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Abstract. The reason behind the unfair outcomes of AI is often rooted
in biased datasets. Therefore, this work presents a framework for address-
ing fairness by debiasing datasets containing a (non-)binary protected
attribute. The framework proposes a combinatorial optimization prob-
lem where heuristics such as genetic algorithms can be used to solve for
the stated fairness objectives. The framework addresses this by finding a
data subset that minimizes a certain discrimination measure. Depending
on a user-defined setting, the framework enables different use cases, such
as data removal, the addition of synthetic data, or exclusive use of syn-
thetic data. The exclusive use of synthetic data in particular enhances
the framework’s ability to preserve privacy while optimizing for fairness.
In a comprehensive evaluation, we demonstrate that under our frame-
work, genetic algorithms can effectively yield fairer datasets compared
to the original data. In contrast to prior work, the framework exhibits a
high degree of flexibility as it is metric- and task-agnostic, can be applied
to both binary or non-binary protected attributes, and demonstrates effi-
cient runtime.

Keywords: Fairness · Data privacy · Non-binary · Fairness-agnostic ·
Genetic algorithms

1 Introduction

Machine learning has become an increasingly important tool for decision-making
in various applications, ranging from income [17] to recidivism prediction [18].
However, the use of these models can perpetuate existing biases in the data
and result in unfair treatment of certain demographic groups. One of the key
concerns in the development of fair machine learning models is the prevention of
discrimination regarding protected attributes such as race, gender, and religion.
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Fig. 1. The pipeline consists of three steps: (1) The user sets the sample set S and other
settings, including the objective, discrimination measure, and protected attribute; (2)
Synthetic data is generated if needed; (3) A solver optimizes the fairness objective to
yield a biased-reduced subset Dfair from the user-selected set S. If S = G was chosen,
the user obtains a bias-reduced synthetic dataset that does not leak privacy-related
information.

While most of the existing literature focuses on classification problems where
the protected attribute is binary [2,4,6,7,10,20,24,28], the real world presents
a more complex scenario where the protected attribute can consist of more than
two social groups, making it non-binary. While works that discuss and deal with
non-binary protected attributes exist, and we do not neglect their existence [5,
14,29], we view it as a necessity to contribute further to this field by providing a
flexible framework that accommodates various fairness notions and applications,
including data privacy, to strive for the employment of responsible artificial
intelligence in practice.

Since bias is rooted in data, we introduce an optimization framework that
pre-processes data to mitigate discrimination. In the context of fairness, pre-
processing ensures the generation of a fair, debiased dataset. We address the
challenges associated with non-binary protected attributes by deriving appro-
priate discrimination measures. To prevent discrimination, we formulate a com-
binatorial optimization problem to identify a subset from a given sample dataset
that minimizes a specific discrimination measure, as depicted in Fig. 1. Depend-
ing on the provided sample dataset, which may also include synthetically gen-
erated data, the framework allows for the removal of such data points or the
inclusion of synthetic ones to achieve equitable outcomes. By using generated
data, we can utilize our method in applications where data privacy is a concern.
Since the discrimination objective is stated as a black box, heuristics, which
do not assess the analytical expression of the discrimination measure during
optimization, are needed to solve our stated problem. Our formulation makes
the framework fairness-agnostic, allowing it to be used to pursue any fairness
objective.

The experimentation was carried out on the Adult [17], Bank [22], and COM-
PAS [18] datasets, all known to exhibit discrimination. We compared the dis-
crimination of the datasets before and after pre-processing them with different
heuristics on various discrimination measures. The results show that genetic
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algorithms [12] were most effective in reducing discrimination for non-binary
protected attributes. To summarize, the primary contributions of this paper are:

– We present an optimization framework that renders different approaches for
yielding fair data. The approaches include removing, adding generated data,
or solely using generated data.

– We underscore the framework’s ability to handle cases where data privacy is
a significant concern.

– Our methodology is designed to handle a protected attribute that can be
non-binary, offering broader applicability.

– We carry out an extensive evaluation of the proposed techniques on three
biased datasets. The evaluation focuses on their effectiveness in reducing dis-
crimination and their runtimes.

– We publish our implementation at https://github.com/mkduong-ai/fairdo as
a documented Python package and distribute it over PyPI.

2 Related Work

Recently, related works have equivalently formulated subset selection problems
to achieve fairness goals [7,26]. While in the work of Tang et al. [26], a distri-
bution is generated that represents the selection probability of each feasible set
to maximize the global utility on average, our work aims to return a definite
subset. To achieve fairness according to any defined criteria, our formulation
treats discrimination measures as black boxes. These measures can encompass
both group and individual fairness notions, distinguishing our work from that of
Tang et al. [26], whose framework is limited to group fairness.

Previous studies have also utilized synthetic data to address fairness and
privacy concerns [7,19]. Both of these studies employed heuristics similar to
our approach. In particular, Liu et al. [19] specialized on generating synthetic
data using a genetic algorithm to satisfy specific privacy definitions [3,8]. While
our framework does not generate privacy-preserving data specifically, it utilizes
synthetic data, which can be generated with such methods. Similarly to our
work, Duong et al. [7] leveraged synthetic data by introducing a sampling-based
heuristic for selecting a subset of such data points to minimize discrimination.
Our work generalizes the work of Duong et al. [7] as their approach can be viewed
as a special case of ours. Additionally, our formulation offers greater flexibility
compared to the approach of Duong et al. [7], as it allows for any heuristic to
tackle the task and is also not limited to binary protected attributes.

3 Measuring Discrimination

In this section, we introduce the notation used to derive discrimination measures
for assessing dataset fairness: A data point or sample is represented as a triple
(x, y, z), where x ∈ X is the feature, y ∈ Y is the ground truth label indicating
favorable or unfavorable outcomes, and z ∈ Z is the protected attribute, which

https://github.com/mkduong-ai/fairdo
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is used to differentiate between groups. The sets X,Y,Z typically hold numeric
values and are defined as X = R

d, Y = {0, 1}, and Z = {1, 2, . . . , k} with k ≥ 2.
For instance, in the context of predicting personal attributes, we can use X to
represent numeric values that encode particular aspects of a person. Y typically
describes the positive or negative outcome that we aim to predict for the person.
Z can denote any protected attribute, such as race, which can be used to identify
the person as Caucasian, Afro-American, Latin American, or Asian. We assume
that z is not included as a feature in x. To be able to differentiate between
groups, k ≥ 2 must hold. If k > 2, the protected attribute Z is said to be non-
binary. Following the definition, a dataset, denoted as D = {di}n

i=1, consists of
data points, where a single sample is defined as di = (xi, yi, zi). Machine learning
models are trained using these datasets to predict the target variable y based on
the input variables x and z. Finally, we denote a discrimination measure with
ψ : D → [0, 1], where D is the set of all datasets.

In the following, x, y, z are noted as random variables that can take on specific
values.

3.1 Absolute Measures

To deal with non-binary groups, Žliobaitė [29] suggested in her work to compare
groups pairwise. For this, she presented three possible ways which are com-
paring each group with another, one against the rest for each group, and all
groups against the unprivileged group. The author further discussed options to
aggregate the results. Although Žliobaitė [29] stated textually how to measure
discrimination for more than two groups, we express them mathematically in this
work. To treat groups equally without presuming which group is unprivileged
and to get the full picture, we choose to make use of comparing each group with
another. We first introduce the common fairness notion statistical parity [16,28],
which demands equal positive outcomes for different groups in Z = {1, 2, . . . , k}.
It is usually defined for binary groups, but we present the non-binary cases [29].

Definition 1 (Statistical parity). Demanding that each of the k groups have
the same probability of receiving the favorable outcome is statistical parity, i.e.,

P (y = 1 | z = 1) = . . . = P (y = 1 | z = k)
⇐⇒ P (y = 1 | z = i) = P (y = 1 | z = j) ∀i, j ∈ Z.

As the group size k grows, the satisfaction of statistical parity becomes less
probable. Because of this, the equality constraints are treated softly by deriv-
ing differences between the groups. Consequently, smaller differences imply more
equality. For binary groups, the difference is often referred to as statistical dis-
parity (SDP) [6].
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Definition 2 (Sum of absolute statistical disparities). Let there be k
groups, then the sum of absolute statistical disparities is calculated as follows [29]:

ψSDP-sum(D) =
∑

i,j∈Z
i�=j

|P (y = 1 | z = i) − P (y = 1 | z = j)|

=
k∑

i=1

k∑

j=i+1

|P (y = 1 | z = i) − P (y = 1 | z = j)|.

Because the total number of comparisons is k(k−1)
2 [29], the average discrimina-

tion between all groups becomes:

ψSDP-avg(D) =
2

k(k − 1)
·

k∑

i=1

k∑

j=i+1

|P (y = 1 | z = i)

− P (y = 1 | z = j)|.
Definition 3 (Maximal absolute statistical disparity). Maximal absolute
statistical disparity measures the absolute statistical disparity between all pairs
i, j ∈ Z and returns the maximum value. Specifically, it is given by:

ψSDP-max(D) = max
i,j∈Z

|P (y = 1 | z = i)

− P (y = 1 | z = j)|.
Žliobaitė [29], after consulting with legal experts, recommends using the max-

imum function to aggregate disparities, though the choice depends on the ethical
context of the specific use case. Discrimination measures can be seen as social
welfare functions. Minimizing the sum of absolute statistical disparities is analo-
gous to the utilitarian viewpoint [21], which aims to maximize the general utility
of the population. If one decides to care for the least well-off group, then min-
imizing the maximal absolute statistical disparity corresponds to the Rawlsian
social welfare [25].

4 Optimization Framework

Inspired by related works that identify unfair data samples [15,27], we propose
a method to remove such samples for fairness. The task is formulated as a com-
binatorial problem where the aim is to determine a subset Dfair of a given set S
such that the discrimination of the subset ψ(Dfair) is minimal, as shown in Fig. 1.
Depending on the application, set S can be the original data D, a synthetic set
G with the same distribution as D, or their union D ∪ G.

4.1 Problem Formulation

To state the problem mathematically, let note S = {s1, s2, . . . , sñ} and further
introduce a binary vector b with the same length as S, i.e., b = (b1, b2, . . . , bñ). To



110 M. K. Duong and S. Conrad

define the combinatorial optimization problem, each entry bi in b is examined
whether it is 1 (bi = 1), in which case the corresponding sample si in S is
included in the subset Dfair. Therefore, the fair set is defined with

Dfair = {si ∈ S | bi = 1, i = 1 . . . ñ}. (1)

The objective f : 0, 1ñ → [0, 1] can then be expressed by:

fS,ψ(b) = ψ(Dfair)
⇐⇒ fS,ψ(b) = ψ({si ∈ S | bi = 1, i = 1 . . . ñ}), (2)

where fS,ψ is defined as the discrimination of a subset Dfair of the given set
S and ψ evaluates the level of discrimination on Dfair. Note that the decision
variable is b, for which Dfair can be obtained. The subindices S and ψ of fS,ψ

can be seen as settings for the objective. Ignoring the subindices, we write out
the combinatorial optimization problem as follows:

min
b

f(b) (3)

subject to bi ∈ {0, 1} ∀i = 1, . . . , ñ.

Because the set of feasible subsets P(S) grows exponentially regarding the car-
dinality of S, we employ heuristics to solve our stated problem.

In the following subsections, we discuss different and useful settings of S that
serve different purposes with their corresponding advantages and disadvantages.

4.2 Removing Samples (S = D)

By setting S = D, it is intended to determine data points in the training set that
can be removed to prevent discrimination. Intuitively, having an overexposure
of certain types of samples that fulfill stereotypes can result in a discriminatory
dataset. In such situations, the most practical step is to remove the affected
samples.

However, this method is not recommended if the given dataset is small. Like-
wise, some could argue that minorities can be easily removed by this method.
Luckily, this can be prevented by choosing the right discrimination measure.

4.3 Employing only Synthetic Data (S = G)

To employ synthetic data, this method relies on a statistical model. The statis-
tical model is used to learn the distribution of the original data P (D). By doing
so, synthetic samples G can be drawn from the learned distribution G ∼ P (D).

Relying solely on synthetic data is particularly important in use cases where
data privacy and protection are major concerns and the use of real data is
prohibited. Of course, synthetic data is not necessarily disjoint from the original
dataset and can therefore be a privacy breach itself. For tabular and smaller
datasets, this can be naively mitigated by removing such privacy breaching points
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from the synthetic data by setting S = G \ D. Other ways include populating
differential privacy techniques in the data generation process [1,8,13,19].

When generally using synthetic data, one cannot easily ensure that the cor-
responding label of the features is correct. Training machine learning models on
synthetic data can therefore lead to higher error rates when predicting on real
data. Despite the distribution of the synthetic data following the distribution
of the real dataset, it depends heavily on the method used when it comes to
generating qualitative, faithful data.

4.4 Merging Real and Synthetic Data (S = D ∪ G)

Another approach to generate a non-discriminatory dataset is to merge the orig-
inal dataset D with synthetic data G that has been generated with a statistical
model as described in Sect. 4.3. By combining the two sets S = D∪G, it is possi-
ble to increase the size of the resulting dataset while avoiding over-representation
of discriminatory samples.

One advantage of this method is that it can improve the quality of the data
by utilizing both the real D and synthetic data G. The resulting dataset can
be larger and more diverse, which can lead to greater robustness when training
machine learning models. If the dataset is too small to apply removal techniques
(S = D) or relying solely on synthetic data (S = G) appears unreliable, merging
the two sets may be a viable option.

However, this method is not without its limitations and comes with dis-
advantages when generally using synthetic data, e.g., quality and faithfulness.
Different from the method described in Sect. 4.3, this method is not applicable
for purposes with privacy concerns as samples from the real data are not omitted.

4.5 Adding Synthetic Data

A different approach that requires a new formulation of the objective is to include
synthetic data points without deleting any samples from the real data. As well, a
set of generated data points G must be given, and the research question is which
of the generated points can lead to a fairer distribution when including them
in the original dataset. The possible use case for this problem is to fine-tune
machine learning models that have already learned from an unfair dataset. This
is mostly useful for large machine learning models where resources are scarce
to retrain the whole model. Following the preceding notation, the fair dataset
becomes:

Dadd
fair = D ∪ {si ∈ S | bi = 1, i = 1 . . . ñ} (4)

and we express the corresponding objective fadd
S,ψ by:

fadd
S,ψ (b) = ψ(Dadd

fair )

⇐⇒ fadd
S,ψ (b) = ψ(D ∪ {si ∈ S | bi = 1, i = 1 . . . ñ}), (5)

where S is set to G to achieve the described approach. Certainly, S can also be
set to D or any other set operation on D with G. Although such settings are
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possible, they do not serve any meaningful purposes. However, one could argue
that setting S = D can act as a reweighing method. Still, we argue against
facilitating duplicates in a dataset with intent, as no additional information is
provided.

As seen, our framework offers many advantages due to its versatility and
therefore potential use in a broad range of applications. By choosing the appro-
priate objective function, discrimination measure, and sample set, the formula-
tion is tailored to the specific intent and use case. Because the formulation is
agnostic to the solver, it can serve multiple purposes without modifying solvers.

Table 1. Overview of Datasets

Dataset Entries Cols. Label Protected
Attribute

Description

Adult [17] 32 561 22 Income Race: White,
Black, Asian-
Pacific-Islander,
American-
Indian-Eskimo,
Other

Indicates
individuals
earning over
$50,000 annually

Bank [22] 41 188 53 Term deposit
subscription

Job: Admin,
Blue-Collar,
Technician,
Services,
Management,
Retired,
Entrepreneur,
Self-Employed,
Housemaid,
Unemployed,
Student,
Unknown

Shows whether
the client has
subscribed to a
term deposit.

COMPAS [18] 7 214 8 2-year
recidivism

Race: African-
American,
Caucasian,
Hispanic, Other,
Asian, Native
American

Displays
individuals that
were rearrested
for a new crime
within 2 years
after initial
arrest

5 Heuristics

This section presents heuristics that specifically solve combinatorial optimization
problems. These include: a baseline method that returns the original dataset, a
simple random heuristic, and genetic algorithms with different operators.
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1. Original: Uses the original data by returning a vector of ones b = 1ñ.
2. Random Heuristic: Generates a user-defined number of random vectors,

with each entry having a 50% chance of being zero or one, and then returns
the best solution.

3. Genetic Algorithm (GA): The workflow of GAs [9] involves generating
an initial population of candidate solutions and then repeatedly performing
selection, crossover, and mutation operations over several generations. In our
implementation, the GA terminates earlier if improved solutions were not
found within 50 generations. Following operators were used in our experi-
mentation [11]:

– Selection: Elitist, Tournament, Roulette Wheel (see [11] for more details)
– Crossover: Uniform (each entry of the offspring has the same probability

of either inheriting the entry from the first or second parent)
– Mutation: Bit Flip (flips a fixed amount of random bits for each vector,

that is 
pm · ñ�, where pm ∈ [0, 1] is the mutation rate)

6 Evaluation

In our evaluation, we conducted multiple experiments to address the following
research questions:

– RQ1 How do the heuristics perform in making the datasets fairer?
– RQ2 How does runtime vary among the heuristics?
– RQ3 How stable are the results across the runs?
– RQ4 Is there a clear winner? If yes, which method is recommended for prac-

tical use?

To answer these research questions, we specifically designed experiments for
the Adult [17], Bank [22], and COMPAS [18] datasets. Both the Adult and COM-
PAS datasets include race as a non-binary protected attribute, whereas the Bank
dataset utilizes the job as a non-binary protected attribute. All datasets were
prepared and cleansed in the same manner: Categorical features were one-hot
encoded, with the exception of the protected attribute and the label. Addition-
ally, rows containing missing values were excluded from all datasets. Table 1
shows details about the datasets used in our experiments after the preparation
and cleansing steps.

Following the dataset preparation, we executed two distinct experiments.
The first experiment (Sect. 6.1) was dedicated to hyperparameter tuning of the
GAs, adjusting both population sizes and the number of generations to pin-
point optimal configurations. Armed with these optimal settings, our second
experiment (Sect. 6.2) focused on comparing different selection operators within
GAs (RQ1). Our aim was to determine which operator yielded the best per-
formance. This experiment included comparisons to several baseline methods,
one of which simply returned the original data. By expanding our evaluation to
multiple discrimination measures in this phase, we can comprehensively assess
the effectiveness of GAs in reducing discrimination in datasets.
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The experimental methodology involves the application of heuristics to pro-
duce a binary mask, which yields fair data. We then measure the discrimination
of the resulting dataset. To ensure stability in our findings (RQ3), each experi-
ment was repeated 15 times. We additionally recorded the runtime of each trial
to tackle RQ2. Depending on the experiment, we employed suitable heuristics
that aim to solve each objective with the associated discrimination measure, as
listed in Table 2. For instance, each heuristic either optimizes fS,ψ or fadd

S,ψ with
varying settings of S and ψ as given in the table. In order to perform experiments
with synthetic data, we generated data that has the same size as the original
dataset, i.e., |G| = |D|. The statistical model used to generate synthetic data is
Gaussian copula [23] which is fast and performs well on tabular data. For privacy-
sensitive use cases, we advise utilizing privacy-preserving techniques [1,8,13,19].
All experiments were conducted on an Intel(R) Xeon(R) Gold 5120 processor
clocking at 2.20GHz.

Table 2. Configuration details of heuristics, objectives, and discrimination measures
for each experiment.

Experiment Heuristics Objectives (f , S) Disc. Measures (ψ)

Hyperparam GA Remove, Merge, Add Sum SDP
Comparison Original, Random,

GA (Elitist, Tournament,
Roulette Wheel)

Remove, Merge, Add Sum SDP, Max SDP

6.1 Hyperparameter Tuning

For the genetic algorithm, we performed hyperparameter tuning, exploring var-
ious population sizes [20, 50, 100, 200] and generations [50, 100, 200, 500], all
using tournament selection, uniform crossover, and bit flip mutation at a rate of
5%. These configurations are described in Sect. 5. We evaluated the algorithm
on three distinct objectives and set ψSDP-sum as the discrimination measure.

Discrimination. As seen in Fig. 2, the heatmaps display the average discrim-
ination (including the standard deviation) of GAs solving various objectives on
different datasets. Each heatmap shows hyperparameters that were set for the
experimentation. Across the different objectives and datasets, there is a consis-
tent trend indicating that utilizing larger populations combined with a higher
number of generations typically results in less discrimination. This is particularly
evident when contrasting scenarios with a population size of 20 and 50 gener-
ations, which, on average, have discrimination scores higher by 0.1. However,
the improvements in discrimination plateau beyond certain thresholds. Specifi-
cally, once the number of generations surpasses 200 or when the population size
exceeds 100, there is no significant further decrease in discrimination observable.
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Fig. 2. Heatmaps showing discrimination scores (ψSDP-sum) after pre-processing with
genetic algorithms using different population sizes (y-axis) and generations (x-axis).
Rows depict the results of Adult, Bank, and COMPAS datasets, while columns repre-
sent the objectives.

Runtime. For brevity reasons, we display the runtimes solely for the Bank
dataset in Fig. 3, given its larger size and the similarity of the results across
other datasets. The outcome of this analysis pointed towards an optimal setting
of a population size of 100 combined with 500 generations. Under our specifica-
tions, executing the GA with these settings takes, on average, between 1.5 and
4.5min. While increasing the population size further did not show significant
improvements in reducing the bias in the datasets, it proved to be more efficient
in terms of the runtime.

6.2 Comparing Heuristics

After determining that a population size of 100 with 500 generations offered
optimal results w.r.t. discrimination and time, this configuration was maintained
for all subsequent experiments. Here, three GAs were compared, each differing
by their selection operator: elitist, tournament, and roulette wheel selection. All
GAs were set with uniform crossover and bit flip mutation at a rate of 5% to
perform the experiments. Additionally, we established both the original dataset
and the random heuristic as baselines.

Discrimination. Table 3 presents the discrimination results of our experiments.
It is evident that all tested algorithms are stable, as reflected by the low standard
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Fig. 3. Heatmaps showing runtimes in seconds for the Bank dataset after pre-
processing with genetic algorithms using different population sizes (y-axis) and gener-
ations (x-axis).

Table 3. Displayed are the mean discrimination scores, accompanied by standard
deviations, from 15 runs. The heuristics were evaluated across multiple objectives using
varying discrimination measures on the Adult, Bank, and COMPAS datasets. Best
results are marked bold.

Objective Method Sum SDP Max SDP
Adult Bank COMPAS Adult Bank COMPAS

Add 1. Original 1.07 ± 0.02 1.83 ± 0.09 1.17 ± 0.06 0.23 ± 0.00 0.09 ± 0.00 0.17 ± 0.01
2. Random 1.03 ± 0.02 2.27 ± 0.07 0.94 ± 0.03 0.21 ± 0.00 0.11 ± 0.00 0.15 ± 0.01
3. Elitist 0.82 ± 0.02 1.54 ± 0.06 0.59 ± 0.03 0.16 ± 0.00 0.07 ± 0.00 0.10 ± 0.00
4. Tournament 0.97 ± 0.02 2.06 ± 0.06 0.80 ± 0.03 0.20 ± 0.00 0.10 ± 0.00 0.13 ± 0.00
5. Roulette 1.03 ± 0.02 2.31 ± 0.08 0.94 ± 0.05 0.21 ± 0.00 0.11 ± 0.00 0.15 ± 0.01

Merge 1. Original 1.07 ± 0.02 1.83 ± 0.09 1.17 ± 0.06 0.23 ± 0.00 0.09 ± 0.00 0.17 ± 0.01
2. Random 0.80 ± 0.03 1.46 ± 0.09 0.76 ± 0.08 0.16 ± 0.01 0.07 ± 0.00 0.12 ± 0.01
3. Elitist 0.21 ± 0.04 0.42 ± 0.07 0.11 ± 0.05 0.04 ± 0.01 0.02 ± 0.00 0.01 ± 0.00
4. Tournament 0.58 ± 0.04 1.17 ± 0.09 0.51 ± 0.04 0.11 ± 0.01 0.05 ± 0.00 0.09 ± 0.01
5. Roulette 0.85 ± 0.05 1.49 ± 0.09 0.79 ± 0.09 0.16 ± 0.01 0.07 ± 0.00 0.12 ± 0.01

Remove 1. Original 0.97 ± 0.00 4.81 ± 0.00 1.89 ± 0.00 0.17 ± 0.00 0.25 ± 0.00 0.27 ± 0.00
2. Random 0.71 ± 0.02 4.07 ± 0.07 0.72 ± 0.03 0.12 ± 0.00 0.19 ± 0.00 0.12 ± 0.01
3. Elitist 0.25 ± 0.02 1.41 ± 0.12 0.20 ± 0.07 0.05 ± 0.00 0.07 ± 0.01 0.01 ± 0.00
4. Tournament 0.57 ± 0.02 3.29 ± 0.08 0.56 ± 0.04 0.11 ± 0.00 0.15 ± 0.01 0.09 ± 0.01
5. Roulette 0.75 ± 0.03 4.15 ± 0.10 0.75 ± 0.08 0.13 ± 0.00 0.20 ± 0.01 0.12 ± 0.01

deviations (RQ3). All heuristics were able to reduce the discrimination available
in the datasets in most cases. Elitist selection consistently outperformed other
methods, offering notable improvements in fairness compared to the original
datasets (RQ1). We emphasize that the measures handle non-binary attributes,
providing flexibility in targeting various fairness goals. Further, by the range
of discrimination measures utilized, our methodology can aim for diverse fair-
ness goals, be it the enhancement of the utilitarian social welfare (ψSDP-sum)
or Rawlsian social welfare (ψSDP-max), as evidenced. An interesting observation
from our study is the varied discrimination levels based on the specific measure
used, as seen in the Bank dataset, where its discrimination is either highest or
lowest when compared with other datasets. This is due to the higher number of
groups, leading to more group comparisons that affect the overall discrimination
score. When examining the objectives, removing both the synthetic and original
data tends to outperform others. This observation is particularly evident in the
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Merge objective. Given the consistent performance of the elitist selection in our
tests, we strongly recommend its use for those aiming to achieve the best fairness
outcomes (RQ4).

Table 4. Mean runtimes in seconds of different methods solving different objectives
with varying discrimination measures on the Adult, Bank, and COMPAS datasets.

Objective Method Sum SDP Max SDP
Adult Bank COMPAS Adult Bank COMPAS

Add 1. Original 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
2. Random 50 ± 1 107 ± 12 14 ± 0 51 ± 6 103 ± 7 13 ± 0
3. Elitist 320 ± 105 605 ± 224 53 ± 21 334 ± 80 636 ± 179 79 ± 23
4. Tournament 122 ± 38 209 ± 50 39 ± 17 119 ± 37 216 ± 74 34 ± 12
5. Roulette 82 ± 26 131 ± 46 26 ± 9 82 ± 40 132 ± 48 26 ± 12

Merge 1. Original 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
2. Random 46 ± 3 67 ± 1 15 ± 2 44 ± 4 66 ± 1 15 ± 3
3. Elitist 283 ± 103 359 ± 143 79 ± 25 286 ± 111 397 ± 161 75 ± 28
4. Tournament 127 ± 39 185 ± 69 36 ± 11 131 ± 61 169 ± 51 44 ± 19
5. Roulette 69 ± 21 127 ± 53 28 ± 9 83 ± 33 118 ± 31 29 ± 14

Remove 1. Original 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
2. Random 23 ± 1 44 ± 1 11 ± 0 22 ± 1 47 ± 11 11 ± 0
3. Elitist 138 ± 66 281 ± 119 52 ± 18 176 ± 68 290 ± 80 50 ± 15
4. Tournament 78 ± 13 119 ± 25 24 ± 9 73 ± 27 132 ± 46 25 ± 7
5. Roulette 58 ± 27 72 ± 19 22 ± 8 52 ± 24 71 ± 24 18 ± 7

Runtime. An analysis of the runtimes is presented in Table 4. The original
method consistently took 0 s (rounded) to finish. At second comes the random
method and lastly GAs. The elitist operator took the longest, with runtimes
approximately three times slower than the quickest operator, the roulette wheel.
Tournament selection comes in between. Most experiments were finished in 5min
or less, which is still very efficient. Regarding the measures, the runtimes when
optimizing ψSDP-max appeared negligibly higher compared to ψSDP-sum, so it can
be disregarded. Generally, larger datasets yielded longer runtimes, revealing a
linear relationship between dataset size and runtime. In addressing the research
question posed in RQ4, it becomes evident that the elitist operator is superior
among the tested methods. Despite being the slowest method, it is still very
efficient at reducing discrimination on datasets consisting of up to 41 188 samples,
as seen in our experimentation.

7 Conclusion

We introduced a novel and flexible optimization framework to reduce discrimi-
nation and preserve privacy in datasets. The framework accommodates various
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intents such as data removal, synthetic data addition, and exclusive use of syn-
thetic data for privacy reasons. Notably, the objectives in our framework are
designed to be independent of specific discrimination measures, allowing users
and stakeholders to address any form of discrimination without modifying the
solvers.

Due to the relatively sparse work existing on dealing with non-binary
attributes, particularly regarding established methods, we tackled non-binary
protected attributes in our experiments by deriving discrimination measures
based on the work of Žliobaitė [29] and showed that our framework allowed
the effective and fast reduction of discrimination by employing heuristics.

8 Future Work and Discussion

Future work could include extending the usability of this framework by deriv-
ing different discrimination measurements. Thus, handling multiple protected
attributes as well as regression tasks can be done without modifying the gen-
eral methodology. Additionally, formulating and integrating constraints into the
objective function can also be done, which further enhances the responsibility
of our approach. For instance, we could consider constraints such as group sizes
and add penalties if samples of minorities get removed.

Although we aim for fairness and data privacy with our framework, it is
still important to engage with diverse stakeholders to identify unintended con-
sequences and address possible ethical implications. Particularly, an extensive
discussion and analysis of the used objective and discrimination measure for
a specific application should be done to ensure that the data aligns with the
desired fairness goals.
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