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Preface

The 15th International Conference on Social Robotics (ICSR 2023) was held in Doha,
Qatar as a face-to-face conference on December 3–7, 2023. It was the first time that
the conference was hosted in Qatar and in the Middle East and North Africa (MENA)
region. The theme of this year’s conference is “Human-Robot Collaboration: Sea, Air,
Land, Space and Cyberspace”, which emphasizes on all physical and cyber-physical
domains where humans and robots collaborate. The conference aims to bring together
researchers and practitioners working on the interaction between humans and intelligent
robots and on the integration of robots into the fabric of our society.

This book constitutes the refereed conference proceedings. Out of a total of 83 sub-
mitted manuscript reviewed by a dedicated international team of Senior Programme
Committee and Programme Committee, 64 regular papers and 4 papers in Special Ses-
sion: “Personalisation and Adaptation in Social Robotics” were selected for inclusion
into the proceedings and were presented during the technical sessions of the conference.

ICSR 2023 also featured two keynote, workshops, and robot design competitions.
The first keynote talk, titled “Robotics Meets AI & 5G — The Future is Now!”, was
delivered by Professor Bruno Siciliano, who is a Professor of Robotics and Control
at the University of Naples Federico II and a Past President of IEEE Robotics and
Automation Society. The second keynote talk, titled “Perspectives and Social Impacts
of Humanoids as General Purpose Robots”, was delivered by Professor Abderrahmane
Kheddar, Director of Research at the Centre National de la Recherche Scientifique,
France. He is a Titular Member of the National Academy of Technology of France and
a Knight of the French National Order of Merits.

We would like to express our sincere gratitude to all members of the Organising
Committee and volunteers for their dedication in making the conference a great suc-
cess. We are also indebted to members of the Senior Programme Committee and the
Programme Committee for the hard work for their rigorous review of the papers. Lastly
and most importantly, we are grateful to the continued support to ICSR by the authors,
participants and sponsors, without which the conference would not be possible.

December 2023 Abdulaziz Al Ali
John-John Cabibihan

Nader Meskin
Silvia Rossi

Wanyue Jiang
Hongsheng He
Shuzhi Sam Ge
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Abstract. Intelligent systems face an increasingly complex array of chal-
lenges in the rapidly evolving landscape of human-device interactions. To
address these challenges, there arises a pressing need for the development
of refined methods of information transfer, capable of capturing subtle
nuances such as body language and tonal subtleties. The system presented
in this paper is designed to highlight a novel method of refined human-
device interactions and its potential impact on the medical domain. Lever-
aging the Oculus SDK in the Unity Game Engine alongside the Oculus
VR headset, our system allows users to interact with virtual objects nat-
urally, mirroring real-world hand movements while simultaneously pro-
moting upper limb rehabilitation through engaging gameplay scenarios.
The integration of haptic feedback enriches the immersive experience,
enabling users to not only visualize but also feel their virtual interactions.
The system accommodates varying levels of mobility, adapting its com-
plexity to individual progress. Furthermore, our VR rehabilitation system
has garnered positive outcomes from user assessments, demonstrating the
system’s effectiveness and user satisfaction. While limited in addressing
severe upper limb impairments, the system’s flexibility allows for modular
improvements and broader clinical integration.

Keywords: clinical rehabilitation · serious gaming · visuo-haptic
mixed reality

1 Introduction

The evolution of human-machine interaction throughout the progressive
advancement of technology has paved the way for unprecedented possibilities.
As humanity embarks on a new era of innovation marked by the integration
of machines as necessary components of the social and economic fabric [1], the
convergence of humanity and robotics rises to the forefront [2]. Recent months
have witnessed the mainstream emergence of AI solutions [3], highlighting the
imminent need for seamless human-robot interaction. As this trend continues,
predictions point to a future where interactions transcend physical confines, tran-
spiring within virtual or semi-virtual domains, such as the metaverse [4].
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
A. Al. Ali et al. (Eds.): ICSR 2023, LNAI 14453, pp. 3–12, 2024.
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In this context, a significant challenge lies in the existing limitations of
mainstream human-device interactions [5], particularly as advanced intelligent
systems continue to play a growing role in daily activities. Interactions with
machines thus far have predominantly taken place through a computer screen,
limiting the depth of information that can be conveyed. The necessity to develop
refined methods of information transfer [6], that are able to encompass nuances
like body language and tonal subtleties, becomes increasingly apparent as we
approach an era where such interactions become integral to innovation [7,8].

This paper proposes a forward-looking approach to address these challenges
by harnessing the latest developments in virtual reality technology to devise novel
solutions in the medical domain. While considerable progress has been made
to integrate technology into various sectors, the medical field has historically
exhibited a measured pace of change [9,10]. The urgency to bridge this gap
arises from the potential consequences of falling behind in an era of compounding
technological advancement. Alternatively, seizing such opportunities could yield
transformative impacts on our capacity to assist and effect positive change [11–
14].

Specifically, we delve into the integration of serious gaming into rehabilita-
tive procedures, targeting physical rehabilitation scenarios that often pose sig-
nificant mental and physical barriers for patients. The immersive potential of
serious gaming holds great promise in redirecting patients’ focus towards reha-
bilitation goals, reducing perceived burdens, and fostering engagement through
competitive elements. [15] By choreographing scenarios that align with thera-
peutic exercises, patients are prompted to perform the required motions within
an immersive context.

Given the expanding sector of remote solutions, catering to enhanced acces-
sibility and user comfort becomes a necessity [16]. Telepresence in the virtual
environment enables the direct immersion of healthcare providers for monitoring
and feedback [17], additionally, it facilitates the creation of group scenarios for
collective rehabilitation and support.

Notably, current virtual reality serious gaming experiences rely on controllers
or sensors affixed to the body to permit virtual interactions [18]. However,
this reliance can hinder the natural flow of interactions, impeding immersion,
and particularly posing challenges for elderly patients unaccustomed to gaming
setups [19].

This paper proposes the integration of hand tracking technology as an avenue
to alleviate these issues. By capturing the entirety of limb motion without the
need for attached devices, we aspire to foster organic interactions, mirroring
real-world experiences within virtual environments.

Throughout this paper, we aim to highlight new methods to refine human-
device interactions and their potential impact on the medical domain [20]. We
present the transformative potential of serious gaming in rehabilitation. Further-
more, we introduce the concept of hand tracking technology to enhance immer-
sive telepresence and interaction fidelity as a means of promoting subsequent
exploration and development in the field.
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2 Methods

2.1 Sensing and Image Capture

The system relies on the Oculus Quest 2 device, featuring integrated cameras
and sensors, for an immersive interaction experience. This device is connected to
a Lenovo PC with an Intel Core i7 processor, Windows 11 OS, and GeForce RTX
3070 graphics card. An Arduino Nano is integrated into the system, along with
two mini disc motors placed on each wrist attached with medical adhesive tape,
providing vibrational feedback. Oculus SDK is used to capture hand, finger, and
head positions via integrated hardware and software. The Unity3D game engine
(v2020.3.41f1) in combination with C# is used for development.

This complete hardware and software setup, including the haptic feedback
mechanism enhances the immersive experience and interaction by providing users
with tactile feedback on every interaction in the virtual scenario.

Fig. 1. A flowchart diagram detailing the relationships between each phase of
building the system and demonstrating the performance feedback loop.

2.2 Oculus Interaction Toolkit

The Unity game engine, along with the Oculus Integration Asset (v46.0), is
used for creating the virtual environment. The Oculus SDK is employed for
implementing hand tracking within Unity. The system then uses those gestures
as a means of interacting with objects in the virtual environment. While hand
tracking is a built-in function of the Oculus headset and SDK, it was essential
to tailor it to the specific needs of our framework.
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2.3 Hand Tracking and Gesture Recognition

Within the Unity engine, the collated Oculus hand tracking data is combined
with inherent gesture recognition capabilities. This facilitates the translation of
users’ real-world hand movements into the virtual environment (Fig. 1). Upon
launching the serious game and wearing the Oculus headset, they are presented
with a dynamic visual representation of their actual hand movements within the
virtual environment.

2.4 Virtual Reality Environment

The virtual reality environment comprises two distinct scenes that encourage
targeted upper limb movements to aid in rehabilitation. Users are immersed in a
captivating prehistoric realm, assuming the role of a caveman. In the first scene,
users engage in a task involving vertical shoulder motion by crushing virtual
apples. The second scene involves chopping wood, requiring horizontal shoul-
der motion. By striking a virtual log repeatedly, users engage in a motion that
enhances their shoulder’s horizontal range of motion. Both scenes are carefully
designed to target the relevant muscle groups and simulate real-world activities,
enabling users to perform exercises aligned with clinical objectives.

2.5 Serious Gaming Scenario

The virtual gaming scenario is meticulously designed to align with users’ clinical
objectives. Drawing inspiration from established upper limb rehabilitation pro-
tocols, a captivating gaming environment is constructed. The activities include
apple crushing and wood chopping. These two activities are deliberately designed
to facilitate both vertical and horizontal shoulder motion exercises, effectively
targeting the desired muscle groups.

It is important to note that training commencement relies on the execution
of a power grasp to lift the club. This grasp mechanism was deliberately chosen
from amongst the 33 possible hand grasps [21], due to the strength required to
perform the grasp. Performing a power grasp is not contingent upon the presence
of external forces [22], which eliminates the need for complex feedback control.
Furthermore, the grasp choice stems from the predominance of the power grasp
in performing in daily activities [23], and it’s important for conducting routine
object manipulation tasks [24].

Throughout the gaming scenario (Fig. 2), the training difficulty dynamically
evolved. Informed by healthcare provider recommendations, training complex-
ity advanced in accordance with the user’s progress. The healthcare provider
can customize the complexity by changing the target score for each scenario.
This personalized approach fosters tailored rehabilitation experiences, resulting
in optimized skill advancement within an engaging virtual context. For every
instance of successful task execution, the user was rewarded with visible points
displayed on a canvas within user’s visual scope. Task completion was bound
by a predetermined timeframe, which can be set by healthcare professionals,
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Fig. 2. Images showing hand tracking in virtual reality. (a) User grasping the
virtual club by closing the hand. (b) User viewing hands simulated in vir-
tual reality. (c) First-person view in the virtual environment. (d) First-person
view of the user grasping the club in the virtual environment. The link to
the full video is provided here: https://youtube.com/watch?v=qL-kFB6EHD8&
si=dEg2OgyJVzCWDRTS

primarily physiotherapists. Once this timeframe elapsed, the points ceased to
accumulation and the score was locked.

The score-based system serves a dual purpose. Firstly, it provides users with
quantifiable performance feedback, allowing them to adapt their performance in
real-time. This competitive element redirects the user’s attention from the diffi-
culty of the task to the excitement of succeeding in the game [25]. The psycho-
logical benefits of this have been proven to enhance performance incrementally
over time. Secondly, the quantitative nature of the point system can be used
to inform healthcare providers of the user’s performance capability at varying
stages of the rehabilitation process. Finally, the point system establishes a basis
for telepresence applications, enabling in-game task execution for multiple users,
whether collaboratively or competitively.

2.6 Telepresence Interaction

Tactile sensations, delivered via forearm-mounted miniature disc motors,
enhance immersion by providing sensory cues during interactions. These motors
are triggered when users grab a tool or strike an object, bridging the virtual and
physical worlds. User movements seamlessly integrate into the virtual environ-
ment, creating an interactive loop (Fig. 1).

The system utilizes forearm-mounted miniature disc motors to assess object
grasp and hand identification. It dispatches a 0.5-second vibrational signal

https://youtube.com/watch?v=qL-kFB6EHD8&si=dEg2OgyJVzCWDRTS
https://youtube.com/watch?v=qL-kFB6EHD8&si=dEg2OgyJVzCWDRTS
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through an Arduino to activate the respective forearm motor, as outlined in
Algorithm 1. This dynamic feedback enhances virtual interactions.
Algorithm 1: Dynamic Haptic Feedback
1 while interaction continues do
2 if object grab-event(fist) detected then
3 Identify interacting hand holding the tool through Oculus SDK;
4 Send 0.5-second haptic signal indicating hand-held grab;

5 else if user employs tool for environmental interaction then
6 Send 0.5-second haptic signal indicating interaction;
7 Pause briefly for coherent haptic delivery;

8 else if interaction event concludes then
9 Reset haptic feedback status and hand information;

2.7 Performance Feedback and Assessment

Subjects and Sampling Method. Inclusion criteria enrolled individuals aged
18 and above proficient in VR device usage, while exclusion criteria excluded
those with dizziness, cybersickness history, significant hand/wrist immobility,
epilepsy, severe vision impairment. This ensured a group capable of meaningful
engagement. 7 suitable participants were selected for the evaluation process.

Experimental Design. Prior to the commencement of the study, participants
engaged in a brief 5-minute tutorial session designed to acquaint them with the
immersive interaction and feedback system. Haptic feedback motors were then
attached to participants’ wrists using medical adhesive tape.

Following this tutorial, participants independently interacted with the system
for 5min. Subsequently, they provided feedback through the System Usability
Scale (SUS), Simulator Sickness Questionnaire (SSQ), and Presence Question-
naire (PQ). These assessments gauged participants’ impressions, comfort, and
perceived presence in the virtual environment, offering valuable insights into the
system’s effectiveness and user experience.

User Experience Assessment. The evaluation process commenced with the
collection of essential demographic information from participants, including their
name, age, gender, relevant medical history, and explicit consent for their par-
ticipation in the study.

To gauge the system’s usability and user satisfaction, we employed the System
Usability Scale (SUS) [26], a well-established metric. The SUS uses a 5-point
Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree) and consists
of 10 questions addressing aspects of usability, adaptability, and user-friendliness.
The resulting scores from the Likert scale were then transformed into percentages
using basic mathematical operations.
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For the assessment of potential cybersickness symptoms, we utilized the Sim-
ulator Sickness Questionnaire (SSQ) [27]. The SSQ evaluates 16 symptoms on
a 4-point Likert scale, ranging from 0 (no symptoms) to 3 (severe), each with
corresponding weights. It comprises three distinct subscales: Nausea (N), Oculo-
motor (O), and Disorientation (D), along with a total score. A higher SSQ score
indicates a greater level of participant discomfort, with a total score exceed-
ing 20 suggesting the presence of significant discomfort or severe cybersickness
symptoms [27].

To assess users’ sense of presence and immersion, we employed the Pres-
ence Questionnaire (PQ) [28]. This instrument focuses on user engagement and
immersion within the virtual environment, consisting of 24 items rated on a
7-point Likert scale. Higher scores indicate heightened presence and immersion
within the virtual space. The PQ has a maximum total score of 168 points,
with higher scores indicating a higher level of presence. It assesses aspects such
as involvement/control, naturalness, interface quality, and resolution following
each system experience.

The procedures did not include invasive or potentially dangerous methods
and were in accordance with the Code of Ethics of the World Medical Association
(Declaration of Helsinki). Data were stored and analyzed anonymously.

3 Results

Following system testing, users began the training phase by wearing the Oculus
headset. They were instantaneously immersed in the virtual environment. After
providing participants with a thorough introduction to the system, they com-
menced their sessions. Upon the conclusion of each session, participants were
asked to complete the provided questionnaires to record their feedback and sug-
gestions. Their responses were subsequently analyzed and computed.

The participants’ scores for each test were as follows: SUS (System Usability
Scale) scores were 92.86±2.19, PQ (Presence Questionnaire) scores were 149.14±
13.41, SSQ-N (Nausea) scores were 0.71±0.95, SSQ-O (Oculomotor) scores were
0.85±1.21, SSQ-D (Disorientation) scores were 0.85±1.06, and SSQ-TS (Total)
scores were 2.43± 1.62.

4 Discussion

The consistently favorable scores across all evaluation metrics underscore the sys-
tem’s commendable performance. In comparison to previous studies on similar
systems [29–31], our system demonstrates equally high System Usability Scale
(SUS) scores, reflecting users’ contentment with usability. These high scores align
with the immersive experiences indicated by the Presence Questionnaire (PQ)
scores. Furthermore, our system exhibits lower Simulator Sickness Question-
naire (SSQ) scores, spanning Nausea (N), Oculomotor (O), and Disorientation
(D) aspects, signifying users’ comfort and resilience to simulator sickness. This
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observation suggests that our system outperforms or is at least on par with pre-
vious systems in terms of minimizing simulator sickness and maintaining a high
level of usability.

The outcomes outlined in this paper demonstrate the framework’s capac-
ity to build on the documented success of rehabilitative serious gaming while
enhancing personalized progression and collaborative engagement. The system
is designed for clinical settings to operate under the supervision of licensed med-
ical professionals and physiotherapists and to serve as a supportive tool within
the broader spectrum of rehabilitative solutions. It is important to note that
this framework is intended to supplement, not replace established methods [32].
By merging the benefits of increased engagement and immersion, it continues
to enrich the training experience, motivating users towards improved adherence
and participation.

4.1 Future Direction

During the next phase of the project, the goal is to continue refinement of the
system with a focus on optimization for clinical settings [33]. To enhance its use
alongside conventional clinical methods, future development will prioritize incor-
porating clinical monitoring features. Also, advanced telepresence and shared
gaming are in planning, especially for remote users without the social aspect
found in in-person mobility training at rehab clinics.

The upcoming phase also requires rigorous clinical validation. This involves
testing the system with a larger cohort of patients from the target user group to
optimize the training system’s usability and efficacy within the clinical context.
Validation trials must also be conducted with clinical rehabilitation experts and
medical professionals to ensure that compatibility and efficacy extend to both
the patient and the provider.

5 Conclusion

This study contributes to the field of virtual reality (VR)-based rehabilitation,
specifically focusing on individuals with shoulder mobility limitations and post-
stroke conditions. The study assessed the system’s usability and feasibility, offer-
ing insights for future research. The results suggest positive aspects of the sys-
tem’s effectiveness, adaptability, and user-friendliness. This VR rehabilitation
system has the potential to enhance the rehabilitation process for individuals
facing specific mobility challenges.
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Abstract. Human-robot interaction has emerged as an increasingly prominent
discourse within the domain of robotic technologies. In this context, the inter-
action of both visual and verbal cues assumes an essential role in shaping user
experiences. The research problem of this study revolves around investigating
the potential impact of auditory attribute alterations in humanoid agents, namely
robots and avatars, on users’ emotional responses. The study recruited a participant
cohort comprising 14 individuals, aged 18 to 35, to engage in an experimental pro-
cess of observing avatar videoswith distinctive auditory attributes. These attributes
encompassed two voice pitches, specifically alto voice and bass voice, as well as
two speech styles denoted as frozen style and casual style. Through data collection,
a repository of 13,600 data points was amassed from the participants, and subse-
quently subjected to rigorous analysis via theANOVAmethodology. The empirical
findings demonstrate that users reveal sensitive, emotional responsiveness when
faced with avatar videos characterized by varying auditory attributes. This pilot
study establishes a foundational framework poised to guide future research under-
takings aimed at inspiring user experiences through the deliberate manipulation
of auditory attributes inherent in humanoid robots and avatars.

Keywords: Human-robot interaction · Auditory features · Emotion detection ·
User experience · Avatar

1 Introduction

The incorporation of artificial intelligence embedded agents into users’ attitudes, emo-
tions, acceptance, and behaviours constitute a highly stimulating topic. This phenomenon
involves a diverse range of entities, including robotic animals, humanoid robots, AI-
powered chatbots, virtual robots in the form of avatars, and mixed robots. These multi-
faceted agents find application in various practical contexts based on their visual appear-
ances and functional attributes [1]. Humanoid robots are exceeding their practical func-
tions to assume critical roles in fostering and cultivating social interactions with humans,
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including collaborators, educators, and more [2]. It is not hard to find that the increas-
ing prevalence of humanoid robots is rooted in the facts that they can provide humans
with companionship and good communication experience [3]. The interaction dynamics
between humans and robots originate not solely from visual cues but also from verbal
indicators [4]. After analyzing current literature, a research gap emerges regarding the
impact of auditory traits in humanoid agents on user responses. While numerous stud-
ies delve into visual and interactive aspects, the auditory dimension, including speech
patterns and intonation, remains understudied. As a result, this study aims to probe into
the intricate dynamics of how auditory attributes of humanoid embedded agents exert
influence over users’ emotional responses.

The research scenarios employed for the study and the tasks assigned to the partici-
pants were initially tailored for the demographic of older adults. In preparation for the
inclusion of older adults in a future experiment, a preliminary pilot study was conducted
involving younger adults. The current paper reports the findings of the pilot study.

Functioning as an initial endeavor to assess human interpretations of avatars exhibit-
ing varied auditory characteristics, this research is anticipated to enrich the body of
scholarly work focused on the affective consequences stemming from spoken exchanges
involving human-like entities such as robotic agents.

2 Literature Review

As an escalating field within the realm of artificial intelligence technology, human-robot
interaction has attracted significant attention within both scholarly research and practical
applications. A number of studies have hinted that emotion effect is a vital part in the
field of human-robot interaction [5]. Moreover, it has been posited that humanoid robots
possess the potential to evoke a spectrum of diverse emotional reactions [6]. Given that
the interplay between humans and robots extends beyond the confines of text and visual
elements, verbal attributes also assume a pivotal function in fostering effective human-
robot interactions [2]. A study was conducted concerning chatbots, and the findings
substantiate that when chatbots communicate messages in a cheerful tone, users are
inclined to experience more favourable interactions [7].

The hypotheses posited within this study are twofold: Firstly, it is assumed that
employing a casual speech style may elicit a greater prevalence of positive emotions,
specifically evoking feelings of happiness, whereas the utilization of a frozen speech
style is anticipated to evoke heightened negative emotions, particularly of an angry
nature. Secondly, it is estimated that an alto voice will gather greater user preference,
consequently engendering elevated emotions of happiness. Conversely, the utilization of
a bass voice is envisaged to be associated with augmented feelings of sadness or anger.

3 Methodology

Western Sydney University Human Research Ethics Committee (HRECApproval Num-
ber: H15278) has approved the project. All procedures were conducted following appro-
priate guidelines and regulations. Prior implied consent was acquired by the first author
from all participants and/or their legal guardians to both partake in the study and share
information and images in an openly accessible online publication.
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3.1 Scenario Design

We have produced four avatar videos, each exhibiting distinct auditory attributes. The
auditory features are characterized by two elements: voice pitch and speech style. As
indicated in Table 1, the voice pitch is represented by an alto voice and bass voice,
where the former resembles an adult female’s voice, while the latter matches an adult
male’s voice. As for the speech style, it encompasses casual and frozen styles. To ensure
coherence, the avatars’ appearances have been precisely tailored to correspondwith their
respective voice pitches.

Table 1. Auditory Features of Avatar Videos

No Voice Pitch Speech Style Appearance

Avatar 1 Alto Casual Female

Avatar 2 Alto Frozen Female

Avatar 3 Bass Casual Male

Avatar 4 Bass Frozen Male

The videos entail the utilization of avatars to deliver instructions to the participants.
The avatars, characterized by diverse voices and speech styles, are purposively designed
to express these instructions. As demonstrated in Figs. 1 and 2, participants are antic-
ipated to engage in a task involving the observation of two designated avatar videos,
followed by the execution of tasks as directed by the avatar. The prescribed task entails
a straightforward clock drawing activity on paper, encompassing the creation of a circle,
twelve numerical clock markers, and two clock hands.

Fig. 1. Scenario Setting Fig. 2. Demo of Participant’s Task

Notably, as indicated in Table 2, the content conveyed through the avatars’ frozen
style and casual style speeches is semantically equivalent, despite their differing
expressive characteristics.

In the context of the experimental session, the YOLOv5 emotion detecting model
functions in parallel with the participants’ involvement in task execution. This occurs
while they attentively receive instructions from the avatar videos. The core purpose of
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Table 2. Speech Scripts of Avatar Videos with Different Speech Styles

Casual Speech Style Hello, my name is Fatima/Ahmed. I extend my sincere gratitude for
considering participating in this research study. I will provide clear
instructions for you to follow
Now, you can see a paper in front of you. Please write down a time on
the paper
Great! Thanks for that. And my assistant will collect this paper
Now, seems we can continue our task. You should now receive a new
paper, right?
Please draw a circle on the paper
Please draw 1 to 12 clock numbers in the circle
Now, please draw two clock hands
And make sure the clock hands refer to the time you wrote before
Well, seems everything is done now. Thanks for your time!

Frozen Speech Style Hello, my name is Fatima/Ahmed. Thank you for considering
participating in this research study. Clear instructions will be given for
you to follow
A paper is now in front of you. Write down a time on it
Good. This paper will be collected by my assistant
Task continues. You receive new paper now, yes?
Step 1, Draw a circle on the paper
Step 2, Draw 1 to 12 clock numbers in the circle
Step 3, Draw two clock hands
Make sure clock hands match the time you wrote before
All tasks completed. Thanks

the emotion detecting model is to systematically capture and record the variations in
participants’ emotional states throughout the duration of the assigned tasks.

3.2 Emotion Detecting Model

The development of our emotion detecting model involved the implementation of the
Python programming language. For this purpose, we opted to utilize theYOLOv5model.
YOLO model stands for “You Only Look Once” detecting model, and it is renowned
for its real-time object detection capabilities and for striking a balance between speed
and accuracy [8]. YOLOv5 relies on the PyTorch deep learning framework [9, 10] and
was trained on the extensive AffectNet dataset [11]. The AffectNet dataset comprises
approximately 400,000 images categorized into eight distinct emotion classes: neutral,
angry, sad, fearful, happy, surprise, disgust, and contempt. Our study focused on five
prominent emotions, namely sad, angry, happy, neutral, and surprise, for training our
model. The training process employed 15,000 images. For a comprehensive evaluation
of the model’s performance, we refer readers to [12].
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3.3 Participants

A sample size of 14 participants was drawn at random from the student at the United
Arab Emirates University (UAEU) to take part in the study. These participants were
requested to complete the experimental procedures in a controlled laboratory setting. A
study found that the young adult demographic displays a higher tendency to accept and
engage with the robots, as well as the underlying technology [13]. Additionally, it has
been generally observed that younger adults tend to exhibit a greater preference towards
interacting with robotic entities or avatars [14].

The participants were kept unaware of the ongoing emotion detection process to
ensure their natural behavioural responses. However, upon completing the entirety of
the experimental procedure, the researcher will provide a comprehensive explanation of
the testing procedure and unveil the presence of the emotion detecting model. At this
stage, the participantswere allowed to provide their consent for utilising their data in sub-
sequent experiments. If any participant declines to grant consent, all related documents
and data pertaining to their involvement will be promptly removed. Upon obtaining vol-
untary consent from participants, strict regulations will be implemented to uphold their
privacy, ensuring that their personal information remains anonymized and unidentifi-
able. The emotion detecting model will exclusively provide numeric data, comprising
the percentages associated with each emotion detected. It is important to emphasise that
the physical characteristics, including face details of the participants will not be recorded
or retained in any form. Only the emotion data derived from the experimental sessions
will be retained for subsequent analysis.

The participants will be subject to a randomized allocation into one of the four
groups. The comprehensive procedure entails the participants’ exposure to two distinct
avatar videos, each with unique auditory attributes. The avatar videos presented within
the four designated groups are shaped with distinct voice pitches and speech styles:
avatar 2 and avatar 4 (G1), avatar 1 and avatar 3 (G2), avatar 1 and avatar 2 (G3), and
avatar 3 and avatar 4 (G4). The auditory features of each avatar video are elaborated in
Table 1.

4 Results

In our model, data points are automatically generated upon detecting participants’ facial
expression changes. Notably, there may be uneven distribution of data points across
participants due to variations in emotional expression frequency. The dataset includes
data points derived from four distinct groups, labelled as follows: G1 (n= 4863), G2 (n
= 3754), G3 (n = 1653), and G4 (n = 3330). The collective dataset comprises 13,600
data points, which were sourced from 14 participants. Notably, the average contribution
of data points from each participant falls within a range covering approximately 900 to
1500 points.

We conducted a repeated measures Analysis of Variance (ANOVA) to assess the
comparability of measurements among participants across two distinct speech styles
(Table 3) and voice pitches (Table 4). The ANOVA outcomes revealed the absence of
statistically significant differences in user reactions pertaining to both the frozen speech
style versus the casual speech style and the alto voice pitch versus the bass voice pitch.
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Table 3. ANOVA Analysis of Speech Style

Emotion Within Subject Effect: Speech Style

Angry F = 0.371, P = 0.554

Happy F = 2.392, P = 0.148

Sad F = 0.002, P = 0.965

Surprise F = 1.509, P = 0.243

Table 4. ANOVAAnalysis of Voice Pitch

Emotion Within Subject Effect: Voice
Pitch

Angry F = 0.121, P = 0.734

Happy F = 1.892, P = 0.194

Sad F = 0.933, P = 0.353

Surprise F = 1.140, P = 0.307

This is evidenced by the p-values exceeding the threshold of 0.05, signifying the lack of
a substantial effect.

Figure 3a, 3b, 3c, 3d illustrate the distributions of mean values for four primary
emotions (i.e., happiness, sadness, anger, and surprise) within the context of the subject
effect associated with speech style variations (specifically, frozen style and casual style).
Regarding the emotion of “Happy”, it is noteworthy that the frozen speech style yields
substantially higher values in comparison to the casual speech style. In contrast, in
relation to the emotion of “Surprise”, the casual style exhibits higher values than the
frozen style.

Figure 4a, 4b, 4c, 4d present the distributions of mean values pertaining to the four
primary emotions (namely, happiness, sadness, anger, and surprise) within the context of
the subject effect related to voice pitch variations (specifically, alto voice and bass voice).
Notably, concerning the emotion of “Happy”, the bass voice pitch yields higher values
compared to the alto voice pitch. Conversely, in relation to the emotion of “Sad”, the
alto voice pitch exhibits greater values. It is important to mention that great differences
in values are not notably detectible across other emotional domains.

Fig. 3a. Speech Style Distribution-Happy Fig. 3b. Speech Style Distribution-Sad
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Fig. 3c. Speech Style Distribution-Angry Fig. 3d. Speech Style Distribution-Surprise

Fig. 4a. Voice Pitch Distribution-Happy Fig. 4b. Voice Pitch Distribution-Sad

Fig. 4c. Voice Pitch Distribution-Angry Fig. 4d. Voice Pitch Distribution-Surprise

5 Discussion

The findings derived from this study suggest that visible auditory distinctions inherent
in embedded agents, such as avatars, exercise influence on the emotional responses
exhibited by users. The empirical evidence underscores that within the confines of a
consistent voice pitch, the adoption of the frozen speech style ismore effective in eliciting
sentiments of happiness among users. Furthermore, when avatars and robots adopt a
casual speech style, it triggers a sensitive sense of surprise. This observation contradicts
our initial assumption, suggesting a casual speech style preference. In maintaining an
unchanged speech style, intriguing insights emerge regarding the influences stemming
from varying voice pitches. According to the obtained data, the bass voice records a
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more pronounced efficacy in evoking feelings of happiness among users, while the alto
voice engenders a sense of sadness.

It is worthwhile to acknowledge and address specific limitations that holds signif-
icance for prospective research undertakings. Foremost, the sample size employed in
this study was relatively modest, including merely 14 participants. Nevertheless, we
suggest that, as an introductory exploration, the present study contributes preliminarily
to the domain of evaluating users’ emotional responses to alterations in the auditory
attributes of avatars and humanoid robots. Notably, it is noteworthy that each participant
yielded a substantial volume of 8,000 to 10,000 data points. It is relevant to emphasize
that the predominant target of this paper lies in embarking upon a preliminary analysis
into this realm. Furthermore, the age range of participants was confined to individuals
aged between 18 and 35, which potentially limits the extent of generalizability to a
more expansive age demographic. Given the original design of the experiment’s content
catering to older adults, the relative simplicity of the tasks might be easy for younger
participants, thereby potentially influencing their emotional responses. Additionally, the
experiment was conducted in the UAEU. Consequently, the outcomes may be disposed
to the culturally specific influences characteristic to this location. To augment the robust-
ness and applicability of future inquiries, it is recommended that a broader participant
pool encompassing older adults be integrated.

6 Conclusion

In summary, the primary objective of this pilot study was to separate the effects of
humanoid embedded agents, encompassing robots and avatars, on users’ emotional
responses. Serving as an early undertaking to evaluate human perceptions of avatars
possessing distinct auditory attributes, this study contributes to advancing literature con-
cerning emotional impacts arising from verbal interactions with humanoid agents like
robots. The findings revealed that users exhibit heightened emotional responsiveness
when interacting with avatars and robots characterized by diverse voices and speech
styles. Nonetheless, it is crucial to acknowledge that the study’s constraints, including
the restricted sample size, limited age demographic, and cultural influences, introduce
restraints upon the generalizability of the results.

In a broader context, this pilot study lays the foundation for prospective research
endeavours to enhance user experiences bymanipulating auditory attributes of humanoid
robots and avatars. A potential direction for future investigation could entail examining
the potential effects of altered verbal cues in robot-assisted elderly care training on the
emotions, acceptance levels, and cooperation dynamics among older age groups.
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Abstract. Drones and other robotic technologies enable us to explore and study
the world without the need for human guidance. This enables us to interact with
previously uncharted areas that pose a risk to human safety, including the under-
water biosphere. A drone may encounter a variety of problems when operating in
such an unpredictable and hazardous environment. In these contexts, creating a
digital twin of a marine drone can provide several advantages, such as for exam-
ple to enhance the management, maintenance, and performance of the marine
drone through data-driven approaches, benefiting efficiency and safety. In this
work, we present the development of a digital twin prototype, which is a vir-
tual representation of a physical entity of a marine drone-type unmanned surface
vehicle. ROS, Blender, and the AWS cloud platform were used to create the sys-
tem. The three-dimensional model of the maritime drone was created in Blender,
and the AWS Robomaker service was utilized for simulation testing and possible
deployment of the robotic application without managing any infrastructure. The
goal is to present the tools and architecture that were developed to collect data
using non-invasive ways and generate a marine digital twin.

Keywords: digital twin of marine drones · USV · ROV · AUV · see monitoring

1 Introduction

The underwater environment is, to date, for most of the planet Earth, still a real unknown
factor for human beings. The seabed has been mapped only for small land surface inven-
tories, and it is very little known due to its inaccessibility to man. It is hazardous and
complex to conduct work, whether environmental monitoring, sample collection, or
mapping spaces and objects deposited on the seabed, but robotics can help us carry out
dangerous activities. Unmanned Surface Vehicles (USV), are identical to real boats or
even Remote Operated Vehicles (ROV) [4], are more complicated and are typically uti-
lized in oil wells or deep oceans and can reach such high pressures that a pilot on board
would perish. Also, several marine drones define the AUV (Autonomous Underwater
Vehicle) as being capable of moving adequately according to the mission for which they

The Authors want to thank the GEAC group (Geology of Coastal Environments) of the Uni-
versity of Naples Parthenope (http://dist.altervista.org/geac/struttura.html), creator of the ARGO
(ARcheological GeO application) marine drone.
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have been programmed [1]. Recently, there has also been a surge in interest in undersea
projects and the development of AUVs dedicated to surveillance [2,3].

For instance, authors in [15] used an innovative marine robotic instrumentation to
reconstruct the landscape of the coast of an archaeological site near Campi Flegrei
(Italy). The Unmanned Surface Vehicle (USV) used geophysical and photogrammet-
ric sensors. In addition to reconstructing the underground city, the acquired data help
document the underwater cultural heritage. In this regard, an Unmanned Surface Ves-
sel (USV) with acoustic and optical sensors was also used to reconstruct the ancient
Parthenope area, an area of the Roman coast between Pizzofalcone hill and Megaris
islet, [16].

They enable us to perform things that would not be possible with any other vehicle,
such as detecting wrecks, conducting scientific samples, and gathering data. Technolog-
ical advancements and the associated software and hardware systems on the market are
continually evolving, and how they are built and handled must also evolve. To do so, we
need tools to match the new product realities brought about by digital breakthroughs.
This is also where the Digital Twin comes into play. Michael Grieves used the term
“digital twin” for the first time in 2001 [7].

Grieves described the digital twin as a physical product’s virtual and digital equiv-
alent. In his approach to PLM, Grieves highlighted a Mirrored Spaces Model referring
to a highly dynamic representation, [18]; the actual dimension and the virtual dimen-
sion remained connected during the entire life cycle of the system, going through all
the phases of creation, production, operation and disposal. Virtual replicas of physical
products that provide a snapshot of the state of the product in real-time, digital twins
allow you to deliver experience improvements without having to test them on the prod-
uct itself. A product’s digital twin is an invaluable source of information for engineers
and operators. Information is obtained through combining multiple technologies, from
the cloud to the Internet of Things to Artificial Intelligence.

The Digital Twin is connected to the physical product through various sensors.
These produce data on different aspects of the physical object’s performance, from tem-
perature, energy used/produced, weather conditions, etc. The analysis of this data, com-
bined with other sources of information, allows us to understand not only the product’s
behavior but also to predict how the product will behave in the future. This continuous
flow of information allows the digital twin to run simulations, detect and analyze any
product performance issues, and study possible improvements.

The purpose of the paper is to develop a digital representation of the marine drone
known as ARGO (ARcheological GeO application) developed by the GEAC group
(Geology of Coastal Environments) of the University of Naples Parthenope, Italy, by
making use of ROS (Robotic Operating System), as well as of Blender 3D-modeling
software and AWS cloud platform. ARGO marine drone was conceived to carry out
coastal marine surveys aimed at the high-resolution reconstruction of the submerged
coastal seabed.

The aim of this contribution is to highlight the benefits of utilizing AWS Robo-
Maker, a cloud-based simulation service provided by AWS (Amazon Web Services),
that allows robotics developers to perform, scale, and automate simulations without
having to worry about managing infrastructure. Through the use of virtual space and
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simulation, it will in fact be possible to evaluate the performance of the on-board sen-
sors as well as foresee the use of additional sensors to improve both navigation and
monitoring performance, testing their operation in simulation before mounting them on
the real robot, thereby reducing downtime and maintenance costs. Additionally, oper-
ators can use the digital twin to simulate the intended flight path, check for obstacles,
and assess how the drone will respond to various conditions. This reduces the risk of
accidents and unexpected outcomes. Furthermore, the possibility of modifying the sim-
ulation environments as desired allows operators to test the performance of the drone in
different environments and in different climatic conditions.

2 Related Work

A Digital Twin concept involves creating a digital simulation within an informa-
tion platform, enabling real-time prediction, optimization, monitoring, control, and
improved decision-making. This is achieved by integrating physical feedback data
and complementing it with AI, machine learning, and software analysis. Numerous
researchers from around the world have conducted research in the domains of air, land,
and sea [9,12,17].

For instance, the authors in [11] integrated data from multiple sensor locations,
using this information as inputs for the digital twin system, and combined it with sim-
ulation data to analyze the structural performance.

Meanwhile, Chen et al. [5] established a Digital Twin framework for submarine
pipelines and highlighted the challenges in implementing it for design, construction,
service life assessment, life extension, data collection, interpretation, sharing, and net-
work security. The underwater environment presents unique complexities, and only a
limited number of studies have explored the application of Digital Twin technology in
this context.

In [10], the authors formulated a standardized method for recognizing a set of cru-
cial system elements that require the creation of digital twins to support condition-based
maintenance objectives. Although their initial application centred around an unmanned
underwater vehicle (UUV), the procedure possesses sufficient generality for any system
examining cost and reliability projections for implementing digital twin technology.

The research discussed in [8] employs a blended-wing-body underwater glider
(BWBUG) to investigate the potential uses of high-fidelity digital models within the
maritime domain. They introduce a digital twin technology developed using the Gazebo
simulation platform. Their methodology encompasses the development of a high-
fidelity model designed for underwater situations and includes the incorporation of a
vehicle body with a range of sensors.

3 Planning and Development

The most important elements of the drone digital twin design flow will be examined
in this section. We will focus on the specifications, the development libraries used, the
building of the 3D robot model, the description of the mounted sensors and onboard
thrusters, and its architecture.
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AWS RoboMaker. AWS1 is the world’s most comprehensive and widely used cloud
platform, offering a broad range of computing infrastructure services. In particular, AWS
RoboMaker extends the most popular open source robotics framework, Robot Operat-
ing System (ROS), with connectivity to cloud services. This includes AWS machine
learning services, monitoring services, and analytics services that enable a robot to
transmit data, navigate, communicate, understand, and learn. AWS RoboMaker gives
you access to gazebo, rqt, rviz, and terminal to interface with running simulations that
can be easily customized.

UUV Simulator. UUV Simulator (Unmanned Underwater Vehicle Simulator) is a pack-
age set that includes plugins and ROS applications that allow the simulation of under-
water vehicles in Gazebo [13].

Blender. Blender is a 3D graphics open-source software allowing the modelling and
rendering of images in three dimensions using a professional work environment. It is
a constantly evolving and updating program and is increasingly adopted in gaming,
cinema, advertising, and architectural design.

Among other advantages, Blender offers native tools for creating animations and
animated videos of projects, now increasingly in demand even in interior design and
architectural design. Among others, we mention the possibility of inserting sounds,
interactive paths and animated characters in the videos of the scenes.

In Fig. 1, we can see how the ARGO drone is visualized on Blender. On the right is
the wire frame, and on the left is the preview with the materials used.

Unified Robot Description Format (URDF). For the development of the URDF model
of the marine drone, extensive use was made of the constructs of the XACRO language
(XML Macros), ideal for developing reusable macros. The description is organized in
multiple files. The main file is drone.xacro from which the other files are loaded, and
the macros are expanded:

– base.xacro contains the declaration of global constants and variables, model prop-
erties, global macro definitions, a path relative to the mesh file package, and the
inclusion of external libraries and other files that make up the robot.

– sensors.xacro contains the definition of the various sensors and the relative names
of the joints and links, the dimensions of the primitives used for the elements, the
mass of the links, the limits of the joints, the offset of the reference systems of the
visual, inertial and collision elements for the link reference, and the offsets of the
joints for the link reference.

– snippets.xacro uses the macros for the definition of the libuuv_thruster_
ros_plugin.so plugin of uuv_simulator allows the functioning of the thrusters,
including the description of the dynamic systems and the conversion functions to
be adopted.

– actuators.xacro contains the declarations of the macros used to create the thrusters.
– gazebo.xacro uses the macros for defining the libuuv _underwater_object_ros
_plugin.so plugin of uuv_simulator providing the ability to buoyancy through the
definition of the dimensions, volume and hull centre of the marine drone.

1 Amazon Web Services. http://www.aws.amazon.com.

http://www.aws.amazon.com
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Fig. 1. Visualization of the 3D model of a marine drone in Blender. Up: Material preview: down:
Wireframe.

3.1 Description of the Marine Drone

The drone is characterized by very compact dimensions (length of 120 cm and a width
of 86 cm) with a maximum weight of 30 kg, such as making logistics handling easy. Its
dimensions and the presence of electric motors powered by 12V DC allow a minimum
impact on the sea and guarantee considerable operating autonomy (from 2 to 6 h) and
excellent maneuverability in confined spaces typical of coastal and port environments,
[6,14].

On-Board Sensors. The drone digital twin has the same sensors mounted on board the
physical robot, including:
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– GPS: Acronym for Global Positioning System; it is an electronic device used to
locate the exact position of a place, a person or an object through data triangulation.

– Camera: A portable electronic device that records images and sounds on an inte-
grated storage medium.

– Echo sounder: It is a type of ultra-acoustic echo sounder instrument used to mea-
sure the depth of the sea through the transmission of sound pulses. To work, it uses
sound waves, capable of measuring distances through sound. Echo sounder technol-
ogy uses a transducer, transmitter and receiver/amplifier. It uses the same principle
as radars to locate targets, from which it differs in speed propagation and wave type.
The transducer receives the electrical energy and then transforms it into sound. The
impulse is thus transmitted to the seabed. Once the target is hit, whether fish, sea-
weed or rocks, the sound is reflected back to the transducer and sent to the amplifier
and then to the receiver so it can be viewed on the display.

– Side scan sonar: It is a particular instrument mainly used to research and map the
seabed for underwater archaeology purposes. The name of this sonar derives from
how the acoustic bases mounted on a small vehicle towed by a pilot ship are used.
The acoustic bases emit pulses and identify the targets’ echoes by scanning emis-
sions and receptions only with beams directed sideways towards the bottom. It pro-
vides as a final product a resulting image of many stripes corresponding to signals
received from the seabed following the sending of an impulse. The side scan sonar
sends an acoustic signal towards the bottom of the sea from each of its sides at 90◦ to
the course of the support vessel. The waves propagate through the water, and once
they reach the bottom of the sea, they are reflected by the irregularities of the sea
surface and by any object lying on it, returning to the receiver, which registers the
body as a maximum reflector. The sonar amplifies the received signals and sends
them to a data processing system and a display. Typical sonar applications result in
grayscale recordings (sonograms), where strong reflectors are shown in the record-
ing as bright areas. In contrast, a total lack of return signal results in a dark area. The
main objectives of the side scan sonar are:
• create nautical charts and the detection and identification of underwater objects.
• search the bathymetric characteristics of the sites.
• investigate the problems of marine archaeology.
• helps locate and identify underwater manufactured artifacts.
• to classify seabeds based on the type of deposit material.
• detect items of debris and other obstacles on the seabed dangerous to navigation.
• control seabed installations of the oil and gas industry.

In Fig. 2, we can see how the side scan sonar is mounted on the drone, through the
representation in Blender of the digital twin.

– Forward scan sonar: Besides the sensors already provided by the physical robot,
we have the forward scan sonar, a device used during navigation to identify and
avoid any bodies in front of the boat.

Thruster Configuration. The propulsion of the marine drone takes place via two
thrusters. The UUV Simulator library is used to simulate the operation and configu-
ration of these to the digital counterpart; it provides two modules: the dynamic model,



28 M. Staffa et al.

Fig. 2. Illustration of twin-mounted side scan sonar, used for research and mapping of the seabed
for underwater archaeology purposes.

which describes the dynamics of the rotor and the conversion function, which describes
the relationship between angular speed of the rotor and the thrust force produced. Below
is an example of the macro that includes the thruster link, the joint and the Gazebo plu-
gin containing the dynamic model and descriptions of the conversion function.

Architecture and Structure of the Control System Hardware. The drone control
system hardware structure is shown in Fig. 3. The microcontroller gets the data from
the computer and generates a pulse width modulation signal to the motors and servos.
The onboard computer performs planned navigation, calculates control actions, runs the
navigation system software and communicates with the remote control station.

4 Simulation

The simulation includes visualization of the digital clone in a marine environment to
reconstruct the seabed through a scan by the side scan sonar mounted on it. The main
simulation launch file start_demo_pid_controller.launch allows you to launch several
nodes from a single configuration:

– ocean_waves.launch allows the generation of a virtual marine world made available
by the UUV Simulator library.

– upload_argo.launch contains the description of the robot, the robot_state_publisher
node to allow viewing of the robot and related information within rviz. It allows the
generation of the simulation environment through Gazebo, (Fig. 4).

– start_pid_controller.launch contains a whole series of parameters for the correct
functioning of the thrusters.



A Digital Twin of an Unmanned Surface Vehicle 29

Fig. 3. Control system hardware structure diagram

Fig. 4. Gazebo simulation execution.

In order for the robot model to activate the thrusters to carry out the navigation and
reconstruction of the seabed in the simulated environment, a geometry_msgs message
is published on the topic /thruster_manager/input/Wrench. This is equivalent to gen-
erating a force in newtons along one of the x, y and z axes, which allows the drone’s
movement and, consequently, the side scan sonar to map the virtual seabed. Through a
particular configuration of rviz, which allows the seabed to be displayed in the form of
a point cloud, we obtained the result shown in Fig. 5:



30 M. Staffa et al.

Fig. 5. Digital representation of the scanned seabed.

5 Conclusions

This work aimed to develop the prototype of a digital twin, a virtual representation of
a physical entity, in our case, a USV-type boat. This system was created through ROS,
Blender (a 3D graphics and modelling software that allowed the creation of the surface
marine drone three-dimensional model), and the AWS cloud platform, specifically the
AWS Robomaker service for simulation, testing, and possible deployment of the robot
application without managing any infrastructure. By using cloud-based computing plat-
forms to provide computational power, it has been possible to decouple robot hardware
from its available functionalities in an always more promising RaaS approach. In a
possible future development, new sensors could be integrated and tested for communi-
cation with the surrounding environment, developing navigation techniques that allow
the achievement of a specific objective regardless of any environmental disturbances,
such as wind and sea currents, through alternative simulators such as Gazebos that per-
mit such circumstances. Finally, a potential work to be done is the connection of the
digital twin to the physical product through various sensors or a possible distribution of
the robot application to the physical robot through the features made available by AWS
Robomaker.
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Abstract. The role of trust in human-robot interaction (HRI) is becoming
increasingly important for effective collaboration. Insufficient trust may result
in disuse, regardless of the robot’s capabilities, whereas excessive trust can lead
to safety issues. While most studies of trust in HRI are based on questionnaires, in
this work it is explored how participants’ trust levels can be recognized based on
electroencephalogram (EEG) signals. A social scenario was developed where the
participants played a guessing game with a robot. Data collection was carried out
with subsequent statistical analysis and selection of features as input for differ-
ent machine learning models. Based on the highest achieved accuracy of 72.64%,
the findings indicate the existence of a correlation between trust levels and the
EEG data, thus offering a promising avenue for real-time trust assessment during
interactions, reducing the reliance on retrospective questionnaires.

Keywords: Trust in Human-Robot Interaction · Social Robotics ·
Human-Robot Collaboration

1 Introduction

In social scenarios, trust is an important aspect of human robot collaboration because
the level of trust of the human towards the robot can seriously affect the performance
during the interaction. In other words, it can cause unbalance workload, inefficient mon-
itoring of the robot, or even disuse of the system [4]. For example, socially assistive
robots provide assistance to elderly people for improving their quality of life and inde-
pendence [22] or serving as robot companions for activating and stimulating the users
[27]. In such scenarios, fostering trust in the robot is crucial not only for the user but
also for care personnel and relatives, ensuring a successful interaction.

Numerous attempts have been investigated to define the characteristics of trust as
an emergent phenomenon in human-human as well as human-robot interaction (HRI).
A meta-review of trust-related studies of human robot interaction [15] showed that the
two main variants of trust are performance-based and relation-based, which in turn are
related to specific domains of applications. Performance-based trust is mostly explored
in manipulative robot systems in industrial contexts. By contrast, relation-based trust is
more relevant for social scenarios focusing on communication rather than on manipu-
lation of objects.
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To be able to use trust as a control parameter in the context of human-robot collab-
oration, evaluating real-time trust levels throughout the interaction becomes essential.
As result, the behavior of the robot can be adapted to match the trust level of the user,
increasing efficiency or preventing potentially dangerous situations. The current trust
measurements are based on subjective, post-hoc questionnaires (e.g. [25,28]) that pro-
vide only summary information about the subjects’ interpretation of the interaction but
do not support a continuous trust assessment during the collaboration. For this reason,
new methods must be developed for data-driven assessment of trust. Recent studies
have shown some promising steps in this direction (e.g. [7,9,26,30]). For instance,
Hu et al. [9] successfully experimented with electroencephalogram (EEG) signals as a
real-time measurement of trust for a scenario based on performance-based trust. While
their results are promising, the trust rating that was used for labeling the data was an
oversimplification relying only on one question.

This paper proposes trust assessment based on EEG signals and Machine Learn-
ing (ML) within the context of relation-based trust. For the purpose of having a solid
basis for labeling the EEG data, theMulti-dimensional Measure of Trust (MDMT) ques-
tionnaire [28] is used as the baseline measurement to infer the trust levels. The deci-
sion to opt for MDMT hinges on the necessity for a more in-depth comprehension of
trust. Trust, being multifaceted, is thoroughly examined by MDMT across a spectrum
of dimensions, allowing to gain a more holistic insight into trust-related constructs.
The aforementioned approach allows for the automatic labeling of the data, facilitat-
ing the subsequent real-time analysis of the correlation between trust and physiological
responses, thereby overcoming the limitations associated with questionnaire responses.

2 Related Work

Trust can be defined as the operator’s perception of the competence of the machine
where it is essential that the operator is confident that the system appropriately accom-
plishes its tasks [18]. A correlation is present between the operator’s trust in the machine
and his willingness to use it, i.e. the more the human trusts the system, the more he is
likely to use it. In [18], Muir and Moray reported that the level of trust of the human
subject in a machine was heavily affected by the machine’s performance. As a matter
of fact, trust is a relevant factor that could affect the acceptance of a robot as assis-
tant, co-worker or companion in social scenarios [12,16]. Moreover, it can influence
the human’s perception of the capabilities of a robot [8,23].

In HRI, the concept of trust is a timely and relevant topic for various reasons.
First of all, there is a lack of a general understanding of the dynamic nature of trust
and the methodologies to study it [14]. Trust is not a static phenomenon: it can be
built, repaired, adjusted and it changes over time according to events that occur. Sec-
ondly, trust is an essential feature of human decision-making in collaboration tasks and
it becomes crucial when robots are closely working together with human users [29].
Thirdly, mismatches in trust towards a robot can lead to severe consequences, ranging
from unbalance workload, to loss of expensive equipment or even human life due to
inefficient monitoring [4,19]. Therefore, both under-trust and over-trust in robots have
to be avoided.
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Most trust assessments rely primarily on post-hoc questionnaires (e.g. [10,25]).
Only a limited number of methods have endeavored to gauge trust through performance,
with a primary emphasis on task success and efficiency. Floyd et al. [6], for instance,
estimated the robot’s trustworthiness based on observable performance which was cal-
culated as a comparison between the number of successful task completions and failed
or interrupted attempts. Xu and Dudek [30] proposed a data-driven approach to infer
trust levels, focusing specifically on a performance-centric definition of trust, which
evaluated success or failure in performing the task. A HRI trust scale was developed by
Yagoda et al. [31] that is based on a list of item dimensions including HRI attributes:
team configuration, team process, context, task, and system. Salem et al. [24] explored
the factors that affect human perception and trust towards an erroneous robot.

The post-hoc questionnaires are not sufficient to promptly determine the change
of trust level over time. Therefore, it is essential to track the unfolding of trust (and
distrust) in HRI to define reliable, real-time measures of trust [9] with the goal of
adapting the robot’s behavior to the user’s trust level. According to [21], the use of
psycho-physiological signals could be a solution to sense trust level. Among the several
psycho-physiological measurements, EEG is identified as a non-invasive and conve-
nient method for capturing brain signals and observing brain activity in response to a
specific event-related potential (ERP). Researchers have conducted studies on trust by
means of EEG signals. Hu et al. [9] introduced an initial attempt to establish a con-
nection between real-time physiological signals and human-machine trust. Regrettably,
their trust measurement remains superficial as it solely relies on asking participants
about their trust in the system. In a coin toss experiment that simulated trust and dis-
trust [3], Boudeau et al. found that ERP components had different peak amplitudes for
the several participants involved. Akash et al. [2] analyzed approaches to develop a
classification model to sense human trust using EEG and galvanic skin response mea-
surements.

3 Methodology

3.1 The Human Subject Study

To assess the trust level of the human subjects based on EEG signals, a social experi-
mental scenario was designed. A human and EZ-robot JD Humanoid1 played a collabo-
rative game inspired by the board game Activity. As shown in Fig. 1, the game consisted
of five sections where, depending on the section, the humanoid robot either mimed or
vocally described a word among four options presented to the participant. Throughout
the interaction, the participant had to guess which word the robot was presenting. In case
of correct answer, the participant received a candy as reward; otherwise one candy had
to be returned. Each section was composed of two trials where, for each trial, a different
set of four words were presented by the robot. Furthermore, each section implemented
a different trust strategy that determined how the robot would behave. The first two
sections were used for building up trust. Section 2 showed some situation awareness,
e.g. by commenting on the participant’s cloth with the purpose to establish a relation. In

1 https://www.ez-robot.com/.

https://www.ez-robot.com/
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Section 1: 
Mime

Trust Building

Section 2: 
Description

Trust Building + 

Situation 

Awareness

Section 3: 
Mime

Trust 

Dampening + 

Transparency

Section 4: 
Description

Trust 

Violation

Section 5: 
Mime

Trust Repair

Fig. 1. Sequence of the sections with the different trust strategies associated.

section 3 the robot introduced the participant to some technical limitations of the system
(trust dampening + transparency). Section 4 violated trust by a deliberate malfunction
of the robot while section 5 was used to regain trust. In the end, between each section
and after the last section of the experiment, the MDMT questionnaire was used to assess
the average trust score. The participants were asked to rate on a 8-point scale (0–7) how
well some trust-based descriptors applied to the robot. Finally, an average trust score
was calculated over the several dimensions measured by the MDMT. To conclude, it is
essential to emphasize that the initial three sections were employed to establish a solid
foundation of trust between the participants and the robot prior to any violation of trust
taking place. Consequently, Section 3 serves as a comprehensive synthesis, bringing
together all the trust-related insights derived from the earlier stages.

The experiment protocols were in accordance with the Declaration of Helsinki.
Ethical approval was obtained from the institutional review board prior to the study.
Twenty-one participants were recruited, 9 male and 12 female with an average age of
28.3 (SD= 9.94). The sample size of 20 participants was chosen to initiate a prelim-
inary assessment of trust levels, considering resource limitations and the exploratory
nature of the study. Familiarity with robots was limited, three had previous practical
experience with robots, while the remaining had only encountered them either in reality
(12 participants) or through media (6 participants). The completion of the experiment
required 30min for each participant.

3.2 Experimental Setup

At the beginning of each session, a consent form and a description of the task were
provided and, subsequently, the participant was equipped with an EMOTIV EPOC+ 14-
Channel Wireless EEG Headset2 connected to a computer to record brain waves with
a rate of 128Hz. To ensure a good contact quality, a saline liquid was applied to each
electrode in order to have an efficient conductivity. A sensor map was used to check
the location and contact quality of each sensor. The placement of the 14 electrodes is
reported in Fig. 2 (left). Furthermore, participants were given instructions to avoid mak-
ing pronounced movements to prevent any sensor shifts. The participant was seated on
a chair facing a table with the robot (Fig. 2 right), which was controlled through the EZ-
Builder software. In order to have a controlled data collection, a Wizard of Oz protocol
was adopted, where the robot was manually controlled throughout the procedure. The
participant remained unaware of this fact until the debriefing.

2 https://www.emotiv.com/.

https://www.emotiv.com/
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Fig. 2. Left: Placement of EEG electrodes. Right: Experimental scenario with the Humanoid
Robot JD and the participant wearing the EEG headset.

3.3 Data Pre-processing

The EEG data was pre-filtered to remove the DC offset with 0.16Hz high-pass cutoff.
Before computing the Fast Fourier Transform (FFT), the EMOTIV Cortex API was
used to minimize artifacts in the EEG signal. EEG waves can be affected by intrinsic
artifacts (e.g. movements of the eye, eye blinks, bio-electric potentials from muscle and
heart) and by external artifacts (e.g. environmental noise). Moreover, a Hanning win-
dow function was applied to obtain good frequency resolution and leakage protection
with fair amplitude’s accuracy. In order to analyze the alpha frequency band power, the
continuous time series EEG data were transformed through FFT to assess the involved
frequencies. Afterwards, the power spectral density was computed to determine the
power of each band. Subsequently, the extraction of the power, expressed in μV2, was
performed from the following frequency bands: Theta (4–8 Hz), Alpha (8–12 Hz),
Low Beta (12–16 Hz), High Beta (16–25 Hz) and Gamma (25–45 Hz). Considering the
nature of the task, the alpha brain waves were analyzed since previous studies have
shown a strong correlation between attention and this typology of waves. In [13], it
is reported that alpha suppression reflects attentional processes. The hypothesis is that
if the robot committed errors during the performance, the human would less trust the
robot, thus paying more attention in order to correctly guess the answer.

3.4 Data Analysis

For the trust assessment, the focus lay on the break point between section 3 and 4,
where a trust violation occurs. Firstly, it was necessary to validate whether the trust
scores from the MDMT were impacted by the trust violation. If that was the case, the
data collected in sections 3 and 4 could be utilized for training a trust assessment model,
incorporating the labels derived from the MDMT. A Shapiro-Wilk test revealed that the
difference in average trust scores between section 3 and section 4 did not follow a
normal distribution (p = 0.001). Therefore, instead of paired t-test, a Wilcoxon Signed-
Rank Test was performed. The statistical test reported a significant difference in trust
scores between section 3 (M = 5.34, SD = 1.31) and section 4 (M = 4.64, SD = 1.79).
Specifically, the trust scores in section 3 (Mdn = 5.45) were significantly higher than
those in section 4 (Mdn = 5.07),W = 26, p = 0.002. The results verified the usability of
the trust scores for training the ML models.
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Table 1. Features related to alpha frequency band power.

Features Description

Mean Value Average value of the power

Peak Maximum value of the power

Standard Deviation Dispersion of the power relative to its mean

Kurtosis Sharpness of the peak

4 Trust Assessment

The categorization of the trust level was modeled as a binary classification problem
(i.e. high trust, low trust). The ML models were based on features of the alpha fre-
quency band power. For each participant, the contribution of the alpha frequency band
power of each sensor was calculated and then averaged over the 14 channels. To extract
the features, a window size of 1 s (consisting of 128 data points) was defined. The ini-
tial features calculated on these windows were mean, peak, median, standard deviation
and kurtosis. Based on the results of the MDMT questionnaire, the feature vectors were
then labeled as one of the two classes, i.e. either as high or low trust. The labels were
determined using the average of the results from the MDMT questionnaires as threshold
for both section 3 (M = 5.34) and section 4 (M = 4.64). By applying Univariate Feature
Selection method, the feature space was reduced by eliminating the median. The result-
ing features are summarized in Table 1. According to [17], classification algorithms
are more suitable than regression models in brain computer interface applications. In
this analysis, several supervised ML algorithms were selected to categorize the trust
level of the participants. The adopted models were Support Vector Machine (SVM),
k-Nearest Neighbors (kNN) and Random Forest. The data were normalized, shuffled
and divided in 70% for the training set and 30% for the testing set. Tuning of hyperpa-
rameters was performed during the modeling phase. In the following, each algorithm is
briefly presented along with the chosen evaluation metric (classification accuracy).

Support Vector Machine. With reference to [20], SVM is a suitable model to classify
physiological data. It is a discriminative classifier whose purpose is to provide a hyper-
plane in a N-dimensional space (N corresponds to the number of features) that distinctly
classifies the data points of a binary classification problem. Many hyperplanes can be
chosen and the selection depends on the maximum achieved margin, which is the max-
imum distance between the support vectors, i.e. the data points of the two classes closer
to the hyperplane. Maximizing the margins aims to provide a wider confidence inter-
val for classifying new data points into one of the two regions in the space, based on
their respective class memberships. To determine the optimal hyperplane (i.e. decision
boundary), the hyperparameters must be computed through (1):

min
w,b,ξ

1
2
wtw+

C
n

n

∑
i=1

ξi for i = 1,...,n (1)

where w and b are hyperparameters, C is a tune parameter, n is the number of training
samples and ξi is a variable that measures the extent of violation of constraint (2):
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yi(〈w,xi〉+b) ≥ 1−ξi (2)

where xi is the training set while yi are the categories. To conclude, SVM robustly
mitigates overfitting due to the margin maximization, support vector utilization and
regulation parameter control. In this analysis, the two regions of the space represented
respectively the high trust and the low trust categories of the participants. The regulation
term C was assigned a value of 0.5 and the radial basis function was selected as the
kernel. The algorithm performs with 63.20% accuracy.

k-Nearest Neighbors. kNN is a memory based classifier that exploits the similarity of
the features between classes in order to predict the class of a new feature vector. kNN
estimates the likelihood that a new data point belongs to a specific class (high or low
trust) based on which class most of the data points closest to the new feature vector
belong to. A distance function is used to determine the similarity between a new data
point and its nearest neighbors [11], which is frequently the standard Euclidean distance
(3):

d(xi,yi) =

√
√
√
√

d

∑
i=1

(xi − yi)2 (3)

where xi are the unclassified samples, yi are the labeled data and d is the dimension of
the feature space. kNN is considered robust to overfitting due to its local nature and lack
of assumptions about data distribution. Additionally, the choice of the hyperparameter
k (number of neighbors) helps prevent overfitting. A number of seven neighbors was
determined through experimentation, which resulted in an accuracy of 68.86%.

Random Forest. Random Forest utilizes ensemble learning, a technique that combines
many classifiers to make predictions. It consists of a large number of decision trees on
various subsets of the given dataset. Each individual tree derives a class prediction and
the class with the most votes is the output of the algorithm [5]. The robustness of Ran-
dom Forest to overfitting is attributed to the random selection of features and sample
subsets for each tree. This randomness ensures that no single tree have excessive influ-
ence over the ensemble, promoting generalization and reducing the risk of overfitting
to unseen data. This model achieved the highest accuracy of 72.64% by utilizing 100
decision trees and employing Gini criterion as the quality measure for evaluating splits
in each tree.

5 Discussion

The data analysis indicated a statistically significant difference concerning the trust
scores between the two analysed sections of the experiment (p = 0.002). Therefore,
considering that each of the two sections had a distinct trust strategy (i.e. the robot’s
performance varied), it can be concluded that the robot successfully elicited a noticeable
shift in trust among the participants. Thus, the hypothesis about perceptible variations
in trust scores around the break point when trust violation occurred has been validated.
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Table 2. Supervised learning models and performance indicators.

Supervised Learning Model Accuracy Precision Recall F1-score

Support Vector Machine 63.20% 0.63 0.63 0.63

k-Nearest Neighbors 68.86% 0.70 0.69 0.69

Random Forest 72.64% 0.75 0.73 0.72

Based on this, three different algorithms for trust categorization were examined. The
analysis involved various performance indicators, namely accuracy, precision, recall,
F1-score. The corresponding outcomes are presented in Table 2. The Random Forest
model achieved a higher accuracy (72.64%), likely attributed to its ensemble nature,
indicating a greater number of correct predictions compared to the other models. Its
elevated precision suggested a lower incidence of false positives, which is essential for
minimizing misclassifications. Moreover, the model demonstrated a higher recall value,
signifying its ability to identify a larger proportion of actual positive instances, i.e. high
sensitivity. The second-best performing model was kNN. Its competitive performance
might be attributed to its simplicity and the absence of strong assumptions about the
underlying data distribution. Lastly, SVM exhibited low performance possibly due to the
complexity of the dataset and limited feature space. SVM’s performance might improve
with more diverse and higher-dimensional data. For instance, other features concerning
alpha band could be peak-to-peak amplitude and alpha band reactivity.

In summary, the results highlighted the utility of EEG data in estimating trust lev-
els in relation-based trust in human robot collaboration. Being able to classify trust
based on sensor data has two main advantages over traditional trust evaluation through
questionnaires. Firstly, questionnaire results do not always align with user behavior [1].
Trust assessment relying on sensor data becomes more objective, eliminating the need
to rationalize the entire interaction with the robot. Secondly, while questionnaires offer
summative evaluation after interaction, sensor-based trust assessment enables continu-
ous evaluation, capturing trust dynamics as it develops during interaction. This facili-
tates the potential to react in real-time to over/undertrust by adapting the robot’s inter-
action or communication behavior. The study’s main limitation was the fluency of the
robot’s speech, which significantly influences human attention and trust in the robot’s
communication abilities. When a robot communicates smoothly, it appears more com-
petent and reliable, leading to increased trust from humans. To further explore trust, the
next step could involve increasing the risk for human participants during interactions to
elicit stronger trust responses toward the robot.

6 Conclusion

This paper explored the correlation between robot performance and levels of human
trust by leveraging EEG signals as input to trust assessment models. To this end, a sce-
nario fostering social collaboration was designed, requiring the human to engage with
a robot to successfully accomplish a game. Results show the successful manipulation
of the participants’ trust levels through the robot performance. Using the identified trust
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levels, a connection between the EEG data and trust was identified through ML models.
These findings serve as the foundation for future research endeavors. As part of their
ongoing work, the authors intend to delve into the effects of the trust repair section on
the process of regaining trust from user participants following the robot’s performance
error. Additionally, sensor fusion techniques, incorporating EEG data, will be employed
to enhance the robustness of trust level categorization.
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Abstract. Recently, there has been an increasing interest in the adoption of
socially assistive robots to support and alleviate the workload of clinical personnel
in hospital settings. This work proposes the adoption of a socially assistive robot in
Intensive Care Units to evaluate the criticality scores of bedridden patients.Within
this scenario, the human gaze represents a key clinical cue for assessing a patient’s
conscious state. In this work, a user study involving 10 participants role-playing 4
levels of consciousness is performed. The collected videos were manually anno-
tated considering 6 gazing directions and an open-source automatic tool was used
to extract head pose and eye gazing features. Different feature sets and classifica-
tion models were compared to find the most appropriate configuration to detect
user gaze in this scenario. Results have suggested that the most accurate gazing
estimation is obtained when the head pose information is combined with the eye
orientation (0.85). Additionally, the framework proposed in this study seems to
be user-independent, thereby encouraging the deployment of appropriate robotic
solutions in real assistive contexts.

Keywords: Socially Assistive Robotics · Gaze Estimation ·Machine Learning

1 Introduction

Socially Assistive Robots (SARs) emerged in recent years as potential tools to promote
wellbeing and support mental health in children [1], older adults [2], and any person in
need of assistance [3]. The major contribution of SARs is that they can aid the end user,
while supporting and alleviating the professional caregiver’s workload. Indeed, there is
a growing trend in clinical settings to adopt SARs for therapy and stroke rehabilitation
[4], for drug dispensation and delivery [5], as well for monitoring the mental states
of patients [6]. Recent works support the idea that SARs could be also introduced in
more critical settings, e.g. Intensive Care Units (ICUs) and surgical settings, where their
presence could be beneficial to patients, staff, and hospitals [7]. In intensive care units,
the greatest application of SARs regards telepresence [7], where the presence of the
robot led to earlier interventions, reducing the response time and the mortality rates [7].
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This work investigates the role of SARs in monitoring the critical state of bedridden
patients in intensive care units. A critical health state refers to a condition in which
the patient’s vital signs are unstable and outside of their normal limits, leading to an
unconscious state. The idea is to adopt a social robot for stimulating verbal and motor
capabilities of the patient, and for evaluating the patient’s level of consciousness based
on the responses to the proposed stimuli. Within this task, the robot could support the
clinical personnel’sworkload, thereby guaranteeing a larger andmore accurate screening
during daily and nightly shifts; this may help to identify higher critical states earlier,
thus reducing the intervention time. For the conscious state assessment, the clinical
practice relies on the administration of two main scales, namely the Alert, Verbal, Pain,
Unresponsive scale (AVPU) and the Glasgow Coma Scale. Both scales consider three
aspects of responsiveness: eyes’ activity, verbal and motor responses, which allow the
elaboration of a specific associated score. In the present study, we will focus on the
evaluation of the eye activity response, namely investigating the technical reliability of
integrating an eye tracking framework over a socially assistive robot in the proposed
scenario.

The gaze direction of a subject is determined by the combined effect of position and
orientation of head pose and eyeball [8]. Despite representing a gross approximation, the
head orientation is commonly used as gaze activity indicator in human-robot interaction
(HRI) scenario [9]. More recent works include the pupil information in the eye gazing
estimation, asking the subjects towear eye-tracking glasses [10]. It represents an invasive
solution, especially in the ICUs context. With the rise of deep learning techniques, there
has been an increasing interest of assessing eye gazing inwild settings adopting advanced
neural networks, such as GazeNet [11], RT-Gene [12] and Gaze360 [13]. Usually, each
framework is trained on a dedicated dataset in which the subjects are requested to wear
eye-tracking glasses or to look at specific portion of computers and tablets, to obtain
validated gazing features. The main limitation of the current datasets is that the subjects
are usually standing or sitting in front of the camera, which represents an unconventional
posture for the target users we are dealing with. Due to the lack of a publicly available
datasets of supine users, a dedicated dataset has been created in this study, in which
the subjects were recorded while interacting with a SAR, lying over a bed. The data
collected were then labeled in 6 eye gazing orientations, and gaze direction features
have been extracted using a trained model. A data analysis was then performed, aiming
at investigating the following research hypothesis (H):

1 H1: In the proposed scenario, the detection of gaze activity is more accurate when the
position and the orientation of the head and of the pupil are known.

2 H2: In the proposed scenario, a robust gazing framework is user independent, thus it
does not depend on the subjective activity of the target user.

2 Methodology

2.1 Application Scenario

To assess the conscious state of the ICU’s patient, a dedicated interaction was designed
for the robot, based on both the AVPU (Alert, Verbal, Pain, Unresponsive) scale [14]
and Glasgow Coma Scale (GSC) [15], in collaboration with a team of clinical experts.
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Both scales are widely used to measure the extent of impaired consciousness of a person.
For this assessment, both scales consider three aspects of responsiveness: eyes’ activity,
verbal, and motor responses. The difference between the two scales is on the rating
convention. TheAVPU’s score is expressed asA (i.e. the patient is awake and conscious),
V (i.e. the patients responds verbally and with motor acts only to verbal stimuli), P (i.e.
the patients does not respond to verbal stimuli by only to painful stimuli), and U (i.e.
the patient is unresponsive, completely unconscious) score [14]. However, the Glasgow
coma score is obtainedby summingup the values of each aspect (i.e. eyes’ activity, verbal,
andmotor responses), and it ranges from3 (“no response”) to 15 (“fully conscious state”)
[15].

Within this context, the robot is requested to continuously monitoring the conscious
state of the patient, by stimulating verbal and motor capabilities of the patient and
evaluating the responses to the proposed stimuli. The interaction has been designed in
such a way that the robot asks the patient three questions (i.e. “What is your name?”,
“How old are you?”, “Where are you now?”), and demands one motor activity (“Please,
rise your arm”). During the interaction, the robot is requested to monitor verbal and
motor responses, as well to track the gaze activity of the patients. Based on the stim-
uli’s responses, the AVPU and GSC scores are computed and forwarded to the clinical
personnel’s station. The decision tree of the proposed application is shown in Fig. 1.

2.2 Robotic System

In the proposed scenario, theMover-L robot (Co-robotics, Italy) has been used.Mover-L
is a ROS-based robot, specifically designed to satisfy the scenario’s requirement. From
a hardware perspective, a 1920x1080px Resolution Intel Realsense Camera D435i is
mounted on the robot at 0.70 m height, while two lasers are integrated on the bottom part
(i.e. One on the front and one on the back). Additionally, two speakers for reproducing
audio are present, as well as two touch screens. As shown in Fig. 2, the smaller screen is
used to show the robot’s face, while the larger screen is designed to display the patient’s
Information. To administer the clinical scale described in Sect. 2.1, the dialog of the
robot has been structured as a Finite State Machine, where the transition from one state
to another is triggered when the robot detects that its request has been satisfied or when
the waiting time for the Response expires (C.A. 7 S). Before moving to the next one,
each question is asked twice. The finite state machine has been implemented using the
smach1 ROS Library. The svox-pico text-to-speech (TTS) Engine2 is used as a speech
synthesizer, while the azure microsoft speech-to-text service3 has been integrated to
recognize the user’s utterances. At the current state, themotion of the user is not detected,
and the clinical score is not computed by the robot.

3 Data Acquisition

Our dataset consists of 2D recordings of people interacting with Mover-L robot while
simulating different levels of conscious state.

1 http://wiki.ros.org/smach.
2 https://github.com/naggety/picotts.
3 https://learn.microsoft.com/en-us/azure/ai-services/speech-service/index-speech-to-text.

http://wiki.ros.org/smach
https://github.com/naggety/picotts
https://learn.microsoft.com/en-us/azure/ai-services/speech-service/index-speech-to-text
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Fig. 1. Decision Tree of the designed interaction.

3.1 Experimental Setup

The user study was organized in one room of the Guest House at the BioRobotics
Institute (Pontedera, Italy). The set-up for the user study is depicted in Fig. 2. A hospital-
like environment was recreated with a bed and several pillows, where participants are
instructed to lay down. The Mover-L robot was positioned diagonally to the right of the
user and programmed to administrate the proposed clinical test reported in Sect. 2.2.

The experimental protocol was designed to test all the possible outcomes of the
designed clinical test (described in Sect. 2.1), where the robot solicits verbal and motor
stimuli to the participant. First, the participants were briefed on the purpose and the
procedure of the study and signed the consent form. Then, they were asked to simulate
a specific clinical condition in four different phases, namely:

1 C1-Conscious Phase: The participant is asked to positively react to the robot’s requests,
properly to answer to its questions (i.e. verbal response), to rise the armwhen asked (i.e.
motor response), and keep the eyes open (eye-opening response), as in Fig. 2(a)-(b).

2 C2-No motion Phase: The participant is asked to answer to the verbal requests (i.e.
verbal response), but not to move the arm (i.e. no motor response). During this phase,
the participant’ eyes are open (i.e. eye-opening response), as in Fig. 2(a).

3 C3-No speech Phase: The participant is asked not to answer to the verbal requests (i.e.
no verbal response), but to perform the requested movement (i.e. motor response),
keeping the eyes open (i.e. eye-opening response), as in Fig. 2(b).

4 C4-Unconscious Phase: The participant is asked not to react, thus, neither to reply
to any robot requests, and is asked to keep the eyes closed (no verbal, motor and
eye-opening response), as in Fig. 2(c).

3.2 Dataset Coding

A total of 10 participants (4 female, 6 male, range age [25–30] years old) were involved
among the researchers of the BioRobotics Institute (Pontedera, Italy). All participants
completed the four conditions, but one condition of the last participant was not recorded
properly (i.e.C1). Thus, a total of 39videoswere collected.Overall, the dataset comprises
63380 frames over 6550 s (109 min, 10 s), each depicting an RGB image containing the
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(a) (b) (c)

Fig. 2. Screenshots of the user in (a) conscious state, (b) answering to the motion requests, and
in (c) unconscious state.

participants in the fixed camera view. On average, the C1-Conscious state phase lasted
2 min and 39 secs, the C2-No motion phase lasted 2 min and 12 secs, the C3-No speech
phase lasted 3 min and 11 secs, and the C4-Unconscious phase lasted 3 min and 20 secs.
The collected frames were manually annotated by two annotators, who were instructed
to associate to the collected user behaviors into one of the following gaze directions,
namely:

A. Left: user gaze points at the left side of the camera.
B. Right: user gaze points at the right side of the camera:
C. Up: user gaze points up with respect to the camera.
D. Down: user gaze points down with respect to the camera.
E. Center: user gaze points at the center of the camera.
F. Closed: user keeps the eyes closed.

The annotationswere performed using theNOVAannotation tool [16], that generated
per-frame annotation of the collected videos. Since no instructions were given on gaze
during the experimental setup, the final dataset resulted quite imbalanced for each class,
but quite distributed among the participants. The dataset is composed by the labeled
recordings of all the phases together. The total samples belonging to each class are:
19580 for the Closed class, 14156 for the Up class, 11752 for the Center class, 9782 for
Left class, 7819 for Down class, 291 for the Right class. Since the users were always
keeping the eyes closed in C4 phase, in the current work we discarded the C4 recordings
of 4 participants out of 10, reducing the instances of the Closed class to 13518.

4 Data Analysis

4.1 Gaze Estimation

Gaze orientation has been estimated by using the trained RT-GENE model [12]. RT-
GENE model is an appearance-based deep convolutional neural network, that takes as
input the image, and it returns the yaw and pitch angles of the head and of the eyes,
respectively. While the yaw Angle (φ) describes the horizontal orientation (i.e. from
left to right and Vice-Versa), the pitch angle (θ) describes the vertical orientation (i.e.
related to up and down movements). To this aim, RT-GENE Model first detects the face
along with the landmark points of the eyes, nose, and mouth corners with a multi-task
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cascaded Convolutional Networks (MTCNN). Then, each image face is normalized by
using the extracted landmarks points. From the normalized image, the head pose of the
user is detected using the methods described in [17], while the eye gazing’s angles are
extracted by a separate network that takes as input fixed-Size rectangles centered around
the landmark points of the eyes [12]. Thus, for each image, the model returns a vector of
4 values: yaw and pitch angles of the head pose, and yaw and pitch angles of the pupils’
orientation (Fig. 3).

(a) (b)                (c)                 (d)                  (e)                  (f)

(g) (h)                  (i)                 (j)                  (k)                  (l)

Fig. 3. Extracted gazing features. Example of head pose vectors in relation with (a) Center, (b)
Up, (c) Down, (d) Left, (e) Right and (f) Closed classes. Extracted eye gaze vectors for the (g)
Center, (h) Up, (i) Down, (j) Right, (k) Left and (l) Closed classes.

4.2 Classification

In this work, we performed intra- and inter-subjects’ eye-gaze classification using only
head pose information, only pupil orientation and all the features together. In the intra-
subject case, the classification was performed on each subject individually. In the inter-
subjects’ classification, the features of all the usersweremerged and fed into the classifier.
To minimize the bias, the 10-Cross Fold validation technique was applied in both clas-
sification modalities. Two common supervised algorithms were adopted and compared
for the eye gaze classification, namely: K-nearest neighbors (KNN) and Random Forest
(RF) algorithms. For these methods, we used the sklearn Python toolbox for Machine
Learning. The effectiveness of each algorithmwas estimated in terms of accuracy, preci-
sion, recall and F-measure. The samemetrics were also used to compare the performance
of the two algorithms on the different feature sets.

5 Results

In the intra-subject validation, the number of samples of the training and testing dataset
depended on the number of frames recorded for each user. Considering the head pose’s
angles only, the RF andKNNalgorithm got the same average accuracy of 0.75. As shown
in Table 1, similar values were returned by both classifiers in terms of precision, recall
and F-measure.When only the pupil orientation was considered, the average accuracy of
the RF andKNN algorithmwas 0.70.While the precision and F-measure score coincided
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in the two approaches (0.44), the KNN algorithm returned a recall of 1% higher than
the RF algorithm. Merging the head pose information with the pupil orientation, the RF
algorithm reached an accuracy of 0.86, while the KNN algorithm got an accuracy of
0.84. When all the features were present, the RF algorithm returned higher values of
recall, precision, and F-measure than the KNN algorithm (see Table 1).

In the inter-subject classification, the number of samples belonging to each class
corresponded to the values reported in Sect. 3.2. Considering the performances of the
classification algorithm when only the head pose information is included, the aver-
age accuracy of the RF and KNN coincided (0.71). Slightly better performances were
returned by theRF algorithm considering recall, precision, and F-measuremetrics.When
only the pupil orientation was used, the RF algorithm reached an accuracy of 0.53, while
the KNN reached an accuracy of 0.54. Also in this case, recall, precision, and F-measure
resulted slightly larger in the RF algorithm. Taking the four features as input, the classi-
fication performances of the RF reached 0.85, while KNN achieved an accuracy of 0.84.
The precision, recall and F-measure are reported in Table 1.

To further analyze the classification performances of the best classifier (i.e. RF) in
detecting gaze direction, the confusionmatriceswere computed for each dataset (i.e. head
pose only, pupil orientation only, both information together), as shown in Fig. 4. While
the RF correctly distinguished the classes Left, Right, and Center just considering only
the head position, the pupil information seems to help in the detection of the Center class.
In both cases, the larger mismatches concern the Closed class. As shown in Fig. 4(c),
only by merging the two types of features, the algorithm could properly detect the gaze
orientation, leading to better performances than the intra-subject classification (H2).
Considering the last case, the large mismatches referred to some samples of Closed and
Center classified as Up and some Closed and Up samples that were predicted as Center
samples.

Table 1. Classification performances of the intra-subject (intra) and inter-subject (inter) analysis
on the 3 datasets: head pose (Head), pupil orientation (Pupil) and all the features (All).

Algorithm Features set Accuracy Recall Precision F-measure

Intra Inter Intra Inter Intra Inter Intra Inter

RF Head 0.75 0.71 0.57 0.63 0.54 0.61 0.55 0.62

Pupil 0.70 0.53 0.58 0.44 0.55 0.42 0.56 0.42

All 0.86 0.85 0.80 0.85 0.76 0.82 0.77 0.84

KNN Head 0.75 0.71 0.59 0.65 0.54 0.62 0.55 0.63

Pupil 0.70 0.54 0.59 0.43 0.55 0.41 0.56 0.41

All 0.84 0.84 0.78 0.83 0.75 0.82 0.75 0.82



50 A. Sorrentino et al.

(a) (b) (c)
Predicted ClassPredicted ClassPredicted Class

Tr
ue

 C
la

ss

Tr
ue

 C
la

ss

Tr
ue

 C
la

ss

Fig. 4. Normalized Confusion matrices of the inter-subject classification with the (a) head pose
features, (b) pupil features, and (c) merged features.

6 Discussion and Conclusion

The aim of this work was to investigate the performances of an automatic eye-gazing
framework integrated in a socially assistive robot, for detecting the gaze activity of
bedridden patients. While the gazing information is commonly used in HRI scenarios
for predicting the intention and the attention of the involved users, here the gaze infor-
mation is a fundamental clinical cue for assessing the conscious level of the patients
in intensive care units. Within this aim, we created an ad-hoc dataset, composed by 39
video recordings of a socially assistive robot administrating an ad-hoc clinical test to
young users role-playing different levels of consciousness. The users were lying over a
bed, which is an uncommon configuration in eye-gazing datasets, and it may lead to poor
gazing detection performances. The gazing detection results confirmed a good accuracy
in detecting the 6 gaze directions of interest (i.e. Center, Up, Down, Right, Left and
Closed) for the RF classifier, despite the other one.

The results highlighted that an accurate gazing detection is obtained considering
both the head pose and the pupil orientation of the user (answer to H1). In detail, it
seemed that the information on the pupil orientation improved the information carried in
the head pose, improving the overall detection performance, as in other studies [9, 18].
Due to the nature of the proposed scenario, the user was mostly maintaining the head in
stationary position, while moving the eyes in several directions. This led to a situation in
which the stationary information of the head, which formed a predictable pattern in three
cases (i.e., in Center, Left, and Right classes), is counterbalanced by the high sparsity
of the pupil movements. As shown in Fig. 4(c), a more accurate gaze detection emerged
by the head-eye interplay [8], since the less predictable class is the Closed condition,
in which the head pose is clearly visible, while the pupils are not. As regards H2, the
results highlighted that the accuracy of the inter-subject classification is comparable with
the intra-subject classification. In the inter-subject classification, the higher number of
samples in each class led the algorithm to properly learn the pattern underlined by the
head pose features, with respect to the pupil orientation which varied a lot among the
participants. A more precise classification of the proposed classes is achieved when both
feature’s types are present. In fact, the values of recall, precision and f-measure metrics
were higher in the inter-subject classification than in the intra-subject one.
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The proposed study validates the feasibility of adopting an eye-gazing framework for
conscious state assessment application in intensive care unit scenarios. One limitation of
this work is that the classification models have been tested in a controlled environment
with healthy participants. As future work, we would like to evaluate this robot capability
in the ICUs environments, to evaluate whether the accuracy reported in this study is also
confirmed in a more challenging scenario, where the user’s face may be occluded by the
life support machines and there may be different environmental conditions (e.g. light-
ing). Future work will compare the gazing performances of different eye gazing feature
extraction models (e.g. Gaze360 [13]). In this work, we mostly focus on monitoring
eye-gazing activity, as first step on developing a SAR for ICUs. Further work will also
investigate the development and integration of automatic tools for assessing motor and
verbal responses to robot stimuli.
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Abstract. Social touch provides a rich non-verbal communication chan-
nel between humans and robots. Prior work has identified a set of touch
gestures for human-robot interaction and described them with natural
language labels (e.g., stroking, patting). Yet, no data exists on the seman-
tic relationships between the touch gestures in users’ minds. To endow
robots with touch intelligence, we investigated how people perceive the
similarities of social touch labels from the literature. In an online study,
45 participants grouped 36 social touch labels based on their perceived
similarities and annotated their groupings with descriptive names. We
derived quantitative similarities of the gestures from these groupings
and analyzed the similarities using hierarchical clustering. The analy-
sis resulted in 9 clusters of touch gestures formed around the social,
emotional, and contact characteristics of the gestures. We discuss the
implications of our results for designing and evaluating touch sensing
and interactions with social robots.

Keywords: Social Touch · Touch Dictionary · Non-Verbal
Communication · Crowdsourcing Study

1 Introduction

Social touch has been an active area of research for human-robot interactions
(HRI) in the last decade. Social touch gestures refer to different ways that people
use touch to communicate information or emotion and bond with other humans
or robots [10]. For example, one may tap a robot’s arm to get its attention or
hug a robotic pet when stressed. A companion robot may stroke a user’s hand
to convey emotional support or guide the user’s action by pushing their hand.
Previous work has derived a set of social touch gestures and their definitions
based on user interactions with robotic pets [28]. Others designed and evaluated
touch interactions with humanoid robots [3,7]. The touch gestures from these
studies have guided the development and evaluation of touch sensors for robots,
helped examine user experience of robot-initiated touch, and informed the design
of robot response to user touch.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
A. Al. Ali et al. (Eds.): ICSR 2023, LNAI 14453, pp. 53–67, 2024.
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Fig. 1. In our study, users grouped social touch labels based on their perceived similar-
ities (A). The resulting touch clusters can be used by robots to interpret and perform
touch interactions with people (B).

Despite the abundance of interest in social touch communication, the seman-
tic relationship(s) between various touch gestures remains unclear. Some gestures
may be very similar or even identical in their contact characteristics (e.g., tap-
ping vs. patting), while others may be similar considering the intended emotion
or social context. People develop a mental structure for the semantics of touch
gestures and their relationships. This mental structure shapes people’s percep-
tion, interpretation, and use of touch [8]. Charting the relationship between
social touch gestures can help HRI researchers select touch gestures for their
studies (e.g., touch sensor evaluation) and develop robots that use touch in a
socially intelligent manner. Yet, little data exists in the literature about how
people perceive the relationships between social touch gestures.

As a first step toward addressing this gap, we asked how people perceive
similarities of social touch labels (e.g., stroking, hugging). People can have unique
styles in applying a touch gesture [12]. On the other hand, people often use
natural language labels to refer to archetypal features of a touch gesture. The
touch labels are also used in HRI studies to ask users to contact a robot (or a
sensor) in a certain way [3,12] or to analyze user interactions with a robot [28].
The study of natural language labels for emotions has helped capture users’
cognitive structure, leading to a circumplex model for affect [18]. Thus, as a first
step, we investigated the semantic structure of social touch labels in the users’
minds in this paper.
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To chart the relationship between touch labels, we ran an online card sorting
study with 56 users over Amazon Mechanical Turk (Fig. 1-A). The participant
received the labels and definitions for 36 touch gestures from the literature,
sorted them into 4, 8, and 12 groups successively based on their similarities,
and provided descriptive names for each group. From this data, we identified 11
outliers by manually reviewing the data as well as analyzing the responses quan-
titatively. Then, we created a dissimilarity matrix for the 36 touch gestures with
the data of the remaining 45 participants and applied agglomerative hierarchical
clustering on the dissimilarity matrix. Furthermore, we analyzed the descrip-
tive names that the participants had for their groupings using open codes (e.g.,
social, aggressive) and calculated the frequency of the codes for the gestures.

Based on the above analysis, we contribute 9 clusters for social touch ges-
tures and the distribution of the top codes for each cluster. Using this data,
we interpret the 9 clusters to capture the types of touch as follows: (1) social,
(2) romantic affection, (3) caregiving affection, (4) hand contact, (5) aggres-
sion, (6) forceful press, (7) functional movement, (8) nervous contact, and (9)
contact without movement (Fig. 1-B). Our results suggest that people primarily
group touch gestures based on their social, emotional, and contact characteris-
tics. These results provide the first data on cognitive structure(s) that people
use to interpret and conceptualize social touch. We discuss how the results can
help design and evaluate a robot to sense, interpret, and communicate via touch.

2 Related Work

2.1 Social Touch in HRI

The literature on social touch ranges from communication between humans
to interactions between humans and robots. Hertenstein et al. studied how
dyads use social touch gestures to communicate different emotions and found
that people can decode the intended emotions with great accuracy when being
touched [8]. Similar studies of human-human touch suggest that touchers can
subtly but significantly vary contact attributes of their touch actions to com-
municate distinct messages [27]. HRI researchers have replicated Hertenstein
et al.’s work to investigate how users and robots can use touch to communi-
cate emotions. Some studies examined how humans communicate emotions to
robots [11,28], while others examined whether a robot can communicate emo-
tions to humans via touch [21,23].

Social touch gestures have also informed the development and evaluation of
tactile skins for robots. Previous work in this area has proposed touch sensors
with a novel working principle [5], sensors resembling the feel and structure
of human skin [24], and low-cost do-it-yourself sensors for specific applications
such as companion robots for children with autism [3]. To evaluate the sensor’s
efficacy, researchers select a set of social touch gestures and ask users to touch
the sensor accordingly. Data from user contact with the sensor is then used to
classify the gestures.
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A variety of touch gestures are reported in the above studies. Yohanan and
MacLean proposed a touch dictionary with labels and definitions for 30 gestures
based on videos of user interactions with a furry lap-sized robot [28]. This dic-
tionary has been widely used in social touch studies [3,11]. Others mentioned
additional gestures for interactions with humanoid robots such as fist bump-
ing [15–17], handshaking [2,17,26], or kicking [8,13,20]. To inform future work
in this area, we collected common touch gestures from prior studies and exam-
ined how people conceptualize the relationship between these gestures.

2.2 Identifying Perceptual and Semantic Clusters

The psychophysics and interaction design literature has developed methods for
estimating perceptual and semantic similarities of items through user studies.
The pairwise rating method asks participants to rate the similarity of pairs of
items in the set [1]. This method is effective for a small set of items (e.g., < 15)
but it is prone to noise from local judgments and does not scale to large item
sets [25]. The sorting methods, known as card sorting or cluster sorting, ask
participants to group items into clusters based on their similarities. This process
can be repeated with an increasing number of groups to obtain a fine-grained
similarity matrix [22]. This method allows for collecting cognitive similarities of
large item sets [18]. The similarity matrix is further analyzed using dimension-
ality reduction or clustering techniques [1,18]. Following this methodology, we
used iterative cluster sorting and asked users to name their groups to obtain
semantic clusters for social touch labels.

Natural language labels have been used to capture lay users’ cognitive struc-
ture for sensory and emotional items. The circumplex model of affect by Rus-
sell [18] is based on a series of studies that use natural language labels for emo-
tions. Also, studies of social touch often rely on user understanding of natu-
ral language labels for touch. In these studies, users receive labels for a set of
social touch gestures (e.g., tapping, stroking) and are asked to touch the robot
accordingly [3,11]. Similarly, studies on human-human and human-robot emo-
tional communication sometimes provide a list of touch gesture labels for users
to choose from, before applying the gestures [8,27]. The studies may also pro-
vide short definitions for each touch gesture e.g., from the touch dictionary by
Yohanan and MacLean [28]. These studies rely on the users’ knowledge of natu-
ral language labels for touch gestures. We follow a similar approach in our work
to capture users’ cognitive structure and similarities of social touch gestures.

3 Methods

To study how people perceive similarities of social touch gestures, we compiled
a list of touch gestures from the literature, designed an online questionnaire for
grouping the touch gestures, and ran a data collection study on MTurk.
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Table 1. The 7 touch gestures that we added to the 29 gestures in Yohanan and
MacLean’s touch dictionary [28], resulting in 36 touch gestures for our online study.

Gesture Label Gesture Definition

Finger Interlocking Interlace fingers of one hand
Fist Bumping Lightly tap clenched fists together
Handshaking Shake clasped hands
High Fiving Slap upraised hands against each other
Kicking Strike forcibly with a foot
Picking Up Take hold of and lift or move something
Squish Press or beat into a pulp or a flat mass

3.1 Touch Gestures

We compiled 36 social touch gestures that are used for interacting with humans
or robots. We focused our scope on gestures that are used in at least two publi-
cations in the social touch and HRI literature. Specifically, we included 29 touch
gestures from the touch dictionary by Yohanan and MacLean [28]. Different sub-
sets of these gestures are used in several other studies [11,12]. We removed finger
idly from the touch dictionary as this gesture is not used in any other publication.
We added seven other touch gestures that appeared in at least two publications
including finger interlocking [8,9], fist bumping [15–17] handshaking [2,17,26],
high fiving [6–8], squishing [4], kicking [8,13,20], and picking up [4,19,20].

We adapted the definitions provided in Yohanan and MacLean’s touch dic-
tionary by replacing the phrases related to their robotic pet (i.e., the Haptic
Creature, or fur of Haptic Creature) with “something” in the definition. For
example, we defined lifting as “raise something to a higher position or level.”
For the 7 actions that were not in the original touch dictionary, we created a
definition with inspiration from sources such as the Britannica Encyclopedia.
Table 1 shows the 7 newly added gestures and their definitions.

3.2 Questionnaire

We designed a Qualtrics survey to collect user demographics and data on the
similarity of touch actions (Fig. 2). The first page of the survey asked users to
enter their demographic information including their age, gender, and country
where they grew up. The next three pages asked the users to divide the touch
gestures into 4, 8, and 12 groups respectively. We call these 4 groupings, 8 group-
ings, and 12 groupings in this paper. Each page showed the list of touch gesture
labels in a random order. The users could hover over a gesture’s label to see
its definition. The users were asked to group the touch gestures based on their
likeness or similarity and provide a descriptive name for each group. Reasons for
likeness were up to user interpretation. Having the users describe their groupings
served multiple purposes. First, they helped us identify users’ reasoning for the
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Fig. 2. A screenshot of the questionnaire for grouping the touch gestures in our study.
The image shows touch gestures that are divided into four groups, the remaining list
of gestures for grouping, and example descriptive names from one of the participants.

similarity of touch gestures. Second, the descriptive names served as an attention
test and allowed us to detect those who did not do the task properly, e.g., if they
organized the gestures into random groups.

We devised the above procedure based on common practices in studies of
similarity perception and social touch gestures in the literature. First, the iter-
ative cluster sorting method allowed us to collect users’ holistic comparisons of
the similarities of all 36 gestures. Second, following prior work on touch sensing
and communication, the touch labels helped us abstract from a variety of styles
that people use to apply the touch gestures (e.g., tapping one time or multiple
times) to capture users’ cognitive structure of the gestures.

4 Analysis and Results

We collected participant responses through MTurk. Eligible turkers were
required to have at least 5,000 completed tasks with a minimum success rate
of 97% and to speak English at the B2 level or higher. We analyzed their data
in the following steps:

– Identifying outliers. We identified participants who did not follow the study
instructions or appeared to group the touch gestures randomly (Sect. 4.1) and
removed their data from the subsequent analysis. We also examined the effect
of where participants grew up on their groupings.
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– Coding descriptive names for the groups. To identify the themes behind
the user groupings, we coded the descriptive group names from the partici-
pants. This step resulted in 25 codes (e.g., social, aggressive) to capture user
logic for their groupings (Sect. 4.2).

– Clustering touch gestures. We calculated a dissimilarity matrix for the
touch gestures based on the participants’ groupings and identified semantic
groups by applying hierarchical clustering on the dissimilarity matrix.

– Interpreting the clusters. Finally, we counted how many times a code
from Step II was applied to the touch gestures in each cluster. The results
helped us interpret and label each of the 9 social touch clusters (Sect. 4.3).

Below we detail these steps and their results.

4.1 Identifying Outliers

We marked and removed outliers who did not follow the study instructions or
their groupings and descriptive names appeared random. One of the authors care-
fully examined all the responses from the 56 participants and marked potential
outliers for further analysis. The author marked cases where no label was pro-
vided, the label was gibberish, or the description of group labels did not match
with its gesture items. For example, if a participant grouped kissing, nuzzling,
and stroking with hitting and labeled them as “fighting”, we marked this as an
unusual group. By the end of this step. 16 participants with several unusual
groupings were marked as potential outliers.

Next, we calculated a similarity matrix where each cell showed similarity
of the groupings provided by two participants (56 × 56 matrix). To obtain the
best matching between groups from two different participants, we calculated the
Jaccard Index values for all pairs of groups provided by them (e.g., 8 pairs for
the 4 groupings) and averaged the highest Jaccard values as a measure of the
similarity of the two participants.

We projected the participant similarities into two dimensions using a com-
mon dimensionality reduction technique known as non-metric Multidimensional
Scaling (nMDS) and used clustering to assess outliers (Fig. 3). In addition, we
conducted k-means clustering with a range of 2 to 10 clusters on the dissimilar-
ity matrix. The value of the Gap Statistic suggested 3 as the optimal number
of clusters (Fig. 3). Our analysis revealed that cluster 3 contained 11 out of the
16 participants that we had manually identified as potential outliers. Cluster 2
contained the remaining 5 potential outliers, as well as participants not consid-
ered to be outliers in our manual analysis. Thus, the two methods of manual
and quantitative analysis of outliers largely overlapped and provided support
that the cluster 3 participants either provided noisy data or judged similarities
differently from the majority. Thus, we included the participants from clusters
1 and 2 (n = 45 participants) in further analysis.

The remaining 45 participants were from the United States (32), followed
by India (7), Brazil (5), and Japan (1). They self-identified as man (n = 29),
woman (n = 16), or nonbinary (n = 0). The mean age of the participants was
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Fig. 3. MDS plot visualizing similarity of the 56 participants in grouping the gestures.
Each mark represents one participant. The color and shape of the marks denote the
clustering results and participant backgrounds, respectively. Participants in cluster 3
(red) were identified as potential outliers and were removed from further analysis.
(Color figure online)

36.4 (±10.73) years and their ages ranged between 21–63 years. The participant
background is denoted with the shape of the marks in Fig. 3. Participants who
were not from the US are either in clusters 2 or 3. We analyzed this aspect
further in our clustering results (Sect. 4.3).

4.2 Coding Descriptive Names for the Groups

To understand the reasoning behind group choices, we coded the descriptive
names provided by the participants for each group. From 4 to 8 to 12 groupings,
the codes became more complex as subgroups began to form. The process of
identifying these codes was iterative. For example, when coding the descriptive
names for 12 groupings, we used the codes identified from 8 groupings in the
first iteration. If we found any new or more specific patterns, we added new
codes and recorded the previous data accordingly. Upon completing the coding
of all the groupings, we had a total of 25 codes. We found some descriptive
names to be ambiguous and coded them as ‘vague’. We also found that some
names did not match the social touches they were assigned to, we coded these
descriptive names as ‘random’. In some cases, participants labeled a group as
‘other’ or ‘miscellaneous’. Thus, we also coded these groupings as ‘miscellaneous’.
If a grouping contained only a single social touch, we coded it as ‘single action’.
The remaining 21 codes included: aggressive, annoying, caregiving, direction,
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fingers, force, friendly, full-body, functional, grief, hands, holding onto, massage,
nervous, playful, rapid, repetitive, romance, slow, social, and squeezing.

Fig. 4. Results demonstrating hierarchical clustering results for the social touch ges-
tures. The Gap Statistic criterion suggested an optimal number of 9 clusters. The
Cophenetic correlation coefficient is 0.85 suggesting strong correspondence with the
dissimilarity matrix. Each color represents one cluster.

4.3 Clustering Touch Gestures

Using the grouping data of each participant, we created a similarity matrix of
touch gestures following the same procedure described by Russell [18]. First,
each pair of words was given a minimum similarity score of 1. If pairs of words
were included in the same user-defined group, then their similarity score was
increased by the number of groups being organized. For example, we increased
the similarity score by 4 if a pair of words were in the same cluster for the 4
grouping mode for a participant. If a pair of words were included in the same
group for 4, 8, and 12 groupings modes, then the words would have the maximum
possible similarity of 1+4+8+12 = 25. A single similarity matrix was calculated
from the three grouping modes, and the matrix was subsequently normalized by
dividing its entries by the maximum possible similarity value (i.e., 45 participants
× 25 = 1125). We subtracted the normalized matrix from a matrix of ones to
generate a dissimilarity matrix for all the gestures.

We applied clustering to the dissimilarity matrix and identified 9 clusters for
the touch gestures. Specifically, we employed agglomerative hierarchical cluster-
ing using the unweighted pair group method with arithmetic mean (UPGMA)
[14]. To determine the optimal number of clusters for hierarchical clustering, we
utilized the Gap Statistic evaluation criterion with a range of 2 to 10 clusters.
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Table 2. Our derived names and the top 5 codes with their percentages for the 9
clusters. All the single-item groups are coded as ‘single action’.

C1 Social social hands romance caregiving random
50% 14% 14% 4% 3%

C2 Romantic romance caregiving massage random vague
Affection 33% 11% 6% 5% 4%

C3 Caregiving caregiving romance vague functional random
Affection 15% 12% 10% 8% 6%

C4 Hand force hands social vague random
Contact 12% 10% 9% 9% 8%

C5 Aggression aggressive functional random hands vague
52% 9% 5% 5% 5%

C6 Forceful aggressive functional squeezing vague force
Press 18% 12% 12% 9% 8%

C7 Functional functional vague aggressive random hands
Movement 29% 12% 8% 8% 5%

C8 Nervous nervous aggressive vague random force
Contact 30% 14% 11% 6% 5%

C9 Contact w/o single action miscellaneous social vague functional
Movement 24% 10% 10% 7% 6%

This analysis suggested 9 clusters (Fig. 4). The Cophenetic correlation coefficient
was 0.85 for the 9 clusters, indicating a strong positive correspondence between
the clusters and the original dissimilarity matrix. These clusters include:

– Cluster 1: high-fiving, handshaking, fist bumping, and finger interlocking
– Cluster 2: hugging, kissing, nuzzling, stroking, rubbing, massaging, and tick-

ling
– Cluster 3: rocking, cradling, and holding
– Cluster 4: patting and tapping
– Cluster 5: poking, scratching, pinching, slapping, hitting, kicking, pushing,

pulling, and grabbing
– Cluster 6: pressing, squeezing, and squishing
– Cluster 7: picking, lifting up, picking up, tossing, and swinging
– Cluster 8: shaking and trembling
– Cluster 9: contacting without movement

To test the effect of cultural background and English proficiency in our
results, we repeated the above clustering analysis on data from 32 participants
from the US. The analysis led to similar clusters with the exception that clusters
2 and 3 were merged into one cluster. Thus, we decided to continue with the
above 9 clusters in our further analysis.
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4.4 Interpreting the Clusters

We calculated the distribution of our codes for the descriptive names across
these clusters to interpret the reason behind the groups. Table 2 presents the
five frequent codes for the gestures in each cluster.

We named the clusters based on the distribution of their five top codes. For
clusters 1 and 5, the majority of the codes (≥ 50%) are ‘social’ and ‘aggressive’.
Thus, we call these clusters Social and Aggression respectively. Clusters 2, 7,
8, and 9 have one frequent code (≥ 24%), followed by one or two codes with
≥ 10% frequency. For cluster 2, the top code is ‘romance’ followed by ‘care-
giving’, both of which reflect the affective nature of touch. Thus, we name this
group as Romantic Affection. For cluster 7, the top code is ‘functional’, followed
by ‘vague’. This cluster includes a set of gestures that involve lifting and moving
an object or person. Thus, we name it Functional Movement. Cluster 8 has a
top code of ‘nervous’, followed by ‘aggressive’. Thus, we call it Nervous Contact.
Cluster 9 includes the single gesture of contacting without movement. This ges-
ture was often put in a separate group by the participants and we coded it as
‘single action’. Thus, we name this cluster as Contact w/o Movement to reflect
its distinct nature in the participants’ minds. Finally, clusters 3, 4, and 6 have
a relatively flat code distribution. Cluster 3 has the same two top codes as clus-
ter 2, representing affect, but in the reverse order. Thus, we name it Caregiving
Affection. Cluster 4 has two codes of ‘force’ and ‘hands’ with more than 10% fre-
quency. With two gestures of patting and tapping, we name this cluster as Hand
Contact. The top codes (≥ 10%) for cluster 6 are ‘aggressive’, ‘functional’, and
‘squeezing’. Since the top labels indicate both the ‘aggressive’ and ‘functional’
aspects of the gestures in this cluster, we use a neutral label and call this cluster
Forceful Press. Next, we discuss these clusters and their implications for HRI
research.

5 Discussion

In this study, we present data on the user perception and description of touch
gestures. Our findings indicate that users tend to assess the similarity of touch
gestures based on their emotional and social connotations, in addition to the
functional and contact characteristics. Specifically, cluster 1 includes touch ges-
tures that are frequently annotated with ‘social’ names. Clusters 2 and 3 include
gestures that are mainly coded with positive associations of ‘romance’ and ‘care-
giving’. Similarly, clusters 5 and 8 are coded with negative descriptors of ‘aggres-
sive’ and ‘nervous’. Finally, four clusters (i.e., 4, 6, 7, 9) seem to be mainly
described based on the characteristics of the contact such as the body part
(cluster 4), force (cluster 6), and whether the touch involved movement (clus-
ter 7) or not (cluster 9). These clusters emerged without providing information
on the context of interaction, suggesting that users have strong social, positive,
negative, and functional associations with touch gestures even without context.
Some clusters have a flat distribution of codes and show a notable mix of affec-
tive and functional interpretations (e.g., cluster 6 with pressing, squeezing, and
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squishing) suggesting that an individual’s background or interaction context may
notably shift their meaning. Interestingly contacting without movement was often
regarded as different from the other gestures, which could be due to its neutral
emotional content as well as the static nature of the touch.

These user-generated clusters are a step toward a framework for the analysis
and understanding of social touch and can inform research on sensing, designing,
and analyzing human-robot touch interactions. We anticipate the following use
cases of the touch clusters for HRI:
(1) Sensing touch from humans. A desirable factor for robotic touch sensors
is their ability to recognize a variety of gestures [11]. These clusters can aid
researchers in selecting gestures that are different in their semantic and contact
characteristics. For instance, the co-location of stroking and rubbing gestures in
cluster 2 suggests that it might be appropriate to choose one of the two gestures.
Relatedly, when evaluating the efficacy of a touch-sensing algorithm [3,5,11],
HRI researchers can weigh misclassifications according to these semantic clusters.
For example, misclassifying stroking with slapping should be penalized more than
mistaking stroking with rubbing or nuzzling.
(2) Interpreting and responding to touch from humans. The proposed touch ges-
ture clusters can aid robots in responding intelligently to human touch. These
clusters can help robots identify the intention behind touch gestures. While the
significance and purpose of social touch gestures may depend on the context,
these clusters and their labels can help develop a probabilistic mental model for
robots about a user’s intent of a touch gesture. During an interaction episode,
the robot can update these probabilities based on other contextual parameters
and modes of communication such as the user’s verbal utterances and body pose.
(3) Touching people to communicate. The semantic clusters can help design and
evaluate robots that touch humans to communicate information or emotion [23].
Specifically, to evaluate the efficacy of a robot in using touch gestures, HRI
researchers can determine the degree of dissimilarity between the intended touch
gesture and the one identified by the human. Also, depending on the purpose
of the interaction (e.g., social, emotional, or functional), the robot may use the
clusters to select and use alternative gestures with similar connotations.
(4) Analyzing human-robot touch interactions. HRI researchers can use these
clusters to code video recordings of touch interactions with a robot and aggregate
touch interaction into higher-level themes. To support this, our work builds on
the touch dictionary [28] by providing data on the relationship between touch
gestures. Thus, these clusters provide an initial framework for the analysis of
social touch interactions with robots.

6 Conclusion and Future Work

Our work is a first step toward charting the relationship of touch gestures for
HRI. We anticipate that our results can pave the way for future work on designing
and evaluating robots that use touch as a non-verbal communication channel.

We see several avenues for extending this work. First, the relationship
between the user-generated clusters for touch gestures and signals produced by
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the gestures on different touch sensors is an open question. A good touch sensor
should be able to create distinct signals for gestures that are in different clus-
ters according to user perception. Also, robots should be able to create distinct
sensations when touching users with gestures in different clusters.

Second, future work can examine the impact of presentation modality on the
semantic relationship of touch gestures. In this paper, we presented text labels
for social touch gestures, following the common procedure in user studies of
touch sensing for social robots. This approach helped abstract different styles of
applying the gestures and study the user’s mental representations of archetypal
touch gestures. Future studies can examine how people group the touch gestures
using videos or by applying robot touch on the user’s body and compare the
results to the clusters we found in this work. These studies should capture a
wide range of touch styles (e.g., contact, force) for each gesture to avoid biasing
the results to a small sample.

Finally, the meaning of touch can vary based on contexts, cultures, and indi-
viduals. As a first step, we examined if any generalizable patterns could be found
about the relationships between various touch gestures. Our study population
primarily consisted of individuals that grew up in the United States. Participants
from other cultures often fell into cluster 3 and around the borders of cluster
2. It is unclear whether this result is due to their lack of familiarity with touch
labels or the difference in their cultural background. Future studies can examine
how the clusters of social touch gestures differ across cultures by translating the
text labels into different languages. A larger dataset can also allow future work
to look into individual differences in perception of social touch.
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Abstract. How closely can a robot capable of generating non-verbal
behavior approximate a human narrator? What are the missing features
that limit the naturalness and expressiveness of the robot as a story-
teller? In this paper we explore this topic by identifying the key aspects
to effectively convey the content of a story and therefore by analysing
appropriate methodologies and tools that allow to automatically enrich
the expressiveness of the generated behavior. Lastly, we will explore some
modifications to weigh up the gap between robot and human-like behav-
ior. Demonstration videos reveal that albeit the communicative capabil-
ities of the robot are appropriate, there is still room for improvement.

Keywords: storytelling robot · sentiment analysis · gesture
generation · social robot

1 Introduction

The challenge of developing embodied storytelling agents itself is not new, it
emerged almost two decades ago when robots with human traits and semi-natural
talking abilities were rare. Since then, digital or embodied storytelling has been
used for different uses ranging from pure entertainment [18] to more sophisti-
cated applications such as children’s therapy [21] or education [3,8]. Even some
educational tools (Codi1, TROBO2) have been commercialized as storytelling
robots. However, storytelling robots do not show yet the communication expres-
sion we humans do.

Storytelling, independently of its goal, requires to emphasize expressiveness
as the listener/public is intended to merge with the story and enter the imag-
inary world woven by the narrator. As highlighted in [9], the use of a robot

1 https://www.pillarlearning.com/products/codi.
2 https://www.kickstarter.com/projects/trobo/trobo-the-storytelling-robot/.
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in storytelling only has meaning when its communicative affordance is tapped.
In short, a social robot in the role of a storyteller needs to be persuasive and
requires performing or acting capabilities accordingly without loose of spontane-
ity. Unfortunately, as the literature reveals, the dramatic flair is not enough,
we hitherto have not been able to reproduce the touch of intrigue, drama and
mystery required [28].

In this work we confront the challenge of automatically generating a robot
behavior closer to a human storyteller. Our test bed is the robot Pepper, a
humanoid robot with restricted face expressiveness. This forces us to limit the
behavioral aspects identified by Appel et al. in [1] (gestures, contextual head
movements, eye gaze, and different voices) to the following two essential compo-
nents to be materialized using contemporaneous software tools:

1. Expressive voice(s): It is essential the use of an emotional Text-to-Speech
(TTS) tool that allows to annotate the text, emphasizing and changing the
voice and modulating the generated audio accordingly.

2. Body gesturing: Voice must be accompanied by proper body gesturing. There
is no doubt that embodied storytelling can take huge profit of the advances in
the area of co-speech gesture generation. However, as highlighted in [20], the
use of deep learning approaches has permitted a step forward in perceived
naturalness, but also a step backwards in terms of communicative efficacy.
We focus on the modulation of a hybrid body gesture generation module by
the decisions of an emotion extraction system. We propose a hybrid gesture
generation approach that combines an state of the art data-driven gesture
generation [5] with a rule-based gesture insertion mechanism to emphasize
the link between the body language and the spoken text.

Social robots in general and storyteller robots in particular must reflect emo-
tions. Voice intonation as well as body posture are affected by the emotional
state. To ensure this, we use the system proposed in [2] to automatically extract
the proper emotion to tag specific pieces of the input text and to modulate the
general behavior accordingly.

We show how the automatically produced storytelling behavior albeit appro-
priate, is far from being expressive enough. Still, a much more attractive behavior
can be obtained by modifying some of the decisions taken by the automatic sys-
tem. As a result, the credibility of the robot in its role is increased. This last
step is done using a specially designed GUI. The results allows to visualize the
attainable dramatization level, adding a little touch to the decisions made by
current state of the art tools, and outlining the features that are still missing.

2 Related Work

As mentioned before, to enhance robots as storytellers, behavioral aspects such
as gestures, contextual head movements, eye gaze, and different voices need to be
considered [1]. Moreover, the fit of non-verbal displays of emotions and verbal
information influences comprehension and prevents misunderstandings. Some
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of these behavioral aspects have been studied in the literature, many of them
focusing mainly on voice features and facial expression or head movements, fewer
studies pay attention to the importance of the body gesturing during storytelling.
In any case, the behavioral aspects to be evaluated are mostly handcrafted.

In the early years, Mutlu et al. [17] evaluated the importance of a human-
like gaze behavior and combined it with six predefined gestures to allow Honda’s
Asimo robot to act as an soryteller. Chella et al. presented an emotional story-
teller Peoplebot robot, where the intonation of the robot’s voice was modified
according to the piece of the story [6]. In [14] also the emotional expressiveness
of the TEGA robot’s speech was explored, together with its effect in vocabu-
lary learning by children. In a more recent work, Carolis et al. investigated the
preferences of an audience of children regarding a (Pepper) storytelling robot by
comparing a human versus a robotic voice. The robotic one received a higher
rate according to their experiment described in [4]. Finally, Ham eta al. [11]
studied how the combination of gazing and gesturing increases the persuasive
power of a NAO robot acting as a storyteller qualifying head movements as gaze
movements and limiting the body motion to a set of 21 gestures.

Focusing on body expression, gesturing is a crucial element of human non-
verbal communication, and includes co-speech gestures by facilitating language
comprehension. People use co-speech gestures to emphasize speech, communicate
semantic information, draw the attention to others, or better describe and shape
the concepts they are talking about [13]. Back to storytelling robots, in [29] the
authors emphasize the need for a specific body gesturing in such tools and use
a database of more than 500 gestural annotations to enact tales performed by
two NAO robots.

Definitely, gestures must be modulated according to the story mood [30]. Xu
et al. found that higher ratings were given by participants to a storytelling NAO
robot if there was congruence between story mood and the robot’s gestures. A set
of parameterized co-verbal gestures was used to express mood. The gestures were
manually selected for the sentences of the stories and manually aligned with the
words in the sentences. In a similar vein, Paradeda et al. [22] found that there are
significant differences between the setup of voice intonation and posture as well
as an acceptable assertive robot’s configuration using a combination of posture,
pitch and speech rate. Tests were performed using EMYS robotic head3. Hendrik
et al. [25] modeled a Reeti robot that tells a story in an exciting manner using
emotional facial expressions and using only head movements. Haru proposed a
personalized storytelling experience by adapting, in a preliminary attempt, the
narrative style (voice pitch, emotion and action) [26].

We found some attempts to automatically select [23] or adapt [27] the stories
to the user or public [10] or even to complete the stories in a collaborative
storytelling context [19]. Nonetheless, as far as we know, there is no reference to
the automatic behavior generation applied to embodied storytelling as the one
described here.

3 https://ww.emys.co.

https://ww.emys.co
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3 Storytelling Behavior Generation System

The starting point to generate the non-verbal behavior that accompanies the
speech of the robot is a story in raw text format. The core of the proposed
approach can be summarized in three main steps: (1) sentence annotation, (2)
voice generation and processing, (3) gesture generation.

In the first step, the raw text of the story is split into sentences, and each
sentence is then processed with two goals. On the one hand, the lemmas of each
word in the sentence are extracted. On the other hand, the prevailing emotion in
each of the sentences is recognized, as well as its intensity. The output of this step
is twofold: an emotionally annotated sentence; and the lemmatized sentence.

In the second step, the voice annotations made in the previous phase are used
to generate the voice audio using an expressive TTS. Subsequently, the audio
is processed using an automatic speech recognition (ASR) tool to extract the
timestamps for each word in the sentence.

Finally, the gesture generation system produces the synchronized co-speech
gestures using a generative model that takes as input the audio and the raw text
of the story.

Next subsections describe those steps more in depth.

3.1 Expressive TTS

As it is remarked in [24], voice acting can improve narrative presence, making the
robot more interesting. Thus, we need an expressive TTS tool. Two alternatives
were considered: NVIDIA Riva TTS4 and Google TTS cloud service5

Both tools support portions of Speech Synthesis Markup Language (SSML),
allowing you to emphasize and to adjust pitch, rate, volume and pronunciation
of the generated audio output. RIVA can be run locally. However, it requires
GPU hardware and a not so easy installation process. Google’s cloud service, on
the other hand, offers for free only a limited number of bytes. Notwithstanding,
the cloud option offers the choice to insert silences and to embed other audio
chunks (for instance to insert onomatopoeic sounds), both vital properties in our
context. Those features, together with the needless of specific hardware tipped
the balance in favour of Google’s TTS.

3.2 Gesture Generation

In a previous approach [31] a GAN based beat gesture generation module was
used as the backbone of the gesturing system. The GAN was trained in the robot
joint space obtained after transforming data collected while recording people
using OpenPose-based motion capturing system. As this beat gesturing module
did not take into account the audio itself (only its duration), the synchronization
was not good enough.

4 https://docs.nvidia.com/deeplearning/riva/user-guide/docs/tts/tts-overview.html.
5 https://cloud.google.com/text-to-speech.

https://docs.nvidia.com/deeplearning/riva/user-guide/docs/tts/tts-overview.html
https://cloud.google.com/text-to-speech
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In the current approach, the model used to generate gestures is the state of
the art co-speech gesture generation model presented in [5]. The model uses the
Tacotron2 architecture as a backbone, which was originally designed for speech
synthesis, with some adjustments to the architecture and training paradigm to
perform co-speech gesture generation. The model takes as input the audio file,
the transcription of that file and the identity of the speaker, represented by
a number (in training samples this number corresponds to the actual speaker
and in inference, any speaker identity can be used) and it outputs a bvh6 file
of the joint representations of the head, neck, spine, legs, hips and arms, but
not of the hands. The audio processing uses mel-spectrograms, MFCCs and
prosodies, all of which are normalized and concatenated before being passed to
the model. The text features are extracted from the transcription and converted
into embeddings, to which two additional dimensions are added to represent
whether the corresponding audio frame is silent and whether any laughter is
present. The audio and text features are concatenated by aligning them frame
by frame and fed into the model.

To translate the gestures to the robot’s configuration space, we extract the
angles of the relevant joints in each frame of the bvh file, then separately translate
the angles of the head, hips, right arm and left arm into valid robot inputs and
concatenate those inputs in the original frame order. Although most information
is preserved in the aforementioned translation, due to slow motor motion, only
every third frame of the bvh file is used to calculate the input for the robot.
Furthermore, the robot has fewer degrees of freedom in its movement than the
digital avatar (especially in the shoulder movement), thus some of the smaller
details and nuances of the original motion are lost. Thankfully, it is not a very
big loss, as the robot is not capable of executing such small movements anyway.

3.3 Mapping Words to Expression

To annotate the emotional content of the sentences we take the same approach
as in [2]. The Synesketch tool [15] tags each sentence by giving the intensity (cer-
tainty) of each of the Ekman’s basic emotions [7]: disgust, anger, fear, sadness,
surprise and happiness. It computes numerical vectors representing emotional
weights for each emotional category, indicating the intensity of emotions. These
vectors are then utilized to identify the predominant emotional type (the one
with the highest weight) and ascertain the overall emotional valence of a sen-
tence (whether it is positive, negative, or neutral). When the vector approaches
zero or is exactly zero, the sentence is considered emotionally neutral.

Due to the difficulties of showing subtle features with Pepper, we cluster
the emotions into three sets: disgust, anger and fear are clustered as sadness;
surprise is jointed with happiness; and neutral expression is chosen when no clear
emotion is distinguished.

The obtained emotion must be expressed by the robot. Certainly, voice’s tone,
gesture and face display must be linked. Disengagements can occur if emotion

6 BioVision Hierarchy (BVH) is a file format used for storing motion capture data.
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is not coherent among them resulting in a bizarre robot behavior. Accordingly,
three behavioral properties are affected by the emotion as explained here on.

How Is the Emotion Displayed in the Voice? As mentioned before in
Sect. 3.1, Google’s TTS supports the SSML to provide more advanced control
over the generated speech. The <prosody> tag in SSML allows modification of
the speech prosody, which refers to variations in pitch, rate, and volume that
add expressiveness and naturalness to the synthesized voice: pitch, specifies the
change in pitch from the baseline, where 0 means no change, and positive or
negative values in semitones indicate raising or lowering the pitch, respectively;
rate, controls the speaking rate of the text. A value of 100 represents the default
rate percent, while values greater than 100 increase the speed, and values less
than 100 decrease it; and volume, modifies the loudness of the speech. A value
of 0 represents the default volume in decibels (dB), while values greater than 0
increase the volume, and values less than 0 decrease it.

To determine the values of the mentioned attributes, we map the intensity
value obtained from Synesketch to the range defined for each attribute’s max-
imum and minimum values. For Pitch (P) and rate (R) of complete sentences
are adjusted according to Eq. 1.

P = Iemotion ∗ (Pmax − Pmin) + Pmin

R = Iemotion ∗ (Rmax − Rmin) + Rmin

(1)

How Is the Emotion Displayed in the Body? Likewise, the emotion is
transferred to the pitch angles (θ) of both, the head and the hip (2). A higher
intensity results in the straighter the hips and the more upright the head. On
the other hand, a negative intensity leads to downward lean in both the hip and
the head.

θhead = Iemotion ∗ (θheadmax
− θheadmin

) + θheadmin

θhip = Iemotion ∗ (θhipmax
− θhipmin

) + θhipmin

(2)

How Is the Emotion Expressed in the Face? Pepper is a robot that lacks
eyebrows and mouth, but it includes several color LEDs in the eyes that can be
used to show facial features.

Just like in the two aforementioned behavioral properties, the conversion
from intensity into facial expression is done by changing the color of the eye
LEDs. We adopt the same color configuration employed in the previous work (
[31]). Sadness is displayed by a dark blue-greenish color, happiness is displayed
by a yellow color, and neutral by a light blue-white color.
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3.4 Robot Behavior

Two stories have been borrowed from Jara Sanchis7, a professional storyteller
with a YouTube channel where she narrates children’s books: The Enchanted
Forest, a tale with only a narrator character; and The Sad Tree, a story with
multiple characters and more different emotional up and downs during the nar-
ration8.

The performance of the robot as a storyteller can be appreciated in the
following two videos. The first video9 corresponds to the performance of the The
Enchanted Forest story, while the second one10 corresponds to The Sad Tree.

Both videos show a nice but inhibited behavior. It can be appreciated the
effect of the expressive audio and how the rate and the pitch varies according to
the emotion, reflected in the eyes as well. The intonation affects whole sentences,
though there are no emphasized words. Emotion also affects the body posture
coherently. However, the major issue is the grossly insufficient gesturing of the
robot. It completely misses those raving gestures storytelling requires.

4 Adding Meaningful Gestures

According to [12] all kind of gestures have positive impact in the perception of
the robot’s performance as a narrator but deictic gestures significantly impact
information recall. Neither deictic gestures nor metaphoric or iconic ones are
noticeable in the output of the gesture generation system. None of the identities
present in the training database [16] corresponds to a storyteller and the output
gestures are rather restrained.

In order to enrich the communicative affordance, we complement the
Tacotron2 gesture generation module with a semantic related gesture insertion
system. The insertion process is performed as in [31]. Basically, we apply a
rule-based approach. The lemmas extracted from each sentence are searched in
a keyword database and associated gestures are selected using a probabilistic
approach. The insertion point of a new movement is calculated obtaining the
timestamps of the words by means of Whisper11, an Automatic Speech Recogni-
tion (ASR) system. The new gesture replaces the automatically generated poses
for the required duration.

The overall architecture of the behavior generation system is shown in Fig. 1.

7 www.jaracuentacuentos.com.
8 The different voices have been manually annotated in the SSML file.
9 The Enchanted Forest Tacotron+Emotions: https://youtu.be/J4iHMcz ODg .

10 The Sad Tree Tacotron+Emotions: https://youtu.be/CDirRQ8ccoo.
11 https://openai.com/research/whisper.

www.jaracuentacuentos.com
https://youtu.be/J4iHMcz_ODg
https://youtu.be/CDirRQ8ccoo
https://openai.com/research/whisper
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Fig. 1. The global system architecture

4.1 Robot Behavior

The newly generated behavior of the robot can be observed in the subsequent
videos. The first video12 corresponds to the performance of the The Enchanted
Forest story, while the second one13 corresponds to The Sad Tree.

The improved eloquence helps to better communicate the plot. The rule-
based gestures associated to the meaning drive Pepper to become a more credible
character. However, some issues arise. On the one hand, synchronization is not
so good for large gestures, delays can be appreciated. As a consequence, the
meaning of some gestures is lost. On the other hand, lemmatization shows some
flaws. A tendency to reproduce gestures in non desirable moments comes out.
Correct association between lemmas and gestures gets more complex the more
the gestures present in the DB, but this is a requirement if a general system able
to reproduce many tales is aimed.

5 The Little Touch

We have made an attempt to improve the behavior automatically produced by
giving some brush-strokes to the tales. More precisely:

– The SSML files have been extra annotated for dramatization by adding
silences and emphasizing some words by observing the original videos of Jara
Sanchis.

– A few onomatopoeia have been added by inserting specific audios.
– Some of the decisions taken by the rule-based system according to lemmas

have been corrected to remove not so coherent movements.
– The starting point (word) of some of the lemma-based gestures has been

changed, improving synchronization.

12 The Enchanted Forest Hybrid+Emotions: https://youtu.be/ZVIPQV1ZcpQ .
13 The Sad Tree Hybrid+Emotions: https://youtu.be/VyUY-jp2CFM .

https://youtu.be/ZVIPQV1ZcpQ
https://youtu.be/VyUY-jp2CFM
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All this adjustments can me made through the GUI specifically designed for
the storytelling context. Figure 2 shows an example of several sentences tagged
using Synesketch. Each row corresponds to a sentence, together with its mapped
pitch and rate values (green box). The columns in the red box show the detected
emotion for the sentence and the corresponding led color. All the items displayed
are editable allowing to apply the “magic” touch.

Fig. 2. Result of the interaction with Synesketch

5.1 Robot Behavior

The reader can see through the provided videos14,15 that the robot shows a
rich performance for the two stories. The touch allows for a step forward in the
reproduction of a thriving behavior by the robot. At a glance we are getting
closer to the reference human model, but the gap is still there.

6 Conclusions and Further Work

The work described in this paper is an attempt to develop a full storytelling
robot behavior generation system. We have used several state of the art tools to
test what they can yield. Through manually adjustments of certain features, we
obtained an improved and refined robot performance. However, we are still far
from a fully automatic storytelling robot behavior generation system. There are
some issues that, once solved, will enhance the system’s output.

Regarding the audio generation, some common voice features, such as whis-
pers are difficult to reproduce. Moreover, automatically adjusting the pitch can
14 The Enchanted Forest Touch+Emotions: https://youtu.be/zSvogw0OJT0 .
15 The Sad Tree Touch+Emotions: https://youtu.be/8hPEa Ls0vY .

https://youtu.be/zSvogw0OJT0
https://youtu.be/8hPEa_Ls0vY
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confuse the audience since it is easy to fall in a completely different voice. Addi-
tionally, a method to automatize the use of multiple voices should be considered.
Finally, concatenating audios to insert onomatopoeia is not the best option. Ono-
matopoeia are not detected by word parsers and thus, are ignored during any
posterior analysis. This prevents to associate specific gestures with sounds.

Concerning the body language, hands are vital in message transmission
and communication. The original database contains hand information but the
Tacotron2 model does not take them into account. Hand motion should be inte-
grated into the gesture generation system. Retraining the gesture generator with
a specific database obtained from storytelling videos but adapted to include
hands will be the next step.

We have not made any public performance yet since only a subjective ques-
tionnaire based evaluation would not bring any light at this development state.
Once a completely automatic storytelling behavior generation is assessed, the
“touched” behavior presented here will be used ground truth and make a com-
parison among the alternatives by exposing the robot to the public.
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Abstract. Social robots are becoming an important part of our society
and should be recognised as viable interaction partners, which include
being perceived as i) animate beings and ii) capable of establishing natu-
ral interactions with the user. One method of achieving both objectives is
allowing the robot to perform gestures autonomously, which can become
problematic when those gestures have to accompany verbal messages. If
the robot uses predefined gestures, an issue that needs solving is selecting
the most appropriate expression given the robot’s speech. In this work,
we propose three transformer-based models called GERT, which stands
for Gesture-Enhanced Robotics Transformer, that predict the co-speech
gestures that better match the robot’s utterances. We have compared the
performance of the three models of different sizes to prove their usability
in the gesture prediction task and the trade-off between size and per-
formance. The results show that all three models achieve satisfactory
performance (F-score between 0.78 and 0.86).

Keywords: Language Models · Social Robots · Deep Learning ·
Gesture Prediction · Multi-modal Interaction · Human-Robot
Interaction

1 Introduction and Background

In recent years, robots have been integrated into multiple aspects of society and
are now starting to be involved in tasks that include interacting with humans.
For this to be possible, the robot should be seen as an appropriate interaction
partner [21], and a way to achieve this is to make the robot have a lively appear-
ance [3]. This can be done by giving it the ability to perform expressions1 that
seem intentional [22]. But this task can be difficult if the expressions accompany
verbal messages (known as co-speech gestures), as the verbal and non-verbal

1 In this work, we will use both expression and gesture indistinctively for any coherent
combination of multimodal information aimed at achieving a particular communica-
tive goal.
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components of the robot’s expressiveness should seek to achieve the same com-
municative goal and be adequately synchronised so they form a cohesive message.

Works focused on endowing robots with the ability to use co-speech gestures
tend to follow one of two approaches: (i) generating the gestures dynamically
from scratch based on the robot’s speech (audio and/or transcription) and other
factors (e.g., the identity of the user) [31], or (ii) selecting expressions from
library of predefined gestures [20]). Generating expressions from scratch endows
the robot’s expressiveness with a higher variability while freeing roboticists from
the burden of handcrafting the expressions. However, dynamically generated ges-
tures might be more generic and transmit less defined messages than handcrafted
expressions. This is the approach we have followed, which we will refer to as co-
speech gesture prediction.

The literature shows more work in co-speech gesture generation than in co-
speech gesture prediction, particularly among authors that work with humanoid
robots. Kucherenko et al. [10] used representation learning in a co-speech gesture
generation system that follows an encoder-decoder architecture using a Denois-
ing Autoencoder. Yoon et al. [31] followed a similar approach and relied on
an encoder-decoder architecture with a soft attention mechanism to generate
motions for a humanoid robot by learning from a dataset of TED talks. Ginosar
et al. [9] developed a method based on a convolutional network for generat-
ing co-speech gestures considering the speaker’s gesticulation style. Ahuja et
al. [1] and More recently, Liang et al. [13] proposed a method for generating
semantic-aware upper body co-speech gestures by decoupling semantic-relevant
information from irrelevant cues (beat information) from the speech, correcting
the semantic misalignment of gestures and decoding beat and semantic gestures
based on the information recovered. Chang et al. [4] added a locality constraint
attention mechanism to the Tacotron2 architecture so the model learns the align-
ment between gestures and speech from local audio features.

Although most researchers have focused on gesture generation, others have
opted for developing gesture prediction approaches. Chiu et al. [5] proposed a
method that uses Conditional Random Fields to predict labels that indicate if
the robot’s speech should have or not gestures attached and then uses Gaus-
sian Process Latent Variable Models (GPLVMs) to generate the motions. The
same authors presented a year later the Deep Conditional Neural Field [6], a
joint learning of deep neural networks and a second-order linear chain tempo-
ral contingency for predicting gesture labels. More recently, Pérez-Mayos et al.
[20] proposed three methods for synchronisation of co-speech gestures: mapping
symbolic gestures to keywords in the text and beat gestures to the rest, mapping
only beat gestures to pitch peaks, and a combination of both that matches beat
gestures to pitch peaks until a keyword appears and a symbolic gesture is per-
formed. Kucherenko et al. [11] presented a work that, while focusing on gesture
generation, used a temporal Convolutional Neural Network to predict certain
gesture properties, such as the gesture type or its phase.

Natural language understanding has shown significant progress, thanks to a
novel model: the transformer. A transformer is a Deep Learning (DL) model
architecture based on the idea of self-attention that learns to focus on certain



82 J. Sevilla-Salcedo et al.

elements in the input data depending on their self-significance. By relying on self-
attention alone, they outperform other solutions that have used the attention
mechanism before [29]. The use of transformers for developing language models
has led to a significant change in what current systems can achieve, such as new
search tools using generative models [16], the generation of high-quality images
following prompts [12], the development of more advanced speech recognisers
[2], or more recently, applications of natural language processing (NLP) to social
robotics [15,27].

A problem that the growth of DL has brought is the increasing amount of
resources needed for training these models, requiring in some cases entire server
rooms and gigabytes of information. New techniques have been developed to
overcome these limitations and improve the results provided by the models.
Among those, the one that is of interest for this work is Fine-tuning. This tech-
nique seeks to adapt a pre-trained model with a large dataset for a more general
task to a new task by taking its weights and adjusting them without losing their
learned features while keeping the main layers of the model frozen [24]. This
work used this technique to take a model trained to understand the structure of
a language and adapt it to labelling sentences with co-speech expressions that
would suit them.

Among other tasks, transformers have been used for what is known as token
classification. In this task, an input text is divided into a sequence of indi-
vidually classified tokens. Two examples of this task are Part-of-Speech (PoS)
labelling, where each word in a sentence is labelled with its corresponding PoS
tag (verb, noun, etc.), and Named-Entity Recognition, where known entities that
appear in a text are labelled with a category like location or organisation. We
have framed the gesture prediction problem as a token classification task, where
the labels represent the gestures assigned to the robot’s speech. Following this
approach, in this work, we present GERT, which stands for Gesture-Enhanced
Robotics Transformer, three co-speech gesture prediction models that rely on
BERT architecture [8] to predict the sequence of gesture labels that should be
associated with the robot’s speech. Using a custom dataset, we created three
models fine-tuned from different variations of BERT for this task, and compared
their performances.

The proposed method has been designed for embodied agents that perform
real-world tasks, something that requires an analysis of other factors besides the
objective performance of the models. Because robots tend to have constrained
computational power, we should also seek to optimise the use of the available
resources. Furthermore, inference time is a significant constraint, as research
suggests that responses given to a user during an interaction should be conveyed
in less than two seconds for the message to retain its meaning [17]. Other authors
set this limit at one second [28]. Therefore, we also evaluated the resources used
by the method proposed and the prediction time.

The remainder of the manuscript is structured as follows. Section 2 describes
the models used in this work and the process followed for crafting the dataset
we used for fine-tuning the models. The architecture of the gesture prediction
module and the training process is presented in Sect. 3. Section 4 shows the
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results of the fine-tuning process and presents a comparison between the three
models tested. Finally, Sect. 5 closes this manuscript by presenting the main
conclusions extracted from our work.

2 Materials and Methods

This section presents the basic concepts behind the development of GERT, our
model for gesture prediction. This includes a description of the transformer-based
baseline models that have been fine-tuned for gesture prediction, a description of
the dataset used for the training process, and the method followed to generate it.

2.1 Baseline Models

In recent years, many different models and architectures have appeared in NLP,
with various performance levels depending on the task to complete. Among the
existing architectures, encoder-based models are best suited for tasks that involve
extracting information from an input text, unlike auto-regressive, decoder-based
models (ChatGPT, Llama, PaLM-E,...), which are better suited for generation
tasks. Also, encoder-based models tend to outperform autoregressive models in
terms of inference time, which is a key feature for applications that will involve
human-robot interactions. Because of this, we have decided to use encoder mod-
els as baselines for the development of GERT. Among those, one widely used
(and has served as the baseline for many recent models) is the Bidirectional
Encoder Representations from Transformers (BERT) [8] model. Its architecture
consists of a multi-layer bidirectional Transformer encoder module that uses as
input representation either a single sentence or a pair of sentences (understand-
ing a sentence as a span of contiguous text that can include more than one
linguistic sentence). This allows the model to handle a wide range of tasks.

Although most language models usually have been unidirectional (i.e. the
model only considers the context that precedes or follows the target section of
the text being evaluated), BERT was designed to consider both sides of the
context. This was done by selecting two simultaneous pre-training objectives:
(i) predicting masked words in sentences (masked language modelling); and (ii)
predicting if two input sentences appeared together in the original text or not
(next sentence prediction). Thanks to being able to train deep bidirectional rep-
resentations, BERT can be fine-tuned for several tasks by adding just one extra
output layer. Given its performance, BERT has become a baseline in many NLP
works. For this reason, we have selected it as the baseline for our base GERT
model.

In addition to the base model, we have developed two other GERT models
based on two well-known variations of the BERT model: DistilBERT (baseline
for the GERT large model) and RoBERTa (baseline for the GERT small model).
This will allow us to test the effect of a model’s size on its performance in the ges-
ture prediction task by selecting a smaller (DistilBERT) and larger (RoBERTa)
model.
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DistilBERT [26] is a variation that seeks to reduce the size of the base BERT
model in order to enhance its speed. This process is based on knowledge distil-
lation, a method for training a compact model to reproduce the behaviour of a
larger model or models. While maintaining the same architecture, DistilBERT
reduces the size of the base BERT model by 40%, while increasing its speed by
60% and retaining 97% of the base model’s performance on the GLUE bench-
mark [30]. RoBERTa (Robustly Optimized BERT pre-training approach), on
the other hand, is a variation born from the finding that the original BERT had
been significantly under-trained [14]. The authors sought to correct this issue
by proposing a new paradigm for training BERT models: increasing the amount
of data, the batch size, the number of training epochsm, and the length of the
sentences used for training the model, removing the next sentence prediction
training objective, and using a dynamic masking pattern during training. The
authors reported that RoBERTa improved the state-of-the-art results for four
of the nine tasks in the GLUE benchmark and matched the results for SQuAD
and ReAding Comprehension from Examinations (RACE) tasks.

2.2 Dataset

We opted to represent the gesture prediction problem as a token classification
task for two main reasons: (i) it would allow us to know directly the points in a
sentence where gestures would have to start, and (ii) it would allow our model to
attach a sequence of gestures to a sentence. We generated a dataset from scratch
to fine-tune the models selected for the gesture prediction task. Each instance
contains an utterance (one or several sentences forming a cohesive paragraph),
the same text split into tokens, and a list of labels representing the type of
gesture that should be associated with each token. These labels follow the IOB
format, where the prefix indicates if a label is the beginning of an entity (B-)
or if it is inside (I-) or outside (O-) of it. Since all tokens have an associated
gesture, we only use the B- and I- prefixes.

To create the dataset, we extracted sentences from the Cornell Movie Dialogs
Corpus [7]. The list of possible gesture labels was empirically determined based
on an evaluation of the library of predefined expressions that our robots could
use. For this, an annotator observed the robot performing each expression,
grouped together the expressions perceived to convey a similar communicative
message, and assigned a single label to each group. This resulted in 21 different
gesture classes, like greet where the robot performs the gesture of greeting the
user, self where the robot would perform a reflexive gesture towards itself or
thanks where the robot would show a gesture of thanks to the user.

The final version of the dataset is composed of 2600 instances. Training,
validation, and test splits have been created using 60%, 20%, and 20% of the
instances, respectively. Moreover, these subsets ensure that all gesture labels are
proportionally distributed between the three splits (that is, the training split
would contain 60% of any given label).

Although the division ensured equal distribution of each label among the
splits, we observed that some labels appeared in a significantly larger amount
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Fig. 1. Supervised Fine-Tuning Training Diagram of GERT variants.

of instances than others. This could induce the model to over-learn some labels
while failing to recognise others, which significantly affects its performance. This
was because some of the chosen labels applied to more generic situations while, in
contrast, others were specific to specific situations that were connected to fewer
sentences from the corpus. To evaluate the effect of this imbalance, we decided to
prepare three versions of the dataset; on top of the original version that included
the 21 original classes, two datasets were prepared by removing those classes that
appeared in less than 100 instances for the first and 300 instances for the second,
resulting on datasets with 9 and 5 classes, respectively. We did this by removing
from the dataset any instance where one of the discarded classes was used. The
9-class dataset had 2195 instances, while the 5-class dataset had 1748. We have
fine-tuned each model using all three datasets and evaluated how the number of
classes affected the performance of these models. These datasets are publically
available in HuggingFace2

3 Predicting Co-speech Gestures in the Robot Mini

In this section, we describe the approach followed to develop GERT and its
integration into the social robot Mini software architecture.

3.1 The Gesture-Enhanced Robotic Transformer Model

As mentioned in Sect. 2, we have created three fine-tuned models from BERT-
based models for gesture prediction in this work. We took versions for these
models from HuggingFace (BERT base, RoBERTa, and DistilBERT) pre-trained
on language modelling. We then adapted the original architecture by adding a
new token classification head, as shown in Fig. 1 (a linear layer on top of the
output of the hidden states). This layer will use the hidden states generated by
the model to predict the classes assigned to each token.

2 https://huggingface.co/qfrodicio.

https://huggingface.co/qfrodicio
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Fig. 2. Example of the co-speech gesture prediction dataset instances tokenizing and
relabelling process.

Before training the models, we had to preprocess our dataset to correct two
issues. First, the gesture labels we use are strings, while the models expect integer
values, so we needed to map the list of labels to their integer values and apply
this mapping to the entire dataset. Second, our models take a utterance and
tokenize it internally. However, the tokens generated by the models might not
match the original tokens from the dataset. We need to ensure that the number
of tokens generated by the model matches the number of correct labels, while
maintaining the label distribution of the original instance. For example, if one of
the original tokens is divided into two tokens, we need to label both of them with
the label of the original token. This preprocessing stage had to be applied to the
dataset to fine-tune all three models tested. Figure 2 shows how the gesture label
sequence is corrected for a dataset instance.

We have fine-tuned the three models using the preprocessed datasets, as
shown in Fig. 1. We used the same hyperparameters for all three models, with
a learning rate of 2 ∗ 10−5, a weight decay of 0.01, and a batch size of 16. We
fine-tuned the models for 10 epochs, and then kept the model from the best
epoch, according to the model’s validation loss. This happened around epochs
3–4 in most cases.

3.2 Gesture Prediction Module

For the inference phase, we have used the Transformers library provided by
Huggingface to use our version of the model we want to deploy on the robot.
The developed module receives the text to be classified as input, passes it through
the model, post-processes the model’s output to transform the prediction into
the desired sequence, and returns this sequence.

An issue that DL models present is the high requirement of resources needed
to run inferences. This is particularly pressing when working with embodied
agents, as there are often more considerable hardware constraints. Also, because
the gesture prediction model will be part of the pipeline for conveying messages
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Fig. 3. Mini: a social robot developed for interacting with older adults with mild cog-
nitive impairment.

to the user in every interaction the robot partakes in, we need to ensure that the
inference times match the time constraints associated with human-human inter-
actions. We deployed the model on an external server with specialised hardware
to mitigate this problem. The robot sends the utterance to the server. Once the
gesture sequence has been predicted, it is sent back to the robot.

3.3 Integration of the Gesture Prediction Module in a Real Robot

Mini is a social robot designed to assist older adults with mild cognitive impair-
ment [25]. Mini has an anthropomorphic form (see Fig. 3), although its expres-
siveness capabilities are more constrained. The output interfaces of the robot
include five degrees of freedom (two on the head, one on each shoulder, and
another on the waist), OLED screens for eyes that can be used to display dif-
ferent gazes, a coloured LED heart that can change its colour, intensity, and
heartbeat, a text-to-speech module, and a touch screen that can be used to
display multimedia content, such as images and videos.

Regarding its software architecture, shown in Fig. 4, we have followed a mod-
ular approach using ROS [23]. In this architecture, skills are independent soft-
ware modules that control specific tasks, such as reading the news to the user. A
decision-making system controls which skill is active at any given time. Transver-
sal to all skills, a series of modules provide all the robot’s interaction capabilities,
like extracting and processing information from the environment, interacting
with users, and expressing a particular communicative message through its out-
put interfaces. The Expression Manager module handles this last part, receiving
requests to perform multimodal expressions. The gesture prediction module we
have trained will interact with this last module. Whenever the Expression Man-
ager receives a request to convey a message that contains only a verbal com-
ponent, this is sent to the gesture prediction module running on the external
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Fig. 4. Schematic vision of Mini’s software architecture, with the external server
where the gesture prediction model is deployed. Black arrows represent communica-
tion between ROS nodes, while red arrows represent the socket-based communication
between the robot and the server (Color figure online)

server. Once the input text is processed, the predicted gestures are sent back
to the Expression Manager, where they are loaded and executed. The following
video shows the operation of the proposed system and a set of examples3.

The server used in this work has been designed specifically for running deep
learning models, and it has an Intel Core i9-10900K CPU running at 3.7 GHz,
an NVIDIA GeForce RTX 3090 GPU, and 64 GB of RAM.

4 Evaluation

To evaluate the proposed co-speech prediction system, we have analysed three
factors: (i) the metrics obtained during the fine-tuning process; (ii) the average
inference time; and (iii) the number of resources (CPU and memory) that each
model requires. In this Section, we first present the metrics that we have used
for evaluating the performance of the models and then show the results obtained
from the training and the deployment of the models in the robot.

4.1 Metrics

As mentioned in Sect. 2, we fine-tuned each model with the 21-class, 9-class, and
5-class datasets to see how this affects our results. The validation splits were used
to evaluate the training process after each epoch, while the test splits were used
to evaluate the models after the training. For this process, we decided to use the
multi-label classification metrics provided by the Scikit-learn library [19]. These
metrics measure each class’s precision, recall, and F score and then compute
3 https://youtu.be/lvQGwfu8J50.

https://youtu.be/lvQGwfu8J50
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Table 1. Results obtained from the training of the models. The best F-score for the
three datasets have been highlighted in bold

Model Classes Precision Recall F1-Score

5 0.8578 0.8561 0.8533

9 0.8365 0.8297 0.8281GERT Base

21 0.7954 0.7884 0.7827

5 0.8567 0.8555 0.855

9 0.8144 0.8144 0.8095GERT Small

21 0.7925 0.7934 0.7875

5 0.8629 0.8628 0.8619

9 0.8296 0.83 0.8258GERT Large

21 0.8189 0.8154 0.8125

average values. In particular, we have used the weighted average, where the
number of class appearances weights each class’s precision, recall, and F-score
before computing the average value.

Although traditionally, the metric used for evaluating models for token clas-
sification is seqeval [18], the one we selected allows us to evaluate the partial
matching of label sequences. This means that for a sequence that has seven
tokens, if the first four should be labelled as GREET and the last three should
be labelled SELF, a prediction where the labels are assigned to the first five and
last two respectively would not result on an F-score, precision, and recall of 0
(like it would with seqeval), but instead on values that would better reflect how
far or close from a perfect prediction our system is.

4.2 Model Evaluation

In this subsection, we present the model evaluation results, which can be seen
in Table 1. When we compare the metrics obtained with the three models when
fine-tuned with the same dataset, we observe that GERT Base and GERT Small
present very similar results (for example, for the dataset with 21 classes, we
can see that the accuracy of both models is 0.7884 and 0.7934, the precision is
0.7954 and 0.7925, the recall 0.7884 and 0.7934, and the F1 score is 0.7827 and
0.7875, respectively). We observed that the results also depended on the number
of classes considered (GERT Base has a higher F1 score than GERT Small when
fine-tuned with the dataset with nine classes, while the opposite happens on the
other two tests). GERT Large, on the other hand, shows higher results for all
metrics for all three datasets. When comparing the performance of each model
depending on the dataset used, we observe that, as expected, all metrics improve
when the amount of classes considered decreases.

4.3 Performance Evaluation

In addition to evaluating how well the different models can perform the gesture
prediction task, we must also evaluate if they are usable in real-world situations.
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Table 2. Resource usage, inference time, and complete time required for the complete
process for all three models. The number in each cell represents the average value,
plus-minus the standard deviation.

Model GERT Base GERT Small GERT Large

Inference time (s) 0.0175 ± 0.0174 0.0132 ± 0.0153 0.0178 ± 0.0181

Total time (s) 0.1208 ± 0.1584 0.1272 ± 0.1836 0.1114 ± 0.1154

GPU usage (%) 1.6237 ± 0.7506 0.7332 ± 0.4209 1.7177 ± 0.6097

GPU memory (%) 3.1734 ± 0.0041 2.4407 ± 0.004 3.4247 ± 0.0038

As mentioned in the introduction, the number of resources used and the inference
time are key features for a system designed to be integrated into an embodied
agent with limited computational capabilities.

Table 2 shows the resource usage evaluation results. For this evaluation, we
took the test split of the dataset (423 instances) and ran inferences for the
sentences taken from those instances. The average length of these instances is
43.41 characters (with a standard deviation of 29.36. The shortest instances have
7 characters, while the longest have 229. The robot loads the instances and then
sent to the external server where the gesture prediction models are deployed.
During the trials, the robot and the server were connected to the internet via
wifi. When the list of gesture tokens is obtained, the server sends it back to
the robot. To evaluate possible delays due to the robot-server communication,
we have measured the average time that passes since the sentence is sent to
the server until the response is received (this is called total time in the table)
and the inference time itself. We also evaluated the amount of GPU memory
consumed (as a percentage of the available memory) and the percentage of time
that at least one of the GPU’s cores performs operations during the test. These
resources have been measured at an interval of 0.5 s and averaged for the entire
test duration.

Comparing the inference times, we see that GERT Base and GERT Large
perform at a similar speed (inference times of 0.01753 and 0.01779, respectively).
GERT Small, on the other hand, has a faster inference time (0.0132 s). Regard-
less, the tests show that the inference time is almost negligible compared to the
latency introduced by the robot-server communication. GERT Large showed the
best results, followed by GERT Base and then GERT Small (0.1114 vs 0.1208
vs 0.1272 s). While these results indicate that all three models are usable in
real-world tasks (all of them abide by the two-second rule), in a few cases, the
prediction time surpassed the two second threshold due to punctual connection
issues between the server and the robot. This is a factor that will have to be
taken into account when deploying the robot in real environments.

Regarding the number of resources needed for running the models, we did
observe a difference between the three options, as GERT Small requires the least
amount of GPU computing time and memory (0.73% and 2.44%, respectively),
followed by GERT Base (1.62% and 3.17%, respectively) and then GERT Large
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(1.72% and 3.42%, respectively). These results align with our expectations as
GERT Small and GERT Large, as their names imply, represent the smallest and
largest models, respectively.

Overall, the results obtained suggest the existance of a direct correlation
between the size of the model and its performance on the task at hand, as
well as the amount of resources consumed and the time required for generating
inferences. While these results indicate that the best option would be to use
GERT Large, if the hardware of the robotic platform allows it, they also show
that for platforms with less resources, GERT Base and GERT Small can be solid
alternatives.

5 Conclusions

In this work, we have created and evaluated GERT models’ performance for
predicting social robot co-speech gestures. Results showed that, while all three
models achieved good metrics with an inference time that matches the time con-
straints in real-world interactions, the amount of computational power required
for running these models limits their usability in platforms with hardware limi-
tations.

The work described in this manuscript presents three main limitations. First,
the objective metrics presented in this paper should be complemented with a sub-
jective study that analyses how adding the predicted co-speech gestures affects
users’ perception of the robot. This is due to a sentence accompanied by the
wrong gesture (as defined in the dataset) being objectively considered a predic-
tion error; it could still be perceived as natural by the users and thus be regarded
as a successful case. This study should also validate that the gestures used are
being perceived by the user as we intended (this is, that the greet gesture is being
perceived as a natural expression for greeting or saying goodbye to someone).
Second, we identified an imbalance between the classes in the dataset because
some were used in more common situations while others were more specific. Ide-
ally, this should be corrected by adding more instances for the labels that appear
less frequently to obtain a more balanced dataset. Finally, while the models pre-
sented in this manuscript can solve the issue of deciding which gestures should
accompany the robot’s speech, we still need a method that properly synchronises
the verbal and non-verbal components. Both issues will be addressed in future
works.
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Abstract. The main objective of this research is to explore the impact of deploy-
ing social robots in team-based intellectual cooperation, specifically during brain-
storming sessions. A total of 72 participants (36 females and 36 males) were
involved, with groups of four participants (2 females and 2 males) engaging in
brainstorming sessions. In nine sessions, three Nao robots were present; while
in the other nine sessions, three human fellows participated instead of robots.
The creativity of participants was assessed by measuring the average number of
unique ideas generated using Bouchard andHare’s coding rules. The sessions with
robots showed a significant increase in participant creativity. After the sessions,
the participants completed a questionnaire, which revealed higher satisfaction,
reduced production blocking, decreased free-riding, and increased synergy in ses-
sions where robots were present. These findings were further supported by the
video analysis. Future research can explore the long-term effects of interacting
with social robots, including those equipped with artificial intelligence.

Keywords: Social Robots · Human-Robot Collaboration · Intellectual
Cooperation · Brainstorming

1 Introduction

Computers and robots have been extensively utilized across various domains, including
education, healthcare, etc. Presently, they are progressively integrating into social set-
tings, transitioning frompre-programmed tools to entities capable of human-like thinking
and behavior. In the recent years, robots have started to assume roles as educators [1,
2], therapists [3], entertainment tools [4, 5], impacting their work environment and col-
leagues, including emotional and social aspects. Moreover, computers have transformed
interpersonal interactions and collaborative work dynamics. Hereby, an interesting sub-
ject of study is the impact of robots functioning as computer agents on intellectual
cooperation within workplace as a team member.
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Brainstorming, introduced by Osborn [6], is an important intra-team intellectual
cooperation which is widely used for enhancing creative idea generation in teams and
organizations, and explored the optimal group size [7, 8]. Subsequent studies have exam-
ined its effectiveness and proposed additional techniques such as the nominal group tech-
nique and group passing technique [9, 10]. In [6], a new method in brainstorming has
been presented that used computers as mediators during a session, so the members of the
group could discuss and share ideas via them. This method, known as Electronic Brain-
storming, has been studied several times and it could be still one of the most effective
methods in brainstorming [7, 8].

However, human-robot collaboration may be different from human-computer inter-
action [11]. Itmeans social robotsmay have different effects in comparison to computers.
Therefore, the impacts of robots’ presence in social environments must be discussed and
examined [12]. Psychological studies have been conducted to measure how powerful
these impacts can be [13]. One of the most important factors in a brainstorming ses-
sion is creativity and how unique are the ideas. Studies have shown interacting with a
social robot may enhance creativity [14, 15]. Alves-Oliveira et al. [16] have integrated
established educational strategies that promote creativity with co-designing involving
children as informants to develop the robot prototype, while some other studies examine
the impact of various intellectual interaction scenarios on enhancing creativity.

Some recent studies estimate that doing creative works such as brainstorming with
assistive social robots might be more beneficial than using other technologies. In a study
based on storytelling in the presence/absence of a social robot called YOLO, Alves-
Oliveira et al. [17] observed that using their robot led the participants to generate higher
number of original ideas when the social robot actively supported creative thinking.
Additionally, Ali et al. [18] reported that using a social robot called Jibo in facilitating
figurative creativity, improved the uniqueness and productivity in the participants’ per-
formance in drawings compared to the tablet technology. In [14], Kahn et al. reported that
in their study, the subjects have produced higher number of creative expressions when
using a tele-operated robot compared to when animating presented via a PowerPoint file.
In the mentioned three previous studies [14, 17, 18], the effectiveness of creative tasks
and brainstorming with a social robot were compared with other technologies (rather
than with human mediators). In [19], the authors have tried to fill the mentioned gap by
comparing the results of using one Nao robot in brainstorming sessions with the situa-
tion in which a human mediator facilitates the brainstorming sessions. They observed
that considering “productivity”, there is no significant difference on the effect of using a
social robot in brainstorming sessions (compared to having a human mediator in similar
sessions).

This paper examines the impact of humanoid robots on intellectual collaboration
during a brainstorming session. Specifically, it compares the creativity and number of
ideas and solutions generated when social robots participate and contribute ideas versus
when all participants are human. Additionally, participants’ perceptions are assessed
through a post-session questionnaire. The video recordings of all sessions are analyzed
by two individuals, focusing on seven parameters (confirmation, distraction, observation
of others, smiling, use of positive and negative verbs, and total verb usage per participant)
for each of the 72 participants. The main research questions addressed in this study are:
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1) Does the presence of social robots enhance participant creativity in brainstorming
sessions? 2) What is the effect of social robots on satisfaction, free riding, production
blocking, synergy, and sufficient time in brainstorming sessions?

2 Methodology

2.1 Procedure

The experiment involved 72 participants aged 18 to 20 (mean = 18.97, SD = 0.87).
Half of the participants (n = 36) were in sessions with robots present (age mean =
18.94, SD= 1.01), while the other half were in sessions with only human members (age
mean = 19.00, SD = 0.72). All participants were recruited from the Sharif University
of Technology and were Persian natives. None of them had prior experience with social
robots before participating in the experiment.

Participants were randomly assigned to groups of four individuals, consisting of two
males and two females. The groups engaged in the brainstorming sessions, which were
conducted in two different formats. In type A sessions, there were four individuals and
three NAO robots. In type B sessions, all seven participants were human, with three of
them being experimenters’ colleagues, while the remaining participants were unaware
of this fact.

2.2 Interview Script

At the beginning of every session, the participants were given a version of “Osborn’s
rules for brainstorming” and were asked to read it carefully in 5 min and follow the rules
through the session. Then, the session manager answered the participants’ questions
about the session’s rules. These rules were as follows: Be silent and listen to the ideas of
others when you hear them, and even if it was the most ridiculous idea in the world, you
should not comment on it. 1: you have to listen well to others’ ideas so that you can get
more ideas in the second round when it is time to give ideas based on others’ ideas. 2:
Be sure to think about your time and write down your ideas. 3: Do not use your phones
during the session.

Two problems were discussed in each session. The first problem was “How to
decrease depression among students?”; The second questionwas “Which features should
be added to robots to make them more sociable?”. After the first question was asked,
every person would write their ideas on a sheet of paper in about 5 min. The Participants
should not speak to each other during this period. After 5 min, the participants would
express their ideas one by one. This section was called “round 1”. After all 7 members
finished this round, participants were given 5 more minutes to make new ideas, based
on others’ ideas or completely new ones. Then they would express new ideas like the
previous part. We called this section “round 2” in a brainstorming session. During both
rounds, the participants had to listen to each member expressing their ideas and they
were not allowed to speak together. The second issue was discussed in the same way.

In the type A sessions, three Nao robots were part of the brainstorming sessions.
When students entered the room, robots were present and greeted attendants to make a
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friendly atmosphere as well as to show that robots would be active members during the
session.While every question was debated, robots said specific ideas in their place. They
used body-language gestures while expressing ideas to make them more natural. The
robotswere controlled through theWizard ofOzmethod, usingAldebaran’sChoregraphe
software.

In the type B sessions, the three experimenters’ fellows (include 2 males and one
female) would enter the roomwith other students and sit in the place of the robots. When
it was their turn, they said the same specific ideas as robots would say in the type A
sessions. The total number of members who attended each session was 7 because Osborn
advocated using groups with 6 to 12 members [6].

In total, each session lasted for 30 min. After both of the issues were discussed,
the manager of the session distributed the questionnaire. After the questionnaires were
handed in, it was announced that the session had ended. In the type A session, after the
experiment ended, the Wizards were introduced and participants would ask questions
about robots and take photos with the robots.

2.3 Interview Environment

The sessions took place at the Social Robotics Laboratory at Sharif University of Tech-
nology, Iran. The experiment occurred in a distraction-free roomwith two cameras and a
voice recorder, recording participants’ verbal and nonverbal expressions. The room had
two windows for natural light and a pleasant atmosphere. The Participants and robots
were positioned around a large rectangular table (Fig. 1), with the sessionmanager at one
end. The robots were controlled from behind a concealed wall by our fellows, allowing
the robots to express pre-determined ideas using appropriate body language.

Fig. 1. Positioning of the participants and the robots in a session
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2.4 Assessment Tools

In this study we have used three assessment tools as follows:
The first assessment tool used is the number of unique ideas used in order to evaluate

performance enhancement between the type A and type B sessions. Transcripts had
produced by the participants were analyzed and the unique ideas has been identified
based on the coding rules of Bouchard and Hare [20].

As the second tool, we have used the questionnaire byDennis et al. [8]. The question-
naire analyzed the following parameters: Satisfaction, Production blocking, Freeriding
(how much they became engaged in the session and generating ideas), Synergy and
stimulation (howmuch they were stimulated to generate new ideas and work with others
for more ideas), and Sufficient time. The rating was based on a 5 point Likert scale (1
the least to 5 the most). Table 1 shows the questions used for analyzing each parameter.

For the third assessment, the sessions were recorded, with participants being aware
of the recording. Two video coders independently analyzed the recordings to identify the
frequency of some variables include Confirmation (expressed through nodding, facial
expressions, etc.), Distraction (cellphone usage during the session), Observing others
(humans or robots), and Negative verb. The coders were unaware of the experiments’
purpose; but were provided with the explanations for each variable. These parameters
were used to confirm or reject conclusions from the questionnaire, serving as evidence
of participants’ honesty and accurate understanding of the questions. The coders tallied
the occurrences of these parameters for each individual in each session.

Table 1. Sections of the Questionnaire and Its Related Questions

Section Question

Satisfaction How do you feel about the process by which you generate ideas?

How do you feel about the idea proposed?

All in all, how did you feel?

Production Blocking When you thought of an idea, could you express it immediately?

Did you express your ideas soon after you thought of them?

Free Riding How much do you feel you participated in this idea generation
session?

How satisfied are you with your performance on this task?

Synergy and Stimulation How stimulating did you find this task?

How interesting was this idea generation task?

How motivated were you to generate quality ideas?

Sufficient Time For this idea generation session, did you have as much time as
you needed?

Considering all the ideas you thought of, did you Have time to
express all your ideas?
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3 Results and Discussion

The analysis revealed that sessions involving the robots resulted in a significantly higher
number of unique ideas compared to sessionswith only humanparticipants.Additionally,
in the type A sessions, the number of ideas generated per person exceeded that of the
type B sessions (P-value < 0.001). Observations from the video recordings indicated
that participants in the robotic sessions expressed beliefs that robots possess thinking and
perception abilities through artificial intelligence. This suggests that the methodology
for controlling robots was effective and credible. It should be noted that the coders’
correlation was calculated to be at least 79% for each variable, and the average of their
findings was considered the final value.

The presence of the social robots in sessions led to a significant increase in the
number of unique ideas. This finding supports the main research questions regarding
the positive impact of social robots on creativity, aligning with previous studies on
enhancing children’s creativity through interactive experiences with social robots [21].
Satisfaction significantly increased in sessions involving robots, indicating that partici-
pants felt more content when engaging in brainstorming sessions with both human and
robot members, as opposed to sessions with only human members. Additionally, video
analysis revealed that participants in robotic sessions exhibited more instances of laugh-
ter and usedmore positive language. However, there was no positive correlation between
satisfaction reported in the questionnaires and the presence of smiles or positive verbs
in the video analysis. This suggests that the participants may behave differently when
responding to questionnaires compared to their actual session experiences. As social
robots become more prevalent in society, ensuring people feel at ease when interacting
with them becomes increasingly important [22–24].

According to the findings in Table 2, participants in robotic sessions were more
motivated to generate novel ideas. Furthermore, video analysis revealed that participants
in robotic sessions used a higher number of positive verbs compared to those in human-
only brainstorming sessions. These observations align with previous research indicating
that the presence of social robots enhances human stimulation and engagement in work
[25]. However, in [19], the authors claimed that they observed no evidence of robot-
assisted brainstorming sessions for the participants’ productivity.

Based on the data presented in Table 3, production blocking was reduced in robotic
sessions. This indicates that the participants in robotic sessions experienced fewer obsta-
cles in expressing their ideas and displayed a greater inclination to actively participate.
Additionally, video analysis revealed a higher frequency of smiles in the robotic ses-
sions compared to the human-only brainstorming sessions. The decrease in production
blocking aligns with the findings of previous research on virtual collaborator studies
[26].

Based on the data presented in Table 3, freeriding was less prevalent in the robotic
sessions compared to the human brainstorming sessions. There are several potential
explanations for this finding, one of which could be attributed to the sense of competition
that humans feel towards robots. Previous research has indicated that human participants
often experience a heightened sense of competition with social robots [24], which can
positively impact their active participation in brainstorming sessions by contributing
more new ideas and reducing freeriding tendencies.
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According to Table 4, video analysis revealed an increase in the use of positive verbs
in robotic sessions. One possible explanation for this finding is the human perception
that social robots are less intelligent than humans [23], which may reduce participants’
apprehension about being evaluated.

Participants in the robotic sessions exhibited increased stimulation in generating
ideas, indicating a higher level of synergy. This can be attributed to their heightened
interest in the novel experience of robotic sessions. Notably, participants were given a
10-min period before the session to familiarize themselves with the robots.

All in all, it should be noted that the results observed/discussed in this study might
be affected by the fact that all of the participants in the robotic sessions had their first
experienced collaborating with social robots.

Table 2. The Result of Two-Sample T-test on the Number of Unique Ideas (Type A Verses Type
B Sessions)

Item Mean (SD) P-Value

Type A Sessions Type B Sessions

Number of unique ideas 22.11 (7.47) 8.56 (3.39) 0.001

Table 3. The results of two-sample T-test on the questionnaire scores (Type A verses Type B
sessions)

Item Mean (SD) P-Value

Type A Sessions Type B Sessions

Satisfaction 4.241 (0.426) 3.861 (0.548) 0.002

Production Blocking 3.750 (0.579) 3.361 (0.703) 0.013

Free Riding 3.875 (0.578) 3.375 (0.805) 0.004

Synergy and Stimulation 4.176 (0.583) 3.926 (0.829) 0.144

Sufficient Time 4.167 (0.396) 3.569 (0.776) 0.001

4 Limitations and Future Work

There were limitations to this study, such as the homogeneous sample of bachelor’s
students from Sharif University of Technology. It should be considered that this study is
at an early stage. We need to have deeper studies on whether there is important effects
in case the persons interacting face-to-face were different from the ones controlling the
robots’ behaviors. Future research could explore the impact of cross-cultural differences
on human-robot brainstorming sessions and investigate whether participants’ knowledge
of the robots being controlled by humans affects the results. Additionally, the duration
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Table 4. Results of one-way ANOVA on video coding scores (Type A verses Type B sessions)

Item Mean (SD) P-Value

Type A Sessions Type B Sessions

Confirmation 2.344 (3.291) 1.167 (2.253) 0.121

Distraction 3.203 (3.282) 1.630 (1.707) 0.029

Looking at the others 20.97 (10.76) 10.48 (4.378) 0.001

Negative verb 6.407 (4.095) 3.661 (3.252) 0.008

Positive verb 68.02 (36.24) 46.84 (27.85) 0.018

Total verbs 78.22 (40.05) 52.86 (30.78) 0.011

Smile 17.64 (12.76) 6.165 (6.572) 0.001

of robot interaction (i.e., 10 min in this study) could be further examined for its impact
on human creativity in robotic brainstorming sessions. These findings offer a new per-
spective on the effects of human-robot interaction, suggesting that users’ awareness of
the robot’s nature may not significantly influence their behavior during the session.

5 Conclusion

This study aimed to compare idea creation in brainstorming meetings with and without
social robots. The results indicated that participants exhibited different traits when inter-
acting with the NAO robots, including increased creativity, agreeableness, openness, and
extroversion compared to the human sessions. The level of creativity exhibited by the
participants was evaluated by quantifying the average count of distinct ideas generated,
employing the coding rules developed by Bouchard and Hare. Notably, the sessions
involving robots exhibited a noteworthy and statistically significant enhancement in par-
ticipant creativity. Subsequent to these sessions, participants were requested to complete
a questionnaire, which unveiledmeaningful heightened levels of satisfaction, a reduction
in production blocking, a decrease in free-riding tendencies, and an increase in collab-
orative synergy during sessions where robots were present. These findings were further
corroborated by conducting a thorough analysis of the recorded videos.
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Abstract. One of the major issues in pediatric rehabilitation practices relates
to children refusing to participate in or perform associated exercises targeted to
improve their physical condition. Technology and serious games are effective
approaches to engage and motivate children and assist therapists in rehabilitation
exercises. This Paper tries to elicit from children’s requirements for the objec-
tive of designing efficient serious games scenarios that facilitate the rehabilitation
procedure. A novel set of six rehabilitation game scenarios on standing frame for
robotic assistance involving children with cerebral palsy is presented. We discuss
the use of serious games on a standing frame in terms of humanoid robot limi-
tations and capabilities. The scenarios have been developed based on specialists’
observations and in situ consultations with therapists at a pediatric rehabilitation
center. Our findings are expected to help in future research tailored toward study-
ing the effectiveness of adding humanoid robots to rehabilitation games to increase
children’s motivation, engagement, and enjoyment.

Keywords: Human-robot Interaction ·Motivation · Rehabilitation · Scenario

1 Introduction

Children with physical disabilities often have limited play experiences compared to their
peers without disabilities [1]. Most Cerebral Palsy (CP) therapy interventions aim to
improve limb coordination, control, and range of motion through improved motor func-
tion [2]. Parents and therapists believe motivation is a significant component of motor
and functional outcomes for children with Cerebral Palsy [3]. Various aspects of human
intentions and activities are thought to contribute to motivation, according to study [4].
Children with neurodevelopmental disorders appear to benefit little from the application
of serious games, at least according to the existing clinical evidence [5]. Participating
children in a study [6] that developed an application on a tablet designed for children
(preparing for radiotherapy) suggested the application could have been more interactive
if it had been designed as a game. For children with cerebral palsy, virtual games have
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had limited applications, and none have offered an option for personalization within the
session [7]. However, technology, such as virtual environments, can motivate repetitive
motor rehabilitation exercises, therefore improving their effectiveness [8]. The study [9]
developed a serious game system that included locomotion training exercises for the
musculoskeletal system in real time. A growing number of human robot collaboration
researchers are interested in working with people with disabilities [10]. A wide range of
compelling reasons exist for using robots in therapeutic play scenarios, from increasing
the capabilities of children with motor impairments to stimulating children with devel-
opmental disorders [11]. Social robots seem to be much more appealing to children, for
reasons that are not fully understood [12]. IROMEC project aims to explore how robotic
toys can become social mediators for children with special needs, encouraging them to
discover a range of styles of play, from solitary to collaborative [13]. According to the
preliminary results of study [14], the robot had a positive effect on children. This study
measured joint attention, attitudes, and follow-up instructions as indicators of interac-
tion. Study [15], which employed a Nao robot, a system was used to help therapists
measure patients’ performances and progress as well as reduce therapy risks. In study
[16] using therapist consultation and observation, four specific roles were determined
for the SAR (Social Assistive Robot) to function effectively as a therapeutic aid in rehab:
demonstrator, motivator, companion, and coach. The results of IROMEC project were
based on consultations with experts (therapists, teachers, parents) who provided advice
on the play needs of the various groups of children with disabilities and helped inves-
tigate how robotic toys could be used to assist these children. In this paper, we aim
to elicit requirements for designing effective rehabilitation game scenarios. Each game
scenario is designed to address specific movements, challenges, and goals relevant to
the rehabilitation needs of children with cerebral palsy. Rehabilitation standing frames
are generally intended for children with high-level disabilities of the lower limb (mostly
levels 4 and 5 GMFCS: Gross Motor Function Classification System). By integrating
serious games tailored for this equipment, we can design interventions specifically for
a group that is frequently overlooked in game design because of their extensive support
requirements. As far as we know, no serious games scenarios have been developed on
rehab standing frames using humanoid robots. This can be due to the difficulty of using
humanoid robots in public spaces by non-specialists in robotics (since there are few com-
mercial applications of pediatric rehabilitation games on humanoid robots). In addition,
obtaining ethics approval for a study involving children with high levels of disabilities
is challenging and require more time. In this context, we have outlined specific research
questions and hypotheses that can be considered for future experimental studies:

Research Question: In rehabilitation games on the Standing Frame, what effects does
include a humanoid robot have on motivation, engagement, and enjoyment for children
with cerebral palsy? Adding a humanoid robot (human size) to a standing rehabilitation
game system poses what technical challenges?

Hypothesis

– Compared to sessions without a humanoid robot, children with cerebral palsy are
more motivated to play rehabilitation games on standing frames when accompanied
and encouraged by the robot.
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– When childrenwith disabilities interactwith humanoid robots during therapy sessions
on standing frames, their engagement levels will significantly increase.

– With the introduction of a humanoid robot, children with cerebral palsy will be more
likely to enjoy rehabilitation games on standing frames with their new interactive
companion.

1.1 Using Robotics and Serious Games in Pediatric Context

The Effectiveness of SeriousGame. The term “serious games” is becoming increasingly
popular today. A serious game is one that runs on a computer or video game console that
is designed for training, advertising, simulation, or education [17]. Games for mobile
devices and virtual reality are the most frequently used gamification techniques [18].
In fact, there are many aspects to concepts such as engagement, immersion, flow, as
well as other terms used to motivate using games as an alternative to more traditional
didactic training [19]. There have been previous studies showing that serious games
are beneficial to pediatric healthcare. Serious games for sensory processing disorders
(SPDs) can combine vision, auditory, and vestibular stimulation because of the nature
of multisensory stimuli and the multimodality of digital technologies [20]. There is
evidence that digital games can reduce depressive symptoms, anxiety, and nausea after
chemotherapy treatment in cancer patients [21]. It has been shown that children with
visual impairments have a poorer self-concept and lower psychosocial well-being than
peers without impairments. According to study [22], children with VIs who played the
serious gameSee scored significantly higher on their academic self-concept than children
who played care-as-usual (CAU).

UsingHumanoidRobot in Pediatric Rehabilitation. Children’s engagement andmotiva-
tion can be enhanced by incorporating motivational expressions and emotions through
humanoid robots such as Pepper or Nao in rehabilitation serious games. The use of
humanoid robot-like Pepper in serious games can enhance pediatric rehabilitation in
a number of ways, including engagement, motivation, enjoyment, and communication
[23]. With Pepper’s interactive nature and human-like attributes, children’s engagement
can be increased, which is not found inmost rehabilitation serious games currently avail-
able. When the robot participates in games as a motivator and encouragement, exercise
becomes more enjoyable and engaging for children instead of them having to do the
rehabilitation game alone.

A humanoid robot has artificial intelligence applications that can recognize a child’s
facial expressions during a game and provide feedback thatwillmotivate the child to keep
playing. With Pepper’s adaptability, real-time, personalized encouragement increases
motivation far beyond a traditional serious game [24]. The humanoid form and ability of
Pepper to mimic human behaviors and expressions create a sense of companionship and
social presence [25]. It is difficult to replicate such a social dynamic in serious games
without humanoid robots. Furthermore, Pepper can play cooperatively or competitively.
By stimulating extrinsic motivation through gamified competition and cooperation, the
robot can be further motivated to perform well. While serious games already engage and
motivate children, humanoid robots like Pepper can take these features to the next level
by offering adaptive encouragement, a social presence, and gamified competition [26].
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Enhanced Data Collection with Pepper robot. Humanoid robots like Pepper can greatly
improve the precision of data collection during serious games in pediatric rehabilitation.
The integrated sensors in Pepper enable real-time monitoring of children’s interactions
and reactions.Unlike traditional therapeutic exercises, inwhich therapistsmustmanually
observe and record data, Pepper’s automated data collection allows for more accurate
assessment. Further, Pepper’s ability to recognize children’s emotional states during
therapy provides unique insights into their emotional state.

Limitations of the Pepper Robot. In partnership with SoftBank Robotics Corp., Alde-
baran Robotics SAS has developed a human-like social robot named Pepper. The robot
is equipped with WiFi or Ethernet ports for connecting to the Internet, the NAOqi oper-
ating system controls Pepper [27]. Japanese influences can also be seen in the design,
such as the manga-like big eyes and Pepper’s hip joint that enables her to bow to some-
one when she meets them. In order to avoid stereotyping, the shape was designed to
be gender neutral (without explicitly defining gender characteristics) [28]. In terms of
its limitation, it is not possible for Pepper robot to understand the nuances of a user’s
speech. It is difficult for Pepper to hear (recognize the voice of the user who is talking
to Pepper) in noisy environments. Although the therapy room isn’t a crowded area (for
standing frame game, 1 child works with 1 therapist), the game’s background music may
cause problems. However, because the game background music has no dialogue, when
the background music is not loud, Pepper robot seems to be able to hear the short dialog
(from child with Pepper). During the game, Pepper will talk more than the child who is
playing, as most of Pepper’s speech is motivating and encouraging. The user will be able
to communicate with Pepper if he or she makes an utterance that is easy to understand.
The age of our users (5 to 9 years old) makes it unlikely that they will use complex
sentences, especially when playing games.

Physical Environment Consideration. From a design perspective, adding a humanoid
robot into a serious games rehabilitation in pediatric context requires an understanding
of the limitations of the robot and matching it with the needs and behavior of the target
users. The humanoid robot Pepper has an excellent voice dialogue system, high emotion
recognition accuracy, and a high degree of freedom of movement [29]. In the case of
Pepper humanoid robot, the children in the targeted age group (aged 5 to 9) should be
able to play the gameswith Pepper robot standing in front of themwhen their feet fixed to
rehab standing frame. Our observation has shown that children’s average height and that
of the Pepper robot are strikingly similar when standing on the rehabilitation standing
frame. As a result, the child and robot are able to interact and communicate better at eye
level due to this height similarity.

It is possible for children interacting with humanoid robots to exert force on the
robots, affecting their position or stability in uncontrolled environments (wild). In the
context of Happy Rehab games, however, children with lower severity disabilities are
safelyfixed to a standing frame.Bymaintaining an appropriate distance between the child
and Pepper, potential physical disruptions during their interactions are prevented.We can
optimize the successful implementation of humanoid robots in pediatric rehabilitation
centers by considering these physical environmental factors. The standing frame rehab
game is designed to accommodate children with disabilities in both the left and right
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sides of their body. Therapists will adjust the game session and timing to accommodate
the child’s needs. The Fig. 1 shows the changes that occur when we add humanoid robot
Pepper to the Happy rehab system game.

Fig. 1. How Pepper robot can affect rehabilitation standing frames is explained as part of the
system’s demonstration; green parts highlight the changes that will occur after Pepper robot is
added to the system (The Pepper robot platform and rehab game system can be linked using touch
sensors such as sEMG).

1.2 Current Happy Rehab Game Scenarios

With cerebral palsy, children cannot play with toys like other kids because of their motor
disabilities, as a gaming interaction, sensory stimulation might be a better approach
[30]. The study focused on the 2019 version of Happy Rehab standing frame game. This
standing frame consists of sensors for knee and foot buttons to get children’s muscles
reaction for playing rehab game. After the therapist fixes the child’s feet and back on
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the frame, he or she begins playing different games according to the child’s therapy
schedule. Each game environment is designed to accommodate different movements of
the child’s knees and feet. This study discusses five different rehab games that children
with Cerebral Palsy (lower limb) can play on this standing frame.

An Airplane in the Desert: Two minutes at the beginning and two minutes at the end
of the session: The airplane catches the stars as it flies in the desert. There is no effort
required from kids as it is automatic. Standing frame pedals move kids’ feet joints gently
at this time. During this part of rehab game session, the goal is to warm up the child’s
body for the next game, which can be challenging for them. Background music is very
calm, similar to airplane flight movements.

Red Racing Car: In Red Racing, four minutes are required: This game requires kids to
move their knees and bottoms of their feet to control a racing car on a road. In general,
the game design and background music are motivational. The kids are playing the role
of race car drivers here. In order to control the car on the road, they need to move their
knees and feet.

A Small Car in a Village: Children need to move their feet muscles in this four-minute
game to drive a small slow car in a setting with trees, rocks, and other objects. In some
situations, kids couldn’t finish the game because this small car was stuck between trees,
rocks, or roads. For passing trees and other obstacles, viewing the car was a bit high.

A Fast Airplane Shooting Crabs: It takes around 2 min for children to play this game
by moving their knees. The background music for this game was exotic, and airplane
movement seemed exciting. Knee movements allow children to kill purple crab-like
creatures in the sky.

ACoinMoves on the Screen to Appear a Picture: This game lasted around twominutes.
Pressing the bottom of the child’s feet moves a coin on the screen and causes a picture
to appear.

Game of Balance: In this four minutes’ game, children do not need to move their feet
and knees specifically. In the button on the screen, there was a rectangle that the child
could move by moving his/her trunk. The child must move his/her trunk left and right
to catch the circles that come from up to down of the screen.

1.3 Materials and Methods

Weused a qualitative approach consisting of interviews (therapist consultations) and par-
ticipant observation for gathering data and insights. Participants are observed and inter-
viewedwith therapists to understand their needs and preferences for creating appropriate
game scenarios with humanoid robots.

Intervention: Happy-rehab game rehab standing frame. Standing frames for pediatric
rehabilitation are therapeutic devices for children who havemobility impairments Fig. 3.
Standing frames like the Happy Rehab system integrate interactive serious games specif-
ically for rehabilitation purposes.With the Happy Rehab system, the user stands onmov-
able foot pedals, and the games are controlled by plantar-/dorsiflexion movements of the
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ankle joint. The user plays computer games designed to activate specific muscle groups
in the lower extremities through specific movements. For the development of future sce-
narios in pediatric rehabilitation games on standing frame, we conceptualized adding
Pepper robots to this system for engaging and motivating children with disabilities.

Specialist Pane: Assembled a panel that included two therapists with experience
employing the rehab standing frame, and the teacher for the ICT class (one main teacher
and two assistants). We selected therapists and teachers based on their expertise and
experience working with children with disabilities, including cerebral palsy.

1.4 Target User Group (Participants)

Children between the ages of 5 and 9 with cerebral palsy. Children with cerebral palsy at
GMFCS level 3, GMFCS level 4, and GMFCS level 5 [31]. Our target group is limited to
these levels based on observations and consultations with children’s therapists. Children
with disabilities that use rehab standing frames are shown in Fig. 2. We used to obtain
the parents’ informed consent.

Two therapists who work with children on the rehab standing frame were on the
specialist panel, as well as the head therapist and the teachers for the ICT (computer lab)
rehab center class.

Fig. 2. Subjective explanations according to the GMFCS system in this study. a) Children walk
using a hand-held mobility device in most indoor settings. They may climb stairs holding onto a
railing with supervision or assistance. b) Children use methods of mobility that require physical
assistance or poweredmobility inmost settings. c) Children are transported in amanual wheelchair
in all settings. Children are limited in their ability to maintain antigravity head and trunk postures
and control leg and arm movements.

Inclusion Criteria: The participants must be between the ages of 5 and 9 years old,
diagnosed with cerebral palsy, and classified as level 3, 4, or 5 on the GMFCS. Fur-
thermore, the specialist panel chosen for answering the questionnaire should include
therapists with experience with rehab standing frames for children and physiotherapy in
pediatric context.

Exclusion criteria: Children whose ages do not fall within the specified range (no chil-
dren between five and nine years of age), as well as children whose diagnoses do not
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include cerebral palsy. Exclusion from the study also occurs when parents or guardians
do not provide informed consent.

1.5 Ethical Approval

This study was conducted under the supervision and coordination of Al Noor Rehab
Training Center. Research was conducted with the center’s permission. This aspect of
the study did not need ethics approval because the observation did not directly involve
children or capture their personal data.

1.6 Data Collection

Rehab standing frame room and ICT class (computer lab for children’s games) et al.
Noor training rehab center observed for data collection. We observed 5 children with
Cerebral Palsy while playing games on a standing frame and children with CP in the
ICT class (computer classes in rehab centers). A rehab game on standing frame session
for each child lasted 20 min and consisted of 6 different game environments. During
an ICT class, children between the ages of 5 and 9 spend 30 min playing games on a
computer or tablet, depending on their disabilities and ages. ICT class games differ from
standing frame games in the use of different parts of children’s bodies. When playing
standing frame games, therapy sessions focus on lower limb exercises, but in ICT class,
hand functions are essential during serious games. However, at both places, we saw
the children’s interaction when playing rehab serious games and their communication
with their therapists when doing their rehab tasks. By taking notes, the researcher col-
lected children’s verbal and non-verbal feedback during the rehab game, also their game
achievement and their communication with their therapist during playing the game was
noted. Also, Teachers and therapists at the rehab center who work with the children
were interviewed in situ. Before answering the questions, the project’s aims and concept
are explained to the children’s therapists by the Al Noor rehab center. As a result of
meticulously observing and gathering data from the interactive sessions and interviews,
a set of specific needs was identified.

Need Identified. Height and Positioning Need: Adapt interactions for children who
cannot stand unassisted (GMFSC Levels 3–5). - > Rationale: Ensuring effective
communication with the Pepper robot, which has a fixed height.

Use of Robot’s Tablet Need: Diverse interaction modes with the robot’s tablet
(touch/no-touch). - > Rationale: In standing frame situations, it is suitable for a variety
of rehab games exercises and target movements without requiring direct touch.

Physical Interaction Safety Need: Ensure a safe distance between the robot and
the child during interactions. - > Rationale: Children with both upper and lower limb
disabilities need to be protected from unintended contact due to poor control.

Usage of External Tablets Need: Tablets can be used in an engaging and safe manner
during therapy sessions without compromising the focus on exercise. - > Rationale:
Therapists utilize tablets for encouragement and distraction during painful or challenging
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exercises (also for physiotherapy rooms), needing a balance between entertainment and
safe exercise performance.

Monitoring and Adapting to Child Progress (Therapist’s Interaction During Game
Sessions) Need: Streamlined transitions and preparation between different game ses-
sions during standing frame exercises. -> time to check equipment, monitor the child’s
condition, and prepare the next game session without causing unnecessary delays or
interruptions in the child’s engagement.

Motivation and Encouragement in ICTClasses Need: Consistent motivational strate-
gies and encouraging interactions from teachers during ICT class sessions. - > and
sustaining children’s motivation throughout ICT class tasks and games, facilitating
improved engagement and productive involvement.

DifferentiatedGameEnvironments forVariedAbilitiesNeed: Children’s disabilities,
ages, and diagnosed body parts can be accommodated in game scenarios to ensure
inclusive engagement. - > Rationale: Recognizing the wide-ranging requirements and
capacities of children with cerebral palsy in ICT classes, varying in age and disability
level, necessitating diversified and adjustable game scenarios and tasks.

1.7 Analysis Data

Based on the collected materials, this study used a thematic analysis [32], since this
methoddoes not require theoretical boundaries, it is a goodchoice forfindingpatterns that
are not necessarily bounded by theory. Thematic analysis aims to identify and analyze
patterns or themes within data. Based on the type of technology interaction, children’s
abilities, and observed impacts, a thememay be developed. Researchers manually coded
the data.

In each rehab session involving standing frames, ICT classes, and Physiotherapy
room, the participation of the children and their parents, the following materials were
analyzed: 1) observations of rehabilitation gameplay, 2) summary notes made after each
session, and 3) interviews questionnaires. Data collected was coded.

The gathered data was analyzed to find the main themes and potential subthemes:

– Main Theme 1: Sensory Preferences and Engagement (Subtheme 1.1 Auditory Pref-
erences over visual stimulation, Subtheme 1.2 Engagement through action rather than
verbal communication)

– Main Theme 2: Assistive Interaction and Motivation (Subtheme 2.1: Transfer Assis-
tance and Physical Support, Subtheme 2.2: Therapist Assistance and encouragement
in game-activities, Subtheme 2.3: Emotional Response and Anticipation for future
session.)

– Main Theme 3: Communication and Verbal Expression (Subtheme 3.1: limited verbal
communication and slow repetition, Subtheme 3.2: use of Non-verbal expression and
gestures)

– Main theme 4: Enjoyment and Meaningful experiences (Subtheme 4.1: engagement
in different games, Subtheme 4.2: Satisfaction in accomplishing task with therapist
encouragement, Subtheme 4.3: expression of desire and emotional response to future
sessions).

ICT class data was analyzed to identify the main themes and potential subthemes:
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– Main theme 5: Interaction Types (Subtheme: 5.1Eye gaze interaction ->Code: using
eye gaze for typing and playing games, Code - > eye gaze control without physical
touch), (Subtheme 5.2 Touch screen interaction, Code - > touching tablet screen
or monitor for game-play, Code - > Simple puzzle games through touch screen),
(Subtheme 5.3 Keyboard Interaction- > Code: Typing sentences on the computer
from a provided paper, Code - > Varied difficulty of sentences and words based on
student abilities, Code - > Typing random letters due to limited control).

– Main Theme 6: Student’s Abilities (Subtheme 6.1 mobility challenges: Code -> use
of wheelchair, Code- > limited hand functionality (grasping, reaching, fine control),
(Subtheme 6.2 cognitive and sensory abilities, Code -> variation in concentration and
mood), (Subtheme 6.3 age-related abilities, Code- > children younger than 7 years
old).

– Main Theme 7: Impact of Interaction (Subtheme 7.1 Engagement, Code- > partic-
ipation in different games environments, Code - > touching colorful background
screen), (Subtheme 7.2 Enjoyment, Code -> sound effects augmenting interaction).

Regarding the demonstration of the currentHappyRehab game on the standing frame
and the observation of children with cerebral palsy playing the game, the following
behavior was coded:

• Visual and Auditory Preference: C1: Disinterested in watching TV, C2: Calming
response to classical music rather than game background music, C3: Indiference to
encouragement to look at the big screen C4: Ability to look at the TV screen.

• HandFunction and other support: C1:Adequate handmuscle strength, C2: Supportive
use of wheelchair for legs.

• Interaction and Function: C1: Light smile and calm demeanor, C2: Limited verbal
communication, C3: Satisfaction in completing the game, C4: Exploring desire to
come back again, C5: Engagement in different games based on the game scenario
and environments, C6: Focus on Knee and foot movements.

Fig. 3. Happy Rehab standing frame for playing rehab games.

1.8 Scenario Design Process

Human-Computer Interaction (HCI) research has been much less impacted by design,
despite its strong presence in practice. It is necessary for the interaction design research
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contribution to constitute a significant invention [33]. It is important that the robot appears
friendly to motivate subjects and create meaningful interactions with them [34]. Based
on Happy Rehab serious games (2019) and researchers’ observations and consultations
with pediatric therapists, play scenarios (see Fig. 3) were developed. The researchers
developed play scenarios based on observations of children with CP playing games
on standing frames in physiotherapy and ICT classes, as well as comments from their
therapists and teachers. In addition, they considered limitations, needs, and the range of
interactions that Pepper robot facilitates (Fig. 4).

The main change, after adding the humanoid robot, is the greeting part (human fea-
tures behavior), which will occur at the beginning and end of the rehab game session.
While transferring the child from her/his wheelchair to the standing frame, Pepper robot
can start a friendly conversation with her/him. Generally, during this time (when thera-
pists are fixing child feet and trunk on the standing frame and bringing the game, they are
busy, and children are waiting until their work is completed). Children’s moods can be
affected before playing the game, for example, Pepper robot encourages them to do their
bestwhen the game starts. Design the robot’s gestures during keymoments of the game to
convey enthusiasm and motivation and to encourage children to do their rehab exercises.
Scenarios might incorporate real-time feedback loops to maximize Pepper’s interactive
potential. As an example, Pepper may provide immediate positive reinforcement if a
child successfully completes a game task with the correct foot movement.

Fig. 4. Components for shaping the final scenario set.
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Table 1. Standing frame rehabilitation games in two scenarios (without robot and with robot).

Happy rehab Current games scenarios Game adaptation when Pepper robot is added

An airplane in the desert It could serve as an emotional motivator. By
cheering the children on and conversing with
them, Pepper can create an emotional
connection and further immerse them in the
game

Red racing Car As a racing coach, Pepper will offer tips and
advice, and encourage them when they do
well, and in times of struggle, reinforce them
with positive reinforcement. Also, with the
robot’s dynamic gestures, driving can be
mimicked

A small car in a village It can guide children through the village,
guiding them to avoid obstacles, just like in
the racing game. In addition to creating short
stories related to the game environment, the
robot can enhance the game’s interactive
capabilities

A fast airplane shooting crabs This game can be played with a robot as a
mission commander, updating children on
their progress and encouraging them to keep
playing. The game can be made more realistic
with robot gestures that mimic the shooting
action

Game of balance By providing real-time feedback, Pepper acts
as a coach, guiding the child’s movement to
catch the circle. Additionally, Pepper can use
its voice to instruct the child to move left or
right, creating a more interactive experience

A coin moves on the screen to appear a picture Pepper can encourage children’s efforts to
apply the right pressure by acting as an art
enthusiast or museum guide. When the picture
appears, Pepper can generate excitement by
trying to guess what it is, thereby building
suspense. In addition, Pepper can praise the
children when the picture is fully revealed, for
example, when they touch Pepper’s head and
Pepper starts laughing

Notes on General The Pepper games enhance the child’s
rehabilitation experience by adding a layer of
personalization and engagement
A child’s name, progress, likes, and dislikes
should be remembered by the Pepper program
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2 Discussion

Our paper focuses primarily on the design of serious game scenarios that could be applied
to improve the rehabilitation process in children.A prototype of happy-rehab 2019 can be
developed on Pepper robot platform based on engagement, enjoyment and motivations
observed in ICT class (computer lab) and standing frame games played by children with
cerebral palsy. The following approaches are considered after identifying is designed to
provide emotional expression, encouragement, and positive reinforcement, making the
child’s environment nurturing andmotivating. It is common for children with disabilities
not to feel confident about their body, and boring and repetitive rehab exercises lead them
to stop their muscle movement before their therapists expect them to.

There are three subthemes in the Assistive Interaction and Motivation theme; the
example to explain them includes when therapists help children move their muscles in
order to complete game tasks, or when therapists give them a Hi Five after a child has
earned a good score. When the child was playing a game and completing rehab tasks, we
captured therapist dialogue as encouragement. In addition, there were some emotional
responses and anticipations from the child for future sessions, such as if I could come
back tomorrow to play more rehab games?

Engagement is divided into two subthemes: auditory stimulation over visual stimu-
lation and action over verbal communication. The graphic design of some games in the
Happy Rehab game on standing frames was poor. This may be the main reason why chil-
dren did not seem to be attracted to visual stimulation during the playing game. Because
of more variety and more professional graphic design in games in ICT class, we didn’t
find the same results as standing frames. As a result of visual stimuli, children were more
engaged in an ICT class than in a standing frame game. Finishing game tasks (through
muscle movements) in action games such as racing a car and shooting airplanes was
more satisfying than games with less action, such as driving a small car in the village.
We noted limited verbal communication, slow repetition, and non-verbal expression and
gestures under the Communication and Verbal Expression theme. A good example of an
explanation is therapists’ efforts to communicate verbally with children before, during,
and after rehab games. Although it can also depend on other factors, such as the child’s
personality, children generally communicate verbally less than therapists.

We categorized the main theme Enjoyment and Meaningful experiences into three
subthemes: engagement in different games environments, satisfaction with accomplish-
ing tasks with therapist encouragement, and expression of desire for future sessions.
However, since the general task for playing the rehab games was muscle movements
(on a standing frame focusing on the feet muscles), the durations of playing the games
and finishing them were not similar, matching this with facial expressions (happy face)
and more emotional expressions (both verbal and gustatory), the difference in enjoy-
ment level is apparent. An obvious indicator of a game’s enjoyment is a child’s desire
to continue playing it more.

The safety of children during use of humanoid robots in pediatric rehabilitation is
one of the most important aspects of humanoid robot use. It was also our priority from
the beginning of the study, and we considered the appropriate place and situation for
using Pepper, a humanoid robot. As a result, we focused on rehab games on standing
frames. The interaction between a humanoid robot and a child with cerebral palsy can
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be utterly uncontrollable in this case. A therapist can fix the distance between the child
and Pepper robot before the rehab game begins. Table 1. Contrasts the rehabilitation
game scenarios before and after the humanoid robot Pepper can add to the rehab system
in terms of human features.

3 Conclusion

Robot-assisted therapy appears to be an effective addition to conventional rehabilitation
therapy for improving motor function in stroke patients according to study [35]. The
results of a meta-analysis indicated that SARs could be effective in engaging children
in therapeutic interventions [36]. Adding humanoid robot motivational expressions and
emotions to the pediatric rehabilitation serious game can make it more immersive and
engaging. As far as we know, no serious games have been developed on rehab stand-
ing frames using humanoid robots. It is necessary to conduct experimental studies in
order to quantify the differences in Motivation, Engagement, and Enjoyment in different
scenarios with and without humanoid robots when playing serious games.
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Abstract. The possibility of robots working alongwithAlpana artist is a develop-
ing field of research at the point of intersection between technology and traditional
art. Alpana painters have the skill and creativity necessary for the delicate design
process, but robots can execute these designs with greater accuracy and efficiency.
In this kind of collaboration, artists would develop ideas for the Alpana, and robots
would speed up the drawing. This combination makes sure that even when tech-
nology aids in the expression of Alpana art, its heart and soul remain human.
Combining human creativity and robotic accuracy has the potential to produce
a harmonious combination that embraces current achievements while retaining
tradition. A growing natural process that respects tradition while embracing inno-
vation is fostered by thismix of tradition and technology. The paper’s contributions
are its investigation of human-robot collaboration in Alpana art, its presentation
of a conceptual Alpana painting robot, and its emphasis on maintaining cultural
legacy while accepting technology progress.

Keywords: Human Robot Collaboration · Alpana Art · Human Robot
Interaction · Cultural Heritage · Robots Artists Collaboration

1 Introduction

For years, integrating art and technology has captured people’s interest by bridging the
gap between tradition and innovation. In the complex world of artistic expression, a
new story is emerging, including a collaboration of robots and Alpana painters. The
Alpana or Alpona art form, which is strongly based on cultural heritage and complex
patterns, is a monument to the interplay of human creativity and regard for tradition [1].
Simultaneously, advances in robotics and automation have added new aspects to creative
processes, offering extraordinary accuracy as well as effectiveness [2]. This research sets
out to explore the unexplored areas where human creativitymeets the potential of robotic
help, all while preserving the authenticity of cultural narratives.
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The Alpana art form, which originated in the cultural tapestry of the Indian subconti-
nent, has captured the essence of generations past via its intricate concepts and visually
fascinating designs. These designs are not only beautiful, but they also have cultural
importance, containing stories, rituals, and interactions between people [3]. Simultane-
ously, great advances in robotics have been made, giving the possibility of incorporating
mechanical help into the creative process. This research explores the intersection of these
seemingly different worlds, proposing a collaboration in which Alpana artists supply
creative vision while robots contribute precision and efficiency in implementation.

The importance of this research lies in its ability to balance tradition and innovation in
the context of artistic creativity.While robotic art is not a newphenomenon, incorporating
robots into culturally rich and complex art forms such as Alpana provides a unique
difficulty. This study’s fundamental research question is: Can robots interact withAlpana
painters in a way that speeds up design execution while respecting the authenticity of
creative expression and cultural heritage?By exploring this subject, we hope to shed light
on the collaboration and interactions between human artists and the robots as technical
partners revealing the small details that affect the success of this collaboration.

Our research takes a cross-disciplinary approach to robotics, human-computer inter-
action, and human robot collaboration. This study intends to analyze the thoughts of
Alpana artists and the obstacles they face in integrating robots into their creative pro-
cesses through an analysis of robotic-assisted artistic outputs. We hope to provide a
comprehensive understanding of the potential consequences, constraints, and benefits
of incorporating robots into the Alpana art form by investigating both the aesthetic and
technological sides of this collaboration.

This article attempts to contribute to the continuing discussion about the relationship
between human creativity and technical growth by crossing the complicated structure
of tradition, innovation, and visual art. Through a thorough examination of this unusual
collaboration, we hope to provide insights that not only improve the field of art and tech-
nology but also encourage greater respect for the delicate relationship between tradition
and innovation and the possibility of improving the collaboration by using the con-
cepts of social robot [4]. This study illuminates the delicate balance between tradition
and technological development through an interdisciplinary lens that includes human-
robot interaction, aesthetic considerations, the difficulties of getting artists’ acceptance,
and enriching the conversation about the relationship between human creativity and
technological advancement.

The rest of the paper is structured as follows: in Sect. 2.1, we present the historic
background of Alpana and its current forms and usage. Section 2.2 provides some exam-
ples of how robots have been used in painting and art. Section 3 presents the concept
design of a robot painter for Alpana painting. Section 4 discusses the issues and impli-
cations of using robot painter in painting Alpana, especially the challenges and the level
of acceptance from the artists community. Lastly, Sect. 5 concludes the paper and gives
a glimpse of our planned future work.
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2 Background

2.1 Alpana

Alpana or Alpona paintings and the roles of Alpana artists provide views into cultural
preservation within the context of creative legacy. In 2023 a paper by Mondal et al.
expressed that Alpana is an ancient form of folk art primarily practiced by women in
Bengal, where motifs, designs, and symbols are directly painted on the floor or wall
using rice paste or colored dust [3]. Alpana is also known by different names in different
parts of India, such as Aripana in Bihar, Mandana in Rajasthan, Rangoli in Gujarat and
Maharashtra, Chowkpurana in Uttar Pradesh, and Kolam in South India (Figs. 1 and 2).

Fig. 1. Floor Art of Alpona in West Bengal Fig. 2. Selection of colors of the Alpana
represents the theme of the celebration.

Women in Bengal design Alpanas. This is part of a long-standing artistic tradition.
They create these patterns by recallingwhat they have seen in the past and often occurring
patterns. In order to symbolize abundance, Alpanas frequently feature commonplace
items like flowers, leaves, fruits, and rice storage containers [5].

Ashraf et al. [6] mention the practice of painting Alpana or Aripan on the mud floor
of the courtyards in Mithila as part of the Madhubani painting tradition. These paintings
were done in white color with rice powder on cow dung plastered ground surfaces and
were appreciated by visitors from the same village and nearby villages. The paintings
were typically made by young girls of the family, and they would discuss the designs and
patterns to be included in the painting. The girls would start making the Alpana in the
afternoon and complete it by sunset, often singing in chorus while painting. However,
due to the changing environment and the decline of joint families, there are now fewer
courtyards and smaller canvases for Alpana paintings [6].

In Uttarakhand’s Kumaon region, Alpana is known as Aipan which entails utilizing
rice paste and a subdued crimson hue to create elaborate shapes and patterns on walls,
paper, and garments. Aipan is primarily designed by women, who paint the artworks on
the floors and walls of their homes using the last three fingers of the right hand. These
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arts are used in religious festivals such as Pujas and in ceremonies connected with birth,
marriage, and death. Besides, they are also used in embellishing wedding invitations,
Diwali artworks, and Kumaoni women’s clothing [7].

Besides the religious connection, Alpana has been used in many social events as a
symbol of art and decoration to increase the festivity and vibrance of the event. Minhus
et al. [5] state that Alpana paintings is a well-known folk-art form in Bangladesh and
its usage is noted in the realm of costume design and cultural celebrations. This form of
art is connected to the way people dress and celebrate their heritage. White, red, yellow,
orange and a particular shade of blue are some of the most significant and historically
significant hues utilized in Alpana art. These colors are used in Bangladesh by people on
festive occasions like Pohela Falgun, Pohela Boishak, International Mother Language
Day. In these festival days, Bangladeshi people dress traditionally and adorn their skin
with beautiful designs that resemble Alpana art. They don’t just care about the art itself,
but also about the colors and what they represent [8] (Figs. 3 and 4)

.

Fig. 3. Designing a street Alpana
(Bangladesh)

Fig. 4. A street painted with Alpana in
requires good labor from artists. Dhaka
celebrating national day.

In current time in Bangladesh, Alpana is also widely used in different social events
such as weddings, social gatherings, social awareness events, and observation of special
significant days such as Independence Day, Victory Day etc. While religious festivals
used rice flour and chalks or leaves and flours, themodern-day social events use paints for
drawing Alpana. These arts are also bigger in shape and have less-complicated patterns
and are used over a large open area where the focus is decoration and beautification
while having cultural connection with the art forms and colors that relate to the region,
heritage, and the vibe and theme of the occasion. Now-a-days, the Alpana is being used
in different kinds of events which can include a simple family event such as wedding,
a university orientation program, annual events organized by an institute or a company,
sports events in schools or colleges or grand celebrations of national events of the country
such as Victory Day, Independence Day, International Mother language day. Unlike the
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traditional Alpanas, where mostly women in the house participated, now participation
from both genders – men and women, especially the young people from universities,
colleges as well as any interested groups and volunteers from different organizations
take part in the painting of modern days Alpana.

2.2 Collaborative Robots or Co-bots in Painting

Painting is a dynamic process where an artist’s goals may change dynamically during
the creative process. Schaldenbrand et al. discusses a concept known as FRIDA (Frame-
work and Robotics Initiative for Developing Arts) [9]. It resembles a system that enables
collaboration between humans and a painting robot. This robot can create canvas paint-
ings from simple inputs like phrases or images. The approach developed by the authors
enables the robot to continuously improve the painting. Because painting with a brush
and paint is sometimes haphazard, this plan may vary. The robot continuously assesses
how the artwork appears and modifies its strategy as necessary to improve it. The paper
also discusses how unique maps and computer tools were used to create the appearance
of realistic brush strokes on the artwork [9] (Fig. 5).

Fig. 5. FRIDA’s embodiment and workspace.

The Busker Robot, a unique robot that can transform digital images into lovely
watercolor paintings. This robot uses a computer program to assist it in making painting
decisions. The computer program analyzes the image and creates a written plan for
the robot to follow. To make the picture appear to have been done with watercolors,
they employ unique techniques. To assist the robot in determining where to move its
brush, they also use computer programs. They employ a robot that canmove in 6 different
directions and a programming language calledURScript Programming to control it [10].
Another paper describes the development of the collaborative robot known as Pictobot,
which helps in the spray-painting procedure in cooperative settings. The idea is to speed
up and simplify the process of painting. Using specialized sensors, the robot can operate
the spray gun and choose how to paint. The robot also pays attention to the employee’s
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suggestions for how to paint. By maintaining the spray gun at the proper distance and
angle from the surface, Pictobot ensures that the paint is applied uniformly [11] (Fig. 6).

Fig. 6. Busker Robot painting at “Piccolo Teatro” (Milan, Italy, November 2017)

Fig. 7. A sample of artist and robot (co-bot) collaboration [12].

Co-bot technology could be used by Alpana artists to improve their work. Co-bots
can be programmed, for instance, to help with the preparation of the traditional rice paste
used in Alpana painting. Additionally, with the help of Co-bots, artists could experiment
with using other colors and materials, and complete repetitive tasks faster with greater
precision and efficiency.
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3 Concept design of an Alpana painting robot.

In this section, we present a design for a robot that would be able to paint Alpana in the
ground surface. It is important to note that its capabilities are limited to ground- level
applications and it is not equipped to paint on vertical surfaces such as walls. From our
experience of designing a wall painting robot Paintique [13], here we extend the design
to make Alpana painter- the robot that would be capable of painting simple Alpana arts.

The Alpana Painter is powered by the Arduino Uno that organizes the robot’s
motions. It is propelled over the painting surface by a DC gear motor and wheels,
and it has a servo motor that fine-tunes the nozzle pipe for precise paint placement. An
LCD panel cover the Alpana Painter, enhancing the user experience by allowing users to
select Alpana designs or patterns for the robot to perform. Safety and precision are vital,
and the robot is outfitted with four IR sensors to detect obstacles and ensure optimal
paint application. These sensors are critical in guiding the robot and ensuring precise
painting strokes (Fig. 8).

Fig. 8. 3D view of a Alpana painting robot.

Indeed, the Alpana artists can create sophisticated designs on traditional surfaces,
and we have the ability to digitize these physical works of art. We can accurately dupli-
cate these patterns in a digital environment by using Computer-Aided Design (CAD)
technologies. This move allows us to more easily keep, edit, and distribute the designs
while preserving their originality and historical significance. A well-established and
widely used approach that can be used to assist the movement of the spray nozzle is by
G-Code, a geometric code. G-Code is a generating algorithm that functions as a com-
munication link between a computer design and the real-time movement of the spray
nozzle [14]. By doing this robot can speed up the process of drawing and act as a helping
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hand. Artists will draw the design and we will convert those deign in digital format. So
that we can use those design as input for the robot.

As Alpana designs move into digital formats, they will achieve extraordinary con-
sistency and precision, ensuring precise duplication of even the smallest intricacies—a
feat that may often be difficult for even the most skilled human artists. Furthermore,
the robotic nature will allow for continuous work, resulting in a quick project comple-
tion. Furthermore, these digitally changed designs will be highly accessible, allowing
for easy storage and sharing, bridging geographical divides, and boosting worldwide
cooperation. This fusion of technology and traditional art forms will not only open the
way for unique unions of historical and modern art forms but will also have substantial
educational value, potentially captivating future generations [15].

4 Discussion

In the following section, we look at the various aspects of using robotic painters in the
field of Alpana arts, examining both the benefits and drawbacks of this technological
integration. The incorporation of robotic painters into the area of Alpana art creates new
obstacles. One significant challenge is retaining the specific human touch that provides
Alpana emotional depth and cultural importance. Another challenge is the wide variety
of motifs and patterns that Alpana includes. For a simple robot, simpler designs might be
doable but complex designs would require much more sophisticated robots with better
precision and advanced algorithms for painting. Our proposed prototype also intends to
draw only simpler designs. Indeed, if the robot’s scope is confined to drawing simple
designs such as leaves and flowers, the cost of developing such a basic robotic system
might be relatively low. Robotic system complexity and cost are linked to the complexity
of its capabilities.

Another challenge is the number of colors in the design of Alpanas. The more colors,
the more complex the designing of the robot will be. Our proposed prototype is shown
with only one-color bucket which would paint one color Alpana arts. For two or more
colors,multiple color bucketswill be needed. In that case, algorithm for selecting the right
color bucket for theNozzlewill be needed.Another alternative is to have separate nozzles
for separate color buckets. In either case, the complexity of the robot and its operating
algorithm will fairly increase. For a primary simple prototype, an easier approach can
be to reuse the same bucket with a second color after the completion of painting in the
first color. But then precision of the positioning of the colors in the floor art will need
precise detection of lines of the previously painted lines. As we can see the success of
the art by the robot will depend largely on the precise technical design and accuracy of
the painting algorithms including precise detection of lines, and precise movements of
the robot.

On the positive side, the incorporation of robotic painters into Alpana art has the
potential to attract the interest of university and college students in robotics and human-
robot interactions. Students who participate in this creative form of art, and technology
may gain a newfound interest in robotics research. Working together with robots may
bridge theory with practical application, creating a desire to create and improve robotic
systems. Social robots and co-bots can be an interesting in this domain where collab-
oration between artists and robots can be the focus of research agenda. Furthermore,
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through modernizing traditional art, Alpana may become more interesting and relevant
to current students, encouraging a new wave of curiosity and learning at the meeting
point of tradition and innovation.

Some artists may be hesitant in the beginning, worrying that the inclusion of robots
may weaken the authenticity and emotional impact that human created Alpana designs
possess. Ultimately, artists’ acceptance will be determined by a variety of factors, includ-
ing their desire to embrace technological progress, the benefits they receive from work-
ing with robots, and the wider cultural context in which these changes are happening.
The artistic community will most certainly find methods to incorporate robotic help
while keeping the authenticity of Alpana art as the advantages become obvious and the
technology becomes more developed.

5 Conclusion

In conclusion, the relationship of digitalAlpana designswith social robots brings in a new
era for this classic art form. The combination of technology and tradition offers benefits
that go beyond increased efficiency. Through digital conversion, it provides precision,
consistency, and accessibility, while the integration of social robots adds an interactive
and educative dimension. Instead of replacing human creativity, these advances magnify
it, producing a harmonic collaboration that crosses generations and regenerates cultural
narratives. This dynamic collaboration aims to keep Alpana art current and treasured
while embracing digital-era innovations.

In this article we have presented an early-stage conceptual design. In the future,
we hope to put our prototype robot to the test in the field. Our work with the Alpana
Painter robot has great potential. We intend to conduct a survey to get artists’ feedback,
optimize the robot’s algorithms for efficiency, experiment with real Alpana images to
assess its capabilities, and constantly improve its functions. A detailed survey of artists’
perspectives on the use of the Alpana Painter robot will provide essential insights into
its acceptance and opportunities for improvement. Understanding their points of view is
essential for improving the technology’s integration with Alpana art. It will be essential
to keep developing and fine-tuning the algorithms that power the Alpana Painter.

Optimizing the robot can result in increased efficiency, precision, and range, making
it an even more beneficial tool for artists. Using the robot to experiment with Alpana
photos will be an exciting step. It will help in assessing the robot’s capabilities in real-
world circumstances and providing useful feedback on its performance. By pursuing
these future research activities, the Alpana Painter will be able to develop further, and
incorporate better the requirements and expectations of artists while pushing the limits
of what this technology can achieve in the domain of Alpana painting.
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Abstract. Social robots have great potential to support individuals’
health and wellbeing. We did a follow up study based on previous work
of a 2021 systematic review following PRISMA guidelines that identified
443 research articles evaluating social robots in health/wellbeing con-
texts with adult participants. In this paper we performed a new analysis
that showed that while the vast majority of the articles reported positive
outcomes related to the use of social robots in these contexts, only half of
those articles supported the results by statistical tests and comparisons,
highlighting a need for future studies with robust methodologies that can
further study and inform the use of social robots for supporting adults in
health/wellbeing. We discuss that different qualitative and quantitative
methodologies are equally valuable, as long as the conclusions are based
on the data collected. We also encourage publication of studies with well
designed and executed methodologies that lead to neutral or negative
outcomes. This is in line with other scientific research fields that empha-
size the need to report on such results to avoid needless replication of
studies that have already been done and could provide important lessons
for the field, but never got published.

Keywords: Social robots · Health · Wellbeing · Study outcome ·
Systematic Review

1 Introduction

Social robots have been evaluated in many domains for supporting humans,
showing different levels of success in a variety of user studies. Health and wellbe-
ing contexts are one of such domains and hold great potential for the use of social
robots in supporting individuals, as well as caregivers and health professionals.
To better understand the benefits and potentials of social robots, it is informa-
tive to review past Human-Robot Interaction (HRI) studies and understand the
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outcome of such studies where social robots interacted with individuals, as well
as to understand how they were evaluated.

There have been extensive studies of social robots for specific user groups,
such as children with Autism or persons with dementia. Similarly, while there is
a large body of reviews related to social robots and health and wellbeing, most
of the review articles focus on a single type of user group or settings, such as in
hospital settings [16], for supporting older adults (e.g., [5–7,18]), for supporting
people with dementia (e.g., [14,19,20,22,33], for mental health or psychological
wellbeing interventions (e.g., [17,24,28]), from perspectives of non-patients who
interacted with the robots (e.g., [15,27]), or focused on the robots as opposed
to users’ evaluations [4,10,21,25,32]. However, evaluation of HRI studies in the
larger scope of health/wellbeing contexts has seen limited attention, perhaps due
to the very large scope of the evaluation.

Recently, Santos et al. (2021) systematically mapped the literature relating
to robotics and human care [26], covering 69 past studies in this domain to
understand the types of tasks performed with the robot (e.g., personal assistant,
object manipulation, human monitoring). A recent large-scale literature review
conducted by the authors’ research team covered 443 articles where social robots
were evaluated in HRI studies with adult participants (including younger and
older adults) [13]. The review presented the social robots used in the studies,
the settings and situations in which HRI studies were conducted, type of data
collected in the studies (i.e., quantitative, qualitative, or mixed), robot control
(e.g., autonomous), and user groups and their health conditions [13]. Here, we
expand on these findings and further analyze the data gathered in the search
presented in [13]. The contributions of this review include (a) outcome of the
past HRI studies, (b) presence of statistical analysis for supporting the outcome,
and (c) distribution of number of articles contributed by different authors in the
past studies as identified by our search.

2 Research Questions

This review article addresses the following research questions.

RQ1 What were the outcomes of the past HRI studies that evaluated social
robots in health/wellbeing contexts with adult participants?

RQ2 How were the data used for reporting the outcomes of the studies analyzed?
Specifically, we ask if the results of the articles were based on statistical
analysis.

RQ3 How broad is the field in terms of the number of different researchers who
have contributed to the publications in the reviewed context?

3 Methodology

This systematic review carefully followed the steps outlined by the Centre for
Reviews and Dissemination [3], and the reporting follows the PRISMA 2020



132 M. Ghafurian et al.

guidelines [23]. In this section, we present a short summary of the methodology
of the systematic review. A more thorough description of the methodology is
presented in [13], where research questions beyond the scope of this article are
addressed. As discussed earlier, in this paper, we expand on the results of the
data collected in [13] to address new research questions that are presented here.

In this review, social robots are defined as robots that operate along-
side humans and are capable of interacting in human-centric terms [8,9].
Health/wellbeing is defined as “the extent to which an individual or group is
able, on the one hand, to realize aspirations and satisfy needs and, on the other
hand, to cope with the interpersonal, social, biological and physical environ-
ments” [31]. A more thorough definition of the terminologies is presented in [13].

According to these definitions, our eligibility criteria required peer-reviewed
studies that used and reported on social robots in a health or wellbeing context,
where the participants interacted with the social robots.

3.1 Eligibility Criteria

Our inclusion and exclusion criteria were as below.
Inclusion Criteria:

– Studies with adult participants (18+ yrs old)
– Studies published in peer-reviewed conferences or journals
– Studies that involved participants who engaged with or evaluated a social

robot in the context of health and wellbeing
– Studies on the use of social robots for a health or a wellbeing intervention,

with related outcomes/evaluations
– Studies on the use of physically embodied robots, and robots that possess

social skills, i.e., those that are considered social robots based on our defini-
tions above

– Studies reported in English

Exclusion Criteria:

– Studies on the use of a purely robotic device (exoskeleton, sensors, artificial
limbs etc.) without social attributes

– Studies on the use of robots in healthcare, where the robots did not exhibit a
social behaviour (i.e., where the robot was not being operated/programmed
to act as a social robot according to our above-mentioned definition)

– Studies with only children as participants
– Studies reported in a language other than English
– Studies that were not included in a conference proceeding or a journal (e.g.,

book chapters, technical reports, etc.)
– Studies that did not have any results related to health/wellbeing as defined

above (e.g., studies that only evaluated general attitudes towards or accep-
tance of social robots without interactions with a robot or without considering
a health context)
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3.2 Information Sources and Search Strategy

Five databases were searched on February 6, 2021 to find relevant studies. MED-
LINE via PubMed, PsycInfo via APA PsycNet, IEEE Xplore Digital Library,
ACM Digitial Library and Scopus were chosen for their coverage of the health
and/or technology literature. The initial search strategy was developed for
PubMed in an iterative process by a librarian in computer science with input
from the review team (see [13] for more information). See Table 1 for the search
used in PubMed.

Table 1. PubMed Search

(((social*[tiab] OR sociable[tiab] OR companion*[tiab] OR humanoid[tiab] OR
animal-like[tiab] OR human-like[tiab] OR humanness[tiab] OR animal assisted[tiab]
OR pet therap*[tiab] OR pets[tiab] OR coach*[tiab] OR friends[mesh] OR Animal
assisted therapy[mesh] OR pets[mesh]) AND (robot*[tiab] OR robotics[mesh:noexp]))
OR (assistive robot*[tiab] OR robotic animal*[tiab] OR care robot*[tiab] OR personal
robot*[tiab] OR interactive robot*[tiab])) AND English[Filter]

Fig. 1. Prisma flow diagram for systematic reviews
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The main concepts searched in PubMed’s MEDLINE were social AND robot
and were selected based on the research questions. To cut down on the amount
of irrelevant results found in the other databases (mainly on the development of
social robots and their use outside of health), the concepts of participant AND
health were added. To define the search terms, we reviewed relevant papers to
ensure that we captured the different keywords and vocabulary used by authors
in both social robotics and health domains. After multiple iterations where dif-
ferent keywords were checked for their precision and recall of relevant articles,
the search terms were defined for each database.

The databases returned a total of 11338 results. These results were exported
into RefWorks [2] and 1932 duplicates were removed. The remaining 9406 were
exported into Covidence [1] and 44 more duplicates were removed.

3.3 Selection Process

The 9362 unique articles were screened in Covidence by six members of the
review team (two people per article) and disagreements were settled by discussion
with at least two additional team members. 739 articles were included for full-
text review. A full-text review (one person per article) was conducted afterwards.
Full texts were checked again for eligibility at the time of data collection. Please
see Fig. 1 for more details.

3.4 Data Collection and Synthesis Methods

The data items and extraction process were developed through discussion by a
multidisciplinary team and tested by five of the reviewers. Five reviewers per-
formed the data extraction (one person per article). Some studies did not include
all the data points of interest and those were left blank in the chart (unless the
missing information was required as a part of the inclusion criteria, in which
case the article was removed).

4 Results

For a thorough summary of the country of authors of the reviewed articles and
year of articles published see [13]. The majority of the articles were published by
researchers in Japan and the United States; however, the search identified articles
written by researchers in 44 different countries [13]. Below, we will report on the
new results related to each of the above-mentioned research questions.

4.1 RQ1 - Study Outcomes

If the social robot had a positive influence on users (attitudes, behaviours, quality
of lives, perceptions, etc.), the outcome was categorized as positive. It included
instances where the robot improved various aspects of people’s lives or moods,
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Fig. 2. Study outcomes

or was associated with positive attitudes. If it had a negative influence on partic-
ipants, did not work as intended, or attitudes were negative, it was categorized
as negative. The negative category included instances in which participants dis-
played disinterest in using the robot or negative interactions were observed.
Some articles had more than one study with different outcomes, or in a sin-
gle study, both positive and negative outcomes were reported. These cases are
shown with Positive/Negative. Similarly, neutral shows when no difference was
observed in the presence/absence of the robot, and positive/neutral shows the
cases were both observed in a paper, e.g., in two studies reported in the same
article. The “not clear” category shows instances where the effect of the robot
was indeterminable, or the study failed to yield conclusive results.

The social robots in the reviewed studies were used in many different roles,
such as for providing companionship, as therapeutic and rehabilitation robots
including animal therapy, for health data acquisition or diagnosis of different
conditions, for cognitive support, as health and exercise coaches, or for help-
ing with fall detection/prevention. Different aspects of the social robots were
evaluated in the reported HRI studies, including their effectiveness and partici-
pants’ attitudes toward the robots. The studies were conducted in a variety of
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Fig. 3. The figure shows whether the articles reported the results based on statistical
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settings, including research labs, participants’ homes, care centres, and hospitals
(see [13]).

Figure 2 shows the outcome of the reviewed papers. The vast majority of the
articles(365 out of 443 articles) suggested a positive outcome of social robots on
aspects of participants’ attitude or health/wellbeing. As can be seen in Fig. 2,
approximately in half of these cases, a proper data analysis method (i.e., statis-
tical analysis) was performed.

4.2 RQ2 - Data Analysis

The presence of statistical analysis was assessed for the studies in the reviewed
papers to investigate if the results or conclusions were drawn from those analyses.
We acknowledge that statistical tests are not necessarily a requirement for all
studies in the health and wellbeing contexts, but such tests can be meaningful
in order to interpret the results. If a study conducted such tests and reported
on any aspect of the analysis (e.g., even p-values only), it was classified in the
“Yes” category (see Fig. 3).1. On the other hand, if a study did not conduct any
statistical tests, it was categorized under the “No” category.

Figure 3 shows the number of articles that performed statistical analysis to
support the reported outcomes. The others included studies where observations
(in many cases with a few participants) motivated specific outcomes, by only
reporting on what was observed. In other words, although those studies provided
evidence that supported a specific outcome, they did not report on a thorough
analysis to provide stronger evidence in favour of those outcomes.

4.3 RQ3 - Authors

We identified a total of 1406 unique authors in all the reviewed articles. Figure 4
shows the distribution of authors in terms of the number of articles published

1 The specific statistical test used in the studies were also extracted, but are not
reported here due to page limits.
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Fig. 4. Distribution of the number of articles contributed by authors based on our
search.

based on our search and in the context of this paper. For example, this shows
that over 1000 authors have contributed to one paper in our search, with 51
authors contributing 5 or more articles.2

5 Discussion, Gaps, and Future Directions

We revisited a review of 443 articles on social robots in health/wellbeing contexts
for adults to better understand the outcome of Human-Robot Interaction (HRI)
studies in these contexts, as well as to study how those outcomes were supported
and to see the breadth of authors involved.

The vast majority of the articles (365 out of 443 articles) reported positive
outcomes based on HRI studies, about half of which were supported by in-
depth data analysis and statistical tests. These results are promising, supporting
benefits of using social robots for supporting health/wellbeing.

However, the very high number of positive outcomes as compared with neu-
tral and negative outcomes may be partly due to the fact that many researchers
may not report on negative or neutral outcomes (while only in some of these cases
such results may be due to methodological issues), due to a general bias of jour-
nals and conferences to focus on positive results. As HRI studies and generally
user studies may be affected by many factors (e.g., participants are self-selecting,
i.e. they have to self-enrol in the studies in order to meet requirements of insti-
tutional ethics boards), it is reasonable to expect that there exist more cases
with neutral and negative outcomes that might have not been published. How-
ever, those reports could be very beneficial indeed, to better understand how
social robots can be improved in this context and beyond. In other words, a well
thought out methodology that did not lead to positive results could still inform

2 Please contact us if you are interested to access the full list of all author names and
corresponding number of papers based on our search.
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the research community about different factors that may negatively affect out-
comes and guide future research. This is also supported in other areas in science.
For example, Teixeira da Silva (2015) argues that negative results can indicate
what does not work and negative results are important in motivating scientific
thoughts [29]. The author highlights a lack of a publishing channel for reflect-
ing these negative results [29]. Furthermore, the general mindset in science that
negatively perceives negative results could be the cause of why negative results
are not published as often [29]. This emphasis on the importance of reporting
negative results is not recent and dates back to many years ago in many scien-
tific fields. For example, Smart (1964) argued for the importance of reporting
negative results in research related to psychology, pointing out how negative
results can inform researchers, and emphasized that negative results are often
unpublished [30]. Fanelli (2012) argues how this can lead to a positive-outcome
bias and may also affect how researchers treat their data and results [11].

Similarly, in HRI, we argue that the field could greatly benefit from learn-
ing about the negative outcomes of research, if the methodology is well thought
out and executed. This could inform researchers about aspects of the robots
(appearance, behaviour, etc.) that may not be desirable and/or be acceptable
for users, including primary and secondary users. Additionally, these results
could highlight user populations that may not have positive attitudes toward
robots, or could point to methodologies or settings that may not work as well
with social robots. A particular concern here is that researchers, students and
faculty alike, who join the field of HRI for the first time, might unknowingly
end up replicating unreported studies that previously gave neutral or negative
results. Therefore, as HRI researchers, we need to be able to publish these neg-
ative or neutral results, as well as to see the value in such work when evaluating
other researchers’ work in the role of reviewers. But in order to succeed in this
endeavour, conferences, journals, and funding agencies need to recognize the
importance of reporting neutral or negative results, and mechanisms have to be
in place to be able to publish and acknowledge those results, similar to pub-
lications with ‘positive’ results. Otherwise, generations of HRI research might
replicate studies that were never published because the results were inconclusive
or negative, which is counterproductive to advancing research in HRI.

Further, a lack of statistical comparisons might be in part due to the limited
number of participants in many studies. As reported in [13], many of these stud-
ies have been based on relatively small sample sizes. Therefore, despite having
many articles reporting on positive outcomes, only half of those that performed
more in-depth data analysis such as using statistical tests (e.g., comparing exper-
imental conditions, before-after studies, etc.) could provide strong evidence and
support, while others are still valuable and informative. Future work based on
larger sample sizes and methodologies that would allow for statistical tests and
comparisons is needed to better understand the potential of using social robots in
health/well-being contexts. This includes studies with multiple conditions with
and without social robots, as well as studies where aspects of participants’ health
and wellbeing or attitudes are evaluated before and after using the social robots.
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Those quantitative studies can complement other in-depth studies, including case
studies, and other methodologies such as conversation analysis [12]. Ultimately,
although in this review it was not possible to evaluate all data analysis methods
and we only focused on statistical analysis (as the specific methods, especially
related to qualitative analysis were not often reported in the reviewed articles),
we acknowledge that statistical analysis is not a necessity in all HRI studies.
Rather, the selection of methods should be decided based on the research ques-
tions addressed, the setting of the study, the number of participants that could
be recruited realistically, etc. For example, in many of the reviewed studies that
dealt with studying the effect of social robots on users’ attitudes, moods, and
other behavioural effects such as reducing depression, statistical tests comparing
conditions with and without social robots would be required to provide evidence
about positive effects of social robots. In the absence of such evidence, those
studies can still be informative in terms of showing the impact the social robots
can have, but then the claims need to be adjusted to be representative of the
findings.

It is important to acknowledge that conducting long-term studies with social
robots in health settings (similar to many other application-oriented settings),
with specific user groups, and/or with a large number of participants can be
highly challenging. Social robots introduced in many environments (e.g., hospi-
tals, care centres) might be perceived as a novelty — depending on the location
of the study — which may affect the number of participants who would be willing
to join the research studies, or the number of facilities (hospitals, care centres,
rehabilitation centres, etc.) that may approve such studies, depending on their
attitudes towards robots as novel technology, as well as them considering the
effort required in term of staff time and concerns such as interruptions to the
operation of the unit.

Additionally, usually the number of social robots present in a lab that is
running the study is limited — which is also affected by the cost of the robots
— another factor that can affect recruitment of participants compared to the
other types of technologies such as virtual agents and mobile applications that
can become more widely available and used in parallel with multiple partic-
ipants. Therefore, despite the need for long-term, large-scale studies with in-
depth data analysis, there is definitely value in small-size studies that report on
general observations with a small number of participants and based on shorter
interactions. Especially studies conducted with a specific user group, in specific
settings, etc., can act as a stepping stone for expanding these HRI studies to
larger-scale future studies, for example by exposing different settings and user
groups to social robots and reducing the hesitation that may be due to the nov-
elty of social robots and general assumptions about them. Furthermore, while
field studies in real-world settings such as hospitals and care centres are the ulti-
mate goal in order to evaluate social robot technology in situ, lab based studies
and their outcomes are still important as initial steps, to get prepared and ready
(technically and methodologically), before going out ‘into the wild’.
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Limitations: This review had several limitations. We relied on authors’
reports on the results and data analysis method. Therefore, our review did not
identify the cases where the reported results were not supported by the study
or where in-depth data analysis was performed but not reported in the articles.
Also, although we had a large multi-disciplinary team who originally helped
with the screening and data extraction steps, and despite carefully designing the
search teams with direct involvement of an experienced librarian, we might have
missed some of the related articles. Furthermore, for such a large scale review,
some papers might have been missed due to human error during the screen-
ing stages, despite being screened in duplicates. This may specially affect the
reported distribution of the number of papers contributed by different authors
published before our cut-off date February 6, 2021. Finally, data analysis meth-
ods other than statistics may be as valuable, or more appropriate, depending on
a study’s research questions and context. Here, we had to only rely on statistical
analysis reported in the papers as it was not possible to evaluate all approaches
based on the information provided in the reviewed papers.

6 Conclusion

Social robots have great potential in health/wellbeing contexts and for sup-
porting individuals. To better understand the results of HRI studies with social
robots in this context, we reported on a large-scale systematic review, where
we investigated the outcome of HRI studies in studies where a social robot was
used in health/wellbeing contexts with adult participants. PRISMA guidelines
were followed and the reported results expanded on another systematic review
that was conducted on the similar set of articles, addressing other research ques-
tions. Here, we reported on the study outcomes and whether statistical tests
were performed to support those outcomes. We also assessed the distribution of
authors which showed a broad range of authors who have contributed to this
field. A need for publishing studies with negative or neutral outcomes based on
robust methodologies is identified, as well as a need for performing studies with
a larger number of participants and robust methodologies. This would allow
conducting data analysis that can help better understand and inform how social
robots can assist people in health/wellbeing contexts. We also highlighted that
different research methodologies, both qualitative and quantitative, including
studies with small sample sizes, or studies with neutral or negative outcomes,
can be important to advance HRI research in the context of supporting adults
in health and wellbeing and beyond, as long as the findings of the studies match
conclusions being made on the data.
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Abstract. As integrating social robots in elderly care scenarios becomes
increasingly prevalent, the need for ethical decision-making frameworks
to govern their actions is critically important. This paper presents a
comprehensive computational approach using supervised machine learn-
ing algorithms to address the ethical considerations inherent in robot-
assisted fetching tasks for the elderly. Drawing upon established ethical
principles and novel moral dimensions specific to elderly care, we develop
an intricate framework encompassing diverse entities and scenarios using
a greet or beat approach. To validate the framework, we conducted a pilot
study involving thirty participants experienced in caregiving. Through an
interactive application, participants designed scenarios, decided whether
the robot should fetch objects, and provided reasons for their choices.
Their decisions were then compared with predictions generated by a set
of machine learning algorithms trained on a dataset of various scenar-
ios. Our results shed light on the diverse ethical perspectives in elderly
care and the feasibility of automating ethical decision-making for social
robots in this domain. This research contributes to the burgeoning field
of roboethics, offering insights and tools to guide the responsible deploy-
ment of robots in assistive elderly care, ultimately promoting the well-
being and ethical treatment of elderly individuals.

Keywords: Roboethics · Social Robots · Elderly Care · Supervised
Classification Algorithms · Machine Learning

1 Introduction

The landscape of robotics has witnessed a significant evolution, culminating in
the development of social robots - a category of robots designed to interact with
humans and fellow robots in a manner that aligns with social norms. Breazeal
and Scassellati’s seminal work in 1999 [6] established the framework for social
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robots as entities that communicate intention perceptibly to humans and pos-
sess the capacity to pursue objectives alongside human and robot agents col-
laboratively [4]. Social robots are becoming increasingly integrated into human
social environments, particularly in elderly care; socially assistive robots (SAR)
or social robots (SR) are crucial assistants, enhancing well-being through social
interactions and support [17].

The recent integration of socially assistive robots (SARs) represents a promis-
ing solution to enhance the well-being of the elderly and alleviate the caregiving
burden on families [20]. SARs aim to enable independent living by assisting
with essential tasks encompassing service and companion robots. These robots
are essential for promoting social interaction, reducing stress, mitigating loneli-
ness, and enhancing overall well-being, especially in elderly care [34]. However,
the ethical considerations surrounding the use of social robots in elderly care sce-
narios emphasise the urgency of exploring these implications, given the evolving
needs of the elderly population in a changing demographic landscape. Social
robots are characterized by certain fundamental key attributes, such as auton-
omy, physical embodiment, perception, cognition, interaction and adherence to
social norms, defined as ethics or roboethics [29]. These attributes emphasize
the need for social robots to have a tangible form and the ability to engage with
humans independently. Examining these ethics surrounding the deployment of
these robots in sensitive caregiving contexts is essential to ensure alignment with
the well-being and values of elderly individuals and their caregivers [18].

A fundamental challenge lies in the dual utility of robots, which can both
assist and potentially misuse their capabilities, necessitating a careful ethical
evaluation [9]. This discourse delves into critical ethical questions, including the
delegation of decisions to autonomous machines, the distinction between human
and robot decision-making, and the authorization of robots to make life-or-death
determinations. Additionally, it addresses accountability in cases of harm caused
by robots. The future trajectory of robotics is expected to encompass tasks cru-
cial to human safety and well-being, making it essential to integrate ethical
decision-making capabilities into software agents [7]. This approach allows com-
puting systems to assess the ethical appropriateness of their actions, aligning
with ethical and legal parameters. By integrating ethical and legal values into
software systems, technology can be used conscientiously and ethically, ensuring
its responsible and beneficial application in ageing and well-being.

Therefore, this paper elucidates fundamental ethical principles essential when
elderly care-fetching robots interact with the elderly. We introduce a novel eth-
ical computational framework designed to mitigate significant ethical concerns.
The foundation of this framework lies in the incorporation of core principles
from medical ethics, computer ethics, and machine ethics, all within social care
ethics. This research explores the ethical dimensions of decision-making con-
cerning social robots within elderly care scenarios. By examining the intricate
interplay between technological innovation, social interaction, and ethical con-
siderations, this study aims to contribute to the ethical framework essential for
seamlessly integrating socially interactive robots into the care of the elderly pop-
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ulace. The present paper explores ethical considerations intrinsic to deploying
social robots within elderly care scenarios, adopting a computational approach
using machine learning techniques. The transformative demographic patterns
and the ensuing challenges in elderly care underscore the urgency of this investi-
gation, as it seeks to navigate the intricate web of ethical implications associated
with the integration of technological solutions in addressing the evolving needs
of the elderly population.

2 Background and Motivation

2.1 Social Robots: A Comprehensive Overview

The term “social robot” was introduced by Billard, Dautenhahn, and Breazeal,
defining it as a robot endowed with social intelligence capable of engaging in
communication and interaction with humans, understanding personal connec-
tions, and relating to individuals on a social level [6]. Breazeal further cate-
gorizes social robots into four classes based on their ability to support social
models and the complexity of their interaction scenarios, ranging from socially
evocative robots that elicit emotions through caregiving interactions to socia-
ble robots that actively engage with humans to fulfil internal social aims [4].
Additional categorizations include socially situated robots, socially embedded
robots, and socially intelligent robots, reflecting varying degrees of integration
and awareness within social environments [24]. Notable examples of social robots
include Sophia, Pepper, Nao, ASIMO, Jibo, Moxi, Kaspar, and Tiago, each con-
tributing to the diverse landscape of machines designed for sophisticated social
interactions and human-robot engagement.

2.2 Social Robots in Assisting the Elderly

Elderly care faces pressing challenges, including elder abuse, limited awareness of
risk factors, nutritional concerns, social isolation, financial constraints, and the
need for personalized care in a diverse ageing population [3]. Rather than solely
relying on traditional elderly care facilities, a diversified and personalized app-
roach is gaining prominence, with technology-driven in-home assistance foster-
ing improved quality of life through enhanced patient-caregiver interactions [28].
Given the substantial increase in the global elderly population expected by 2050,
social robots, particularly Social Assistive Robots (SARs), have emerged as a
promising solution to address the escalating demand for elderly care services
and improve health and social care quality [23]. SARs are intelligent robotic
systems designed to assist with Activities of Daily Living (ADL), monitor phys-
ical conditions, and provide entertainment, contributing to the well-being and
independent living of the elderly. They have advanced their ability to commu-
nicate with humans using diverse modes such as speech, gestures, and facial
expressions, thanks to machine learning and pattern recognition [3].
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2.3 Fetching Tasks by Social Robots for the Elderly

Social Assistive Robots (SARs) in elderly care serve dual roles as service and
companion robots, each tailored to specific functions. Service robots assist
elderly individuals with daily tasks like eating, health monitoring, reminders,
and safety [17]. Mobile service robots, in particular, offer versatile capabilities,
including object delivery, human and object detection, cognitive training, and
entertainment, thereby enhancing the daily routines and overall quality of life
for the elderly. Several notable examples of such robots include TIAgo, Pepper,
Aethon, Temi Telepresence Robot, Relay robot, and Moxi [11]. While profes-
sionals in the care sector have shown receptivity to incorporating robots into
their interactions with elderly residents, studies reveal differing views and con-
cerns among staff and residents about the utility and acceptance of these robots.
Research also indicates that older adults are open to engaging with humanoid
robots for cognitive and physical activation but do not seek to replace human
caregivers entirely [10]. The safety and security aspects of SARs have received
positive feedback, although overall acceptance remains a topic for ongoing inves-
tigation. Additionally, existing research underscores the psychological benefits
of SARs among elderly groups and emerging connections formed between the
elderly and robotic animals. However, these studies have yet to comprehensively
examine the ethical dimensions of SARs in elderly care, leaving an important
area for future research [35].

3 Ethics in Social Robots

At its core, technology mirrors the values of humanity. As inherently moral
beings, humans build their lives on these values, making ethics a vital component
of responsible and morally upright technology use. The Principles of Robotics
underscore that robots should adhere to existing laws, including privacy, and
should be designed with safety and security in mind. Furthermore, it emphasizes
the importance of identifying responsibility for the actions of robots.

3.1 Roboethics: Ethical Reflection on Robotics

Roboethics, as defined by [31], is the ethical reflection concerning the unique chal-
lenges that arise from the development and integration of robotic applications in
society. It encompasses a wide array of considerations, including the dignity and
integrity of individuals, their fundamental rights, and the intricate social, legal,
and psychological aspects inherent in human-robot interactions [31]. Despite the
significance of Social Assistive Robots (SARs) significance, [9] highlights a cru-
cial gap in their ethical analysis. While they provide valuable Human-Robot
Interaction (HRI) benchmarks for SARs’ development, these benchmarks do not
inherently incorporate ethical considerations. World-renowned robotics experts
such as [6] and [26] foresee robots gaining the capacity to learn and compre-
hend human profiles, preferences, and habits. This evolution presents ethical
quandaries concerning privacy, safety, and individual freedom [13].
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3.2 Importance of Roboethics and Consequences of Neglect

The integration of Social Assistive Robots (SARs) into social care organiza-
tions, particularly in the context of elderly care, necessitates the establishment
of a robust ethical framework. Failing to conduct ethical analysis when deploy-
ing SARs in elderly care settings can have detrimental consequences, given this
population’s inherent complexities and vulnerabilities [30]. Scholars like [25]
have emphasized the importance of caution in the robotics community, high-
lighting that beyond physical safety concerns, vulnerable populations, including
the elderly, can face psychological challenges arising from robot interactions.
Acknowledging the potential risks associated with using robot carers for the
elderly, such as reduced human contact, increased feelings of objectification, and
threats to privacy and personal liberty, scholars like [32] and [27] emphasize the
urgent need for guidelines and legal regulations, particularly concerning vulner-
able groups like the elderly [1].

3.3 Ethical Considerations in Robot-Elderly Interaction

Human-robot interaction, especially within social robots, presents many ethical
challenges, primarily in interactions’ psychological, emotional, and social dimen-
sions. One proposed ethical framework, derived from Bernard Gert’s deontologi-
cal rules, outlines ten guiding principles governing a robot’s actions, irrespective
of their consequences [19]. These principles involve preventing harm and uphold-
ing freedom and promises. Still, they can lead to ethical dilemmas, and as med-
ical robots, social robots must also address concerns like attachment, deception,
autonomy, privacy, and justice. Addressing these multifaceted ethical dimen-
sions is paramount to ensuring responsible and morally acceptable human-robot
interactions, particularly in assistive care contexts [14]. Social Robots in elderly
care raise ethical concerns, including potential social isolation, deception, and
loss of dignity, all rooted in human rights and shared values [2]. Balancing the
empowerment of the elderly through technology with preserving their autonomy
and privacy is crucial in addressing these ethical considerations.

3.4 Existing Approaches and Guidelines for Addressing Roboethics

Addressing ethical considerations in robotics and artificial intelligence involves
two primary approaches: the bottom-up and the top-down approaches.

The bottom-up approach [33] involves designing machines capable of collect-
ing information, predicting outcomes, making choices, and learning from experi-
ences. This approach enables machines to discern right from wrong by learning
from their actions and mistakes, allowing them to adapt their decision-making
through experience. It is a self-modifying approach to ethical decision-making.

On the other hand, the top-down approach [33] encompasses two major
ethical frameworks: Deontological Roboethics and Consequentialist Roboethics.
Deontological Roboethics aligns with Asimov’s Laws, which include principles
like not harming humans, obeying human orders (unless conflicting with the first
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law), and self-preservation. Consequentialist Roboethics evaluates actions based
on their outcomes, requiring robots to describe situations, generate alternative
actions, predict outcomes, and assess situations in terms of their goodness or util-
ity. The challenge lies in defining “goodness” and selecting criteria for assessing
situations.

Implementing ethical guidelines in robotics, such as Asimov’s Three Laws,
presents computational challenges, particularly in real-time decision-making [19].
Roboethics involves maintaining human dignity, fundamental rights, ethical AI
algorithms, and the potential for robots to make independent ethical decisions.
Additional guidelines from HRI benchmarks and EPSRC rules emphasize safety,
transparency, accountability, and legal adherence [5], collectively providing a
framework for responsible robotics development.

In social robotic systems, adhering to specific ethical principles encompass-
ing various dimensions: Human Dignity Considerations, Design Considerations,
Legal Considerations and Social Considerations. The human dignity considera-
tion encompasses the following principles essential in creating an ethical frame-
work. a. Prioritize and respect individuals’ emotional needs. b. Safeguard the
right to privacy while considering design goals. c. Show utmost respect for
human frailty, including physical and psychological aspects. These principles
offer a structured framework to ensure responsible and ethical development of
robotic systems while upholding human dignity, adhering to legal standards, and
considering social implications. [8]

3.5 Developing an Ethical Framework for Assistive Care Scenarios

In the development of assistive technologies, particularly within the context of
assistive care for the elderly, understanding the perspectives and requirements
of the target groups is a crucial yet often neglected aspect of research in Human-
Robot Interaction (HRI). While initial studies by [32] and [16] have shed light
on the qualitative dimension of Socially Assistive Robots (SARs), a more pro-
found comprehension necessitates practical investigations with direct input from
elderly groups. This approach aligns with the principles of social care ethos,
which emphasizes the importance of considering individuals’ perspectives, atti-
tudes, and dignity in care exercises. In elderly care, social care ethos interprets
core medical ethical principles, particularly focusing on individual autonomy,
beneficence, non-maleficence, and justice. However, applying these principles in
caring for older individuals presents significant challenges due to differing per-
ceptions about ethical matters among health professionals, patients, and their
families. Consequently, there is a growing call for roboticists to develop a code
of ethics, as advocated by [24], and proposals like the general code of ethics
for robotics engineers by [15] aim to provide an ethical foundation for the field
of robotics. Additionally, safety remains the paramount benchmark in HRI, as
evaluating a robot’s safety within its designated domain is critical to ensuring
its ability to enhance the well-being of its users while neglecting safety consid-
erations during the design process, which could potentially harm the very users
it seeks to assist [21].
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3.6 Research Objectives

The review of existing literature has revealed a significant gap between ethical
considerations and the practical implementation of robotics, particularly con-
cerning the assistance of elderly individuals. In essence, there is an absence of
established roboethics frameworks that can offer guidance throughout the devel-
opment and deployment of Socially Assistive Robots (SARs). This deficiency
has resulted in a lack of ethical understanding and tools to facilitate effective
communication between developers and potential users of SAR technologies.

In light of these findings, the following research aims and objectives have
been identified:

– To investigate the current state of ethics in the development of SARs for
elderly care and to identify potential limitations within existing practices.

– To propose a comprehensive computational roboethics framework encompass-
ing human supervision schemes, HRI benchmarks, and ethical specifications
for designing, developing, and utilising SARs in elderly care.

– To demonstrate the practical application of the proposed roboethics frame-
work through case studies, thereby validating its effectiveness in real-world
scenarios.

This research seeks to bridge the existing gap between ethical considerations
and the practical deployment of SARs in assisting elderly groups, ultimately con-
tributing to the development of responsible and ethically sound robotics tech-
nologies for elderly care.

4 Research Questions (RQ) and Methodology

The central inquiry of this study revolves around the feasibility of constructing
an algorithmic framework for ethical decision-making tailored to care robots
assisting the elderly. The overarching objective is to develop a framework that
empowers an elderly care robot to navigate typical scenarios encountered by the
elderly during their daily lives, assisting them in essential tasks. This framework
aims to endow the robot with the capacity to make decisions guided by predefined
ethical principles, ensuring the avoidance of ethical concerns, particularly in light
of the heightened sensitivity surrounding elderly individuals.

RQ1. How do we design a generalized ethical framework for decision-making
in elderly care social robots for fetch tasks? Is it possible to establish an algo-
rithmic ethical decision-making framework for an elderly care robot capable of
addressing the routine scenarios commonly encountered by elderly individuals in
their daily lives while safeguarding against ethical concerns linked to the elderly’s
unique needs and sensitivities?

Methodology for RQ1 : This research will adopt a multifaceted approach,
beginning with an extensive literature review to identify prevailing ethical chal-
lenges and concerns associated with care robots for the elderly. Subsequently, a
comprehensive set of ethical principles will be formulated, guided by established
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ethical frameworks and guidelines. These principles will serve as the foundation
for the algorithmic framework.

The algorithmic framework’s development will involve the integration of these
ethical principles into the decision-making process of the care robot, enabling it
to assess and respond to various scenarios with ethical considerations in mind.
To validate the framework’s effectiveness, practical case studies involving typical
elderly care situations will be conducted, assessing the robot’s decision-making
performance in real-world contexts.

5 A Computational Approach for Ethical Decision
Making

The primary objective of this research endeavour is to devise a comprehen-
sive framework designed to address and accommodate the daily tasks and rou-
tines encountered by the elderly population. This framework aims for universal
applicability, catering to the diverse needs of elderly individuals worldwide. It is
grounded in a generalized scenario that encapsulates various facets of an elderly
person’s life, encompassing their social interactions, living conditions, essential
daily activities, well-being practices, and health conditions. Moreover, this sce-
nario considers domestic home settings and environments within elderly care
facilities.

The ultimate goal of this research initiative is to furnish a versatile framework
capable of guiding the decision-making processes of robots deployed to assist
the elderly across many real-world scenarios. This framework, firmly rooted in a
holistic understanding of the elderly’s daily lives, aspires to enhance the quality
of care and support provided to this demographic while adhering to ethical
principles, thus bridging the gap between human intuition and robotic decision-
making through a greet or beat approach.

5.1 Greet or Beat Approach

Ethical decision-making constitutes an inherent aspect of human cognition
grounded in ethical intuition. However, integrating ethical considerations into
the decision-making processes of robots necessitates the development of distinct
rules and policies tailored specifically for these artificial entities. To illustrate this
point, consider a scenario where a human and a robot are tasked with greeting or
beating someone upon command. While a human may exercise ethical discern-
ment and refrain from beating, a robot, devoid of such innate ethical intuition,
may execute the command without hesitation. This stark contrast underscores
the imperative need to imbue robots with the capability to make decisions that
emulate human-like ethical judgment, distinguishing between permissible and
impermissible actions in a given context. Our decision-making framework is
designed to handle situations where a robot must decide whether to execute
a given command. This decision is based on thoroughly analysing the scenario,
particularly when sensitive ethical dilemmas arise. While there can be multiple
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possible reactions of the robot to a specific command, the primary focus in such
delicate situations is determining whether to execute the command. To facili-
tate this yes or no kind of binary decision-making, the greet or beat approach is
chosen. This research endeavours to contribute to creating ethically aware care
robots tailored to the needs and sensitivities of the elderly while upholding a
robust ethical decision-making framework that minimizes ethical concerns.

5.2 Comprehensive Ethical Framework for Elderly Care Robots

To establish an ethical framework for socially assistive robots (SARs) dedicated
to elderly care, it is paramount to incorporate existing ethical principles and
introduce novel ones tailored to the specific domain. The amalgamation of these
principles serves as the foundation for a robust decision-making framework that
addresses ethical concerns effectively. The core principles encompassed in this
ethical framework encompass the following:

Existing Ethical Principles. Asimov’s Three Laws of Robotics: These founda-
tional laws emphasize the prohibition of causing harm to humans, the imperative
to obey human orders (unless they conflict with the first law), and the mandate
for self-preservation, as long as it doesn’t contradict the prior two laws [19].
The Three Laws of Responsible Robotics: Extending beyond Asimov, these laws
underscore the significance of systems safety, responsiveness in social interac-
tions, and the seamless transfer of control during contextual disruptions [19].
Machine Ethics: This pertains to the ethical implications of artificial intelligence
(AI) and autonomous systems. It involves formulating guidelines and frame-
works to instil machines and AI systems with ethical behaviour, ensuring morally
responsible actions, particularly in scenarios with ethical consequences [33].
The EPSRC Principles of Robotics : Encompassing compliance with laws, respect
for human rights, and the establishment of transparency, these principles provide
a fundamental ethical foundation [12].
Medical Ethics: Grounded in the Georgetown Mantra, medical ethics revolves
around principles such as autonomy, beneficence, non-maleficence, justice, truth-
fulness, and dignity, all essential in elderly care [22].
Value-Sensitive Design: This approach seeks to integrate human values system-
atically throughout the design process, focusing on well-being, dignity, justice,
welfare, and human rights [8].

In addition to these, the following ethical principles are newly proposed:
Relational Ethics: Given the frequent involvement of other individuals related to
the elderly in caregiving scenarios, the principle of relational ethics emphasizes
the ethical considerations associated with these relationships, factoring in the
dynamics between the caregiver and the care recipient.
Self Ethics: Acknowledging the significance of personal ethical codes and princi-
ples, self-ethics encompasses the individual ethical standards and responsibilities
that a person adheres to for their own well-being.
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The Core Morals. With these ethical principles as the backdrop, the frame-
work establishes five core morals that underpin the decision-making process for
SARs in elderly care. These core morals act as guiding principles, mitigating
ethical concerns during tasks related to the elderly:
Safety : Prioritizing the physical safety and well-being of the elderly by avoiding
actions that may cause harm or pain, aligning with ethical considerations.
Hygiene: Upholding the elderly’s hygiene and cleanliness, preventing the poten-
tial spread of germs or infections, is a critical ethical concern.
Privacy : Safeguarding the personal privacy of the elderly to ensure their mental
comfort and well-being, addressing ethical concerns regarding intrusion.
Timely Awareness: Recognizing the significance of timely actions in the lives of
the elderly, aligning with ethical responsibilities.
Situational Awareness: Ensuring the robot remains vigilant regarding the physi-
cal and mental state of the elderly, staying aware of their health conditions, and
responding ethically.

The framework dictates that any command issued to the robot conflicting
with these core morals will be rejected, thereby preventing ethical concerns and
aligning the robot’s actions with ethical principles.

5.3 Design of Ethical Framework

Our research tackles a seemingly straightforward yet ethically complex task:
fetching objects by a robot for elderly individuals. To address the ethical intrica-
cies associated with this task, we have meticulously crafted a scenario encompass-
ing various elements of an elderly person’s life, applicable to both regular home
settings and elderly care homes. Moreover, we have categorized the involved
entities into distinct classes based on potential ethical concerns, facilitating an
algorithmic approach to our framework.

Entity Classification

– Instructor : These individuals command the robot to fetch objects for the
elderly. They can be further subdivided based on “Relational ethics” into:
• Elders: The elderly individuals who command for themselves.
• Residents: First and second-level blood relatives of the elderly.
• Personnel: Paid household helpers.
• Visitors: Occasional visitors to the elderly.
• Medics: Healthcare providers for the elderly.

– Object : The items instructed for fetching are categorized into subgroups
such as medical items, unsafe items, hygiene-sensitive items, restricted access
items, user-restricted items, personal items, shared items, and edible items.

– Place: The location where the elderly person resides while receiving the
fetched object. This includes medical spaces, dining areas, lavatories, private
rooms, and communal areas.
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– Time: Different times of the day are classified based on the elderly’s timely
needs and habits, including early morning, morning, afternoon, evening, night,
and sleep time.

– Situation: Represents the physical and mental state of the elderly during
fetching, categorized as either emergency or normal situations.

Machine Learning Based Approach. A meticulous examination of all poten-
tial scenarios from combining these entity subclasses has been undertaken to
address ethical concerns comprehensively. For example, a scenario involving a
visitor instructing the robot to fetch an unsafe item for the elderly would violate
our core moral of safety. An ethical framework has been developed based on these
scenarios and hypotheses, with the robot programmed to abstain from fetching
objects whenever there is a possibility of violating our five core morals: Safety,
Hygiene, Privacy, Timely Awareness, and Situational Awareness. To operational-
ize this framework, a dataset containing all possible scenario combinations has
been compiled, and machine learning classification algorithms such as Random
Forest, Decision Tree, SVM, KNN, Näıve Bayes, Logistic Regression, Gradi-
ent Boosting, and Neural Networks have been trained. These models have been
trained on a dataset divided into training and testing data (75% and 25%, respec-
tively), and their accuracy has been evaluated using the testing data as shown
in Fig. 1. In conclusion, the proposed ethical scenario framework and machine
learning approach aim to ensure that assistance is provided to the elderly by
robots in a manner that aligns with core ethical principles, safeguarding their
well-being and dignity throughout the fetching process.

Fig. 1. Receiver Operator Characteristic (ROC) Curve for different ML algorithms
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6 Pilot Study: User-Driven Evaluation Using
the Computational Framework

The study design incorporates a user study facilitated by a purpose-built appli-
cation encompassing essential entities and their respective sub-classes pertinent
to the act of fetching. Participants are allowed to craft scenarios by select-
ing elements within these entities and determining whether, in their judgment,
the robot should undertake the task of fetching. Furthermore, participants are
encouraged to elucidate the rationale behind their decisions. Ultimately, partici-
pants can juxtapose their decisions with those generated by our trained computa-
tional model. This user-centric approach within the study design is a pivotal step
in developing an ethical decision-making framework tailored for robot-assisted
fetching, encompassing user perspectives and computational modelling to ensure
the fulfilment of ethical imperatives in this context.

A pilot study was conducted with 30 participants, as shown in Fig. 2b in
India, comprising twelve females and eighteen males, with an average age of
35. All participants had caregiving experience, and ethical committee approval
was obtained for the study. Each participant spent an average of 10 min on the
exercise.

6.1 Hypothesis Formulation

H1: Hypothesis 1: The decisions made by participants regarding whether the
robot should fetch an object for the elderly will exhibit significant variance,
reflecting diverse perspectives on ethical considerations in the context of elderly
care assistance.
H2: Hypothesis 2: The computational model’s predictions for the decision to
fetch or not, based on participant-generated scenarios and rationales, will demon-
strate a reasonable level of accuracy, indicating the feasibility of automating
ethical decision-making in robot-assisted fetching tasks for the elderly.

6.2 Study Setup

Participants were provided with an isolated space to perform the exercise. An
application named ‘Ethical Decision Making in Elderly Care Robots: A Compu-
tational Approach’ was developed using Python and PyQt6 as shown in Fig. 2a.
The application’s user interface featured five columns, each corresponding to
entities related to fetching tasks, and offered layman examples related to sub-
classes of these entities. Participants were allowed to choose whether the robot
should fetch the object and were provided with a column to explain their deci-
sion. Additionally, a prediction column allowed participants to compare their
decisions with those generated by our trained models.
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Fig. 2. Study Setup

6.3 Procedure

The exercise followed these steps: Participants received an explanation of the
columns’ significance and clear definitions of each entity. Each participant
received a unique ID. Participants began by entering their names. Participants
created five scenarios for each algorithm, starting with Random Forest. After
creating each scenario, participants decided whether or not the robot should
fetch. Participants provided reasons for their decisions in the opinion column.
Participants could check our trained model’s decision by clicking the prediction
option. The procedure was repeated for all eight algorithms.

6.4 Outcome Measures

A total of 765 samples were collected. After each participant completed the
exercise, their choice data was recorded and saved in CSV files, including quan-
titative parameters such as ‘Fetch’ or ‘Don’t Fetch’ choices for each entity in the
scenarios, as well as qualitative data consisting of participants’ opinions on the
reasons behind their decisions in specific scenarios. This pilot study is a valu-
able step towards developing an ethical decision-making framework for elderly
care robots, incorporating user perspectives and computational models to ensure
ethical considerations are met during robot-assisted fetching tasks.

7 Results and Discussion

This study aimed to evaluate the feasibility of employing supervised learning
classification algorithms to automate ethical decision-making for robot-assisted
fetching tasks in the context of elderly care. Our analysis involved comparing the
decisions made by human participants to those predicted by machine learning
models, aiming to validate two primary hypotheses.
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Validation of Hypothesis 1: Participant Decision Variance. Our first
hypothesis posited that the decisions made by participants regarding whether
the robot should fetch an object for the elderly would exhibit significant variance,
reflecting diverse perspectives on ethical considerations in the context of elderly
care assistance. To test this hypothesis, we collected data from 30 participants
who were asked to create scenarios, decide whether the robot should fetch an
object, and provide rationales for their decisions.

Fig. 3. Percentage of Fetch vs Non Fetch action in User Estimation and Model Pre-
diction

The outcomes demonstrated substantial variability in participant decisions,
as shown in Fig. 3. Each individual’s unique perspective and judgment were
evident in their choices. This result aligns with our hypothesis, reinforcing the
idea that ethical decisions in elderly care scenarios can be multifaceted and
subject to a range of considerations.

Validation of Hypothesis 2: Model Prediction Accuracy. Our second
hypothesis aimed to assess the performance of machine learning models in pre-
dicting the decision to fetch or not based on participant-generated scenarios and
rationales. Eight supervised learning classification algorithms were trained and
tested using the dataset derived from the participant exercise. The accuracy of
each model was measured using a testing dataset.

This analysis revealed varying levels of accuracy across the different machine
learning algorithms, as shown in Fig. 4 and Fig. 5. Random forest and Decision
Tree models demonstrated exceptional accuracy, both achieving 100%. Gradient
Boosting and K-Nearest Neighbors (KNN) also performed admirably, with accu-
racies of 99 % and 98%, respectively. Other models, including Support Vector
Machine (SVM), Näıve Bayes, and Logistic Regression, exhibited lower accura-
cies, ranging from 70% to 74%. Neural Network achieved an accuracy of 91%.
These findings support our second hypothesis, indicating that computational
models can reasonably predict ethical decisions. Random Forest and Decision
Tree models emerged as the most suitable algorithms for creating an ethical
framework for decision-making in robot-assisted elderly care tasks.
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Fig. 4. Comparison of ML Models vs. Fetch Action

Fig. 5. Comparison of ML Models vs. Not Fetch Action

Moreover, a more detailed examination of the fetch and non-fetch decisions
made by participants and the computational models offered valuable insights.
The models consistently demonstrated a higher number of non-fetch decisions
than the participants. This observation suggests that the models tend to err on
the side of caution, opting to avoid fetching in scenarios where ethical concerns
may arise. In contrast, participants preferred to fetch decisions in more scenarios,
potentially indicating a more permissive approach. Additionally, when examining
the differences between participants and the computational models, Random
Forest, Decision Tree, and Neural Network displayed the least disparity in fetch
and non-fetch decisions. This suggests that these algorithms closely align with
participant perspectives and are more attuned to human-like ethical reasoning.

In conclusion, the results of our study affirm the feasibility of automating
ethical decision-making for robot-assisted fetching tasks in the context of elderly
care. The substantial variance in participant decisions highlights the complex-
ity and subjectivity of ethical considerations in this domain. Furthermore, the
success of the computational models, particularly Random Forest and Decision
Tree, in predicting ethical decisions underscores their potential as tools for devel-
oping ethical frameworks in the field of social robotics for elderly care assistance.
These findings contribute to advancing the responsible integration of technology
into the care of elderly individuals, ensuring their autonomy and dignity are
upheld.
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8 Conclusion

This study endeavours to bridge the imperative gap between the increasing adop-
tion of social robots in elderly care scenarios and the ethical considerations that
underlie their actions. By introducing a comprehensive computational frame-
work for ethical decision-making in the context of fetching tasks for the elderly,
we have addressed a critical aspect of human-robot interaction that is partic-
ularly sensitive and complex. This framework incorporates established ethical
principles, such as Asimov’s Three Laws of Robotics, along with novel moral
dimensions, including relational ethics and self-ethics, tailored to the specific
needs and sensitivities of elderly care.

The pilot study conducted as part of this research demonstrates the feasi-
bility and potential of automating ethical decision-making for social robots in
elderly care. The diverse perspectives and decisions of experienced caregivers
underscore the intricate nature of ethical choices in this domain. The compari-
son of participant decisions with those generated by machine learning algorithms
highlights the promise of leveraging computational approaches to enhance the
ethical behaviour of robots. As we continue to advance the capabilities and inte-
gration of robots into elderly care, the ethical dimension remains paramount.
Our framework and pilot study serves as valuable contributions to the burgeon-
ing field of roboethics, providing insights and tools to guide the responsible
development and deployment of robots in assistive elderly care. By prioritizing
safety, hygiene, privacy, timely awareness, and situational awareness, we can bet-
ter ensure the well-being and ethical treatment of elderly individuals, promoting
their autonomy and dignity in the process.

In summary, the ethical decision-making framework presented here represents
a significant step towards realizing the full potential of social robots in elderly
care while upholding the highest standards of care and respect for the elderly
population. As we navigate the evolving landscape of human-robot interaction,
an ethical compass will remain indispensable in fostering trust, acceptance, and
positive outcomes for all stakeholders involved.
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Abstract. Emerging technologies such as social robotics and virtual reality have
found a wide application in the field of education and tutoring particularly for
children with special needs. Taban is a novel social robot that has been designed
and programmed specifically for educational interaction with dyslexic children,
who have various problems in reading despite their normal intelligence. In this
paper, the acceptability and eligibility of a virtual reality serious game with the
presence of the Taban social robot avatar was studied among nineteen children six
of whom were dyslexic. In this game, children perform attractive practical exer-
cises while interacting with the Taban avatar in a virtual environment to strengthen
their reading skills; then the game automatically evaluates their performance and
the avatar gives them appropriate feedback. The sense of immersion in the 3D
virtual space and the presence of the Taban robot avatar motivates the children to
do the assignments. The results of the psychological assessment using the SAM
questionnaire are promising and illustrate that the game was highly accepted by
both groups of children. Moreover, according to statistical analysis, the perfor-
mance of children with dyslexia in the exercises was significantly weaker than
their typically developing peers. Thus, this V2R lexicon game has the potential
for screening dyslexia.

Keywords: Social virtual reality robots (V2R) · Educational technology ·
Learning disabilities. · Special Education · Phonological awareness

1 Introduction

Dyslexia, a common neurodevelopmental disorder, presents a significant challenge to
children’s acquisition of reading and language skills. It affects the fundamental abil-
ity to accurately and fluently recognize words, leading to reading difficulties that can
persist into adulthood if not addressed early [1]. Dyslexic children often struggle with
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phonological processing, decoding words, and spelling, which can affect their overall
academic performance and self-esteem [2]. The statistics surrounding dyslexia among
children are staggering, underscoring the urgency of effective interventions. It is esti-
mated that roughly one in ten children worldwide are dyslexic [3], and studies on Iranian
children have reported a similar prevalence [4–6].

The rehabilitation and treatment of dyslexia and its associated symptoms involve
a combination of strategies aimed at addressing learning difficulties and promoting
academic success. These strategies range from assistive technologies such as text-to-
speech [7] to more comprehensive approaches such as phonics instructions, multisen-
sory structured language education, and individualized speech and language therapy
[8–10]. Research suggests that effective intervention during early childhood can lead to
substantial gains in reading and language skills [11, 12].

Computer games have offered a promising new avenue for the treatment of dyslexia
in children, as well as in adults, by virtue of their engaging nature, multisensory compo-
nents, repetition, immediate feedback, individualization, and anxiety-reducing features
[13–17]. Gamification creates personalized interventions that can provide multisensory
support, improve learning outcomes, and enhance functional skills. The game experience
has been further enriched by the introduction of social robots with expressive behavior
[18–21].

Furthermore, according to previous research, virtual reality (VR) technology is an
effective tool in the rehabilitation of children with special needs, including those with
autism spectrumdisorder and cerebral palsy [22–24].More recently, the idea of usingVR
game environments in the treatment of dyslexia has emerged, which leverages immersive
and interactive virtual environments to amplify the efficacy of the gamification approach
[25–28], sometimes supplemented with artificial intelligence [29, 30].

Maskati et al. study virtual reality’s potential as a teaching tool for dyslexic students
by combining education and entertainment to produce a more effective way of teaching.
They proved that using a virtual reality application results in better learning outcomes,
compared to conventional learning approaches [25]. Moreover, Maresca et al. illustrated
that the attention spans, working memories, ability to process information quickly, and
writing and reading skills of dyslexic childrenwere all enhancedbyvirtual reality training
[26].

Pérez-Quichimbo et al. developed Edufarmy, an interactive program that uses virtual
reality to improve the reading and writing abilities of dyslexic children. Significant
improvements are perceived in the study performed at a psychological facility, and the
success is attributed to the sensory stimulation provided by virtual reality [27]. Guillen-
Sanz et al. introduce DixGame, a virtual reality game tailored for dyslexic children.
Through its gameplay, the study underscores the positive impact of VR games on skill
development and emotional support for dyslexic children [28]. The use of VR games
is a promising avenue for the rehabilitation, screening, and treatment of children with
dyslexia.

Yeguas-Bolvar et al. suggested combining virtual reality and artificial intelligence
to help dyslexic college students who struggle with learning. They utilized VRAIlexia,
which contains a mobile app that uses virtual reality to gather data, along with AI-based
software that analyzes the data and creates supportive teaching strategies specific to each
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student. According to the study, AI techniques have the potential to accurately predict
the support resources and study techniques that dyslexic students will need, with an
accuracy rate of about 90% [29]. Furthermore, Zingoni et al. also utilized the VRAIlexia
project and its software platform that combines virtual reality and artificial intelligence.
The significance of utilizing virtual reality for specialized educational assistance in the
dyslexic community is highlighted by preliminary results from a sizable sample [30].

In this paper, by combining two emerging technologies including virtual reality
and social robotics, we developed a novel Social Virtual Reality Robot (V2R) platform
tailored toward dyslexic children and aimed at providing an immersive and engaging
tool to enhance their literacy skills. The platform offers several types of expert-designed
game challenges and incorporates an intelligent virtual social robot to accompany the
children throughout the game experience. The robot is a virtual replica of Taban 2,
a new generation of the Taban social robot that has been developed for educational
interaction with dyslexic children [21]. As the main contribution, this study explores
the potential of using V2R as a tool in situations where the Taban robot is not available
for the rehabilitation of dyslexic children. Therefore, as the first step, we assess the
acceptability of our VR game platform. By comparing the performance of dyslexic and
typically developing children, we aim to determine whether V2R could be used as a
supplementary method for the rehabilitation of dyslexic children.

2 Methodology

2.1 The Theories of Dyslexia Etiology

The Phonological processing deficit has substantial prevalence among dyslexics, and
the phonological theory of dyslexia has been widely adopted by the research com-
munity [31, 32]. In this theory, dyslexic children’s reading impairment is explained
by the fact that learning to read in alphabetically written languages requires learning
grapheme-phonemes correspondence (the correspondence between letters and their asso-
ciated sounds), and if these phonemes are not well represented, stored, and retrieved,
the foundation of reading in alphabetical writing languages will be impaired. Phono-
logical processing is the use of phonetic structure while learning to decode (read) the
written language. It is divided into three components: phonological awareness, phone-
mic access to vocabulary storage (rapid automatic naming), and phonological stimulus
memory (verbal information) [33]. Phonological awareness is one’s sensitivity to the
structure of the oral language.

Thegames in this studyhavebeendesigned to assess and improve the cognitive ability
of dyslexic children, especially in the field of phonological awareness, by leveraging the
unique capabilities of the Taban 2 social robot in a VR environment.

2.2 Game Design

We have designed an immersive VR experience environment, in which a player interacts
with Taban (means “radiant” in Persian), a friendly socially expressive virtual reality
robot (V2R) that instructs and guides the player through various games and scenarios.
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The game was developed using the Unity engine for the Meta Oculus virtual reality
headset. The various game levels were designed to immerse the players in the exercises,
capture their attention, and motivate them to complete the levels and answer the ques-
tions. Each level consists of various 3D grabbable objects (e.g., animals, tools, etc.) and
grabbable words presented on a table in front of the sitting player, with the intended
gameplay mechanisms depending on the interaction required. The Taban virtual robot
is also present as a guide.

The general design of the games is based on standard clinical interventions [34]
used by professionals in learning disorder centers. After reviewing the interventions
we finalized the game designs. The experience consists of nine levels with four unique
designs, with each design targeting a different aspect of phonological deficit. The four
designs were as follows:

2.2.1 Finding Objects with the Same Starting Phoneme

The goal of this mini-game is to familiarize the player with the overall experience by
asking them to find the correct first phoneme of each given object’s name. Taban tells
the player to put the objects on the board with the correct first phoneme as its label.

2.2.2 Grouping Objects with the Same Starting Phoneme

In this game, we want the player to compare the first phonemes find out the objects with
the same starting phonemes, and memorize them. Unlike the first scenario, the boards
are not labeled and the players have to group the objects by themselves.

2.2.3 Finding Phonetic Pairs

The mini-game challenges the player’s phonetic awareness by making them select and
grab the 3D objects that are phonetic pairs, and then Taban tells the player to smash them
together for an explosive effect that is very enjoyable.

2.2.4 Phonetic Substitution

This game design consists of recognizing the first phoneme and replacing it with a new
one. Taban instructs the player to cut the words with a knife to separate the phonemes.

Although all the designs had at least two complete and game-ready levels, due to
the limited time the children could wear the headset continuously (about 20 min) the
headset was removed by the therapist to not to make them tired.

2.3 Game Mechanisms

The game’s main constant environmental objects are the main table, the player, and the
Taban model. Contents of the table change according to the levels. Each level design
had its own programming, logic, and mechanism.

Taban plays a pivotal role and interacts with the player in various ways. At the
beginning of each level, Taban explains the goal to the player and the steps they have to
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take to achieve the goal. Taban communicates with the player by utilizing body language
such as animated hands, head, and face. Taban’s facial expressions are animated and
smoothly change during the dialogues. For example, when the player makes an incorrect
move, Taban tells the player with a soft tone of voice and gentle facial expression
(lowering its eyebrows) that he/she made a mistake; it also applauds the player when
he/she completes a level and throws confetti on the table (Fig. 1a). Common dialogues
have multiple versions that are randomly selected to make them less repetitive.

The player can interact with the objects using two controllers. Each controller can
grab or select anything from a distance. For simplicity, the grab/select action is the only
button that the player can use during the game.

Some levels utilize virtual magnets as a way of grouping and submitting the objects.
The player should bring the object close to a magnet and let it go to make them stick
together.During the game, the objects are represented as easily identifiablemodels. Some
levels also have grabbable words that can be cut at the correct points using a virtual knife
(Fig. 1b) and combined to create new words. In the game environment, there are some
barriers to prevent objects from falling out of the player zone and becoming unreachable.
Thus, the inaccessible objects automatically return to their initial position. Levels are
automatically progressed when a challenge is complete. The level progression can be
controlled manually by the operator/supervisor. Furthermore, there is also a menu for
the player in the game, to change or repeat the levels individually. The game has an
automatic logging system that records every player’s action and headset or controller
movement.

Fig. 1. Screenshots of the game environment: a) Taban reacts to the player’s choices based on
their validity in design type one (The board is titled /t/ phoneme), and b) The cut-able words
in the design type four, allows the player to use a knife to separate letters from words in order to
combine them later (The word being cut is ball /toop/ and the target word is soup /soop/).

2.4 Experimental Setup and Participants

Six children with dyslexia (Mean: 7.33, SD: 0.43 years old) and 13 typically developing
(TD) children (Mean: 7.92, SD: 0.76 years old) between 7–8 years old participated in
this study. Each participant was asked to put on an Oculus Quest virtual reality headset
(Fig. 2). All participantswerewearing it for about 20min (due to discomfort concerns). In
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the time allowed, the first 15 min were designated for playing the games. All participants
were playing the same four types of games.

Fig. 2. Photos of the game session a) the participant is listening to the virtual Taban robot explain-
ing the game rules. b) Another participant is playing the game’s first level with the supervisor
present.

2.5 Assessment Tools

Two assessment tools were utilized in this study: a psychological assessment and a
performance assessment. The psychological assessment included the Self-Assessment
Manikin questionnaire (SAM) [34] that used a smiley face scale from satisfied to unsat-
isfied and all items in the questionnaires were measured over a 5-point Likert scale. The
SAM questionnaire was used to assess the child’s sensed valance, arousal, and domi-
nance rate when playing the games. The performance of the participants was assessed
not only based on automatic game logs but also according to a therapist video coding
evaluation using a prepared worksheet for each game. The criteria for both the automatic
assessment and the video coding method were the participant’s response time and the
validity of their answers.

3 Results and Discussion

First, the participants’ performanceswere evaluated during theVRgames. Thefinal score
of each participant was evaluated afterward using their respective time and performance
in answering the questions correctly the first time. The main goal of these games was to
check whether there was a meaningful difference between the performances of the TD
and dyslexic students in answering the questions.
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According to Table 1. We observed that TD children scored significantly higher than
dyslexic children in all of the four games design types (P-value < 0.05). This reflects
the appropriateness of this approach for targeting phonological deficits, and highlights
the high potential of this game platform and its associated assessment criteria to be used
as an unbiased and rapid screening tool to identify children with dyslexia.

Table 1. The mean and standard deviation scores of the dyslexic and TD groups in different exer-
cises and the T-value and P-values associated with the T-tests; P-value < 0.05 shows the 95%
confidence interval.

No Exercise Score’s mean out of 20 (SD) T-value P-value

Dyslexia TD

1 Type 1 10.98(5.17) 16.87(2.53) −2.65 0.038

2 Type 2 5.52(7.21) 17.90(1.87) −3.39 0.043

3 Type 3 5.14(6.82) 18.60(0.94) −4.4 0.012

4 Type 4 3.11(3.69) 16.70(2.21) −6.09 0.026

In the second part of the experiment, the participants filled out the SAMquestionnaire
and determined their level of satisfaction with the game. By reviewing the results of the
questionnaire, we can study whether there is a meaningful difference in the acceptance
rate of the game between TD and dyslexic groups of participants (Table 2).

Table 2. The mean and standard deviation scores of the SAM questionnaire parameters and the
T-value and P-values associated with the T-tests.

No Item SAM Questionnaire

Score’s mean (SD) T-value P-value

Dyslexia TD

1 Pleasure 4.66(0.51) 4.66(0.65) 0 1

2 Arousal 4.50(0.55) 4.84(0.39) −1.33 0.22

3 Dominance 4.50(0.55) 4.50(0.80) 0 1

The questionnaires’ results showed that both groups of children scored high in most
assessment categories. The SAM questionnaire result for the games indicates an overall
positive experience with pleasure, arousal, and dominance all scoring high on the Likert
scale. This shows that for both groups of children, the games felt exciting andmade them
feel happy and in control of the experience. The implied high level of acceptability of
this VR platform justifies and motivates the development of further game designs based
on this platform. Moreover, the questionnaire results will help us improve the game and
our future work.
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3.1 Limitations and Future Work

The time duration of the sessions, which was a maximum of 20 min, and the number of
participants were among the main limitations of this study; the participants could answer
just a limited number of questions. The following step of this research line, given the high
acceptance rate of the designed game, is to perform systematic educational interventions
over at least 8 sessions on a group of children with dyslexia to evaluate the effectiveness
of the V2R-based treatment with the use of virtual Taban robot and its training scenarios
on the reading skills of participants.

4 Conclusion

The goal of this research was to evaluate the effectiveness of using a V2R serious
game, which includes the virtual Taban robot in the role of tutor, as an assistant tool to
comfort the learning process of dyslexic children. Using VR-based games also expands
the possibilities for exercise designs that can be utilized in the game. This study focused
on the design process of four different games and their following evaluation.

Two assessment criteria including the game performance and psychological scoring
system were systematically used to evaluate the participants’ performance, emotional
response, and immersion. The results showed that the game designs have the potential
to be used as a reliable screening tool for dyslexic children, while also giving them a fun
and enjoyable experience and a high degree of acceptance.

In conclusion, the VR platform with a virtual reality robot (V2R) has shown promis-
ing results for dyslexic children and may be used as a valuable assistant tool for inves-
tigators, educators, and parents since it saves time, cost, and energy in comparison to
a real robot. Additionally, by harnessing the immersive and interactive nature of VR,
this approach can serve as a novel and effective means of improving reading abilities in
dyslexic children.
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Abstract. This paper presents an exploration of the role of explanations
provided by robots in enhancing transparency during human-robot inter-
action (HRI). We conducted a study with 85 participants to investigate
the impact of different types and timings of explanations on transparency.
In particular, we tested different conditions: (1) no explanations, (2)
short explanations, (3) detailed explanations, (4) short explanations for
unexpected robot actions, and (5) detailed explanations for unexpected
robot actions. We used the Human-Robot Interaction Video Sequencing
Task (HRIVST) metric to evaluate legibility and predictability. The pre-
liminary results suggest that providing a short explanation is sufficient
to improve transparency in HRI. The HRIVST score for short explana-
tions is higher and very close to the score for detailed explanations of
unexpected robot actions. This work contributes to the field by high-
lighting the importance of tailored explanations to enhance the mutual
understanding between humans and robots.

Keywords: Social robotics · Explanations · Transparent HRI

1 Introduction

As robots become collaborative partners in various human-centered domains,
researchers strive to facilitate clear understanding and control for people while
enabling robots to interpret human cues, and accordingly adapt their behaviors
[1,2]. This is particularly important because transparent communication between
humans and robots fosters comfortable and effective collaboration [3,4]. While
previous studies have examined different cues to make human-robot interaction
more transparent [5,6], our focus is on verbal interaction and the role of expla-
nations. Verbal communication is vital in enhancing the clarity and success of
an HRI [7]. Our long-term goal is to explore strategies that empower effective
communication between humans and robots both during activities performed in
collaboration and not [8].

Focusing on evaluating the effectiveness of explanations in promoting trans-
parency in HRI, we propose five different conditions of explanations that aim to
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evaluate the explanations based on the content and timing in which they are pro-
vided. We use the HRIVST (Human-Robot Interaction Video Sequencing Task)
[9] measure to evaluate the legibility and predictability of very simple scenarios
where a robot has “to fold” and “pick and place” some clothes. In this scenario,
the robot may exhibit errors or have unexpected behaviors.

We recruited 85 participants and filtered the people in our quality check pro-
cess. The outcomes indicate that the highest transparency score is attributed to
providing short explanations in real-time. Notably, the second-highest score cor-
responds to situations where detailed explanations are provided upon a change
in the robot’s plan. In this study, we provide an evaluation of the multifaceted
relationship between HRI explanations and transparency, and as a consequence,
we identify which type of explanation contributes to improving people’s trust
in and understandability of robots through systematic experimentation and by
using the HRIVST metric.

2 Related Work

Transparency allows humans to be aware of the state of a robot and assess the
progress of tasks [10]. One way of providing transparent interaction is by using
explanations. Explanations in HRI refer to a robot providing justifications or
reasons for its decisions or actions. These explanations enhance user perceptions,
justify the robot’s reliability, and increase trust [11]. This paper addresses two
main aspects of robot explanations: the content of the explanation and the timing
of when the explanation is provided. It explores how the information conveyed in
the explanation and the moment it is delivered impact the interaction between
people and robots.

A relevant study [12] presented an experiment involving 366 participants to
explore whether robots should provide explanations and examine the attributes
of a desired explanation. These attributes encompass timing, the significance of
engagement, resemblance to human explanations, and the act of summarization.
The findings revealed a consensus among participants that robot behavior war-
rants explanation across the scenarios. It is to be noted that people’s preferred
mode of explanation aligns with how humans explain things in context. Partici-
pants appreciated concise summaries and preferred the robot to respond to only
a limited number of follow-up questions.

While explanations alone may not significantly impact perceived competence
intelligence, likeability, or safety ratings of the robot [11], they do contribute to
the perception of the robot as more lively and human-like [11]. There are dif-
ferent types of explanations for HRI. One study evaluated the effectiveness of
contrastive, causal, and example explanations in supporting human understand-
ing of Artificial Intelligence (AI) in a hypothetical scenario [13]. Another study
proposed a framework for generating explanations in autonomous robots focus-
ing on presenting the minimum necessary information to understand an event
[14]. Additionally, research on progressive explanations aims to improve under-
standing by limiting cognitive effort at each step [15]. Furthermore, human-like
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explanations based on the probability of success have been explored to make
explanations more understandable for non-expert users [16].

Unlike prior research on robots explaining after being asked, this paper
focuses on proactive explanations generated before actions are executed. The
study investigates how these proactive explanations influence human-robot trust
dynamics [17]. Prior work has shown that explanations, especially those of a
complex nature, should be made in real-time during the execution of tasks. This
helps spread the information to be explained and reduces the mental workload
of humans in highly cognitively demanding tasks [18]. Moreover, the order in
which the information is presented in an explanation or the progressiveness of
the explanations can contribute to better learning and understanding [19].

3 Explanation Types

In this work, we want to focus on different explanation types based on the
content size. In particular, we considered the following types of explanations to
identify the most effective strategies for enhancing mutual understanding and
trust between humans and robots:

– Labeled Explanation: Labeled explanations are presented as succinct
labels, where each label corresponds to a specific robot action. For exam-
ple, if a robot is observed moving towards a door, the accompanying labeled
explanation would be “MOVE”. This concise explanation encapsulates the
essence of the robot’s action in a single keyword, making it an easily gras-
pable reference (see Fig. 1a).

– Focused Explanation: The focused explanation involves crafting sentences
succinctly conveying the robot’s actions while maintaining clarity and direct-
ness. For instance, if a robot is seen moving toward a door, the focused expla-
nation would be, “Move towards the door”. This approach provides a more
detailed description than the labeled explanation while remaining concise and
to the point (see Fig. 1b).

– Comprehensive Explanation: Comprehensive explanations represent a
more elaborate form of communication. In this type, sentences are constructed
to encompass not only the robot’s action but also additional contextual infor-
mation that aids in understanding the intent and purpose behind the action.
For example, if a robot is observed moving toward a door, the comprehen-
sive explanation would provide a detailed description: “Move from the room’s
right side to the left to open the red door.” This in-depth narrative offers a
holistic view of the robot’s actions and underlying motivations (see Fig. 1c).

4 Methodology

For this study, we selected four videos where a robot performs a simple task.
Each task consists of two or more actions. We use three videos in which the
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Fig. 1. Examples of explanation types for Video 4: (a) “Fold”, (b) “Folding the cloth”,
and (c) “Taking one end of the cloth to fold”.

robot picks and places a cloth and a fourth video in which the robot folds a
cloth. Table 1 shows the description of the four videos.

Participants were tested with one of the following five different conditions:

– No Explanation: In this condition, the videos do not have any explanations.
By observing participants’ reactions and understanding when no explanation
is provided, we establish a baseline for measuring the impact of explanations
on transparency (see Fig. 2e).

– Focused Explanation: The second condition involves providing partici-
pants with short explanations accompanying the videos. These explanations
are designed to succinctly describe the robot’s actions while the actions are
being performed. This real-time provision of information aims to enhance
transparency by offering immediate insights into the robot’s intentions and
tasks (see Fig. 2a).

– Comprehensive Explanation: Participants will receive detailed explana-
tions in this third condition. Similar to the above condition, these explana-
tions will be delivered in real-time while the robot is engaged in its actions.
The comprehensive nature of these explanations intends to provide a deeper
understanding of the robot’s actions, including contextual details that con-
tribute to transparent communication (see Fig. 2b).

– Alerted Focused Explanation: The fourth condition introduces a novel
element of explanation timing. Here, the focused explanations will be pro-
vided to alert the human observer about the robot’s actions. This condition
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Table 1. Description of each video

No. Videos Description

1 Video 1 A robotic arm moves to the right side of the table. The robot
picks up the folded cloth and moves to the left side of the table.
The robot places the folded cloth on top of another cloth.

2 Video 2 A robotic arm moves to the right side of the table. The robot
picks up the folded cloth. The cloth gets unfolded. The robot stops
and moves toward the human. The robot hands over the cloth to
fold it up.

3 Video 3 A robotic arm moves to the right side of the table. The robot
picks up the folded cloth very slowly without unfolding it. The
robot carefully places the folded cloth on top of another cloth.

4 Video 4 A robot folds the cloth vertically and flats it. Then, it folds the
cloth horizontally from the left side and right side. Then, it picks
up the cloth and moves it to the other side of the room to put it
into another table.

is especially relevant in scenarios involving robot failures or changes in plan
of action. By focusing on the importance of explanations during these critical
moments, we aim to ascertain the impact of timely explanations on trans-
parency and overall human-robot interaction (see Fig. 2c).

– Alerted Comprehensive Explanation: The fifth condition also focuses
on the timing of the explanation. However, comprehensive explanations are
provided instead of focused explanations to alert the observer. This condition
aims to validate by giving details of the robot’s actions to understand the
change of plan (see Fig. 2d).

4.1 Evaluation

We used the HRIVST to test if a robot’s behavior is understandable to humans.
The HRIVST metric is a subjective measure to evaluate the legibility of a robot’s
behavior by assessing individuals’ capacity to discern goal-oriented actions [9].
The methodology involves segmenting the videos into several distinct clips, each
corresponding to an action executed by the robot or the involved individuals
during the interaction. Participants are prompted to view these video clips and
arrange them in the order that reflects the chronological sequence of task actions.
Participants could repeatedly watch the clips, enabling them to grasp the action
sequence accurately and familiarize themselves with the task.

Participants were required to complete a brief questionnaire following each
video clip to indicate the robot’s intention, their expectation of the robot’s
actions, and their confidence level in attributing the robot’s intention (i.e.,
whether it was difficult or easy).

The cumulative HRIVST score is derived from two components: the outcome
of the logical sequence task, ranging from 0 to 6, and the responses provided
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Fig. 2. Comparison of explanation in the five conditions for Video 2.

in the questionnaire, which also have a potential range of 0 to 2. These two
components constitute the total HRIVST score for each video, yielding a possible
score range of 0 to 8. The scoring mechanism for the logical sequence task is
designed as follows:

– Both the first and last video clips are each assigned 2 points.
– For the others, if a participant correctly orders them in the sequence, they

are awarded 2 points divided by the number of remaining clips.

For instance, in a video composed of 4 clips, the first and last clips would be
worth 2 points each, while each centrally positioned clip would carry a potential
value of 1 point if accurately sequenced.

5 Preliminary Results

The study was conducted online. The obtained participant distribution thus far is
as follows: 30 participants in the “No Explanation” condition, 12 in the “Focused
Explanation” condition, 21 in the “Comprehensive Explanation” condition, 10
in the “Alerted Focused Explanation” and 12 in the “Alerted Comprehensive
Explanation” condition. Control questions were employed to ensure data qual-
ity. Consequently, participants providing incorrect responses were filtered out,
resulting in the final participant counts of 21, 10, 14, 8, and 6 for the respec-
tive conditions. The final 58 participants included people of various nationalities.
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Table 2. Descriptive Statistics of the HRIVST for different conditions. For each video,
the highest value is reported in bold.

Conditions Video 1 Video 2 Video 3 Video 4 Average

No Explanation
Mean (SD)

6.23 (2.58) 7.00 (2.00) 6.71 (2.10) 6.57 (2.57) 6.63 (2.31)

Focused Mean
(SD)

6.75 (2.10) 6.67 (2.13) 7.50 (1.12) 7.86 (1.30) 7.19 (1.66)

Comprehensive
Mean (SD)

6.76 (2.55) 5.00 (2.35) 5.47 (2.03) 5.75 (2.61) 5.75 (2.38)

Alerted
Focused Mean
(SD)

5.5 (0.67) 5.2 (2.32) 6.67 (1.25) 6.45 (1.55) 5.95 (1.45)

Alerted
Comprehensive
Mean (SD)

6.58 (2.51) 7.08 (2.03) 6.38 (2.14) 6.86 (2.22) 6.73 (2.23)

Min - Max 0–8 0–8 1–8 1–8

Table 3. T-Statistics for Videos

Video Pair Mean
Difference

SD
Difference

T-Statistics p-value

Video 1 vs Video 2 0.17 −0.43 0.34 0.74

Video 1 vs Video 3 −0.18 −0.18 −0.45 0.66

Video 1 vs Video 4 −0.33 −0.21 −0.80 0.44

Video 2 vs Video 3 −0.36 0.24 −0.63 0.54

Video 2 vs Video 4 −0.51 0.21 −0.89 0.39

Video 3 vs Video 4 −0.15 −0.03 −0.32 0.75

50.94 % of the participants have a Master’s degree as an educational background.
The participants are within the age group of 20 to 40 (avg. 26, st.dev. 4.98).

The HRIVST scores were computed for each video in all five conditions,
as outlined in Table 2. Notably, the “Focused Explanation” condition yielded
the highest HRIVST scores, indicating a higher level of legibility and under-
standing compared to the other conditions. However, the results are not statisti-
cally significant due to the limited number of participants. Hence, these findings
provide only initial insights into the potential impact of different explanation
strategies on transparency within HRI. Video 1 has a higher HRIVST score in
“Comprehensive Explanation”, Video 2 has a higher in “Alerted Comprehensive
Explanation”, Video 3, and Video 4 have higher HRIVST scores in the “Focused
Explanation” condition.
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Fig. 3. Comparison of Different Explanation Types

By aggregating the evaluation of the different conditions for each video (see
column Mean (SD) of Table 3), we can observe that Video 2 obtains the lower
score using the HRIVST metrics and is evaluated as the less legible. The robot’s
actions in Video 2 are interrupted by an unexpected error, and it does not
complete its task. This caused a certain uncertainty in understanding the final
goal and made it less legible compared to other videos. The analysis suggests that
while “Focused Explanations” are generally favorable, in the case of less legible
behaviors, “Comprehensive Explanations” provided only at specific times could
help transparency.

Figure 3 shows the aggregated averages for each condition. While we have a
higher average for the Focused Explanations condition, all the p-values in our
analysis are above the significance level (α = 0.05), which means we do not
have statistically significant evidence to reject the null hypothesis for any of the
comparisons we performed.

Based on our results, providing a “Focused Explanation” while performing
actions and a “Comprehensive Explanation” as the alert explanation can poten-
tially improve transparency in HRI.
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6 Conclusions and Future Work

Establishing transparent communication channels is crucial to successful inter-
actions in a world where human-robot collaboration is gaining momentum. Our
exploration into the impact of explanations on transparency within HRI sheds
light on the significance of effective verbal communication. By delving into the
nuances of explanation types and timings, we have gained valuable insights that
contribute to the overarching goal of seamless collaboration between humans
and robots. The findings from our study, supported by the HRIVST metric,
highlight the influence of “Focused Explanations” on transparency and are in
line with [12]. The increase in transparency scores when providing short expla-
nations underscores the power of clear, concise communication. Additionally,
we observed that “Comprehensive Explanations” accompanying changes in the
robot’s plan could contribute significantly in less legible cases.

As a future work, expanding the participant pool would provide a more
comprehensive perspective on the effectiveness of different explanation strategies.
Moreover, a qualitative analysis of participant feedback could provide deeper
insights into the subjective experiences and preferences surrounding explanation-
driven transparency.

Investigating the interplay between explanations and other cues, such as non-
verbal gestures and visual displays, could unveil synergies that amplify the trans-
parency achieved in HRI. Additionally, the influence of contextual factors, such
as task complexity and familiarity, warrants exploration, as these aspects could
impact the relevance and reception of different explanation strategies. By con-
tinuing to refine and expand our investigation, we aim to contribute to the ever-
evolving understanding of how explanations can enrich human-robot interactions
and pave the way for a future of harmonious collaboration.

Acknoledgment. This work has been supported by the Italian MUR and EU under
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Abstract. Stress affects many students, leaving them vulnerable to burnout.
Social robots can provide personalized and non-judgmental support for individ-
uals to engage in behavioral and cognitive therapy. This study investigated the
effectiveness of a robot-assisted stress management intervention in reducing stress
among university students. In a between-subjects design, students practiced a deep
breathing exercise, either guided by a Pepper robot or using a laptop. To evaluate
the effect of each technology, Galvanic Skin Response (GSR), Perceived Stress
Questionnaire (PSQ) and the Unified Theory of Acceptance and Use of Technol-
ogy (UTAUT) survey were collected. The results from PSQ and GSR showed no
difference between the two technologies in reducing stress subjectively and physi-
ologically. However, UTAUT reports indicated that participants in theRobot group
were more inclined to use the robot in future practices, and that a more positive
impression of the robot contributed to a stronger reduction of their self-reported
stress levels.

Keywords: Social robotics ·Mental health · Stress management · Breathing
exercise · Galvanic Skin Response (GSR)

1 Introduction

Stress is known to have detrimental effects on our health and well-being [1]. University
students are one demographic with high reports of anxiety, worry and stress [2]. Therapy
is one way to reduce stress, but students may lack the necessary funds or time to pursue
it. To solve these concerns, they can turn to technology for stress management. Chatbots
[3, 4], virtual reality [5] and smartphone applications [6] can all be used to reduce
stress. These tools, however, lack the sense of physical embodiment and social presence
that a person provides during therapy sessions. Therefore, social robots can be used as
embodied social companions that guide students through stress-relieving techniques [7].

While several studies have explored the potential of robots as physical activity
coaches [8, 9], very little is known about the potential impact of social robots in mental
well-being interventions [10]. For instance, Jeong et al. [11] used a Jibo robot as a pos-
itive psychology coach that delivered daily interventions to college students for more
than a week. The study showcased an improvement of the students’ well-being after the
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interventions, although no control condition was considered in this study. Another study
by Spitale et al. [12] compared two robots (QTrobot vs. Misty) with coach personali-
ties delivering positive psychology exercises over four weeks (one exercise per week).
The results suggested the importance of robot form factors in how coachees perceived
them; the smaller and less humanoidMisty robot was perceivedmore positively, whereas
QTrobot received more criticism due to higher expectations. A major limitation of this
study was that it only reported subjective perceptions of the robots and not their impact
on the participants’ mental states.

A recent review by Rasouli et al. [13] emphasized the gap that exists in the HRI
literature for mental well-being support and listed different scenarios for social robots
to be integrated in conventional therapies; one of which being mindfulness-based relax-
ation and stress reduction exercises. What is important to note is that previous research
mostly suffers frommethodological limitations such as uncontrolled experimental design
(mainly due to interventions requiring days or weeks per individual) and the primary
usage of subjective reports for stress measurement. To have a fair assessment of the
effectiveness of social robots, the research in this field should go beyond exploratory
investigations and employ controlled trials as well as sophisticated measures of stress.
To achieve this, HRI researchers can turn to short but effective stress management tech-
niques such as breathing exercises and employ wearable sensors such as Galvanic Skin
Response (GSR) to objectively measure participants’ physiological reactions.

Laptops are one of the technologies that are widely used by students for educational
purposes [14], making them a suitable baseline technology for comparison in human-
robot interaction (HRI) studies [15–17]. Therefore, this study aimed to examine the
effectiveness of a social robot in guiding university students through a deep breathing
exercise as opposed to a non-embodied technology (such as a laptop). Furthermore, the
main novelty of this study is that, besides post-intervention questionnaires, we collected
GSR signals during the intervention as an objectivemeasure of each technology’s impact
on the users’ physiological responses. Using this setup, we aimed to investigate the
effect of the robot’s physical embodiment and social presence on the success of stress
management interventions and answer the following research questions:

– How do laptops and social robots compare in facilitating deep breathing exercise as
a stress management technique for students?

– How do students perceive social robots as a tool for stress management interventions
as opposed to a laptop?

– How does the students’ perception of either technology influence their performance
on the stress management exercise?

2 Methods

2.1 Participants

Data was collected from 44 university students between the ages of 17 to 38 (Mage =
21.34, SDage = 3.64, 22 females, 21 males, 1 non-binary). All participants received
information about the study and provided informed consent prior to participation. The
studywas approved by the Research Ethics and DataManagement Committee of Tilburg
University.
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2.2 Experimental Conditions

The study employed a between-subjects design. Participants were randomly assigned to
one of the experimental groups: Robot group vs. Laptop group. Each group experienced
only one formof technology. TheRobot group (n= 22) conducted the stressmanagement
task guided by a social robot providing vocal instructions and gestures whereas the
Laptop group (n = 22) used a laptop technology that provided written instructions on
the screen.

2.3 Instrumentation

The primary technologies used in this experiment were an Acer laptop, a Pepper robot
(Softbank Robotics) and the Shimmer3 GSR + unit. GSR is a non-intrusive sensor
that is worn on the wrist and fingers and monitors sweat response as a measure of
stress (arousal) level (see Fig. 1A and B). The ConsensysBasic software (by Shimmer)
was used to record the GSR data. The Montreal Imaging Stress Task (MIST) [18] was
administered as a stress-inducing task before the intervention to induce stress in all
participants (Fig. 1A). This task entailed performing arithmetic under the pressure of a
timer and gave the participant increasingly less time to make the calculations.

The stress management exercise was a deep breathing exercise based on De Couck
et al. [19] and included 5 s breathing in, 7 s breathing out, and one second of holding
in between. To help participants with the breathing timing, an instructional video was
created that was either displayed on the laptop screen or Pepper’s tablet (Fig. 1B). The
video displayed a circle that slowly expanded to indicate “inhale” and then shrank in size
to instruct “exhale” timing (see Fig. 1C). Participants received explanations about the
circle movement at the beginning of the video. Additionally, words of encouragement
(e.g., “Very good, you are doing amazing”, “Good job”, and “Only 30 s left”) were
provided throughout the exercise, either in text (for the laptop group) or verbally spoken
by Pepper (for the robot group).

2.4 Measurements

Three surveys were administered as part of the data collection. These included the
Affinity for Technology Interaction scale (ATI) [20], a modified Perceived Stress Ques-
tionnaire (PSQ) [21], and the Unified Theory of Acceptance and Use of Technology
(UTAUT) survey [22].

ATI was used to measure the participant’s familiarity with technology and to com-
pare the technological backgrounds between the two experimental groups. The PSQ acts
as a subjective measurement of stress. The original PSQ was adapted to better fit this
experiment by asking participants to report the stress they felt “at the moment” of taking
the survey on a 5-point Likert scale. Participants’ scores indicating their agreement with
each statement (1 indicating complete disagreement and 5 indicating complete agree-
ment) was totaled across all items with negative sentiments being reversed. The UTAUT
was used to measure the participants’ acceptance towards the technology they interacted
with. The UTAUT constructs selected for this experiment were: Effort Expectancy, Per-
formance Expectancy, Perceived Enjoyment, Satisfaction, Trust, Perceived Risk, and
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Fig. 1. Experiment setup. (A) Participants first conducted the MIST task to bring them to a
comparable level of stress. (B) The stress management task was a deep breathing exercise that
was guided by a Pepper robot for the experimental group as opposed to a laptop for the control
group. (C) The timing of the breathing exercise was moderated by an instructional video shown
on the Pepper’s tablet or the laptop screen presenting a 5-s expanding and 7-s shrinking circle with
1-s holds in between.

Behavioral Intention. These constructs are scored on a 5-point Likert scale, providing
insight into the participants’ experience with and attitudes towards the technology they
used, as well as their intention to use that technology again in the future.

2.5 Procedure

The experiment consisted of two groups: a control group who interacted with a laptop
(Laptop group) and an experimental group who interacted with the Pepper robot (Robot
group). Participants were randomly assigned to one of the two groups. Figure 2 presents
the flow of the study. Upon receiving information and providing consent, participants
first filled out the ATI questionnaire. Then the GSR sensor was affixed, and a baseline
recording was collected. During baseline recording, participants stared at a fixation point
on the screen and remained seated and still for a minute. Next, participants performed
theMIST stress-inducing task, followed by the PSQ. TheMIST lasted for approximately
five minutes and served to bring participants to comparable levels of stress before the
stressmanagement exercise. After that, the groups conducted a single, three-minute-long
stress management task either with Pepper or the laptop. GSR measures were recorded
during the three-minute exercise. Once the exercise was over, participants completed
the PSQ again, and filled out the UTAUT survey. Finally, they were debriefed, and the
experiment ended.
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Fig. 2. Experimental procedure.

2.6 Data Analysis

Data from 6 participants was removed from analysis due to technical difficulties during
the experiment and noise in GSR signals. This left 19 participants in each group after
initial preprocessing.

The GSR signals were processed using pyEDA [23], an open-source tool for elec-
trodermal activity analysis. Following signal processing, the average of the GSR values
were calculated over the stress-inducing and the stress management tasks. To compare
the physiological change during the breathing exercise, the mean GSR value during the
first 20 s (i.e., the initial segment where explanation about the video was provided) of
the stress management task was subtracted from the mean GSR during the remaining
time for each participant. Similarly, the change in subjective stress level was measured
by obtaining the difference in the total PSQ score before and after the exercise.

For the UTAUT survey, the scores given to items were summed per construct. If
the questions had a negative sentiment attached to them, then the score was added
with a negative value. The significance level for all tests were set at a < .05. First, a
ShapiroWilk test was conducted on data fromLaptop and Robot conditions to determine
normality of the data. Next, differences between groups were evaluated using a Welch
Two Sample t-test for normally distributed data, or a Wilcoxon Rank Sum test, for non-
normally distributed data. Where significant difference was observed, the effect size was
determined by Cohen’s d.

Finally, correlation tests were conducted between the total UTAUT score and each
stress measurement (change in PSQ or GSR values). Since data was not normally dis-
tributed, Spearman’s rank correlation was used to determine the relationship between
the overall UTAUT scores with the GSR differences and the PSQ differences.

3 Results

The analysis of the ATI scores revealed no significant difference in technological affinity
of participants in the Laptop (M = 35.26, SD = 7.79) and Robot (M = 33.32, SD =
5.80) groups (t(33)= 0.87, p= .39). This indicates that participants in both groups had
relatively similar backgrounds in interacting with technology.

3.1 Laptops and Robots for Reducing Stress

The Shapiro-Wilk test confirmed a non-normal distribution of GSR mean values in both
Laptop (W = .82, p = .002) and Robot (W = .80, p = .001) conditions. Therefore,



186 A. Rice et al.

a non-parametric Wilcoxon rank sum test was performed to compare the two groups
(Fig. 3A), which determined a non-significant difference between the laptop and robot
technologies in helping to reduce stress (W = 167, p = .708).

Similarly, following the Shapiro-Wilk test results, a Wilcoxon rank sum test was
performed on the PSQ values (Fig. 3B), which indicated an insignificant difference
between the Laptop and Robot groups (W = 235, p = .115). Thus, the subjective stress
responses, taken through the PSQ, revealed no significant difference between the two
technologies in facilitating the breathing exercise for stress reduction in students.

Taken together, both the objective GSR data and the subjective PSQ data showed
no difference between laptops and social robots in reducing stress. Notably, as shown
in Fig. 3A, the GSR signals showed an increase in arousal for some participants in the
Robot group during the stress management exercise, which could be due to the novelty
effect and excitement of interacting with the robot.

Fig. 3. Comparison between the Laptop and Robot groups in terms of (A) changes in GSR
measurements, (B) changes in PSQ scores, and (C) the mean scores for each UTAUT construct,
* p < .05.

3.2 Perception of Laptops and Robots

To analyze UTAUT scores, Shapiro-Wilk normality tests were applied to each construct.
Out of all the constructs, only Effort Expectancy and Behavioral Intention scores were
normally distributed in both groups. For these two constructs, the Welch Two Sample
t-test was applied, and for the remaining constructs, the Wilcoxon rank sum test was
employed. While the comparison of all other constructs yielded insignificant results,
Behavioral Intention showed a significant difference between the Laptop and Robot
groups (t(36) = 2.1, p = .043, Fig. 3C) with a moderate effect size (Cohen’s d = 0.68,
95% CI [0.02, 1.33]), indicating a higher interest in using the robot again for the task
among participants who experienced the exercise with the Pepper robot. The results
also show that participants of the two groups had no considerable differences in their
perceptions of the two technologies in regard to enjoyment, satisfaction, trust, etc.
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3.3 Correlation between Technology Perception and its Stress Reducing Effects

To determine the relationship between participants’ experience of each technology and
the effect it had on their performance during the stress management task, correlation
analyses were performed between the overall UTAUT scores and the change in GSR
and PSQ values, separately. None of the tests yielded significant correlations, although
there was a weak negative correlation between the UTAUT and PSQ values for the Robot
group (r(17)=−0.44, p= 0.061) with people experiencing a more positive interaction
with the robot reporting a larger reduction in their stress levels after the interaction.

Fig. 4. The relationship between the overall UTAUT score and the GSR and PSQ differences.

4 Discussion

The current study investigated the effectiveness of social robots in facilitating mental
well-being interventions such as stress-reducing exercises among university students.
Previous literature [11, 12], while employing a longitudinal approach, suffered from an
uncontrolled experimental design, and only relied on self-reported perceptions of stress
or impressions of the robot. To address these shortcomings, this study compared a Pepper
robot to a non-humanlike and non-social laptop device in a between-subjects experimen-
tal design and collected galvanic skin responses (GSR) for an objective evaluation of
the participants’ physiological responses during the stress-relieving task.

The results revealed no significant difference between the control and experimen-
tal groups; that is, both laptop and robot technologies yielded similar stress reduction
effects and were perceived comparably by the participants. The only difference that was
observed was a significantly higher Behavioral Intention reported by the Robot group
indicating a greater inclination to employ the robot again for future stress management
exercises, which could have been due to the novelty effect. Also, while non-significant, a
notable negative relationship was observed between the overall UTAUT scores and PSQ
changes in the Robot group, implying that the more positively the robot was perceived
by the participants, the more effective it was at reducing subjective stress levels.

The outcome of this study differed from past research in three key areas in that
we had a controlled design, objective stress measures, and a short-term interaction.
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This contrasts with the study of Jeong et al. [11] who conducted a longitudinal study
only with a Jibo robot (no control technology) and found an improved self-reported
mood among participants after the interaction, and the study of Spitale et al. [12] who
compared the impact of robot personalities on the intervention outcomes. Particularly,
the short interaction with the Pepper robot in the current study could have impeded
participants’ high expectations stemming from the robot’s humanlike appearance [12].
These differences in the study design might explain why our results do not immediately
point to a benefit for social robots.

Unlike prior research that found social robots elicit more enjoyable interactions
and greater trust compared to their non-social counterparts [15, 24], we observed no
difference in the outcome of the UTAUT on Perceived Enjoyment, Satisfaction, and
Trust. Two explanations can be provided; first, the current study employed a between-
group design in which participants experienced only one technology and remained blind
to the other one, which is different from most HRI studies that enable participants
to experience both conditions in a within-subjects design. Second, participants had a
short and passive interaction with the robot that did not give them a full overview of
Pepper’s functionalities, such as speech recognition and face tracking. Future work can
create a more complex interaction, for instance by providing adaptive feedback during
the task [25] to improve robot’s coaching performance and enhance overall enjoyment,
satisfaction, and trust in participants.

The primary novelty of this work was employment of wearable sensors such as GSR
as an objectivemeasure of the participants’mental states. Our results indicated that while
most participants in the Robot group reported a reduction of stress in the PSQ, the arousal
level for some had in fact increased over time. This discrepancy could be explained by
the difference in the emotional valence that is accompanied by high arousal levels. In
fact, a positive arousal is related to the experience of excitement and pleasure, which is
different from negative arousal that is associated with frustrating or stressful situations.
To provide more insight into participants’ actual mental states, further exploration of
neurophysiological responses such as brain activity [25–27] is required to determine the
valence of their emotional experience throughout the task.

This experiment was limited in terms of the number of participants and duration of
the interaction. Future research should attempt longitudinal studies to evaluate health
benefits of technology-assisted mental well-being interventions over time, particularly
when the robot novelty effect diminishes. Additionally, while the use of GSR provided
a novel measurement of mental states in this experiment, future research should aim to
employ more affective computing tools including EEG brain responses [27], in order
to illuminate different dimensions of the participants’ emotional experience such as
valence and arousal. Finally, the robot behavior for this experiment was pre-scripted and
relatively simple. Futurework should attempt evaluation ofmore interactive and adaptive
scenarios where robot behavior is adjusted according to the physiological responses of
the participants extracted in real-time [26].
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5 Conclusion

This current study investigated the effectiveness of social robots in delivering mental
well-being interventions to university students. Our results from a controlled experiment,
comparing two groups of students who interacted with either a Pepper robot or a laptop
in a single stress management intervention, indicated no observable difference in terms
of self-reported stress and physiological responses. However, we observed a positive
relationship between participants’ perception of the robot and the reduction of self-
reported stress levels. Also, participants in the robot group indicated a significantly
stronger desire to reuse the same technology for future interventions. Overall, these
results show that while social robotsmight not have immediate effect in facilitating stress
management tasks compared to other non-social technologies, they have the potential to
engage users in the intervention andmotivate them for continued usage of stress relieving
exercises.
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and Gérard Bailly1

1 GIPSA-Lab, Grenoble-Alpes Univ., Grenoble, France
lea.haefflinger@gipsa-lab.grenoble-inp.fr
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Abstract. Given the importance of gaze in Human-Robot Interactions
(HRI), many gaze control models have been developed. However, these
models are mostly built for dyadic face-to-face interaction. Gaze con-
trol models for multiparty interaction are more scarce. We here propose
and evaluate data-driven gaze control models for a robot game animator
in a three-party interaction. More precisely, we used Long Short-Term
Memory networks to predict gaze target and context-aware head move-
ments given robot’s communication intents and observed activities of
its human partners. After comparing objective performance of our data-
driven model with a baseline and ground truth data, an online audio-
visual perception study was conducted to compare the acceptability of
these control models in comparison with low-anchor incongruent speech
and gaze sequences driving the Furhat robot. The results show that
our data-driven prediction of gaze targets is viable, but that third-party
raters are not so sensitive to controls with congruent head movements.

Keywords: Human-Robot Interaction · Gaze · AI · Head · Multiparty

1 Introduction

The importance of non-verbal cues in human conversations is no longer to be
proven: authors of [4] consider that 60% of communication intents would pass
through this channel. For a robot to interact with humans in the most natural
way, it must be able to perceive, understand and generate such cues.

One of the most studied non-verbal cues for Human-Robot Interaction (HRI)
is gaze [1]. And rightly so, it is a major social cue in face-to-face Human-Human
interactions (HHI). Indeed, in addition to transmitting emotions, it is a power-
ful regulator of conversations [16,27]. This function is particularly important in
multiparty conversations, for turn-taking management and role detection, such
as who will be the next speaker, or who is the current addressee [13,32]. This
impact of the gaze has also been emphasized in HRI. For example, the gaze
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control proposed by Multlu et al. [22] allowed their robot to signal the roles of
participants in the conversation (bystander, overhearer, ...). In the same way,
thanks to its gaze, a robot can influence turn-taking behaviors [30] and even
regulate speaking times [10]. In addition to having an impact on the conversa-
tional regime, appropriate gaze behaviour increases participants’ engagement in
the conversation and positively impacts their perception of the robot [6,18,29].

All these studies confirm the importance of providing our robot with the most
natural gaze control possible. This study introduces a unique method to control
the robot gaze in a multi-party interaction by combining two Long Short-Term
Memory (LSTM) models, one to predict the attention targets of the robot, and
one to generate the corresponding head movements. We believe that the use of
LSTM models will enable the generation of more subtle behaviours based on
elements of the interaction context that the robot can perceive (who speaks,
where the interlocutors look, . . . ) or related to its own intentions (who it is
addressing, what it is talking about, . . . ). These models will first be evaluated
objectively, then subjectively, through an online perception study, in order to
compare them with a baseline model and ground-truth behaviours.

2 Related Works

Given the importance of gaze in HRI, a large number of gaze models have already
been proposed and tested [1]. However, most of these models are developed for
dyadic interactions and not for multiparty interactions as in this study. Two
categories of models can be distinguished, models based on human interaction
data, called data-driven, and those using rules extracted from human behavior,
called heuristics. On the side of multiparty heuristic models, we can find the
model proposed by Zaraki et al. [34], where each participant gets a coefficient
of attention computed from multimodal cues, or the model proposed by Mishra
et al. [20] for a robot playing a game with two humans. For data-driven models,
Mutlu et al. [21] proposed a control to monitor roles of participants, Nakano
et al. [23] built a model taking into account dominance in a conversation, and
Shintani et al. [28] focused on gaze behavior during turn-taking. Some models
use machine learning algorithms, as proposed by Stefanov et al. [31] who tested
artificial neural networks using or not LSTM to model attention, or Huang et
al. [12] who used Support Vector Machine (SVM) for their gaze prediction model.

Furthermore, beyond the prediction of gaze targets, this study also focuses on
the generation of head movements that allow subtle control of head-eye coordina-
tion. Head-eye coordination has been extensively studied in humans [7,8,33]. For
HRI head is mostly considered as a passive contributor of eye movements but not
a component per se of the robot’s communicative intentions [3,14,34]. However,
Gillet et al. [10] were able to influence participants’ speaking times by manip-
ulating the head movements. Among the few studies that have implemented
a context-aware control of head-eye coordination, are the model of Mishra et
al. [20] where the contribution of the robot’s head depends on the duration of
fixation of the attention target, and the models proposed by [24,31] that predict
both eye-gaze direction and head orientation.
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Fig. 1. Setup for the RoboTrio data collection.

The two studies most similar to our method are those by Stefanov et al. [31]
and Huang et al. [12] through the use of machine learning algorithms. However,
Stefanov et al. [31] did not propose a subjective evaluation of their models and
our study differs from that of Huang et al. [12] due to the roles being asymetric
in our interaction (robot plays game as animator), and their robot could not
move its head and its eyes. Another major difference is that we use the robot’s
addressee as an input of our model. As shown in [11], the contribution of the
head in the gaze depends on whether one or two people are addressed at a time.

3 Creating the Models

3.1 Gaze/Head Data Collection: Immersive Robot Teleoperation

To train and evaluate our models, we use multimodal data from three-party
interactions in a collaborative game context [26], Fig. 1. The game is scored by
finding the most quoted words for a given theme (previously played online by
human players). E.g. for the “sea” theme, the words that would score the most
are “ocean”, “water”, “beach”, “mediterranean”, “boat” and “fish”.

The behavior we want to model is that of the game’s animator.
This animator is in fact an iCub robot [19] controlled by a human
pilot through immersive teleoperation [5]. This setup allows to interact
with two human players through the robot sensors and actuators. A tablet is
placed in front of the robot so that the pilot can scan the information about the
game in progress. The animator must report the themes, invites the players to
propose words, and then reports the scores for the proposed words. All head
and eye movements of the pilot, including vergence, are reproduced
in real time by the operated robot (3+3 Degrees of Freedom, aka DoF).
These gaze and head movements, as well as audio and video of the three-party
interaction, are recorded as “the corpus”. We use 11 recorded and annotated
game sequences, with different pairs of players, but keeping the robot’s pilot
the same. This amounts to almost 4 h of recording, where each sequence lasts
about 20 min. A sequence consists of 9 rounds (new theme word), and 5 col-
lected answers per theme. While playing, the players collaborate to find the best
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answers and look/ask the robot at will. So there’s a lot of interaction and social
cues; thinking about the theme, sharing and gauging ideas on a potential answer,
etc. The robot monitors them like its human pilot would do, and is included reg-
ularly in the conversation. The corpus is therefore complex and rich in
verbal and non-verbal content for the players and the robot (mutual gaze,
gaze aversion, speech overlap . . . ).

3.2 Models Implementation

In order to make the attention control of our robot as natural as possible, we pro-
pose to generate both attention targets and head movements. For this purpose,
we decided to cascade two models.

Tasks Definition. Our first model predicts gaze targets. To train this model,
the gaze of the robot pilot was classified with Gaussian Mixture Models (GMM).
After detection of the ocular saccades, the gaze was divided into 4 classes of
attention; one for the leftmost player in the game UserL, one for the rightmost
player UserR, one for the Tablet screened by the animator, and finally a class
Elsewhere. To simplify the training of our model, the frames where the gaze is
classified as Saccade or Elsewhere are grouped into an Other class. In addition,
to filter out errors due to classification, fixations with a duration of less than 150
ms were merged with the preceding fixations. The distribution of gaze classes
in the dataset is not completely balanced, with UserL and UserR representing
32.4% and 32.1% respectively, while Tablet represents 21.7% and Other 13.8%.

Then, the second model predicts the three DoF of the head: pitch (up/down),
roll (tilt), yaw (left/right).
The outputs of both models are generated continuously at 60Hz.

Input Multimodal Features. Multimodal features about the activity of the
pilot and the players are given as input to both models. These features have
been selected against others as they can be observed in real-time (targeting a
future implementation with our Furhat robot [2]). Each feature, when composed
of N classes, is decomposed into N channels, with only 0 or 1 values:

– 11 channels for Robot pilot activity:
• Speech: whether pilot is speaking or not
• Speech Intent: intent of the sentence, 7 different classes (ask for a propo-

sition, give the score, the theme, an explanation or feedback,. . . )
• Addressee: pilot’s adressee(s) UserL, or UserR or Both, value is 0 for the

three channels if the addressee is unknown
– 6 channels for UserL and UserR activities:

• SpeechL, SpeechR: whether left (resp. right) user is speaking or not
• GazeL: 2 classes, whether given user is looking at the other user, or at

the robot. Value is 0 for both channels if the user is looking at elsewhere
• GazeR: same as previous, but for the right user.



Data-Driven Generation of Eyes and Head Movements 195

Fig. 2. Structure of the models, the one predicting gaze targets on the left, and the
one generating head movements on the right.

In addition to these 17 input channels, the model generating head angles also
receives pilot gaze features, adding 4 channels for a total of 21.

Verbal features were annotated manually, while users gaze features were auto-
matically annotated using GMM. The robot’s addressee was annotated using the
French pronouns “Vous” (Both) and “Tu” (UserR/L), see [11].

Models Training. To take into account possible temporal dependencies, the
models use LSTM cells. Their input are temporal sequences, which have been
cut to correspond to a whole game theme. The 11 interactions being composed of
9 themes, we obtain a total of 99 mini-batches. As the duration of the themes is
variable and the input of the networks must be of fixed dimension, padding was
applied to standardize the length of the sequences (TimeLength). The models
have a many-to-many architecture; their output is a temporal sequence whose
length matches the input. The structure and parameters of the two models are
presented in Fig. 2. The masking layer is used for padding detection. The main
differences between these two models are the input and output dimensions, and
the use of a “softmax” activation function for gaze target classification. The
networks are trained with 200 epochs, a batch size of 10, and an Adam optimizer
[17] with a learning rate of 10−4. For the gaze target classification model, the
loss function is the categorical crossentropy, and for the head angle regression
model the loss function is the Mean Squared Error (MSE).

Model Performances. To best evaluate the performance of our models, we
used the K-fold cross validation method. For each training, the test dataset is
composed of the n-th theme of each sequence (11 temporal sequences), and the
training dataset of the 8 others (88 temporal sequences). The two networks are
thus each trained and evaluated 9 times with different datasets (9 folds). The
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Table 1. F1-score of the gaze classification model according to the interaction context.

Gaze Class Pilot is Speaking Pilot is Listening No One is Speaking ALL

UserL 0.50 0.54 0.51 0.52

UserR 0.52 0.59 0.51 0.55

Tablet 0.77 0.41 0.45 0.67

Other 0.05 0.01 0.03 0.03

Weighted F1-score 0.54 0.48 0.44 0.49

average accuracy of the attention target classification model is 52.9± 1.4%. The
average MSE of the head angle generation model is 7.93± 0.51.

In Table 1, the performance of the gaze classification model is analysed in
detail, by calculating the F1-score for each class depending on the robot pilot’s
activity. First, we notice that the Other class is particularly badly predicted,
which is not surprising as it does not correspond to a specific target and acts as
a garbage collector. Moreover, contrary to the results presented in [12,31], the
proposed model is better when the pilot speaks than when he listens. This can
be explained by the pilot’s role as the game animator who, when speaking, will
often look at his tablet to consult the game information. Moreover, the model
knows the verbal intention of the pilot, which is not the case when a user speaks.

Ablation Study. To study the influence of each input feature on model per-
formance, we conducted an ablation study (Table 2). To do this, we trained
separately our models under the same conditions as before (same parameters
and 9-fold cross-validation) but removed selected input features (✗ in Table 2).

Removing the Intent feature has the biggest impact on gaze prediction, which
can be explained by the importance of intentions in determining whether the
robot should look at the tablet (theme announcement, scores) or specific/both
players (ask for proposal, validation) when speaking. When all Robot features
are removed, performance drops drastically, and the same applies to Users fea-
tures. It therefore seems interesting to take into account both endogenous and
exogenous information from the robot.

For head generation, Robot Gaze is clearly the feature that provides the most
information. Nevertheless, when all Robot features are removed, performance
drops even further, assuming that the other Robot features are also important.

4 Subjective Evaluation

4.1 Method

Goal. The objective evaluation of model performance is not decisive. Indeed,
it is not because the predicted target is different from the original target that
this choice is less relevant or natural, and the same for the generation of head
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Table 2. Results of the ablation study on input features.

Robot Users Gaze prediction:

Speech Intent Addressee Speech Gaze Accuracy

– – – – – 52.9 ± 1.4%

– ✗ – – – 49.1 ± 0.8

– – – – ✗ 50.9 ± 1.3

– – – ✗ – 51 ± 1.2

– – ✗ – – 51.5 ± 1.8

✗ – – – – 52.5 ± 1.1

✗ ✗ ✗ – – 45.0 ± 1.7

– – – ✗ ✗ 47.9 ± 1.3

Robot Users Head prediction:

Speech Intent Addressee Gaze Speech Gaze MSE

– – – – – – 7.93 ± 0.51

– – – ✗ – – 13.48 ± 0.66

– – – – – ✗ 8.26 ± 1.04

– – ✗ – – – 7.97 ± 0.46

– ✗ – – – – 7.96 ± 0.47

– – – – ✗ – 7.92 ± 0.44

✗ – – – – – 7.91 ± 0.45

✗ ✗ ✗ ✗ – – 16.60 ± 0.57

– – – – ✗ ✗ 7.88 ± 0.38

movements. A subjective evaluation is therefore necessary to validate the via-
bility of our proposed attention control. To evaluate it, we predicted the gaze
targets, for each frame (60 Hz), for all 11 sequences, and reused these predictions
as input to the head generation model trained on ground-truth data (see Fig. 2).
For each theme, the models used for prediction were those that were not trained
with that theme. Finally, the predictions were filtered, removing gaze fixations
shorter than 150 ms, and smoothing head movements with a Blackman filter.
These attention behaviors are evaluated in this section.

Compared Attention Controls. We decided to compare our cascaded data-
driven model with 3 other controls, to test both the prediction of attention
targets, and the generation of head movements. To do so, we replay sequence
of game interactions on a virtual Furhat robot [2] with different gaze and head
behaviors. Between the different conditions, the verbal content is identical and is
synthesized by Furhat, only the control of its eyes and head differs. The possible
targets of attention are limited to UserL, UserR and Tablet. The different four
models are listed below:
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– Lstm Model: The proposed data-driven control that combines the two
LSTM models described in this paper, that take into account the interac-
tion context. All three angles of the head are controlled.

– Heuristic Model: This model focuses on the head movement generation,
it is close to the observation model proposed by [14]. The robot looks at
the same targets as the LstmModel, and the head movements are generated
from these targets only, without taking into account the context (no pilot and
players activities). The model calculates the distance between two fixations,
if it is lower than a threshold value, the head does not move, otherwise it
performs a defined percentage of the path. The percentages were set to be
as close as possible to what was done by the pilot, 30% for the yaw angle
and 45% for the pitch angle. For the calculation of the threshold value, and
the trajectories of the head, we used the equations proposed by Itti et al.
in [14]. Moreover an attraction-middline effect is also implemented for better
realism [9]. This control uses only 2 DoF, pitch and yaw. The Table 3 shows
the Root Mean Squared Error (RMSE) between the head angles of the control
and those of LstmModel. Logically, the error is maximum on the Roll angle,
this angle being equal to zero for this HeuristicModel control. The differences
being not negligible, we hypothesized that they will be perceived during the
perceptive study.

– Simulated Ground Truth (GT): High Anchor This control corresponds
to the original human behaviour of the pilot in the data collection, same
attention targets, and same head movements (pitch, roll, yaw). In Table 3,
RMSE between this control and the two previous ones are high, since targets
of attention are not necessarily the same.

– Shifted Ground Truth: Low Anchor This control is the same as the pre-
vious one, but uses data shifted in time. The robot will reproduce the same
behavior as the pilot but 1 min ahead. The head movement corresponds to
the current target of attention, but this target is incongruous. As sustained
conversational states last several seconds, we chose a 1 min shift to get a close
context without matching the original attention targets.

Table 3. Root Mean Squarred Error between (RMSE in degree) the head angles of
the different controls.

Comparison Pitch Roll Yaw ALL

LstmModel vs HeuristicModel 1.73 2.56 3.61 2.63

LstmModel vs SimulatedGT 4.72 4.28 2.66 3.89

HeuristicModel vs SimulatedGT 4.85 5.00 4.49 4.78

Online Evaluation. For the perception evaluation, 21 clips of interaction were
selected and extracted, 2 per game sequence plus 1 for the initial training exam-
ple. These selections correspond to extracts where the head movements between
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Fig. 3. Results of the online evaluation depending on the robot controls used. Each
boxplot contains 600 points (number of subjects x number of clips). Significant p-values
are indicated by * (<0.05), and *** (<0.001).

the conditions HeuristicModel and LstmModel differ the most. Each of these
extracts of interaction result in 4 video clips of about 10 s, corresponding to the
4 controls to be compared. Only the virtual robot is visible on these videos, the
players are perceived and differentiated using stereo audio, with the left (right)
speaker using the left (right) audio channel. For the evaluation, we used the
HEMVIP [15] method. On each page, the subjects compare 4 renderings of the
same interaction segment. They must rate each video between 0 and 100. 20 web
pages corresponding to the 20 extracts are presented in a random order, as well
as the 4 videos of the different controls. The evaluation instruction given to the
subjects was this: “Rate the videos based on the relevance of the robot’s behavior
and gaze relative to the context”. Before the experiment, the subjects are shown
an explanation of the game and a picture of the scene being observed, so that
they know what the targets of the robot’s gaze are. At the end, they have to
fill in a survey about their familiarity with the robots and their general feeling.
We recruited 30 participants via the crowdsourcing platform Prolific1, all native
French speakers, with an equal representation of men and women.

4.2 Results

Figure 3 presents distributions of rating score obtained by the 4 control poli-
cies. The significance of the results was tested by building a beta regression
model, with clips Id and subject Id as random variables. A likelihood ratio test
shows that the type of control significantly impacts the rating score (chisq(3) =
16.511, p = 0.0008). Multiple pair-wise comparisons between the different con-
trols resulted in the adjusted p-values presented in Fig. 3. The only significant
differences were found between ShiftedGT and the other three controls. This

1 https://www.prolific.co/.

https://www.prolific.co/
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confirms that the gaze target management proposed by our model is viable.
Despite a small supportive bias for LstmModel, no significant difference was
found between the proposed control LstmModel and the control HeuristicModel.
The difference between the head movements generated by a context-aware model
and a non-context-aware model is not perceived. Despite the scores obtained by
SimulatedGT, there is no significant difference between this hypothesized high
anchor and the two controls, HeuristicModel, and LstmModel.

4.3 Discussion

The subjective evaluation revealed that despite a moderate objective perfor-
mance, the proposed control was rated as appropriate as the original behavior
in the data set. However, even though no significant differences were found, it is
surprising that the trend in the score of the SimulatedGT control is lower than
that of the two controls HeuristicsModel and LstmModel. Indeed, this control is
supposed to reproduce a human behavior, more subtle than the two others. A
first comment is that subjects do hear but not see the two players. Their estima-
tion of the addressee(s) of human partners is degraded. This lack of context may
create a misunderstanding of the robot’s behavior, which mimics the behavior
of a knowledgeable human who was participating in the interaction. Secondly,
although third-party evaluations have been shown to find similar results to those
of internal participants in the interaction [25], it is possible that this evaluation
method has limitations. This limitation would be especially valid when finely
comparing controls. Finally, the subjective evaluation only focused on the ques-
tion of appropriateness of the behavior, but other characteristics could have been
interesting to evaluate, such as naturalness or engagement.

5 Conclusion

In this study, we introduced a data-driven gaze control for HRI multi-party
interaction, where the robot is an animator of a collaborative game. The con-
trol is based on two cascaded LSTM networks trained on multimodal data, one
for gaze target prediction, one for head movement generation. Using an online
perception study, we showed that this control is viable, with attention target pre-
diction comparable to human behaviour, but no advantage of context awareness
was revealed for head movement generation. These promising modeling results
need to be further developed. Future work will aim to identify the reasons for
this non-perception of differences. Two approaches are envisaged: improving the
models by using embedding or CNN layers, for example, but also conducting a
new perception evaluation with raters facing the physical robot for checking the
engagement hypothesis.
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Abstract. The prominence of robots as interdependent social agents
continues to grow, leading to important conversations about legal and
ethical considerations not just for humans, but also potentially for these
autonomous agents (e.g., robot rights). Physical properties of the robot
form factor have been shown to significantly impact human interactions
with the system, including how law and policy-makers see and ascribe
characteristics to it. For social robots in particular, an anthropomor-
phized or humanoid form factor can lead to assumptions about the
robot’s personhood, with potentially harmful ethical consequences. In
this paper, we review current outlooks on social robots with regards
to policy and personhood, particularly limits of current debates. We
then provide a suggested redefinition of personhood for a robot with an
emphasis on the dissociation of personhood from the humanoid form. We
propose the treatment of robot personhood in terms of as interdependent
group personhood rather than physical or anthropomorphic features, and
suggest corresponding design principles and regulations about features
such as system opacity.

1 Introduction

Debates surrounding robot rights are increasingly important in light of the expo-
nential growth of autonomous robotic systems. The level of agency, nature of
autonomy, and use case of robots are all factors that have played a role in not
only defining the robot and its ethical obligations, but more controversially,
informing the rights it should have. Much of this debate has focused on lethal
autonomous weapons systems and other robots of war, as robot rights are rele-
vant to whether a robot should be ethically or legally allowed to exercise lethal
force. However, questions about robot rights are also important for robots in
the personal, assistive, and commercial categories that are often thought to
be less ethically problematic. Despite their more benign contexts, these robots
can potentially act in ways that support or endanger human health, values,
and interests, which thereby raises questions of both responsibility and rights.
For example, a home healthcare robot might be tasked with ensuring that an
elderly patient takes their medication; this type of ethically important interac-
tion requires clarity about the rights and responsibilities, both ethical and legal,
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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of both parties—patient and robot. Less obviously, as robots in these sectors
function increasingly autonomously, questions naturally arise about permissible
constraints or interference, and such questions can turn on the robots’ rights. For
example, it may soon be important (legally and ethically) to clarify the rights of
an autonomous delivery robot, particularly as its actions may come into conflict
with the wishes of various humans.

Historically, robot form has played a key role in discussions about robot
rights in non-military sectors, perhaps most notably in the case of the robot
citizen, Sophia. Sophia’s capabilities are limited to that of a moderately intel-
ligent chatbot, with attempts to expressively mimic human behavior. Sophia’s
humanoid form is the main differentiator, and so is presumably part of the rea-
son that she was granted citizenship (though marketing and political reasons
surely also applied). In general, anthropomorphism has been shown to have a
strong impact on human acceptance, collaboration, and interaction with robots
in the personal, assistive, and commercial categories. In contrast, the impact
of anthropomorphism on robot rights has been relatively underexplored. Robot
form has also been found to effect perceived robot intelligence, and personhood.
At the same time, anthropomorphized terms used to describe a robot can lead to
misunderstandings about the robot’s function, role, and autonomy, all of which
may be relevant to determining if a robot is deserving of rights. In this paper, we
do not take a stand on substantive aspects of robot rights, but rather focus on
the complex descriptive (“what is”) and normative (“what ought”) relationships
between robot form factor, robot (potential) personhood, and possible robot
rights, as well as the implications of those relationships.

We first argue that arguments about robot rights do and should depend
partly on whether the robot has personhood. In particular, personhood (whether
natural or artificial) has historically been understood to require a level of intelli-
gence and rationality to justify relevant claims of autonomy, and those cognitive-
emotional-social capacities thereby support the possession of certain key moral
rights. In the specific case of robot rights, for example, robots that were tasked
with making challenging decisions in a military context were given higher moral
standing based on their ability to make ethically sound (and intelligent) deci-
sions. We contend that considerations of personhood provide the bridge between
intelligent capabilities and attributions of rights.

Robot form factor presents a challenge for this connection, however, as mul-
tiple studies have shown that form factor influences people’s inferences about
a robot’s capabilities. Most importantly, humanoid robots are often inferred to
have greater intelligence and capacity for suffering. That is, a robot’s form fac-
tor can influence people’s propensity to attribute it personhood, and therefore
some rights, even though essentially no philosophical or legal theory of rights is
grounded in physical form.

The possibility of these erroneous inferences implies a set of ethical con-
straints on robot design and implementation, particularly in the personal,
assistive, and commercial sectors. For example, robot designers ought not use
humanoid forms unless the robot’s capabilities warrant the (likely) inferences
about its personhood, and therefore rights. (Additionally, if attributions of
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personhood carry legal implications, then it might be pragmatically wise to
avoid use of humanoid forms.)

We conclude by considering the importance in these debates of the
widespread assumption that personhood necessarily involves “one body, one
mind.” We propose that robots are better understood as “one body, multiple
minds,” where the relevant minds include both robot and designers. We suggest
that this more expansive view is both descriptively more accurate, and also nor-
matively more defensible. Moreover, this broader view enables a more precise
characterization of the conditions in which a robot should have moral and legal
rights.

2 Descriptive Connections

The current treatment of robot rights is greatly informed by human rights and
by regulations for evolving technology. A key concept in human rights liter-
ature is personhood ; more precisely, the notion of ‘personhood’ captures the
important characteristics of a being that allow (or require) their recognition
as a legal “person.” This concept thus characterizes those entities that receive
strong(er) protective, legal, and moral rights, including humans and organiza-
tions alike. Historically, the context in which personhood gained mass popularity
and widespread influence was highly problematic. Philosophers of personhood
such as Plato, Locke, Kant, and Rawls all contended (or strongly suggested) that
intelligence or rationality is a key determinant of personhood, thereby implying
that one who possesses higher intelligence is arguably deserving of a higher
moral status [7,13,15]. However, intelligence was often either associated with, or
inferred from, physical European and masculine characteristics, thereby exclud-
ing women, people of color, children, and people with disabilities from person-
hood.1 Although some degree of rational or intelligent capabilities is plausibly
necessary for personhood, one must be careful not to thereby import sociocul-
turally specific beliefs about signals or evidence of intelligence.

Previous work in the field of human-robot interaction has shown that such
imports arguably occur, as perceptions of robot intelligence are influenced by
form. In fact, form factor and morphology are used not just in everyday percep-
tions about robots, but also in current lawmaking and regulatory practices, even
when form factor is unrepresentative of true robot function. As demonstrated
by Graaf et al., the usage of anthropomorphic terms to describe the ability of a
robot to exhibit human-like intelligence leads to the consequent assumption of
the form of the robot in question [6]. This finding is indicative of many people’s
misrepresentation of humanoid robots as necessarily intelligent, and the more
general, incorrect link between intelligence and human appearance. Humans are
naturally associated with possessing moral agency, which expands their rights,

1 Of course, these philosophers all had significantly more complex views than we have
presented here. In particular, they all typically allowed that it was an empirical
matter whether non-European, non-males had the requisite intelligence, and so they
might have had different positions today.
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compared to those of plants and animals, to include legal responsibility and lia-
bility. The instinct to associate moral agency to robots when they are humanoid,
and to draw related parallels, is consequently unsurprising.

The tight link between form and perceived moral agency is interestingly less
observed for robots in high-stakes situations, which are exactly those that might
be expected to exhibit moral agency. In Gunkel’s work investigating rights for
war robots, the intelligence the robot displays in its decision-making is much
more important than form factor when discussing its rights [9]. Robots that are
tasked with making challenging decisions are given higher moral standing based
on their ability to make ethically sound decisions, rather than whether they look
like they are capable of doing so.

However, robots in the personal, assistive, and commercial domains are held
to a different standard. Darling’s work investigating care for robots showed that
people cared more about robot abuse if the robot in question was one that
depicted anthropomorphic properties. This point was further emphasized by
elaborating on the known relationship between suffering and moral rights, which
translates to the treatment of robot rights as well [5]. The field of human-robot
interaction is greatly informed by human-human interactions, wherein human-
human interactions often serve as a template for ideal fluid communication for
robots. Human interactions, however, are not a sufficient template to inform
how we treat and look at robots. Robots exhibit autonomous capabilities that
can prompt designers and users alike to perceive them as more human, and
less machine-like. They also can exhibit human-like form factors that lead to
similar perceptions, even though this latter inference is not normatively war-
ranted. Current robots can exist in a middle ground between simple machines
and complex humans, and require unique regulatory policy grounded in clear
ethical commitments.

3 Normative Commitments

The previous section focused on how people do attribute personhood and rights
to robots; we turn now to the normative question of how they should, as that
could obviously diverge from what they do. Our primary argument here is neg-
ative: theories of robot rights should dissociate personhood from robot form.
One simple observation is that essentially no normative ethical theories include
physical shape as a criterion for personhood, but rather all focus on cognitive,
behavioral, phenomenological, and/or affective characteristics or capabilities. Of
course, those theories might be wrong, but we think it is notable that no philo-
sophical accounts of personhood (and subsequent rights) are grounded in the
physical form of the thing.

We start, though, by considering pragmatic reasons to dissociate robot form
and robot personhood. In particular, if there is a (legal) connection between form
factor and perceived personhood, then companies and robot designers would
have incentives to pursue unethical paths. An anthropomorphic form factor may
be chosen by robot designers to aid in the robot’s ability to be more socially
accepted, even if that choice would yield unfair advantages to the designers or
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reinforce harmful biases. For example, Somaya and Varshney’s work exploring
the various aspects of intellectual property rights shows that a humanoid social
robot with robot rights increases the perceived amount of humanness and the
degree of intellectual property rights [24]. Parviainen and Coeckelbergh further
emphasize the immense economic potential of animated and embodied robots,
providing Sophia as their key example [19]. This gives robot designers incentive
to acquire monetary gains by creating humanoid robots without appropriate
functions that nonetheless benefit (in perceptions) from this morphology.

A distinct practical reason to not unnecessarily use human-like forms (and so
dissociate personhood from form) is that inappropriate use of particular robot
morphologies can reinforce stereotypes and biases (e.g., [12,26]). Persaud’s work
investigating the extension of human rights to robots is characteristic in stat-
ing that humans are the “ideal embodiment of cognition and ethics” [20]. As a
result, robotics developers must be careful not to design their systems in ways
that accidentally reinforce existing stereotypes, even if those would be pragmat-
ically helpful (e.g., if a robot with lighter skin and a robot with darker skin are
perceived as having different rights, and so designers opt for one on that basis).

Ethical concerns surrounding socially assistive robots are shared by several
researchers (e.g., [3,11,23]). One particularly common worry is deception, where
the population interacting with robots reports feeling deceived if the robot is
unable to do a task that it is expected to do. Boada et al. show that deception is
linked to perception, and can be used intentionally, although it is conceived as
being morally wrong [3]. A direct link between deception and expectation is form
factor. The general view of relational entities for robots presented by Tavani is
a key example; the main relevant claim from this work is that there is no neces-
sity to know if a robot possesses certain proprieties, as long as it appears like it
can [25]. Hegel et al. present work studying the effects of anthropomorphization,
and find that the more human a robot looks, the more human-like it is expected
to be [10]. Mamak’s work exploring the legal protection of robots presents a dis-
course with a key, often-overlooked statement: “robots are becoming increasingly
human-like” [16]. This expectation of robots to look like humans (if they come
under ethical considerations) extends culturally, as shown by Robertson [22]. In
their work discussing robot rights in Japan, the authors explain coexistence by
stating that it makes sense for a robot to have a human-like body if robots are to
co-exist in human environments. The contrast between robot rights and human
rights needs to be clearly defined, as morphology is currently an indicator of pre-
existing biases towards robots, and even towards humans, who do not appear
the same as others.

However, the likely risks associated with a humanoid form factor may clash
with the potential convenience of choosing a human-like embodiment. That is,
rather than decoupling form factor and rights, one might instead think that we
should connect them, precisely to impose a “cost” on developers—namely, provi-
sion of appropriate rights—exactly when they gain a benefit solely by using that
form factor. If we require legal considerations for robots that are most human-
like, then we ensure that such robots (with their potentially deceptive form fac-
tor) have an appropriate level of moral agency. While this coupling is tempting,
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we contend that it should be resisted. The current legal system is insufficiently
refined to provide rights in a fine-grained way to intelligent autonomous robots.
While the law for software systems and existing AI may be a starting point,
these laws are not inclusive of the unpredictability that embodiment brings in
“open-world” contexts, and so they fail to cover the effects that misuse of robots
could have. Moreover, the rights and legal protections that might be required
for robots are quite different from those for humans. Existing legal frameworks
for humans are not appropriately designed for robots, and so we ought not use
them in that way (despite the temptation). In particular, the potential practical
benefit of prompting robot developers to engage in more thoughtful design is
insufficient to accord human-like rights on the basis of form factor. We should
use other mechanisms to achieve that benefit.

More generally, human-like morphology can lead to harms such as concealing
information, misuse of trust, and promoting biases unless there are clear expla-
nations of robot functions and capabilities. For social robots in particular, it is
challenging to not anthropomorphize robots due to the context in which they
exist, but that anthropomorphization does not imply that we ought to afford
rights to the robot. Robot morphology is used by people as a signal about its
rights, but it ought not be used in this way.

We have focused on challenges and problems that can arise if we connect
morphology with personhood, but there are also advantages to this dissociation,
as it will (we suggest) lead to greater diversity of robot form factors. If person-
hood does not depend on form factor, then there is one less reason pushing robot
designers and developers towards the same anthropomorphic forms. As a result,
this dissociation can help to:

– Provide robot designers the freedom to explore more broadly varying robot
morphologies.

– Expand the layperson’s view of a robot.
– Promote a newly refined and better understanding of intelligence and per-

sonhood in the digital age.
– Enable people to view a robot as a moral agent on appropriate grounds, rather

than parallels to human embodiment.

Of course, none of these potential benefits are guaranteed if we dissociate
morphology and rights. Furthermore, the benefits themselves are largely practi-
cal and psychological, not legal or ethical. We agree, but we also emphasize that
these benefits would largely accrue to the general public, and so are exactly the
types of considerations that regulations should advance. More generally, robot
designers and developers lose relatively little if we dissociate personhood and
form factor, and potentially gain access and legitimacy for an expanded space
of possibilities.

4 Prescriptive Guidance

If personhood is decoupled from form factor, then how ought we think about con-
ditions for legitimate attribution of personhood to robots? We earlier noted that
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essentially all ethical theories use factors other than physical form, but we did
not provide a positive account of the nature of personhood. Moreover, this issue
connects directly with prescriptive guidance about norms, laws, and regulations
that can help to ensure that appropriate criteria are used. We thus approach
this problem by extracting commonalities from across relevant theories in fields
that shape robot rights, namely philosophy, law, and human-robot interaction.

Personhood has played a significant role in shaping how the law recognizes
persons and their rights. Ohlin presents a thoughtful piece showcasing the short-
comings and contradictions of personhood in great detail [18], which we summa-
rize succinctly here. The rights that are ascribed to a being are based on whether
they have personhood, non-personhood, or the “potential” of personhood. How-
ever, this approach in the law depends on clear lines to delineate these three
states, which may not be forthcoming in complex cases. A very telling exam-
ple is the personhood of someone suffering from multiple personality disorder
(MPD). From a legal perspective [18], the personhood of one with MPD is quite
unclear. On the one hand, one might claim that each personality is a “person”
since those are what exhibit relevant psychological continuity. On the other hand,
this approach would be legally problematic since a criminal act would be tem-
porarily forgiven when other “persons” are present (i.e., other personalities at
the fore) since they did not commit the crime, even though they are stuck in the
same embodiment.2 In practice, this debate has largely been resolved by treating
individuals with MPD as a “group person,” in a similar way to companies. This
practice treats a person with MPD as one with several minds and one “body,”
just as legal group personhood for companies allows for specific departments
within a company to be held more or less liable, while still receiving common
representation. We suggest that this notion of group personhood can potentially
be helpful in thinking about robot rights.

Group personhood also satisfies constraints emerging from focus on the rea-
sons why legal personhood might be needed for robots. Avila Negri [2] has argued
that personhood for a robot is (currently) only needed for the purpose of lia-
bility. That is, the proposal is that we only need to accord robots sufficient
personhood and rights to hold them liable for harms and negative outcomes
from their actions. However, this restricted focus not only fails to provide guid-
ance about the nature of personhood, it also merely postpones difficult questions
about robot rights and personhood that extend beyond liability (e.g., what are
the intellectual property rights of works created by a robot?). We propose that
any account of robot personhood and robot rights should provide guidance for
multiple ethical and legal questions, not merely those relating to liability. The
group personhood approach can clearly address liability questions, as shown by
its use for issues of corporate liability. And in addition, many other legal and
ethical issues can be usefully addressed using this framework, as shown by its
successful application to cases of MPD.

2 There are broader issues about the potential criminalization of a mental disorder
rather than providing people with actual psychiatric help, but those would take us
quite far afield from questions of robot rights.
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A different feature of personhood arises in recent work of Arstein-Kerslake
et al. [1], who argue that personhood requires consideration of an object’s inter-
actions. Historically, the law has struggled to recognize and evaluate impacts to
legal objects, such as the environment; those impacts were typically deemed to
be legally relevant only if they also affected the interests of legal subjects, such
as persons. Legal subjects were characterized by intrinsic (mostly intellectual)
features, and so anything without those features was legally and morally side-
lined. However, there is a tight interconnectivity of legal subjects and objects,
thereby calling into question the existence of a “bright line” distinction between
the two. In particular, there is not necessarily a principled basis for distinguish-
ing subjects from objects solely on the basis of intrinsic (rather than relational)
features. We thus propose that we should broaden the notion of personhood
to include any being that is interdependent with those in their surroundings.3

The resulting conception—grounded in feminist theories of relational autonomy
and Native American histories of connection to soil and trees—does provide a
more expansive understanding of legal personhood, including many flora and
fauna [14,21]. While this implication might be seen as an objection, we propose
that lines for personhood should initially be drawn in a more expansive way, and
scaled back in light of increased understanding. Such an approach is arguably
an appropriate counterpart to the more general Precautionary Principle, as it
would create legal protections (and barriers) as a default, with those weakened
only in response to clear evidence and arguments.

Based on these various ideas, we propose to understand personhood for a
robot as follows. First, robot personhood should be treated as group personhood
(one body, several minds), where the robot necessarily acts on other objects
and subjects as an independent representative of the company/designers who
deployed it. Second, robots granted personhood are eligible to receive legal pro-
tection and ethical consideration that a legal person can receive. Third, the
robot’s function, autonomy, and interdependency are the only factors that will
determine its personhood. One immediate implication is that use of particular
robot form factors and appearance should be justified by the designers solely
on these bases (rather than other reactions that people might have). Robots are
at the crux of interdependence in society, and this proposal ensures that social
robots are appropriately understood as “persons” just when they exhibit the
right characteristics, rather than when they happen to exhibit physical proper-
ties of a human being.

We have deliberately not proposed or defended any particular set of neces-
sary (for personhood) capabilities, capacities, or characteristics in this paper.
Instead, we have aimed to develop insights and principles for robot personhood
that are (largely) agnostic about the specific positive account of personhood writ
large. We recognize the significant disputes and disagreements about whether,
for example, the “capacity to feel pain” is a necessary feature for personhood.

3 We emphasize that interdependence is necessarily an active, bidirectional relation-
ship. The state of a rock can depend on the persons in its environment, but it is not
thereby interdependent with those persons (and so not a legal subject).
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And precisely because of those disputes, we have focused on developing guidance
that is not dependent on the truth or acceptance of any particular list of charac-
teristics, but rather can guide legal and ethical reasoning while further aspects
of personhood are debated and resolved.

This understanding of robot personhood has immediate implications for reg-
ulations and legal practices, in particular the types of opacity that should be
permitted. One standard approach [4,8] divides AI system opacity into three
types: (1) companies making the system intentionally opaque due to potential
outrage at the algorithm’s biases or poor performance; (2) opacity due to the
technical illiteracy of those interacting with the system; and (3) opacity due to
complexity of the algorithmic model that is not fully understood even by pro-
grammers. Although these different types lead to different potential harm, they
are currently all treated the same way under law. In particular, technical com-
plexity (type (3)) is often used to escape liability, even if the opacity is actually
of type (1) or (2). While AI systems are coming under increasing regulatory
scrutiny around issues of opacity, the extension to intelligent robots requires a
clear distinction between system opacity, system capability, and designer intent.

In particular, all three types of system opacity become more complex when
embodiment is included. Intentional opacity can greatly increase and go unde-
tected, and if a robot looks like a human, then the technical illiteracy and regu-
lation of expectations also increases. If robot rights are grounded in appropriate
system capabilities and interactions, then we can use those bases to inform reg-
ulation and liability, rather than relying on user, regulator, or developer under-
standing. We propose that regulations should ensure that system opacity and
foreseeable complexity inform liability and protective rights. For example, if a
social robot uses only its eyes to expressively communicate, then system com-
plexity in terms of foreseeable harm due to misinterpretation is lower, and can
be regulated accordingly. However, if the social robot uses speech, then the
potential of harm due to misunderstanding increases, and needs to be regulated
accordingly.

At the same time, social robots are in a distinctive position since they can
become interdependent agents of their environments. Interacting fluently with
humans is a compelling characteristic, but has also inadvertently limited social
robots to a specific form factor. For example, Naneva et al.’s review paper on
human-robot interaction focuses on attitudes and trust towards social robots,
and showcases a key limitation through their definition of a social robot [17]: a
“physically embodied artificial agent that mimics the features of a living being–
usually a human.” This definition is indicative of the general mindset towards
social robots, with their intrinsic nature of being “social” directly related to
anthropomorphism. In fact, they found no prior research on attitudes towards
non-anthropomorphic or non-humanoid social robots, despite those being pos-
sible form factors. When assessing qualities of trust, anxiety, acceptance, etc.,
it is extremely important to be aware of the effect that form factor has, espe-
cially for agents such as robots that are extremely media-prominent. If robotics
researchers themselves are subconsciously propagating the humanoid form factor
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in their research, then it can be anticipated for non-robotics researchers to do
the same, narrowing their view of a robot in a social context. We propose that
for the overarching discussion of robot rights, researchers must also focus on
including the effect of form in their research, and broaden the current limiting
aspects of social robots.

5 Discussion

Robots continue to grow increasingly prevalent in our daily lives, and with this
growth comes many different concerns, impacts, and conversations. One such
conversation is the proper status of robot rights, given their unique ability to be
more of a moral agent than an animal, but not as morally aware as a human.
Concerns regarding liability, accountability, and protection have arguably pulled
in contradictory directions, as evidenced by the state of the current legal frame-
works about robot rights. Primary discussions about robot rights have focused
mainly on military robots and others with significant capabilities for harm. How-
ever, this focus has left little room for substantive discussion of potential rights
for personal, assistive, and commercial robots. Which will arguably form the
majority of robots with which the general public will interact. Public under-
standings of robot rights will thus likely be heavily shaped by these interactions,
informing how we regulate robots and new technology in the future. A focus on
personal and assistive robots is even more critical since they may interact with
vulnerable populations, greatly increasing the risk of potential harm.

An underlying theme that has been observed in social robotics and the def-
inition of their rights is the importance of the morphology of the robot. The
humanoid form factor not only has an impact on how people interact with the
robot, but also what they expect from it, the qualities associated with it, and
the subsequent rights it can gain. If a robot simply possesses humanoid char-
acteristics but not the adequate intelligence to make well-informed decisions,
then deploying such a system has the potential to cause a great deal of harm,
but without appropriate accountability since rights would be inappropriately
attributed to it.

We have argued for a dissociation between robot morphology and robot per-
sonhood or rights, as the latter should be grounded in the robot’s intelligence,
sentience, and moral agency. This approach also provides practical benefits: (a)
Designers and companies will have incentives to choose an appropriate robot
morphology and transparency for the functions and purposes of the robot; and
(b) There will likely be increased designer freedom, digital literacy, and a more
holistic definition of personhood.

The solutions we present combine inspiration from several diverse fields that
all have a unique influence on robot rights. We urge roboticists to include the
impact of form in their analyses, and urge policy-makers to consider true capabil-
ities of autonomous systems regardless of form factor. Robots fall in an uncom-
mon niche that overlaps with not one, but rather many, domains. Robot designers
and policy-makers must recognize this overlap when approaching an inherently
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challenging conversation, such as robot rights. Achieving the needed balance
between fields may be difficult and time consuming, but is a necessary step.
We encourage the much-needed conversation between representatives of those
impacted by technology that can help bring unforeseen assumptions to light and
aid in reaching a common understanding. From the discourse presented, we hope
to increase the awareness of the impact of robot form and the potential harm of
restricting acceptance to one sole form factor. With robots becoming more inte-
gral to society, it is important to recognize their unique advantage of possessing
moral agency without having to draw parallels to their humanness. Robots are
not human, and neither are their rights.

Acknowledgments. We thank Julie A. Adams for her guidance during the early
stages of this work.
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Abstract. To address the global challenge of population aging, our goal
is to enhance successful aging through the introduction of robots capa-
ble of assisting in daily physical activities and promoting light exer-
cises, which would enhance the cognitive and physical well-being of older
adults. Previous studies have shown that facial expressions can increase
engagement when interacting with robots. This study aims to investigate
how older adults perceive and interact with a robot capable of displaying
facial emotions while performing a physical exercise task together. We
employed a collaborative robotic arm with a flat panel screen to encour-
age physical exercise across three different facial emotion conditions. We
ran the experiment with older adults aged between 66 and 88. Our find-
ings suggest that individuals perceive robots exhibiting facial expressions
as less competent than those without such expressions. Additionally, the
presence of facial expressions does not appear to significantly impact
participants’ levels of engagement, unlike other state-of-the-art studies.
This observation is likely linked to our study’s emphasis on collabora-
tive physical human-robot interaction (pHRI) applications, as opposed
to socially oriented pHRI applications. Additionally, we foresee a require-
ment for more suitable non-verbal social behavior to effectively enhance
participants’ engagement levels.

Keywords: facial expressions · emotions · collaborative robotic arms ·
social-physical human-robot interaction

1 Introduction

For the first time in history, the global population of individuals aged 6 and above
is projected to exceed the number of younger people. The decline in fertility
rates and the increase in life expectancy have resulted in a global phenomenon
of population aging [2]. This attracts researchers’ attention to studying how to
enhance older adults’ life quality and independent living.
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A potential enhancement for successful aging is introducing robots that can
provide physical assistance with essential daily activities and promote light phys-
ical exercises. It has been proven that light physical exercise can be beneficial
for older adults to maintain their cognitive and physical well-being [9]. As a
consequence, this has drawn our attention to exploring what could contribute to
a successful physical human-robot interaction (pHRI) [13].

Recent studies have demonstrated that, by bridging social human-robot inter-
action (sHRI) and pHRI, robots can physically interact with humans while also
being socially acceptable [9]. One approach that has proven its effectiveness in
enhancing robot perception and engagement is endowing robots with the ability
to exhibit facial emotional expressions [19]. This has motivated us to explore the
potential of facial emotional expressions in pHRI scenarios.

In this study, we adopt a light physical exercise scenario, as one of the poten-
tial applications for physically interactive robots in domestic environments, to
investigate the impact of facial emotional expressions on users’ perception of the
robot and their level of engagement. We utilized Sawyer, a collaborative robotic
arm developed by Rethink Robotics, for this purpose. Sawyer is equipped with a
flat panel screen that allows us to display various facial expressions, as shown in
Fig. 1. We anticipate that our results will be helpful for the research community
toward the exploration of effective social skills for physically interactive robots.

Our research is founded upon two primary domains: sHRI and pHRI, which
serve as the pillars of our investigation. Remarkable efforts were made to explore
social-physical robots in various contexts such as hugging [4], touching in social
and nursing scenarios [14], handshaking [12], and playing games [10]. However,
only limited efforts involved the investigation of both domains with robots that
possess high dexterity and manipulation capabilities [1] which are essential qual-
ities for robots to efficiently engage in physical interactions. Even fewer studies
have devoted their efforts to investigating facial emotional expressions, for those
types of robots [10].

Some existing studies have relied on facial expressions to enhance the user’s
engagement with robots that possess high dexterity and manipulation capabil-
ities in various pHRI scenarios, such as physical exercise [9], clapping/gaming,
and teaching [1]. However, they did not investigate the impact of the robot’s
facial expressions on the interaction, unlike Tsalamlal et al. [18] and Fitter et al.
[10]. Tsalamlal et al. [18] investigated how participants combine facial expressions
and handshakes to assess the perceived emotions in robots. The findings indi-
cated that participants assigned greater significance to facial expressions when
evaluating Valence. Fitter et al. [10] assessed how participants’ emotions were
affected by a robot’s responsive facial expressions compared to an unresponsive
robot’s facial expressions during a hand-clapping game. Participants perceived
the interactive face as more pleasant, energetic, and less robotic than the unre-
sponsive one.

However, none of the previously mentioned studies have investigated partici-
pants’ perceptions of the robot’s characteristics, such as its perceived intelligence.
Furthermore, the influence of these facial expressions on users’ performance
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remains unexplored. To address these gaps, our study seeks to investigate partic-
ipants’ perceptions of a physically interacting robot displaying facial expressions
and examine the potential impact of these expressions on their performance
during physical interactions.

2 Research Questions

Our study is designed to build upon the insights gained from existing literature.
By rigorously exploring the effects of facial emotional expressions on older adults
engaged in pHRI applications. As a result, the following research questions were
formulated to lead this study:

– RQ1: Will facial emotional expressions impact an older adult’s level of
engagement and perception of a robot in a pHRI scenario?

The answer to the first research question will help us understand the importance
of relying on facial expressions as a means of communication during pHRI with
older adults. These findings will guide the research community towards investing
further efforts in the development of facial emotional expressions for successful
pHRI. Alternatively, they may prompt exploration of other social behaviors that
could be better suited for typical pHRI scenarios.

To comprehend the impact of facial expression responsiveness, as well as the
mere presence of a robot’s face regardless of its responsiveness, on participants’
perceptions of the robot’s characteristics and performance, we pose our second
research question:

– RQ2: Does a responsive robot’s facial emotional expressions impact an older
adult’s level of engagement and perception of a robot, compared to an unre-
sponsive robot, in a pHRI scenario?

Fig. 1. Participant exercising with Sawyer in the unresponsive social behavior condition
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3 Method

3.1 Settings

To answer the proposed research questions, a user study, in the form of a light
physical exercise game, was conducted in the Active & Interactive Laboratory
at the University of Waterloo. The objective of the exercise is to perform the
highest number of pushes possible, according to each participant’s comfortable
pace, against the robot’s 4th joint as shown in Fig. 1. Further details of the game
design are provided in Sect. 3.1.

A between-subject study design is considered and Sawyer from Rethink
Robotics is used. Sawyer is a 7-degree-of-freedom torque-controlled manipula-
tor equipped with a flat-panel screen and headlight, as shown in Fig. 1.

During participants exercising with the robot, 3 conditions of facial emotional
expressions were considered:

1. Inactive Facial Expression: The robot displays its default screen, which
features the Rethink Robotics logo [17].

2. Unresponsive Facial Expression: The robot showcases a happy face (as
depicted in Fig. 2b).

3. Responsive Facial Expression: The robot exhibits varying facial emotional
expressions in response to the user’s performance.

In this paper, we will also refer to the unresponsive and responsive conditions
together as the active conditions. In the responsive condition, the robot shows
a neutral face (shown in Fig. 2a) at the beginning of the interaction. After the
participant performs a set of successful pushes, the robot shows a happy face
(shown in Fig. 2b) and after another set of successful pushes, the robot shows a
surprised face (shown in Fig. 2c).

We opted to utilize Fitter and Kuchenbecker’s established facial emotional
expression set [8] due to its cross-cultural evaluation, a critical factor for con-
ducting experiments in a Canadian societal context, as in our case. Fitter et al.
[8] found that participants from the USA and India, similar to our participants
(Caucasians and Southeast Asians), successfully identified their proposed set of
the facial emotional expressions. Moreover, the study, which took place online,
exclusively presented participants with Baxter’s head. It’s worth noting that
Baxter’s head is almost identical to Sawyer’s head, as both robots are products
of Rethink Robotics.

We considered using the safest rated facial emotions, according to Fitter and
Kuchenbecker’s results, as safety is the most crucial human factor in HRI [7].
Therefore, we decided to use the neutral, happy, and surprised faces for the
responsive condition and the happy face, which is rated the safest among all
faces, for the unresponsive condition. While the red and the purple colors were
rated as the most energetic face colors, we chose to use purple for all conditions as
red was, also, rated the least pleasant. Similarly, we aimed at using an arousing
color as it contributes significantly to promoting the interaction. It should be
noted that Sawyer’s face color in Fig. 1 is purple, but it is shown blue due to the
camera effect.
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Fig. 2. Sawyer facial emotional expressions [8] (Color figure online)

Physical Exercise Design. The exercise starts with Sawyer at its initial joint
configuration, as shown in Fig. 1a. The participants stood upright and faced
Sawyer’s head. They are asked to perform the highest number of pushes possible
according to their comfortable pace in 1min against Sawyer’s 4th joint as shown
in Fig. 1. Further details about the instructions provided for the participants
are indicated in Sect. 3.3. A push is only counted if a participant was able to
push the joint to make an angle offset greater than a pre-defined threshold. Each
time a push is counted, Sawyer’s green headlight blinks as an indicator for the
participant. Figure 1b shows the robot state, note the headlight, when a push is
counted. Example of a participant exercising1.

Robot Control. In order to physically exercise with Sawyer in a fully-
autonomous mode, it is required to be under joint impedance control. The joints’
initial configuration and stiffness are kept constant across all conditions, whereas
Sawyer’s facial expressions are adjusted according to the condition being exam-
ined.

In the responsive condition, to keep a consistent interaction experience with
Sawyer across all participants and account for differences in participants’ phys-
ical capabilities, each participant performed a trial session to determine their
capability of pushing Sawyer’s joints, i.e., baseline. Further details on how the
trial session is conducted are in Sect. 3.3. Thus, we were able to predict each
participant’s total number of pushes during the actual session. Accordingly, we
implemented our code to show a happy face after 25% of the baseline, and a
surprised face after 75% of the baseline. Hence, each participant in the respon-
sive conditions gets to experience all the facial expression alterations around
the same phase in the experiment despite the expected diversity in participants’
physical capabilities.

3.2 Participants

Twenty-seven participants were recruited in our study (17 female (F); 10 male
(M), all older adults) from the University of Waterloo Research in Aging Par-
ticipant Pool (WRAP), between the ages of 66 and 88 years (M = 76.52, SD =

1 https://youtu.be/mZJcMLABNHg.

https://youtu.be/mZJcMLABNHg
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6.12). Out of the 27 participants, all 3 conditions were randomly assigned 9 par-
ticipants each (ages: M = 76.78, SD = 7.31, 5 F, 4 M for the inactive condition,
ages: M = 77.44, SD = 4.27, 6 F, 3 M for the unresponsive condition, ages: M =
75.33, SD = 6.18, 6 F, 3 M for the responsive condition).

Among the recruited participants for the experiment, the majority were right-
handed. However, in the inactive condition, there were four exceptions: two left-
handed individuals and two who identified as ambidextrous. Additionally, each
of the two active conditions included one left-handed participant. Ethnically, the
majority of participants identified as Caucasian, with two participants identify-
ing as Southeast Asian. Notably, two participants of South Asian descent were
assigned to each of the active conditions. Furthermore, all participants demon-
strated good eyesight as confirmed by a brief eye test.

Initial survey results indicated that all participants displayed normal levels
of depression, stress, and anxiety according to the Depression Anxiety Stress
Scale 21 (DASS-21) [16]. Notably, depression levels were evaluated due to their
established influence on activity motivation, a practice observed in prior similar
experiments [9]. None of the participants had prior exposure to the Sawyer robot,
as confirmed by a 5-point Likert scale. While some participants had encoun-
tered other robots before, over 50% of the assigned participants had no previous
robotics experience across all conditions. During the trial session, participants
demonstrated closely matched physical capabilities. Additionally, none of the
recruited participants had upper or lower limb motion disabilities.

All our experiments received ethical approval from the University of Water-
loo Human Research Ethics Board (protocol N. 45340) at the University of
Waterloo, Ontario, Canada. Before the experiment, participants received proper
information and gave informed consent to participate in the study.

3.3 Procedure

Each participant visited the laboratory and dedicated 20 to 30min to complete
the study. After obtaining participants’ informed consent, they provided demo-
graphic information including age, gender, ethnicity, profession, and handedness.
Following this, participants watched an instructional video2 on how to exercise
with the robot, without indicating the robot’s capability of facial expressions,
i.e., its screen is not shown. The decision to withhold information about the
robot’s facial expression capabilities prior to the experiment was intentional,
aiming to prevent the formation of unrealistic expectations.

A short eye test was then administered to ensure participants’ ability to see
the robot’s screen clearly. At the beginning of the setup, Sawyer’s screen was
turned away from the participant to prevent visibility of the screen. Participants
were given the opportunity to perform 2 to 3 pushes to become accustomed to
the robot’s stiffness and determine their preferred distance from it. The exper-
imenter ensured that participants performed the exercise correctly by ensuring
they understood how the pushes were being counted.

2 https://youtu.be/HxXZVLemShQ.

https://youtu.be/HxXZVLemShQ
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Next, a trial session lasting 10 s was conducted with Sawyer’s screen still
turned away. The purpose was to gauge each participant’s physical capability.
Upon successful completion of the trial, the robot rotated its screen to face the
participant and proceeded to execute one of the three conditions detailed in
Sect. 3.1. Participants conducted the trial session with the robot in the same
state as depicted in the instructional video (Sawyer’s screen not facing the par-
ticipant). Participants performed the actual session for a duration of 1min.

Following the task, participants completed robot perception and engagement
questionnaires, detailed in Sect. 3.4. Subsequently, a debriefing session was held
to address any questions or concerns. As a token of appreciation for their time,
each participant received remuneration.

3.4 Measures

To evaluate robot perception, we employed the Robot Social Attribute Scale
(RoSAS) [5]. RoSAS measured participants’ perceived competence, warmth, and
discomfort on a 9-point scale. Additionally, perceived safety was evaluated using
the corresponding subscale from the Godspeed questionnaire [3] , which employs
a 5-point scale. Perceived trust was assessed with a single-item questionnaire
employing a 5-point Likert Scale. Participants indicated their level of trust by
responding to the statement ‘I trust the robot,’ where 1 denoted ‘strongly agree’
and 5 denoted ‘strongly disagree’. Items within each sub-scale are randomized.

For engagement assessment, we employed both objective and subjective eval-
uation methods. Participants indicated their level of engagement by responding
to the statement ‘I felt engaged with the robot during exercising’ using a 5-point
Likert Scale, where 1 represented ‘strongly agree’ and 5 represented ‘strongly dis-
agree’. The objective assessment (Eobj) involved determining the ratio between
the actual number of pushes during the session (Pactual) and the expected num-
ber of pushes (Pexpected) calculated from the trial session.

Eobj =
Pactual

Pexpected

Furthermore, we sought to understand the reasons behind the participants’
responses to our quantitative measures by relying on open-ended questions.
These questions included: “Did you enjoy the exercising session? Why or why
not?”, “What do you think about Sawyer as an exercising partner?”, “What stood
out to you the most about interacting with the robot?”, “Do you think the robot
can have more features that would make it more interesting? Suggest features.”,
and for the responsive condition, “Did you observe any changes in the robot’s
facial expressions? If so, how would you describe the changes in its facial expres-
sions?” To ensure thorough and meaningful responses, we specifically asked par-
ticipants to provide the reasoning behind their answers.

4 Results

To evaluate participants’ perceptions of the robot, we calculated scores for com-
petence, warmth, discomfort, and perceived safety by averaging individual items
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Fig. 3. Boxplots illustrate participants’ perceived competence, discomfort, warmth,
safety, and objective engagement. Each box plot features a line representing the median,
with box edges indicating the 25th and 75th percentiles. Whiskers display the range
up to 1.5 times the interquartile range, with outliers marked as ‘o’. The ratio Eobj

is represented as a value potentially exceeding 1. Competence, perceived safety, dis-
comfort, warmth, and safety ratings are normalized to fall within the range of 0 to 1.
Significance levels (∗∗ := p − value < 0.01) is indicated on lines between conditions.

Fig. 4. Bar plots illustrating participants’ perceived trust and engagement for each
condition on a 5-point Likert Scale (1 = highest, 5 = lowest).

within each sub-scale. Figure 3 illustrates participants’ responses for each dimen-
sion across conditions. Notably, participants perceived the robot as more com-
petent in the inactive condition compared to the active condition, showing rel-
atively high ratings across conditions. Similarly, participants reported higher
safety levels in the inactive condition compared to the active conditions, also
displaying relatively high ratings overall. Ratings of discomfort remained con-
sistently low across all conditions. Warmth ratings were comparable between
the inactive and unresponsive conditions but were higher than the responsive
condition, with relatively low ratings overall. Additionally, participants consis-
tently expressed high levels of trust across all three conditions, as demonstrated
in Fig. 4a.
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Concerning engagement, participants consistently reported high levels across
all three conditions, as shown in Fig. 4b. During the actual session, participants
executed a higher number of pushes, in accordance with the instructions, com-
pared to the expected count calculated from the trial session. The inactive and
responsive conditions showed nearly equal ratios, while the unresponsive con-
dition had lower values in comparison to the other two conditions. Objective
engagement is presented in the leftmost section of Fig. 3. Objective and subjec-
tive engagement are presented in two separate graphs, as the former is continuous
data and the latter is ordinal data.

To analyze significant differences between the three facial expression con-
ditions, we employed Mann-Whitney U and Chi-Square (χ2) tests. These non-
parametric tests were chosen due to the smaller sample size in each condition
(n < 30), which precluded a normality check. The selection of tests was based
on the type of data being compared - continuous and ordinal. To mitigate false
positives, we applied the Bonferroni Correction test. Effect size calculations were
performed for significant differences.

There was a statistically significant difference in competence scores between
the inactive condition (μ = 8.24, σ = 0.55) and the unresponsive condition
(μ = 6.07, σ = 1.50), with a p − value = 0.005 and W = 58. This difference was
associated with a substantial effect size of r = 0.92. No significant differences
were observed for any other dimensions.

In conclusion, our findings in response to RQ1 indicate that facial emotional
expressions have a negative impact on older adults’ perception of a robot, partic-
ularly in terms of competence. However, these expressions do not influence their
level of engagement. As for RQ2, responsive robot facial emotional expressions,
in comparison with unresponsive facial emotional expressions, do not have an
impact on robot perception or engagement levels.

4.1 Correlation Analysis

To enhance our comprehension of the quantitative results, we employed Spear-
man’s rank correlation coefficient (ρ) to identify correlations within the collected
data. For a deeper understanding, we investigated whether gender exerts an
influence on any of the dependent variables. To achieve this, we calculated the
Rank- Biserial correlation coefficient (rrb) and conducted Mann-Whitney U and
χ2 tests. However, no correlations or significant differences were found across
conditions with respect to gender.

In the inactive condition, as depicted in Fig. 5a, it’s apparent that individ-
uals with lower stress levels tend to perceive the robot as safer, unlike those
with higher stress levels. Conversely, increased engagement with the robot is
associated with higher levels of anxiety.

Contrasting the inactive condition, the unresponsive condition reveals
intriguing insights, characterized by a subset of robust correlations (| ρ |> 0.8)
with an exceedingly low likelihood of arising by chance (p−values < 0.005). Illus-
trated in Fig. 5b, participants exhibiting heightened anxiety levels are inclined
to perceive the robot as less competent, contrasting those with lower anxiety
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Fig. 5. Heatmap illustrates Spearman’s correlations observed for each condition. Cor-
relations marked with ‘*’, ‘**’, and ‘***’ indicate a p − value < 0.05, < 0.01, and
< 0.001 with a | ρ |> 0.6. Abbreviations: OE = Objective Engagement, SE = Subjec-
tive Engagement, PS = Perceived Safety.

levels. Additionally, individuals experiencing high stress levels are more inclined
to perceive the robot as friendly and warm.

In contrast to the previously mentioned conditions, the responsive condition
exhibited robust correlations(| ρ |> 0.8) with dependent variables, demonstrat-
ing a high degree of statistical significance (p − values < 0.001). Participants
who engage more intensively with the robot tend to perceive it as less warm
than those who engage less. Similarly, participants reporting elevated levels of
trust perceive the robot as less warm.

It’s important to keep in mind that anxiety, stress, and depression levels
are assessed prior to the experiment. This means that the measurements reflect
participants’ baseline levels in their everyday lives rather than during the course
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of the experiment itself. Furthermore, no significant differences in anxiety, stress,
and depression levels were found between the conditions.

5 Discussion

We acknowledge that a larger sample size could have potentially revealed more
statistically significant differences between dimensions, reducing the risk of Type
II errors. However, due to the unique and challenging nature of recruiting older
adults, obtaining a larger sample size was unfeasible. Our sample size is greater
than previous studies involving robots and older adults, such as Nowak et al. [15],
who could only recruit 7 participants, and Giorgi et al. [11], who recruited 17 par-
ticipants to investigate perceived trust in a social robot across a wider age range
(40 to 87 years). Moreover, the study’s design, conducted as a between-subject
experiment to mitigate issues highlighted in prior literature [10], unintentionally
accentuated differences between conditions, reinforcing the need for a greater
participant count.

Our findings demonstrate that participants perceived the robot as less com-
petent when facial expressions were introduced, as opposed to when they were
absent. This observation can be attributed to the non-social nature of the pHRI
application—physical exercise—employed in our experiment. In contrast, previ-
ous literature has shown that incorporating facial expressions into pHRI appli-
cations with a social purpose, such as handshakes, led participants to perceive
the robot’s emotions more positively, as evidenced by Tsalamlal et al. (2015)
[18]. Furthermore, this observation is supported by participants’ responses to
our open-ended questions, in which they referred to the robot as a “tool” or a
“weight machine” in both active and inactive conditions. This underscores the
importance of future investigations to enhance the robustness of these findings
across various pHRI applications.

Moreover, it’s worth considering the distinction between the physical interac-
tion described in Tsalamlal et al.’s study [18], where a humanoid was employed,
and our utilization of a collaborative robot like Sawyer, equipped with a screen.
This contrast prompts a pertinent inquiry regarding how the type of robot
employed in pHRI might influence robot perception. It’s conceivable that peo-
ple’s preferences for engaging in physical interaction and communication could
differ when interacting with a humanoid displaying facial expressions compared
to a collaborative robotic arm with a screen conveying facial expressions. How-
ever, we believe that the context, whether social or collaborative, significantly
influences user communication preferences.

Additionally, a notable recommendation arises to enhance the robot’s facial
features by incorporating elements such as cheeks or eyelids, aligned with the
findings from Chen and Jia’s study [6], thereby imparting a sense of maturity and
user preference to the robot’s appearance. This recommendation finds additional
support through a considerable number of responses obtained from participants
in our study’s open-ended questions, wherein many participants suggested alter-
ing the robot’s facial features. One participant even specifically mentioned the
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eyes. Implementing this adjustment holds the potential to cultivate a perception
of Sawyer as more mature and visually appealing.

We anticipate that a comparison between the inactive and responsive condi-
tions would likely unveil a significant difference in competence, given the avail-
ability of a larger sample size. Importantly, this observation extends to all other
dimensions, underlining the pivotal role of conducting the study with a more
substantial number of participants. Achieving this can involve augmenting the
relatively hard-to-access population of older adults with a younger adult pop-
ulation. This augmentation naturally leads to the question of whether distinct
age groups will perceive the robot’s attributes in varying ways. Therefore, we
plan to expand this research in the future by including younger adults, following
the common practice in robotics studies involving older adults [15].

We speculate that the absence of a significant difference between the respon-
sive and unresponsive conditions might be attributed to the abstract nature of
the chosen set of facial expressions and the specific type of application employed
in this experiment. This conjecture is supported by the fact that more than 50%
of participants in the responsive condition reported not perceiving any changes
in the robot’s facial expressions, as their attention was directed towards acti-
vating the headlight blinks. This perspective gains further weight from one par-
ticipant’s response to the open-ended questions, where they suggested altering
the facial expressions once the exercise was completed. This observation under-
scores the possibility that the nature of the application and its objective could
have influenced participants’ focus on facial expressions. It further implies that
pHRI applications primarily centered around collaborative tasks, as opposed to
sociability, such as engaging in physical exercises instead of handshaking, should
consider incorporating facial features that are less abstract and more conspicu-
ous.

The absence of a significant difference in participants’ levels of engagement
across all conditions suggests that facial expressions may not exert any influence
on engagement during specific types of pHRI applications. However, an argument
can be made that the robot’s joint impedance control inhibited certain partici-
pants from executing a high number of pushes, as they waited for the robot’s arm
to return to its initial position after each push. In contrast, other participants
proceeded without such hesitations. This divergence in exercise approaches high-
lights a potential limitation: the count of pushes might not have been the most
suitable metric for assessing objective engagement in this context. Therefore, we
encourage researchers to explore better-suited engagement measures.

Similarly, the lack of statistically significant differences in the subjective
engagement measure bolsters the notion that facial expressions might not sig-
nificantly impact participants’ levels of engagement. This interpretation gains
further support from the notable proportion of participants who recommended
additional features like rhythmic music, encouraging phrases, visual timers, and
verbal motivation. Collectively, these inputs suggest that facial expressions might
not be the most suitable non-verbal social cue for enhancing engagement in col-
laborative pHRI applications.
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There were no identifiable correlations between the conditions (each condi-
tion displayed different correlations), therefore the direct relationship between
the correlations and the conditions remains uncertain. Nevertheless, the corre-
lation analysis suggests that people’s perceptions of a robot’s attributes (safety,
competence, friendliness, warmth) can be influenced by their anxiety, stress lev-
els, engagement with the robot, and trust, and this could vary depending on the
experimental condition. Notably, anxiety and stress levels significantly influence
these perceptions. People with lower stress felt the robot was safer, while those
with heightened anxiety perceived it as less competent. Engagement levels played
a key role too. In the inactive condition, deeper engagement raised anxiety, while
in the responsive condition, intense engagement led to a perception of reduced
warmth. Trust further added complexity, as higher trust levels correlated with
perceiving the robot as less warm, reflecting a more critical assessment.

These findings underline that emotions are not peripheral to pHRI; they are
integral. However, a clear relationship between these findings and the distinct
experimental conditions has yet to be established. To gain a more comprehensive
understanding, additional research studies are necessary but out of the scope of
the current paper.

6 Conclusion

Our research aimed to uncover the impact of facial expressions on a robot’s
perceived attributes and an individual’s level of engagement within a collabo-
rative pHRI application, with a particular focus on older adults. Our findings
demonstrated that when robots display facial expressions during a collaborative
pHRI application, people tend to perceive them as less intelligent compared to
robots that do not exhibit any facial expressions. Interestingly, we observed that
these facial expressions do not significantly influence the levels of engagement
among older adults. We speculate that participants’ perception of robots is intri-
cately tied to the collaborative nature of pHRI applications we emphasized in
our study, as opposed to socially oriented pHRI applications. Our results suggest
the need for more appropriate non-verbal social behaviors to enhance partici-
pants’ engagement levels. In the next experiments, we will also consider a larger
number of participants by including younger adults, which will also allow us to
investigate possible differences due to age groups, and further investigate the
relationships uncovered by the correlation analysis with respect to the different
conditions.
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Abstract. The increasing demand for care of the elderly, coupled with
the shortage of caregivers, necessitates the introduction of robotic assis-
tants capable of performing care tasks both intelligently and safely. Cen-
tral to these tasks, especially those involving tactile interaction, is the
ability to make human-in-the-loop adjustments based on individual pref-
erences. In this study, our primary goal was to design and evaluate a
system that captures user preferences prior to initiating a tactile care
task. Our focus was on range-of-motion training exercises, emphasiz-
ing communication that demonstrates motion using the LLM approach.
The system combines physical demonstrations with verbal explanations,
ensuring adaptability to individual preferences before initiating range-
of-motion training. Using the humanoid robot Dry-AIREC, augmented
with the linguistic capabilities of ChatGPT, our system was evaluated
with 14 young participants. The results showed that the robot could
perform the range-of-motion exercises with tactile interactions while
simultaneously communicating with the participant. Thus, our proposed
system emerges as a promising approach for range-of-motion exercises
rooted in human-preference-centered human-robot interaction. Interest-
ingly, although there wasn’t a significant shift in the overall positive
subjective impressions when the tuning was performed using ChatGPT,
there was an increase in the number of participants who gave the highest
rating to the experience.

Keywords: Humanoid Robot · Large Language Model ·
Personalization for Caring Tasks · Human Robot Interaction

1 Introduction

1.1 Background

With the advancement of robotics, humanoid robots are expected to perform a
wide range of service tasks to help a human in daily life. Humanoid robots exhibit
striking resemblances to humans in terms of stature, physical appearance, and
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degrees of freedom [19,22,35]. There is an optimistic outlook regarding their
potential to undertake diverse tasks within the human living milieu, thereby
enhancing their capacity to serve humans. This optimism is grounded in the
alignment of these robots with human-centered design principles, as the everyday
habitats are intricately tailored to accommodate human presence and activities.

In the domain of care robotics, the central concern pertains to human inter-
action, encompassing facets of both social and physical dimensions. This con-
stituent stands as the focal point necessitating significant advancement. As for
physical interaction, extensive research has been conducted. In [39], a robot
joint based on clutches has been developed, thereby facilitating the realization
of intrinsic safety. On the other hand, in [30], they proposed a sensor-less hybrid
control system for robots using an H/sup infinity/ acceleration controller and
reaction force estimation, successfully tested on a three-degree-of-freedom direct
drive robot manipulator. However, these research endeavors have predominantly
explored robots solely in terms of their utilitarian aspects. As we look toward the
future, robots are anticipated to be sophisticated to coexist symbiotically with
humans. In this context, the capacity to incorporate interaction to inform and
shape their behavior emerges as a pivotal consideration. Numerous studies have
been undertaken with a specific focus on interaction aimed at augmenting the
assistive capabilities of robots, but usually no physical interaction was involved.
For example [20,21,23,36], those robots are designed with animal-like appear-
ances are intended to create a sense of familiarity or warmth, likely to enhance
their interaction with humans. Contrary to robots designed primarily for com-
panion roles, humanoid robots such as [27,28,41] are specifically engineered to
provide physical assistance to humans. These robots excel in tasks such as lifting
and transferring patients, aiding mobility, and handling objects in various envi-
ronments. However, their primary design does not emphasize advanced semantic
interaction with humans. Moreover, they are generally not equipped with the
capability to discern and respond to individual human preferences.

In this study, our aim is to develop and evaluate the system obtaining pref-
erences before starting to perform a physical caring task with communication
involving the demonstration of motion. Thanks to the advancements in large lan-
guage models (LLM), the viability of integrating semantic interaction via conver-
sations has been made possible [37]. This advancement holds significant potential
in augmenting the overall efficacy of assistance, particularly for addressing indi-
vidualized human preferences. To validate the above idea, In this study, we chose
to perform range-of-motion exercise by a humanoid robot. As daily opportunities
for joint movement decrease, joint mobility can progressively worsen, creating
a vicious cycle. To prevent joint contracture, regular range-of-motion exercises,
prescribed by a physician, are highly recommended.

1.2 Related Works

There are many projects that focused on assistive robots, for example, DOMEO
[4], KSERA [10], Cogniron [2], Companionable [3], SRS [12], Care-O-Bot [17],
HERB [6]. They can be broadly categorized into two groups: physically assistive
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robots and socially assistive robots. Physically assistive robots, due to their
direct interaction with users, necessitate high safety standards and a high degree
of user tolerance or acceptance. A critical consideration for these robots is the
careful selection of touch points, given the varying pain sensitivity across different
regions of the human body [38].

Conversely, socially assistive robots are mainly focused on providing emotional
and cognitive support. The Zora robot, a specialized version of the Nao robot, is
designed to entertain and stimulate physical activity among residents in care facil-
ities [18]. In a similar vein, PARO, fashioned to resemble a baby seal, serves as a
therapeutic tool in multi-sensory behavioral therapy programs, proving especially
effective in environments such as nursing homes, where it aids older adults with
varying levels of dementia [42]. MARIO, another key player in socially assistive
robotics, was developed to explore its impacts on the quality of life, depression lev-
els, and perceived social support in individuals living with dementia [13]. Animal-
like or anime-character-like [40] appearance offers more advantages in conveying
emotions as a social robot. Although these robots are proficient in offering emo-
tional comfort, entertainment, or health monitoring, their lack of physical inter-
action imposes certain limitations on their capabilities as care robots.

Contrary to socially assistive robots, physically assistive robots are engineered
to engage in direct contact with users to fulfill tasks, such as transportation and
rehabilitation. The use of humanoid robots in in-home nursing care scenarios has
been proposed and is under active investigation [19,31,33]. Recent systems have
started to incorporate the virtual presence of a therapist, aiming to facilitate both
direct and indirect patient interaction [16]. However, this approach continues to
rely on a therapist providing guidance from a remote location.

A noteworthy example of a physically assistive robot is RIBA, which boasts
human-like arms designed for heavy lifting tasks that necessitate human contact.
RIBA has demonstrated proficiency in tasks such as transferring a patient from
a bed to a wheelchair and vice versa [27]. In this system, RIBA currently lacks
the capability to independently plan its movement trajectory. In our previous
work [25], the robot Dry AIREC can detect the human position and make the
trajectory plan autonomously.

Personalization is crucial for human assistance robots since human percep-
tions and preferences are different among individuals. To our knowledge, the
care robot obtaining preferences has not been established. The robot should
learn user preferences to personalize the robot’s action policy through human-
robot interaction [26,29,32]. Communication robots are useful for human verbal
interaction [24] or implicit intent indication of a robot to a human [34]. Language
model enables robot to understand human intention [14,15]. However, it is diffi-
cult for us to verbalize preferences related to human physical perception. If the
robot starts performing care tasks before adjusting the parameters of moving a
human body, this motion can cause dissatisfaction in a user. In addition, high
interpretation ability is necessary because the robot should not misunderstand
human requests in the opposite way to avoid harming a user, although human
speech patterns are diverse and sometimes ambiguous. Therefore, the function
of obtaining preferences accurately before starting the care tasks is required.



Feasibility Study on Parameter Adjustment 233

2 System

Human-in-the-loop robotic system performing care tasks involving touch to a
human with LLM is developed. The range-of-motion training, shown in Fig. 1(a),
is the target task of the robot in this study. The robot touches and moves a human
joint directly to maintain the range of motion of the joints while communicating
with a human. The developed system adjusts the parameters of moving a human
body with physical demonstration and verbal explanation to personal preference
before performing the range-of-motion training movement. Figure 1(b) shows the
overall developed system. LLM can generate text commands with high interpre-
tation ability. LLM connects the audio system and the robot controller system,
which forms the loop receiving the user’s request and sending a text-style action
flag to demonstrate to the user the robot’s motion. ChatGPT, a transformer-based
LLM developed by OpenAI [1], is a key component.

Fig. 1. Overall design of the system. (a) shows the target task in this study. (b) shows
the overall system diagram. (c) shows the robot appearance used in this study.

2.1 The Used Robot

Figure 1(c) shows the humanoid robot “Dry-AIREC” used in this study, which
is built by Torobo [7] (Tokyo Robotics inc., Tokyo, Japan). Dry-AIREC is a
humanoid designed for various research applications. The vision for intelligent
robots involves seamless and sophisticated interactions with the real world, and
we view Dry-AIREC as a prime hardware platform for advancing robotics learn-
ing research. Notably, Dry-AIREC’s head is equipped with three types of camera
sensors and two usb microphone sensors, facilitating the capture of RGB-D and
audio data. Moreover, the robot’s neck and waist joints each possess three degrees
of freedom-roll, pitch, and yaw-enabling the robot to assume human-like body
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postures. In addition, Dry-AIREC is equipped with one USB speaker (FOSTER
628421, Foster Electric Company Ltd., Tokyo, Japan.) in its head.

Each arm of the Dry-AIREC features 7 degrees of freedom, with torque sen-
sors embedded in each joint. Even in unfavorable positions, the nominal arm
load remains at 8 kg, allowing a wide range of daily objects to be handled with
ease. The control mode, including options such as position, force, and impedance
control, is highly adaptable to different work scenarios. Specific parameters such
as damping and spring constants can be fine-tuned. Employing the compliance
control mode empowers the robot arm to surmount local disruptions, execute
intricate manipulations, and interact with humans in a secure manner. Further-
more, a four-finger robotic hand serves as an end-effector for each arm. Each
finger is capable of exerting approximately 10N of force, while tactile sensors
are thoughtfully integrated into the fingertips and palm. Rubber material was
selected for the skin of the fingertips and palm to facilitate deformable and
frictional contact. In terms of its physical dimensions, the Dry-AIREC’s height
of 1660 mm and trolley width of 625 mm are closely analogous to a human’s.
The robot can be maneuvered with the assistance of a trolley. On the soft-
ware side, the Dry-AIREC is equipped with the ROS Noetic framework and the
MoveIt motion planning tool, enabling control, movement, and data acquisition.
A RealSense SR300 depth camera (Intel Corp Santa Clara, CA, USA) installed
in the robot’s head is used to obtain 3D information of an object.

2.2 Communication

An audio dialogue system is performed by Speech-to-Text (STT) services. Two
USB microphones installed in a Dry-AIREC head obtain the user’s voice (speech
data). The library named speech-recognition (Python) is used to detect whether
a user makes a speech or not. The data during the period between the start
of sound input and the end of 0.5 s of input interruption is stored as speech
data. If a speaker is used, any voice is not stored. The maximum duration of
speech data was set as 2.5 s in the experiment explained in the following section.
Faster-whisper is used to perform STT for processes in CPU. Faster-whisper [5]
is reimplementation of OpenAI’s Whisper model [8], which is a high-quality STT
system based on a fast inference engine for Transformer. facilitate the conversion
of a user’s auditory input into a text-based format. This text is then passed to
the ChatGPT model.

After receiving the transcription, ChatGPT is used to generate a text-based
dialogue response. This process of response generation is achieved through the
use of OpenAI’s Application Programming Interface (API). When developing
conversational systems, a robust architecture often requires the integration of
multiple components for effective operation. The function-calling is used to gen-
erate the JSON-style output. The function-calling is a feature that allows Chat-
gpt to call external functions by teaching Chatgpt the format of the functions.
Prompts for ChatGPT used in this study are shown in Table 1. Output parame-
ters of ChatGPT included in JSON-type output are a flag of touch force, a flag
of left arm movement velocity, and response text.
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Table 1. Prompt using Function calling of ChagGPT. Original language was Japanese.

Prompt

Role You are an assistive humanoid robot designed to engage in
conversation in Japanese and assist with people’s
rehabilitation, involving physical touch. Your parameters
include touch, reaching, and response. While responding to
user requests, adjust touch and reaching variables
accordingly. Use the response to reply kindly and politely to
help the user feel at ease

End flag If there are further user requests, output Y. If the user
doesn’t have more requests, output N. Otherwise, output U

Touch force
flag

Output touch information based on user requests. Output u
to increase touch force, d to decrease it, and N for other cases

Movement
velocity flag

Output movement velocity information based on user requests.
Output Fa for faster movement, Sl for slower movement, and
N for other cases

Response Compose responses for user requests or conversations.
Ensure to respond kindly and politely, avoiding asking questions.
For example, if asked “Please touch harder,” reply with
“Understood. I will increase the touch force.” If you don’t
understand, reply with “I don’t understand

Finally, the text response received from ChatGPT is converted back into an
audible format using a text-to-speech (TTS) service. The TTS service outputs
audio data through the speaker (FOSTER 628421) of the robot. In this study,
the open-source software of the synthetic TTS “VOICEVOX” is used [9]. Speaker
ID 11 of the VOICEVOX, a voice like a calm voice of a young man, is used for
the experiment explained in the following section.

2.3 Dual-Arm Manipulation

The dual-arm manipulation motion is generated based on the skeleton recogni-
tion proposed in the method [25]. The human pose is obtained by the library
named Mediapipe developed by Google [11]. Due to the camera’s limited view
scope, only the head and shoulders are detected, but this is sufficient in our case.
The 3D coordinates of the head and shoulders are obtained by combining pose
information and depth information.

First of all, the robot clasps its right hand before starting the reaching motion
to the human shoulder. Next, the robot holds out its left hand at a position
just within reach of the human’s outstretched arm. The robot starts reaching
its right hand to the human’s shoulder via a waypoint (higher point than the
human’s shoulder) with impedance control. The robot unclasps the right hand
at the waypoint, and moves the hand down to touch the shoulder. Finally, the
robot moves the human arm with its left arm in vertical direction. “Reaching
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trajectory of the arm is derived by solving inverse kinematics. The arm is moved
with impedance mode.”

2.4 Parameter Adjustment

Only verbal information is not enough to get human preference information
because it is difficult for humans to explain their preferred values of the physi-
cal parameters quantitatively. Therefore, in this method, asking questions while
demonstrating the motion is designed. The robot inquiries about the user’s pref-
erences and regulates parameters in a descending or ascending manner accord-
ingly. The robot extracts the human’s request from the response using the afore-
mentioned communication system. The robot iteratively engages in a sequence
of questioning, adjusting parameters, and demonstrating modulated movements
as long as the user expresses preferences.

3 Experiment Method

14 young (20’s) participants were recruited in the experiment (10 males and 4
females, age mean = 23.5, Standard Deviation (SD) = 1.59 year old). We started
the experiment by obtaining the participants’ consent. They were explained that
they could stop the experiment whenever they wanted. The experiment was
conducted based on approval from the Ethics Review Committee on Research
with Human Subjects of Waseda University (No. 2021-429).

There were two conditions in this experiment. One condition was our proposal
method, that is, performing range-of-motion training with the adjustment based
on the ChatGPTcommunication system. The other condition was performing
range-of-motion training without adjustment. The lists of parameters were shown
in Table 2. The order of the trials was counterbalanced to reduce the effect of
the order on the human impression.

Table 2. Prepared levels of velocity and joint impedance (shoulder) set heuristically.
Movement velocity and impedance (touch force) were adjusted independently.

Arm movement velocity m/s Spring Mass Dumper

Level1 0.054 100 1.5 10

Level2 0.059 150 1.5 10

Level3 0.064 200 1.5 10

Level4 (default) 0.071 250 1.5 10

Level5 0.079 300 1.5 10

Level6 0.089 350 1.0 20

Level7 0.10 400 1.5 50

Figure 2 shows the flowchart of movement and dialog of the robot during
the experiment. The participants sat on the bed in front of the robot during
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the trial. First, the robot held out its left hand and showed how to move its
left arm during range-of-motion training. The robot obtained the participant’s
feedback about arm movement velocity just after the demonstration of left arm
movement on the condition of using the proposed method. Next, the robot asked
the participant to put his or her right hand on the robot’s left hand and look at
the robot’s face. The robot estimated the shoulder coordinates of the participant
and reached its right hand toward the participant’s right shoulder. The robot
obtained the participant’s feedback about touch force while touching the shoul-
der on the condition of using the proposed method. Finally, the robot moves the
participant’s right arm between the horizontal position and a position approx-
imately 1.2 m above it third times. The position of the robot’s stance and the
angle of its head were manually adjusted in order to facilitate interaction with
the participants and to capture their body movements.

Fig. 2. Flow of movement and dialog of the robot during the experiment.

We evaluated the success rate of whether the developed communication sys-
tem can obtain an action flag and change robot parameters from the human
request in a single interaction. We did not count the cases when the voice is
not inputted to the robot. In addition, the questionnaire was administered on
a 7-point scale (1 strongly disagree - 7 strongly agree). First, the participants
were asked whether the movement velocity and touch force of the robot were
appropriate for them. Next, the participants were asked about their feelings of
friendliness, safety, relief, reliability, and comfort towards the robot. Because the
data distribution was non-parametric, the Wilcoxon signed-rank sum test was
performed for significant tests. The statistical significance level was set as 0.05.

The proposed method enabled the robot (Dry-AIREC) to perform the range-
of-motion exercise involving touch with a human while making verbal communi-
cation with the human. The movement velocity and touch force changed as the
participants requested. As shown in Fig. 3, this system understood the requested
content with a high probability in a single interaction. The mean success rates of
understanding the movement velocity request, the touch force request, and the
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end of the request were 79%, 85%, and 94%, respectively. The ChatGPT-based
recognition system demonstrated a high ability for interpretation. For exam-
ple, understanding that the request was a decrease of the touch force through
“too strong,” “please touch me softly,” “please touch me sofly” (that is a typo),
and “please get weaken” (these were originally Japanese). There were no cases
where the robot misunderstood the opposite meaning. However, the outputs of
the action flags from ChatGPT sometimes changed even though the input was
the same. In this case, the participants needed to repeat the same request to the
robot. The number of repetitions of the request of their preference for the robot
was 3 times at maximum and 1.2 times on average. Therefore, we consider that
the proposed system is feasible for adjusting the parameters corresponding to
user preference prior to initiating a caring motion.

4 Result and Discussion

Figure 4 shows the subjective score about the questions of whether the movement
velocity and the touch force were appropriate or not. The subject score about
the touch force was significantly higher (p-value was 0.042) in the condition with
adjustment than without adjustment. The proposed system demonstrated effi-
cacy in discerning user preferences regarding touch force during exercise. The
number of people who answered strongly agree to the questions is higher in the
condition with adjustment of parameters than in the condition without adjust-
ment of parameters. Nonetheless, there were no significant differences between
the trials with and without parameter adjustment for all subjective impressions,
as shown in Fig. 5. We assume that this was because the default values already
matched the preferences of some of the participants. Indeed, some participants
did not require the adjustment, and the change in the levels of both movement
velocity and touch force was just within 2 for the other participants.

Fig. 3. Success rate in a single interaction

Not all participants deemed the adjusted parameters (move velocity or touch
force) to be entirely suitable. A difference in physical appearance between a
human and a robot could have contributed to lower scores. Some participants felt
discomfort due to the robot’s hand contact area differing from that of a human
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hand. In addition, the participants reported that their preferences changed dur-
ing exercise due to changes in physical condition, such as fatigue. Even though
the current system can adjust parameters during operation after starting the
range-of-motion training movement, the parameters did not change once the
movement started in this experiment since we did not expect that human pref-
erences changed as time passes during movement. Modification after starting the
movement would be integrated.

Fig. 4. Subjective score about the questions of whether the movement velocity and the
touch force were appropriate or not. There was a significant difference in (b).

The Dry-AIREC’s impedance control with ChatGPT’s interpretation abil-
ity was effective in performing the range-of-motion training based on the user’s
preference. While the system demonstrated capabilities, there remain limita-
tions regarding the accuracy of its responses to participants. Notably, several
participants expressed diminished trust in the robot, citing instances where the
dialogue content failed to align with the context. Future work should scrutinize
the prompts provided to the LLM to facilitate more contextually appropriate
responses. Integration of visual feedback is important in discerning both human
and robot actions. By feeding the LLM system with real-time data on human
movements corresponding to the robot’s dialogue, we could potentially achieve
more natural robotic responses. In addition, we plan to enhance the robot’s
listening system. This system currently doesn’t allow for interruptions during
speech. If participants talk to the robot before it completes its speech output,
they are compelled to repeat their statements. Furthermore, there was a large
difference in the number of male and female subjects in the experiment. Further
investigation would be conducted in future work.
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Fig. 5. Subjective score about positive impressions for the robot

5 Conclusion

The proposed system combines physical demonstrations with verbal explana-
tions, ensuring adaptability to individual preferences before initiating range-
of-motion training. Using the humanoid robot Dry-AIREC, augmented with the
linguistic capabilities of ChatGPT, our system was evaluated with 14 young par-
ticipants. The results showed that the robot could perform the range-of-motion
exercises with tactile interactions while simultaneously communicating with the
participant. The proposed system showed the feasibility of adjusting the param-
eters corresponding to user preference prior to initiating a caring motion.
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Abstract. This paper discusses pilot deployment of a social robot “WallBo” that
investigated the effectiveness in promoting and encouraging handwashing prac-
tices among children in a rural school in India. The results suggest an overall
85.06% handwashing compliance, 51.60% improvement from the baseline hand-
washing compliance and an overall ~ 50% knowledge improvement about hand-
washing.We also present students’ perception about “WallBo” and feedback from
the pupils and teachers.
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1 Introduction

Social robots have the potential to positively impact children across various aspects
of their development and well-being [1]. Previous research has investigated the use
of interactive robots as educators and therapeutic tools, offering unique contributions to
children’s growth and improve children’smotivation to learn and participate in classroom
activities [2]. Social robots can act as engaging tutors and educational aids, making
learning fun and engaging for children. However, most previous work in child-robot
interaction research has been carried out in urban settings in developed countries [3].
Our research focuses on investigating how rural children fromunder-served communities
in developing countries interact with social robots and addresses a real-world problem
pertinent to their health and well-being: “hand hygiene”.

Globally, nearly half a million children die every year due to diarrhea and respira-
tory diseases, and handwashing with soap can save 50% of these deaths [4]. During the
COVID-19 pandemic handwashing was one of the most impactful public-health inter-
ventions to halt the spread of the virus [15]. Hand hygiene also plays a crucial role in
preventing the spread of other diseases, especially in school environments where chil-
dren interact closely with each other [5]. However, maintaining consistent handwashing
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practices among children can be challenging. This research aims to investigate the effec-
tiveness of a social robot custom designed to promote and reinforce proper handwashing
habits among children in schools. In this paper we discuss the results of using a social
robot “WallBo” as an engaging and interactive tool to educate and encourage children
to adopt and maintain healthy hygiene practices among rural school children in India.

2 Background

Introducing handwashing education in schools has proven to be a highly effective app-
roach to reach children and instill the habit of handwashing from an early age [6] How-
ever, several handwashing intervention studies demonstrate that education alone may
not be adequate to bring about lasting behavioral changes. Previous studies indicate
that to effectively cultivate handwashing habits, it is essential to consider the physical
and social environment surrounding the behavior [7]. This involves capturing children’s
attention, ensuring convenience in practicing handwashing, and reinforcing it as a pos-
itive social norm. However, barely any hand hygiene interventions have considered the
use of interactive technology such as social robots.

Previous research in developed countries has shown that robots in education could
motivate children to learn better [2]. Furthermore, scientific evidence strongly supports
the idea that the presence of a physical robot has a more profound impact on human
behavior compared to an agent displayed on a screen [1]. Our previous deployment with
WallBo was performed in a school in Glasgow UK with urban children from privileged
backgrounds [8] and in another Indian school in 2019 (pre-covid) [9, 14]. The results
from those trails showed a positive impact on handwashing compliance. However, in
this research we specifically wanted to investigate if incorporating social robots into
handwashing interventions could potentially enhance children’s engagement, and better
understand the challenges of using social robots in rural contexts in developing countries.

3 Study Design

The study was carried out in a school in the slum area in the city of Pune, India (March
2023). The key research question we wanted to address was “How do verbal/non-verbal
actions from WallBo affect children’s hand washing behaviour?” This study employed
a Wizard of Oz approach, where the researcher situated nearby, oversaw students at a
handwashing station while controlling the robot’s actions. The intervention was carried
out over a period of 4 days.

During the first day, the pupils were asked to wash their hands at the handwashing
station to record their baseline handwashing behaviour, and interviewswere conducted to
assess their knowledge about handwashing. On the second day, the robot was introduced
by a facilitator (research teammember) in the classroom andWallBo gave hand-hygiene
education session to pupils. The pupils then washed their hands with the instructions
provided fromWallBo (verbal/non-verbal conditions) at the handwashing station. On the
third day, WallBo was removed, and pupils were asked to wash their hands followed by
interviews about their handwashing knowledge. On day 4 we also interviewed teachers
to get their perspective on the intervention.
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3.1 Physical Environment

The robot was set up at an outdoor communal handwashing station at the school (see
Fig. 1). TheRobotWallBo is a custom-builtwallmounted/portable robotic platform robot
designed with a hand-like shape to elicit a symbolic meaning relevant to the intervention
(handwashing). The robot’s eyemovement enhances the “Hawthorne effect” [10], which
means people change their behaviour when they know they are being watched. The
robot has motorised eyes (yaw/pitch) and an animated mouth (on a small screen) with
expressive animations e.g., “happy, “sad”, “talking”, “neutral” andMarathi speech (local
language spoken in that region). The robot had a child-like voice, to make it relevant
for that age group. The pre-recorded human utterances were post-processed using lower
pitch to make it sound gender neutral to avoid any gender biases. The robot is built using
off-the shelf electronics and 3D printing.

Fig. 1. From Left: handwashing station, a pupil with WallBo, WallBo robot.

3.2 Participants

The participating children (n = 28, 15 boys, 13 girls) were from underprivileged com-
munities. The age ranged from 6–10 years and none of them, except one, had ever seen
a robot before. The school authorities granted written consent for video recording hand-
washing sessions and audio interviews of participating children (parents authorized the
school to act on their behalf in obtaining consent). Additionally, verbal agreement was
obtained from pupils before interviews. The participants were assigned random IDs,
ensuring anonymity and no collection of personal information. The class (Grade 1) of
pupils had not been educated in hand hygiene before and were randomly selected by the
school authorities. The study was approved by the ethics committee at the University of
Glasgow (approval number 200200012).

3.3 Data Collection

Data collection occurred through: (i) audio-recorded interviews, and (ii) videos of hand-
washing on Day 2, 4 (pre/post, no WallBo) and Days 2–3 (During 1:1 intervention with
WallBo). Video data was captured using a camera positioned above the handwashing
station (see Fig. 1 for setup illustration). On Days 1 and 4 (prior to and after the interven-
tion), pupils were interviewed to evaluate their handwashing knowledge. A previously
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validated questionnaire (Bacterfree) was improvised and translated into local language
based on suitability for this study [11].

The questionnaire covered topics such as when to wash hands, the steps involved,
soap’s purpose, and handwashing enjoyment. Responses were scored based on use of
specific keywords (e.g., soap, rub, water, germs). Post-intervention, students were asked
about their perceptions of WallBo, including preferences and potential improvements to
WallBo, its gender, whether it’s seen as “alive, like a person,” and if they want to see
WallBo again. For a deeper understanding, questions were followed by asking, “Why
do you think that?”.

4 Results

4.1 Handwashing Compliance (HWC)

We assessed HWC, aligning with the 10 handwashing steps outlined by World Health
Organization’s (WHO) recommended handwashing technique1. Each handwashing
video was given a score from 1–10 (one point for each of the handwashing step com-
pleted, 0 for incomplete step and 0.5 for uncertain step. Step 10 (Dry your hands com-
pletely with a towel) was omitted from the analysis as some participants went outside
the camera frame for the annotator to assess a score. One annotator analyzed a total of
84 handwashing videos from 3 sessions (before/during/after the intervention) from 28
participants.

HandwashingComplianceCombined. Weobserved amere 50.17%averageHWC for
base-line handwashing technique, 85.06% during 1:1 session with WallBo and 70.45%
after WallBo was removed. Overall, we observed an average percentage difference
of 51.60% HWC improvement during robot intervention from baseline/before and
33.62% retention/improvement from baseline HWC after intervention. A 18.78%
decrease was observed from during WallBo and after WallBo was removed (See Fig. 2-
left Combined results), further enforcing the fact the physical presence of the robot
had a better influence during handwashing in-line with previous results with physically
embodied agents [1].

Handwashing Compliance Gender Differences. On average percentage difference,
girls outperformed boys in handwashing compliance in all 3 sessions by 24.57% before,
8.22% during, and 18.61% after the intervention (See Fig. 2-left, boys/girls). This result
is also consistent with prior research indicating that girls demonstrate greater motivation
for practicing improved handwashing compared to boys [12].

Handwashing Conditions (Verbal/Non-verbal). The study employed a between-
subjects design, wherein pupils engaged with either a verbal or non-verbal WallBo. We
did not see significant differences between conditions (Verbal Vs non-verbal conditions).
The main difference between the conditions was, during verbal condition WallBo pro-
vided step-by-step instructions using speech and in non-verbal conditionWallBo demon-
strated the handwashing step displaying animation (without speech) on the small screen

1 https://www.who.int/docs/default-source/patient-safety/how-to-handwash-poster.pdf.

https://www.who.int/docs/default-source/patient-safety/how-to-handwash-poster.pdf
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Fig. 2. Left-HWC, right- HWC conditions (Verbal/non-verbal)

on WallBo. This indicates that compliance remained higher irrespective of whether
instructions were given verbally or non-verbally. (See Fig. 2 right).

Handwashing StepsCompliance. Weobserved from the average scores, pupilsmainly
showed a big improvement between pre/during WallBo intervention specially for steps
5–8, which involves rotational rubbing of the thumbs, rotational rubbing of both wrists
and rotational rubbing of the fingertips on palm. Interestingly these are the common 3
handwashing steps missed by children according to a previous study [5]. We suppose
that pupils were not aware about these handwashing steps from their prior knowledge
about handwashing. (See Fig. 3).

Fig. 3. Handwashing steps compliance

4.2 Handwashing Knowledge

A single point was awarded for the accurate use of keywords for demonstrating their
knowledge of the topic at least once in their response, out of a maximum score of 5
points. Q1 (What is the best way of getting rid of germs from our hands?) and Q4 (Why
do you use soap? What does soap do?) - “soap”, “clean”, “wash”, “germs” Q2 (When
should we wash our hands?) and Q3 (When you wash your hands, what do you do?
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What steps do you take?) - “eating”, “play” “rub”. There was a 62.50% improvement
in Q2. When we should wash hands and 57.89% improvement for Q3 On steps of
handwashing. Also 8.57% and 21.74% improvement on Q1 best way to get rid of germs
and Q4 what does soap do. No difference was observed on Q5 (who taught you how
to wash your hands?). Overall significant improvement (~50%) was observed in their
knowledge about handwashing (pre/post).

4.3 WallBo Perception

Overall. The interviews from the pupils were transcribed and analyzed thematically.
The pupils seemed to really likeWallBo andwere keen to engage in sessions (and to speak
to the researchers). Therewere numerous positive comments and curiosity aboutWallBo,
and no signs of negative behaviours (e.g., aggression or sadness) around it. During the
sessions, the children were very engaged, enthusiastic, and the majority listened well.
Pupils were generally polite to WallBo and were trying to speak to WallBo between
sessions (e.g., saying “hi”, and trying to ask it things). Children were very curious about
WallBo and were getting very close and trying to touch it (some consideration in the
future should be given to put WallBo higher, or further away from pupils to avoid any
potential damage to the device).

Understanding. Q- Did you understand what WallBo was saying/asking you to do?:
All children reported that they could understand what WallBo was saying and wanted
to see WallBo again. They also mentioned they wash their hands “better” when WallBo
is around. When asked why they wanted to see WallBo again, they said that WallBo
“helped them wash their hands” and “get rid of the germs”. When asked why they wash
“better” with WallBo, because WallBo was 1) watching them, 2) giving them the steps,
or 3) showing them what to do (through videos).

Gender Perception-Q-Do you thinkWallBo is a boy or a girl?: There was an imbalance
between whether WallBo was perceived as a boy (n = 18, 72%), or a girl (n = 5, 20%).
An interesting point is that even though WallBo’s voice was modulated to be gender-
neutral, 9 out of 10 boys (90%) perceived WallBo as a boy, while only 4 out of the 14
girls (28.57%) perceived it as a girl. Similarly, only 1 boy (10%) thought WallBo to be
a girl, while 8 of the 13 girls (61.14%) said that he was a boy. Out of the remaining two
girls, one claimed that it was neither- “it is a hand” (n= 1, 4%), while the other believed
it could be both- a girl and a boy (n = 1, 4%).

When asked why they thought it was a boy, most of the children said that “he sounds
like a boy / his voice is like a boy” (n = 8, 32%) while others said he “looks like a boy”
(n = 3, 12%), some of them said both, that he “sounds and looks like a boy” (n = 4,
16%). One of them even said that “he is a boy even though he sounds like a girl because
he looks like a boy” (n= 1, 4%), while some others “couldn’t say why” (n= 2, 8%) they
thought he was a boy. When asked why they thought WallBo was a girl, the children
commented that it was because it “sounds like a girl” (n= 3, 12%); One said that it was
because she herself was a girl (n= 1, 4%), and another couldn’t say why (n= 1, 4%). It
was evident that the majority of boys associated WallBo with their own gender, whereas
only a few girls expressed the same perspective.
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Age. Q-How old do you think WallBo is?: When asked how old they thought WallBo
was, some of the answers varied from ages 1–14, while others accounted for him looking
either younger or older in reference to the children. n= 5 (21%) commented thatWallBo
was 10 years old, out of which 2 believed so because of his “face” or looks, 1 attributed
it to his manner of talking, and one couldn’t say why. n = 8 (32%) children indicated
that WallBo was a child (age 5–9), out of which 4 couldn’t say why, 2 (8%) believed
that it was because WallBo seemed older than them, 1 said that it was because he was
“small”, and the one pupil (n = 1, 4%) said that it was because he was holding up 5
digits (fingers of his hand).

Interestingly, some children (n = 2, 8%) believed him to be a 1-year-old due to his
small size, while 1 child also said that he looks like a 5-month-old, however the reason
remains unclear. Out of the remaining children, n = 4 (16%) shared that WallBo was
older to them, with reasons ranging from “because he seems older”, “his hands are big”,
“he instructs us how to do things”. Others, n = 4 (16%), believed that he was younger
due to his small size, “seems like a child”. Only 1 child couldn’t answer this question.
Children lacked awareness of their own ages, leading to a variety of responses, and
consequently, they struggled to provide reasoned explanations for how old WallBo is.

Living. Q- Do you think WallBo is alive, like a person?: 76%, n= 19 children thought
that WallBo was alive, out of which, n = 13 (52%) believed it was alive “like a person”
while n = 6 (24%) acknowledged it to be alive but as a robot. The rest, n = 6 (24%),
did not think it was alive. When asked why they thought WallBo was alive, most of the
children commented that it was because WallBo could talk, (n = 12, 48%) while n = 1
couldn’t say why they thoughtWallBowas alive. All the 6 children who said thatWallBo
was alive, but as a robot, attributed this to him talking, while n = 2 also mentioned his
eye movements. When asked why they thought that he wasn’t alive, n = 4 mentioned
that it was because he was a robot, while the other 2 couldn’t say why they thought so.

WallBoas aFriend/Classmate/Teacher. Q-Doyou thinkWallBo is a friend, classmate,
or teacher?: children were mixed in their responses. 44% (n= 11) thought that WallBo
was like a friend because it was “funny”, “helps”, “guides”, and is “friendly”. 24% (n
= 6) thought that WallBo was a classmate because it gives them “reminders”, “teaches”,
is “nice”, “fun” and is “a bit shy and doesn’t talk much”. The latter point is interesting
as it suggests that rather than being perceived as faulty or lacking capacity, a silent robot
can be perceived as “shy”. 24% (n = 6) thought that WallBo was like a teacher because
it “teaches”, “knows a lot”, and because it “explains” or “tells” the child what to do.
One child thought that WallBo was like a teaching assistant because they “teach” and
are “funny”. While the remaining children (n = 7, 28%) said that WallBo was a mix of
a teacher and a friend, or a teacher and a classroom assistant.

Likes. Q-What are some things that you like about WallBo?: numerous kids enthusias-
tically reported that they likedWallBo. Main features for liking were- Moving eyes (n=
7); Voice (“cute”, “funny”) (n= 7); Eyes, movement, and expressiveness (n= 8);Mouth
(n = 13); Song and singing / voice (n = 5); Hand shape (n = 10) Talking, instructing;
Colour (n = 4); Everything (n = 3). Additional comments mentioned by some children
were that they liked that WallBo “shows them how to wash their hands”.
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Suggested Improvements. Q-Is there anything that youwould change?:Three children
commented that they would change nothing aboutWallBo. The remaining children liked
WallBo, and suggested further changes in his appearance- Mouth: n = 7, suggested
changing the mouth colour, and some suggested for the mouth to be more humanistic,
with lines to distinguish teeth. Eyes (n = 7), out of these, some children commented on
a change in eye color, one of them said that his eyes could be bigger, while two of them
suggested that WallBo should blink. Colour: (n = 5) some of the children shared their
preferred colour pink (n = 4) and blue (n = 1). They suggested having more realistic
facial features, for example having a nose, fingernails, and eyes that blink. While 24%
(n = 6), one of them even commented on how he is shaped like a hand, but hands don’t
have eyes.

4.4 Teacher Interview Summary

In an interviewwith the teachers and head schoolteacher, they expressed thatWallBowas
a fun and interactive way for children to learn good handwashing practices. WallBo’s
resemblance to cartoons and his jolly manner of speaking were well received by the
children. They had a positive response to the whole activity, including the approachable
nature of the interviewers, who made the children feel very comfortable throughout the
process.

When discussing keepingWallBo at school indefinitely, concerns regarding its safety
were raised, but they concurred that placing him in a sealed case would help avoid
possible damage. The teachers liked the idea of him delivering instructions once a week,
so the children can act on it for the rest of the week, while the head schoolteacher
mentioned that having monthly sessions could also help them maintain their practice.
Everyone agreed that having an in-house teacher as a facilitator would be great, and the
head schoolteacher added that they will be more than happy to have one of their team
come by whenever available.

Suggestions about including some movements to make WallBo more cartoon-like
and attractive were made to make him more engaging. It was observed that he appeared
quite small, and his screen even smaller, when placed in a big area, so adjusting the same
according to the dimensions of the classroom was discussed. They suggested having
WallBo virtually demonstrate handwashing through the screen along with instructing,
this could particularly help visual learners as well. Lastly, a teacher also suggested the
involvement of more common English words/instructing the same in English as well,
possibly to promote multilingual growth from a young age.

5 Conclusion

In this study we presented results from an intervention using a social robot WallBo
as a tool to encourage and educate children in schools in context of handwashing. We
observed an average 85.06% handwashing compliance during 1:1 session with WallBo
a 51.60% improvement from the baseline handwashing technique and an overall ~ 50%
knowledge improvement about handwashing. Conducting HRI research with these pop-
ulations can help bridge the technology gap and provide equitable access to cutting-edge
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innovations. Also, social robotics research in diverse settings will contribute to a broader
understanding of how rural communities from developing countries interact with social
robots which is lacking in the HRI community.

Limitations: We recognize various uncontrolled variables stemming from the study’s
real-world context, including the coexistence of other pupils in the same environment as
the handwashing station. Furthermore, the researchers’ presence during the intervention
may have influenced outcomes. While this trial doesn’t definitively ascertain if students
continued handwashing steps in their regular routines, or if compliance was maintained,
we will delve into these aspects in the next long-term trial. The facilitator may have
played a role in hyping the pupils up and driving attention and speaking enthusiastically
to WallBo. It would be a subject for further investigation to tease apart how much the
facilitator style influences the intervention outcome (and if a human facilitator is always
needed). The facilitator of the sessions was also the research interviewer. As a result,
many of the pupils built a rapport with that person, and they were more confident when
answering questions.

Future Work: Our future work will focus on creating autonomous technology that
precisely identify handwashing steps. Also, a behavior generation module with WallBo
prompts behaviors automatically during handwashing.We intend to conduct a trial over a
long-term period of 2–3 weeks to better assess changes in handwashing compliance and
comprehend how these evolve over time. This extended timeframe allows measurement
of sustainability and novelty effects stemming from the intervention [13]. Additionally,
we would like to conduct a similar trial in a UK school to assess the cross-cultural differ-
ences between urban/developed country school children and rural/developing country
school children. These trials will also help inform design decisions for WallBo and
improve them iteratively through feedback obtained from consequent trials.

Acknowledgement. This work was funded by the ERC/UKRI Proof-of-concept funding and
supported by IEEE Robotics and Automation Special Interest Group on Humanitarian Technol-
ogy (RAS-SIGHT). We thank all the teachers, school authorities who supported our study and
especially the children who participated in our study.

References

1. Belpaeme, T., Kennedy, J., Ramachandran, A., Scassellati, B., Tanaka, F.: Social robots for
education: A review. Science robotics 3(21), eaat5954 (2018)

2. Gordon, G., et al.: Affective personalization of a social robot tutor for children’s second
language skills. In: AAAI Conference on Artificial Intelligence, vol. 30, no. 1, March 2016

3. Baxter, P., Kennedy, J., Senft, E., Lemaignan, S., Belpaeme, T.: From characterising three
years of HRI to methodology and reporting recommendations. In 2016 11th ACM/IEEE
International Conference on Human-Robot Interaction (HRI), pp. 391–398, March 2016

4. Jamison, D.T., et al. (eds.). Disease control priorities in developing countries (2006)
5. Tengku Jamaluddin T.Z.M., Mohamed, N.A., Mohd Rani, M.D., et al.: Assessment on Hand

Hygiene Knowledge and Practices Among Pre-school Children in Klang Valley. Global
Pediatric Health. vol. 7 (2020). https://doi.org/10.1177/2333794X20976369

https://doi.org/10.1177/2333794X20976369


Enhancing Hand Hygiene Practices 253

6. Dreibelbis, R., Kroeger, A., Hossain, K., Venkatesh, M., Ram, P.K.: Behavior change without
behavior change communication: nudging handwashing among primary school students in
Bangladesh. Int. J. Environ. Res. Public Health 13(1), 129 (2016)

7. Biran, A., et al.: Effect of a behaviour-change intervention on handwashing with soap in India
(SuperAmma): a cluster-randomised trial. The Lancet Global Health, pp. 145–154 (2014)

8. Deshmukh,A., Riddoch, K., Cross, E.S.: Assessing children’s first impressions of “WallBo”-a
robotic handwashing buddy. In: Interaction Design and Children, pp. 521–526, June 2021

9. Deshmukh, A., Babu, S.K., Unnikrishnan, R., Ramesh, S., Anitha, P., Bhavani, R.R.: (2019,
October). Influencing hand-washing behaviour with a social robot: HRI study with school
children in rural India. In: 2019 28th IEEE International Conference on Robot and Human
Interactive Communication (RO-MAN), pp. 1–6. IEEE (2019)

10. Pfattheicher, S., Strauch, C., Diefenbacher, S., Schnuerch, R.: A field study on watching eyes
and hand hygiene compliance in a public restroom. J. Appl. Soc. Psychol. 48(4), 188–194
(2018)

11. Mohamed, N.A., Amin, N.N.Z., Isahak I Ramli, S., Salleh, N.M.: Knowledge, attitudes and
practices of hand hygiene among parents of preschool children. J. Sci. Innov. Res. 5, 1–6
(2016)

12. Ramseier, C.A., Leiggener, I., Lang, N.P., Bagramian, R.A., Inglehart, M.R.: Short-term
effects of hygiene education for preschool (kindergarten) children: a clinical study. Oral
Health Prev. Dent. 5, 19–24 (2007)

13. Leite, I., Martinho, C., Paiva, A.: Social robots for long-term interaction: a survey. Int. J. Soc.
Robot. 5, 291–308 (2013)

14. Unnikrishnan, R., Deshmukh, A., Ramesh, S., Babu, S.K., Anitha, P., Bhavani, R.R.: Design
and perception of a social robot to promote hand washing among children in a rural Indian
school. In: 2019 28th IEEE International Conference on Robot and Human Interactive
Communication, pp. 1–6 (2019). https://doi.org/10.1109/RO-MAN46459.2019.8956450

15. Alzyood, M., Jackson, D., Aveyard, H., Brooke, J.: COVID-19 reinforces the importance of
handwashing. J. Clin. Nurs. 15–16, 2760–2761 (2020). https://doi.org/10.1111/jocn.15313.
Epub 2020 May 14. PMID: 32406958; PMCID: PMC7267118

https://doi.org/10.1109/RO-MAN46459.2019.8956450
https://doi.org/10.1111/jocn.15313


Paired Robotic Devices with Subtle
Expression of Sadness for Enriching

Social Connectedness

Misako Uchida1(B), Eleuda Nunez1, Modar Hassan1, Masakazu Hirokawa2,
and Kenji Suzuki1

1 Institute of Systems and Information Engineering, University of Tsukuba, 1-1-1
Tennodai, Tsukuba, Ibaraki 305-8573, Japan

{misako,eleuda,modar}@ai.iit.tsukuba.ac.jp, kenji@ieee.org
2 Data Science Laboratories, NEC Corporation, Kawasaki, Japan

hirokawa m@ieee.org

Abstract. Various factors contribute to feelings of loneliness and
compromised emotional well-being. One potential strategy to address
this issue involves creating systems that enhance social connectedness
between users at distance. In the literature, many of these systems utilize
physically embodied devices and foster a sense of presence and intimacy.
However, there has been limited exploration of targeting and sharing
negative emotions. This study introduces a novel robotic device with a
caricatured appearance named BlueBot, capable of subtle expressions of
sadness. This study outlines the technical aspects and design principles
underpinning touch-based non-verbal communication. Additionally, we
present findings from a pilot test and in-the-wild field trial, describing
users’ responses and behaviors to investigate the impact on social con-
nectedness. Our observations indicate that the developed system offers
a nuanced approach that not only heightens awareness of the other indi-
vidual’s presence but also enhances emotional sensitivity. Several design
insights for future similar studies are derived from our research.

Keywords: Social connectedness · Emotional communication ·
In-the-wild study · Social isolation

1 Introduction

Loneliness, distinct from simply being alone, encompasses negative emotions
that arise from the disparity between desired and actual social connections [1].
Reduced interaction and communication contribute to the sense of loneliness,
which in turn can potentially impact both physical and mental well-being. To
address this issue, many researches have revealed that strengthening social con-
nectedness can alleviate feelings of loneliness [2].

Social Awareness (SA) systems have emerged as a promising approach to
maintaining these social ties by sharing awareness or social interaction that
evokes the other’s attention [3]. These systems facilitate positive emotions in
terms of a sense of presence and intimacy by utilizing physical devices such
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
A. Al. Ali et al. (Eds.): ICSR 2023, LNAI 14453, pp. 254–263, 2024.
https://doi.org/10.1007/978-981-99-8715-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8715-3_22&domain=pdf
https://doi.org/10.1007/978-981-99-8715-3_22


Paired Robotic Devices for Enriching Social Connectedness 255

Fig. 1. (Top Left) Two identical devices, featuring a friendly appearance. (Top Right)
Hardware overview, including dimensions and key features. (Bottom) Concept of Blue-
Bot: users can engage in remote communication and share expressions.

as lamp-like structures [4,5] and displays [6]. However, there has been limited
exploration of sharing negative emotions.

Negative emotions include sadness, fear, and disgust, but it has been sug-
gested that sharing sadness not only opens doors for assistance but also nurtures
a sense of intimacy [7]. In addition, social norms that discourage the expression
of sadness can actually worsen negative emotions [8].

Taking these considerations into account, this study introduces a novel
robotic device with a caricatured appearance that is capable of subtle expres-
sions of sadness, named BlueBot. Then, using multiple BlueBot in paired con-
figurations, we propose a new SA system for facilitating social connectedness
between users at distance. To explore the effect on social connectedness, we con-
ducted two field trials: a pair of friends and a mother-son dyad. We obtained
the users’ perceptions through questionnaires, interviews, and behavioral data
analysis. Guided by these observations, we extracted design implications for a
social awareness (SA) system endowed with the subtle expression of sadness.

2 Design of BlueBot

2.1 System Requirements

With a focus on the sustained application of the system in everyday settings,
the subsequent set of system requirements was formulated.

1. Casual Exchange of Non-Verbal Information: While tools like tele-
phones and emails facilitate verbal and explicit communication, the proposed
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system is tailored for exchanging non-verbal and simplified expressions. It
should allow users to keep awareness of each other without the necessity of
exchanging messages with explicit content.

2. Asynchronous Communication: Designed for use in geographically dis-
tant relationships and throughout different times of the day, this system intro-
duces a state transition model [3]. This model allows users to access messages
whenever they choose, ensuring flexibility and convenience.

3. Simple and Intuitive Operation: With a focus on extended usage within
everyday settings, simple touch-based operation is employed. Furthermore, a
combination of visual cues seamlessly captures the user’s attention.

4. Friendly Design: The robot’s visual aesthetics incorporate curved surfaces
to evoke a sense of familiarity. The simplified facial features encompassing
round eyes and a mouth with upturned corners, were inspired by facial expres-
sions commonly associated with likable robots [9].

2.2 System Configuration

An overview of the system is depicted in Fig. 1. This robot features a single
degree of freedom (1 DoF) in the neck and color-changing capabilities. For opti-
mal light dispersion, the robot’s body is constructed using a translucent resin
material. Inside both the body and the head, NeoPixel LEDs (NeoPixel Ring
- 16× 5050 and 12× 5050 from Adafruit) were positioned to ensure even color
distribution, illuminating the entirety of the robot’s body. The head’s pitch is
controlled via a servo motor (SG92R, Tower Pro Pte. Ltd.), with a range of
motion spanning 35◦C. Touch detection is achieved through a capacitive sen-
sor (AT42QT1011, Sparkfun), with a 4 cm x 4 cm conductive sheet (ADFCS01,
BitTradeOne) embedded within the robot’s head, capable of reading input at
a rate of 10 Hz. A tactile switch and a microcontroller (ESP32-DevKitC ESP-
WROOM-32 development board, Espressif Systems Pte. Ltd.) are placed in the
robot’s base. The microcontroller contains a Wi-Fi module, and it establishes a
client-server relationship through TCP/IP communication, by connecting to a
mobile Wi-Fi router.

2.3 Expression of Sadness

BlueBot was designed to use color and head movements to convey expressions
in a style that is intuitively understandable to the user as illustrated in Fig. 2.
Previous research has demonstrated that the combination of color and motion
provides the best cost-benefit ratio for conveying basic emotions [10]. Drawing
from color psychology, blue is commonly linked with sadness, thus we used it
for this purpose. Moreover, head motions and body postures have been used as
a strategy to enhance emotional expression in robots [11].

2.4 State Transition

While our primary interest lies in assessing the impact of the sadness signal on
social connectedness, having only a sadness signal has potential negative con-
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Fig. 2. State transition model

notations that might deter frequent usage of the system. Thus, we incorporated
a more neutral signal option, a greeting signal, to give users more opportuni-
ties/motivations to interact with the robots. The state transition is illustrated
in Fig. 2. Upon initialization, both robots default to a neutral state, represented
by their bodies light up in white. Initiating a greeting signal requires one of
the users to touch the tactile sensor on the robot’s base. This prompts both
the sender and receiver robots to perform two nods and light up in green, a
color often associated with the emotion of calmness or neutrality [12]. To acti-
vate a sadness signal, a user needs to touch the robot’s head, initiating the sad
state. The sender and the receiver robots tilt their head downward and the only
receiver illuminates in blue. Importantly, both robots return to the neutral state
only after the receiver responds to the sadness/greeting signal. Signals can solely
be sent while in the neutral state. Once sent, the state remains unchanged until
a response is received.

3 Evaluation

3.1 Pilot Test

A pair of university student friends participated in this test. We installed BlueBot
at their respective homes and asked them to freely communicate for 2 days.
After the period, we collected their message log and conducted an interview to
extract their impressions. For one of the participants (P1, age: 23, female), the
experiment’s purpose was deliberately withheld, but instead, we just explained
the function of the robot. Conversely, the other participant (P2, age: 22, female)
played the role of a confederate and was tasked with sending a sadness signal at
a predetermined time.

Result. A total of 9 exchanges of messages were recorded during the test.
P1 initiated 6 greetings and no sadness signal, whereas P2 initiated 2 greet-
ings and conveyed sadness once. The messages and their corresponding replies
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were observed at various intervals, demonstrating asynchronous communication.
During the interview, P1 shared, “Upon receiving a sadness signal, rather than
instantly communicate by a phone call or message, I opted to communicate my
presence at home. I did this by not only replying with a sadness signal but also
by sending a greeting signal through the robot.” P1 then elaborated, “Since I
understand her sadness, I am receptive to what she might share when she reaches
out.”

3.2 Field Trial

Participants. For this study, our selection criteria involved participants who
were well-acquainted with each other, lived apart and were experienced in remote
communication with each other. A mother-son pair participated in the test. The
son, aged 59, lives with his wife and two daughters. He commutes to work from
Monday to Friday. The mother, aged 87, is a mother to three children who
lives independently and seldom ventures outdoors. Every Wednesday, she goes
shopping accompanied by a helper. They have face-to-face meetings only once a
month. Communication is primarily through telephone conversations due to the
mother’s lack of mobile phone usage. On average, they use the phone about once
a month, often making calls when they have specific information to convey. Most
commonly, the son reaches out to his mother to inquire about her well-being.

Measurements. We collected data through a combination of questionnaires,
interviews, and communication logs. To assess social connectedness in a quanti-
tative manner, we utilized the Social Connectedness Questionnaire (SCQ) [13].
This questionnaire comprises two sets of questions: an overall level and an
individual level. For the purposes of this study, we exclusively employed the
individual-level questionnaire to gauge the connection between the two parties
involved. Participants responded to each item using a 7-point Likert scale. This
questionnaire prompted participants to evaluate their social connections with
their partners over the past two weeks. The assessment encompassed five sub-
dimensions: Relationship salience (RS), (dis)satisfaction with contact quality
(CQ), Shared understandings (SU), Knowing each others’ experiences (KE), and
Feelings of closeness (FC). The Japanese-translated questionnaire was adminis-
tered before and after the trial. Complementing this quantitative approach, we
conducted semi-structured interviews to study the participants’ experiences and
to obtain deeper insights into their usage and perceptions of the system. Fur-
thermore, communication logs described exchanges between the robots on the
server. The timing and frequency of robot usage are quantitative measures of
their interactions.

Procedure

– Before the Trial. We visited each household to install of the equipment,
we requested participants to complete the SCQ. Subsequently, we introduced
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Fig. 3. BlueBot at the participants’ homes.

BlueBot as a communication interface capable of transmitting two distinct
signals. Participants were encouraged to send these signals freely for two
weeks, without constraints on the timing or frequency of use. Both partici-
pants positioned their robots in prominent locations within the living-dining
areas of their homes. The son, opted to install the robot on a dresser, while
the mother, chose to put it on a TV stand (see Fig. 3).

– After the Trial. We revisited each household to administer the question-
naires and conduct the interviews. Utilizing the observed behavioral patterns
from the communication log, we formulated a set of interview questions. Sub-
sequently, we proceeded to uninstall the system.

4 Results

The results of SCQ are illustrated in Fig. 4. It is categorized into a range of
1–7, 1 indicating low social connectedness and 7 indicating the highest. Both
participants showed increases in the Relationship Salience (RS) dimension; how-
ever, the mother’s overall score exhibited an upward trend, while the son’s score
showed a slight decline. Notably, the son’s (CQ) considerably decreased following
the utilization of BlueBot.

The distribution of messages per hour over the two weeks is depicted in Fig. 5.
During the period, a total of 43 signal exchanges took place, with the greeting
signal sent 39 times and the sadness signal sent 4 times. Among these exchanges,
the son initiated the greeting signal 36 times (92.3%), while the mother initiated
it 3 times. Additionally, the son sent the sadness signal 4 times, whereas the
mother did not send any. Regarding response time, the son replied three times,
with response intervals of 17, 21, and 23 s. On the other hand, the median of the
mother’s response time is 171 s. Detailed distribution of the mother’s response
times is provided in Fig. 5.

During the interviews, in terms of the usage of the sadness signal, the son
remarked, “I pushed it when my favorite baseball team gave up a home run
or when I felt tired, without thinking too much, I just wanted to let her know
about it.” In contrast, the mother noted, “I never felt sad, so I did not use it.”
The subsequent questions aimed to delve into how they felt upon receiving a
sadness signal. The son, though not having experienced it himself, shared, “I did
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Fig. 4. Scores from the Social Connectedness Questionaire

Fig. 5. (Left) Overview of all the messages exchanged during the 14-day trial. Markers
on the left side of each link represent the senders and markers on the right side represent
the respondent. (Right) Mother’s reply time distribution [s].

not receive it, but I would think that my mother felt lonely.” In contrast, the
mother encountered the sadness signal from her son, but she did not attribute a
negative significance to it. She explained, “I did not worry and just replied back.
I think if he was really sad, he would call.”

When we inquired about their feelings regarding having BlueBot at home,
the mother responded, “Since we could communicate multiple times a day, I
naturally felt more connected to him. Depending on the timing of his messages,
I would imagine what he was up to at that moment.” The son expressed, “The
robot’s movements in response to my mother’s actions made me feel closer to
her.” Particularly, we discussed communication quality with the son due to the
lower score for SCQ. He mentioned, “It often felt like one-way communication,
with me initiating most of the contact.” However, he added, “Even though I
do not call her every day, receiving prompt responses through the robot was
reassuring.” In contrast, the mother, who scored higher, mentioned, “I do not
usually call him frequently, and when I do, I keep it brief in case he is busy. With
the robot, I could reach out every day somehow, and I found it enjoyable.”
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5 Discussion

Our focus is on creating an intuitive and engaging platform designed for sharing
negative emotions. We believe this will not only deepen intimacy but also amplify
the sense of social connectedness. Earlier research has indicated the importance
of assessing these systems in real-world settings over extended periods [3]. Keep-
ing this in mind, our goal was to create a system that is straightforward to
operate and demands minimal supervision, allowing for seamless integration into
users’ daily routines. Following this approach, we conducted evaluation studies
aimed at verifying the overall system performance and capturing user responses.

– Sharing Sadness. In the pilot test, although one of the participants did not
use the sadness signal, she noted that the system helped her become more
aware of her friend’s emotions and prepare for embracing her sadness, but the
situation was not deemed serious enough for her to reach out via phone. In
the Field trial, users were able to differentiate the sadness signals from greet-
ings due to their infrequent and unique nature, leading to quicker response
compared to greetings (Fig. 5). The presence of sadness within greetings helps
users to realize the other’s emotional shift. For the sender, sending sadness
did not necessarily signify that they were feeling sad, but rather that they
wished to convey that sentiment and capture the recipient’s attention. For
the receiver, these signals did not carry a negative connotation; instead, we
consider that they heightened the awareness of the sender in an emotionally
impactful manner such as a sadness emoticon. An interesting finding is that in
communicating daily greetings as well as the negative signal of sadness, both
participants may have agreed that the proposed device communicates lighter
emotions. We consider that, on the premise of being able to communicate ver-
bally using the telephone, the proposed device could play a complementary
role in enriching casual daily communication.

– Accustomization. In the field trial, the son, who was accustomed to various
communication platforms, played a more active role by sending a greater
number of messages and often taking the initiative. On the other hand, the
mother, who primarily relied on phones for communication, could also grasp
the purpose and role of the BlueBot. She mentioned that she was accustomed
to responding to her son’s messages, establishing a communication pattern
that accommodated their routines. This dynamic was also reflected in the
data. They typically communicated during mornings and evenings, with the
son initiating communication more frequently, as depicted in the log (Fig. 5).
This communication pattern is the same as their reported use of phones.

– Increase the Feeling of “Being Together.” In relation to social connect-
edness, we carefully selected a tool that was most suitable for this context.
The SCQ result exhibited noticeable changes after two weeks of interaction
with BlueBots, with the dimension of relationship salience showing the most
positive change (Fig. 4). In this regard, during the interview participants men-
tioned that the ability to communicate through the robot without disrupting
each other’s routines helped maintain a continuous awareness of one another



262 M. Uchida et al.

without requiring conscious effort. The presence of the always-on connection
provided by the robots, coexisting within the same space as the users, seemed
to foster a natural awareness of each other’s presence and connection through
ongoing interaction.

– Contact Quality. Certain scores exhibited a decline after the two-week
period. Notably for the son, his perception of contact quality was negatively
affected by his mother’s limited initiative and more passive role. In the inter-
view, he mentioned occasionally feeling like the communication was one-sided
due to his mother’s slower and infrequent responses (Fig. 5). This situation
points to a potential downside of having a partner who is less responsive,
which could impact the sense of social connectedness. Given the substantial
impact of perceiving the robot as consistently unchanging, future research
will explore methods to mitigate this effect.

5.1 Design Implications

We extracted key features for communication interfaces similar to BlueBot:

– Subtle Expression. Robot expressions intentionally lack specific informa-
tion, inviting user interpretation. Their timing and frequency can prompt
users to envision the other person’s emotions or lifestyle. Responses are
shaped by individual interpretations and relationship dynamics.

– Easy Operation and Simple Interaction. The system is designed to be
user-friendly, even for those unfamiliar with new technologies. The combina-
tion of simple state transitions, touch-based controls, and intuitive, recogniz-
able robot expressions has proven to be effective.

– Actively Promote Interaction. The negative impact of a partner’s lack of
responsiveness highlights the need for design strategies to mitigate this issue.
One possible solution involves incorporating AI to stimulate user-initiated
interaction by prompting messages during periods of reduced engagement.

– Asynchronous and Synchronous Communication. Adopting a state
transition model that allows colored lights to persist over time after being
sent facilitates asynchronous communication. Additionally, the colored lights
and head motions of the robots enable synchronous communication, which
is more immediate and necessitates both users to be actively engaged in the
interaction simultaneously. Both forms of communication are equally relevant
and serve distinct purposes, aligning with prior research findings [4].

6 Conclusion and Future Work

In this study, we outlined the technical aspects and design principles of Blue-
Bots, a specialized robot designed to enhance social connectedness through shar-
ing sadness. Through two trials, we documented users’ reactions and behaviors,
revealing seamless integration into their daily lives. Based on the participants’
feedback, we have proposed design implications for future research. Regarding
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the question of whether the sadness signal can contribute to augmenting social
connectedness, we must acknowledge that providing a definitive answer remains
beyond our current scope. Nevertheless, our observations suggest that the signal
has the capacity to evoke empathy by fostering an awareness of others’ emotions.
Furthermore, they provide an understated method for both fostering awareness
of the other person’s presence and heightening our own emotional awareness.
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Abstract. Previous studies on backchannel prediction model have sug-
gested that replicating human backchannel can enhance user’s human-
robot interaction experience. In this study, we propose a real-time non-
verbal backchannel prediction model which utilizes both an acoustic fea-
ture and a temporal feature. Our goal is to improve the quality of robot’s
backchannel and user’s experience. To conduct this research, we collected
a human-human interview dataset. Using this dataset, we proceeded to
develop three distinct backchannel prediction models: a temporal, an
acoustic, and a mixed (temporal & acoustic) model. Subsequently, we
conducted a user study to compare the perception of robot implemented
with the three models. The results demonstarted that the robot employ-
ing the mixed model was preferred by participants and exhibited moder-
ate frequency of backchannel. These results emphasize the advantages of
incorporating acoustic and temporal features in developing backchannel
prediction model to enhance the quality of human-robot interactions,
specifically with regards to backchannel frequency and timing.

Keywords: Human-robot interaction · Backchannel prediction
model · Non-verbal backchannel · Social robot

1 Introduction

Social robots are designed to interact with people in a way that resembles social
interaction between humans. Many researchers have suggested that a natural and
human-like communicative ability is crucial for social robots in order to effec-
tively interact and engage with human users [1,6,8]. One way to obtain such
communicative ability for robots is to replicate human’s backchannel (BC), such
as “mm, uh-huh”, head nod, or laughter. BC is known for conveying information
about the state of the communication, such as the listener’s attention, compre-
hension, or acceptance, thereby making communication more efficient [26]. Stud-
ies have demonstrated that robots’ or virtual agents’ BC learned from human
conversation can enhance rapport [7], engagement [12,29], and user preference
[22,23] for robots or virtual agents.
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Acoustic or visual cues from speaker has been widely used to develop a model
for predicting the timing of robot’s or virtual agent’s BC. Acoustic cues such as
pause, pitch, and spectral energy, as well as visual cues such as the speaker’s gaze
and head nods were considered as predictive features in BC prediction models
[11,19]. Methodologically, rule-based [23,24], machine learning models such as
LSTM [22], CRF [10], SVM [19], logistic regression [15], and Reinforcement
learning [11] were explored.

Several studies on human-human interactions (HHI) have demonstrated the
significance of a moderate frequency of BCs in intercultural communication [16,
17]. Furthermore, the frequency of BCs plays a crucial role in their application to
robots. Poppe et al. (2013) [24] reported that a higher number of generated BCs
does not necessarily increase the naturalness of BC behavior, and a reasonable
number of BCs per minute typically falls between 6 and 12. These findings
imply that BC frequency is closely related to communication quality, suggesting
the existence of an desirable range for BC frequency. However, most previous
studies on BC prediction models did not consider the frequency of BCs in human
data. Therefore, in order to enhance the naturalness of BCs, this study found it
necessary to incorporate frequency information into a BC prediction model.

In this study, we utilize the temporal feature of BC, specifically distribution
of BC interval, to automatically adjust the frequency of BC and propose a real-
time non-verbal BC prediction model that incorporates temporal feature and
acoustic cue of BC in order to improve the naturalness and appropriateness of
robot’s BC and the perception of robot. For this purpose, we first build a HHI
interview dataset with BC annotations. Using this dataset, we then construct
three different BC prediction models, a temporal model, an acoustic model, and
a mixed (temporal & acoustic) model. The temporal model uses the Erlang dis-
tribution of BC interval extracted from the HHI dataset as temporal feature
of BC. The acoustic model is based on a traditional acoustic feature for speech
processing, Mel-Frequency Cepstrum Coefficient (MFCC). The mixed model uti-
lizes both temporal and acoustic features. Further, we compare the performance
of the three different models through offline evaluation and conducted an HRI
study to investigate the effect of BC prediction model on the perception of robot.

2 Backchannel Model Description

2.1 Interview Data Collection

We conducted dyadic casual interviews by referring to the questions presented
in previous studies [21,27]. There were 10 closed-end questions and 7 open-end
questions with casual and personal topics, such as hometown, family, favorite
celebrities, etc. Before the interviews, the participants asked to prepare answers
for the questions. After a preliminary interview session, two main interview ses-
sions were conducted with a pair of participants taking turns as the interviewer
and the interviewee. Three time-synchronized cameras captured the frontal view
of each participant along with a lateral view. The two headset microphones for
each participant were also time-synchronized with each other and the cameras.
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Considering that there may be an influence between conversational context and
BC [14], the interview format and questions of the interview data were used
almost similarly in the subsequent user study.

32 participants (male = 16, female = 16) with a mean age of 26.9 (min = 21,
max = 36) were recruited through e-mail at the Korea Institute of Science and
Technology. Since the difference in the frequency of BC according to gender and
gender pair has been studied [20], gender was pre-screened when applications
were received to ensure a numerical balance of gender and gender pair. There
were 8 same-gender pair (female-female = 4, male-male = 4) and 8 opposite-
gender pair (female-male = 4, male-female = 4). In addition, considering the
possibility that intimacy may affect BC generation, paired participants were
controlled to see each other for the first time. The age group was controlled to
be in the 20 s to 30 s. Each of the participants was paid roughly $ 12 USD for the
interview. The interview was conducted with the approval of the Institutional
Review Board of the Korea Institute of Science and Technology (KIST IRB:
KIST-202209-HR-001).

The total amount of collected data was about 5.1 h. Two trained annota-
tors annotated the non-verbal BCs (head nods) using video-annotation software
ELAN [28] and achieved moderate and substantial levels of agreement (time-
based kappa: 0.58, event-based kappa: 0.61) from interobserver agreement com-
puting program Generalized Sequential Querier (GSEQ) [18]. Time-based kappa
is obtained by aligning annotators’ annotations to a certain time unit (100ms),
and event-based kappa is obtained by counting as agreed events when the overlap
between annotations is more than 60%. We also annotated pauses automatically
by using speech sound analysis program Praat [2], which were then corrected by
two experts on linguistics in case of annotation errors.

2.2 BC Prediction Model

We propose three methods for predicting the timing of non-verbal BC onsets
in a robot, which involve temporal, acoustic, or a combination of both models.
Details are described as follows:

Temporal Model. We apply Erlang distribution to model the interval of BC
onset timing, since this distribution has been used for predicting the interval
between two events [5] and also mentioned as an appropriate distribution for
predicting the timing of BCs [24]. The Erlang distribution is defined by proba-
bility density function (PDF) as follows:

f(x; k, β) =
λkxk−1e− x

β

βk(k − 1)!
for x ≥ 0, β > 0 (1)

The Erlang distribution f(x; k, β) is characterized by time variable between BC
onsets x, the number of BC onsets k, and the scale parameter β (β = 1/λ),
where the λ denotes mean rate of BC onsets. In our study, β is obtained from
the interview data (β = 7.933 s).
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Acoustic Model. To represent acoustic property of a speech sound, we
extract acoustic features based on 10th order mel-frequency cepstral coefficients
(MFCCs) which is often used to represent the spectral characteristics of human
voice. In MFCC, Fast Fourier Transform (FFT) is applied to convert the time
domain into the frequency domain. Power coefficients are then obtained by a
Mel-scale filter. Frequency h (in Hertz) is converted to Mel frequency m is given
by:

m = 2595 log10

(
1 +

h

700

)
(2)

We apply Random Forest (RF) classifier to predict the timing of the BC onset
based on the acoustic features. This classifier is an ensemble learning method
based on multiple trees [3], and each tree is determined by nodes and branches
using randomly selected features to deal with over-fitting. An objective function
such as Gini Index is used to search for the best split in a tree.

In our work, the feature length was defined by 4 s to ensure a sufficient
observation of the speaker’s utterances, and the classifier was set by a total of 300
trees. We conducted Bootstrapping by randomly splitting the interview data into
multiple balanced training and testing datasets and obtained 1,600 classifiers. We
evaluated the classifiers by F1-score using the testing datasets, with a marginal
time of 0.2 s applied as an error tolerance, in which the marginal time is the
time difference between predicted BC and the ground truth annotated in the
interview dataset. Finally, the classifier with a median F1-score was selected and
applied to a robot.

Mixed Model. Mixed model utilizes both temporal and acoustic features. In
this model, the acoustic model first predicts the timing of BC onset based on the
MFCC of user’s speech, and then the temporal model determines the validity of
the interval between the predicted BC and the previous BC.

2.3 Model Implementation and Evaluation

We implemented BC prediction models based on ROS (Robot Operating Sys-
tem) Kinetic Kame in Ubuntu 16.04 LTS (Xenial Xerus). To apply these models
to a robot, a minimum time constraint (1 s) is required to prevent the robot
from generating a BC while executing a nodding motion. Additionally, we used
WebRTC-based voice activity detection to apply the acoustic model while user
speaks to the robot.

To evaluate how well the BC prediction models performed in predicting the
timing of BC onsets, we selected the unseen data (318 s) from the interview
data. Figure 1 partially shows the results with visual timelines indicating BCs
that is produced by each BC prediction model during 40 s. The temporal model
could not fit well with the ground truth and generated BCs sparsely. Meanwhile,
the acoustic model with median F1-score performance seems to generate BCs
frequently and aligned well with the ground truth (F1-score = 23.29%). The
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Fig. 1. Example traces of BC generated by temporal, acoustic, mixed model. Bottom
trace in blue represents the ground truth of BC. (Color figure online)

timing of BCs predicted by the mixed model partially aligned with the ground
truth, but the time interval and frequency were most similar to the ground truth.
We used the same unseen data to evaluate the efficacy of the mixed model over
10,000 bootstrap iterations. The following results were found: F1-score (mean =
5.02%, SD = 3.8%)

3 User Study

We conducted a robot interview in which the robot acts as the interviewer
and the user acts as the interviewee to investigate the user’s perception of the
robot implemented with our three BC prediction models: temporal, acoustic,
and mixed model.

3.1 Participants

We recruited 36 participants (male = 18, female = 18) with a mean age of 26.0
(min = 21, max = 35) through e-mail at the Korea Institute of Science and
Technology. As with interview data collection, gender was pre-screened when
applications were received to ensure a numerical balance of gender. The age
group was controlled to be in the 20 s to 30 s. Each of the participants was paid
roughly $ 24 USD for the experiment. This experiment was conducted with the
approval of the Institutional Review Board of the Korea Institute of Science and
Technology (KIST IRB: KIST-202209-HR-001).

3.2 Experimental Setup

Our models were applied to the ‘MyBom Mini’ robot1, as depicted in Fig. 2a. The
robot was developed by Roaigen for social interaction in homes and measures

1 https://roaigen.com.

https://roaigen.com
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Fig. 2. (a) Robot platform ‘MyBom Mini’ (b) An example of the robot interviews.
Participants answered the questions focusing on the onset timing of nodding gesture
(BC). They were instructed to continue to speak while the light is turned on.

184mm in width and 345mm in height. It comprises of an 8-channel audio board,
one speaker, neck motors (2 DoF), a motor control board, and a PC with an
i5-8259U processor and 8 GB of memory.

We design 5 nodding gestures using 3ds Max for expressing non-verbal BCs of
the robot, and one of the gestures is randomly selected and executed during 1 s.
We also use two facial expressions such as a smile and blinking to enhance natural
interaction. The smile expression is triggered by predefined rules based on a
script while speaking, and the blinking occurs simultaneously with the nodding
gestures. The robot’s speech was synthesized in a young female (Ha Eun) voice
using Typecast’s AI voice generator2. The robot produced BCs (nods) only in
the speaking turns of the participants.

For the comparison of the three different models, temporal, acoustic, and
mixed, we used within-subject design. Each participant takes part in an inter-
view conducted by the robot with three different BC prediction models. The
interacting order of the models was counter-balanced across participants. As a
result, the subjects were divided into 6 groups which consists of 6 participants
(3 males, 3 females).

Most of the robot interview questions in the user study were based on the
same questions which were used in our human-human interview dataset. The
question fell into 4 categories: celebrity, narrative, vacation destination, and
schedule. The experimenter manually controlled the turn-taking of the robot.
In turn, the robot asked the next question after a brief pause of 5 s.

3.3 Procedures

Before the main experiment, the participants responded to an online question-
naire which includes the questions used in the robot interviews. It was instructed
to the participants that they should not focus on the nodding gesture itself, but
the onset timing of the nodding gesture. We requested them to answer each ques-
tion for at least 40 s. We turned off an electric light behind the robot after 40 s to
2 https://typecast.ai/.

https://typecast.ai/
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let the participant finish the answer (See Fig. 2b). A total of 3 robot interviews
were conducted for the comparison of the 3 conditions. In each robot inter-
view, the robot asked 4 questions which consist of the 4 different question types,
celebrity, narrative, vacation destination, and schedule. The question types were
presented in a random order, and each question was selected randomly without
replacement. At the end of each robot interview, we requested the participant
to fill out a questionnaire about the quality of BC timing of the model as a
post survey. After the end of all robot interviews, we asked participants to rank
the robot by the overall quality of the robot’s BC as a final survey. Finally, we
conducted an experimenter interview about the rank and the experiment overall.

3.4 Measurements

In the post survey, we constructed 6 questions for measuring the behavioral
features of robot’s BC and 6 questions for the functions of robot’s BC. The
survey used a 7-point Likert scale ranging from “Not at all” to “Very much”.
The questions on the behavioral features referred to the questionnaire items
presented in previous HRI studies related to the BC model [10,13,19,22]. In
addition, the questions on the functions also referred to the same previous HRI
studies [10,13,22] and also considered the functions of the BC in a HHI study [4].
The questionnaire categories and items are listed in Table 1. The questionnaire
items listed in each questionnaire category were presented in random order to
avoid order effect.

In the experimenter interview, we asked the participants to rank the quality
of each model in terms of the timing of BC to reconfirm the results of the post
survey. We further calculated the frequency and interval of the BCs of each BC
prediction model to investigate the relationship between perception of robot’s
BC and its function, and the actual BC generation pattern of the three BC
prediction models. The frequency of BC was measured in times per a minute.
The interval was calculated by subtracting the start time of the BC from the
start time of the subsequent BC.

3.5 Results

The results of normality tests on the questionnaire items according to experi-
mental conditions (BC model) showed that a normal distribution could not be
assumed for all groups of each BC model on the questionnaire items (Shapiro-
Wilk test p < 0.05). Therefore, we used a nonparametric statistical analysis, a
Kruskal-Wallis test to verify the different effects among three BC models. All
reverse-scored items (BF-Q4, BF-Q5) were reverse coded. Also, to remove out-
liers from the dataset, we employed the interquartile range (IQR) method, which
involves identifying values outside the range of 1.5 times the IQR and removing
them from the analysis.

There were statistically significant differences among the three BC model
groups for the four out of the six questionnaire items evaluating the behav-
ioral features of robot’s BC (Naturalness (BF-Q1): χ2 (2) = 8.91, p < 0.05;
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Table 1. Questionnaire categories and items

(Behavioral features (BF) of robot’s backchannel)

BF-Q1 The robot’s backchannels (nods) were natural

BF-Q2 The frequency of the robot’s backchannels (nods) were appropriate

BF-Q3 The timing of the robot’s backchannels (nods) were appropriate

BF-Q4 How often do you think the robot nodded at an inappropriate time?

BF-Q5 How often do you think the robot missed nodding opportunities?

BF-Q6 The robot’s backchannel (nods) did not interrupt the conversation.

(Functions (F) of robot’s backchannel)

F-Q1 The robot was listening carefully

F-Q2 The robot encouraged me to continue talking

F-Q3 The robot understood what I was saying

F-Q4 The robot sympathized with what I was saying

F-Q5 The robot agreed to what I was saying

F-Q6 The robot showed emotional response to what I was saying

Frequency appropriateness (BF-Q2): χ2 (2) = 7.6, p < 0.05; Timing appropri-
ateness (BF-Q3): χ2 (2) = 17.8, p < 0.001; Perceived recall (BF-Q5): χ2 (2) =
22.2, p < 0.0001) (Fig. 3a). Post-hoc tests using Dunn’s test with Bonferroni
correction revealed that there are statistically significant differences between
temporal model and mixed model for all three items (BF-Q1, BF-Q2, BF-Q5: p
< 0.05; BF-Q3: p < 0.01), and between temporal model and acoustic model for
two items (BF-Q3: p < 0.001; BF-Q5: p < 0.00001). These results showed that
participants rated the robot’s BC behavior as more natural, appropriate in terms
of frequency and timing, and better recall when using mixed model compared to
temporal model. Also, participants evaluated that the robot’s BC behavior had
better timing appropriateness and perceived recall when implementing acoustic
model than temporal model.

Further, there were statistically significant differences among the three BC
model groups for the four out of the six questionnaire items evaluating the
functions of robot’s BC (Attentive listening (F-Q1): χ2 (2) = 6.7, p < 0.05;
Encouragement to talk (F-Q2): χ2 (2) = 9.6, p < 0.01; Sympathy (F-Q4): χ2

(2) = 7.4, p < 0.05; Agreement (F-Q5): χ2 (2) = 21.8, p < 0.0001) (Fig. 3b).
Post-hoc tests showed that there are statistically significant differences between
temporal model and acoustic model for attentive listening, encouragement to
talk, sympathy, and agreement (F-Q1, F-Q2, F-Q4: p < 0.05; F-Q5: p < 0.001),
and between temporal model and mixed model for encouragement to talk and
agreement (F-Q2: p < 0.05; F-Q5: p < 0.0001). These results imply that the
participants rated the robot as listening more attentively, encouraging them to
talk more, sympathizing more with their saying, and being more in agreement
with their statements when implementing acoustic model compared to temporal
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Fig. 3. (a) Survey result on the behavioral features of robot’s BC. (b) Survey result on
the function of robot’s BC. Means and standard deviations are shown (NS p > 0.05,
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

Table 2. Descriptive statistics (Frequency and interval) of Predicted BC

BC prediction model Mean Frequency (SD) (times per min) Mean Interval (SD) (sec)

Temporal 3.96 (0.53) 10.70 (1.67)

Acoustic 12.30 (1.62) 3.42 (0.49)

Mixed 7.40 (1.17) 5.32 (0.64)

model, and as encouraging them to talk more and being more in agreement with
their statements when using mixed model compared to temporal model.

In the final survey, the majority of participants (17/36, 47.2%) responded
that the mixed model performed best, and more than 50 percent of them (21/36,
58.3%) answered that temporal performed worst. These results suggest that the
overall quality of the robot’s BC was better in the mixed model than the other
two models.

Lastly, the frequency and interval of the BCs of each BC model are sum-
marized in Table 2. Since we confirmed that a normal distribution could not be
assumed for the BC frequencies and BC intervals of each model (p < 0.05), we
used Kruskal-Wallis tests. The tests showed that there were statistically signif-
icant differences among the models in the BC frequency (χ2 (2) = 94.3, p <
0.001), and in the BC interval (χ2 (2) = 97.9, p < 0.001). Post-hoc tests using
Dunn’s test with Bonferroni correction revealed that there were statistically sig-
nificant differences across the models in the frequency and interval (p < 0.05).
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4 Discussions

We found that the acoustic model obtained better F1-score than the mixed
model in the model evaluation. However, there was no statistically significant
differences between the acoustic model and the mixed model in all questionnaire
items from the post survey in the user study. These results were consistent
with the result of Poppe et al. [24]. They found that when comparing various
rule-based models the rule-based model with higher precision and recall did not
necessarily obtain a higher human-likeness score.

Although we did not find the difference between the acoustic and mixed
models from the post survey, more than half of them rated the mixed model
as the best when participants were forced to rank the three models from the
final questionnaire. We assumed that this result resulted from a moderate BC
frequency of the mixed model. According to Poppe et al. [24], an increase in
the number of BCs does not always lead to an improvement in the naturalness
and appropriateness of BC. In addition, the mixed model was the only model
whose frequency was in the range of reasonable number of BCs per minute (6–12)
presented in Poppe et al. [24]. Overall, the mixed model achieved a moderate
frequency of BCs, which suggests that applying the temporal feature of BCs
could be an effective strategy to suppress excessive generation of BCs and adjust
the BC frequency properly.

Lastly, it should be noted that we only focused on head nod, which is one
type of non-verbal BC. However, there are other non-verbal BCs, such as facial
expression and gaze, and verbal BCs as well. The effectiveness of the temporal
feature on the BC prediction of other non-verbal BCs and verbal BCs should
be validated. Furthermore, we only used an acoustic feature for the comparison
purpose, which has been used in many previous studies of the BC prediction
[11,30–32]. Several studies have shown that not only acoustic features but also
visual, and linguistics features are important for the BC prediction [9,22,25].
Thus, more various features for the BC prediction need to be further explored
with the temporal feature.
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Abstract. The complexity of detecting rarely occurring behaviors
through human trajectories is closely related to a lack of data, unclear
behavioral characteristics, and complex variations in their related phys-
ical parameters (e.g., velocity and orientation angles, etc.). In this con-
text, we propose a methodology to maximize the detection performance
of rarely occurring behaviors in public places by investigating the data
collection process, trajectory representation based on detected skeleton
poses from videos, and the use of 2D (X, Y) trajectory positional data
only versus its combination with their associated physical parameters as
the input for trajectory learning models. In order to evaluate the pro-
posed method, we studied a rare Japanese behavior in public places called
UroKyoro, which is a combination of the two Japanese words Urouro and
Kyorokyoro. This behavior includes aimlessly moving while frequently
looking in both directions. Since there is a lack of related data from real-
life cases, we hired professional actors to role-play the behavior alone
or with normal pedestrians moving around. The learning system was
trained using limited and augmented data. The trajectory learning sys-
tem, trained with combined human trajectories and orientation angles
following the proposed method, succeeds in detecting the studied behav-
ior with an accuracy of 91.33%, outperforming the accuracy of the trained
model using only human 2D (X, Y) trajectories by 4.33%. The results
show the effectiveness of the proposed method to detect complex, rarely
occurring human behaviors by training the LSTM classifier with a com-
bination of human trajectories and physical parameters. However, the
effectiveness of physical parameters on training performance may differ
from one case study to another based on behavioral characteristics.
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1 Introduction

In recent years, there has been a need for the use of security robots and
autonomous security systems fitted with assistive devices (e.g., cameras and
sensors), which are becoming increasingly popular to ensure high security in
public places such as shopping malls. However, it is critical to thoroughly assess
these systems’ performance in recognizing anomalous behavior and maintaining
public safety. A study conducted by [1,2] investigated the deployment of robots
in public places and discovered that the level of autonomy granted to the robots
can have a substantial impact on their capacity to recognize and respond to pos-
sible deviant actions. The authors suggested that the level of autonomy be care-
fully studied and adjusted in order for the robots to make real-time judgments
while prioritizing public safety. Furthermore, it is crucial to consider the ethical
and legal implications of using autonomous security systems in public spaces.
A study by [3] investigated the ethical considerations of using security robots
and concluded that it is essential to ensure that the robots are programmed to
respect individual privacy and civil liberties. In conclusion, the use of robotic
bodyguards in public spaces is a promising development for enhancing security
measures. However, it is important to thoroughly evaluate and consider the level
of autonomy, movement and action strategies, and ethical and legal implications
to ensure that these systems provide a high level of security while also respecting
public safety and individual rights.

On the other hand, the contribution of machine learning in the field of social
behavior detection is promising and has increased rapidly. The basic information,
including human trajectories and their associated physical parameters, should
be precisely studied to detect the behaviors successfully. Recent studies rely on
videos or sensors in order to extract or formulate trajectory information [4–6].
Usually, trajectory-related normal behaviors in public places can be detected
using basic movement information (e.g., a person who is loitering while looking
for a shop or waiting for a friend, etc.). However, for abnormal behaviors (e.g.,
shoplifting cases, etc.), it is difficult to capture and collect their data with high
accuracy since they are rare to occur and require special permissions to acquire
related information in public places. In addition, the detection process for such
behaviors is challenging due to unclear characteristics, complex variations in
their related physical parameters, and a lack of high-quality trajectories. In this
context, we propose a method to successfully detect rarely occurring human
behaviors using an appropriate representation of human trajectories and their
associated physical parameters processed from video data. These parameters
include human 2D position (X, Y), movement velocities, orientation angles, and
other possible physical parameters (e.g., accelerations, deviations, etc.).

Therefore, we investigate the data collection process, trajectory represen-
tation based on detected skeleton poses from videos, and the use of trajec-
tory positional data only versus combined positional data with physical parame-
ters for trajectory-based learning approaches. The purpose of this research is to
maximize machine learning detection performance of rarely occurring behaviors
and to investigate the following research question: “How to achieve high-quality
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trajectories of rarely occurring behaviors from video data and maximize their
detection performance through machine learning?”. To answer this question,
this study proposes a method to detect rarely occurring behaviors in real life.
To implement the proposed method, we study the case of a rarely occurring
Japanese behavior in public places called UroKyoro. A combination of Kyoroky-
oro (to move around restlessly) and Urouro (aimless wandering). Typically,
shoplifter behavior is characterized by Kyorokyoro [7]. Security cameras should
be equipped with AI software that automatically detects such suspicious activi-
ties. The results confirmed that training with combined human trajectories and
their associated physical parameters can optimize the detection performance of
rarely occurring behaviors.

The contributions of this work are:

– We propose effective analysis of human skeleton poses to precisely formu-
late human trajectories and confirm the accurate distribution of the physical
parameters based on the overall body movements.

– We propose a simple yet effective method for detecting rarely occurring behav-
iors in public places and achieved a promising detection performance for a
case study (UroKyoro behavior) by following a trajectory learning approach
and considering the combined input of 2D (X, Y) positional data and their
associated physical parameters.

– We apply an effective data augmentation, utilizing the data size through
overlapping between samples, to enhance the overall detection performance.

The remaining sections are organized as follows: Sect. 2 discusses the back-
ground. Section 3 proposes the methodology for a successful trajectory learning
approach for rarely occurring behaviors based on human trajectories and their
associated physical parameters. Section 4 presents a case study of rarely occur-
ring “UroKyoro” Japanese behavior. Section 5 shows the results following the
proposed methodology. Section 6 discusses the findings of the study based on
the results. Finally, Sect. 7 shows our conclusions.

2 Background

2.1 Human Trajectory and Machine Learning

Recent advancements in the field of detection and recognition of trajectory-
related human behaviors have showcased the effectiveness of Long Short Term
Memories (LSTMs) [8–14], Variational Recurrent Neural Networks (VRNNs)
[15], and Gated Recurrent Units (GRUs) [16]. These neural network architec-
tures have proven highly capable of sequence-to-sequence prediction tasks. For
instance, in [4] Lee et al. employed RNNs to forecast future motion positions
based on scene context and agent interactions. Su et al. [5] introduced a method-
ology utilizing LSTMs in conjunction with recurrent Gaussian processes to char-
acterize crowd transitions and uncertainties in human trajectory prediction. Nev-
ertheless, it’s worth noting that this approach doesn’t distinguish between pedes-
trians and exclusively considers the presence of surrounding pedestrians. These
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methodologies deviate from the traditional social force model, where social forces
are calculated based on standard physical parameters [17–19]. Furthermore, they
predominantly address normal behaviors, failing to account for abnormal behav-
iors or the potential benefits of integrating physical parameters with trajectory
data. Only a limited number of research papers, such as App-LSTM [6], have
explored models that generate an agent’s trajectory towards a group of agents
while considering orientation angles. Given this landscape, our research aims to
fill the gap by developing models that not only excel at detecting rarely occur-
ring behaviors based on movement trajectories but also leverage related physical
parameters to enhance their predictive capabilities.

2.2 Social Behaviors and Machine Learning via Visual Approaches

In recent years, computer vision techniques, including those discussed in [20] by
Wu et al., and supervised machine learning models, which leverage stand-alone
Convolutional Neural Networks (CNNs) as presented in the work of Zamboni et
al. [21] or combine them with Long Short-Term Memory networks (LSTMs) as
demonstrated by Quan et al. [22] and Zhong et al. [23], have been extensively
employed for learning social behaviors from human trajectories. These meth-
ods focus on detecting human trajectories effectively, building upon computer
vision methodologies described in the works of Alahi et al. [8], Yi et al. [24],
and Su et al. [5], who incorporated CNN architectures following the principles
laid out in the computer vision literature [25,26]. For instance, Yi et al. [24] uti-
lized a CNN-based architecture to model pedestrian behavior, predicting their
walking patterns and goals. Furthermore, various approaches have addressed
the detection of abnormal behaviors in public spaces, such as fighting or kicking,
by employing image processing from videos in conjunction with CNNs, auto-
encoders, and LSTM networks for behavior detection, as described in the works
of Tay et al. [27], Ribeiro et al. [28], Ko et al. [29], Xu et al. [30], and Pen-
nisi et al. [31]. However, these approaches do not delve into the strategies used
to formulate trajectories, which is a challenging aspect due to the necessity of
minimizing detection errors and enhancing trajectory representations based on
overall body movement.

In addition to the above-mentioned methods, alternative approaches have
been explored for behavior detection. Nater et al. [32] utilized the tracker tree
method to specify actions at higher levels, while Lv et al. [33] employed the
Pyramid Match Kernel algorithm for feature matching. Du et al. [34] proposed a
recognition technique for low-moral behaviors, such as smoking or using mobile
phones in public spaces, based on depth skeleton data obtained from Kinect
sensors, achieving a maximum accuracy of 90%. Their approach focused on rec-
ognizing low-moral behaviors in public spaces by using depth data and extracted
skeletons from Microsoft Kinect v2, conducting experiments with a group of 20
individuals aged between 22 and 54. Ko et al. [29] developed a CNN framework
incorporating a Kalman filter to classify various behaviors. They fed images into
the framework and transferred the output to another LSTM structure, primarily
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aiming to enable instant detection of risky behavior in video surveillance sys-
tems, specifically for socially disadvantaged groups like the elderly, using stan-
dard RGB images. Their models were trained on the “UT-Interaction-Data”
dataset, containing video clips with multiple moving human subjects engaged
in six different activities: “hand shaking,”’ “hugging,” “kicking,” “pointing,”
“punching,” and “pushing.” The maximum reported recall and precision values
were 0.95 and 0.97 for kicking behavior, respectively. Although these approaches
studied the most common abnormal behaviors in public places, they did not
investigate the quality of the skeleton data or the influence of their distributions
on the physical parameters.

3 Methodology

Detection of rarely occurring behaviors in crowded public places is challenging
due to complex variations in their trajectory-related physical parameters, a lack
of high-quality trajectories, and unclear behavioral characteristics, e.g., loiter-
ing without clear intentions, shoplifting, etc. To achieve successful detection of
these behaviors, the possible shortest detection duration should be considered
for each sample. Hence, the tracking process should consider the results based
on the continuously detected samples. A detection threshold should be tuned
to confirm the abnormal behavior based on the detected number of samples
within a specific duration. This helps to precisely identify and differentiate the
abnormal occurrence from deviated normal behaviors on certain occasions or
suspicious individuals who interfere with or align with normal people to use the
same pattern of motion.

Human trajectory and their related physical parameters (e.g., positional
noise, velocity, etc.) play an important role in achieving successful detection
performance for rarely occurring human behaviors. Recent research studies have
failed to propose efficient processing approaches to strengthen trajectory repre-
sentation and minimize detection errors in video data. Hence, there is a need to
investigate the effect of these parameters on the learning process. To solve these
problems, we propose below steps and subsections to follow towards successful
detection of rarely occurring behaviors based on the appropriate representa-
tion of human trajectories from video data and consideration of their associated
physical parameters.

1. Collection of rarely occurring trajectory-related human behavior data from
real life However, if it’s difficult to collect related behavioral data, a role-
playing experiment should be followed based on behavioral observations from
real-life cases.

2. Strengthen trajectory representation and minimize detection errors by fol-
lowing proper processing of the collected data.

3. Deciding on an appropriate time series learning structure using 2D trajectory
positional data along with the minimum possible sample size.

4. Maximize the detection performance of the rarely occurring behavior to be
distinguished from normal behavior by considering combined input features
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for training (2D trajectory positional data along with potential physical
parameters).

5. Data augmentation by overlapping between samples to achieve the best pos-
sible performance of the trained model.

3.1 Collecting Data

Collection of rare human behavioral data should take place in real-world public
areas using genuine cases. This is determined by a number of elements, includ-
ing the likelihood of behavior occurring in public places, the ability to acquire
reasonably large data sets, and the licenses to collect data in specified locations.
If these conditions cannot be met, a potential alternate solution can include a
role-playing experiment. The collecting method necessitates a proper choice of
data collection location based on the desired behavior, an effective collection
system, and precise observations for behavioral features in real life.

In a role-playing experiment, participants should be guided to act out the
behavior based on the observed behavioral characteristics from real life while
interacting freely with other pedestrians and obstacles in the environment (e.g.,
changing movement directions, slower or faster walking) based on the scenario
or situation. In addition, to ensure that the data are as diverse as possible, the
participants should be asked to change the starting point for each trial.

Human trajectories in two dimensions (X and Y) can be acquired using
vision or non-vision tracking technologies. Non-vision-based tracking approaches
address social privacy problems. However, in public settings, the related collec-
tion system using sensors, such as Li-DARs, might be complex and expensive
to install. To overcome this problem, vision-based systems using cameras are
cost-effective, and recent related identification algorithms can disguise the faces
of each individual in the scene. The discovered data mostly consists of skeleton
poses of people in the scene, which should be processed effectively in order to
improve human trajectory representation. Figure 1 shows an example of detected
skeleton poses from a moving pedestrian using Asilla product.

3.2 Strengthen Trajectory Representation

Reasonable human trajectory formulation based on collected videos via cameras
is challenging due to detection errors, hidden poses on certain occasions (e.g.,
lower body poses because of sitting on chairs), etc. The detection performance
via videos depends on the deployed algorithm, which detects and extracts human
body poses. Hence, there is a need to strengthen the trajectory representation
by considering the best possible distribution of associated physical parameters
(e.g., positional noise, velocity, etc.) to reflect the actual overall body movement
through clearly visible poses and minimize detection errors. In this context,
there is a need to analyze formulated trajectories and their associated physical
parameters based on different types of skeleton poses to confirm the best key
point to formulate human trajectories.
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Fig. 1. Example of detected skeleton poses using Asilla product

3.3 Learning Framework

The learning framework should be a fast, light model that can successfully learn
sequence-to-sequence data. In this context, recurrent neural network architec-
tures have proven highly capable in related prediction tasks. For instance, Long
Short Term Memories (LSTMs) [8–14], Variational Recurrent Neural Networks
(VRNNs) [15], and Gated Recurrent Units (GRUs) [16] have showcased the effec-
tiveness in the field of detection and recognition of trajectories data. Then, the
learning framework should be selected from these recent approaches. In addition,
the number of layers and neurons should be minimized as much as possible while
still showing promising detection performance.

3.4 Maximizing Detection Performance

To maximize the detection performance of rarely occurring behaviors, there is
a need to learn behavioral-related features. Then, training data should include
potential trajectory-related features closely relate to their physical parameters
(e.g., velocity, orientation angle, etc.). These parameters should be fed to the
learning framework along with basic trajectory information (2D of X and Y
poses) to successfully detect complex hidden features (e.g., a person changing
walking direction inappropriately while walking in crowded areas or continu-
ously changing the moving pattern with unknown intentions). In addition, data
augmentation by overlapping between samples can be a final step to achieving
the best possible detection performance.

4 A Case Study of UroKyoro Behavior in Public Places

There is always a need to enhance public security by detecting abnormal behav-
iors at an early stage. To do so, we selected a rarely occurring Japanese behav-
ior in public places called UroKyoro. The word itself is a combination of the
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other two Japanese words, Urouro (aimless wandering) and Kyorokyoro (to move
around restlessly). The behavior involves a person moving around without a
specific target or objective while behaving suspiciously by always changing the
angle of view to different directions (i.e., looking in the right and left directions)
and exploring their surroundings (i.e., loitering). It’s considered an early stage
of other suspicious behaviors (e.g., shoplifting) [7]. The studied behavior mostly
occurs in public places (e.g., shopping malls), including normal pedestrians mov-
ing around the person who is behaving with the targeted behavior.

4.1 Data Collection

Due to the lack of UroKyoro behavior data from real-life cases, we conducted
a field experiment in a closed environment as an alternative to a public place
(e.g., a shopping mall) (as shown in Figs. 2 and 3) by hiring professional actors
to role-play the behavior alone and with normal pedestrians moving around.
Since the Asilla product is adapted for implementation on security cameras in
public places, the collected data included recorded videos via similar setting for
each scenario, with several trials lasting a total of twenty-four minutes, while
every trial lasted for around two minutes. Different camera angles (e.g., 25, 30,
and 40◦) are considered so that we can ensure diverse trials as much as possi-
ble. Two professional actors were asked to play the role of UroKyoro behavior
freely from different locations for every trial based on the behavior definition
and their imagination about it, e.g., moving around while continuously changing
the angle of view, stopping for a while rotating around the body, and loitering.
Since our target is to distinguish UroKyoro behavior from normal pedestrians
moving around, we also collected normal data for real pedestrians in a shopping
mall (Tokyo, Japan) with the same size as the other class (normal class data
is collected in two corridors with people moving in two opposite directions and
includes straight-line movement, loitering, changing movement direction, slow-
ing down, entering or exiting shops, etc.). The environment included familiar
obstacles in a shopping mall (e.g., separating stands, public chairs, etc.). Unfor-
tunately, we could not share pictures from the public environment due to policies
and privacy concerns.

4.2 Trajectory Representation

We used the Asilla product to detect and extract the skeleton poses for humans
in the collected videos. It include the following 10 poses: nose, neck, average
ankles (right and left), average shoulders, average elbows, average wrists, aver-
age hips, average knees, average eyes, and average ears. To achieve a reasonable
formulation of human trajectory using the detected poses from the videos, we
analyzed trajectories in the collected data using each pose value (X, Y) sepa-
rately, then compared the distribution of absolute positional noises (in terms
of pixels) and absolute velocities (in terms of pixels/second) versus the overall
average values for the whole body movement. The concept that we followed to
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Fig. 2. Field experiment from different scenes (a, b, c, and d) in a closed environment
where an actor is role-playing the UroKyoro behavior alone

Fig. 3. Field experiment from different scenes (a, b, c, and d) in a closed environment
where an actor (labelled in red) is role-playing the UroKyoro behavior with normal
pedestrians moving around (Color figure online)
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estimate trajectory noise (as shown in Fig. 4) is to calculate the relative dis-
tance between the middle points in the actual trajectory and the fake trajectory
(straight line between the first and last point) every specific duration (e.g., 5 s).

Fig. 4. Noise estimation process

Tables 1 and 2 show the average values for positional noise and velocities. The
average noise ranges from neck poses show the closest value (29.86 pixels) to the
overall average noise from all poses (31.26 pixels), while the absolute average
velocities from hip poses (27.06 pixels/s) seem to show the closest value to the
overall average velocity from all poses (27 pixels/s). However, the quality of the
detected neck poses is better than that of hip poses due to the fact that humans
upper body sections are almost visible and clear in most cases. In addition, the
average absolute velocity ranges vary within a too small range [26.42 to 27.78
pixels per second], which makes it difficult to consider specific poses to represent
the best velocity distribution. Based on that, we decided to use neck poses to
formulate the human trajectory from our data. Figures 5 and 6 show a couple
of 2D trajectory plots using neck poses for UroKyoro and normal behaviors (5 s
per sample).

5 Results

We include in this section the training results following the LSTM training struc-
ture (explained in the next subsection). Based on our behavioral observations
on UroKyoro and several training trials using different sample sizes, we found
that 5 s is the minimum possible duration to include most of the related charac-
teristics, and it showed acceptable results. Based on that, a series of five-second
windows (26 frames per window) of the UroKyoro trajectory and the normal
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Table 1. Average Positional Noise for All Poses, Ordered from Maximum to Minimum

Pose Name Average Positional Noise (in pixels)

Eyes 37.07

Nose 36.68

Ears 35.99

Neck 29.86

Shoulders 29.52

Wrists 29.44

Elbows 29.29

Hips 28.57

Ankles 28.34

Knees 27.82

Average for All 31.26

Table 2. Average Velocity for All Poses Ordered from Maximum to Minimum

Pose Name Average Velocity (in pixels/second)

Eyes 27.78

Nose 27.64

Ears 27.55

Hips 27.06

Knees 26.93

Wrists 26.77

Elbows 26.77

Ankles 26.67

Neck 26.44

Shoulders 26.42

Average for All 27

Fig. 5. a couple of 2D (X, Y in pixels) trajectory plots using neck poses for UroKyoro
behavior (5 s per sample)
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Fig. 6. a couple of 2D (X, Y in pixels) trajectory plots using neck poses for normal
behavior (5 s per sample)

trajectory are fed to the network. For the UroKyoro class, we split the processed
data from the videos with the single UroKyoro person into 90% for training and
10% for validation, while for evaluation (testing), we used the processed data
from the videos, which include normal pedestrians moving around our targeted
behavior. On the other hand, all normal class data is collected from a shopping
mall and split for training, validation, and evaluation with the same size as the
other UroKyoro class. In addition, to avoid over-fitting, a dropout of 0.1 is used
after each LSTM layer. We also monitored the validation loss every 50 epochs
to stop the training when there was no enhancement in performance.

5.1 Training Details

LSTMs demonstrated promising performance in various applications when
trained with time series data [5,6,8]. Based on that, we followed a LSTM-
supervised training structure as shown in Fig. 7. The training is performed using
Python and PyTorch, where a series of 2D windowed trajectories (X, Y) are
fed to the network with scaled samples of five seconds (26 frames per window)
as a single window, where each window consists of the UroKyoro or normal
pedestrian trajectory. The size of the data used for training is balanced (50%
normal, 50% UroKyoro). The applied learning rate is 0.0001, while the optimizer
is RMS. Two fully connected LSTM layers are used (512 units), while the classi-
fier layer activation function is “RelU” (256 units) to finally distinguish between
UroKyoro and normal behaviors (2 classes).

5.2 Baseline

The baseline is trained using only 2D (X, Y) positional data (406 windows)
by following the presented LSTM network structure to be compared with the
combined (i.e., considering additional training inputs, “physical parameters”)
and augmented (i.e., increasing data size) models, which are explained in the
following subsections. The resultant testing accuracy is 87% (testing data in 300
windows).
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Fig. 7. The LSTM network structure distinguishes UroKyoro from normal behavior

5.3 Combined Features

To successfully detect complex behavioral characteristics, we considered training
using combined input features by feeding absolute velocities (in pixels/second)
and orientation angles (in degrees) along with 2D (X, Y) trajectory positional
data to the training structure. Velocities and orientation angles are calculated
based on the absolute position between every frame and the following one, so
that finally every frame has its own 2D (X, Y) absolute position along with
the absolute velocity and orientation angle. The results showed that orientation
angle is a powerful factor to enhance the detection of the UroKyoro class. Also,
combining all features together showed better evaluation performance, up to
90.33%. Table 3 shows the overall results achieved.

Table 3. Training Results Using Combined Features

Input Training Validation Testing

X, Y 100% 97.50% 87%

X, Y, Velocity 100% 95% 88.66%

X, Y, Theta 98.09% 95% 89.66%

X, Y, Velocity, Theta 98.91% 92.50% 90.33%

5.4 Data Augmentation

We augmented the data by following five rounds of overlapping between the
five-second samples with a step of 1 s for every round to check the effectiveness
of increasing the data size on the detection performance. The total size of the
augmented data is 2380 windows. In this case, the improvement in the evaluation
(testing) performance is shown when considering training inputs as (X, Y, Theta)
up to 91.33%. Table 4 shows the corresponding results.
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Table 4. Training Results Using Augmented Data

Data Size Training Validation Testing

406 98.09% 95% 89.66%

2380 99.35% 96.22% 91.33%

The lowest number of failure cases to detect UroKyoro behavior (7 samples)
is shown from the model, which is trained using 2D positional data along with
orientation angles (X, Y, and Theta). The confusion matrix for evaluated (tested)
samples is shown in Fig. 8. It is obvious from the matrix results that the model
detects UroKyoro behavior with good performance. The majority of failure cases
are caused by normal pedestrians’ confusing trajectories, which are similar to
UroKyoro trajectory shapes on certain occasions, while a minority of failure
cases are caused by UroKyoro trajectories, which are similar to those of normal
pedestrians. Figure 9 shows a couple of trials of the failure cases.

Fig. 8. Confusion matrix for evaluated data
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Fig. 9. Samples from failure cases

6 Discussions

Based on research findings and our UroKyoro case study, we confirmed that
the proposed approach resulted in promising detection performance for rarely
occurring behaviors by developing a trajectory learning model using combined
training features:

– The proposed analysis of human skeleton poses resulted in precise trajectory
formulation and confirmed the accurate distribution of the physical parame-
ters based on the overall body movements. This resulted in a realistic repre-
sentation of human trajectories from the collected video data.

– Velocity and orientation angle have a promising effect on enhancing the
detection of rarely occurring behaviors. However, combining all parameters
together for training could not be an effective approach to enhancing detec-
tion performance. This is due to the fact that related characteristics for every
behavior differ from other ones. For instance, orientation angle seems to be
the most powerful parameter to enhance the detection of UroKyoro behavior.

This is the first research study to focus on analyzing human skeleton poses to
formulate precise trajectories with accurate distribution of the physical param-
eters and investigating the effect of trajectory-related physical parameters (e.g.,
velocities and orientation angles, etc.) on the detection performance of rarely
occurring behaviors by following different combinations of training inputs along
with 2D (X, Y) positional data. In this context, the research methodology and
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findings should generalize to other complex, rarely occurring behaviors if their
characteristics are closely related to human movement. In addition, since the
data are collected from different angles of view, the approach should generalize
in the case of implementing security robots fitted with cameras in public places.

The limitations of the proposed method include:

– The detection accuracy of trajectory-learned models can be affected by the
quality of the detected poses from videos.

– Behavioral trajectories may lack diversity in the data due to the collection
of data in specific environments. Data collection from several environments
may be needed based on the focused behavior.

Although the accuracy reported in [34] or [29] to detect abnormal actions is
rather high (around and over 90%), most of the investigated behavioral charac-
teristics do not relate to trajectory shape and are closely related to the whole
skeleton (e.g., kicking, smoking, talking on the phone, etc.). Up to our knowledge,
this is the first focused research on trajectory-related, rarely occurring behav-
iors. The accuracy reported from our case study is promising and reaches 91.33%.
It shows the effect of trajectory-related physical parameters (velocity and ori-
entation angle) on the detection performance of the studied case of UroKyoro
behavior. Future work includes studying the effect of other physical parameters
(e.g., acceleration, deceleration, etc.) on the detection performance and validat-
ing the research findings based on real-life case studies. Also, the Asilla team will
consider collecting datasets using different scenarios of rarely occurring behav-
ior, collecting data under similar conditions with different environmental shapes
and sizes, training the network using these different datasets, and comparing the
results.

7 Conclusions

We propose a new approach towards successful detection of rarely occurring
behaviors in public places by strengthening human trajectory formulation from
videos and developing trajectory learning models by following combined train-
ing inputs of 2D positional data and their associated physical parameters (e.g.,
velocity and orientation angle). To evaluate the proposed method, we studied a
rare Japanese behavior in public places called UroKyoro. The behavior involves
moving around while repeatedly looking in the right and left directions without
clear intention or purpose. Since there is a lack of related data from real-life
cases, we hired actors to role-play the behavior. The best detection performance
of the studied behavior showed an accuracy of 91.33%. Also, we compared the
detection performance by training using different inputs of physical parameters
along with 2D (X, Y) positional data and confirmed that the performance may
differ based on the focused behavioral characteristics.

Data Availability Statement. The datasets generated during and/or analyzed dur-
ing the current study are available from the corresponding author on reasonable request.
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Abstract. One way to improve the relationship between humans and
anthropomorphic agents is to have humans empathize with the agents. In
this study, we focused on a task between an agent and a human in which
the agent makes a mistake. To investigate significant factors for designing
a robotic agent that can promote humans’ empathy, we experimentally
examined the hypothesis that agent reaction and human’s preference
affect human empathy and acceptance of the agent’s mistakes. In this
experiment, participants allowed the agent to manage their schedules by
answering the questions they were asked. The experiment consisted of
a four-condition, three-factor mixed design with agent reaction, selected
agent’s body color for human’s preference, and pre- and post-task as
factors. The results showed that agent reaction and human’s preference
did not affect empathy toward the agent but did allow the agent to make
mistakes. It was also shown that empathy for the agent decreased when
the agent made a mistake on the task. The results of this study provide
a way to influence impressions of the robotic virtual agent’s behaviors,
which are increasingly used in society.

Keywords: human-agent interaction · empathy agent · human’s
preference

1 Introduction

Humans use a variety of tools in their daily lives. They become attached to these
tools and sometimes treat them like humans. The Media Equation claims that
humans treat artifacts like humans [19]. It has been shown that humans have
the same feelings toward artifacts as they do toward other humans. In fact, there
are examples of people empathizing with artifacts in the same way that humans
empathize with humans. Typical examples include cleaning robots [13], pet-type
robots [13], characters in competitive video games [25], and anthropomorphic
agents [6] that provide services such as online shopping and help desks. These
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
A. Al. Ali et al. (Eds.): ICSR 2023, LNAI 14453, pp. 294–307, 2024.
https://doi.org/10.1007/978-981-99-8715-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8715-3_25&domain=pdf
http://orcid.org/0000-0002-3145-3120
http://orcid.org/0000-0002-5907-7382
https://doi.org/10.1007/978-981-99-8715-3_25


RVA Errors are Accepted by Reaction and Human’s Preference 295

robots, AI, and anthropomorphic agents are generally defined as agents. On the
other hand, There are certain types of humans who cannot accept agents [10,11].
For example, Nomura et al. [9] conducted a field study to address the issue of
children’s violence against robots, interviewing visiting children with severely
abusive behaviors, including physical contact, to determine the reasons for the
abuse. As a result, the majority of the reasons for the abuse were either because
they were interested in the robot’s reactions or because they enjoyed the abuse
and considered the robot to be a human-like being. About half of the children
also believed that the robot could perceive their abusive behavior. Currently,
such agents are already being used in human society and coexist with humans.

Agents used in society often perform tasks with humans. At times, an agent
may get the task wrong. When an agent makes a mistake on a task, many humans
lower their expectations and trust in the agent. However, we often develop agents
so that they do not make mistakes, but rarely do we take an approach that
preserves the human’s impression of the agent when it actually makes a mistake.
One way to do so is to have the human empathize with the agent. When agents
are used as tools, they may not need empathy, but when they are used in place of
humans, being empathized with by humans can help build a smooth relationship.

Humans and anthropomorphic agents already interact in a variety of tasks.
For a human to develop a good relationship with an agent, empathy toward the
agent is necessary. Empathy makes it easier for humans to take positive action
toward an agent and to accept it [23–25].

Although various factors have been studied that cause empathy, includ-
ing verbal and nonverbal information, situations, and relationships, this study
focuses on situations in which the robotic virtual agent (RVA) gets the task
wrong and experimentally examines how the agent’s reaction and the agent’s
human’s preference affect empathy. The empathy investigated in this study is
human empathy toward the agent, and we investigated changes in impressions
of the agent used in the experiment.

2 Related Work

In the field of psychology, empathy has been the focus of much attention and
research. Omdahl [14] classified empathy into three main categories: (1) affective
empathy, which is an emotional response to another person’s emotional state,
(2) cognitive empathy, which is a cognitive understanding of another person’s
emotional state, and (3) empathy that includes both of the above. Preston and
De Waal [18] proposed that at the heart of empathic responses is a mechanism
that allows the observer access to the subjective emotional state of the subject.
The Perception-Action Model (PAM) was defined by them to unify the differ-
ences in empathy. They defined empathy as a total of three types: (a) sharing or
being affected by the emotional states of others, (b) evaluating the reasons for
emotional states, and (c) the ability to identify and incorporate the perspectives
of others.

Various questionnaires are used as measures of empathy, but we used the
Interpersonal Reactivity Index (IRI). IRI, also used in the field of psychology,
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is used to investigate the characteristics of empathy [4]. There is another ques-
tionnaire, the Empathy Quotient (EQ) [2], but we did not use it in our study
because we wanted to investigate which categories of empathy were affected after
experiencing the task.

In the fields of human-agent interaction (HAI) and human-robot interaction
(HRI), empathy between humans and agents or robots is studied. The following
studies have been conducted in various areas of HRI. Salem et al. [21] exam-
ined the effects of robot hand and arm gestures on attribution of typical human
characteristics, robot liking, shared sense of reality, and future contact inten-
tions after interaction with the robot. As a result, when the robot used ges-
tures, the robot was more anthropomorphic, participants perceived the robot as
more likable, reported that the robot shared more of their reality, and increased
their future contact intentions than when the robot did not use gestures. This
effect was particularly pronounced when the robot’s gestures were partially mis-
matched with speech. Leite et al. [7] conducted a long-term study in elementary
schools to present and evaluate an empathy model for a social robot that inter-
acts with children over a long period of time. The empathy model developed had
a positive impact on the long-term interaction between the child and the robot.
Ratings of social presence, engagement, support, and self-awareness remained
similar after 5 weeks.

Rossi et al. [20] hypothesized that the severity and timing of the consequences
of the robot’s various types of misbehavior during interaction may have different
effects on users’ attitudes toward household robots. They concluded that there
is a correlation between the magnitude of errors made by the robot and the
corresponding loss of trust in the robot by humans. They measured children’s
perceptions of social presence, engagement, and social support. Mathur et al. [8]
present a first approach to modeling user empathy elicited during interaction
with a robot agent. They collected a new dataset from a novel interaction context
in which participants listen to a robotic storyteller. Johanson et al. [6] examined
whether the use of verbal empathic statements and head nodding by a robot
during video-recorded interactions between a healthcare robot and a patient
could improve participants’ trust and satisfaction. The results showed that the
health care robot’s empathetic statements significantly increased participants’
perceptions of the robot’s empathy, trust, and satisfaction, and reduced their
distrust of the robot.

In addition, the following studies have been conducted in the field of HAI.
Okanda et al. [13] focused on appearance and investigated Japanese adults’
beliefs about friendship and morality toward robots. They examined whether
the appearances of robots (i.e., humanoid, dog-like, oval-shaped) differed in rela-
tion to their animistic tendencies and empathy. Samrose et al. [22] designed a
protocol to elicit user boredom to investigate whether empathic conversational
agents can help reduce boredom. With the help of two conversational agents,
an empathic agent and a non-empathic agent, in a Wizard-of-Oz setting, they
attempted to reduce the user’s boredom. Al Farisi et al. [1] believe that in order
for chatbots to have human-like cues, it is necessary to apply the concepts of
human-computer interaction (HCI) to chatbots and compare the empathy of
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two chatbots, one with anthropomorphic design cues (ADC), and one without.
Tsumura and Yamada [23] focused on tasks between agents and humans, experi-
mentally examining the hypothesis that task difficulty and task content promote
human empathy. We also considered the design of empathy factors from previous
studies of anthropomorphic agents using empathy. Tsumura and Yamada [24]
focused on self-disclosure from agents to humans in order to enhance human
empathy toward anthropomorphic agents, and they experimentally investigated
the potential for self-disclosure by agents to promote human empathy. Tsumura
and Yamada [25] also focused on tasks in which humans and agents engage in a
variety of interactions, and they investigated the properties of agents that have
a significant impact on human empathy toward them.

Paiva defined the relationship between human beings and empathic agents,
referred to as empathy agents, as designed in previous HAI and HRI research.
As a definition of empathy between an anthropomorphic agent or robot and a
human, Paiva represented empathy agents in two different ways and illustrated
them [15–17]: A) targets to be empathized with by humans and B) observers
who empathize with humans. In this study, we use the empathic target agent to
promote human empathy.

3 Experimental Methods

3.1 Experimental Goals and Design

The purpose of this study is to investigate whether human empathy toward an
agent is affected by the agent’s reaction and human’s preference during interac-
tion with an robotic virtual agent (RVA). It will then investigate whether agents
can be forgiven when they make mistakes. We believe that this research will
facilitate the use of agents in human society by influencing human empathy. In
addition, knowing the factors that allow agents to make mistakes will be use-
ful for future use of agents in society. For these purposes, we formulated two
hypotheses.

H1: Agent’s reaction and human’s preference affect human empathy toward
agents.

H2: Agent’s reaction and human’s preference affect human acceptance of agent
mistakes.

We arrived at this hypothesis because previous studies have shown that agent
reactions (facial expressions and gestures) affect human empathy [17,25]. The
intent of the human preferences is also to examine whether the addition of per-
sonal preferences for agents by humans affects their empathy for agents and their
acceptance of agents’ task errors.

Similarly, this study focuses on whether agents’ mistakes are acceptable. This
study investigates an agent’s relationship with a human in situations where the
agent is wrong. If the agent’s reaction and human’s preference affect how a human
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accepts the agent’s mistakes, then there is no need to incorporate empathy toward
the agent in order to maintain the human’s impression of the agent.

To test these hypotheses, an experiment was conducted with a three-factor
mixed design with three factors: agent reaction, human’s preference, and pre-
and post-task. The levels between participants were 2 (available, not available)
for agent reaction and 2 (available, not available) for human’s preference. The
within-participants level was 2 pre- and post-task. Participants participated in
only one of the four different content conditions. The dependent variable was
the questionnaire that participants responded to (empathy, acceptance for error,
other).

3.2 Experimental Details

The experiment was conducted in an online environment. The environment used
is already a common method of experimentation [3,5,12]. As mentioned earlier,
the goal of this study is to promote human empathy toward RVA. A scheduling
agent was also used in this study to measure the acceptance of the agent’s
mistakes. For this reason, we believed that the same effect as being face to face
could be achieved even in an online environment.

Before performing the task, a questionnaire was administered to measure
empathy toward RVA. At the same time, another questionnaire was adminis-
tered to determine whether participants could accept the agent’s mistakes. At
this time, participants were not allowed to see the agent’s reactions or to select
the color of the agent. However, because it was necessary to display appearance
for conducting a survey of the agents, agents of each color used in the experimen-
tal conditions were displayed side by side. This questionnaire was administered
before the task in order to see the effect of participants’ empathy toward the
agent and the change in the acceptance of the agent’s mistakes.

Participants selected an agent by color from among multiple differently col-
ored agents before beginning the scheduling task. In the no human’s preference
condition, participants were told that the agent displayed would manage a sched-
ule. The schedule consisted of 10 items: the participant’s weekly schedule, waking
time, sleeping time, and number of outings per week. Fig. 1 is a flowchart of the
schedule entry order and up to the confirmation screen. During the scheduling
task, the agent exhibited several reactions to the input information. The schedul-
ing agent was designed to remember the participant’s schedule but to make sure
that the agent made a mistake when participant checked the schedule for the
last time. There were three areas where mistakes were made: (1) the waking and
sleeping times were reversed, the (2) Monday and Wednesday schedules were
reversed, and (3) the schedules for Thursday and Saturday were reversed. Wak-
ing and sleeping times and the number of outings per week were selected from
a list of options, and schedules from Monday to Sunday were answered in the
form of free-text responses.

This was done to investigate how an agent’s mistakes affect human empathy
and acceptance. To screen out unfair participants, participants reported whether
the schedule was correct or incorrect at the last confirmation of the schedule.
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Fig. 1. Flowchart of the schedule

Only those participants who reported that the schedule was wrong were sub-
sequently administered the same questionnaire about RVA as before the task.
Two additional questions were also asked. Finally, they were asked to write their
impressions of the experiment in free text.

3.3 Agent’s Reactions

In this study, two levels of agent reactions were prepared. In the one with the
agent’s reaction, RVA responded with gestures and comments when the partic-
ipant’s schedule was sent. For the one without the agent’s reaction, it did not
respond to the participant’s schedule and stayed upright. The three types of
reactions actually seen by the participants are shown in Fig. 2. The three types
were displayed three times equally and in the order in which they were displayed
to the participants. Because the reactions were based on the content of the par-
ticipant’s schedule, RVA did not react to anything when the schedule was first
entered.

There is a study by Tsumura and Yamada [25] as an example of how agent
representations affected human empathy toward agents, but unlike reactions,
which are very brief representations, they did not focus on detailed representa-
tions for a single action, as in this experiment.

3.4 Human’s Preference

There were two levels for a human’s preference factor. In this study, participants
were asked to choose the color of the agent’s appearance to investigate people’s
preferences. If a human’s preference was had, the participants were required to
choose one of three types of RVA: red, blue, or green. There was no difference in
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Fig. 2. Types of agent reactions

Fig. 3. Types of agent’s color

the agent’s personality or behavior based on human’s preference. If no human’s
preference was had, the gray agent would manage the schedule. The color of
each agent is shown in Fig. 3.

In this study, we did not consider bias in human’s preference. The human’s
preference factor was chosen as a factor that allowed participants to interact with
RVA. The purpose was to investigate whether the participants’ impressions of
RVA changed depending on the selection. Therefore, differences in participants’
feelings towards particular colors and gender bias were ignored in this study.

3.5 Questionnaire

Participants completed a questionnaire before and after the task. In this study,
human empathy for the agent was evaluated based on changes in human empathy
characteristics. The questionnaire was a 12-item questionnaire modified from the
Interpersonal Reactivity Index (IRI), which is used to investigate the character-
istics of empathy, to suit the present experiment [4]. The modified questionnaire
has already been used in several previous studies by Tsumura and Yamada [23–
25]. The two questionnaires before and after were the same. Both were based
on the IRI and were surveyed on a 5-point Likert scale (1: not applicable, 5:
applicable). The questionnaire used is shown in Table 1. Q4, Q9, and Q10 are
inverted items, so the scores were reversed when analyzing them.
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Table 1. Summary of questionnaire used in this experiment

Affective empathy

Personal distress

Q1: If an emergency happens to the character, you would be anxious and restless

Q2: If the character is emotionally disturbed, you would not know what to do

Q3: If you see the character in need of immediate help, you would be confused and would not know what to do

Empathic concern

Q4: If you see the character in trouble, you would not feel sorry for that character

Q5: If you see the character being taken advantage of by others, you would feel like you want to protect that
character

Q6: The character’s story and the events that have taken place move you strongly.

Cognitive empathy

Perspective taking

Q7: You look at both the character’s position and the human position

Q8: If you were trying to get to know the character better, you would imagine how that character sees things

Q9: When you think you’re right, you don’t listen to what the character has to say

Fantasy scale

Q10: You are objective without being drawn into the character’s story or the events taken place

Q11: You imagine how you would feel if the events that happened to the character happened to you

Q12: You get deep into the feelings of the character.

Other questions than empathy

QA: If the scheduling agent makes a mistake, can you forgive the mistake?

QB: Did the scheduling agent express emotions?

QC: Would you like to use a scheduling agent in the future?

Three questions other than those related to empathy were prepared: QA,
QB, and QC. QA was surveyed before and after the task, while QB and QC
were surveyed only after the task. QA was investigated before and after the
task to compare the difference between the participants’ assumed acceptance of
agent error and the actual agent error after it occurred. QB was prepared to
investigate whether the agent’s very brief reactions appeared emotional. QC was
an item to investigate the impact of differences in factors on the participants’
evaluations of the agent’s future use. These three questions were also surveyed
on a 5-point Likert scale (1: not applicable, 5: applicable). The questionnaire is
shown in Table 1.

3.6 Experimental Environment and Participants

Participants were recruited for the experiment using a Yahoo! crowdsourcing
company. They were paid 55 yen after completing all tasks as a reward for
participating. A website was created for the experiment, which was limited to
using a PC.

There were a total of 197 participants. The average age was 48.82 years
(standard deviation: 11.08), with a minimum of 19 years and a maximum of
77 years. The gender breakdown was 144 males and 53 females. The number of
participants in each condition is shown in Table 2. We then applied Cronbach’s
α coefficient to determine the reliability of the questionnaire responses, which
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was found to be between 0.4040 and 0.8190 in all conditions. Some participant
groups had lower Cronbach’s α values, but we also found several conditions with
values between 0.7 and 0.8. Therefore, we used the questionnaire without any
modifications.

Table 2. Number of participants in each condition

Reaction

Yes No

Yes 50 50

human’s preference No 49 48

Table 3. Results of participants’ statistical information

Category Conditions Mean S.D. Category Conditions Mean S.D.

reaction-preference 36.94 5.705 reaction-preference 2.660 0.8947

reaction-no preference 38.78 5.363 reaction-no preference 2.837 0.7457

Empathy pre no reaction-preference 36.90 6.370 Agent’s pre no reaction-preference 2.880 0.8722

no reaction-no preference 38.67 6.096 acceptance no reaction-no preference 2.563 0.9655

reaction-preference 33.98 7.347 reaction-preference 2.560 0.9510

(Q1–Q12) reaction-no preference 34.94 6.710 (QA) reaction-no preference 2.755 0.7781

post no reaction-preference 34.72 6.716 post no reaction-preference 2.600 1.107

no reaction-no preference 35.71 6.694 no reaction-no preference 2.271 0.9618

reaction-preference 2.840 0.9116 reaction-preference 2.140 0.9260

Expressed reaction-no preference 2.674 1.068 Continued reaction-no preference 2.286 0.9129

emotions post no reaction-preference 2.000 0.8571 use post no reaction-preference 2.080 0.9223

(QB) no reaction-no preference 1.896 0.7217 (QC) no reaction-no preference 1.979 0.8627

3.7 Analysis Method

The analysis was a three-factor analysis of variance (ANOVA). The between-
participant factors were the two levels of agent’s reaction and two levels of
agent’s human’s preference. The within-participants factor consisted of two lev-
els of empathy values before and after the task. On the basis of the results of
the participants’ questionnaires, we investigated how the agent’s reaction and
human’s preference influenced the promotion of empathy as factors that elicit
human empathy. The numerical values of empathy aggregated before and after
the task were used as the dependent variable. Three of our own questions were
also used as dependent variables. R (R ver. 4.1.0) was used for the ANOVA.

4 Results

All 12 questionnaire items were analyzed together. Table 3 shows the statistical
results for each. Table 4 shows the results of each ANOVA.
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To begin, as can be seen from Table 4, when the participants’ empathy for the
agent was examined, there were no significant differences other than the main
pre- and post-task effects. Comparing the pre- and post-task empathy values
in Table 3 for the ability to empathize with the agent, empathy decreased after
the task (all pre-task: mean = 37.81, S.D. = 5.921; all post-task: mean = 34.83,
S.D. = 6.850).

The results for agent acceptance showed an interaction between the agent’s
reaction factor and human’s preference factor. Therefore, we analyzed the simple
main effect in Table 5 and found that the agent’s reaction more likely lead to
acceptance to the agent’s error when the participant did not make a human’s
preference. We also found that, although a significant trend, the human’s

Table 4. Analysis results of ANOVA

Factor F p η2
p

Reaction 0.1567 0.6926 ns 0.0008

human’s preference 2.606 0.1081 ns 0.0133

Empathy Before/after task 94.11 0.0000 *** 0.3278

(Q1-12) Reaction × human’s preference 0.0001 0.9909 ns 0.0000

Reaction × Before/after task 1.817 0.1793 ns 0.0093

human’s preference × Before/after task 1.810 0.1801 ns 0.0093

Reaction × human’s preference × Before/after task 0.0064 0.9363 ns 0.0000

Reaction 1.132 0.2887 ns 0.0058

human’s preference 0.3440 0.5582 ns 0.0018

Agent’s Before/after task 10.68 0.0013 ** 0.0525

acceptance Reaction × human’s preference 4.725 0.0309 * 0.0239

(QA) Reaction × Before/after task 2.864 0.0922 ns 0.0146

human’s preference × Before/after task 0.0008 0.9768 ns 0.0000

Reaction × human’s preference × Before/after task 0.0170 0.8964 ns 0.0001

Expressed Reaction 39.86 0.0000 *** 0.1712

emotions human’s preference 1.116 0.2921 ns 0.0057

(QB) Reaction × human’s preference 0.0592 0.8080 ns 0.0003

Continued Reaction 2.012 0.1577 ns 0.0103

use human’s preference 0.0302 0.8623 ns 0.0002

(QC) Reaction × human’s preference 0.9100 0.3413 ns 0.0047

p: *p<0.05 **p<0.01 ***p<0.001

Table 5. Analysis results of simple main effect

Factor F p η2
p

Reaction with preference 0.5613 0.4555 ns 0.0057

Agent’s Reaction with no preference 5.851 0.0175 * 0.0580

acceptance human’s preference with reaction 1.577 0.2122 ns 0.0160

(QA) human’s preference with no reaction 3.160 0.0786 + 0.0319

p: +p<0.1 *p<0.05 **p<0.01
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Fig. 4. Result of each main effect or simple main effect

preference made its mistake more acceptable when there was no agent reaction.
These results are shown in Fig. 4(a) and (b).

The results for the agent’s emotional expression showed a main effect for
the agent’s reaction factor. However, no main effect was found for the agent’s
human’s preference factor. This indicated that the agent’s reactions appeared to
be emotionally charged. These results are shown in Fig. 4(c). Finally, there were
no significant differences in the continued use of the agents in all conditions.

5 Discussion

5.1 Supporting Hypotheses

This experiment was designed to investigate the conditions necessary for humans
to empathize with anthropomorphic agents. In particular, by investigating when
an agent makes a mistake on a task, the goal was to identify factors that influence
empathy between an agent who makes a mistake on a task and a human. To this
end, two hypotheses were formulated, and the data obtained from the experiment
were analyzed.

The results supported one hypothesis, but not the other. In H1, we thought
that the agent’s reaction and human’s preference would affect the participants’
empathy toward the agent, but this one was not supported. In the present exper-
iment, there was a decrease in empathy after the task in all conditions. This
was also the case in Tsumura and Yamada [23]. The reason for the decrease in
empathy may be that the all agents made mistakes, as there was no significant
difference in each factor. Therefore, as a future study, we will compare the results
with those obtained when the agents did not make mistakes.

In H2, we thought that the agent’s reaction and human’s preference would
affect the acceptance toward the mistakes the agent made, which was supported
here. In each case, when the agent’s reaction was absent, the agent’s mistake
was accepted when human’s preference was present, and when it was absent, the
agent’s mistake was accepted when the agent’s reaction was present. On the other
hand, when both agent reaction and human’s preference were present, there was
no effect. A possible reason for the lack of acceptance of agent error when both
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conditions were included is discouragement toward the agent. Therefore, as a
future study, we will compare the results with those obtained when the agent
does not make mistakes.

In addition, we surveyed participants through questionnaire whether the
agent’s responses appeared to be emotional expressions. This was a survey con-
ducted as a manipulation check of the agents’ reactions. As a result, the agent’s
very short reactions seemed emotional to the participants. However, regardless
of the agent’s reaction, empathy toward the agent was reduced, indicating that
even when the agent acts emotionally, it is unlikely to affect empathy in situa-
tions where the agent makes a mistake on the task.

5.2 Limitations

One limitation of this experiment is that by eliminating factors other than the
agent’s reaction and the human’s preference, the task itself was perceived as
tedious, and the simplicity of the task may have reduced empathy. By not allow-
ing RVA to engage in conversation or introduce themselves beyond the scheduling
task, participants may have decreased their impression of RVA. Also, RVA were
silent in this experiment, which was also done to eliminate the effect of voice on
empathy and thus simplified the agents’ reactions.

Although there was no need for an in-person experiment in this experiment,
an in-person experiment using actual equipment could have made a difference
in the impact on participants’ impressions. A scheduling task was used in this
study to investigate whether humans empathize with RVA and accept their mis-
takes even when they make mistakes on a task. However, even when agents’
mistakes are acceptable, it is necessary to investigate the extent to which they
are acceptable.

6 Conclusions

In this study, we investigated agent reaction and human’s preference, focusing
on human-agent task error as a factor that causes humans to empathize with
RVA. RVA was designed to be in charge of managing the human’s schedule
and to make some mistakes in the input information. Two hypotheses were
formulated and tested. The results showed that empathy toward RVA decreased
when RVA made a mistake on the task. In addition, agent reaction and human’s
preference were shown to be effective in helping humans accept agent mistakes.
However, it was shown that the use of either factor was not effective. Future
research should investigate empathy and acceptance toward agents when they
do not make mistakes on a task since it was confirmed that empathy toward
RVA decreases when they make mistakes on a task.
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Abstract. Spoken language is the most natural way for a human to
communicate with a robot. It may seem intuitive that a robot should
communicate with users in their native language. However, it is not
clear if a user’s perception of a robot is affected by the language of
interaction. We investigated this question by conducting a study with
twenty-three native Czech participants who were also fluent in English.
The participants were tasked with instructing the Pepper robot on where
to place objects on a shelf. The robot was controlled remotely using the
Wizard-of-Oz technique. We collected data through questionnaires, video
recordings, and a post-experiment feedback session. The results of our
experiment show that people perceive an English-speaking robot as more
intelligent than a Czech-speaking robot (z = 18.00, p-value = 0.02). This
finding highlights the influence of language on human-robot interaction.
Furthermore, we discuss the feedback obtained from the participants via
the post-experiment sessions and its implications for HRI design.

Keywords: Human-Robot Communication · Social Robots ·
perception of the robot · User-centered HRI design

1 Introduction

Social robots that interact with ordinary people are becoming increasingly com-
monplace. It is important that this interaction be facilitated naturally, similar to
human-human communication [29]. Spoken language is one such natural medium
of communication [15]. Speech-based interfaces allow a social robot to be used
effectively and flexibly in many situations [3], such as tutoring children [15].
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Towards this goal, we need to study how language and speech affect people’s
perception of a robot. This applies to all voice-based human-robot interfaces,
whether they are on land, sea, air or in cyberspace. Some aspects of speech have
already been investigated: for example, vocal prosody [7], the melody of speech
[8], or formal/informal speech [26]. However, the effect of language itself (native
language as opposed to a non-native language like English) has not yet been
studied. We hypothesize that there is a difference in the perception of the robot
when the interaction is in the native language or a familiar foreign language. We
conducted an empirical study to study this effect. This article is an expanded
version of a brief study that is published elsewhere [22]. In this article, we provide
more details of the related research, experimental set up, and a more through
data analysis and discussion.

2 State of the Art

2.1 Human Perception of a Robot

A user’s perception of a robot depends on several factors, e.g. appearance [25],
behavior [28], and their correlation [1]. However, these factors may vary with
respect to the application area [21].

A user’s perception of robots is influenced by the context of interaction: e.g.,
the perception differs when the robot is a teacher [18] as opposed to when the
user is teaching the robot [30]. Moreover, people with a prior knowledge about
robots tend to perceive them differently than those without [11]. Finally, cultural
and social context also plays a role in the perception of robots: e.g., people in
Japan have more positive attitudes towards robots than in Europe [24].

2.2 Speech, Language, and Ethnicity in HRI

Rapid advances in computer-based speech understanding (e.g., Apple’s SIRI)
suggest that it will become easier to command a robot using speech [21]. Marge
et al. [15] propose directions for further development and improvement of spo-
ken language interaction between humans and robots. Their recommendations
cover topics such as multimodal communication, dialogue management, and user-
centred design, aiming to create intuitive and effective communication systems.
T. Takahashi et al. [27] argue that incorporating emotional expressions into a
robot’s speech makes it more human-like and easier to talk to. Cultural aspects
play a dominant role in speech-based human-robot interaction. A study con-
ducted in Qatar with native English and Arabic [20] speakers found that the
Arabic-speaking participants held a more positive perception of the robot and
anthropomorphized it more than the English-speaking participants. Another
study [33] found that the Japanese prefer a Japanese robot and feel discom-
fort while interacting with an Egyptian robot, and the opposite is true for the
Egyptians. Such results show the importance of robot ethnicity in improving
human acceptance during human-robot social interactions.
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Other studies show differences in interaction with robots when using different
accents [2,32]. Language is one factor that contributes to ethnic differences; other
factors include race, skin color, historical background, and religion [16]. A robot’s
perceived ethnicity has a significant effect on human trust and robot’s perception
[10]. Manipulating the robot’s language allows us to change its ethnicity and how
it is perceived by the user.

2.3 Role of Language in Human-Human Communication

Here we briefly comment on the effect of using the mother tongue or a foreign
language on human-human communication. Language is a primary means of
human communication, allowing individuals to express their thoughts, feelings,
and ideas to others. When communicating with others, individuals typically
use their mother tongue, which is the language they learned first as a child.
Using one’s mother tongue influences interaction, as it is often associated with
a sense of familiarity, comfort, and cultural identity [23]. However, communi-
cating in a foreign language can also have both positive and negative effects
on the interaction. On one hand, using a foreign language can provide oppor-
tunities for cross-cultural communication and learning. On the other hand, it
can create communication barriers and misunderstandings due to language pro-
ficiency and cultural differences [31]. In multicultural societies, English serves
as a lingua franca, facilitating communication across diverse backgrounds [12].
However, due to its limited shared understanding, it can sometimes create confu-
sion and uncertainty. Additionally, interacting in English lingua franca involves
some vulnerability and potential risk that are not present when communicating
within a shared linguistic community that shares social meaning [12]. Recent
research has also shown that the phenomenon of false memory in bilingual peo-
ple is affected by whether they are required to match the language in which the
initial information was given and the language in which they were asked to recall
the information [6].

Given all these factors related to how the language of interaction affects
human-human communication, we would like to explore how the language of
communication affects human-robot interaction.

3 Experiment

3.1 Objective

The research question we focused on was how a human’s perception of a robot
is influenced by the language of interaction. We compared the interaction in
the native language of the speaker (Czech) with the interaction in a well-known
foreign language (English). Participants were asked to teach a robot how to
organize objects on a desk and shelves above it. Each participant interacted with
the robot under two conditions (the order of the conditions was randomized):
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– Condition A: The participant and the robot spoke to each other in English.
– Condition B: The participant and the robot spoke to each other in Czech.

We hypothesized that the participants’ perception of the robot would differ
depending on the language of interaction, and they would prefer interacting
in their native language. The collected data combined our observations of the
participants’ behaviour during the interaction, the participants’ self-reported
answers to a questionnaire after each interaction, and post-test interviews with
each participant.

3.2 Task

There is growing interest in the integration of robots into domestic environments
[14], which poses a number of challenges. As each home and its inhabitants are
unique, robots must be able to learn how to operate in different environments
and non-expert users should be able to explain the robot its task.

To address these requirements, we designed a real-life scenario in which a user
has to teach a robot how to organize objects to tidy up. By instructing the robot
to clean and organize their desk, the participant would potentially be relieved of
this responsibility in the future, which is a great motivation for accomplishing
the task. Moreover, the task did not require specialized domain knowledge or
technical jargon, making it easily comprehensible and feasible to demonstrate.
Participants were instructed to treat the desk as their own and teach the robot
the desired organization of the objects, considering their personal preferences
(Fig. 1). The concept of teaching was defined as physically handling each object
and placing it in the desired location while providing verbal descriptions of the
actions, as it can be seen in Fig. 1. Furthermore, participants were informed that
the robot would remain stationary throughout the interaction, observing but
not performing any actions. Figure 2 (a) shows the setup before the interaction
started for condition A.

To ensure the validity and reliability of the experiment, we employed two
distinct sets of objects, one for each condition. In Condition A, the objects
included a plant, a mug, a glass bottle and a tissue box (Fig. 2 (b). For Condition
B, the objects consisted of a metal cookie tin, a watering can, a cup with pens,
and a red paper cube.

There were several rationales behind using different sets of objects. Firstly,
it prevented any references or comparisons to previous conditions, ensuring that
participants approached each teaching session independently. This minimized
potential biases or influences that could arise from participants’ previous expe-
riences.

Secondly, the use of diverse objects enhanced the realism of the scenario,
making it more representative of real-life situations. In real-world contexts, indi-
viduals encounter various objects with different shapes, sizes, and functions. By
replicating this diversity in the participants’ experimental setup, we aimed to
capture the complexity of teaching a robot to organize objects in a practical
manner. Another reason for using distinct objects in each condition was to facil-
itate language consistency. As the wizard (the person operating the robot) was
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Fig. 1. The user demonstrating to the robot where to place an object

physically present in the same room as the researcher and the participant, they
could not ask clarifying questions or show emotions on their face. By associating
specific objects with a particular language, it was easier for the wizard to recall
and maintain the appropriate language throughout the interaction. This ensured
clarity and minimized potential language-related errors or confusion during the
teaching process.

3.3 Experiment Set up

The experiment took place in a room at the Czech Institute of Informatics,
Robotics, and Cybernetics, where researchers frequently work.

Figure 3 provides a bird’s eye view of the experimental setup. During the
initial stage and questionnaire sessions, the participant was seated at Location 1,
and was asked to stand at Location 2 for the interaction phase. The experimenter
stood at Location 1 in the initial phase and at Location 2 in the interaction phase
to give the participant freedom and privacy with the robot. There were two
robot operators involved in the experiment: one was responsible for controlling
the robot’s speech, while the other operated its movement. Additionally, in the
other part of the room (shown as white space on the right side of the figure),
two other researchers were working on their computers. The participant did not
expect the robot operators to be directly involved in the experiment, as several
people were present in the room. Besides the participant and the experimenter,
everyone else was quiet. The camera covered the desk at which the participant
was sitting, the desk with the objects, and the robot.
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Fig. 2. Set up of the experiment

Fig. 3. Bird’s eye view of the study setup

3.4 Robot Operation

First the humanoid robot used in the experiment is described with its hardware
and software specifications. Then, we describe our program designed to operate
the robot using the Wizard-of-Oz method.

Humanoid Robot. We used Pepper, a humanoid robot developed by SoftBank
Robotics and released in June 2014 (see Fig. 2 (a)). Pepper is equipped with two
identical video cameras on the forehead and a 3D video camera. It is capable
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of facial recognition and analysis of human expressions. In addition, four micro-
phones in the robot’s head allow it to analyze speech and vocal tones, and to
detect the direction of incoming sounds.

Fig. 4. GUI for operating the robot using the Wizard-of-Oz method. We control the
language (left-middle), speaking (top-middle), and head movements (bottom-middle),
and display the current scene on the tablet when needed (bottom-right). We can also
watch the scene using the robot’s head camera (top-right).

Pepper was controlled by the NAOqi operating system, which is a program-
ming framework for developing applications on the robot. NAOqi addresses
common robotics requirements such as parallelism, resource management, syn-
chronization, and event handling. NAOqi functions can be called in C++ or
Python, and a graphical environment called Choregraphe is available to cre-
ate complex behaviors for Pepper. Our research team developed a Python API
wrapper around the NAOqi framework, which was used in this study.

The Pepper class, the main component of our Python API, establishes a
connection to the robot instance using a specified IP address and port. Once the
connection is made, it provides tools to interact with the robot, such as moving
its arms, legs, and head, changing its LED lights, playing sounds and speech, and
accessing its sensors and cameras. The API also allows the creation of custom
behaviors and applications using Python code that can be run on the robot.

Wizard of Oz. The Wizard-of-Oz method [19] was implemented using a GUI
built on top of our Python API described above. After establishing a connection
with the robot, we can control it by clicking the corresponding buttons in the
GUI. Each button is mapped to a Python function in the Pepper class. The GUI
overview is shown in Fig. 4. Its main components are as follows:

– Connection panel - to connect with the robot via its IP address
– System - to control the level of autonomous movement of the robot and reset

any current process
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– Language - enables to switch between Czech and English language and to
control voice volume, speed and pitch

– Sentences - each button is mapped to a sentence that the robot says in the
selected language

– Movement - enables head movement
– Camera Stream - displays what the robot sees using its top head camera
– Scene scheme - the operator can edit the current scene by adding objects as

they are arranged by the participant. The “Show Scene” button then displays
this image on Pepper’s tablet

Though the robot can move around on its wheels, for this experiment, it
remained in one place and only moved its head in a natural way to give the
impression of observing the actions of the participant. Voice parameters (such
as volume, speed, and pitch) remained fixed throughout the experiments. Besides
its head, the robot moved its arms and hands to gesticulate while speaking. After
each object shown by the participant, the robot confirmed that he understood
(“Okay”, “I see”, “I understand”) with appropriate gestures and head move-
ments.

3.5 Questionnaires

We used the following questionnaires and tests:

– Pre-test: To collect demographic data and information about the participants’
experience with programming and familiarity with robots.

– English test: To verify the level of English, each participant was asked to
complete a short English test for B2/C1.

– Godspeed Questionnaire [4,5]: Standardised questionnaire to measure the
perception of robot in 5 subscales: anthropomorphism, animacy, likeability,
perceived intelligence, perceived safety.

– Post-interaction questionnaire: After each condition we asked the participant
how easy it was to check the robot’s knowledge, whether the robot made
any mistakes, and whether the robot was capable of retaining the knowledge.
This questionnaire was designed to explore the participant’s reasoning. It also
allowed us to compare the actual errors with the ones noticed by the partici-
pants. Each participant filled two questionnaires, one after each condition.

– Post-test questionnaire: This was designed to get the participant’s overall
feedback to evaluate the study methodology.

All questionnaires were in English and Czech, in order not to bias any lan-
guage.
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3.6 Participants

Twenty-three participants (9 women, 14 men), aged (14–72 yrs, M = 32.04,
SD = 14.22), were recruited through emails and web announcements. Informed
consent was obtained from all the participants above 18 yrs. and from their par-
ents for those under 18 yrs. (four participants). To avoid language skills as a
confounding factor, the requirement to participate in the study was proficiency
in both English and Czech.

3.7 Procedure

Each participant interacted with the robot individually. The experiment took
about 20–30 min. The procedure was as follows:

1. The participant was seated at a desk with their back to the robot. At first, the
participant took the English test; they were told that their test performance
would not impact their interaction with the robot. Then the participant read
and signed the consent form, followed by filling the pre-test questionnaire.
The English test was given first, and was followed by other tasks to maximize
the gap between the test and the interaction for avoiding bias.

2. The participant was asked to move near the robot and the task was explained.
If (s)he had any questions or hesitations, explanations were provided without
disclosing the purpose of the study or how the robot works. The participant
was asked to use a particular language (Czech or English) before each inter-
action. The order of conditions was random.

3. The camera was turned on, and the robot initiated the interaction, which
lasted about 2–3 min. Then, the camera was turned off, and the participant
returned to the desk to complete the Godspeed and post-interaction ques-
tionnaire, while the objects in the scene were changed.

4. The second round of interaction and questionnaires followed similarly to the
first round, except that the language of interaction was switched and the
objects to be arranged were different.

5. The participant was asked to provide feedback on the paper and was com-
pensated 200 Czk (about 10 euros) for their participation. The participant
was then debriefed about the purpose of the study and the Wizard-of-Oz
methodology, revealing the robot operators. As this part was not recorded,
participants’ comments from this part were written down in a file after the
participant was gone.

4 Results and Discussion

Data from one participant was excluded from the analysis due to numerous defi-
ciencies in the questionnaires. One participant wrote in the survey his suspicions
that the robot is controlled by a human, but the rest of 21 participants did not
express any such doubts.
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4.1 Pre-test

Most participants had no experience with humanoid robots, but some had knowl-
edge of programming and robotics. The most common answers to questions
about the robot’s appearance were cute, friendly, child/childlike.

4.2 English Test

We conducted an English test to verify fluency in English. All participants
received 8 or more out of a possible 13 points in an English-level test between
B2 and C1.

4.3 Godspeed Questionnaire

The Godspeed Questionnaire was used to measure participants’ ratings of the
robot in five sub-scales. Table 1 shows the average scores, and the distribution
of results is shown in Fig. 5. We are aware of the criticism regarding the use of
intelligence as a dependent variable [34], but we still considered it as a relevant
outcome measure for our study. This criticism refers to the evaluation of operator
intelligence during the Wizard-of-Oz methodology, rather than that of the robot.
In our study, the same operator employed a set of predetermined sentences (in
translation), consistently supervising the robot’s speech and movements.

Based on a previous study [9], we used a nonparametric test to evaluate
the results. For our within-subjects study we used the Wilcoxon test. Only
the subscale of perceived intelligence showed a significant result, z = 18.00, p-
value = 0.02; an English-speaking robot is perceived as more intelligent than a
Czech-speaking robot. A plausible explanation for the observed phenomenon is
that when the robot communicates in a foreign language (English), participants
may perceive it as more intelligent due to the increased difficulty in detecting
errors compared to their native language. This language barrier could lead par-
ticipants to allocate more cognitive capacity toward explaining the organization
of objects, resulting in reduced attention toward the robot itself. Support for this
hypothesis comes from the feedback questionnaire, where participants expressed
their observations. For instance, one participant stated, “[...] when he speaks
Czech, he was using words that I would never use in my daily life.” Another
participant remarked, “It seemed more lively when using English.” Yet another
participant commented, “For me, it was better in English as I could notice a
slightly unusual wording or tempo of the sentences [in Czech].” These responses
provide evidence supporting the notion that language choice influences partici-
pants’ perceptions and attentiveness during human-robot interaction.

We investigated whether the sequential order of interactions influenced the
ratings provided by the participants by comparing the results from the first
interaction with those from the second, irrespective of the specific experimental
conditions. Our analysis revealed no statistically significant differences between
the two interactions. This suggests that the order of interactions did not have a
significant impact on the outcomes observed in the study.
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Table 1. Average Scores in Godspeed Questionnaire

Subscale English Czech

Anthropomorphisation 2.96 2.84

Animacy 3.16 3.15

Likeability 4.3 4.32

Perceived Intelligence 4.04 3.79

Perceived safety 3.44 3.60

Fig. 5. Distribution of results in both conditions

This result suggests a potential advantage in utilizing English language dur-
ing robot interactions, as it appears to yield more favorable outcomes, which is
desirable in the design of social robots for widespread adoption. However, it is
important to acknowledge that this approach could restrict the participant pool
to individuals proficient in English, as speaking a foreign language often gener-
ates feelings of anxiety [13]. Hence, it is necessary to study this issue further:
for example by conducting a study with native English speakers, and also with
a larger sample.

4.4 Questionnaire After the Interaction

Based on the responses of the participants on a six-point Likert scale, the major-
ity of the trials (37 of 44) were rated as easy (5) or very easy(6). Lower scores
were observed in cases where the robot experienced technical issues, such as
delays in response time or errors in visualization (6 out of 44 trials). Some par-
ticipants considered the wrong orientation of the tissue box as an error, which
was not expected. (The system was unable to display objects in different orien-
tations.) This suggests that the system could be improved e.g. to rotate objects
in future studies.

4.5 Insights from the Feedback Questionnaire

The feedback questionnaire proved valuable in comprehending the participants’
perceptions of the research. Notably, a majority of responses focused on explor-
ing the robot’s capabilities and evaluating its usability in human-robot interac-
tion, with only one participant highlighting language as the primary concern.
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This suggests that the study effectively diverted attention from the language
aspect, potentially influencing participants’ expectations and perception of the
research. It is important to note that bilingual individuals often encounter dif-
ficulty in recalling the language in which information was presented, without
affecting their ability to recall the content. This phenomenon may have posi-
tively influenced the participant’s response.

We included questions related to the experiment itself: clarity of instruc-
tions, areas of confusion, and potential improvements. Respondents expressed
satisfaction with the study, frequently stating phrases such as “It was fun,”
“Everything was clear,” and “I would like to have a robot like this at home.”
Two participants suggested that incorporating physical demonstrations of teach-
ing the robot, rather than solely relying on verbal explanations, would have been
beneficial. The deliberate omission of such demonstrations was intentional, as we
aimed to observe participant attitudes without imposing specific instructional
methods.

A participant commented that there were too many questionnaires, indicating
the importance of appropriately adjusting the quantity to maintain participant
engagement. When participants become excessively bored, they may not atten-
tively read the questionnaires, resulting in uninformative data. To address this
issue, we recommend including questionnaires in pilot studies to adjust their
length and content. We also analysed the emotional aspects of the participants’
responses. One participant expressed feeling nervous due to the presence of many
people in the room. This suggests making the experiment venue less crowded for
future studies. Another participant expressed fear toward the robot’s hands,
highlighting the significance of individuals’ attention towards robot appendages
[17]. Although sometimes subjective and specific to individual participants, it
is crucial to recognize that participants are humans with emotions and needs,
not merely sources of data. We must remember that the primary objective of
HRI is to understand human-robot interaction, which includes comprehending
the human user’s emotional responses [15].

5 Conclusions

The results of the Godspeed questionnaire show that the participants perceived
the English-speaking robot to be more intelligent than the Czech-speaking one.
However, this result may be attributed to the fact that errors and unnatural
behaviors are more difficult to be detected in a second language, as indicated by
some participants in the feedback questionnaire. The limitations of the present
study were: a small sample size, a diverse age range of the participants, and
the absence of a comparison group comprising native English speakers fluent in
Czech. We plan to address these issues in future research.

The importance of feedback questionnaires in HRI research has been high-
lighted by our research: they provide valuable insights into the participants’
understanding and emotional responses towards the interaction and the study
as a whole.
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Abstract. As more and more social robots are being used for collab-
orative activities with humans, it is crucial to investigate mechanisms
to facilitate trust in the human-robot interaction. One such mechanism
is humour: it has been shown to increase creativity and productivity in
human-human interaction, which has an indirect influence on trust. In
this study, we investigate if humour can increase trust in human-robot
interaction. We conducted a between-subjects experiment with 40 par-
ticipants to see if the participants are more likely to accept the robot’s
suggestion in the Three-card Monte game, as a trust check task. Though
we were unable to find a significant effect of humour, we discuss the
effect of possible confounding variables, and also report some interesting
qualitative observations from our study: for instance, the participants
interacted effectively with the robot as a team member, regardless of the
humour or no-humour condition.

Keywords: Human-robot interaction · Humour · Nao robot · Social
robots · Three-card Monte · Trust

1 Introduction

In recent years, social robots are increasingly being deployed in various roles
where they need to interact heavily with human users or play the role of a
human. Some examples of such domains are military [29], medicine [11], con-
sumer assistant [10], healthcare, and care for the elderly [28]. However, to have
an effective and meaningful interaction with the robot, it is necessary that people
consider them trustworthy and reliable [15].

This applies to all human-robot interactions, whether they take place on
land, sea, air, or in cyberspace. Many factors can influence trust. In the research
presented here, we explore the role of humour in facilitating trust in human-robot
interaction (HRI, henceforth). Humour has been shown to increase creativity and
productivity in human-human interaction; moreover it has an indirect influence

This research was supported in part by a grant from the Priority Research Area Digi-
World PSP: U1U/P06/NO/02.19 under the Strategic Programme Excellence Initiative
at the Jagiellonian University, and by the National Science Centre, Poland, under the
OPUS call in the Weave programme under the project number K/NCN/000142.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
A. Al. Ali et al. (Eds.): ICSR 2023, LNAI 14453, pp. 322–335, 2024.
https://doi.org/10.1007/978-981-99-8715-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8715-3_27&domain=pdf
http://orcid.org/0009-0008-1977-5806
http://orcid.org/0000-0002-3798-9209
https://doi.org/10.1007/978-981-99-8715-3_27


Is a Humorous Robot More Trustworthy? 323

on trust in humans. We conducted a study with 40 participants, using a between-
subjects design with humor and no-humor conditions, to determine whether
participants would be more inclined to accept a robot’s suggestions in the Three-
card Monte game, which we considered as a measure of trust towards the robot.
In this paper, we present the details of the pilot and the main studies, and discuss
the results.

The structure of the paper is as follows. We present a review of the related
research in Sect. 2. Then our experiment design and the pilot study is presented
in Sect. 3, followed by the details of the main study in Sect. 4. Results and
discussion are presented in Sect. 5, followed by the conclusions and suggestions
for future research in Sect. 6.

2 Related Work

We provide here background and motivation for this research. First, we introduce
into the concept of trust in human-robot interaction (HRI), which is a key to
effective collaboration between humans and robots, with an emphasis on the
potential pitfalls of over-trust and under-trust. Next, we explore trust in human-
human communication, shedding light on the dynamic nature of trust judgments
and the factors influencing them. We then discuss the role of humor in human-
human communication, emphasising its subjectivity and its impact on trust in
human interactions. Then we briefly describe the existing research on the role of
humor in HRI, focussing on its potential to enhance trust and likeability. This
motivates our main research question: Does the use of humor in human-robot
interaction improve trust?

2.1 Trust in Human-Robot Interaction

Before we start discussing different aspects of trust, we need to define trust.
Though there are many definitions of trust [12,26], we use the following definition
from [24]:

“Trust is a dyadic relation in which one person accepts vulnerability because
they expect that the other person’s future action will have certain characteristics;
these characteristics include a mix of performance (ability, reliability) and/or
morality (honesty, integrity, and benevolence).”

An inappropriate level of trust between a human user and a robot may lead
to misuse or disuse of the robotic agent [16]. Misuse occurs when the user over-
trusts the robot and accepts all its suggestions without questioning: for example
trusting a GPS-based route assistant blindly while ignoring the actual situation
on the road [6]. On the other hand, disuse appears when the human user rejects
all the suggestions of a robot and questions its capabilities: for example when a
senior with Alzheimer’s disease does not believe the robot that she or he has not
yet taken the medication. Both misuse and disuse undermine the effectiveness
of human-robot interaction, and it is important to study how to maintain trust
between a robotic system and its human user.



324 B. Sienkiewicz and B. Indurkhya

There are many factors that affect trust in HRI. Studies have shown that
humans are more likely to trust robots that exhibit social cues, such as eye
contact, appropriate facial expressions, and naturalistic movements [23]. Further,
it has been found that people are more willing to trust a robot when it apologises
and acknowledges that it made a mistake [14]. Another work of research has
found that embodiment increases trust towards the robot [20]. Trust in HRI can
be divided into two categories: performance-based trust and relation-based trust
[24, pp. 28–32]. Performance-based trust centres on the robot being capable and
competent for its task: for example, in autonomous cars or banking systems. This
trust is based on rational arguments and beliefs. Relation-based trust focuses on
the robot’s role as a social agent, which is more important when the robot
serves as a companion, in a nursing home, or in a school. The users may not
be completely aware why and how they trust the robot; they just feel more
secure and comfortable about relying on the robotic system beyond the available
evidence [21].

Many of the factors mentioned in the earlier research are rooted in interper-
sonal behaviours. Therefore, it is important to consider what influences trust in
human-human interaction, as this may provide clues to facilitating trust in HRI.

2.2 Trust in Human-Human Communication

Trust plays a key role in social interaction, and is crucial for effective cooperation.
When two humans interact, whether they are strangers or close associates, each
one has to decide how much to trust the other [4]. Furthermore, trust is dynamic:
it changes as the interaction proceeds based on many conscious and subconscious
factors. At first, we judge trustworthiness based on facial features [32]. As we
get to know each other better, this assessment of trustworthiness changes [1].
Sometimes, the social position of a person, like being a doctor, increases the ini-
tial assessment of trust in her or him. Another factor that leads humans to trust
another is similarity to themselves. Similarities can include common values (such
as strong work ethics), membership in defined groups (local churches and even
gender), and common personality characteristics (extroversion and ambition) [9].

2.3 Humour and Trust in Human-Human Communication

Humour is an activity that is largely subjective and hard to measure objectively
[18]. Human brain is capable of taking into account many factors, such as the
situation, atmosphere, and mood of the people around, to produce fun and bring
smiles on people’s faces. Everyone has a different sense of humour: some people
like jokes, some gallows humour, and still others like pranks. Everyone reacts
differently, even to the same joke. Due to the many variables and cultural condi-
tioning, it is difficult to define humour precisely. For the this research, we consider
a good sense of humour to be the ability to create jokes, riddles, and situations
that make people laugh. Previous research has shown that humans with a good
sense of humour are more intelligent [5]. Most relevant to our research is the
finding that humour can increase trust between agents [13]. In teams, humour
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is found to increase productivity and creativity, reduce conflict, and decrease
stress [8].

2.4 Research on the Role of Humour in HRI

Given that humour has such a positive influence on human-human interaction, it
is useful to explore if it can also facilitate human-robot interaction. Anton Nijholt
studied the specific role and use of humour in human-computer interaction, and
demonstrated the potential of using humour with special attention on humour
creation [25]. Another study found that humour helps robots to interact with
humans in the same way as humans interact with each other [7, pp. 333–360].
Yet another study showed that the interaction with humour is more natural
and flexible [22], and it might be correlated with trust. Humour can also help
robots to be perceived as smarter: for example, when they tell clever jokes [33].
Francesco Vigni et al. argue that users perform better in a game when interacting
with an agreeable robot [31].”

An empirical study of humour with Nao and iCat robots demonstrating dif-
ferent laughing behaviours showed higher likeability ratings for the robots when
they use humour [19]; interestingly, the likeability ratings tended to converge
when either robot laughed or when both robots laughed together. This suggests
that it is not necessary for both participants in the interaction to have a sense of
humour in order to yield a positive effect of humour, which is important as we are
not able to manipulate the human’s humour in the interaction. Another study
on humour in HRI showed that using jokes during the initial greeting is effec-
tive in enhancing likeability and reducing awkwardness [30]. Our methodology
in creating the study presented here is inspired by it.

Based on the existing literature, there is evidence to suggest that humour can
indirectly affect trust by increasing the likeability and naturalness of interactions
between humans and robots. However, the question remains whether the use of
humour in HRI can also directly enhance trust between humans and robots.
Therefore, the research question we explore in this study is: Does the use of
humour in human-robot interaction improve trust?

3 Experiment Design

In this section, we present the main task for the participants in the experiment,
introduce the robot and its software, and provide a detailed description of the
obstacles we encountered during the pilot study.

3.1 Task

To investigate whether people consider a humorous robot more trustworthy, we
designed an experiment where the participant is asked to team up with a robot
while playing a version of the card game Three-card Monte. In our version of the
game (Fig. 1b), the participant is shown three cards, two of which are black and
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one red. The cards are then turned face down and shuffled out of the sight of the
participant and the robot (behind the back of the experimenter). The experiment
was deliberately designed so that the robot did not have more information than
the participant. This allows us to focus on relation-based trust, when both agents
have the same information, and there is no rationale for trusting the robot.

The three cards are shown to the participant again, who is asked to point to
the red card. The robot then offers a suggestion that is contrary to the partic-
ipant’s guess. We observe if the participant follows its advice, thereby showing
that she or he trusts the robot: this measure is based on the experimental types
for measuring trust in the book ‘Trust in Human-Robot Interaction’ [24].

We also use the Multi-Dimensional Measure of Trust (MDMT) questionnaire
after the interaction to measure the subjective level of trust towards the robot
[17].

Fig. 1. Main task: Three-card Monte

To study the effect of humour, we compared humour and no-humour condi-
tions. Three jokes were selected to be used in the humour (experimental) con-
dition. All three jokes employed a form of wordplay in the Polish language. For
example, one of the jokes used during the interaction is as follows: “What is
the name of the cat that flies?” The punchline to this joke relies on a wordplay
between the Polish words for cat (“KOT”) and flies (“LECI’), resulting in the
humorous response of “small cutlet” (“KOTLECIK”).

It is important to note that the jokes were chosen to be neutral with respect
to factors such as race, gender, and profession, in order to minimize the potential
for offense or biases. The same jokes were used for the pilot study as for the main
study. Additionally, one situational joke was included in the main study, where
the robot humorously remarks, “Sweets are just for you, I’m on a diet.”

In the no-humour (control) condition of the experiment, the robot engaged in
a conversation with the participant about some neutral topic like the weather,



Is a Humorous Robot More Trustworthy? 327

before proceeding to the main task. This serves as a baseline for comparison
against the conditions involving joke interactions.

Throughout the experiment, the same pre-selected jokes were consistently
used during the interactions, with an additional joke available in case the par-
ticipant expressed interest in hearing more.

3.2 Robot

We used the humanoid robot NAO from Aldebaran (Fig. 1a). Nao is 58 cm tall
and has 25◦C of freedom. The same NAO robot was used in both conditions.
We used the methodology of Wizard-of-Oz [27]. The robot’s voice and talking
speed were also kept identical. Nao turned its face towards sounds, which made
the interaction more natural when we modified the experimental setting after
the pilot study, as explained below.

3.3 Pilot Study

We first conducted a pilot study with 12 participants to test our methodology.
The study was conducted in the Social Robotics Lab at Jagiellonian University
in Krakow, Poland. In this pilot study, we included another condition, namely
using a video of the robot instead of an embodied robot. This led to a between-
participants design where each participant was tested with one of the following
four conditions: 1) A humorous robot; 2) a neutral robot; 3) a humorous robot
displayed on a tablet; and 4) a neutral robot displayed on a tablet. We list below
some problems observed in the pilot study and how they were fixed for the main
study.

Rigid and unnatural movements of the robot: The robot moved unnatu-
rally and stiffly, which resulted in some participants failing to notice it at
all and talking only to the experimenter. To remedy this problem, we imple-
mented animated speech for the main study, so the robot was constantly
moving, gesturing, and making small talk (initiated by the operator), which
did not depend on the input from the robot’s operator.

Slow and delayed speech from the robot: To address slow speech and typ-
ing sounds, we pre-programmed certain robot responses, assigning each an
index. During interactions, the operator only needed to input the corre-
sponding index, allowing for quicker and more seamless communication. The
operator could still type responses in real time for unexpected questions or
comments from participants.

Unnatural communication with the avatar: Two conditions required the
participants to talk to the avatar on the tablet and read messages on the
screen. They found this interaction quite weird and did not feel comfortable.
So, we decided to remove this condition (interaction with an avatar) from the
main study.
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Lack of eye contact: In the pilot study, the robot remained stationary but
faced away from the participant while speaking due to the operator’s limited
view. This felt unnatural to participants. In the main study, we improved
this by giving the operator a view of both the participant and the robot,
using a second computer to control the robot’s head orientation for better
interaction.

4 Main Study

The main experiment was also carried out in the Social Robotics Lab at Jagiel-
lonian University in Krakow, Poland. It was organized as a between-participants
study, with each participant being assigned to one of the two conditions: 1) a
humorous robot (experimental condition); and 2) a neutral robot (control con-
dition).

4.1 Participants

Forty participants (F=17, M=22, Non-binary =1; Mean age = 28,97; SD=10,71)
were recruited through social media and departmental email. During the recruit-
ment, participants were asked if they ever met a humanoid robot (two partici-
pants had taken part in a previous study, so had met a humanoid robot before)
and about their background (age, sex, educational background). The participants
were randomly assigned to the experimental group or the control group. Each
participant was paid 20 PLN (about 5 Euros) in cash for their participation.

4.2 Experimental Set up

The setup is shown in Fig. 3. The light in one part of the laboratory was turned
off to hide the robot operator, and most participants did not see the operator.
The participants were told at the beginning of the experiment that the robot is
autonomous, and they did not show any indication of doubting this assumption.

The robot was operated by the same person for all the participants. The
operator could see the participant through the camera on the robot’s forehead
(Fig. 2). The robot was stationary throughout the experiment but moved its head
and arms naturally (live mode). All the conversation with the participant was
conducted by the operator through the robot. The operator used two computers
to control the robot: one running the Choregraphe program to control the robot’s
body movements and the view of the participant, and the other to control the
robot’s speech.

While filling out the questionnaire, the participant and the experimenter
were near the door (position 1), during the initial small-talk phase, when the
robot told jokes or commented on the weather, the participant was in position 2
and the experimenter in position 1, and during the game, both the participant
and the experimenter were in positions 2. The interaction with the robot was
recorded with the participant’s consent.
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Fig. 2. Experiment set up

4.3 Procedure

The participant entered the lab and was welcomed by the experimenter. Then
they sat down at the table, and the participant was asked to sign the informed
consent form. The participant was given a paper with the introduction to the
experiment and the instructions. Then the participant was led to sit in front of
NAO and wait for it to start the conversation. NAO welcomed the participant,
introduced itself, and asked the participant’s name and how he or she is. Then,
for the experimental group, NAO made some small talk and told two jokes to the
participant. The conversation always had the same structure, the jokes came at
the same time for each participant and were only in this part of the experiment.
For the control group, NAO made some remarks about the weather.

After the conversation, NAO explained the rules of the game, and then the
researcher entered the space, showed the cards, turned them face down, and
shuffled them out of the participant’s sight. The researcher then spread the
cards on the table face down, and asked the participant, ‘Where is the red card?’
After the participant made a guess, NAO suggested a card different than what
the participant had chosen. If the participant asked why, NAO replied that it
was its intuition. The researcher then stopped further interaction and asked the
participant to choose a card without flipping it. The participant was asked to
return to the first table and fill out the questionnaire. The researcher then let the
participant reveal the card. Regardless of the colour of the card, the participant
was offered a sweet as a prize. The participant was then given the participation
fee. Finally, the robot operator was exposed and, depending on the interest of
the participants, the study was explained, and the experimenter answered any
questions. The entire procedure took 15 to 20 min.
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4.4 Questionnaire

We used the Multi-Dimensional Measure of Trust (MDMT) questionnaire to
measure the subjective level of trust in the robot [19]. The MDMT contains 16
elements to assess four differentiable trust dimensions. An agent can be trusted
because it is reliable, competent, ethical, and/or sincere. These four dimensions
are organized into two broader trust factors: Capacity Trust (Reliable, Capable)
and Moral Trust (Ethical, Sincere). Moral trust is the subjective level of trust
a person has in the robot’s ethical and reliable behavior, while capacity trust is
the subjective level of trust a person has in the robot’s abilities or performance
in executing its designated tasks.

Each of the 16 items was to be evaluated on an 8-point Likert scale from 0
(not at all) to 7 (very). They could also choose the option ‘Does not fit’, to avoid
a forced answer. This questionnaire is widely used to measure trust in HRI and
for comparison with other research. The original version is in English, which we
translated into Polish for our study.

5 Results and Discussion

5.1 Objective Independent Variable

As shown in Table 1, about 75% of the participants followed the robot’s advice.
We conducted a Chi-square test to assess whether the proportion of participants
who changed their decision differed significantly between the humour and the
non-humour conditions. We did not find a significant difference (p = 0.288).

Table 1. Proportion of Participants Who Trusted the Robot

Condition Followed the robot Did not follow the robot

Humourous Nao 13 7

Non-humorous Nao 16 4

Total 29 11

For representativeness of the sample, we collected the age and gender of the
participants before the study. We did additional analysis for the effect of age and
gender on whether the participants accepted the suggestion by the robot in both
the humour and the non-humour conditions (Fig. 3). We expected that more par-
ticipants in the non-humour group would not accept the robot’s suggestion, but
we found that fewer participants (4 out of 20) did not change their decision. How-
ever, the mean age of these participants (43.5 yrs) was significantly higher than
the other group (28.4 yrs). Though there were too few participants to make any
generalizations (no statistical significance), this observation is consistent with
the previous research that shows that older adults have a more negative atti-
tude towards robots than younger adults [2]. We also noted that in the humour
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Fig. 3. Effect of gender and age in humour and non-humour conditions

group, seven out of twenty participants did not accept the robot’s suggestion,
and only one of them described herself as a female. The present observation is in
agreement with the prior study, which has suggested that women tend to place
more trust in robots as compared to men [3].

Moreover, it is worth noting that two participants from the non-humorous
group changed their decision to select a card that was neither suggested by
the robot nor their initial preference. They might have chosen to deviate from
the robot’s recommendation while also wanting to avoid any potential conflict
within the group. This possibility suggests that social dynamics and the desire
to maintain positive relations within the team may have played a role in their
decision-making process.

It should be emphasized that our study’s outcomes may have been influenced
by certain biases that could be attributed to both the nature of the task and the
participants’ prior knowledge of robots. For example, the experimenter shuffled
the cards behind her back, which meant that the participant did not know where
the red card was and had to guess. This might have created a negative attitude
toward the task. In contrast, in the standard version of Three-card Monte, the
three cards are moved around rapidly in the plain view of the participant. More-
over, the participants did not have any information about how the robot worked
and what basis, if any, it might have to make its suggestion. Some participants
reported after the study that theirs was a pure guess, that they decided to trust
the robot because they thought it might have more information.

Another variable affecting the results is the participants’ varying sense of
humour. We prepared three jokes, two for the interaction and one just in case.
The jokes were neutral according to race, gender, profession, and other factors
that might be considered offensive; there was also one situational joke. However,
participants could have had a different sense of humour and may not have liked
the robot’s humour.

5.2 Subjective Independent Variable

We conducted the Mann-Whitney U test on the results of the MDMT question-
naire to see if there was any difference between the humour and the non-humour
conditions (Table 2). However, we did not find a significant difference either for
the capacity trust (p=0.465) or for the moral trust (p=0.378).
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Table 2. Average scores in MDMT

Condition Capacity trust Moral trust Trust

Control condition 4.76 5.49 5.12

Research condition 4.98 5.70 5.34

Although we did not get significant differences in the Mann-Whitney U test,
average scores in MDMT questionnaire had recurring differences. The participant
who interacted with the humorous robot gave higher responses in the MDMT
questionnaire than in the control group. This is visible on the capacity sub-scale
and also in the moral sub-scale. The average score on the moral sub-scale trust
is higher than the capacity trust in both conditions, suggesting relation-based
trust. We also found a strong correlation between those sub-scales (r(39) = .794;
p < .01), which explains the recurring differences.

It is worth examining the genesis of the questionnaire we used. The MDMT
questionnaire was constructed by researchers who conducted open surveys and
questionnaires with people recruited through Amazon Mechanical Turk. In one
part of the creation, sorting trust words, participants were asked to consider 32
words or short phrases, 6–7 for each of the four hypothesized dimensions, as well
as five filler items assumed to be unrelated to trust, which included the word
‘humourous’ [7]. Thus, this questionnaire assumed that humour is not related to
trust. The MDMT questionnaire was constructed not for interaction with robots,
but to distinguish different dimensions in trust, according to human, institutions,
or robots. However, as far as we are aware, no studies have been conducted on
humour and trust between humans with the MDMT questionnaire, so this area
is still unexplored.

5.3 Relation of the Objective and Subjective Variables

We conducted a Mann-Whitney U test to see if the MDMT questionnaire results
correspond to the decision to accept or not accept the robot’s suggestion during
the card game. We expected that the participants who changed their decision
rated the robot higher in the MDMT questionnaire. However, we did not get a
significant result in this regard (p > 0.05). This may be due to different per-
sonal attitudes of the participants, which requires further study [24, p.25]. Some
participants trust robot less even if they accept the robot’s suggestion, because
their general baseline trust is lower.

5.4 Qualitative Analysis: Behavioural Observations

Analyzing the recording from the main study, we noticed some interesting
behaviour patterns of the participants. For example, at the beginning of the
interaction with the robot, many participants had their hands hidden under the
table. But as time passed, and before they were asked to choose a card, they



Is a Humorous Robot More Trustworthy? 333

put their hands on the table. This suggests that these participants felt more
comfortable with the robot as the interaction proceeded, and did not feel the
need to keep a safe distance. (We excluded the possibility that the participants
were cold as it was summer in Poland then, and the experimental room was at
a comfortable temperature.)

Another observation was that some participants asked the robot why it thinks
that the other card is red. Even though these participants asked for an explana-
tion but did not receive it (the robot answered ‘That is my intuition’), most of
them followed the robot’s suggestion.

Finally, a surprising behaviour was observed from most participants at the
end of the interaction. After the participant selected the card, the experimenter
asked them to go back to the table and complete the final questionnaire. As the
participant stood up to leave, the robot conveyed its final message, “Thank you
for the game, and see you later!” The participants consistently responded with
a farewell remark such as “Thank you too, bye” or “It was nice to meet you”.
This suggests that the participants treated the robot as a social agent, a team
member, or even a partner. This observation adds to the current understanding
of human-robot interaction and highlights the need for further exploration of
this phenomenon.

6 Conclusion

The primary objective of this study was to investigate the influence of humor
on trust in the context of human-robot interaction (HRI). Despite not being
able to confirm the main hypothesis, our study found some valuable insights by
implementing a between-subjects study design. Our findings demonstrate that
participants consistently engaged in effective teamwork with the robot, regardless
of the presence or absence of humor.

Our study provides a notable contribution to the field of Human-Robot Inter-
action (HRI) by introducing a framework for using the Wizard-of-Oz methodol-
ogy. This approach facilitated a controlled manipulation of humor in the robot’s
behavior while ensuring a realistic and interactive environment for participants.
The pilot study played a crucial role in refining our methodology and improving
the overall quality of the study. We believe that the comprehensive documenta-
tion of challenges encountered during the study serves as a valuable contribution
to the field by highlighting potential pitfalls for future research endeavors.

The effect of humor on trust in human-robot interaction needs more research
overcoming our limitations to be able to make further conclusions.

Acknowledgment. We thank Anna Ko�lbasa and Sharon Spisak for their help in
conducting this study.
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Abstract. In this article, we report on a pilot study consisting of an
evaluation of the usability satisfaction and effectiveness of a preliminary
telerobotic system to assist therapists of children with ASD. Unlike exist-
ing pre-programmed robotic systems, our solution beamed therapists in
a humanoid robot (Pepper) to reproduce in real-time the therapist’s ges-
tures, speech and visual feedback aiming to embody the therapist in a
humanoid robot avatar and be able to perform activities during an ESDM
intervention. Evaluations of our system, used by eleven therapists in inter-
nal tests during mock session without children, are reported and suggest
that future use in real therapy sessions with ASD children can begin.

Keywords: ASD therapists beaming · teleoperation · humanoid avatar

1 Introduction

Children diagnosed with autism spectrum disorder (ASD) have well-known dif-
ficulties in social communication. While the merit of behavioural methods for
early social communication training in ASD is well documented, e.g., [23], that
of robot-mediated social communication training is only emerging [19,24]. Stud-
ies suggest that robots provide socialisation benefits for people with autism by
increasing social engagement and attention, see examples in [22,28]. These find-
ings suggest that social robots could be therapeutic aids in ASD. For several
years now, various studies have been conducted on the possibilities of interac-
tion between humanoid robots and humans, especially with children with ASD,
e.g., [9,22,28]. However, there are few studies evaluating or highlighting the
effects over time of the beneficial contributions of robotic interventions [4,32].
These perspectives imply new interdisciplinary studies for the design, develop-
ment and implementation of new robotic observation and interaction systems.

According to a very recent study [38], approximately 1/100 people have an
ASD and the recommendations of the French National Authority for Health
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
A. Al. Ali et al. (Eds.): ICSR 2023, LNAI 14453, pp. 336–349, 2024.
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highlight the value of early and personalised behavioural intervention models
in ASD. One of these models is the Early Start Denver Model (ESDM) [16,31]
which is a programme developed specifically to work with children with autism
between the ages of 12 and 48months (although the programme can be used up
to a maximum age of 60months, that is 5 y.o.). This method is employed for
at least 20 h per week per child in some western countries such as the United
States [3]. In France, the care time using this model is most often less than
5 h/week due to a lack of trained professionals in sufficient numbers, according to
the Hospital of Montpellier, which limits the progress of children. Furthermore,
one of the foundations of ESDM is the positive engagement between a child
and a therapist built through the pleasure of play. Each intervention therefore
consists of offering the child different activities that s/he can choose from, then
playing with her/him and using every interaction opportunities: e.g., singing
songs, approving what s/he is doing by vocal interaction, grabbing and asking
for toys to interact with her/him as well, and so on. Through this intervention,
therapists have to adapt to each child through play and their wishes. However,
it can be difficult for a therapist to accurately and faith-fully collect and analyse
all the socially adapted or expected behaviours of the child while being fully
engaged in the interaction required by the behavioural intervention. An assistant
in these tasks could reduce the therapist’s workload and improve interventions.
Therefore, it seems appropriate to use teleoperation technology in this case to
assist the therapist in games and collecting data at the same time.

To both see how the robot can assist the therapist during an intervention
with the Denver method,

1. we designed a complete humanoid (Pepper) teleoperation system to be oper-
ated (beamed) by therapists as own avatar;

2. we conducted a pilot study aiming to train therapists in the use of their
social robot avatar Pepper as a tool for therapeutic mediation and assistance
in routine care; and

3. assessed our results with respect to complement those found in [24] where
virtual reality (VR) teleoperated robots are a relevant tool to deliver inter-
vention with ASD children.

Our hypothesis is that an interactive teleoperated robot is indeed an effective
tool for therapists, and is ready to use for future interaction with an ASD child
during an ESDM intervention.

2 A Teleoperated Robotic Avatar

Teleoperation designates a robotic system that is remotely controlled by a
user [20]. We choose to use the humanoid Pepper [29] a robot designed for
assistive purpose, e.g., [39], as a therapist avatar to interact with children with
ASD. Indeed, this robot is specifically targeted to interact with and assist people
in social environments. The robot is 1.20 m high, weighs 28 kg, has 20 DoF and
was already used to interact with children, e.g., [14,24,35].
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To devise our telepresence system, we accounted for different criteria deter-
mined by therapists. We have based our technical specifications from two sources:
(i) the study in [21] that includes collaboration between doctors, parents and
ASD adults; and (ii) our multiple meetings and discussions with therapists of
the Autism Resource Centre (CRA)1 of the Montpellier hospital, that started
two years ago.

The main robot functionality requirements we retained are: the appearance
shall be “friendly”; the voice should be soft; the robot must be able to get down to
the appropriate children’s level; to interact with them with human-like gesture
and be able to carry an object when given (e.g., carry a small toy to propose
the child to play with it). The main requirements for the whole telerobotic sys-
tem are: a minimal training phase (time) for therapists before the intervention;
installation with minimalistic equipment for easy set-up on hospital premises.

The whole body control is made with our framework mc_rtc2 and
mc_naoqi3 thanks to previous work carried out in [8].

Fig. 1. The simplified system architecture to teleoperate Pepper through VR. The
system is divided into three parts: (1) The video stream; (2) The audio stream; (3)
The retargeting module.

To enable remote control of the robot, VR tools are integrated into the devel-
opment of the remote operation system. As shown in Fig. 1, the whole architec-
ture is structured between two main entities: the Pepper and the VR materials
connected to the software SteamVR. An HTC VIVE Pro Head-Mounted Display
(HMD) enables the teleoperator to display to the therapist the stereo video

1 https://www.autisme-ressources-lr.fr/index.php.
2 https://github.com/jrl-umi3218/mc_rtc.
3 https://github.com/jrl-umi3218/mc_naoqi.

https://www.autisme-ressources-lr.fr/index.php
https://github.com/jrl-umi3218/mc_rtc
https://github.com/jrl-umi3218/mc_naoqi
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environment perceived by a ZED Mini camera mounted on the head of Pepper.
Then, to transmit the sound environment between the therapist and the child,
the internal microphone and loudspeaker of Pepper are connected to the HMD.

2.1 Retargeting

One of the main challenges is to have an intuitive anthropomorphic mapping
between the therapist and the robot workspaces. This is particularly challenging
due to the short size of this robot and the limited number of DoFs. Different
methods have been proposed to solve this issue, e.g., [1,13,24]. To control the
robot remotely in real-time, a first method trial is tested based on [13]. The idea
is to base the whole retargeting on the orientation and angular velocity of each
link and not to take into account the positions. This way, size and morphology
factors are not an obstacle. However, the limited number of DoFs, 6 in each arm
with the wrist and elbow yaw being redundant, leads to an over-constrained arm
control. This method is therefore not suitable.

In the end we developed our method that we also implemented successfully
in another context and another humanoid [11]. The user is equipped with an
HTC VIVE VR headset, two controllers in the hands and one VIVE tracker on
the lower back as shown in the Fig. 1. Each of these elements allows to track in
real-time the position and the orientation of the following articulations: head,
wrists, and lower back. End-effector hands tracking allows for easy and complete
arm movements. Tracking hand posture in the workspace is sufficient to achieve
“human-like” arm movements for the robot Pepper, due to the limited DoFs
in each arm. Hand, lower back and head postures are tracked in the SteamVR
reference world w with the transformation matrix at the origin O: THw

Ow , TBw
Ow

and THEw
Ow respectively.

As a difference with [11], a scaling ratio α is determined at the start of
the controller’s launch, to match the size of the therapist’s arms to that of the
controlled robot with a sensation of matching size. The position of the user’s
shoulder S relative to the tracker in the lower back is assessed a priori using
a tape measure. The ratio α corresponds to the ratio between the length of
the user’s arm lhuman (measure between the position of the shoulder and the
beginning of the finger) and that of the robot lrobot, that is,

α =
lrobot
lhuman

, α ∈ [0, 1] ∩ R (1)

The lower back tracker is used as the reference frame to sustain posture
coherence between the robot and the operator if the latter moves during the
teleoperation. The position of the hand for example, relative to the shoulder in
the SteamVR world reference is:

THw
Sw = THw

Ow (T Sw
BwTBw

Ow )
−1 (2)

Thus with the robot’s wrists as end-effectors, the hands are directed into the
robot’s frame r through the position and orientation of the controllers. The ratio
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α is applied to the relative position of the hand in the world frame of reference
to obtain its posture relative to the shoulder in the robot frame of reference.

THr
Sr =

(
RHw

Sw α · pHw
Sw

0 0 0 1

)
(3)

As the reference frames are not oriented in the same way between the robot
and SteamVR (designed as a world reference frame), a mapping is defined man-
ually for each tracked body. Moreover, an offset is applied to correspond to the
correct initial posture. Then, the position of the hand in the robot frame is
determined by multiplying the matrix in eq. (3) by the transformation matrix of
the shoulder in the robot frame, assuming that the robot and human shoulder
are in the same posture. The same method is applied for the head, with only the
orientation needed (head yaw and head pitch).

2.2 Perceptual Feedback

Visual Feedback. To display the view to the user, we render the scene (in
practice, the child room environment) in the VR headset. To do this, a ZED
Mini camera is mounted on the robot at the eye level. The camera is attached
using a system that allows its height and orientation to be adjusted. Adjusting
its orientation, notably slightly forward, allows the therapist to better see the
robot hands in the reduced field-of-view of the camera and due to the anatomical
proportion of the robot. Adjusting the height allows the therapist to be better
embodied [2]. To render the view in the HMD, data from the robot camera are
extracted by means of the ZED SDK with a 720 p resolution and at 60 fps; then
they are rendered through a texture in a scene with OpenVR and OpenGL.

To help users become more aware of their ability to move in space, red bands
appear around the visual field of the display point-of-view, as the mobile base
approaches an obstacle. An obstacle is detected at a 50 cm distance. The sonars
in Pepper’s mobile base can be used to assess possible impacts to the front and
rear, and the infra-red sensors for the right and left sides.

Sound Feedback. Real-time audio feedback is established between the robot
and the teleoperator via the PulseAudio server and the FFmeg library as shown
in Fig. 1. On the robot side, the loudspeaker and microphone are very close
together, inducing an echo that will be heard on the user side. The echo-cancel
module is then used to cancel this effect. The voice of the robot is then the one
of the therapist who knows how to modulate her/his voice according to the child
in front of her/him.

2.3 Adaptive Joint Stiffness

During teleoperation the hip actuator (between the torso and legs) is supporting
the weight of all the upper body which is half of Pepper weight. The joint is in a
quasi-static posture during 15 mn of intervention and has a tendency to overheat.
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In NAOqi the stiffness is in %, 0 meaning the joint is free and 100 meaning the
joint can use full torque power. When the stiffness of all joints is at 100% all the
time, as our design control with mc_naoqi was before, the leg joint overheats
in less than 15mn. Aldebaran Robotics proposes a smart stiffness4 solution to
adjust the torque power over time, proportional to the error. However, since the
error is not considered as an absolute value, as soon as the error is negative,
stiffness falls to 0. This means that during teleoperation, one may be locked in
a position, by moving one’s arm backwards for example. We decided to propose
our own adaptive stiffness with a corrector as follow:

S = Kp · |qd − qr| + Ki · EMAΔt(|qd − qr|) (4)

where qd (rad) is the joint target value provided by the QP controller; qr is the
real encoders value (rad); Kp is a positive proportional gain; Ki is the negative
integral gain; and EMAΔt stands for exponential moving average along Δt s.
We use the EMA filter instead of an integral value to reduce the stiffness if
the average absolute error, over a time window, is too large. In this case, if
the therapist pushes over one arm during teleoperation, the stiffness will grow
proportionally and then decrease after a few seconds so it can avoid damaging
the motors.

Fig. 2. Adaptive stiffness values (in light orange) on the right shoulder over time when
the arm is pushed manually and the torque error increases (dark green). The EMA of
the absolute error is in (dark blue). (Color figure online)

This is particularly useful because Pepper does not have a force sensor so
it is not easy to implement haptic feedback [6,7]. So during teleoperation one
could contact a table, for example on the side, without being aware of it and
unintentionally push over the table which can damage the motors. With our
method, the stiffness will decrease avoiding damaging the motors, see Fig. 2.
The final value is then filtered with: (i) the robot’s native method of reducing
stiffness when it reaches a threshold according to four defined levels; (ii) a value
4 http://doc.aldebaran.com/2-4/naoqi/motion/reflexes-smart-stiffness.html.

http://doc.aldebaran.com/2-4/naoqi/motion/reflexes-smart-stiffness.html
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always between 10 and 100%, except when the temperature reaches level 4, in
which case the stiffness is reduced to 0; (iii) a first-order low-pass filter with
sampling period dt = 0.012 s and a cutoff period of 100dt.

3 Use Case and Pilot Study

3.1 Early Start Denver Model: A Use Case

The ESDM is a behavioural therapy technique with a major advantage: its ther-
apeutic methods are entirely play-based. This helps to improve the social and
communicative skills of children with ASD. A list of skills is drawn up to assess
the child’s abilities, and learning objectives are written in collaboration with
the parents. Each goal is divided into several progressive learning steps, from
the basic skill, the one observed in the initial assessment, to complete mastery
of the goal as defined in [34]. Several studies have shown the effectiveness of
ESDM for autism, e.g., [33]. The study in [17] show a significant improvement in
autism symptoms in children aged between 18 to 30months. These improvements
included language, IQ and social skills after two years of therapy.

For the purpose of this study we determined with two speech therapists,
three tasks over 15 mn. This duration is chosen to represent the end of 1-hour
sessions, during which children often lose attention. They would therefore need
to re-engage them in the session. The three tasks chosen were determined in such
a way that Pepper would be able to carry them, and which are part of the tasks
proposed in the Rogers and Dawson manual on learning to communicate [34].
These three tasks are:

– Task 1: responding to greetings - Social Competencies, Level 1, item 8;
– Task 2: imitate 5 movements involving visible parts of the body in song/play

routines - Imitation, Level 1, item 2;
– Task 3: giving the requested object - Receptive Communication, Level 1,

item 13.

3.2 Preliminary Testing Scenario with Therapists

Population. To evaluate the acceptance of the guided robot in teleoperation
as a therapy tool in the department of the CRA, we recruited 11 therapists (2
registered nurses, 2 child psychiatrists, 6 psychologists, 1 speech therapist), all
are staff of the Montpellier Hospital and none of them is from the co-author list.
We don’t have the benefit of feedback from the psychomotor therapist, who lost
interest in the issue after noticing that the robot has very little grip in the hands
and lacks dexterity. We considered the following as inclusion criteria: work in the
CRA team with children with autism syndrome, no history of epilepsy for visual
feedback in VR. The group is constituted with 81.81% of women (9) and 18.18%
of men (2), with 4 people under the age of 30, 2 between 31 and 40 and 5 over 41.
This repartition is representative of the gender proportion in this department.
Few of the participants in the study are familiar with new technologies: only one
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had already used a virtual reality headset (but not with ASD children); none had
ever used a humanoid robot such as Milo [27], Kaspar [36] or Pepper [14], and
only 4 out of the 11 participants said they were used to using digital tools during
their work (such as eye tracking, tablets and external cameras), one ‘always’, two
‘rather’ and one ‘sometimes’. The other participants are not used to working with
digital tools (4 ‘at all’ and 3 ‘rather not’).

Study Protocol. During the preliminary study, each participant tries the sys-
tem within the same conditions, in order to complete tasks needed during inter-
ventions.

1) Training: First, a period of 5 mn for each participant is dedicated to
the training of the system, recognizing the button commands, understanding
the goal and the movement possibilities. This first part of training is made in
simulation with the robot displayed in an RVIZ scene.

2) Teleoperation trial: Then, a session of 10 mn of VR teleoperation is
started with different goals to meets: (i) To see if they are able to move in space
and be aware of their environment, they are asked to cross the hall from the
teleoperation room to the intervention room (around 2 m away); (ii) greeting
another person in the intervention room, as asked for the (Task 1); (iii), asking
each user to reproduce different song routines they know, one at least, with
gestures (Task 2), (iv) and finally we ask them to choose a game among many
disposed in front of them, and try to ask for it and catch it (Task 3).

3) Teleoperation free time: At the end of the session we proposed to each
participant if s/he wanted to test something else, and let them try to see if they
succeeded in doing other tasks.

4) Feedback: After removing the VR material, each participant answered
four questionnaires: (i) one overall questionnaire to know the profile of each
of them (age, gender, career...); (ii) one Usability Metric for User Experience
(UMUX) questionnaire which follows the definition of the ISO 9241-11 of usabil-
ity [15], adapted to our design setup and evaluate with a 7-point Likert scale [25];
(iii) one pragmatic quality scale from AttrakDiff2 [18] which describes the usabil-
ity of the system and determined if the user is able to meet her/his goal using
it. It is used to complete and to compare with the previous one and is evaluated
also with a 7-point Likert scale; (iv) an acceptability score to assess the views of
therapists from CRA towards social robots as a tool for autistic children, this
survey is inspired by the study of [30] with 5-point Likert scale. The questions
are: Q1- In your opinion, is it acceptable for social robots to be used as assistants
for care staff during interventions with ASD children? Q2- In your opinion, is it
acceptable for social robots to be used to monitor the progress and help diag-
nose an ASD child? Q3- In your opinion, is it acceptable for information to be
recorded and stored by a robot when it interacts with an ASD child? (assuming
parental consent) Q4- In your opinion, would it be acceptable for some ASD
children to perceive social robots as friends following their therapy? Q5- Do
you think the risk that some children might become attached to social robots
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is acceptable? Q6- Do you think it’s acceptable to use social robots that closely
resemble humans? The original version of the questions is established in French.

4 Results

Each of the 11 participants succeeded in completing all the tasks during teleop-
eration: saying “hello” and “goodbye” using speech and gestures (Task 1); mime
and sing a nursery rhyme (Task 2); managing to move the robot to another room
along a hall in the hospital ward to go to the intervention room; and grabbing
an object to play with (a rainstick and a ball) after asking for it (Task 3). These
tasks took between 4 and 10 mn to complete, depending on the skill and will-
ingness of each operator to complete the tasks quickly. Some of the therapists
asked to try other activities: 3 decided to point their hand at another object
they wanted to try and manipulate (maracas, for example); 1 therapist wanted
to shake the hand of another therapist with whom the robot was interacting;
and 5 therapists tried to return the ball by throwing it. However, due to the
delay in opening the hand, the throws were unsuccessful. Some limitations of
the system were raised. Almost all participants needed guidance to be able to
move around the corridor and the slightly heavy rain stick tended to slip out of
Pepper’s hands.

The user experience (UX) is evaluated using two questionnaires: one usability
score and one pragmatic quality score. The first questionnaire, adapted from
methode UMUX, is evaluated following the method of System Usability Scale
(SUS) score and the one presented in [15]. Each question is scored with a value
between 0 and 6. The questions Q1, Q2, Q3 and Q5 are scored following the
rule [score − 1] and the Q4 and Q6 with [7− score]. To calculate the total score
as a percentage, we divide the sum by 36 and multiply the result by 100. This
score is calculated for each participant and we obtain a final average score of
μ = 66.67% and σ = 10.83%. The pragmatic quality score is above 4 on average
for each question, which is the minimum value to be acceptable.

The acceptability of the robot as a therapeutic aid for carrying out an ESDM
session is obtained from the final questionnaire. The aim of this questionnaire is
to understand the wishes and concerns of the therapists with regard to this new
technology and the possibilities of working in the department. The first three
questions concern the acceptability of using the tool. The second part is about
the general use of humanoid robots. Responses to the questions 1 and 3, see
Fig 3, have on average high scores (value out of 5 from 1-“Strongly disagree”
to 5-“Strongly agree”) and small standard deviation (std) as shown in Table 1.
Whereas questions 2, 4 , 5 and 6 have lower average score with wider std.

5 Discussion

The results of the questionnaires and the feedback from the therapists and our
observations show that the system is usable to perform a 15 mn ESDM session
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Fig. 3. Acceptability score data, mean and standard deviation (in grey boxes) for each
question. The answer are evaluated with semantic differential questions and the answers
: 1- Strongly disagree 2- Disagree 3- Neutral 4- Agree 5- Strongly agree. (Color figure
online)

Table 1. The UX results for usability and pragmatic quality of the system.

UMUX questions (Scale score 1 to 7) n mean std

1. Do you think this teleoperation system is a good intermediary for interacting with children with ASD? 11 4.72 1.35
2. Do you think this remote operation system is a good tool to assist you during interventions? 11 4.64 1.21
3. The system allows users to perform a 15 mn ESDM session 11 5.10 1.51
4. Using Pepper in teleoperation is a frustrating experience 11 2.91 1.97
5. This remote operation system is easy to use 11 5.18 0.75
6. I have to spend too much time correcting things with this teleoperation system 11 2.72 0.90
AttrakDiff2 - (Scale score 1 to 7) - The teleoperation system is rather : n mean std
1. 1-Technical 7- Intuitive 11 4.64 1.63
2. 1-Complicated 7- Simple 11 5.18 0.98
3. 1-Not practical 7- Practical 11 4.64 1.03
4. 1-Cumbersome 7- Straightforward 11 4.00 1.00
5. 1-Unpredictable 7- Predictable 11 5.36 1.36
6. 1-Confusing 7- Clearly structured 11 5.73 1.01
7. 1-Unruly 7- Manageable 11 5.45 0.93
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for three predefined tasks. The results of the UMUX-like survey of 66.67% high-
lights the correct usability of the system according to the SUS and UMUX score
metrics: between “ok” and “good” on the scale, but also reveal paths of possi-
ble improvements. The score of the pragmatic quality questions validates this
same hypothesis with scores slightly above the average (i.e., above 4). The main
limitations put forward the therapists are: the lack of dexterity in the hands
that prohibits fine manipulation of toys. Currently, a single actuator enables the
hands to be opened and closed completely, making it impossible to point with
the fingers (useful for expressive communication [5]). This lack of dexterity due
to the design of the robot [29] means also that it is unable to grip objects that are
too large or relatively heavy. And the absence of wrist flexion/extension actuator
makes the gripping tasks more complicated. This clearly puts high-constraints
on next-generation robotics design for ASD applications, notwithstanding the
consequent impact on prices. During teleoperation, some therapists also discov-
ered that due to the limitate workspace of Pepper [1] some postures are more
complicated up to not possible to reproduce with Pepper than others. For exam-
ple: clapping both hands, spinning both arms around one another or maintaining
both hands in contact while moving. Two participants judged that a more impor-
tant amount of time, i.e.,higher than 5 mn, is necessary to be trained with the
system before manipulation, to be completely efficient during interventions.

Regarding visual feedback in VR, many therapists mentioned before tele-
operation that they might have sickness and nausea, but only one participant
mentioned a disorientation after removing the HMD. The reduced field of view
means that therapists do not always have full confidence that the robot is per-
fectly replicating the gestures produced and do not feel completely aware of
their environment (i.e., lack of embodiment [2]). However, when interacting and
learning with ASD children, they want to make sure that the movements made
are understandable to the child. We might consider having two point-of-views
displayed on two different screens such as the setup of the Team Northeastern
during the global competition ANA Avatar XPrize [26]: (i) in a first screen: a
ZED 2 camera with a wide field-of-view and positioned high up to display a
global view of the room, 2) in a second screen: the ZED Mini camera on Pepper
displays the robot’s point of view, and the operator wears 3D glasses. A VIVE
tracker is then placed on the head to track the movement of the user instead of
the HMD. The latest feedback on VR is to sit down during teleoperation so as
to be more or less at the same height as the robot, and so be less disturbed in
seeing the environment from below.

As raised by one participant of this study, the acceptance is subjective to
each individual and requires a multidisciplinary approach. These results are only
indicative in the context of the Montpellier CRA and our protocol.

According to the results, most of the therapists agreed that a social robot
can be used as a tool to interact with ASD children as an assistant and for
recording and collecting data. Although the average is high for diagnostic aid and
assessment of the child’s progress, the standard deviation is higher. Practitioners
emphasise that the robot must remain in the field of assistance as it is also
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highlighted in [12]. However, as this department is a diagnostic unit, the feeling
of being able to be replaced was often evoked and may have had an impact
on the answers to this question. The responses from the 11 therapists show
heterogeneous opinions on the acceptability of the robot’s appearance in the case
of it being a humanoid robot. The study in [30] reveals the same non-conclusive
results regarding the acceptability of human-like robots. The lack of examples
of this type of interaction may be a hindrance, and as one of the therapists
pointed out, the look and ease with humanoid robots may be different for autistic
children. A study carried out in [37] shows a positive appreciation by children
of the Pepper robot. On the other hand, any other shape would have made it
difficult to beam and teleoperate!

Another concern raised is that the child may interact with the robot and
make progress in social communication with it. Yet, there is no guarantee that
any progress can be reproduced when interacting with humans over time.

6 Conclusion and Future Work

This pilot study allowed us to assess that our system can effectively be used by
and assist therapists during a short ESDM intervention with ASD children. It
also shows that they are willing to try out new tools and agree to help design new
ones to better assist them during therapy sessions. Obtained feedback revealed
rooms of improvements for the teleoperation system with a view to setting up
a future protocol at Montpellier University Hospital. The improvements will
focus on visual feedback by adding SLAM [10] or two point-of-views on two
screens [26] to increase therapists awareness of their environment, and on the
implementation of haptic feedback to avoid collisions and complement sensory
feedback for better interaction with the children. Another protocol beginning in
fall 2023 will evaluate the quality of the robot as a tool during ESDM intervention
with children aged between 18 to 30months. This new study aims to evaluate
the relevance of the solution during real interventions both for therapists and
children. That is, whether this technology will enhance the learning effects of
social communications according to the tasks defined above, and whether this
will enable therapists to concentrate more on the session while the robot itself
records the children’s progress and proceed with predefined markings.
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Abstract. To interact with humans, a robot has to know actions done
by each agent presents in the environment, robotic or not. Robots are
not omniscient and can’t perceive every actions made but, as humans
do, we can equip the robot with the ability to infer what happens from
the perceived effects of these actions on the environment.

In this paper, we present a lightweight and open-source framework to
recognise primitive actions and their parameters. Based on a seman-
tic abstraction of changes in the environment, it allows to recognise
unperceived actions. In addition, thanks to its integration into a cogni-
tive robotic architecture implementing perspective-taking and theory of
mind, the presented framework is able to estimate the actions recognised
by the agent interacting with the robot. These recognition processes are
refined on the fly based on the current observations. Tests on real robots
demonstrate the framework’s usability in interactive contexts.

Keywords: Action Recognition · Human-Robot Interaction ·
Cognitive Robotics

1 Introduction

Where robots have been restricted for a while at performing complex tasks on
their own in an autonomous way, or in coordination with other robotic agents, the
field of Human-Robot Interaction brings the new challenge of robots performing
shared tasks with humans. In light of the definition of joint action, this means
that robots should be able to interact with humans and coordinate their actions
in space and time to bring about a change in the environment [18]. Cooperation
and collaboration tend to be key features to make robots more adaptative and
thus flexible with respect to humans’ actions.

As a prerequisite to joint action, Tomasello in [21] emphasized intentional
action understanding, meaning that an agent should be able to read its partner’s
intentions. In this way, when observing a partner’s action or course of actions,
the agent should be able to infer its partner’s intention in terms of goal and plan
to achieve the goal. Where in a shared task one can assume a shared goal to

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
A. Al. Ali et al. (Eds.): ICSR 2023, LNAI 14453, pp. 350–362, 2024.
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Fig. 1. A shared task example where the robot, performing its own part of the task,
cannot monitor the human activity.

exist, a shared plan can only be estimated by both partners. As a consequence,
during the entire realisation of a shared task, agents should continue to monitor
others’ actions to be able to adapt and coordinate their own actions.

Considering a shared task like cooking, when performing its own actions, a
robot has to perceive the elements it has to interact with. Wanting to grasp a
knife, the robot needs to look at the knife to estimate its position. However, when
focused on such elements, monitoring others’ actions can become unfeasible.
Even having multiple visual sensors, we cannot assume that the human will
perform its part of the plan in front of the robot, as illustrated in Fig. 1. In the
same way, we cannot assume to act in a fully instrumented area allowing the
robot to be omniscient. In such realistic applications, the need to detect human
actions with as little visual information as possible is mandatory.

In the following, we will make the distinction between action and task consid-
ering a hierarchic task decomposition point of view. This means that a task can
be decomposed into a set of sub-tasks and actions, where each sub-task can also
be decomposed in such a way. We consider as actions the leaves of the result-
ing decomposition, meaning actions that can be directly executed by a robotic
agent (i.e. pick, place, release, etc.). Reversing this assumption, a human task
can be monitored through the detection of the underlying human actions. Task
recognition is out of our current scope as requiring as a first step the recognition
of actions.

In this paper, we present a lightweight method for action recognition based
on a semantic knowledge flow. This knowledge is obtained through the use of
the DACOBOT robotic architecture [16]. The main contribution of this work
is the possibility to detect actions through the changes they brought to the
environment. Such a contribution allows to pass over the general assumption of
constant monitoring of the humans using visual sensors. The side contribution
of this work, more related to the context of Human-Robot Interaction, is the
ability to estimate the actions perceived by each agent it interacts with thanks
to perspective-taking.

In Sect. 2, we discuss related work and how action recognition is generally per-
formed. A detailed explanation of the approach is then provided in Sect. 3 before
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providing an overview of the knowledge flow in which it has been integrated in
Sect. 4 and its application in Human-Robot Interaction in Sect. 5. Finally, Sect. 6
presents results on a dataset and Sect. 7 concludes the paper.

2 Related Work

Action recognition takes its application in various fields [2] such as health
care, sports analysis, and robotics. It is used, for example, to monitor patients
in healthcare in order to detect falls [19], or to anticipate human action for
autonomous driving vehicles [7]. In robotics applications, action recognition is
intensively used to learn tasks from video demonstrations [22]. In the field of
Human-Robot Interaction, action recognition has become an important topic as
detailed in [6], with applications such as gestures learning [25] or risk evaluation
for decision making [26].

To date, two approaches coexist to recognise human actions: data-driven and
knowledge-based. While data-driven approaches aim to directly deal with sensor
data such as images, knowledge-based approaches rather focus on the analysis
of semantic data either stated or extracted beforehand.

Data-driven approaches were initially based on 2D images with the use of
pattern matching [1] or support vector machine [17]. The use of deep neural
networks has then allowed the generation of more robust recognitions [24] but
with the initial assumption of no occlusion. This concern has been later addressed
in [23] to deal with real-world scenarios and thus environments like offices with
desks and chairs. For finer estimations of the humans poses and thus more precise
recognition, similar approaches but using 3D point clouds have been proposed [9].

The data-driven approaches also provide solutions to the problem of recognis-
ing human actions when the robot cannot perceive directly the human activity.
A combination of RF-based (Radio Frequency) and vision-based detection has
been used in [8] where the RF part can provide information when it is impossible
for the vision. Other solutions aim at equipping the environment itself instead
of the robot with multiple sensors like cameras [5] to provide the greatest vision
and thus always keep track of the human’s body. The main inconvenience of
such solutions is the use of dedicated environments or specific robot hardware.

With regard to all the presented data-driven approaches, a general concern is
that they mostly recognise humans’ activities (i.e. drinking, sleeping, eating or
humans’ gestures) rather than primitive actions. In addition, as these approaches
focus on the human body, the track of objects is not considered. Nevertheless,
for human monitoring in a joint task, one would rather need low-level actions
recognition (to maybe recognise higher level tasks on top of it) such as picking
or placing and a track of the objects involved in the task.

On the other hand, knowledge-based approaches rely on data already pro-
cessed by the robot in order to abstract its environment. All these data are thus
centrally stored and formalised. One such formalism is ontology which can be
formalised thanks to the Ontology Web Language (OWL). Riboni et al. in [11],
explain that the human action recognition can be handled by an ontology-based
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approach with a result at the same level as the better data-driven algorithm.
Nevertheless, they also specify that the ontology-based approach needs a way
to have a time representation to reach this level of result. Thanks to [10], this
time representation can be solved. In this work, they define a temporal Web
Ontology Language (tOWL) as an extension to OWL with which it is possible
to have a time representation of actions or events in the ontology. This enables
to recognise actions thanks to ontology reasoning. However, it does not man-
age knowledge uncertainty or noise in the perception. To solve this, Rodriguez
et al. in [12] propose to use a fuzzy ontology described and formalized in [20].
Thanks to their model and the use of a fuzzy ontology, Rodriguez et al. solve
the problem of uncertainty and time representation, but their system does not
detect low-level actions.

Finally, at the intersection of data-driven approaches and knowledge-based
approaches, some hybrid approaches have been proposed [3,4]. In such works, the
data-driven part is used to recognise the low-level activities while the knowledge-
base part is used the recognise higher-level activities, based on the low-level
actions. While still demonstrating the usability of knowledge-based methods,
the need to continuously observe humans still exists.

3 Approach and Recognition

Let’s consider an example of a robot and a human working together to prepare
a meal in a kitchen. If we observe someone holding a fork, it must have been
picked up somewhere. Similarly, if utensils appear on the workplace, someone
must have placed them there. A human can infer which actions have caused
these changes in the environment without seeing them, even if some parameters
can remain unknown (e.g. who acted?).

This cognitive process allows the recognition of actions thanks to the obser-
vation of changes in the environment and also allows an estimation of the pos-
sible set of actions in a given situation [21]. For example, if we see Bob’s hand
approaching an apple on the workplace, we can estimate that Bob’s next action
will probably be related to the apple, but we cannot predict whether he will
pick it up or push it. If we observe Bob grasping the apple, we can refine our
estimation because the set of possible actions in this state is limited.

Taking inspiration from this human ability, we choose to represent actions
as sequences of geometric changes in the environment. In this section, we thus
present our method to recognise on-the-fly actions, based on symbolic facts.

3.1 A Dynamic State Machine to Handle the Recognition

To represent the recognition process introduced earlier, we have chosen State
Machines (SM) where transition conditions represent the steps of the recognition
process, i.e. the changes to be perceived. Thus, a pick action can be recognised
by the following transitions of a SM: (1) the agent’s hand approaches the object
(2) the object is in the agent’s hand (3) the object is no longer on its support.
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These changes in the geometric situation of the environment can be abstracted
using semantic facts, resulting in the following sequence:

1. ?A hasHandMovingToward ?O
2. ?A isHolding ?O
3. NOT ?O isOnTopOf ?S

To represent the unspecified entities involved in the sequence (i.e. the agent,
the object, and the support), we use variables here represented by question
marks followed by a literal. During a recognition process, these variables will
be instantiated and will thus constrain the following facts of the sequence. For
example, perceiving first Bob’s hand approaching the object o 1 meaning the fact
(bob hasHandMovingToward o 1), the variables A and O become instantiated
and constrain the rest of the sequence. The next expected fact would thus be
(bob isHolding o 1).

Even if sequence representation is convenient, some facts could be unper-
ceived by the robot. We propose a way to specify the minimal set of facts to
be perceived to recognise an action with the use of the tag REQUIRED. The
resulting description of an action is provided in Listing 1.1.

Listing 1.1. Extract of the models file for a pick over action

Pick over :
sequence :
− ?A hasHandMovingToward ?O
− ?A i sHo ld ing ?O
− NOT ?O isOnTopOf ?S REQUIRED

As a consequence, our actions are no longer some purely linear sequences and
could rather be transposed to state machines as illustrated in Fig. 2. We can see
that the transition carrying the fact ?A isHolding ?O connects both states s0
and s1 with state s2. These links mean that the transition between states s0
and s1 is not necessary to recognise the action. Not perceiving that the agent’s
hand approaches the object but perceiving that the agent is holding the object
is sufficient to reach state s2 and to start the recognition. Nevertheless, due to
such a bypass, one could notice that triggering the transition from s0 to s3,
variable A will never be instantiated resulting in missing parameters.

Fig. 2. State Machine for the detection of the pick action with only transition fact
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3.2 Dynamically Created State Machines

In real-world situations in general and in human-robot interaction scenarios in
particular, several agents can act simultaneously and even a single agent can do
several actions at the same time, like picking two objects. An action recognition
system must be able to handle the recognition of multiple actions in parallel
that’s why we designed state machine factory. When a semantic fact is sub-
mitted to a factory, if it allows to activate one of the transitions of the initial
state, the factory will create an instance of the SM it is responsible for. Such a
SM will be called an active state machine. The newly created SM will thus
be in a different state than the initial one and some of its variables will already
be instantiated.

When a new fact arrives in the recognition system, meaning a change in the
environment has been perceived by the robot, this fact is first used to try to
trigger a transition of all the active SMs. In the case the fact does not allow
any of them to trigger any transition, then it is submitted to each factory to try
to generate new SMs. Indeed, without this rule, multiple SMs recognizing the
same action (in terms of instance) could exist at the same time. Nevertheless,
several SMs coming from the same factory can exist simultaneously, that is to
recognise the same action type performed by different agents simultaneously, or
by the same agent on different objects.

When an active SM is finished, if all the variables used in the conditions of
its transitions have been set, the SM is stated to be complete, otherwise, the
SM is incomplete. Indeed, as not all transitions are required to recognise an
action, some variables can stay unbounded.

Once a SM is finished, an action has been recognised. The finished SM is
thus removed from the set of active SMs. In addition, as several SMs could have
been created from the same semantic fact (based on the principle of progressive
refinement when new facts arrive), all active SM involving facts used by the
finished SM are also removed from the set of active SMs. The implicit hypothesis
made here is that a fact can only be part of a single action performed by an agent.

4 Integration and Knowledge Flow

In order to be fed with meaningful semantic facts representing the changes in
the environment, our Action Recognition System has been integrated into the
DACOBOT [16] robotic architecture. In this section, we present the knowledge
flow illustrated in Fig. 3.

4.1 Geometrical Situation Assessment

In this architecture, the geometrical Situation Assessment is handled by the soft-
ware Overworld [14]. This software can be connected to any perception system to
perceive objects, humans, or areas. As the same entity can be perceived through
several systems, Overworld is first able to aggregate the data from all the used
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Fig. 3. Knowledge flow for Action Recognition System in the DACOBOT architecture

perception systems to create a unified 3D representation of the robot’s environ-
ment. Thanks to geometrical reasoning based on the sensors’ field of view, the
entities’ visual occlusions, and physics simulation, Overworld provides a coherent
representation of the entire environment.

On the basis of the 3D representation, Overworld can then compute seman-
tic facts. These facts can link objects together like with isOnTopOf or isInCon-
tainer. They can link objects or agents to areas with isInArea. They can also
link agents to objects with facts such as hasInHand, isLookingAt, or hasHand-
MovingToward. These facts are computed at every update of the system and
are output on a ROS topic. A fact is generated when it starts to be perceived
(ADD) and when it stops (DEL).

An important feature of Overworld, essential for HRI, is its ability to estimate
the perspective of other agents and their representation of the world. From there,
in the same way it is done from the robot’s perspective, Overworld computes
and generates semantic facts from the others’ perspective allowing the use of the
theory of mind.

4.2 Semantic Knowledge Base

The architecture used considers as a central component a semantic knowledge
base. This latter contains both common sense knowledge (general concepts like
object types, colors, ...) and anchored knowledge related to the current situa-
tion. This knowledge can be accessed by every component of the architecture
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allowing a unified and coherent representation among the entire architecture.
This semantic knowledge base is managed by Ontologenius [15]. This software
has been specially developed for robotic applications with good performances
both on queries and dynamic updates. It is thus adapted to maintain the cur-
rent state of the situation at a semantic level with online inferences resolutions.
Regarding the knowledge stream, Ontologenius is directly connected to the out-
put of Overworld. When new facts arrive in it, they are first analysed to verify
their consistency regarding common sense knowledge, then once added to the
knowledge, Ontologenius will reason on this knowledge in order to extract new
facts. For example, from the fact ADD (cup 1 isInTopOf table 3), we can infer
thanks to inverse ADD (table 3 isUnder cup 1).

As an output, Ontologenius sends on a ROS topic the validated facts as well
as the inferred ones. However, as it does not deal with temporal aspects, the
inferred facts cannot be stamped on the base of the used facts for the inference
nor at the time of the inference. They are rather sent with an explanation about
the facts involved in their inference.

Like Overworld, Ontologenius can maintain several knowledge bases in par-
allel, allowing theory of mind. Each output of Overworld (one per human agent
in addition to the robot) is thus connected to a specific knowledge base.

4.3 Episodic Knowledge Base

As explained by Riboni et al. in [11], ontology-based action recognition is possi-
ble when linked to time representation. Regarding this temporal representation,
the DACOBOT architecture proposes the software Mementar [13] as an episodic
knowledge base. It is responsible for the organization of the semantic facts, pro-
vided by the ontology, on a temporal axis. While only the validated facts are
already stamped, the inferred ones have to be aligned. To this end, Mementar
finds the more recent fact among the ones used in the inference and aligns the
inferred fact on this later. All the facts once correctly stamped are then repub-
lished on a ROS topic for the components (as the action recognition) needing
continuous monitoring.

On the basis of this timeline, Mementar proposes a set of queries to retrieve
past facts based on their timestamp, their order, or their semantics thanks to a
link with the semantic knowledge base. In addition, Mementar allows to represent
actions/tasks in the timeline with a start stamp and an end stamp. These actions
can also be queried to retrieve the facts appearing during an action, the actions
holding during an action, their stamps, or their type.

Finally, in the same way it has been done for the two previously presented
components, Mementar can manage a timeline per agent allowing to manage
theory of mind at a temporal level.

4.4 Action Recognition

The action recognition component described in this paper is connected to the
output of Mementar where no distinction is made between the inferred facts and
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the others. As illustrated in Fig. 3, as an output, the action recognition sends
the description of the recognised actions to the semantic knowledge base and
temporally marks them in the episodic knowledge base.

This description of the recognised actions at the semantic level allows us to
link the actions to their parameters as a relation reification. An example of such a
description is presented in Listing 1.2. This description is stored in a description
file and can reuse all the different variables used in the facts sequence linked to
the action models. Here we reuse the variables A to provide the knowledge of
who has acted. We also provide a way to symbolise the action itself with the
specific variable?.

Actions are thus described both at the semantic and episodic levels, each
providing a different view of them and thus different ways to retrieve them. For
example, to know the agent having performed a given action, one can query the
semantic knowledge base. On the contrary, to know the facts that took place
during a given action or to know when has started an action, one would rather
query the episodic knowledge base.

5 Multi-human Estimation and HRI

As described previously, all software used in the knowledge flow can manage in
parallel multiple instances. This specificity provides multiple independent knowl-
edge flows, one for each agent interacting with the robot in addition to the flow
for the robot itself. Taking advantage of that, we can recognise actions from
the knowledge flow of any available agent in order to estimate the actions they
are aware of. In this way, the knowledge base of each agent can be updated
independently which can lead to the generation of belief divergences.

To illustrate this divergence in beliefs, let’s consider a robot and a human
interacting together. The human temporarily leaves the room to pick up a tool.
Meanwhile, the robot picks an object and places it in a drawer. When the human
comes back, thanks to the actions recognition system, the robot can estimate
that the human knows that it picked the object but can also estimate that he
does not know that it placed the object in the drawer. Here a divergence in
beliefs is raised between the knowledge bases of both agents.

Such piece of information could later be used by a decisional process, like
a supervision component, to prevent future errors in the execution of a plan.

Listing 1.2. Description part of our model for the pick action

pick :
d e s c r i p t i o n :
− ?? isA PickAction
− ?? isPerformedBy ?A
− ?? isPerformedOn ?O
− ?? isPerformedFrom ?S
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In a similar way, actions with no visual effects on the environment, like scan-
ning a bar code, can be estimated as unknown by the human partner and thus
communication could be required to prevent a blockage in the execution of a
plan.

6 Experimentations

To illustrate the possibilities offered by our action recognition system, we present
here two scenarios tested on two different robots1.

6.1 Scenario 1

In the first scenario, we use a Pr2 robot to pick a cube and to drop it in a
box previously flipped by the human partner. Here we want to illustrate the
recognition of the actions of the robot itself but also actions made by a human
agent not perceived by the robot2. This case study thus demonstrates among
others the recognition of incomplete action as the robot does not have access to
all data needed to recognise all parameters of the action like who has performed
the action.

In this scenario, our system has been able to recognise a pick and a place
action of the robot but also a pick and a place action of an unknown agent. This
illustrates the multiple recognition of actions even if some are incomplete and
the capability to create and manage multiple SMs.

6.2 Scenario 2

In this second scenario, we use a Pepper as the robotic agent that is perceiving
two human agents (a 1 and a 2) making some tabletop manipulation on cubes
over boxes. Each human agent is equipped with a motion capture system to
be perceived by the robot. The configuration of the scenario is represented in
Fig. 43. This scenario is decomposed into three parts.

In the first part of the scenario, each agent looks at the table, to initialise
their knowledge base with the current state of the environment. After this initial
step, one agent (a 2) turns around (Fig. 4a) and the other human agent (a 1)
moves one cube. This later action is perceived by the robot and is also added
to the estimated knowledge base of a 1 who has done the action. The pick is
recognised between t0 and t2 for these two agents as it is presented in Fig. 5.
Based on the estimation of the perspective of a 2, the action made by a 1 is not
added to the knowledge base of a 2 as it could not be perceived by a 2. This
part allows us to demonstrate the recognition of the actions from the point of
view of different agents making a shared task.

1 ROSbags: https://gitlab.laas.fr/avigne/action recognition dataset.
2 The agent is not perceived because it has not been equipped to do this.
3 Video: https://youtu.be/cwLLEAA mCY.

https://gitlab.laas.fr/avigne/action_recognition_dataset
https://youtu.be/cwLLEAA_mCY
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Fig. 4. Representation of the situations used in scenario 2. At the left the situation
where a 2 can’t see the cubes. At the right the situation when a 2 turns around again
to continue the task.

In the second part of the scenario, a 2 turns around again to see what has
been done (Fig. 4b). With the estimation of his perspective, the robot now esti-
mates that the agent has perceived that the cube has moved. This allows our
system to recognise that a pick and a place action have been performed, from a 2
perspective, but with no additional information. Indeed, with the facts linked
to this action (around t6), it’s impossible from the point of view of a 2 to know
who has done the action.

The last part of this scenario is a shared task between the two humans. They
have to take at the same time one cube each and make a tower. In this part,
we demonstrate the recognition of actions performed at the same moment on
different objects and made by different agents. This simultaneous recognition is
illustrated between the timestamp t11 and t12 in Fig. 5.

Fig. 5. Simplified view of the timelines maintained by Mementar for each agent of the
scenario 2. Facts are represented at the right of the timeline and actions are at the left.
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7 Conclusion and Future Work

In this paper, we present our Action Recognition system4. The recognition pro-
cess uses state machines dynamically created and instantiated thanks to the
semantic facts produced by the knowledge flow of the robotic architecture it has
been integrated into. These state machines are easily configurable to be adapted
to new actions. In addition, our system is also adapted to the HRI context
thanks to the management of multiple knowledge flows in parallel relying on
perspective-taking.

This system is a first step toward a larger system for task recognition based
on Hierarchical Task Network (HTN), allowing us to validate and test all the
requirements before handling this new challenge. Nevertheless, our action recog-
nition system has some limitations that will have to be handled. The main
limitation is due to the limited set of facts currently computed by the situation
assessment. Indeed, we are aware that with the current set of facts, only pick
and place can be detected. However, with the presented system, we can easily
handle new sets of facts and thus describe and recognise new actions.

Another aspect that we want to develop would be a post-processing of
detected actions to try to fulfil the incomplete actions and to remove false detec-
tion due to natural changes in the environment. Indeed, currently, an object
falling on the ground would generate the recognition of a pick action and the
presence of a single action at the place of action is not used to estimate who
performed the action.
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Abstract. As social robots become integral to daily life, effective bat-
tery management and personalized user interactions are crucial. We
employed Q-learning with the Miro-E robot for balancing self-sustained
energy management and personalized user engagement. Based on our
approach, we anticipate that the robot will learn when to approach the
charging dock and adapt interactions according to individual user pref-
erences. For energy management, the robot underwent iterative training
in a simulated environment, where it could opt to either “play” or “go
to the charging dock”. The robot also adapts its interaction style to a
specific individual, learning which of three actions would be preferred
based on feedback it would receive during real-world human-robot inter-
actions. From an initial analysis, we identified a specific point at which
the Q values are inverted, indicating the robot’s potential establishment
of a battery threshold that triggers its decision to head to the charg-
ing dock in the energy management scenario. Moreover, by monitoring
the probability of the robot selecting specific behaviours during human-
robot interactions over time, we expect to gather evidence that the robot
can successfully tailor its interactions to individual users in the realm of
personalized engagement.

Keywords: Personalized interaction · Companion robots · Battery
Management · Reinforcement learning

1 Introduction

As social robots become more and more integrated into everyday human life,
their handling becomes an increasingly complex issue. One of the most impor-
tant aspects to consider is managing the robots’ battery life [5]. Especially during
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long-term human-robot interactions (HRIs), it would be cumbersome for users
to continually monitor their robots’ battery status to send them to the charging
dock when the battery is close to depletion. Furthermore, robot adaption to user
preference is certainly a key element of long-term interactions between humans
and robots [7]. Hence, it would be beneficial if a robot could autonomously navi-
gate to its charging dock and replenish its battery at an optimal time determined
by its own algorithms, considering social interaction. At the same time, it would
be advantageous if home robots could tailor their interactions to individual users,
enhancing their utility and user experience.

In this paper, we present approaches that employ Q-learning [16] to com-
bine both these aspects. The primary contributions of this paper include (1)
determining the optimal timing for the robot to approach the charging dock
using Q-learning in a simulated environment; and (2) enabling the robot to
adapt to individual users over time during human-robot interactions by leverag-
ing Q-learning with a real Miro-E robot. For that, we first present some existing
approaches to battery management and personalized user engagement in Sect. 2
and introduce theoretical backgrounds about Q-learning in Sect. 3. After that,
we present our method by describing our own implementation of Q-learning for
self-sustained energy management and personalised user engagement in Sect. 4.
We further provide an initial proof of concept of our approach in Sect. 5 before
concluding the paper.

2 Background

In the field of battery management, a diverse range of methodologies have been
established. Some approaches do not incorporate learning but rely on estima-
tion functions [4], or model predictive control [10]. Many others instead [1,3,8,12]
used strategies involving energy storage and decision-making frameworks using
some form of reinforcement learning, allowing for dealing with uncertainties effec-
tively. Likewise, our approach is based on a form of reinforcement learning (Q-
learning, c.f. Sect. 3).

To personalize and adapt a robot’s user engagement, frameworks have been
proposed by [9], while [6] have presented designs, implementations, and assess-
ments for socially assistive robots. [9] allows robots to understand children with
ASD’s emotions using physiological signals, while [6] motivates elderly users to
exercise via a vision-equipped robot. However, the adaptation techniques vary.
[9] utilizes random phrase selections during exercises to avoid repetitiveness,
while [6] employs Support Vector Machine (SVM)-based modelling to interpret
children with autism’s physiological signals. The work presented here combines
such reinforcement learning-based behavioural adaption systems (e.g. [11,14])
with reinforcement-based solutions for autonomous battery management.

Our approach extends our previous work [2] in which we effectively utilized
Q-learning for “Energy Autonomy” and “User’s Preferences” in a study involving
an early version of the Aibo robot1. There, we demonstrated a robot that could
1 See: https://electronics.sony.com/more/c/aibo.

https://electronics.sony.com/more/c/aibo
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operate for extended periods without depleting its energy source and had suc-
cessfully learned an effective policy for engaging users through real-world inter-
actions. Current work follows up on this study, replicating the original methods
using a modern Miro-E2 robot. Additionally, we have expanded and improved
some methodological aspects of the original work, c.f. Sect. 4.

3 Theory

In this section, we will briefly introduce the theoretical background to the learn-
ing algorithm used in this work. Specifically, we discuss Q-learning [16], the
epsilon-greedy [13], and the softmax [15] policies, which we consider in our imple-
mentation. The goal of Q-learning is to find optimal Q values, q∗, which means to
find an optimal policy π∗ as the policy π(a|s) that maximizes the expected total
reward from a given state. Q values are a measure of the expected return after
taking a specific action in a specific state with a particular policy. The learned
Q values directly approximate q∗, independent of the policy being followed [13]
because Q-learning is an off-policy algorithm and its updates always reflect the
maximum expected reward. This specifically enables early convergence of a cho-
sen policy and the target policy can be deterministic, while the behaviour policy
can continue to sample all possible actions [13]. Therefore, Q-learning is a simple
way for agents to learn how to act optimally in controlled Markovian domains as
articulated by Christopher [16]. The update for Q-learning is defined as follows:

Q(St, At) ← Q(St, At) + α(Rt+1 + γ max
a

Q(St+1, a) − Q(St, At)) (1)

In off-policy algorithms, the policy used to generate behaviour called the
behaviour policy, may in fact be unrelated to the policy that is evaluated and
improved, called the target policy. The Q-learning updates its Q-values to align
with the optimal (or “target”) policy. However, while the behaviour policy could
in theory be any policy, it should be soft (i.e. it should consider all actions in all
states with nonzero probability) in order to explore all possibilities [13].

In reinforcement learning, maintaining an appropriate balance between explo-
ration and exploitation is a crucial aspect. A simple yet effective strategy
for managing the exploration-exploitation trade-off is the epsilon-greedy action
selection mechanism [13]. With this approach, the agent selects an action that
maximizes its Q-value for a given state with a probability of 1 − epsilon and
chooses an action randomly with a probability of epsilon. The epsilon-greedy
policy treats the selection probability of all non-greedy actions equally, thereby
neglecting the estimated Q-values for these actions.

However, softmax [15] uses action-selection probabilities which are deter-
mined by ranking the Q-value estimates using a Boltzmann distribution. In prac-
tical applications, to prevent overflow and ensure numerical stability, τ denotes
a positive parameter known as the ‘temperature’:

2 See: https://miro-e.com/robot.

https://miro-e.com/robot
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π(a|s) = Pr{at = a|st = s} =
e

Q(s,a)−maxb Q(s,b)
τ

∑
b e

Q(s,b)
τ

(2)

4 Method

In this section, we describe our implementation of Q-learning on the Miro-
E robot to allow for self-sustained energy management and personalized user
engagement. The goal of self-sustained energy management is to determine an
optimal threshold for charging, thus enabling Miro-E to engage in extended
periods of interaction for enhanced human-robot interaction. To this end, we
extended the original approach with a negative reward system [2], which encour-
ages Miro-E to engage in play and discourages battery depletion at the same
time. In addition to the original approach [2], where the state dimension was
one-dimensional, we introduced an additional dimension called “people’s faces”
in personalized user engagement. This addition is anticipated to facilitate more
personalized interactions and provide flexibility in the learning process. By mak-
ing these modifications to the original work, we aim to develop a robot that
optimizes battery use and potentially offers personalized features for each user.
To efficiently facilitate the training of self-sustained energy management in sim-
ulation and trial user engagement in the real world, this work addresses both
aspects individually.

4.1 Self-sustained Energy Management

A robot must visit the battery charging dock to maintain autonomous movement.
Ideally, it should be able to play around in a room for extended periods and
approach the charging dock with optimal timing. To achieve this autonomous
behaviour and expedite convergence as compared to on-policy learning methods
such as SARSA [13], we employed Q-learning in a simulation environment.

Q-learning Implementation. For learning self-sustained energy management,
we implemented an epsilon-greedy policy for the selection of actions to allow
Miro-E to determine action probabilities based on epsilon, independent of Q
values, which are updated to maximize the next Q value in Q-learning. We
configured the reinforcement learning parameters as follows:

– State space (two-dimensional Q-table): “charging” or “playing”, the battery
level is divided into levels ranging from 6 (fully charged) to 0 (nearly empty).
We designed this two-dimensional state space to enable Miro-E to select its
next action based on its current engagement and battery level.

– Initial state: when the first dimension of the state space is “playing” and the
second dimension (the battery level) is 6 (fully charged).

– Terminal state: either when the first dimension of the state space is “playing”
and the second dimension (the battery level) reaches 0, or when the steps
within a single episode reach 500.
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– Action space: “play” or “go to charging dock”.
– Reward: a reward of +100 is provided when Miro-E opts to play to incentivise

longer playtime, and a reward of −100 is given when the robot decides to
proceed to the charging dock to discourage unnecessary returns. If Miro-E
depletes its battery, a penalty is assessed that is 100 times the number of
steps taken, with this counter resetting once Miro-E returns to the charging
dock. We have chosen this penalty structure to prevent the battery from
running out, ensuring that the penalty magnitude exceeds the reward value
associated with choosing to play.

Evaluation Environment. We used a simulation environment to determine
whether the robot can change its behaviour from engaging a user to going to a
virtual charging location using the above implementation. Figure 1a depicts the
moment when Miro-E is playing while Fig. 1b captures the moment when Miro-E
is moving to a predetermined position. We configured the following parameters
for the Q-learning algorithm in the simulation: Learning rate at 0.1, Discount
factor at 0.9, Initial epsilon for the epsilon-greedy method set to 0.3, Epsilon
discount rate of 0.99, the maximum number of steps set to 500, and a total of
200 episodes.

Fig. 1. Examples of Miro-E actions in simulation.

4.2 Personalized Engagement

Individual preferences for behaviour vary and consequently, a robot should adapt
to the specific person it is interacting with. To achieve this, we also employed
Q-learning. In our use case, the robot interacted with an actual person in the
real world, as it needs to adapt to existing individuals. We introduced a novel
element to facilitate personalized engagement. Specifically, we enabled the robot
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to recognize a human face, allowing the robot to adapt to the specific preferences
of the identified individuals. In the following section, we describe the implemen-
tation of Q-learning and outline the experimental setup and procedure.

Q-learning Implementation. For personalizing user engagement, we imple-
mented a softmax policy for the selection of actions, allowing Miro-E to deter-
mine action probabilities based on their corresponding Q-values and to ensure
that actions have a nonzero probability of being selected during an interaction.
Additionally, our updating strategy aims to facilitate dramatic changes in Q
values compared to on-policy methods like SARSA [13] to allow for faster user
adaptation. We configured the reinforcement learning parameters as follows:

– State space (two-dimensional Q-table): the person’s face, “tracking a ball”,
“responding to sound”, “detecting a person’s face” or a state of inactivity.

– Initial state: when the robot is not engaged in any actions.
– Terminal state: when the user sends a signal.
– Action space: “track a ball,” “respond to sound,” “detect a person’s face”.
– Reward: a reward of +10 when a person pats Miro-E on its head, indicating

a preferred action, while no rewards are given for other actions.

Evaluation Environment. To evaluate our approach, we implemented an
interactive learning routine using a real Miro-E robot as follows: At the begin-
ning of each episode, the first state dimension is determined by recognizing a
pre-registered person’s face. Then, one of the actions is selected using the soft-
max method and executed.

Fig. 2. Behaviour flow of Miro’s interactive training routine.

If a reward is given by the user, the Q-value is updated and the subsequent
action is chosen. If not, the next action is determined. If the user signals they
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want more adaptive actions by patting Miro-E on its body, the temperature
parameter is adjusted by multiplying it with the discount factor before select-
ing the next action. Figure 2 summarises the interactive training steps for the
behaviour adaption. We configured the following parameters for the Q-learning
algorithm in the real world: learning rate at 0.5, discount factor at 0.9, initial
temperature for the softmax method set to 100, and temperature discount rate
of 0.9.

5 Proof of Concept

To determine whether our approach can function, we tested the energy manage-
ment routine and the behaviour adaption separately. Firstly, we tested whether
we could find a valid timing for the robot to approach the charging dock and
secondly, whether the robot would adapt its behaviour to a user over time.

5.1 Self-sustained Energy Management

Fig. 3. Q value: Motion state “playing”.

The objective of the first evaluation was to identify the optimal battery
threshold that would enable the Miro-E robot to operate for extended periods.
For that, we have investigated how the Q-values change when the motion state
of the robot is “playing”. Figure 3 illustrates that when the Miro-E robot was in
a “playing” state, the Q-value for “play” exceeded the Q-value for “go to dock”
until the battery level dropped between 2 and 1. Beyond this point, the Q-values
inverted, indicating that “go to dock” became the more valued action. Based on
the results, the optimal battery threshold appears to be between a battery level
of 2 and 1. More precisely, the voltage corresponding to this threshold is 4.4 V,
suggesting that the identified threshold is approximately 4.4 V.
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5.2 Personalized Engagement

The second part of our evaluation looks at whether Miro-E would adapt its
behaviour during an interaction. For that, we provided the system with different
rewards in a test run lasting for approximately 60 min. Figures 4a and 4b depict
the Q-values at episodes 10 (3̃0 min) and 18 (6̃0 min), respectively, while Figs. 4c
and 4d show the probabilities of selecting each action at the same episodes and
corresponding times, which show that the probabilities associated with each
action evolve over time, indicating Miro-E’s adaptation to a specific person’s
preferences. Consequently, Miro-E likely selects “respond to sound” following
actions “detect a person’s face” and “track a ball”. Additionally, “track a ball”
is probably chosen after “respond to sound” or at the episode’s outset.

Fig. 4. Test run: Q-values and action probabilities in some example episodes.

Miro-E chose actions using the softmax formula outlined in Eq. 2. The tem-
perature parameter was adjusted throughout each episode, especially when the
user signaled a desire for more adaptive interactions by patting Miro-E. Initially,
Q-values had minimal influence on action choices due to a high temperature
parameter. But as episodes advanced and the temperature decreased, the influ-
ence of Q-values on action selection grew stronger. This behaviour is evident in
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Fig. 4, which displays results for one person with the first state space dimension
set to “1”, Motion State “3” in Figs. 4a and 4b showing Miro-E inactive at the
beginning of an episode. Here, Q(13, 0) remains unchanged between episodes
10 and 18. However, in Figs. 4c and 4d, despite static Q values, there’s a grow-
ing difference in the likelihood of Miro-E choosing “track a ball” and “respond
to sound” over “detect a person’s face”. This suggests Miro-E gradually refines
interactions based on both exploring user preferences and leveraging past expe-
riences.

Its adaptability to changing user preferences was enhanced by Q-learning.
The Q-learning formula (Eq. 1) ensures that if an action was rewarded, the
related Q value would adjust to improve future rewards. This could mean large
increases in Q values for less-favored actions, thereby increasing their chances of
selection and allowing Miro-E to quickly modify its interactions. Rapid changes
in Q values across episodes can be observed, for instance, between episodes 9 and
10 in Figs. 5a and 5b. Notably, the test run depicted in Fig. 5 is unrelated to that
in Fig. 4. Q values, such as Q(10,2), Q(11,2), and Q(13,2) exhibited significant
changes within the span of just one episode.

Fig. 5. Q values in episodes 9 and 10 during the second test run.

6 Conclusion

In this paper, we utilized Q-learning with the Miro-E robot to successfully
attain self-sustained energy management and personalized engagement. For self-
sustained energy management, we showed that the robot could determine the
optimal timing for approaching the charging dock in a simulated environment.
For personalized engagement, we anticipate that our method will adeptly adapt
the robot’s interactions over time to meet the preferences of an individual user
during human-robot interactions.

Our future work is to evaluate these algorithms in an interactive trial involv-
ing different individuals with free choices of interaction, as offered by Miro-E
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and implemented additionally. Moreover, we consider the expansion of the state
space, e.g. introducing an idling state to the self-sustained energy management
component.

References

1. Cao, J., Harrold, D., Fan, Z., Morstyn, T., Healey, D., Li, K.: Deep reinforcement
learning-based energy storage arbitrage with accurate lithium-ion battery degra-
dation model. IEEE Trans. Smart Grid 11(5), 4513–4521 (2020)
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Abstract. Population ageing has profound implications for economies and soci-
eties, demanding increased health and social services. The global older adult popu-
lation is steadily growing, presenting challenges. Addressing this reality, investing
in older adults’ healthcare means enhancing their well-being while minimizing
expenditures. Strategies aim to support older adults at home, but resource dis-
parities pose challenges. Importantly, socio-economic factors influence peoples’
quality of life and wellbeing, thus they are associated with specific needs. Socially
Assistive Robots (SARs) andmonitoring technologies (wearable and environmen-
tal sensors) hold promise in aiding daily life, with older adults showing willing-
ness to embrace them, particularly if tailored to their needs. Despite research on
perceptions of technology, the preferences and needs of socio-economically dis-
advantaged older adults remain underexplored. This study investigates how SARs
and sensor technologies can aid low-income older adults, promoting independence
and overall well-being. For this purpose, older adults (aged ≥ 65 years) with low
income were recruited, and a series of focus groups were conducted to compre-
hend how these technologies could address their needs. Thematic analysis results
highlighted five key dimensions, specifically: 1) promote and monitor an active
lifestyle, 2) help with daily errands and provide physical assistance, 3) reduce iso-
lation and loneliness, 4) considerations regarding monitoring technologies, and 5)
barriers affecting SARs andmonitoring technologies usage and acceptance. These
dimensions should be considered during SARs and sensors design to effectively
meet users’ requirements, enhance their quality of life, and support caregivers.
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1 Introduction

Population ageing is an important phenomenon since it impacts economy and society,
bringing new challenges such as an increased demand of health and social services [1].
Older adults represent about 13% percent of the global population, increasing by 3%
annually [2]. Ageing also impacts people’s life as older adults could face loneliness
and isolation [3]. With ageing people could have a decline of cognitive and physical
abilities [4], with an increased risk of frailty and neurodegenerative disease, such as
Alzheimer and Parkinsons [5], and of physical ailments, such as arthritis or osteoporo-
sis [6]. According to this demographic reality, investing in health services for older
adults is an important priority for countries, also in terms of economic burden [7]. Cur-
rent intervention trends, known as “aging-in-place”, aim to support older adults in their
homes to foster their well-being and independencewhile reducing healthcare costs [8, 9].
Indeed, due to an imbalance between people requiring care and resources, providing an
appropriate service is challenging [7], especially for those with impairing conditions [8].
Different strategies have been investigated to foster older adults well-being: for instance,
an active lifestyle seems to reduce the cognitive decline this population could face as
physical activity is associated with lower risk of cognitive and physical impairments,
frailty and loss of independence [10]. However, factors such as socio-economic condi-
tions are reportedly associated with health outcomes [11]. Older adults with low income
are likely to have more need for personal and instrumental or environmental support,
affecting their quality of life [12]; this status is also associated with frailty conditions
[13]. Moreover, caregivers often informally provide various forms of support to older
adults [14]. The need for instrumental and socio-emotional support can result in height-
ened stress and a decline in the physical and psychological well-being of the caregivers
as well [12]. The impact on caregivers is linked to the extent of support needed [15].
Answering older adults’ needs could alleviate their caregivers’ burden as well. Socially
Assistive Robots (SARs) have the potential to enable and support older adults with activ-
ity of daily living [16]. The acceptance of this technology depends on the perception of its
usefulness [17], and it is worth noting that older adults could also bemore accepting even
than younger people regarding SARs [18]. Monitoring technologies, typically referred
to as wearable and environmental sensors, have been also suggested as potential tools to
monitor older adults and help them maintain their autonomy [19]. These technologies
are considered an acceptable method for monitoring activities of daily living among
older adults [19], and they could potentially offer valuable data to SARs. Consequently,
older adults may display higher openness towards incorporating assistive technologies
into their home when they address their specific needs [20] and could help to enable
and support their independence [21]. Thus, even if the perception of robots and tech-
nology among older adults has been considered among literature, needs and preferences
among older adults with low socio-economic status are still limited. This is particularly
important because socio-economic status is related to people’s health and lifestyle [22],
thus causing specific daily needs as well. Individuals with low incomes may be sceptical
about using SARs [23]; however, people’s willingness to invest in SARs is associated
with their perception of the technology’s ability to adapt to their needs [24]. To reach and
improve well-being for a broader audience, considering these aspects is relevant. For
instance, in the UK, 2.1 million older adults live in relative poverty [25]. Indeed, from
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a biopsychosocial perspective, the well-being and quality of life of individuals during
the aging process are influenced not only by biological factors but also by psychological
and social factors [17, 26], therefore a systemic approach should be considered when
developing assistive technologies as it could improve their usage [27, 28]. For these
reasons, in performing a thematic analysis, the aim of the present study is to analyse
and understand the perception and needs of low-income older adults regarding SARs,
monitoring technologies and their use in home.

2 Method

2.1 Participants

A total of 17 (10 women and 7 males, mean age = 69.8 years, SD = 3.4) older adults
were recruited via convenience sampling. Inclusion criteria were: a) age ≥ 65 years
old and b) having a relatively low income as defined by [29]. Participants were divided
in two groups and took part in two separate focus groups. All of the participants were
informed about the nature of the study during the recruiting and before the beginning
of each focus group; thus, all the participants provided their written informed consent
to take part in the study, including to be audio recorded. Ethical approval for this study
was provided by the institutional human research ethics committee (ID: 1726544).

2.2 Procedure

Each group session began with welcoming participants, explaining the aims of the focus
groups, and establishing rules about the subsequent focus groups, and providing any
further information on request.

Live Robot and Sensors Presentation. Subsequently, a live presentation of SARs and
sensors was conducted to provide participants with a clearer and more tangible idea
about the currently available SARs and monitoring technologies, along with providing
examples of their capabilities. This procedure was used to elicit concrete ideas and
associations related to these technologies in the subsequent interactions. The SARs
were selected to present a range of different available types. For the presentation, 4
types of SARs that could showcase the widest possible range of variation in terms
of type, functions, dimensions, movements, and other characteristics associated with
this technology were selected. Specifically, the following robots were used: a) NAO, a
humanoid robot of about 58cm equipped with various sensors and with gripped hands,
its legs and feet contain motors and joints allowing NAO to walk; b) Pepper, a humanoid
robot with a height of approximately 120 cm and a tablet-like display on its chest,
contrary to NAO, Pepper moves thanks built-in omnidirectional wheels; c) MiRo-E, a
more minimalistic appearance compared to humanoid robots, resembling a small animal
with expressive LED eyes, and d) TurtleBot 4, a mobile robot featuring a differential
drive base, sensors for perception, offering a versatile and affordable solution for robotics
applications. These SARs are depicted in Fig. 1. During this phase the researchers
described each robot main features, other than the main physical aspects; attention was
given to robot’s sensors and how they can be utilised to different aims (e.g., navigate the
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space, detect faces, recognise speech). Examples of functionalities were also provided,
these included verbal interactions and demonstrations of robot movements capacities.
The presentation followed a schedule led by the researchers. Likewise, participants
received instructions aboutmonitoring technologies through the display of sensor images
and explanations of their functions. Participants were also informed that sensors could be
utilised to provide information to the SARs. Additionally, actual sensorswere showcased
and described to the participants.Any uncertainties or questionswere addressed to ensure
a clear understanding of the concepts. The presentation lasted for about 30 min.

Fig. 1. SARs utilised during the presentation: a) NAO (SoftBank Robotics); b) Pepper (SoftBank
Robotics); c) MiRo-E (Consequential Robotics); d) TurtleBot 4 (Open Robotics and Clearpath
Robotics)

Focus Groups. The focus groups were conducted using a semi-structured interview
approach, allowing participants to freely talk about the proposed topics. This technique
was used as the collective discussion could elicit the development of ideas and con-
cepts [30]. Two members of the research team, who were experts in this technique,
facilitated the focus groups. Specifically, while one team member acted as the modera-
tor, another member took note of the participants’ non-verbal behaviours, managed the
tools, and provided support to the moderator when necessary. The moderator facilitated
group interaction through probing, balancing participant interactions, and encouraging
the expression of personal viewpoints. The focus groups began with an engagement
question, asking participants about their thoughts regarding robots. The main dimen-
sions investigated during the discussion were related to thoughts about robots at home,
everyday aspects where participants needed support and how robots could support them,
features and functions that the robot should have, opinions and suggestions regarding
the use of sensors, any possible concerns, and concluded with an exit question, asking
if participants had anything else to add. Each focus group lasted approximately 90 min.
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2.3 Data Analysis

Audio recordings were transcribed verbatim andwere analysed using a thematic analysis
approach [31]. This method involves becoming familiar with the data, creating codes,
identifying, reviewing, and labelling themes, and compiling a final report. The analysis
followed an inductive approach.Acodingmanualwas developed and thefit between code
and data was reviewed in a series of meetings; revisions were performed if necessary.
The reliability of the coding process was established by a cross-coding comparison.
Specifically, two members of the research team, who were not involved in the coding
process, were trained on the developed code and asked to independently code a sample
representing the 20% of the total focus groups. Inter-rater agreement was then carried
out, indicating almost perfect agreement (Cohen’s k = 0.87). If any dispute arose, it
was settled through discussion between the researchers. Thus, codes were grouped and
refined into themes, through an iterative and reflexive process. Then, to ensure consensus
and agreementwith the interpretation of the data, the entire research teamdiscussed these
themes and decided on their final definitions.

3 Results

Below are briefly reported the main themes emerged from the analysis, with meaning-
ful sentences extracted from each theme to provide examples of participants opinions.
The themes encompassed potential applications to 1) promote and monitor an active
lifestyle, 2) help with daily errands and provide physical assistance, 3) reduce isolation
and loneliness, along with 4) considerations regarding monitoring technologies and 5)
barriers affecting SARs and monitoring technologies usage and acceptance.

3.1 Promote and Monitor an Active Lifestyle

Participants highlighted the potential of SAR as a tool to enhance aspects of their well-
being by being more physically active. Indeed, they noted that the SAR could offer
valuable support in engaging in physical daily activities, especially as they age and face
limitations: “As we get older, there are certain activities I don’t do as before. Having
assistance in those areas could really make a positive difference. Walking, for example,
would be a key benefit…having something that could walk alongside you, and give
assistance, that would be quite helpful.”; “I used to go walking. I can’t do that now
without someone with me, er, so I’m not very happy getting old but you can’t do anything
about it, you know”. In addition to aiding in physical activities, participants expressed
the importance of reminders for such daily tasks: “You could set it [the robot] to remind
you, like, when the garden needs attention, and then I can go and take care of it,…” In
this context, the SAR’s potential to provide motivation in performing physical activities
was also acknowledged: “I’ve seen people who lack the motivation to move and engage.
I believe something like this could stimulate them, you know, having the robot act as
encouragement…”.

The participants shared that an important feature would be the ability to monitor and
provide feedback on daily activities and movements in order to further enhance them: “if
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the robot could check and let me know if I’m doing enough or if I need to walk more could
be useful,” a participant pondered; “if this thing [the robot] could actually recognise the
way I move – well, that might be quite something. It could possibly let me know, you
see, if I’m getting something wrong…or what if it could even give me a nudge about my
posture?”. Furthermore, participants highlighted a critical safety aspect, suggesting that
the SAR could potentially detect any risky situations: “if you are living on your own,
and you need some help. If you have a fall and this can detect and ring the emergency, or
get some help from someone, that would be very good for lonely people who are living
on their own” a participant emphasised.

3.2 Help with Daily Errands and Provide Physical Assistance

Participants indicated that they would like the SAR to help support them to go out and
help them in errands and outdoor activities since “I think one robot would integrate with
things that could, you know, that if I’m going somewhere I could take it with me, and it
could help me”. Indeed, the participants indicated a current physical limitation as well:
“I believe my main challenge is strength. I’m quite physically able but I haven’t got the
strength…I wonder if [the robot] would provide any help”.Consequently, they envisioned
the SAR as a potential ally, especiallywhen confrontedwith physically demanding tasks.
Elaborating this idea a participant remarked: “I can see that being useful where you
could utilise a remote control to guide the robot to pick up items or handle mechanical
lifting tasks,…” This assistance would prove invaluable, especially during activities that
require venturing outside for daily errands, such as grocery shopping: “Erm, especially
as you’re getting older, you know,” another participant reflected, “tasks involving lifting
and performing basic functions become increasingly challenging. Consider the simple
act of shopping, getting to the stores and carrying the groceries back home.” In such
situations, the participants envisioned interacting with the robot as a collaborator, saying
things like “Alright, you pick this shopping up and follow me”.

3.3 Reduce Isolation and Loneliness

The SAR has emerged as a promising tool with the potential to alleviate the feelings of
isolation and loneliness experienced by older adults. Participants in the study proposed
innovative ways to harness the SAR’s capabilities, suggesting that it could serve as an
interactive companion: “A lot of people have grown lonely, and having something intel-
ligent to engage in meaningful conversations with could be quite comforting.” Another
participant envisioned the SAR facilitating interactions beyond the confines of the home,
saying: “Imagine being able to step outside, perhaps into your garden, and engage in
a conversation with the robot.” Moreover, the SAR could enhance interpersonal com-
munication by offering features that enable more effective connections with others. For
instance, it could assist in enabling and maintaining relationships by helping individuals
reach out to their loved ones: “Consider having a feature in there (indicating the robot)
that reminds you to call your aunt, which I should have done yesterday. It could prompt
me with a reminder: ‘Remember to give your aunt a call.’”
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3.4 Considerations Regarding Monitoring Technologies

Participants generally indicated their acceptance of using sensors, “If it can help gather
useful information, I believe people would accept it.”. However, they also expressed a
preference for a limited number of sensors rather than utilising too many, as stated by
one participant: “I’d rather avoid having a multitude of sensors around the house…I
would limit their number, maybe have just one or two that can gather all the necessary
information.”. Additionally, participants suggested that they would prefer to use wear-
able sensors due to their perceived ease of use, “I’d like to have something that you
can just take and wear, you know, something that you just take and that monitors you.”
However, their main concern pertains to the possibility of forgetting or losing it, “I am
only concerned that I might forget it somewhere [laughs] and end up not using it.”

3.5 Barriers Affecting SARs andMonitoring Technologies Usage and Acceptance

Participants have expressed concerns regarding certain aspects related to SARs and
sensors that could potentially hinder the adoption of these technologies. Primarily, these
aspects pertain to participants’ accessibility and usability of these technologies. Indeed,
among these concerns, worries have arisen regarding the cost of SARs and sensors “If
you have got a robot to assist you in your home, well how much will it cost you. It
would cost you more than probably what a home help would cost” and “People would
use it depending on how much its cost, you know, can they afford? Because nowadays
we are limited with resources, people are having a difficult time…” and some of the
participants reported that they are concerned about difficulties in utilise the SAR due
ageing “…they’re very good but I’m a bit too old now to be taking all this in…um…I don’t
know if I can use it. I’ll leave it to the younger ones.”, which could lead to demanding
situations as expressed by another participant, “…I generally, you know, don’t have that
much patience. You want an instant response.”

4 Discussion

This study aimed to investigate the needs of older adults with low income that SARs
andmonitoring technologies could address in their home-based everyday contexts. Their
reports aremeaningful, as socio-economic status could impact various aspects of people’s
lives. Therefore, gaining a better understanding of their needs could lead to enhanced
SARs andmonitoring technologies development and increased utility in addressing these
aspects. As a result, this could contribute to improving their quality of life and alleviating
caregivers’ burden. The analysis of the data gathered from focus groups indicated five
main themes that the SARs and sensors should respond to within this population. The
first theme indicated that older adults face a reduction of daily physical activities, and the
SAR could be a tool to enable physical activity. Overall, the SAR should support them
in daily physical activities, motivate them, provide reminders, and consider solutions to
monitor activities and provide feedback. Identifying risk situations is also considered an
important aspect. Since participants emphasized the significance of physical support, we
suggest the need to design or select SARs tailored for older adults to enhance this aspect.
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This is in linewith literature, as it is well-known that aging is characterised by a decline of
physical abilities that are fundamental for daily activities [32, 33].Moreover, participants
indicated that the recognitionofmovements anddaily activities is an important aspect that
should be further considered and developed for this population, which further confirms
the increasing trend and importance of monitoring activities of older adults through the
use of technology [34–36]. Another theme emerged regarding the limitations older adults
could face in daily errands and outdoor activities. They expressed a desire for a SAR that
can assist them in these activities, especially in tasks like transporting objects, which
wouldbeparticularly helpful in addressing the physical situations theymay strugglewith,
as these situations could require too much strength. Reducing isolation and loneliness
was identified as a prominent theme within the focus groups, which the SAR could help
to alleviate. This is not surprising, as this is another issue consistently associated with
aging [3], and it aligns with further evidence indicating that older adults rely on home-
based technology to improve their social connections [19]. Interestingly, participants
not only suggested solutions to improve communication with others but also expressed
an acceptance of interacting with the SAR as a social partner to reduce loneliness. The
fourth theme proposed specific considerations that should be taken into account during
the design and implementation of monitoring technologies, which could also support
SARs’ functions. The last theme pertained to the barriers that could reduce SARs and
monitoring technologies utilisation. Mainly, participants expressed concerns related to
costs and their own skills in utilising SARs. This study that takes into consideration
the needs of older adults in SARs and monitoring technologies design considering their
socio-economic status. The results from low-income older adults confirm findings from
previous research on older adults [37–39] and provide valuable insights and examples
related to isolation and the need for physical assistance and support of daily living skills
at home. Furthermore, before providing their interventions, they had the opportunity
to observe SARs and sensors with different features and functions firsthand. As an
additional perspective, it would be interesting to understand how the proposed themes
are ranked according to priority for older adults. However, we should also consider
some limitations. Participants were recruited through convenience sampling, and there
are other aspects that could impact the quality of life and needs of older adults which
this study did not consider, such as frailty conditions. Indeed, as a future perspective, the
needs of older adults with frailty should be considered to address their growing demands.

In conclusion, the study has brought to light five primary themes that require attention
during the design and implementation of SARs and monitoring technologies. These
themes play a crucial role in enhancing the perceived usability of these technologies and
consequently improving the quality of life for older users.
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Abstract. In the evolving era of social robots, managing a swarm of
autonomous agents to perform particular tasks has become essential for
numerous industries. The task becomes more challenging for large-scale
swarms and complex environments, which have not been fully explored
yet. Therefore, this research introduces a methodology incorporating
multiple coordinated robotic shepherds to effectively guide large-scale
agent swarms in obstacle-laden terrains. The proposed framework com-
mences with deploying an unsupervised machine-learning algorithm to
categorise the swarm into clusters. Then, a shepherding algorithm with
coordinated robotic shepherds drives the sub-swarms towards the goal.
Also, a path planner based on an evolutionary algorithm is proposed to
help robotic shepherds move in a way that minimises the dispersion of
each sub-swarm and avoids potential hazards and obstructions. The pro-
posed approach is tested on different scenarios, with the results showing
a success rate of 100% in guiding swarms with sizes up to 3000 agents.

Keywords: Swarm Control · Robotic Shepherding · Large-scale ·
Path Planning

1 Introduction

Swarm intelligence (SI), a branch within artificial intelligence (AI), focuses on
decentralised systems. Within such systems, individual agents work in synergy
with each other and their immediate environment to achieve specific objectives
[2,8]. As we progress into an era of social robots and multi-domain human-robot
collaboration, the principles of SI have been witnessed across various sectors,
from defence and Internet of Things to proactive crowd control [10]. Imagine
this: a team of small drones zips through the skies during an emergency, like a fire
or flood. There is another drone that leads them all using advanced techniques
to guide the swarm safely and quickly where help is needed. The leading drone
sees the big picture and navigates the swarm around obstacles or dangers while
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the swarm follows, carrying supplies or helping locate people in need. They all
communicate, ensuring the swarm reach people efficiently, delivering aid, and
providing real-time information back to emergency services.

However, steering a swarm agent (i.e., robots) remains challenging. Over
time, various methodologies have emerged, with shepherding emerging as a
notably effective.

In SI, shepherding is a paradigm that emulates the canonical interaction
observed between shepherds and sheep. This dynamic involves a swarm of
autonomous agents, analogous to sheep, that reactively adjust their behaviors
in response to guiding agents (shepherds) [12,14]. On the contrary, shepherd’s
actions are characterised by repulsion and attraction dynamics, allowing for
proactive maneuvering of the flock to guide them towards a predetermined loca-
tion [1,11]. The shepherding paradigm has been integrated into diverse domains,
such as crowd management, military operations, wildlife conservation, unmanned
aerial vehicle applications, and environmental remediation, including oil spill
cleanup [1,11]. Recent research indicates that implementing shepherding algo-
rithms within robotic systems may enhance task efficiency [15].

However, factors such as sheep spatial density, swarm size, number of shep-
herd robots, and complex environmental settings (i.e., cluttered environments)
can influence shepherding efficiency [5,8]. While specific models, such as the
Strombom model [14], have shown promise, they falter in scalability. Further-
more, despite extensions and adaptations, they remain untested in expansive
scenarios. In a recent shift, deep learning, particularly reinforcement learning,
has been applied to these challenges. Instances include Zhi et al.’s deep rein-
forcement learning for obstacle navigation [18] and Hussein et al.’s curriculum-
based reinforcement learning for herding guidance [10]. However, most existing
solutions thrive only with limited agent numbers, exhibiting deficits with larger
groups.

Our recent study [6] was successful in scaling up the Strombom model. How-
ever, the study was tested only in obstacle-free environments and used only
one shepherd. Also, the model was not able to achieve a 100% success rate in
controlling swarms of sizes 2000 and 3000.

Motivated by these research gaps, this study introduces a framework for con-
trolling large-scale autonomous agents in cluttered environments. The approach
involves using more than one synchronised robotic shepherd to steer large clus-
ters of agents through environments replete with obstacles. The framework uses
an unsupervised machine-learning algorithm to divide the swarm into groups.
The two shepherd robots coordinate on which sub-swarm each one can drive to
the goal. If one of the shepherds drives the allocated sub-swarm, it moves to
help the other shepherd robot drive its sub-swarm. Shepherd robots keep collab-
orating until they complete the whole mission. A path planner grounded in an
evolutionary algorithm is also introduced to aid robotic shepherds in their navi-
gation and reduce swarm dispersion while evading potential threats. The efficacy
of the suggested approach is examined across diverse settings, demonstrating a
perfect success rate in controlling swarms encompassing up to 3,000 agents.



386 S. Elsayed and M. Mabrok

The contributions of this work are as follows:

– Assessing the current shepherding models for large-scale control in cluttered
environments

– Development of a shepherding model with multiple coordinated robotic shep-
herds for large swarm control in cluttered environments.

– The design of an evolutionary framework to optimise the robotic shepherds’
paths to the herding points that can minimise sub-swarm dispersion and avoid
obstacles.

– Illustrating the significance of the proposed model with detailed experiments
and analysis.

This manuscript’s structure entails a subsequent review of related literature
(Sect. 2), followed by a description of the proposed approach in Sect. 3. The
discussion of results is presented in Sect. 4 while the concluding remarks are
articulated in Sect. 5.

2 Brief Review

Although shepherding has shown success in many domains, limited work on
large-scale shepherding exists. Below is a brief review of related work on large-
scale shepherding

As previously mentioned, shepherding as an approach within SI has seen con-
siderable popularity, with studies including creating robotic shepherds, guidance
mechanisms, real-world simulations of shepherding, and swarming conduct [11].
If relevant, initialising a shepherding model may require several assumptions,
such as a predetermined goal, environmental boundaries, the initial autonomous
herd locations, and obstacles. Specific applications may introduce additional con-
straints, such as agent behavior. For example, unmanned aerial vehicles (UAVs)
can disregard obstacles.

Strombom presented foundational work in this area [14], classifying flocking
as gathered or scattered according to the central mass. The model formulated
sheep (autonomous herd) and sheepdog movements using attractive and repul-
sive forces, considering various factors such as collision avoidance and attraction
to the local centre of mass. Further details of the Strombom model will be elab-
orated in Sect. 3.

Recently, there has been significant growth in distributed methods, leading to
research on distributed shepherding [2]. These studies used multiple sheepdogs to
steer the flock while maintaining coordination to prevent conflicts. Despite these
advancements, certain methods encountered inefficiencies with the collaboration
of multiple sheepdog agents [13,16]. An intriguing model was developed in [9]
that controlled each sheep agent through a feedback consensus technique.

Investigating large-scale shepherding has remained somewhat limited, focus-
ing primarily on small to medium-scale problems. Although practical, only a
handful of studies have explored large-scale scenarios. For instance, [3] put forth
an animal herding method for extensive areas (70 ha), but without addressing
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large numbers (10 to 50 animals). In another attempt, Zhang et al. proposed an
edge-following and shrink behavior mechanism in [17], emphasising local distri-
bution density, but it was only tested on small-scale issues. In [4], the authors
applied the Random Finite Set (RFS) theory to represent the state of the swarm
and used predictive control of the model to guide the swarms. The research mea-
sures the distance between swarm RFS and desired distribution through infor-
mation divergence. However, information on the size of the swarm was missing,
and there were no obstacles.

3 Large-Scale Swarm Control Framework in Cluttered
Environments

This section presents our proposal for large-scale swarm control in cluttered
environments.

3.1 Proposed Framework

As previously detailed, the proposed method aims to effectively employ multiple
shepherd robots to direct a substantial number of autonomous robots within an
environment cluttered with obstacles.

The methodology begins with dividing the flock into groups (refer to
Sect. 3.3). Subsequently, an analysis is performed to determine the mean dis-
tance from the goal for each sheep within these clusters. As we are using two
shepherds, the two groups positioned furthest from the destination are then
selected as the first targets for the shepherds. A strategic aim drives this selec-
tion: moving the furthest group towards the goal might inadvertently guide other
sheep closer to the target [6]. The shepherds coordinate among them to select
the group to drive, i.e., the shepherd drives the cluster close to it.

Given that the environment is filled with obstacles, the shepherd must navi-
gate carefully to minimise the scattering of the autonomous herd. To aid in this,
an evolutionary algorithm has been crafted to chart the path for each sheepdog
to its herding point, which is positioned behind the cluster and aligns with the
route to the goal. This optimal path planning takes into account the environ-
ment’s obstacles and establishes a safety zone around each sheep, ensuring that
they do not stray too far from the shepherd robot. When reaching its herding
point, each shepherd robot begins exerting forces on the entire cluster to guide
them to the destination bearing in mind avoiding obstacles.

Enhanced collaboration is facilitated between the two shepherds by enabling
them to assist each other based on their progress. Specifically, if one shepherd
successfully guides its cluster to the goal before the other, it shifts its focus to aid
the remaining shepherd in directing its cluster. Note that when a shepherd moves
to help the other shepherd, the path planner is utilised to find the best path.
This cooperative approach ensures more efficient and synchronised execution of
their shared task.
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Algorithm 1: Large-scale Shepherding Framework with Coordination
Input : sheep (Π) and shepherds (B = 2) locations, initial algorithm

parameters
Output: The location of herd agents
Divide Π into Z groups (Section 3.3)
while k = 1 : 2 : Z do

Collaborate between shepherds to select which furthest group to drive
Find a path for each shepherd (avoid obstacles and ensure a safety zone
around each sheep))
while agents have not reached goal do

Drive each cluster to the goal (refer Section 3.2)
if one shepherd completes the task before the other then

Redirect it (using a path planner) to assist the other shepherd
end

end
Recluster the remaining Π into q − k groups

end

Once both clusters have successfully reached the destination, the method
reinitiates the clustering process for any remaining sheep, and the guiding pro-
cedure resumes. The sheepdogs systematically steer the groups towards the goal,
adhering to the described process until either all the subgroups have arrived at
the destination or other predetermined termination conditions are satisfied.

The detailed steps are shown in Algorithm 1.

3.2 Shepherding Algorithm

The framework provides a solution to herding problems of an autonomous herd
using shepherd robots, outlining the relationships and rules governing their
movement within their environment [8,14]. Through a calculated combination of
weights, the dynamics of the autonomous herd movement are defined, accounting
for the influences of various entities.

Let us denote the set of autonomous herd agents as Π = π1, ..., πi, ..., πn

and the set of shepherd robots as B = β1, ..., βi, ..., βm, with a set of behaviors
α1, ..., αi, ..., αk. The primary interactions and behaviors are:

1. Driving: The shepherd robot guides the autonomous herd towards a specific
path or ray that connects the centre of mass to the target, represented by the
normalised force vector F t

βjcd.
2. Gathering: If a member of the autonomous herd strays, the shepherd robot

brings it back using the same force vector F t
βjcd. In this study, the gathering

behavior is only triggered if the furthest agent is not between the flock and
the goal, as introduced in [8].

3. Random Influence on Shepherd Robot: Random force F t
βjε and angular noise

Weβj
are introduced to avoid stalemate situations. The total force for the

shepherd robot is given by
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F t
βj

= F t
βjcd + Weβj

F t
βjε. (1)

4. Repulsive Forces in Autonomous Herd: Each member is subject to a repelling
force from the shepherd robot (F t

πiβ
) and from other members (F t

πiπi1
where

i �= i1).
5. Centre Attraction in Autonomous Herd: The herd is attracted to its local

centre of mass. This is quantified by F t
πiΛt

πi

.

6. Autonomous Herd’s Angular Noise: Denoted by F t
πiε.

Therefore, the total force in the autonomous herd is the total sum of all
forces.

F t
πi

= Wπυ
F t−1

πi
+ WπΛF t

πiΛt
πi

+ WπβF t
πiβj

+ WππF t
πiπ−i

+ Weπi
F t

πiε. (2)

Here, W signifies specific weights for each force.
After each movement, the total forces for both the autonomous herd and

shepherd robots are updated as:

P t+1
πi

= P t
πi

+ St
πi

F t
πi

,

P t+1
βj

= P t
βj

+ St
βj

F t
βj

,
(3)

3.3 K-Means Clustering

The K-means algorithm remains a significant method in machine learning and is
selected for its straightforward and efficient characteristics. Let X = {x1, x2, ...,
xn}, xn ∈ Rd be the data set. The goal is to partition the data into Z disjoint
clusters C1, ..., CZ , where Z is a predetermined number of clusters. The mean
squared error (MSE) is commonly employed as a quality metric.

The K-means algorithm randomly selects the initial centres and then iter-
atively reassigns clusters to minimise the MSE until convergence. Despite its
simplicity, it can be sensitive to initial centre placements and requires a prede-
fined number of clusters, Z, which might not always be optimal.

In this study, clustering is influenced by the shepherd robot’s capability,
and the number of clusters is dictated by the quantity of the autonomous herd
a shepherd robot can manage. If any cluster size is bigger than a predefined
shepherd robot’s capacity (200 agents), another trial of the K-means algorithm
is applied (with a maximum number of trials of 20).

3.4 Evolutionary-Based Path Planner

This study leverages the capabilities of Differential Evolution (DE) [8] to opti-
mise the waypoint locations in path planning. Initially, a random popula-
tion of size PS is generated, wherein each member symbolizes a path A =
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[w1, w2, . . . , wD] consisting of D waypoints. Each waypoint comprises x and y
coordinates, constituting a two-dimensional array. Though the following discus-
sion focuses only on the x values, the described evolutionary processes equally
apply to the y-coordinates.

The potential solutions denoted as −→x z for z = 1, 2, . . . , PS, are initialised
within the defined search space.

Evaluation of each individual (i) considers both the objective function value
and constraint violation (fi = Li +γψi, where γ is a penalty factor, while Li and
ψi are computed as in Eqs. 4 and 5). At every population assessment, the current
fitness evaluations cfe are incremented. Subsequently, DE operators (mutation
and crossover) evolve the entire population. Due to their efficiency, φ-to-current
mutation and binomial crossover are used.

After creating the new solutions, a pairwise comparison between each new
solution and its parent determines which one survives to the next generation. The
evaluation phase entails assessing the quality of each solution, gauging both the
fitness value and any constraint violation. In this context, the primary objective
function is the total length L of a path leading from the start point to the target
destination. The procedure involves the following stages for each solution −→xi :

1. Define the x-coordinate vector as XS ← [x, xi,1, . . . , xi,D, x̄];
2. Construct the y-coordinate vector as Y S ← [y, yi,1, . . . , yi,D, ȳ];
3. Divide a line into k = D + 2 points, creating equal intervals, as TS ← split;
4. Generate a vector LS ← space comprising pmax = 100 uniformly distributed

points between 0 and 1;
5. Perform cubic spline interpolation on XS and Y S over unevenly-spaced

sample points, producing vectors
−→
XI and

−→
Y I, respectively. The path from

start to target, represented by [
−→
XI;

−→
Y I], consists of points XIp and Y Ip for

p = 1, 2, . . . , pmax;
6. Compute the length L of the path as:

Li =
pmax−1∑

p=1

√
(XIp+1 − XIp)2 + (Y Ip+1 − Y Ip)2 (4)

The extent of constraint violation (or overlap with obstacles) is quantified
mathematically, with a value of 0 indicating no overlap:

1. Compute the Euclidean distance between each path point and each obstacle’s
centre O, given by dp,s =

√
(XIp − Ox,s)2 + (Y Ip − Oy,s)2, where Ox,s and

Oy,s define the centre coordinates of O;
2. Determine the violation for the i-th solution as:

ψi =
pmax∑

p=1

N∑

s=1

max
(

1 − dp,s

Os,radius
, 0

)
(5)

where Os,radius is the radius of the s-th obstacle.
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Table 1. The set of parameters used

Parameter Value

Total number of autonomous herd (m) [1000, 2000, 3000, 5000]

Total number of shepherd robot (n) 2

Length of the environment 300

Goal Location (0, 0)

Goal radius RH

√
m ∗ 3

Maximum step size of shepherd 4.5

Maximum step size of sheep 1

Shepherd’s Sheep sensing radius 30

Repulsion strength from sheep 1.75

Repulsion strength from shepherdt 1

Attraction strength to the local centre of mass 1.05

Strength of sheep angular noise 0.3

Strength of shepherd angular noise 0.3

Maximum number of steps 630 + 20× m

3. Remember, each agent within the flock is considered an obstacle, functioning
to create a safety zone that the shepherd must avoid. This safety zone is
defined by a radius equal to the shepherd’s repulsion strength, ensuring that
a protective distance is maintained around every individual agent in the flock.

4 Experiments

In this section, the experimental results of the proposed model are discussed and
compared to another well-known algorithm.

Mutation and crossover factors in DE are self-adaptively controlled, as in
[7]. The stopping criterion for DE is 200 iterations. In this paper, we assume the
environment is occupied by nine obstacles (with a radius of 5) placed outside
the initial locations of the flock and the target area. Throughout all iterations of
the simulation, these obstacles remain in their fixed positions. The algorithm is
tested on different sizes of the herd 1000, 2000 and 3000. Ten simulation runs are
considered with the remaining settings shown in Table 1. For such experiments,
the sheep agents were initialised as one large cluster in the top right corner of the
environment. The stopping criteria used are (1) the sheep agents have reached
the goal or (2) the maximum number of steps for shepherds has been reached.

In the simulation environment, nine fixed obstacles are strategically located
outside both the initial flock positions and the target region, each with a radius
of 5 units. These obstacles maintain their designated locations throughout each
iteration of the simulation process. The model’s efficacy was evaluated in various
herd sizes, specifically, 1000, 2000, and 3000. A total of ten individual simulation
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Table 2. Comparison between the proposed approach, ISMLS and Strombom

Herd size Algorithms Steps Success Rate

Best average std Best average std

1000 Proposed 1.9110E+03 2.9576E+03 6.4494E+02 100% 100% 0.000E+00

ISMLS 5.0970E+03 6.3017E+03 1.8927E+03 100% 100% 0.000E+00

Strombom – – – – – –

2000 Proposed 4.0520E+03 6.2804E+03 1.6077E+03 100% 100% 0.00E+00

ISMLS 1.1674E+04 1.3132E+04 2.2406E+03 100% 99.3% 2.143E-02

Strombom – – – – – –

3000 Proposed 4.6780E+03 7.6088E+03 1.8624E+03 100% 100% 0.000E+00

ISMLS 1.8726E+04 2.8813E+04 5.3376E+03 100% 94.5% 4.1533E-02

Strombom – – – – – –

runs were executed, and the remaining settings are shown in Table 1. During
these experimental procedures, the autonomous agents were initially grouped
into a single large cluster in the upper right section of the domain. The simulation
ends when either of two conditions is met: (1) the sheep agents have successfully
arrived at the goal, or (2) the shepherd has reached the predefined maximum
number of steps.

4.1 Comparative Analysis

To evaluate the robustness of the proposed method, the proposed approach is
compared against the baseline model (Strombom) [14] and the methodology
presented in [6], referred to herein as ISMLS. Note that, for a fair comparison,
ISMLS was adapted to use the same gathering behaviour used in the proposed
approach. Comparative analysis is conducted by examining the number of iter-
ations (time ticks) required by the sheepdogs to herd all the sheep to the desig-
nated goal. We also evaluate the success rate of the shepherd robot, specifically
focusing on how often it successfully guides all agents to the designated goal.
This assessment will be based on a series of ten trials(runs). Table 2 presents
a comparative analysis of these algorithms in terms of their performance on
different herd sizes, that is 1000, 2000 and 3000.

From Table 2, the following observations are found:

– For each herd size, the proposed algorithm consistently reports the best per-
formance with respect to the number of steps taken to complete the mission.
Note that the table reports the total steps taken by both shepherds. If we con-
sider the number of generations as a criterion, this number of total steps will
be halved. It is also noted that the algorithm’s performance is more stable,
as noted by the standard deviation results.

– ISMLS is the next in terms of performance, with higher step counts across
all measures. In particular, as the size of the herd increases, the gap between
the proposed algorithm and ISMLS in terms of steps widens. This indicates
the potentially better scalability of the Proposed method.



Large-Scale Swarm Control in Cluttered Environments 393

– Strombom was unsuccessful in completing the tasks for all herd sizes.
– In terms of success rate, both proposed and ISMLS have the best success rate

of 100% for all herd sizes. However, while the proposed algorithm maintains
a consistent 100% average success rate, the ISMLS sees a slight deterioration
as the herd size increases, dropping to 99. 3% for 2000 and further to 94.5%
for 3000. The standard deviation for the ISMLS success rate also increases as
herd size grows.

A statistical comparison was performed using the Wilcoxon rank sum test
with a significance level of 5%; the results demonstrated that the proposed
method was statistically better than the other two algorithms.

4.2 Effect of Using the Path Planner

This subsection aims to determine whether the algorithm derived any benefits
from using the path planner. In essence, would it be sufficient to use two shepherd
robots without coordinating them in terms of path planning?

To do so, the algorithm was run under the same settings mentioned earlier,
but no path planning was performed. The results presented in Fig. 1 demonstrate
that using a path planner reduces the number of steps to complete the mission.

Fig. 1. Average number of steps and SR for the proposed algorithm with and without
using a path planner (PP)
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For a herd size of 1000 agents, the reduction is about 13%. Interestingly, this
efficiency increases when the herd size increases, reaching more than 50% for
3000 agents. In addition, for the herd size of 3000, the SR, when not using path
planning, deteriorates by 2%. This indicates that path planning is beneficial
when the herd size increases.

5 Conclusion

This study introduced an approach to control large-scale agent swarms in clut-
tered environments. We used an unsupervised machine learning algorithm to
decompose the swarm into clusters. Subsequently, coordinated robotic shep-
herds guide these sub-swarms. An evolutionary algorithm-based path planner
aided these shepherds, ensuring minimal sub-swarm dispersion and safe naviga-
tion around obstacles.

In summary, the proposed algorithm appears to outperform existing algo-
rithms in terms of both the number of steps required and the consistent success
rate. The performance gap is more pronounced with increasing herd size, hinting
at the superior scalability of the proposed method. While the proposed algorithm
achieved a 100% success rate, the baseline algorithms failed in all scenarios. In
addition, the results demonstrated that path planning could lead to better results
when the herd size increases.

Future work should focus on testing the algorithms on more scenarios with
more types and sizes of obstacles. Another possibility is to provide more coordi-
nation between shepherd robots; for example, coordination on which shepherd
can collect the furthest sheep while the other focuses on driving the flock to the
goal.
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scale multi-agent simulation. In: Jezic, G., Chen-Burger, Y.-H.J., Howlett, R.J.,
Jain, L.C. (eds.) Agent and Multi-Agent Systems: Technology and Applications.
SIST, vol. 58, pp. 83–94. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-39883-9 7

4. Doerr, B., Linares, R.: Control of large swarms via random finite set theory. In:
2018 Annual American Control Conference (ACC), pp. 2904–2909. IEEE (2018)

5. El-Fiqi, H., et al.: The limits of reactive shepherding approaches for swarm guid-
ance. IEEE Access 8, 214658–214671 (2020)

6. Elsayed, S., Hassanin, M.: Improved shepherding model for large-scale swarm
control. In: 2023 International Conference on Smart Computing and Application
(ICSCA), pp. 1–6. IEEE (2023)

https://doi.org/10.1007/978-3-030-60898-9
https://doi.org/10.1007/978-3-030-78811-7_17
https://doi.org/10.1007/978-3-319-39883-9_7
https://doi.org/10.1007/978-3-319-39883-9_7


Large-Scale Swarm Control in Cluttered Environments 395

7. Elsayed, S., Sarker, R., Coello, C.C.: Enhanced multi-operator differential evolution
for constrained optimization. In: IEEE Congress on Evolutionary Computation, pp.
4191–4198. IEEE (2016)

8. Elsayed, S., et al.: Path planning for shepherding a swarm in a cluttered environ-
ment using differential evolution. In: 2020 IEEE Symposium Series on Computa-
tional Intelligence (SSCI), pp. 2194–2201. IEEE (2020)
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Abstract. Social robots such as NAO and Pepper are being used in some schools
and universities. NAO is very agile and therefore entertaining. Pepper has the
advantage that it has an integrated display where learning software of all kinds
can be executed. One disadvantage of both is their high price. Schools can hardly
afford such robots. This problem was the starting point for the project described
here, which took place in 2023 at the School of Business FHNW. The aim was to
create a learning application with an inexpensive social robot that has the same
motor capabilities as NAO and the same knowledge transfer capabilities as Pepper.
The small Alpha Mini from Ubtech was chosen. It was possible to connect it to an
external device. This runs a learning game suitable for teaching at primary level.
AlphaMini provides explanations and feedback in each case. Three teachers tested
the learning application, raised objections, andmade suggestions for improvement.
Social robots like Alpha Mini are an interesting solution for knowledge transfer
in schools when they can communicate with other devices.

Keywords: Social Robots · Learning Application · Classroom

1 Introduction

In the classroom, whether in school or in university, robots have always had a certain
importance [5]. They have been the subject of study and contemplation, assembled and
disassembled, programmed, and integrated into settings of all kinds. Finally, social robots
entered the classroom andwith them came newpossibilities and stimuli. They functioned
as teachers, tutors, coaches, peers, or avatars, supporting teaching and learning. Their
model was based not so much on the Lego Mindstorms-type kits as pedagogical agents
that were already accessible in virtual learning environments in the 1990s [6]. Now,
however, a physical presence was available, and the machine could enter and leave the
classroom (usually with human assistance).

Nowadays, social robots such as NAO, Pepper, and Robin are repeatedly used in the
classroom [3, 5, 9, 15, 20]. NAO has impressive motor skills, and Pepper has satisfactory
gestural skills. Both provide natural language capabilities needed for knowledge transfer
and praise and blame. NAO can serve as an avatar of pupils or as a coach for students [5].
Its movements are entertaining or serve as a model for children’s and young people’s
movements. Pepper is a teacher, tutor, coach, and peer. Its great advantage is that it
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has an integrated tablet in its chest area. Educational software of all kinds can be run
from there, such as learning games with text and images. The robot itself can then guide
the execution and progress. It can explain questions and answers and motivate students
through its physical and vocal presence [20].

One disadvantage of both robots is their high price [4]. Only universities with healthy
budgets can afford Pepper, or more precisely the Robo Labs or didactic centers, from
which the specimens can then be borrowed only temporarily. Schools are usually not in
a position to purchase the models. There are alternatives such as Alpha Mini. It seems
more convincing as a teacher or tutor than Cozmo or Vector, which are also on themarket
and which, despite their abilities, seem like toys. It can easily be ordered in Europe and
costs only about $1,000 to $1,400, a fraction of the price of NAO and Pepper. It is
comparable to NAO in terms of mobility. Unlike Pepper, however, it has no display or
tablet, which is an enormous limitation in the context of knowledge transfer.

This problem was the starting point for the project described here, which took place
at the School of Business FHNW from February to August 2023 [1]. The first author
was the initiator and supervisor, the second author the developer. The research question
was: Is it possible to combine an inexpensive social robot with a screen to create a
complex learning application with text- and image-based learning software and verbal
and gestural feedback? Alpha Mini was to become a learning partner in a school, in the
role of a tutorwho teaches, praises, and reprimands the child. To this end, itwould interact
with educational software that would run on an external display or tablet. Together, this
would result in a learning application comparable to what Pepper is capable of [21].
The educational software would have to be as simple as possible and primarily serve
demonstration purposes, i.e., to prove that it forms a functioning learning application
together with the social robot.

This article discusses social robots in the classroom in the second section. Then, in
the third section, it describes the implementation of the project at the School of Business
FHNW. It also discusses the efforts and challenges that arose during integration. The
fourth section summarizes the tests with Alpha Mini and the learning software that were
conducted with three teachers.

2 Social Robots in the Classroom

The Educa report, “Digitization in Education”, shows that almost 20% of students in
Switzerland at all levels of education never use digital devices for school [10]. In pri-
mary schools, this is even more prevalent. One can find this questionable, especially
since, according to Hillmayr et al., classes in which digital media are used consistently
show better performance test results than those with traditional teaching methods [11].
According to Mou and Li, artificial intelligence (AI) robots have a great impact because
they can represent abstract concepts in different ways and provide students with timely
learning feedback [16]. Westlund and Breazeal [19] also describe that such robots can
maintain engagement over many sessions.

Social robots that find their way into the classroom often have a human- or animal-
like shape [5]. Some are only about 20 to 30 cm high, others as tall as an primary school
child. They sometimes have the ability to move, either with wheels or legs. They have
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one or two arms, elaborated as in humans or in a reduced form, or lack extremities.
Advanced models have an extensive arsenal of cameras, speakers, microphones, and
sensors, coupled with systems for facial, speech, and voice recognition, and, in some
cases, emotion recognition. Other AI systems can also play a role, for example, for
learning.

An integrated dialog system, with a text-to-speech engine and speech-to-text engine,
allows the social robot to communicate with teachers, students, and pupils in natural lan-
guage [5]. At times, it is not simply an integrated voice assistant, but rather an application
synchronized with facial expressions and gestures, contributing significantly to lifelike-
ness and believability. Most facial expressions are not generated by motors, as is the
case with humanoid robots in the vein of Sophia and Harmony, but via a display [4]. It
is important with an appropriate orientation that not only normal small talk is possible,
but that technical discussions can be held just as well. In addition, some models – where
the learning setting requires it – should be able to judge learners’ answers as correct or
incorrect.

The social robot can simulate empathy and emotions if necessary [17]. In turn, it
can do this via facial expressions, gestures, and natural speech. In addition, human and
non-human sounds, tones, and certain movements (such as head nodding) are important.
Showing empathy and emotions – which is often discussed and sometimes vehemently
rejected regarding machines – seems to be quite important in this context. If the student
solved or said something correctly, the social robot can express praise; if something was
solved incorrectly, it can encourage the student to try again. All in all, it is possible to
create closer bonds, build trust, etc. [17]. The aforementioned emotion recognition can
be useful for this end.

Social robots can be integrated into the classroom – whether it be a school or univer-
sity – in a variety of ways: as a teacher, tutor, coach, or therapist, or even as a companion
or peer, i.e., a fellow student [18]. These roles can be combined. Thus, a social robot
may serve not only as a lecturer, but also as a tutor, as in the usual operation. It thus
provides knowledge, exercises, and feedback. Another use is as an avatar. In this case, a
social robot represents the sick, disabled, or incapacitated child. He or she participates
in the events in the classroom via the robot and goes outside with it, to the schoolyard or
the park, where he or she can follow the play and conversations of his or her classmates.

Social robots of all kinds can succeed in the classroom: medium to larger ones
like NAO and Pepper, smaller ones like Alpha Mini, Cozmo, and Vector, and models
specialized in empathy and emotions – also quite small – like QTrobot and Moxie [4].
One example is the use of Pepper for children with autism [13]. The focus here is on
student well-being, which can be improved with the robot. QTrobot and Moxie are
also applied specifically for autistic children. Pepper has also been used beyond the
classroom to impart knowledge, for example in a children’s hospital in Bern. There, it
was available to children with diabetes and practiced estimating carbohydrate values at
meals with them [7, 21].
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3 Realization of the Alpha Mini Project

3.1 Foundations of the Project

The initiator had specified in his announcement of the project that it should be a learning
application with Alpha Mini for school. This was further crystallized at the kick-off
meeting in February 2023. The learning application with Alpha Mini and the learning
software would be aimed at pupils in German-speaking Switzerland. The majority of
these speak dialect. However, the language of instruction is officially High German. The
focus is on the second cycle of Swiss primary school. The children are 8 to 12 years old.
According to the curriculum, suitable topics for the educational software would be, for
example, biology or geography [12].

Alpha Mini was designed as a tutor for the children. The crucial purpose of this
didactic aid is to give the children an incentive to learn [16]. The robot responds to
inputs from the children and shows appropriate reactions. Although Alpha Mini already
has a high number of pre-existing capabilities – so-called “behaviors” (acts and speech
acts) – more can be added. Since, apart from the eyes, it has no display of its own,
it would be programmed to communicate with an external device, such as a tablet or
laptop. The learning software – a learning game that essentially consists of a quiz – is
displayed and executed on the external device.

Fig. 1. Alpha Mini with the external end device

The additional end device must be able to receive user input, display outputs, and
share data with the robot. In addition, it must provide the capability to develop and use
custom programs and applications. These can also be executed directly via the device.
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Thus, the solution concept consists of at least two hardware components, Alpha Mini
and an additional end device (see Fig. 1). The social robot does not act autonomously
but has pre-programmed sequences that it can call up.

3.2 Analysis Phase

This phase involved analyzing the technical components and making decisions with a
view to design and implementation. In addition, a requirements analysis took place.

Analysis of Alpha Mini and the Alpha Mini Application
Alpha Mini was specifically designed as a learning robot that offers various ways of
interacting and communicating with its environment. It looks human-like – cartoon-
like like NAO and Pepper – and has natural language capabilities, with speech input
and output. It has two small displays for eyes and a mouth that can be illuminated and
change color. With numerous degrees of freedom in the arms, legs, feet, and head area,
it has compelling motor skills. It has various sensors like a camera connected with face
recognition, a touch sensor on the head, infrared sensor, gyroscope, accelerometer, and
four microphones with sound source localization. For connectivity and communication,
WLAN, Bluetooth, and sim card (2G/3G/4G) are available.

Through the two head displays mentioned, the social robot can show its eyes and
adapt them to the environment and the current situation. According to Bartneck et al., this
gaze and eye control is important for achieving similar effects to human communication
and interaction: interest, comprehension, attention, and active conversation tracking [2].
In addition, Alpha Mini can display states and emotions through the eyes. Furthermore,
it can display characters in the displays, such as dollar signs or stars. This can have a
semantic and an emotional purpose.

The model of Alpha Mini used in the project speaks English. On inquiry with the
company, it turned out that Chinese andEnglish are offered, and it is impossible to change
the language after the purchase of the robot. Before buying, one could have asked for a
TTS engine for German. However, one then must manually enter the German sentences.
So Alpha Mini, which was already in the supervisor’s inventory and on loan, was set to
English. Due to time constraints, it was decided not to use external libraries.

The Alpha Mini app is the supporting application for the social robot. It is available
for Android and iOS mobile operating systems. The app is required for setup to connect
to the internet and to configure the robot. The app has pre-programmed “behaviors” for
the robot that show initial functionalities and possibilities. These include certain dances,
sports, emotion displays, or testing voice commands. In addition, “behaviors”, such as
the social robot’s own movement sequences or speech sequences, can be created using
block programming (https://www.ubtrobot.com). The possibilities of the app are not
sufficient for the purposes of the project.

Analysis of Implementation and Programming Possibilities
All of Alpha Mini’s implementation and programming capabilities are built on an open-
source SDK platform: the UBT ROSA system. ROSA stands for “Robot Operating
SystemAndroid” and is a modular systemwith a hierarchical architecture that integrates
all social robot functions. The components in the system are loosely coupled so that the

https://www.ubtrobot.com
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functionalities are extensible and reusable. This includes software functionalities such
as volume control, camera trigger, or checking of the system status. It also allows access
to the hardware and control of the servo motors. With this platform, custom applications
can be developed for AlphaMini. This is exactly what is needed in the project to integrate
learning software and robots.

The individual SDKs (SoftwareDevelopmentKits) provide the tools and information
developers need to access Alpha Mini functions. A Python SDK and an Android SDK
are available. The Python SDK is based on the Python programming language. The
SDK is freely available and a demo exists that can be downloaded and installed from
Github. UBTECH chooses PyCharm from JetBrains as the development environment.
The company’s Android SDK is based on the Java programming language. The entire
SDK can be downloaded fromGithub with a program demo. After that, one can integrate
this collection into the app. UBTECH suggests that the app is developed using the official
Android development environment, Android Studio. A utility analysis in the project
showed that the Android SDK suited given problems better.

Requirements Analysis
With the help of 15 use cases (UC), the developer defined the basic requirements for
the learning application after consultation with the initiator and supervisor [1]. Table 1
shows one such use case for answering the quiz questions.

Table 1. Use case 102 [1]

UC: 102 Classification Explanation

Name Answer quiz questions

Short Description The learning application must allow users to answer quiz
questions

Trigger The user wants to answer the question

Precondition The topic has been selected and the question is displayed

Postcondition The user’s answer is logged and the correct answer is shown

Typical process 1. The quiz question is displayed
2. The user selects an answer option

Type Functional requirement

In the same way, the functions of Alpha Mini were defined. Table 2 shows the use
case named “Alpha Mini responds to answers”.

Other use cases for the social robot include “AlphaMini explains answers” (UC 110)
and “AlphaMini reacts to points scored” (UC 111). This already shows how the learning
game and the social robot were intertwined within the learning application.
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Table 2. Use case 109 [1]

UC: 109 Classification Explanation

Name Alpha Mini responds to answers

Short Description The learning application must allow users to receive feedback
from Alpha Mini on the answers

Trigger The correct answer was displayed

Precondition The user selected an answer and the correct answer was
displayed

Postcondition –

Typical process 1. The correct answer is displayed
2. Depending on the selected answer Alpha Mini gives

feedback
3. If the answer is correct, the feedback is positive
4. If the answer is incorrect, the feedback is negative

Type Functional requirement

3.3 Conceptual Phase

The conceptual phase focused on the requirements of the learning application specifi-
cally for the school context, the elaboration of the questionnaire, as well as design and
language.

Requirements for the Learning Application
The target group of the learning application were children in primary school. Accord-
ingly, social robots and learning software needed to be set up. As already described,
the goal of this project was not to program a fully comprehensive learning application.
Rather, it was to show that Alpha Mini can communicate with an external device and
learning software on it. Therefore, the learning game in particular was limited to a few
contents and functions.

The learning game needed a simple operation and appealing design and be appro-
priate for children of this age. In addition, it needed to be clearly structured and under-
standable so that the learning process would be clearly comprehensible. It needed to
present questions to which answers could be given. For this purpose, the correct answer
would be displayed after an answer selection and an explanation would be given in text
form (German) and in spoken language (English).

To achieve this, a quiz was programmed that contained questions with four answer
options each. One of these four answer options is correct. If the question is answered
correctly, one point is collected. The final score is displayed after the quiz is completed.
In addition, the progress of each question is displayed so that it is always clear howmany
questions are still open. A timer is implemented as an element of the learning game. For
each question, the user has 30 s to answer. If he or she does not manage this in time, the
answer counts as wrong. After each answer, whether correct or incorrect, an explanation
of the correct answer is given.
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AlphaMini gives feedback on a correct or incorrect answer and on the score achieved.
It explains the correct answer in English. This is a reproduction or summary of the text
form. It behaves and moves accordingly, for example, by shaking its head or raising its
arms. In addition, the user can specify a username. Alpha Mini can then address the user
directly and individualize the user experience. Overall, the learning application belongs
to the drill and practice programs, which provide opportunities for students to work on
questions one at a time and then receive feedback on their performance. It is based on
the use cases of the analysis phase.

Elaboration of the Questionnaire
The questions asked in the learning game had to be at the appropriate level for primary
school pupils. To ensure this, the Lehrplan 21 (Swiss curriculum 21) was used [12]. In
the learning software, it should be possible to select learning topics. The project team
decided that questions should be defined for at least two topics from the Lehrplan 21.
The subject area “Nature, Man, Society” lent itself best to being able to query theoretical
basics. The topics chosen were “geography” and “humans and animals” (biology).

The developer defined three sample questions for each of these two topics, based on
Curriculum 21 [12]. He then worked out four possible answers to each question. Only
one of them is correct. As a final step, a short explanation of the correct answer was
written and displayed in the learning game.

Design of the Learning Game
For the design, the developer followed the catalog of Liebal and Exner, which knows a
total of 110 recommendations for the design of user interfaces for children’s software
[14]. These are divided into three categories: screen design, control or interaction, and
content. In addition, the individual recommendations are coded according to children’s
developmental stages. Appealing colors, age-appropriate language, a cheerful atmo-
sphere, and easy navigation are all important for the specific age group in question [8].
The developer created corresponding mockups, i.e., digital designs of a website or app,
which were needed in the conception phase to visualize ideas and concepts.

Language of the Learning Application
German was chosen as the language of the learning application. Thus, it is easy to
understand for children at the Swiss primary school level in the German-speaking part
of Switzerland. Although dialect is spoken in everyday life, at school lessons must be
taught in High German, even if this is not always adhered to.

The Alpha Mini model used only speaks English, as already mentioned. The only
other language available was Chinese, which would not have been helpful in this con-
text. However, this is of no further concern for the demonstration. Moreover, the learn-
ing application could be seen as a cross-competency learning application in which the
children receive explanations and feedback from the social robot in English.

3.4 Implementation Phase

The implementation phasewas about the technical realization of the learning application.
The “behaviors” of AlphaMini and the app development and integration played a central
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role. The results of the implementation of the educational software are shown in this
section. The entire project can be found at the following URL: https://github.com/and
rinallemann99/alphamini-learningapp.

“Behaviors” of Alpha Mini
Various “behaviors” were created for Alpha Mini based on the requirements outlined.
These acts (movements of the body and the head, animation of the eyes, change of the
color of the mouth, etc.) and speech acts would come into play when the application is
started, when the application is exited, when a quiz is started, when the timer expires,
when the results are obtained, and when the questions are answered.

The developer also programmed different “behaviors” in relation to the answering of
questions. These are initiated depending on whether the answer was correct or incorrect.
There are three different “behaviors” each for a correct answer or for a wrong answer,
which are played randomly. This creates a kind of surprise effect that is intended to
maintain curiosity and motivation.

App Development
With the mentioned utility analysis, it was determined that the app development would
be done with the Android SDK. Thus, the learning application was developed with Java
and in Android Studio. A total of three user interface layouts were created, one for the
home screen, one for the quiz screen, and one for the results screen. These were defined
in Android Studio as XML files. For the learning application, graphics from Flaticon
(https://www.flaticon.com) were used to create an icon for the application. The icon was
created by the developer himself.

Once the application was completed, it had to be installed on the robot. This enabled
the application to access the files stored in the robot and execute “behaviors”. The
installation of the application on Alpha Mini could be done with Android Studio. The
robot needed to be connected to the computer via a USB cable and the application could
then be run on the robot. The application once installed, the robot was ready to be used.

Mirroring the Operating System with the App
As mentioned, the manufacturer UBTECH offers its own operating system, ROSA,
which is based on the Android operating system. For this reason, it is possible to treat
the social robot as an Android device and mirror the operating system (along with the
app), thus allowing access to the application. However, to achieve this, a computer
is required. The screen-sharing program is installed on the computer and the robot is
connected to the computer via aUSB cable. After that, the program canmirror the robot’s
operating system.

For this work, therefore, a computer was used that is mobile and can install screen-
sharing programs. To simulate an app, a computer with a touchscreen was necessary. It
also had to be easy to use and have Windows, MacOS, or Linux as its operating system.
In this project, the given requirements led to the choice of the Microsoft Surface Go
3 – basically an intermediate form between a tablet and laptop. With its price of about
$450 – $500, it is also attractive for schools.

UBTECH suggests that one uses Vysor for mirroring. The screen sharing program
offers simple operation and can be downloaded for free. One drawback, however, is that

https://github.com/andrinallemann99/alphamini-learningapp
https://www.flaticon.com
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Table 3. Learning game [1]

This is the start page of the learning appli-
cation. The user can enter his or her name 
here and select a learning topic. Clicking 
on “Start” starts a quiz on the selected 
learning topic.

The quiz is built with one question and 
four answer options. The username, timer 
and accumulated points are displayed at 
the top. In addition, the progress bar is dis-
played and updated for each question.

The player can choose an answer and click 
on it. If the answer is wrong, it is high-
lighted in red, and the correct answer is 
highlighted in green.

If the selected answer is correct, it is high-
lighted in green. If the timer has expired (it 
is then marked red), the correct answer is 
highlighted in green, but the answer is not 
counted as a point.

If the user touches the screen after the cor-
rect answer is displayed, a short explana-
tion is given. This explanation can be 
ended by clicking on the screen.

Once all questions have been answered, 
the results are displayed. It is visible how 
many questions were answered correctly. 
In addition, the user has the option to start 
a new game.

Screenshot Explanation
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the image quality is artificially lowered. Only with a paid pro-membership can a good
image quality be secured. As an alternative, the open-source program Scrcpy (https://
github.com/Genymobile/scrcpy) was used in this project. It offers many features for
free, such as good image quality and changing the display via keyboard shortcuts. One
disadvantage is that there is no user interface, so the program must be started via the
command line.

Implementation of the Learning Software
In the following, the implementation of the learning software is illustrated. Screenshots
of the individual pages are used, which are identical to the final mockups (Table 3). At
this point it may be added that in the end a ten-year-old girl successfully went through the
learning application. This is captured in this video: https://www.youtube.com/watch?v=
c7tTmYQZPqo. The actual tests are presented in Sect. 4.

4 Tests with Experts

After the successful implementation of the learning application, internal tests took place.
The last errors were identified and eliminated. Afterwards, the developer carried out
external tests. Since it was during school vacations, no tests with pupils could take place.
It was decided to involve as many teachers as possible. In the end, three were engaged.
They were able to test the application independently without prior explanations and
gather their first impressions. Their feedback was collected and recorded in writing. For
this purpose, the developer had designed a template with open-ended questions, with the
aim of obtaining the test subjects’ impressions. This template consisted of the following
questions: 1. How is the operation of the application itself?, 2. How is the concept
evaluated?, 3. Is there added value and if so, what is it?, 4. How is the installation of
the application?, 5. Can the application be integrated into the classroom?, 6. Can the
application be technically implemented?.

1. The usage was rated as intuitive, clear, and simple by all test persons. There are no
distractions, and the application is not overcrowded with elements that could lead to
sensory overload. The fact that the handling was described positively throughout may
also be since the learning application in this form contains only a few elements and
functions.

2. There were mixed responses to this question. One test person would not purchase
the robot for this use case, although it could promote motivation to learn. The other
test subjects would include the robot in their lessons if it had more functions and was
more versatile. Furthermore, two test persons see difficulties in the implementation,
since the teachers would presumably have to invest a lot of time and effort in the
competence development of the new teaching tool.

3. All testers agreed on this question. They feel that the concept can have a positive
impact on learning. It is something new and exciting, which arouses curiosity in the
children. In addition, according to one tester, there is a surprise effect because it is
not clear what the robot will do next. This suggests that the robot offers added value
within the learning application (whereby the physical and vocal presence in itself also
adds value, as has already been pointed out).

https://github.com/Genymobile/scrcpy
https://www.youtube.com/watch?v=c7tTmYQZPqo
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4. The evaluation of the installation and the execution was negative for all test persons.
The execution is still too complicated for children to be able to use the learning
application independently. Above all, teachers need to acquire new knowledge about
the execution so that they can help in case of problems. According to one test person,
detailed instructions could help here. In addition, the need for a computer is an
obstacle. The pupils of all three teachers have their own tablet with which they can
already do many school activities. It would therefore be an advantage if no new
computer had to be purchased and the learning application would run directly on the
tablets.

5. According to all three test persons, the concept could be integrated into lessons.
However, there are different views on how this could be done. On the one hand, the
children could use the learning application as an additional offer that they handle
independently. On the other hand, according to one test person, the robot could be
used for the whole class, for example, for introductions to new topics. However, one
test person saw it differently, as she thinks that the robot is primarily suitable for 1:1
lessons and not for the whole class.

6. All test persons are of the opinion that the setting could be technically implemented in
the school. However, it must be clarifiedwhat happens in case of technical difficulties.
There must be a contact person who is familiar with the application and the problems.
However, the test persons did not have any concerns about the implementation with
the children, as they already have a lot of experience with digital devices from an
early age.

In addition, the developer asked the test persons what suggestions for improvement
(7) and ideas for implementation (8) they had. For reasons of space, these cannot be
listed here. However, they are contained in a document that can be accessed via https://
studierendenprojekte.wirtschaft.fhnw.ch/view/2647.

5 Summary and Outlook

The project showed that a relatively inexpensive social robot, like Alpha Mini, can be
connected to external devices, in this case an external tablet or laptop. In this way, a
learning application with an artificial learning partner and learning software is created
that can achieve something similar to much more expensive options such as Pepper
and others. Schools in particular can benefit from this, as they usually have limited
options when it comes to procuring social robots and digital learning tools in general.
The research question could thus be answered in the affirmative.

The testswith teachers have shown that such a setting can in principle be implemented
in a school. In a follow-up project, the learning software could be expanded, for example,
by extending the question catalog to the existing topics and adding new ones. It would
also be interesting to design the learning application so that the robot could interact with
a group of children. The different settings should then be tested with primary school
pupils.

Ethical and legal aspects could not be addressed in this paper. Whether social robots
in the classroom promote or inhibit social skills and whether the temporary replacement
of teachers and tutors poses a problem has already been answered in the literature [4, 18].

https://studierendenprojekte.wirtschaft.fhnw.ch/view/2647
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In this specific case, it will be particularly important to investigate whether a Chinese
robot complies with the data protection regulations of Switzerland or other countries.
It may be necessary to look for alternatives. It would also be possible to restrict the
functions of the robot to satisfy this problem.
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Abstract. Autonomous driving technologies can minimize accidents.
Communication from an autonomous vehicle to a pedestrian with a feed-
back module will improve the pedestrians’ safety in autonomous driving.
We compared several feedback module options in a Virtual Reality envi-
ronment to identify which module best increases public acceptance, leg-
ibility, and trust in the autonomous vehicle’s decision, and to identify
preference. The results of this study show that participants prefer sym-
bols or text over lights and road projection with no significant difference
between symbols and text. Further, our results show that the preferred
text interaction mode option when the vehicle is not driving is “Walk,”
“Safe to cross,” “Go ahead” and “Waiting”, and the preferred symbol
interaction mode option is the walking person as on a traffic light, with no
significant preference between the cross advisory symbol and the pedes-
trian crossing sign.

Keywords: Autonomous Vehicle · Virtual Reality · Legibility · Public
Acceptance · Trust

1 Introduction

Traffic accidents are a leading cause of death and injury worldwide [1], with a
substantial majority caused by human error [2]. In the year 2019, around 6,205
pedestrians were killed in the U.S., among which almost half of the accidents
were caused by failure to yield right of way [3]. External displays can reduce
the risk for pedestrians and make the pedestrian feel safe to cross when the
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Fig. 1. Virtual Reality environment example.

vehicle is yielding [4]. However, it is uncertain how many pedestrian accidents
were caused by lack of communication and miscommunication. A considerable
amount of the attributed “failure to yield right of way” factor by the National
Highway Traffic Safety Administration of fatal pedestrian accidents was caused
by communication problems [3,5]. Autonomous driving will be introduced in
everyday life in the future. However, since there is no driver for communication
with vulnerable road users, safety of all road users is a growing concern. A
fully autonomous vehicle can create a lack of nonverbal communication due to
missing eye contact or hand signs with the driver [6]. This is a decisive moment to
communicate intent [6]. The lack of possibility to communicate intent can result
in confusion for both pedestrian and autonomous vehicle (AV) regarding whether
to approach or wait for the other person first to continue moving forward.

In this paper, we conducted a Virtual Reality (VR) study validating for a
virtual environment that leverages more realistic results than we obtained in
an on-screen questionnaire study [7] to identify which visual feedback module
increases public acceptance, legibility, and trust the most in the autonomous
vehicle’s decision. The feedback module options used in this study are based
on our prior work [7] regarding visual communication between pedestrians and
autonomous vehicles. The fundamental reason for validating the results of the
on-screen user study in VR was the difference in the presentation of the feed-
back module options in embedded video simulations compared to immersive VR
simulations.

2 Background

The safety and efficiency of pedestrians crossing the road can be increased if
autonomous vehicles display their intention with an external human-machine
interface for pedestrian interaction [4]. Developers and researchers of AV tech-
nologies have proposed different display types to communicate intent to pedes-
trians, such as digital road signs, text, audible chimes and voice instructions
[4,8–10]. In this user study we use VR since VR tests have the advantage of high
flexibility, safety certainty, cost-effectiveness, and acceptable ecological validity
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in comparison to real-world tests [11,12]. Tran et al. reviewed VR studies on
autonomous vehicle-pedestrian interaction [11]. In the review, between 2010 and
2020, 31 VR-based empirical studies were identified for both implicit and explicit
AV-pedestrian communication.

In the following you can find a description of selected papers on studies of
autonomous vehicle-pedestrian-communication-feedback modules that used VR.

In Deb et al. [13] the efficacy of external features on a fully autonomous
vehicle was investigated. In this VR study four visual and four audible features
were used. The four visual features considered were an animated pedestrian
silhouette, the flashing text “Braking,” a flashing smile by bending a straight line,
and no feature. The walking silhouette or the text “Braking” were significantly
favored compared to the other considered features [13]. In a follow-up study Deb
et al. [14] investigated seven features in VR: No feature, a green text message
displaying “walk,” a white walking silhouette, a red upraised hand, a red stop
sign, music, and a verbal message saying “safe to cross”. Pedestrians significantly
preferred the combination of “walk” in text and the verbal message saying “safe
to cross” [14]. Further, participants preferred the written features with the text
message “walk” and the stop sign over the image signal of a walking silhouette
and the upraised hand [14].

Löcken et al. [15] studied five features in VR: a smile by bending a straight
line, a text message combined with a light strip, a road projection which changes
from a wave to a zebra crossing, virtual eyes, and a smart road concept. The
results indicate that the smart road concept was preferred, followed by the road
projection which changes from a wave to a zebra crossing, the smile, the text
message combined with a light strip, and the virtual eyes [15].

Holländer et al. [16] investigated a smile by bending a straight line, traffic
light symbols, a gesturing robotic driver, and no feature in VR. The results of
this study showed that participants preferred the traffic light symbols consisting
of symbols of a green man and a yellow hand [16].

In De Clercq et al. [4], the following features were studied in VR: baseline
without feedback module, front brake lights, Knight Rider [17] animation (a light
bar moves from left to right), smiley by bending a straight line, a text which
displays “WALK.” The results of this study showed no significant differences
between the four considered display options [4].

Stadler et al. [12] investigated a walking man, arrow, check, LED strip, and
traffic light, each with a corresponding “Cross” and “Don’t Cross” symbol. In
this study the hypothesis is that VR is a suitable tool to evaluate the usability of
feedback modules between AVs and pedestrian communication as an alternative
for real-life tests [12]. The results of the different feedback module features did
not show significant differences regarding efficiency, effectiveness, and satisfac-
tion, but showed significant differences to the baseline without feedback module.

Thus, although there were several previous studies that investigated vehicle-
to-pedestrian communication feedback modules, the amount of analyzed fea-
tures studied in VR were limited. Further, there is no clear indication about
which feedback module would increase the public acceptance and trust in the
autonomous vehicle’s decision the most. In this paper, we present a VR study
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that aims to replicate the results from our prior work [7], in which partici-
pants preferred a symbol as feedback module. We expand on previous studies
by comparing feedback module options via VR to identify which visual feedback
module would increase public acceptance, legibility, and trust the most in the
autonomous vehicle’s decision, and to identify preference.

3 Method

In this study we will validate the results of our prior work [7] with immersive VR
instead of video simulations that were embedded in the questionnaire to check
if we obtain the same results. Since VR establishes the possibility to create
immersive environments, we expect the VR study to be more accurate than the
2-D online study while being safe to the user.

3.1 On-Screen Study

In previous research, we conducted an online on-screen user study with the target
group pedestrians [7]. For the perspective of the illustrations the pedestrian view
was situated in the front of the autonomous vehicle since it is most likely that
pedestrians cross the road in front of the vehicle. For simplicity, and to not
confuse participants with several perspectives, one perspective was selected to
display the different interaction modes to the participants. The questionnaire
used Qualtrics XM, an online survey tool. The participants were asked to watch
different sections of videos and choose their most likable option. The results of
this study showed that participants preferred symbols over text, lights and road
projection. Further, the results showed that the text interaction mode option
“Safe to cross” should be used combined with the symbol interaction mode
option that displays a symbol of a walking person.

3.2 Research Question

The research question is: Which visual feedback module increases legibility, pub-
lic acceptance, and trust the most in the autonomous vehicle’s decision?

The message displayed on an autonomous vehicle should be legible, i.e.,
intuitive, concise and easy to understand since pedestrians have limited time to
detect and interpret it [9,18]. Public acceptance is essential for the extensive
adoption of autonomous vehicles considering that the biggest obstacle might not
be technological, but public acceptance [19–21]. Trust has been identified as
crucial to the successful design of autonomous vehicles [22]. According to the
American Automobile Association (AAA), only one in ten U.S. drivers would
trust to ride in an AV, while 28% of U.S. drivers are uncertain [22,23].

3.3 Study Design

This section describes the VR study setup to identify a feedback module for com-
municating between a pedestrian and an AV, which increases legibility, public
acceptance and trust the most in the autonomous vehicle’s decision.
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Instruments. For the simulation environment we used the open-source
autonomous driving simulator CARLA [24], which is based on Unreal Engine. In
Unreal Engine 4, it is possible to create and modify objects, such as vehicles and
the feedback displays. We used a HTC Vive Pro Eye headset. The HTC Vive Pro
Eye headset has integrated Tobii eye trackers enabling head and eye-tracking. It
is equipped with a resolution of 1440× 1600 pixels per eye and offers a refresh
rate of 90 Hz.

Visualizations. We used the same displays as in in our previously conducted
on-screen study [7]. The different concepts stem from [4,9,10,18,25–33]:

– Text options: Accelerating, Driving, Don’t Walk, Do not walk, Go, Go ahead,
I’m in automated driving mode, I’m about to yield, I’m resting, I’m about to
start, On my way, Safe to cross, Slowing Down, Stop, Waiting, Walk

– Symbol options: Cross advisory, Don’t cross advisory, Moving eyes, Pedes-
trian crossing traffic sign, Static Eyes, Smiley, Stop traffic sign, Traffic light:
Upraised hand, Traffic light: Walking person

– Light options: Green front brake lights, LED moves from left to right, Slow
pulsating LED, Smiley Bar: Smiley, Smiley Bar: Line, Static LED

– Road projection options: Arrows indicating path, Arrows fading, Lines: Lines
far apart, Lines: Lines close together, Zebra crossing

Virtual Reality Setup. In Fig. 1, you can see an example of the VR environ-
ment in which the pedestrian wants to cross the road to go to a bus stop. For
the perspective of the participant as a pedestrian, we chose to situate the view
in the front of the autonomous vehicle or in the front left if the distance to the
AV is small to simulate a pedestrian road crossing in front of the vehicle (see
Fig. 1b). In the study, the participants crossed the road by walking approx. 10 ft
(3m) from a traffic island in the middle of the simulated road to the bus stop.
We decided to let the participants physically walk instead of moving forward
with motion controllers to create a more immersive environment. A demo video
of the VR environment is provided at https://youtu.be/u5sU1-c9nz4.

Questionnaire. Similar to our previous work [7] we asked the following ques-
tions that are partially based on Schaefer’s “Trust Perception Scale-HRI” [34]
with a 5-point Likert scale for the different considered feedback module concepts:

– Question 1: I believe the interaction mode protects people from potential
risks in the environment

– Question 2: I believe the interaction mode looks friendly to the pedestrian
– Question 3: I believe the interaction mode communicates clearly
– Question 4: I prefer the interaction mode over human-driver interaction.

Those questions were asked immediately after showing the corresponding feed-
back module in the VR simulation and were displayed as a widget in the VR
headset (see Fig. 1a, left). The participant selected the Likert scale answers by

https://youtu.be/u5sU1-c9nz4.
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navigating with the HTC Vive controller. To reduce bias we added randomiza-
tion to the order of displaying the feedback module options.

Subsequent to the VR simulations we asked participants to rank the inter-
action modes Text, Symbols, Lights and Road Projections regarding preference,
legibility, public acceptance and trust:

– Please rank the interaction modes from the most legible interaction mode (1)
to the least legible interaction mode (4)

– Please rank the interaction modes from the interaction mode you trust the
most (1) to the interaction mode you trust the least (4)

– Please rank the interaction modes from the interaction mode you accept the
most (1) to the interaction mode you accept the least (4)

– Please rank the interaction modes in order of preference from your most
preferred (1) to your least preferred (4).

The demographic questions included age, gender, ethnicity and current level
of education.

3.4 Participants

40 participants were recruited via flyers and social media to participate in the
IRB-approved (IRBNet ID: 1897708-1) VR study. The user study had a duration
of about 30 min. Eleven participants identified as female and 29 participants
identified as male. Further, the participants’ age ranged between 18 and 67
(M=29.13, SD=11.2). None of the participants reported motion sickness.

4 Results

In this section we present the results studying the quality of potential feed-
back modules to enable an autonomous vehicle to communicate with pedes-
trians, which increases legibility, public acceptance and trust the most in the
autonomous vehicle’s decision, and to identify preference.

Since the Likert questions are ordinal we tested for normality with the
Shapiro-Wilk’s normality test. Since the result of the Shapiro-Wilk’s normality
test achieved a p-value that is less than p < 0.05 we cannot assume normality.
Due to this result we used non-parametric tests and show the results of the
questions with frequencies/percentages.

4.1 Legibility, Public Acceptance, Trust, and Preference

To identify the feedback module which most increases legibility, public accep-
tance, and trust in the autonomous vehicle, and to identify the preferred feed-
back module, we analyzed the ranking questions. Each question “Please rank the
interaction modes in order of preference from your most preferred (1) to your
least preferred (4),” “Please rank the interaction modes from the most legible
interaction mode (1) to the least legible interaction mode (4),” “Please rank the
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Fig. 2. The result of ranking questions regard-
ing trust, legibility, acceptance and preference
shows that symbols or text should be selected
as interaction mode due to significant differences
between the interaction mode options symbols
and text to the interaction mode options lights
and road projection (lower is better).

interaction modes from the inter-
action mode you trust the most
(1) to the interaction mode you
trust the least (4),” and “Please
rank the interaction modes from
the interaction mode you accept
the most (1) to the interaction
mode you accept the least (4)”
resulted in the following aver-
age rank order: Symbol, Text,
Projection, Light. Figure 2 shows
a visualization of the rank-
ing questions results and the
results of the pairwise compar-
isons with the Mann-Whitney
U test. The Mann-Whitney U
test shows a significant difference
between symbols and the interac-
tion mode options light and road projection as well as between text and the inter-
action mode options light and road projection. Symbols are ranked the highest.
However, there is no significant difference between symbols and text.

We analyzed the Likert questions sorted by interaction modes (see Fig. 3).
Regarding question 1, participants agreed with the text interaction mode the

Fig. 3. Assessment by participants of the questions (a), (b), (c) and (d) with a 5-point
Likert scale for the four interaction modes text, symbols, lights and road projection
with resulting ranking in descending order: (a) Text, symbols, road projection, lights
(b) Symbols, text, road projection, lights (c) Symbols/text, road projection, lights (d)
Symbols, text, road projection, lights. Overall, participants preferred symbols and text,
followed road projection and lights.



Feedback Module Comparison for AV-Pedestrian Communication in VR 417

most (90.00%), followed by the symbol interaction mode (87.5%), road projec-
tion interaction mode (57.5%) and light interaction mode (52.50%). Question 2
led to the greatest agreement for the symbol interaction mode (82.50%) and text
interaction mode (80.00%), followed by the road projection interaction mode
(55.00%) and light interaction mode (47.50%). Question 3 led to the greatest
agreement for the symbol interaction mode (92.50%) and text interaction mode
(92.50%), followed by the road projection interaction mode (45.00%) and light
interaction mode (42.50%). Further, question 4 led to the greatest agreement for
the symbol interaction mode (80.00%) and the text interaction mode (77.50%),
followed by the road projection interaction mode (42.50%) and light interac-
tion mode (32.50%). The pairwise comparisons with the Mann-Whitney U test
showed significance between symbols and the interaction mode options light and
road projection as well as between text and the interaction mode options light
and road projection. There is no significant difference between symbols and text.
Further, there is no significant difference between lights and road projection.

Taking all results together which feedback module increases most legibility,
public acceptance and trust in the AV’s decision, and to identify preference,
participants selected symbols and text, followed by road projection and lights.

4.2 Supplemental Data

Amount of Messages. Also, we checked how many messages participants pre-
ferred to have displayed on the AV. The options for this question were the
following:

Table 1. The question results “How
many messages would you prefer to
be displayed?” shows that most par-
ticipants would prefer to have two
interaction modes displayed.

One Two Four Other

27.50% 45.00% 20.00% 7.50%

– 1 message: Only to show the pedestrian
that she/he is allowed to cross

– 2 messages: One message to show the
pedestrian that she/he is allowed to cross
and one message that it is not safe to
cross

– 4 messages: Vehicle slowing down, vehicle
is not driving, vehicle accelerating, vehi-
cle driving

– Other

From Table 1, we concluded that the option that participants selected most
is to have two messages displayed (45.00%): One message to show the pedestrian
that she/he is allowed to cross and one message that it is not safe to cross. The
chi-square goodness of fit test shows no significant difference between one and
two messages.

Specific Interaction Mode Options. Thus far, we have analyzed the rankings
of Text, Symbols, Lights and Road Projections regarding our research question
and determined that participants prefer symbol and text interaction modes. We
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now want to look at specific symbol and text options, which support our research
question. For this we analyzed the 5-point Likert scale questions (see Fig. 4).

We will further consider the interaction mode options which are not signif-
icant with the highest rated option via the Mann-Whitney U test. Question 1
led to the result that the text options “Safe to cross,” “Walk,” “Waiting” and
“Go ahead,” and the symbol options “Traffic light walking person,” “Cross advi-
sory” and “Pedestrian crossing sign” are not significantly different. Question 2
showed that the considered text options are not significantly different, and the
symbol options “Smiley,” “Traffic light walking person,” “Cross advisory” and
“Pedestrian crossing sign” are not significantly different. Further, question 3
showed that the text options “Walk,” “Safe to cross,” “Go ahead,” “Waiting”

Fig. 4. Assessment by participants of the questions (a), (b), (c) and (d) with a 5-point
Likert scale for the text and symbol interaction mode not driving options. This shows
that “Walk,” “Safe to cross,” “Go ahead” and “Waiting” are the highest rated options
for the text interaction mode, and for the symbol interaction mode the walking person
as on a traffic light and the cross advisory symbol are the highest rated options with
no significant difference. The threshold of significance to the highest ranked option is
visualized by a dashed line.
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and “I’m resting,” and the symbol options “Traffic light walking person,” “Cross
advisory” and “Pedestrian crossing sign” are not significantly different. Ques-
tion 4 showed that the text options “Safe to cross,” “Walk,” “Go ahead” and

Fig. 5. Assessment by participants of the questions (a), (b) I believe the interaction
mode protects people from potential risks in the environment, (c), (d) I believe the
interaction mode looks friendly to the pedestrian, (e), (f) I believe the interaction
mode communicates clearly and (g), (h) I prefer the interaction mode over human-
driver interaction for the text and symbol interaction mode driving options. (a), (c),
(e) and (g): VR study. (b), (d), (f) and (h): On-screen study.
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“Waiting,” and the symbol options “Traffic light walking person,” “Cross advi-
sory” and “Pedestrian crossing sign” are not significantly different. Altogether,
the preferred text interaction mode option when the vehicle is not driving for
the 5-point Likert scale questions is “Walk,” “Safe to cross,” “Go ahead” and
“Waiting” with no significant difference, and the preferred symbol interaction
mode option is the walking person as on a traffic light, the cross advisory symbol
and the pedestrian crossing sign with no significant difference. In Sect. 4.2 we
found that the option that participants selected most is to have two messages
displayed (45.00%). Consequently, you can see in Fig. 5 the results of the 5-point
Likert scale questions for both the VR study and the on-screen study regarding
the text and symbol interaction mode options if the AV is driving. Both studies
show that the text interaction modes “Don’t walk” or “Do not walk” should
be used and the symbol interaction modes “Don’t cross advisory,” “Stop traffic
sign” or the “Traffic light upraised hand,” (see Fig. 5). In the on-screen study, the
“Traffic light upraised hand” symbol had significant differences to the options
“Don’t cross advisory” and “Stop traffic sign” regarding the questions if the
participant believes that it protects people from potential risks in the environ-
ment and that it communicates clearly (see Subfigures 5(b) and 5(f)). Regarding
the “Traffic light upraised hand” symbol the question “I believe the interac-
tion mode protects people from potential risks in the environment” showed that
participants agreed in the VR study with 75.00% vs. 40.00% in the on-screen
study. The question “I believe the interaction mode communicates clearly”
regarding the “Traffic light upraised hand” symbol resulted in agreement of the
participants with 62.50% in the VR study vs. 51.02% in the on-screen study.

5 Discussion

The results of our previous study [7] of the modified trust questionnaire showed
that the text interaction mode option “Safe to cross” or “Walk” should be used
or the symbol interaction mode option that displays a symbol of a walking per-
son. In this VR study and the on-screen study, the results of the legibility, public
acceptance, trust and preference questions showed that participants prefer the
symbol interaction mode, followed by the text, lights and road projection inter-
action modes, see Subsect. 4.1. It is noticeable that the light interaction mode
has less favorable results in the VR study than in the on-screen study. This could
be a cause of less visibility of the lights in a more immersive environment such
as VR due to more distractions or additional light effects from the surrounding.

The results of the non-driving options for the text and symbol options are
also very similar (see Fig. 4). In both the VR and the on-screen study, the results
of the modified trust questionnaire show that the text interaction mode option
“Safe to cross” or “Walk” should be used (with no significant difference to “Go
ahead” and “Waiting” in the VR study), or the symbol interaction mode option
that displays a symbol of a walking person. Further, when comparing the results
of the VR study and the on-screen study for the considered text and symbol
driving options, the results are similar: Both studies show that the text inter-
action modes “Don’t walk” or “Do not walk” should be used, and the symbol
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interaction modes “Don’t cross advisory,” “Stop traffic sign,” or the “Traffic
light upraised hand,” (see Fig. 5).

In contrast to the on-screen study, the VR study showed no significant dif-
ferences between the highest ranked symbol option “Don’t cross advisory” and
the upraised hand as displayed on a traffic light. In the on-screen study, the
participants selected that the upraised hand as displayed on a traffic light pro-
tects people from potential risks in the environment less and communicates less
clearly than the highest ranked option. A possible reason is that the upraised
hand is a less universal symbol than the symbols “Don’t cross advisory” and
“Stop traffic sign.” We found similar results in the immersive VR study and the
on-screen study, which validated the on-screen study results [7].

6 Limitations and Future Work

The VR study presented in this paper has several limitations due to complexity
and time constraints. In this user study, we asked about general concepts and
therefore omitted, e.g., current law requirements, location, color or size of a pos-
sible vehicle-to pedestrian communication feedback module. Another limitation
is that, despite our efforts to minimize bias through randomization and careful
selection of options, it cannot be considered completely eliminated.

The results of this user study will be used in further research regarding a
vehicle-to pedestrian communication feedback module to develop a communica-
tion capability between an autonomous vehicle and a pedestrian. We will also
validate our study regarding a vehicle-to bicycle communication feedback mod-
ule [35] in VR. In additional user studies, we will use the results in another VR
user study to create and simulate the selected interaction modes in more detail.
As a subsequent step, we will verify the VR user study results in the real world
on a vehicle. This research aims to create hardware that displays the selected
feedback module on an autonomous vehicle. The hardware should remain visible
regardless of various weather and light conditions that may otherwise hinder
visibility. Developing this technology will improve the safety of vulnerable road
users, such as pedestrians.

7 Conclusion

We presented a Virtual Reality study to identify a feedback module for com-
municating between a pedestrian and an autonomous vehicle, which increases
most legibility, public acceptance and trust in the autonomous vehicle’s decision.
The results of this VR study validate the on-screen study questionnaire results
from our previous work [7] since the results are very similar. In both studies, the
results showed that participants prefer the symbol interaction mode, followed by
the text interaction mode. In both studies, the results of the modified trust ques-
tionnaire show that the text interaction mode option “Safe to cross” or “Walk”
(with no significant difference to “Go ahead” and “Waiting” in the VR study)
should be used or the symbol interaction mode option that displays a symbol of
a walking person.
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