . . , xn) by Fh.

Theorem 1. Let h : {0, 1}n → {0, 1} be a symmetric function. The protocol
ΠSym described in Fig. 5 is a fully secure MPC protocol for Fh in the FSum-hybrid
model. Implementing FSum, the protocol ΠSym achieves either of the following
efficiency measures:

– BCoff(ΠSym) = O(n), BCon(ΠSym) = O(log n) and Round(ΠSym) = O(n);
– BCoff(ΠSym) = O(n), BCon(ΠSym) = O((log n)2) and Round(ΠSym) =

O(log n).

Proof. First, we prove the correctness of ΠSym. Let x ∈ {0, 1}n be any input.
Since r =

∑
i∈[n] ri, it holds that y = r +

∑
i∈[n] xi. It also holds that

z =
∑

i∈[n]

zi =
∑

i∈[n]

(Si)y = (S)y = T(y−r) mod (n+1)
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where (S)y is the y-th element of S. Therefore, we have that z = f(
∑

i∈[n] xi) =
h(x1, . . . , xn).

Next, we prove the privacy of ΠSym. Let T ⊆ [n] be the set of corrupted
players. Let H = T be the set of honest players and fix an honest player j ∈ H.
Note that corrupted players’ view can be simulated from the following elements:

Correlated randomness. (ri,Si) for all i ∈ T ;
Online messages. yi = xi + ri and zi = (Si)y for all i ∈ H.

Let x,x′ ∈ {0, 1}n be any pair of inputs such that

xi = x′
i (∀i ∈ T ) and h(x1, . . . , xn) = h(x′

1, . . . , x
′
n).

It is sufficient to prove that the distribution of the above elements during the
execution of ΠSym on input x is identical to that on input x′. To show the
equivalence of the distributions, we show a bijection between the random strings
used by ΠSym on input x and the random strings used by ΠSym on input x′ such
that the correlated randomness received by T and the online messages from H

Protocol ΠSym� �

Notations.
– Let h : {0, 1}n → {0, 1} be a symmetric function.
– Let f : [0..n] → {0, 1} be a function such that h(x1, . . . , xn) =

f(
∑

i∈[n] xi) for all (x1, . . . , xn) ∈ {0, 1}n.

– Let F = {0, 1} be the binary field.

Input. Each player Pi has xi ∈ {0, 1}.

Output. Every player obtains z = h(x1, . . . , xn).

Setup.
1. Let r ←$Zn+1 and (ri)i∈[n] ← AdditiveZn+1(r).
2. Define T = (Ti)i∈Zn+1 ∈ {0, 1}n+1 by Ti = f(i) for all i ∈ Zn+1.
3. Define S ∈ {0, 1}n+1 by S = Shiftr(T) and let (Si)i∈[n] ← AdditiveF(S).
4. Each player Pi receives (ri,Si).

Protocol.
1. Each player Pi computes yi = xi + ri mod (n + 1).
2. Players obtain y = FSum((yi)i∈[n]).
3. Each player Pi sets zi = (Si)y, where (Si)y is the y-th element of Si.

Here, we identify the set indexing the entries of Si with Zn+1.
4. Players obtain z = FSum((zi)i∈[n]).
5. Each player Pi outputs z.

� �

Fig. 5. The first protocol ΠSym for computing a symmetric function
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are the same under this bijection. The set of all random strings is

R =

⎧
⎨

⎩
(ri,Si)i∈[n] :

∑

i∈[n]

Si = Shiftr(T), where r =
∑

i∈[n]

ri

⎫
⎬

⎭
.

We denote the randomness of ΠSym on input x by (ri,Si)i∈[n] and that on
input x′ by (r′

i,S
′
i)i∈[n]. The bijection maps the randomness (ri,Si)i∈[n] ∈ R

to (r′
i,S

′
i)i∈[n] ∈ R in such a way that

r′
i =

{
ri, if i ∈ T,

ri + xi − x′
i, if i ∈ H,

S′
i =

{
Si, if i �= j,

Sj + Shiftr′(T) − Shiftr(T), if i = j,

where r :=
∑

i∈[n] ri and r′ :=
∑

i∈[n] r
′
i = r+

∑
i∈H(xi−x′

i). The image is indeed
a consistent random string (i.e., (r′

i,S
′
i)i∈[n] ∈ R) since

∑
i∈[n] S

′
i = Shiftr′(T) if

and only if
∑

i∈[n] Si = Shiftr(T). The above map is indeed a bijection since it
has the inverse

ri =

{
r′
i, if i ∈ T,

r′
i + x′

i − xi, if i ∈ H,

Si =

{
S′

i, if i �= j,

S′
j + Shiftr(T) − Shiftr′(T), if i = j.

Clearly, this bijection does not change the correlated randomness (ri,Si)i∈T of T .
It can be seen that x′

i + r′
i = x′

i +(ri +xi −x′
i) = xi + ri for i ∈ H. In particular,

the message y is the same in both executions and hence so is zi = (Si)y for
i ∈ H \ {j}. We see that

(S′
j)y = (Sj)y + (Shiftr′(T))y − (Shiftr(T))y

= (Sj)y + f(y − r′) − f(y − r)
= (Sj)y

since f(y − r′) = f(
∑

i∈[n] x
′
i) = f(

∑
i∈[n] xi) = f(y − r).

Finally, since players also need to receive correlated randomness for two
executions of a protocol implementing FSum, the offline communication com-
plexity is BCoff(ΠSym) = O(n). Depending on implementation of FSum, ΠSym

has BCon(ΠSym) = O(log n) and Round(ΠSym) = O(n); or BCon(ΠSym) =
O((log n)2) and Round(ΠSym) = O(log n). ��

5.2 Second Protocol

The second protocol reduces the offline bottleneck complexity of the first protocol
to O(

√
n) at the cost of increasing the online bottleneck complexity.
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Theorem 2. Let h : {0, 1}n → {0, 1} be a symmetric function. The protocol
Π ′

Sym described in Fig. 6 is a fully secure MPC protocol for Fh in the {FSum,FIP}-
hybrid model. Implementing FSum and FIP, the protocol Π ′

Sym achieves either of
the following efficiency measures:

– BCoff(Π ′
Sym) = O(

√
n), BCon(Π ′

Sym) = O(
√

n) and Round(Π ′
Sym) = O(n);

– BCoff(Π ′
Sym) = O(

√
n), BCon(Π ′

Sym) = O(
√

n log n) and Round(Π ′
Sym) =

O(log n).

Proof. We prove the correctness of Π ′
Sym. Since the proof of the privacy bears

some similarities with that of ΠSym, we defer it to the full version [22]. Let
x ∈ {0, 1}n be any input. Since r =

∑
i∈[n] ri, it holds that y =

∑
i∈[n] xi − r.

Let a :=
∑

i∈[n] ai and b :=
∑

i∈[n] bi. Since
∑

i∈[n] ci = eu and
∑

i∈[n] di = ev,
we have that

z = 〈a,b〉 = 〈Shiftσ (c1 + · · · + cn) ,M · Shiftτ (d1 + · · · + dn)〉 = M[u + σ, v + τ ],

where M[u′, v′] is the (u′, v′)-th entry of M. Since φ−1(u + σ, v + τ) = y + r =∑
i∈[n] xi ∈ [0..n], it is equal to f (y + r) = h(x1, . . . , xn).
Finally, since players also need to receive correlated randomness for one exe-

cution of a protocol implementing FIP and for one execution of a protocol imple-
menting FSum, the offline bottleneck complexity is

BCoff(Π ′
Sym) = O(log pq) + O((p + q) log |F|) + O(p log |F|) = O(

√
n).

At Step 1 of the online phase, each player sends a constant number of ele-
ments in Zpq. The bottleneck complexity of Step 5 is equal to that of a protocol
realizing FIP. The protocol Π ′

Sym thus has different online communication com-
plexity and round complexity depending on implementation of FIP and FSum:
BCon(Π ′

Sym) = O(
√

n) and Round(Π ′
Sym) = O(n); or BCon(Π ′

Sym) = O(
√

n log n)
and Round(Π ′

Sym) = O(log n). ��
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Protocol Π ′
Sym

� �

Notations.
– Let h : {0, 1}n → {0, 1} be a symmetric function.
– Let f : [0..n] → {0, 1} be a function such that h(x1, . . . , xn) =

f(
∑

i∈[n] xi) for all (x1, . . . , xn) ∈ {0, 1}n.
– For a prime p, we identify the set indexing the entries of a vector of

dimension p with Zp.
– Let p, q be primes such that

√
n < p < q ≤ O(

√
n). We identify [0..n]

with a subset of Zpq.
– Let φ : Zpq → Zp × Zq be the ring isomorphism induced by the Chinese

remainder theorem.
– Let F = {0, 1} be the binary field.
– Define a matrix M ∈ F

p×q as follows: For (y, z) ∈ Zp × Zq, the (y, z)-th
entry of M is f(φ−1(y, z)) if φ−1(y, z) ∈ [0..n], and 0 otherwise, where
we identify the sets indexing the rows and columns of M as Zp and Zq,
respectively.

Input. Each player Pi has xi ∈ {0, 1}.

Output. Every player obtains z = h(x1, . . . , xn).

Setup.
1. Let r ←$Zpq, (ri)i∈[n] ← AdditiveZpq (r) and (u, v) = φ(r).
2. Let (ci)i∈[n] ← AdditiveF(eu) and (di)i∈[n] ← AdditiveF(ev), where eu ∈

F
p (resp. ev ∈ F

q) is the vector whose entry is 1 at position u ∈ Zp (resp.
v ∈ Zq), and 0 otherwise.

3. Each player Pi receives (ri, ci,di).

Protocol.
1. Each player Pi computes yi = xi − ri mod pq.
2. Players obtain y = FSum((yi)i∈[n]).
3. Each player Pi computes φ(y) = (σ, τ) ∈ Zp × Zq.
4. Each player Pi computes ai = Shiftσ(ci) ∈ F

p and bi = M · Shiftτ (di) ∈
F

p.
5. Players obtain z = FIP((ai,bi)i∈[n]).
6. Each player Pi outputs z.

� �

Fig. 6. The second protocol Π ′
Sym for computing a symmetric function

5.3 Third Protocol

The third protocol achieves bottleneck complexity O(n1/d log n) for any constant
d but is only secure against adversaries corrupting less than n/(d − 1) players.

To begin with, we prepare some notations. Let h : {0, 1}n → {0, 1} be a sym-
metric function and f : [0..n] → {0, 1} be a function such that h(x1, . . . , xn) =
f(

∑
i∈[n] xi) for all (x1, . . . , xn) ∈ {0, 1}n. Let d ≥ 2 be any constant and choose

d pairwise distinct primes p1, . . . , pd such that n1/d < pj ≤ 2n1/d for all j ∈ [d].
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Such primes indeed exist for sufficiently large n since Bertrand’s postulate [55,
Theorem 5.8] ensures that there are at least M/(3 log(2M)) primes between M
and 2M . Set N := p1 · · · pd and q := N/p1 = p2 · · · pd. We identify [0..n] with
a subset of ZN . Let φ : ZN → Zp1 × Zq and ψ : Zq → Zp2 × · · · × Zpd

be the
ring isomorphisms induced by the Chinese remainder theorem. Define projection
maps π1 : Zp1 × Zq → Zp1 , π2 : Zp1 × Zq → Zq and π′

j : Zp2 × · · · × Zpd
→ Zpj

for j = 2, . . . , d. Also, define

φ1 = π1 ◦ φ, ψj = π′
j ◦ ψ, and φj = ψj ◦ π2 ◦ φ, (3)

where ◦ means the composition of maps. For j ∈ [d], we identify the set indexing
the entries of a vector v ∈ F

pj (resp. v ∈ F
q) with Zpj

(resp. Zq). Let eu ∈ F
pj

denote the vector whose entry is 1 at position u ∈ Zpj
and 0 otherwise. For

vectors v2 ∈ F
p2 , . . . ,vd ∈ F

pd , we define the Kronecker product v2⊗· · ·⊗vd ∈ F
q

as

(v2 ⊗ · · · ⊗ vd)[k] = v2[ψ2(k)] · · ·vd[ψd(k)]

for all k ∈ Zq. Define a matrix M ∈ F
p1×q as follows: For each (j, k) ∈ Zp1 ×Zq,

the (j, k)-th entry M[j, k] of M is

M[j, k] =

{
f(φ−1(j, k)), if φ−1(j, k) ∈ [0..n],
0, otherwise,

where we identify the sets indexing the rows and columns of M as Zp1 and Zq,
respectively. It then holds that for all x ∈ [0..n],

〈eφ1(x),M · (eφ2(x) ⊗ · · · ⊗ eφd(x))〉

=
∑

j∈Zp1

eφ1(x)[j]

⎛

⎝
∑

k∈Zq

M[j, k] · (eφ2(x) ⊗ · · · ⊗ eφd(x))[k]

⎞

⎠

=
∑

k∈Zq

M[φ1(x), k]eφ2(x)[ψ2(k)] · · · eφd(x)[ψd(k)]

= M[π1 ◦ φ(x), π2 ◦ φ(x)]
= f(x).

(4)

At the third equation, we use the fact that

ψj(k) = φj(x) (∀j = 2, . . . , d) ⇒ π′
j(ψ(k)) = π′

j(ψ ◦ π2 ◦ φ(x)) (∀j = 2, . . . , d)

⇒ ψ(k) = ψ(π2 ◦ φ(x))
⇒ k = π2 ◦ φ(x).

Using the above notations, we show the following theorem.

Theorem 3. Let h : {0, 1}n → {0, 1} be a symmetric function. Let d ≥ 2 be any
constant. For any t < n/(d−1), the protocol Π

(d)
Sym described in Fig. 7 is a t-secure

MPC protocol Π
(d)
Sym for Fh in the {FSum,FIP}-hybrid model. Implementing FSum

and FIP, the protocol Π
(d)
Sym achieves either of the following efficiency measures:
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– BCoff(Π(d)
Sym) = O(n1/d log n), BCon(Π(d)

Sym) = O(n1/d log n) and

Round(Π(d)
Sym) = O(n);

– BCoff(Π(d)
Sym) = O(n1/d log n), BCon(Π(d)

Sym) = O(n1/d(log n)2) and

Round(Π(d)
Sym) = O(log n).

Proof. First, we prove the correctness of Π
(d)
Sym. Let x ∈ {0, 1}n be any input.

Since r =
∑

i∈[n] ri, it holds that y =
∑

i∈[n] xi−r. We have that φj(
∑

i∈[n] xi) =
φj(y)+φj(r) = σj +uj for all j ∈ [d]. At Step 4 of the online phase, we have that
for all j ∈ [d], (a(j)

i )i∈[n] is a tuple of consistent shares whose secret is the unit
vector euj+σj

∈ F
pj . That is, there is a tuple of degree-t polynomials (ϕ(j)

k )k∈Zpj

such that for all k ∈ Zpj
,

ϕ
(j)
k (0) = euj+σj

[k] and ϕ
(j)
k (αi) = a(j)

i [k] (∀i ∈ [n]).

The property of Lagrange coefficients �i’s implies that (ai)i∈[n] is a tuple of
consistent additive shares for eu1+σ1 . That is,

a :=
∑

i∈[n]

ai = eu1+σ1 .

Also, for any k ∈ Zq and any i ∈ [n], it holds that

(a(2)
i ⊗ · · · ⊗ a(d)

i )[k] = a(2)
i [k2] · · · a(d)

i [kd] = (ϕ(2)
k2

· · · ϕ(d)
kd

)(αi),

where kj = ψj(k) ∈ Zpj
. Since the degree of ϕ

(2)
k2

· · · ϕ(d)
kd

is at most t(d − 1) ≤
n − 1, we have that

∑

i∈[n]

�i · (a(2)
i ⊗ · · · ⊗ a(d)

i )[k] = (ϕ(2)
k2

· · · ϕ(d)
kd

)(0)

= eu2+σ2 [k2] · · · eud+σd
[kd]

= (eu2+σ2 ⊗ · · · ⊗ eud+σd
)[k].
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Protocol Π
(d)
Sym

� �

Notations.
– Let h : {0, 1}n → {0, 1} be a symmetric function.
– Let f : [0..n] → {0, 1} be a function such that h(x1, . . . , xn) =

f(
∑

i∈[n] xi) for all (x1, . . . , xn) ∈ {0, 1}n.

– Let p1, . . . , pd be d pairwise distinct primes such that n1/d < pj ≤ 2n1/d

for all j ∈ [d], and set N = p1 · · · pd and q = N/p1 = p2 · · · pd.
– Let φj : ZN → Zpj (j ∈ [d]) be the ring homomorphism defined in Eq. (3).
– Let M ∈ F

p1×q be a matrix such that

〈
eφ1(x),M · (eφ2(x) ⊗ · · · ⊗ eφd(x))

〉
= f(x)

for all x ∈ [0..n].
– Let F be the minimum finite field containing n pairwise distinct non-zero

elements α1, . . . , αn.
– Let �1, . . . , �n ∈ F be Lagrange coefficients associated with the αi’s.

Input. Each player Pi has xi ∈ {0, 1}.

Output. Every player obtains z = h(x1, . . . , xn).

Setup.
1. Let r ←$ZN , (ri)i∈[n] ← AdditiveZN (r) and uj = φj(r) for all j ∈ [d].

2. For each j ∈ [d], let (c
(j)
i )i∈[n] ← ShamirF,t(euj ), where euj ∈ F

pj is the
vector whose entry is 1 at position uj ∈ Zpj and 0 otherwise.

3. Each player Pi receives ri and (c
(j)
i )j∈[d].

Protocol.
1. Each player Pi computes yi = xi − ri mod N .
2. Players obtain y = FSum((yi)i∈[n]).
3. Each player Pi computes φj(y) = σj ∈ Zpj for all j ∈ [d].

4. Each player Pi computes a
(j)
i = Shiftσj (c

(j)
i ) ∈ F

pj for all j ∈ [d].

5. Each player Pi sets a′
i := a

(1)
i and computes b′

i := M · (a(2)
i ⊗· · ·⊗a

(d)
i ) ∈

F
p1 .

6. Each player Pi computes ai = �i · a′
i and bi = �i · b′

i.
7. Players obtain z = FIP((ai,bi)i∈[n]).
8. Each player Pi outputs z.

� �

Fig. 7. The third protocol Π
(d)
Sym for computing a symmetric function

Therefore, we have that

b :=
∑

i∈[n]

bi = M ·
∑

i∈[n]

�i(a
(2)
i ⊗ · · · ⊗ a(d)

i ) = M · (eu2+σ2 ⊗ · · · ⊗ eud+σd
).



360 R. Eriguchi

We obtain that

z = 〈a,b〉 = 〈eu1+σ1 ,M · (eu2+σ2 ⊗ · · · ⊗ eud+σd
)〉 = f(

∑

i∈[n]

xi) = h(x1, . . . , xn).

Here, we use the fact that uj + σj = φj(
∑

i∈[n] xi) and Eq. (4).

Next, we prove the privacy of Π
(d)
Sym. Let T ⊆ [n] be the set of t corrupted

players. Let H = T be the set of honest players and fix an honest player j ∈
H. In the FIP-hybrid model, corrupted players’ view at Step 7 (including their
correlated randomness for FIP) only contains their inputs (ai,bi)i∈T to ΠIP and
the output z = h(x1, . . . , xn). Since every (ai,bi) is locally computed from y

and (c(j)
i )j∈[d] at Steps 3–6, it is sufficient to show that the joint distribution of

the following elements can be simulated from (xi)i∈T and z:

Correlated randomness. ri and (c(j)
i )j∈[d] for all i ∈ T ;

Online messages. yi = xi − ri for all i ∈ H.

Let x, x̃ ∈ {0, 1}n be any pair of inputs such that

xi = x̃i (∀i ∈ T ) and h(x1, . . . , xn) = h(x̃1, . . . , x̃n).

It is sufficient to prove that the distribution of the above elements during the
execution of Π

(d)
Sym on input x is identical to that on input x̃. To show the equiv-

alence of the distributions, we show a bijection between the random strings used
by Π

(d)
Sym on input x and the random strings used by Π

(d)
Sym on input x̃ such

that the above values are the same under this bijection. Note that the random-
ness of Π

(d)
Sym on input x is uniformly distributed over a set S consisting of all

(ri, (c
(j)
i )j∈[d])i∈[n] such that for each j ∈ [d], (c(j)

i )i∈[n] is a tuple of consistent
shares of the (t, n)-Shamir scheme for a secret euj

, where uj = φj(
∑

i∈[n] ri).
We recall the fact that for any c ∈ F

p, there exists a uniquely determined
tuple of p polynomials θ(X) ∈ (F[X])p, each of degree at most t, such that

θ(0) = c and θ(αi) = 0 (∀i ∈ T )

(see Sect. 3.2). Now, we define a bijection map from the randomness
(ri, (c

(j)
i )j∈[d])i∈[n] of Π

(d)
Sym on input x to the randomness (r̃i, (c̃

(j)
i )j∈[d])i∈[n]

of Π
(d)
Sym on input x̃ in such a way that

r̃i =

{
ri, if i ∈ T,

ri + x̃i − xi, if i ∈ H,

c̃(j)
i =

{
c(j)

i , if i ∈ T,

c(j)
i + θ(j)(αi), if i ∈ H,

where
r̃ :=

∑

i∈[n]

r̃i, r :=
∑

i∈[n]

ri, ũj := φj(r̃), uj := φj(r),
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and θ(j) is the uniquely determined tuple of pj polynomials, each of degree at
most t, such that θ(j)(0) = eũj

− euj
and θ(j)(αi) = 0 for all i ∈ T .

We see that the image is indeed a consistent random string, i.e.,
(r̃i, (c̃

(j)
i )j∈[d])i∈[n] ∈ S. If (ri, (c

(j)
i )j∈[d])i∈[n] ∈ S, then (c(j)

i )i∈[n] forms a tuple
of consistent shares for euj

, i.e., there is a tuple of pj polynomials ϕ(j), each of
degree at most t, such that

ϕ(j)(0) = euj
and ϕ(j)(αi) = c(j)

i (∀i ∈ [n]).

A tuple of polynomials ϕ̃(j) := ϕ(j) + θ(j) satisfies that

ϕ̃(j)(0) = ϕ(j)(0) + θ(j)(0) = euj
+ (eũj

− euj
) = eũj

,

ϕ̃(j)(αi) = c(j)
i + θ(j)(αi) = c̃(j)

i (∀i ∈ [n])

since θ(j)(αi) = 0 for any i ∈ T . Thus, we have that (r̃i, (c̃
(j)
i )j∈[d])i∈[n] ∈ S.

The above map is indeed a bijection since it has the inverse

ri =

{
r̃i, if i ∈ T,

r̃i + xi − x̃i, if i ∈ H,

ci =

{
c̃i, if i ∈ T,

c̃j − θ(j)(αi), if i ∈ H,

Clearly, this bijection does not change the correlated randomness (ri,

(c(j)
i )j∈[d])i∈T of T . Since x′

i − r′
i = x′

i − (ri + x′
i − xi) = xi − ri for i ∈ H,

it does not change the online messages from H.
Finally, since players also need to receive correlated randomness for one exe-

cution of a protocol implementing FIP and for one execution of a protocol imple-
menting FSum, the offline bottleneck complexity is

BCoff(Π(d)
Sym) = O(log N) +

∑

j∈[d]

O(pj log |F|) + O(p1 log |F|) = O(n1/d log n).

Here, we use the fact that d ∈ O(1), pj ∈ O(n1/d) and |F| ∈ O(n). At
Steps 1 and 2 of the online phase, each player sends a constant number of ele-
ments in ZN . Players perform local computation at Steps 3–6. The bottleneck
complexity of Step 7 is equal to that of a protocol realizing FIP. The protocol
Π

(d)
Sym thus has different online communication complexity and round complexity

depending on implementation of FIP and FSum: BCon(Π(d)
Sym) = O(n1/d log n) and

Round(Π(d)
Sym) = O(n); or BCon(Π(d)

Sym) = O(n1/d(log n)2) and Round(Π(d)
Sym) =

O(log n). ��

6 BC-Efficient Protocol for Checking Equality to Zero

Let F be a finite field. Define a functionality FCheckZero,F as follows: On input
(xi)i∈[n] ∈ F

n, FCheckZero,F gives all players b ∈ {0, 1} such that b = 0 if and
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only if
∑

i∈[n] xi = 0 in F. We show a protocol tailored to the functionality that
achieves lower bottleneck complexity than our protocols for general symmetric
functions. A high-level idea is given in Sect. 2.2. The formal description and
security proof are deferred to the full version [22].

Theorem 4. Let λ be a security parameter. Let F be a finite field and K be an
extension field of F such that |K| ≥ 2λ. There exists a fully secure MPC protocol
ΠCheckZero,K for FCheckZero,F in the FSum-hybrid model. Implementing FSum, the
protocol ΠCheckZero,K achieves either of the following efficiency measures:

– BCoff(ΠCheckZero,K) = O(max{λ, log |F|}), BCon(ΠCheckZero,K) = O(max{λ,
log |F|}) and Round(ΠCheckZero,K) = O(n);

– BCoff(ΠCheckZero,K) = O(max{λ, log |F|}), BCon(ΠCheckZero,K) = O((log n)
max{λ, log |F|}) and Round(ΠCheckZero,K) = O(log n).

Remark 1. If the characteristic of F is larger than n, e.g., F = Zp for a prime
p > n, our protocol ΠCheckZero,K implies BC-efficient protocols for computing the
AND and OR of players’ inputs xi ∈ {0, 1}. Indeed, we can compute the OR
function due to the fact that if xi ∈ {0, 1},

∑
i∈[n] xi = 0 (over F) if and only if

xi = 0 for all i ∈ [n]. A protocol for the AND function is immediately follows
from the fact that AND(x1, . . . , xn) = 1 − OR(1 − x1, . . . , 1 − xn).

7 BC-Efficient Protocol for Private Set Intersection

In this section, we show a BC-efficient protocol for computing the intersection
of players’ input sets. For now, we assume that players’ input sets have the same
size s. We will show later that the protocol is extended to the general case.

To begin with, we define a functionality computing the intersection based on
a Bloom filter. Let λ be a security parameter. Let U be a finite set. Assume that
there exists a Bloom filter BF = (Add,Check) for U with parameters m = m(λ),
k = Θ(λ) and s = poly(λ). For a subset X ∈ 2U of size s, let BF(X) denote
an m-bit string obtained after adding the elements of X with Add. Define an
n-input/single-output functionality FPSI,BF as follows (described in Fig. 8): On
input (Xi)i∈[n] such that Xi is a subset of U of size s, FPSI,BF gives all players

Zλ(X1, . . . , Xn) := {x ∈ Xn : ∀i ∈ [n], Check(BF(Xi), x) = 1}. (5)

Recall that the property of the Bloom filter BF ensures that for any (x,X)
such that x /∈ X, the probability that Check(BF(X), x) = 1 is negligible
in k (and hence in λ). For any x ∈ X1 ∩ · · · ∩ Xn, it holds with proba-
bility 1 that x ∈ Zλ(X1, . . . , Xn), while for x ∈ U \ (X1 ∩ · · · ∩ Xn), the
probability that x ∈ Zλ(X1, . . . , Xn) is negligible in λ since we suppose n =
poly(λ). Thus, the probability that Zλ(X1, . . . , Xn) = X1 ∩ · · · ∩ Xn is at least
1−|Xn|·negl(λ) = 1−s·negl(λ) ≥ 1−negl(λ) since we assume s = poly(λ). There-
fore, for any input (Xi)i∈[n], the statistical distance between Zλ(X1, . . . , Xn)
and Intλ(X1, . . . , Xn) is upper bounded by a negligible function. Here, we
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abuse notation and denote the random variable over 2U defined in Eq. (5) by
Zλ(X1, . . . , Xn) and the random variable whose outcome is X1 ∩ · · · ∩ Xn with
probability 1 by Intλ(X1, . . . , Xn). In the following, we show a protocol realizing
FPSI,BF . From the above observation, it also securely realizes the functionality
that directly computes Intλ(X1, . . . , Xn) = X1 ∩ · · · ∩ Xn.

We now show the following theorem. The formal proof is given in the full
version [22].

Theorem 5. Let λ be a security parameter. Assume that there exists a Bloom
filter BF for U with parameters m = m(λ), k = Θ(λ) and s = poly(λ). Let
F = Zp be a prime field such that p > nk. The protocol ΠPSI described in Fig. 8
is a fully secure MPC protocol for FPSI,BF in the {FBroadcast,n,FCheckZero,F,F ′

IP}-
hybrid model. Implementing FBroadcast,n, FCheckZero,F, and F ′

IP, the protocol ΠPSI

achieves either of the following efficiency measures:

– BCoff(ΠPSI) = O(sm log(nλ) + sλ), BCon(ΠPSI) = O(sm log(nλ) + sλ +
s log |U |) and Round(ΠPSI) = O(n);

– BCoff(ΠPSI) = O(max{λ, log |F|}), BCon(ΠPSI) = O((log n)(sm log(nλ) +
sλ) + s log |U |) and Round(ΠPSI) = O(log n).

According to the analysis in [16], we can choose a Bloom filter BF such that
m = Θ(ks). Then, the complexity of ΠPSI is BCoff(ΠPSI) = O(s2λ log(nλ)),

– Round(ΠPSI) = O(n) and BCon(ΠPSI) = O(s2λ log(nλ) + s log |U |); or
– Round(ΠPSI) = O(log n) and BCon(ΠPSI) = O(s2λ(log λ)(log n)2 + s log |U |)

Finally, we deal with the general case where the sizes of players’ input sets
are upper bounded by s. Let V1, . . . , Vn be n sets, each of size s, such that they
are pairwise disjoint and also disjoint from U , i.e., |Vi ∩Vj | = |Vi ∩U | = ∅ for any
i �= j. Set U ′ = U∪V1∪· · ·∪Vn. Each player Pi pads his input set Xi with s−|Xi|
elements in Vi if |Xi| < s, and lets X ′

i be the resulting set of size exactly s. Since
X ′

1 ∩ · · · ∩ X ′
n = X1 ∩ · · · ∩ Xn, players can compute the intersection by running

ΠPSI on input X ′
1, . . . , X

′
n ⊆ U ′. Since |U ′| = |U |+ns, this reduction only incurs

an additive factor of log(ns) to online bottleneck complexity. In particular, the
complexity is asymptotically the same as given above.
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Functionality FPSI,BF ((Xi)i∈[n])� �

1. FPSI,BF receives a subset Xi ∈ 2U of size s from each player Pi.
2. FPSI,BF gives every player

Zλ(X1, . . . , Xn) := {x ∈ Xn : ∀i ∈ [n], Check(BF(Xi), x) = 1}.

� �

Protocol ΠPSI
� �

Notations.
– Let U be a set.
– Let BF = (Add,Check) be a Bloom filter for U with parameters m, k and

s.
– For a subset X ∈ 2U of size s, let BF(X) denote an m-bit string obtained

after adding the elements of X with Add.
– Let F = Zp be a prime field such that p > nk.

Input. Each player Pi has a subset Xi ∈ 2U of size s.

Output. Every player obtains Z = FPSI,BF ((Xi)i∈[n]).

Setup.
1. Let (ui)i∈[n] ← AdditiveF(0m) and (w

(j)
i )i∈[n] ← AdditiveF(0m) for j ∈ [s].

2. Each player Pi receives ui and (w
(j)
i )j∈[s].

Protocol.
1. Each player Pi computes Bi = 1m − BF(Xi) ∈ {0, 1}m.
2. Each player Pi computes Vi = Bi + ui, which is the i-th additive share

of V :=
∑

i∈[n] Bi ∈ F
m.

3. Pn permutes the elements of Xn uniformly at random and lets
x(1), . . . , x(s) be the permuted elements of Xn.

4. Each player Pi does the following:
– If i �= n, Pi sets W

(j)
i = w

(j)
i for all j ∈ [s].

– If i = n, Pn computes W
(j)
n = BF({x(j)}) + w

(j)
n for all j ∈ [s].

5. For each j ∈ [s], players obtain (y
(j)
i )i∈[n] ← F ′

IP((Vi,W
(j)
i )i∈[n]).

6. For each j ∈ [s], players obtain z(j) = FCheckZero,F((y
(j)
i )i∈[n]).

7. Pn computes Z = {x(j)}j∈[s]:z(j)=0 and invoke FBroadcast,n with input Z.
8. Each player Pi outputs Z.

� �

Fig. 8. The functionality FPSI,BF and a protocol ΠPSI implementing it
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Abstract. The learning with errors (LWE) assumption is a powerful
tool for building encryption schemes with useful properties, such as plau-
sible resistance to quantum computers, or support for homomorphic com-
putations. Despite this, essentially the only method of achieving thresh-
old decryption in schemes based on LWE requires a modulus that is
superpolynomial in the security parameter, leading to a large overhead
in ciphertext sizes and computation time.

In this work, we propose a (fully homomorphic) encryption scheme
that supports a simple t-out-of-n threshold decryption protocol while
allowing for a polynomial modulus. The main idea is to use the Rényi
divergence (as opposed to the statistical distance as in previous works)
as a measure of distribution closeness. This comes with some technical
obstacles, due to the difficulty of using the Rényi divergence in decisional
security notions such as standard semantic security. We overcome this by
constructing a threshold scheme with a weaker notion of one-way security
and then showing how to transform any one-way (fully homomorphic)
threshold scheme into one guaranteeing indistinguishability-based secu-
rity.

1 Introduction

In a public key encryption (PKE) scheme, one needs the secret key sk to decrypt
an encrypted message. Giving one single party control of the whole secret key can
be seen as a single point of failure. The study of PKE with threshold decryption
aims to mitigate this by splitting the secret key into n key shares sk1, . . . , skn,
such that several key shares are needed to be able to decrypt ciphertexts. This
is known as threshold public key encryption (ThPKE). In the common t-out-of-n
setting, any set of t parties or fewer learns no information about encrypted mes-
sages, while any set of t+ 1 parties can jointly decrypt ciphertexts. To decrypt,
the parties first compute their own partial decryption shares and then combine
them together to recover the encrypted message. When t = n − 1, we call it
full-threshold decryption.

Recently, NIST announced the standardization of the first cryptosystems to
provide security even in the presence of quantum computers.1 Among the finalists
1 https://csrc.nist.gov/projects/post-quantum-cryptography.
c© International Association for Cryptologic Research 2023
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to be standardized, a majority base their security on the presumed hardness of
(structured) lattice problems, such as Dilithium [Lyu+20] and Kyber [Sch+20]
based on the (module) learning with errors problem (M-LWE) [LS15]. NIST
also just began a project on threshold cryptography, which aims to produce
guidelines and recommendations for implementing threshold cryptosystems.

It is thus a very important research question to study the possibility of
thresholdizing lattice-based PKE schemes. This line of research has been ini-
tiated by [BD10], where they proposed a threshold key generation and decryp-
tion starting from Regev’s encryption scheme [Reg05]. To split the secret key
they use replicated secret sharing, which has a complexity that scales with

(
n
t

)
.

Later, it has been shown that we can even build full-threshold decryption for
fully homomorphic encryption (FHE) schemes [Ash+12]. A threshold fully homo-
morphic encryption scheme (ThFHE) allows to perform arbitrary computations
on encrypted data and afterwards to partially decrypt the outcome of the com-
putations. Their results have then been extended to t-out-of-n threshold and
other access structures [Bon+18].

All works above have in common that they use a technique called noise flood-
ing to guarantee that partial decryption shares do not leak any information on
the underlying secret key. More precisely, each party first computes a “noiseless”
partial decryption of a ciphertext using their secret key share. The noiseless
partial decryptions allow recovering the message, but also reveal a small noise
term ect that depends on the given ciphertext and the secret key. To prevent
this leakage, every party locally adds some fresh noise on their decryption share
before they jointly combine the necessary number of shares to recover the mes-
sage. After decryption, the revealed noise term becomes ect+e′, where e′ ← Dflood

is a noise term that is hidden to the adversary. When proving security, the real
partial decryption shares are replaced by simulated ones which do not depend on
the secret key, and instead reveal noise terms of the form e′ ← Dflood. By argu-
ing that the statistical distance between both ways of deriving partial decryption
shares is negligible, one can argue security. While this approach has the advan-
tage of being rather simple, it has the drawback of requiring the ratio between
the flooding noise and the size of the ciphertext noise ect to be superpolyno-
mial in the security parameter. This in turn requires the LWE problem to be
secure with a superpolynomial modulus-to-noise ratio, which weakens security
and requires larger LWE parameters to compensate.

Recently, multi-party reusable non-interactive secure computation (MrNISC)
was constructed from LWE with a polynomial modulus [Ben+21,Shi22]. This
leads to a construction of full-threshold (multi-key) FHE with a polynomial
modulus. It seems plausible that their construction can also be extended to
build t-out-of-n threshold FHE with polynomial modulus; however, their tech-
niques are very complex, due to a non-black-box “round-collapsing” technique
based on garbled circuits, so unlikely to be practical. We thus started our work
asking the following research question:

Is it possible to construct a fully homomorphic encryption scheme that
supports a simple t-out-of-n threshold decryption while allowing for a poly-
nomial modulus?
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Our Results. We give a positive answer to this question. On a high
level, we show that the simple threshold decryption technique from previous
works [BD10,Bon+18] can be significantly improved by replacing the noise flood-
ing analysis with respect to the statistical distance by one with respect to the
Rényi divergence (RD). Doing so comes with the benefit of only requiring a
polynomial ratio between ciphertext noise and flooding noise, hence allowing
for the desired polynomial modulus. However, it comes with several additional
challenges. First, the Rényi divergence fits well in search-based security notions,
such as OW-CPA security2, but does not work well with decision-based security
notions, such as the standard IND-CPA security.3 Furthermore, it is especially
difficult to apply the Rényi divergence to obtain simulation-based security, as
required for typical notions of threshold decryption, since a small RD between
two distributions does not imply a small statistical distance.

To overcome these challenges, we define new game-based notions of OW-CPA
and IND-CPA security for threshold homomorphic cryptosystems, which are com-
patible with Rényi divergence-based proofs, whilst also giving desirable security
guarantees for applications. Then, we give general transformations from OW-CPA
to IND-CPA security for ThPKE and ThFHE schemes, and finally also show how to
construct OW-CPA schemes based on the (module) LWE assumption with a poly-
nomial modulus. For our transformation to go through, we also need the OW-CPA
scheme to be circuit private; while this property is often achieved using noise
flooding techniques that require a large modulus, it is also possible to use boot-
strapping [DS16] or GSW-style FHE [Bou+16] to obtain circuit privacy with a
polynomial modulus.

Put together, these techniques lead to our main result of ThFHE from (mod-
ule) LWE with a polynomial modulus. More precisely, in our construction the
modulus q scales as O(

√
�), where � is the number of partial decryption queries

made by an adversary within the security game, so q is polynomial as long as �
is polynomially-bounded in advance.

What About IND-CCA Security? We could likely upgrade our construction
(for PKE) to be IND-CCA secure using non-interactive zero-knowledge proofs,
similarly to [Dev+21a]. However, note that (adaptive) IND-CCA security is
not possible for homomorphic encryption, and IND-CPA is still useful for stan-
dard PKE; indeed, [HV22] showed that an IND-CPA secure KEM suffices to prove
security of TLS-1.3. Furthermore, when running TLS with ephemeral keys and
no key re-use, the adversary only ever sees a single ciphertext under any public
key—this is an ideal use-case for using our ThPKE construction in a threshold
post-quantum TLS setting (e.g. for hardening security of a TLS server), since
we only need to choose the parameters to be secure against a single decryption
query.

2 OW-CPA security for PKE roughly says that given the public key and an encryption
of a random message m, it is hard to guess m.

3 Unless a property called public sampleability is fulfilled [Bai+18].
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1.1 Overview of Techniques

Defining IND-CPA security for ThFHE (Sect. 3). Most of the previous IND-CPA
security definitions of ThFHE required the underlying FHE scheme to be IND-CPA
secure and the partial decryptions to be statistically simulatable, e.g. [Bon+18].
When replacing the statistical distance by the Rényi divergence, however, we can-
not prove the statistical simulation anymore and instead have to move to a game-
based notion that combines the IND-CPA game and the partial decryption queries
together into one single game. Here, to support homomorphic computations, we
consider a game where in each partial decryption query, first some homomorphic
evaluation is performed on a set of ciphertexts, before giving decryptions of the
result to the adversary. When and how the adversary gets access to the partial
decryption oracle within the IND-CPA game crucially impacts the strength of
the achieved security. For example, one can allow the adversary to only query
partial decryptions before seeing the challenge ciphertext. This was done in a
previous version of ThFHE [Cho+22a], which also uses a Rényi divergence based
analysis. A more realistic setting, which has first been defined in [JRS17] and
is now used in the updated version of [Cho+22b], is to allow the adversary to
query partial decryptions even after having seen the challenge ciphertext and
to allow queries that involve the challenge ciphertext. Note that [JRS17] split
the IND-CPA game into sequential phases, where the adversary first sends all
messages to be encrypted at once and in a second phase sends all circuits to
be evaluated and then partially decrypted, again at once. We strengthen the
security notion by giving the adversary adaptive access to both the encryp-
tion and the partial decryption oracles simultaneously. Of course, to prohibit
trivial attacks, the partial decryption oracle refuses to answer to queries which
would directly leak which message has been encrypted when computing the chal-
lenge ciphertext. This flavour of security notion, while lacking simulation-based
security, still offers a strong guarantee in the form of input indistinguishability :
given partial decryptions for an evaluation f(x1, x2), where x1 is known to the
adversary and x2 is hidden, our security game implies that the adversary can-
not distinguish whether the input x2 was used, or some other input x′

2 such
that f(x1, x2) = f(x1, x

′
2). Similar notions have been used in secure multi-party

computation [MPR06,CPP16].
To further motivate our definition, we highlight that allowing partial decryp-

tion queries that involve the challenge ciphertext is critical to achieving a mean-
ingful notion of security. In a typical use-case, the goal of using ThFHE is to
compute some function f(x1, . . . , xn), the result of which only reveals a small
amount of information compared to the inputs xi. However, in a security game
it is always the challenge ciphertext that contains the hidden information, so
disallowing this in partial decryption queries does not capture the desired goals.
Indeed, consider the following ThFHE scheme that is obviously insecure in this
setting: firstly, modify the evaluation algorithm to output not only an encryp-
tion of f(x1, . . . , xn), but also the encryption of x1; secondly, modify the par-
tial decryption algorithm to also output partial decryptions for x1. Given a set
of partial decryptions for f(x1, . . . , xn), the parties will also learn x1 which is
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exactly what we want to avoid. Going back to the definition of IND-CPA security
for ThFHE, as the security game of [Cho+22b] only allows for partial decryp-
tion queries before seeing the challenge ciphertext, the above obviously insecure
construction could actually be shown secure using their definition.

Defining OW-CPA Security for ThFHE (Sect. 3). As mentioned above, the Rényi
divergence is hard to use in the context of decision-based security notions, such
as IND-CPA. We give some intuition on why this is the case in the following. The
probability preservation property of RD allows us to reason about the probability
of a bad event happening in two different games. Roughly speaking, this says
that if D1,D2 are distributions such that the Rényi divergence of D1 from D2 is
at most δ, then for any event E, it holds that Pr[D1(E)] ≤ (Pr[D2(E)] · δ)c, for
some constant c close to 1. If the event E occurs with negligible probability in
game D2, then we can get by with a polynomial-sized δ to argue the same holds
in D1. However, this is inherently hard to make use of in distinguishing games
like IND-CPA, where probabilities of winning are close to 1/2.

Instead of IND-CPA security, therefore we first aim for OW-CPA security,
which is easier to prove with the Rényi divergence. When defining OW-CPA in the
(fully homomorphic) threshold setting, the main changes are that the adversary
also obtains t shares of the secret key and has access to a bounded number of
partial decryption queries. In order to avoid trivial attacks, the partial decryption
oracle refuses to answer to queries which would leak too much information on the
challenge messages which the adversary tries to recover. As a measurement of
too much information we use conditional min-entropy [Dod+08]. In other words,
the oracle only answers to queries if the min-entropy of the challenge message
conditioned on all the previously queried circuits and circuit evaluations is not
much smaller then the original min-entropy of the challenge message.

Constructing Full-Threshold OW-CPA-Secure ThFHE (Sect. 5). To simplify the
presentation in the introduction, we first describe our construction in the full-
threshold setting and then explain how to get t-out-of-n threshold. As a starting
point, we take any encryption scheme whose decryption function is nearly linear,
as is the case for most LWE-based encryption schemes (including FHE). That is,
for a given ciphertext ct on a message m with respect to a key pair (sk, pk), it
holds that 〈sk, ct〉 = m+ ect, where ect is what we earlier called decryption noise
and depends on the ciphertext and the secret key.4

To achieve threshold decryption, we use standard additive secret sharing to
split the secret key into sk1, . . . , skn in a setup phase. By linearity, we could
simply set the partial decryption shares as d̃i = 〈ct, ski〉. However, after sum-
ming all shares together, the parties recover ect, which leaks information on sk.
As in previous threshold solutions for lattice-based schemes, to compute their
decryption share di every party now locally adds to d̃i a noise term ei which is
sampled from the noise flooding distribution Dflood. When summing those partial
decryption shares together, the parties learn m + ect +

∑n
i=1 ei.

4 Actually, it only reveals an encoding of m, which is easy to decode as long as param-
eters are set accordingly.
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To prove the OW-CPA security of our construction, we modify the security
experiment such that in a first step, the answers to the partial decryption queries
no longer depend on the underlying secret key sk (reflected by ect), and in a sec-
ond step the secret key shares are also independent of sk. In this case, OW-CPA
security of the threshold scheme is implied by the OW-CPA security of the under-
lying standard encryption scheme. We simulate the partial decryption noise
term ect +

∑n
i=1 ei by sampling some independent noise e′ ← Dsim. As long

as the Rényi divergence between the two noise distributions is bounded by a
constant, we can appeal to the probability preservation property, and the neg-
ligible probability of some PPT adversary guessing the message is preserved in
both games. Note that previous works always chose Dsim = Dflood, but we later
exploit in Sect. 6 that choosing a different Dsim can lead to better parameters.

From Full-Threshold to t-Out-of -n Threshold (Sect. 5). When moving to the t-
out-of-n setting, a natural choice is to use Shamir secret sharing. However, this
leads to the problem that reconstruction is no longer addition, and instead
requires multiplying the partial decryptions with Lagrange interpolation coeffi-
cients. These coefficients may be large, which in turn blows up the noise, breaking
correctness. We offer two different solutions to this issue.

First, as in [Bon+18], we can use a special type of linear secret sharing scheme
with binary coefficients, so that reconstruction is always a simple sum. Efficient
threshold schemes with this property exist, for any n, t. We also consider a sec-
ond method based on pseudorandom secret sharing [CDI05], which allows the
parties to generate sharings of bounded, pseudorandom values without interac-
tion. This uses replicated secret sharing, which is more expensive, but on the
other hand, allows the partial decryptions to be converted into Shamir sharings
before reconstruction. This leads to smaller partial decryptions, slightly better
parameters and gives a form of robustness via Shamir error correction.

The high level idea is to encrypt a message m of δ bits, is to sample a
random message x and to encrypt it using the OW-CPA-secure scheme. Then,
the message bits are hidden by δ hard-core bits coming from a concatenation of δ
Goldreich-Levin extractors. We use the notion of unpredictable entropy [HLR07]
to give a bound on how many pseudorandom bits can be extracted from this
construction. We say that a message x has unpredictability entropy k if for
any PPT adversary A the probability of finding x given Enc(pk, x) is at most 2−k.
We can then use existing results that show that a concatenation of δ Goldreich-
Levin extractors can be used to extract k − O(log(1/ε)) pseudorandom bits,
where ε is the desired distinguishing advantage. Those pseudorandom bits then
allow us to encrypt a message such that the ciphertexts of two given messages
are computationally indistinguishable.

To prove this construction IND-CPA secure, we additionally need to assume
circuit privacy of the underlying OW-CPA secure FHE scheme. Intuitively, this
is necessary because the IND-CPA security definition says that an adversary
should not be able to distinguish between the partial decryptions of a ciphertext
encrypting f(x1, x2) and those for a ciphertext encrypting f(x1, x

′
2) for some

x′
2 �= x2 where f(x1, x2) = f(x1, x

′
2). If, for instance, x′

2 = x2 ⊕ 1, this is equiva-
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lent to distinguishing between ciphertexts for f(x1, x2) and g(x1, x2), where the
function g is defined as g(x, y) = f(x, y⊕1). This can be seen as a circuit privacy
problem, thus, intuitively, it seems that some form of circuit privacy is necessary
to build IND-CPA-secure FHE.

Sample Parameters and Security Analysis (Sect. 6). We conclude our work by
discussing how to choose concrete sample parameters for our threshold PKE
scheme, when instantiating it with the lattice-based scheme Kyber [Sch+20].

As an example, to obtain 1-out-of-2 threshold decryption with a single query
(e.g. for ephemeral key exchange), we can use the same parameters as Kyber1024
with a modulus increased only by a factor of 5, while supporting > 100 bits of
classical hardness from our reduction. In a setting with up to 232 queries, we
need to use a 39-bit modulus and slightly larger module rank; this increases the
ciphertext size by around 5x.

1.2 Related Work

Similarly to our work, [Cho+22b] used the Rényi divergence to obtain thresh-
old FHE from LWE with a polynomial modulus-to-noise ratio. By arguing
that the public sampleability property applies in their setting, they directly
used the Rényi divergence to prove IND-CPA security. However, their definition
of IND-CPA security is weaker than ours with respect to several aspects: First,
they only allow for static access to the different queries, e.g., the adversary has
to send the full list of circuits to the partial decryption oracle at once. In our
case, those queries are adaptive, i.e., the adversary can adapt their next query to
the partial decryption oracle based on the outcome of the previous query. Sec-
ond, their adversary has to query challenge encryptions before querying partial
decryptions. Moreover, their work focuses on a specific construction of ThFHE
based on Torus-FHE, whereas our results are phrased generically for all encryp-
tion schemes with nearly linear decryption. Lastly, they focus on linear integer
secret sharing schemes, whereas we additionally propose pseudorandom secret
sharing and different ways of achieving robustness.

The Rényi divergence has seen widespread use in security proofs in lattice-
based cryptography, since [Bai+18]. Replacing statistical noise flooding by Rényi
noise flooding has led to a significant improvement in parameters for security
reductions, for instance when proving the hardness of (structured) LWE with
a binary secret [Bou+20], when designing multi-key FHE [DWF22], or more
recently, in the context of lattice-based threshold signatures [ASY22]. The lat-
ter work of [ASY22] is quite similar to ours, since they also apply Rényi noise
flooding to threshold FHE; however, they do not directly prove security of the
threshold FHE scheme, and instead analyze the resulting threshold signature
scheme directly (which is based on a search problem, so amenable to a Rényi
divergence analysis). They additionally show the optimality of their noise flood-
ing by providing an attack when a smaller noise flooding ratio is used. As the
attack uses that their signature scheme is deterministic, it does not directly apply
to our randomized encryption scheme. Previous works [Dev+21b,Nae+20] have
already observed that OW-CPA allows to bypass the issues caused by the Rényi
divergence. However, both are in the PKE setting, whereas our work focused
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on the FHE setting. This required some care: it is not straightforward to define
a OW-CPA notion in the fully-homomorphic setting and the standard transfor-
mation used in [Dev+21b,Nae+20] to lift one-way security to indistinguishability
is not suited for the fully-homomorphic setting neither.

In an independent line of work, another noise flooding technique, called
gentle noise flooding, has been studied in order to avoid the superpolynomial
parameter blow-up [BD20a]. It was first used in theoretical hardness results on
entropic (structured) LWE [BD20a,BD20b]. Later, a similar technique was used
in [Cas+22] for improving parameters in additively homomorphic encryption
with circuit privacy. The setting of [Cas+22] is quite different to ours, however,
since with circuit privacy, the challenge is to deal with leakage on a plaintext
rather than the secret key. This is handled via gentle noise flooding by applying
a randomized encoding to the plaintext, so that leaking a constant fraction of its
coordinates does not reveal anything about the plaintext. A similar technique
does not seem to work in the threshold setting, with leakage on the secret key.

From a high level perspective, our notion of IND-CPA security has some
similarities to the notion of IND-CPAD security introduced in [LM21] in the
context of approximate FHE. For instance, partial decryption queries in our
setting correspond to decryption queries in their setting. Our security notion
further matches with the game-based input-indistinguishability notion in the
context of secure multi-party computation from [MPR06,CPP16], when realizing
the latter with the help of ThFHE.

Another approach to build threshold key generation and decryption protocols
is to use general multi-party computation tools like garbled circuits. This was
done in [Kra+19] for a Ring-LWE based scheme. Their solution does not need
any noise flooding or increased parameters of the underlying scheme, however,
it relies on generic multi-party computation techniques like garbled circuits,
and the partial decryption shares are generated using an expensive, interactive
protocol rather than non-interactively as in our setting.

2 Preliminaries

For any positive integer q, we denote by Zq the integers modulo q and for any
positive integer n, we denote by [n] the set {1, . . . , n}. Vectors are denoted in bold
lowercase and matrices in bold capital letters. The identity matrix of order m
is denoted by Im. The concatenation of two matrices A and B with the same
number of rows is denoted by [A|B]. The abbreviation PPT stands for proba-
bilistic polynomial-time. When we split a PPT adversary A in several sub algo-
rithms (Ai)i, we implicitly assume that Ai outputs a state that is passed to the
next Ai+1. We call a function negl(·) negligible in λ if negl(λ) = λ−ω(1), i.e., it
decreases faster towards 0 than the inverse of any polynomial.

Throughout the paper we make use of the random oracle model (ROM), where
we assume the existence of perfectly random functions, realized by oracles. For
a random oracle F : {0, 1}n → {0, 1}m it holds that Pr[F(x) = y] = 2−m and
that Pr[F(x) = F(x′) = y : x �= x′] = Pr[F(x) = y] ·Pr[F(x′) = y] = 2−2m. Hence,
random oracles are per definition collision resistant. For x, y ∈ {0, 1}n we denote
by x ⊕ y the bit-wise XOR operator.
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2.1 Probability and Entropy

For a finite set S, we denote its cardinality by |S| and the uniform distribution
over S by U(S). The operation of sampling an element x ∈ S according to a
distribution D over S is denoted by x ← D, where the set S is implicit.

For standard deviation σ > 0 and mean c ∈ R, we define the continuous
Gaussian distribution Dσ,c : R → (0, 1] by Dσ,c(x) = 1/(σ

√
2π) · exp(−(x −

c)2/(2σ2)). We also define the rounded Gaussian distribution over Z, by rounding
the result to the nearest integer, and denote this by �Dσ,c�.

A random variable X over R is called τ -subgaussian for some τ > 0 if for
all s it holds E[exp(sX)] ≤ exp(τ2s2/2). A τ -subgaussian random variable sat-
isfies E[X] = 0 and E[X2] ≤ τ2. We associate to X the width σ =

√
E[X2].

The continuous Gaussian distribution Dσ and its rounded version �Dσ� are σ-
subgaussian. Further, the uniform distribution over [−a, a]∩ Z is a-subgaussian.

The statistical distance between two probability distributions X and Y ,
denoted by sdist(X,Y ), is defined as maxT |Pr[T (X) = 1] − Pr[T (Y ) = 1]|,
where T is any test function. The computational distance with respect to size s
circuits, denoted by cdists(X,Y ), limits T to be any circuit of size s. For
any event E, the probability preservation property of sdist (resp. cdists) states
that X(E) ≤ Y (E) + sdist(X,Y ) (resp. X(E) ≤ Y (E) + cdists(X,Y )).

The notion of unpredictable entropy has been introduced and studied
in [HLR07] in the context of conditional computational entropy.

Definition 1 (Unpredictable Entropy). For a distribution (X,Z), we say
that X has unpredictable entropy at least k conditioned on Z, if there exists
a collection of distributions YZ (giving rise to a joint distribution (Y,Z)) such
that cdists((X,Z), (Y,Z)) ≤ ε, and for all circuits C of size s,

Pr[C(Z) = Y ] ≤ 2−k.

We write Hunp
ε,s (X|Z) ≥ k.

Definition 2 (Concatenated Goldreich-Levin Extractor). Fix n, δ ∈ N.
We define the concatenated Goldreich-Levin extractor E : {0, 1}n × ({0, 1}n)δ →
{0, 1}δ × ({0, 1}n)δ as

E(x, s1, . . . , sδ) := (〈x, s1〉 mod 2, . . . , 〈x, sδ〉 mod 2, s1, . . . , sδ).

By analyzing a reconstruction property of the Goldreich-Levin extractor and
applying a result of [HLR07], we get the following concrete bound on the number
of pseudorandom bits that can be extracted.

Lemma 1 ([HLR07], Lemma 6). Let X be a distribution with unpredictable
entropy Hunp

ε,s (X|Z) ≥ k and let E be the concatenated Goldreich-Levin extractor
for some n, δ ∈ N. If k = δ+log2 2n+3 log2 1/ε, then E extracts δ pseudorandom
bits, i.e.,

cdists′
(
(Z, E(X,U({0, 1}nδ))), (Z,U({0, 1}δ × {0, 1}nδ))

) ≤ 5δε,

where s′ = O(sn−3ε4).
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Let x follow a distribution on a set X, and z follow a possibly correlated
distribution on a set Z. The average conditional min-entropy [Dod+08] of x
given z is defined by

H̃∞(x|z) = − log2

(
Ez′

[
max
x′∈X

Pr[x = x′|z = z′]
])

.

Lemma 2 ([Dod+08], Lem. 2.2). Let x,y, z be three random variables,
where z takes at most 2λ values. Then

H̃∞(x|y, z) ≥ H̃∞(x|y) − λ.

The Rényi divergence (RD) defines an alternative measure of distribution
closeness. We follow [Bai+18] and use a definition of the RD which is the expo-
nential of the classical definition. We restrict the order a to be in (1,∞).

Definition 3 (Rényi Divergence). Let P and Q be two discrete probability
distributions such that Supp(P ) ⊆ Supp(Q). For a ∈ (1,∞) the Rényi diver-
gence of order a is defined by

RDa(P,Q) =

⎛

⎝
∑

x∈Supp(P )

P (x)a

Q(x)a−1

⎞

⎠

1
a−1

.

The definitions are extended in the natural way to continuous distributions.
We recall some useful properties of the RD. The first two were proven in [EH14]
and the last one was proven in [Ros20, Prop. 2].

Lemma 3. Let P,Q be two discrete probability distributions with Supp(P ) ⊆
Supp(Q). For a ∈ (1,∞), it yields:

Data Processing Inequality: RDa(g(P )‖g(Q)) ≤ RDa(P‖Q) for any func-
tion g, where g(P ) (resp. g(Q)) denotes the distribution of g(y) induced by
sampling y ← P (resp. y ← Q).

Probability Preservation: Let E ⊂ Supp(Q) be an event, then for a ∈ (1,∞)

Q(E) · RDa(P‖Q) ≥ P (E)
a

a−1 .

Multiplicativity: Let P,Q be two probability distributions of a pair of random
variables (Y1, Y2). For i ∈ {1, 2}, let Pi (resp. Qi) denote the marginal dis-
tribution of Yi under P (resp. Q), and let P2|1(·|y1) (resp. Q2|1(·|y1)) denote
the conditional distribution of Y2 given that Y1 = y1. Then for a ∈ (1,∞)

RDa(P‖Q) ≤ RDa(P1‖Q1) · max
y1∈Y1

RDa(P2|1(·|y1)‖Q2|1(·|y1)).

The Rényi divergence of two shifted Gaussians is given below. This also allows
us to bound the RD of rounded Gaussians by the data processing inequality.
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Lemma 4 ([GAL13]). Let σ be a positive real number and c ∈ Z. Then for a ∈
(1,∞) it yields

RDa(Dσ,c‖Dσ) = exp
(

ac2

2σ2

)
.

We provide the proof of the following lemma in the full version [BS23, Sec. 2].

Lemma 5. Let D1,D2 be two probability distributions over Z and e1, . . . , eN be
(possibly dependent) random variables over Z ∩ [−B,B] for some B ∈ Z, for
which there exist a ∈ (1,∞) and ρ ≥ 1 such that for all β with |β| ≤ B, it holds
that Supp(D1 + β) ⊆ Supp(D2), and furthermore, RDa(D1 + β‖D2) ≤ ρ. Then,

RDa((D1 + eN , . . . , D1 + e1)‖DN
2 ) ≤ ρN .

2.2 Linear Secret Sharing

We use linear secret sharing schemes (LSSS) for monotone access structures with
a special {0, 1}-reconstruction property, as follows.

Definition 4 (Monotone Access Structure). Let P = {P1, . . . , Pn} be a set
of parties and 2P its power set. A monotone access structure is a collection of
sets A ⊂ 2P , such that for any S ∈ A, if T ⊃ S then T ∈ A. We say that A is
efficient if membership of A can be verified in time poly(λ), where A is viewed
as a function of λ.

In this work, we only consider efficient access structures. To ease notation,
we identify a party Pi with its index i, viewing each set S ∈ A as a subset of [n].
For any S ⊂ [n] and vector v = (v1, . . . ,vn), we let v|S denote the vector of
shares restricted to vi for indices i ∈ S.

Definition 5 (Linear Secret Sharing Scheme). Let q, L, n be positive inte-
gers and A a monotone access structure. A linear secret sharing scheme LSSS
for A is defined by a randomized algorithm Share : Zq → (ZL

q )
n and a family of

deterministic algorithms RecS : (ZL
q )

|S| → Zq, for S ⊆ [n], which satisfy:

Privacy: For any set S /∈ A, any x, x′ ∈ Zq and v ∈ Z
L|S|
q , it holds

that Pr[Share(x)|S = v] = Pr[Share(x′)|S = v].
Reconstruction: For any set S ∈ A, any x ∈ Zq and v = Share(x), the recon-

struction algorithm outputs RecS(v|S) = x.
Linearity: For any α, β ∈ Zq, any set S with |S| > t and any share vectors u,v,

it holds that RecS(αu|S + βv|S) = αRecS(u|S) + βRec(v|S).
When the set of shares is S = [n], we write Rec instead of Rec[n].

We need the following notion of valid and invalid share sets [Bon+18].

Definition 6. Let x ∈ Zq, (v1, . . . ,vn) = Share(x), and write vi =
(vi,1, . . . ,vi,L). A set of pairs of indices T ⊆ [n] × [L] is an invalid set of share
elements if the corresponding shares (vi,j)(i,j)∈T reveal no information about x.
Otherwise, we say that T is a valid set of share elements. We additionally say:
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– T ⊆ [n] × [L] is a maximal invalid set of share elements if it is invalid, but
for any (i, j) ∈ [n]× [L]\T , the set T ∪{(i, j)} is a valid set of share elements.

– T ⊆ [n] × [L] is a minimal valid set of share elements if it is valid, but for
any T ′

� T , the set T ′ is an invalid set of share elements.

Note that in any LSSS, a valid set as defined above always allows reconstruc-
tion of the secret x. This is because an LSSS can equivalently be defined by a
matrix M , such that each share element vi,j is computed as the inner product of
some row of M and (x, r1, . . . , rn−1), where r is the randomness used in Share.
Reconstruction is possible for a given set of share elements iff the corresponding
set of rows of M span the target vector (1, 0, . . . , 0). This definition implies that
any set of rows is either invalid—and reveals nothing about x—or valid, and
allows full reconstruction. For further details, see e.g. [Bei96, Chapter 4].

Our main construction requires that the reconstruction function RecS takes
a 0/1 combination of its inputs. In the following, we require this to hold not
only for any set of shares corresponding to a valid set of parties in A, but for
any valid set of share elements. This property is equivalent to the notion of a
derived {0, 1}-LSSS, used in [JRS17].5

Definition 7 (Strong {0, 1}-Reconstruction). We say that a LSSS has
strong {0,1}-reconstruction if for any secret x and (v1, . . . ,vn) = Share(x), for
any valid set of share elements T ⊆ [n] × [L], there exists a subset T ′ ⊆ T such
that

∑
(i,j)∈T ′ vi,j = x, where vi = (vi,1, . . . ,vi,L).

Sharing Values in Rq . In our constructions, we share x ∈ Rr
q, where Rq =

Zq[X]/f(X), instead of just in Zq. We do this coefficient-wise, by separately
sharing each coefficient of the r polynomials in x. Each party’s share then lies
in (Rr

q)
L, and the parties can perform Rq-linear operations on these shares.

Example Linear Secret Sharing Schemes. In Table 1, we detail a few example
secret sharing schemes we consider. The schemes are for t-out-of-n access struc-
tures, where any t + 1 parties can reconstruct, and they all have strong {0, 1}-
reconstruction. In the table, we show two quantities τmax, τmin, which are relevant
for choosing parameters in our constructions of Sect. 5 and we will refer to later.
By τmax we denote the size of the smallest maximal invalid set of share elements,
while τmin is the size of the largest minimal valid set of share elements.

5 [Bon+18] only assumed a weaker property for their threshold FHE construc-
tion. However, this is a mistake introduced when merging the two works [JRS17]
and [Bon+17] (and has been confirmed by the authors of [JRS17]).
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Table 1. Example t-out-of-n linear secret sharing schemes with strong {0, 1}-
reconstruction. Details for the last row are omitted, due to their complexity.

Scheme Sharing method Pi’s share L τmax τmin

Additive x =
n∑

i=1

xi xi 1 n − 1 n

Replicated x =
∑

A,|A|=t

xA {xA}i/∈A

(
n−1

t

)
(n − t)(

(
n
t

) − 1)
(

n
t

)

Naive x =
∑

i∈A

xA,i, |A| = t + 1 {xA,i}i∈A

(
n−1

t

)
t
(

n
t+1

)
t + 1

Monotone Boolean formula for threshold fn. [Val84] O(n4.3) O(n5.3) O(n5.3)

2.3 Learning with Errors

In the following, we recall the definitions of the decision (module) LWE
problem [Reg05,LS15], formulated with a bounded uniform secret and noise.
Let Rq = Zq[X]/f(X) for some irreducible f(X) of degree d. Further, we
define Sβ = {a ∈ R : ‖a‖∞ ≤ β} with β ∈ N.

Definition 8 (M-LWE). Let m, r, β, q ∈ N. The Module Learning With Errors
problem M-LWEq,m,r,β is defined as follows. Given A ← U(Rm×r

q ) and t ∈ Rm
q .

Decide whether t ← U(Rm
q ) or if t = [A|Im] · s, where s ← U(Sm+r

β ).

The special case of d = 1, where the ring R is isomorphic to Z, is simply
denoted LWE (and is historically the one that has been introduced first).

3 Threshold Fully Homomorphic Encryption

3.1 Syntax and Basic Properties of Threshold FHE/PKE

We first recall the syntax of a fully homomorphic threshold public key encryption
scheme. We implicitly assume that after Setup, all algorithms are given the
public parameters as input. We omit the partial verification algorithm used in
previous works (e.g., [BBH06]), which was only used to model stronger notions
of robustness that also capture CCA attacks.

Definition 9 (ThFHE). A fully homomorphic threshold public key encryption
scheme (ThFHE) for a message space M and circuits of depth κ is a tuple of PPT
algorithms ThFHE = (Setup,Enc,Eval,PartDec,Combine) defined as follows:

Setup(1λ, 1κ, n, t) → (pp, pk, sk1, . . . , skn): On input the security parameter λ, a
bound on the circuit depth κ, the number of parties n and a threshold value t ∈
{1, . . . , n − 1}, the setup algorithm outputs the public parameters pp, a public
key pk and a set of secret key shares sk1, . . . , skn.

Enc(pk,m) → ct: On input the public key pk and a message m ∈ M, the encryp-
tion algorithm outputs a ciphertext ct.



384 K. Boudgoust and P. Scholl

Eval(pk, C, ct1, . . . , ctk) → ct: On input the public key pk, a circuit C : Mk →
M of depth at most κ and a set of ciphertexts ct1, . . . , ctk, the evaluation
algorithm outputs a ciphertext ct.

PartDec(ski, ct) → di: On input a key share ski for some i ∈ [n] and a cipher-
text ct, the partial decryption algorithm outputs a partial decryption share di.

Combine({di}i∈S , ct) → m′: On input a set of decryption shares {di}i∈S and a
ciphertext ct, where S ⊂ [n] is of size at least t + 1, the combining algorithm
outputs a message m′ ∈ M ∪ {⊥}.
The above can be seen as a generalization encompassing non-threshold and

threshold PKE and FHE.

Definition 10 (ThPKE). A threshold public key encryption scheme (ThPKE)
for a message space M is a ThFHE scheme, where k = 1 and the only allowed
circuit C : M → M is the identity. In this case, we drop the trivial evaluation
algorithm Eval and the parameter κ in the scheme’s specifications.

Definition 11 (FHE). A fully homomorphic public key encryption scheme
(FHE) for a message space M is a ThFHE scheme, where n = 1. In this case, we
drop the parameters n and t in the scheme’s specifications. To simplify notations,
we merge PartDec and Combine into one single algorithm that we denote Dec.
Hence, the algorithm Dec takes sk and ct as input and outputs m′ ∈ {M∪{⊥}}.

We require compactness and correctness, whose definitions we recall in
the full version [BS23, App. A]. There, we also define two notions of robust-
ness [BS23, Sec. 3.2].

In Sect. 4, we also need FHE schemes which are circuit private, defined below.
This can be instantiated under LWE with a polynomial modulus [DS16].

Definition 12 (Circuit Privacy). Let s, ε > 0. A ThFHE scheme with mes-
sage space M and maximal circuit depth κ fulfills (s, ε)-circuit privacy if for
every circuit C of depth at most κ it yields

cdists
(
((ski)i∈n,Eval(pk, C, ct1, . . . , ctk)), ((ski)i∈[n],Enc(pk, C(m1, . . . , mk))

) ≤ ε,

where mi ∈ M and cti ← Enc(pk,mi) for all i ∈ [k] and for honestly generated
keys (pk, sk1, . . . , skn).

3.2 One-Wayness

We now present our definition of OW-CPA security for ThFHE schemes.
The high level idea of the security game is the following. At the beginning,

the adversary decides on the parties they want to corrupt and receives the corre-
sponding secret key shares. We call this the static corruption setting. Then the
adversary has access to three different oracles. The first, OEnc, allows them to
obtain honestly generated, fresh ciphertexts on messages of their choice. Through
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the second oracle, OChallEnc, the adversary obtains encryptions of unknown,
randomly chosen messages, which we call the challenge messages and challenge
ciphertexts. Finally, they can query up to � times the last oracle, OPartDec,
by inputting a circuit and a list of indices referring to previous encryption and
challenge encryption queries, and receiving the corresponding partial decryption
shares of all parties (after the evaluation algorithm has been applied). However,
the partial decryption oracle aborts if for one of the challenge messages the con-
ditional min-entropy has decreased more than an allowed amount ν, after having
learned the circuit evaluation. Note that we do not condition the information-
theoretical min-entropy on ChallCT as it uniquely defines ChallM. Implicitly,
we assume that the entropy condition can be efficiently verified for the circuits
input to OPartDec. One way to practically implement this, is to ask the adver-
sary to input an algorithm which verifies the entropy condition when querying
the oracle. We stress that in the transformation of Sect. 4 we only query circuits
for which the entropy condition can be checked efficiently. To highlight the query
bound � and the entropy loss bound ν, we write (�, ν)-OW-CPA.

Definition 13 ((�, ν)-OW-CPA for ThFHE). We call a ThFHE scheme (�, ν)-
OW-CPA secure for the security parameter λ, the circuit depth bound κ, the
threshold parameters n, t, the query bound � and the entropy bound ν, if for
all PPT adversaries A = (A1,A2)

Adv
(	,ν)-OW-CPA
ThFHE (A) := Pr[Expt(	,ν)-OW-CPA

A,ThFHE (1λ, 1κ, n, t) = 1] = negl(λ) ,

where Expt
(	,ν)-OW-CPA
A,ThFHE is the experiment in Fig. 1 with ctr = 0, idx = 0 and L = ∅

at the beginning.

3.3 Indistinguishability

In the following, we present our definition of IND-CPA security for ThFHE.
As for the OW-CPA security, we allow for static corruptions and access to

three different oracles. The first, OEnc, is the same as in the OW-CPA game. To
the second oracle, OChallEnc, the adversary inputs two messages and obtains the
encryption of one of it. Finally, they can again query up to � times OPartDec, by
inputting a circuit and a list of indices and receiving the corresponding partial
decryption shares of all parties. This time, the partial decryption oracle aborts
if the circuit evaluates to different values on the corresponding input messages
to the OChallEnc oracle. To highlight the query bound �, we write �-IND-CPA.

By allowing adaptive access to all three oracles, our definition can be seen as
a strengthening of Definition 14 in [JRS17].

Definition 14 (�-IND-CPA for ThFHE). We call a ThFHE scheme �-IND-CPA
secure for the security parameter λ, the circuit depth bound κ, the threshold
parameters n, t and the query bound �, if for all PPT adversaries A = (A1,A2)

Adv	-IND-CPA
ThFHE (A) :=

∣
∣
∣
∣Pr[Expt

	-IND-CPA
A,ThFHE (1λ, 1κ, n, t) = 1] − 1

2

∣
∣
∣
∣ = negl(λ) ,
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Fig. 1. Experiments for (�, ν)-OW-CPA security of ThFHE schemes.

where Expt	-IND-CPA
A,ThFHE is the experiment in Fig. 2 with ctr = 0 and L = ∅ at the

beginning.
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Fig. 2. Experiments for �-IND-CPA security of ThFHE schemes.

4 From One-Wayness to Indistinguishability

In the following, we describe a generic way of transforming a OW-CPA
secure ThFHE scheme into an IND-CPA secure one in the standard model, via
hardcore bits.

The Construction. The transformation is parameterized by δ, γ ∈ N. Given
ThFHE = (Setup,Enc,Eval,PartDec,Combine) with message space M =
{0, 1}γ being OW-CPA secure, we define ThFHE′ = (Setup′,Enc′,Eval′,
PartDec′,Combine′) with message space M′ = {0, 1}δ, which fulfills IND-CPA
security, as follows.

Setup′: On input (1λ, 1κ, n, t), it outputs (pp, pk, sk1, . . . , skn) ←
Setup(1λ, 1κ, n, t).
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Enc′: On input (pk,m) with m = (mj)j∈[δ] ∈ M′, it samples x ← U(M) and
computes c0 ← Enc(pk, x). For j ∈ [δ], it samples sj ← U(M) and com-
putes cj = 〈x, sj〉 + mj mod 2. It outputs ct = (c0, s1, . . . , sδ, c1, . . . , cδ).

Eval′: On input I := (pk, C, ct1, . . . , ctk), where cti = (ci0, si1, . . . , siδ, ci1, . . . , ciδ)
such that ci0 ← Enc(pk, xi) for i ∈ [k] and C : (M′)k → M′, it first defines a
circuit C̃ : (M)k → M as follows:

– C̃ takes as input (x1, . . . , xk) and has the information I hard-coded
– It computes mij = cij + 〈xi, sij〉 mod 2, for j ∈ [δ] and i ∈ [k]
– It outputs C(m1, . . . ,mk), where mi = (mij)j∈[δ]

It then outputs ct′ = Eval(pk, C̃, c10, . . . , ck0).
PartDec′: On input (ski, ct

′), it outputs di = PartDec(ski, ct
′).

Combine′: On input ({di}i∈S , ct′), it outputs m = Combine({di}i∈S , ct′).

Ciphertext Expansion. The ratio between the bit size of the plaintext and the
ciphertext is give by

|ct|
|m| =

|c0| + δ(γ + 1)
δ

,

where c0 is the OW-CPA ciphertext encrypting γ bits coming from ThFHE. We
can see that with larger δ the ciphertext expansion gets better.

We prove compactness and decryption correctness in the full version [BS23,
App. B].

Remark 1. One way to reduce the size of the ciphertext to |c0|+γ+δ (and hence
to improve the ciphertext expansion) is to replace the δ random seeds s1, . . . , sδ

by one single seed and a random oracle F. More precisely, one could define sj :=
F(r, j) for a random seed r ← U(M) and j ∈ [δ]. As a result, the transformation
wouldn’t be in the standard, but in the random oracle model. As the random
oracle is only used to derive the seeds, not when masking the message, this
transformation still applies to the threshold FHE setting.

Theorem 1 (Security). Fix �, δ, γ, λ, s ∈ N and ε > 0. Let qc denote the num-
ber of provided challenge ciphertexts, i.e., the number of queries to OChallEnc.
Let ThFHE be an (�+qc, δ)-OW-CPA secure scheme with M = {0, 1}γ , such that
any adversary B of circuit size s has advantage Adv

(	+qc,δ)-OW-CPA
ThFHE (B) ≤ 2−λ,

where λ ≥ 3 log2(1/ε) + log2(2γ) + δ. Further, we assume that ThFHE ful-
fills (s′, ε′)-circuit privacy, where s′ = O(sγ3ε−4)6 and ε′ = 5qcδε/� and ε′ =
5qcδε/�. Then, ThFHE′ is �-IND-CPA secure with M′ = {0, 1}δ; concretely, for
any adversary A of circuit size s′ it yields

Adv	-IND-CPA
ThFHE′ (A) ≤ 25qcδε + 1

2
.

6 The hidden constant in the O(·) notation is the same as that in the proof of Lemma 1,
which can be derived from the Goldreich-Levin theorem.
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Choosing the Parameters. To ensure a small enough advantage, since qc, δ are
relatively small, it suffices to choose a small enough ε, which we denote ε = 2−λ′

.
We then require λ = δ + 3λ′ + log2(2γ), which determines the required security
level of the original OW-CPA scheme. There’s therefore a tradeoff between the
increased security requirement and the value δ, which improves ciphertext expan-
sion. For instance, if λ′ = 128 then by choosing δ = 118, γ = 512, we can pack
118 message bits into each FHE ciphertext, which must encrypt 512 actual bits
using the OW-CPA scheme. In this case, to achieve security according to the
reduction, the parameters of the OW-CPA scheme would need to be chosen for
λ = 512-bit security. We note that this way of setting parameters may be overly
conservative, since our reduction is not tight—unlike with the number of queries
� and the matching attack, we are not aware of any weaknesses from choosing
smaller values of λ.

Proof. Recall that we are given an OW-CPA secure threshold decryption scheme
ThFHE = (Setup,Enc,Eval,PartDec,Combine) with message space M = {0, 1}γ

and we want to construct a new threshold scheme ThFHE′ = (Setup′,Enc′,Eval′,
PartDec′,Combine′) with message space M′ = {0, 1}δ, which fulfills IND-CPA
security. In the IND-CPA security game (Definition 14), the adversary has access
to three different oracles, OEnc′,OChallEnc′ and OPartDec′. In the following, we
define a sequence of games which modify how the different oracles are imple-
mented. The first game consists of the IND-CPA security game, where b = 1.
The last game consists of the IND-CPA security game, where b = 0.

Game0:

Queries to OEnc′: On input the message m = (mi)i∈[δ] ∈ {0, 1}δ = M′,
sample x, s1, . . . , sδ ← U(M), compute c0 ← Enc(pk, x), and set ci =
〈x, si〉 + mi mod 2 for all i ∈ [δ]. Set m(0) = m(1) = m. Output the cipher-
text ct = (c0, s1, . . . , sδ, c1, . . . , cδ) and store (m(0),m(1), ct) in the list L.

Queries to OChallEnc′: On input messages m(0),m(1) ∈ {0, 1}δ = M′, sample
x, s1, . . . , sδ ← U(M), compute c0 ← Enc(pk, x), and set ci = 〈x, si〉 + m

(1)
i

for all i ∈ [δ]. Output ct = (c0, s1, . . . , sδ, c1, . . . , cδ) and store (m(0),m(1), ct)
in the list L.

Queries to OPartDec′: On input a circuit C and indices ι1, . . . , ιk, find the
corresponding ciphertexts ct1, . . . , ctk in the list L. First compute ct ←
Eval′(pk, C, ct1, . . . , ctk) (by internally calling Eval on associated circuit C̃)
and then di ← PartDec′(ski, ct) (by internally calling PartDec) for all i ∈ [n].
Output d = (di)i∈[n].

Game1:

Queries to OEnc′ and to OChallEnc′: as in Game0
Queries to OPartDec′: On input a circuit C and indices ι1, . . . , ιk, find the

corresponding messages m
(1)
1 , . . . ,m

(1)
k in the list L. Define the constant cir-

cuit C̃ which, on any input simply outputs C(m(1)
1 , . . . ,m

(1)
k ). First com-

pute ct ← Enc(pk, C̃(x(1)
1 , . . . , x

(1)
k )) (on arbitrary input x

(1)
i ) and then di ←

PartDec(ski, ct) for all i ∈ [n]. Output d = (di)i∈[n].
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Game2:

Queries to OEnc′ and to OPartDec′: as in Game1
Queries to OChallEnc′: On input messages m(0),m(1) ∈ {0, 1}δ = M′, sam-

ple x, s1, . . . , sδ ← U(M) and compute c0 ← Enc(pk, x). Further, sam-
ple r1, . . . , rδ ← U({0, 1}) and set ci = ri + m

(1)
i mod 2 for all i ∈ [δ].

Output ct = (c0, s1, . . . , sδ, c1, . . . , cδ) and store (m(0),m(1), ct) in L.

Game3:

Queries to OEnc′ and to OPartDec′: as in Game2
Queries to OChallEnc′: On input messages m(0),m(1) ∈ {0, 1}δ = M′, sam-

ple x, s1, . . . , sδ ← U(M) and compute c0 ← Enc(pk, x). Further, sam-
ple r1, . . . , rδ ← U({0, 1}) and set ci = ri + m

(0)
i mod 2 for all i ∈ [δ].

Output ct = (c0, s1, . . . , sδ, c1, . . . , cδ) and store (m(0),m(1), ct) in L.

Game4:

Queries to OEnc′ and to OPartDec′: as in Game3
Queries to OChallEnc′: On input messages m(0),m(1) ∈ {0, 1}δ = M′, sam-

ple x, s1, . . . , sδ ← U(M), compute c0 ← Enc(pk, x) and set ci = 〈x, si〉 +
m

(0)
i mod 2 for all i ∈ [δ]. Output ct = (c0, s1, . . . , sδ, c1, . . . , cδ) and store

(m(0),m(1), ct) in L.

Game5:

Queries to OEnc′ and to OChallEnc′: as in Game4
Queries to OPartDec′: On input a circuit C and indices ι1, . . . , ιk, find the

corresponding ciphertexts ct1, . . . , ctk in the list L. First compute ct ←
Eval′(pk, C, ct1, . . . , ctk) and then di ← PartDec′(ski, ct) for all i ∈ [n]. Out-
put d = (di)i∈[n].

Claim. Assume there is an adversary A of circuit size s′ who wins the �-IND-CPA
game against ThFHE′ with probability at least p. Then, there exists an i ∈
{0, . . . , 4} such that cdists′(Gamei,Gamei+1) > (2p − 1)/5 := ε̃.

Next, we argue for all i ∈ {0, . . . , 4}, if cdists′(Gamei,Gamei+1) > ε̃, it either
breaks one-way security of ThFHE or circuit privacy of ThFHE′. Note that the
modifications from Game0 to Game1 are the same (in reverse order) as from
Game4 to Game5. Similarly, the modifications from Game1 to Game2 are the
same as from Game3 to Game4. Moreover, Game2 and Game3 are information-
theoretically close to each other, because the challenge messages m(0) or m(1) are
hidden by truly random bits. We thus focus on the step from Game0 to Game1
and the step from Game1 to Game2 in the following. The step from Game0 to
Game1 is necessary to correctly apply the Goldreich-Levin extractor argument in
the next step. By replacing the evaluation algorithm with the direct encryption
of the evaluated circuit, we make sure that partial decryptions do not leak any
information on the challenge bit b = 1.7

7 We have overseen this subtlety in an earlier version of this paper and thank the
Asiacrypt reviewers for pointing it out to us.
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Claim (Game0to Game1). Assuming that cdists′(Game0,Game1) > ε̃ contradicts
the (s′, ε̃/�)-circuit privacy of ThFHE′.

Proof. Recall that � denotes the maximal number of allowed queries
to OPartDec′. As Game0 and Game1 only differ on how queries to OPartDec′

are answered, it yields

ε̃ < cdists′(Game0,Game1) ≤ � · cdists′(d, d̃),

where d is a vector of partial decryptions output by the oracle in Game0 and d̃ a
vector of partial decryptions output by the oracle in Game1. Using that applying
the randomized function PartDec′(ski, ·) does not increase the computational
distance and using the definitions of PartDec′ and Eval′ (through PartDec and
Eval, respectively), we observe that ε̃/� is bounded above by

cdists′
(
((ski)i,Eval(pk, C̃, ct1, . . . , ctk)), ((ski)i,Enc(pk, C̃(x(1)

1 , . . . , x
(1)
k )))

)
,

contradicting the (s′, ε̃/�)-circuit privacy of ThFHE (cf. Definition 12). We later
link ε̃ to ε′ as in the theorem statement. �
Claim (Game1 to Game2). Assuming that cdists′(Game1,Game2) > ε̃ contradicts
the (� + qc, δ)-OW-CPA security assumption of ThFHE.

Proof. Let qc denote the number of allowed queries to OChallEnc′. As Game1
and Game2 only differ on how queries to OChallEnc′ are answered, it yields

ε̃ < cdists′(Game1,Game2) ≤ qc · cdists′(ct, c̃t),

where ct is an encryption output by the oracle in Game1 and c̃t is an encryp-
tion output by the oracle in Game2. We can rewrite ct using the concatenated
Goldreich-Levin extractor E from Definition 2. We define m := (0, . . . , 0,m(1)) ∈
Mδ×M′, X := U(M) and Z := (Enc(pk,X), (ski)i∈S , E, PartD), the latter being
the random variable defined by the randomized encryption algorithm for uniform
random messages, the corrupted secret key shares, the circuit evaluations and the
partial decryptions given by the partial decryption queries in the security game.
Furthermore, we set Y = X, such that cdists′((X,Z), (Y,Z)) ≤ ε for all s′, ε > 0.
We observe that ct = (Z, E(X,U(M δ) + m) and c̃t = (Z,U(Mδ × M′) + m). It
holds that

ε̃/qc < cdists′(ct, c̃t) ≤ cdists′
(
(Z, E(X,U(M δ)), (Z,U(Mδ × M′))

)
.

Applying Lemma 1 implies an upper bound on the unpredictability entropy, i.e.,
Hunp

ε,s (X|Z) < λ, where ε = ε̃
5qcδ , s = O(s′γ−3ε4) and λ = δ+log2 2γ+3 log2 1/ε.

To conclude the proof of the claim, we link the unpredictability entropy
of X given Z to the OW-CPA security of ThFHE via a reduction. In the fol-
lowing, we explain how the corresponding oracle queries for ThFHE′ (which
define X and Z) can be answered by having access to the three analogue oracles
(denoted OEnc,OChallEnc and OPartDec) from the OW-CPA security game, cf.
Definition 13.

Reduction to OW-CPA Game.
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Queries to OEnc′: On input the message m = (mi)i∈[δ] ∈ {0, 1}δ = M′,
sample x, s1, . . . , sδ ← U(M) and query OEnc on input x. Take the
received c0 = Enc(pk, x) and compute ci = 〈x, si〉 + mi mod 2 for all i ∈ [δ].
Set m(0) = m(1) = m. Output the ciphertext ct = (c0, s1, . . . , sδ, c1, . . . , cδ)
and store (m(0),m(1), ct) in the list L.

Queries to OChallEnc′: On input m(0),m(1) ∈ {0, 1}δ = M′, query OChallEnc
(on no input) and get back an encryption c0 = Enc(pk, x) for an unknown x.
For i ∈ [δ], sample si ← U(M). Define the circuit C̃ which takes as input x

and computes 〈x, si〉+m
(1)
i mod 2 for every i ∈ [δ]. Then query OPartDec on c0

and the circuit C̃. For every i ∈ [δ], the partial decryption oracle outputs all
partial decryption shares that can be combined to ci = 〈x, si〉+m

(1)
i . Output

the ciphertext ct = (c0, s1, . . . , sδ, c1, . . . , cδ) and store (m(0),m(1), ct) in L.
Queries to OPartDec′: On input a circuit C and indices ι1, . . . , ιk, find the

corresponding messages m
(1)
1 , . . . ,m

(1)
k in the list L. Define the constant circuit

C̃ which, on any input, simply outputs C(m(1)
1 , . . . ,m

(1)
k ). Query OPartDec

on the circuit C̃ and the indices ι1, . . . , ιk as input. On output d = (di)i∈[n]

of the oracle OPartDec, output d.

Queries to OPartDec done within OChallEnc′ and within OPartDec′ do pass the
entropy-check with the entropy bound δ (cf. line 10 of Fig. 2). Regarding the first
case, by Lemma 2, every inner product 〈x, si〉 mod 2 leaks at most one bit of x.
Hence, at most δ bits are leaked in total when querying OPartDec on circuit C̃.
A similar argument holds for OPartDec′: The circuit C ′ leaks at most δ bits for
every xi with i ∈ [k]. Note that every query to OChallEnc′ leads to one query
to OPartDec. Similarly, every query to OPartDec′ leads to one query to OPartDec.
Thus, the OW-CPA scheme has to allow for � + qc partial decryption queries in
total. To conclude the proof, we observe that Hunp

ε,s (X|Z) < λ implies that for
any adversary B of circuit size s

2−λ < Pr[B(Z) = X] ≤ Adv
(	+qc,δ)-OW-CPA
ThFHE (B).

�

Regarding the parameters from the theorem statement, we observe from the
above two sub proofs that ε′ = ε̃/� = ε5qcδ/� and s′ = O(sγ3ε−4) as stated. ��

5 Threshold Fully Homomorphic Encryption from LWE
with Polynomial Modulus

We now present our construction of a t-out-of-n ThFHE scheme with OW-CPA
security. First, we describe and analyze our main construction based on any LSSS
with strong {0, 1}-reconstruction. Then, in Sect. 5.5, we give an alternative con-
struction that combines pseudorandom secret sharing with Shamir sharing to
improve efficiency when

(
n
t

)
is small.

By applying the OW-CPA to IND-CPA transformation for ThFHE from Sect. 4,
we hence obtain an IND-CPA secure scheme. When we restrict ourselves to
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standard PKE, our construction gives us a standard ThPKE scheme (cf. Defi-
nition 10). We can then also apply the alternative transformation which addi-
tionally achieves some form of robustness.

5.1 Nearly Linear Decryption of FHE

We use the following abstraction of LWE-based encryption schemes, where
decryption is viewed as a linear function of the secret key that outputs a “noisy”
version of the correct message. Similar notions were used in [BKS19,Bra+19].

Definition 15 (FHE with (β, ε)-linear decryption). Let FHE := (Setup,
Enc,Dec,Eval) be a fully homomorphic encryption scheme (as in Definition 11)
with message space M ⊆ Rp and ciphertext space Rr

q. Suppose that Setup outputs
a secret key sk ∈ Rr

q which has the form (1, s) for some s ∈ Rr−1
q .

Let β = β(λ) ∈ N, ε = ε(λ) ∈ [0, 1]. We say that FHE has (β, ε)-linear
decryption if for any λ, κ ∈ N, (pp, pk, sk) ← Setup(1λ, 1κ), depth-κ circuit
C : Mk → M, messages m1, . . . ,mk ∈ Rp, ciphertexts ci ← Enc(pk,mi) ∈ Rr

q

and ct ← Eval(pk, c1, . . . , ck), it holds that

〈sk, ct〉 = �q/p · C(m1, . . . ,mk)� + e mod q,

for some e ∈ Rq such that Pr[‖e‖∞ ≤ β] ≥ 1 − ε (where the probability is taken
over the randomness of Setup,Enc and Eval).

In standard (Module)-LWE based constructions, it’s possible to securely set
the parameters such that the ratio β/q can be made arbitrarily small, and as
long as we have β/q = 1/poly(λ), then q is poly(λ).

For security, we require that FHE is IND-CPA secure.8 This can be instan-
tiated under the Module-LWE assumption to obtain (leveled) FHE using, for
instance, the BGV scheme [BGV12] (with superpolynomial q). For p = 2, d = 1
and R = Z, we also get (leveled) FHE under the standard LWE assumption with
a polynomial modulus q [BV14].

5.2 Construction from LSSS with Strong {0, 1}-Reconstruction

Our construction works over the ring R = Z[X]/f(X) for some degree-d irre-
ducible polynomial f , and uses the following main ingredients:

– Dflood: a noise distribution over Zq with magnitude bounded by βflood,
– Dsim: a noise distribution over Zq, where RDa(Dsim‖Dflood + B) ≤ εRDa

, for
some a ∈ (1,∞), εRDa

> 1 and for all B with |B| ≤ βfhe,
– LSS: a t-out-of-n linear secret sharing scheme LSS = (Share, (RecS)S⊂[n]) with

strong {0, 1}-reconstruction, associated parameters L, τmax, τmin and shares in
Z

L
q (cf. Definition 6),

8 In our main construction, we assume M is large and only rely on OW-CPA security of
FHE. When extending to smaller M in Sect. 5.3, we instead need IND-CPA security.
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– FHE: a OW-CPA secure FHE = (Setup′,Enc,Eval,Dec) scheme with message
space M ⊆ Rp, ciphertext space Rr

q, and (βfhe, ε)-linear decryption for some
βfhe < q/(2p) − τminβflood and some negligible ε.

We now define the scheme ThFHE := (Setup,Enc,Eval,PartDec,Combine) by
using Enc and Eval from the underlying FHE scheme and setting Setup,PartDec
and Combine as specified in Fig. 3. We prove its correctness in the full ver-
sion [BS23].

For now, we assume the plaintext space M ⊆ Rp is superpolynomial in the
security parameter, so that FHE is OW-CPA secure. In Sect. 5.3, we show how
to extend this to use FHE with any plaintext space, which allows instantiating
from LWE with polynomial modulus.

We write Dflood,Rr
q

(resp. Dsim,Rr
q
) to refer to the distribution consisting of rd

independent Dflood (resp. Dsim) random variables, used to sample the coefficients
of r elements of Rq.

We show security in the following.

Theorem 2 (Security). For any adversary A against the (�, ν)-OW-CPA prop-
erty of the ThFHE scheme in Fig. 3 with message space M, there exists an adver-
sary B against the IND-CPA property of FHE, such that

Adv
(�,ν)-OW-CPA
ThFHE (A) ≤

[
|ChallM|

(
AdvIND-CPA

FHE (B) + 2− log2(|M|)+ν
)

· ε
�d(nL−τmax)
RDa

](a−1)/a
+�ε,

where L and τmax are parameters from the LSS and |ChallM| is the number of
challenge ciphertexts the adversary queried.

Proof. The high-level idea is to modify the (�, ν)-OW-CPA game (Fig. 2) such
that the t secret shares and the answers to the � partial decryption queries pro-
vided to the adversary no longer depend on the underlying secret key sk. This
is reflected by the sequence of games from G0 to G4. In the new game G4,

Fig. 3. Setup, partial decrypt and combine algorithms for OW-CPA secure ThFHE. The
Enc and Eval algorithms are the same as for FHE.
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the adversary still learns the circuit evaluations, stored in the set E, which
might leak some information on the challenge messages, stored in ChallM. In
a final step, when going to G5, we make those circuit evaluations independent of
the challenge ciphertexts, by tweaking the oracle OChallEnc to output random
ciphertexts (independent of the challenge messages). Here we need to assume
the IND-CPA security of the underlying non-threshold FHE scheme. By argu-
ing that the circuit evaluations coming from the partial decryption queries do
not leak too much information on the challenge messages, we can bound the
advantage of the resulting adversary in the last game G5 to be negligible.

Game G0: This is the real threshold (�, ν)-OW-CPA experiment as in Fig. 2. The
view of A is given by

V = (pp, pk, {ski}i∈S , CT, ChallCT, E, PartD),

where pp are the public parameters, pk is the public key, {ski}i∈S are the secret
key shares given to the adversary, CT and ChallCT contain the (challenge) cipher-
texts the adversary has queried, E and PartD store the results of up to � adap-
tive circuit evaluations and partial decryption queries. In each partial decryption
query, A inputs a circuit C and list of indices (i1, . . . , ik), and receives (di)i∈[n],
where di is the partial decryption of ct ← Eval(pk, C, cti1 , . . . , ctik) under ski.
Once the adversary knows all the partial decryption shares, they can recon-
struct the circuit evaluation C(mi1 , . . . ,mik). It yields, Adv

(	,ν)-OW-CPA
ThFHE (A) =

AdvG0
ThFHE(A).

Game G1: In this game, we redefine how the partial decryptions are com-
puted. After the adversary chooses the set S ⊂ [n] of corrupt parties, let
SL = {(i, j)}i∈S,j∈[L] be the corresponding set of share elements. Fix T ⊇ SL to
be a maximal invalid set of share elements. Then, compute the partial decryp-
tions di for a ciphertext ct as follows:

1. For (i, j) ∈ T , let d̃i,j = 〈ct, ski,j〉;
2. For (i, j) ∈ ([n] × [L]) \ T , let Ti,j ⊆ T ∪ {(i, j)} be a minimal valid set of

share elements, and compute d̃i,j = 〈ct, sk〉 − ∑
(k,l)∈Ti,j\{(i,j)} d̃k,l;

3. Sample ei ← Dflood,RL
q

and compute di = d̃i + ei, for i ∈ [n].

Game G2: In this game, before outputting the partial decryptions for a cipher-
text ct, we first check that 〈ct, sk〉 = �q/p� · C(m1, . . . ,mk) + e for some e with
‖e‖∞ ≤ βfhe. If not, the game aborts.

Game G3: We replace the partial decryptions corresponding to shares outside
of T with simulated ones. Firstly, in step (2) above, for (i, j) ∈ ([n] × [L]) \ T ,
we now compute d̃i,j as d̃i,j = �q/p · C(m1, . . . ,mk)� − ∑

(k,l)∈Ti,j\{(i,j)} d̃k,l.

Secondly, in step (3), instead of always sampling ei,j ← Dflood,Rq
, we only sample

ei,j ← Dflood,Rq
if (i, j) ∈ T , and ei,j ← Dsim,Rq

otherwise.

Game G4. In the next game, we change how the secret key shares are sampled:
pick (sk′

1, . . . , sk
′
n) ← LSS.Share(0) and give to A the shares {sk′

i}i∈S .
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Game G5. In the last game, we replace the oracle OChallEnc by OChallEnc′, as
defined in Fig. 4. In the new oracle, two independent m and m′ are sampled.
Whereas m is added to the challenge message list ChallM, the encryption of m′

is added to the challenge ciphertext list ChallCT.

Fig. 4. Modified OChallEnc′ oracle.

The theorem then follows from the following lemmata relating the advantages
between the different games and showing that the final advantage in the last
game is negligibly small.

Lemma 6. For any PPT adversary A in Games G0 and G1, it holds that

AdvG0
ThFHE(A) = AdvG1

ThFHE(A).

Proof. Note that the view of A in G1 is identical to that in G0, due to the strong
{0, 1}-reconstruction property of LSS. This is because every share belonging to
the maximally invalid set T is computed the same way as in G0, using the
shares ski, while each share outside this set is deterministically fixed to be a
sharing of the correct secret 〈ct, sk〉, plus noise sampled from Dflood, as in G0.
Hence, AdvG0

ThFHE(A) = AdvG1
ThFHE(A). �

Lemma 7. For any PPT adversary A in Games G1 and G2, it holds that

AdvG1
ThFHE(A) ≤ AdvG2

ThFHE(A) + �ε.

Proof. Due to the (βfhe, ε)-linear decryption property of FHE, and applying a
union bound over the � queries, we have that AdvG1

ThFHE(A) ≤ AdvG2
ThFHE(A) + �ε.

�

Lemma 8. For any PPT adversary A in Games G2 and G3, it holds that

AdvG2
ThFHE(A) ≤ (AdvG3

ThFHE(A) · ε
	d(nL−τmax)
RDa

)(a−1)/a,

where τmax is the size of the smallest maximal invalid share set in LSS.
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Proof. We compute the Rényi divergence between the views of the adversary in
each game. Each view consists of the adversary’s random tape and

V = (pp, pk, {ski}i∈S , CT, ChallCT, E, PartD) ,

where CT and ChallCT store the (challenge) ciphertexts and E and PartD the
circuit evaluations and partial decryption shares after the � partial decryption
queries. For simpler notation, we set iη := (iη1 , . . . , i

η
k) and mη := (mη

i1
, . . . ,mη

ik
)

for the index list and corresponding message vector of the η-th query. Let
D2 and D3 denote the distributions of V in games G2 and G3, respectively.
Since the partial decryption queries are adaptive, note that the circuit Cη and
the index list iη input during the η-th query depend on the previous queries
to OEnc,OChallEnc and OPartDec and the corresponding responses. However,
since each (Cη, iη) is a deterministic function of the other values in the view
(including the random tape), by the data processing inequality (Lemma 3),
RDa(D2‖D3) ≤ RDa(D′

2‖D′
3), where D′

2,D
′
3 are the distributions with the Cη, iη

values removed. D′
2 are D′

3 are now defined identically, except in the way the
partial decryption components dη

i,j are computed for indices (i, j) /∈ T . In G2,
dη

i,j is computed using (amongst other values) 〈ctη, sk〉 + Dflood,Rq
, whereas G3

instead uses �q/p · C(mη)� + Dsim,Rq
. Since 〈ctη, sk〉 = �q/p · C(mη)� + eη for

some eη with ‖eη‖∞ ≤ βfhe, and the view contains nL − |T | pairs (i, j) /∈ T
where the sampling of dη

i,j changes from G2 to G3, to compute RDa(D′
2‖D′

3), it
suffices to compute

RDa

(
((e1 + Dflood,Rq

)nL−|T |, . . . , (e	 + Dflood,Rq
)nL−|T |)‖D	(nL−|T |)

sim,Rq

)
.

Applying Lemma 5 with N = d�(nL − |T |), D1 = Dflood,D2 = Dsim, we get

RDa(D′
2‖D′

3) ≤ ε
d	(nL−|T |)
RDa

.

Applying the probability preservation property of Rényi divergence, we
bound the success probability of the adversary as required. �

Lemma 9. For any PPT adversary A in Games G3 and G4, it holds that

AdvG3
ThFHE(A) = AdvG4

ThFHE(A).

Proof. Note that the view of A in G4 is perfectly indistinguishable from the
one in G3 by the perfect privacy property of LSS. Hence, AdvG3

ThFHE(A) =
AdvG4

ThFHE(A). �

Lemma 10. For any PPT adversary A in Games G4 and G5, it holds that

AdvG4
ThFHE(A) ≤ AdvG5

ThFHE(A) + |ChallM| · AdvIND-CPA
FHE (A).

Proof. The view of A in G5 and G4 are computationally indistinguishable
assuming the IND-CPA security of the non-threshold FHE scheme for every
query to OChallEnc′. In total, there are |ChallM| many such queries. Hence,
we obtain AdvG4

ThFHE(A) ≤ AdvG5
ThFHE(A) + |ChallM| · AdvIND-CPA

FHE (A). �



398 K. Boudgoust and P. Scholl

Lemma 11. For any PPT adversary A in Game G5, it yields that

AdvG5
ThFHE(A) ≤ qc · 2− log2(|M|) · 2ν ,

where M is the message space, ν the bound on the entropy leakage guaranteed
in the (�, ν)-OW-CPA game and qc := |ChallM| the number of queried ciphertext
challenges. If ν is logarithmic, |M| exponential and qc polynomial in λ, the
advantage is negligible in λ.

Proof. Let V denote the views of A in Game G5. It is given by

V = (pp, pk, {ski}i∈S , CT, ChallCT, E, PartD) .

Note that in Game G5, all challenge messages in ChallM are independent of the
challenge ciphertexts in ChallCT. Furthermore, the secret key shares {ski}i∈S

are independent of the secret key sk and hence also independent of the challenge
messages in ChallM. The same is true for the simulated partial decryption shares
stored in PartD. The public parameters pp, public key pk and normal ciphertexts
stored in CT, are trivially independent of ChallM. Thus, H̃∞(m|V) = H̃∞(m|E).
Overall, it yields

AdvG5
ThFHE(A) ≤

∑

m∈ChallM

2− ˜H∞(m|V) =
∑

m∈ChallM

2− ˜H∞(m|E)

≤
∑

m∈ChallM

2− ˜H∞(m)+ν ,

where we used that the leakage is guaranteed to be bounded above by ν.
Finally, we use that every m ∈ ChallM is sampled uniformly at random over M,
thus H̃∞(m) = log2(|M|), leading to AdvG5

ThFHE(A) ≤ |ChallM| · 2− log2(|M|) · 2ν .
�
��

5.3 Supporting a Larger Plaintext Space

The above construction works for a plaintext space M ⊆ Rp. Since we only
obtain one-way security, this requires |Rp| to be superpolynomial in λ to give a
meaningful security guarantee. If Rp is small, we can easily modify our threshold
scheme to still be secure by using several ciphertexts to encrypt larger messages
with the underlying FHE scheme. Note that this change is necessary to obtain an
instantiation from LWE with polynomial modulus, since there M = Rp = Z2.

Concretely, suppose that FHE is IND-CPA secure and has small message space
M. Define FHE′ with message space Mk, such that

∣
∣M−k

∣
∣ is negligible, by

encrypting each of the k message components separately under FHE. We then
instantiate our threshold scheme using FHE′ instead of FHE, where during the
partial decrypt and combine steps, we run the algorithms for the previous con-
struction on each component separately. If FHE is IND-CPA secure, then so is
FHE′, and the proof carries over in the same way, except that the � values in the
statement of Theorem 2 will be replaced with k�, to account for the fact that
each of the � decryption queries involves k decryptions of ciphertexts from FHE.
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5.4 Bounding the Rényi Divergence

We now analyze parameters and instantiate the distributions Dflood and Dsim. For
now, we simply choose them both to be rounded Gaussian distributions �Dσ�
with the same standard deviation σ. In Sect. 6.1, we obtain tighter parameters by
carefully optimizing the choice of distributions. If FHE has a maximum ciphertext
noise bound of βfhe, then using Lemma 4 with our choice of distributions, we get
εRDa

= RDa(Dflood + βfhe‖Dsim) ≤ exp
(

aβ2
fhe

2σ2

)
. If FHE has λFHE bits of security,

then from Theorem 2, the resulting ThFHE scheme is λThFHE-bit secure, such
that

λThFHE ≥ (λFHE − �d(nL − τmax) log2 εRDa
)

a − 1
a

(1)

Combining the above two equations, we obtain λThFHE ≥ a−1
a λFHE − �d(nL−

τmax)(a − 1) β2
fhe

2σ2 log2 e. Setting for instance a = λThFHE, and choosing σ, q, βfhe

such that σ = O(βfhe

√
�d(nL − τmax)(a − 1)) while decryption is still correct,

the loss in security is only a constant factor. Smaller values of a give different
tradeoffs between the size of σ and the security loss. Note that in any case, if �
and nL are polynomially bounded then both σ and the modulus q can be also.

5.5 Alternative Construction Using Pseudorandom Secret Sharing

In the full version of this paper [BS23], we also give a different construction
based on pseudorandom secret sharing (PRSS), which improves upon the previ-
ous one in some aspects. Instead of having each party perturb their share by an
independent, random noise term, we will use PRSS [GI99,CDI05]. This allows
them to jointly sample replicated secret sharings of small noise terms, without
interaction, after a one-time setup that distributes PRF keys. We also exploit the
fact that replicated secret shares can be locally converted to any other LSS, and
convert the secret shared noise terms into Shamir sharings before using them for
partial decryption. This means that the partial decryptions are Shamir shares,
which are much smaller, consisting of only 1 element over Rq each. Further-
more, this leads to improved parameters in the security reduction (by avoiding
the nL − τmax term in Eq. 1), and we can additionally take advantage of the
error-correction capability of Shamir to achieve strong robustness when t < n/3.
This offers a way of getting robustness for ThFHE instead of only ThPKE with
our previous transformations, with the drawback that we require

(
n
t

)
to be not

too large, due to using replicated secret sharing.
To sum up, PRSS is a lightweight tool for achieving robustness with a small

number of parties.

6 Sample Parameters and Security Estimates

In this section, we discuss how to choose concrete parameters for our OW-CPA
secure threshold construction, where we take as a starting point the lattice-based
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scheme Kyber [Sch+20]. Hence, we are not in the fully homomorphic case, but in
the standard PKE case and thus obtain a standard ThPKE scheme. We denote
the thresholdized version of Kyber by TKyber.

The relevant parameters for Kyber are the ring degree d, the rank r, the
modulus q and the width η of the secret key and encryption randomness distri-
butions. Whereas the specifications of Kyber only consider three parameter sets,
called Kyber512,Kyber768 and Kyber1024, we additionally consider three more
parameter sets, that we subsequently call Kyber1280,Kyber1536 and Kyber1792.
As the name suggest, they are obtained in a similar manner as the previous
parameter sets, simply by increasing the rank by +1.

6.1 Security from the Reduction

Let λPKE (resp. λThPKE) denote the security level of the starting PKE (resp.
the resulting ThPKE) from Theorem 2. Further, we set Δλ := λPKE − λThPKE,
which describe the security loss in our reduction. Instantiating Eq. 1 in the stan-
dard PKE setting yields

λThPKE ≥ a − 1
a

· (λPKE − �d(nL − τmax) log2 εRDa
) , (2)

where � is the number of partial decryption queries, d the degree of the ring R, L
and τmax parameters of the underlying LSSS and εRDa an upper bound on the
Rényi divergence RDa(Dsim‖Dflood + βpke) of order a. Here, Dsim (resp. Dflood)
denotes the simulating (resp. flooding) noise distribution and βpke is a bound
on the decryption noise that depends on the concrete parameters of Kyber, in
particular on the ring degree d, the module rank r and the parameter η, as
well as the maximal failure probability ε we want to achieve. For concreteness
we set λPKE as the core-SVP classical hardness, i.e., the resulting BKZ block
estimated from the Lattice Estimator [APS15] size multiplied by 0.292.

Table 2 and Table 3 present some sample parameters. The relevant difference
between the two is that in the first table, we focus on larger numbers of par-
ties n and samples � while accepting a modulus of up to 39 bits. For simplicity,
we assume that both Dflood and Dsim follow a Gaussian distribution of width σ.

Table 2. Sample parameters and security estimates following the reduction from The-
orem 2 using a generic approach.

Set (βpke, ε) n t � �log2 σ� �log2 q� λPKE λThPKE Δλ

TKyber1024 (390, 2−60) 2 1 1 17 23 120 117 3
TKyber1024 (934, 2−300) 2 1 1 18 24 111 108 3
TKyber1024 (390, 2−60) 10 9 1 17 25 105 102 3
TKyber1280 (435, 2−60) 10 5 1 21 29 120 117 3
TKyber1536 (476, 2−60) 20 10 10 27 36 112 109 3
TKyber1792 (513, 2−60) 2 1 232 33 39 123 120 3
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Table 3. Sample parameters and security estimates following the reduction from The-
orem 2 obtained from a hand-tuned Python program.

Set q n t � Dflood Dsim λThPKE Δλ

TKyber1024 5 · 3329 2 1 1 947 1087 100 111
TKyber1024 10 · 3329 2 1 2 1994 2034 104 91
TKyber1024 9 · 3329 3 2 1 1197 1297 106 92

In contrast, in the second table we fine-tuned the flooding and simulation distri-
butions so that we can allow for very small q (only multiplying the original Kyber
modulus by small constants up to 10).
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Abstract. Non-Interactive Verifiable Secret Sharing (NI-VSS) is a tech-
nique for distributing a secret among a group of individuals in a verifiable
manner, such that shareholders can verify the validity of their received
share and only a specific number of them can access the secret. VSS
is a fundamental tool in cryptography and distributed computing. In
this paper, we present an extremely efficient NI-VSS scheme using Zero-
Knowledge (ZK) proofs on secret shared data. While prior VSS schemes
have implicitly used ZK proofs on secret shared data, we specifically use
their formal definition recently provided by Boneh et al. in CRYPTO
2019. The proposed NI-VSS scheme uses a quantum random oracle and
a quantum computationally hiding commitment scheme in a black-box
manner, which ensures its ease of use, especially in post-quantum thresh-
old protocols. Implementation results further solidify its practicality and
superiority over current constructions. With the new VSS scheme, for
parameter sets (n, t) = (128, 63) and (2048, 1023), a dealer can share a
secret in less than 0.02 and 2.0 s, respectively, and shareholders can verify
their shares in less than 0.4 and 5.0 ms. Compared to the well-established
Pedersen VSS scheme, for the same parameter sets, at the cost of 2.5×
higher communication, the new scheme is respectively 22.5× and 3.25×
faster in the sharing phase, and notably needs 271× and 479× less time
in the verification. Leveraging the new NI-VSS scheme, we revisit several
classic and PQ-secure threshold protocols and improve their efficiency.
Our revisions led to more efficient versions of both the Pedersen DKG
protocol and the GJKR threshold signature scheme. We show similar
efficiency enhancements and improved resilience to malicious parties in
isogeny-based DKG and threshold signature schemes. We think, due to
its remarkable efficiency and ease of use, the new NI-VSS scheme can be
a valuable tool for a wide range of threshold protocols.

Keywords: Verifiable Secret Sharing · ZK Proofs on Secret Shared
Data · Shamir Secret Sharing · DKG · Threshold Signatures · Isogenies
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phase, where a dealer shares a secret among the shareholders, followed by a
reconstruction phase where qualified shareholders collaborate to reconstruct the
original secret. Standard secret sharing schemes, such as Shmair’s protocol [33],
assume the presence of honest parties but do not provide security against mali-
cious participants. Verifiable Secret Sharing (VSS) schemes [15,20] have been
developed to address the challenges posed by malicious players. These schemes
aim to withstand various attacks, including incorrect share distribution by the
dealer and malicious behavior by the shareholders (e.g., using incorrect shares)
during the reconstruction phase. Depending on the communication model, to
incorporate verifiability, typically interaction among the dealer and shareholders
is required. It can however be shown that, assuming the dealer has a broadcast
channel, a single message from the dealer to the shareholders can be sufficient.
This is known as a Non-Interactive VSS (NI-VSS).

Most existing constructions of VSS schemes are based on regular secret-
sharing schemes, often starting with Shamir’s scheme [33], and then adding ver-
ifiability features on top [5,15,20,23–25,29,32]. The known discrete-logarithm
(DL) based VSS schemes such as those by Feldman [20], Pedersen [29], Schoen-
makers [32], and their variants, utilize Shamir secret sharing and achieve verifi-
ability by having the dealer publish the shares and coefficients of the underlying
secret polynomial in the group. Then, they leverage the homomorphic property
of the group to convince the shareholders [20,29], or an external verifier [32],
that the secret sharing is performed correctly. DL-based VSS schemes are typi-
cally non-interactive and support public verifiability, allowing both shareholders
and external verifiers to verify the validity of the shares without interaction.
However, due to the threat posed by Shor’s algorithm [34], discrete logarithm
based VSS schemes are not suitable for cryptographic protocols (e.g., distributed
key generation schemes, threshold signatures, etc.), that require post-quantum
security. Gentry, Halevi, and Lyubashevsky [24] recently proposed a practical
non-interactive publicly VSS scheme that relies on lattice-based and DL-based
problems at the same time, unfortunately making it unsuitable for use in post-
quantum secure threshold protocols. Given the limitations and vulnerabilities
of existing NI-VSS schemes, it becomes imperative to develop an efficient post-
quantum secure VSS scheme that can also address challenges of scalability and
computational overhead. Such VSS schemes can pave the way for the realization
of more efficient post-quantum threshold protocols.

In the VSS scheme proposed by Ben-or, Goldwasser, and Wigderson
(BGW) [5], a dealer employs a distributed Zero-Knowledge (ZK) proof scheme
based on bivariate polynomials to add (designated) verifiability to the Shamir
secret sharing scheme. The BGW VSS scheme achieves Information-Theoretical
(IT) security and can be employed in both classical and post-quantum secure
threshold protocols. However, in their (non-interactive) ZK proof scheme the ver-
ifiers need to interact two-by-two for share validation and to achieve (perfect)
soundness their scheme requires at least two-thirds of the designated verifiers to
be honest.

In Crypto 2019, Boneh et al. [11] provided a formal definition for ZK proofs
over secret shared data and presented several feasibility and infeasibility results.
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In a ZK proof scheme over secret shared data, there is a single prover P and
n (designated) verifiers {Vi}n

i=1, and each verifier Vi holds a piece (share) xi of
an input (statement) x, which is distributed among n participants. The prover’s
task is to convince the (designated) verifiers that the main input x belongs to
a specific language L. Essentially, the prover P possesses full knowledge of x,
while each verifier Vi possesses a secret share denoted as xi. In their best feasi-
bility (and positive) result, Boneh et al. [11] demonstrated that, in the majority
honest setting, using a robust encoding scheme, any multi-round public-coin
linear Interactive Oracle Proof (IOP) for a non-distributed relation RL can be
compiled into a secure ZK proof scheme over secret shared data. The result-
ing distributed ZK proof scheme satisfies (computational) soundness against the
prover and t < n/2 malicious verifiers. Moreover, it guarantees ZK even if t of
the verifiers collude [11, Section 6.3], where t represents a threshold parameter
in the underlying encoding scheme. Boneh et al. [11] coined the term “Strong
zero-knowledge” to describe this variant of ZK, which ensures that even if up
to t verifiers collude, they learn nothing about the witness. We will refer to this
notion as “threshold zero-knowledge” (TZK) in this paper.1 Based on the for-
mal definitions, we can restate that the BGW VSS scheme [5] has been proven
to achieve TZK and (perfect) soundness against the prover, given that at least
two-thirds of the (designated) verifiers are honest.

Consequently, a generic approach for constructing a ZK proof scheme over
secret shared data for n-distributed relations Ri involves first developing a multi-
round public-coin IOP for the non-distributed relation R. Subsequently, Boneh
et al.’s compiler can be utilized to transform it into a distributed ZK proof
scheme, featuring a single prover P and n designated verifiers {Vi}n

i=1. However,
it is worth noting that generic approaches are typically less efficient compared to
ad-hoc constructions tailored for specific purposes in practical implementations.

Our Contributions. We summarize the contributions of this paper as follows:

An Efficient Post-Quantum Secure NI-TZK for the Shamir Relation. Consider-
ing the feasibility result of Boneh et al. [11], we directly (without using their com-
piler [11]) construct an efficient Non-Interactive TZK (NI-TZK) proof scheme
for the n-distributed relations R1, . . . , Rn, where

Ri = {(xi, f(X))|f(i) = xi}. (1)

Here f(X) ∈ ZN [X]t is a secret polynomial in X of degree (at most) t and
with coefficients defined over the ring ZN . The proposed construction is built
in the majority honest setting (i.e., the majority of the verifiers are honest) and
utilizes a quantum computationally hiding commitment scheme. We prove (in
Theorem 1) that in the Quantum Random Oracle Model (QROM), the proposed

1 This choice is done for two main reasons. First, strong ZK might lead to misunder-
standings, as the majority of verifiers is actually honest in our cases. Second, we
risk confusion by using the abbreviation SZK, which usually stands for statistical
zero-knowledge.
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NI-TZK proof scheme satisfies completeness, TZK, and soundness against the
prover and t malicious verifiers, as formally defined in [11].

Table 1. A comparison among BGW [5], Pedersen [29] and the new NI-VSS schemes.

BGW VSS [5] Pedersen VSS [29] This Work

uses bivariate polynomials

(lightweight operations)

based on discrete logarithm

(heavy operations)

based on hash functions

(lightweight operations)

achieves Information

Theoretical (IT) security

achieves IT and classic

(computational) security

achieves post-quantum

(computational) security

needs ≥ 2
3

honest parties needs ≥ 1
2

honest parties needs ≥ 1
2

honest parties

verification is designated

and to verify the shares the

verifiers need to interact

two-by-two, which induces

O(n) communication

for each shareholder

verification is designated

(but can also be made

public) and to verify the

shares the verifiers do not

need to interact two-by-two

verification is designated

and to verify the shares

the verifiers do not need

to interact two-by-two

NI-VSS Schemes from NI-TZK Proofs and a Quantum Secure Scheme. We fur-
ther show how one can use a secure NI-TZK proof scheme for the n-distributed
relations given in Eq. (1), and build a computationally secure NI-VSS scheme
based on Shamir secret sharing in the majority honest setting. Building upon
that, we use the proposed NI-TZK proof scheme and present an extremely effi-
cient computationally secure NI-VSS scheme that works over general rings, and
is proven to be secure in the QROM. One notable factor contributing to the
efficiency of new VSS scheme is using lightweight cryptographic operations such
as hashing and polynomial evaluation, in the underlying NI-TZK proof scheme.
Within the new VSS scheme, we introduce a novel reconstruction approach that,
in scenarios where the dealer is one of the parties (e.g., as in the DKG proto-
cols and threshold signatures), can lead to the development of more efficient
threshold protocols.

Our resulting NI-VSS scheme serves as a post-quantum secure alternative to
the classical Pedersen VSS scheme [29] (or Feldman’s VSS scheme [20]) when
public verifiability is unnecessary. We later show that this scenario often occurs
in various threshold protocols. It can also be considered an alternative to the
Information-Theoretically (IT) secure BGW VSS [5] in cases where quantum
computational security suffices and there is a desire to reduce communication
between parties, or when assuming two-thirds of the parties are honest among
the shareholders is challenging. Table 1 provides a comprehensive summary of
the key features of our proposed NI-VSS scheme, comparing it to the well-known
Pedersen [29] and BGW [5] VSS schemes from various perspectives.

To assess the empirical performance of new VSS scheme, we implemented a
prototype of it alongside the Pedersen scheme [29] using SageMath. Implementa-
tion results show that using the new NI-VSS scheme a dealer can share a secret
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with 2048 parties in 2 s, and shareholders can verify the validity of their shares
in less than 5 ms. When considering the same number of parties and aiming for
128-bit quantum security, the dealer broadcasts a proof of approximately 130
KB and privately sends less than 32B to each shareholder. Our empirical anal-
ysis affirm the superiority of our NI-VSS scheme over the well-known Pedersen
scheme in both sharing and verification steps, in addition to post-quantum secu-
rity. The new NI-VSS scheme demonstrates significant efficiency improvements
in the verification phase, achieving speedups of approximately 271×, 437×, and
498× compared to the Pedersen scheme for (n, t) values of (128, 63), (512, 255),
and (8194, 4095), respectively. In the sharing phase under the same settings, our
scheme is about 22.6×, 9.3×, and 1.57× faster than the Pedersen scheme. In
terms of communication cost, compared to Pedersen scheme, our VSS scheme
increases the dealer’s broadcast by a factor of 2.5.

We believe, the simplicity and efficiency of our new NI-VSS scheme can make
it an attractive choice for various large-scale threshold protocols, especially those
that require post-quantum security.

Application Examples of New NI-VSS Scheme. As our next major contribution,
we leverage the new NI-VSS scheme and revisit several threshold protocols based
on discrete logarithm and isogenies, and improve their efficiency, and in some
cases also decrease the lower bound on the number of honest parties.

More Efficient Threshold Protocols in the DL Setting. As mentioned previously,
the new VSS scheme serves as a more efficient alternative to the well-established
Pedersen VSS scheme [29] when public verifiability is not required. Our observa-
tions indicate that this scenario commonly arises in Distributed Key Generation
(DKG) protocols and threshold signatures. In light of this insight, we revisit
Pedersen’s DKG protocol [28] in conjunction with the robust threshold signa-
ture scheme proposed by Gennaro, Jarecki, Krawczyk, and Rabin (GJKR) [22],
which employs Schnorr’s signature for signing and Pedersen’s DKG protocol for
the generation of (secret, public, and ephemeral) keys. To this end, we first build
an NI-TZK proof scheme for the following set of n-distributed relations,

Ri = (y, xi, f(X))|y = gf(0) ∧ f(i) = xi, i = 1, . . . , n (2)

where f(X) ∈ Zq[X]t is a secret polynomial in X of degree (at most) t with
coefficients defined over the field Zq. This NI-TZK proof scheme serves as the
main component for our revisions and holds potential interest in other DL-based
threshold protocols that utilize Shamir secret sharing. Subsequently, we present
a new DKG protocol and a Schnorr-based threshold signature scheme, which
can be considered as more efficient alternatives to Pedersen’s DKG protocol [28]
and the GJKR threshold signature [22].

When comparing our resulting variants to the original schemes, there are cer-
tain trade-offs. While our variants slightly increase communication costs, they
improve computational efficiency in both schemes. In summary, in our proposed
DKG protocol, each party needs to perform approximately 2n exponentiations in
the group, 5n (short) hashes, and 3n degree-t polynomial evaluations in the field.
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This represents a factor of t ≈ n/2 improvement compared to the secure version
of Pedersen DKG protocol [22], which demands roughly 2tn+2n exponentiations
in the group and 2n degree-t polynomial evaluations in the field. While incur-
ring slightly higher communication costs, our new threshold signature scheme
offers similar improvements over the GJKR threshold signature scheme [22]. The
detailed comparisons are provided in Sect. 4 (and Table 4).

More Efficient Threshold Protocols from Isogenies. As previously discussed, the
new NI-VSS scheme can also be integrated into various post-quantum secure
threshold protocols. Notably, it can serve as an alternative to the BGW VSS [5]
in certain scenarios. By adopting the new VSS scheme in place of BGW, it
becomes possible to reduce communication costs and improve tolerance for mali-
cious parties, albeit at the expense of transitioning from information-theoretic
(IT) security to quantum computational security. Taking this into considera-
tion, we revisit the isogeny-based DKG protocol developed by Atapoor, Bagh-
ery, Cozzo, and Pedersen [2], alongside the CSI-FiSh-based threshold signature
scheme introduced by Campos and Muth [13].

Currently, their DKG protocol [2] stands as the most efficient scheme in terms
of isogeny computations within the CSIDH (Commutative Supersingular Isogeny
Diffie-Hellman) setting [14]. We show that by integrating the new NI-VSS scheme
into the VSS step of their DKG protocol, we can address two bottlenecks present
in their scheme. Specifically, we reduce the requirement from needing at least
2/3 honest shareholders to a more practical threshold of just 1/2. Additionally,
we eliminate the need for pairwise interactive verification, which was a primary
reason to the high communication overhead in the VSS step of their DKG pro-
tocol. While these enhancements do come at the cost of sacrificing IT security
in the VSS step in favor of quantum computational security, it’s worth noting
that the DKG protocols proposed in [2] rely on quantum computational secu-
rity from the outset. These improvements can make the revisited DKG protocol
highly appealing for use in CSIDH-based threshold settings. The resulting DKG
protocol retains the same efficiency in terms of isogeny computations.

The threshold signature scheme proposed by Campos and Muth [13] is based
on the basic version of the CSI-FiSh signature [9], which features shorter public
keys but longer signature sizes, as well as slower signing and verification algo-
rithms. To enhance the efficiency of their threshold signature, we introduce two
key modifications. First, we adapt their scheme to work with the CSI-SharK sig-
nature [1], which has been demonstrated to outperform CSI-FiSh in the thresh-
old setting. This modification enables us to leverage our revisited DKG protocol,
resulting in more efficient key generation for the resulting robust threshold signa-
ture scheme. Furthermore, we apply a similar strategy used in the construction
of the revisited DKG protocol to improve the efficiency of ephemeral key gener-
ation in the resulting threshold signature. This further enhances the efficiency of
the distributed signing protocol, leading to the development of a new and more
efficient isogeny-based threshold robust signature scheme.
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Outline. In Sect. 2, we provide an overview of some preliminary concepts. In
Sect. 3, we first present our NI-VSS scheme, and then evaluate its performance
through a prototype implementation. Leveraging the proposed NI-VSS scheme,
in Sect. 4, we revisit the well-known Pedersen DKG protocol [29] and the GJKR
threshold signature scheme [22], introducing new variants that offer improved
efficiency. Similarly, in Sect. 5, we revisit two isogeny-based DKG protocols [2]
and a threshold signature scheme [13], and present two new versions that offer
improved efficiency. Finally, in Sect. 6, we conclude the paper.

2 Preliminaries

Notation. We let λ denote a security parameter. A function is called negligible
in X, written negl(X), if for any constant c, there exists some X0, such that
f(X) < X−c for X > X0. A function that is negligible in the security param-
eter λ is simply called negligible. We use the assignment operator ← to denote
uniform sampling from a set Ξ, e.g. x ← Ξ. We write ZN := Z/NZ and ZN [X]t
for polynomials of degree t in the variable X and with coefficients in ZN . For
n ∈ N, we write [n] = {1, . . . , n}. Finally all logarithms are in base 2.

We also introduce the notion of exceptional sets, which occur naturally when
working over rings ZN .

Definition 1 (Exceptional set [4,10,16]). An exceptional set (modulo N)
is a set Ξk = {c1, . . . , ck} ⊆ ZN , where the pairwise difference of all distinct
elements is invertible modulo N . If further the pairwise sum of all elements is
invertible modulo N , Ξk is called a superexceptional set (modulo N).

2.1 Zero-Knowledge Proofs on Secret Shared Data

In typical NIZK (non-interactive zero-knowledge) arguments for NP languages,
there is a single prover P and a single verifier V , where P knows both a statement
x and witness for the statement w, while V only knows the statement x. In
CRYPTO 2019, Boneh et al. [11], presented formal definitions for distributed
ZK proofs which a prover interacts with several verifiers {Vi}n

i=1 over a network
that includes secure point-to-point channels. In such a model, each verifier Vj

holds a piece (share) x(j) ∈ F
lj of an input (statement) x, and the prover’s task

is to convince the verifiers that the main input x is in some language L ⊆ F
l.

Similar to the typical cases, such proof systems must be complete, meaning
that if x ∈ L, an honest prover will be able to convince honest verifiers. Similarly,
they should satisfy soundness, meaning that if x �∈ L, then all verifiers will
reject the verification except for a negligible probability. However, in certain
settings, including ours, a limited number of verifiers may be malicious and
collude with the adversarial prover. In such cases, the malicious verifiers might
accept a fake proof. Finally, the proof system must satisfy a variant of ZK, so
called threshold ZK, as introduced (as strong ZK) by Boneh et al. [11]. TZK
implies that any subset of the verifiers up to a certain bound should learn no
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additional information about statement x, beyond their own shares and the fact
that x ∈ L. Note that in standard ZK, the verifier learns the statement x and
the fact that x ∈ L, but in threshold ZK, a single verifier only learns his share
of x and the fact that x ∈ L. In other words, a set of verifiers only learn that
they are jointly holding pieces (shares) of x ∈ L.

Definition 2 (Distributed Inputs, Languages, and Relations [11]). Let
n be a number of parties, F be a finite field, and l, l1, l2, · · · , ln ∈ N be length
parameters, where l = l1 + l2 + · · · + ln. An n-distributed input over F (or just
distributed input) is a vector x = x(1) ‖ x(2) ‖ · · · ‖ x(n) ∈ F

l where x(i) ∈ F
li ,

and it refers to a piece (or share) of x. An n-distributed language L is a set of
n-distributed inputs. A distributed NP relation with witness length h is a binary
relation R(x,w) where x is an n-distributed input and w ∈ F

h. We assume that
all x in L and (x,w) ∈ R share the same length parameters. Finally, we let
LR = {x : ∃w(x,w) ∈ R}.

Next, we recall the formal definition provided by Boneh et al. [11] for ZK
proofs over shared data which originally are defined over a field. In some cases,
we employ an extended version of their definitions that naturally encompasses
rings. In this model, parties can have synchronous communication over secure
point-to-point channels.

Definition 3 (n-Verifier Interactive Proofs [11]). An n-Verifier Interactive
Proof protocol over F is an interactive protocol Π = (P, V1, V2, · · · , Vn) involving
a prover P and n verifiers {Vi}n

i=1. The protocol proceeds as follows.

– In the beginning of the protocol the prover P holds an n-distributed input
x = x(1) ‖ x(2) ‖ · · · ‖ x(n) ∈ F

l, a witness w ∈ F
h, and each verifier Vj holds

an input piece (or share) x(j).
– The protocol allows the parties to communicate in synchronous rounds over

secure point-to-point channels. While honest parties send messages according
to Π, malicious parties (i.e., adversary) can send arbitrary messages.

– At the end, each verifier outputs either 1 (accept) or 0 (reject) based on its
view, where the view of Vj consists of its input piece x(j), random input r(j),
and messages it received during the protocol execution.

In the rest, Π(x,w) denotes running Π on shared input x and witness w, and
says that Π(x,w) accepts (respectively, rejects) if at the end all verifiers output
1 (resp., 0). V iewΠ,T (x,w) denotes the (joint distribution of) views of verifiers
{Vj}j∈T in the execution of Π on the distributed input x and witness w.

Let R(x,w) be a k-distributed relation over finite field F. We say that an n-
verifier interactive proof protocol Π = (P, V1, · · · , Vn) is a distributed threshold
ZK proof protocol for R with t-security against malicious prover and malicious
verifiers, and with soundness error ε, if Π satisfies the following properties [11]:

Definition 4 (Completeness). For every n-distributed input x = x(1) ‖ x(2) ‖
· · · ‖ x(n) ∈ F

l, and witness w ∈ F
h, such that (x,w) ∈ R, the execution of

Π(x(1) ‖ x(2) ‖ · · · ‖ x(n), w) accepts with probability 1.
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Definition 5 (Soundness Against Prover and t Verifiers). For every
T ⊆ [n] of size |T | ≤ t, an A controlling the prover P and verifiers {Vj}j∈T ,
n-distributed input x = x(1) ‖ x(2) ‖ · · · ‖ x(n) ∈ F

l, and witness w ∈ F
h the fol-

lowing holds. If there is no n-distributed input x′ ∈ LR such that x′
H = xH , where

H = [n]/T , the execution of Π�(x,w) rejects except with at most ε probability,
where here Π� denotes the interaction of A with the honest verifiers.

Definition 6 (Threshold ZK). For every T ⊆ [n] of size |T | ≤ t and an A
controlling {Vj}j∈T , there exists a simulator S such that for every n-distributed
input x = x(1) ‖ x(2) ‖ · · · ‖ x(n) ∈ F

l, and witness w ∈ F
h such that (x,w) ∈ R,

we have S((x(j))j∈T ) ≡ V iewΠ�,T (x,w). Here, Π� denotes the interaction of
adversary A with the honest prover P and the honest verifiers {Vj}j∈T .

Remark 1 (Threshold Honest-Verifier ZK). In the context of Threshold ZK, one
may consider a relaxed definition, Threshold Honest-Verifier ZK, that retains
the same properties as the original definition, with the added requirement that
the subset of verifiers, {Vj}j∈T , is stipulated to follow the protocol honestly.

2.2 Verifiable Secret Sharing

Secret sharing is a technique for securely distributing a secret among a group of
parties, where no single party can learn the secret individually. However, when a
sufficient number of parties come together and combine their ‘shares’, the original
secret can be reconstructed. Throughout the paper, our studied protocols use
Shamir Secret Sharing [33] for securely sharing a secret, which we review below.

Shamir Secret Sharing. A (t+1, n)-Shamir secret sharing scheme [33] allows
n parties to individually hold a share xi of a common secret x0, such that any
subset of t parties or less are not able to learn any information about the secret
x0, while any subset of at least t+1 parties are able to efficiently reconstruct the
common secret x0. In more detail, this is achieved via polynomial interpolation
over the ring ZN . A common polynomial f(x) ∈ ZN [x]t is chosen, such that
the secret x0 is set to be its constant term, namely x0 = f(0). Each party
Pi for i ∈ {1, · · · , n} is assigned the secret share xi = f(i). Then any subset
Q ⊆ {1, . . . , n} of at least t parties can reconstruct the secret x0 via Lagrange
interpolation by computing x0 = f(0) =

∑
i∈Q xi · LQ

0,i, where

LQ
0,i :=

∏
j∈Q\{i}

j
j−i (mod N).

are the Lagrange basis polynomials evaluated at 0. Any subset of less than t
parties are not able to find x0 = f(0), as this is information theoretically hidden
from the other shares. In the case where ZN is a ring, the difference of any
elements in {1, . . . , n} must be invertible modulo N , thus {1, . . . , n} must be
an exceptional set. This is only the case if n is smaller than the smallest prime
divisor q of N . In the case where more than q parties want to participate in the
protocol, we would have to work in a subgroup ZN ′ ⊂ ZN such that the smallest
divisor of N ′ is larger than q.
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Verifiable Secret Sharing (VSS). A standard secret sharing scheme is
designed to be resilient against passive attacks. In many applications, a secret
sharing scheme needs to be secure against the malicious dealer or parties with
active attacks. This is achieved through VSS schemes, which were first intro-
duced in 1985 [15]. Shamir secret sharing scheme by default does not qualify as
a VSS scheme, as it does not provide protection against malicious participants
(i.e., the dealer and shareholders).

2.3 Threshold Signatures

A threshold signature scheme enables a group of authorized parties to collectively
sign a message m, generating a signature σ that can be verified using a single
public key pk. Specifically, a threshold signature scheme, in terms of an (t+1, n)-
threshold access structure, is defined as follows:

Definition 7. A threshold digital signature scheme consists of three probabilis-
tic algorithms: KeyGen, Sign, and Verify.

– KeyGen
(
1λ

)
: Given the security parameter as input and returns the public

key pk along with a set of secret keys ski - one secret key per party. (For
simplicity, we limit ourselves to the case where each party has a single share
of the secret, focusing on Shamir and full-threshold secret sharing.)

– Sign ({ski}i∈Q,m): Given as input a qualified set of private keys and a mes-
sage and returns a signature on the message.

– Verify (pk, (σ,m)): Given pk and a signature σ on a message m, and outputs
a bit that is equal to one if and only if the signature on m is valid.

In essence, security for a threshold signature scheme means that an unquali-
fied group of parties cannot forge a signature on a new message. In addition, for
distributed signatures, we require that a valid output signature is indistinguish-
able from the signature produced by the signing algorithm of the underlying
non-thresholdized scheme with the same public key.

3 VSS from ZK Proofs over Shared Data

In this section, we propose a novel Non-Interactive Verifiable Secret Sharing (NI-
VSS) scheme that utilizes ZK proofs over secret shared data [8,11] to prove the
validity and consistency of the individual shares. The proposed scheme does not
rely on a concrete cryptographic hard problem, rather than a random oracle and
a collapsing (quantum) computationally hiding commitment scheme.

To build the NI-VSS scheme, we first construct a non-interactive proof scheme
which allows a single prover to convince a set of verifiers that they have each
received a distinct evaluation of a polynomial f(X) ∈ ZN [X]t.2 It is worth noting

2 In general ZN will constitute a ring. In later applications, we sometimes choose N
to be a prime, so that ZN becomes a field.
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that to achieve soundness, the number of honest verifiers is supposed to exceed
t. On the other hand, to achieve threshold zero-knowledge, we assume that an
adversarial prover can corrupt at most t verifiers. Thus, we assume the number of
verifiers to be greater than or equal to 2t+1. We then demonstrate that our pro-
posed scheme satisfies completeness (Definition 4), soundness against the prover
and t malicious verifiers (Definition 5), and threshold ZK (Definition 6). We
subsequently use the resulting Non-Interactive Threshold ZK (NI-TZK) proof
scheme and build an efficient NI-VSS scheme based on Shamir secret sharing.

3.1 A NI-TZK Proof Protocol for Shamir Secret Sharing

As the key building block for our novel NI-VSS scheme, in this section, we
present an efficient NI-TZK proof scheme that can be used to build a NI-VSS
based on Shamir secret sharing. The new NI-TZK proof scheme is built for
a collection of relations R1, . . . , Rn with the same witness space, where each
statement can be verified independently by individual verifiers. Given the shared
input x = x1 ‖ x2 ‖ ... ‖ xn, the prover proves the existence of a witness w that
satisfies (xi, w) ∈ Ri for every i ∈ 1, . . . , n. The proof includes proof pieces
{πi}i∈1,...,n, where πi allows the verifier Vi to check the validity of xi in relation
to Ri. The prover has a secret polynomial f(X) ∈ ZN [X]t, and wants to prove
the following n-distributed relations,

Ri = {(xi, f(X))|f(i) = xi}, (3)

where i = 1, . . . , n. For the sake of convenience, we will refer to the relation
mentioned above as the Shamir relation throughout the rest of the paper.

Fig. 1. A NI-TZK Proof Scheme for Shamir Secret Sharing.
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Figure 1 describes the proof generation and verification of the new NI-TZK
proof scheme for the Shamir relation given in Eq. (3), where H : {0, 1}∗ → Ξk

is a random oracle with Ξk an exceptional set of size k,3 and C : {0, 1}∗ ×
{0, 1}λ → {0, 1}2λ is a commitment scheme that is collapsing [37, Def. 12] and
quantum computationally hiding. Next, we show the proposed NI-TZK proof
scheme (given in Fig. 1) satisfies the key security requirements of a ZK proof
protocol over shared data, as defined in Sect. 2.1.

Remark 2. The challenge space of the protocol in Fig. 1 is |Ξk| = k. When ZN

is a cryptographically sized field, we can easily choose Ξk = ZN to achieve a
negligible soundness error, i.e. below 2−λ. In the case where ZN is a ring, we
might have the case that the largest exceptional set has size k < 2λ. In that
case the protocol from Fig. 1 would have to be repeated in the standard fashion:
defining S = �λ/ log k�, we would have to sample S different bj(X) and construct
S responses rj(X) = bj(X) − djf(X), sampling the dj using the hash function
H : {0, 1}∗ → (Ξk)S .

Theorem 1 (NI-TZK Proof Scheme for Shamir Secret Shares). Let L
be an n-distributed language for the list of relations given in Eq. (3), t ≥ 0 be
a security threshold such that n ≥ 2t + 1, and h = n − t. Assuming that the
commitment scheme C is collapsing and quantum computationally hiding, for
any potential set I ⊆ [n] of size |I| ≥ h, the protocol given in Fig. 1 is a non-
interactive distributed proof scheme for L that satisfies completeness, threshold
ZK, and soundness against the prover and t malicious verifiers in the QROM.

Completeness. If the protocol is followed honestly and if the input was a valid
statement-witness pair (x,w) ∈ R, where each verifier Vi, 1 ≤ i ≤ n, has an
input piece (share) xi, then the verification will always accept the proof. Note
that, the prover commits to the evaluations of f(i) and b(i) for i = 1, · · · , n, and
given xi and r(X) = b(X)−d ·f(X), the verifier Vi computes r(i)+dxi = b(i)−
df(i) + dxi = b(i), if xi = f(i). So if the witness is valid, then the commitments
Ci and C′

i match and the verification (i.e., all the shareholders) will return true
and accept the proof.

Soundness Against the Prover and t Malicious Verifiers. The NI-TZK scheme
presented in Fig. 1 is made non-interactive using a variant of Fiat-Shamir trans-
form which is proposed by Boneh et al. [11] for proofs on distributed data, and
its security is also proven formally in [8] for a particular protocol. The commonly
used transform of Fiat-Shamir [21], which is analysed in the (Quantum) Random
Oracle model [19,38], is applied on a public coin interactive proof systems. Such
that, instead of getting the challenge from the verifier, in the non-interactive
protocol the prover applies a random oracle H to the concatenation of the input
(i.e., the statement), and the communication transcript up to that point. In the
case of sigma protocols the communication transcript is the commitment made
3 Such a hash function can easily be implemented by hashing into a set {1, . . . , k} and

then using the output value i ∈ {1, . . . , k} as an index in Ξk, i.e. ci ∈ Ξk.
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in the first round. But in this variant of the Fiat-Shamir transform, the challenge
is public, but the input (i.e., the statement) is shared among the verifiers and
cannot be revealed to any single verifier. To deal with this concern, the idea is
to generate the random challenge using the joint view of the verifiers in previous
rounds [11]. Namely, the prover obtains the random challenge value as the hash
of concatenation of n public commitments to the individual shares (i.e., shares
of statement), and n public commitments produced in the initial round of the
sigma protocol. Note that in this variant, each individual secret share is linked
to a public commitment which satisfies (perfect) binding and (computational)
hiding and can be verified by the corresponding shareholder.

The following Lemma is proven in [8], which proves the soundness of a NI-
TZK argument that is built using the above variant of Fiat-Shamir transform.

Lemma 1. Suppose Σ = (P1, V1, P2, V2) is a sigma protocol for the relation R
with super-polynomially sized challenge space Ch, special soundness, and quan-
tum computationally unique responses. Let Σ′ = (P ′

1, V
′
1 , P ′

2, V
′
2) be the following

sigma protocol:

P ′
1(x,w) : y ← {0, 1}λ, Cx ← C(x, y),

com ← P1(x,w), com′ = (Cx, com)
V ′
1(com

′) : ch ← Ch

P ′
2(ch) : rsp ← P2(ch), rsp′ ← (x, y, rsp)

V ′
2(x, com′, ch, rsp′) : accept if Cx = C(x, y) and V2(x, com, ch, rsp) = 1

Then the non-interactive version of Σ′, transformed by the mentioned variant of
Fiat-Shamir transform is a non-interactive quantum proof of knowledge for the
same relation R, assuming that C is a collapsing commitment.

In the rest, we prove the protocol (given in Fig. 1) satisfies soundness against
an adversarial prover and t malicious verifiers. Note that we structure our proof
along the lines of [8, Theorem 2], but do this for a different relation, which has
very different implications.

Lemma 2. The proof system given in Fig. 1 constitutes a NI-TZK argument in
the QROM for the list of relations of Eq. (3) if the deployed commitment scheme
is collapsing.

Proof. The results from Boneh et al. [11] show that in a NI-TZK proof scheme
over secret shared data, the best combination of soundness and ZK that we can
achieve is threshold zero-knowledge combined with soundness against prover
and t malicious verifiers. To achieve this, we require to have at least t+1 honest
parties among n ≥ 2t+1 verifiers, i.e. be in the honest majority setting. Achieving
these combinations means that in the target NI-TZK proof scheme, the prover
can collude with t malicious verifiers to break the soundness, and at most t
verifiers are allowed to collude to break the ZK and learn about the witness.
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As a result, we need to prove that for any set I ⊂ {1, · · · , n} of honest
parties where |I| > t and any poly-time quantum adversary ARO, the following
advantage is negligible:4

AdvsoundA,I (λ) = Pr
[∀i ∈ I : V RO(i, xi, π̃, πi) = 1

�w∀i : (xi, w) ∈ Ri

∣
∣
∣
∣{(xi, πi)}i∈I ← ARO(1λ)

]

.

For compactness, we use the index I to denote the set of elements with index
i ∈ I, e.g. xI = {xi}i∈I . We further define the function F , which on the input
of the data available to the set I, outputs the commitments as follows.

F : Ξk × Z
|I|
N × {0, 1}λ|I| × ZN [X]≤t → {0, 1}2λ

(d, xI , yI , r(X)) �→ {C(r(i) + dxi, yi)}i∈I ,

Let us define the following protocol Σ′ = (P ′
1, V

′
1 , P

′
2, V

′
2).

P ′
1(xI , w) : ∀i ∈ I : yi, y

′
i ← {0, 1}λ, C′

i ← Ξ(xi, y
′
i)

b(X) ← ZN [X]≤t, CI = F (0, xI , yI , b(X))
V ′
1(CI ,C

′
I) : d ← Ξk

P ′
2(c) : r(X) = b(X) − dw, rsp′ = (yI , y

′
I , r(X))

V ′
2(rsp) : accept if C′

I = C(xI , yI) and CI = F (d, xI , yI , r(X)).

It is clear that, if F (RO(C,C′), xI , yI , r(X)) = CI and C′
I = C(xI , y

′
I), then

V RO(I, xI , π̃, πI) = 1.5 This implies that AdvsoundA,I (λ) is indeed negligible if the
previously discussed variant of the Fiat-Shamir transform of Σ′ is a (quantum)
computationally sound proof of RI as per [19, Definition 9]. This, in turn, is
implied by proving that the transformed protocol is a quantum proof of knowl-
edge as per [19, Definition 14]. We prove this last step by using Lemma 1, which
implies the soundness of our protocol from Fig. 1, when the following protocol
has super-polynomially sized challenge space Ξk, special soundness, and quan-
tum computationally unique responses.

P1(xI , w) : ∀i ∈ I : yi ← {0, 1}λ,

b(X) ← ZN [X]≤t,CI = F (0, xI , yI , b(X))
V1(CI) : d ← Ξk

P2(c) : r(X) = b(X) − dw, rsp′ ← (yI , r(X))
V2(rsp) : accept if CI = F (d, xI , yI , r(X))

We end this proof by discussing that these three properties are satisfied.

– Challenge space: In the case where ZN is a field, the exceptional set Ξk

is simply the field itself, which by definition has size superpolynomial in λ.
Otherwise, the maximal size of Ξk is limited by the smallest divisor of N . In
that case, as mentioned in Remark 2 we can amplify the challenge space size
to above 2λ by repeating the protocol �λ/ log k� times.

4 For |I| ≤ t, there always exists a witness that satisfies the relation.
5 Read component-wise, e.g. ∀i ∈ I : C′

i = C(xi, y
′
i).



VSS from Distributed ZK Proofs and Applications 419

– Special Soundness: Let (xI , CI , d, r(X)) and (xI , CI , d
′, r′(X)) with d �= d′

be two accepting transcripts. Now, if for some i ∈ I, we have r(i) + dxi �=
r′(i) + d′xi, then we have found a collision in C. Otherwise, we can compute
a witness for xI via r(X)−r′(X)

d′−d . Note that d′ − d is invertible because they
are distinct elements from an exceptional set Ξk.

– Unique responses: Using the results from [8, Section A.2], this property
is guaranteed in case C is collapsing and that r(X) are unique. The latter
follows from the fact that the function (r, d, x) �→ r + dx is injective if d is an
element from an exceptional set. ��

Threshold zero-knowledge. We begin this section by stating the following Lemma.

Lemma 3. The protocol in Fig. 1 satisfies the TZK property in the QROM for
the list of relations of (3) if the used commitment scheme is quantum computa-
tionally hiding and collapsing, and if the underlying sigma protocol has honest-
verifier zero-knowledge, completeness, and unpredictable commitments.

We skip the proof of Lemma, as it immediately follows from the discussion in [8,
Section A.3]. There, the authors show that it suffices to show zero-knowledge for
any I ⊂ {0, . . . , n}.6 The case i = 0 is not relevant in this work and for the cases
i = 1, . . . , n, we can readily apply the results of their Lemmas 4 and 5 to our
protocol. By definition, our commitment is quantum computationally hiding and
collapsing. We can therefore finish the proof by showing that the sigma protocol
underlying Fig. 1 is complete, HVZK, and has unpredictable commitments.

– Completeness: It follows from the completeness of our protocol.
– HVZK: We can define a simulator that samples yI , y

′
I ← {0, 1}λ, r(X) ←

ZN [X]t and d ← Ξk uniformly at random, then sets CI = F (d, xI , yi, r(X))
and C ′

I = C(xI , y
′
I). Since these sampled elements are also uniformly random

in the real execution of the protocol, the transcripts are indistinguishable.
– Unpredictable commitments: By [38, Definition 4], unpredictable com-

mitments imply that for every (xI , w) ∈ RI , finding two different commit-
ments (C(1)

I , C
′(1)
I ) and (C(2)

I , C
′(2)
I ) that satisfy the probability

Pr

[

(C(1)
I , C

′(1)
I ) = (C(2)

I , C
′(2)
I )

∣
∣
∣
∣
(C(1)

I , C
′(1)
I ) ← P1(xI , w)

(C(2)
I , C

′(2)
I ) ← P1(xI , w)

]

is negligible in the security parameter λ. There are two options to get such
a collision, either the inputs to C are equal, or we find a collision in C. The
former happens with negligible probability, since the inputs to C are uniformly
distributed in ZN × {0, 1}λ and the latter is prevented by the fact that C is
collapsing. ��
This completes the proof of Theorem 1.

6 Actually, the authors implicitly prove TZK, but do not call it as such.
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3.2 A NI-VSS Scheme from NI-TZK Proofs

Next, we use the NI-TZK proof scheme proposed in the last subsection and con-
struct a NI-VSS scheme based on Shamir secret sharing. Our scheme operates on
the assumption that each shareholder has a secure communication channel with
the dealer, which can be achieved through a public key infrastructure. Therefore,
the shares will only be hidden computationally. The proposed scheme works in
the majority honest setting, and the validity of secret shares cannot be publicly
verified (as in [5,32]), and it requires (non-interactive) collaboration among the
shareholders to verify them. We demonstrate later that this is sufficient in many
Shamir-based threshold protocols (e.g. DKGs, threshold signatures, etc.) that
also work in the majority-honest setting.

Our Definitions. Before going through the proposed construction to build a
NI-VSS scheme, we review our formal definitions of VSS schemes which are a
minimally modified version of the ones from previous works [29,32].

Definition 8. An (n, t, x0) non-interactive VSS consists of four PPT Algo-
rithms of (Initialization, Share, Verification, Reconstruction) as follows:

1. Initialization: In this phase, the system parameters are generated and shared
with the parties.

2. Share(n, t, x0) → (x1, · · · , xn, π): Given the number of parties n, threshold
t, and the secret x0, the algorithm secret shares x0 and outputs the shares
{x1, · · · , xn} and a proof π to prove that it has done the sharing correctly.

3. Verification(n, t, x1, · · · , xn, π) → true/false: Given the number of parties
n, threshold t, and the shares x1, · · · , xn (or encryption of them), and the
proof π, generated by Share, the algorithm outputs either true or false.

4. Reconstruction(n, t, x1, · · · , xt+1) → x0/{true/false}: Given any t + 1 of the
shares, e.g., {x1, · · · , xt+1}, it reconstructs and returns x0. Alternatively,
given a candidate value for x0 (or in general a function of it) and t (or in
general t+1) of the shares, the algorithm confirms the validity of the candidate
secret x0 (or the function of it), and returns either {true/false}.

A verifiable secret sharing scheme further has two requirements as follows [32].

– Verifiability constraint: A shareholder must be able to determine whether
a share of the secret is valid or not. If it is valid, then Reconstruction should
produce a unique secret x0 when run on any t + 1 distinct valid shares.
Alternatively any t (or in general t + 1) shareholders should be able to check
the validity of a potential value of x0 (or in general a function of it).

– Unpredictability: The protocol must be unpredictable, meaning that there
is no strategy for selecting t shares of the secret that would enable someone
to predict the secret x0 with a significant advantage.

We highlight that our definition of VSS differs slightly from current ones [29,
32]. Our definitions utilize a ZK proof scheme over secret shared data for proving
the validity of the shares, ensures the existence of a polynomial-time verification
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algorithm that can validate the shares, and also introduces a novel approach for
reconstruction of the main secret. The first two features already are implicitly
built in any VSS scheme, however the third one is new in our framework. In our
Reconstruction algorithm, in addition to enabling the reconstruction of the secret
x0 using Largange interpolation by any t + 1 shareholders, we also consider a
scenario where the dealer disclose a candidate value for x0 (or in general a
function of it) and t (or in general t + 1) of the shareholders can validate the
validity of the disclosed secret (or the correctness of a computation performed on
x0). Later, we demonstrate that the new reconstruction approach is commonly
used in practice, and shareholders typically do not reconstruct the plain value
of x0. Instead, each shareholder acts as a dealer once and subsequently employs
their shared secret to perform certain computations. They then provide a ZK
proof to prove the correctness of their actions. In some cases, these proofs may
only be verifiable by the shareholders themselves.

Our Construction. In a VSS scheme, a dealer aims to distribute shares of a secret
x0 among n parties P1, . . . , Pn. Such that depending on the underlying access
structure, a subset of shareholders are qualified to recover the secret x0. In our
case, which is based on Shamir secret sharing, the secret can be recovered by any
subset of more than t shareholders, where t < n. On the other hand, any subset of
size ≤ t will not gain any information about x0, unless the security of underlying
NI-TZK proof scheme is broken. The complexity of our VSS scheme is linear
in the security parameter and also linear in the number of shareholders which
is essentially optimal, but notably our scheme only uses lightweight operations
(such as hashing and polynomial evaluations). It achieves computational security,
which is proven in the (Q)ROM, using a secure commitment scheme. We present
our protocol in Fig. 2.

It is important to note that in the Reconstruction with the new approach,
unlike the Lagrange interpolation based approaches, the parties do not perform
any decryption or proof generation to show the correctness of their actions.
Instead, the dealer calculates and publishes the reconstructed secret value f(0) =
x0 (or a function thereof) along with a NI-TZK proof for the distributed relation
Ri = {(xi, f(X))|f(i) = xi}, for i = 0, 1, . . . , n. Then, any t (or in general t + 1
if a function of x0 is reconstructed) shareholders use their secret shares to verify
the validity of the disclosed secret value x0 (or a function of it). If the verification
process returns true, this confirms that the disclosed value x0 (or a function of
it) represents the main secret f(0) (or a function thereof). Note that as in other
schemes, if we have t+1 shares, we only can achieve a reconstruction with abort,
while with n shares we can have a robust reconstruction phase.

It’s important to highlight that, similar to the first reconstruction approach,
where any subset of qualified sets can recover the secret f(0) and fewer than a
threshold number of them gain no knowledge about f(0), the new reconstruc-
tion approach also allows only a qualified subset of the shareholders to confirm
the soundness of the underlying NI-TZK proof scheme and the validity of the
disclosed value x0. Conversely, relaying on the TZK property of the underlying
NI-TZK proof scheme, any group of parties that is smaller than the threshold
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value will be unable to confirm the authenticity of the revealed value x0 (or any
function derived from it) and gain information about the original secret f(0) (or
any computation involving the original secret f(0)).

Fig. 2. The proposed NI-VSS scheme.
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In practical distributed protocols, the dealer typically does not reveal the
main secret f(0). Instead, they disclose the results of specific computations car-
ried out with it, such as h0 = gf(0) in the context of distributed generation of
a DL tuple. In these cases, the dealer is required to publish a proof that the
computation was conducted using f(0), e.g., h0 = gf(0) ∧ f(i) = xi in the con-
text of distributed key generation for signature schemes such as Schnorr and
BLS. At first glance, this may seem unconventional. However, as we will show
later, it is actually sufficient and common practice in many threshold protocols,
e.g., DKGs and threshold signatures. In the upcoming section, we will explore
some applications and types of NI-TZK proof systems that one might need in
the Reconstruction phase.

Theorem 2 (VSS from NI-TZK Proof Schemes). If the proof scheme
given in Fig. 1 is a secure NI-TZK protocol for the relations in Eq. (3), then, the
non-interactive VSS scheme (given in Fig. 2) is secure. That is, (i) the Recon-
struction protocol results in the secret distributed by the dealer for any qualified
set of shareholders, (ii) any non-qualified set of shareholders is unable to recover
the secret (i.e., unpredictability).

Proof. In Theorem 1, we showed that the protocol presented in Fig. 1 is a NI-
TZK scheme for L, that is an n-distributed language for the list of relations
given in Eq. (3), satisfies completeness, threshold ZK, and soundness against the
prover and t malicious verifiers in the QROM.

Completeness of the NI-TZK scheme implies that if the parties P1, · · · , Pn

follow the protocol, then at the end of the Sharing phase, each of them obtain a
distinct evaluation of a polynomial degree t, where t < n. Relaying on the fact
that any degree t polynomial is uniquely determined by t+1 distinct evaluations,
any t+1 of n shareholders can use Lagrange interpolation and reconstruct f(X)
and retrieve the value f(0), which is the secret value in the NI-VSS scheme.
Similarly, any t (or in general any t + 1) shareholders can also verify the proof
given by dealer in the Reconstruction phase, and ensure that the secret value x0

revealed by the dealer, is equal to the secret shared value f(0).
The NI-TZK scheme’s soundness against prover and t malicious verifiers

implies that if there is no n-distributed input x′ ∈ LR such that xi = x′
i, for

all honest parties Pi, then the protocol (honest verifiers) will reject the proof
except with negligible probability. Therefore, a malicious dealer would have to
either break the soundness of the underlying NI-TZK proof scheme or it will be
caught with an overwhelming probability. It is important to note that, during
the verification process any conflicts between the dealer and shareholders are
resolved using the method outlined in the Verification algorithm. In the scenario
where the majority of shareholders are honest, this enables the parties to achieve
robustness within the resulting NI-VSS scheme.

For unpredictability, the threshold ZK property of the underlying NI-TZK
scheme guarantees that any polynomial-time adversary A that controls up to t
verifiers cannot learn anything about the secret polynomial f(x), including the
value f(0). As a result, any non-qualified set of shareholders is unable to recover
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the secret x0 = f(0). In other words, if an adversary who controls a non-qualified
set of shareholders can learn about the secret value f(0), they can be used as an
adversary against the threshold ZK property of the NI-TZK proof scheme. ��

3.3 Asymptotic Costs and Empirical Performance

Next, we first summarize the efficiency metrics for our proposed NI-VSS scheme,
and then assess its empirical performance through a prototype implementation.
To gauge the efficiency of new scheme, we also conduct a comparative analysis
with the widely used VSS scheme of Pedersen [29].

Asymptotic Costs. As in Shamir secret sharing, to share a secret x0 among
n parties with threshold value t, the dealer first computes n evaluations of a
degree-t polynomial f(X). Then, it runs the prover of NI-TZK scheme outlined
in Fig. 1 and generates a proof for the correctness of the shearing phase. To this
end, the dealer needs to compute n evaluations of a new degree-t polynomial
b(X), compute 2n commitments, query one time to the RO, and perform t sub-
tractions between the coefficients of f(X) and b(X). To verify their shares, the
shareholders participate in the verification of the NI-TZK proof system (out-
lined in Fig. 1) and disseminate the final output to the network. As part of this
process, each shareholder must compute two commitments, one evaluation of a
random oracle, one polynomial evaluation of degree t, and one addition over ZN .
In terms of communication, the dealer broadcasts (C,C′, r(X)) to the network,
which consists of 2n commitments and t polynomial coefficients. It also sends the
individual proof (xi, πi) privately to party Pi, which consists of 3 ZN elements.

Table 2. Asymptotic costs in Pedersen [29] and our proposed NI-VSS schemes. DL:
Discrete Logarithm, BC: Broadcast, n: Number of parties, EG: Exponentiation in group
G, MG: Multiplication in group G, PE : degree-t Polynomial Evaluation, H: Hashing,
|G|: G element size, |Zq|: Zq element size, |ZN |: ZN element size, |H|: Output size of
H, DV: Designated Verifier, FS: Fiat-Shamir.

VSS Scheme Assumption Sharing Dealer’s Communication Verification (DV)

Pedersen DL-based 1n EG Private: 2n |Zq| t ≈ 0.5n EG

[29] (IT & Classic) 2n PE BC: t ≈ 0.5n |G|
This work Hash-based 2n H Private: 1n |ZN | 1 PE + 3 H
Sect. 3.2 (PQ) 2n PE BC: 2n |H| + 0.5n |ZN | (1 H is for FS)

In Pedersen VSS scheme, to share a secret, a dealer needs to evaluate a degree-
t polynomial 2n times (i.e., n times with f(X) and n times with b(X)), compute
n exponentiations and t ≈ n/2 multiplications in the underlying group G. Then,
the dealer needs to broadcast t ≈ n/2 group elements as the commitments, and
also privately send 2 field elements to each party Pi, as their shares. Then, to
verify the shares, each verifier needs to compute t ≈ n/2 exponentiations in
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the group G. Table 2, summarizes the asymptotic costs of our proposed protocol
and compares it with Pedersen’s scheme [29]. As a crucial optimization in our
scheme, we eliminate the need for additional randomness, represented as yi and
y′

i within the hashes (i.e., the commitments). This optimization results in shorter
private communication from the dealer to the parties in the table.

Empirical Performance. To assess the practical performance of the new VSS
scheme, we implemented a prototype of it alongside the Pedersen scheme using
SageMath. In the new VSS scheme, we employed a SHA256 hash function for
instantiating the commitment scheme C and the random oracle H. For the Peder-
sen scheme implementation, we utilized Curve 25519, and optimized the imple-
mentation through Montgomery x-arithmetic. Additionally, we relied on Sage-
Math’s built-in functions for handling polynomials and hash operations.

To evaluate their performance, we conducted experiments where we varied
the number of parties and the threshold value. Specifically, we report the run
times of the Sharing and Verification phases, along with the communication size
for different numbers of parties, i.e., n, and threshold values, i.e., t. To conduct
these experiments, we ran our code on a laptop with Ubuntu 22.04 LTS, a 11th
Gen Intel(R) Core(TM) i9-11950H at base frequency 2.60 GHz, and 64 GB of
memory. All the operations in the sharing and verification phases are done in
a single-thread mode. The performance results with different values of (n, t),
ranging from (32, 15) to (16384, 8191) are summarized in Table 3.

Table 3. Empirical performance of NI-VSS schemes Pedersen [29] and our proposed
scheme for various numbers of parties and threshold values (n, t). n: Number of parties,
t: Threshold value, BC: Broadcast, |Zq| = |ZN | = 252, |G| = 510, |H| = 256 bits.

(n, t) Scheme Sharing Dealer’s Communication Verification

Pedersen [29] 78.1 msec Private: 1.97 KB + BC: 1.00 KB 10.2 msec
(32, 15)

This Work 2.40 msec Private: 0.98 KB + BC: 2.49 KB 0.12 msec

Pedersen [29] 310 msec Private: 7.87 KB + BC: 3.98 KB 97.6 msec
(128, 63)

This Work 13.7 msec Private: 3.93 KB + BC: 9.96 KB 0.36 msec

Pedersen [29] 1.310 sec Private: 31.5 KB + BC: 15.9 KB 525 msec
(512, 255)

This Work 0.140 sec Private: 15.7 KB + BC: 39.9 KB 1.20 msec

Pedersen [29] 6.53 sec Private: 126 KB + BC: 63.74 KB 2.35 sec
(2048, 1023)

This Work 2.00 sec Private: 63 KB + BC: 129.5 KB 4.90 msec

Pedersen [29] 48.1 sec Private: 504 KB + BC: 255 KB 9.47 sec
(8192, 4095)

This Work 30.6 sec Private: 252 KB + BC: 638 KB 0.019 sec

Pedersen [29] 153.6 sec Private: 1008 KB + BC: 510 KB 19.2 sec
(16384, 8191)

This Work 121.7 sec Private: 504 KB + BC: 1276 KB 0.039 sec

The implementation results solidify the advantage of our NI-VSS scheme over
the Pedersen scheme in both sharing and verification phases, in addition to post-
quantum security. Specifically, our NI-VSS scheme demonstrates a remarkable
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speedup in the verification phase, achieving 271×, 437×, and 498× faster veri-
fication times than the Pedersen scheme for (n, t) equal to (128, 63), (512, 255),
and (8194, 4095), respectively. Similarly, in the sharing phase, for the same set-
tings, our scheme is approximately 22.6×, 9.3×, and 1.57× faster than the Ped-
ersen scheme. Regarding communication cost, our scheme incurs a broadcast
cost for the dealer that is 2.5× higher than that of the Pedersen scheme. These
implementation results also affirm the practicality and scalability of the new NI-
VSS scheme for deployment in various threshold protocols. One notable factor
contributing to our improvements in the sharing and verification phases is using
lightweight cryptographic operations such as hashing and polynomial evaluation,
in the underlying NI-TZK proof scheme.

We highlight that our implementation remains relatively naive, operating in
a single-threaded fashion without specific optimizations. A potential optimiza-
tion strategy could involve adopting algorithms from [36], which offer improved
computational complexity for evaluating a polynomial at multiple points, thus
improving the efficiency of the sharing (and also verification in some cases).

4 More Efficient Threshold Protocols in the DL Setting

In this section, we leverage our new VSS scheme from Sect. 3 and revisit the
well-known Pedersen DKG protocol [28] along with the threshold signature of
Gennaro, Jarecki, Krawczyk, and Rabin [22], which uses Schnorr’s signature [31]
for signing and Pedersen’s DKG protocol for generating the (ephemeral) keys.

4.1 An Efficient DKG Protocol for DL

Pedersen DKG protocol [28] allows a group of parties to generate a DL instance,
e.g., pk = gsk, in a fully distributed manner, where g is the generator of the DL
group, and (sk, pk) are a pair of secret and public keys, respectively.

In the following, we present an efficient robust DKG protocol for distributed
generation of a DL instance, which can outperform Pedersen’s protocol. To this
end, we first construct an efficient NI-TZK proof scheme for the DL problem that
acts as a building block in our proposed DKG protocol (and threshold signature).
The NI-TZK proof scheme allows a prover to convince a set of verifiers (i.e.,
shareholders) that h = gf(0) ∧ f(i) = xi, for the shared input x = x1 ‖ x2 ‖
· · · ‖ xn, a secret polynomial f(X) ∈ Fp[X]t and a secret input x0 = f(0). One
usually can face with a similar scenario in the DL-based threshold protocols (e.g.,
threshold variants of El Gamal, ECDSA, etc.). The new NI-TZK proof scheme
is built for the following n-distributed relations,

Ri = {(g, h, xi, f(X))|h = gf(0) ∧ f(i) = xi}, (4)
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where i = 1, . . . , n. Figure 3 describes the algorithms of our proposed NI-TZK
proof scheme for the DL relation, where H is a random oracle and C is a computa-
tionally hiding commitment scheme. Roughly speaking, the protocol is obtained
by slightly modifying the conjunction of the Schnorr ID protocol with the NI-
TZK scheme presented in Fig. 1. This is another instance of different NI-TZK
proof schemes that one may need in the Reconstruction phase of the new VSS
scheme, where parties reconstruct a function of the main secret f(0), namely
h = gf(0), rather than the plain value of it.

Fig. 3. A NI-TZK proof scheme for discrete logarithm.

Theorem 3 (NI-TZK Proofs for DL). Let L be an n-distributed language
for the list of relations given in Eq. (4), t ≥ 1 be a security threshold such that
n ≥ 2t + 1. Assuming that the commitment scheme C is computationally hiding,
for any potential set I ⊆ [n] of size |I| ≥ n− t, the protocol described in Fig. 3 is
a non-interactive distributed threshold ZK protocol for L that satisfies complete-
ness, threshold ZK, and soundness against the prover and t malicious verifiers
in the ROM.
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Proof. The proof is analogous to the proof of Theorem 1 which is omitted. We
highlight that in this case, in the soundness proof, one reduces the security of
scheme to the DL problem, thus this scheme only achieves classical security. ��

Now, we can use the general NI-VSS of Fig. 2 and the NI-ZSK proof scheme
given in Fig. 3, and construct a DKG protocol with designated verifiers for DL.
The resulting DKG is described in Fig. 5 and can be considered as an adaption
of the Pedersen DKG protocol version from [22] to work with NI-TZK proofs
and the new VSS scheme.

Theorem 4. Under the DL assumption, the protocol in Fig. 4 is a secure DKG
protocol, namely it satisfies the correctness and secrecy properties against a mali-
cious adversary corrupting up to t parties, with t < n/2.

Proof. The proof is analogous to the ones in [8,22], but in this case the simulator
of DKG scheme runs the simulator of NI-TZK proof scheme as a subroutine. ��

Fig. 4. Designated verifier DKG protocol for DL-based schemes.
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Fig. 5. A novel robust threshold signature scheme based on GJKR scheme [22].

4.2 More Efficient Threshold Signatures from Schnorr’s Scheme

Next, using the DKG protocol given in Fig. 4, we modify the Schnorr-based
threshold signature scheme of Gennaro, Jarecki, Krawczyk, and Rabin [22], and
present a new variant of it that can be more efficient in practice. Figure 5 rep-
resents the description of our proposed robust threshold signature scheme that
uses Fig. 4 for the DKG and the distributed generation of the ephemeral key gb.

Theorem 5. Under the DL problem the threshold signature described in Fig. 5,
is secure against a static adversary corrupting up to t parties, with t < n/2.

We refer to the full version of paper [3] for the security proof of the scheme.

Security Against Wagner’s Attack. The threshold signature in Fig. 5 is secure
against the concurrent attack using Wagner’s algorithm [6,40]. Intuitively, the
attack crucially relies on the fact that an adversary can open 	 sessions of the
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protocol in parallel, that is in the same round. At each session r the adversary
gets gbi from the honest parties and computes its commitment shares gbj , j ∈ A,
based on the honest parties’ commitment shares, before submitting gb to the RO.
For big enough 	 this is enough for the adversary to forge a signature [6]. As
mentioned in the same paper [6], a countermeasure is to let parties commit
to the shares gbi and only after a round of broadcast they open them. This
clearly prevents the adversary to compute his shares adaptively. A typical way
for implementing this is using PK-based commitments such as Pedersen’s, as
done for example in [22,27]. We have a similar approach in our protocol, and
reveal the commitments and opening at the beginning of the second round.

4.3 Efficiency of New Protocols

Next, we summarize the efficiency of the proposed DKG protocol (Fig. 4) and
the threshold signature (Fig. 5) and compare them with the ones proposed by
Pedersen [29] and Gennaro et al. [22].

Comparing our DKG protocol to the variant of Pedersen DKG presented
in [22], we observe asymptotic improvements in computational cost of parties.
In our DKG protocol, each party is required to perform approximately 2n expo-
nentiations within the group, conduct 3n evaluations of degree-t polynomials in
the field, and execute 5n hash operations for commitment purposes. While, in
the Pedersen DKG each party needs to compute (2tn+n) exponentiations in the
group, 2n degree-t polynomial evaluations in the field, and a single hash opera-
tion. Regarding communication, our DKG protocol entails each party privately
sending n field elements to other participants, along with broadcasting approxi-
mately 2n images generated through hash functions (i.e., the commitments) and
t field elements (i.e., coefficients of r(X)). Conversely, in the Pedersen DKG pro-
tocol, each party privately sends 2n field elements to the other participants and
then broadcast 2t group elements. We refer Table 4 for a summarized comparison
of the asymptotic costs in both DKG protocols.

When evaluating the efficiency of threshold signatures, as outlined in our
protocol (described in Fig. 5), in addition to executing our DKG protocol with
associated costs summarized in Table 4, each participants is required to perform
n evaluations of degree-t polynomials in the field (for the verification of partial
openings) and broadcast t field elements (representing the coefficients of the
polynomial r(i)(X)). In the GJKR [22] signature, alongside the Pedersen DKG
protocol with its cost breakdown provided in Table 4, each party must conduct
2n group exponentiations and broadcast a single field element (for the opening).

In line with the efficiency trends observed in the VSS and DKG protocols, we
anticipate that our threshold signature scheme can have significantly improved
performance compared to the construction presented by Gennaro et al. [22].
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Table 4. Asymptotic costs in the GJKR [22] variant of Pedersen DKG [29] and our pro-
posed scheme. DL: Discrete Logarithm, BC: Broadcast, n: Number of parties, t ≈ n/2:
Threshold value, EG: Exponentiation in group G, PE : degree-t Polynomial Evaluation,
H: Hashing, |G|: G element size, |Zq|: Zq element size, |H|: H image size.

DKG Scheme Assumption Parties’ Computation Communication

GJKR [22] DL-based (2nt + n) EG + 2n PE + 1 H Private: 2n |Zq|
(Pedersen [29]) (2nt EG is for verify) BC: 2t ≈ n |G|

This work DL & 2n EG + 3n PE + 5n H Private: 1n |Zq|
Sect. 4.1 Hash-based (2n EG + n PE + 3n H is for verify) BC: 2n |H| + t |Zq|

5 More Efficient Threshold Protocols from Isogenies

Our VSS construction from Sect. 3 can be seamlessly integrated into current
isogeny-based DKG protocols and threshold signatures present in the litera-
ture [1,2,8,13]. The resulting protocols outperform the current state-of-the-art
in terms of communication and/or computational cost.

In the interest of clarity and conciseness, we defer a brief introduction to
isogenies and of the state-of-the-art protocols to the full version of paper [3].
Here, we only present the modifications to these protocols to achieve the better
performance results.

5.1 More Efficient DKG Protocols for CSIDH

In this section, we revisit the DKG protocols recently proposed in [2] for CSIDH-
based primitives, which can be considered variants of CSI-RAShi [1,8] and Struc-
tured CSI-RAShi [1]. We only focus on the structured case (i.e. where the target
public key has the structure {Ei = [cix0]E0}k

i=1 for public integers {ci}k
i=1),

as it is generally more efficient and a single public key is a special case of this
(for k = 1). The extended (non-structured) case (i.e. public keys of the type
{Ei = [xi]E0}k

i=1) can be inferred from the latter.

Structured CSI-RAShi++ DKG Protocol. Both DKG protocols proposed
in [2] are new variants of the protocols in [1,8] with lower computational cost
which in terms of isogeny computations. This is achieved at the cost of higher
communication complexity, a reduced number of corrupted parties to n/3, and
an interactive share verification in the final DKG protocols.

We revisit these protocols in in the full version of paper [3, Fig. 10]. They
consist of two stages: a VSS step and a computationally secure public key compu-
tation step. During the VSS step, the parties engage in the BGW VSS scheme [5]
and share a secret x0 (i.e., the secret key) among themselves. Then, in the (pub-
lic key) computation step, they use their shares obtained from the first step and
compute the target public key {Ei = [cix0]E0}k

i=1 in a round-robin fashion.
In this section, we show that by integrating our new NI-VSS scheme into the

VSS step of their DKG protocols, we can resolve all of the drawbacks mentioned
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above at the same time. Our protocols achieve lower communication, allow n/2
corrupted parties and are non-interactively verifiable, while achieving the same
computational complexity as the fastest protocols from [2].

In Fig. 6, we present a new variant of the structured DKG protocol from [2,
Section 4], by replacing the BGW VSS scheme used in their protocol with our
NI-VSS scheme. This replacement results in a reduction of IT security in the VSS
step to computational security, but overall, as in the original case, the resulting
DKG protocol achieves quantum computational security.

We discuss security below. For formal definitions of the security properties
of DKGs, we refer to [8,22].

Theorem 6 (Structured CSI-RAShi++ DKG Protocol). If the VSS
scheme given in Fig. 2 is a secure verifiable secret sharing scheme in the QROM,
then the DKG protocol of Fig. 6 is secure in the QROM. That is correct, robust,
and satisfies the secrecy property.

Fig. 6. Structured CSI-RAShi++: an efficient DKG protocol for a structured public
key {Ei = [cix0]E0}k

i=1.

Proof. The proof is almost identical to the proof of [2, Theorem 4.1], except that
in this case we will rely on the security of the new NI-VSS, proven in Theorem 2,
rather than the security of the BGW VSS scheme [5] which is employed in the
secret sharing step of their DKG protocol. ��

Efficiency of the Revised DKG Protocols. In Tables 5 and 6, we summarize
the computational and communication costs of our proposed DKG protocols,
CSI-RASHI++ and Structured CSI-RAShi++ (both from Fig. 6, the former for
the choice k = 1), and compare them with current DKG protocols in the CSIDH
setting. To have a fair comparison we express the computational cost as the
sequential runtime of the protocol steps, i.e. the total runtime from start to finish,
including when some of the parties are idle. We quantify the communication
cost as the amount of outgoing communication per party. Our cost analysis
methodology builds on that of [2] with some optimizations from [1].
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Table 5. Sequential computational costs (including idle time) of the different DKGs
from [2] and from this work, in terms of polynomial evaluations, isogeny computations
and calls to the commitment scheme and random oracle. For compactness, we assume
gcd(k, n) = min{k, n} and do not explicitly write down the gains through the twist
trick. See [2] for more details.

Polynomial Eval. Isogenies Commitments RO queries

Basic

DKG [2]
2(n − 1)2 + nλ(n + 2) 2nλ + n 2n(n + 3) 2n

Extended

DKG [1,2]

2(n − 1)2k+

nλ(n� k
n
� + k)

n(nλ + 1)	 k
n

 2n((n − 1)� k

n
�+

2k)
nk

Structured

DKG [2]

2(n − 1)2+

nλ(2n + 1)
n(nλ + 1)	 k

n

 2n(3n − 1) n2

Our Basic

DKG
(3n − 1) + nλ(n + 2) 2nλ + n 2n(n + 5) − 2 3n

Our Extended

DKG

(3n − 1)k+

nλ(n� k
n
� + k)

n(nλ + 1)	 k
n

 2n((n − 2)� k

n
�+

+4k) − 2k
2nk

Our Structured

DKG
(3n − 1) + 2n2λ n(nλ + 1)	 k

n

 2n(3n + 1) − 2 n(n + 1)

Table 6. Communication costs of different DKGs from [2] and this work, in terms of
elements in ZN and E , and the number of commitments and proof pieces (i.e. elements
of size 2λ). The cost represents the outgoing cost per party. The cost of the basic DKG
follows by setting k = 1.

Element of ZN Element of E Commitment/Proof Piece

Extended

DKG [1,2]

2k(n − 1)(n + t − 1)

+knλ(t + 1)
nk nk(3n + 2)

Structured

DKG [2]

2(n − 1)(n + t − 1)

+nλ(t + 1)
nk n(3n + 2)

Our Extended

DKG
k(nλ(t + 1) + n + t) nk k(n(3n + 5) − 1)

Our Structured

DKG
nλ(t + 1) + n + t nk n(3n + 5) − 1
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Fig. 7. Computational and communication costs of the DKG protocols [1,2,8] for the
CSIDH-512 parameter set, shown as a function of the number of parties for k = 26.

In Fig. 7, we further plot the computational and communication costs of
our protocols and compare them to the literature. We note that the number of
isogeny computations coincides exactly with [2], currently the fastest in the lit-
erature. In terms of communication, both the extended and structured versions
of our protocols outperform their counterparts from the literature. For asymp-
totically large n, the communication cost of our protocols tend towards the
communication cost of CSI-RAShi, as the commmunication cost of underlying
NI-TZK proof schemes starts to dominate in these regions.

5.2 Threshold, Efficient, and Robust CSI-SharK

Next, we revisit the CSI-FiSh-based threshold signing protocol of Campos and
Muth [13], and construct ThreshER SharK, which is a Threshold, Efficient and
Robust signature scheme based on CSI-SharK [1]. Campos-Muth threshold
signature [13] is based on the basic version of CSI-FiSh [9], with its public key
and the ephemeral keys being sampled by the CSI-RAShi DKG protocol [8]. The
basic version of CSI-FiSh is based on an ID scheme that has a binary challenge
space, leading to long signing and verification times. By using larger public keys
(e.g. extended or structured ones) of k elements, less repetitions are needed and
the signatures become faster and smaller.



VSS from Distributed ZK Proofs and Applications 435

Fig. 8. ThreshER SharK: a Threshold, Efficient, and Robust signature scheme based
on CSI-SharK.

Similarly, one can extend the robust threshold signing protocol of Campos
and Muth to work with the extended version of CSI-FiSh [9] or its structured
counterpart CSI-SharK [1]. Based on the comparisons presented in Tables 5,6
and Fig. 7, we know that the latter has faster DKG protocols to generate the
public key. Considering this, we propose two modifications to enhance the effi-
ciency of Campos and Muth’s robust threshold signature scheme [13]. First,
we adapt their threshold signature scheme to work with CSI-SharK [1]. Con-
sequently, the parties can use the Structured CSI-RAShi++ DKG protocol
to sample the keys and need to store only a single secret key. As the second
modification, we employ the (non-structured) extended variant of our proposed
CSI-RAShi++ DKG protocol to sample the ephemeral keys for the revised
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threshold signature scheme. Figure 8 describes the algorithms of the resulting
robust threshold signature, which is called ThreshER SharK. In the figure,
H : {0, 1}∗ → (Ξk)tk is a random oracle which returns tk elements from an
exceptional set Ξk = {c0 = 0, c1 = 1, c2, . . . , ck−1} of size k. ThreshER SharK
uses the new NI-VSS scheme in both the key generation and singing protocols.

Efficiency. ThreshER SharK, utilizing an SPK, benefits from the ability to
sample keys more efficiently using Structured CSI-RAShi++. While it is pos-
sible to extend Campos and Muth’s robust threshold signature scheme [13] to
accommodate the extended version of CSI-FiSh and gain efficiency through our
proposed DKG protocols, it should be noted that the result would be less effi-
cient than ThreshER SharK (We refer to Tables 5-6 for a detailed comparison).

Security. We discuss security of our scheme in the full version of paper [3].

6 Conclusion

In this paper, we presented a general construction for building a NI-VSS scheme
using a ZK proof scheme over secret shared data, as formally defined by Boneh
et al. [11]. Leveraging this construction, we proposed a practical post-quantum
secure NI-VSS scheme based on Shamir secret sharing.

The proposed NI-VSS scheme can be viewed as a modification of the variant
of the Pedersen VSS scheme used in the GJKR DKG protocol [22], where we
replace the Pedersen commitment with a hash-based commitment scheme. The
later modification pushes the protocol to the designated verifier setting, requires
a ZK proof over secret shared data, but enables the attainment of Post-Quantum
(PQ) security and notably improved efficiency. Consequently, our NI-VSS scheme
presents a more efficient and PQ-secure alternative to the Pedersen [29] (or
Feldman [20]) VSS scheme in scenarios where public verifiability is not necessary.
This holds true for various (post-quantum secure) threshold protocols such as
DKG schemes and threshold signatures. To assess the performance of the new
NI-VSS scheme alongside the well-established Pedersen scheme, we conducted a
prototype implementation, yielding promising results. Compared to the Pedersen
scheme, while incurring a 2.5× higher broadcast cost for the dealer, our scheme
demonstrates significantly faster sharing times, ranging from 32.5−3.25× faster
for different values of (n, t), spanning from (32, 15) to (2048, 1023). Moreover,
verification times are substantially reduced, with the new scheme requiring 85−
479× less time. Using our scheme, a dealer can share a secret with 2048 parties
in approximately 2 sec, while parties can verify their shares in less than 5 msec.

A key advantage of new PQ-secure NI-VSS scheme, when compared to the
IT-secure BGW VSS scheme [5], is its reduced communication overhead and
improved robustness. Specifically, our scheme requires half of the shareholders
to be honest, as opposed to two-thirds in the BGW VSS scheme.

Leveraging the new NI-VSS scheme we revisited and improved various clas-
sic and PQ-secure DKG and threshold signing protocols [1,2,8,13,22]. Through
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our revisions, we have not only improved their performance but also relaxed the
requirements on the number of honest parties in some cases. We have introduced
a new variants of the Pedersen DKG [29] combined with the GJKR threshold
signature scheme [22] that can outperform the original versions in terms of com-
putational cost. One notable factor contributing to these improvements is the
practical advantage of using a hash function for commitment, which often out-
performs the Pedersen commitment. Our results show that, in practice, DKG
and threshold signing protocols with designated verifiers suffice for constructing
a threshold signature scheme with public-verifier. Our revisions also have led to
the development of two DKG protocols and a threshold signature scheme based
on isogenies that surpass the state-of-the-art constructions [2,13]. Our isogeny-
based threshold signature scheme builds upon the CSI-SharK signature [1], but it
can also be adapted to work with the CSI-FiSh [9], although with lower efficiency
in the key generation phase.

The remarkable efficiency and simplicity of the NI-VSS scheme render it a
valuable tool for various classic and PQ-secure threshold protocols, extending
beyond those revisited in this paper. Future research can explore the integration
of the new NI-VSS scheme and the revised protocols into other settings and
threshold protocols, while evaluating their impact on overall efficiency.
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Abstract. The MPC-in-the-Head paradigm is a popular framework to
build zero-knowledge proof systems using techniques from secure multi-
party computation (MPC). While this paradigm is not restricted to a
particular secret sharing scheme, all the efficient instantiations for small
circuits proposed so far rely on additive secret sharing.

In this work, we show how applying a threshold linear secret shar-
ing scheme (threshold LSSS) can be beneficial to the MPC-in-the-Head
paradigm. For a general passively-secure MPC protocol model captur-
ing most of the existing MPCitH schemes, we show that our approach
improves the soundness of the underlying proof system from 1/N down
to 1/

(
N
�

)
, where N is the number of parties and � is the privacy threshold

of the sharing scheme. While very general, our technique is limited to a
number of parties N ≤ |F|, where F is the field underlying the statement,
because of the MDS conjecture.

Applying our approach with a low-threshold LSSS also boosts the
performance of the proof system by making the MPC emulation cost
independent of N for both the prover and the verifier. The gain is par-
ticularly significant for the verification time which becomes logarithmic
in N (while the prover still has to generate and commit the N input
shares). We further generalize and improve our framework: we show how
linearly-homomorphic commitments can get rid of the linear complexity
of the prover, we generalize our result to any quasi-threshold LSSS, and
we describe an efficient batching technique relying on Shamir’s secret
sharing.

We finally apply our techniques to specific use-cases. We first propose
a variant of the recent SDitH signature scheme achieving new interesting
trade-offs. In particular, for a signature size of 10 KB, we obtain a veri-
fication time lower than 0.5 ms, which is competitive with SPHINCS+,
while achieving much faster signing. We further apply our batching tech-
nique to two different contexts: batched SDitH proofs and batched proofs
for general arithmetic circuits based on the Limbo proof system. In both
cases, we obtain an amortized proof size lower than 1/10 of the base-
line scheme when batching a few dozen statements, while the amortized
performances are also significantly improved.
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1 Introduction

Zero-knowledge proofs are an important tool for many cryptographic protocols
and applications. Such proofs enable a prover to prove a statement by interacting
with a verifier without revealing anything more than the statement itself. Zero-
knowledge proofs find applications in many contexts: secure identification and
signature, (anonymous) credentials, electronic voting, blockchain protocols, and
more generally, privacy-preserving cryptography.

Among all the possible techniques to build zero-knowledge proofs, the MPC-
in-the-Head framework introduced by Ishai, Kushilevitz, Ostrovsky and Sahai
in [IKOS07] has recently gained popularity. This framework relies on secure
multi-party computation (MPC) techniques: the prover emulates “in her head”
an �-private MPC protocol with N parties and commits each party’s view inde-
pendently. The verifier then challenges the prover to reveal the views of a random
subset of � parties. By the privacy of the MPC protocol, nothing is revealed about
the plain input, which implies the zero-knowledge property. On the other hand,
a malicious prover needs to cheat for at least one party, which shall be discovered
by the verifier with high probability, hence ensuring the soundness property.

The MPC-in-the-Head (MPCitH) paradigm provides a versatile way to build
(candidate) quantum-resilient proof systems and signature schemes. This app-
roach has the advantage to rely on security assumptions that are believed to
be robust in the quantum setting, namely the security of commitment schemes
and/or hash functions. Many recent works have proposed new MPCitH tech-
niques which can be applied to general circuits and/or specific problems, some
of them leading to efficient candidate post-quantum signature schemes, see
for instance [GMO16,CDG+17,AHIV17,KKW18,DDOS19,KZ20b,BFH+20,
BN20,BD20,BDK+21,DOT21,DKR+21,KZ22,FJR22,FMRV22]. Proof sys-
tems built from the MPCitH paradigm can be divided in two categories:

– Schemes targeting small circuits (e.g. to construct efficient signature
schemes), such as [KKW18,BN20,KZ22]. In these schemes, the considered
MPC protocol only needs to be secure in the semi-honest model, enabling
efficient constructions, but the resulting proof is linear in the circuit size.
Previous schemes in this category are all based on additive secret sharing.

– Schemes such as [AHIV17,GSV21] in which the considered MPC protocol is
secure in the malicious model and the proof is sublinear in the circuit size
(in O(

√|C|) with |C| being the circuit size). Due to their sublinearity, these
schemes are more efficient for middle-size circuits (while the former remain
more efficient for smaller circuits arising e.g. in signature schemes).

We note that other quantum-resilient proof systems exist (a.k.a. SNARK,
STARK) which do not rely on the MPCitH paradigm and which achieve polylog-
arithmic proof size (w.r.t. the circuit size), see e.g. [BCR+19,BBHR19]. These
schemes are hence better suited for large circuits.

Our work belongs to the first category of MPCitH-based schemes (i.e.
targeting small circuits). Currently, the best MPCitH-based schemes in this
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scope rely on (N − 1)-private passively-secure MPC protocols with N par-
ties [KKW18,BN20,DOT21,KZ22], where the parameter N provides different
trade-offs between communication (or signature size) and execution time. In
these schemes, the proof is composed of elements of size solely depending on the
target security level λ (the “incompressible” part) and other elements of size
O(λ2/ log N) bits (the “variable” part). To obtain short proofs or signatures,
one shall hence take a large number of parties N . On the other hand, the prover
and verifier running times scale linearly with N (because of the MPC emulation)
and hence quickly explode while trying to minimize the proof size.

In this paper, we improve this state of affairs. While previous efficient instan-
tiations of the MPCitH paradigm for small circuits all rely on additive secret
sharing, we show how to take advantage of using threshold linear secret sharing.
Using our approach, we can decrease the soundness error from 1/N to 1/

(
N
�

)

(still using passively-secure protocols), for a small constant �, while making the
cost of the MPC emulation independent of N , for both the prover and the veri-
fier. The prover running time remains globally linear in N (because of the initial
sharing and commitment phase) but is still significantly improved in practice.
On the other hand, the verification time becomes logarithmic in N and is hence
drastically reduced (both asymptotically and in practice).

Our Contribution. We first describe a general model of multiparty computation
protocol (with additive secret sharing) which captures a wide majority of the
protocols used in the MPCitH context. (To the best of our knowledge, our model
applies to all the MPCitH schemes except those derived from ZKBoo or Ligero.)
Given a statement x and a relation R, these MPC protocols aim to evaluate a
randomized function f on a secret witness w such that f outputs Accept when
(x,w) ∈ R and Reject with high probability otherwise. The false-positive rate
of the MPC protocol corresponds to the probability that f outputs Accept even
if (x,w) �∈ R. We further recall the general transformation of such a protocol
into a zero-knowledge proof which achieves a soundness error of

1
N

+ p ·
(

1 − 1
N

)

where N is the number of parties and p is the false-positive rate of the MPC
protocol. We then show how to apply an arbitrary threshold linear secret sharing
scheme (LSSS) to our general MPC model and how to transform the obtained
MPC protocol into a zero-knowledge proof achieving the following soundness
error:

1
(
N
�

) + p · � · (N − �)
� + 1

,

where � is the threshold of the LSSS (any � shares leak no information while the
secret can be reconstructed from any � + 1 shares). Our theorems cover all the
MPC protocols complying with our general model, and for any threshold LSSS
(covering additive sharing as a particular case).
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Besides improving soundness, using an LSSS with a small threshold implies
significant gains in terms of timings. Indeed, the prover and the verifier do not
need to emulate all the N parties anymore, but only a small number of them (�+1
for the prover and � for the verifier). For instance, when working with Shamir’s
secret sharing [Sha79] with polynomials of degree � = 1, the prover only needs to
emulate 2 parties (instead of N) and the verifier only needs to emulate 1 party
(instead of N − 1) while keeping a soundness error about 1

N (assuming a small
false positive rate p). On the other hand, the proof size is slightly larger than in
the standard case (with additive sharing) since one needs to use a Merkle tree for
the commitments (and include authentication paths for the opened commitments
in the proof). Overall, our approach provides better trade-offs between proof size
and performances for MPCitH schemes while drastically reducing the verification
time in particular.

We further improve and generalize our approach in different ways. We first
show how using linearly-homomorphic commitments can make both the prover
and verifier times independent of N (which opens the doors to efficient schemes
with large N). The main issue with this approach given the context of application
of MPCitH is the current absence of post-quantum candidates for homomorphic
commitment schemes. We also generalize our approach to quasi-threshold LSSS,
for which a gap Δ exists between the number of parties � which leak no infor-
mation and the number of parties � + 1 + Δ necessary to reconstruct the secret.
We particularly analyze algebraic geometric quasi-threshold schemes [CC06] but
our result is mostly negative: we show that using such schemes does not bring
a direct advantage to our framework. We then show that our result on quasi-
threshold schemes is still useful in the context of batched proofs (i.e. proving
simultaneously several statements with a single verification process). We pro-
pose a batching technique based on Shamir’s secret sharing which enables to
efficiently batch proofs in our framework (for a subset of the existing MPCitH
schemes).

Finally, we describe some applications of our techniques. We first adapt the
SDitH signature scheme [FJR22] to our framework with Shamir’s secret sharing.
We obtain a variant of this scheme that achieves new interesting size-performance
trade-offs. For instance, for a signature size of 10 KB, we obtain a signing time
of around 3 ms and a verification time lower than 0.5 ms, which is competitive
with SPHINCS+ [ABB+22] in terms of size and verification time while achieving
much faster signing. We further apply our batching technique to two different
contexts: batched proofs for the SDitH scheme and batched proofs for general
arithmetic circuits based on the Limbo proof system [DOT21]. In both cases
and for the considered parameters, we obtain an amortized proof size lower than
1/10 of the baseline scheme when batching a few dozen statements, while the
amortized performances are also significantly improved (in particular for the
verifier).

Related Works. The MPC-in-the-Head paradigm was introduced in the seminal
work [IKOS07]. The authors propose general MPCitH constructions relying on
MPC protocols in the semi-honest model and in the malicious model. In the
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former case (semi-honest model), they only consider 2-private MPC protocols
using an additive sharing as input (they also propose an alternative construction
with 1-private protocols). In the latter case (malicious model), they are not
restricted to any type of sharing. The exact security of [IKOS07] is analyzed in
[GMO16]. As other previous works about the MPCitH paradigm, our work can
be seen as a specialization of the IKOS framework. In particular, we restrict the
considered MPC model, optimize the communication in this model and provide
a refined analysis for the soundness (in the exact security setting) to achieve
good practical performances.

To the best of our knowledge, besides [IKOS07], the only previous work
which considers MPCitH without relying on an additive secret sharing scheme
is Ligero [AHIV17]. Ligero is a practical MPCitH-based zero-knowledge proof
system for generic circuits which uses Shamir’s secret sharing (or Reed-Solomon
codes). The authors consider a particular type of MPC protocol in the mali-
cious model and analyze the soundness of the resulting proof system. Ligero
achieves sublinear communication cost by packing several witness coordinates in
one sharing which is made possible by the use of Shamir’s secret sharing.

In comparison, our work formalizes the MPC model on which many recent
MPCitH-based schemes (with additive sharing) rely and shows how using LSSS
in this model can be beneficial. We consider a slightly more restricted MPC
model than the one of Ligero: we impose that the parties only perform linear
operations on the sharings. On the other hand, we only need the MPC protocol
to be secure in the semi-honest model and not in the malicious model as Ligero.
In fact, this difference of settings (semi-honest versus malicious) makes our tech-
niques and Ligero’s different in nature. While Ligero makes use of proximity
tests to get a robust MPC protocol, we can use lighter protocols in our case
(since we do not need robustness). Moreover, for a given number of parties and
a given privacy threshold, the soundness error of our work is smaller than the
one of [AHIV17]. On the other hand, we consider MPC protocols which only per-
forms linear operations on shares which, in the current state of the art, cannot
achieve sublinearity. For this reason, our work targets proofs of knowledge for
small circuits (for example, to build efficient post-quantum signature schemes)
while Ligero remains better for middle-size circuits (thanks to the sublinearity).

Finally, let us cite [DOT21] which is another article providing a refined anal-
ysis for the transformation of a general MPC model. The scope of the transfor-
mation differs from ours, since it covers (N − 1)-private MPC protocols using
broadcast.

In Table 1, we sum up all the MPC models considered in the state of the art
of the MPC-in-the-Head paradigm with the soundness errors and limitations of
the general schemes.

Concurrent Work. A concurrent and independent work [AGH+23] proposes an
optimization of the MPCitH-based schemes based on additive secret sharing. The
authors propose a “hypercube” technique which enables the prover to emulate
the entire MPC protocol by performing the computation of only log2 N + 1
parties instead of N , while keeping the same communication cost. While both
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Table 1. Existing general transformations of an MPC protocol into a zero-knowledge
proof, with associated MPC model and resulting soundness error. The column “Priv.”
indicates the privacy threshold of the MPC protocol, while the column “Rob.” indicates
its robutness threshold. N denotes the number of parties in the MPC protocol, δ denotes
the robustness error, and p denotes the false positive rate as defined in this work.

Construction SharingScheme Priv. Rob. Soundness Restriction

[IKOS07, Sect. 3] Additive 2 0 1 − 1

(N
2 )

–

[IKOS07, Sect. 4] Any t t When N = Ω(t),2−Ω(t) –

[GMO16] Any t r max

{
(r

t)
(N

t )
,

k∑

j=0

2j (k
j)(

N−2k
t−j )

(N
t )

}

with k = �r/2� + 1 –

[AHIV17] Any t r
(
1 − r

N

)t
+ δ Broadcast

[DOT21] Additive N − 1 0 1
N

+ p
(
1 − 1

N

)
Broadcast

Our work, Sect. 4 LSSS � 0 1

(N
� )

+ p �(N−�)
�+1

BroadcastLinear operations

Our work, Sect. 5.2 LSSS withthresholdgap Δ + 1 � 0
(�+Δ

� )
(N

� )
+ p · �

�+Δ+1
· (

N−�
Δ+1

)
BroadcastLinear operations

the hypercube approach and our approach enables to significantly speed up
MPCitH-based schemes, they provide different interesting trade-offs and their
relative performances shall depend on the context.

2 Preliminaries

Throughout the paper, F shall denote a finite field. For any m ∈ N
∗, the integer

set {1, . . . , m} is denoted [m]. For a probability distribution D, the notation
s ← D means that s is sampled from D. For a finite set S, the notation s ← S
means that s is uniformly sampled at random from S. For an algorithm A,
out ← A(in) further means that out is obtained by a call to A on input in
(using uniform random coins whenever A is probabilistic). Along the paper,
probabilistic polynomial time is abbreviated PPT.

In this paper, we shall use the standard cryptographic notions of indis-
tinguishability, secure pseudo-random generator (PRG), tree PRG, collision-
resistant hash function, (hiding and binding) commitment scheme, (honest veri-
fier) zero-knowledge proof of knowledge and secure multiparty computation pro-
tocols (in the semi-honest model). Those notions are formally recalled in the
full version [FR22]. We recall hereafter the definition of (quasi-)threshold linear
secret sharing.

Along the paper, the sharing of a value s is denoted [[s]] := ([[s]]1, . . . , [[s]]N )
with [[s]]i denoting the share of index i for every i ∈ [N ]. For any subset of indices
J ⊆ [N ], we shall further denote [[s]]J :=

(
[[s]]i
)
i∈J

.

Definition 1 (Threshold LSSS). Let F be a finite field and let V1 and V2

be two vector spaces over F. Let t and N be integers such that 1 < t ≤ N .
A (t,N)-threshold linear secret sharing scheme is a method to share a secret
s ∈ V1 into N shares [[s]] := ([[s]]1, . . . , [[s]]N ) ∈ V

N
2 such that the secret can be

reconstructed from any t shares while no information is revealed on the secret
from the knowledge of t − 1 shares.
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Formally, an (t,N)-threshold LSSS consists of a pair of algorithms:
{
Share : V1 × R �→ V

N
2

ReconstructJ : Vt
2 �→ V1

where R ⊆ {0, 1}∗ denotes some randomness space and where ReconstructJ is
indexed by a set (and defined for every) J ⊂ [N ] such that |J | = t. This pair of
algorithms satisfies the three following properties:

1. Correctness: for every s ∈ V1, r ∈ R, and J ⊂ [N ] s.t. |J | = t, and for
[[s]] ← Share(s; r), we have:

ReconstructJ([[s]]J ) = s.

2. Perfect (t− 1)-privacy: for every s0, s1 ∈ V1 and I ⊂ [N ] s.t. |I| = t − 1,
the two distributions
{

[[s0]]I | r ← R
[[s0]] ← Share(s0; r)

}
and

{
[[s1]]I | r ← R

[[s1]] ← Share(s1; r)

}

are perfectly indistinguishable.
3. Linearity: for every v0, v1 ∈ V

t
2, α ∈ F, and J ⊂ [N ] s.t. |J | = t,

ReconstructJ (α · v0 + v1) = α · ReconstructJ (v0) + ReconstructJ(v1).

Definition 2 (Quasi-Threshold LSSS). Let F be a finite field and let V1

and V2 be two vector spaces over F. Let t1, t2 and N be integers such that
1 ≤ t1 < t2 ≤ N . A (t1, t2, N)-quasi-threshold linear secret sharing scheme is a
method to share a secret s ∈ V1 into N shares [[s]] := ([[s]]1, . . . , [[s]]N ) ∈ V

N
2 such

that the secret can be reconstructed from any t2 shares while no information is
revealed on the secret from the knowledge of t1 shares.

The formal definition of (t1, t2, N)-quasi-threshold LSSS is similar to Def-
inition 1 with the ReconstructJ function defined over V

t2
2 (instead of Vt

2) with
cardinalities |I| = t1 and |J | = t2 (instead of |I| = t−1 and |J | = t). In particular
an (t − 1, t, N)-quasi-threshold LSSS is an (t,N)-threshold LSSS.

Definition 3 (Additive Secret Sharing). An additive secret sharing scheme
over F is an (N,N)-threshold LSSS for which the Share algorithm is defined as

Share :
(
s ; (r1, . . . , rN−1)

) �→ [[s]] :=
(
r1, . . . rN−1, s −

N−1∑

i=1

ri

)
,

with randomness space R = F
N−1, and the Reconstruct[N ] algorithm simply out-

puts the sum of all the input shares.

Definition 4 (Shamir’s Secret Sharing). The Shamir’s Secret Sharing over
F is an (� + 1, N)-threshold LSSS for which the Share algorithm builds a sharing
[[s]] of s ∈ F as follows:
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– sample r1, . . . , r� uniformly in F,
– build the polynomial P as P (X) := s +

∑�
i=1 riX

i,
– build the shares [[s]]i as evaluations P (ei) of P for each i ∈ {1, . . . , N}, where

e1, . . . , eN are public non-zero distinct points of F.

For any subset J ⊆ [N ], s.t. |J | = � + 1, the ReconstructJ algorithm interpolates
the polynomial P from the input � + 1 evaluation points [[s]]J = (P (ei))i∈J and
outputs the constant term s.

3 The MPC-in-the-Head Paradigm

The MPC-in-the-Head (MPCitH) paradigm is a framework introduced by Ishai,
Kushilevitz, Ostrovsky and Sahai in [IKOS07] to build zero-knowledge proofs
using techniques from secure multi-party computation (MPC). We first recall
the general principle of this paradigm before introducing a formal model for the
underlying MPC protocols and their transformation into zero-knowledge proofs.

Assume we want to build a zero-knowledge proof of knowledge of a witness
w for a statement x such that (x,w) ∈ R for some relation R. To proceed, we
shall use an MPC protocol in which N parties P1, . . . ,PN securely and correctly
evaluate a function f on a secret witness w with the following properties:

– each party Pi takes a share [[w]]i as input, where [[w]] is a sharing of w;
– the function f outputs Accept when (x,w) ∈ R and Reject otherwise;
– the protocol is �-private in the semi-honest model, meaning that the views of

any � parties leak no information about the secret witness.

We can use this MPC protocol to build a zero-knowledge proof of knowledge of
a witness w satisfying (x,w) ∈ R. The prover proceeds as follows:

– she builds a random sharing [[w]] of w;
– she simulates locally (“in her head”) all the parties of the MPC protocol;
– she sends a commitment of each party’s view to the verifier, where such

a view includes the party’s input share, its random tape, and its received
messages (the sent messages can further be deterministically derived from
those elements);

– she sends the output shares [[f(w)]] of the parties, which should correspond
to a sharing of Accept.

Then the verifier randomly chooses � parties and asks the prover to reveal their
views. After receiving them, the verifier checks that they are consistent with
an honest execution of the MPC protocol and with the commitments. Since
only � parties are opened, the revealed views leak no information about the
secret witness w, which ensures the zero-knowledge property. On the other hand,
the random choice of the opened parties makes the cheating probability upper
bounded1 by 1 − (N−2

�−2

)
/
(
N
�

)
, which ensures the soundness of the proof.

1 The optimal strategy for a malicious prover is to have an inconsistency only between
two parties. The soundness error is thus the probability that these two parties are
not simultaneously in the set of the � opened views.
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The MPCitH paradigm simply requires the underlying MPC protocol to be
secure in the semi-honest model (and not in the malicious model), meaning that
the parties are assumed to be honest but curious: they follow honestly the MPC
protocol while trying to learn secret information from the received messages.

Several simple MPC protocols have been proposed that yield fairly efficient
zero-knowledge proofs and signature schemes in the MPCitH paradigm, see for
instance [KZ20b,BD20,BDK+21,FJR22]. These protocols lie in a specific sub-
class of MPC protocols in the semi-honest model which we formalize hereafter.

3.1 General Model of MPC Protocol with Additive Sharing

We consider a passively-secure MPC protocol that performs its computation on
a base finite field F so that all the manipulated variables (including the witness
w) are tuples of elements from F. In what follows, the sizes of the different tuples
involved in the protocol are kept implicit for the sake of simplicity. The parties
take as input an additive sharing [[w]] of the witness w (one share per party).
Then the parties compute one or several rounds in which they perform three
types of actions:

Receiving randomness: the parties receive a random value (or random tuple)
ε from a randomness oracle OR. When calling this oracle, all the parties get
the same random value ε. This might not be convenient in a standard multi-
party computation setting (since such an oracle would require a trusted third
party or a possibly complex coin-tossing protocol), but in the MPCitH con-
text, these random values are provided by the verifier as challenges.

Receiving hint: the parties can receive a sharing [[β]] (one share per party) from
a hint oracle OH . The hint β can depend on the witness w and the previous
random values sampled from OR. Formally, for some function ψ, the hint is
sampled as β ← ψ(w, ε1, ε2, . . . ; r) where ε1, ε2, . . . are the previous outputs
of OR and where r is a fresh random tape.

Computing & broadcasting: the parties can locally compute [[α]] := [[ϕ(v)]]
from a sharing [[v]] where ϕ is an F-linear function, then broadcast all the
shares [[α]]1, . . . , [[α]]N to publicly reconstruct α := ϕ(v). If ϕ is in the form
v �→ Av + b, then the parties can compute [[ϕ(v)]] from [[v]] by letting

[[ϕ(v)]]i := A[[v]]i + [[b]]i for each party i

where [[b]] is a publicly-known sharing of b.2 This process is usually denoted
[[ϕ(v)]] = ϕ([[v]]). The function ϕ can depend on the previous random values
{εi}i from OR and on the previous broadcasted values.

After t rounds of the above actions, the parties finally output Accept if and
only if the publicly reconstructed values α1, . . . , αt satisfy the relation

g(α1, . . . , αt) = 0
2 Usually, [[b]] is chosen as (b, 0, . . . , 0) in the case of the additive sharing.
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for a given function g.
Protocol 1 gives a general description of an MPC protocol in this paradigm,

which we shall use as a model in the rest of the paper. In general, the computing
& broadcasting step can be composed of several iterations, which is further
depicted in Protocol 2. For the sake of simplicity, we shall consider a single
iteration in our presentation (as in Protocol 1) but we stress that the considered
techniques and proofs equally apply to the multi-iteration setting (i.e. while
replacing step (c) of Protocol 1 by Protocol 2).

1. The parties take as input a sharing [[w]].

2. For j = 1 to t, the parties:

(a) get a sharing [[βj ]] from the hint oracle OH , such that

βj ← ψj(w, ε1, . . . , εj−1; rj)

for a uniform random tape rj ;

(b) get a common random εj from the oracle OR;

(c) for some F-linear function ϕj

(εi)i≤j ,(αi)i<j
, compute

[[αj ]] := ϕj

(εi)i≤j ,(αi)i<j

(
[[w]], ([[βi]])i≤j

)
,

broadcast [[αj ]], and then publicly reconstruct αj .
Note: This step can be composed of several iterations
as described in Protocol 2.

3. The parties finally accept if g(α1, . . . , αt) = 0 and reject
otherwise.

Note: In the above description w, βj, εj, αj are elements from
the field F or tuples with coordinates in F (whose size is not
made explicit to keep the presentation simple).

Protocol 1: General MPC protocol Πadd.

Output Distribution. In the following, we shall denote �ε := (ε1, . . . , εt), �β :=
(β1, . . . , βt), �α := (α1, . . . , αt) and �r := (r1, . . . , rt). From the above description,
we have that the output of the protocol deterministically depends on the broad-
casted values �α (through the function g), which in turn deterministically depend
on the input witness w, the sampled random values �ε, and the hints �β (through
the functions ϕ’s). It results that the functionality computed by the protocol
can be expressed as:

f(w, �ε, �β) =

{
Accept if g(�α) = 0,
Reject otherwise,

with �α = Φ(w, �ε, �β), (1)
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(c) for k = 1 to ηj :

– compute a sharing

[[αj,k]] := ϕj,k

(εi)i≤j ,(αi)i<j ,(αj,i)i<k

(
[[w]], ([[βi]])i≤j

)
,

for some F-linear function ϕj,k

(εi)i≤j ,(αi)i<j ,(αj,i)i<k
;

– broadcast their shares [[αj,k]];

– publicly reconstruct αj,k;

We denote αj := (αj,1, . . . , αj,ηj ).

Protocol 2: General MPC protocol Πadd – Iterative computing & broadcasting
step for iteration j (with ηj denoting the number of inner iterations).

where Φ is the deterministic function mapping (w, �ε, �β) to �α (defined by the
coordinate functions ϕ1, . . . , ϕt). We shall restrict our model to MPC protocols
for which the function f satisfies the following properties:

– If w is a good witness, namely w is such that (x,w) ∈ R, and if the hints �β are
genuinely sampled as βj ← ψj(w, (εi)i<j ; rj) for every j, then the protocol
always accepts. More formally:

Pr�ε,�r

[
f(w, �ε, �β) = Accept

∣∣∣
(x,w) ∈ R

∀j, βj ← ψj(w, (εi)i<j ; rj)

]
= 1.

– If w is a bad witness, namely w is such that (x,w) /∈ R, then the protocol
rejects with probability at least 1 − p, for some constant probability p. The
latter holds even if the hints �β are not genuinely computed. More formally,
for any (adversarially chosen) deterministic functions χ1, . . . , χt, we have:

Pr�ε,�r

[
f(w, �ε, �β) = Accept

∣∣
∣

(x,w) �∈ R
∀j, βj ← χj(w, (εi)i<j ; rj)

]
≤ p.

We say that a false positive occurs whenever the MPC protocol outputs Accept
on input a bad witness w, and we call p the false positive rate.

The general MPC model introduced above captures a wide majority of
the protocols used in the MPCitH context, such as [KKW18,DDOS19,KZ20b,
BFH+20,BN20,BD20,DOT21,BDK+21,DKR+21,KZ22,FJR22,FMRV22]. To
the best of our knowledge, our model applies to all the MPCitH schemes in the
literature except those derived from the ZKBoo [GMO16] and Ligero [AHIV17]
proof systems. An example of protocol fitting this model is the [BN20] protocol
where the random multiplication (Beaver) triples to sacrifice are given by the
hint oracle. Another example is Limbo [DOT21] for which the hint oracle OH

corresponds to the untrusted subroutines ΠInnerProd and ΠRand while the random-
ness oracle OR is RandomCoin.
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3.2 Application of the MPCitH Principle

Any MPC protocol complying with the above description gives rise to a practical
short-communication zero-knowledge protocol in the MPCitH paradigm. The
resulting zero-knowledge protocol is described in Protocol 3: after sharing the
witness w, the prover emulates the MPC protocol “in her head”, commits the
parties’ inputs, and sends a hash digest of the broadcast communications; finally,
the prover reveals the requested parties’ inputs as well as the broadcast messages
of the unopened party, thus enabling the verifier to emulate the computation of
the opened parties and to check the overall consistency.

Soundness. Assuming that the underlying MPC protocol follows the model of
Sect. 3.1 with a false positive rate p, the soundness error of Protocol 3 is

1
N

+
(
1 − 1

N

) · p.

The above formula results from the fact that a malicious prover might suc-
cessfully cheat with probability 1/N by corrupting the computation of one
party or with probability p by making the MPC protocol produce a false pos-
itive. This soundness has been formally proven in some previous works, see
e.g. [DOT21,BN20,FJR22]. In the present article, we provide a general proof
for any protocol complying with the format of Protocol 1 in the more general
context of any (threshold) linear secret sharing (see Theorem 2).

Performances. The communication of Protocol 3 includes:

– the input shares ([[w]]i, [[β1]]i, . . . , [[βt]]i) of the opened parties. In practice, a
seed seedi ∈ {0, 1}λ is associated to each party so that for each committed
variable v (among the witness w and the hints β1, . . . , βt) the additive sharing
[[v]] is built as {

[[v]]i ← PRG(seedi) for i �= N

[[v]]N = v −∑N−1
i=1 [[v]]i.

Thus, instead of committing ([[w]]i, [[β1]]i), the initial commitments simply
include the seeds for i �= N , and comj

i becomes useless for j ≥ 2 and i �= N .
Formally, we have:

comj
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Com(seedi; ρ1
i ) for j = 1 and i �= N

Com([[w]]N , [[β1]]N ; ρ1
N ) for j = 1 and i = N

∅ for j > 1 and i �= N

Com([[βj ]]N ; ρj
N ) for j > 1 and i = N

Some coordinates of the βj might be uniformly distributed over F (remember
that the βj are tuples of F elements). We denote βunif the sub-tuple composed
of those uniform coordinates. In this context, the last share [[βunif]]N can be
built as [[βunif]]N ← PRG(seedN ) so that a seed seedN can be committed
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1. The prover shares the witness w into a sharing [[w]].

2. The prover emulates “in her head” the N parties of the MPC protocol.

For j = 1 to t:

(a) the prover computes
βj = ψj(w, (εi)i<j),

shares it into a sharing [[βj ]];

(b) the prover computes the commitments

comj
i :=

{
Com([[w]]i, [[β

1]]i; ρ
1
i ) if j = 1

Com([[βj ]]i; ρ
j
i ) if j > 1

for all i ∈ {1, . . . , N}, for some commitment randomness ρj
i ;

(c) the prover sends

hj :=

{
Hash(com1

1, . . . , com
1
N ) if j = 1

Hash(comj
1, . . . , com

j
N , [[αj−1]]) if j > 1

to the verifier;

(d) the verifier picks at random a challenge εj and sends it to the prover;

(e) the prover computes

[[αj ]] := ϕj

(εi)i≤j ,(αi)i<j

(
[[w]], ([[βi]])i≤j

)

and recomposes αj .
Note: This step is computed according to Protocol 2 in case of an iterative computing
& broadcasting step.

The prover further computes ht+1 := Hash([[αt]]) and sends it to the verifier.

3. The verifier picks at random a party index i∗ ∈ [N ] and sends it to the prover.

4. The prover opens the commitments of all the parties except party i∗ and further reveals
the commitments and broadcast messages of the unopened party i∗. Namely, the prover
sends ([[w]]i, ([[β

j ]]i, ρ
j
i )j∈[t])i�=i∗ , com1

i∗ , . . . , comt
i∗ , [[α1]]i∗ , . . . , [[αt]]i∗ to the verifier.

5. The verifier recomputes the commitments comj
i and the broadcast values [[αj ]]i for i ∈

[N ] \ {i∗} and j ∈ [t] from ([[w]]i, ([[β
j ]]i, ρ

j
i )j∈[t])i�=i∗ in the same way as the prover.

6. The verifier accepts if and only if:
(a) the views of the opened parties are consistent with each other, with the committed

input shares and with the hash digest of the broadcast messages, i.e. for j = 1 to t+1,

hj
?
=

⎧
⎨

⎩

Hash(com1
1, . . . , com

1
N ) if j = 1

Hash(comj
1, . . . , com

j
N , [[αj−1]]) if j > 1
Hash([[αt]]) if j = t + 1

(b) the output of the MPC protocol is Accept, i.e.

g(α1, . . . , αt)
?
= 0.

Protocol 3: Zero-knowledge protocol - Application of the MPCitH principle to
Protocol 1.
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in com1
N (instead of committing [[βunif]]N ). This way the prover can save

communication by revealing seedN instead of [[βunif]]N whenever the latter is
larger;

– the messages [[α1]]i∗ , . . . , [[αt]]i∗ broadcasted by the unopened party. Let us
stress that one can sometimes save communication by sending only some
elements of [[α1]]i∗ , . . . , [[αt]]i∗ and use the relation g(α1, . . . , αt) = 0 to recover
the missing ones;

– the hash digests h1, . . . , ht+1 and the unopened commitments com1
i∗ , . . . ,

comt
i∗ (as explained above, we have comj

i∗ = ∅ for j > 1 if i∗ �= N).

Moreover, instead of revealing the (N − 1) seeds of the opened parties, one
can generate them from a generation tree as suggested in [KKW18]. One then
only needs to reveal log2 N λ-bit seeds. We finally obtain a total communication
cost for Protocol 3 of

– when i∗ �= N ,

Cost = (t + 1) · 2λ
︸ ︷︷ ︸
h1,h2,...,ht+1

+( inputs
︸ ︷︷ ︸

[[w]]N ,[[β1]]N ,...,

+ comm︸ ︷︷ ︸
[[α1]]i∗ ,...,[[αt]]i∗

+ λ · log2 N
︸ ︷︷ ︸
seedi for i�=i∗

+ 2λ︸︷︷︸
com1

i∗

).

– when i∗ = N ,

Cost = (t + 1) · 2λ
︸ ︷︷ ︸
h1,h2,...,ht+1

+( comm︸ ︷︷ ︸
[[α1]]i∗ ,...,[[αt]]i∗

+ λ · log2 N
︸ ︷︷ ︸
seedi for i�=i∗

+ t · 2λ︸ ︷︷ ︸
com1

i∗ ,...,comt
i∗

).

where inputs denote the bitsize of (w, β1, . . . , βt) excluding the uniformly dis-
tributed elements βunif, and where comm denotes the bitsize of (α1, . . . , αt)
excluding the elements which can be recovered from g(α1, . . . , αt) = 0.

To achieve a soundness error of 2−λ, one must repeat the protocol τ = λ
log2 N

times. The resulting averaged cost is the following:

Cost = (t + 1) · 2λ + τ ·
(

N − 1
N

· inputs + comm + λ · log2 N +
N − 1 + t

N
· 2λ

)
.

Several recent works based on the MPCitH paradigm [BD20,KZ21,FJR22]
provides zero-knowledge identification protocols with communication cost below
10 KB for a 128-bit security level. Unfortunately, to obtain a small communica-
tion cost, one must take a large number of parties N , which induces an important
computational overhead compared to other approaches to build zero-knowledge
proofs. Indeed, the prover must emulate N parties in her head for each of the
τ repetitions of the protocol, which makes a total of λN

log2 N party emulations to
achieve a soundness error of 2−λ. Thus, increasing N has a direct impact on the
performances. For instance, scaling from N = 16 to N = 256 roughly halves the
communication but increases the computation by a factor of eight. Given this
state of affairs, a natural question is the following:
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Can we build zero-knowledge proofs in the MPC-in-the-head paradigm
while avoiding this computational overhead?

In what follows, we show how applying (low-threshold) linear secret sharing
to the MPCitH paradigm provides a positive answer to this question.

4 MPC-in-the-Head with Threshold LSS

4.1 General Principle

Let � and N be integers such that 1 ≤ � < N . We consider an (�+1, N)-threshold
linear secret sharing scheme (LSSS), as formally introduced in Definition 1, which
shares a secret s ∈ F into N shares [[s]] ∈ F

N . In particular, the vector spaces
of Definition 1 are simply defined as V1 = V2 = F hereafter (other definitions
of these sets will be considered in Sect. 5). We recall that such a scheme implies
that the secret can be reconstructed from any � + 1 shares while no information
is revealed on the secret from the knowledge of � shares. The following lemmas
shall be useful to our purpose (see proofs in the full version [FR22]). The first
lemma holds assuming the MDS conjecture [MS10] while the second one comes
from the equivalence between threshold LSSS and interpolation codes [CDN15,
Theorem 11.103].

Lemma 1. Let F be a finite field and let �,N be integers such that 1 ≤ � < N−1.
If an (� + 1, N)-threshold LSSS exists for F, and assuming the MDS conjecture,
then N ≤ |F| with the following exception: if |F| is a power of 2 and � ∈ {2, |F|−2}
then N ≤ |F| + 1.

Lemma 2. Let (Share, Reconstruct) be an (� + 1, N)-threshold LSSS. For every
tuple v0 ∈ V

�+1
2 and every subset J0 ⊆ [N ] with |J0| = �+1, there exists a unique

sharing [[s]] ∈ V
N
2 such that [[s]]J0 = v0 and such that

∀J s.t. |J | = � + 1,ReconstructJ ([[s]]J ) = s,

where s := ReconstructJ0(v0). Moreover, there exists an efficient algorithm
ExpandJ0

which returns this unique sharing from [[s]]J0 .

In the rest of the paper we shall frequently use the following notions:

– Sharing of a tuple. If v is a tuple, a secret sharing [[v]] is defined coordinate-
wise. The algorithms Share, Reconstruct and Expand (from Lemma 2) further
apply coordinate-wise.

– Valid sharing. We say that a sharing [[v]] is valid when there exists v such
that

∀J s.t. |J | = � + 1,ReconstructJ([[v]]J ) = v,

or equivalently3, when there exists J such that [[v]] = ExpandJ([[v]]J ).
3 This second formulation is true only for threshold schemes (and not for quasi-

threshold schemes that we will introduce latter).
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– Consistent shares. We say that shares [[v]]i1 , . . . , [[v]]iz
are consistent when

there exist other shares [[v]][N ]\{i1,...,iz} such that [[v]] is a valid sharing.

Application to the MPCitH Paradigm. We suggest applying a threshold LSSS
to the MPCitH paradigm instead of a simple additive sharing scheme. Let us
consider a protocol Πadd complying with the MPC model introduced in the
previous section (Protocol 1). We can define a protocol ΠLSSS similar to Πadd

with the following differences:

– the parties initially receive an (�+1, N)-threshold linear secret sharing of the
witness w,

– when invoked for a hint βj , the oracle OH returns an (� + 1, N)-threshold
linear secret sharing of βj ,

– when the shares of αj are broadcasted, the value αj is reconstructed using
the algorithm Reconstruct. Namely, the parties arbitrarily choose �+1 shares
([[αj ]]i)i∈J0 , run the algorithm ReconstructJ0 to get αj , and check that all the
broadcast shares are consistent with the output of ExpandJ0

. If the check fails,
the protocol returns Reject.

The resulting MPC protocol, formally described in Protocol 4, is well-defined
and �-private in the semi-honest model (meaning that the views of any � parties
leak no information about the secret). This is formalized in the following theorem
(see proof in the full version [FR22]).

Theorem 1. Let us consider an MPC protocol Πadd complying with the protocol
format described in Protocol 1. If Πadd is well-defined and (N − 1)-private, then
the protocol ΠLSSS corresponding to Πadd with an (� + 1, N)-threshold linear
secret sharing scheme (see Protocol 4) is well-defined and �-private.

4.2 Conversion to Zero-Knowledge Proofs

We can convert the MPC protocol using threshold linear secret sharings into
a zero-knowledge protocol using the MPC-in-the-Head paradigm. Instead of
requesting the views of N − 1 parties, the verifier only asks for the views of �
parties. Since the MPC protocol is �-private, we directly get the zero-knowledge
property. One key advantage of using a threshold LSSS is that only �+1 parties
out of N need to be computed by the prover, which we explain further hereafter.

Besides the commitments on the input sharing [[w]], and the hints’ sharings
[[β1]], . . . , [[βt]], the prover must send to the verifier the communication between
the parties, which for the considered MPC model (see Protocol 4) consists of
the broadcast sharings [[α1]], . . . , [[αt]]. Observe that such a sharing [[αj ]] is also
an LSSS sharing of the underlying value αj since it is computed as

[[αj ]] := ϕj
(εi,αi)i≤j

(
[[w]], ([[βi]])i≤j

)

where [[w]], [[β1]], . . . , [[βt]] are LSSS sharings and ϕj is an affine function. This
notably implies that, for all i, the broadcast sharing [[αj ]] = ([[αj ]]1, . . . , [[αj ]]N )
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1. The parties take as input an (�+1, N)-threshold linear sharing
[[w]].

2. For j = 1 to t, the parties:

(a) get an (�+1, N)-threshold linear sharing [[βj ]] from the hint
oracle OH , such that

βj ← ψj(w, ε1, . . . , εj−1; rj)

for a uniform random tape rj ;

(b) get a common random εj from the oracle OR;

(c) for some F-linear function ϕj

(εi)i≤j ,(αi)i<j
,

– compute

[[αj ]] := ϕj

(εi)i≤j ,(αi)i<j

(
[[w]], ([[βi]])i≤j

)
,

– broadcast [[αj ]],
– compute

αj := ReconstructJ0([[α
j ]]J0)

for some J0 of size � + 1,
– verify that ExpandJ0

([[α]]J0) is consistent with [[αj ]]

(i.e. that [[αj ]] forms a valid sharing) and reject other-
wise.

Note: This step can be composed of several iterations as
described in Protocol 2.

3. The parties finally accept if g(α1, . . . , αt) = 0 and reject oth-
erwise.

Note: In the above description w, βj, εj, αj are elements from
the field F or tuples with coordinates in F (whose size is not made
explicit to keep the presentation simple).

Protocol 4: General MPC protocol ΠLSSS with LSSS.

contains redundancy. According to Lemma 2, in order to uniquely define such
a sharing, one only needs to commit � + 1 shares of [[αj ]]. In other words, we
can choose a fixed subset S of � + 1 parties and only commit the broadcast
shares from these parties, which then acts as a commitment of the full sharing
[[αj ]]. For all j ∈ [t], the prover needs to send the broadcast share [[αj ]]i∗ of an
arbitrary unopened party i∗. To verify the computation of the � opened parties
I = {i1, . . . , i�} ⊆ [N ], the verifier can recompute the shares [[αj ]]i1 , . . . , [[α

j ]]i�
.

Then, from these � shares together with [[αj ]]i∗ , the verifier can reconstruct the
shares [[αj ]]S using Expand{i∗,i1,...,i�} and check their commitments.

By committing the broadcast messages of only a subset S of parties, the
proof becomes independent of the computation of the other parties. It means
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that the prover must commit the input shares of all the parties but only need
to emulate � + 1 parties to commit their broadcast shares. When � is small with
respect to N , this has a great impact on the computational performance of the
prover. The resulting zero-knowledge protocol is described in Protocol 5.

4.3 Soundness

Consider a malicious prover P̃ who does not know a correct witness w for
the statement x but still tries to convince the verifier that she does. We shall
say that such a malicious prover cheats for some party i ∈ [N ] if the broad-
cast shares [[α1]]i, . . . , [[αt]]i recomputed from the committed input/hint shares
[[w]]i, [[β1]]i, . . . , [[βt]]i are not consistent with the committed broadcast shares
([[α1]]S , . . . , [[αt]]S).

Let us first consider the simple case of false positive rate p = 0. If a malicious
prover cheats on less than N −� parties, then at least �+1 parties have broadcast
shares which are consistent with ([[α1]]i, . . . , [[αt]]i)i∈S and give rise to broadcast
values α1, . . . , αt for which the protocol accepts, i.e. g(α1, . . . , αt) = 0. Since p =
0, the input shares of those �+1 parties necessarily define a good witness w (i.e.
satisfying (x,w) ∈ R), which is in contradiction with the definition of a malicious
prover. We deduce that in such a zero-false-positive scenario, a malicious prover
(who does not know a good witness) has to cheat for at least N − � parties.
Then, if the malicious prover cheats on more than N − � parties, the verifier
shall always discover the cheat since she shall necessarily ask for the opening of
a cheating party. We deduce that a malicious prover must necessarily cheat on
exactly N − � parties, and the only way for the verifier to be convinced is to ask
for the opening of the exact � parties which have been honestly emulated. The
probability of this event to happen is

1
(

N
N−�

) =
1
(
N
�

) ,

which corresponds to the soundness error of the protocol, assuming p = 0.
Let us now consider a false positive rate p which is not zero. A malicious

prover can then rely on a false positive to get a higher probability to convince
the verifier. In case the committed input shares [[w]]1, . . . , [[w]]N were consistent
(i.e. they formed a valid secret sharing), the soundness error would be

1
(
N
�

) +

(

1 − 1
(
N
�

)

)

· p.

However, we cannot enforce a malicious prover to commit a valid secret sharing
[[w]] since the verifier never sees more than the shares of � parties. More precisely,
let us denote

J := {J ⊂ [N ] : |J | = � + 1}
and let w(J) be the witness corresponding to the shares [[w]]J for some subset
J ∈ J , formally w(J) := ReconstructJ([[w]]J ). Then we could have

w(J1) �= w(J2)
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1. The prover shares the witness w into an (� + 1, N)-threshold linear secret sharing [[w]].

2. The prover emulates “in her head” a (public) subset S of �+1 parties of the MPC protocol.

For j = 1 to t:

(a) the prover computes
βj = ψj(w, (εi)i<j),

shares it into an (� + 1, N)-threshold linear secret sharing [[βj ]];

(b) the prover computes the commitments

comj
i :=

{
Com([[w]]i, [[β

j ]]i; ρ
j
i ) if j = 1

Com([[βj ]]i; ρ
j
i ) if j > 1

for all i ∈ [N ], for some commitment randomness ρj
i , and computes the Merkle root

h̃j := MerkleTree(comj
1, . . . , com

j
N ).

(c) the prover sends

hj :=

{
h̃j if j = 1

Hash(h̃j , [[α
j−1]]S) if j > 1

to the verifier;

(d) the verifier picks at random a challenge εj and sends it to the prover;

(e) the prover computes, for i ∈ S,

[[αj ]]i := ϕj

(εk)k≤j ,(αk)k<j

(
[[w]]i, ([[β

k]]i)k≤j

)

and recomposes αj . This step is repeated as many times as in the MPC protocol (cf
Protocol 2).

The prover further computes ht+1 := Hash([[αt]]S) and sends it to the verifier.

3. The verifier picks at random a subset I ⊂ [N ] of � parties (i.e. |I| = �) and sends it to the
prover.

4. The prover opens the commitments of all the parties in I, namely she sends
([[w]]i, ([[β

j ]]i, ρ
j
i )j∈[t])i∈I to the verifier. The prover further sends the authentication paths

auth1, . . . , autht to these commitments, i.e. authj is the authentication path for {comj
i}i∈I

w.r.t. Merkle root h̃j for every j ∈ [t]. Additionally, the prover sends broadcast shares
[[α1]]i∗ , . . . , [[αt]]i∗ of an unopened party i∗ ∈ S \ I.

5. The verifier recomputes the commitments comj
i and the broadcast values [[αj ]]i for i ∈ I

and j ∈ [t] from ([[w]]i, ([[β
j ]]i, ρ

j
i )j∈[t])i∈I . Then she recovers α1, . . . , αt, by

αj = ReconstructI∪{i∗}([[α
j ]]I∪{i∗})

for every j ∈ [t].

6. The verifier accepts if and only if:

(a) the views of the opened parties are consistent with each other, with the committed
input shares and with the hash digest of the broadcast messages, i.e. for j = 1 to t+1,

hj
?
=

⎧
⎨

⎩

h̃j if j = 1

Hash(h̃j , [[α
j−1]]S) if 2 ≤ j ≤ t

Hash([[αj−1]]S) if j = t + 1

where h̃j is the Merkle root deduced from
({comj

i}i∈I , authj

)
and [[αj−1]]S are the

shares in subset S deduced from [[αj−1]] = ExpandI∪{i∗}
(
[[αj−1]]I∪{i∗}

)
;

(b) the output of the opened parties are Accept, i.e.

g(α1, . . . , αt)
?
= 0 .

Protocol 5: Zero-knowledge protocol: application of the MPCitH principle to
Protocol 4 with an (� + 1, N)-threshold linear secret sharing scheme.
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for distinct subsets J1, J2 ∈ J . A malicious prover can exploit this degree of
freedom to increase the soundness error.

Soundness Attack. Let us take the example of the [BN20] protocol on a field F.
In this protocol, the MPC functionality f outputs Accept for a bad witness w
(i.e. such that (x,w) �∈ R) with probability p = 1

|F| , i.e. if and only if the oracle
OR samples a specific element εw of F. In this context, a possible strategy for
the malicious prover is the following:

1. Build the shares [[w]]1, . . . , [[w]]N such that

∀J1, J2 ∈ J , εw(J1) �= εw(J2) .

We implicitly assume here that
(

N
�+1

) ≤ |F| and that constructing such
collision-free input sharing is possible. We assume that (x,w(J)) �∈ R for
every J (otherwise the malicious prover can recover a good witness by enu-
merating the w(J)’s).

2. After receiving the initial commitments, the verifier sends the challenge ε.
3. If there exists J0 ∈ J such that ε = w(J0), which occurs with probability(

N
�+1

) · p since all the ε(J) are distinct, then the malicious prover defines the
broadcast values α1, . . . , αt (and the broadcast shares in the set S) according
to the broadcast shares of the parties in J0. It results that the computation of
the parties in J0 is correct and the prover will be able to convince the verifier
if the set I of opened parties is a subset of J0 (I ⊂ J0).

4. Otherwise, if no subset J0 ∈ J is such that ε = w(J0), the malicious prover is
left with the option of guessing the set I. Namely, she (randomly) chooses a set
I0 of � parties as well as broadcast values α1, . . . , αt such that g(α1, . . . , αt) =
0, and then she deduces and commits the broadcast shares [[αj ]]S from the
[[αj ]]I0 (computed from the committed input shares) and the chosen αj ’s.
The malicious prover will be able to convince the verifier if and only if the
challenge set I matches the guess I0.

The probability pattack that the malicious prover convinces the verifier using the
above strategy satisfies

pattack :=

Pr[∃J0:ε=w(J0)]
︷ ︸︸ ︷(

N

� + 1

)
p ·

Pr[I⊂J0]︷ ︸︸ ︷(
�+1

�

)

(
N
�

) +

Pr[∀J,ε�=w(J)]
︷ ︸︸ ︷(

1 −
(

N

� + 1

)
p

)
·

Pr[I=I0]︷︸︸︷
1
(
N
�

)

=
1
(
N
�

) + p · � · (N − �)
� + 1

≥ 1
(
N
�

) +

(

1 − 1
(
N
�

)

)

· p.

︸ ︷︷ ︸
Soundness error if the

committed sharing is well-formed.
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Soundness Proof. We can prove that the above strategy to forge successful tran-
scripts for the [BN20] protocol is actually optimal and that it further applies to
other protocols complying with our model. This is formalized in the following
theorem (together with the completeness and HVZK property of the protocol).

Theorem 2. Let us consider an MPC protocol ΠLSSS complying with the pro-
tocol format described in Protocol 4 using an (� + 1, N)-threshold LSSS, such
that ΠLSSS is �-private in the semi-honest model and of false positive rate p.
Then, Protocol 5 built from ΠLSSS is complete, sound and honest-verifier zero-
knowledge, with a soundness error ε defined as

ε :=
1
(
N
�

) + p · � · (N − �)
� + 1

.

Proof. The completeness holds from the completeness property of the underlying
MPC protocol. The zero-knowledge property directly comes from the �-privacy
property of the MPC protocol with an (� + 1, N)-threshold linear secret sharing
scheme. See the full version [FR22] for the soundness proof.

Remark 1. Let us remark that the above theorem includes the MPCitH setting
with additive sharing as a particular case. Indeed, when � = N − 1, we obtain
the usual formula for the soundness error, that is:

� = N − 1 =⇒ ε =
1
N

+ p ·
(

1 − 1
N

)
.

Remark 2. When � = 1, we have ε ≈ 1
N (assuming p is small). It can look as

surprising that we can have such soundness error by revealing a single party’s
view. Since the communication is only broadcast, a verifier does not need to
check for inconsistency between several parties, she just needs to check that the
revealed views are consistent with the committed broadcast messages. Moreover,
the verifier has the guarantee that the shares broadcast by all the parties form
a valid sharing of the open value. It means that even if the prover reveals only
one party’s view, the latter can be inconsistent with the committed broadcast.
Assuming we use Shamir’s secret sharing, committing to a valid broadcast shar-
ing consists in committing a degree-� polynomial such that evaluations are the
broadcast shares. By interpolating the broadcast shares of � honest parties (and
given the plain value of the broadcast message), one shall entirely fix the corre-
sponding Shamir’s polynomial, and the other parties can not be consistent with
this polynomial without being consistent with the honest parties (and the latter
can only occur if there is a false positive).

4.4 Performances

The advantage of using a threshold LSSS over a standard additive sharing mainly
resides in a much faster computation time, for both the prover and the verifier.
Indeed, according to the above description, the prover only emulates �+1 parties



462 T. Feneuil and M. Rivain

while the verifier only emulates � parties, which is particularly efficient for a small
�. For example, assuming that p is negligible and taking � = 1, the soundness
error is 1/N (which is similar to standard MPCitH with additive sharing) and
the prover only needs to emulate � + 1 = 2 parties (instead of N) while the
verifier only needs to emulate � = 1 party (instead of N − 1).

When targeting a soundness error of λ bits, one needs to repeat the protocol
τ := −λ

log2 ε times and thus the number of times that a prover emulates a party
is multiplied by τ . Table 2 summarizes the number of party emulations for the
prover and the verifier for the standard case (additive sharing) and for the case
of an (� + 1, N)-threshold LSSS. Interestingly, we observe that the emulation
phase is more expensive when increasing N for the additive sharing case while
it becomes cheaper for the threshold LSSS case (with some constant �). For the
sake of comparison, we also give in Table 2 the numbers corresponding to the
hypercube optimization from the concurrent work [AGH+23].

The computational bottleneck for the prover when using an LSSS with low
threshold � and possibly high N becomes the generation and commitment of all
the parties’ input shares, which is still linear in N . Moreover the sharing gener-
ation for a threshold LSSS might be more expensive than for a simple additive
sharing. On the other hand, the verifier does not suffer from this bottleneck
since she only has to verify � opened commitments (per repetition). One trade-
off to reduce the prover commitment bottleneck is to increase �, which implies
a smaller τ (for the same N) and hence decreases the number of commitments.

Table 2. Number of party emulations to achieve a soundness error of 2−λ (assuming
a negligible false positive rate p).

With additive sharing With threshold LSSS

Traditional Hypercube � = 1 Any �

Prover ≈ λ N
log2 N

≈ λ log2 N+1

log2 N
≈ λ 2

log2 N
≈ λ �+1

log2 (N
� )

Verifier ≈ λ N−1
log2 N

≈ λ log2 N

log2 N
≈ λ 1

log2 N
≈ λ �

log2 (N
� )

In terms of communication, using a threshold LSSS implies a slight overhead.
In particular, since only � parties out of N are opened, we use Merkle tree for
the commitments and include the authentication paths in the communication.

Let us recall the notations defined in Sect. 3.2:

– inputs: the bitsize of (w, β1, . . . , βt) excluding the uniformly-distributed ele-
ments βunif, and

– comm: the bitsize of ([[α1]]i∗ , . . . , [[αt]]i∗) excluding the elements which can be
recovered from g(α1, . . . , αt) = 0.
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We denote unif the bitsize of the uniformly-distributed elements βunif. Then, the
proof size (in bits) when repeating the protocol τ times is

Cost = (t + 1) · 2λ
︸ ︷︷ ︸
h1,h2,...,ht+1

+τ · ( � · (inputs + unif)
︸ ︷︷ ︸

{[[w]]i,[[β1]]i,...,[[βt]]i}i∈I

+ comm︸ ︷︷ ︸
[[α1]]i∗ ,...,[[αt]]i∗

+ 2λ · t · � · log2

N

�︸ ︷︷ ︸
auth1,...,autht

).

Let us remark that the bitsize unif appears here while it was not the case for
additive sharings. This comes from the fact that, even if βunif is uniformly sam-
pled, [[βunif]] has some structure (i.e. some redundancy) when using an arbitrary
linear secret sharing scheme.

5 Further Improvements

In this section, we suggest potential ways to further improve and generalize our
approach.

5.1 Using Linearly Homomorphic Commitments

As explained previously, one of the bottlenecks of this construction is that the
prover must realize N commitments. Although we decrease the cost of emulating
the MPC protocol (from N parties to a constant number), we still need to
commit the inputs of all the parties which is still linear in N . For this reason,
we cannot arbitrarily increase the number of parties N even while working on
large fields (e.g. F232 or larger). One natural strategy to improve this state of
affairs and get rid of those N commitments is to use a linearly homomorphic
commitment scheme. When relying on such a scheme, the prover can just commit
the input shares for the � + 1 parties in S, instead of committing all the parties’
input shares. Then the commitment of any party can be expressed as a linear
combination of these commitments. For applications to the post-quantum setting
(which is a context of choice for MPCitH schemes), one could rely on lattice-
based homomorphic commitment schemes. To the best of our knowledge, most of
these schemes are only additively homomorphic (not linearly) and they support
a bounded number of additions which makes their application to our context
not straightforward. This is yet an interesting question for future research.

5.2 Using Quasi-Threshold Linear Secret Sharing

Theorem 2 only considers linear secret sharing schemes, but we can generalize
the result to any quasi-threshold linear secret sharing scheme. In such schemes,
� shares leak no information about the secret and �+1+Δ shares are necessary
to reconstruct the secret, with Δ > 0, namely we have a gap between the two
thresholds. In our context, this gap shall impact the soundness of the protocol.
Indeed, the prover just needs to cheat for N − � − Δ parties (such that there
is less than � + Δ honest parties), but the verifier asks to open only � parties.
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Considering quasi-threshold schemes bring more versatility to our approach and
opens the door to techniques that are not possible with tight threshold schemes
(e.g. batching such as proposed below).

Let us remark that the set S of emulated parties in Protocol 5 must be chosen
such that [[v]]S enables to deduce all the shares [[v]][N ]. In the tight threshold
case, such a set S is always of size �+1 (see Lemma 2), but in the case of quasi-
threshold LSSS, this set S might be larger than � + Δ + 1. Moreover, sending
shares [[α1]]i∗ , . . . , [[αt]]i∗ for one non-opened party i∗ ∈ S might not be enough
to enable the verifier to recompute [[αj ]]S for all j. Therefore the size of S and
the number of additional shares [[αj ]]i to be revealed depend on the underlying
quasi-threshold linear secret sharing, which impacts the communication cost. On
the other hand, the soundness error of the obtained proof of knowledge is not
impacted.

Theorem 3. Let us consider an MPC protocol ΠQT-LSSS complying with the
protocol format described in Protocol 4, but using an (�, � + Δ + 1, N)-quasi-
threshold LSSS in place of an (�+1, N)-threshold LSSS, and such that ΠQT-LSSS

is �-private in the semi-honest model and of false positive rate p. Then, Protocol 5
built from ΠQT-LSSS is complete, sound and honest-verifier zero-knowledge, with
a soundness error ε defined as

ε :=

(
�+Δ

�

)

(
N
�

) + p · �

� + Δ + 1
·
(

N − �

Δ + 1

)
.

Proof. The completeness holds from the completeness property of the underlying
MPC protocol. The zero-knowledge property directly comes from the �-privacy
property of the MPC protocol with an (�, � + Δ + 1, N)-threshold linear secret
sharing scheme. See the full version [FR22] for the proof of the soundness.

Using Algebraic Geometric Secret Sharing? One drawback while using a
tight threshold LSSS is that the number N of parties is limited by the size of
the underlying field F, specifically we have N ≤ |F| (see Lemma 1). In the full
version [FR22], we investigate whether quasi-threshold LSSS based on algebraic
geometry [CC06] can improve this state of affairs. Our result is negative: we
show that we cannot tackle this issue by using such schemes. We also show that
the soundness error (with � = 1) is at least 1/(2|F| − 1) for any quasi-threshold
LSSS. This implies that such sharing schemes could only have a limited interest
to achieve smaller sizes, since it could decrease the soundness error by a factor
at most two compared to the case with the Shamir’s secret sharing scheme.

We show hereafter that the above generalization to quasi-threshold LSSS is
useful for another purpose, namely an efficient batching technique in our frame-
work.

5.3 Batching Proofs with Shamir’s Secret Sharing

Principle. Shamir’s secret sharing is traditionally used to share a single element
of the underlying field, but it can be extended to share several elements simulta-
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neously. To share v1, v2, . . . , vu ∈ F, we can sample � random elements r1, . . . , r�

of F and build the polynomial P of degree � + u − 1 such that, given distinct
fixed field elements e1, . . . , eu+�,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P (e1) = v1

P (e2) = v2

...
P (eu) = vu

and

⎧
⎪⎨

⎪⎩

P (eu+1) = r1

...
P (eu+�) = r�

The shares are then defined as evaluations of P on fixed points of F\{e1, . . . , eu}.
Revealing at most � shares does not leak any information about the shared values
v1, . . . , vu, while one needs at least � + u shares to reconstruct all of them. In
other words, this is an (�, � + u,N)-quasi-threshold linear secret sharing scheme
for the tuple (v1, . . . , vu). Thus, while applying such a sharing to our context,
the soundness error is given by (see Theorem 3)

(
�+u−1

�

)

(
N
�

) + p · �

� + u
·
(

N − �

u

)
.

When running an MPC protocol on such batch sharing, the operations are simul-
taneously performed on all the shared secrets v1, . . . , vu. It means that we can
batch the proof of knowledge of several witnesses which have the same verifi-
cation circuit (i.e. the same functions ϕj in our MPC model – see Protocol 1).
Using this strategy, the soundness error is slightly larger, but we can save a lot
of communication by using the same sharing for several witnesses.

Specifically, the proof size while batching u witnesses is impacted as follows.
The parties’ input shares are not more expensive, but to open the communica-
tion, the prover now needs to send u field elements by broadcasting (instead of
a single one). Thus the communication cost for τ executions is given by

Cost = (t + 1) · 2λ
︸ ︷︷ ︸
h1,h2,...,ht+1

+τ · ( � · (inputs + rtapes)
︸ ︷︷ ︸
{[[w]]i,[[β1]]i,...,[[βt]]i}i∈I

+u · comm︸ ︷︷ ︸
α1,...,αt

+ 2λ · t · � · log2

N

�︸ ︷︷ ︸
auth1,...,autht

).

Unfortunately, the scope of application of this batching technique is limited.
In particular, while we can multiply the batched shared secrets by the same
scalar, with

[[

⎛

⎜
⎝

γ · v1

...
γ · vu

⎞

⎟
⎠]] := γ · [[

⎛

⎜
⎝

v1

...
vu

⎞

⎟
⎠]]

for some γ ∈ F, we cannot compute

[[

⎛

⎜
⎝

γ1 · v1

...
γu · vu

⎞

⎟
⎠]] from [[

⎛

⎜
⎝

v1

...
vu

⎞

⎟
⎠]]
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for distinct scalars γ1, . . . , γu (whenever at least two scalars are distinct). This
restriction implies that the scalar factors used in the verification circuit must
be independent of the different witnesses which are batched together. More pre-
cisely, it implies that the functions ϕj in our MPC model (see Protocol 1) must
be of the form

ϕj
(εi)i≤j ,(αi)i<j

( · ) = ϕ̄j
(εi)i≤j

( · )
︸ ︷︷ ︸

Linear function with

εi
-dependent coefficients

+ bj
(εi)i≤j ,(αi)i<j︸ ︷︷ ︸

Constant offset which

depends on the εi
’s and αi

’s

This restriction prevents the use of this batching strategy for several MPCitH
protocols. For example, all the protocols using the multiplication checking pro-
tocol from [BN20] as a subroutine cannot use this batching strategy. To the best
of our knowledge, the only protocols in the current state of the art which support
this batching strategy are Banquet [BDK+21] and Limbo [DOT21].

Batching Strategies. In what follows, we propose three strategies to batch
MPCitH proofs relying on the same verification circuit:

Naive strategy: The naive way to batch u MPCitH proofs is to emulate u
independent instances of MPC protocol, one for each input witness. Compared
to sending u independent proofs, one can save communication by using the
same seed trees and the same commitments for the u instances. This strategy
can be applied for standard MPCitH schemes based on additive sharing as
well as for our framework of threshold LSSS-based MPCitH. When using
additive sharings, the main drawback of this strategy is that the prover and
the verifier need to emulate the party computation a large number of times,
i.e. N times (or N − 1 times for the verifier) per iteration and per statement.
When batching u ≥ 25 statements with N = 256, the prover and the verifier
must emulate more than 100 000 parties to achieve a security of 128 bits.
When using a low-threshold LSSS, the emulation cost is much cheaper, but
the proof transcript is larger. While batching u statements, the emulation
cost and the soundness error are given by the following table:

# Emulations Soundness Error

Prover τ · (� + 1) · u 1

(N
� )

+ p · (N−�)·�
�+1

Verifier τ · � · u

SSS-based strategy: We can use the batching strategy based on Shamir’s
secret sharing (SSS) described above. Instead of having u independent input
sharings (one per witness), we have a single input sharing batching the u
witnesses. The number of MPC emulations is lower than for the naive strategy.
The proof size is also smaller and (mostly) below that of the standard setting
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for small u, but it grows exponentially when considering a small field F. Each
batched statement consumes one evaluation point (in F), the number N of
parties is hence limited by N ≤ |F|+1−u. Because of this limitation together
with the security loss due to the use of a quasi-threshold sharing scheme, the
soundness error of this batched protocol degrades rapidly as u grows. While
batching u statements using Shamir’s secret sharings, the emulation cost and
the soundness error are given by the following table:

# Emulations Soundness Error

Prover τ · (� + u)
(�+u−1

� )
(N

� )
+ p · �

�+u
· (

N−�
u

)

Verifier τ · �

Hybrid strategy: In the previous strategy, the proof size is convex w.r.t. the
number u of batched proofs and, for small some u, the curve slope is flatter
than the slope in the additive case. It means that using a hybrid approach can
achieve smaller proof sizes (as well as better performances) than with the two
above strategies. Specifically, instead of having one input sharing encoding
the u witnesses (one per batched statement) and a single emulation of the
MPC protocol, we can use ν input sharings each of them encoding u

ν witnesses
and have then ν emulations of the MPC protocol. Using this hybrid strategy,
the emulation cost and the soundness error are given by the following table:

# Emulations Soundness Error

Prover τ · (� + u
ν
) · ν

(�+u/ν−1
� )

(N
� )

+ p · �
�+u/ν

· (
N−�
u/ν

)

Verifier τ · � · ν

Section 6.2 presents some application results for these batching strategies. In
particular the full version [FR22] compares the three strategies for batched proofs
of the SDitH scheme [FJR22].

6 Applications

In the past few years, many proof systems relying on the MPC-in-the-Head
paradigm have been published. Table 3 provides a tentatively exhaustive list of
these schemes while indicating for each scheme:

– the base field (or ring) of the function computed by the underlying MPC
protocol,

– whether the underlying MPC protocol fits our general model (see Sect. 3.1),
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– the hard problem (or one-way function) for which the witness knowledge is
proved.

In column Base Ring, the notation “F (K)” means that the function computed
by the underlying MPC protocol is composed of F-linear functions and multipli-
cations over K. For example, the schemes for AES use F2-linear functions and
F256-multiplications.

Applying our framework with an arbitrary (low-)threshold linear secret shar-
ing scheme instead of an additive sharing scheme is possible whenever

– the underlying MPC protocol fits the model introduced in Sect. 3.1,
– the underlying MPC protocol is defined over a field (and not only a ring),
– this base field is large enough (since the number of parties N is limited by

the size of the field).

Because of this last condition, all the proof systems for Boolean circuits and/or
one-way functions with F2 operations (e.g. AES, Rain, SDitH over F2) do not
support our framework of MPCitH based on (low-)threshold LSSS. Same for the
scheme recently proposed in [FMRV22] and which achieves short communica-
tion using secret sharing over the integers: this idea is not compatible with our
approach.

6.1 Application to the SDitH Signature Scheme

We can transform the zero-knowledge proofs of knowledge described in Sect. 4
into signature schemes using the Fiat-Shamir’s heuristic [FS87].

In the following, we focus on the signature scheme obtained when applying
this approach to the SDitH protocol (SDitH for “Syndrome Decoding in the
Head”) [FJR22]on the base field FSD. We apply the ideas of Sect. 4 to this
scheme using Shamir’s secret sharing. Since the number N of parties is limited
by the field size, N ≤ |FSD|,4 we consider the instance with FSD := F256 as base
field. As explained previously, our MPCitH strategy with (� + 1, N)-threshold
LSSS does not make the signature smaller but substantially improves the signing
and verification times. According to Sect. 4.4, we obtain signatures of size (in
bits):

Size = 6λ + τ ·
(
� · (inputs + unif) + comm + 2λ · � · log2

N

�

)

where inputs, unif, and comm are such as defined in Sect. 3 (see the full ver-
sion [FR22] for explicit values for the SDitH scheme).

In [FJR22], the authors choose p a bit lower than 2−64 which implies that the
number of executions τ just needs to be increased by one while turning to the

4 The Shamir’s secret sharing over a field F can have at most |F|−1 shares (one share
by non-zero evaluation point), but we can have an additional share by defining it as
the leading coefficient of the underlying polynomial (i.e. using the point at infinity
as evaluation point).
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Table 3. Generic MPC-in-the-Head Techniques and Signature Schemes from MPC-
in-the-Head Techniques. All the signature sizes are in kilobytes and target a security
of 128 bits. The original signature sizes correspond to values given by the underlying
articles. The normalized signature sizes are given for a range of 8 − 32 parties (in
the underlying MPC protocol) when there is a preprocessing phase and for a range
of 32 − 256 parties otherwise. The column “Model” indicates whether the underlying
MPC protocol fits our general model.

Scheme Name Year Base Ring Model #Rounds Helper Hard Problem Signature Size

Original Normalized

ZKBoo [GMO16] 2016 Any ring ✗ 3 ✗ Any (2, 3)-decomposition circuit – –

ZKB++ [CDG+17] 2017 Any ring ✗ 3 ✗ – –

Ligero [AHIV17] 2017 Any field ✗ 5 ✗ Any arithmetic circuit C (addi-
tions and multiplications)

– –

Ligero++ [BFH+20] 2020 Any field ✗ 5 ✗ – –

KKW [KKW18] 2018 Any ring ✓ 3 or 5 ✓ – –

BN [BN20] 2020 Any field ✓ 5 ✗ – –

Limbo [DOT21] 2021 Any field ✓ log |C| ✗ – –

BN++ [KZ22] 2021 Any field ✓ 5 ✗ – –

Helium [KZ22] 2021 Any field ✓ 7 ✗ – –

Picnic1 [CDG+17] 2016 F2 ✗ 3 ✗ LowMC (partial) 32.1 –

Picnic2 [KKW18] 2018 F2 ✓ 3 ✓ 12.1 12.1 − 15.4

Picnic3 [KZ20b] 2019 F2 ✓ 3 ✓ LowMC (full) 12.3 11.1 − 13.7

Helium+LowMC [KZ22] 2022 F2 (F8) ✓ 7 ✗ 5.4 − 12.1 6.4 − 9.2

BBQ [DDOS19] 2020 F2 (F256) ✓ 3 ✓ AES 30.9 31.8 − 48.6

Banquet [BDK+21] 2021 F2 (F256) ✓ 7 ✗ 13.0 − 19.3 13.0 − 17.1

Limbo-Sign [DOT21] 2021 F2 (F256) ✓ 13 ✗ 14.2 − 17.9 14.2 − 17.9

Helium+AES [KZ22] 2022 F2 (F256) ✓ 7 ✗ 9.7 − 17.2 9.7 − 14.4

LegRoast [BD20] 2020 F2127−1 ✓ 7 ✗ Legendre PRF 12.2 − 16.0 12.2 − 14.8

PorcRoast [BD20] 2020 F2127−1 ✓ 7 ✗ Higher-Power Residue Charac-
ters

6.3 − 8.6 6.3 − 7.8

Rainier-128 [DKR+21] 2021 F2 (F128) ✓ 5 ✗ Rain [DKR+21] 5.1 − 9.4 5.9 − 8.1

BN++Rain [KZ22] 2022 F2 (F128) ✓ 5 ✗ 4.4 − 5.8 4.9 − 6.4

SDitH [FJR22] 2022 F2 ✓ 5 ✗ Syndrome Decoding over F2 11.8 − 17.0 10.9 − 15.6

2022 F256 ✓ 5 ✗ Syndrome Decoding over F256 8.3 − 11.5 8.3 − 11.5

[FMRV22] 2022 Z ✓ 5 ✓/✗ Subset-Sum Problem 21.1 − 33.2 24.3 − 34.8

2022 Z ✓ 5 ✗ BHH PRF [BHH01] 4.8 4.8 − 6.5

non-interactive case. Here, by taking � > 1, we decrease τ and each execution has
more impact on the communication cost. Therefore we take p negligible in order
to avoid to increase τ while turning to the non-interactive setting. At the same
time, it means that we can apply an idea from Limbo [DOT21] which consists in
using the same first challenge for all parallel executions of the underlying MPC
protocol.

As explained in Sect. 4.3, in case of a non-negligible false positive rate, an
adversary can try to forge a proof of knowledge by committing an invalid sharing
of the witness (which is not possible in the case of additive sharing). This ability
is also exploitable in the non-interactive setting while considering the attack
of [KZ20a]. In order to thwart this type of attack on our variant of the SDitH
scheme, we make the conservative choice of taking a false positive rate p satisfying

τ ·
(

N

� + 1

)
· p ≤ 2−128.
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This way, the probability that a single witness encoded by a subset of � + 1
shares among N leads to a false positive (in at least one of the τ iterations)
is upper bounded by 2−128 so that any attack strategy which consists to guess
(even partially) the first challenge shall cost at least 2128 operations. Then, we
simply need to take τ such that

(
N
�

)τ ≥ 2128 in order to achieve a 128-bit security
in the non-interactive setting. We propose four possible instances of our scheme
for � ∈ {1, 3, 7, 12} and N = 256 (the maximal number of parties).

We have implemented our variant of the SDitH signature scheme in C. In
our implementation, the pseudo-randomness is generated using AES in counter
mode and the hash function is instantiated with SHAKE. We have benchmarked
our implementation on a 3.8 GHz Intel Core i7 CPU with support of AVX2 and
AES instructions. All the reported timings were measured on this CPU while
disabling Intel Turbo Boost.

Table 4 summarizes the obtained performances for the different sets of param-
eters. We observe that the verification time is significantly smaller –between one
and two orders of magnitude– than for the original scheme. This was expected
since the verifier only emulates the views of � parties instead of N − 1. The gain
in signing time is more mitigated: even if the signer emulates only few parties,
she must still commit the input shares of N parties. Nevertheless, the number of
executions τ decreases while increasing the threshold �, which further improves
the signing time. The resulting signatures are slightly larger than for the origi-
nal scheme with the same number of parties (the short version), but our scheme
gains a factor 10 in signing and verification time. Compared to the fast version
of the original signature scheme (which uses a lower number of parties N = 32)
and for similar signature size, our scheme gains a factor 3 in signing time and a
factor 10 in verification time.

Table 4 further compares our scheme with recent MPCitH schemes based on
AES (both AES and SD for random linear codes being deemed as a conserva-
tive assumption) as well as with SPHINCS+ [ABB+22] as a baseline conser-
vative scheme. We can observe that our scheme outperforms AES-based candi-
dates for comparable signature sizes (around 10 KB). In particular, compared to
Helium+AES [KZ22], signing is 5 times faster with our scheme while verification
is 40 times faster. Fast versions of those schemes have signatures about twice
larger, while being still slower than ours in signing and verification. Compared
to SPHINCS+, our scheme achieves slightly better verification time and much
better trade-offs for signature size vs. signing time. Some other MPCitH signa-
ture schemes reported in Table 3 achieve smaller signature sizes (down to 5KB)
but they are based on less conservative assumptions (LowMC, Rain, BHH PRF).
Yet none of these schemes achieve fast verification as SPHINCS+ or our scheme.

6.2 Application of the Batching Strategy

We apply in the full version [FR22] our batching technique to two different
contexts:

– We batch non-interactive proofs of knowledge for the syndrome decoding
problem using the SDitH scheme [FJR22]. Since SDitH is not compatible
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Table 4. Parameters, performances and comparison. The parameters for [FJR22] and
our scheme are (m, k, w) = (256, 128, 80) and FSD = Fpoly = F256. Timings for [FJR22]
and our scheme have been benchmarked on a 3.8 Ghz Intel Core i7. Timings for Ban-
quet, Helium and SPHINCS+ have been benchmarked on a 3.6 GHz Intel Xeon W-2133
CPU [BDK+21,KZ22]. Timings for Limbo have been benchmarked on a 3.1 GHz Intel
i9-9900 CPU [DOT21].

Scheme N τ � t′ |Fpoints| log2 p |sgn| tsgn tverif

Our scheme 256 16 1 3 264 −167 10.47 KB 7.1 ms 0.46 ms

256 6 3 3 264 −167 9.97 KB 3.2 ms 0.38 ms

256 3 7 4 264 −222 11.10 KB 2.5 ms 0.47 ms

256 2 12 4 264 −222 11.99 KB 2.2 ms 0.51 ms

[FJR22] - Var3f 32 27 – 5 224 −78 11.5 KB 6.4 ms 5.9 ms

[FJR22] - Var3s 256 17 – 5 224 −78 8.26 KB 30 ms 27 ms

Banquet (AES) 16 41 – 1 232
(−32, −27) 19.3 KB 6.4 ms 4.9 ms

255 21 – 1 248
(−48, −43) 13.0 KB 44 ms 40 ms

Limbo-Sign (AES) 16 40 – – 248 −40 21.0 KB 2.7 ms 2.0 ms

255 24 – – 248 −40 14.2 KB 29 ms 27 ms

Helium+AES 17 31 – 1 2144
(−136, −144) 17.2 KB 6.4 ms 5.8 ms

256 16 – 1 2144
(−136, −144) 9.7 KB 16 ms 16 ms

SPHINCS+-128f – – – – – – 16.7 KB 14 ms 1.7 ms

SPHINCS+-128 s – – – – – – 7.7 KB 239 ms 0.7 ms

with our batching strategy, we propose a tweak of it. We achieve an amortized
proof size around 2.3 KB using � = 1 and around 0.83 KB using � = 8, instead
of around 8 KB (proof size when non batched).

– We batch proofs for general arithmetic circuits using the Limbo proof sys-
tem [DOT21]. We obtain an amortized proof size lower than 1/10 of the
baseline scheme when batching, while the amortized performances are also
significantly improved (in particular for the verifier).
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